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Abstract

Refractive index turbulence causes random power fluctuations in optical communi-
cation systems, making communication through the atmosphere difficult. This same
phenomenon makes the stars twinkle at night, and pavement shimmer on a hot sum-
mer day. True to the old adage, “don’t put all your eggs in one basket,” we examine
laser communication systems that use multiple transmit and receive apertures. These
apertures provide redundant replicas of the transmitted message to the receiver, each
corrupted separately by the atmosphere. Reliable communication occurs when not
all of these paths are deeply faded. We quantify the maximum rate of reliable com-
munication, or capacity, and study space-time coding techniques for both direct- and
coherent-detection receivers. We also experimentally verify the performance of some
simple techniques for optically-preamplified, direct-detection receivers.
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Chapter 1

Introduction

An estimated 95 percent of United States buildings are within 1.5 km of fiber-optic

communication infrastructure, but currently unable to access it. One factor con-

tributing to this inability is the high cost of optical fiber installation, approximately

$100,000–$200,000 per kilometer in metropolitan areas, with trenching costs respon-

sible for 85 percent of the total. Point-to-point optical communication through the

atmosphere (i.e., wireless optical communication) has the potential to provide giga-

bit per second data rates at roughly one-fifth the price of ground-based, fiber-optic

technologies [65].

Communicating optically through the atmosphere, however, poses many inherent

challenges. Bad weather (e.g., fog, snow, rain, etc.) and atmospheric molecular con-

stituents (e.g., carbon dioxide and oxygen molecules) cause absorption and scattering

that degrade the performance of optical communication systems. Furthermore, the

temporal and spatial evolution of thermal inhomogeneities in the troposphere under

clear weather conditions cause random fluctuations in the refractive index at opti-

cal wavelengths [62]. These refractive-index perturbations—usually referred to as

atmospheric turbulence—lead to amplitude and phase fluctuations on light beams

propagating through the atmosphere [62], [31]. These fluctuations, in turn, have

profound effects on the performance of laser communication systems operating over

turbulent paths [49].

One strategy to combat these deleterious effects is to make available to the re-
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ceiver multiple copies of the transmitted message, each corrupted separately by the

atmosphere. In this thesis, we will develop such methods to establish reliable com-

munication through the turbulent atmospheric channel.

1.1 Optical Detection

We will examine two methods of converting an optical field into an electrical signal.

Direct detection refers to receivers that respond only to optical power, i.e., the mag-

nitude squared of the optical complex field. If the inherent randomness in photon

arrivals is much greater than thermal noise, we can count the individual photons and

make decisions based on photon arrival times. More realistically, we can use a condi-

tional Gaussian approximation to examine the influence of all the noise sources that

arise in a practical communication system.

In contrast to direct detection, coherent detection receivers mix the incoming

optical field with a spatially and temporally coherent local oscillator. This heterodyne

structure essentially yields a traditional additive, white Gaussian noise channel.

Our main focus will be exploring spatial and temporal diversity using multiple

transmit and receive apertures. We will derive the information-theoretic capacity

of communication, and study coding techniques for two direct detection and one

coherent detection atmospheric channels. The first direct-detection channel uses

ideal photon-counting receivers. The second direct-detection channel employs op-

tical preamplification. The last channel uses coherent-detection receivers. Finally, we

will experimentally verify, through hardware implementation, the benefit of receiver

diversity using optically-preamplified, direct-detection receivers. Chapter 2 explains

these channels in more detail.

1.2 Channel Capacity

Roughly speaking, channel capacity is the maximum rate of reliable communication

[14, 21]. Although atmospheric losses are random, they are approximately constant
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on intervals less than one to ten milliseconds [50]. Because typical data rates can

exceed a billion bits per second, a block of several million bits can experience, on

average, similar fading conditions.

This block fading model lends itself to many different information-theoretic no-

tions of capacity [5, 44, 56]. Without any delay constraints, we can code over many

channel realizations and achieve reliable communication rates up to the Shannon ca-

pacity, defined as the average maximum mutual information per unit time, where the

average is taken with respect to the random path gains [24]. Denoting the path gains

of an N transmit, M receive aperture system as α = { αnm | 1 ≤ n ≤ N, 1 ≤ m ≤
M }, the ergodic capacity is the expectation with respect to the path gains of the

instantaneous capacity, i.e., E[C(α)], [44, 66]. The ergodic assumption requires that

communication occurs over several atmospheric coherence times, which allows coding

across both “good” and “bad” channel realizations.

In practice, however, delay constraints may prevent coding over many channel

realizations. In this case, the strict Shannon capacity is zero because there is a

chance that the fading might be so egregious that the instantaneous capacity is below

any desired rate [24, 5]. In this case, a more appropriate measure of capacity is the

probability that the channel can support a desired rate. The capacity Cp per outage

probability p is given by [5]

p = Pr {C(α) ≤ Cp} . (1.1)

In other words, the capacity per outage probability p is the p-th percentile of the

instantaneous capacity, C(α), distribution. The channel can support data rates up

to the outage capacity Cp with probability 1− p.

We will examine the ergodic and outage capacities for our three atmospheric

communication channel models. We are particularly interested in how the capacity

scales with the number of transmit and receive apertures. These capacities will also

depend on whether the transmitter and/or receiver know the path gains.
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1.3 Space-Time Coding

Space-time codes (STC) refer to multiple transmitters sending codewords to multiple

receivers over multiple time periods. For example, let xn(t) represent the symbol sent

on the n-th transmit aperture during the t-th time period. A space-time codeword is

then a matrix

Tx 1 Tx 2 · · · Tx N

t = 1 x1(1) x2(1) · · · xN(1)

t = 2 x1(2) x2(2) · · · xN(2)
...

...
...

. . .
...

t = T x1(T ) x2(T ) · · · xN(T )

Tarokh in [61] established space-time code design criteria for Rayleigh and Ricean

fading channels. These design criteria specify the pairwise properties of codewords

from the space-time code. We will develop similar criteria for the coherent detection

channel model, and demonstrate the reliability improvement gained through STCs.

For example, Figure 1-1 shows the pairwise error probability for a two transmit,

one receive antenna, Alamouti STC in Rayleigh fading as a function of signal-to-noise

ratio [1]. The Alamouti STC uses two transmit apertures and two time-slots to send

two complex symbols s1 and s2 according to the schedule

Tx 1 Tx 2

t = 1 s1 s2

t = 2 −s∗2 s∗1

In Chapter 3, we will examine the performance of the Alamouti STC under lognormal

fading for coherent detection receivers.

Tarokh demonstrated that the Alamouti STC is an example of a complex orthogo-

nal design STC [60]. We will also show in Chapter 3 that orthogonal designs minimize

the pairwise error probability for heterodyne systems using many apertures. Figure

1-2 shows that an orthogonal design space-time code can greatly reduce the effects of

atmospheric turbulence on the error probability.
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Figure 1-1: Space-time codes can improve the reliability of communication on fading
channels. The shaded areas lie between upper and lower bounds on the pairwise error
probability achieved in Rayleigh fading with and without an Alamouti space-time
code. The bounds are plotted as a function of signal-to-noise ratio. In this case,
the signal-to-noise ratio is the ratio of transmitted codeword energy difference to the
receiver noise variance per real dimension.
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Figure 1-2: The pairwise error probability in moderate (σ2
χ = 0.1) lognormal fading is

shown for an orthogonal design STC using coherent detection receivers. The product
of transmit (N) and receive (M) aperture numbers isMN = 16. The error probability
is plotted against the ratio of energy difference between codewords at the transmitter
(Ed) per transmit aperture (N) and receiver noise power spectral density (N0). Also
shown is the single transmit, single receive aperture (M = N = 1) error probability
when no space-time code is used.
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1.4 Summary of Main Results

The main theoretical results of this thesis appear in Chapters 3 through 5, catego-

rized by the type of receiver structure. Chapter 3 explores quadrature amplitude

modulation and coherent detection receivers. Chapters 4 and 5 examine intensity

modulation and direct detection reception. Experimental results appear in Chapter

6. We present background material necessary for understanding the channel models

in Chapter 2.

Figure 1-3 shows multiple lasers and detectors providing spatial diversity to com-

bat the effects of atmospheric fading. All the results of this thesis are based on this

multiple-input, multiple-output (MIMO) channel model.

x1(t) y1(t)
Laser Detector

x2(t) y2(t)
Laser Detector

xN(t) yM(t)
Laser Detector

a11

aNM

aN1

Figure 1-3: Providing the receiver with multiple copies of the transmitted message
can improve the reliability of communication. This thesis explores the capacity of
and coding for this multiple-input, multiple-output (MIMO) fading channel.

Roughly speaking, reliable communication occurs when not all of the paths in

Figure 1-3 are deeply faded. This redundancy is an example of the old adage, “don’t

put all your eggs in one basket.” We will demonstrate that “good” space-time codes

for both coherent and direct detection cause the receiver to “see” the sum of path

gain powers, i.e., the sum of squared magnitude complex field path gains.

Another theme of this thesis is to develop reliable communication systems that do

not depend heavily on the tails of the fading distribution. Although we will argue in

Chapter 2 that a lognormal distribution is an appropriate description of atmospheric
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fading, experimental results indicate that atmospheric log-amplitude fluctuations are

not Gaussian deep into the tails of its distribution [13]; for example, see Figures 6-4

and 6-5 in Chapter 6.

We will try to design communication systems that are insensitive to the tails of

the fading distribution. In fact, many of our results only rely on the first and second

moments of the fading distribution. Furthermore, several of our results are based

on moment-matching approximations. By quantifying when these approximations

are valid, we are essentially specifying the operating conditions in which the system

design is insensitive to the distribution’s tails.

1.4.1 Coherent Detection Receivers

In Section 3.1, we use Monte Carlo averaging to calculate the average capacity of

the coherent detection channel, assuming the transmitter and receiver know the path

gains. We show that the ergodic capacity is not very sensitive to the fading strength

or distribution. We compare this to the average capacity when only the receiver

knows the path gains. As with Rayleigh fading channels [22], the benefit of knowing

the path gains at the transmitter is negligible for moderate numbers of apertures and

transmit power.

In Section 3.2, we present a space-time channel coding technique for overcom-

ing turbulence-induced fading in an atmospheric optical heterodyne communication

system that uses multiple transmit and receive apertures. In particular, a design

criterion for minimizing the pairwise probability of codeword error in a space-time

code is developed from a central limit theorem approximation. This design criterion

maximizes the mean-to-standard-deviation ratio of the received energy difference be-

tween codewords. It leads to STCs that are a subset of the previously reported STCs

for Rayleigh channels, namely those created from orthogonal designs.

Our approach also extends to other fading channels with independent, zero-mean

path gains. Consequently, for large numbers of transmit and receive antennas, STCs

created from orthogonal designs minimize the pairwise codeword error probability for

this larger class of fading channels. We published these space-time coding results in
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[27].

1.4.2 Photon-Counting Receivers

In Section 4.1.1, we examine the Shannon capacity of the single-user, multiple-input,

multiple-output Poisson channel with peak and average transmit power constraints.

The MIMO Poisson channel is a good model for the physical layer of a multiple-

aperture optical communication system that operates in the shot-noise-limited regime

with known path gains. We derive upper and lower bounds on the capacity that

coincide in a number of special cases. The capacity is bounded below by that of the

MIMO channel with an additional on-off keying (OOK) transmitter constraint, and

it is bounded above by that of parallel, independent, multiple-input, single-output

(MISO) channels. We published these MIMO Poisson channel capacity results in

[25].

We then consider the ergodic capacity and capacity-versus-outage probability of

photon-counting, direct-detection optical communication through the turbulent atmo-

sphere using multiple transmit and receive apertures. We assume shot-noise-limited

operation in which detector outputs are doubly-stochastic Poisson processes whose

rates are proportional to the sum of the transmitted powers, scaled by lognormal

random fades, plus a background noise. With constraints on peak and average power

per transmit aperture, we will show that at high signal-to-noise ratio, the ergodic

capacity scales as the number of transmit apertures (N) times the number of receive

apertures (M), and can be achieved with neither transmitter or receiver knowing the

path gains. In the low signal-to-noise ratio regime, ergodic capacity scales as MN 2.

In this regime, path-gain knowledge provides minimal capacity improvement when

using a moderate number of transmit apertures. Furthermore, in the high and low

signal-to-noise ratio regimes, we show that the ergodic capacity of this fading channel

equals or exceeds that for a channel with deterministic path gains. In other words,

we demonstrate that fading actually increases capacity.

We also develop expressions for the capacity-versus-outage probability in the high

and low signal-to-noise ratio regimes by means of a moment-matching approximation
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to the distribution of the sum of lognormal random variables. Monte Carlo sim-

ulations show that these capacity-versus-outage approximations are quite accurate

for moderate numbers of apertures in moderate fading. These ergodic and outage

capacity results are submitted for publication [26].

In Section 4.2, we examine space-time coding for photon-counting receivers. We

show that a switching space-time code can perform as well as the capacity-achieving

repetition spatial code.

1.4.3 Optically-Preamplified Receivers

Theory

In Chapter 5 we examine the use of optical amplifiers to improve communication

reliability. We develop lower bounds to the capacity of this channel by constructing

discrete-memoryless channel representations. These representations utilize repetition

on-off keying (OOK) spatial coding transmitters and linear combining, threshold-

decision receivers. We show that equally weighting the detector outputs minimizes

the error probability when the average receive power is much greater than -56 dBm

(using the nominal parameters of the 1.25 Gbps testbed in Chapter 6). For lower

average receive powers, weighting the detector outputs in proportion to their signal-

to-noise ratio, i.e., classical maximal-ratio combining, is the best linear combining

strategy.

Experiment

We also build a 1.25 Gbps testbed using optical preamplification. We demonstrate the

benefits of using two receivers and equal-gain combining with midpoint thresholding.

In mild fading, this configuration requires about three decibels less power per receiver

to maintain a 10−6 bit error rate as compared to a single aperture system. We

also measure the distribution of the log-amplitude fluctuations on each receiver, and

compare them to their theoretical Gaussian distributions.
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1.4.4 Some Intuition: Paul Revere’s Dilemma

In this thesis, we will show that equal-gain combining is a capacity-achieving receiver

architecture for the photon-counting channel at high signal-to-noise ratio. Similarly,

equal-gain combining minimizes the bit error rate for optically-preamplified receivers

at high signal-to-noise ratio. The following anecdote captures the intuition behind

these results.

Digital, wireless, optical communication is a very old form of communication. In

fact, the Sexton Robert Newman used it to notify Paul Revere that the British were

coming. By the presence or absence of lamps in the Old North Church, Newman

signalled optically one of three messages, or log2(3) ≈ 1.6 bits of information: the

British are coming by land, they are coming by sea, or they are not coming at all.

Now suppose that Newman only cared about communicating whether or not the

British were coming, but he was occasionally forgetful. If a lamp appears in the tower,

then it is certain that the British are coming. But if no lamp appears, it means that

either the British are not coming with probability 1 − p, or that they are coming

with probability p, and he simply forgot to light a lamp. Under these circumstances,

how does Paul Revere know when to ride? What rule should he use to minimize the

probability of making the wrong decision: either riding in vain, or failing to respond

to the British invasion?

The decision rule that minimizes the probability of error, is to choose the most

probable scenario (British coming or not coming) given the observation (lamp present

or not present). If Paul sees a lamp, then he should definitely ride because a lamp

indicates that the British are definitely coming. If he does not see a lamp, then by

taking no action, there is a probability p of failing to respond to an invasion. On the

other hand, if he does ride, there is a probability 1− p that he does so without need.

So, if Newman only occasionally forgets, i.e., p < 1/2, then he should not ride if he

does not see a lamp.

To further complicate matters, suppose that the weather is bad that night, and

that visibility is poor. As a result, Paul might not see the lamp when glancing up at
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the tower, even if it is there. Now, what should he do? An obvious solution would

be to do more than just glance, but to stare up at the tower. If rain obscures the

tower for one moment, it might not do so the next. Averaging temporally over the

weather conditions reduces the uncertainty that not seeing a lamp is due to poor

visibility. In wireless communication systems, this form of redundancy is sometimes

called temporal diversity.

But what if Paul needed to know right now, at this moment, whether or not he

should ride? He could position other riders so that they each had a different view of

the tower, and they could all glance up at the same time. If anyone sees the lamp,

then Paul knows for sure that the British are coming, and that he should ride. If

each vantage point has a different visibility, then the chances that no one will see the

lamp, if it is indeed there, is small. This form of diversity is known as receiver spatial

diversity in wireless communication systems.

