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Abstract. In this paper we present a general theory for transforming a normalized homogeneous conic system

F : Ax = 0, s̄T x = 1, x ∈ C to an equivalent system via projective transformation induced by the choice of a point

v̂ in the set H ◦̄
s = {v : s̄−AT v ∈ C∗}. Such a projective transformation serves to pre-condition the conic system into

a system that has both geometric and computational properties with certain guarantees. We characterize both the

geometric behavior and the computational behavior of the transformed system as a function of the symmetry of v̂ in

H ◦̄
s as well as the complexity parameter ϑ of the barrier for C. Under the assumption that F has an interior solution,

H ◦̄
s must contain a point v whose symmetry is at least 1/m; if we can find a point whose symmetry is Ω(1/m) then

we can projectively transform the conic system to one whose geometric properties and computational complexity will

be strongly-polynomial-time in m and ϑ. We present a method for generating such a point v̂ based on sampling and

on a geometric random walk on H ◦̄
s with associated complexity and probabilistic analysis. Finally, we implement this

methodology on randomly generated homogeneous linear programming feasibility problems, constructed to be poorly

behaved. Our computational results indicate that the projective pre-conditioning methodology holds the promise to

markedly reduce the overall computation time for conic feasibility problems; for instance we observe a 46% decrease

in average IPM iterations for 100 randomly generated poorly-behaved problem instances of dimension 1000 × 5000.

1. Introduction

Our interest lies in behavioral and computational characteristics of the following homogeneous convex
feasibility problem in conic linear form:

F :

{
Ax = 0

x ∈ C\{0} ,
(1)

where A ∈ L(IRn, IRm) is a linear operator and C is a convex cone.

It is well known that the standard form conic feasibility problem{
Āx = b̄

x ∈ K

is a special case of F under the assignments C ← K × IR+, A ← [
Ā,−b̄

]
and the qualification that

we seek solutions in the interiors of the cones involved. Furthermore, this setting is general enough
to encompass convex optimization as well.
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In the context of interior-point methods (IPMs), the system F has good computational com-
plexity if an IPM for solving F has a good iteration bound. We also say that F has good geometric
behavior if the width of the cone of feasible solutions of F is large, equivalently if F has a solution
x whose relative distance from ∂C is large. Choose a point s̄ ∈ intC∗, and note that F is equivalent
to the normalized problem Fs̄ : Ax = 0, s̄T x = 1, x ∈ C. We show that both the computational
complexity and the geometry behavior of F can be bounded as a function of only two quantities:
(i) the symmetry of the so-called image set Hs̄ := {Ax : s̄T x = 1, x ∈ C} of Fs̄ about the origin,
denoted by sym(0,Hs̄), and the complexity value ϑ of the barrier function for C. These results are
shown in Section 3 after some initial definitions and analysis are developed in Section 2.

In Section 4 we present a general theory for transforming the normalized homogeneous conic
system Fs̄ to an equivalent system via projective transformation. Such a projective transformation
serves to pre-condition the conic system into a system that has both geometric and computational
properties with certain guarantees; we use the term “projective pre-conditioner” to describe such a
projective transformation. Under the assumption that F has an interior solution, there must exist
projective pre-conditioners that transform Fs̄ into equivalent systems that are solvable in strongly-
polynomial time in m and ϑ. The quality of a projective pre-conditioner depends on the ability to
compute a point v̂ that is “deep” in the set H◦

s̄ = {v : s̄−AT v ∈ C∗}. Several constructive approaches
for computing such points are discussed, including a stochastic method based on a geometric random
walk.

The geometric random walk approach is further developed in Section 5, with associated com-
plexity analysis. In Section 6 we present results from computational experiments designed to assess
the practical viability of the projective pre-conditioner method based on geometric random walks.
We generated 300 linear programming feasibility problems (100 each in three sets of dimensions)
designed to be poorly behaved. We present computational evidence that the method is very effective;
for the 100 problems of dimension 1000 × 5000 the average IPM iterations decreased by 46% and
average total running time decreased by 33%, for example.

Section 7 contains summary conclusions and next steps.

We point out that a very different pre-conditioner for F was proposed in [3] that is a linear (not
projective) transformation of the range space of A and that aims to improve Renegar’s condition
measure C(A) (but does not improve the complexity of the original problem or the geometry of the
feasible region).

1.1. Notation

Let e = (1, . . . , 1)T ∈ IRd denote the vector of ones in dimension d. Given a closed convex set
S ⊂ IRd with 0 ∈ S, the polar of S is S◦ := {y ∈ IRd : yT x ≤ 1 for all x ∈ S} and satisfies
S◦◦ = S, see Rockafellar [27]. Given a closed convex cone K ⊂ IRd, the (positive) dual cone of K is
K∗ := {y ∈ IRd : yT x ≥ 0 for all x ∈ K} and satisfies K∗∗ = K, also see [27]. For a general norm



Projective Pre-Conditioners 3

‖ · ‖, let B(c, r) and dist(x, T ) denote the ball of radius r centered at c and the distance from a point
x to a set T , respectively.

2. Normalization and s̄-norm, Behavioral Measures, and Barrier Calculus

Regarding the conic feasibility problem (1), we make the following assumptions:

Assumption 1. C is a regular cone, i.e., intC �= ∅ and C contains no line.

Assumption 2. F has a solution, i.e.,

F := {x ∈ IRn : Ax = 0, x ∈ C\{0}} �= ∅ .

Assumption 3. rankA = m.

2.1. Normalization of F and a Class of Norms that are Linear on C

Let s̄ ∈ intC∗ be chosen, then x ∈ C\{0} if and only if x ∈ C and s̄T x > 0, whereby we can write
F equivalently as the normalized problem:

Fs̄ :

⎧⎪⎨
⎪⎩

Ax = 0
s̄T x = 1

x ∈ C,

whose feasible region is Fs̄ := {x ∈ IRn : Ax = 0, x ∈ C, s̄T x = 1}.
Given the regular cone C and s̄ ∈ intC∗, the linear functional:

f(x) := s̄T x

behaves like a norm when restricted to x ∈ C, namely f(x) is (trivially) convex and positively
homogeneous on C, and f(x) > 0 for x ∈ C\{0}. The natural norm that agrees with f(x) := s̄T x

on C is:
‖x‖s̄ := min

x1,x2
s̄T (x1 + x2)

s.t. x1 − x2 = x

x1 ∈ C

x2 ∈ C ,

and note that ‖x‖s̄ = s̄T x for x ∈ C. We refer to this norm as the “s̄-norm.” Indeed, ‖x‖s̄ is an
exact generalization of the L1 norm in the case when C = IRn

+ and s̄ = e :

‖x‖1 := min
x1,x2

eT (x1 + x2)

s.t. x1 − x2 = x

x1 ∈ IRn
+

x2 ∈ IRn
+ .

We will make extensive use of the family of norms ‖ · ‖s̄ herein. In the case when C is a self-scaled
cone, both ‖ · ‖s̄ and its dual norm have convenient explicit formulas, for details see Section 2 of [8].
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2.2. Measuring the Behavior of F : Geometry and Complexity

A natural way to think of “good” geometric behavior of F is in terms of the existence of a solution
x of F that is nicely interior to the cone C. However, due to the homogeneity of F any solution
x ∈ intC can be re-scaled by a positive constant to yield a solution that is arbitrarily far from the
boundary of C. Given a norm ‖ · ‖ on IRn, we therefore consider the following measure of distance
of x from the boundary of C that is invariant under positive scalings:

reldist(x, ∂C) :=
dist(x, ∂C)

‖x‖ , (2)

where dist(x, S) := infy∈S ‖x − y‖. We define the “width” or “min-width” of the feasible region F
under the norm ‖ · ‖ to be the quantity τF defined by:

τF = max
x∈F

{reldist(x, ∂C)} = max
Ax = 0

x ∈ C\{0}

{reldist(x, ∂C)} . (3)

Note that τF is larger to the extent that F has a solution of small norm whose distance from the
boundary of C is large. τF is a variation on the notion of the “inner measure” of Goffin [11] when
the norm is Euclidean, and has also been used in similar format in [9,7].

As is customary, we will measure the computational behavior of F using a worst-case computa-
tional complexity upper bound on the number of iterations that a suitably designed interior-point
method (IPM) needs to compute a solution of F .

We will show that both the geometry measure τF and the computational complexity can be
bounded as simple functions of the symmetry of the origin in the image set of Fs̄, which we now
define.

