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Abstract

This thesis presents an XML-based approach for the encapsulation of legacy binaries.
A method that utilizes XML documents to describe the various parameters and set-
tings for the compilation and execution of an encapsulated binary is discussed. The
binary is treated as a black-box component and the XML description for that binary
contains relevant restrictions, such as input and output files and runtime parameters
read in from the standard input stream.

The proposed XML schema design constrains the aforementioned XML descrip-
tions of binaries. The usage parameters for the binaries are expressed by such XML
documents. A prototype system is then able to take any of these schema-conforming
XML descriptions and display the relevant user controls in a graphical user interface
(GUI). Instead of editing obscure script files, the user can make changes to build-time
and runtime parameters for a binary using the presented system interface. After val-
idating the user inputs, the system generates the required script files automatically
and proceeds to compile and/or execute the binary. The Primary Equation Model
binary of the Harvard Ocean Prediction System (HOPS) was successfully encapsu-
lated using the presented approach. The customization and control of the binary’s
compilation and execution through a GUI was achieved.

Thesis Supervisor: Nicholas M. Patrikalakis
Title: Kawasaki Professor of Engineering
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Chapter 1

Introduction

The Design Laboratory of the MIT Department of Ocean Engineering is working

on an NSF-funded project entitled, “Poseidon – Rapid Real-Time Interdisciplinary

Ocean Forecasting: Adaptive Sampling and Adaptive Modeling in a Distributed En-

vironment” and on a related US Department of Commerce project (funded by NOAA

via MIT Sea Grant) entitled “Poseidon: A Coastal Zone Management System via

the World Wide Web” [16]. The overall goal of the project is to contribute to the

development of modern interdisciplinary ocean science by combining advanced infor-

mation technologies with ocean sciences to enable the efficient real-time forecasting

of dynamic physical and biological events in the ocean and further advancements in

oceanic sciences.

The work discussed in this thesis was developed within the context of the Poseidon

project, as part of a network of distributed heterogeneous software resources and data.

The first of two main components in the thesis deals with the design of an appropriate

XML schema to constrain the XML description files of the legacy binaries used in the

project. The other major component is the implementation of a prototype system

that processes these XML descriptions and generates relevant controls for the user to

build and execute the binaries graphically. The implemented system is also capable

of being deployed as a Web front-end.
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1.1 Poseidon

Effective ocean forecasting is essential for successful human operations in the ocean.

Recent developments in the availability of high-performance computing and network-

ing infrastructure have enabled the construction of distributed computing systems

that address computationally intensive problems in interdisciplinary oceanographic

research. By using effective interchange mechanisms to enable free collaboration and

interdisciplinary ocean research activities, researchers will be able to speed up their

computing for better simulations and allow more time for research. Therefore, there

is a great need for a modern distributed computing and networking infrastructure for

scientific research [15].

Poseidon is a distributed computing infrastructure that brings together advanced

modeling, observations tools, and field and parameter estimation methods for oceano-

graphic research. The Poseidon project aims to enable efficient interdisciplinary

ocean forecasting by creating a dynamic data-driven forecast using an operational

distributed computing framework. It provides seamless access, analysis, and visu-

alization of experimental forecast data through a user-friendly Web interface that

conceals the complex framework of hardware and software resources.

1.2 Harvard Ocean Prediction System (HOPS)

The Poseidon project utilizes the Harvard Ocean Prediction System (HOPS) [18] as

its underlying advanced interdisciplinary forecast system. HOPS is a portable and

generic system for interdisciplinary nowcasting and forecasting through simulations

of the ocean. It provides a framework for obtaining, processing, and assimilating

data in a dynamic forecast model capable of generating forecasts with 3D fields and

error estimates. The HOPS system has been applied successfully to several diverse

coastal and shelf regions [19], and analyses have indicated that accurate real-time

operational forecast capabilities were achieved. However, as powerful as HOPS may

be, the software used in the system is still based on legacy Fortran binaries that do

14



not fit well within the modern distributed computing model of operation.

1.3 Motivations

One of the initial problems encountered during the design process of the Poseidon sys-

tem dealt with the fact that HOPS (as well as other ocean modeling systems, such as

ROMS [7]) is a legacy program, like many scientific applications. The term “legacy”

refers to software not developed using the more recent programming languages (i.e.

Java and C++) or lacking a graphical interface, and should not be misunderstood

to imply obsolete code in this context. A legacy program could still have an ac-

tive development community and incorporate contemporary software algorithms and

techniques. Legacy programs oftentimes consist of compiled binaries that expect a

standard input (stdin) stream, maybe some command line options, and a set of input

and output files. In such setups, a workflow of binaries is executed either interac-

tively (a common approach), or hard-coded in scripts. While such an approach, which

originated from the days when graphical user interfaces (GUIs) were not available, is

efficient for an experienced and skilled user, it is cumbersome and error-prone, and

involves a steep learning curve. Furthermore, this approach does not adapt readily

for the remote use of programs over the Internet.

Various methods for handling this issue in the framework of the Poseidon dis-

tributed computing architecture were examined during the design, and the robustness

of the system to allow for future adaptation to non-HOPS components was also taken

into consideration. The final decision was to keep working with the Fortran binaries

of HOPS and encapsulate their functionality and requirements using the eXtensible

Markup Language(XML) [28]. The goal is to create a computer-readable manual

for the program binaries. XML is a standardized format that easily allows for self-

describing files containing any data. A GUI is generated according to the data within

the XML description files, with additional capabilities to check for the correctness of

program parameters and drive execution in a transparent manner.
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1.3.1 Wrapping Legacy Programs

The software components used in Poseidon are written in legacy Fortran 77 code, as

such they do not adapt well within the modern distributed computing model. For

instance, there is a lack of support for dynamic memory allocation and object-oriented

programming, both commonly supported by modern programming languages.

Legacy is an unavoidable effect of technological advancement. The aging software

becomes more and more difficult to integrate with newer systems as time passes. A

key limitation of legacy software is platform dependency. The program user interface

is often confined to command line inputs and outputs in a console window, and the

software is limited to specific machines and operating systems.

There are several options to update legacy software for use within the modern

distributed model of computing. One such option is to migrate the code and rewrite

the entire application in a modern language, such as Java. This option is the cleanest

approach, but can be very risky and consumes a lot of valuable time and resources

better spent elsewhere. It is impractical or even unfeasible to covert existing proce-

dural programs to object-oriented components [24].

A second option is to program with frameworks, such as the widely used Java

Native Interface (JNI) [13], in order to free the legacy software from the constraints

imposed by its language. JNI is Java’s native programming interface that allows

applications and libraries written in other languages to work with Java. In the JNI

framework, the legacy code is considered as native methods. JNI enables the native

methods to take advantage of the Java programming language – these native methods

are allowed to use Java objects and call Java methods. In a way, JNI serves as glue

between legacy software and the Java programming language.

A third option is to encapsulate the legacy software with an XML interface. XML

can be used to describe data through the use of custom-defined tags – eliminating

the need to conform to a specific programming structure and offering the prospect of

integrating legacy software with new technology and infrastructures. The work for

this thesis takes the last approach and encapsulates the Fortran 77 binaries of HOPS

16



components using XML.

The work presented in this thesis includes the design of an XML schema used

to constrain the syntax and structure of the XML description files encapsulating

the HOPS legacy binaries. Such XML description files specify the usage of program

binaries and allow for their machine-controlled, automated manipulation. An im-

plementation of a Web-based front-end is used to parse the XML descriptions and

generate relevant user controls. The front-end is able to present the appropriate meta-

data to the user and validate the user input against possible constraints to ensure

correct functionality by the HOPS binaries. As a result, the user is no longer limited

to using the program console for the control of the HOPS binaries.

1.4 Related Work

There has been some related work done to date, in the development of techniques and

tools for the encapsulation of legacy software. However, none of the various works

focused on wrapping these legacy software components at the binary level to allow

the users to modify the component runtime parameter values. Sneed [23] discusses

techniques for encapsulating legacy COBOL programs with an XML interface. He

divides these programs into three categories — online programs, batch programs, and

subprograms. Based on the program type, different wrapping strategies and tools are

utilized. He intends for the solution to promote communication between people within

the mainframe COBOL community. Wrapping the COBOL programs will allow the

COBOL community to preserve their state-of-the-art while enabling others outside

their community to benefit from the COBOL programs as well. A notable limitation

to the wrapping technique described in this paper is its necessity to alter the legacy

components within an architecture. The component alteration is done in order to

adapt the components for reading and writing XML interfaces.

A series of papers [17, 22, 25, 26] illustrate the software architecture of a problem-

solving environment (PSE) used for the construction of scientific applications from

software components. These papers refer to the PSE as an integrated computing
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environment for composing, compiling, and running applications using an XML-

based component model. Users visually construct domain-specific applications using a

Java/CORBA-based problem solving environment for scientific simulations and com-

putations. Software components, wrapped as CORBA [3] objects, are pieced together

– independent of location, programming language, and platform. Each encapsulated

component has its interface and constraints defined in XML.

Walker, Li, and Rana demonstrate in [25] the wrapping of an MPI-based molecular

dynamic simulation program, written in C originally, into Java/CORBA objects with

XML interface. The fundamental infrastructure for component interface definitions

was Java IDL, a CORBA-compliant IDL. A client would invoke the wrapper for legacy

code through IDL, and submit input data for simulation without knowing the wrapper

location and the specific implementation of the simulation software. A key benefit

to this approach is that users can supply simulation data to the molecular dynamic

simulation program for simulation results without ever downloading the program.

There are some main differences between the approach taken in the work for

this thesis and the approaches shown above. The aim is to encapsulate software

components without having to adapt the components for XML. The emphasis is on

treating the components as black-box objects, such that no changes to the binaries

need to be made in order to interface with XML. Using XML interfaces, the eventual

goal is to be able to piece the encapsulated components together as workflows, much

like the PSE presented by Walker, et al. However, this implementation would not

be tied to the CORBA infrastructure like the described PSEs. CORBA provides a

framework for inter-operating objects that are implemented in different languages.

While powerful, its mechanism requires the knowledge of implementation details of

every shared object in order for clients to be able to access the methods for each

component. By contrast, my work treats all the software components as black-box

objects and allows for user modifications to the runtime parameters. By encapsulating

at the binary level, there is no need to break the existing Fortran code into separate

callable procedures as required for CORBA wrappers.
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1.5 Outline of Chapters

The organization of this thesis is as follows:

• Chapter 2 provides an introduction to the various technologies used in the work

associated with this thesis.

• Chapter 3 discusses the XML schema design developed and describes the re-

sulting XML description files that conform to the schema design.

• Chapter 4 describes the implementation of the prototype system, with its graph-

ical interface and features.

• In Chapter 5, the preliminary results from the adaptation of the schema/system

to HOPS programs are given.

• Chapter 6 gives the conclusion and outlines some of the limitations of the current

setup. It also provides suggestions for future research and implementation goals.

19



20



Chapter 2

Background

The following sections describe the technology and underlying concepts relevant to

the thesis work and its motivations.

2.1 XML and Related Technologies

2.1.1 XML

XML stands for eXtensible Markup Language. It is a metalanguage – a language

used to define new markup languages. The present work uses XML for its inherent

ability to describe data and still remain platform-independent. XML is a standard

for data representation and exchange on the Internet. Unlike HTML, which was

designed to display data, XML was designed to describe data [27]. HTML tags define

how a document should be displayed, while XML tags relate to the meaning of the

enclosed text. XML allows developers to design custom tags and data structures

for application-specific situations, and provides standardized data formatting used

in cross-platform exchange of information. This standardization is made possible

through the use of Document Type Definition (DTD) and XML schema language,

both discussed in later sections.

Two key issues to consider for any XML document are the well-formedness and

validity of the document. All legitimate XML documents must be well-formed. This
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<list>

<item>

<name>Chair</name>

<price>59.99</price>

</item>

<item>

<name>Table</name>

<price>129.99</price>

</item>

</list>

Figure 2-1: Sample XML Document

means that no out-of-order nesting of tags exist and every open tag is closed. Only

well-formed documents can be handled correctly by XML parsers. Figure 2-1 shows

a sample well-formed XML document.

In addition, a document is not required to have validity; although it should have

validity to ensure successful machine processing. An XML document can conform to

a DTD/schema, which defines the grammar and tag set for a specific XML format-

ting. Since XML tags are not predefined, XML documents require Document Type

Definition (DTD) or XML schema to describe the legal structure, constraints, and

contents of XML documents. Conformity to a DTD/schema ensures that an XML

document can be understood and processed by different machines.

2.1.2 DTD

DTD (Document Type Definition) defines the legal structure of an XML document. It

establishes a set of constraints specifying the valid tags for a document and providing

rules for how the document should be constructed [20]. This is particularly important

for data transfer between applications, as there must be a pre-specified formatting

scheme and syntax for various computer systems to interface with each other. DTD

allows each XML document to be validated and processed by any machine that has

access the document’s DTD.