If the British are coming, then Newman could also place another lamp in a different

tower, separated sufficiently in distance, so that the visibility of each tower is most

likely different. This redundancy in wireless communications is called transmitter

spatial diversity. In fact, it is an on-off keying (OOK) repetition spatial code.

If Paul or any other rider see either lamp, then they should ride. Equivalently, they

could add up the number of riders that saw a lamp, and ride if this sum is greater than

or equal to one. This strategy is equivalent to an equal-gain combining, threshold-

decision receiver in wireless communications. In this case, equal-gain combining with

unity threshold, minimizes the probability of making a wrong decision.

How does this anecdote relate to the results of this thesis? For photon-counting

receivers operating at high signal-to-noise ratio, an absence of light impinging on the

photodetector results in no photon counts with certainty. In other words, if all trans-

mit lasers turn on and off simultaneously, and if any detector sees a photon during

a bit interval, then we are certain that all transmitters were on, i.e., the British are

coming. Indeed, in Chapter 4 we will show that OOK repetition spatial coding and

equal-gain combining with unity threshold detection is a capacity-achieving commu-

nication architecture for the atmospheric fading channel at high signal-to-noise ratio.
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We observe a similar result for error probability in Chapter 5 for optically-preamplified

receivers.

1.5 Notation and Abbreviations

Although we will try to remain consistent with notation throughout the thesis, we

will redefine some notation between chapters for clarity. For example, we will always

denote the path gain from transmitter n to receiver m as αnm. For coherent detection

channels, this path gain is the complex field path gain, while it is the real power

path gain (magnitude squared of field gain) for direct detection channels. Thus,

in the background and coherent detection chapters (Chapters 2 and 3), αnm will

denote the complex field path gain. For the direct detection chapters (Chapters 4

and 5), however, we will redefine αnm to be the power path gain, instead of using the

cumbersome notation |αnm|2. We will similarly do so for the transmitted signal xn(t).

Furthermore, the average number of photons per second is a more convenient measure

of power for photon-counting receivers as it corresponds to the rate of the Poisson

counting process. On the other hand, measuring power in Watts is more natural

for optically-preamplified receivers because of the physical measurements recorded in

Chapter 6. Tables 1.1 and 1.2 describe the major notation and abbreviations in this

thesis.
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Notation Definition

N Number of lasers

M Number of detectors

xn(t) n-th transmitter symbol/waveform at time t

ym(t) m-th detector output at time t

αnm Path gain (field or power) from transmitter n to receiver m

α Set of path gains {α11, . . . , αNM}

χnm Atmospheric log-amplitude fluctuation

φnm Atmospheric phase fluctuation

σ2χ Atmospheric log-amplitude variance (fading strength)

X, X̄ Transmitted codewords; channel input

Y Received signal; channel output

Q(x) Area under upper tail of standard normal density function

Table 1.1: This table displays common symbols used throughout the thesis.
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Abbreviation Definition

ASE Amplified spontaneous emission

AWGN Additive, white, Gaussian noise

BER Bit error rate (per channel use)

BPSK Binary, phase-shift keying

CLT Central limit theorem

DMC Discrete, memoryless channel

EDFA Erbium-doped, fiber amplifier

MIMO Multiple-input, multiple-output

MISO Multiple-input, single-output

OOK On-off keying

OOK-LB On-off keying, lower bound

PAM Pulse amplitude modulation

PB-LB Photon-bucket, lower bound

PC-UB Parallel-channel, upper bound

QAM Quadrature amplitude modulation

SIMO Single-input, multiple-output

SISO Single-input, single-output

SNR Signal-to-noise ratio (quantified differently throughout)

STA Short-time average

STC Space-time code

TIA Transimpedance amplifier

Table 1.2: This table displays common abbreviations used throughout the thesis.
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Chapter 2

Background

In this chapter we will give a brief overview of optical communication through the

atmosphere. For more complete references see [20] or [46].

2.1 Optical Communications

Conveying digital information via optical frequencies through the atmosphere is one of

mankind’s oldest forms of communication. For example, fire beacons lit on mountain

peaks relayed news of Troy’s fall in Aeschylus’s play Agamemnon, written in 5th

century B.C. Also, early naval communication relied heavily on signalling flags and

shuttered lamps ([23], pg. 1).

With the advent of the laser, however, came a new era in optical communication

systems. Figure 2-1 shows a block diagram of a modern optical communication sys-

tem. An information source generates bits that the coder uses to modulate the optical

field of a laser carrier. The resulting field propagates through a medium such as a

fiber optic cable, free space, or the atmosphere. The detector converts the optical

signal to an electrical signal, and the decoder tries to infer the transmitted codeword.

The term channel refers to the combined modulation, propagation, and demodu-

lation processes that the transmitted codeword undergoes to reach the decoder. In

this thesis, we will consider three atmospheric channels. All three channels will in-

corporate propagation through the turbulent atmosphere. This propagation causes
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Source Coder Medium DecoderLaser Detector

Channel

Fiber Optic Cable
Atmosphere

Figure 2-1: A modern optical communication system modulates a laser to convey
information through a medium to a receiver. The receiver decodes the detected light
and attempts to reconstruct the transmitted message.

fluctuations in the amplitude and phase of the received optical field. The extended

Huygens-Fresnel principle models these fluctuations as a complex, lognormal random

process [49].

The three channels we will study differ in their transmitter and receiver structures.

Two channels use direct-detection (square-law or power) receivers, but vary in their

models’ idealizations. The first direct-detection channel uses amplitude (intensity)

modulation at the transmitter and ideal photon-counting detectors at the receivers.

In this case, each detector output is a doubly-stochastic Poisson counting process

whose rate is proportional to the short-time average (STA) optical power impinging

on the detector.

The second direct-detection channel uses intensity modulation and optically-preamplified,

direct-detection receivers. We will model this more realistic channel output as a

Gaussian process with a signal-dependent covariance. We will experimentally verify,

through hardware implementation, the benefits of receiver diversity for this channel.

The final channel uses quadrature amplitude modulation (QAM) and heterodyne

or coherent detection. Conditioned on the lognormal propagation fading, this channel

behaves like an additive, white, Gaussian noise (AWGN) channel [20].

The next three subsections explain the modulation, demodulation, and propaga-

tion models in more detail.

46



2.2 Atmospheric Optical Propagation

2.2.1 General Propagation Effects

Light travelling through the atmosphere experiences a number of degradations. Aerosols,

molecules1, and thermal inhomogeneities in the atmosphere cause absorption and

scattering of the transmitted optical field. Absorption and scattering also cause at-

tenuation of the transmitted field, resulting in an irretrievable loss of signal energy.

Scattering gives rise to beam, angular, multipath, and Doppler spread. Beam and

angular spread are illustrated in Figure 2-2. Beam spread is the apparent increase of

divergence angle as the beam propagates from transmitter to receiver. Angular spread

is the apparent broadening of the angle subtended by the transmitter as seen at the

receiver. Angular spread is sometimes called the “shower curtain” effect, referring to

the broadening of a light source when viewed through a shower curtain. Multipath

spread is the lengthening of the transmitted pulse shape, which could possibly lead

to intersymbol interference in digital communications. For line-of-sight propagation

in clear weather, multipath spread is at most a few picoseconds and we will neglect it

in all that follows [49]. Doppler spread manifests as time-dependent fading. The at-

mospheric coherence time (reciprocal Doppler spread) is on the order of milliseconds,

so that at gigabit per second data rates, the fading is flat over a great many symbols

[49].

The refractive-index fluctuations induced by space- and time- varying thermal in-

homogeneities are responsible for the twinkling of stars at night, and the shimmering

above pavement on a hot summer day. As we shall see, these random amplitude

fluctuations (called scintillation) can routinely be on the order of 10 dB, and last

for several milliseconds. This receiver power outage leads to bursts of errors in wire-

less optical communication systems [49]. This thesis primarily focuses on mitigating

atmospheric fading using multiple transmit and receive apertures.

1Examples of aerosols relevant to optical propagation are water droplets, ice, dust, and organic
materials of size comparable to the optical wavelength. Depending on the communication wave-
length, molecular constituents that influence optical propagation include H2O, CO2, O3, O2, and
N2 ([34], pg. 21).
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DetectorLaser

Beam
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Angular
Spread

Atmospheric Turbulence

h1 e jq1 hk e jqk hK e jqK... ...

Figure 2-2: Light propagating through thin slabs of clear, turbulent atmosphere ex-
perience random amplitude and phase fluctuations. The cumulative effect of these
variations is approximately lognormal in distribution due to the central limit theorem.
Scattering also causes spreading of the transmitted beam, and an apparent increase
in the angular extent of the source at the receiver.

2.2.2 Atmospheric Propagation Models

We will confine our attention to optical communication in clear weather conditions

for which absorption is negligible. As noted earlier, an optical signal propagating

through the clear atmosphere experiences random amplitude and phase fluctuations

as it passes through thermal pockets that vary on the order of 1oK. The refractive

index of clear air is temperature dependent. Consequently, as these thermal pockets

mix and flow, they create eddies of refractive index turbulence. These eddies result

in constructive and destructive interference of the propagating light.

The Thin-Screen Atmospheric Model

A simple, but useful, model of atmospheric propagation through turbulence is shown

in Figure 2-2. This model divides the atmosphere intoK thin slabs. Light propagating

through each slab experiences a random amplitude and phase fluctuation, hke
jθk .
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Taken collectively, these variations result in the atmospheric path loss

∏
hke

jθk = exp
(∑

log hk + j
∑

θk

)
−→
K→∞

exp (χ+ jφ) . (2.1)

The log-amplitude, χ =
∑

log hk, and phase, φ =
∑
θk, are sums of random variables

and hence tend to a jointly Gaussian distribution via the central limit theorem. As a

result, the light’s variation in amplitude and phase as it travels from transmitter to

receiver is approximately lognormal in distribution.

We will generally assume that the atmospheric losses are random, but approxi-

mately constant during each codeword transmission. Or alternatively, that the code-

word length is small compared to the coherence time of the channel, yet large enough

that information-theoretic notions such as capacity are meaningful. We justify this

assumption by noting that the coherence time for the turbulent atmosphere is on the

order of 1 to 10 ms [50], and typical data rates for line-of-sight communication in

clear weather are on the order of a gigabit per second. Hence, 1 to 10 million con-

secutive bits can experience on average similar fading conditions. This quasi-static

fading model seems reasonable for our application.

We further assume that the turbulence-induced fading is frequency non-selective,

i.e., there is a scalar multiplicative relationship between each transmitter and receiver

path. The absence of multipath components at nanosecond durations in line-of-sight

optical communication justifies this model [49].

Without loss of generality, we can separate the total atmospheric field attenuation,

α, into two components, α = a0a. The non-random component a0 is due to the

irretrievable power loss from absorption and scattering. The random component

a = exp[χ+ jφ] results from turbulence-induced fading.

The non-random component of atmospheric attenuation is described by

a0 = e−
1

2
σZ , (2.2)

where Z is the propagation distance in kilometers. The power-attenuation coefficient

σ consists of scattering and absorption components. Usually, aerosol and Mie scatter-
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ing factors dominate this coefficient [45]. Assuming that aerosol absorption is small

compared to the Mie scattering [38], we have that

σ ≈ 3.91

V

(
λ

550 nm

)−q(V )

, (2.3)

where λ is the optical wavelength in nanometers, V is the visibility in kilometers, and

q(V ) is the size distribution of the scattering particles given by

q(V ) =





1.6 V > 50 km (High Visibility)

1.3 50 km ≥ V > 6 km (Average Visiblity)

0.585V 1/3 6 km > V (Low Visibility)

. (2.4)

Figure 2-3 plots the atmospheric power-attenuation per kilometer in dB, i.e.,

−20 log10(a0)/Z, assuming that Mie scattering losses are the dominating factor at

λ = 1550 nm. This figure illustrates that communicating in heavy fog can be ex-

tremely difficult due the hundreds of dB/km in attenuation. For more information on

communicating through optical scattering channels see [35],([34], pg. 211), or ([20],

pg. 291). In this thesis, we will ignore absorption and scattering, and set a0 = 1.

Attenuation per km of Mie Scattering at 1550nm
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Figure 2-3: Mie scattering can cause an irretrievable loss in optical power. This figure
shows the atmospheric power-attenuation per kilometer at the 1550 nm wavelength
for a variety of visibility and weather conditions. For example, in clear weather, the
visibility is greater than 10 km, and attenuation is less than one decibel per kilometer.
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The random variable a = exp[χ + jφ] represents the fading component of the

atmospheric attenuation α. We will choose the mean mχ and variance σ2χ of χ such

that the fading does not, on average, attenuate or amplify the optical power, i.e.,

E[|α|2] = a20. Doing so requires

E
[
|a|2
]
= E

[
e2χ
]
=Mχ(2) = 1, (2.5)

where Mχ(s) is the moment-generating function of a Gaussian random variable given

by

Mχ(s) = exp

(
mχs+

1

2
σ2χs

2

)
. (2.6)

Hence, choosing

mχ = −σ2χ, (2.7)

makes the average power loss due to atmospheric fading unity [50].

We can further simplify matters by assuming that the phase of the received op-

tical field is uniformly distributed over [0,2π), and is independent of the amplitude

fluctuations. This assumption is equivalent to making φ statistically independent of

χ, with zero mean and a very large variance, i.e., var[φ]À 2π.

The Extended Huygens-Fresnel Principle

The extended Huygens-Fresnel principle [49] models the diffractive nature of light,

and provides the basis for a more thorough treatment of propagation through the

turbulent atmosphere. Because the polarization-dependent effects of the atmospheric

turbulence are negligible, we can assume that the electric field of the propagating

optical signal is linearly polarized, i.e., it is a scalar function of space and time. We

will represent this scalar field at a three-dimensional location r ∈ R3, where R is the

set of real numbers, and at a time t using the complex quasi-monochromatic notation

U(r, t) = <
{
u(r, t)e−j2πfct

}
, (2.8)
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where u(r, t) is a complex-valued scalar function whose temporal bandwidth is much

less than the carrier frequency, fc, and <{x} denotes the real component of x. We

also assume that the complex field u(r, t) is normalized such that 〈|u(r, t)|2〉 is the

short-time average (STA) power of the optical field per unit area, i.e.,

STA Power per Unit Area ≡ 〈|u(r, t)|2〉 ≡ 1

TSTA

∫ t

t−TSTA
|u(r, τ)|2dτ, (2.9)

where 〈|u(r, t)|2〉 has units Watts per meters squared. The integration period TSTA > 0

is much greater than the reciprocal of the optical carrier frequency and any radio

frequency (RF) sub-carrier frequency differences, but much less than the reciprocal

of the information-bearing bandwidth of the signal. This integration period will be

made more precise later when we consider the bandwidth limitations of practical

detectors.

Example:

Suppose u(r, t) is the scalar optical field of a wavelength-division multi-

plexed signal with information bearing sub-carrier frequencies f1, f2 ¿ fc,

i.e.,

u(r, t) = u1(r, t)e
−j2πf1t + u2(r, t)e

−j2πf2t, (2.10)

where u1(r, t) and u2(r, t) have temporal bandwidths much less than their

sub-carrier frequencies. The STA power of the optical field is

〈|u(r, t)|2〉 =
1

TSTA

∫ t

t−TSTA

∣∣u1(r, τ)e−j2πf1τ + u2(r, t)e
−j2πf2τ

∣∣2 dτ

=
1

TSTA

∫ t

t−TSTA

(
|u1(r, τ)|2 + |u2(r, τ)|2

+2<
{
u1(r, τ)u

∗
2(r, τ)e

−j2π(f1−f2)τ}) dτ

≈ |u1(r, t)|2 + |u2(r, t)|2,

where x∗ denotes the complex conjugate of x, and 1/TSTA is much greater

than the temporal bandwidths of u1(r, t) and u2(r, t), but much less than

the frequency difference between sub-carriers, f1 − f2.
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Figure 2-4 provides a reference frame for our multi-aperture communication sys-

tem consisting of N transmit andM receive pupils. The n-th transmit pupil is located

at σn ∈ R2 in the z = 0 plane. It produces a field that propagates in the +z direction.