The image set H = Hs̄ of Fs̄ is defined as:

H = Hs̄ := {Ax : x ∈ C , s̄T x = 1} .

Note that the assumption that F has a solution implies that 0 ∈ H.

We consider the symmetry of a point in a convex set as defined originally by Minkowski [19], see
also the references and results in [1]. Let S ⊂ IRd be a convex set. Define:

sym(x̄, S) := max {t | y ∈ S ⇒ x̄ − t(y − x̄) ∈ S} ,

which essentially measures how symmetric S is about the point x. Define

sym(S) := max
x̄∈S

sym(x̄, S) ,

and x∗ is called a symmetry point of S if sym(x∗, S) = sym(S).
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2.3. Logarithmically-Homogeneous Barrier Calculus

We presume that we have a ϑ-logarithmically homogeneous (self-concordant) barrier function f(·)
for C, see [21].

Remark 4. We will use the following properties of a ϑ-logarithmically homogeneous barrier:
(i) ū ∈ intC if and only if −∇f(ū) ∈ intC∗

(ii) f∗(s) := − infx∈intC{sT x + f(x)} is a ϑ-logarithmically homogeneous barrier for C∗

(iii) s̄ ∈ intC∗ if and only if −∇f∗(s̄) ∈ intC
(iv) −∇f(ū)T ū = ϑ and −∇f∗(s̄)T s̄ = ϑ for ū ∈ intC and s̄ ∈ intC∗

(v) ∇f(ū) = −H(ū)ū for ū ∈ intC, where H(·) is the Hessian of the barrier f(·)
(vi) ū = −∇f∗(s̄) if and only if s̄ = −∇f(ū)
(vii) −∇f(ū)T y ≥ √

yT H(ū)y for ū ∈ intC and y ∈ C.

Properties (i)-(vi) above are restatements of results in [21] or [26], whereas (vii) is borrowed from
the proof of Lemma 5 of [23].

3. Behavioral Bounds on F

Let s̄ ∈ intC∗ be chosen, and let Fs̄ be as defined in Section 2.1 with image set H = Hs̄ as in Section
2.2. The following result shows that the width τF of the feasible region F is linearly related to the
symmetry of 0 in the image set H.

Theorem 1. Let s̄ ∈ intC∗ be chosen. Under the norm ‖ · ‖s̄, the width τF of F satisfies:

(
1
ϑ

)
sym(0,Hs̄)

1 + sym(0,Hs̄)
≤ τF ≤ sym(0,Hs̄)

1 + sym(0,Hs̄)
.

In particular, 1
2ϑ sym(0,Hs̄) ≤ τF ≤ sym(0,Hs̄).

Remark 5. The left-hand bound in the theorem depends on the complexity parameter ϑ of the barrier
function f(·), which seems a bit unnatural since the width τF is a geometric object that should not
directly depend on the barrier function. If we use the universal barrier of Nesterov and Nemirovskii
[21], we can replace ϑ by CONST×n for the large absolute constant CONST of the universal barrier.
Alternatively, we can replace ϑ by the complexity value ϑ∗ of an optimal barrier for C.

Our next result shows that the computational complexity of a standard interior-point method
(IPM) for computing a solution of F also depends only on sym(0,H) and ϑ. In order to establish
this result we first develop the model that will be solved by the IPM.
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Let s̄ ∈ C∗ be chosen, and assign x̄ ← − 1
ϑ∇f∗(s̄). It follows from Remark 4 that x̄ ∈ intC and

s̄T x̄ = 1. Construct the simple optimization problem:

OP : θ∗ := max
x,θ

θ

Ax +(Ax̄)θ = 0
s̄T x = 1
x ∈ C ,

(4)

and note that (x, θ) = (x̄,−1) is a feasible solution of OP. Furthermore, (x̄,−1) is the analytic
center associated with OP for the barrier function f(·), i.e., (x̄,−1) is the optimal solution of the
problem of minimizing the barrier function f(x) over the feasible region of OP. We will therefore use
(x̄,−1) as a starting point with which to initiate a standard primal feasible interior-point method
for approximately following the central path (x(η), θ(η)) of the parameterized barrier problem:

OPη : max
x,θ

−f(x) +η · θ
Ax +(Ax̄)θ = 0
s̄T x = 1
x ∈ intC

(5)

for an increasing sequence of values of η > 0, until we have computed a point (x, θ) that satisfies
θ ≥ 0, whereby (x+θx̄) is a feasible solution of F . The details of the algorithm scheme are presented
in Algorithm A in the Appendix, where we also prove the following complexity bound for the method:

Theorem 2. Let s̄ ∈ intC∗ be chosen. The standard primal-feasible interior-point Algorithm A
applied to (5) will compute x̃ satisfying Ax̃ = 0, x̃ ∈ intC in at most⌈

9
√

ϑ ln
(

11ϑ

(
1 +

1
sym(0,Hs̄)

))⌉

iterations of Newton’s method. Furthermore, under the norm ‖ · ‖s̄, x̃ will also satisfy

reldists̄(x̃, ∂C) ≥ 1
1.2ϑ + 0.2

· τF .

�

(Note that the complexity bound is trivially valid even when sym(0,Hs̄) = 0, using the standard
convention that 1/0 = ∞.) Taken together, Theorems 1 and 2 present bounds on both behavioral
measures that are simple functions of the complexity value ϑ of the barrier function and the symmetry
of 0 in the image set H = Hs̄. Furthermore, Algorithm A will compute a feasible point whose relative
distance from ∂C is within a factor of O(ϑ) of the maximum relative distance from ∂C over all feasible
points.

Figure 1 can be used to gain some intuition on the complexity result of Theorem 2. The figure
portrays the image set Hs̄, which by assumption contains 0. Furthermore, Ax̄ ∈ Hs̄ by design of x̄.
The optimal value θ∗ of (4) is the largest value of θ for which −θAx̄ ∈ Hs̄. Also notice in Figure
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Fig. 1. The image set Hs̄ and the points Ax̄, 0, and −θ∗Ax̄.

1 that θ∗ ≥ sym(0,Hs̄), and so θ∗ will be large if sym(0,Hs̄) is large. Since the interior-point
algorithm starts at the analytic center (x̄,−1) where θ = −1 and will stop when the current iterate
(x, θ) satisfies θ ≥ 0, it follows from the linear convergence theory of interior-point methods that the
iteration bound will be proportional to the logarithm of the ratio of the initial optimality gap divided
by the optimality gap at the stopping point. This ratio is simply (1+θ∗)/θ∗, which is bounded above
by 1 + 1/(sym(0,Hs̄)).

Note that one can view sym(0,Hs̄) as a condition number of sorts associated with Fs̄, see [3]. In
the next section, we will show how projective transformations can be used to modify sym(0,H) and
hence improve the behavior (both geometry and computational complexity) of Fs̄.

3.1. Proof of Theorem 1

The proof of Theorem 1 is derived from the following two lemmas which we will prove in turn. For
ū ∈ intC define the ellipsoidal norm induced by H(ū) by ‖v‖ū :=

√
vT H(ū)v. Let Bs̄(c, r) and

Bū(c, r) denote the balls centered at c of radius r in the norms ‖ · ‖s̄ and ‖ · ‖ū, respectively. Note
that Bū(c, r) is an ellipsoid whereas Bs̄(c, r) is not ellipsoidal, i.e., these two norms are not part of
the same family. The following lemma shows that ‖ · ‖s̄ and ‖ · ‖ū are within a factor of ϑ of one
another if ū = −∇f∗(s̄).

Lemma 1. Let s̄ ∈ intC∗ be chosen, and define ū := −∇f∗(s̄). Then

Bū(0, 1/ϑ) ⊂ Bs̄(0, 1) ⊂ Bū(0, 1) and reldists̄(ū, ∂C) ≥ 1
ϑ

.

Lemma 2. Let s̄ ∈ intC∗ be chosen and define x̄ := −∇f∗(s̄)/ϑ. Then under the norm ‖ · ‖s̄,

reldists̄(x̄, ∂C)
(

sym(0,Hs̄)
1 + sym(0,Hs̄)

)
≤ reldists̄(x̄, ∂C)

(
θ∗

1 + θ∗

)
≤ τF ≤ sym(0,Hs̄)

1 + sym(0,Hs̄)
≤ θ∗

1 + θ∗
.

