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Abstract

We consider a time-slotted multiple access noisy as well as noise-free channel in which
the received, transmit and noise alphabets belong to a finite field. We show that
source-channel separation holds when the additive noise is independent of inputs.
However, for input-dependent noise, separation may not hold. For channels over the
binary field, we derive the expression for the probability of source-channel separa-
tion failing. We compute this probability to be 1/4 when the noise parameters are
picked independently and uniformly. For binary channels, we derive an upper bound
of 0.0776 bit for the maximum loss in sum rate due to separate source-channel coding
when separation fails. We prove that the bound is very tight by showing that it is
accurate to the second decimal place.

We derive the capacity region and the maximum code rate for the noisy as well as
noise-free channel where, code rate is defined as the ratio of the information symbols
recovered at the receiver to the symbols sent by the transmitters in a slot duration.
Code rate measures the overhead in transmitting in a slot under multiple access
interference. We show for both noisy and noise-free channels that capacity grows log-
arithmically with the size of the field but the code rate is invariant with field size. For
the noise-free channel, codes achieve maximum code rate if and only if they achieve
capacity and add no redundancy to the shorter of the two information codewords.

For the noise-free multiple access channel, we consider the cases when both trans-
mitters always transmit in a slot, as well as when each transmitter transmits in a
bursty fashion according to a Bernoulli process. For the case when both transmitters
always transmit, we propose a systematic code construction and show that it achieves
the maximum code rate and capacity. We also propose a systematic random code
construction and show that it achieves the maximum code rate and capacity with
probability tending to 1 exponentially with codeword length and field size. This is a
strong coding theorem for this channel. For the case when transmitters transmit ac-
cording to a Bernoulli process, we propose a coding scheme to maximize the expected
code rate. We show that maximum code rate is achieved by adding redundancy at
the less bursty transmitter and not adding any redundancy at the more bursty trans-
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mitter.
For the noisy channel, we obtain the error exponents and hence, the expression

for average probability of error when a random code is used for communicating over
the channel.

Thesis Supervisor: Muriel Médard
Title: Esther and Harold E. Edgerton Associate Professor

Thesis Supervisor: Jinane Abounadi
Title: Post Doctoral Lecturer
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Chapter 1

Introduction

1.1 Background and Motivation

Over the past few years, there has been an interest in indoor wireless communica-

tion networks where nodes communicate with each other over short distances. The

proximity of the nodes to each other makes multiple access interference from other

nodes the chief source of interference rather than noise. A good design criterion for

these networks is making the node receiver design invariant to the number of nodes

in the network, allowing addition and removal of nodes without need for significant

redesign.

Research on noise-free multiple access networks has generally assumed that the

received alphabet size grows with the number of transmitters. An example of such

a channel is the binary adder multiple access channel, where interference is additive

and the received alphabet grows with the number of transmitters. For the case when

all transmitters transmit, the capacity is derived and a coding technique is proposed

in [1], which achieves capacity asymptotically with the number of users. Capacity

achieving codes for this channel have also been proposed in [2, 3, 5]. Another exam-

ple is the collision channel where a subset of the users transmit at the same time.

Mathys in [6] has determined the capacity regions for asynchronous and slot syn-

chronous users, and given constructive codes that approach all rates in these regions.

Hughes in [4] has also considered design of codes for this channel. Caire et.al [7, 8]
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presented a novel class of signal space codes for bandwidth efficient transmission on a

random access collision channel. All of these considered multiple access interference

where the received alphabet size grows with the number of transmitters.

If the received alphabet size is allowed to grow with the number of transmitters,

the receiver has more information about the transmissions than when the received

alphabet is constrained to the same field as the transmitted alphabet. Rates are lower

for a channel where the received alphabet is fixed as the receiver can observe only

over the field in which transmissions occur. However, the receiver design becomes

independent of the number of users and places the network in a consistent digital

framework. In [14], transmission of information is considered for a modulo-2 multiple

access channel and a code construction is proposed. However, it considers only the

case where a proper subset of the users transmit. The work is confined to IF2 and not

finite field channels in general.

1.2 Thesis Outline

We consider a time-slotted additive multiple access network where two transmitters

are independently transmitting to a single receiver. The transmitted and received

alphabet sizes are the same. In general, the users may transmit only over a subset of

the time, so interference may occur over any part of the slot. We will call this a mul-

tiple access finite field adder channel over IF2k where, the transmitted and received

elements belong to IF2k , for 1 ≤ k. The output of the channel is the sum of the inputs

and noise with addition over IF2k . In this thesis, we consider the noise-free as well as

the noisy multiple access finite field adder channel.

When we are transmitting two sources over a multiple access channel, we can do

joint source-channel coding or separate source-channel coding. If we do joint source-

channel coding, we use a single joint source-channel encoder at each source to encode

it. On the other hand, when we do separate source-channel coding, we first use a

source coder as described in [13] to compress the source. The source codewords are

subsequently channel coded using techniques described in [21, 22] and sent over the
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channel. When the maximum achievable sum rate due to separate source-channel

coding is the same as the maximum achievable sum rate due to joint source-channel

coding, we say that separation holds for the multiple access channel and we can do

compression and channel coding separately. On the other hand, if there is a loss in

sum rate due to separate source-channel coding, we say that separation fails. For

multiple access channels where the received alphabet is the integer sum of the inputs,

it is shown by a simple example in [12] that source-channel separation does not hold.

We investigate whether source channel separation holds for the multiple access finite

field adder channel.

We know from [20] that for Slepian-Wolf source networks, the random coding error

exponents are universally attainable by linear codes. Therefore, random linear source

codes achieve performance arbitrarily close to the optimal one derived by Slepian and

Wolf [13]. The codewords coming out of the Slepian-Wolf source coders are asymp-

totically independent. In this thesis, we show that source-channel separation holds

when the noise is independent of the inputs. Moreover, we show that random linear

channel codes achieve the maximum sum rate. This implies that we can combine the

random linear source and channel codes into a random linear joint source-channel

code. Thus, a random linear joint source-channel code is optimal for the multiple

access finite field adder channel where noise is independent of inputs.

For the multiple access finite field adder channel we discuss issues of separation

in Chapter 2. We show that if noise is input-dependent, then source-channel sepa-

ration may not hold. Moreover, for channels over IF2, we derive the expression for

the probability of source-channel separation failing. We compute this probability to

be 1/4 when the noise parameters are picked independently and uniformly. For bi-

nary channels, we derive an upper bound of 0.0776 bit for the maximum loss in sum

rate due to separate source-channel coding when separation fails. We prove that the

bound is very tight by showing that it is accurate to the second decimal place.

In Chapter 3, we consider a time-slotted noise-free multiple access finite field adder

channel. First, we develop a single-slot model for this channel. We use two metrics:

capacity and code rate. Capacity represents the maximum achievable error-free rate.
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A metric is needed to represent the overhead (in the form of redundancy) required for

reliable communication. Code rate is defined as the ratio of the information symbols

recovered at the receiver, to the symbols sent by the transmitters in a slot duration.

Code rate tells us about this overhead. For the case when the transmit alphabet has

a zero-energy symbol, i.e. no energy is required for transmitting 0 and all other sym-

bols have equal energy, code rate represents the energy overhead required to transmit

over a particular channel. In our work, we will assume that when transmitters do not

transmit, they are transmitting 0. Note that code rate is a dimensionless quantity and

has a maximum value of 1. It attains the value of 1 when there is no multiple access

interference and no noise. The noise-free multiple access network becomes equivalent

to a point-to-point channel without noise.

We derive the capacity region and maximum code rate and analyze the variation of

these quantities with field size. A systematic code construction is presented which is

shown to achieve maximum code rate and capacity. We prove that codes that achieve

the maximum code rate also achieve capacity. Next, we consider systematic random

codes and obtain conditions under which random codes achieve maximum code rate

and capacity. We derive an expression for the probability of error when the codes are

chosen randomly. The probability of error goes to 0 exponentially with code length

and field size. We also look at the bursty case when transmitters transmit according

to a Bernoulli process. We propose coding techniques to maximize code rate. For

such bursty channels, we shown that, when the information codewords at the input to

the channel encoders have the same size, maximum expected code rate is achieved by

adding redundancy at the transmitter with a higher probability of transmission and

not adding any redundancy at the transmitter with lower probability of transmission.

In Chapter 4, we consider a time-slotted noisy multiple access finite field adder

channel. Noise is independent of the inputs and is additive over the same field as the

input and output alphabet of the channel. First, we develop a model for communi-

cating over this channel and then establish the capacity region and maximum code

rate. Using the results of the noisy multiple access strong coding theorem developed

by Liao in [22], we obtain the error exponents and hence the expression for average

13



probability of error when a random code is used for communicating over this channel.

We present our conclusions and directions for future research in Chapter 5.
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Chapter 2

Source-Channel Separation

In this chapter, we look at source-channel separation for two transmitter, single re-

ceiver, noisy and noise-free multiple access finite field adder channels. We prove that,

when noise is input-dependent, source-channel separation may not hold. We derive

the expression for the probability of separation failure for the channel over IF2. More-

over, we compute an upper bound on the maximum loss in sum rate due to separation

failure and show that the bound is accurate to the second decimal place. However,

when noise is independent of input symbols, source-channel separation holds and

thus, there is no loss in performing source and channel coding separately.

Since the noise-free case is a special case of the input-independent noise case (noise

is 0 here), it follows that source-channel separation holds for the noise-free multiple

access finite field adder channel.

2.1 Criteria for source-channel separation

Consider two sources generating symbols U and V , which have to be sent over the

noisy multiple access finite field adder channel. Both these symbols are elements of

a finite set that have to be sent using suitable encoding techniques. If we do joint

source-channel coding, we will use a single joint source-channel coder at each source

to encode U and V to codewords ~Xa and ~Xb respectively. The elements of ~Xa and ~Xb

are from IF2k . ~Xa and ~Xb may be correlated if U and V are correlated. Codewords
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Figure 2-1: Joint source-channel coding.
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 Source Encoder 2
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Z
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  U

Figure 2-2: Separate source-channel coding.

~Xa and ~Xb add over IF2k with noise vector ~Z to yield ~Y . Elements of ~Z and ~Y are

also from IF2k . The joint source-channel coding is shown in Figure 2-1.

For separate source-channel coding we first do compression, which can be achieved by

Slepian-Wolf source coding [13] of (U, V ) to codeword pair ( ~U ′ , ~V ′). Following source

coding, ~U ′ and ~V ′ are asymptotically independent. ~U ′ and ~V ′ are subsequently chan-

nel coded to codewords ~Xa and ~Xb respectively. ~Xa and ~Xb have their elements in

IF2k and the codewords add over IF2k with noise vector ~Z to give ~Y . Elements of ~Z

and ~Y are from IF2k . When we do separate source-channel coding, ~Xa and ~Xb are in-

dependent since ~U ′ and ~V ′ are independent. The scheme for separate source-channel

coding is shown in Figure 2-2.

Joint source-channel coding gives the maximum possible sum rate for this channel.

However, when separation holds, separate source-channel coding gives the same maxi-

mum sum rate as joint-source channel coding. When separation fails, we always incur

a loss in sum rate by doing separate source-channel coding. Note that we assume that
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the joint source-channel encoder can generate the joint probability distribution needed

to achieve the joint sum rate or in other words, it is able to match the source statistics

to that needed by the channel. This may not be true for all source-channel pairs,

which reduces the maximum joint sum rate possible, thereby reducing the loss in sum

rate due to separation failure. However, by assuming that sources can be matched to

the channel, we are looking at the maximum possible loss.

In this section, we establish criteria based on which we decide whether source-channel

separation holds for a noisy multiple access finite field adder channel. Let Ra and Rb

be the reliably transmitted rates of two transmitters a and b respectively, which are

communicating with a single receiver over a noisy multiple access finite field adder

channel. Using results from [21, 22], we know that the sum rate, Rsum, defined over

the probability distribution of the input symbols Xa and Xb, follows the following

equation:

Rsum = Ra + Rb ≤ I(Xa, Xb; Y ). (2.1)

When we do separate source-channel coding, Xa and Xb are independent and we can

transmit reliably at a maximum sum rate, RsumSSCC , given by

RsumSSCC = max
PXa(xa)PXb

(xb)
I(Xa, Xb; Y ) (2.2)

where PXa(xa) and PXb
(xb) are the probability mass functions of Xa and Xb respec-

tively.

When we do joint source-channel coding, inputs Xa and Xb may not be indepen-

dent of each other. We consider the joint probability mass function of Xa and Xb as

PXaXb
(xa, xb). By doing joint source-channel coding, we can transmit reliably at a

maximum sum rate, RsumJSCC , given by

RsumJSCC = max
PXaXb

(xa,xb)
I(Xa, Xb; Y ). (2.3)

Criterion for separation not holding

If, for a channel,

RsumSSCC < RsumJSCC , (2.4)
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Figure 2-3: Noisy binary multiple access finite field adder channel with input-dependent

noise. Transmitters a and b transmit binary {0,1} symbols, Xa and Xb respectively, to a

single receiver, R×.

then we can achieve a higher sum rate by doing joint source-channel coding and sep-

arate source-channel coding does not give the highest possible sum rate. Therefore, if

(2.4) holds for the channel, source-channel separation fails.

Criterion for separation holding

In order to prove that separation holds for a channel, it is sufficient to show that

RsumJSCC = RsumSSCC . (2.5)

2.2 Source-channel separation when noise is input-

dependent

We consider a noisy multiple access finite field adder channel over the binary field

where two transmitters, a and b, transmit binary {0,1} symbols, Xa and Xb, respec-

18



Figure 2-4: Input dependent noises Z1 and Z2 result in asymmetric transition probabilities

between (Xa, X
′

a) and (Xb, X
′

b) respectively.

tively, to a single receiver, R×, as shown in Figure 2-3. The received symbol Y is

also binary {0,1}. Binary noises (Z1, Z2) add on to each input. These noises depend

on the input symbols being transmitted. When we consider input-dependent noise,

we imply that the noise depends only on a single input. Thus, Z1 depends on X1

and Z2 depends on X2. The input dependence is represented by a binary asymmetric

channel shown in Figure 2-4. Note that the asymmetry may be different for the two

transmitters and the transition probabilities are parameterized by ε0, ε1, δ0 and δ1.

After addition of noises (Z1, Z2), the corrupted inputs are added together modulo-2.

Therefore, the first process transforms Xa and Xb to X
′

a and X
′

b respectively, and the

second process forms a mod-2 sum of X
′

a and X
′

b.

We show that separation may not hold for this channel when noise depends on the

input symbols or in other words, the transition probability matrices of the part of

the channel between (Xa, X
′

a) and (Xb, X
′

b) are asymmetric. Considering the binary

case is sufficient to show that, for general fields, separation may not hold when noise

is input-dependent. We show that source-channel separation does hold for the binary

channel when noise is independent of the input symbols. In this case, the transition
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matrices for (Xa, X
′

a) and (Xb, X
′

b) are symmetric.

We will be using the following notation throughout our discussion:

p1 = Pr(Xa = 0), (2.6)

p2 = Pr(Xb = 0), (2.7)

H(q) = −q log2(q) − (1 − q) log2(1 − q). (2.8)

2.2.1 Maximum sum rate using separate source-channel cod-

ing

We now compute RsumSSCC(ε0, ε1, δ0, δ1), which is the maximum sum rate at which

reliable communication is possible by separate source-channel coding. Xa and Xb are

independent here. Since,

I(Xa, Xb; Y ) = H(Y ) − H(Y |Xa, Xb), (2.9)

we have

RsumSSCC(ε0, ε1, δ0, δ1) = max
p1,p2

[H(Y ) − H(Y |Xa, Xb)]. (2.10)

As Xa and Xb are independent,

Pr(X
′

a = 0) = Pr(X
′

a = 0|Xa = 0)p1 + Pr(X
′

a = 0|Xa = 1)(1 − p1)

= ε1 + p1(1 − ε0 − ε1), (2.11)

and

Pr(X
′

b = 0) = Pr(X
′

b = 0|Xb = 0)p2 + Pr(X
′

b = 0|Xb = 1)(1 − p2)

= δ1 + p2(1 − δ0 − δ1). (2.12)

Computing H(Y )

The independence of Xa and Xb results in the independence of X
′

a and X
′

b. Thus, we

have

Pr(Y = 0) = Pr(X
′

a = 0; X
′

b = 0) + Pr(X
′

a = 1; X
′

b = 1)

20



= 1 − Pr(X
′

a = 0) − Pr(X
′

b = 0) + 2Pr(X
′

a = 0)Pr(X
′

b = 0).