Using the coordinates σ ∈ R2 in the z = 0 plane, denote this field as

sn(σ, t) =





u ([σ, 0], t) = pn(σ)xn(t), σ ∈ {n-th Tx Pupil}
0, otherwise

, (2.11)

where we have assumed that the modulator at each transmitter changes the tem-

poral characteristics of the optical field (amplitude and phase), but not its spatial

characteristics. We can then separate the the spatial pn(σ) and temporal xn(t) field

components over the n-th transmit aperture.

The total field in the z = 0 plane is the sum of the fields over each transmit

aperture,

s(σ, t) = u ([σ, 0], t) =
N∑

n=1

sn(σ, t) =
N∑

n=1

pn(σ)xn(t). (2.12)

The extended Huygens-Fresnel principle relates the complex field in the z = 0

plane to the complex field in the z = Z plane. Denote the field in the receiver plane

as

r(ρ, t) = u([ρ, Z], t), (2.13)

where ρ ∈ R2 are the spatial coordinates in the z = Z plane. Under the parax-

ial assumption that the propagation distance is much greater than the receiver and

transmitter pupil diameters, then the field in the receiver (z = Z) plane is

r(ρ, t) =

∫
s(σ, t− Z/c)hFS(ρ− σ) eχ(σ,ρ)+jφ(σ,ρ)dσ, (2.14)

where c is the speed of light, { χ(σ, ρ), φ(σ, ρ) } are jointly Gaussian random processes

with known mean and covariance functions, and hFS(ρ) is the paraxial free-space

Green’s function,

hFS(ρ) =
1

jλZ
e
jk
(
Z+

‖ρ‖
2Z

2
)

, (2.15)
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Figure 2-4: The geometry for the extended Huygens-Fresnel principle consists of the
n-th transmitter pupil located at σn in the z = 0 plane and the m-th receiver pupil
located at ρm in the z = Z plane. In this diagram, 1x, 1y, and 1z are unit vectors
marking the origin.
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where ‖ ρ ‖ denotes the vector magnitude, and k = 2π/λ is the wavenumber.

Over a horizontal path, the turbulence decorrelates spatially approximately every

ρ0 =
[
1.09k2C2

nZ
]−3/5

[meters], (2.16)

where C2
n is the refractive index structure constant that typically lies in the range

C2
n ≈ 5 × 10−16 m−2/3 for weak turbulence to C2

n ≈ 5 × 10−13 m−2/3 for strong

turbulence. Figure 2-5 plots the coherence length (2.16) as a function of path length

for different turbulence strengths at the 1550 nm wavelength.
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Figure 2-5: This figure plots the atmospheric coherence length (2.16) at the 1550 nm
wavelength for different turbulence strengths: weak, C2

n = 5 × 10−16 m−2/3; mild,
C2
n = 5×10−15 m−2/3; moderate, C2

n = 5×10−14 m−2/3; strong, C2
n = 5×10−13 m−2/3

We will assume that the transmit and receive apertures are small compared

to this coherence length. As a result, we will approximate the random processes

{ χ(σ, ρ), φ(σ, ρ) } as piecewise constant over each transmit and receive aperture.

For σ in the n-th transmit aperture and ρ in the m-th receive aperture, this small

55



aperture approximation is

eχ(σ,ρ)+jφ(σ,ρ) ≈ eχ(σn,ρm)+jφ(σn,ρm), (2.17)

where σn is the center of the n-th transmit pupil in the z = 0 plane, and ρm is the

center of the m-th receive pupil in the z = Z plane.

Define αnm as the atmospheric path loss from the n-th transmit to m-th receive

aperture under this small aperture approximation. Again, we can separate the non-

random and random losses and write

αnm = a0anm, (2.18)

where a0 is the non-random loss in (2.2), and

anm = eχnm+jφnm (2.19)

is the normalized fading loss in the absence of beam spread.

If we further assume that the small apertures are separated by more than the

atmospheric coherence length, ρ0, we can model { χnm, φnm | 1 ≤ n ≤ N, 1 ≤ m ≤
M } as independent Gaussian random variables. As in the thin-screen model, we set

the means of the independent, identically-distributed, log-amplitudes { χnm | 1 ≤
n ≤ N, 1 ≤ m ≤ M } equal to minus their variance so that the atmosphere does

not on average attenuate or amplify the transmitted power. For a horizontal path,

the log-amplitude variance σ2
χ is related to the wavenumber, structure constant, and

path length by

σ2χ = min
{
0.124 k7/6C2

nZ
11/6, 0.5

}
. (2.20)

Notice that the log-amplitude variance saturates at 0.5. In this strong fading regime,

the validity of our model becomes questionable [49]. Figure 2-6 plots the log-amplitude

variance for different turbulence strengths. Again, we will assume uniform phase and

make E[φnm] = 0 with var[φnm]À 2π.
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Figure 2-6: This figure plots the log-amplitude variance σ2
χ in (2.20) at the 1550 nm

wavelength for different turbulence strengths: weak, C2
n = 5 × 10−16 m−2/3; mild,
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Under this small aperture approximation, and ignoring the propagation delay Z/c,

the received field in (2.14) over the m-th receive pupil becomes

rm(ρ, t) =





r (ρ, t) , ρ ∈ {m-th Rx Pupil}
0, otherwise

(2.21)

=
N∑

n=1

αnmβnm(ρ) xn(t), (2.22)

where

βnm(ρ) =





∫
pn(σ)hFS(ρ− σ) dσ, ρ ∈ {m-th Rx Pupil}

0, otherwise
, (2.23)

is the free-space diffraction pattern of the n-th transmitted field on the m-th receiver

pupil.

Receiver Optics

Each channel model in this thesis will use slightly different receiver telescope optics

as shown in Figures 2-7, 2-8, and 2-9. For all channels, we will assume that all trans-

mitter and receiver pupils are circular and have diameters, dTX and dRX, respectively.

Furthermore, we will make the paraxial assumption that the propagation distance Z

is much greater than the transmit pupil diameter and receiver size, i.e., d2TX ¿ λZ

and D2
RX ¿ λZ, where λ is the optical wavelength, and DRX is the receiver size as

shown in Figure 2-4.

Our ideal photon detector channel will use the simplest receiver optics shown in

Figure 2-7. Here, the received field is focused onto the photo-sensitive portion of

a photodetector. If the detector diameter, lens diameter, and lens focal length are

chosen appropriately [7], then the short-time average (STA) power over the m-th
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detector is approximately the STA power over the m-th receiver pupil, i.e.,

∫
〈|rm(ρ, t)|2〉dρ =

N∑

n=1

N∑

k=1

αnmα
∗
km〈xn(t) x∗k(t)〉

∫
βnm(ρ)β

∗
km(ρ)dρ

≈
N∑

n=1

|αnm|2|xn(t)|2
∫
|βnm(ρ)|2dρ, (2.24)

where ∫
|βnm(ρ)|2dρ ≈

(πd2TX/4)(πd
2
RX/4)

(λZ)2
, (2.25)

is the diffraction-limited, free-space power loss expressed in terms of the pupil areas.

In obtaining (2.24) we have assumed that each transmitter uses a collimated spatial

field pattern, so that the free-space power loss is the same for all paths because all

the receiver pupils lie within the main lobes of all the transmit field patterns.

In (2.24) we have also assumed that the optical powers from different transmitters

add. This power addition assumption is valid if either of the following two conditions

hold. First, if the separation between the n-th and k-th, n 6= k, transmit pupils

satisfies ‖ σn − σk ‖ dRX À λZ, then

∫
βnm(ρ)β

∗
km(ρ)dρ ≈ 0, n 6= k. (2.26)

In other words, the free-space diffraction patterns from different transmit antenna are

approximately orthogonal in the m-th receiver pupil because the angles of arrival are

resolved by the diffraction limit of the receiver pupil.

The second case in which optical powers add is when each transmit laser operates

at a different optical frequency. In this case,

〈xn(t) x∗k(t)〉 ≈ |xn(t)|2 δnk, (2.27)

where δnk = 1 for n = k, and zero otherwise. For example, suppose each transmitter

uses a different wavelength on the ITU-standard wavelength-division multiplexing

grid separated by 50 GHz. If the STA interval TSTA is much greater than 1/(50
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Detector
i(t)

Optical
Filter

Figure 2-7: The ideal photon detector channel uses a lens to focus the received light
onto the photosensitive detector. The optical filter passes the desired signal wave-
lengths while providing discrimination against extraneous light sources at other wave-
lengths.

GHz), then the received STA power at the m-th receive aperture is approximately

the sum of the individual transmitted STA powers at the m-th receive aperture, as

in the previous STA power example.

Under the assumption that optical powers add and that the free-space loss is

the same for all transmit-receive aperture pairs, the STA power at the m-th receive

aperture factors into temporal,
∑N

n=1 |αnm|2|xn(t)|2, and fixed spatial components,
∫
|βnm(ρ)|2dρ. Because the spatial component is independent of n and m by as-

sumption, we can normalize the temporal component to include this fixed spatial

component. In other words, we will assume that xn(t) is normalized to include the

free-space losses. As a result, the STA power at the m-th receiver is

STA Power at m-th Receiver =
N∑

n=1

|αnm|2|xn(t)|2, (2.28)

the scaled sum of transmitted powers measured at the receiver.

The optically-preamplified, direct-detection channel model uses the receiver optics

shown in Figure 2-8. This receiver couples a single spatial mode of the received field

into a single-mode fiber. In other words, if ψm(ρ) is the propagating spatial mode of

the fiber projected backwards to the receive pupil plane, then the coupled temporal
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Figure 2-8: The optically-preamplified, direct-detection channel uses a telescope and
objective lens to couple a single spatial mode into a single-mode fiber. Again, an
optical filter passes the desired signal wavelengths while rejecting extraneous light
sources at other wavelengths.

component of the optical field over the m-th aperture is the inner product

fm(t) =

∫
rm(ρ, t)ψ

∗
m(ρ)dρ

=
N∑

n=1

αnmxn(t)

∫
βnm(ρ)ψ

∗
m(ρ)dρ. (2.29)

For the optically-preamplified, direct-detection channel model we will also assume

that the optical powers add. Because we can only couple a single spatial mode into

the fiber, we cannot use transmitter separation to create this addition. Instead, we

will assume that each transmit laser uses a different frequency, sufficiently separated,

such that the optical powers add, i.e., (2.27) prevails. In this case, the received STA

power coupled into the m-th receiver is

〈∫
|fm(t)ψm(ρ)|2dρ

〉
≈

N∑

n=1

|αnm|2|xn(t)|2
∣∣∣∣
∫
βnm(ρ)ψ

∗
m(ρ)dρ

∣∣∣∣
2 ∫
|ψm(ρ)|2dρ.

(2.30)

We will assume that the transmit pupils are spaced close enough, i.e., DTX ¿ λZ,

that
∫
βnm(ρ)ψ

∗
m(ρ)dρ becomes independent of n andm. Furthermore, we will assume

that
∫
|ψm(ρ)|2dρ is independent of m, e.g. ψm(ρ) = ψ(ρ−ρm) for some pattern ψ(ρ).

As a result, we can again normalize the STA temporal component to include the free-

space losses and make (2.28) hold.
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In Chapter 3, we will consider the heterodyne receiver shown in Figure 2-9. This

heterodyne structure is sometimes called coherent detection because the local oscilla-

tor is temporally and spatially in phase with the optical carrier. We will again make

the assumption that DTX ¿ λZ so that the free-space losses are independent of n

and m.

Detector
i(t)

Local
Oscillator

Received
Field

Figure 2-9: Heterodyne receivers mix the received optical field with a spatially and
temporally coherent local oscillator, and extract the beat-frequency component in the
resulting photocurrent.

2.3 Direct Detection

Direct detection is a term used to describe optical demodulation that responds to the

short-time-average (STA) power of the optical field. In this section, we will develop

the mathematical models for a single direct-detection receiver. We will later generalize

our models to arrays of transmitters and receivers. We begin with a description of an

ideal photon detector, then use this to build a practical optical receiver. Finally, we

consider the effects of amplifying the optical signal with a low-noise, optical amplifier.

2.3.1 An Ideal Photon-Counting Detector

When a photon of energy exceeding the valence-to-conduction bandgap energy strikes

a semiconductor diode junction, it can create an electron and hole pair through pho-

toabsorption at an average rate of

µ(t) =
ηp(t)

hfc
[photons/sec], (2.31)

62



where 0 ≤ η ≤ 1 is the detector’s quantum efficiency, p(t) is the STA power of the

impinging optical field, h is Planck’s constant, and fc is the optical carrier frequency.

When examining this electron (charge carrier) generation process over an ex-

tremely short time interval, [t, t + ∆), the probability of observing an electron is

Pr {1 electron in [t, t+∆)} ≈ µ(t)∆, (2.32)

and the probability of not observing an electron is

Pr {0 electons in [t, t+∆)} ≈ 1− µ(t)∆. (2.33)

Consequently, the probability of observing two or more electrons in this small in-

terval is approximately zero. In addition, the number of electrons observed in non-

overlapping time intervals is statistically independent.

These observations imply that we can model the photon-generated electron oc-

currences as an inhomogeneous Poisson counting process with rate µ(t), conditioned

on knowledge of the underlying STA optical power p(·) = { p(t) | 0 ≤ t ≤ T }.

Let y(t) be the number of counts on the interval [0, t), where y(0) = 0. The

photocurrent i(t) created by the moving electrons is the electrical charge per unit

time. Examining the photocurrent over the short interval [t, t + ∆), we find that

the charge in this interval, i(t)∆, must equal the number of electrons in this interval

δy(t) = y(t+∆)− y(t) multiplied by the charge of each electron e. Hence, for small

∆

i(t) = e
δy(t)

∆
−→
∆→0

e
dy(t)

dt
. (2.34)

Because y(t) is a discontinuous random process, the machinery required for a thorough

analysis of these and subsequent limits is beyond the scope of this thesis. For a more

precise treatment of point-process calculus see [6] or [58].

In practice, the photocurrent i(t) will never be measured directly. Instead, we

will always observe a filtered or integrated version of it due to electrical bandwidth

limitations. However, a useful photocurrent representation of an ideal photon detector
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on the interval [0,t) is

i(t) =





∑y(t)
k=1 eδ(t− tk), y(t) ≥ 1

0, y(t) = 0
, (2.35)

or equivalently,

y(t) =
1

e

∫ t

0

i(τ)dτ, (2.36)

where t1 ≤ . . . ≤ ty(t) are the ordered arrival times of the electrons, and δ(t) is the

impulse function. This detector model is ideal in the sense that it has infinite electrical

bandwidth (we observe impulses), and an absence of optical power, p(t) ≡ 0, results

in an absence of photocurrent, i(t) ≡ 0.

Statistically characterizing practical photodetectors requires modelling bandwidth

limitations and mixtures of noise processes. In this thesis, we will only consider the

first and second moments of practical photodetector outputs, and argue, through a

central limit theorem approximation, that this filtered Poisson process output is a

Gaussian process [46], [58].

As a starting point for modelling practical photodetectors, we want to find the

mean and auto-covariance function of the photocurrent i(t). We can then propagate

these first and second moments through linear, time-invariant systems to model more

realistic limitations.

This photocurrent, created by differentiating the counting process y(t), is some-

times called a shot-noise process. Conditioned on the rate process µ(·) ≡ { µ(τ) |
0 ≤ τ ≤ T }, the mean of the photocurrent is ([20], pg. 102)

E[ i(t) | µ(·) ] = e
∂

∂t
E[y(t) | µ(·)]

= e
∂

∂t

∫ t

0

µ(τ)dτ = eµ(t), (2.37)

where we have used the fact that y(t) is a conditional Poisson random variable with

conditional mean
∫ t
0
µ(τ)dτ . Similarly the auto-covariance of i(t) conditioned on the
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rate is

Ki|µ(t, s) ≡ cov [i(t), i(s) | µ(·)]

= e2
∂2

∂t∂s
cov [y(t), y(s) | µ(·)]

= e2
∂2

∂t∂s
var[y(min{t, s}) | µ(·)]

= e2
∂2

∂t∂s

∫ min{t,s}

0

µ(τ)dτ

= e2
∂

∂t
µ(s)u(t− s)

= e2µ(t)δ(t− s), (2.38)

where u(t) is the unit step function, i.e., u(t) = 1 for t ≥ 0, and zero elsewhere. In

the above derivation, we have used the fact that conditioned on the rate, { y(τ), 0 ≤
τ ≤ t } is an independent increments process, and hence its auto-covariance at two

times is its variance evaluated at the minimum of these times.