Proof of Theorem 1: Define x̄ := −∇f∗(s̄)/ϑ. Then x̄ is a positive scaling of ū defined in Lemma
1, and so reldists̄(x̄, ∂C) = reldists̄(ū, ∂C) ≥ 1

ϑ . Substituting this inequality into the first inequality
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of Lemma 2 yields the first inequality of the theorem, and the second inequality of the theorem is
simply the third inequality of Lemma 2.

Proof of Lemma 1: Suppose that x satisfies ‖x‖ū ≤ 1. Then x1 := 1
2 (ū+x) and x2 := 1

2 (ū−x) satisfy
x1, x2 ∈ C from the theory of self-concordance, and x1 − x2 = x, whereby from the definition of the
s̄-norm we have ‖x‖s̄ ≤ s̄T (x1 + x2) = s̄T ū = ϑ. Therefore Bū(0, 1) ⊂ Bs̄(0, ϑ), which is equivalent
to the first set inclusion of the lemma.

Let L := {x ∈ C : s̄T x = 1}. For any x ∈ L we have 1 = s̄T x = −∇f(ū)T x ≥ √
xT H(ū)x = ‖x‖ū,

where the second equality and the inequality follow from (vi) and (vii) of Remark 4, respectively.
Similarly, if x ∈ −L then ‖x‖ū ≤ 1 as well. Noticing that Bs̄(0, 1) is the convex hull of L and −L,
it follows that x ∈ Bs̄(0, 1) implies ‖x‖ū ≤ 1, or equivalently, Bs̄(0, 1) ⊂ Bū(0, 1).

Last of all, it follows from the theory of self-concordance that ū + Bū(0, 1) ⊂ C, whereby ū +
Bs̄(0, 1) ⊂ ū + Bū(0, 1) ⊂ C. Therefore

reldists̄(ū, ∂C) ≥ 1
‖ū‖s̄

=
1

s̄T ū
=

1
ϑ

,

where the last equality follows from (iv) of Remark 4.

We are grateful to Nesterov [20] for contributing to a strengthening of a previous version of
Lemma 1 and its proof.

Proof of Lemma 2: Recall from Remark 4 that x̄ ← − 1
ϑ∇f∗(s̄) satisfies x̄ ∈ intC and s̄T x̄ = 1.

Therefore Ax̄ ∈ Hs̄ and hence −sym(0,Hs̄)Ax̄ ∈ Hs̄, whereby there exists x ∈ C satisfying s̄T x = 1
and Ax = −sym(0,Hs̄)Ax̄, and therefore θ∗ of (4) must satisfy:

θ∗ ≥ sym(0,Hs̄) . (6)

Therefore the second and third inequalities of the lemma imply the first and fourth inequalities of the
lemma. To prove the second inequality, let (x∗, θ∗) be an optimal solution of (4), and let x = x∗+θ∗x̄

1+θ∗ .
Then x ∈ C, ‖x‖s̄ = s̄T x = 1, and Ax = 0, and by construction

Bs̄

(
x,

θ∗

1 + θ∗
dist(x̄, ∂C)

)
⊂ C ,

whereby we have

τF ≥ reldist(x, ∂C) ≥ θ∗

1 + θ∗
dist(x̄, ∂C) =

θ∗

1 + θ∗
reldist(x̄, ∂C) ,

which demonstrates the second inequality. To prove the third inequality of the lemma, let x̂ ∈ C

satisfy the maximization for which τF is defined in (3), whereby without loss of generality ‖x̂‖s̄ =
s̄T x̂ = 1, Ax̂ = 0, and Bs̄(x̂, τF ) ⊂ C. Let y ∈ Hs̄ be given, whereby y = Ax for some x ∈ C

satisfying ‖x‖s̄ = s̄T x = 1, and define:

x̃ :=
x̂ − τF x

1 − τF
,
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and it follows that x̃ ∈ C, s̄T x̃ = 1, and hence

− τF

1 − τF
y = Ax̃ ∈ Hs̄ .

Therefore sym(0,Hs̄) ≥ τF

1−τF
, and rearranging this last inequality yields the third inequality of the

lemma.

4. Pre-conditioning F by Projective Transformation of Fs̄

Herein we present a systematic approach to transforming the problem Fs̄ to an equivalent problem
Fŝ for a suitably chosen vector ŝ ∈ intC∗, with the goal of improving the symmetry of 0 in the
associated image set Hŝ. We first review some relevant facts about the symmetry function sym(·):

Remark 6. Let S ⊂ IRm be a nonempty closed bounded convex set. The following properties of
sym(·) are shown in [1]:
(i) Let A(x) := Mx + g, M nonsingular. If x̄ ∈ S, then sym(A(x̄),A(S)) = sym(x̄, S).
(ii) If 0 ∈ S, then sym(0, S) = sym(0, S◦).
(iii) sym(S) ≥ 1

m .

Under Assumption 2, 0 ∈ Hs̄, whereby Hs̄ is a closed convex set containing the origin. Therefore
H◦

s̄ , the polar of Hs̄, is also a closed convex set containing the origin, and H◦◦
s̄ = Hs̄. In fact, there

is a simple form for H◦
s̄ given by the following:

Proposition 1. Let s̄ ∈ intC∗ be chosen. Then H◦
s̄ = {v ∈ IRm : s̄ − AT v ∈ C∗}.

Proof. We have:

H◦
s̄ = {v : vT y ≤ 1 for all y ∈ Hs̄}

= {v : vT Ax ≤ 1 for all x that satisfy s̄T x = 1, x ∈ C}
= {v : vT Ax ≤ s̄T x for all x that satisfy s̄T x = 1, x ∈ C}
= {v : (s̄ − AT v)T x ≥ 0 for all x ∈ C}
= {v : s̄ − AT v ∈ C∗} .

It is curious to note from Proposition 1 that while checking membership in Hs̄ is presumably not
easy (validating that 0 ∈ Hs̄ is an equivalent task to that of solving F ), the set H◦

s̄ is in fact easy to
work with in at least two ways. First, 0 ∈ intH◦

s̄ , so we have a known point in the interior of intH◦
s̄ .

Second, checking membership in H◦
s̄ is a relatively simple task if we have available a membership

oracle for C∗.

Motivated by Theorems 1 and 2 which bound the geometric and computational behavior of F

in terms of the symmetry of the origin in Hs̄, we now consider replacing s̄ by some other vector
ŝ ∈ intC∗ with the goal of improving sym(0,Hŝ). We proceed as follows. Taking s̄ ∈ intC∗ as given,
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suppose we choose some v̂ ∈ intH◦
s̄ = {v ∈ IRm : s̄ − AT v ∈ C∗}, and define ŝ := s̄ − AT v̂, therefore

ŝ ∈ intC∗. We replace s̄ by ŝ, obtaining the modified normalized feasibility problem:

Fŝ :

⎧⎪⎨
⎪⎩

Ax = 0
ŝT x = 1

x ∈ C ,

with modified image set:

Hŝ = {Ax : x ∈ C , ŝT x = 1}
and polar set:

H◦
ŝ = {v ∈ IRm : ŝ − AT v ∈ C∗} .

The following shows that sym(0,Hŝ) inherits the symmetry of v̂ in the original polar image set
H◦

s̄ .

Theorem 3. Let s̄ ∈ intC∗ be given. Let v̂ ∈ intH◦
s̄ be chosen and define ŝ := s̄ − AT v̂. Then

sym(0,Hŝ) = sym(v̂, H◦
s̄ ) .

Proof. We have:

H◦
s̄ − {v̂} = {u = v − v̂ : s̄−AT v ∈ C∗} = {u : s̄−AT v̂ −AT u ∈ C∗} = {u : ŝ−AT u ∈ C∗} = H◦

ŝ .

It then follows from (ii) of Remark 6 that

sym(0,Hŝ) = sym(0,H◦
ŝ ) = sym(0,H◦

s̄ − {v̂}) = sym(v̂, H◦
s̄ ) ,

where the last equality above readily follows from (i) of Remark 6.

Note that the following projective transformations map Fs̄ and Fŝ onto one another:

x
′ ← x

ŝT x
and x ← x

′

s̄T x′ . (7)

Furthermore, Theorem 3 has an interesting interpretation in the context of projective transforma-
tions and polarity theory which we will discuss in Subsection 4.2.