(2.13)

Substituting the values of Pr(X
′

a = 0) and Pr(X
′

b = 0) from (2.11) and (2.12) in

(2.13), we obtain

Pr(Y = 0) = 1 − ε1 − δ1 + 2ε1δ1 − p1(1 − 2δ1)(1 − ε0 − ε1)

−p2(1 − 2ε1)(1 − δ0 − δ1) + 2p1p2(1 − ε0 − ε1)(1 − δ0 − δ1).

(2.14)

Therefore, H(Y ) is given by

H(Y ) = H[ε1 + δ1 − 2ε1δ1 + p1(1 − 2δ1)(1 − ε0 − ε1) + p2(1 − 2ε1)(1 − δ0 − δ1)

−2p1p2(1 − ε0 − ε1)(1 − δ0 − δ1)]. (2.15)

Computing H(Y |Xa, Xb)

Using the fact that Xa and Xb are independent, we obtain that

H(Y |Xa, Xb) = p1p2H(Y |Xa = 0, Xb = 0) + p1(1 − p2)H(Y |Xa = 0, Xb = 1)

+p2(1 − p1)H(Y |Xa = 1, Xb = 0) + (1 − p1)(1 − p2)H(Y |Xa = 1, Xb = 1).

(2.16)

X
′

a and X
′

b are independent since Xa and Xb are independent. We may use this fact

to compute the following conditional probabilities:

Pr(Y = 0|Xa = 0, Xb = 0) = Pr(X
′

a = 0|Xa = 0)Pr(X
′

b = 0|Xb = 0)

+Pr(X
′

a = 1|Xa = 0)Pr(X
′

b = 1|Xb = 0)

= 1 − ε0 − δ0 + 2ε0δ0. (2.17)

Pr(Y = 0|Xa = 0, Xb = 1) = Pr(X
′

a = 0|Xa = 0)Pr(X
′

b = 0|Xb = 1)

+Pr(X
′

a = 1|Xa = 0)Pr(X
′

b = 1|Xb = 1)

= ε0 + δ1 − 2ε0δ1. (2.18)
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Pr(Y = 0|Xa = 1, Xb = 0) = Pr(X
′

a = 0|Xa = 1)Pr(X
′

b = 0|Xb = 0)

+Pr(X
′

a = 1|Xa = 1)Pr(X
′

b = 1|Xb = 0)

= ε1 + δ0 − 2ε1δ0. (2.19)

Pr(Y = 0|Xa = 1, Xb = 1) = Pr(X
′

a = 0|Xa = 1)Pr(X
′

b = 0|Xb = 1)

+Pr(X
′

a = 1|Xa = 1)Pr(X
′

b = 1|Xb = 1)

= 1 − ε1 − δ1 + 2ε1δ1. (2.20)

Thus, H(Y |Xa, Xb) is

H(Y |Xa, Xb) = p1p2H[ε0 + δ0 − 2ε0δ0] + p1(1 − p2)H[ε0 + δ1 − 2ε0δ1]

+p2(1 − p1)H[ε1 + δ0 − 2ε1δ0] + (1 − p1)(1 − p2)H[ε1 + δ1 − 2ε1δ1].

(2.21)

Substituting (2.15) and (2.21) in (2.10), we obtain

RsumSSCC(ε0, ε1, δ0, δ1) = max
p1,p2

H[ε1 + δ1 − 2ε1δ1 + p1(1 − 2δ1)(1 − ε0 − ε1)

+p2(1 − 2ε1)(1 − δ0 − δ1) − 2p1p2(1 − ε0 − ε1)(1 − δ0 − δ1)]

−p1p2H[ε0 + δ0 − 2ε0δ0] − p1(1 − p2)H[ε0 + δ1 − 2ε0δ1]

−p2(1 − p1)H[ε1 + δ0 − 2ε1δ0] − (1 − p1)(1 − p2)H[ε1 + δ1 − 2ε1δ1].

(2.22)

Rearranging the terms in (2.22), we obtain

RsumSSCC(ε0, ε1, δ0, δ1) = max
p1,p2

H[p1p2(1 − ε0 − δ0 + 2ε0δ0) + p1(1 − p2)(ε0 + δ1 − 2ε0δ1)

+p2(1 − p1)(ε1 + δ0 − 2ε1δ0) + (1 − p1)(1 − p2)(1 − ε1 − δ1 + 2ε1δ1)]

−p1p2H(ε0 + δ0 − 2ε0δ0) − p1(1 − p2)H(ε0 + δ1 − 2ε0δ1)

−p2(1 − p1)H(ε1 + δ0 − 2ε1δ0) − (1 − p1)(1 − p2)H(ε1 + δ1 − 2ε1δ1).

(2.23)

2.2.2 Maximum sum rate using joint source-channel coding

We now compute RsumJSCC(ε0, ε1, δ0, δ1), which is the maximum sum rate at which

reliable communication is possible by joint source-channel coding. We maximize
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Figure 2-5: Joint probability distribution of Xa and Xb.

I(Xa, Xb; Y ) over the joint probability distribution of (Xa, Xb). This joint distribution

PXaXb
(xa, xb) is specified by

P00 = PXaXb
(0, 0), (2.24)

P01 = PXaXb
(0, 1), (2.25)

P10 = PXaXb
(1, 0), (2.26)

P11 = PXaXb
(1, 1), (2.27)

and is illustrated in Figure 2-5. We have

RsumJSCC(ε0, ε1, δ0, δ1) = max
PXaXb

(xa,xb)
[H(Y ) − H(Y |Xa, Xb)] (2.28)

= max
P00,P01,P10,P11

[H(Y ) − H(Y |Xa, Xb)]. (2.29)

Computing H(Y )

We have that:

Pr(Y = 0) = Pr(X
′

a = 0, X
′

b = 0) + Pr(X
′

a = 1, X
′

b = 1) (2.30)

We compute Pr(X
′

a = 0, X
′

b = 0) and Pr(X
′

a = 1, X
′

b = 1) as follows

Pr(X
′

a = 0, X
′

b = 0) = Pr(Xa + Z1 = 0, Xb + Z2 = 0)

= Pr(Xa = 0, Z1 = 0, Xb = 0, Z2 = 0)

+Pr(Xa = 1, Z1 = 1, Xb = 1, Z2 = 1)

+Pr(Xa = 0, Z1 = 0, Xb = 1, Z2 = 1)

+Pr(Xa = 1, Z1 = 1, Xb = 0, Z2 = 0)
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= P00(1 − ε0)(1 − δ0) + P01δ1(1 − ε0)

+P10ε1(1 − δ0) + P11ε1δ1, (2.31)

Pr(X
′

a = 1, X
′

b = 1) = Pr(Xa + Z1 = 1, Xb + Z2 = 1)

= Pr(Xa = 0, Z1 = 1, Xb = 0, Z2 = 1)

+Pr(Xa = 1, Z1 = 0, Xb = 0, Z2 = 1)

+Pr(Xa = 0, Z1 = 1, Xb = 1, Z2 = 0)

+Pr(Xa = 1, Z1 = 0, Xb = 1, Z2 = 0)

= P00ε0δ0 + P01ε0(1 − δ1)

+P10δ0(1 − ε1) + P11(1 − ε1)(1 − δ1). (2.32)

Substituting (2.31,2.32) in (2.30), we have

Pr(Y = 0) = P00(1 − ε0 − δ0 + 2ε0δ0) + P10(δ0 + ε1 − 2δ0ε1)

+P01(δ1 + ε0 − 2ε0δ1) + P11(1 − ε1 − δ1 + 2ε1δ1). (2.33)

Therefore we compute H(Y ) as

H(Y ) = H[P00(1 − ε0 − δ0 + 2ε0δ0) + P10(δ0 + ε1 − 2δ0ε1)

+P01(δ1 + ε0 − 2ε0δ1) + P11(1 − ε1 − δ1 + 2ε1δ1)]. (2.34)

Computing H(Y |Xa, Xb)

We have that:

H(Y |Xa, Xb) = P00H(Y |Xa = 0, Xb = 0) + P01H(Y |Xa = 0, Xb = 1)

+P10H(Y |Xa = 1, Xb = 0) + P11H(Y |Xa = 1, Xb = 1). (2.35)

We compute the conditional probabilities as

Pr(Y = 0|Xa = 0, Xb = 0) = Pr(X
′

a = 0, X
′

b = 0|Xa = 0, Xb = 0)

+Pr(X
′

a = 1, X
′

b = 1|Xa = 0, Xb = 0)

= Pr(Z1 = 0, Z2 = 0|Xa = 0, Xb = 0)

+Pr(Z1 = 1, Z2 = 1|Xa = 0, Xb = 0)

= 1 − ε0 − δ0 + 2ε0δ0, (2.36)
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Pr(Y = 0|Xa = 0, Xb = 1) = Pr(X
′

a = 0, X
′

b = 0|Xa = 0, Xb = 1)

+Pr(X
′

a = 1, X
′

b = 1|Xa = 0, Xb = 1)

= Pr(Z1 = 0, Z2 = 1|Xa = 0, Xb = 1)

+Pr(Z1 = 1, Z2 = 0|Xa = 0, Xb = 1)

= ε0 + δ1 − 2ε0δ1, (2.37)

Pr(Y = 0|Xa = 1, Xb = 0) = Pr(X
′

a = 0, X
′

b = 0|Xa = 1, Xb = 0)

+Pr(X
′

a = 1, X
′

b = 1|Xa = 1, Xb = 0)

= Pr(Z1 = 1, Z2 = 0|Xa = 1, Xb = 0)

+Pr(Z1 = 0, Z2 = 1|Xa = 1, Xb = 0)

= ε1 + δ0 − 2ε0δ1, (2.38)

Pr(Y = 0|Xa = 1, Xb = 1) = Pr(X
′

a = 0, X
′

b = 0|Xa = 1, Xb = 1)

+Pr(X
′

a = 1, X
′

b = 1|Xa = 1, Xb = 1)

= Pr(Z1 = 1, Z2 = 1|Xa = 1, Xb = 1)

+Pr(Z1 = 0, Z2 = 0|Xa = 1, Xb = 1)

= 1 − ε1 − δ1 + 2ε1δ1. (2.39)

From (2.36), (2.37) , (2.38) and (2.39), we obtain

H(Y |Xa = 0, Xb = 0) = H(ε0 + δ0 − 2ε0δ0), (2.40)

H(Y |Xa = 0, Xb = 1) = H(ε0 + δ1 − 2ε0δ1), (2.41)

H(Y |Xa = 1, Xb = 0) = H(ε1 + δ0 − 2ε1δ0), (2.42)

H(Y |Xa = 1, Xb = 1) = H(ε1 + δ1 − 2ε1δ1). (2.43)

Substituting (2.40 - 2.43) in (2.35), we have

H(Y |Xa, Xb) = P00H(ε0 + δ0 − 2ε0δ0) + P01H(ε0 + δ1 − 2ε0δ1)

+P10H(ε1 + δ0 − 2ε1δ0) + P11H(ε1 + δ1 − 2ε1δ1). (2.44)
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Combining (2.34) and (2.44) we obtain

RsumJSCC(ε0, ε1, δ0, δ1) = max
P00,P01,P10,P11

H[P00(1 − ε0 − δ0 + 2ε0δ0) + P01(δ1 + ε0 − 2ε0δ1)

+P10(δ0 + ε1 − 2δ0ε1) + P11(1 − ε1 − δ1 + 2ε1δ1)]

−P00H(ε0 + δ0 − 2ε0δ0) − P01H(ε0 + δ1 − 2ε0δ1)

−P10H(ε1 + δ0 − 2ε1δ0) − P11H(ε1 + δ1 − 2ε1δ1). (2.45)

2.2.3 Failure of source-channel separation

We now give an example of a noisy binary multiple access finite field adder channel

where noise is input-dependent. Since noise is input-dependent, ε0 6= ε1 and δ0 6= δ1.

Let

ε0 = 0.02,

ε1 = 0.8,

δ0 = 0.29,

δ1 = 0.98. (2.46)

We know from (2.23) that RsumSSCC(ε0, ε1, δ0, δ1) is given by

RsumSSCC(ε0, ε1, δ0, δ1) = max
p1,p2

Rs(ε0, ε1, δ0, δ1, p1, p2), (2.47)

where Rs(ε0, ε1, δ0, δ1, p1, p2) is defined as

Rs(ε0, ε1, δ0, δ1, p1, p2) = H[ε1 + δ1 − 2ε1δ1 + p1(1 − 2δ1)(1 − ε0 − ε1)

+p2(1 − 2ε1)(1 − δ0 − δ1) − 2p1p2(1 − ε0 − ε1)(1 − δ0 − δ1)]

−p1p2H[ε0 + δ0 − 2ε0δ0] − p1(1 − p2)H[ε0 + δ1 − 2ε0δ1]

−p2(1 − p1)H[ε1 + δ0 − 2ε1δ0] − (1 − p1)(1 − p2)H[ε1 + δ1 − 2ε1δ1].

(2.48)

Rs(ε0, ε1, δ0, δ1, p1, p2) is defined for (p1, p2) ∈ [0, 1] × [0, 1]. We set

∂Rs(ε0, ε1, δ0, δ1, p1, p2)

∂p1
= 0, (2.49)

∂Rs(ε0, ε1, δ0, δ1, p1, p2)

∂p2
= 0. (2.50)

26



Equations (2.49,2.50) give a transcendental equation in p1 and p2 which is solved to

get critical points of Rs(ε0, ε1, δ0, δ1, p1, p2). Let these set of points form a set C. The

point where Rs(ε0, ε1, δ0, δ1, p1, p2) attains a maximum may lie on the boundaries of the

square [0, 1]×[0, 1]. Rs(ε0, ε1, δ0, δ1, p1, p2) is a concave function of one variable at each

side of this square and thus, this single variable function has one maximum. We thus

get 4 points, 1 at each boundary, at which the maximum value of Rs(ε0, ε1, δ0, δ1, p1, p2)

can occur. Let these points form a set B. Now, RsumSSCC(ε0, ε1, δ0, δ1) is given by

RsumSSCC(ε0, ε1, δ0, δ1) = max
(p1,p2)∈C

S

B
Rs(ε0, ε1, δ0, δ1, p1, p2). (2.51)

Applying this to our example, we get

RsumSSCC(0.02, 0.8, 0.29, 0.98) = 0.0975, (2.52)

for p1 = 0.969 and p2 = 0.43.

Now, RsumJSCC(ε0, ε1, δ0, δ1) is a concave function of P00, P01, P10 and P11. Hence, its

maximum can be found by a gradient search technique. Using MATLAB, we compute

RsumJSCC(0.02, 0.8, 0.29, 0.98) = 0.140, (2.53)

where the maximum occurs at P00 = 0, P01 = 0.6, P10 = 0.4 and P11 = 0.

From (2.52) and (2.53), we have

RsumSSCC(0.02, 0.8, 0.29, 0.98) < RsumJSCC(0.02, 0.8, 0.29, 0.98). (2.54)

Since (2.54) holds, we have satisfied the criterion established in section 2.1 for source-

channel separation to not hold. Thus, separation may not hold when the transition

matrices between (Xa, X
′

a) and (Xb, X
′

b) are asymmetric or, in other words, the noise

is input-dependent.

Since separation may not hold when noise is input dependent for a binary noisy

multiple access finite field adder channel, separation may not hold for any noisy

multiple access finite field adder channel when noise is input-dependent. We have

thus proved the following theorem:
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Figure 2-6: Separation does not hold for points above 0. Each experiment was carried out

with a randomly picked set of (ε0, ε1, δ0, δ1), where ε0, ε1, δ0 and δ1 are uniformly distributed

in [0, 1].
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Theorem 2.1 Source-channel separation may not hold for a noisy two transmitter

single receiver multiple access finite field adder channel where the input symbols, out-

put symbol and noise are elements of IF2k for 1 ≤ k and interference occurs in IF2k

with noise being input-dependent.

The example which we gave for source-channel separation failure is not an isolated

one. To assess how often source-channel separation fails, we plotted the difference

between RsumJSCC and RsumSSCC for 100 different sets of randomly chosen transition

probabilities (ε0, ε1, δ0, δ1) using the same technique that we used for the example.

Figure 2-6 shows how RsumJSCC − RsumSSCC changes from set to set. Whenever we

have RsumJSCC − RsumSSCC > 0, we satisfy the criterion established in section 2.1

for separation to fail. The plot shows several such points where separation does not

hold and their difference. We can see from the plot that source-channel separation

seems to fail frequently and that the magnitude of the difference is small. We confirm

this fact in section 2.2.4 by deriving the expression for the probability of separation

failing. This probability is significantly high. Moreover, in section 2.2.5, we derive an

upper bound on the maximum loss in sum rate due to separation failing. This bound

is accurate to the second decimal and is a small number. We show that although the

probability that separation fails is high, the loss in sum rate due to separation failure

is low.