2.3.2 A Practical Optical Receiver

The second direct-detection channel we consider incorporates more realistic assump-

tions about photodetectors. In practice, a photodiode, followed by a transimpedance

amplifier (TIA), as shown in Figure 2-10, measures the STA optical power p(t). The

back-biased photodiode produces a flow of charge carriers, iDET(t), through pho-

toabsorption. This current flows through a transimpedance amplifier, and produces,

assuming no electrical bandwidth limitations, a voltage, vTIA(t) =
√
GTIAiDET(t),

where
√
GTIA is the resistor value of the operational amplifier feedback path.

Figure 2-11 shows a model of this practical photodetector. Real photodetectors

differ from ideal photon-counting detectors in two significant ways. First, in the

absence of an optical field, i.e., p(t) ≡ 0, real photodetectors will produce a small

current, iD(t), called the dark current. The dark current results from the random

generation of charge carriers from the photodiode junction. We will model this current
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Figure 2-10: A common way to implement a direct-detection receiver is with a pho-
todiode and a transimpedance amplifier. The photodiode produces a current, which
the transimpedance amplifier (TIA) converts to a measurable voltage.

as a shot-noise process with constant underlying rate

µD =
ηPD

hfc
, (2.39)

where PD is a fictitious dark power. We assume that the dark current is indepen-

dent of the ideal photon detector current, i(t). In Chapter 4, we will examine the

information-theoretic capacity of communication and coding using arrays of photon-

counting detectors with dark current.

i
DET

(t)

v
TIA

(t)

Photodiode Detector Transimpedance Amplifier

Light
p(t)

Ideal
Photon

Detector

i
D
(t)

i(t)
+

Dark Current

H
DET

(f) +

i
TIA

(t)
TIA Thermal Noise

H
TIA

(f)

Figure 2-11: This diagram illustrates the noises and bandwidth limitations of a prac-
tical direct-detection receiver.

The second difference between real and ideal photodetectors is finite bandwidth.

Junction capacitances and electron transit time in the photodiode limit its ability

to resolve closely spaced electron emissions. We can model this limitation via a
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linear, time-invariant filter hDET(t) ↔ HDET(f) =
∫
hDET(t) exp(−j2πft) dt, where

↔ denotes a Fourier transform pair. Because the charge produced by one electron is

the integral of the current created by that electron, (2.35) with y(t) = 1 implies

∫
hDET(t) dt = HDET(0) = 1. (2.40)

The detector photocurrent, iDET(t), is then the filtered sum of the current from the

ideal photon detector, i(t), and the dark current, iD(t), i.e.,

iDET(t) =

∫
[iD(τ) + i(τ)]hDET(t− τ)dτ (2.41)

The transimpedance amplifier in Figure 2-11 adds a zero-mean, thermally-induced

noise iTIA(t), and filters the resulting current, creating the voltage vTIA(t). The

thermal noise is a wide-sense stationary (WSS), real Gaussian process that has a

two-sided power spectral density NTIA/2 over the amplifier bandwidth. The filter has

a response hTIA(t) ↔ HTIA(f), with HTIA(0) =
√
GTIA, the transimpedance gain of

the amplifier.

The voltage output of the transimpedance amplifier is then

vTIA(t) =

∫
[ iD(τ) + i(τ) ]hDET−TIA(t− τ) dτ +

∫
iTIA(τ)hTIA(t− τ) dτ, (2.42)

where hDET−TIA(t) is the composite impulse response of the detector and TIA filter,

hDET−TIA(t) =

∫
hDET(τ)hTIA(t− τ) dτ. (2.43)

Conditioned on knowledge of the ideal photocurrent i(·) ≡ { i(t) | 0 ≤ t ≤ T }, the
mean of the amplifier output is

E[ vTIA(t) | i(·) ] =
∫

[ eµD + i(τ) ]hDET−TIA(t− τ) dτ, (2.44)

where we have assumed that iD(t) is a shot-noise process with mean eµD given by

(2.37). Similarly, using the shot-noise auto-covariance in (2.38), the conditional auto-
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covariance of the TIA output is

KTIA|i(t, s) ≡ cov [ vTIA(t), vTIA(s) | i(·) ]

=
NTIA

2

∫
hTIA(t− τ)hTIA(s− τ)dτ

+ e2µD

∫
hDET−TIA(t− τ)hDET−TIA(s− τ)dτ, (2.45)

where we have assumed that the processes { iD(t), iTIA(t) | 0 ≤ t ≤ T } are uncorre-

lated.

2.3.3 Optical Noise

In the preceding analysis, we have conditioned expectations on the rate process µ(·) or
the ideal photocurrent i(·). We will now examine the first- and second-order moments

of the ideal photocurrent i(t), when the rate process is created as in Figure 2-12. In

this figure, f(t) and z(t) represent optical field temporal components, normalized

such that the STA optical power is the square of the field magnitude. We interpret

f(t) as the signal-induced temporal component of the optical field mode that couples

into the single-mode optical fiber after the telescope entrance optics in Figure 2-8,

and (2.29).

Ideal
Photon

Detector

i(t)

+ | . |
2

f(t)

z(t)

p(t)

Figure 2-12: This block diagram shows an optical noise adding to the received optical
field f(t). For simplicity, we will assume the fields are normalized such that p(t) is
the STA optical power.

We interpret z(t) as an optical noise produced by background radiation and/or

amplified spontaneous emission (ASE) from an optical preamplifier. We will model

this noise as a zero-mean, wide-sense stationary (WSS), complex-valued Gaussian

process ([46], Appendix F), uncorrelated with the received field f(t). We assume
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that E[z(t)z(s)] = 0 and that E[<{z(t)}={z(s)}] = E[<{z(s)}={z(t)}], where ={z}
denotes the imaginary part of z. As a result, the auto-covariance, E[z(t)z∗(s)] =

Kz(t − s), is a real function. We will now find the mean and auto-covariance of the

photocurrent conditioned on f(·) ≡ { f(t) | 0 ≤ t ≤ T }.

Because the STA optical power is the squared magnitude of the optical field, the

rate of the photocurrent is from (2.31)

µ(t) =
η

hfc

(
|f(t)|2 + 2<{f(t)z∗(t)}+ |z(t)|2

)
. (2.46)

Using (2.37), iterated expectation, and the observation that conditioning on both

µ(·) and f(·) is equivalent to conditioning only on µ(·), the conditional photocurrent

mean is

E[ i(t) | f(·) ] = E { E [ i(t) | µ(·) ] | f(·) }

=
eη

hfc

[
|f(t)|2 +Kz(0)

]
. (2.47)

The calculation of the auto-covariance is slightly more involved. Using iterated covari-

ances, (2.37), (2.38), (2.46), the Gaussian moment factoring result cov[ |z(t)|2, |z(s)|2 ] =
|Kz(t− s)|2, and the identity 2<{a}2<{b} = 2<{ab+ ab∗} gives

Ki|f (t, s) = cov [ i(t), i(s) | f(·) ]

= E { cov [ i(t), i(s) | µ(·) ] | f(·) }

+ cov { E[ i(t) | µ(·) ], E[ i(s) | µ(·) ] | f(·) }

=
e2η

hfc

[
|f(t)|2 +Kz(0)

]
δ(t− s)

+

(
eη

hfc

)2 [
2<{f(t)f ∗(s)}Kz(t− s) + [Kz(t− s)]2

]
. (2.48)

We can now combine Figures 2-11 and 2-12, and find the mean and auto-covariance

of the TIA voltage output, conditioned on the signal-induced received field f(t). Using
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iterated expectation, (2.44), and (2.47), the conditional mean is

E[ vTIA(t) | f(·) ] = E { E [ vTIA(t) | i(·) ] | f(·) }

=
eη

hfc

∫ [
PD +Kz(0) + |f(τ)|2

]
hDET−TIA(t− τ)dτ. (2.49)

Using iterated covariances, (2.45), (2.48), (2.44), and assuming that the noise pro-

cesses are mutually independent, the conditional auto-covariance is

KTIA|f (t, s) = cov [ vTIA(t), vTIA(s) | f(·) ]

= E { cov [ vTIA(t), vTIA(s) | i(·) ] | f(·) }

+cov { E[ vTIA(t) | i(·) ], E[ vTIA(s) | i(·) ] | f(·) }

=
NTIA

2

∫
hTIA(t− τ)hTIA(s− τ)dτ

+
e2η

hfc

∫ [
PD +Kz(0) + |f(τ)|2

]
hDET−TIA(t− τ)hDET−TIA(s− τ)dτ

+

(
eη

hfc

)2 ∫ ∫
2<{f(τ)f ∗(σ)}Kz(τ − σ)hDET−TIA(t− τ)hDET−TIA(s− σ)dτdσ

+

(
eη

hfc

)2 ∫ ∫
[Kz(τ − σ)]2hDET−TIA(t− τ)hDET−TIA(s− σ)dτdσ. (2.50)

The first term in the covariance is from the TIA thermal noise. The second term

is sometimes called the “shot noise,” and results from the inherent randomness of

the underlying conditional Poisson process. The third and fourth terms represent the

randomness of the Poisson process rate.

2.3.4 An Optically-Preamplified, Direct-Detection Receiver

In this thesis, the second direct-detection channel that we will study is the combi-

nation of intensity modulation2, atmospheric propagation, and optically-preamplified

demodulation, as shown in Figure 2-13.

We will now develop the statistical model for a single transmitter employing in-

tensity modulation and a single optically-preamplified, direct-detection receiver. A

2Although we only consider intensity modulation for this channel, the following analysis extends
without modification for amplitude and phase modulation.
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Figure 2-13: Our second direct-detection channel employs intensity, or pulse am-
plitude modulation (PAM), modulation, atmospheric propagation, and optically-
preamplified demodulation.

codeword, consisting of the K real-valued symbols x(1), . . . , x(K) ∈ R, modulates a

train of impulses separated by TSYM seconds. These impulses pass through a real-

valued transmit filter hTX(t), producing the signal

q(t) =
K∑

k=1

x(k)hTX(t− kTSYM). (2.51)

The atmosphere multiplies this signal by a random loss α and adds a background

noise wB(t). We model this background noise as a zero-mean, WSS, complex-valued

Gaussian process with two-sided power spectral density NB over the optical band-

width. The optical bandwidth, −BO/2 ≤ f ≤ BO/2, is determined by an optical

filter, hO(t)↔ HO(f), inside the optically-preamplified receiver.

Figure 2-14 shows a model of the optically-preamplified receiver. The optical am-

plifier multiplies the optical power by GO, and adds a noise due to the amplification

of randomly emitted photons. We model this amplified-spontaneous emission (ASE)

noise as a WSS, complex-valued Gaussian process with two-sided power spectral den-

sity,

NASE = nsphfc(GO − 1), (2.52)

over the optical filter bandwidth. The spontaneous emission factor nsp ≥ 1 depends

on the population inversion within the amplifier ([46], pg. 184). This factor is equal
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to one for ideal amplifiers. For convenience, we will group the background and ASE

optical noises into a single, optically-filtered noise,

wO(t) =

∫ [√
GOwB(τ) + wASE(τ)

]
hO(t− τ)dτ. (2.53)

The auto-covariance of this zero-mean optical noise is

KO(t− s) ≡ cov[wO(t), wO(s)]

= (GONB +NASE)

∫
|HO(f)|2 ej2πf(t−s)df.

= NO

∫
|HO(f)|2 ej2πf(t−s)df, (2.54)

where NO ≡ GONB + NASE is the spectral density of the combined background and

ASE optical noise.
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Figure 2-14: An optically preamplified receiver consists of an optical amplifier (e.g.,
an erbium-doped fiber amplifier (EDFA)), optical filter, photodiode detector, and
transimpedance amplifier.

The TIA voltage passes through a real-valued filter hRX(t) and is then sampled

every TSYM seconds. We will make the following approximations to simplify the

analysis of this system:

• Large Optical Bandwidth: We assume that the optical bandwidth is much

greater than the electrical bandwidth so that the optical filter does not appre-

ciably distort the transmitted pulse, and that the optical noise appears white

over the signal bandwidth.

• No Transmitter Intersymbol Interference: We assume that the transmit-

ter uses rectangular pulses that do not overlap across symbol intervals.
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• No Receiver Intersymbol Interference: We assume that the receiver out-

put during the k-th symbol interval depends only on events that happened

during that interval.

• Ideal Lowpass Filters: We assume that the optical filter, HO(f) = 1 for

−BO/2 ≤ f ≤ BO/2, and zero otherwise. As a result KO(0) = NOBO. We also

assume that the bandwidth of the detector and the bandwidth of the TIA are

much larger than the bandwidth of the receive filter, and that their composite

response is an ideal lowpass filter, HE(f) = 1 for −BE ≤ f ≤ BE, and zero

otherwise.

In other words, we will ignore the complications that arise from intersymbol interfer-

ence, and assume that the symbol samples are statistically independent. Furthermore,

we approximate these sample statistics by those arising from the application of con-

stant transmit power. These assumptions lead to the model in ([46],Appendix F).

Using (2.49) with f(t) =
√
GO αx(k) and Kz(t) = KO(t), the mean of the k-th

symbol sample, conditioned on the random path gain α and the transmitted symbol

x(k), is

E[ y(k) | α, x(k) ] = eη

hfc

[
PD +NOBO +GO |α|2|x(k)|2

]
(2.55)

In practice, we can subtract out the non-signal dependent terms, and conclude that

the average voltage is proportional to the |α|2|x(k)|2.
From (2.50), the variance of the k-th symbol sample voltage consists of four com-

ponents,

var[ y(k) | α, x(k) ] ≈ σ2
T + σ2S(k) + σ2SN(k) + σ2NN. (2.56)

The first term is the variance of the TIA thermal noise given by

σ2T = NTIABE. (2.57)

The second term is the signal-dependent shot-noise variance

σ2S(k) =
e2η

hfc

[
PD +NOBO +GO |α|2|x(k)|2

]
2BE. (2.58)
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The third term is the cross term of the signal and optical noise

σ2SN(k) = 2

(
eη

hfc

)2

(GO |α|2|x(k)|2)(2NOBE). (2.59)

The last term is the from the optical noise beating against itself

σ2NN =

(
eη

hfc

)2

N2
O(2BO −BE)BE. (2.60)

This beat-noise term comes from the last term of (2.50), where we calculate the area

under the optical noise power spectrum, KO(τ)↔ SO(f), convolved with itself, over

the electrical bandwidth.

2.4 Coherent Detection

Coherent-detection receivers add an optical local oscillator (LO) to the incoming field

as shown in Figure 2-9. This local oscillator field is spatially and temporally coherent

with the incoming field. We will only consider a single receiver in this section, and

generalize our results to array reception in Chapter 3. Because the field’s spatial and

temporal components factor apart, we will, without loss of generality, examine only

the temporal components as shown in Figure 2-15.

Let uS(t) denote the complex-valued signal field with temporal bandwidth much

less than the intermediate frequency (IF), i.e., BS ¿ fIF. We represent the lo-

cal oscillator’s complex field as a complex-valued sinusoid at frequency fIF, i.e.,

uLO(t) =
√
PLO exp(j2πfIFt). The sum of these two signals passes into the prac-

tical photodetector of Figure 2-11. We assume that the bandwidth of the detector

and transimpedance amplifier is much greater than the intermediate frequency plus

signal bandwidth, i.e., BDET, BTIA À fIF+BS. In other words, the detector and TIA

pass the IF signal, and the IF filter, hIF(t)↔ HIF(f) determines the receiver spectral

characteristics. We model the IF filter as an ideal bandpass filter with bandwidth

2BS centered at fIF, i.e., HIF(f) = 1 for |f − fIF| ≤ BS, and zero otherwise.