Our present goal, however, is to use Theorem 3 constructively to develop a method for transform-
ing Fs̄. Suppose we can compute a point v̂ ∈ H◦

s̄ with good symmetry in H◦
s̄ ; letting α := sym(v̂, H◦

s̄ )
we seek v̂ for which α > sym(0,Hs̄) and is relatively large, for example, α = Ω(1/m). Then replace
s̄ by ŝ := s̄ − AT v̂ and work instead with with Fŝ. Theorem 3 states that the transformed system
will have sym(0,Hŝ) = α, i.e., the transformed system will take on the symmetry of v̂ in H◦

s̄ . This
is most important, since it then follows from Theorems 1 and 2 that the transformed system Fŝ will
have geometry and complexity behavior that will depend on α as well. We formalize this method
and the above conclusion as follows:
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Fig. 2. Projective transformation of the image set Hs̄ to improve the symmetry of 0 in the transformed image set.

Projective Pre-conditioning Method (PPM)
Step 1. Construct H◦

s̄ := {v ∈ IRm : s̄ − AT v ∈ C∗}
Step 2. Find a suitable point v̂ ∈ H◦

s̄ (with hopefully good symmetry in H◦
s̄ )

Step 3. Compute ŝ := s̄ − AT v̂

Step 4. Construct the transformed problem:

Fŝ :

⎧⎪⎨
⎪⎩

Ax = 0
ŝT x = 1

x ∈ C

(8)

Step 5. The transformed image set is Hŝ := {Ax ∈ IRm : x ∈ C , ŝT x = 1}, and sym(0,Hŝ) =
sym(v̂, H◦

s̄ ).

Figure 2 illustrates the strategy of the Projective Pre-Conditioning Method. On the left part
of the figure is the image set Hs̄, and notice that Hs̄ is not very symmetric about the origin, i.e.,
sym(0,Hs̄) << 1. However, under the projective transformation given by the projective plane in the
slanted vertical line, Hs̄ is transformed to a box that is perfectly symmetric about the origin, i.e.,
sym(0,Hŝ) = 1. (In general, of course, we can at best attain sym(0,Hŝ) = 1/m.)

The following corollary follows from Theorem 3 and the above discussion, using Theorems 1 and
2:

Corollary 1. Let s̄ ∈ intC∗ be chosen, and suppose that the Projective Pre-conditioning Method has
been run, and let α := sym(v̂, H◦

s̄ ). Under the norm ‖ · ‖ŝ, the width τF of F satisfies:(
1
ϑ

)
α

1 + α
≤ τF ≤ α

1 + α
,

and the standard primal-feasible interior-point Algorithm A applied to (8) will compute x̃ satisfying
Ax̃ = 0, x̃ ∈ intC in at most ⌈

9
√

ϑ ln
(

11ϑ

(
1 +

1
α

))⌉
iterations of Newton’s method. Furthermore, under the norm ‖ · ‖ŝ, x̃ will also satisfy

reldistŝ(x̃, ∂C) ≥ 1
1.2ϑ + 0.2

· τF .
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Let us now presume that F has an interior solution, whereby 0 ∈ intHs̄ and H◦
s̄ will be bounded

and sym(0,Hs̄) = sym(0,H◦
s̄ ) > 0. Furthermore, we know from (iii) of Remark 6 that there exists a

point v whose symmetry value in H◦
s̄ is at least 1/m. Notice that if we can generate a point v̂ ∈ H◦

s̄

with very good symmetry in H◦
s̄ in the sense that α := sym(v̂, H◦

s̄ ) = Ω(1/m), we can then compute
x̃ of Corollary 1 using at most O

(√
ϑ ln (ϑ · m)

)
Newton steps, which is strongly polynomial-time.

And even if we merely satisfy α := sym(v̂, H◦
s̄ ) > sym(0,Hs̄), we still may improve the computational

effort needed to solve F by working with Fŝ rather than Fs̄.

Of course, the effectiveness of this method depends entirely on the ability to efficiently compute
a point v̂ ∈ H◦

s̄ with good symmetry. The set H◦
s̄ has the convenient representation H◦

s̄ = {v ∈ IRm :
s̄ − AT v ∈ C∗} from Proposition 1; furthermore, we have a convenient point 0 ∈ intH◦

s̄ with which
to start a method for finding a point with good symmetry; also, testing membership in H◦

s̄ depends
only on the capability of testing membership in C∗. Thus, the relative ease with which we can work
with H◦

s̄ suggests that excessive computation might not be necessary in order to compute a point v̂

with good symmetry in H◦
s̄ . We explore several different approaches for computing such a point v̂

in the following subsection.

4.1. Strategies for Computing Points with Good Symmetry in H◦
s̄

In this subsection we presume that F has an interior solution, whereby 0 ∈ intHs̄ and H◦
s̄ will be

bounded and sym(0,H◦
s̄ ) > 0. Recall that a symmetry point of a convex set S ⊂ IRm is a point

x∗ whose symmetry is optimal on S. From (iii) of Remark 6 we know that sym(x∗, S) ≥ 1/m.
When C = IRn

+, a symmetry point of H◦
s̄ can be computed by approximately solving n + 1 linear

programs using the method developed in [1]. Thus even for the case of C = IRn
+ the computational

burden of finding a point with guaranteed good symmetry appears to be excessive. In fact, the
seemingly simpler task of just evaluating sym(x, S) at a particular point x = x̄ might be hard for
a general convex body S, see [1]. Therefore, one is led to investigate heuristic and/or probabilistic
methods, or perhaps methods that compute other types of points that lie “deep” in a convex body.
Table 1 presents the symmetry guarantee for several types of deep points in a convex body; the
computational effort for C = IRn

+ (H◦
s̄ is the intersection of n half-spaces) is shown in the third

column of the table. We now briefly discuss each of these three possible choices for such points.

4.1.1. Analytic Center Approach. Starting at v = 0, we could use the damped Newton method
outlined in [21] to compute an approximate analytic center of H◦

s̄ using the barrier function b(v) :=
f∗(s̄ − AT v). We know from the theory of self-concordant barriers that the analytic center va of
H◦

s̄ has symmetry value at least 1/
√

ϑ(ϑ − 1) (see Lemma 5 of the Appendix of Nesterov, Todd,
and Ye [23]). Each iteration of the algorithm would be of comparable computational burden as an
interior-point iteration for the problem OPµ and so it would probably be wisest to perform only a
few iterations and hope that the final iterate vf would have good symmetry value in H◦

s̄ nevertheless.
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4.1.2. Löwner-John Center Approach. The Löwner-John theorem guarantees the existence of an
m-rounding of H◦

s̄ , i.e., an ellipsoid E centered at the origin and a point vj with the property that
{vj} + E ⊂ H◦

s̄ ⊂ {vj} + mE, see [12]. Such a point vj is called a Löwner-John center and it
follows that sym(vj ,H◦

s̄ ) ≥ 1/m. In the case when C is either the nonnegative orthant IRn
+ or is

the cartesian product of second-order cones, we can compute such an approximate Löwner-John
center by computing the center of the maximum volume inscribed ellipsoid in H◦

s̄ via semidefinite
programming (see Zhang and Gao [29], for example, for the case when C = IRn

+). The problem with
this approach is that the computational effort is likely to be substantially larger than that of solving
the original problem Fs̄, and the approach is limited to the case when C is the cartesian product of
half-lines and/or second-order cones.

4.1.3. Center of Mass Approach. The center of mass (or centroid) of a convex body S ⊂ IRm will
have guaranteed symmetry of at least 1/m, see [14]. Even when C = IRn

+, computing the center of
mass of H◦

s̄ is #P-hard, see [2]. However, if we instead consider nondeterministic algorithms, then
the recent work of Lovász and Vempala [16–18] points the way to computing points near the center
of mass with high probability with good theoretical efficiency. This approach will be developed in
more detail in Section 5.