DTD has some rather serious limitations. DTD documents have no hierarchy

22



<!ELEMENT list (item+)>

<!ELEMENT item (name, price)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT price (#PCDATA)>

Figure 2-2: DTD for XML Shown in Figure 2-1

and the resulting structure is very flat (evident in the sample DTD provided as

Figure 2-2). In addition, DTD has difficulty handling namespace conflicts, and the

datatyping offered is very limited. DTD treats the contents of all tags contents as

characters. Furthermore, DTD has no means for specifying allowed relationships

between XML documents. Even though it is excellent for validating the structure of

an XML document, DTD uses a different syntax than XML. Figure 2-2 provides a

sample DTD for the XML example presented previously.

2.1.3 XML Schema Language

The XML schema language is an XML-based alternative to DTD [20]. The XML

schema language was designed to replace DTDs by offering an XML-centric method

of constraining XML documents. A DTD does not share the hierarchical structure of

XML, which has caused much confusion; the schema language resolves this issue by

using XML itself to define XML documents. XML schema documents are actually

XML documents that are both well-formed and valid. This allows parsers and other

XML applications to handle schema documents in a fashion similar to ordinary XML

documents, instead of using special techniques required for handling DTD documents.

Figure 2-3 shows the XML schema for the XML document from Figure 2-1.

An important advantage of XML schema is its rich support for datatypes com-

monly used by ordinary programming languages like Java. This makes it possible to

provide document validity and work with data from various sources and platforms.

Whereas DTD treats all data as characters, the W3C XML schema specification [29]

has predefined datatypes and also allows for the definition of new ones. This pow-

erful datatyping capability simplifies the processes of creating and validating XML
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<element name=‘‘list’’>

<element name=‘‘item’’>

<complexType>

<element name=‘‘name’’ type=‘‘string’’ />

<element name=‘‘price’’ type=‘‘double’’ />

</complexType>

</element>

</element>

Figure 2-3: Schema for XML Shown in Figure 2-1

documents, so schemas offer a notable improvement over DTDs.

The schema language supports inheritance and the division of a schema into var-

ious components. Thus, new schemas can be created from existing schemas and

predefined components can be referred to when writing schemas. These features in-

crease the efficiency of software reuse and improve the XML software development

process.

2.2 XML Parsing Technologies

2.2.1 XML Parsers

The parsing of XML documents is a pivotal aspect of XML programming – the data

contained within the XML document becomes available to other applications only

after the document is parsed. Therefore it is important to choose a suitable XML

parser based on performance and functionality requirements. Since the programming

work for the thesis is done in Java, a Java-based XML parser seems appropriate.

Two criteria used in parser selection for the project are the parser’s conformity to

XML and XML schema specifications and the ability of the parser to validate XML

documents against DTD and XML schema. Since XML schema has a crucial role in

the project, the chosen parser should have good support of the W3C XML Schema

Recommendation [29].

The major Java-based schema-validating parsers are from the following organiza-

tions:
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• Apache: http://xml.apache.org/xerces2-j

• IBM: http://www.alphaworks.ibm.com/tech/xml4j

• Microsoft: http://www.microsoft.com/xml

• Sun: http://java.sun.com/products/xml

Of course, there are several Java-based XML parsers smaller in size and with

faster performance, such as Piccolo1 and XP2. However, since these parsers either

don’t provide validation or don’t offer support for XML Schema, only the major

parsers with the right features were considered.

Microsoft’s parser was not given much consideration since their implementation

does not conform to W3C’s XML specification. The results are mixed for various

parser performance tests found on the Internet. According to a test conducted by

DeveloperLife3, IBM’s XML Parser for Java (XML4J) outperformed Sun’s Project X

parser; a separate test conducted by DevX4 showed the opposite result.

The Apache Xerces-J and IBM (XML4J) parsers both implement most of the W3C

XML Schema specification [29] and offer support for the Java API for XML Processing

(JAXP 1.1). These two parsers are comparable since they both stem from IBM

research development and offer similar support for specifications and functionality.

Their similarities are due to IBM being a major contributor to Apache’s Xerces-J

code base, which forms the basis for the XML4J 4.0.1 parser. In 1999 IBM released

the source code to the community that was building the technology by donating the

code to the Apache Software Foundation.

In the end, the Apache Xerces-J parser was chosen for this project since all the

major parsers were comparable in capabilities, and the performance results found

were mixed and inconclusive. The Xerces parser does not have corporate influences

like the other parsers, and seems to be a popular and reliable parser offering support

1http://piccolo.sourceforge.net
2http://www.jclark.com/xml/xp
3http://developerlife.com/parsertest2/performance.html
4http://www.devx.com/xml/argicles/pm020101/pm020101-4.asp
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for W3C’s specifications. It is also one of the most widely contributed-to parsers

available.

2.2.2 SAX

The Simple API for XML (SAX) [21] provides an event-based framework for the XML

parser to use when parsing XML data, which is to go through the XML document

and break down the enclosed data into usable chunks. One issue to clarify at this

time is that SAX is not an XML parser. It simply provides a framework for parsers

to use, and defines the events to monitor during the XML parsing process. The SAX

APIs only provide the means to parse XML documents.

SAX is an event-driven model, which means that events are defined by SAX to

occur during the parsing process. The programmer provides the callback methods

to be invoked by the XML parser as it processes the XML data. This allows the

handling of the various situations that can occur during parsing. For example, event

handlers can be defined to output the time when the parser encounters the beginning

and end of the document. The difference between these two times can then be used

to calculate the total time required by the local machine to process the given XML

document. Some possible parameters used to generate SAX events include XML

elements, attributes, and comments.

SAX is a popular protocol since it is the fastest and the least memory-intensive

method of dealing with XML documents. On the other hand, SAX also requires much

more programming than other common APIs, such as DOM (described in the next

section). Another disadvantage to using SAX is its sequential nature. It gives users

linear access to the contents of XML documents and cannot back up to an earlier

part of the document. There is no manipulation of the parsed data.

2.2.3 DOM

DOM stands for Document Object Model [4] and is designed to handle the ma-

nipulation of the parsed data (the shortcoming of SAX). DOM represents a parsed
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document as a tree structure and adapts readily to most programming languages,

since the traversal and manipulation of tree structures can be accomplished easily by

most programming languages.

DOM reads the entire XML document into memory, to provide for quick access

to any part of the document structure. The data is stored as tree nodes, where each

node contains one data component from the parsed XML document, and the resulting

structure of the tree matches that of the original document. Since DOM reads entire

documents into memory, it can be quite a burden on system resources. Larger and

more complex XML documents can potentially cause significant degradations in the

performance of the application/system.

2.2.4 JDOM

JDOM (Java Document Object Model) [12] is a new technology that enables Java

developers to read, change, and write XML data much more easily than ever before.

All previous programming libraries and APIs (application programming interfaces)

designed to interact with XML were intended to work with multiple languages, which

causes inefficiencies for Java programmers; whereas JDOM uses the power of the Java

language to make interactions with XML simpler and faster.

JDOM is an open source API that provides an alternative to the standard APIs

packaged with the Apache Xerces-J parser, such as the SAX and DOM APIs dis-

cussed in the previous subsections. Unlike DOM and SAX, JDOM uses standard

Java programming idioms and takes advantage of Java language features. JDOM

builds a tree structure from the XML document being parsed, much like DOM.

For the purpose of this thesis, the JDOM API was chosen for its more user-friendly

and intuitive methods. The Web-based front-end will use the Apache Xerces-J parser

to parse the XML descriptions of the legacy Fortran binaries. The system then uses

the JDOM Beta 8 release5 to build document models for application processing and

manipulation of the parsed data. The JDOM API is used to interact with the XML

being processed. These interactions range from the initial construction of the tree

5Most current as of August 2002
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structure representing the XML document, to the changes to the elements as the user

updates variable values using the front-end GUI.

JDOM is the prime candidate for handling XML documents in the work presented

by this thesis, since all programming is done in Java. JDOM has close ties with Java

and was written to be more intuitive to programmers than the DOM API. It encom-

passes the best features of the SAX and DOM APIs. It has the fast processing time

and small memory footprint of SAX, while still being able to parse XML documents

into tree structures, like DOM, for random access. Therefore, there isn’t as much of a

concern for performance degradation from handling larger, more complex documents

using JDOM, and the framework is no longer limited by sequential access.

2.3 Java

All of the programming for this thesis is in the Java programming language. Even

though Java is a relatively new programming language, it has become much more

stable and reliable in recent years. The primary advantages of Java are its portability

and networking capabilities, which can provide advanced features for the developed

software to run over networks such as the World Wide Web.

With its first official release by Sun Microsystems back in early 1996 [8], Java

provided programmers with a syntax similar to that of C++. Java is also fully

object-oriented – everything in Java is an object (except for basic types like integers

and Booleans). This gives it many advantages for dealing with complex projects.

The main reason for using Java in this thesis is its platform independence. This

allows for the developed code to be run on any machine equipped with a Java inter-

preter. Java was designed so that the compiler generates architecture-neutral byte-

code that is executable on many processors/platforms. The bytecode instructions

have nothing to do with particular computer architectures, and can be interpreted

on any machine and easily translated into native machine code. As long as an in-

terpreter has been ported to a particular platform, Java bytecodes can be executed

directly on that platform. This portability allows users to download compiled Java
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bytecode across the Internet and use local Java interpreters to execute the bytecode.

Although there is a definite disadvantage with the slower performance from using

bytecode compilers than from using a true native code compiler, users are not tied

down to specific platforms for code execution.

2.3.1 Java Applets

Through applets, Java provides a mechanism for programs to work within webpages.

To run a Java program within a webpage, the program must be converted to an

applet first, since Web browsers cannot handle normal Java programs. Java applets

are embedded in HTML pages, much like the way images and tables are embedded.

To use an applet, the Web browser must also be Java-enabled so that it can

interpret the bytecode within applets. Sun Microsystems developed the Java Plug-

in, which makes the newest Java runtime environment available to browsers so that

users won’t have to worry about a browser’s default support for Java. Once the user

installs the Java Plug-in for the Web browser, the browser is capable of interpreting

Java applets within Web pages. Java applets don’t have to be launched from the

command-line like Java normal programs, and are much more convenient to use for

the average user.

The prototype program developed for this thesis can run as either a standalone

application or a Web applet. The Java code is compressed into a single file, which

can be embedded in a Web page as an applet, or the user can choose to download

the file to run it as a standalone application at the command-line prompt.

2.3.2 Security Issues with Java Applets

Since a Java-enabled browser allows Java code to be embedded within a Web page,

downloaded across the Internet, and run on a local machine, security is a paramount

concern. Users can easily download applets – exposing Java users to a significant

number of risks. For example, when a user loads an unknown page into the browser,

the page could contain a malicious applet that is automatically loaded and executed
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by the browser. The designers of Java were well aware of these risks associated with

executable content, and therefore designed Java with security concerns in mind.

Java features a sandbox security model. This sandbox model confines Java applets,

potentially malicious (in general), to a strictly defined environment where they cannot

affect other system resources. Standalone Java applications are deemed to be trusted

and enjoy unlimited access to all system resources, while applets are untrusted by

default. This is because applications are downloaded with consent by the user, while

applets can be downloaded even without the user’s knowledge. The primary intent

of the designers is to prevent untrusted applets from accessing and changing files on

the local file system. There is also a need to prevent applets from using network

connections to circumvent file protections or to act as malicious network agents.

By default, untrusted applets are prevented from reading and writing files on the

user’s local file system, and cannot make network connections except to the originating

host of the applet. Furthermore, applets are unable to load libraries or start other

programs on the user’s local machine. With such restrictions, the prototype system

developed for this thesis would be rendered useless and would not be able to perform

most of its required tasks when run as an applet. The following is a sample list of

the program tasks requiring access to system resources:

• Opening local XML files.

• Opening Web-based XML files.

• Saving script files locally.

• Running script files locally.

In order for browsers to trust an applet, the applet must be signed. The end

user can then use a public key certificate sent with the applet to authenticate the

signature. The Java 2 Software Development Kit (SDK) [9] provides several tools for

dealing with security. The two tools of concern are keytool and jarsigner [10]. After

using keytool to generate a public/private key pair, and signing the applet with the

private key using jarsigner, users of the applet will see a security warning window

30



pop up before the applet loads in the browser. This window will let the users view

the certificate and prompt the user to grant or deny the necessary permissions for the

applet to run properly.

Keytool

Keytool is used for the management of the keystore and certificates. The keystore

is a repository that stores all keys and certificates for the system. The individual

entries are accessible by unique aliases. Keytool creates public/private key pairs,

issues certificate requests, designates public keys as being trusted, and handles X.509

certificates.

Keytool lets users specify key-pair generation and the signature algorithm used.

The following command is used to generate a key using the RSA algorithm. The

resulting key will be valid for 1000 days and will be accessible through the alias

robchang in the keystore.