We will now find the mean and auto-covariance of the output v(t). The STA
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Figure 2-15: A coherent-detection receiver mixes a spatially- and temporally-coherent
local oscillator with the incoming field. The STA power cross-term, which is pro-
portional to the received field, then propagates through an ideal bandpass filter for
subsequent processing.

power impinging on the detector is

|uS(t) + uLO(t)|2 = |uS(t)|2 + PLO + 2<
{√

PLOuS(t)e
−j2πfIFt

}
. (2.61)

Using (2.49) with f(t) = uS(t) + uLO(t) and z(t) ≡ 0, we have that the mean condi-

tioned on uS(·) = { uS(t) | 0 ≤ t ≤ T },

E[ v(t) | uS(·) ]

=
eη

hfc

∫ [
PD + |uS(τ)|2 + PLO + 2<

{√
PLOuS(τ)e

−j2πfIFτ
}]

hIF(t− τ)dτ

=

(
2eη

hfc

√
PLO

)
<
{
uS(t)e

−j2πfIFt
}
. (2.62)

The conditional auto-covariance comes from the first two terms in (2.50),

cov [ v(t), v(s) | uS(·) ]

=
e2η

hfc

∫ [(
NTIA

2

)(
hfc
e2η

)
+ PD + |uS(τ)|2 + PLO

+2<
{√

PLOuS(τ)e
−j2πfIFτ

}]
hIF(t− τ)hIF(s− τ)dτ

≈
(
2eη

hfc

√
PLO

)2(
hfc
4η

)∫
hIF(t− τ)hIF(s− τ)dτ, (2.63)

where the last line comes from increasing the local oscillator power until the approx-
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imation (2.63) holds, i.e., until

PLO À
(
NTIA

2

)(
hfc
e2η

)
, PD, |uS(t)|2. (2.64)

We can factor out and neglect the first parenthetical term in both (2.62) and (2.63),

creating the equivalent model

ỹ(t) = <
{
uS(t)e

−j2πfIFt
}
+ w̃(t), (2.65)

where

ỹ(t) = v(t)

(
hfc
2eη

)(
1√
PLO

)
, (2.66)

and w̃(t) is a zero-mean, white noise with two-sided power spectral density hfc/4η

over the IF filter passband. Because the local oscillator shot noise is created from the

sum of many filtered photon arrivals, we can approximate its distribution as Gaussian

via the central limit theorem [58]. An equivalent baseband model is then

y(t) = uS(t) + w(t), (2.67)

where w̃(t) = <{w(t) exp(−j2πfIFt)}, and w(t) is a WSS, zero-mean, complex-

valued, Gaussian process with auto-covariance E[w(t)w∗(s)] = (hfc/η)δ(t − s), and
E[w(t)w(s)] = 0. From (2.67), we conclude that coherent detection produces the

familiar additive white Gaussian noise channel.
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Chapter 3

Coherent Detection Receivers

This chapter explores the capacity of and coding for the coherent detection channel.

We begin with this channel because of its similarity to the traditional microwave

Rayleigh fading channel in additive, white Gaussian noise. In microwave commu-

nications, reception of multiple, randomly delayed and attenuated versions of the

transmitted signal results in fading that is approximately Gaussian due to the central

limit theorem. The fade magnitude is Rayleigh, and its phase is uniformly distributed

[32]. As described in Section 2.2.2, propagation through atmospheric turbulence can

be modelled as the product of random amplitude and phase fluctuations, resulting in

a lognormal fade distribution, also from the central limit theorem. In both cases, the

fades are normalized such that propagation does not on average attenuate or amplify

the transmitted power. Unlike Rayleigh fading, however, atmospheric fading has an

additional parameter, the log-amplitude variance σ2
χ, that determines the severity of

fading. We will see that the average capacity is not very sensitive to changes in the

log-amplitude variance, or the fading distribution (Rayleigh versus lognormal). We

will show that the probability of error, however, is quite sensitive to the log-amplitude

variance. We first describe the channel model in more detail.

The detector output in optical heterodyne reception consists of a frequency down-

shifted version of the incident optical field plus an additive white Gaussian noise

[20]. We will assume a quadrature-amplitude modulation (QAM) architecture where

a space-time encoder maps a segment of bits from the information source to a code-
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word. The N transmit apertures send the codeword

X = [x1(1), x1(2), . . . , x1(T ), x2(1), . . . , x2(T ), . . . , xN(1), . . . , xN(T )], (3.1)

over T non-overlapping adjacent discrete-time slots. During time-slot t, transmit

aperture n sends xn(t), a symbol from the QAM signal constellation. In this chapter,

for convenience, we will use t to denote discrete time, t ∈ {1, . . . , T}.

We model the field path gain from transmit aperture n to receive aperture m as

αnm = exp(χnm+jφnm). Here: χnm, φnm are independent Gaussian random variables

with moments var(χnm) = σ2χ, E(χnm) = −σ2χ, var(φnm) À 2π, and E(φnm) = 0,

chosen so that E[|αnm|2] = 1. The log-amplitude variance, σ2
χ, is given in (2.20). We

also assume that the spacing between elements of the receiver aperture array is large

enough to ensure that the path gains for different (n,m) values are approximately

independent.

We will use wm(t) to denote the additive Gaussian noise for receive aperture m

during time slot t; it is a complex-valued, zero-mean, white Gaussian random process

with E[wm(t1)w
∗
m(t2)] = N0δt1t2 and E[wm(t1)wm(t2)] = 0. The noise variance is

N0 = 2BShfc/η, where BS is the bandwidth of the information-bearing signal, h is

Planck’s constant, fc is the optical carrier frequency, and η is the detector quantum

efficiency.

Combining the fading and additive noise fluctuations, the signal at receive aperture

m ∈ {1, . . . ,M} during time slot t ∈ {1, . . . , T} is

ym(t) =
N∑

n=1

αnmxn(t) + wm(t). (3.2)

Equation (3.2) is our discrete-time, MIMO coherent-detection channel model.
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3.1 Capacity

Telatar [63] derived formulas for the average capacity of the single-user MIMORayleigh

fading Gaussian channel. He used a quasi-static, flat-fading channel model as in (3.2).

The only difference was the distribution of the fading statistics. We will calculate the

average capacity with and without the transmitter having path gain knowledge. We

assume in both cases, that the receiver knows, and optimally uses the path gains to

minimize the error probability. For comparison purposes, we will show the relation-

ship between the average Rayleigh and lognormal fading capacities.

3.1.1 Path Gains Known at the Transmitter

We will first consider the case in which both the transmitter and receiver know the

path gains. Consider the channel in (3.2), using the matrix notation for a single

time-slot,

y = Ax+ w, (3.3)

where A = { α∗nm }† ∈ CM×N is the path gain matrix, y = [y1(1)
∗ · · · yM(1)∗]† ∈ CM is

the output, x = [x1(1)
∗ · · · xN(1)∗]† ∈ CN is the input, and w = [w1(1)

∗ · · ·wM(1)∗]† ∈
CM is the zero-mean complex-valued Gaussian noise with E[ww†] = N0I. In the

above expressions, I is an identity matrix, and † denotes the conjugate-transpose

operator, and C denotes the set of complex numbers. Following [63], an equivalent

channel model using the singular value decomposition A = UDV † is

ỹ = Dx̃+ w̃, (3.4)

where ỹ = U †y, x̃ = V †x, and w̃ = U †w. Here: U ∈ CM×M and V ∈ CN×N are unitary

matrices, and D ∈ CM×N is a diagonal matrix containing the non-negative square

roots of the eigenvalues of AA†. Because the rank L of A is at most min{N,M},
at most min{N,M} coordinates of ỹ are signal dependent. Denoting the non-zero

eigenvalues of AA† by λ1, . . . λL, we can write the signal-dependent coordinates of
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(3.4) as

ỹl = λ
1/2
l x̃l + w̃l, 1 ≤ l ≤ L ≤ min{N,M}, (3.5)

and ignore the remaining coordinates. Because U is unitary, w̃ has the same distri-

bution as w. The conditional mutual information1 of this L × L parallel Gaussian

channel is bounded by ([14], pg. 250)

I(x̃1, . . . , x̃L; ỹ1, . . . , ỹL | α) ≤
L∑

l=1

log

(
1 +

λlPl
No

)
, (3.6)

where Pl = var[x̃l], and α = {αnm | 1 ≤ n ≤ N, 1 ≤ m ≤ M}. Equality results

when { x̃l | 1 ≤ l ≤ L } are independent Gaussian random variables with variances

{ Pl | 1 ≤ l ≤ L }, respectively. Hence maximizing the mutual information is a power

allocation problem.

We can maximize the mutual information in (3.6) subject to the total average

power constraint [14]

E[x†x] = E[x̃†x̃] =
L∑

l=1

Pl ≤ P, (3.7)

using “water-filling.” The capacity for a fixed set of path gains α ≡ {αnm | 1 ≤ n ≤
N, 1 ≤ m ≤M} known to both transmitter and receiver is then

C(α) =
L∑

l=1

(
log

[
λlν

N0

])+

, (3.8)

where (x)+ ≡ max{0, x}, and ν is chosen to satisfy the average power constraint

P =
L∑

l=1

(
ν − N0

λl

)+

. (3.9)

Figure 3-1 and Table 3.1 show the “water-filling” transmitter capacity (3.8) av-

eraged over 5,000 channel realizations for equal numbers of transmit and receive

apertures (N =M). For comparison purposes, we also show the average channel ca-

1Unless otherwise noted, all logarithms are natural logarithms, and information is measured in
nats.
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Log-Amp. Var. (σ2χ)

N =M 0.01 0.1 0.35 Rayleigh

1 2.4 2.2 1.9 2.0

2 4.2 4.1 3.8 4.0

3 6.2 6.1 5.7 6.0

4 8.2 8.1 7.7 8.0

5 10.2 10.1 9.7 10.0

6 12.2 12.1 11.7 12.0

7 14.2 14.1 13.7 14.0

8 16.2 16.1 15.7 16.0

9 18.2 18.1 17.7 18.0

10 20.2 20.1 19.7 20.0

Table 3.1: Average capacity [nats/use] with path gain knowledge at the transmitter
and receiver is shown as a function of aperture number (M = N), fading strength
(σ2χ), and distribution (lognormal versus Rayleigh). The total transmit average power
is constrained to be no greater than P = 10 dB.

pacity under Rayleigh fading. From this figure and table, we see that the the average

capacity is not that sensitive to changes in the fading strength (σ2
χ) or distribution

(lognormal versus Gaussian).

If communication occurs over many coherence times of an ergodic channel, this

average capacity is the maximum rate of reliable communication [66]. If time delays

prevent coding over multiple channel realizations, the average capacity is still a figure

of merit, but no longer a limit on reliable communication rate. In this case, the prob-

ability that the channel can support a given rate, or the complementary cumulative

distribution function of the instantaneous capacity, is a better measure. We will ex-

plore this capacity versus outage probability further in Chapter 4 for photon-counting

receivers.
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Figure 3-1: The average capacity when both transmitter and receiver know the path
gains is plotted versus the number of transmit and receive apertures (N = M).
We assume a unity receive noise power spectral density, i.e., N0 = 1, and that the
Rayleigh fading does not on average attenuate or amplify the transmitted power, i.e.,
var[<{αnm}] = var[={αnm}] = 1/2. We constrain the total transmit average power,
E[x†x], to be no greater than P .
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3.1.2 Path Gains Not Known at the Transmitter

The results of the preceding section assumed that the transmitter and receiver had

path gain knowledge. If the only the receiver knows the path gains, then a sensible

transmitter strategy is to use equal power, P/N , on each aperture. Furthermore, the

maximum mutual information (3.6) occurs when the x̃l are independent, or equiva-

lently, when E[x̃x̃†] = V †E[xx†]V = (P/N) I. Because the eigenvalues of I + γAA†

are 1+ γλl, where λl are the eigenvalues of AA†, and γ is any constant, the resulting

instantaneous capacity is [63]

C(α) = log det

(
I +

1

N

P

N0

AA†
)
. (3.10)

Figure 3-2 and Table 3.2 show the capacity (3.10) averaged over 5,000 channel

realizations for equal numbers of transmit and receive apertures (N = M). Again,

for comparison purposes, we show the Rayleigh fading average capacity. As with

the “water-filling” average capacity, we see that the the average capacity is not that

sensitive to changes in the fading strength (σ2
χ) or distribution (lognormal versus

Gaussian). Comparing Tables 3.1 and 3.2, we see that knowing the path gains at the

transmitter does not appreciably increase the average capacity for moderate numbers

of apertures and transmit power. For example, at a total transmit average power of

P = 10 dB, the capacity increase from knowing the path gains at the transmitter is

6.5% for ten transmit and ten receive apertures in severe fading (σ2
χ = 0.35). Similar

results have been shown for the Rayleigh fading channel [36, 22, 5].

3.2 Coding

Tarokh, et al., in [61] established space-time code (STC) design criteria for Rayleigh

and Ricean fading channels. These design criteria specify the pairwise properties of

codewords from the STC. In this section, we derive a similar design criterion for the

lognormal fading channel based on a central limit theorem approximation [27]. Our

criterion leads to STCs created from orthogonal designs, a subset of the previously
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Figure 3-2: The average capacity when only the receiver knows the path gains is
plotted versus the number of transmit and receive apertures (N =M). We assume a
unity receive noise power spectral density, i.e., N0 = 1, and that the Rayleigh fading
does not on average attenuate or amplify the transmitted power, i.e., var[<{αnm}] =
var[={αnm}] = 1/2. We constrain the total transmit average power, E[x†x], to be no
greater than P .
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Log-Amp. Var. (σ2χ)

N =M 0.01 0.1 0.35 Rayleigh

1 2.4 2.2 1.9 2.0

2 4.1 4.0 3.6 3.8

3 6.0 5.9 5.5 5.7

4 7.8 7.7 7.3 7.6

5 9.7 9.6 9.2 9.5

6 11.6 11.5 11.0 11.4

7 13.5 13.4 12.9 13.2

8 15.4 15.3 14.8 15.1

9 17.3 17.1 16.7 17.0

10 19.1 19.0 18.5 18.9

Table 3.2: Average capacity [nats/use] with path gain knowledge at the receiver is
shown as a function of aperture number (M = N), fading strength (σ2

χ), and distri-
bution (lognormal versus Rayleigh). The total transmit average power is constrained
to be no greater than P = 10 dB.
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reported STCs for Rayleigh channels. Tarokh, et al., in [60] showed that such codes

have a decoding algorithm requiring only linear processing at the receiver. We show

that these STCs also maximize the mean-to-standard-deviation ratio of the received

energy difference between codewords, a result analogous to maximal ratio combining.

Our derivation extends to other fading channels with independent, zero-mean

path gains. In other words, we show that for large numbers of transmit and receive

antennas, STCs created from orthogonal designs minimize the pairwise codeword

error probability regardless of the individual path-gain fading distributions.

3.2.1 Problem Formulation

Given the received samples { ym(t) : 1 ≤ m ≤ M, 1 ≤ t ≤ T } and knowledge of

the path gains α = {αnm : 1 ≤ n ≤ N, 1 ≤ m ≤ M }, the minimum probability of

error receiver chooses the codeword X from the STC X that minimizes the distance

between the received samples and the transmitted codeword seen at the receiver,

M∑

m=1

T∑

t=1

∣∣∣∣∣ym(t)−
N∑

n=1

αnmxn(t)

∣∣∣∣∣

2

. (3.11)

The exact probability of error is difficult to calculate for a STC with more than

two codewords. An upper bound on this probability of error comes from the union

bound

Pe ≤
∑

X∈X

∑

X̄∈X
X 6=X̄

Pr(X → X̄ ) Pr(X), (3.12)

where Pr(X → X̄ ) is the probability of decoding codeword X as codeword X̄ in the

absence of all other codewords. This sum is usually dominated by the terms of the

closest, or minimum distance, codeword pairs. The union bound estimate [18] of the

codeword error probability is the sum of pairwise error probabilities of the minimum

distance codeword pairs

Pe ≈ Kmin Pr(X → X̄ )min, (3.13)

where Kmin is the average number of minimum-distance codeword neighbors and
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Pr(X → X̄ )min is the pairwise probability of erroneously decoding a pair of minimum

distance codewords.

Given knowledge of the path gains and assuming equally-likely codewords, the

pairwise probability of incorrectly decoding transmitted codeword X as codeword X̄

is

Pr(X → X̄ | α ) = Q



√
d2(X, X̄)

2N0


 , (3.14)

where

d2(X, X̄) =
M∑

m=1

T∑

t=1

∣∣∣∣∣

N∑

n=1

αnm[x̄n(t)− xn(t)]
∣∣∣∣∣

2

(3.15)

is the squared distance between codewords at the receiver, and Q(x) is the area

under the upper tail of the standard normal density function. Averaging over α, the

unconditional probability of incorrectly decoding X as X̄ is therefore

Pr(X → X̄ ) =

∫
Pr(X → X̄ | α )pα(α)dα, (3.16)

where pα(α) is the joint probability density function of the lognormal path gains.