Central Point Symmetry Guarantee Computational Effort when C = IRn
+

Symmetry Point 1/m ≈ LP × (n + 1)

Analytic Center 1√
ϑ(ϑ−1)

≈ LP

Löwner-John Center 1/m ≈ SDP

Center of Mass 1/m #P-Hard (deterministic)

≈ polynomial-time (stochastic)

Table 1. Summary Properties of Strategies for Computing Deep Points in H ◦̄
s

4.2. Polarity and Projective Transformations in Theorem 3

While it is obvious that Fs̄ and Fŝ are related through the pair of projective transformations (7), it
is perhaps not so obvious that the image sets Hs̄ and Hŝ are related via projective transformations:
Hs̄ maps onto Hŝ with the following projective transformations between points y ∈ Hs̄ and y

′ ∈ Hŝ:

y
′
= T (y) :=

y

1 − v̂T y
and y = T−1(y

′
) =

y
′

1 + v̂T y′ . (9)

This pair of projective transformations results from a more general theory concerning the polarity
construction, translations, and projective transformations as follows, see Grünbaum [13] for example.
Let S be a closed convex set containing the origin. (S = Hs̄ in our context.) Then S◦ is a closed convex
set containing the origin and S◦◦ = S. Let v̂ ∈ intS◦ be given. Then (S◦−{v̂}) is the translation of S
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Fig. 3. Translation of the polar set corresponds to projective transformation of the original set.

by v̂, and also is a closed convex set containing the origin, and its polar is (S◦−{v̂})◦. It is elementary
arithmetic to show that S and (S◦ − {v̂})◦ are related through the projective transformations (9),
namely (S◦ − {v̂})◦ = T (S) and S = T−1((S◦ − {v̂})◦). In other words, translation of the polar set
corresponds to projective transformation of the original set, see Figure 3. This correspondence was
previously used in [5,6].

5. Approximate Center of Mass of H◦
s̄ and its Symmetry

In this section we present some general results about sampling from the uniform distribution on a
given convex body S ⊂ IRd, which are relevant for our particular case where S = H◦

s̄ and d = m. We
proceed as follows. A function f : IRd → IR+ is said to be logconcave if log f is a concave function. A
random variable Z ∈ IRd is called a logconcave random variable if the probability density function
of Z is a logconcave function. Note that logconcave random variables are a broad class that includes
Gaussian, exponential, and uniformly distributed random variables on convex sets.

The center of mass (or centroid) and covariance matrix associated with Z are given respectively
by

µZ := E[Z] and ΣZ := E[(Z − µZ)(Z − µZ)T ] .
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The matrix ΣZ is symmetric positive semi-definite. If ΣZ is positive definite it can be used to define
the ellipsoidal norm:

‖v‖ΣZ
:=

√
vT Σ−1

Z v .

The following are very useful properties of logconcave random variables.

Lemma 3. [15,24,25] The sum of independent logconcave random variables is a logconcave random
variable.

Lemma 4. [16] Let Z be a logconcave random variable in IRd. Then for any R ≥ 0:

P
(
‖Z − µZ‖ΣZ

≥ R
√

d
)
≤ e−R.

Now let X be a random variable in IRd uniformly distributed on a convex body S, i.e., the
probability density function of X is given by

f(x) =
1

Vol(S)
1S(x) , (10)

where 1S(·) is the indicator function of the set S. For simplicity, we denote its center of mass
and covariance matrix respectively by µ and Σ, and note that Σ is positive definite since S has a
non-empty interior. Let BΣ(x, r) denote the ball centered at x with radius r in the norm ‖ · ‖Σ .

Lemma 5. [16] Let X be a random variable uniformly distributed on a convex body S ⊂ IRd. Then

BΣ

(
µ ,

√
(d + 2)/d

)
⊂ S ⊂ BΣ

(
µ ,

√
d(d + 2)

)
.

Assume that we are given M independent uniformly distributed random points v1, v2, . . . , vM

on the convex body S. We define the sample mean the usual way:

v̂ :=
1
M

M∑
i=1

vi .

Lemma 6. Let v̂ be the sample mean of M independent uniformly distributed points on the convex
body S ⊂ IRd. Then

sym(v̂, S) ≥
√

(d + 2)/d − ‖v̂ − µ‖Σ√
d(d + 2) + ‖v̂ − µ‖Σ

.

Proof. Consider any chord of S that passes through v̂. It is divided by v̂ into two segments of
length s1 and s2. From Lemma 5 it follows that BΣ

(
µ ,

√
(d + 2)/d

)
⊂ S ⊂ BΣ

(
µ ,

√
d(d + 2)

)
.

Thus, we can bound the ratio of s1 to s2 by

s1

s2
≥

√
(d + 2)/d − ‖v̂ − µ‖Σ√
d(d + 2) + ‖v̂ − µ‖Σ

.
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Theorem 4. Let v̂ be the sample mean of M independent uniformly distributed points on the convex
body S ⊂ IRd. Then for any t ≥ 0 it holds that P(‖v̂ − µ‖Σ ≥ t) ≤ e−t

√
M
d .

Proof. Let Y =
√

Mv̂. Since v1, v2, . . . , vM are independent uniformly distributed random vari-
ables on S, E[Y ] =

√
Mµ and Σ is the covariance matrix of Y . Moreover, using Lemma 3, Y is a

logconcave random variable since it is a sum of independent logconcave random variables. Applying

Lemma 4 using R = t
√

M
d we obtain:

P (‖v̂ − µ‖Σ ≥ t) = P
(
‖
√

Mv̂ −
√

Mµ‖Σ ≥ t
√

M
)

= P
(
‖Y − E[Y ]‖Σ ≥ R

√
d
)
≤ e−R = e−t

√
M
d .

Corollary 2. For any δ ∈ (0, 1) and setting M = 4d (ln(1/δ))2, we have

sym(v̂, S) ≥ 1
2d + 3

with probability at least 1 − δ.

Proof. Using Theorem 4 with M = 4d (ln(1/δ))2 and t = 1/2 we obtain P(‖v̂ − µ‖Σ ≥ 1/2) ≤ δ,
whereby P(‖v̂ − µ‖Σ ≤ 1/2) ≥ 1 − δ . Finally, using Lemma 6 we obtain:

sym(v̂, S) ≥ 1 − 1/2
d + 1 + 1/2

=
1

2d + 3

with probability at least 1 − δ.

Remark 7. The proof of Corollary 2 can be extended to show that setting M =
(

1+ 1−ε
d

ε

)2

d
(
ln(1/δ))2

)
we obtain sym(v̂, S) ≥ 1−ε

d with probability at least 1 − δ.

Keeping in mind the fact that sym(S) can only be guaranteed to be at most 1/d (and this bound
is attained, for example, for a d-dimensional simplex), Corollary 2 gives an upper bound on the
number of points that must be sampled to obtain a point v̂ whose symmetry is bounded below by
Ω(1/d) with high probability. Specializing to the case of S = H◦

s̄ and d = m and presuming that
F has an interior solution (and hence H◦

s̄ is a convex body), Corollary 2 provides a mechanism for
achieving sym(v̂, H◦

s̄ ) = Ω(1/m), and hence achieving sym(0,Hŝ) = Ω(1/m) with high probability
(from Theorem 3). It follows from Corollary 1 and Corollary 2 that in the context of the Projective
Pre-conditioning Method presented in Section 4, with high probability (i.e., probability at least 1−δ)
we attain a complexity bound for solving Fŝ of⌈

9
√

ϑ ln (11ϑ (2m + 4))
⌉

iterations of Newton’s method. This iteration bound is strongly polynomial-time (with high proba-
bility). In order to make Corollary 2 constructive, we need a method for sampling on a convex body
that obeys an approximate uniform distribution, which is discussed in the following subsection.
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5.1. Sampling from the Uniform Distribution on a Convex Body

Herein we outline some relevant theory about uniform sampling on a convex body S ⊂ IRd, see
[16], [17], and [18] for recent results on this problem. We describe a standard sampling algorithm
specialized to the structure of our application. To generate a random point distributed approximately
uniformly on S, we will use a geometric random walk algorithm on S. The implementation of the
algorithm requires only the use of a membership oracle for S and an initial point X0 ∈ S. In the
context of the Projective Pre-conditioning Method of Section 4, where S = H◦

s̄ and d = m, the
initial point is 0 ∈ H◦

s̄ . The requirement of a membership oracle for S = H◦
s̄ is met if we have a

membership oracle for the dual cone C∗ as discussed earlier.