C:\java>keytool -genkey -alias robchang -keyalg rsa -validity 1000
Enter keystore password:
What is your first and last name?
[Unknown]: Robert Chang

What is the name of your organizational unit?
[Unknown]: Department of Ocean Engineering Design Lab

What is the name of your organization?
[Unknown]: Massachusetts Institute of Technology

What is the name of your City or Locality?
[Unknown]: Cambridge

What is the name of your State or Province?
[Unknown]: MA

What is the two-letter country code for this unit?
[Unknown]: US

Is CN=Robert Chang, OU=Department of Ocean Engineering Design Lab,
O=Massachusetts Institute of Technology, L=Cambridge, ST=MA, C=US
correct?
[no]: yes

Enter key password for <robchang>
(RETURN if same as keystore password):

The generated key can be exported as a certificate and viewed with the following

commands:

C:\java>keytool -export -alias robchang -file robchang.crt
Enter keystore password:
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Certificate stored in file <robchang.crt>

C:\java>keytool -v -printcert -file robchang.crt
Owner: CN=Robert Chang, OU=Department of Ocean Engineering Design Lab,
O=Massachusetts Institute of Technology, L=Cambridge, ST=MA, C=US
Issuer: CN=Robert Chang, OU=Department of Ocean Engineering Design Lab,
O=Massachusetts Institute of Technology, L=Cambridge, ST=MA, C=US
Serial number: 3ea5bbab
Valid from: Tue Apr 22 18:01:15 EDT 2003 until: Mon Jan 16 17:01:15 EST 2006
Certificate fingerprints:

MD5: FE:30:B6:EB:50:0E:75:9F:41:2B:8F:DF:5E:F2:D7:73
SHA1: 23:26:A6:8B:1F:6E:33:8A:DB:89:77:80:E3:51:FC:F4:AE:20:8B:E6

Jarsigner

The jarsigner tool accesses the keystore to locate the private key and its associated

certificate to use for signing a .jar file. Only users who know the passwords to the

keystore will be able to access a key in the keystore and use it to sign a .jar file.

This is because passwords protect access to the keystore and its private keys. The

following command is used to sign the .jar file for the applet with the robchang key

created in the previous section.

C:\java>jarsigner prototype.jar robchang
Enter Passphrase for keystore:

Password Issue with Keytool and Jarsigner

There is an implementation oversight with the keytool and jarsigner tools in the Java

SDK. Even though these tools provide extra security measures for Java development,

the passwords entered by the user appear as plain text on the screen. The pass-

word typed into the command prompt is left unobscured on the screen. Programs

commonly leave out the password characters or replace the characters with asterisks

(*) to decrease the chance of the password being stolen. In the case of keytool and

jarsigner, the typed passwords are shown in plain sight. The passwords entered in

the examples above have been omitted.

A simple solution is to have the user clear the screen immediately after using the

tools. This is extremely inconvenient and leaves the passwords exposed if the user

ever forgets to clear the screen. There is another possible solution to this problem.
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There exist programs that handle the security management tools of the Java SDK

graphically. The user performs all the above tasks through a GUI, and these GUI-

based programs usually make some attempt to obscure the entered password.
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Chapter 3

XML Schema Design

3.1 Requirements and Overview

The XML interface to the encapsulated HOPS programs should be self-contained and

should not require any modification to the programs. By providing a detailed XML

description for each program, the program can be treated as a black-box component.

The prototype system developed as part of this thesis should then be able to parse

in the XML descriptions, and from their contents, determine the specifics on how to

properly set up and run the program with the appropriate parameters.

Several key concerns have to be addressed and supported in the XML schema

design. The resulting XML documents that conform to this schema should provide

as much relevant information to the user as possible, so that the user can make

well-informed decisions while customizing various build-time and runtime parameters.

There should be a set of default parameter values so that manual entry of values for

each program execution can be avoided, especially since there can be hundreds of

parameters. It does not make any sense to require the user to enter in all the values

every time the user runs the program with the prototype system.

The XML descriptions conforming to the proposed schema should also be capable

of specifying the contents of the program makefile and its parameters, in order to

allow the user to recompile the program binary as needed. The makefile is a file

that tells the make utility how to compile and link a program. The makefile contains
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dependency information and variable/macro definitions, as well as standard shell-

based commands. During the compilation process, the make utility compiles all the

source files, and the resulting object files corresponding to the source files are linked

together to produce the new executable binary. How a program compiles depends

on the system architecture, preprocessor macros and definitions, and specific input

values.

The resulting compiled binary could have input/output files and other parameters

required during execution. Since runtime parameters should be checked for legality

after any user modification, the schema design must support datatypes and additional

constraints on the parameter values. Instead of treating all parameter values as plain

strings, the introduction of datatypes and constraints helps to ensure the correctness

of program parameters. This is to facilitate the compilation and execution of the

program and ensure that all input parameters are acceptable. Each parameter value

can be validated against its constraints before proceeding.

The proposed XML schema design consists of four major components. The first

component corresponds to the top-level description of the encapsulated program. The

program description contains the basic information about the program, its make-

file, and the various compiled binaries available. The next component deals with

the program makefile. This is useful for the automatic generation of a customized,

platform-specific makefile used to compile the program. A third schema component

constrains the XML descriptions of the compiled program binaries. This schema sup-

ports the description of a binary’s input and output files. It is also capable of handling

command-line arguments and other runtime parameter sources. The last part of the

schema handles the descriptions of parameter files used during program compilation

and execution. The parameter files contain build-time and runtime input parameters,

and consist of customizable variable values for the program. The following sections

will fully describe the schema design and discuss them in detail.
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3.2 Program Schema

The program schema is the top-level schema for the encapsulated program. The pro-

gram schema (program.xsd) is included in Appendix A. An XML file conforming to

the program schema describes the fundamental aspects of an encapsulated program.

The root program element contains seven major components. These component el-

ements provide the key information concerning how the program is compiled and

executed. The element descriptions are listed below:

name: The name of the program.

info: Information about the program.

architecture: A list of available platforms for the program and the selected platform.

shell: A list of available shells for running scripts, and the selected shell.

makefile: Information about the makefile and its path.

binaries: Information about the various compiled binaries for different platforms

and their respective paths.

constraints: List of files used during the compile process.

Figure 3-1 shows the hierarchy of the program schema. There can be any number

of the elements that denoted with a * symbol. The other elements can only appear

once in an XML description file.

The name and info elements are standard for many components in the program

schema, and the other schemas as well. These elements are useful for the human

users, and helps them better understand the contents of the XML description files.

The architecture element holds of a list of architectures available to the program

and the architecture selected. The extra component for the selected architecture is

useful for defining a default architecture for the program. The architecture element

consists of the choice and selected elements. The choices element contains the list

37



-program

-name

-info

-architecture

-choices

-choice*

-selected

-shell

-choices

-choice*

-selected

-makefile

-info

-type

-path

-xmlDesc

-binaries

-binary*

-info

-arch

-path

-xmlDesc

-constraints

-constraint*

-name

-info

-path

-xmlDesc

Figure 3-1: Hierarchy of Program Schema

of architectures, with each architecture embodied by a choice element. The selected

element contains the selected architecture.

The elements for architecture choices and the selected architecture are all archTypes-

type elements. The archTypes type is based on the string type. The allowed values

for architecture are defined in the schema to be “alpha,” “cray,” “iris,” “rs6000,”

“sun3,” “sun4,” “sun5,” and “linux.” These are the platforms currently supported

by HOPS. Other architectures can certainly be included by expanding the definition

of the program schema to allow for them. Better still, a standardized namespace

could be adopted for the naming of the different architectures. This would help to
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prevent different naming conventions from being used for the same architecture.

The structure of the shell element is analogous to that of architecture. In order

to compile or execute the program binary, the prototype system creates shell scripts

containing commands to run with certain shell programs. There is a choices element

with the list of available shells for scripts, and a selected element for the selected

shell. These two elements are shellTypes-type, which is defined to contain one of

the following values: “sh,” “bash,” “csh,” “tcsh,” and “ksh.” These represent the

common shells such as Bourne shell, C shell, and Korn shell.

The next major element is the makefile. This element consists of four parts: info,

type, path, and xmlDesc. The type element denotes the type of make tool used on

the makefile to compile the program. Some common make tools include BSD make

and GNU make. The path element holds the path of the program makefile. The

xmlDesc element contains the path of the XML description file of the makefile, if one

is available. The makefile can have its own XML description file, which would conform

to the makefile schema proposed in Section 3.3. The prototype system discussed in

the next chapter can parse and understand XML description files conforming to this

schema design. The system produces a graphical user interface (GUI) for the user to

customize, and then it automatically generates a makefile based on the information

provided in the XML description of the makefile and any additional user modifica-

tions. If the makefile does not have an XML description file, then the xmlDesc element

is left empty.

The binaries element consists of a series of binary elements, each corresponding

to a binary compiled for a specific architecture. Each binary element has four main

components: info, arch, path, and xmlDesc. The arch element denotes the architecture

for the binary. The path element shows the path for the program binary. The xmlDesc

element holds the path for the binary’s XML description file. Again, this element is

left empty if the binary does not have a description file. Before moving on, there is one

point to clarify here. When people talk about “running” a program, this is referring

to executing a program’s binary. A “program” can be thought of as the source code,

which cannot be used unless the code is compiled into something executable. The
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program binary refers to this executable result from compiling the source code.

The last element is constraints – a list of parameter files used during the compiling

of the program (e.g. include files containing constants, etc.). Each file is described

by the constraint element, which includes four sub-elements. These elements are the

name, info, path, and xmlDesc. The purpose of these elements has already been

explained previously. The XML description of such parameter files must correspond

to the parameter schema presented in Section 3.5.

3.3 Makefile Schema

The file for the makefile schema is included in Appendix B as makefile.xsd. The

makefile schema constrains XML description files for program makefiles. A makefile

is used to define the compilation process for software projects. Within a makefile

are variable definitions and dependencies used for compiling the program source code

and possible dependencies between these variables. The makefile also specifies the

locations of the source files required and sometimes contains architecture-dependent

portions that may or may not be used during program compilation.

The first two parameters of the top-level makefile element are the path and info

elements. The path element holds the path of the program makefile on the local

system. A makefile has a number of sections, described by section elements. The

contents of each section could be from a file fragment, or could be a list of makefile

preprocessor macros and definitions. Each section element has an info element and one

of three content elements to choose from (includeFile, includeFileChoice, or preproc-

objects), depending on the section’s contents.

Figure 3-2 provides the makefile schema hierarchy. The elements that have a

* symbol next to them can have any number of occurrences. The # symbol is a

reminder that the section element can only include an info element and one of three

element choices (includeFileChoice, includeFile, preproc-objects).

The includeFile element is used for including files as part of the makefile. The

includeFile element is treated as a string and contains the path of the file to be
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Figure 3-2: Hierarchy of Makefile Schema

included. For example, by defining a makefile section with an includeFile element for

the file segmentA.txt, the contents of segmentA.txt is included as part of the makefile.

This is useful for the common parts shared by a program’s makefiles for different

architectures.

The includeFileChoice element is available for including architecture-specific por-

tions of the makefile from various files. This is similar to the includeFile element in

that a file is included in the makefile. However, the file that is included is dependent

on the selected architecture for the program. The compilation process for a program

could require a separate makefile for each of the various architectures it supports. The

common parts of these makefiles would be included using the includeFile element. The

architecture-dependent parts would be included with the includeFileChoice element.
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The includeFileChoice element has a number of choice elements, each defining a file

to include for a specific architecture. Each choice contains an architecture element

and an includeFile element. The architecture element holds an object of archType

type, which is a subset of the string type. The definition of archType is given in the

previous section for the program schema. The includeFile element contains the path

of the file to be included if the corresponding architecture element matches the chosen

architecture.

The third type of content element a section can have is the preproc-objects element.

This element is used to define makefile preprocessor macros and definitions and can

even be extended for the definition of other flags or options. The preproc-objects

element has three parameter elements1 to help with the formatting of the preprocessor

macros and definitions (preprocessor objects) in the makefile. The startText element

contains a string that leads off the section. The endText element deals with the string

that ends the section. The separator element holds a string that is inserted between

the preprocessor objects in a section. The following illustrates the purpose of these

elements. The startText element contains “CPPFLAGS = ”, and endText is an empty

string. The separator element has a string of “ ” to produce the space-separated list

of macros/definitions.

CPPFLAGS = -Dresetjulian -Dtiming=10

The preproc-objects element also contains a number of preproc-obj elements. Each

preproc-obj has the elements of name, info, header, value, use, and requires. The names

of the preproc-obj elements in the above example are “resetjulian” and “timing.” The

header element stores the string used for the preprocessor object. This is the actual

text displayed for the preprocessor object when its use element contains true. It is

useful to have support for the definition of variable values, so the value element was

included in the schema. In the above example, “-Dresetjulian” and “-Dtiming”

are each enclosed by header tags. The first preprocessor object does not have a value

element because it is not required to contain a value for definition. The second object
1The contents of these formatting elements are included in the generated makefile as they appear

in the XML elements.
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contains a value element of 10. When the value element is not needed to display

the assignment of a value, it can be omitted from the makefile description file. The

use element holds either true or false, and helps to determine whether a preprocessor

object is included in the makefile or not.

The requires element defines the dependencies of preprocessor objects within a

makefile. It consists of a list of item elements. Each item element holds the name

of a preprocessor object that the current preprocessor object is dependent on. For

example, if using object A requires that objects B and C are also used, then the

requires element of preprocessor object A would contain two item elements, holding

the names of objects B and C. If an object has no dependencies, then there would be

no items in its requires list.