2.2.4 Probability of separation failure

In this section, we derive the expression for probability not holding when the noise

transition probabilities (ε0, ε1, δ0, δ1) are chosen at random. We will let (ε0, ε1, δ0, δ1)

be continuous random variables whose probability density functions are L2 functions.

From (2.45) we see that the sum rate due to joint source-channel coding is given by

RsumJSCC(ε0, ε1, δ0, δ1) = max
P00,P01,P10,P11

RJ(ε0, ε1, δ0, δ1, P00, P01, P10, P11) (2.55)

where
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RJ(ε0, ε1, δ0, δ1, P00, P01, P10, P11) = H[P00(1 − ε0 − δ0 + 2ε0δ0) + P01(ε0 + δ1 − 2ε0δ1)

+P10(ε1 + δ0 − 2ε1δ0) + P11(1 − ε1 − δ1 + 2ε1δ1)]

−P00H(ε0 + δ0 − 2ε0δ0) − P01H(ε0 + δ1 − 2ε0δ1)

−P10H(ε1 + δ0 − 2ε1δ0) − P11H(ε1 + δ1 − 2ε1δ1).

(2.56)

The sum rate obtained by separate source-channel coding is given by (2.23) as

RsumSSCC(ε0, ε1, δ0, δ1) = max
p1,p2

RS(ε0, ε1, δ0, δ1, p1, p2), (2.57)

where

RS(ε0, ε1, δ0, δ1, p1, p2) = H[p1p2(1 − ε0 − δ0 + 2ε0δ0) + p1(1 − p2)(ε0 + δ1 − 2ε0δ1)

+p2(1 − p1)(ε1 + δ0 − 2ε1δ0) + (1 − p1)(1 − p2)(1 − ε1 − δ1 + 2ε1δ1)]

−p1p2H(ε0 + δ0 − 2ε0δ0) − p1(1 − p2)H(ε0 + δ1 − 2ε0δ1)

−p2(1 − p1)H(ε1 + δ0 − 2ε1δ0) − (1 − p1)(1 − p2)H(ε1 + δ1 − 2ε1δ1).

(2.58)

The loss in sum rate is thus

G(ε0, ε1, δ0, δ1) = RsumJSCC(ε0, ε1, δ0, δ1) − RsumSSCC(ε0, ε1, δ0, δ1). (2.59)

Note that since RsumJSCC(ε0, ε1, δ0, δ1) ≥ RsumSSCC(ε0, ε1, δ0, δ1), G(ε0, ε1, δ0, δ1) ≥ 0.

We want to find the maximum value of G(ε0, ε1, δ0, δ1) for 0 ≤ ε0 ≤ 1, 0 ≤ ε1 ≤ 1,

0 ≤ δ0 ≤ 1 and 0 ≤ δ1 ≤ 1. Substituting in the equations for RsumJSCC(ε0, ε1, δ0, δ1)

and RsumSSCC(ε0, ε1, δ0, δ1), we see that G(ε0, ε1, δ0, δ1) obeys the following

G(ε0, ε1, δ0, δ1) = G(1 − ε0, 1 − ε1, δ0, δ1), (2.60)

G(ε0, ε1, δ0, δ1) = G(ε0, ε1, 1 − δ0, 1 − δ1), (2.61)

⇒ G(ε0, ε1, δ0, δ1) = G(1 − ε0, 1 − ε1, 1 − δ0, 1 − δ1). (2.62)

Equations (2.60,2.61) divide the space spanned by (ε0, ε1, δ0, δ1) into 4 symmetric

regions. Thus, in finding the maximum value of G(ε0, ε1, δ0, δ1), we can confine our
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analysis to 0 ≤ ε0 ≤ 0.5, 0 ≤ ε1 ≤ 1, 0 ≤ δ0 ≤ 0.5 and 0 ≤ δ1 ≤ 1. We will call

this space D. Thus, if there are k points in D where G(ε0, ε1, δ0, δ1) is maximum,

in all there are 4k points in the entire space of (ε0, ε1, δ0, δ1) where G(ε0, ε1, δ0, δ1) is

maximum.

Condition under which source-channel separation holds

Let us now establish the condition on the joint probability distribution for source-

channel separation to hold. If (p1, p2) is able to achieve the maximum joint sum rate

achieving distribution specified by (P00, P01, P10, P11), we have:

p1p2 = P00, (2.63)

p1(1 − p2) = P01, (2.64)

p2(1 − p1) = P10, (2.65)

(1 − p1)(1 − p2) = P11. (2.66)

For (2.63,2.64,2.65,2.66) to hold, we need that

P11P00 = P01P10. (2.67)

Thus, whenever a capacity achieving joint probability distribution obeys (2.67), source-

channel separation holds.

Maximizing of joint sum rate

Let us denote

α00 = 1 − ε0 − δ0 + 2ε0δ0, (2.68)

α01 = ε0 + δ1 − 2ε0δ1, (2.69)

α10 = ε1 + δ0 − 2ε1δ0, (2.70)

α11 = 1 − ε1 − δ1 + 2ε1δ1. (2.71)

Substituting in (2.55,2.56,2.57,2.58), the expressions for RsumJSCC(ε0, ε1, δ0, δ1) and

RsumSSCC(ε0, ε1, δ0, δ1) become

RsumJSCC(α00, α01, α10, α11) = max
P00,P01,P10,P11

RJ(α00, α01, α10, α11, P00, P01, P10, P11)
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= max
P00,P01,P10,P11

H[P00α00 + P01α01 + P10α10 + P11α11]

−P00H(α00) − P01H(α01) − P10H(α10) − P11H(α11),

(2.72)

RsumSSCC(α00, α01, α10, α11) = max
p1,p2

RS(α00, α01, α10, α11, p1, p2)

= max
p1,p2

H[p1p2α00 + p1(1 − p2)α01

+p2(1 − p1)α10 + (1 − p1)(1 − p2)α11]

−p1p2H(α00) − p1(1 − p2)H(α01)

−p2(1 − p1)H(α10) − (1 − p1)(1 − p2)H(α11),

(2.73)

and

G(α00, α01, α10, α11) = RsumJSCC(α00, α01, α10, α11) − RsumSSCC(α00, α01, α10, α11).

(2.74)

Define

αmin = min{α00, α01, α10, α11}, (2.75)

αmax = max{α00, α01, α10, α11}, (2.76)

α1, α2 ∈ {α00, α01, α10, α11} − {αmin, αmax}. (2.77)

Therefore, αmin and αmax are the smallest and largest αij respectively, where i, j ∈

{0, 1} and αmin ≤ α1, α2 ≤ αmax. We will now prove the following lemmas:

Lemma 2.1

H(αmax) −H(α)

αmax − α
≤

H(αmax) −H(αmin)

αmax − αmin
(2.78)

for α ∈ [αmin, αmax].

Proof: Consider the function

t(α) =
H(αmax) −H(α)

αmax − α
. (2.79)
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Differentiating with respect to α, we have

∂t

∂α
=

(αmax − α) log2(
α

1−α
) + H(αmax) −H(α)

(αmax − α)2
(2.80)

=
−D(αmax||α)

(αmax − α)2
(2.81)

≤ 0. (2.82)

D(αmax||α) is the Kullback Liebler distance (with logarithms taken base 2) between

the probability distributions (αmax, 1−αmax) and (α, 1−α). Since the first derivative

is negative for α ∈ [αmin, αmax], t(α) is a monotonically decreasing function for α ∈

[αmin, αmax]. Hence, it takes the maximum value when α = αmin. Thus, we have

t(α) ≤ t(αmin) α ∈ [αmin, αmax]. (2.83)

The proof for the lemma is now complete. �

Lemma 2.2 There exists some p ∈ [0, 1] such that RJ(αmin, α1, α2, αmax, p, 0, 0, 1 −

p) ≥ RJ(αmin, α1, α2, αmax, p
′

min, p
′

1, p
′

2, p
′

max) where (p
′

min, p
′

1, p
′

2, p
′

max) specifies a joint

probability distribution.

Proof: Choose p such that

pαmin + (1 − p)αmax = p
′

minαmin + p
′

1α1 + p
′

2α2 + p
′

maxαmax. (2.84)

This is valid, since p ∈ [0, 1]. Now, the lemma holds if

pH(αmin) + (1 − p)H(αmax) ≤ p
′

minH(αmin) + p
′

1H(α1) + p
′

2H(α2) + p
′

maxH(αmax).

(2.85)

Solving (2.84,2.85), we see that we require

0 ≤ p
′

1[H(α1) −H(αmax) +
α1 − αmax

αmax − αmin
{H(αmin) −H(αmax)}]

+p
′

2[H(α2) −H(αmax) +
α2 − αmax

αmax − αmin
{H(αmin) −H(αmax)}]. (2.86)
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as a necessary and sufficient condition for the lemma to hold. Using Lemma 2.1, we

see that

0 ≤ H(α1) −H(αmax) +
α1 − αmax

αmax − αmin
{H(αmin) −H(αmax)}, (2.87)

0 ≤ H(α2) −H(αmax) +
α2 − αmax

αmax − αmin
{H(αmin) −H(αmax)} (2.88)

since α1, α2 ∈ [αmin, αmax]. Thus, (2.86) holds, which completes the proof. �

We now prove a theorem that shows the probability distributions that maximize

sum rate due to joint source-channel coding for a given channel. Let us define a

function Ind that extracts the indices of its argument. For example

Ind(αij) = (i, j). (2.89)

Theorem 2.2 RsumJSCC(αmin, α1, α2, αmax) is maximized by the joint probability dis-

tribution (pmin, 0, 0, pmax) where pmin and pmax are defined as

pmin = PInd{min(α00 ,α01,α10,α11)}, (2.90)

pmax = PInd{max(α00 ,α01,α10,α11)}. (2.91)

(pmin = Pij where (i, j) are indices for which αmin = αij and pmax = Plm where (l, m)

are indices for which αmax = αlm.) Therefore, RsumJSCC only depends on αmin and

αmax.

Proof: For a joint distribution (p
′

min, p
′

1, p
′

2, p
′

max), we have from (2.72),

RsumJSCC(αmin, α1, α2, αmax) = max
p
′

min,p
′

1,p
′

2,p′max

RJ(αmin, α1, α2, αmax, p
′

min, p
′

1, p
′

2, p
′

max),

(2.92)

and αmin ≤ α1, α2 ≤ αmax. Using Lemma 2.2, we have

RsumJSCC(αmin, α1, α2, αmax) = max
p∈[0,1]

RJ(αmin, α1, α2, αmax, p, 0, 0, 1− p). (2.93)

Let (2.93) be maximized at p = q∗. Note that q∗ multiplies αmin and (1−q∗) multiplies

αmax. We define

pmin = q∗, (2.94)

pmax = 1 − q ∗ . (2.95)
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Thus, the joint sum rate is maximized by the probability distribution (pmin, 0, 0, pmax).

Since pmin multiplies αmin and pmax multiplies αmax, we can also denote pmin and pmax

as Pk1k2 and Pr1r2 respectively where,

(k1, k2) = Ind{min(α00, α01, α10, α11)}, (2.96)

(r1, r2) = Ind{max(α00, α01, α10, α11)}. (2.97)

Therefore,

pmin = PInd{min(α00 ,α01,α10,α11)}, (2.98)

pmax = PInd{max(α00 ,α01,α10,α11)}. (2.99)

Thus, RsumJSCC is only dependent on (αmin, αmax) and is a function of only these two

variables. The proof is now complete. �

For a channel where αij = αi′ ,j′ for i, j, i
′

, j
′

∈ {0, 1}, there is more than one joint

distribution that achieves the maximum sum rate. Equation (2.67) must hold for at

least one of these distributions for source-channel separation to hold. Hence, while

optimizing, when we have more that one choice, we will choose pmin and pmax such

that (2.67) holds. If (2.67) does not hold for any of the choices, then source-channel

separation fails for the channel being considered.

Regions

We now further subdivide D into 4 disjoint regions P, Q, R and S. These regions

are defined as:

P : 0 ≤ ε0, ε1, δ0, δ1 ≤ 0.5 (2.100)

Q : 0 ≤ ε0, ε1, δ0 ≤ 0.5, 0.5 ≤ δ1 ≤ 1 (2.101)

R : 0 ≤ ε0, δ0, δ1 ≤ 0.5, 0.5 ≤ ε1 ≤ 1 (2.102)

S : 0 ≤ ε0, δ0 ≤ 0.5, 0.5 ≤ ε1, δ1 ≤ 1, (2.103)

From Theorem 2.2, we see that in each of these regions the joint sum rate is maximized

by the distribution (pmin, 0, 0, pmax) where pmin and pmax are defined as

pmin = PInd{min(α00 ,α01,α10,α11)}, (2.104)
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pmax = PInd{max(α00 ,α01,α10,α11)}. (2.105)

Region P

The region 0 ≤ ε0, ε1, δ0, δ1 ≤ 0.5 makes

0.5 ≤ α00 ≤ 1, (2.106)

0 ≤ α01 ≤ 0.5, (2.107)

0 ≤ α10 ≤ 0.5, (2.108)

0.5 ≤ α11 ≤ 1. (2.109)

Therefore,

α00, α11 ≥ α01, α10, (2.110)

⇒ pmin = pInd{min(α01,α10)}, (2.111)

pmax = pInd{max(α00 ,α11)}. (2.112)

⇒ P00P11 = P01P10 = 0. (2.113)

Thus, (2.113) satisfies (2.67) and source-channel separation holds for region P.

Region Q

The region 0 ≤ ε0, ε1, δ0 ≤ 0.5, and 0.5 ≤ δ1 ≤ 1 makes

0.5 ≤ α00 ≤ 1, (2.114)

0.5 ≤ α01 ≤ 1, (2.115)

0 ≤ α10 ≤ 0.5, (2.116)

0 ≤ α11 ≤ 0.5, (2.117)

and we will call this region Q.

Therefore,

α00, α01 ≥ α10, α11. (2.118)
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If α00 ≥ α01

1 − ε0 − δ0 + 2ε0δ0 ≥ ε0 + δ1 − 2ε0δ1, (2.119)

⇒ (1 − δ0 − δ1) ≥ 0, (2.120)

⇒ (1 − 2ε1)(1 − δ0 − δ1) ≥ 0, (2.121)

⇒ α11 ≥ α10, (2.122)

⇒ pmin = P10, (2.123)

pmax = P00, (2.124)

⇒ P00P11 = P01P10 = 0. (2.125)

If α00 ≤ α01,

1 − ε0 − δ0 + 2ε0δ0 ≤ ε0 + δ1 − 2ε0δ1, (2.126)

⇒ (1 − δ0 − δ1) ≤ 0, (2.127)

⇒ (1 − 2ε1)(1 − δ0 − δ1) ≤ 0, (2.128)

⇒ α11 ≤ α10, (2.129)

⇒ pmin = P11, (2.130)

pmax = P01, (2.131)

⇒ P00P11 = P01P10 = 0. (2.132)

Thus, (2.125,2.132) satisfy (2.67)and source-channel separation holds for region Q.

Region R

The region 0 ≤ ε0, δ0, δ1 ≤ 0.5, and 0.5 ≤ ε1 ≤ 1 makes

0.5 ≤ α00 ≤ 1, (2.133)

0 ≤ α01 ≤ 0.5, (2.134)

0.5 ≤ α10 ≤ 1, (2.135)

0 ≤ α11 ≤ 0.5, (2.136)

and we will call this region R.

Therefore,

α00, α10 ≥ α01, α11. (2.137)
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If α00 ≥ α10

1 − ε0 − δ0 + 2ε0δ0 ≥ ε1 + δ0 − 2ε1δ0, (2.138)

⇒ (1 − ε0 − ε1) ≥ 0, (2.139)

⇒ (1 − 2δ1)(1 − ε0 − ε1) ≥ 0, (2.140)

⇒ α11 ≥ α01, (2.141)

⇒ pmin = P01, (2.142)

pmax = P00, (2.143)

⇒ P00P11 = P01P10 = 0. (2.144)

If α00 ≤ α10

1 − ε0 − δ0 + 2ε0δ0 ≤ ε1 + δ0 − 2ε1δ0, (2.145)

⇒ (1 − ε0 − ε1) ≤ 0, (2.146)

⇒ (1 − 2δ1)(1 − ε0 − ε1) ≤ 0, (2.147)

⇒ α11 ≤ α01, (2.148)

⇒ pmin = P11, (2.149)

pmax = P10, (2.150)

⇒ P00P11 = P01P10 = 0. (2.151)

Thus, (2.144,2.151) satisfy (2.67) and source-channel separation holds for region R.