An ultimate objective is to construct a space-time code that minimizes the exact

code error probability, Pe. In this section, however, we will focus on minimizing

Pr(X → X̄)min in the union bound estimate of this probability. We will demonstrate

in Section 3.2.3 that under certain operating conditions, an approximation to this

pairwise error probability in the union bound estimate is a good proxy for the code

error probability.

3.2.2 Design Criteria

The integral in the unconditional pairwise error probability (3.16) is very difficult to

evaluate analytically because of the lognormal density function. We will attempt to

simplify its evaluation using a central limit theorem (CLT) approximation.
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Rewriting the squared distance between codewords at the receiver (3.15) as

d2(X, X̄) =
M∑

m=1

N∑

n=1

N∑

k=1

αnmα
∗
kmAnk, (3.17)

where

Ank =
T∑

t=1

[x̄n(t)− xn(t)][x̄k(t)− xk(t)]∗ (3.18)

shows that d2(X, X̄) is the sum of MN 2 complex lognormal random variables.2 We

assume that the transmitter does not have path gain knowledge; therefore, Ank does

not depend on the path gains.

Because the coefficients {Ank : 1 ≤ n, k ≤ N } and the central moments are

bounded, we will assume that no single term dominates the sum. Thus, we will use

the central limit theorem to approximate its distribution as a Gaussian3 with mean µ

and variance σ2, truncated on the interval d2(X, X̄) ≥ 0. Using this approximation,

we can rewrite the unconditional pairwise error probability (3.16) as

Pr(X → X̄ ) ≈
∫ ∞

0

Q

(√
z̄

2N0

)
pZ̄|Z̄≥0( z̄ | Z̄ ≥ 0 )dz̄, (3.19)

where

pZ̄(z̄) =
1√
2πσ2

e−
1

2σ2
(z̄−µ)2 , (3.20)

and

pZ̄|Z̄≥0( z̄ | Z̄ ≥ 0 ) =
pZ̄(z̄)

Pr(Z̄ ≥ 0)
(3.21)

=

1√
2πσ2

e−
1

2σ2
(z̄−µ)2

1−Q(µ/σ)
, for z̄ ≥ 0. (3.22)

Define A as the matrix with Ank as its nk-th element. This matrix characterizes

the relationship between a codeword pair of the space-time code. Our goal is to

2The scaled multiplication of lognormal random variables is also a lognormal random variable.
3When we discuss direct detection receivers in Chapter 4, we will argue that a Gaussian distri-

bution is a poor approximation to the small sums of real lognormal random variables. A Gaussian
distribution, however, is a good approximation to the sum of complex lognormal random variables
because of their uniform phases.
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derive properties of A that minimize the CLT approximation to the pairwise error

probability Pr(X → X̄ ). We will do so by expressing the approximation (3.19) as

a function of two normalized parameters that measure the fading strength and the

signal-to-noise ratio. We then find bounds on the normalized fading strength based

on the design matrix A. We demonstrate numerically that the CLT pairwise error

probability (3.19) is unimodal as a function of this normalized fading strength. We

then show that for large numbers of transmit and receive apertures, minimizing the

normalized fading strength, or equivalently choosing A to be a scaled identity matrix,

minimizes the CLT approximation to the pairwise probability of error.

Normalized Parameters

Our first step in minimizing the error probability approximation (3.19) is to rewrite

Pr(X → X̄ ) in terms of normalized parameters. The first normalized parameter

measures the strength of the fading. Define the normalized fading strength, η2, to be

the variance-to-mean-squared ratio of the energy difference between the codewords

at the receiver, i.e.,

η2 ≡ var[d2(X, X̄)]

E[d2(X, X̄)]2
=
σ2

µ2
. (3.23)

This normalized fading strength gauges the STC’s ability to mitigate fading. We

will show that STCs with small normalized fading strength have good pairwise error

performance in the CLT regime. The normalized fading strength η2, therefore, acts as

a “figure of merit” for space-time codes. The second normalized parameter measures

the total received signal-to-noise ratio, and is defined as ρ ≡ µ/N0.

With the change of variables z = z̄/µ, the CLT pairwise error probability approx-

imation (3.19) becomes

Pr(X → X̄; ρ, η2 ) ≈
∫ ∞

0

Q

(√
1

2
ρz

)
pZ|Z≥0(z)dz, (3.24)

where

pZ|Z≥0(z) =

1√
2πη2

e
− 1

2η2
(z−1)2

1−Q(1/η)
, for z ≥ 0, (3.25)
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and Z is a Gaussian random variable with unit mean and variance η2.

Mean and Variance Calculations

To approximate d2(X, X̄) as Gaussian, we first must determine its mean µ and vari-

ance σ2. Notice that because σ2φ À 1, we have that E[αnm] ≈ E[α2
nm] ≈ 0. Also,

because E[χnm] = −σ2χ, we find that E[|αnm|2] = 1 and E[|αnm|4] = e4σ
2
χ . The mean

of d2(X, X̄) is then

µ ≡ E

[
M∑

m=1

N∑

n=1

N∑

k=1

αnmα
∗
kmAnk

]
=Mtr{A}, (3.26)

where tr{A} ≡ ∑N
n=1Ann. We define the energy difference between transmitted

codewords as

Ed ≡ tr{A} =
N∑

n=1

T∑

t=1

|xn(t)− x̄n(t)|2. (3.27)

We can then express the total signal-to-noise ratio, ρ, as the sum of signal-to-noise

ratios at each receive aperture, i.e., ρ = MEd/N0 = MSNR, where SNR ≡ Ed/N0 is

the signal-to-noise ratio at each receive aperture.

The second moment of d2(X, X̄) is

E
[
d4(X, X̄)

]
=

M∑

m=1

N∑

n=1

N∑

k=1

M∑

m̄=1

N∑

n̄=1

N∑

k̄=1

AnkAn̄k̄E
[
αnmα

∗
kmαn̄m̄α

∗
k̄m̄

]
. (3.28)

To evaluate this summation, we split it into two cases. For m 6= m̄, we have that

E
[
αnmα

∗
kmαn̄m̄α

∗
k̄m̄

]
= E [αnmα

∗
km]E

[
αn̄m̄α

∗
k̄m̄

]

=





1 if n = k and n̄ = k̄

0 otherwise.
(3.29)
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When m = m̄, we find that

E
[
αnmα

∗
kmαn̄m̄α

∗
k̄m̄

]
= E

[
αnmα

∗
kmαn̄mα

∗
k̄m

]

=





e4σ
2
χ if n = k = n̄ = k̄

1 if n = k 6= n̄ = k̄

1 if n̄ = k 6= n = k̄

0 otherwise.

(3.30)

From these results it follows that the second moment of d2(X, X̄) is

E
[
d4(X, X̄)

]

=
M∑

m=1


e

4σ2χ

N∑

n=1

A2
nn +

N∑

n=1

N∑

k=1
k 6=n

AnnAkk +
N∑

n=1

N∑

k=1
k 6=n

AknAnk

+
M∑

m̄=1
m̄6=m

N∑

n=1

N∑

k=1

AnnAkk




= M

[(
e4σ

2
χ − 2

) N∑

n=1

A2
nn +

N∑

n=1

N∑

k=1

|Ank|2 +M (tr{A})2
]
. (3.31)

The variance of the squared codeword difference at the receiver is, therefore,

σ2 = var
[
d2(X, X̄)

]
=M

[(
e4σ

2
χ − 1

) N∑

n=1

A2
nn + 2

N∑

n=1

n−1∑

k=1

|Ank|2
]
. (3.32)

Notice that although we have assumed that the path gains are lognormally dis-

tributed, we have only used the fact that they are independent and identically dis-

tributed with zero mean, unit variance, and finite fourth moment. Therefore, our

method and results extend to all fading distributions that satisfy these weaker con-

ditions.
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Bounds on the Normalized Fading Strength

The mean µ and standard deviation σ of the squared codeword distance are tied to

the design matrix A by (3.26) and (3.32), respectively. We will now derive bounds on

the normalized fading strength, η2 = σ2/µ2, expressed in terms of the design matrix

A.

A lower bound, obtained via the Cauchy-Schwarz inequality, is

η2 =
M
[(
e4σ

2
χ − 1

)∑N
n=1A

2
nn + 2

∑N
n=1

∑n−1
k=1 |Ank|2

]

M2
(∑N

n=1Ann

)2

≥

(
e4σ

2
χ − 1

)∑N
n=1A

2
nn + 2

∑N
n=1

∑n−1
k=1 |Ank|2

MN
∑N

n=1A
2
nn

. (3.33)

Equality holds in (3.33) when Ann = β, n = 1, . . . , N , for some positive real number

β. Furthermore, setting Ank = 0 for n 6= k minimizes the numerator in (3.33). Thus

we get the bound

η2 ≥ e4σ
2
χ − 1

MN
, (3.34)

with equality when A = βI, where I is the N × N identity matrix. Also, Ann =
∑T

t=1 |xn(t)− x̄n(t)|2 = β, n = 1, . . . , N , implies that β = Ed/N .

Orthogonal designs [60] provide a method to construct STCs that satisfy the

design criterion A = Ed
N
I and provide easy decoding at the receiver. Therefore, STCs

created from orthogonal designs maximize the mean-to-standard-deviation ratio of the

received energy difference between codewords. In Section 3.2.3, we will demonstrate

the error performance of an orthogonal design space-time code.

We start the upper bound derivation by noticing that A is positive semi-definite

[29] because it has an N × T square-root matrix B with nt-th element xn(t)− x̄n(t)
such that A = BB† [61]. Thus, λ1, . . . , λN , the eigenvalues of A, are non-negative.
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For e4σ
2
χ − 2 ≥ 0, an upper bound on η2 is found as follows:

η2 =

(
e4σ

2
χ − 2

)∑N
n=1A

2
nn +

∑N
n=1

∑N
k=1 |Ank|2

M
(∑N

n=1Ann

)2

≤

(
e4σ

2
χ − 2

)∑N
n=1

∑N
k=1 |Ank|2 +

∑N
n=1

∑N
k=1 |Ank|2

M
(∑N

n=1Ann

)2 , (3.35)

with equality when A is a diagonal matrix. Using tr{A2} =
∑N

n=1

∑N
k=1 |Ank|2 =

∑N
n=1 λ

2
n, this upper bound becomes

η2 ≤ e4σ
2
χ − 1

M

N∑

n=1

(
λn∑N
k=1 λk

)2

≤ e4σ
2
χ − 1

M
, (3.36)

with equality when A is a diagonal matrix of rank one. The last inequality follows

from
N∑

n=1

(
λn∑N
k=1 λk

)2

≤
N∑

n=1

λn∑N
k=1 λk

= 1, (3.37)

which is met with equality when exactly one of the eigenvalues is non-zero.

For e4σ
2
χ − 2 < 0, an upper bound on η2 is found by suppressing the first term in

σ2:

η2 ≤
∑N

n=1

∑N
k=1 |Ank|2

M
(∑N

n=1Ann

)2 =
1

M

N∑

n=1

(
λn∑N
k=1 λk

)2

≤ 1

M
. (3.38)

The first inequality in (3.38) is tight when all the diagonal elements of A are zero.

The second inequality in (3.38) is tight when A has rank one. There is no non-zero,

positive semi-definite matrix that satisfies both of these conditions.

The bounds on the normalized fading strength η2 are then

e4σ
2
χ − 1

MN
≤ η2 ≤ max{1, e4σ2χ − 1}

M
. (3.39)

The lower bound is achieved when A = Ed
N
I. If e4σ

2
χ − 1 ≥ 1, the upper bound is

achieved when A has only one non-zero diagonal element. Although the upper bound
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is unachievable when e4σ
2
χ − 1 < 1, we will soon show that it is asymptotically tight

for large numbers of transmit apertures N .

Minimizing the Probability of Codeword Error

To our knowledge, the pairwise codeword error probability in (3.24) does not have

a closed-form solution. In this section, we will analyze its asymptotic behavior, and

demonstrate numerically that it is unimodal as a function of the fading strength η2,

i.e., that it has only one extremum, a maximum, for a fixed signal-to-noise ratio ρ.

First, we will fix the fading strength η2 and examine the behavior of Pr(X →
X̄; ρ, η2 ) as we vary the signal-to-noise ratio ρ. We saw in the previous section that

η2 is closely tied to the STC design matrix; therefore, fixing a value of η2 is in essence

fixing a design matrix.

For small values of total receiver signal-to-noise ratio ρ, the probability of code-

word error approaches one-half, i.e.,

lim
ρ→0

Pr(X → X̄; ρ, η2 ) = Q(0) =
1

2
. (3.40)

As ρ increases without bound, the Q function becomes sharply peaked at zero, causing

Pr(X → X̄; ρ, η2 ) to decay as 1/ρ, viz.,

Pr(X → X̄; large ρ, η2 ) ≈
∫ ∞

0

Q

(√
1

2
ρz

)
pZ|Z≥0(0)dz

=
e
− 1

2η2

√
2πη2 [1−Q(1/η)]

∫ ∞

0

Q

(√
1

2
ρz

)
dz

=

(
e
− 1

2η2

√
2πη2 [1−Q(1/η)]

)
1

ρ
, (3.41)

where
∫∞
0
Q
(√

1
2
ρz
)
dz = 1

ρ
using integration by parts.

We will now fix the total receiver signal-to-noise ratio, ρ, and determine the prob-

ability of codeword error for different values of normalized fading strength, η2, or

equivalently, for different design matrices. As η2 approaches zero, the Gaussian prob-
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ability density function in (3.24) becomes sharply peaked around the mean value at

z = 1. This sampling-like behavior results in

lim
η2→0

Pr(X → X̄; ρ, η2 ) = Q

(√
ρ

2

)
. (3.42)

Furthermore, for any fixed value of ρ,

lim
η2→∞

Pr(X → X̄; ρ, η2 ) = 0, (3.43)

because the Gaussian density approaches zero for large values of η2.

The behavior of (3.24) for intermediate values of η2 is more difficult to evalu-

ate analytically. We will, therefore, make the following conjecture as supported by

numerical evaluations of Pr(X → X̄; ρ, η2 ):

Conjecture: For 0 < η2 < ∞, Pr(X → X̄; ρ, η2 ) has only one extremum, a

maximum, for a given value of ρ. Plots of the pairwise error (3.24) for different values

of ρ are shown in Figure 3-3 to support this conjecture. In these plots, we used

trapezoidal integration to evaluate the integral in the pairwise error (3.24).

Assuming that Pr(X → X̄; ρ, η2 ) is unimodal in η2, its minimum must occur on

the boundary of the allowable range for η2 in (3.39). In other words, if

Pr

(
X → X̄;M SNR,

e4σ
2
χ − 1

MN

)
< Pr

(
X → X̄;M SNR,

max{1, e4σ2χ − 1}
M

)
,

(3.44)

then the optimal design criterion, in terms of minimizing the CLT pairwise probability

of codeword error, is A = Ed
N
I, because this design matrix meets the lower bound on

η2 with equality. When (3.44) does not hold, and e4σ
2
χ − 1 ≥ 1, then the optimal

design criterion is to choose A to be all zero except for a single non-zero diagonal

element. This design matrix, however, violates the CLT assumption that no single

term dominates the summation in (3.17). Figure 3-4 shows the bounds on η2 and the

probability of codeword error curve.

Because of its relationship to the pairwise error probability, the normalized fading
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Figure 3-3: The probability of pairwise codeword error, Pr(X → X̄; ρ, η2 ), as a func-
tion of the normalized fading strength η2 for total signal-to-noise ratio ρ =MEd/N0 =
8, 13, 15, and 18 dB. The limits as η2 approaches zero (3.42) are shown as circles.
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The smallest achievable error probability occurs when η2 = e
4σ2χ−1
MN

≈ 3 × 10−2, or

equivalently, when A = Ed
N
I.
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strength η2 is a figure of merit for space-time codes. We have demonstrated that

space-time codes created from orthogonal designs minimize η2, with

η2 =
e4σ

2
χ − 1

MN
, (3.45)

and, therefore, also minimize the pairwise error probability under the CLT approxi-

mation when (3.44) holds. When deriving the upper bound on the normalized fading

strength η2, however, we noted that when the design matrix A has only a few non-

zero entries, the CLT approximation might not be valid for small numbers of receive

apertures M . In this case, η2 might not a good indicator of error probability.