After all the section elements, the last element for the makefile is conflicts. This

element specifies the conflicts that can occur from using particular combinations of

preprocessor objects used within the defined makefile sections. If no such conflicts

exist, this element can be omitted from the XML description for the makefile. The

conflicts element contains a sequence of conflict elements, each having a number

of item elements. The item elements hold the names of preprocessor objects. If

preprocessor objects A, B, and C should not be used in the makefile at the same

time, a conflict element must be used to define such a conflict. Within the conflict

element, there would be three item elements used for the names of objects A, B, and

C. In such a case, it is fine for one or two of the three preprocessor objects to be

used in the makefile, but not all three. Similarly, a conflict defined with two objects

implies that only one of the two objects can be used in the makefile at any time.

An interesting side-effect of this design appears when a conflict is defined with one

preprocessor object. This causes a conflict to occur if the specified preprocessor object

is ever used in the makefile, indicating a case that is deemed buggy and should not

be used.
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3.4 Binary Schema

The binary schema restricts XML description files containing the basic information

of the compiled program binaries. It is included in Appendix C as binary.xsd. This

schema file consists of a top-level binary element, along with seven sub-elements that

provide the basic parameters for the binary and are used by the user to customize

the program execution. These elements are:

name: The name of the binary.

path: The full path of the binary.

info: The description of the binary.

constants: The list of binary constants.

files: The sequence of input/output/in-out files for the binary.

cl-args: Possible command-line switches and arguments.

stdin: Standard input of binary.

Figure 3-3 shows the hierarchy of the binary schema. The * symbol next to the

constant, file, cl-arg, and var elements indicate that there could be any number of

these elements within an XML description file for a binary. The full hierarchy of the

file and var elements are shown in Section 3.5

The name, path, and info elements offer the basic binary information and are

treated as string-type elements. The constants element is a custom-defined element

that consists of any number of constant elements. Each constant has a preset name,

info, value, and type. These constants can be used globally by the binary during

execution.

The next element is files, which is also custom-defined list of elements like con-

stants. The files element lists all of the I/O (input, output, in-out) files used by

the binary. The definition of the file element is given by the parameters schema in

Appendix D since the file is a possible datatype for the parameters and is shared
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-info
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-info
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-switch
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-info
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Figure 3-3: Hierarchy of Binary Schema

by both schemas. The binary schema definition includes the file for the parameter

schema, so that various elements defined in the parameter schema can be used by

the binary schema. These elements include the var element for variables and the

eight supported datatypes (e.g. file). A file has a file-type attribute , along with

the parameter sub-elements of id, path, info, xmlDesc, and maxLength. The possible

file types are “input,” “output,” and “inout” (for those files that are read in from,

written to, or both, during binary execution).

The file id can be used to synchronize file parameters in various program descrip-

tion files. If a user makes changes to a file variable with a certain file ID, the changes

are reflected on all other file variables with the same ID. This is not the same as the

input/output logical unit number used in Fortran. The path and info offer additional

facts about the binary. The xmlDesc element contains the path for the XML descrip-
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tion file of the given file. For example, the program could have an input parameter

file that is also encapsulated with an XML description, so that the prototype system

developed for this thesis is able to parse this description and allow the user to edit

the variable values in the parameter file. Finally, the maxLength element constrains

the length of the file path. This constraint is given in case there is a need to place an

upper limit on the length of the file path, as is the case of many operating systems.

The cl-args element is a list of cl-arg items. Each cl-arg defines a command-

line option used for the execution of the program, with the appropriate switch and

value(s). For each cl-arg, the schema includes provisions for a switch, use, info, and

any number of var elements. The switch is the flag or option used in the command

line, and the var elements are used for the values that follow the switch. The definition

of the var element is also given by the parameters schema, which is included in the

binary schema for the reuse of defined components, as stated earlier. The use element

can be either true or false and is used to determine whether the command-line option

is used or not.

In the following command, “-Pprinter-name” is an example of a command-line

option, with the switch being “-P” and a variable value being “printer-name”. If

the use element for the option were set to false, the call to execute the lpq binary will

not include the option.

lpq -Pprinter-name inputfile.txt

The last element for the binary is stdin, used to indicate the standard input. The

stdin element can be thought of as just another command-line item, with the switch

being “<”, therefore the schema treats the stdin and cl-arg elements equally. In the

event where the standard input is a parameter file, a file variable is used for the var

element. Such a parameter file could have its own XML description that allows the

user to edit the parameter values using the developed prototype program.
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3.5 Parameters Schema

The parameters schema constrains the definition of XML description files for input

parameter files used during program compilation and execution. Appendix D includes

the parameters schema. The top-most element of this schema is the paramfile, which

represents an individual parameter file. The paramfile has the following elements:

path, info, startText, endText, and any number of set elements.

-paramfile

-path

-info

-startText

-endText

-set*

-order

-info

-startText

-endText

-separator

-var*

-type

-name

-header

-use

-datatype-specific element#

Figure 3-4: Hierarchy of Parameters Schema

Figure 3-4 demonstrates the hierarchy of the parameters schema. As with the

schemas described previously, elements with a * symbol can occur in any number.

The datatype-specific element under var element corresponds to the type attribute

of the parameter variable. For example, if a variable is of type integer, then its var

element must contain an integer element. The eight available elements to choose from

are: integer, long, float, double, string, enumerated, uneditable, and file. Datatypes2

and datatype-specific elements will be explained further in the following subsection.

The path element indicates the desired path of the parameter file on the local

2The more exotic datatypes, such as long double, were deemed not necessary for user-supplied
parameters in the proposed schema design.
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system. The info element holds a string for the description of the parameter file. The

startText and endText elements are used for formatting purposes. They contain strings

to be included at the beginning and end of the parameter file. The set elements define

sets of parameters or variables (referred to collectively as parameters from here on),

and are similar in functionality and purpose to the sections of preprocessor objects

in the makefile schema. Each set is intended to handle a line of parameters as they

appear in the parameter file. For example, if a parameter file consists of three lines

of parameter values to be read in by the program binary, the description file for the

parameter file would have three set elements.

Each set element contains two informational and three formatting parameter ele-

ments, plus at least one variable element. The order element provides an ordering of

the sets to distinguish them from one another. The info element is just the standard

string-type description for the set. The startText, endText, and separator elements

are used in the same way as their counterparts in the makefile preprocessor macros

and definitions. Any extraneous text before and after the parameter values on a line

(within the same set) are contained in startText and endText. The parameter files

sometimes have extra lines of comments (interspersed between lines of parameters)

that are ignored by the program binary. These comments can be contained within

startText and endText as well. The separator element holds the separator string in-

serted between the parameters on each line. Common separators include the space

(“ ”), the comma (“,”), and the semicolon (“;”).

The variable elements correspond to the parameter variables. Each variable has

a type attribute, which denotes the datatype of the variable. The type attribute can

only contain one of eight possible strings for the datatypes. The parameter schema

supports eight datatypes in total; they are discussed in detail in Section 3.5.1. Each

variable has four subordinate elements: name, header, use, and a datatype-specific

element to describe the variable’s value and define any additional constraints for that

value.

The name and header elements are treated as string elements. The name element

is self-explanatory, while the header is used for textual formatting. By default, only

48



the variable values are displayed in the parameter file. However, some encapsulated

systems may require variable assignments in the form of “var=value.” This case is

supported by the use of the header, where the header holds the “var=” portion for the

variable. The use element has a value of either true or false. This element determines

whether a variable value is included in the parameter file or not. The final datatype-

specific element is one of eight elements corresponding to the eight datatypes. These

elements are: uneditable, string, enumerated, integer, long, float, double, and file. For

more information regarding these datatypes, please refer to Section 3.5.1.

The following two examples demonstrate the use of the set and var elements. In

the first example, the first line of text plus the “#define ” part of the second line

are all contained in the startText of one set. The endText element is empty, and

the separator element is not used, since there is only one parameter defined within

the set. The var element for this parameter is a Boolean-type variable (covered by

the enumerated datatype in the schema), with its header containing “MMAX ” and its

value containing “TRUE”. The second set has a startText of “#define ”, an empty

endText and contains one parameter also. The var element for this parameter is a

string-type variable, with its header containing “HELLO ” and its value containing

“‘‘hello to you’’”.

// some constraint

#define MMAX TRUE

#define HELLO ‘‘hello to you’’

The second example below is described by one set element. The separator of the

set is “,” for the comma-separated list of parameters. The startText element holds

the entire first line, plus the beginning of the second line: “ parameter(”. The

endText element holds the “)” from the second line, plus the entire third line. The

set has two integer-type var elements for the two parameters enclosed. The header

elements for the two var elements contain “mcseg=” and “mclen=”, and their value

elements are 7 and 2000, respectively.

#ifdef coast

parameter(mcseg=7,mclen=2000)

#endif
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3.5.1 Parameter Datatypes

There are a total of eight datatypes available to the parameter variables. Four of

them are numeric, three are string-related, and the last is a custom datatype for

files. The design of these schemas includes specific datatypes in order to allow for

the verification of parameter values. Each parameter value can be verified against its

own datatype and possible constraints to ensure proper functionality by the executed

binary. Such verification would not be possible if all values are treated as string-type

values, as in the case of DTD (Section 2.1.2).

Integer, Long, Float, Double

The four numeric types are integer, long, float, and double. The integer type is for

numbers without fractional parts. Negative values are allowed. In most situations,

the integer type is the most practical. If larger integer values (magnitude-wise) are

needed, the long type must be used. The float type denotes numbers with fractional

parts. Since the limited precision of float is simply not enough for many situations, a

double type is provided to allow for double precision values.

The four numeric types each has its own element defined in the parameters schema.

Each numeric element has the following parameter elements: value, info, units, and

range. The value element stores the numeric value of the variable. The info and

units elements give the description and unit label of the variable. If a numeric vari-

able is unitless, the unit element is left empty. The final parameter for a numeric

element is the range. The convention used by this system for the range is to have

a semicolon-delimited (;) list of the legal value ranges. Each range has the form

of lowerValue~greaterValue, where the two values are separated by the tilde symbol

(~). The reason for the use of the tilde symbol instead of the dash (–) is to prevent

confusion caused by the negative sign. Machine parsing and processing of the range

string is much easier when the symbol used for the range (tilde) is distinct from the

symbol for negativity (dash). The schema supports the use of any numeric value.

Negative and positive infinity are indicated by the strings “NEGATIVE INFINITY”
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and “POSITIVE INFINITY,” respectively. The system does not support the parsing

of single values currently, so the definition of a single numeric value within the range

element would require the value to be both the upper and low limits of the range. If

the legal range of a float-type variable is defined to be any negative value less than

-10.0, any non-negative value less than 20.0, and the value of 200.0, such a range is

captured by the following element.

<range>NEGATIVE_INFINITY~-10.0;0.0~20.0;200.0~200.0</range>

If there are no constraints on the legal values a numeric variable can have, then

the range element is omitted from the variable element. The hierarchy of the integer,

long, float, and double elements are shown in Figure 3-5.

-integer/long/float/double

-value

-info

-units

-range

Figure 3-5: Hierarchy of Numeric Datatypes

String

There are three string-related datatypes presented in the parameters schema. These

are the string type, enumerated type, and uneditable type. The string type is just

normal text and can contain any character. The string element contains the standard

value and info elements used by all datatype elements, as well as two constraint ele-

ments (minLength and maxLength). The minLength and maxLength elements contain

the integral constraints for the length of the string-type variable. This is to offer ad-

ditional control over the string-type variable. If there is no need for length constraints

on the variable, one or both of the constraint elements can be left out of the variable

description. Figure 3-6 illustrates the structure of the string element.
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-string

-value

-info

-minLength

-maxLength

Figure 3-6: Hierarchy of String Datatype

Enumerated

The enumerated type can be considered as a subset of the string type, where the allow-

able values are limited to only a set of strings. Some common examples that require

the use of enumerated variables include the suits in a standard deck of cards (dia-

mond, heart, club, spade) and the days of the week (Monday, Tuesday, Wednesday,

Thursday, Friday, Saturday, Sunday). The enumerated element has a value, info, and

a list of acceptableValues. The acceptableValues element holds a semicolon-separated

list of legal values for the enumerated variable. The card suits example is represented

by the element:

<acceptableValues>diamond;heart;club;spade</acceptableValues>

The enumerated datatype is designed in this system to cover for the boolean

datatype. The main reason for this is because there exists no standardized rep-

resentation of Boolean values across various systems and programming languages.

Some encapsulated programs use true and false; others use 1 and 0. Some systems

are case-sensitive; others are not. The enumerated datatype is capable of defining

any possible Boolean value-pairs that systems use – be it true/false, T/F, hi/lo, or

on/off. Thus, boolean is not one of the supported datatypes in the schema design.

The hierarchy of the enumerated element is shown in Figure 3-7.

-enumerated

-value

-info

-acceptableValues

Figure 3-7: Hierarchy of Enumerated Datatype
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Uneditable

The final string-related datatype is the uneditable type. This type is not a standard

datatype in programming languages, but was implemented in the schema design. The

uneditable type is essentially a string, except its value is not intended to be altered at

any point in time. The uneditable element contains only the value and info elements,

and the hierarchy is similar to those of string and enumerated, without the extra

constraint elements.