The geometric random walk algorithm known as “Hit-and-Run” (see [17]) generates iterates
X1,X2, . . ., as follows:

Geometric Random Walk Algorithm
Step 1. Initialize with X0 ∈ S, k = 0
Step 2. Choose s uniformly on the unit sphere Sd−1 in IRd

Step 3. Let Xk+1 be chosen uniformly on the line segment S ∩ {Xk + ts : t ∈ IR}
Step 4. Set k ← k + 1, goto Step 2

It is a simple and well known result that this random walk induces a Markov chain whose
stationary distribution is the uniform distribution on S. The rate of convergence to the stationary
distribution depends on the spectral gap, i.e., the difference between the two largest eigenvalues of
the transition kernel. Suppose that we run the algorithm for N iterations. In [17] it is proved that
to achieve an ε-approximation to the uniform distribution density function (10) in the L1 norm, it
is sufficient that

N = O

(
d3

(
R

r

)2

ln
(

R

ε · dist2(0, ∂S)

))
,

where r,R satisfy B2(w, r) ⊂ S ⊂ B2(v,R) for some w, v ∈ S, and B2(c, δ), dist2(v, T ) are the
Euclidean ball centered at c with radius δ and the Euclidean distance from v to T , respectively.

Note that Step 3 of the algorithm requires that one computes the end points of the line segment in
S that passes through Xk and has direction s. This can be done by binary search using a membership
oracle for S. In our case S = H◦

s̄ = {v : s̄−AT v ∈ C∗} and the required membership oracle for S is
met if we have a membership oracle for C∗. For self-scaled cones the endpoints computation in Step
3 is a standard computation: when C = IRn

+ the endpoints computation is a min-ratio test, when
C is the cross-product of second-order cones the endpoints computation uses the quadratic formula,
and when C is the positive semidefinite cone the endpoints computation is a min-ratio test of the
eigenvalues of a a matrix obtained after a single Cholesky factorization.
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6. Computational Results on Randomly Generated Poorly-Behaved Problems

We performed computational experiments to assess the practical viability of the projective pre-
conditioning method (PPM). We tested the PPM on 300 artificially generated homogeneous linear
programming feasibility problems (i.e., C = IRn

+). These 300 problems were comprised of 100 prob-
lems each of dimensions (m,n) = (100, 500), (500, 2500), and (1000, 5000), and were generated so as
to guarantee that the resulting problems would be poorly behaved. Each problem is specified by a
matrix A and the chosen value of s̄. We first describe how A was generated. Given a pre-specified
density value DENS for A, each element of A was chosen to be 0 with probability 1−DENS, otherwise
the element was generated as a standard Normal random variable. We used DENS = 1.0, 0.01, and
0.01 for the problem dimensions (m,n) = (100, 500), (500, 2500), and (1000, 5000), respectively. The
vector s̄ was chosen in a manner that would guarantee that the problem would be poorly behaved
as follows. Starting with s0 = e, we created the polar image set H◦

s0 = {v : AT v ≤ e}. We randomly
generated a non-zero vector d ∈ IRm and performed a min-ratio test to compute t̄ > 0 for which
t̄AT d ∈ ∂H◦

s0 . Then s̄ is determined by the formula:

s̄ = s0 − (1 − 4 × 10−5)t̄AT d .

This method is essentially the reverse process of the PPM, and yields sym(0,Hs̄) ≤ 4 × 10−5, with
resulting poor geometry from Theorem 1.

We implemented the projective pre-conditioning method (PPM) using the following simplified
version of the stochastic process described in Section 5: starting from v0 = 0 ∈ intH◦

s̄ we take K steps
of the geometric random walk algorithm, yielding points v1, . . . , vK , and computed v̂ := 1

K

∑K
i=1 vi,

and then set ŝ = s̄−AT v̂. We set K = 30. It is also well known that this simple method yields v̂ → µ

as K → ∞ and that the convergence results are similar to those described in Section 5. Nonetheless,
the theoretical analysis is more technical and requires additional notation and so is omitted here.
See [4] and [10] for discussion and further references.

We solved the 300 original problem instances of OP (stopping as soon as θ ≥ 0), as well as
the resulting instances after pre-conditioning, using the interior-point software SDPT3 [28]. Table 2
summarizes our computational results. Because these problems are feasibility problems the number of
IPM iterations is relatively small, even for the original problems. Notice that average IPM iterations
shows a marked decrease in all three dimension classes, and in particular shows a 46% decrease in
average IPM iterations for the 100 problem instances of dimension 1000 × 5000. The total running
time (which includes the time for pre-conditioning using the geometric random walk) also shows a
marked decrease when using the projective pre-conditioning method, and in particular shows a 33%
decrease for the 100 problem instances of dimension 1000 × 5000. The last two columns of Table 2
shows the average value of θ∗. Given that (x, θ) = (x̄,−1) is a feasible starting point for OP (and
for SDPT3), θ∗ is a good measure of the computational difficulty of a problem instance – a problem
is poorly behaved to the extent that θ∗ is close to zero. Here we see, regardless of any IPM, that θ∗

increases by a factor of roughly 400, 800, and 600 for the problem dimensions (m,n) = (100, 500),
(500, 2500), and (1000, 5000), respectively. These results all demonstrate that by taking only a small
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number of steps of the geometric random walk algorithm, one can greatly improve the behavior of
a poorly-behaved problem instance, and hence improve the practical performance of an IPM for
solving the problem instance.

Dimensions Average IPM Iterations Average Total Running Time (secs.) Average Value of θ∗

Original After Original After Original After

m n Problem Pre-conditioning Problem Pre-conditioning Problem Pre-conditioning

100 500 8.52 4.24 0.5786 0.2983 0.0020 0.8730

500 2500 9.30 5.17 2.4391 2.0058 0.0012 1.0218

1000 5000 9.69 5.20 22.9430 15.3579 0.0019 1.1440

Table 2. Average Performance of SDPT3 on the 300 Problem Test-bed of Linear Programming Feasibility Problems.

Computation was performed on a laptop computer running Windows XP.

We also explored the sensitivity of the computational performance of the PPM to the number
of steps of the random walk. Figure 4 shows the median number of IPM iterations as well as the
90% band (i.e., the band excluding the lower 5% and the upper 5%) of IPM iterations for the 100
problems of dimension 100× 500 before and after pre-conditioning. Notice that only 10 steps of the
random walk are needed to reduce the median and variance of the IPM iterations to a very low level.
As the number of random walk steps increase, the number of IPM iterations quickly concentrates
and converges to a value below the 0.05 quantile for the original problem instances.

10
0

10
1

10
2

10
3

3

4

5

6

7

8

9

10

11

Number of Steps of the Random Walk (log scale)

IP
M

It
er

at
io

ns

Original Median
Original 90% Band
Preconditioned Median
Preconditioned 90% Band

Fig. 4. IPM iterations versus number of steps of the geometric random walk for the 100 problem instances of dimension

100 × 500.

Figure 5 shows the median value of θ∗ as well as the 90% band of θ∗ values for the 100 problems
of dimension 100×500 before and after pre-conditioning. As discussed earlier, θ∗ is a good measure of
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problem instance behavior: larger values of θ∗ indicate that the problem instance is better behaved,
especially for computation via an IPM. The figure indicates that there is almost no improvement in
of median value of θ∗ after 50 steps of the random walk.
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Fig. 5. log(θ∗) versus number of steps of the geometric random walk for the 100 problem instances of dimension

100 × 500.

Figure 6 shows the median total running time as well as the 90% band of total running times
for the 100 problems of dimension 100 × 500 before and after pre-conditioning. Notice that the
median running time of the system with pre-conditioning rapidly decreases with a flat bottom in
the range 10-100 steps of the random walk, after which the cost of the random walk steps exceeds
the average benefit from computing a presumably better pre-conditioner. Also notice, however, that
the variation in running time decreases with the number of random steps, which may offer some
advantage in lowering the likelihood of outlier computation times by using more random walk steps.

7. Summary/Conclusions/Other Matters

In this paper we have presented a general theory for transforming a normalized homogeneous conic
system Fs̄ to an equivalent system Fŝ via projective transformation induced by the choice of a point
v̂ ∈ H◦

s̄ . Such a projective transformation serves to pre-condition the conic system into a system
that has both geometric and computational behavior with certain guarantees. We have given a
characterization of both the geometric behavior and the computational behavior of the transformed
system as a function of the symmetry of v̂ in the image set H◦

s̄ = {v : s̄−AT v ∈ C∗}. Because H◦
s̄ must

contain a point v whose symmetry is at least 1/m, if we can find a point whose symmetry is Ω(1/m)
then we can projectively transform the conic system to one whose geometric and computational



Projective Pre-Conditioners 21

10
0

10
1

10
2

10
3

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of Steps of the Random Walk (log scale)

R
un

ni
ng

T
im

e
(s

ec
on

ds
)

Original Median
Original 90% Band
Preconditioned Median
Preconditioned 90% Band

Fig. 6. Total running time versus number of steps of the geometric random walk for the 100 problem instances of

dimension 100 × 500.

complexity behavior will be strongly-polynomial in m and the complexity value ϑ of the barrier
function f(·) of the cone C. We have presented a method for generating such a point v̂ using
sampling on geometric random walks on H◦

s̄ with associated complexity analysis. Finally, we have
implemented this methodology on randomly generated homogeneous linear programming feasibility
problems, constructed to be poorly behaved. Our computational results indicate that the projective
pre-conditioning methodology holds the promise to markedly reduce the overall computation time
for conic feasibility problems; for instance we observe a 46% improvement in average IPM iterations
for the 100 problem instances of dimension 1000 × 5000. The next step in this line of research will
be to develop a suitable adaptation of the methods developed herein to solve conic optimization
problems, and to test such an adaptation on conic optimization problems that arise in practice.