Region S

The region 0 ≤ ε0, δ0 ≤ 0.5, and 0.5 ≤ ε1, δ1 ≤ 1 makes

0.5 ≤ α00 ≤ 1, (2.152)

0.5 ≤ α01 ≤ 1, (2.153)

0.5 ≤ α10 ≤ 1, (2.154)

0.5 ≤ α11 ≤ 1, (2.155)

and we will call this region S. Note that (2.67) is satisfied iff an inequality in the

expressions described henceforth for S is met with equality. However, such equali-
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ties translate to curves in the four dimension space spanned by (ε0, ε1, δ0, δ1). Since

ε0, ε1, δ0 and δ1 are continuous random variables whose probability density functions

are L2 functions, the probability of being on the curve is 0. Thus we will not consider

points on these boundary curves. We will show that except for these boundary curves,

separation always fails in S.

In S, if α00 ≥ α01, α10

1 − ε0 − ε1 ≥ 0, (2.156)

1 − δ0 − δ1 ≥ 0 (2.157)

⇒ α11 ≤ α01, α10, (2.158)

⇒ pmin = P11, (2.159)

pmax = P00. (2.160)

⇒ P11P00 6= P01P10. (2.161)

If α00 ≤ α01, α10

1 − ε0 − ε1 ≤ 0, (2.162)

1 − δ0 − δ1 ≤ 0 (2.163)

⇒ α11 ≥ α01, α10, (2.164)

⇒ pmin = P00, (2.165)

pmax = P11. (2.166)

⇒ P11P00 6= P01P10. (2.167)

If α01 ≥ α00, α11

1 − δ0 − δ1 ≤ 0, (2.168)

1 − ε0 − ε1 ≥ 0 (2.169)

⇒ α10 ≤ α00, α11, (2.170)

⇒ pmin = P10, (2.171)

pmax = P01. (2.172)

⇒ P11P00 6= P01P10. (2.173)
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If α01 ≤ α00, α11

1 − δ0 − δ1 ≥ 0, (2.174)

1 − ε0 − ε1 ≤ 0 (2.175)

⇒ α10 ≥ α00, α11, (2.176)

⇒ pmin = P01, (2.177)

pmax = P10 (2.178)

⇒ P11P00 6= P01P10 (2.179)

Thus in region S, we see from (2.161,2.167,2.173,2.179) that (2.67) is never sat-

isfied. Hence, we can say that source-channel separation fails in S with probability

1.

Probability that separation fails

We have seen that source-channel separation fails with probability 1 when we are in

region S. Due to the symmetry given by (2.60, 2.61) the probability of separation

failure Pfailure for ε0, ε1, δ0, δ1 ∈ [0, 1] is

Pfailure = Pr(0 ≤ ε0 ≤ 0.5, 0.5 ≤ ε1 ≤ 1, 0 ≤ δ0 ≤ 0.5, 0.5 ≤ ε1 ≤ 1)

+Pr(0.5 ≤ ε0 ≤ 1, 0 ≤ ε1 ≤ 0.5, 0 ≤ δ0 ≤ 0.5, 0.5 ≤ ε1 ≤ 1)

+Pr(0 ≤ ε0 ≤ 0.5, 0.5 ≤ ε1 ≤ 1, 0.5 ≤ δ0 ≤ 1, 0 ≤ ε1 ≤ 0.5)

+Pr(0.5 ≤ ε0 ≤ 1, 0 ≤ ε1 ≤ 0.5, 0.5 ≤ δ0 ≤ 1, 0 ≤ ε1 ≤ 0.5).

(2.180)

If ε0, ε1, δ0 and δ1 are each chosen independently and uniformly from [0, 1], we have

Pfailure = 4.
1

16
(2.181)

=
1

4
. (2.182)

2.2.5 Maximum loss in sum rate due to separation failure

We now compute an upper bound on the maximum loss in sum rate by separate

source-channel coding. Due to the symmetry given by (2.60, 2.61), it is sufficient to
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consider D. We have seen in section 2.2.4 that the only region in D where source-

channel separation fails is S. Separation holds on the boundary curves of S but these

need not be considered since being on the curve is a 0 probability event. Thus, for

investigating the maximum loss due to separate source-channel coding, it is sufficient

if we look at S only.

Consider a noisy multiple access finite field adder channel C1 parameterized by

(ε0, ε1, δ0, δ1) such that (ε0, ε1, δ0, δ1) ∈ S. From the analysis done in section 2.2.4,

(αmin, αmax) ∈ {(α00, α11), (α11, α00), (α01, α10), (α10, α01)}. Therefore, this channel

can be of two types. It is of type 1 if (αmin, αmax) ∈ {(α00, α11), (α11, α00)} and of

type 2 if (αmin, αmax) ∈ {(α01, α10), (α10, α01)}. Consider a type 2 channel C1−type2

with noise transition probabilities (ε∗0, ε
∗
1, δ

∗
0, δ

∗
1). This channel can be parameterized

by (α∗
00, α

∗
01, α

∗
10, α

∗
11) such that

α∗
00 = 1 − ε∗0 − δ∗0 + 2ε∗0δ

∗
0, (2.183)

α∗
01 = ε∗0 + δ∗1 − 2ε∗0δ

∗
1, (2.184)

α∗
10 = ε∗1 + δ∗0 − 2ε∗1δ

∗
0, (2.185)

α∗
11 = 1 − ε∗1 − δ∗1 + 2ε∗1δ

∗
1, (2.186)

α∗
min = min{α∗

00, α
∗
01, α

∗
10, α

∗
11}, (2.187)

α∗
max = max{α∗

00, α
∗
01, α

∗
10, α

∗
11}. (2.188)

Now, if we have a channel with noise transition probabilities (ε∗∗0 , ε∗∗1 , δ∗∗0 , δ∗∗1 ) and

parameterized by (α∗∗
00, α

∗∗
01, α

∗∗
10, α

∗∗
11) such that

ε∗∗0 = ε∗0, (2.189)

ε∗∗1 = ε∗1, (2.190)

δ∗∗0 = 1 − δ∗1, (2.191)

δ∗∗1 = 1 − δ∗0, (2.192)

α∗∗
min = min{α∗∗

00, α
∗∗
01, α

∗∗
10, α

∗∗
11}, (2.193)

α∗∗
max = max{α∗∗

00, α
∗∗
01, α

∗∗
10, α

∗∗
11}. (2.194)
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For this channel we have 0 ≤ ε∗∗0 ≤ 0.5, 0.5 ≤ ε∗∗1 ≤ 1, 0 ≤ δ∗∗0 ≤ 0.5 and 0.5 ≤ δ∗∗1 ≤ 1

and thus (ε∗∗0 , ε∗∗1 , δ∗∗0 , δ∗∗1 ) ∈ S. From (2.183 - 2.194), we obtain

α∗∗
00 = α∗

01, (2.195)

α∗∗
01 = α∗

00, (2.196)

α∗∗
10 = α∗

11, (2.197)

α∗∗
11 = α∗

10.

Also, (α∗∗
min, α∗∗

max) ∈ {(α∗∗
00, α

∗∗
11), (α

∗∗
11, α

∗∗
00)} and this channel is of type 1. We will

call it C1−type1. Note that,

(α∗
min, α∗

max) = (α∗∗
min, α∗∗

max). (2.199)

Thus,

RsumJSCC(ε∗∗0 , ε∗∗1 , δ∗∗0 , δ∗∗1 ) = RsumJSCC(ε∗0, ε
∗
1, δ

∗
0, δ

∗
1). (2.200)

Moreover, if a sum rate by separate source channel coding is achieved for C1−type2 by

a probability distribution (p1, p2), the same sum rate can be achieved for C1−type1 by

a probability distribution (p1, 1 − p2). Thus

RsumSSCC(ε∗∗0 , ε∗∗1 , δ∗∗0 , δ∗∗1 ) = RsumSSCC(ε∗0, ε
∗
1, δ

∗
0 , δ

∗
1). (2.201)

Therefore, we see from (2.200,2.201) that

G(ε∗∗0 , ε∗∗1 , δ∗∗0 , δ∗∗1 ) = G(ε∗0, ε
∗
1, δ

∗
0, δ

∗
1). (2.202)

Therefore, for every type 2 channel in S, there exists a type 1 channel in S with the

same loss in sum rate due to separate source-channel coding and vice versa. Hence,

for finding the maximum loss in sum rate, we can confine our analysis to channel C1

being a type 1 channel. Therefore, we consider C1 to be such that (αmin, αmax) ∈

{(α00, α11), (α11, α00)}.

Consider another noisy multiple access finite field adder channel C2 parameterized by

(ε
′

, δ
′

, ε
′

, δ
′

) where (ε
′

, δ
′

, ε
′

, δ
′

) ∈ S. For this channel, we have

α
′

00 = 1 − 2ε
′

+ 2ε
′2, (2.203)
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α
′

01 = ε
′

+ δ
′

− 2ε
′

δ
′

, (2.204)

α
′

10 = ε
′

+ δ
′

− 2ε
′

δ
′

, (2.205)

α
′

11 = 1 − 2δ
′

+ 2δ
′2. (2.206)

Since, α
′

01 = α
′

10, we have for C2: (α
′

min, α
′

max) ∈ {(α
′

00, α
′

11), (α
′

11, α
′

00)} and this

channel is of type 1. Let us choose (ε
′

, δ
′

) such that

α
′

00 = α00, (2.207)

α
′

11 = α11. (2.208)

⇒ (αmin, αmax) = (α
′

min, α
′

max). (2.209)

Therefore, by Theorem 2.2,

RsumJSCC(ε0, ε1, δ0, δ1) = RsumJSCC(ε
′

, δ
′

, ε
′

, δ
′

), (2.210)

where RsumJSCC(ε0, ε1, δ0, δ1) was defined in (2.55,2.56). Since in S, ε
′

∈ [0, 0.5] and

δ
′

∈ [0.5, 1], we have from (2.207,2.208)

ε
′

=
1

2
[1 −

√

1 − 2(ε0 + δ0 − 2ε0δ0)], (2.211)

δ
′

=
1

2
[1 +

√

1 − 2(ε1 + δ1 − 2ε1δ1)]. (2.212)

If ε0 ≤ δ0, we have

ε0(1 − 2δ0) ≤ δ0(1 − 2δ0), (2.213)

⇒ ε0 + δ0 − 2ε0δ0 ≤ 2δ0 − 2δ2
0, (2.214)

⇒ 1 −
√

1 − 2(ε0 + δ0 − 2ε0δ0) ≤ 2δ0, (2.215)

⇒ ε
′

≤ δ0. (2.216)

Also,

ε0(1 − 2ε0) ≤ δ0(1 − 2ε0), (2.217)

⇒ 2ε0 − 2ε2
0 ≤ ε0 + δ0 − 2ε0δ0, (2.218)

⇒ 2ε0 ≤ 1 −
√

1 − 2(ε0 + δ0 − 2ε0δ0), (2.219)

⇒ ε0 ≤ ε
′

, (2.220)

43



and

0 ≤ (ε0 − δ0)
2, (2.221)

⇒ 1 − 2ε0 − 2δ0 + 4ε0δ0 ≤ 1 − 2ε0 − 2δ0 + 2ε0δ0 + ε2
0 + δ2

0 , (2.222)

⇒
√

1 − 2(ε0 + δ0 − 2ε0δ0) ≤ 1 − ε0 − δ0, (2.223)

⇒ 1 − 2ε
′

≤ 1 − ε0 − δ0, (2.224)

⇒ δ0 − ε
′

≤ ε
′

− ε0. (2.225)

Thus, from (2.216,2.220,2.225), we have

ε0 ≤ ε
′

≤ δ0, (2.226)

δ0 − ε
′

≤ ε
′

− ε0. (2.227)

Similarly if δ0 ≤ ε0, we obtain

δ0 ≤ ε
′

≤ ε0, (2.228)

ε0 − ε
′

≤ ε
′

− δ0. (2.229)

We can thus say that

min(ε0, δ0) ≤ ε
′

≤ max(ε0, δ0), (2.230)

max(ε0, δ0) − ε
′

≤ ε
′

− min(ε0, δ0). (2.231)

If ε1 ≤ δ1, we have

ε1(2δ1 − 1) ≤ δ1(2δ1 − 1), (2.232)

⇒ −2ε1 − 2δ1 + 4ε1δ1 ≤ 4δ2
1 − 4δ1, (2.233)

⇒
√

1 − 2(ε0 + δ0 − 2ε0δ0) ≤ 2δ1 − 1, (2.234)

⇒ δ
′

≤ δ1. (2.235)

Moreover,

ε1(2ε1 − 1) ≤ δ1(2ε1 − 1), (2.236)

⇒ 4ε2
1 − 2ε1 ≤ −2ε1 − 2δ1 + 4ε1δ1, (2.237)

⇒ 2ε1 ≤ 1 −
√

1 − 2(ε1 + δ1 − 2ε1δ1), (2.238)

⇒ ε1 ≤ δ
′

, (2.239)
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and

0 ≤ (δ1 − ε1)
2, (2.240)

⇒ 1 − 2ε1 − 2δ1 + 4ε1δ1 ≤ 1 − 2ε1 − 2δ1 + 2ε1δ1 + ε2
1 + δ2

1 , (2.241)

⇒
√

1 − 2(ε1 + δ1 − 2ε1δ1) ≤ ε1 + δ1 − 1, (2.242)

⇒ 2δ
′

− 1 ≤ ε1 + δ1 − 1, (2.243)

⇒ δ
′

− ε1 ≤ δ1 − δ
′

. (2.244)

Thus, from (2.235,2.239,2.244), we have

ε1 ≤ δ
′

≤ δ1, (2.245)

δ
′

− ε1 ≤ δ1 − δ
′

. (2.246)

Similarly if δ1 ≤ ε1, we obtain

δ1 ≤ δ
′

≤ ε1, (2.247)

δ
′

− δ1 ≤ ε1 − δ
′

.

We can thus say that

min(ε1, δ1) ≤ δ
′

≤ max(ε1, δ1), (2.249)

δ
′

− min(ε1, δ1) ≤ max(ε1, δ1) − δ
′

. (2.250)

From (2.230,2.231,2.249,2.250) we see that the transition probabilities for C2 are closer

to 0.5 than those of C1. This makes the noise variance of C2 higher than that of C1.

Thus

RsumSSCC(ε0, ε1, δ0, δ1) ≥ RsumSSCC(ε
′

, δ
′

, ε
′

, δ
′

), (2.251)

where RsumSSCC(ε0, ε1, δ0, δ1) was defined in (2.57,2.58). From (2.210,2.251), we ob-

tain

G(ε0, ε1, δ0, δ1) ≤ G(ε
′

, δ
′

, ε
′

, δ
′

). (2.252)

Thus, for finding the largest loss in sum rate it is sufficient to focus on channels

parameterized by (ε, δ, ε, δ) for ε ∈ [0, 0.5] and δ ∈ [0.5, 1]. Equation (2.252) can thus

be written as

G(ε0, ε1, δ0, δ1) ≤ G(ε, δ, ε, δ). (2.253)
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From (2.55,2.56) and recalling that these are type 1 channels, we have

RsumJSCC(ε, δ, ε, δ) = max
P00∈[0,1]

H[P00(1 − 2ε + 2ε2) + (1 − P00)(1 − 2δ + 2δ2)],

−P00H(1 − 2ε + 2ε2) − (1 − P00)H(1 − 2δ + 2δ2).

(2.254)

The maximum occurs at

P ∗
00 =

1 − 2δ + 2δ2

2(δ − ε)(δ + ε − 1)
−

1

2(δ − ε)(δ + ε − 1)[1 + exp(φ(ε, δ))]
(2.255)

and

RsumJSCC(ε, δ, ε, δ) = H[
1

1 + exp(φ(ε, δ))
] −

φ(ε, δ)

1 + exp(φ(ε, δ))

−
(1 − 2δ + 2δ2)H(2ε(1 − ε)) − (1 − 2ε + 2ε2)H(2δ(1 − δ))

2(δ − ε)(δ + ε − 1)
,

(2.256)

where

φ(ε, δ) =
1

2
[
H(2δ(1 − δ)) −H(2ε(1 − ε))

(δ − ε)(δ + ε − 1)
]. (2.257)

The sum rate achievable by separate source-channel coding is given by (2.57,2.58).

Since, the noise faced by both inputs is the same, the maximum occurs when

p1 = p2 = p, (2.258)

where p ∈ [0, 1].

Let us define RD(ε, δ, ε, δ) as the sum rate achieved by minimizing the Euclidian

distance between points (P ∗
00, 1 − P ∗

00) and (p2, (1 − p)2) in two dimensional space.