-uneditable

-value

-info

Figure 3-8: Hierarchy of Uneditable Datatype

File

The file element contains a type attribute and five other parameter elements. The

type attribute indicates the file type (input, output, and in-out). This is to give the

relation of the file with respect to the program binary, with “inout” representing files

that the binary reads from and writes to during execution.

The parameter elements for the file element are the id, path, info, xmlDesc, and

maxLength. The path element is analogous to the value element used by the other

datatype elements. It is the editable value of the file variable. The id element contains

an identification for the file. It is useful to be able to link occurrences of a file variable

in various locations, and the file id provides a mechanism for doing so. For example,

a file could be listed in the binary description file, as well as one of the parameter

description files (even multiple occurrences within the parameter description file).

When the user makes a change to some aspect of the file variable in one occurrence,

the other occurrences should also be updated to reflect the change.

It would be very inefficient if the user has to hunt down all these occurrences and

make the changes manually. A better solution would be for the prototype program

that is processing the description files to make the updates automatically. Therefore,
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if a file id is supplied, this would facilitate the linking process. A simpler alternative

exists, where any change made to one file variable is reflected across all file variables

with the same path. The disadvantage of this approach is evident in the case where a

file has the empty string or null for its path (or some system-specific default). In this

scenario, changes made to one variable could inadvertently cause changes to other

unequivalent file variables.

If the given file variable has a corresponding XML description file, the path of

the description file is given by the xmlDesc element. The xmlDesc element is left

empty otherwise. The final parameter element is maxLength. Its use is identical to

the maxLength of the string element. This constraint provides an upper limit on the

length for the path of the file.. If there is no constraint on the maximum length of

the path, this element is not required.

The file element’s hierarchy is given in Figure 3-9.

-file

-type attribute

-id

-path

-info

-xmlDesc

-maxLength

Figure 3-9: Hierarchy of File Datatype

54



Chapter 4

Prototype System

With a schema design in place to constrain XML files describing the usage of pro-

grams, some software is also needed to parse such XML files and display the file

contents in an organized manner. This chapter describes the software written as part

of this thesis to parse in XML description files conforming to the schemas presented

in Chapter 3 and to generate relevant user controls that allow facilitated usage of the

encapsulated program.

4.1 Overview

The prototype system is written in Java, and can be run as either a standalone

application or an applet. The compiled Java files, along with the necessary JDOM

and Apache XML parser libraries, are archived into a JAR file named prototype.jar.

To run the system as an application, the following command is entered (assuming

that the user has Java Runtime Environment installed).

java -jar prototype.jar

To run the system as an applet, the code to load the applet must be embedded

within a webpage. The code below can be placed in the HTML of the webpage to

run the applet when the webpage loads.

<APPLET CODE="app/Main.class" ARCHIVE="prototype.jar">
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An interesting side effect resulting from the use of applets is its inability to be shut

down like a normal application. A normal Java program exits with the System.exit

command, which terminates the program. However, when this command is used on

Java applets, it causes the browser that loaded the applet to shut down as well. This

is because applets are embedded within webpages much like the way images and

tables are embedded. An image or table cannot be closed on its own. As part of a

webpage, the entire webpage must be closed altogether. Therefore, it is not possible

for an applet to close without inadvertently forcing the browser to close as well. A

workaround of this is to hide the applet when the user attempts to close it. The

system provides a button in the webpage; the visibility of the system GUI window

is toggled on and off by pressing on the button. While this does not shut down the

applet, it achieves the desired effect.

The system uses Apache’s Xerces-J XML parser described back in Chapter 2 to

parse all the XML description files. The resulting document object can be accessed

and manipulated by the system. JDOM generates a tree-like data structure, with the

nodes representing the embedded XML elements within the parsed document. The

data from within the element nodes is retrieved and altered by the system via the

JDOM API.

Once the JDOM data structure is created, the system can build a Java Swing-

based GUI (graphical user interface) using the available data. The various types of

description files (program, makefile, binary, parameter file) can be opened indepen-

dently, or as part of a program. This means that the user can choose to open a

makefile XML description file on its own, or jointly with the description file of the

program that the makefile is associated with. The system is able to open and support

up to one instance of each type of description file during its operation. It should be

noted that the system is capable of dealing with files from both the local system and

across the Internet. While the paths of the binaries, makefiles, and parameter files

must be on the local machine, the XML description files do not have this constraint.

The path for an xmlDesc element can either point to a local file or an URL for a

Web-based source.
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4.2 GUI Design

A graphical user interface (GUI) offers a pictorial interface to a program. GUIs

allow users to operate a program more productively, without having to deal with the

low-level details commonly found in text-based user interfaces. GUIs are built from

GUI components, which are objects that the user interacts with, via the mouse or

keyboard.

The classes used to generate the GUI components for the prototype system are

part of the Swing [11] GUI components from the package javax.swing. The Swing

components are the newest GUI components for the Java 2 platform, and are written,

manipulated, and displayed entirely in Java. This is in stark contrast to the original

GUI components offered by Java in the java.awt package. The Abstract Windowing

Toolkit (AWT) components are tied directly to the local platform’s GUI capabili-

ties. As a result, AWT-based Java GUIs run on different platforms have different

appearances and interaction options (oftentimes referred to as the look and feel).

Swing components are considered as lightweight components since they are written

completely in Java and are not affected by the GUI capabilities of the local platform.

Because Swing components are pure Java components, they offer a greater degree of

flexibility and portability than the AWT components.

Figure 4-1 shows the Swing-based GUI of the prototype system. Using various

components and features from Swing, the system is able to provide a standardized

look and feel across all platforms. The system GUI consists of a menu bar with a main

panel and an information panel. The menu bar has three menus: File, Tools, and

Help. The File menu has the basic system and file operations, such as “Open” and

“Close.” The Tools menu allows the user to parse the description files and modify

the schema validation option. The Help menu gives a dialog window with a short

description of the system.

The contents of the main panel are organized by tabs, based on the type of the

parsed XML description file. After the system processes the parsed description files,

GUI elements are generated (i.e. labels, buttons, text areas, checkboxes) within
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Figure 4-1: Swing-Based System GUI

the main panel tabs accordingly, to display relevant information and allow for user

interaction. The bottom information panel shows the descriptions of various items

as the user clicks on the “Information” buttons for these items to learn more about

them. Dialog windows are created as needed for the user to edit parameter values or

create new ones. Dialogs also provide information to the user and prompt for user

selection.

4.3 Functionality

This section contains a walkthrough of the prototype system’s GUI components in

order to explain the functionality. As mentioned previously, the prototype system is

capable of opening XML description files from the user’s local system, as well as from

remote sources on the Web. The user begins by going to the File menu on the menu
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bar and selecting “Open.” This brings up a dialog prompting the user to choose the

source of the file to be opened. The two available options are “Local Machine” and

“Web-accessible.” The user selection will then bring up either a JFileChooser dialog

window for the user to browse the local file system, or a dialog window for the input

of a web-based source file’s URL. Figure 4-2 shows these various dialogs.

Figure 4-2: Dialogs for Opening File

After opening the specified XML file, the system will display the contents of the

file in the main panel. For user convenience, the path of the most-recently opened file

during the current session is saved. For example, if the user last opened a web-based

file with the URL of http://www.files.com/program.xml, the next time the user decides

to open another web-based file, that path will already be present in the dialog. This

feature was added since users commonly open files from the same directories (having

all the input files stored in the same directory). In addition, reopening the same file

causes all the values to reset. Sometimes it is just too tedious for the user to change

the parameter values one by one to restore all values back to the default; having this

reset capability will facilitate the process.

After opening the file, the prototype system must then parse the XML description
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in order to generate all the corresponding GUI elements that allow the user to cus-

tomize the program’s compilation and execution parameters. This is accomplished

by selecting the “Parse XML” item from the Tools menu. Before parsing, the user

has the option to enable or disable the schema validation option of the system. By

default, the system parses all XML files without schema validation. This is assum-

ing that the user knows better than to have the system parse illegitimate XML files

that are unsupported. The option menu is shown in Figure 4-3. It is safer to have

the schema validation capability turned on, in case the user is unsure of whether

the source XML file conforms to the XML schema design proposed in the previous

chapter. Parsing is slightly faster without schema validation.

Figure 4-3: Options for Parser Validation Against Schema

The resulting GUI generated by the system depends on the type of description

file parsed. There are four total description file categories (program, makefile, binary,

parameter file); the user interface for each of these categories is discussed in detail in

the following subsections.

4.3.1 GUI for Programs

When the XML description file for a program is parsed, the GUI generates a PRO-

GRAM tab, with the relevant information about the program displayed, which serves

as a gateway for accessing descriptions of makefiles, binaries, and parameter files asso-

ciated with the current program. The PROGRAM tab has four main sections, which

are mainly consistent with the major parameter elements of the program element

from the XML description file. The “Basic Information” section, given in Figure 4-4,

provides the information regarding the program name, description, architecture, and

desired shell program. From the list of available architectures and shells given in the
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program description file, the GUI creates two pull-down lists for the user to choose

from. The “Information” button displays the program description in the bottom in-

formational panel of the window. The “Close Tab” button deletes the tab and closes

the current program description file.

Figure 4-4: Basic Information Section in PROGRAM Tab

The “Makefile” section, as seen in Figure 4-5, shows the path of the makefile for

the current program on the local system and the type of make tool to be used on

the makefile. If there is an XML description file available for the makefile, the path

for that description file is given and the “Open XML” button is provided. When the

makefile does not have a description file, only the other three buttons will be visible.

Figure 4-5: Makefile Section in PROGRAM Tab

The “Open XML” button allows the user to open the XML description of the

makefile in conjunction with the program description. This creates an additional

MAKEFILE tab, which displays information about the makefile and allows the user

to generate a customized makefile. The parsing of the makefile description will in-

corporate the schema validation setting at the time, and the tab for the makefile will

be generated without displaying the associated XML contents first. This is because

the makefile description is opened as part of the current program. The “Save Script”

button allows the user to choose the path of the generated shell script for compiling
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Figure 4-6: Binaries Section in PROGRAM Tab

the program source code using the given make tool and makefile. Finally, the “Run

Makefile” button allows the user to execute the saved script.

The “Binaries” section gives a listing of all binaries available for the opened pro-

gram. The GUI displays the path of each compiled program binary, as well the

binary’s XML description file if it is available. A screen shot of the “Binaries” sec-

tion is provided in Figure 4-6. As with the “Makefile” section, the user can open a

binary’s description file automatically by clicking on the “Open XML” button. This

causes the system to associate the binary description with the current program de-

scription. Thus the binary is not treated independently and is considered as being

part of the program. Opening and parsing the binary description will add five tabs to

the GUI. Section 4.3.3 elaborates on these tabs. In the provided example, the binary

corresponding to the “sun5” architecture does not have a description file.

The last section in the PROGRAM tab is “Constraints.” The system creates a

bordered box for each constraint item listed in the program description file. These

boxes are all set within the main “Constraints” section. Used in the context of the

program, constraints are simply additional files required during the make process

that contain build parameters. Each constraint box gives the name and path of the

constraint file, as well as the path of the constraint file’s XML description, if available,

along with a corresponding button to open the description.
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Figure 4-7: Constraints Section in PROGRAM Tab

4.3.2 GUI for Makefiles

Opening and parsing a makefile description file will prompt the system to create a

tab named MAKEFILE. This tab contains the basic information and elements for

the makefile. The sections of the makefile (corresponding to the section elements

from the makefile schema) are each given a bordered panel in the tab. Each section

corresponds to a file to be appended to the makefile, a file from a list of choices to be

appended to the makefile, or a list of preprocessor macros and definitions to include

in the makefile. The details of the various types of makefile sections were discussed

back in Section 3.3. After the sections, the MAKEFILE tab also includes a list of the

defined conflicts for the preprocessor objects in the makefile.

Figure 4-8: Basic Information Section in MAKEFILE Tab

Figure 4-8 shows the portion of the MAKEFILE tab for basic information. The

path and architecture of the makefile are given. The user can change the path of the

makefile on the local machine using the “Change Path” button. The system saves the

generated makefile to the specified path when the “Save Makefile” button is pressed.

“Close Tab” simply closes the current instance of the program makefile.

The user can change parameters within the current makefile through the GUI

components provided for each section of the makefile. Figure 4-9 displays the contents
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Figure 4-9: Section for preproc-objects Element in MAKEFILE Tab

of a makefile section for preprocessor objects. The preprocessor objects used in the

section are given in smaller bordered boxes. Each preprocessor object box contains an

“Information” button, as well as a checkbox used for the inclusion of the preprocessor

object in the generation of the makefile. The checkbox maps directly to the use

element within each preproc-obj element, as presented in the makefile schema. By

toggling a preprocessor object’s checkbox, the user is able to change the value of

the use element (can be either true or false). All the other aspects of the preproc-

obj element, such as value and requires, are not included in the GUI, because these

aspects are fixed and are extraneous for the user. Their inclusion in the GUI would

only add more confusion. The preprocessor object dependencies are checked by the

system before saving the makefile. This is to ensure that all necessary preprocessor

objects have their checkboxes toggled.