7.1. The Infeasible Case

The theory presented herein is based on the assumption that F has a solution. When F does not
have a solution, then one can consider the alternative/dual system:

Fa :

{
AT v + s = 0

s ∈ C∗\{0} .

This system can then be re-formatted as:

F
′
a :

{
Bs = 0

s ∈ C∗\{0} ,

for a suitably computed matrix B whose null-space is the orthogonal complement of the null-space
of A. Note that F

′
a is of the same format as F and the results for F can be easily adapted to F

′
a.
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(Actually, the computation of B is not necessary. Given x̄ ∈ intC, consider the analogous image
sets for Fa and F

′
a defined as Hx̄ := {AT v + s : s ∈ C∗, x̄T s = 1, v ∈ IRm} and H

′
x̄ := {Bs : s ∈

C∗, x̄T s = 1}. Then sym(0,Hx̄) = sym(0,H
′
x̄) even though Hx̄ is unbounded, and one can work

with Hx̄ and problem Fa directly.) Nevertheless, it may be more fruitful and revealing to develop
a different projective pre-conditioner theory designed directly for the dual form Fa, and this is a
direction for future research.

7.2. Related Complexity Matters

Nesterov [20] has suggested the following “dual approach” to solving (1): starting at v0 = 0 compute
an approximate analytic center va of H◦

s̄ , which is the essentially unconstrained problem minv{f∗(s̄−
AT v) : s̄−AT v ∈ intC∗}. It is elementary to show from the barrier calculus that as soon as a point
v is computed whose Newton step (∆v,∆s) satisfies

√
(∆s)T H∗(s)∆s < 1 (where s = s̄−AT v and

H∗(s) is the Hessian of f∗(·) at s), then the Newton step multipliers yield an interior solution of F .
Regarding the complexity of this scheme, it follows from an analysis that is almost identical to that
yielding inequality (2.19) of [26] that the number of Newton steps of a short-step IPM to compute
an approximate analytic center is:

O

(√
ϑ ln

(
ϑ

sym(0,H ◦̄
s )

))
= O

(√
ϑ ln

(
ϑ

sym(0,Hs̄)

))

(from (ii) of Remark 6), which is of the same order as the complexity of Algorithm A from Theorem
2. These complexity bounds depend on sym(0,Hs̄) to bound the complexity of traversing the central
path via a short-step method. As is shown in Nesterov and Nemirovski [22], a generically more ac-
curate complexity bound can be found by analyzing the central path via its Riemannian geometry.
However, as is demonstrated in the current paper, sym(0,Hs̄) lends itself to analysis, characteri-
zation, and ultimately manipulation and reduction via the constructive projective pre-conditioning
method shown herein. An interesting research challenge is to develop analogous tools/methods to
work with and reduce the Riemannian distance of the central path as developed in [22].
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15. L. Leindler. On a certain converse of Hölder’s inequality ii. Acta Sci. Math. Szeged, 33:217–223, 1972.

16. L. Lovász and S. Vempala. The geometry of logconcave functions and an O∗(n3) sampling algorithm. Microsoft

Technical Report.

17. L. Lovász and S. Vempala. Hit-and-run is fast and fun. Microsoft Technical Report.

18. L. Lovász and S. Vempala. Where to start a geometric walk? Microsoft Technical Report.

19. H. Minkowski. Allegemeine lehzätze über konvexe polyeder. Ges. Abh., Leipzog-Berlin, 1:103–121, 1911.

20. Y. Nesterov. private communication. 2005.

21. Y. Nesterov and A Nemirovskii. Interior-Point Polynomial Algorithms in Convex Programming. Society for

Industrial and Applied Mathematics (SIAM), Philadelphia, 1993.

22. Y. Nesterov and A Nemirovskii. Central path and Riemannian distances. Technical report, CORE Discussion
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Appendix: A Primal-feasible Interior-Point Algorithm for Fs̄ and its
Complexity Analysis

Recall the parameterized barrier problem OPη, and let (x, θ) = (xk, θk) be a feasible solution
of OPη for some η > 0. Then the locally quadratic model of OPη at (xk, θk) yields the following
Newton equation system in variables (d,∆, π, q):

x̄T AT π = η

H(xk)d +AT π +s̄ · q = −∇f(xk)
Ad +Ax̄∆ = 0

s̄T d = 0 .

(11)

Here ∇f(x) and H(x) denote the gradient and Hessian of f(x), respectfully, (d,∆) is the Newton
step for the variables (x, θ), and (π, q) are the multipliers on the two linear equations of OPη.
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A primal-feasible interior-point algorithm for solving OP computes a sequence of approximate
solutions (xk, θk) of OPηk for an increasing sequence of values of ηk. Let (d̃, ∆̃, π̃, q̃) solve the New-
ton system (11) using η = ηk, then the Newton step is (d̃, ∆̃), and (xk, θk) is defined to be a
γ-approximate solution of OPk

η if the norm of d̃ measured in the ellipsoidal norm induced by the

Hessian of f(·) is not greater than γ, i.e.,
√

(d̃)T H(xk)d̃ ≤ γ. The algorithm starts by setting
(x0, θ0) ← (x̄,−1) and by computing a value η0 for which it is guaranteed that (x0, θ0) is a γ-
approximate solution of OPη0 . Inductively, if (xk, θk) is defined to be a γ-approximate solution of
OPk

η, the algorithm then increases ηk to ηk+1 = α · ηk for some fixed value of α > 1, and then
computes the Newton step for (xk, θk) for OPηk+1 . The algorithm continues in this manner until
θk ≥ 0 at some iteration k, at which point the algorithm stops and x̂ := xk+θkx̄

1+θk is a feasible solution
of Fs̄. A formal statement of the algorithm is as follows:

Algorithm A
Step 1. (Initialization) Set x̄ ← −∇f∗(s̄)/ϑ. If Ax̄ = 0, STOP. Otherwise, set k = 0, (x0, θ0) ←
(x̄,−1), and define the following constants:

γ =
1
9

, β =
1
4

, α =

√
ϑ + β√
ϑ + γ

.

Temporarily set η = 1 and solve (11) for (d̃, ∆̃, π̃, q̃) and set

η0 =
γ√

d̃T H(x̄)d̃
.

Step 2. (Increase η) ηk+1 ← α · ηk

Step 3. (Compute and Take Newton Step) Set η = ηk+1, solve (11) for (d̃, ∆̃, π̃, q̃). Set
(xk+1, θk+1) = (xk, θk) + (d̃, ∆̃)
Step 4. (Test Solution) If θk+1 ≥ 0, set x̃ := xk+θkx̄

1+θk and STOP. Otherwise set k ← k + 1 and go
to Step 2.

In order to validate this algorithm, we will need to prove the following results. Let dk denote the
value of d̃ in (11) at (xk, θk) using η = ηk. The norm of this Newton step in the norm induced by
the Hessian H(xk) and is given by:

‖(dk)‖xk :=
√

(dk)T H(xk)dk .

Proposition 2. ‖(d0)‖x0 = γ.

Proof. Following Step 1 of Algorithm A, let (d̃, ∆̃, π̃, q̃) solve (11) using xk = x0 = x̄ and
η = 1, and set η0 by the prescribed formula. Using the fact that s̄ = −∇f(x̄)/ϑ (from (vi) of
Remark 4 and Theorem 2.3.9 of [26]), it follows from direct substitution that (d0,∆0, π0, q0) :=
(η0d̃, η0∆̃, η0π̃, η0q̃ + ϑ − η0ϑ) solves (11) using xk = x0 = x̄ and η = η0. Therefore ‖(d0)‖x0 =√

(d0)T H(x0)(d0) = η0

√
d̃T H(x̄)d̃ = γ.
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Proposition 3. ‖(dk)‖xk ≤ γ for all k = 1, 2, . . ..