Thus

p∗ = arg min
p

[(P ∗
00 − p2)2 + ((1 − P ∗

00) − (1 − p)2)2], (2.259)

and

RD(ε, δ, ε, δ) = H[p∗2(1 − 2ε + 2ε2) + 2p∗(1 − p∗)(ε + δ − 2εδ) + (1 − p∗)2(1 − 2δ + 2δ2)]

−p∗2H(1 − 2ε + 2ε2) − 2p∗(1 − p∗)H(ε + δ − 2εδ) − (1 − p∗)2H(1 − 2δ + 2δ2).

(2.260)
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Define GD(ε, δ, ε, δ) as

GD(ε, δ, ε, δ) = RJ(ε, δ, ε, δ) − RD(ε, δ, ε, δ). (2.261)

The probability distribution that minimizes Euclidian distance cannot give a higher

sum rate than the probability distribution that maximizes the sum rate. This gives,

RD(ε, δ, ε, δ) ≤ RS(ε, δ, ε, δ). (2.262)

Thus, we have

G(ε, δ, ε, δ) ≤ GD(ε, δ, ε, δ). (2.263)

Combining (2.253,2.263) we get for (ε0, ε1, δ0, δ1) ∈ S and ε ∈ [0, 0.5], δ ∈ [0.5, 1]

G(ε0, ε1, δ0, δ1) ≤ GD(ε, δ, ε, δ). (2.264)

Note that computing RS(ε, δ, ε, δ) is difficult in general since the maximizing proba-

bility distribution is hard to evaluate. Hence, by using a probability distribution that

minimizes Euclidian distance, we have a lower sum rate and an upper bound on the

loss in sum rate by separate source-channel coding. Later we show with an example

that the bound is very tight.

Minimizing Euclidian distance

Let

d2 = (P ∗
00 − p2)2 + ((1 − P ∗

00) − (1 − p)2). (2.265)

Setting
∂d2

∂p
= 0, (2.266)

we obtain

2p3 − 3p2 + 2p − P ∗
00 = 0. (2.267)

We have three roots for (2.267). Two are complex and should be omitted. The real

root is given by

p∗ =
1

2
−

1

22/3 3

√

108P ∗
00 − 54 +

√

108 + (108P ∗
00 − 54)2

+

3

√

108P ∗
00 − 54 +

√

108 + (108P ∗
00 − 54)2

21/36
.

(2.268)
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Figure 2-7: Case 1.

From (2.260,2.268), we have the explicit expression for GD(ε, δ, ε, δ).

For ε ∈ [0, 0.5] and δ ∈ [0.5, 1],

∂GD(ε, δ, ε, δ)

∂ε
6= 0, (2.269)

∂GD(ε, δ, ε, δ)

∂δ
6= 0, (2.270)

and thus the maximum values lie on the boundary of the square region we are looking

at. Four cases arise:

Case 1: δ = 0.5.

Figure 2-7 shows the plot of GD(ε, 0.5, ε, 0.5). To find the maximum value of GD(ε, 0.5, ε, 0.5)

for ε ∈ [0, 0.5], we set

∂GD(ε, 0.5, ε, 0.5)

∂ε
= 0. (2.271)

We obtain a real root at ε = 0.0225. Since this is the only critical point for ε ∈ [0, 0.5],

it can be a maximum, minimum or point of inflexion. Using the same techniques as
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Figure 2-8: Case 2.

in section 2.2.3 for calculating the loss in sum rate due to separation failure for a

specific channel, we compute

GD(0, 0.5, 0, 0.5) = 0.0207, (2.272)

GD(0.0225, 0.5, 0.0225, 0.5) = 0.0258, (2.273)

GD(0.5, 0.5, 0.5, 0.5) = 0. (2.274)

Since

GD(0.0225, 0.5, 0.0225, 0.5) > GD(0, 0.5, 0, 0.5), GD(0.5, 0.5, 0.5, 0.5) (2.275)

GD(0.0225, 0.5, 0.0225, 0.5) is the maximum. Thus,

GD(ε, 0.5, ε, 0.5) ≤ GD(0.0225, 0.5, 0.0225, 0.5) = 0.0258. (2.276)

Case 2: δ = 1.

Figure 2-8 shows the plot of GD(ε, 1, ε, 1). To find the maximum value of GD(ε, 1, ε, 1)

for ε ∈ [0, 0.5], we set
∂GD(ε, 1, ε, 1)

∂ε
= 0. (2.277)
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Figure 2-9: Case 3.

We obtain a real root at ε = 0.3012. Since this is the only critical point for ε ∈ [0, 0.5],

it can be a maximum, minimum or point of inflexion. Using the same techniques as

in section 2.2.3 for calculating the loss in sum rate due to separation failure for a

specific channel, we compute

GD(0, 1, 0, 1) = 0, (2.278)

GD(0.3012, 1, 0.3012, 1) = 0.0776, (2.279)

GD(0.5, 1, 0.5, 1) = 0.0207. (2.280)

Since

GD(0.3012, 1, 0.3012, 1) > GD(0, 1, 0, 1), GD(0.5, 1, 0.5, 1), (2.281)

GD(0.3012, 1, 0.3012, 1) is the maximum. Thus,

GD(ε, 1, ε, 1) ≤ GD(0.3012, 1, 0.3012, 1) = 0.0776. (2.282)
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Case 3: ε = 0.

Figure 2-9 shows the plot of GD(0, δ, 0, δ). To find the maximum value of GD(0, δ, 0, δ)

for δ ∈ [0.5, 1], we set
∂GD(0, δ, 0, δ)

∂δ
= 0. (2.283)

We obtain a real root at δ = 0.6988. Since this is the only critical point for δ ∈ [0.5, 1],

it can be a maximum, minimum or point of inflexion. Using the same techniques as

in section 2.2.3 for calculating the loss in sum rate due to separation failure for a

specific channel, we compute

GD(0, 0.5, 0, 0.5) = 0.0207, (2.284)

GD(0, 0.6988, 0, 0.6988) = 0.0776, (2.285)

GD(0, 1, 0, 1) = 0. (2.286)

Since

GD(0, 0.6988, 0, 0.6988) > GD(0, 0.5, 0, 0.5), GD(0, 1, 0, 1), (2.287)

GD(0, 0.6988, 0, 0.6988) is the maximum. Thus,

GD(0, δ, 0, δ) ≤ GD(0, 0.6988, 0, 0.6988) = 0.0776. (2.288)

Case 4: ε = 0.5.

Figure 2-10 shows the plot of GD(0.5, δ, 0.5, δ). To find the maximum value of

GD(0.5, δ, 0.5, δ) for δ ∈ [0.5, 1], we set

∂GD(0.5, δ, 0.5, δ)

∂δ
= 0. (2.289)

We obtain a real root at δ = 0.9775. Since this is the only critical point for δ ∈ [0.5, 1],

it can be a maximum, minimum or point of inflexion. Using the same techniques as

in section 2.2.3 for calculating the loss in sum rate due to separation failure for a

specific channel, we compute

GD(0.5, 0.5, 0.5, 0.5) = 0, (2.290)

GD(0.5, 0.9775, 0.5, 0.9775) = 0.0258, (2.291)

GD(0.5, 1, 0.5, 1) = 0.0207. (2.292)
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Figure 2-10: Case 4.

Since

GD(0.5, 0.9775, 0.5, 0.9775) > GD(0.5, 0.5, 0.5, 0.5), GD(0.5, 1, 0.5, 1), (2.293)

GD(0.5, 0.9775, 0.5, 0.9775) is the maximum. Thus,

GD(0.5, δ, 0.5, δ) ≤ GD(0.5, 0.9775, 0.5, 0.9775) = 0.0258. (2.294)

Since the maxima occur at the boundaries,

GD(ε, δ, ε, δ) ≤ max{GD(ε, 0.5, ε, 0.5), GD(ε, 1, ε, 1), GD(0, δ, 0, δ), GD(0.5, δ, 0.5, δ)}.

(2.295)

Combining (2.276,2.282,2.288,2.294,2.295), we have for ε ∈ [0, 0.5], δ ∈ [0.5, 1]

GD(ε, δ, ε, δ) ≤ 0.0776. (2.296)

Thus, from (2.264,2.296) we have

G(ε0, ε1, δ0, δ1) ≤ 0.0776 (2.297)
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for (ε0, ε1, δ0, δ1) ∈ S.

Now, we know from section 2.2.4 that source-channel separation holds in regions P,Q

and R. Moreover, from the symmetry in (2.60,2.61), we can say that for ε0, ε1, δ0, δ1 ∈

[0, 1],

G(ε0, ε1, δ0, δ1) ≤ 0.0776. (2.298)

Tightness of the bound

We show that the bound on the maximum loss in sum rate due to separation failure

is accurate to at least the second decimal place and is thus a very tight bound. For

a channel specified by

ε0 = 0, (2.299)

δ0 = 0.722, (2.300)

ε1 = 0, (2.301)

δ1 = 0.722, (2.302)

we compute using techniques described in section 2.2.3

RsumJSCC(0, 0.722, 0, 0.722) = 0.247, (2.303)

RsumSSCC(0, 0.722, 0, 0.722) = 0.1752, (2.304)

⇒ G(0, 0.722, 0, 0.722) = 0.0718. (2.305)

From (2.305) we see that the bound given by (2.298) is accurate to at least the second

decimal position. Thus, (2.298) is a very tight bound. Thus we see that for noisy

multiple access finite field adder channels over the binary field where noise is input-

dependent, the maximum loss in sum rate by doing separate source-channel coding

when separation fails is less that 0.0776 bit.

Note that though there is a significantly high probability that source-channel

separation does not hold for a channel over IF2, the loss in sum rate due to separation

failure is very small, especially, when the noise is low.
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2.3 Source-channel separation when noise is inde-

pendent of inputs

Let us first consider the binary noisy multiple access finite field adder channel shown

in Figure 2-3 when noise does not depend upon the inputs. The transition matrices

between (Xa, X
′

a) and (Xb, X
′

b) are now symmetric. Thus, we have

ε0 = ε1, (2.306)

δ0 = δ1. (2.307)

We define ε = ε1 = ε2 and δ = δ0 = δ1. From (2.23), we have RsumSSCC as

RsumSSCC(ε, ε, δ, δ) = max
p1,p2

H[p1p2(1 − ε − δ + 2εδ) + p1(1 − p2)(ε + δ − 2εδ)

+p2(1 − p1)(ε + δ − 2εδ) + (1 − p1)(1 − p2)(1 − ε − δ + 2εδ)]

−H(ε + δ − 2εδ).

(2.308)

Simplifying (2.308), we obtain

RsumSSCC(ε, ε, δ, δ) = max
p1,p2

H[ε + δ − 2εδ + (1 − 2δ)(1 − 2ε)(p1 + p2 − 2p1p2)] −H[ε + δ − 2εδ].

= 1 −H(ε + δ − 2εδ). (2.309)

We now compute RsumJSCC(ε, ε, δ, δ) from (2.45) as

RsumJSCC(ε, ε, δ, δ) = max
P00,P01,P10,P11

H[P00(1 − ε − δ + 2εδ) + P01(δ + ε − 2εδ)

+P10(δ + ε − 2δε) + P11(1 − ε − δ + 2εδ]

−P00H(ε + δ − 2εδ) − P01H(ε + δ − 2εδ)

−P10H(ε + δ − 2εδ) − P11H(ε + δ − 2εδ). (2.310)

Simplifying, we get

RsumJSCC(ε, ε, δ, δ) = max
P00,P01,P10,P11

H[P00 + P11 + (P10 + P01 − P11 − P00)(δ + ε − εδ)]

−H(ε + δ − εδ)

= 1 −H(ε + δ − εδ). (2.311)
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Expression (2.309) and (2.311) yield

RsumJSCC(ε, ε, δ, δ) = RsumSSCC(ε, ε, δ, δ), (2.312)

for any ε, δ ∈ [0, 1]. Thus the criterion established in section 2.1 for separation to

hold is satisfied and we have shown that separation holds when noise is not input

dependent. We have thus proved the following theorem:

Theorem 2.3 Source-channel separation holds for a two transmitter single receiver

noisy multiple access finite field adder channel where the input symbols, output symbol

and noise are elements of IF2 and interference occurs in IF2 with noise being indepen-

dent of inputs.

Theorem 2.3 establishes that separation holds for a noisy multiple access finite field

adder channel over IF2 when noise is independent of inputs. We will now show that

separation holds for a channel over IF2k for any 1 ≤ k, as long as noise is input-

independent.

Let us look at the channel where the inputs Xa, Xb, noise Z and output Y are elements

of IF2k . Noise is independent of inputs and Y = Xa + Xb + Z with addition over IF2k .

Consider the entropy of Y = Xa + Xb + Z. Since Xa + Xb and Z are independent,

H(Xa + Xb) = H(Xa + Xb|Z),

= H(Y |Z),

≤ H(Y ). (2.313)

As addition is over a finite field, if Xa and Xb are independent and have a uniform

distribution, then Xa + Xb has a uniform distribution. When Xa and Xb are cor-

related, we can let PXaXb
(xa, xb) = 2−2k for all (xa, xb) ∈ (IF2k)2. This will make

the probability distribution of Xa + Xb uniform. Therefore, whether Xa and Xb are

correlated or not, Xa + Xb can always be made uniform and has a maximum entropy

of k bits. This can be represented as

max
PXa(xa)PXb

(xb)
H(Xa + Xb) = max

PXaXb
(xa,xb)

H(Xa + Xb) = k. (2.314)

55



From (2.313), we have

max
PXa(xa)PXb

(xb)
H(Xa + Xb) ≤ max

PXa(xa)PXb
(xb)

H(Y ), (2.315)

max
PXaXb

(xa,xb)
H(Xa + Xb) ≤ max

PXaXb
(xa,xb)

H(Y ). (2.316)

Since, H(Y ) ≤ k, we have

max
PXa(xa)PXb

(xb)
H(Y ) = max

PXa(xa)PXb
(xb)

H(Xa + Xb) = k, (2.317)

max
PXaXb

(xa,xb)
H(Y ) = max

PXaXb
(xa,xb)

H(Xa + Xb) = k. (2.318)

The maximum sum rate by separate source-channel coding is therefore

RsumSSCC = max
PXa(xa)PXb

(xb)
I(Xa, Xb; Y ), (2.319)

= max
PXa(xa)PXb

(xb)
[H(Y ) − H(Y |Xa, Xb)], (2.320)

= max
PXa(xa)PXb

(xb)
[H(Y ) − H(Z|Xa, Xb)], (2.321)

= max
PXa(xa)PXb

(xb)
H(Y ) − H(Z), (2.322)

= k − H(Z). (2.323)

Equation (2.322) holds since the noise is independent of the inputs and (2.323) follows

from (2.317). When we do joint source-channel coding for the same channel we obtain

RsumJSCC = max
PXaXb

(xa,xb)
I(Xa, Xb; Y ), (2.324)

= max
PXaXb

(xa,xb)
[H(Y ) − H(Y |Xa, Xb)] (2.325)

= max
PXaXb

(xa,xb)
[H(Y ) − H(Z|Xa, Xb)], (2.326)

= max
PXaXb

(xa,xb)
H(Y ) − H(Z), (2.327)

= k − H(Z), (2.328)

where (2.327) holds since noise is independent of inputs and (2.328) follows from

(2.318). Combining (2.323) and (2.328), we obtain

RsumSSCC = RsumJSCC . (2.329)

Equation (2.329) satisfies the criterion established in section 2.1 for separation to

hold. We have thus proved the following theorem which generalizes Theorem 2.3 to

arbitrary field size:
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Theorem 2.4 Source-channel separation holds for a two transmitter single receiver

noisy multiple access finite field adder channel where the input symbols, output symbol

and noise are elements of IF2k for 1 ≤ k and interference occurs in IF2k with noise

being independent of inputs.

Note that the noise-free multiple access finite field adder channel is a special case of

the noisy finite field adder channel with input-independent noise.
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Chapter 3

Time-Slotted Noise-Free Multiple

Access Networks over Finite Fields

In this chapter, we will consider a time-slotted noise-free multiple access finite field

adder channel. The transmitted elements Xa, Xb, and received element Y are from

IF2k , for 1 ≤ k and

Y = Xa + Xb. (3.1)

Multiple access interference is additive over IF2k . First, we develop a single-slot model

for this multiple access channel. We determine the capacity region and maximum

code rate and study the dependance of these quantities on field size. We present a

systematic code construction, which we show achieves maximum code rate and capac-

ity. We show that codes that achieve the maximum code rate also achieve capacity.