There is really no difference in the GUI between the makefile sections for the

includeFile elements and the includeFileChoice elements. To the system, a file is

included in both cases. In the example shown in Figure 4-10, the first section cor-

responds to an includeFileChoice element, while the second corresponds to an in-

cludeFile element. The included file in the first section can change depending on the

selected architecture for the makefile, while the same file is included in the second

section for any of the architectures. The file fileSegment3.linux is included for the

first section in the figure, corresponding to the selected “linux” architecture. If an-

other architecture is selected, such as “sun5,” then another file is included in place of

fileSegment3.linux.
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Figure 4-10: Sections for includeFile and includeFileChoice in MAKEFILE Tab

The “Conflicts” section of the MAKEFILE tab lists all the conflicts defined in

the makefile description file. Each conflict element from the description file has its

own bounded box in this section. The names of the preprocessor macros and defini-

tions that cause the conflict are listed in the box. Therefore, if a box exists in this

section with the text “Conflict: A, B, C,” then a conflict exists for the encapsu-

lated system when preprocessor objects A, B, and C are used at the same time. The

prototype system checks to see that no conflicts exist for the objects in the current

makefile setting before saving the makefile. The example given in Figure 4-11 shows

that all three of the dblprec, forcing, and analytical preprocessor objects cannot be

used in the makefile at the same time.

Figure 4-11: Conflicts Section in MAKEFILE Tab

4.3.3 GUI for Binaries

The data in the XML description file for a compiled binary is presented in five separate

tabs: BINARY BASICS, BINARY CONSTANTS, BINARY I/O FILES, BINARY

COMMAND-LINE ARGUMENTS, and BINARY STDIN.

The BINARY BASICS tab contains the basic information about the binary and

offers features for the user to save and run a shell script to execute the program

binary. Textual GUI elements in the tab provide the name, path, and description

(info) of the binary. As seen in Figure 4-12, there are two buttons to generate and
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Figure 4-12: Contents of BINARY BASICS Tab

run the binary execution script. A third button closes the binary description file and

removes the five binary-related tabs.

Figure 4-13: Contents of BINARY CONSTANTS Tab

The second tab generated from the binary description file is BINARY CON-

STANTS. This tab provides a list of all the constants defined for the binary. Each

constant has its own bordered box, with the relevant information and options for

user interaction. The name of the constant is given in the title of the border. Fig-

ure 4-13 shows the BINARY CONSTANTS tab with the PI constant defined. Each

constant has a type and value, both shown as JTextArea objects. The user can click

“Edit Value” to redefine the value of the constant. Doing so brings up another dialog

window that allows the user to change the current value of the constant. Before the

system commits the change, the datatype of the user-modified value is checked against

the constant’s predefined datatype. The user also has the option to define additional

constants or delete them as needed. All this functionality is useful only if the binary

supports the redefinition of built-in constants and the addition of user-defined ones.

The current implementation of the system does not use these constants in any way

during binary execution. The constants are shown to offer an idea of a possible GUI

66



design.

Figure 4-14: Contents of BINARY I/O FILES Tab

The Binary I/O FILES tab lists all the input and output files used by the pro-

gram binary during execution. Figure 4-14 includes two file listings. Each file entry

corresponds to the definition of the file datatype element in the parameters schema

(Section 3.5). The GUI displays the type and path of each file listing and also pro-

vides buttons for the user. For each file, the user can choose to edit the path, or open

the XML description of the file, if the xmlDesc element of the file has been defined

in the description. The file id element that is used for linking is shown as part of the

border title. In Figure 4-14, an input file with an available XML description and an

id of “1” is shown at the top. The second file listing is for an output file that has an

undefined file id and no available XML description file.

Figure 4-15: Contents of BINARY COMMAND-LINE ARGUMENTS Tab

Figure 4-15 shows the contents of the BINARY COMMAND-LINE ARGUMENTS
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tab, having only one command-line argument. Each listed command-line argument

(cl-arg element in the binary description file) and its associated switch and variables

values are enclosed within a box. The values for the switch and variables can all be

modified. A Use checkbox precedes each switch and variable entry. The system uses

the checkbox to determine whether the command-line argument (its switch and val-

ues) is included in the call for the execution of the binary. The checkbox corresponds

to the use element within each cl-arg element of the binary description file. A checked

box maps to a value of true; an unchecked box maps to false.

There is an important distinction between the Use checkbox for the switch and the

Use checkbox for the variables. Each of the available variable values for a command-

line argument can be included by checking (toggling on) its checkbox. The Use

checkbox for the switch acts as the master checkbox for the entire command-line

argument. When the checkbox of the switch is unchecked, it is assumed that the

command-line argument will be omitted, and the switch and all corresponding variable

values are not used (regardless of the state of the variable checkboxes). This is better

explained through the following command:

foo -test 12 39

If the above command is for executing a program binary, then “foo” would be the

binary name and “-test 12 39” would be a command-line argument (“-test” is the

switch, “12” and “39” are its two variable values). The above command is generated

by the prototype system only if all three checkboxes for the switch and two variables

are toggled on. If the user unchecks only the checkbox for the “-test” switch, then

the system would omit the switch and both of the variable values as well, even though

their checkboxes have not been unchecked yet.

The user can choose to execute the binary with only the “-test” switch and no

trailing values (foo -test) by selecting only the checkbox of the switch and leaving

the checkboxes of the variables unselected. In the case where a program binary is

executed with a string of argument values and no switch (e.g. foo 12 39), the value

of the switch used by the command-line argument would be the empty string. The
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Figure 4-16: Contents of BINARY STDIN Tab

only difference between this example and the “foo -test 12 39” example is the

value of the switch.

The user has the option to include additional variables for each command-line

argument through the “Add Variable” button. Each added variable has its Use

checkbox toggled on by default. There is no option to delete a variable since the

desired result can be achieved by unchecking the checkbox for the variable. The

system also supports the functionalities of adding or deleting command-line arguments

through the “Add Argument” and “Delete Argument” buttons. This is the only

method for capturing the standard output and standard error of the binary, since the

current schema design only supports the standard input stream. These buttons will

be phased out once the binary schema incorporates standard out and standard error.

The BINARY STDIN tab provides the details of the standard input used by the

program binary. From the system’s point of view, the standard input portion of a

command to execute a binary is just another command-line argument with “<” as its

switch and having only one variable. Therefore, the user interface for the standard

input is similar to the interface for a command-line argument. This is evident from

comparing Figure 4-16 with Figure 4-15 shown previously. Furthermore, the BINARY

STDIN tab does not allow the user to add additional arguments or variables or delete

them.
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4.3.4 GUI for Parameter Files

When the prototype system opens and parses a description file for a parameter file,

two tabs are created initially – PARAMETERS and INDEX. The PARAMETERS

tab displays all the major components of the top-level paramfile element from the

description file (i.e. path, sets of variables). Figure 4-17 shows an example of the

PARAMETERS tab.

Figure 4-17: Contents of PARAMETERS Tab

At the top of the tab is a section displaying the parameter file’s basic information

and also providing buttons for basic operations. The full path of the parameter file

and its description are given as textual GUI elements. The values of the parameter file

can be reset to the default ones provided in the original description file by clicking on

the “Reset Values” button. This is a much more convenient approach than having the

user make all the changes manually. The “Save Script” button prompts the system

to save a copy of the parameter file with the current parameter/variable values to the

specified local path. “Close File” simply closes the current instance of the parameter

file and removes all tabs in the GUI relating to the parameter file.

Following the Basic Information section, all subsequent sections in the tab cor-

respond to the defined set elements from the description file. Each set contains a
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Figure 4-18: UI Representation for set Element

Figure 4-19: Contents of INDEX Tab

number of variables, along with their values and constraints. The section for a sam-

ple set is shown in Figure 4-18. Each variable within the set is listed with its name,

datatype, and value within a smaller bordered box. The user can modify the value of

each variable with the “Edit Value” button. Clicking this button brings up a dialog

window that allows the user to make the appropriate changes and displays any con-

straints defined for the variable. The modified value is checked against the datatype

of the affected variable and any possible constraints it has. The system does not

update the user modification unless none of the constraints are violated.

As seen in Figure 4-19, the INDEX tab provides an index listing of all the variables
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Figure 4-20: Contents of RESULT Tab

within the current parameter file. The variable names are listed alphabetically, along

with the set that the variable belongs to. This tab offers an alternative approach for

editing variable values in the parameter file. It could be time consuming to search

through tens or hundreds of sets for a specific variable in the PARAMETERS tab.

The index allows the user to browse through the variables based on their names.

When the user clicks on the “Show Variable” button, the system generates a third

tab named RESULT. This extra tab allows the user view the details of the variable

and make changes.

The RESULT tab brings up the details of the selected variable. The variable

is displayed as it appears in the PARAMETERS tab, and any change made to the

variable in either location affects both locations. The INDEX and RESULT tabs are

meant to let the user search for and modify the value of a variable quickly.

72



Chapter 5

Initial Results

The XML schema design and system implementation were tested initially with the

Primitive Equation (PE) Model binary of the HOPS system [30], which was described

in the introduction. PE Model is at the heart of the HOPS forecasting system, and is

used to predict the ocean state using state variables such as temperature, salinity and

velocity. PE Model reads in NetCDF [14] files and runtime parameters from standard

input, and has no command-line arguments. During execution, PE Model outputs to

multiple NetCDF files and the standard out and standard error streams.

Many of the decisions made for the schema design were influenced by the PE

Model program. As the schema underwent several iterations of improvement, design

revisions were based on PE Model, while keeping the elements within the design as

general as possible (e.g. command-line arguments) – paving the way for adapting

the schema design and prototype system to other applications in the future. As a

result, the initial testing was performed with the description files of the encapsulated

PE Model. The system enabled the user customization of build-time and runtime

parameters and successfully compiled and executed the resulting PE Model binary.

5.1 Writing XML Description Files

XML description files were written for the PE Model program, makefile, binary,

runtime parameters provided through standard input (e.g. pemodel.in), and build-
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time parameters defined in a file that always has the name param.h.

A top-level program description file was written, with the definitions of the sup-

ported architectures for PE Model, and possible shell programs used for scripts. The

program description also points to the associated description files of PE Model’s

makefile, build-time parameter file param.h, and compiled binary.

The makefile description file defines the various preprocessor macros and defini-

tions and sections embodied in the makefile. The preprocessor objects are included

directly in the description file itself, whereas the sections are included as file fragments

to be appended to the makefile. There were four file fragments to be included – two

were platform-independent, two were not. For the platform-dependent portions of the

makefile, eight versions (corresponding to the eight platforms supported by HOPS)

were saved in separate files. The compilation process also requires an input parameter

file, param.h, which was encapsulated as the param h.xml description file.

The usage of the compiled binary was defined in a binary description file. The

runtime parameters of the PE Model binary are provided through the standard input

as a parameter file (e.g. pemodel.in). This file was also encapsulated in an XML

description file, pemodel stdin.xml.

To facilitate the writing of description files, a Java tool was written to check for the

well-formedness and schema conformity of the description files. The tool takes in a

file, accessible locally or on the Web, and a Boolean argument for schema-validation.

An argument of false will disable the schema-validation feature, and the tool will

only check for the well-formedness of the input file. Otherwise, the tool validates the

input file against the declared schema document(s) within the input. The following

command demonstrates the usage of the validation tool.

java checkXML path/URL validation-boolean

By having the description files for all usage aspects of PE Model – from compilation

to execution – the encapsulation of the program was completed successfully.
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5.2 Using the XML Description Files with the Pro-

totype System

The testing was performed on a Dell laptop computer running Linux. The architec-

ture selected from the program description during testing was “linux” to match the

system architecture. From there, the makefile description was processed and various

file fragments and preprocessor objects were pieced together to generate the desired

makefile automatically. The file fragments corresponding to the Linux platform were

included by the system for the makefile automatically, due to the architecture selec-

tion of “linux.”

The graphical interface components that were generated from parsing these various

description files are shown in the various figures of the previous chapter. The source

of all these figures was the prototype system processing the encapsulated PE Model

binary.

Through the system GUI, the appropriate makefile preprocessor macros and def-

initions were selected for inclusion in the final makefile. Because the compilation

process for PE Model also requires build-time parameters defined in param.h, the

system first had to process the XML description of this parameter file and generate

the file (param.h). The prototype system was able to use the generated makefile and

build-time parameter file to compile the PE Model source files and build the program

binary for the Linux platform automatically.

The PE Model binary has a series of runtime parameters read in from standard

input that the user needs to specify before executing the program binary. The input

parameter data is provided to the binary in the file pemodel.in. Figure 5-1 shows an

excerpt of this file. A parameter XML description file, based on the values and types

of these parameters, was written for pemodel.in.

After validating the XML description files against their respective schemas, the

prototype system was able to process the information about the binary and its pa-

rameters for display by the GUI. The system presented the contents of the runtime

parameter file, which oftentimes can be cryptic and confusing for users to modify, in
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1 NFIRST NLAST D0START NNERGY NTSOUT NTSI NMIX NCON NTDGN

1 672 8919.00 92 48 1 10 0 0

2 DTTS DTUV DTSF (seconds)

900 900 900

3 MIXVEL MIXTRC MIXZTD (mixing scheme: momentum/tracers/vorticity)

1 1 1

4 NORD NTIM NFRQ (momentum, tracers, vorticity, and transport)

2 1 1 4 5 1 2 1 1 4 1 0

5 AM AH

1E9 2E7

. . . . .