Proof. The proof is by induction, and for clarity we suppress the iteration counter k. Suppose
that our current point is (x, θ). Let dη̄ denote the x-part of the Newton step for the parameter value
η = η̄. Then dη̄ can be decomposed as dη̄ = dc + η̄da where dc is the centering direction and da is the
affine scaling direction. It follows from the fact that f(·) has complexity value ϑ that ‖dc‖x ≤ √

ϑ.
Furthermore, by assumption of the induction we have ‖dη̄‖x ≤ γ. Then according to Step 2 of
Algorithm A we increase η by the factor α. We write dαη̄ = dc + αη̄da = α(dc + η̄da) + (1 − α)dc =
αdη̄ + (1 − α)dc, whereby:

‖dαη̄‖x ≤ α‖dη̄‖x + (α − 1)‖dc‖x ≤ αγ + (α − 1)
√

ϑ = β .

Letting x+ := x + dαη̄ denote the new value of x and letting d+
αη̄ denote the Newton step at x+ for

the parameter value η = αη̄ it follows from Theorem 2.2.4 of [26] that

‖d+
αη̄‖x+ ≤ β2

(1 − β)2
= γ ,

completing the inductive proof.

Proposition 4. η0 ≥ γ

1 + θ∗

Proof. Since (x, θ) = (x̄,−1) is feasible for (4) and from the self-concordance of f(·) we have
{x̄} + {d : dT H(x̄)d ≤ 1} ⊂ C, it follows that

θ∗ ≥ −1 + max
d,∆

∆

Ad +(Ax̄)∆ = 0
s̄T d = 0

dT H(x̄)d ≤ 1 .

Letting (d,∆) solve the above maximization problem, to prove the proposition it therefore suffices
to show that ∆ = γ/η0, which we now do. The optimality conditions for the maximization problem
above can be written as:

x̄T AT π = 1
ρH(x̄)d + AT π + s̄ · q = 0

Ad + Ax̄∆ = 0
s̄T d = 0
ρ ≥ 0

dT H(x̄)d ≤ 1
ρ · (1 − dT H(x̄)d) = 0 .

(12)

Following Step 1 of Algorithm A, let (d̃, ∆̃, π̃, q̃) solve (11) using xk = x0 = x̄ and η = 1, and set η0

by the prescribed formula. One then easily checks that

(d,∆, π, q, ρ) :=

⎛
⎝ d̃√

d̃T H(x̄)d̃
,

∆̃√
d̃T H(x̄)d̃

, π̃, q̃ − ϑ,

√
d̃T H(x̄)d̃

⎞
⎠
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satisfies (12) (again using the fact that s̄ = −∇f(x̄)/ϑ from (vi) of Remark 4 and Theorem 2.3.9 of
[26]), and so (d,∆) is an optimal solution of the maximization problem. Straightforward manipulation

of the system (12) then shows that ∆ =
√

d̃T H(x̄)d̃, and so from the definition of η0 we have
∆ = γ/η0.

Before proving the next proposition, we state a result which is implicit in Renegar [26], but is
not stated explicitly. Rather than re-develop the notation and set-up of [26], we simply state the
result and give a proof as if it appeared as part of the text of Chapter 2 of [26].

Lemma 7. (Essentially from Renegar [26]) Under the notation and conditions of Chapter 2 of
Renegar [26], suppose that y is an iterate of the barrier method for the barrier parameter η and the
Newton step n(y) for the function fη(x) := η〈c, x〉 + f(x) at y satisfies ‖n(y)‖y ≤ γ where γ < 1/4.
Then

cT y ≤ VAL +
ϑ

η

(
1

1 − δ

)

where δ = γ + 3γ2

(1−γ)3 .

Proof. Letting z(η) denote the analytic center of the function fη(·), it follows from Theorem 2.2.5
of [26] that ‖y − z(η)‖y ≤ δ, and hence from the self-concordance property that ‖y − z(η)‖z(η) ≤
δ/(1 − δ). From inequality (2.14) of Section 2.4.1 of [26] we have:

cT y ≤ VAL +
ϑ

η

(
1 + ‖y − z(η)‖z(η)

) ≤ VAL +
ϑ

η

(
1 +

δ

1 − δ

)
= VAL +

ϑ

η

(
1

1 − δ

)
.

Proposition 5. Suppose (x, θ) is an iterate of Algorithm A for the parameter value η and η ≥
ϑ/(θ∗(1 − δ)) where δ = γ + 3γ2

(1−γ)3 . Then θ ≥ 0.

Proof. Converting Lemma 7 to the notation of problem (5) and Algorithm A, we have:

θ ≥ θ∗ − ϑ

η

(
1

1 − δ

)
≥ θ∗ − θ∗ = 0 ,

where the last inequality follows from the supposition that η ≥ ϑ/(θ∗(1 − δ)).

Proof of Theorem 2: We first prove the iteration bound. Note that the parameter values set in
Step 1 of Algorithm A imply:

1 − 1
α

=
1

7.2
√

ϑ + 1.8
≥ 1

9
√

ϑ
. (13)

Define δ as in the hypothesis of Proposition 5. Let

J :=
⌈
9
√

ϑ ln
(

11ϑ

(
1 +

1
sym(0,Hs̄)

))⌉
.
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From Step 2 of Algorithm A we have η0/ηJ = (1/α)J and taking logarithms we obtain ln(η0) −
ln(ηJ) = J ln(1/α) ≤ J(1/α − 1), and rearranging we obtain:

ln(ηJ) ≥ ln(η0) + J
(
1 − 1

α

)

≥ ln
(

γ
1+θ∗

)
+ ln

(
11ϑ

(
1 + 1

sym(0,Hs̄)

))
(from Proposition 4 and (13))

≥ ln
(

γ
1+θ∗

)
+ ln

(
11ϑ

(
θ∗+1

θ∗

))
(from (6))

= ln
(

ϑ
θ∗(1−δ)

)
+ ln (11γ(1 − δ)) ≥ ln

(
ϑ

θ∗(1−δ)

)
,

where the last inequality follows since 11γ(1 − δ) ≥ 1 for the specific values of γ and δ given. Then
from Proposition 5 it follows that θJ ≥ 0, and so Algorithm A will stop.

It remains to prove the bound on reldist(x̃, ∂C). For x ∈ intC, define the norm ‖ · ‖x by ‖v‖x :=√
vT H(x)v for x ∈ intC, and for x ∈ C define:

Bx(c, r) := {y : A(y − c) = 0, s̄T (y − c) = 0, ‖y − c‖x ≤ r} .

Letting z denote the analytic center of Fs̄ it follows from Lemma 5 of [23] that Bz(z, ϑ) ⊃ Fs̄.
Assuming for simplicity that θ = 0 for the final iterate of Algorithm A, we have ‖z − x̃‖x̃ ≤
δ := γ + 3γ2/(1 − γ)3 from Theorem 2.2.5 of [26], whereby Bx̃(x̃, ϑ/(1 − δ) + δ/(1 − δ)) ⊃ Fs̄

follows from the self-concordance of f(·). Since it is also true that Bx̃(x̃, 1) ⊂ Fs̄ it follows that
σ := sym(x̃,Fs̄) ≥ (1− δ)/(ϑ + δ) ≥ 1/(1.2ϑ + 0.2) for the specific values of γ and δ herein. Finally,
noting that there exists x̂ ∈ Fs̄ satisfying Bs̄(x̂, τF ) ⊂ C, where Bs̄(c, r) is the ball centered at c of
radius r in the s̄-norm, it follows from the symmetry value of x̃ in Fs̄ that Bs̄(x̃−σ(x̂− x̃), στF ) ⊂ C,
whereby taking convex combinations with Bs̄(x̂, τF ) yields

Bs̄

(
x̃,

τF

1.2ϑ + 0.2

)
⊂ Bs̄ (x̃, στF ) ⊂ Bs̄

(
x̃,

2στF

1 + σ

)
=

1
1 + σ

Bs̄(x̃−σ(x̂−x̃), στF )+
σ

1 + σ
Bs̄(x̂, τF ) ⊂ C ,

from which it follows that reldist(x̃, ∂C) ≥ τF /(1.2ϑ + 0.2).