Next, we look at the performance of systematic random codes and obtain conditions

under which random codes achieve maximum code rate and capacity. We provide

explicit expressions for error probabilities, which are functions of code length, thus

establishing the strong coding theorem for this channel. We also consider bursty

transmissions, when transmitters transmit according to a Bernoulli process. We pro-

pose coding techniques to maximize code rate. We show that, when the information

vectors at the input to the channel encoders have the same size, maximum expected

code rate is achieved by adding redundancy at the transmitter with a higher proba-
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Figure 3-1: Single Slot Model for the Noise-Free Multiple Access Finite Field Adder Chan-

nel.

bility of transmission and not adding any redundancy at the transmitter with lower

probability of transmission.

3.1 Single Slot Model

We consider a discrete time channel. The channel is time-slotted and we consider

transmissions over the length of a slot or slot duration. Figure 3-1 shows a single slot

model of the noise-free finite field multiple access channel. Information codewords ~U ′

and ~V ′ , as described in Figure 2-2, coming out of the source coders at transmitters a

and b in one slot duration will be represented as ~a and ~b, respectively, in this chapter.

~a and ~b are thus vectors of sizes na and nb respectively, which represent independent

information. The elements of ~a and ~b are in IF2k , for 1 ≤ k. In Chapter 2, we showed

in Theorem 2.4 that source-channel separation holds for a noise-free multiple access

finite field adder channel. Thus, the scheme of separate source and channel coding is

optimal. For this model, all operations, matrices and vectors are in IF2k . We will refer

to ~a and ~b as transmit vectors and assume that na ≥ nb. (Otherwise, the arguments

still hold with ~a and ~b interchanged.) La is a (na + nb) × na size matrix and Lb is a

(na + nb) × nb size matrix. These are the generator matrices for the channel codes

at a and b respectively. ~Xa and ~Xb are the codewords that are sent over the channel

and they interfere additively over IF2k . At the decoder, matrix T having a dimension

of (m1 + m2)× (na + nb) decodes the received vector to generate a subset of ~a and ~b.
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~R is this decoded output containing m1 elements of ~a and m2 elements of ~b.

Let ma and mb be the increase in the size of vectors ~a and ~b, respectively, due to

channel coding. We will denote la and lb as the lengths of the vectors obtained by

channel coding on ~a and ~b respectively. In general, la 6= lb and so both transmitters

may not transmit for the entire slot duration. However, at least one transmitter will

transmit for the whole slot duration. Therefore, the slot length is given by

S = max(la, lb) symbols. (3.2)

Also,

la = na + ma, (3.3)

lb = nb + mb. (3.4)

3.2 Capacity Region and Maximum Code Rate

In this section, we derive the capacity region and maximum code rate over a very

long slot or many slots. We first establish the capacity region and then derive the

maximum code rate.

3.2.1 Capacity Region

We know from [21, 22] that the multiple access capacity region is the closure of the

convex hull of all (Ra, Rb) satisfying

Ra ≤ I(Xa; Y |Xb), (3.5)

Rb ≤ I(Xb; Y |Xa), (3.6)

Rsum = Ra + Rb ≤ I(Xa, Xb; Y ). (3.7)

The mutual information expressions can be simplified to

I(Xa; Y |Xb) = H(Y |Xb) − H(Y |Xa, Xb) (3.8)

= H(Xa), (3.9)
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Figure 3-2: Capacity region of a noise-free multiple access finite field adder channel over a

field of size 2k.

I(Xb; Y |Xa) = H(Y |Xa) − H(Y |Xa, Xb) (3.10)

= H(Xb), (3.11)

I(Xa, Xb; Y ) = H(Y ) − H(Y |Xa, Xb) (3.12)

= H(Xa + Xb). (3.13)

Uniform distribution of Xa and Xb maximizes Ra, Rb and Rsum. The multiple access

capacity region is therefore the closure of the convex hull of all (Ra, Rb) satisfying

Ra ≤ k, (3.14)

Rb ≤ k, (3.15)

Rsum = Ra + Rb ≤ k, (3.16)

where the rates are in bits per channel use. The transmission rates will always be

specified in bits per channel use. The capacity region is shown in Figure 3-2.
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3.2.2 Maximum Code Rate

We now find the maximum code rate for this channel. Transmitters a and b transmit

na and nb information symbols per slot respectively and the codewords transmitted

have a length of la and lb symbols respectively. The transmission rates are

Ra =
kna

S
, (3.17)

Rb =
knb

S
, (3.18)

Rsum =
k(na + nb)

S
. (3.19)

From (3.16, 3.19), we obtain

na + nb ≤ S. (3.20)

The code rate is a dimensionless quantity and is given by

Crate =
na + nb

la + lb
(3.21)

=
na + nb

min(la, lb) + max(la, lb)
(3.22)

=
na + nb

min(la, lb) + S
(3.23)

≤
na + nb

nb + na + nb
. (3.24)

Equation (3.23) is due to (3.2). Expression (3.24) follows from (3.20) and the fact

that nb ≤ min(la, lb). Thus, we have

Crate ≤
na + nb

na + 2nb

. (3.25)

We obtain an important lemma:

Lemma 3.1 The capacity region of a two-transmitter noise-free finite field adder

channel grows logarithmically with the size of the field but the code rate remains the

same for all field sizes.

Proof: From (3.14), (3.15) and (3.16), we see that the capacity region grows logarith-

mically with field size (k). However, (3.25) shows that the code rate is invariant to

k. Thus we have proved the lemma. �
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3.3 Code Construction

We now focus on construction of codes that achieve the capacity and maximum code

rate for the noise-free multiple access finite field adder channel. We will call these

codes that achieve both the maximum code rate and capacity as optimal codes. The

na na+nb

nb

na+nb

la

lb

A B

CD

Figure 3-3: Region of Analysis.

code rate, transmission rates Ra, Rb, and sum rate Rsum for our model are given by

Crate =
m1 + m2

la + lb
, (3.26)

Ra =
km1

max(la, lb)
, (3.27)

Rb =
km2

max(la, lb)
, (3.28)

Rsum =
k(m1 + m2)

max(la, lb)
. (3.29)

We now construct a code that will be shown to be an optimal one. Note that there

are many codes that can be optimal. We describe one such construction and prove

its optimality.
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By definition, la ≥ na and lb ≥ nb. When la = lb = na + nb, all elements can be

recovered after multiple access interference at the receiver. Thereby, we can safely

reduce the region for finding optimal codes to the region ABCD shown in Figure

3-3. All points outside ABCD will have a lower code rate as the number of received

elements remains same for increasing la and lb. Hence, we confine our analysis of

finding optimal codes to the region ABCD.

In this region na ≤ la ≤ na + nb and nb ≤ lb ≤ na + nb which makes 0 ≤ ma ≤ nb,

0 ≤ mb ≤ na, 0 ≤ m1 ≤ na and 0 ≤ m2 ≤ nb. We also have the following relations:

~Xa = La~a, (3.30)

~Xb = Lb
~b, (3.31)

~Y = La~a + Lb
~b, (3.32)

~R = T ~Y = (TLa)~a + (TLb)~b. (3.33)

Let Wa = (TLa) and Wb = (TLb). We define a 1row as a row vector having only one

non-zero element. Since ~R contains m1 elements of ~a and m2 elements of~b, Wa should

be a (m1 + m2) × na size matrix with m1 1rows, Wb a (m1 + m2) × nb size matrix

with m2 1rows and the 1row positions for these matrices should not overlap. Let

W =
[

Wa

∣

∣

∣ Wb

]

and L =
[

La

∣

∣

∣ Lb

]

. Thus, W should have m1 + m2 unique

1rows. Looking at the relations obtained from our model, we see that W is generated

by receiver matrix T operating on L and the rows of W are linear combinations of the

rows of L. By definition, W consists only of 1rows. For given L, we need to find the

maximum number of 1rows in W that can be generated by linear combinations of the

rows of L. This maximizes m1 +m2 for given la + lb which in turn maximizes the code

rate and also specifies La, Lb and T . Therefore, codes that achieve the maximum code

rate and capacity are found by jointly optimizing the encoder and decoder matrices.

In our further discussion, Ik×k will represent a k × k identity matrix and 0p1×p2 a

p1 × p2 null matrix. We now prove the following lemma:

Lemma 3.2 Let B1 and B2 be diagonal square matrices of size nb with all diago-

nal elements non-zero. If s unique 1rows are inserted into a matrix J of the form
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[

B10nb×(na−nb)B2

]

to obtain matrix C such that the number of independent row vec-

tors in C is s + nb and k 1rows have their non-zero element in [nb + 1, na], then the

maximum number of 1rows possible by any linear combination of the rows of C is

2s − k.

Proof: The inserted 1rows that are non-zero in positions [nb + 1, na] cannot give rise

to any other 1row in C since, all the rows of J are 0 in that position. Any other

inserted 1row can be combined with a row vector in J to give a unique 1row in C

since all the row vectors of C are independent. Thus, the s−k 1rows whose non-zero

elements are not in the interval [nb + 1, na], can generate 2(s− k) 1rows in C. These

arguments are valid for s ∈ [0, na] and k ∈ [0, na − nb]. The total number of 1rows

that can be generated by the s inserted 1rows is thus 2(s − k) + k = 2s − k. �

Using this lemma, we know what we get by adding redundancy at the transmitters.

Note that the proof depends only on B1 and B2’s being diagonal with all diagonal

elements being non-zero. There is no constraint on the values of the diagonal elements.

Hence, we will set B1 = B2 = Inb×nb
and the non-zero element in a 1row to be 1.

Theorem 3.1 Optimal codes are not contained in the region 0 < mb ≤ na − nb.

Proof: Let P =
[

Ina×na

∣

∣

∣

Inb×nb

0(na−nb)×nb



. We form matrix G by inserting 1rows to P

in any row position. Adding redundancy of ma generates ma 1rows in G and reduces

the number of 1rows the redundancy mb can generate by ma + na − nb. This implies

that

mb > ma + na − nb (3.34)

> min(ma) + na − nb (3.35)

> na − nb. (3.36)

Thus mb = 0 (no redundancy added at transmitter b) or mb > na − nb, which com-

pletes the proof. �
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Theorem 3.2 Codes that achieve the maximum code rate and capacity are not con-

tained on the line ma = mb − [na − nb].

Proof: Let P be defined as before. Coding in this region results in the insertion

of at least a row vector to P which is not a 1row. The inserted rows that are not

1rows contain a 1 in the first na positions and a 1 in the last nb positions. The other

elements are 0. The number of 1rows determine the size of the subset recoverable at

the receiver. But in this case, the rows that are not 1rows increase redundancy but

do not give us a larger subset. Thus, we should not insert any row that is not a 1row.

This is not possible on the line ma = mb − [na −nb]. Hence, this line does not contain

optimal codes. �

3.3.1 Structure of Generator Matrices

We now develop the structure of the generator matrices for the encoders at the two

transmitters. We will use systematic codes and show that they are optimal in terms

of achieving maximum code rate and capacity. Using the results of Theorems 3.1 and

3.2, we get two cases:

Case 1 : mb = 0.

In this case, redundancy is added at transmitter a only. Let the redundancy added

to ~a be ma. This corresponds to appending ma 1row vectors to P such that the 1 in

each of these vectors lie in the first na positions and the resulting matrix consists of

independent rows. Using Lemma 3.2, the maximum number of 1 rows that can be

generated is 2(ma + na − nb) − (na − nb) = 2ma + na − nb. Now, [na − nb] + ma of

the 1rows generated will have their 1 in the first na positions and ma 1rows will have

their 1 in the last nb position. Thus we have:

m1 = [na − nb] + ma, (3.37)

m2 = ma, (3.38)
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La =











Ina×na

Mma×na

0(nb−ma)×na











, (3.39)

Lb =





Inb×nb

0na×nb



 , (3.40)

where, mb = 0, 0 ≤ ma ≤ na and M is a matrix containing 1rows.

Case 2 : na − nb < mb.

Let mb = na − nb + k, where 0 < k ≤ nb. In this case redundancies of ma and mb are

added to ~a and ~b respectively.

When ma < k, ma 1rows are appended to P such that each 1row contains a 1 in

the first na positions. Then, k − ma 1rows are appended to the matrix resulting

from the previous step so that 1 is contained in one of the last nb positions. The

1rows are appended such that all rows of the resulting matrix are independent. Using

Lemma 3.2, we see that maximum number of 1rows that can be generated is given by

2mb− [na −nb]. There are mb 1rows with 1 in the first na positions and mb− [na −nb]

1rows with 1 in the last nb positions. Thus we have:

m1 = mb, (3.41)

m2 = mb − [na − nb], (3.42)

La =











Ina×na

Λma×na

0(nb−ma)×a











, (3.43)

Lb =

















Inb×nb

0(na−nb+ma)×nb

∆(mb−ma−[na−nb])×nb

0(na−mb)×nb

















, (3.44)

where, [na − nb] < mb ≤ na and 0 ≤ ma < mb − [na − nb]. Λ and ∆ are matrices

containing unique 1rows.

When ma > k, coding involves appending k 1rows to P such that each row contains
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the 1 in the last nb positions. Then, ma−k 1rows are appended to the matrix resulting

from the previous step so that a 1 is contained in the first na positions for each

vector. 1rows are appended such that the resulting matrix consists of independent

rows. Using Lemma 3.2, we see that the maximum number of 1rows that can be

generated is given by 2ma + [na − nb]. There are ma 1rows with 1 in the last nb

positions and ma + [na − nb] 1rows with 1 in the first na positions. Thus, we have:

m1 = ma + [na − nb], (3.45)

m2 = ma, (3.46)

La =

















Ina×na

0(mb−[na−nb])×na

S(ma−mb+[na−nb])×na

0(nb−ma)×na

















, (3.47)

Lb =

















Inb×nb

0(na−nb)×nb

K(mb−[na−nb])×nb

0(nb−mb+na−nb)×nb

















, (3.48)

where, [na − nb] < mb ≤ na and 0 ≤ ma < mb − [na − nb]. S and K are matrices

containing 1rows.

3.3.2 Regions

The regions over which optimal codes exist can be now described and are shown in

Figure 3-4.

Region 1: nb ≤ la ≤ na + nb and lb = nb,

m1 = ma + [na − nb], (3.49)

m2 = ma, (3.50)

Crate−R1 =
2ma + [na − nb]

na + nb + ma
. (3.51)

Region 2: lb < la ≤ na + nb and na < lb ≤ na + nb,

m1 = ma + [na − nb], (3.52)
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Figure 3-4: Gross (un-optimized) regions over which optimal codes exist.

m2 = ma, (3.53)

Crate−R2 =
2ma + [na − nb]

na + nb + ma + mb
. (3.54)

Region 3: na ≤ la < lb and na < lb ≤ na + nb,

m1 = mb, (3.55)

m2 = mb − [na − nb], (3.56)

Crate−R3 =
2mb − [na − nb]

na + nb + ma + mb

. (3.57)

3.3.3 Optimized Regions

Theorem 3.3 To achieve the maximum code rate, it suffices to add redundancy to

only one vector.

Proof : We see from Figure 3-4 that in Region 1 and Region 2, m1 and m2 do not

depend upon mb. Thus, for higher code rate, mb should be kept as low as possible.
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We thus set mb = 0 for Region 1 and mb = na − nb + 1 for Region 2. As na ≥ nb,

Crate−R1 ≥ Crate−R2 . (3.58)

Thus optimal codes cannot be in Region 2, as this region does not contain codes with

higher code rate than Region 1. Hence, we do not consider this region in our further

search for optimal codes. In Region 3, m1 and m2 do not depend on ma. Therefore,

it is best to keep ma at its lowest, i.e. ma = 0. We thus consider codes over Region

1 and Region 3, where we set mb = 0 and ma = 0, respectively. Thus, in order to

achieve the optimal code rate, it suffices to add redundancy at only one transmitter.�

The optimized regions are shown in Figure 3-5.

Region A : na ≤ la ≤ na + nb and lb = nb

m1 = ma + [na − nb], (3.59)

m2 = ma (3.60)

Crate−RA
=

2ma + [na − nb]

na + nb + ma
. (3.61)

Region B: la = na and na + 1 ≤ lb ≤ na + nb

m1 = mb, (3.62)

m2 = mb − [na − nb], (3.63)

Crate−RB
=

2mb − [na − nb]

na + nb + mb
. (3.64)

3.3.4 Achieving the capacity region and maximum code rate

From Theorem 3.3, we see that in order to achieve the maximum code rate, it suffices

to add redundancy at only one transmitter. Let the redundancy be m. In Region A,

0 ≤ m ≤ nb and

Crate−RA
=

2m + [na − nb]

na + nb + m
. (3.65)
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Figure 3-5: Optimized regions.