39 TIDEBOX (a80): input ASCII file defining tidal regions.

/dev/null

99 END of input data

Figure 5-1: Subset of Parameter File Generated Automatically by System

an organized graphical manner that is easily understood by users. Instead of having

to edit the parameter file directly, the parameter values were updated through the

GUI. All modifications were checked for legitimacy before the system generated the

parameter file (pemodel.in) automatically and proceeded to execute the PE Model

binary using the parameter file as the standard input.

A subset of the PE Model runtime parameter file generated by the system has

already been shown in Figure 5-1. The entire parameter file includes 39 total cards,

which are analogous to the sets defined in the parameters schema. Each card contains

the group of variables related to a specific aspect of the PE Model binary simulation.

For instance, Card 10 deals with the tidal mixing variables used during the execution

of the binary.

Each card corresponds to two lines of output in the parameter file. The first line

is ignored by the system and is used for commenting purposes, in order to make

the generated file legible for the human user. The second line contains the actual

parameter values used for the binary execution. Therefore, the PE Model binary

ignores all the odd-numbered lines (with the exception of the very last line). The

parameter values are separated by white spacing and appear on the even-numbered

lines. The last line beginning with “99” signifies the end of the parameter file for the
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binary. Even though this is an odd-numbered line, it is not ignored by the binary.

5.3 Additional Issues

5.3.1 Special Characters Used in XML

The XML specification defines certain special characters, such as the ampersand (&)

and left angle bracket (¡), that may appear in their literal form only when they

are used for delimiters for markup or other special purposes1 To use these special

characters elsewhere in an XML document, they must be escaped using numeric

character representations or strings. If these characters are not escaped in the writing

of the XML description files, the XML description files cannot be parsed correctly by

any parser. The following shows some common special characters and their respective

escape strings used in XML documents.

& -- &amp;

< -- &lt;

> -- &gt;

’ -- &apos;

‘‘ -- &quot;

5.3.2 Makefile and Ant

The current approach for the encapsulation of the program makefile treats its contents

as a series of included file fragments and preprocessor macros and definitions. All of

the shell-based commands within the makefile are placed in the file fragments to

be included, and the description file has no knowledge of these shell commands. A

possible improvement to this approach would be the use of Apache Ant [1].

1Within comments, processing instructions, or CDATA sections.

77



Ant is being developed by the Apache Software Foundation. It is a build tool

based on Java, which gives Ant the ability to be cross-platform. Instead of using the

shell-based commands like standard makefiles, Ant uses XML-based configuration

files. The XML build file itself describes a project, with a number of targets. Each

target consists of a number of task elements and can have dependencies on other

targets. For example, a “init” target contains tasks to create several directories, and

the “compile” target depends on “init.” If the user tries to run “compile,” Ant checks

to see that “init” is run before “compile” to satisfy the dependency. The target can

be thought of as some sort of subroutine, with the tasks being commands within the

subroutine.

Ant already has many predefined categories of tasks. Some of these categories in-

clude archiving (e.g. creating .zip, .cab, .jar files), execution (e.g. system commands),

and file tasks (e.g. copy, delete, remove, etc.). If the user wishes to define a new task,

a Java class that extends the Ant Task class must be created.

While Ant seems promising, writing the build files in XML could be somewhat

awkward and tedious, especially for larger software projects with many files, defini-

tions, and dependencies. Currently, there are some tools being developed, such as

Ant Factory [2], to generate Ant files automatically. Such tools could be helpful when

trying to generate thousands of lines of XML used in Ant configuration files.
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Chapter 6

Conclusions

6.1 Conclusions

In this thesis, an XML-based approach for the encapsulation of legacy binaries is pre-

sented. For a program and its associated components, such as the makefile, binaries,

and parameter files, it is possible to create XML description files that conform to the

schema design. These schema-validated XML description files will provide a readable

standard for the computing of binaries and free the users from the constraints of

specific platforms and hardware setups. Through the GUI, the user can control and

customize all aspects of compilation and execution for the encapsulated program. As

long as a program’s source files and XML description files are available, the user is

able to compile and execute the program on his local machine.

A prototype system was implemented and had the capability to generate a graph-

ical user interface displaying the relevant program information, along with various

compile-time and run-time components. With the appropriate parameter files in

place, the system is also able to compile and execute the encapsulated program, using

the GUI through the entire process. The HOPS PE Model program was encapsulated

effectively using the proposed schema design and prototype system. The GUI allowed

for user customization of program settings and build-time/run-time parameters, and

also validated the value changes for potential violations of range and datatype con-

straints before generating parameter files and executing a binary. PE Model was
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compiled from its source files on a Linux-based laptop computer and the resulting

binary was run on the same platform with the run-time parameters as standard input.

6.2 Future Research

With the proposed schema design and prototype system in place, there are many

opportunities for improvements and extensions. The main focus of any future work

should be to extend the usability of the schema design and to improve the functionality

of the system GUI.

6.2.1 Schema Extensions

In order to facilitate the extension of the proposed schema design to XML descriptions

of programs from other systems (non-HOPS) later on, the schemas could be extended

in several areas. There are other lesser-used variable datatypes that are not supported

by the current design. An example of this is the array-type variable. Currently, the

system can only represent a sequence of values from arrays or lists as a string of

characters (using the string variable). While this is a completely legitimate adaptation

of the string datatype, there is no way to check the validity of the individual array

values using the existing implementation.

Another area for extension is the listing of available architectures, makefile types,

and shell programs. The current lists are based on the requirements of PE Model,

and are not necessarily inclusive of all cases encountered in other systems. For exam-

ple, the architecture list currently does not include any Windows or Mac operating

systems.

The elements associated with the shell program should be expanded to include

the path of the shell as well. The current implementation assumes that all the shell

programs are available in the standard /usr/bin directory of the system. However,

this is not necessarily the case for all systems. Therefore, it would be beneficial to

associate each shell program with the path for its executable as well. This can be

done by defining each shell element to include a path element.
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A point brought up during the discussion of the binary schema was the inclusion of

the parameter schema in order to reuse defined elements from the parameter schema

(e.g. var and datatype elements). It might be better to define these elements in a

separate schema for common datatypes, so that the binary and parameter schemas

are kept independent of each other.

Finally, the binary schema should be expanded to include support for standard

output (stdout) and standard error (stderr). The present schema design only covers

for the standard input stream during the execution of a program binary. It does

not handle the standard output and error streams explicitly. Of course, the three

standard streams can all be defined as normal command-line arguments in the binary

description file, which is why the option to add command-line arguments in the GUI

was implemented, but this approach is less thorough. The standard output and error

streams would have predefined switches of “>” and “&>”, respectively, for the C family

of shells. The standard streams would need to be included on the command-line, in

the order of standard input, standard output, and standard error. The Bourne family

of shells uses a different syntax.

6.2.2 System/GUI

As with any GUI-based system, the usefulness increases with the level of convenience

offered by the GUI. The prototype system already implements many features designed

to make the user’s life easier and expedite the customization of the compilation and

execution processes for an encapsulated program. However, there are many more

possibilities for future development.

Even though the current implementation is able to process different types of de-

scription files at the same time (i.e. the description files for a program, its makefile,

and its binary), each type of XML description file is still handled somewhat separately

by the system. An inherent advantage of this approach is that the user can choose

to view just the details of a specific component’s description file, without having to

deal with the description files for its related components. The user can customize the

values within a parameter file on its own, without having to open up the description
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files for the program and binary with which the parameter file is associated.

This approach does make integrating and coordinating the various GUI compo-

nents harder to do. For instance, the architecture definitions in various locations must

be coordinated by the system, so that a change in one location affects all locations.

When the user changes the architecture selection in the PROGRAM tab, the cor-

responding selection in the MAKEFILE tab must change also. Otherwise, the user

would be forced to make such changes manually, and the system becomes more of a

nuisance than an useful tool. Incorporating such coordination between GUI compo-

nents introduces a lot of complexities into the system. Perhaps the system GUI could

be organized in a different manner for major revisions in the future – one that is less

cumbersome for the user.

Also, the current GUI cannot make universal changes to file-type variables with

the same ID yet. Even though the schemas already support this feature of linking

files with the same file id, the GUI does not yet implement such functionality. When

the user changes the path of a file variable, all other occurrences of that file variable

within the XML descriptions of the same program will not change automatically. The

user must update each instance of the variable manually.

Lastly, it would be useful to have some conversion utility in place for variable

units, such that the user’s numeric inputs in unacceptable units are converted to

inputs with units allowed by the binary. For example, if an encapsulated program

requires a variable to be expressed in meters, values given in centimeters or inches

could be converted by the system automatically. The user would save time and would

not need to worry about having to do all such conversions manually. This improves

the usability of the system and increases its robustness.

6.2.3 Workflows and Grid Computing

The current implementation of the system deals with programs individually. A possi-

ble extension of the system would be to introduce the concept of program workflows,

similar to that of the problem-solving environments introduced in Section 1.4. The

work performed by many scientific systems oftentimes require chaining several dif-
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ferent programs together. The output of some programs could be fed in as input

for other programs. This can be achieved if a program workflow composition tool is

added to the system GUI. The schema design must also be extended to introduce the

concept of program workflows, with various programs input and output requirement

definitions.

While the system is certainly useful as a Web-accessible applet that is capable of

compiling and running a program on the user’s local machine, a step must be taken

to handle programs located on remote machines as well. Many scientific applications

require dedicated workstations or even supercomputer capabilities not available on

the ordinary machine. By placing the encapsulated program on remote machines with

the appropriate setup and computing power, an user will be able to run such programs

and will no longer be constrained by the computing resources available locally.

The eventual goal of this project is to incorporate grid computing technology to

enable remote computing. Let us suppose that there is an encapsulated simulation

program, requiring a lot of resources that the user has remote access to. The user can

use the XML descriptions of the program and the prototype system to compile and

run the program. By using grid computing technology, the system can compile and

run the program on specific remote machines with the proper resources, and provide

the program results back to the user. In this scenario, the user never has to compile

and install the program on his/her local machine.

Grid computing technology is associated with the discovery and management of

computing resources available across a heterogeneous network of computing infras-

tructures. There are existing toolkits that provide web portals [5, 6] to Grid infras-

tructures. The prototype system can be distributed by the web portal as a Java

applet – one of the primary reasons why the system was implemented as an applet as

well. Included with the portal would be the functionality for the user to discover and

manage computing resources available for scientific computations and simulations.

Thus, the user can customize the parameters for remote program execution, then

utilize the Grid infrastructure to run the binaries remotely.
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Appendix A

Program Schema – program.xsd

<?xml version="1.0"?>

<!-- program.xsd SCHEMA -->

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<!-- ********** PROGRAM ********** -->

<xs:element name="program" type="programItem" />

<!-- ********** DEFINITION OF program ELEMENT ********** -->

<xs:complexType name="programItem">

<xs:all>

<xs:element name="name" type="xs:string" />

<xs:element name="info" type="xs:string" />

<xs:element name="architecture" type="archItem" />

<xs:element name="shell" type="shellItem" />

<xs:element name="makefile" type="makefileItem"

minOccurs="0" />

<xs:element name="binaries" type="binaryList" />

<xs:element name="constraints" type="constraintsList"

minOccurs="0" />

</xs:all>

</xs:complexType>

<!-- ********** DEFINITION OF architecture ELEMENT ********** -->

<xs:complexType name="archItem">

<xs:sequence>

<xs:element name="choices" type="archChoiceItem" />

<xs:element name="selected" type="archTypes" />

</xs:sequence>

</xs:complexType>

<!-- ********** DEFINITION OF choices ELEMENT ********** -->

<xs:complexType name="archChoiceItem">

<xs:sequence>

<xs:element name="choice" type="archTypes"

maxOccurs="unbounded" />

</xs:sequence>

</xs:complexType>

<!-- ********** DEFINITION OF architecture TYPES ********** -->

<xs:simpleType name="archTypes">
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<xs:restriction base="xs:string">

<xs:enumeration value="alpha" />

<xs:enumeration value="cray" />

<xs:enumeration value="iris" />

<xs:enumeration value="linux" />

<xs:enumeration value="rs6000" />

<xs:enumeration value="sun3" />

<xs:enumeration value="sun4" />

<xs:enumeration value="sun5" />

</xs:restriction>

</xs:simpleType>

<!-- ********** DEFINITION OF shell ELEMENT ********** -->

<xs:complexType name="shellItem">

<xs:sequence>

<xs:element name="choices" type="shellChoiceItem" />

<xs:element name="selected" type="shellTypes" />

</xs:sequence>

</xs:complexType>

<!-- ********** DEFINITION OF choices ELEMENT ********** -->

<xs:complexType name="shellChoiceItem">

<xs:sequence>

<xs:element name="choice" type="shellTypes"

maxOccurs="unbounded" />

</xs:sequence>

</xs:complexType>

<!-- ********** DEFINITION OF shell TYPES ********** -->

<xs:simpleType name="shellTypes">

<xs:restriction base="xs:string">

<xs:enumeration value="sh" />

<xs:enumeration value="bash" />

<xs:enumeration value="csh" />

<xs:enumeration value="tcsh" />

<xs:enumeration value="ksh" />

</xs:restriction>

</xs:simpleType>

<!-- ********** DEFINITION OF makefile ELEMENT ********** -->

<xs:complexType name="makefileItem">

<xs:sequence>

<xs:element name="info" type="xs:string" />

<xs:element name="type" type="makefileTypes" />

<xs:element name="path" type="xs:string" />

<xs:element name="xmlDesc" type="xs:string" minOccurs="0" />

</xs:sequence>

</xs:complexType>

<!-- ********** DEFINITION OF makefile TYPES ********** -->

<xs:simpleType name="makefileTypes">

<xs:restriction base="xs:string">

<xs:enumeration value="GNUmake" />

<xs:enumeration value="BSDmake" />

</xs:restriction>

</xs:simpleType>

<!-- ********** DEFINITION OF binaries ELEMENT ********** -->

<xs:complexType name="binaryList">

<xs:sequence>

<xs:element name="binary" type="binaryItem"

maxOccurs="unbounded" />
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</xs:sequence>