Although the upper bound, η2 < 1/M for e4σ
2
χ − 1 < 1, cannot be met with

equality, we can create a space-time code that matches it asymptotically for large

numbers of transmit apertures N . Consider a repetition spatial code, where in each

time-slot every transmitter sends the same symbol, i.e., xn(t) = x(t) for 1 ≤ n ≤ N .

In this case, elements of the design matrix A are Ank = Ed/N for all 1 ≤ n ≤ N and

1 ≤ k ≤ N . The rank of the design matrix A is one, and according to the Tarokh’s

rank and determinant criterion [61], this space-time code will have a small diversity

and coding advantage. We show that this small advantage is also reflected in the

normalized fading strength η2. For this repetition spatial code, the normalized fading

strength is

η2 =
1

M

(
1− 1

N

)
+
e4σ

2
χ − 1

MN
. (3.46)

We see that as we increase the number of transmit apertures N , the normalized

fading strength approaches the upper bound 1/M for e4σ
2
χ − 1 < 1. Because A is a

full matrix, the CLT approximation is valid for large numbers of transmit apertures,

and this repetition spatial code is among the worst of space-time codes in terms of

pairwise error probability.

For example, assuming ρ = 18dB, Figure 3-4 shows that the pairwise error prob-

ability for a repetition spatial STC (η2 ≈ 2× 10−1) is approximately 2× 10−3, while

that of an orthogonal design STC (η2 ≈ 3×10−2) is roughly 6×10−6. The normalized

fading strength of the repetition space-time code is very close to the upper bound
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1/M = 0.25, and hence its poor performance. For a fixed total receiver signal-to-noise

ratio ρ =MEd/N0, however, increasing the number of receive apertures M decreases

the upper bound, until eventually the repetition spatial STC performs as well as the

orthogonal design STC. In this case, transmitter diversity is useless. Alternatively,

had we increased the number of transmitters, the smallest possible pairwise error

probability for an orthogonal design is approximately 10−8 for ρ = MEd/N0 = 18

dB. We will examine this infinite diversity limit further in Section 3.2.3.

The number of transmit (N) and receive (M) apertures must be large in order for

the energy difference between codewords, d2(X, X̄), to be approximately Gaussian in

the central limit theorem regime. For a fixed total signal-to-noise ratio ρ =MEd/N0,

increasingM and N will cause the bounds on the normalized fading strength η2 given

in (3.39) to decrease, until (3.44) eventually holds. We have also observed through

numerical evaluation that the value of η2 that maximizes Pr(X → X̄; ρ, η2 ), i.e., the

mode, increases with increasing ρ, see Figure 3-3. For a given value of signal-to-noise

ratio Ed/N0, increasing the number of receive aperturesM , increases ρ, which in turn

increases the mode of the pairwise error probability as a function of the normalized

fading strength η2. Increasing the number of receive apertures, therefore, has greater

influence on making (3.44) hold, because it not only decreases the upper bound, but

also increases the mode.

The values of M and N (rounded to the next greatest integers) that make (3.44)

hold with equality are plotted in Figures 3-5 through 3-7 for different values of SNR

and fading environments. For a given SNR, these plots show the smallest number

of transmit and receive apertures required for A = Ed
N
I to be the optimal design

matrix. From these plots, we conclude that in the central limit theorem regime (large

values of M and N), A = Ed
N
I is the optimal design matrix in terms of pairwise error

probability. As previously noted, we observe that increasing the number of receive

apertures makes (3.44) hold more quickly than increasing the number of transmit

apertures.
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Figure 3-5: The smallest values of M and N such that (3.44) holds in mild fading
(σ2χ = 0.01). In other words, orthogonal designs are optimal in the CLT regime for
aperture numbers greater than these threshold values.

1 2 3 4 5 6 7 8
2

3

4

5

6

7

8

9

10

N
um

be
r o

f T
ra

ns
m

it 
A

pe
rtu

re
s 

(N
)

Number of Receive Apertures (M)

Boundary of Orthogonal Design Optimality (σ
X
2  = 0.100)

E
d
/N

o
 = 4 dB

E
d
/N

o
 = 5 dB

E
d
/N

o
 = 7.5 dB

Figure 3-6: The smallest values ofM and N such that (3.44) holds in moderate fading
(σ2χ = 0.1).
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Figure 3-7: The smallest values of M and N such that (3.44) holds in severe fading
(σ2χ = 0.35).

3.2.3 Performance

In this section we address the validity of the central limit theorem approximation and

the performance of STCs on lognormal channels.

Performance Bounds for Orthogonal Design STCs

We will now derive the pairwise probability of decoding codeword X as codeword X̄

assuming that the space-time code satisfies the design criterion A = Ed
N
I, but without

using the central limit theorem approximation. Under this design criterion, d2(X, X̄)

becomes

d2(X, X̄) =
M∑

m=1

N∑

n=1

Ed

N
|αnm|2 =

Ed

N

MN∑

k=1

e2χk , (3.47)

where χk, k = 1, . . . ,MN , are independent, identically distributed Gaussian random

variables with var(χk) = σ2χ and E(χk) = −σ2χ. Define χ = (χ1, . . . , χMN). The

probability of decoding X as X̄ is then

Pr(X → X̄ ) =

∫ ∞

−∞
Pr(X → X̄ | χ )pχ(χ)dχ, (3.48)
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where pχ(χ) is the multivariate Gaussian probability density function for χ, and

Pr(X → X̄ | χ ) = Q




√√√√
[

1

2N

Ed

N0

]
[MN ]

[
1

MN

MN∑

k=1

e2χk

]
 , (3.49)

is the conditional pairwise error probability. We write the argument as three terms

to emphasize that the error probability depends on the signal-to-noise ratio (Ed/N0)

per transmit aperture (1/N), aperture number product (MN), and the average fade

power,
∑MN

k=1 exp(2χk)/MN . Using the bound Q(x) ≤ exp(−x2/2)/2 gives

Pr(X → X̄ ) ≤
∫ ∞

−∞

1

2

1

(2πσ2χ)
MN/2

exp

(
− 1

N

Ed

4N0

MN∑

k=1

e2χk − 1

2σ2χ

MN∑

k=1

(χk + σ2χ)
2

)
dχ

=
1

2

[∫ ∞

−∞

1√
2πσ2χ

exp

(
− 1

N

Ed

4N0

e2x
)
exp

(
− 1

2σ2χ
(x+ σ2χ)

2

)
dx

]MN

=
1

2

[
Fr

(
1

N

Ed

4N0

;−σ2χ, σ2χ
)]MN

=
1

2

[
Fr

(
SNR

4N
;−σ2χ, σ2χ

)]MN

,(3.50)

where Fr(a;m, s2) is the lognormal density frustration function given by

Fr(a;m, s2) =

∫ ∞

−∞

1√
2πs2

exp
(
−ae2x

)
exp

[
− 1

2s2
(x−m)2

]
dx. (3.51)

Using the bound Q(x) ≥ exp(−x2)/4, gives a similar lower bound

Pr(X → X̄ ) ≥ 1

4

[
Fr

(
SNR

2N
;−σ2χ, σ2χ

)]MN

. (3.52)

A closed form evaluation of the frustration function does not exist; therefore, we

use a saddle-point integration method developed by Halme in [28] to numerically

evaluate it. For the design criterion A = Ed
N
I, Figure 3-8 compares the probabil-

ity of codeword error in (3.48), the central limit theorem approximation probability

of codeword error in (3.24), its asymptotic behavior in (3.41), and the frustration

function bounds in (3.50) and (3.52). This figure shows that for small values of

SNR, or typical error probabilities of interest, the CLT approximation seems valid

for MN = 16 in moderate fading. Asymptotically, however, the CLT probability of
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Figure 3-8: A comparison of the pairwise error probability for A = Ed
N
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exact error probability in (3.48) computed via Monte Carlo averaging, the central limit
theorem approximation (3.24) calculated via trapezoidal integration, its asymptotic
behavior in (3.41), and the frustration function bounds in (3.50) and (3.52) computed
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codeword error decays slower than the actual error probability. From (3.41), we know

that the CLT probability of codeword error decays as 1/SNR, whereas the frustration

function bounds suggest the actual curve decays faster. This discrepancy arises from

dissimilarities in the tails of the Gaussian distribution and the actual distribution as

emphasized by large values of SNR. As this figure suggests, the CLT approximation

tends to be a conservative estimate, or upper bound, to the pairwise error probability.

To measure the validity of the central limit theorem approximation, we examined

the difference in SNR between the error probability expression in (3.48) and its ap-

proximation in (3.24) at a given error probability. For example, in Figure 3-8 for an er-

ror probability of Pr(X → X̄ ) = 10−6, the CLT approximation requires 0.5 dB more

SNR than the actual lognormal curve. Figure 3-9 shows this spurious SNR for differ-

ent aperture products (MN) in different fading environments (σ2
χ = 0.01, 0.1, 0.35).

From this figure, we see that the CLT approximation is accurate to fractions of a dB

at 10−6 pairwise error probabilities in mild fading environments (σ2
χ = 0.01) for all

values of MN ≥ 2. A larger number of apertures is required for more severe fading

(roughly,MN > 16 for σ2
χ = 0.1 andMN > 64 for σ2χ = 0.35). Regardless, it appears

that the CLT approximation tends to over estimate the pairwise error, and acts as

an upper bound.

A Lower Bound on the Probability of Codeword Error

In the previous section, we derived lower and upper bounds on the probability of

incorrectly decoding codeword X as codeword X̄ under the design criterion A = Ed
N
I

without using the central limit theorem approximation for d2(X, X̄). In this section,

we derive a lower bound on this probability of error without using the central limit

theorem approximation that is valid for an arbitrary design matrix A. Using the
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Figure 3-9: The difference in SNR required to achieve a 10−6 pairwise codeword
error probability between the actual lognormal error expression in (3.48) and its
central limit theorem approximation in (3.24) is shown for different fading strengths
(σ2χ = 0.01, 0.1, and 0.35).

Cauchy-Schwarz inequality on (3.15) gives

d2(X, X̄) ≤
M∑

m=1

T∑

t=1

N∑

n=1

|αnm|2
N∑

k=1

|x̄k(t)− xk(t)|2

=
M∑

m=1

N∑

n=1

Ed |αnm|2 = Ed

MN∑

k=1

e2χk , (3.53)

where we have renumbered the sum of the MN independent lognormal random vari-

ables as in the previous section. Following a similar derivation to that in the previous

section, a lower bound on the probability of error for any design matrix is

Pr(X → X̄ ) ≥ 1

4

[
Fr

(
SNR

2
;−σ2χ, σ2χ

)]MN

. (3.54)

For a large number of transmit apertures, N , this bound can be quite loose, cf. the

orthogonal design bound in (3.52).
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Infinite Diversity Performance Limit

If we fix the total receiver average signal-to-noise ratio, ρ, and have enough receive

apertures, M , such that (3.44) holds, then A = Ed
N
I minimizes the pairwise error

probability, and this design matrix gives η2 = [exp(4σ2χ) − 1]/MN . As we increase

the aperture number product, MN , we see that η2 approaches zero, and hence (3.42)

provides a performance limit for infinite diversity, i.e.,

lim
MN→∞

Pr

(
X → X̄;MSNR,

e4σ
2
χ − 1

MN

)
= Q

(√
MSNR

2

)
. (3.55)

We can also see this result from the conditional pairwise error (3.49). As the number

of apertures MN increases, the sample average becomes the ensemble average by

the law of large numbers, and we get the infinite diversity limit (3.55). These limits

appear as circles in Figure 3-3 for M SNR = 8, 13, 15, and 18 dB.

One can view this limit as the error probability of a one transmit, M receive aper-

ture system with no fading. In other words, the large number of apertures mitigates

the fading, and the only uncertainty in the decision process arises from the additive

white Gaussian noise at each receiver.

We also note that for fixed ρ =M SNR, increasing the number of receive apertures

decreases the upper bound until all space-time codes have about the same pairwise

error performance (3.55). For a fixed total receive signal-to-noise ratio ρ, a generally

poor STC, such as the repetition spatial STC, will perform just as well as an “optimal”

orthogonal design STC for large numbers of receive apertures.

An Orthogonal Design Example: The Alamouti Scheme

Alamouti in [1] proposed a simple transmit diversity technique using two transmit

apertures (N = 2), two time-slots (T = 2), M receive apertures, and a complex QAM

signal S constellation of size 2b. During the first time-slot, 2b bits arrive, determining

two signal constellation points, s1 and s2 that are transmitted simultaneously on

the first and second apertures, respectively. During the second time-slot, the first
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aperture transmits −s∗2, while the second sends s∗1. In other words, this STC consists

of all the codewords of the form x = [x1(1), x1(2), x2(1), x2(2)] = [s1,−s∗2, s2, s∗1] where
s1 and s2 range over all possible signal constellation points. Tarokh in [60] showed

that the Alamouti scheme is an example of a STC created from a complex orthogonal

design.

The design matrix of this STC for two codewords x = [x1,−x∗2, x2, x∗1] and x̄ =

[x̄1,−x̄∗2, x̄2, x̄∗1] satisfies our design criteria A = Ed
2
I, where Ed = 2|x1− x̄1|2 +2|x2−

x̄2|2 is the energy difference between the codewords. The performance of this code

for pairs of codewords is shown in Figure 3-8 for eight receive apertures (M = 8) in

moderate fading (σ2χ = 0.1), and in Figures 3-12 and 3-11 for two receive apertures

(M = 2) in mild and moderate fading, respectively.

Orthogonal designs [60] have the property that the symbol sequences on each

aperture are orthogonal, i.e.,
∑T

t=1 xn(t)x
∗
k(t) = 0 for n 6= k. As a result, space-time

codes created from orthogonal designs, such as the Alamouti scheme, have a simple

decoding algorithm. Rewriting the decision metric in (3.11) as

X̂ = argmin
X∈X

M∑

m=1

T∑

t=1

(
|ym(t)|2 +

N∑

n=1

N∑

k=1

αnmα
∗
kmxn(t)x

∗
k(t)− 2Re

{
y∗m(t)

N∑

n=1

αnmxn(t)

})

= argmin
X∈X

N∑

n=1

T∑

t=1

[(
M∑

m=1

|αnm|2
)
|xn(t)|2 − 2Re

{(
M∑

m=1

y∗m(t)αnm

)
xn(t)

}]
(3.56)

shows that joint detection of [x1(1), . . . , xN(T )] is equivalent to decoding each individ-

ual symbol, xn(t), separately. The structure of the Alamouti STC allows for further

simplification, and the decision rules become [60]

ŝ1 = argmin
s∈S



(
−1 +

2∑

n=1

M∑

m=1

|αnm|2
)
|s|2 +

∣∣∣∣∣s−
M∑

m=1

[ym(1)α
∗
1m + y∗m(2)α2m]

∣∣∣∣∣

2



(3.57)
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and

ŝ2 = argmin
s∈S



(
−1 +

2∑

n=1

M∑

m=1

|αnm|2
)
|s|2 +

∣∣∣∣∣s−
M∑

m=1

[ym(1)α
∗
2m + y∗m(2)α1m]

∣∣∣∣∣

2

 .

(3.58)

Figure 3-10 shows a simulation of the average code error probability, Pe, for the two

transmit aperture Alamouti STC over 5×106 channel realizations. We use the binary,

phase-shift, keying (BPSK) signal set, S = {−
√
Eb,
√
Eb}. Because a codeword error

occurs when either bit is in error, the codeword error rate is approximately twice the

bit error rate.
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Figure 3-10: The two transmit aperture (N = 2), BPSK, Alamouti STC, average
codeword error probability is plotted for different numbers of receive apertures (M =
1, 2, and 4) and fading strengths (σ2

χ = 0.01, 0.1, and 0.35). Error bars indicate the
standard error of each estimate.
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We now compare the union bound estimate (3.13) based on the pairwise error

probability to the actual code error rate in Figure 3-10. After all, we used the union

bound estimate as motivation for minimizing the pairwise error probability as a proxy

to the actual code error rate. We would first like to verify that this union bound

estimate based on the minimum distance pairwise error probability is a reasonable

substitute for the code error rate. Second, we want to determine if the CLT pairwise

error (3.24) is a good approximation to the actual pairwise error probability (3.48).

For example, we see in Figure 3-10 and Table 3.4 that the actual error rate for

two receive apertures (M = 2) in moderate fading (σ2
χ = 0.1) at Eb/N0 = 3 dB is

approximately 6.6× 10−4.