In Region B, (na − nb + 1) ≤ m ≤ nb and

Crate−RB
=

2m − [na − nb]

na + nb + m
. (3.66)

Case 1 : na > nb. When 0 ≤ m ≤ na − nb Region B is excluded and Region A

provides the only solution. For all other m, Crate−RA
> Crate−RB

. Thus, Region

A always provides a higher code rate than Region B. From the code rate equations

derived earlier, we see that the maximum code rate is obtained when m is largest,

i.e. m = nb. Therefore, (ma, mb) = (nb, 0) is the optimal point. This corresponds

to (la, lb) = (na + nb, nb). Thus, for obtaining the maximum code rate, we add

redundancy to only the larger transmit vector and the size of the redundancy is the

size of the smaller transmit vector. The code rate is

Crate =
na + nb

na + 2nb
. (3.67)

Case 2: na = nb = n. Here, for given m, both regions give the same code rate and

we can add redundancy to any of the two vectors. A symmetry exists about the

line la = lb and there are two optimal points. Code rate is maximum when m is
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maximum, i.e. m = n. These points are (ma, mb) ∈ {(0, n), (n, 0)} corresponding

to (la, lb) ∈ {(2n, n), (n, 2n)}. In this case, coding results in the size of redundancy

being equal to the transmit vector size and the code rate is 2/3.

The transmission rates of the code are

Ra =
kna

na + nb
, (3.68)

Rb =
knb

na + nb
, (3.69)

Rsum = Ra + Rb = k. (3.70)

We see from (3.67,3.70) that this code achieves the maximum code rate and capacity

for this channel and is thus an optimal code. Moreover, this code obeys the property

(that will be proved in Theorem 3.4) of any maximum code rate achieving code, i.e.

no redundancy is added to the smaller transmit vector.

We now prove the following theorem:

Theorem 3.4 For a noise-free multiple access finite field adder channel, codes achieve

the maximum code rate if and only if they are capacity achieving and no redundancy

is added to the smaller transmit vector.

Proof: We first prove the forward part. Let a code be capacity approaching without

redundancy being added to the smaller transmit vector. From the code construc-

tion described earlier, we have shown that such codes exist. We therefore have the

following relations:

S = na + nb, (3.71)

nb = min(la, lb), (3.72)

Crate =
na + nb

min(la, lb) + S
. (3.73)

⇒ Crate =
na + nb

na + 2nb
. (3.74)

Therefore, capacity approaching codes with no redundancy added to the smaller trans-

mit vector achieve the maximum code rate. This completes the forward part of the
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proof.

We prove the reverse part now. A code that achieves the maximum code rate must

meet the inequality in (3.24) with equality. From the code construction described in

the beginning of this section, we know that codes that achieve the maximum code

rate exist. Therefore, maximum code rate achieving codes must satisfy

S = na + nb, (3.75)

min(la, lb) = nb. (3.76)

Hence, maximum code rate achieving codes achieve capacity and do not add redun-

dancy to the smaller transmit vector. The reverse part of the proof is now complete

and we have proved the theorem. �

3.4 Random Coding

In the previous section, we described a systematic optimal code construction, i.e.,

it was capacity and maximum code rate achieving. In this section, we focus on the

performance of systematic random codes and show their asymptotic optimality.

Theorem 3.5 For a two transmitter noise-free multiple access finite field adder chan-

nel over IF2k , as the codeword lengths or field size tends to infinity, a random code

becomes optimal with probability tending to 1 exponentially with codeword length and

field size.

We will prove the theorem in two ways.

Proof 1: Let us code randomly over the larger transmit vector, ~a, with a systematic

random code to generate redundancy, ~g, of nb elements. We split ~a into two vectors,

~a1 and ~a2, where ~a1 is a vector representing the first nb elements of ~a and ~a2 is a

vector representing the last na −nb elements of ~a. Thus, ~a =
[

~a1 ~a2

]

. The vectors

(codewords) coming out of the encoders are

~Xa =
[

~a1 ~a2 ~g
]

, (3.77)

~Xb =
[

~b
]

. (3.78)
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Now, consider any vector of length n containing elements from IF2k as a single element

belonging to IF2kn. Thus, for any x1, x3 and y1 ∈ IF2knb and x2 ∈ IF2k(na−nb) , we can

consider x1 ≡ ~a1, x2 ≡ ~a2, x3 ≡ ~g, y1 ≡ ~b and x3 is generated from x1 as

x3 = αx1 (3.79)

where, α is randomly (uniformly) picked from IF2knb . This multiplication by a random

field element represents the random coding. After multiple access interference, we get

~Y of length na +nb such that ~Y = ~Xa + ~Xb. ~Y ≡
[

x1 + y1 x2 x3

]

, where addition

is over IF2knb . x1 + y1 corresponds to the first nb, x2 the next na − nb and x3 to the

last nb elements of ~Y . We need to get x1, x2 and y1 after decoding. We get x2 as it

does not suffer multiple access interference. For m ∈ IF2knb , denote m = x1 + y1, with

addition in IF2knb and m represents the first nb elements of ~Y .

We know from the property of finite fields that each non-zero element in the field has

an unique inverse. Thus, for any α ∈ IF2knb , α 6= 0, ∃α∗ ∈ IF2knb such that

α∗α = 1. (3.80)

x3 corresponds to the last nb elements of ~Y . At the decoder, we get x1 and y1 from

a two step decoding process. In the first step we get y1:

y1 = m + α∗x3. (3.81)

Using y1, we get x1 in the next step :

x1 = m + y1, (3.82)

where all operations are in IF2knb . Thus, we recover x1, x2 and y1 and thereby com-

pletely recover ~a and ~b. The transmission rates and code rates are given as:

Ra =
kna

na + nb

, (3.83)

Rb =
knb

na + nb
, (3.84)

Rsum = k, (3.85)

Crate =
na + nb

na + 2nb
. (3.86)
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Thus, we achieve the capacity and maximum code rates given by (3.16, 3.25) as long

as (3.80) holds. Equation (3.80) holds iff α 6= 0. The probability PR, that a random

code is an optimal code, is given by

PR = 1 − P (α = 0). (3.87)

Since α is chosen randomly (uniformly) from IF2knb ,

P (α = 0) =
1

2knb
⇒ PR = 1 −

1

2knb
. (3.88)

Since na ≥ nb, by letting the code lengths na, nb → ∞, or by letting the field size

k → ∞, we obtain

lim
na,nb→∞

PR = 1, (3.89)

lim
k→∞

PR = 1. (3.90)

The proof is now complete. �

We have an alternate proof to the theorem which is based on the probability of a

matrix, composed of randomly chosen elements from a finite field, being full rank.

Proof 2: Let us use a systematic random code on the larger information codeword

~a, and not code on the smaller information codeword ~b. We will be able to achieve

capacity and maximum code rate given by (3.16,3.25), as long as we completely

recover na elements of ~a and nb elements of ~b. We set nb = βna, where, β ∈ [0, 1)

and is fixed. Random coding will give an optimal code if W =
[

TLa

∣

∣

∣ TLb

]

has

na + nb 1rows, i.e., has a rank of na + nb. We know from our model that

W = LT, (3.91)

⇒ Rank(W ) = min{Rank(L), Rank(T )}. (3.92)

Since, Rank(W ) = na + nb, for the random code to be optimal we require

Rank(L) = na + nb, (3.93)

Rank(T ) = na + nb. (3.94)
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Thus, L and T need to be full rank matrices. Random systematic coding makes L

take the form L =





Ina×na Inb×nb

M 0na×nb



 where, M is a nb × na sized random matrix

containing elements from IF2k . Clearly, L will be full rank if the rows of M are all

independent. Once L has full rank, it can always be transformed into W using a

na + nb sized full rank square matrix T . Thus random coding becomes optimal iff

the rows of M are independent. In other words, if and only if L is full rank, does a

random code become optimal.

Let us look at the nb × (na + nb) sized matrix M . We choose the elements of this

matrix uniformly from IF2k . In order for the rows to be independent, the number of

ways, Nj, to choose the jth row in M is

Nj = 2kna − 2k(j−1) j ∈ {1, 2, ..., nb − 1, nb}. (3.95)

Therefore, the total number of full rank matrices, Ntotal is

Ntotal =

nb
∏

j=1

Nj (3.96)

= 2knanb

nb
∏

j=1

[1 − 2−k(na−j+1)]. (3.97)

Since the total number of random matrices is 2knanb , the probability of M having all

independent rows, Pind, is

Pind =

nb
∏

j=1

[1 − 2−k(na−j+1)] (3.98)

= exp{

nb
∑

j=1

ln(1 − 2−k(na−j+1))} (3.99)

≥ exp{−

nb
∑

j=1

(2−k(na−j+1) + 2−2k(na−j+1))}, (3.100)

where the inequality in (3.100) follows from the fact that, for x ∈ [0, 1/2], −(x+x2) ≤

ln(1 − x). The probability of random coding being optimal, PR, is the same as the

probability of the rows of M being independent, Pind. Simplifying (3.100), we obtain

exp{−[
2−k(1−β)na − 2−kna

2k − 1
+

2−2k(1−β)na − 2−2kna

22k − 1
]} ≤ PR ≤ 1. (3.101)
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In (3.101), if we let the code lengths na, nb → ∞, or if we let the field size k → ∞,

we have

lim
na,nb→∞

PR = 1, (3.102)

lim
k→∞

PR = 1. (3.103)

The proof is now complete. �

Since the probability of a random code being optimal goes to 1 exponentially with

k, na and nb, a random code becomes optimal with moderate codeword lengths or

field sizes (over which elements are defined). This is a strong coding theorem for this

channel. A similar result can also be obtained by using the Schwartz-Zippel Theorem

in [9]. Using this theorem we can consider a square matrix to be equivalent to a

multi-variate polynomial whose elements are defined over a finite field. Now, if the

determinant of the matrix is 0, the polynomial will be 0. The theorem in [9] proves

that as the size of the field goes to infinity, the probability that the polynomial is 0

tends to 0 asymptotically with the size of the field.

Deterministic code constructions are difficult in general since they involve solving

equations over finite fields. As the error probability for systematic random codes

tends to 1 in an exponential manner, systematic random codes become optimal with

moderate codeword lengths, making code construction easy. Therefore, when we

choose our code book randomly, the number of tries to get a code book for the

optimal code is very small.

3.5 Multiple access for bursty transmitters

In our discussion in the previous sections, it is assumed that each transmitter has a

codeword to transmit in a slot. We now look at the case when the channel encoders

may not always have an input information codeword to encode. Each transmitter

transmits in a slot according to a Bernoulli process. The lower the probability of

transmission, the burstier the transmitter. We will like to know as to what coding

technique to use in order to obtain the maximum code rate over a large number of
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transmissions. It should be expected that bursty transmissions will reduce multiple

access interference and increase the code rate. Moreover, we should be able to obtain

the code rate of 1, (code rate of a point-to-point noise-free channel) in the limit that

one transmitter stops transmitting. In this section, we illustrate the coding technique

to be used for bursty multiple access and also show that the limits that we expect

actually hold.

Let the probability that transmitters a and b have a codeword to transmit in a slot

be pa and pb respectively. We define the sizes of ~a and ~b as na and nb again. Consider

the expected code rate. The mean sizes of ~a and ~b are pana and pbnb respectively. We

will therefore define the mean sizes n
′

1, n
′

2 where n
′

2 ≤ n
′

1 as

n
′

1 = max(pana, pbnb), (3.104)

n
′

2 = min(pana, pbnb). (3.105)

The maximum expected code rate is thus

E(Crate) =
n

′

1 + n
′

2

n1 + 2n
′

2

, (3.106)

where (from Theorem 3.4) no redundancy is added to the transmit vector with smaller

mean size. Therefore, two cases arise.

Case 1: We add redundancy only at a and not at b if the mean size of ~a is greater

than the mean size of ~b. This implies that

n
′

1 = pana, (3.107)

n
′

2 = pbnb, (3.108)

E(Crate) =
pana + pbnb

pana + 2pbnb

. (3.109)

Case 2: We add redundancy only at b and not on a if the mean size of ~a is smaller

than the mean size of ~b, which implies that

n
′

1 = pbnb, (3.110)

n
′

2 = pana, (3.111)

E(Crate) =
pana + pbnb

2pana + pbnb
. (3.112)

78



Code at Transmitter  b only

(Region 2)

Code at Transmitter  a only

(Region 1)

pa

p b


(0,0) (1,0)

(1,1)
(0,1)

Slope = na/nb

Figure 3-6: Coding Regions for Bursty Multiple Access.

When n
′

1 = n
′

2, we can use either technique. Figure 3-6 shows the regions of the

two dimensional space of (pa, pb) where the cases apply. Region 1 corresponds to the

first case and Region 2 to the second.

Let us denote α = pa

pb
and β = na

nb
. We have α ∈ [0,∞) and β ≥ 1. Thus, the

maximum expected code rate expression can be written as

E(Crate(α, β)) =
1 + αβ

1 + αβ + min(1, αβ)
. (3.113)

For α ∈ [0, 1
β
], the mean size of ~a is less than or equal to the size of ~b and we add

redundancy only at b. For α ∈ [ 1
β
,∞) the mean size of ~a is larger than or equal to

the mean size of ~b, and we add redundancy only at a. Note that for α = 1
β
, we may

add redundancy at a or b and still obtain the same expected code rate. The expected

code rate is minimum and has a value of 2/3 when pana = pbnb. Figure 3-7 shows how

the expected code rate changes with α. We now look at the limit when transmitter a

stops transmitting, i.e α → 0 and when transmitter b stops transmitting, i.e. α → ∞.
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Figure 3-7: Variation of code rate with α.

Evaluating the value of expected code rate as α tends to 0 or ∞, we get

lim
α→0

Crate(α, β) = 1, (3.114)

lim
α→∞

Crate(α, β) = 1. (3.115)

These limits are what we had expected since, in both cases, one transmitter transmits

in a slot with probability 1 and the other does not transmit at all. There is no multiple

access interference and the average code rate becomes the code rate of a point-to-

point noiseless channel, i.e 1.

When β = 1, i.e na = nb, we see that if pb ≤ pa, we add redundancy only at a and

when pb > pa we add redundancy only at b. This gives rise to the following lemma:

Lemma 3.3 When the information codewords at the input to the channel encoders

have the same size, maximum expected code rate is achieved by adding redundancy at

the less bursty transmitter not adding any redundancy at the more bursty transmitter.

�

This lemma gives us a coding technique when transmissions are probabilistic.
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Chapter 4

Time-Slotted Noisy Multiple

Access Networks over Finite Fields

In this chapter, we will consider a time-slotted noisy multiple access finite field adder

channel where the noise is independent of the inputs. The transmitted elements

Xa, Xb, noise element Z and received element Y are from IF2k , for 1 ≤ k and

Y = Xa + Xb + Z. (4.1)

Noise and multiple access interference are additive over IF2k. First, we develop a

model for communicating over this channel. Then, we establish the capacity region

and maximum code rate and study their dependence on field size. Using the results of

the noisy multiple access strong coding theorem developed by Liao in [22], we obtain

the error exponents and hence the expression for average probability of error when a

random code is used for communicating over this channel.

4.1 Single Slot Model

We consider a discrete time channel. The channel is time-slotted and we consider

transmissions over the length of a slot or slot duration. Figure 4-1 shows a single slot

model of the noise-free finite field multiple access channel. Information codewords ~U ′

and ~V ′ , as described in Figure 2-2, coming out of the source coders at transmitters
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Figure 4-1: Single slot model for the noisy multiple access finite field adder channel.

a and b in one slot duration will be represented as ~a and ~b, respectively, in this

chapter. ~a and ~b are thus vectors of sizes na and nb respectively, which represent

independent information. The elements of ~a and ~b are in IF2k , for 1 ≤ k. Noise ~Z

is independent of the inputs. In Chapter 2, we showed in Theorem 2.4 that source-

channel separation holds for a noisy multiple access finite field adder channel if the

noise is independent of inputs. Thus, the scheme of separate source and channel

coding is optimal. For this model, all operations, matrices and vectors are in IF2k .

We will refer to ~a and ~b as transmit vectors and assume that na ≥ nb. (Otherwise, the

arguments still hold with ~a and ~b interchanged.) Channel encoders at a and b encode

the information codewords into codewords ~Xa and ~Xb respectively. The values ~Xa

and ~Xb are subsequently transmitted over the channel which adds with noise vector ~Z

to yield ~Y . At the receiver, the multiple access channel decoder acts on ~Y to produce

estimates ~a′ and ~b′ of ~a and ~b respectfully.

Let ma and mb be the increase in the size of ~a and ~b, respectively, due to coding. Let

la and lb denote the lengths of the vectors obtained by coding on ~a and ~b respectively.