</xs:complexType>

<!-- ********** DEFINITION OF binary ELEMENT ********** -->

<xs:complexType name="binaryItem">

<xs:sequence>

<xs:element name="info" type="xs:string" />

<xs:element name="arch" type="archTypes" />

<xs:element name="path" type="xs:string" />

<xs:element name="xmlDesc" type="xs:string" minOccurs="0" />

</xs:sequence>

</xs:complexType>

<!-- ********** DEFINITION OF constraints ELEMENT ********** -->

<xs:complexType name="constraintsList">

<xs:sequence>

<xs:element name="constraint" type="constraintItem"

maxOccurs="unbounded" />

</xs:sequence>

</xs:complexType>

<!-- ********** DEFINITION OF constraint ELEMENT ********** -->

<xs:complexType name="constraintItem">

<xs:sequence>

<xs:element name="name" type="xs:string" />

<xs:element name="info" type="xs:string" />

<xs:element name="path" type="xs:string" />

<xs:element name="xmlDesc" type="xs:string" minOccurs="0" />

</xs:sequence>

</xs:complexType>

</xs:schema>
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Appendix B

Makefile Schema – makefile.xsd

<?xml version="1.0"?>

<!-- makefile.xsd SCHEMA -->

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:include schemaLocation="program.xsd" />

<!-- ********** MAKEFILE ********** -->

<xs:element name="makefile" type="makefileType" />

<!-- ********** DEFINITION OF makefile ELEMENT ********** -->

<xs:complexType name="makefileType">

<xs:sequence>

<xs:element name="path" type="xs:string" />

<xs:element name="info" type="xs:string" />

<xs:element name="section" type="sectionItem"

maxOccurs="unbounded" />

<xs:element name="conflicts" type="conflictsList" />

</xs:sequence>

</xs:complexType>

<!-- ********** DEFINITION OF section ELEMENT ********** -->

<xs:complexType name="sectionItem">

<xs:sequence>

<xs:element name="info" type="xs:string" />

<xs:choice>

<xs:element name="includeFileChoice" type="includeChoices" />

<xs:element name="includeFile" type="xs:string" />

<xs:element name="preproc-objects" type="ppObjectsList" />

</xs:choice>

</xs:sequence>

</xs:complexType>

<!-- ********** DEFINITION OF includeFileChoice ELEMENT ********** -->

<xs:complexType name="includeChoices">

<xs:sequence>

<xs:element name="choice" type="makefileChoiceItem"

maxOccurs="unbounded" />

</xs:sequence>

</xs:complexType>

<!-- ********** DEFINITION OF choice ELEMENT ********** -->
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<xs:complexType name="makefileChoiceItem">

<xs:sequence>

<xs:element name="architecture" type="archTypes" />

<xs:element name="includeFile" type="xs:string" />

</xs:sequence>

</xs:complexType>

<!-- ********** DEFINITION OF preproc-objects ELEMENT ********** -->

<xs:complexType name="ppObjectsList">

<xs:sequence>

<xs:element name="startText" type="xs:string" />

<xs:element name="endText" type="xs:string" />

<xs:element name="separator" type="xs:string" />

<xs:element name="preproc-obj" type="ppObjItem"

maxOccurs="unbounded" />

</xs:sequence>

</xs:complexType>

<!-- ********** DEFINITION OF preproc-obj ELEMENT ********** -->

<xs:complexType name="ppObjItem">

<xs:all>

<xs:element name="name" type="xs:string" />

<xs:element name="info" type="xs:string" />

<xs:element name="header" type="xs:string" />

<xs:element name="value" type="xs:string"

minOccurs="0" />

<xs:element name="use" type="xs:boolean" />

<xs:element name="requires" type="requiresList"

minOccurs="0" />

</xs:all>

</xs:complexType>

<!-- ********** DEFINITION OF requires ELEMENT ********** -->

<xs:complexType name="requiresList">

<xs:sequence>

<xs:element name="item" type="xs:string"

minOccurs="0" maxOccurs="unbounded" />

</xs:sequence>

</xs:complexType>

<!-- ********** DEFINITION OF conflicts ELEMENT ********** -->

<xs:complexType name="conflictsList">

<xs:sequence>

<xs:element name="conflict" type="conflictItem"

minOccurs="0" maxOccurs="unbounded" />

</xs:sequence>

</xs:complexType>

<!-- ********** DEFINITION OF conflict ELEMENT ********** -->

<xs:complexType name="conflictItem">

<xs:sequence>

<xs:element name="item" type="xs:string"

maxOccurs="unbounded" />

</xs:sequence>

</xs:complexType>

</xs:schema>
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Appendix C

Binary Schema – binary.xsd

<?xml version="1.0"?>

<!-- binary.xsd SCHEMA -->

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:include schemaLocation="parameters.xsd" />

<!-- ********** BINARY ********** -->

<xs:element name="binary" type="binaryItem" />

<!-- ********** DEFINITION OF binary ELEMENT ********** -->

<xs:complexType name="binaryItem">

<xs:sequence>

<xs:element name="name" type="xs:string" />

<xs:element name="path" type="xs:string" />

<xs:element name="info" type="xs:string" />

<xs:element name="constants" type="constList" />

<xs:element name="files" type="fileList" />

<xs:element name="cl-args" type="cl-argList" />

<xs:element name="stdin" type="CLItem" />

</xs:sequence>

</xs:complexType>

<!-- ********** DEFINITION OF constList ELEMENT ********** -->

<xs:complexType name="constList">

<xs:sequence>

<xs:element name="constant" type="constItem"

minOccurs="0" maxOccurs="unbounded" />

</xs:sequence>

</xs:complexType>

<!-- ********** DEFINITION OF constant ELEMENT ********** -->

<xs:complexType name="constItem">

<xs:sequence>

<xs:element name="name" type="xs:string" />

<xs:element name="info" type="xs:string" />

<xs:element name="value" type="xs:string" />

<xs:element name="type" type="xs:string" />

</xs:sequence>

</xs:complexType>

<!-- ********** DEFINITION OF fileList ELEMENT ********** -->
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<xs:complexType name="fileList">

<xs:sequence>

<xs:element name="file" type="fileItem"

minOccurs="0" maxOccurs="unbounded" />

</xs:sequence>

</xs:complexType>

<!-- ********** DEFINITION OF cl-argList ELEMENT ********** -->

<xs:complexType name="cl-argList">

<xs:sequence>

<xs:element name="cl-arg" type="CLItem"

minOccurs="0" maxOccurs="unbounded" />

</xs:sequence>

</xs:complexType>

<!-- ********** DEFINITION OF CLItem ELEMENT ********** -->

<xs:complexType name="CLItem">

<xs:sequence>

<xs:element name="switch" type="xs:string" />

<xs:element name="use" type="xs:boolean" />

<xs:element name="info" type="xs:string" />

<xs:element name="var" type="varItem"

minOccurs="0" maxOccurs="unbounded" />

</xs:sequence>

</xs:complexType>

</xs:schema>
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Appendix D

Parameters Schema – parameters.xsd

<?xml version="1.0"?>

<!-- parameters.xsd SCHEMA -->

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<!-- ********** PARAMFILE ********** -->

<xs:element name="paramfile" type="paramItem" />

<!-- ********** DEFINITION OF parameters ELEMENT ********** -->

<xs:complexType name="paramItem">

<xs:sequence>

<xs:element name="path" type="xs:string" />

<xs:element name="info" type="xs:string" />

<xs:element name="startText" type="xs:string" />

<xs:element name="endText" type="xs:string" />

<xs:element name="set" type="setItem"

minOccurs="0" maxOccurs="unbounded" />

</xs:sequence>

</xs:complexType>

<!-- ********** DEFINITION OF set ELEMENT ********** -->

<xs:complexType name="setItem">

<xs:sequence>

<xs:element name="order" type="xs:integer" />

<xs:element name="info" type="xs:string" />

<xs:element name="startText" type="xs:string" />

<xs:element name="endText" type="xs:string" />

<xs:element name="separator" type="xs:string" />

<xs:element name="var" type="varItem"

maxOccurs="unbounded" />

</xs:sequence>

</xs:complexType>

<!-- ********** DEFINITION OF var ELEMENT ********** -->

<xs:complexType name="varItem">

<xs:sequence>

<xs:element name="name" type="xs:string" />

<xs:element name="header" type="xs:string"

minOccurs="0" />

<xs:choice>

<xs:element name="uneditable" type="uneditableItem" />

<xs:element name="string" type="stringItem" />
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<xs:element name="enumerated" type="enumeratedItem" />

<xs:element name="integer" type="intItem" />

<xs:element name="long" type="longItem" />

<xs:element name="float" type="floatItem" />

<xs:element name="double" type="doubleItem" />

<xs:element name="file" type="fileItem" />

</xs:choice>

<xs:element name="use" type="xs:boolean" />

</xs:sequence>

<xs:attribute name="type" type="varTypes" />

</xs:complexType>

<!-- ********** DATA TYPE DEFINITIONS ********** -->

<xs:complexType name="uneditableItem">

<xs:sequence>

<xs:element name="value" type="xs:string" />

<xs:element name="info" type="xs:string" />

</xs:sequence>

</xs:complexType>

<xs:complexType name="stringItem">

<xs:sequence>

<xs:element name="value" type="xs:string" />

<xs:element name="info" type="xs:string" />

<xs:element name="minLength" type="xs:integer"

minOccurs="0" />

<xs:element name="maxLength" type="xs:integer"

minOccurs="0" />

</xs:sequence>

</xs:complexType>

<xs:complexType name="enumeratedItem">

<xs:sequence>

<xs:element name="value" type="xs:string" />

<xs:element name="info" type="xs:string" />

<xs:element name="acceptableValues" type="xs:string" />

</xs:sequence>

</xs:complexType>

<xs:complexType name="intItem">

<xs:sequence>

<xs:element name="value" type="xs:integer" />

<xs:element name="info" type="xs:string" />

<xs:element name="units" type="xs:string" />

<xs:element name="range" type="xs:string"

minOccurs="0" />

</xs:sequence>

</xs:complexType>

<xs:complexType name="longItem">

<xs:sequence>

<xs:element name="value" type="xs:long" />

<xs:element name="info" type="xs:string" />

<xs:element name="units" type="xs:string" />

<xs:element name="range" type="xs:string"

minOccurs="0" />

</xs:sequence>

</xs:complexType>

<xs:complexType name="floatItem">

<xs:sequence>

<xs:element name="value" type="xs:float" />
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<xs:element name="info" type="xs:string" />

<xs:element name="units" type="xs:string" />

<xs:element name="range" type="xs:string"

minOccurs="0" />

</xs:sequence>

</xs:complexType>

<xs:complexType name="doubleItem">

<xs:sequence>

<xs:element name="value" type="xs:double" />

<xs:element name="info" type="xs:string" />

<xs:element name="units" type="xs:string" />

<xs:element name="range" type="xs:string"

minOccurs="0" />

</xs:sequence>

</xs:complexType>

<xs:complexType name="fileItem">

<xs:sequence>

<xs:element name="id" type="xs:string" />

<xs:element name="path" type="xs:string" />

<xs:element name="info" type="xs:string" />

<xs:element name="xmlDesc" type="xs:string" />

<xs:element name="maxLength" type="xs:positiveInteger"

minOccurs="0" />

</xs:sequence>

<xs:attribute name="type" type="fileTypes" use="required" />

</xs:complexType>

<!-- ********** DEFINITION OF fileTypes TYPE ********** -->

<xs:simpleType name="fileTypes">

<xs:restriction base="xs:string">

<xs:enumeration value="input" />

<xs:enumeration value="output" />

<xs:enumeration value="inout" />

<xs:enumeration value="other" />

</xs:restriction>

</xs:simpleType>

<!-- ********** DEFINITION OF varTypes TYPE ********** -->

<xs:simpleType name="varTypes">

<xs:restriction base="xs:string">

<xs:enumeration value="uneditable" />

<xs:enumeration value="string" />

<xs:enumeration value="enumerated" />

<xs:enumeration value="file" />

<xs:enumeration value="integer" />

<xs:enumeration value="long" />

<xs:enumeration value="float" />

<xs:enumeration value="double" />

</xs:restriction>

</xs:simpleType>

</xs:schema>
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