In general la 6= lb and so both transmitters may not transmit for the entire slot

duration. However, at least one transmitter will transmit for the whole slot duration.

Therefore, the slot length is given by

S
′

= max(la, lb) symbols. (4.2)

We have

la = na + ma, (4.3)
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Figure 4-2: Capacity region of a noisy multiple access finite field adder channel over a field

of size 2k.

lb = nb + mb. (4.4)

4.2 Capacity Region and Maximum Code Rate

In this section, we derive the capacity region and maximum code rate over a very long

slot or many slots. First, we establish the capacity region and then the maximum

code rate.

4.2.1 Capacity Region

From [21, 22], we know that the multiple access capacity region is the closure of the

convex hull of all (Ra, Rb) satisfying

Ra ≤ I(Xa; Y |Xb), (4.5)

Rb ≤ I(Xb; Y |Xa), (4.6)

Rsum = Ra + Rb ≤ I(Xa, Xb; Y ). (4.7)

83



Simplifying the mutual information expressions, we get

I(Xa; Y |Xb) = H(Y |Xb) − H(Y |Xa, Xb) (4.8)

= H(Xa + Z) − H(Z), (4.9)

I(Xb; Y |Xa) = H(Y |Xa) − H(Y |Xa, Xb) (4.10)

= H(Xb + Z) − H(Z), (4.11)

I(Xa, Xb; Y ) = H(Y ) − H(Y |Xa, Xb) (4.12)

= H(Xa + Xb + Z) − H(Z). (4.13)

Uniform distribution of Xa and Xb maximizes Ra, Rb and Rsum. Let us denote

H(Z) = kγ, (4.14)

where γ ∈ [0, 1]. The multiple access capacity region is therefore the convex hull of

all (Ra, Rb) satisfying

Ra ≤ k(1 − γ), (4.15)

Rb ≤ k(1 − γ), (4.16)

Rsum ≤ k(1 − γ), (4.17)

where, the rates are in bits per channel use. The capacity region is shown in Figure

4-2.

4.2.2 Maximum Code Rate

We now find the maximum code rate for this channel. Transmitters a and b transmit

na and nb information symbols per slot, respectively, and the codewords transmitted

have a length of la and lb symbols, respectively. The transmission rates are

Ra =
kna

S ′
, (4.18)

Rb =
knb

S ′
, (4.19)

Rsum =
k(na + nb)

S ′
. (4.20)

84



From (4.17, 4.20), we obtain
na + nb

1 − γ
≤ S

′

. (4.21)

The code rate is a dimensionless quantity and is given by

Crate =
na + nb

la + lb
(4.22)

=
na + nb

min(la, lb) + max(la, lb)
(4.23)

=
na + nb

min(la, lb) + S ′
(4.24)

≤
na + nb

nb + na+nb

1−γ

(4.25)

=
(1 − γ)(na + nb)

na + (2 − γ)nb
. (4.26)

Equation (4.24) is due to (4.2) and (4.25) follows from (4.21) and the fact that nb ≤

min(la, lb). Thus, we have

Crate ≤
(1 − γ)(na + nb)

na + (2 − γ)nb
. (4.27)

We now prove an important lemma:

Lemma 4.1 The capacity region of a two-transmitter noisy finite field adder channel

grows logarithmically with the size of the field but the code rate remains the same for

all field sizes.

Proof: From (4.15), (4.16) and (4.17), we see that the capacity region grows logarith-

mically with field size (k). However, (4.27) shows that the code rate is invariant to

k. Thus, we have proved the lemma. �

Note that this lemma for the noisy channel is similar to Lemma 3.1 for the noise-free

channel.

4.3 Error Exponents

Liao in [22] developed a strong coding theorem for noisy multiple access channels.

In this section, we present the derivation of the multiple access coding theorem as
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done in [11]. We then compute the error exponents and evaluate the average proba-

bility of error by random coding for the noisy multiple access finite field adder channel.

Consider block coding with a given block length N using M1 codewords { ~x1, ~x2, ..., ~xM1}

for transmitter 1, and M2 codewords { ~w1, ~w2, ..., ~wM2} for transmitter 2; each code-

word is a sequence of N channel inputs. For convenience we refer to a code with these

parameters as an (N, M1, M2) code. The rates of the two sources are defined as

R1 =
ln M1

N
, (4.28)

R2 =
ln M2

N
. (4.29)

Each N units of time, source 1 generates an integer m1 uniformly distributed from 1

to M1, and source 2 independently generates an integer m2 uniformly distributed from

1 to M2. The transmitters send ~xm1 and ~wm2 , respectively, and the corresponding

channel output ~y enters the decoder and is mapped into a decoded “message” m
′

1, m
′

2.

If both m
′

1 = m1 and m
′

2 = m2, the decoding is correct and otherwise a decoding error

occurs. The probability of decoding error Pe is minimized for each ~y by a maximum

likelihood decoder, choosing (m
′

1, m
′

2) as integers m∗
1 ∈ [1, M1], m∗

2 ∈ [1, M2] that

maximize P (~y| ~xm∗

1
~wm∗

2
). If the maximum is non-unique, any maximizing (m∗

1, m
∗
2)

can be chosen with no effect on Pe. Both sets of codewords, { ~x1, ~x2, ..., ~xM1} and

{ ~w1, ~w2, ..., ~wM2} are known to the decoder, but, of course, the source outputs m1, m2

are unknown.

Let Q1(x) and Q2(w) be probability assignments on input alphabets X and W . The

input alphabets X, W and output alphabet y are elements from IF2k. Consider an

ensemble of (N, M1, M2) codes where each codeword ~xm1 for m1 ∈ [1, M1], is inde-

pendently selected according to the probability assignment

Q1(~x) =

N
∏

n=1

Q1(xn), ~x = (x1, x2, ..., xN) (4.30)

and each code word ~wm2 for m2 ∈ [1, M2] is independently chosen according to

Q2(~w) =
N
∏

n=1

Q2(wn), ~w = (w1, w2, ..., wN). (4.31)
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For each code in the ensemble, the decoder uses maximum likelihood decoding, and

we want to upper bound the expected value Pe of Pe for this ensemble. Define an

error event to be of type 1 if the decoded pair (m
′

1, m
′

2) and the original source pair

(m1, m2) satisfy m
′

1 6= m1, m
′

2 = m2. An error event is of type 2 if m
′

1 = m1, m
′

2 6= m2,

and is of type 3 if m
′

1 6= m1, m
′

2 6= m2. Let Pei for i ∈ {1, 2, 3} be the probability,

over the ensemble, of a type i error event. We have

Pe = Pe1 + Pe2 + Pe3. (4.32)

Consider Pe3 first. Note that, when (m1, m2) enters the encoder, there are M1 − 1

choices for m
′

1 and M2−1 choices for m
′

2, or (M1−1)(M2−1) pairs, that yield a type

3 error. For each such pair (m
′

1, m
′

2), the codeword pair ( ~xm
′

1
, ~wm

′

2
) is statistically

independent of ( ~xm1 , ~wm2) over the ensemble of codes. Thus, regarding (~x, ~w) as a

combined input to a single input channel with input alphabet X×W , we can directly

apply the coding theorem which asserts that, for all ρ ∈ [0, 1],

Pe3 ≤ [(M1 − 1)(M2 − 1)]ρ
∑

~y

[
∑

~x,~w

Q1(~x)Q2(~w)P (~y|~x~w)
1

1+ρ ]1+ρ. (4.33)

Using the product form of Q1, Q2, P and definition of rates, we have

Pe3 ≤ exp [ρN(R1 + R2)][
∑

y

[
∑

x,w

Q1(x)Q2(w)P (y|xw)
1

1+ρ ]1+ρ]N . (4.34)

Next consider Pe1, the probability that m
′

1 6= m1 and m
′

2 = m2. We first condition this

probability on a particular message m2 entering the second encoder, and a choice of

code with a particular ~wm2 transmitted at the second input. Given ~wm2 , we can view

the channel as a single input channel with input ~xm1 and with transition probabilities

P (~y| ~xm1 ~wm2).

A maximum likelihood detector for that single input channel will make an error (or

be ambiguous) if

P (~y| ~x∗
m1

~wm2) ≥ P (~y| ~xm1 ~wm2), (4.35)

for at least one m∗
1 6= m1. Since this event must occur whenever a type 1 error occurs,

the probability of a type 1 error, conditional on ~wm2 being sent, is upper bounded by
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the probability of error or ambiguity on the above single input channel. Using the

coding theorem again for this single input channel, we have, for any ρ ∈ [0, 1],

P [type 1 error| ~wm2] ≤ [M1 − 1]ρ
∑

~y

[
∑

~x

Q1(~x)P (~y|~x~w)
1

1+ρ ]1+ρ. (4.36)

Using the product form of Q1, Q2, P and taking the expected value over ~wm2 , we have

Pe1 ≤ exp [ρNR1][
∑

y,w

Q2(w)[
∑

x

Q1(x)P (y|xw)
1

1+ρ ]1+ρ]N . (4.37)

Applying the same argument to type 2 errors for ρ ∈ [0, 1],

Pe2 ≤ exp [ρNR2][
∑

y,x

Q1(x)[
∑

w

Q2(w)P (y|xw)
1

1+ρ ]1+ρ]N . (4.38)

Let us define E01(ρ, Q), E02(ρ, Q) and E03(ρ, Q) as

E01(ρ, Q) = − ln
∑

y,w

Q2(w)[
∑

x

Q1(x)P (y|xw)
1

1+ρ ]1+ρ, (4.39)

E02(ρ, Q) = − ln
∑

y,x

Q1(x)[
∑

w

Q2(w)P (y|xw)
1

1+ρ ]1+ρ, (4.40)

E03(ρ, Q) = − ln
∑

y

[
∑

x,w

Q1(x)Q2(w)P (y|xw)
1

1+ρ ]1+ρ. (4.41)

Substituting (4.39,4.40,4.41) in (4.34,4.37,4.38) we obtain

Pe1 ≤ exp [−N [−ρR1 + E01(ρ, Q)]], (4.42)

Pe2 ≤ exp [−N [−ρR2 + E02(ρ, Q)]], (4.43)

Pe3 ≤ exp [−N [−ρ(R1 + R2) + E03(ρ, Q)]]. (4.44)

We now compute the error exponents and evaluate the average probability of error.

The capacity achieving distribution maximizes E01(ρ, Q), E02(ρ, Q) and E03(ρ, Q).

Since the capacity achieving distribution for this channel is uniform distribution of

X and W , we have

max
Q

E01(ρ, Q) = k(2 + ρ) ln 2 − ln
∑

y,w

[
∑

x

P (y|x, w)
1

1+ρ ]1+ρ, (4.45)

max
Q

E02(ρ, Q) = k(2 + ρ) ln 2 − ln
∑

y,x

[
∑

w

P (y|x, w)
1

1+ρ ]1+ρ, (4.46)

max
Q

E03(ρ, Q) = 2k(1 + ρ) ln 2 − ln
∑

y

[
∑

x,w

P (y|x, w)
1

1+ρ ]1+ρ. (4.47)
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Owing to the symmetry of the channel, we have

∑

x

P (y|x, w)
1

1+ρ =
∑

w

P (y|x, w)
1

1+ρ =
2k−1
∑

i=0

P (Z = i)
1

1+ρ . (4.48)

We will denote

F(ρ) =

2k−1
∑

i=0

P (Z = i)
1

1+ρ . (4.49)

From (4.42 - 4.49), we have

Pe1 ≤ exp[−N [max
ρ∈[0,1]

(kρ ln 2 − (1 + ρ) lnF(ρ) − ρR1)]], (4.50)

Pe2 ≤ exp[−N [max
ρ∈[0,1]

(kρ ln 2 − (1 + ρ) lnF(ρ) − ρR2)]], (4.51)

Pe3 ≤ exp[−N [max
ρ∈[0,1]

(kρ ln 2 − (1 + ρ) lnF(ρ) − ρ(R1 + R2))]]. (4.52)

Therefore, the error exponents E1(R1), E2(R2) and E3(R1, R2) for type 1, type 2 and

type 3 errors respectively, are

E1(R1) = max
ρ∈[0,1]

[kρ ln 2 − (1 + ρ) lnF(ρ) − ρR1], (4.53)

E2(R2) = max
ρ∈[0,1]

[kρ ln 2 − (1 + ρ) lnF(ρ) − ρR2], (4.54)

E3(R1, R2) = max
ρ∈[0,1]

[kρ ln 2 − (1 + ρ) lnF(ρ) − ρ(R1 + R2)], (4.55)

and the average probability of error is

Pe ≤ exp[−NE1(R1)] + exp[−NE2(R2)] + exp[−NE3(R1, R2)]. (4.56)

All the error exponents are positive only when the rate pairs are inside the capacity

region. Thus, for rate pairs inside the capacity region, the probability of error goes to 0

exponentially with codeword length and reliable communication is possible. However,

the converse to the multiple access coding theorem described in [22] shows that for

all rate pairs outside the capacity region, the probability of decoding error cannot

be made arbitrarily small no matter what encoding or decoding procedures are used.

Reliable communication is thus not possible for all rate pairs outside the capacity

region.
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Chapter 5

Conclusion

We have considered the noisy as well as the noise-free multiple access finite field adder

channel. It is shown that source-channel separation holds when noise is independent

of inputs but may not when noise is input-dependent. For channels over the binary

field, we derive the expression for the probability of source-channel separation failing.

We compute this probability to be 1/4 when the noise parameters are picked inde-

pendently and uniformly. For binary channels, we derive an upper bound of 0.0776

bit for the maximum loss in sum rate due to separate source-channel coding when

separation fails. We prove that the bound is very tight by showing that it is accurate

to the second decimal place. Thus we see that though there is a significantly high

probability that source-channel separation does not hold for a channel over IF2, the

loss in sum rate is very small, especially, when the noise is low.

Source-channel separation does not hold for multiple access channels where the

alphabet size grows with the number of transmitters. However, such systems are

designed by separating source and channel coding which can be inefficient as the

maximum sum rate achievable by separate source-channel coding can be significantly

lower than the maximum sum rate possible by joint source-channel coding. In this

thesis we show that this problem does not exist for multiple access channels when the

received alphabet size is fixed. Since source-channel separation holds when noise is

independent of inputs, we do not lose optimality be separating the source and channel

coding. Moreover, the loss is very small even when the noise is input-dependent.
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For the noise-free finite field adder channel, a single slot model is developed and

the capacity and maximum code rate are derived. It is shown that the capacity of

this channel grows logarithmically with the field size but the code rate remains the

same for all field sizes. Moreover, we show that codes achieve the maximum code rate

if and only if they achieve capacity and added no redundancy to the smaller transmit

vector.

For the case when both transmitters transmit in a slot, we propose a systematic

code construction that achieves the maximum code rate and capacity. We consider

the performance of systematic random codes where we derive an expression for the

probability of error when the codes are chosen randomly. The probability of error

goes to 0 exponentially with code length and field size. Thus we have a strong coding

theorem for this channel. Deterministic code constructions are difficult in general

since they involve solving equations over finite fields. Since, the error probability

tends to 1 in an exponential manner, systematic random codes become optimal with

moderate codeword lengths and field sizes. Thus code construction becomes easy

since we have to just choose the code book randomly and the number of tries to get

an optimal one is very small. For the case when transmitters transmit according to

a per-slot Bernoulli process, a coding scheme is proposed to maximize the expected

code rate. It is shown that, when the information codewords at the input to the

channel encoders have the same size, maximum code rate is achieved by adding re-

dundancy at the less bursty transmitter and not adding any redundancy at the more

bursty transmitter.

We also consider a time-slotted noisy multiple access finite field adder channel

where noise is independent of the inputs and additive over the same field as the

inputs and output. For this noisy channel, we develop a model and establish the

capacity region and maximum code rate. We show, as in the noise-free multiple ac-

cess finite field adder channel, that the capacity grows logarithmically with the field

size but the code rate remains the same for all field sizes. Using the results of the

noisy multiple access strong coding theorem developed by Liao in [22], we obtain error

exponents and hence the expression for average probability of error when a random
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code is used for communicating over this channel.

In this thesis, we have looked at source-channel separation when noise is dependent

on only one input. Future research can look at the problem where the noise depends

on both inputs. The question of separation, maximum loss in sum rate by doing

separate source-channel coding and probability of separation failure can be looked

at. Moreover, whenever we compute loss in sum rate be separate source-channel

coding, we assume that sources can be perfectly matched to the channel by a joint

source-channel coder. This may not hold in general and research should look at when

such a match is or is not possible. Unmatched sources make the loss due to separate

source-channel coding lower than if they were perfectly matched. For this reason, the

probability of separation failing may also be lower.
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