An Alamouti STC using a BPSK signal constellation has four codewords. Each

codeword has two neighbors at a distance squared of Emin
d = 8Eb, and one neighbor at

Emax
d = 16Eb. The average number of nearest neighbors per codeword is, therefore,

Kmin = 2. The union bound estimate then for this Alamouti STC is twice the

minimum distance pairwise error probability. From Figure 3-11 and Table 3.3, we see

that the exact pairwise error probability in (3.48) for a minimum distance codeword

pair at Eb/N0 = 3 dB is 3.3 × 10−4. The union bound estimate based on the exact

pairwise error probability is 6.7× 10−4 (Table 3.4), which is very close to the actual

code error rate. We conclude that under these operating conditions, the union bound

estimate is a good indication of code error rate.

The Alamouti STC is an example of an orthogonal design, which has a diagonal

design matrix. The normalized fading strength in this case is

η2 =
e(4)(0.1) − 1

(2)(2)
≈ 0.12. (3.59)

From Figure 3-3 we see that for η2 = 0.12 and

M
Emin
d

N0

= 2
8Eb

N0

≈ 15dB, (3.60)

the pairwise error probability is approximately 1.6 × 10−3. The CLT approximate

union bound estimate of the codeword error probability is then 3.2 × 10−3, which is
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a factor of five from the actual probability of 6.6× 10−4.

As seen in Figure 3-11, the CLT approximation tends to over estimate the pairwise

error probability. In fact, for a pairwise error probability of 3.3× 10−4 (one-half the

code error rate), the CLT approximation uses about 4 dB more SNR than the actual

probability. In other words, the CLT minimum distance pairwise approximation at

Eb/N0 = 7 dB produces the same error rate as the true pairwise error at Eb/N0 = 3

dB. This 4 dB spurious SNR indicates that for M = N = 2 in moderate fading

σ2χ = 0.1, the CLT approximation to the pairwise error at 3.3×10−4 is not that good;

hence, the factor of five in the CLT union bound estimate.

If we repeated the above analysis using mild fading (σ2
χ = 0.01) instead of mod-

erate fading (σ2χ = 0.1), then the CLT union bound estimate is very accurate. From

Figure 3-10 and Table 3.4, the code error rate at Eb/N0 = 3 dB in mild fading

(σ2χ = 0.01) using two receive apertures (M = 2) is approximately 9.5 × 10−5. The

normalized fading strength of the Alamouti STC in mild fading is now η2 ≈ 10−2.

From Figure 3-3 and Table 3.3, the CLT pairwise error probability for ρ = 15 dB is

4.7× 10−5. The CLT union bound estimate is then 9.5× 10−5, which agrees with the

actual code error rate.

As seen in Figure 3-11, for two transmitters and two receivers (N = M = 2) in

mild fading (σ2χ = 0.01), the spurious SNR at 4.75 × 10−5 is roughly 0.01 dB. In

this case, the central limit theorem approximation is very accurate. Furthermore, the

union bound estimate tends to be more accurate at smaller error probabilities.

Also, note from Figure 3-3 that increasing the number of transmit apertures will

not improve the error performance much for a fixed ρ = MEd/N0 = 15 dB. For this

total signal-to-noise ratio, the infinite transmit diversity limit (3.55) is 3.5 × 10−5,

resulting in a union bound estimate of 7 × 10−5. Furthermore, from Figure 3-5 we

see that for Emin
d /N0 = 8Eb/N0 = 12 dB, that orthogonal design STCs in mild

fading are optimal in terms of the CLT pairwise error probability for any number

of transmit and receive apertures. Because the CLT union bound estimate is very

close to the true code error probability, and orthogonal designs minimize the pairwise

error probability in the CLT regime, we conclude that the Alamouti STC under these
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operating conditions4 is the best STC in terms of code error rate, Pe. In other words,

under these operating conditions, we have met our objective to develop a space-time

code that minimizes the code error rate.
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Figure 3-11: A comparison of the pairwise error probability for A = Ed
N
I STCs in

moderate fading (σ2χ = 0.1) using the exact error probability in (3.48) computed via
Monte Carlo averaging, the central limit theorem approximation (3.24) calculated via
trapezoidal integration, its asymptotic behavior in (3.41), and the frustration function
bounds in (3.50) and (3.52) computed via saddle-point integration.

4Under the latter operating conditions: BPSK signal set, N = M = 2, σ2
χ = 0.01, Eb/N0 = 3 dB
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Figure 3-12: A comparison of the pairwise error probability for A = Ed
N
I STCs in

weak fading (σ2χ = 0.01) using the exact error probability in (3.48) computed via
Monte Carlo averaging, the central limit theorem approximation (3.24) calculated
via trapezoidal integration, and the frustration function bounds in (3.50) and (3.52)
computed via saddle-point integration.

σ2χ Fr LB LN Fr UB CLT

0.1 1.2E-05 3.3E-04 1.4E-03 1.6E-03

0.01 9.3E-08 4.6E-05 2.4E-04 4.7E-05

Table 3.3: Minimum distance pairwise error probability at Eb/N0 = 3 dB is shown
as a function of log-amplitude variance (σ2

χ = 0.1 and 0.01) for the Alamouti STC
using two transmit and two receive apertures (N = M = 2). The columns are as
follows: the exact pairwise error probability (LN) in (3.48), the central limit theorem
(CLT) approximation (3.24), and the frustration function bounds (Fr LB and Fr UB)
in (3.50) and (3.52).
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σ2χ Fr LB UBE LN UBE Fr UB UBE CLT UBE Actual CER

0.1 2.4E-05 6.7E-04 2.8E-03 3.2E-03 6.6E-04

0.01 1.9E-07 9.2E-05 4.7E-04 9.5E-05 9.5E-05

Table 3.4: This table compares the Alamouti STC code error rate (Figure 3-10) at
Eb/N0 = 3 dB to the union bound estimates (twice the minimum distance pairwise
error probability) using the pairwise error probabilities in Table 3.3.
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Chapter 4

Photon-Counting Receivers

When the inherent randomness of photon arrivals, i.e., shot noise, has a larger variance

than the electrical amplifier thermal noise, we say that the receiver is shot-noise

limited. In this shot-noise limited regime, we can model the output of each detector

as a doubly-stochastic, Poisson counting process [58]. For every receiver, we will

assume as in [40] that the fields received from the multiple transmitters are sufficiently

separated in frequency or angle of arrival to make the received power equal to the

sum of the powers from the individual transmitters, i.e., (2.26) and/or (2.27) holds.

For simplicity, we assume that the receiver and transmitter geometry is such that

the free-space losses are the same for all transmitter to receiver paths. Because the

free-space losses are identical, we can normalize the optical field’s temporal component

such that the effective photon flux in (2.30) collected by the m-th receiver is,

Effective STA photon flux at m-th Receiver =
N∑

n=1

αnmxn(t). (4.1)

Because direct detection receivers respond to the impinging optical power, for conve-

nience, we have redefined αnm to be the power path gain from the n-th transmitter

to the m-th detector.

Similarly, xn(t) is the effective photon flux waveform from the n-th transmitter1.

1For simplicity of terminology, we shall use power instead of photon flux, in what follows. In
essence, this amounts to saying that we are measuring power in units of photons per second instead
of Watts.
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The codeword waveform xn(t), is proportional to the optical power of the n-th trans-

mitter during the interval 0 ≤ t ≤ T . Physically, (η/hfc)
−1xn(t) is the transmitted

power in Watts from the n-th transmitter measured at each receiver in the absence

of fading. Here: η is the detector quantum efficiency, h is Planck’s constant, and fc

is the optical carrier frequency.

Under shot-noise-limited operation, the photon-count record of them-th (1 ≤ m ≤
M) detector, {ym(t), 0 ≤ t ≤ T}, conditioned on the knowledge of the transmitted

codeword and path gains, can be taken to be a Poisson counting process with rate

µm(t) =
N∑

n=1

αnmxn(t) + λm, (4.2)

where N is the number of transmit apertures, αnm is the power path gain from the

n-th transmit aperture to the m-th receive aperture, and λm ≥ 0 is a dark noise rate

for the m-th receiver. We can also incorporate an optical background noise in λm,

if the background noise modes justify a Poisson approximation. This approximation

occurs when the third and fourth terms in (2.50) are negligible. In this case, we can

replace the stochastic background noise rate by its expected value as done in [12].

This situation arises in practice when the receiver collects many spatial and temporal

optical noise modes. Regardless, will refer to λm as a background noise rate.

We normalize the power path gains

αnm = e2χnm , (4.3)

such that the atmosphere does not, on average, attenuate or amplify the transmitted

waveform, i.e., E[αnm] = 1, by setting var[χnm] = −E[χnm] = σ2χ. Again, we note

that αnm is a real-valued power path gain. The log-amplitude variance σ2
χ, given by

(2.20), can be as small as zero when fading is negligible, and saturates at one-half in

severe turbulence conditions. We also assume that the spacing between elements of

the aperture arrays is large enough to ensure that the path gains for different (n,m)

are approximately independent.
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4.1 Capacity

In this section, we examine the capacity of this MIMO Poisson, fading channel. We

start by assuming that the transmitter and receiver know and use the path gains

optimally. We show that path gain knowledge at the transmitter does not increase

capacity in the low and high signal-to-noise ratio regimes. Next, we calculate the

instantaneous capacity of a system employing a receiver that simply adds the photon

counts from each detector. This “photon-bucket” receiver does not require path gain

knowledge and we will show that it does not reduce capacity in the high signal-to-noise

ratio regime. Finally, we will examine the ergodic capacity and capacity-vs-outage

probability, which take into account the channel’s fading nature.

4.1.1 The MIMO Poisson Channel

We now examine the Shannon capacity of the MIMO Poisson channel with rate (4.2)

subject to peak and average transmit power constraints [25]. We assume that the

transmitter and receiver know the path gains, and use this information optimally to

maximize the instantaneous capacity, i.e., the capacity for a given channel realization.

In other words, in this section, we will treat the path gains as deterministic known

constants. We derive upper and lower bounds on this capacity, and show that they

coincide in a number of special cases. The capacity is bounded below by that of the

MIMO channel with an additional on-off keying (OOK) transmitter constraint, and

it is bounded above by that of parallel, independent multiple-input, single-output

(MISO) channels.

The capacity of the single-input, single-output (SISO) Poisson channel is well un-

derstood. Kabanov [33] derived the information capacity of the SISO Poisson channel

with a peak transmit power constraint using martingale techniques. Davis [17] con-

sidered the addition of an average transmit power constraint. Wyner [67] derived the

capacity and error exponent from first principles, using a discrete memoryless channel

approximation. Shamai (Shitz) [53, 52] derived the capacity with constraints on the

transmitted pulse width. Frey [19] allowed for time-varying peak and average power
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constraints, as well as for random noise intensities. Shamai (Shitz) and Lapidoth [55]

considered general spectral constraints on the Poisson counting process rate process.

Recently, the multiple-user Poisson channel has received attention. Lapidoth and

Shamai (Shitz) [40] computed the two-user capacity region of the multiple-access

channel. Their concluding section included a comment on the capacity of the MISO

channel in the absence of background noise and average power constraints. We will

formalize this comment on the MISO Poisson channel. Bross [9] calculated the error

exponent for the two-user Poisson multiple access channel. Lapidoth discusses the

Poisson broadcast channel in [41].

In what follows, we shall derive upper and lower bounds on the capacity of the

MIMO Poisson channel. We will show that our bounds coincide in a number of

interesting special cases. These include the limits of low and high signal-to-noise

ratio, and the MISO channel. We will also show that our lower bound gives the

MIMO capacity for the single-input, multiple-output (SIMO) channel, and that, in

general, our bounds are quite close.

Capacity and Mutual Information

We will force the (non-negative) codeword waveform xn(t), which is proportional

to the power waveform sent from the n-th transmitter, to satisfy the peak power

constraint,

0 ≤ xn(t) ≤ An, (4.4)

and the average power constraint,

1

T

∫ T

0

E[xn(t)]dt ≤ σAn, where 0 ≤ σ ≤ 1. (4.5)

Note that An has units of photons per second at the operating wavelength.

A realistic, practical constraint that we are not considering is that of bandwidth.

We do so for two reasons. First, only bounds exist for the capacity of a SISO

spectrally-constrained Poisson channel [55], but not for a multiple-aperture chan-

nel. Second, unlike microwave communication for which bandwidth is licensed and
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expensive, communication bandwidth at optical wavelengths is unregulated and plen-

tiful. Indeed, the bandwidth of an atmospheric optical link is limited by transmitter

and receiver technology, rather than by atmospheric propagation. When discussing

photon-bucket receivers, we will consider a lower bound to the channel capacity that

imposes an ad hoc constraint on bandwidth.

The m-th detector photon-count record up to time t, Ym(t) ≡ {ym(τ), 0 ≤ τ <

t ≤ T}, is completely described by the total number of arrivals occurring prior to

time t, denoted by ym(t), and its ordered arrival times, 0 ≤ tm1 ≤ tm2 ≤ . . . ≤
tmym(t) < t ≤ T . Note that Ym(t) is continuous from the left, viz., it includes all

arrivals up to, but not including, time t. We can then equivalently define Ym(t) ≡
{ym(t), tm1, . . . , tmym(t)}. Note that when we refer to distributions or densities of the

detector output processes, we mean distributions or densities on the ordered photon

arrival times. Let Ym ≡ Ym(T ) represent the path of the m-th output process on the

interval [0, T ). Denote the M detector output process paths up to time t as Y (t) ≡
{Y1(t), . . . , YM(t)}, and the entire path as Y ≡ Y (T ). Let X ≡ {x1(t), . . . , xN(t); 0 ≤
t < T} represent the channel input.

Define X as all distributions on X that satisfy the transmitter peak and average

power constraints in (4.4) and (4.5). The capacity of the MIMO Poisson channel in

nats2 per second is then

C(α) = sup
pX∈X

1

T
I(X;Y ), (4.6)

where the mutual information, I(X;Y ), is given by [14],

I(X;Y ) = E

[
log

(
pY |X
pY

)]
= E

[
log pY |X

]
− E [log pY ]

= h(Y )− h(Y |X). (4.7)

Here: h(Y ) ≡ −E[log pY ] and h(Y |X) ≡ −E[log pY |X ] are the unconditional and

conditional entropies, respectively, of the output processes’ ordered arrival times de-

scribed by the densities pY and pY |X . The expectations in the unconditional and

conditional entropies are taken with respect to the densities of the output processes

2Unless otherwise noted, all logarithms are assumed to be natural logarithms.
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and the joint input and output processes, respectively. A more general derivation of

the mutual information for point processes is given in [42] and [6] using martingale

techniques. In what follows, we present a specialized derivation for doubly-stochastic

Poisson processes [58], sufficient for our application, using ordered arrival time den-

sities.

First consider the conditional entropy, h(Y |X), of the output processes’ ordered

arrival times. Conditioned on the channel input X, the output processes Y1, . . . , YM

are independent, each with density ([58],Th. 2.3.2),

pYm|X = exp

(∫ T

0

log[µm(t)]dym(t)−
∫ T

0

µm(t)dt

)
, (4.8)

where for a given function f ,

∫ T

0

f(t)dym(t) ≡





0, ym(T ) = 0,
∑ym(T )

k=1 f(tmk), ym(T ) > 0,
(4.9)

and 0 ≤ tm1 ≤ tm2 ≤ . . . ≤ tmym(T ) < T are the ordered arrival times of the m-th

output process, Ym.

We will use the following observation in both the conditional and unconditional

entropy derivations. Let {P (t), 0 ≤ t < T} be an inhomogeneous Poisson counting

process with rate function m(t). Then,

E

[∫ T

0

f(t) dP (t)

]
=

∫ T

0

f(t)m(t) dt, (4.10)

where f is a given function. This observation essentially says that the expected

number of arrivals in an interval of length dt is E[dP (t)] = m(t) dt. To prove this

observation, we use the arrival time density in (4.8), symmetry about the k! per-

mutations of the k variables of integration, and the unity sum of the Poisson mass
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function:

E

[∫ T

0

f(t) dP (t)

]

=
∞∑

k=1

∫ T

0

∫ tk

0

· · ·
∫ t2

0

(
k∏

i=1

m(ti)

)
exp

(
−
∫ T

0

m(t)dt

)[ k∑

j=1

f(tj)

]
dt1 · · · dtk

=
∞∑

k=1

exp
(
−
∫ T
0
m(t)dt

)

k!

∫ T

0

· · ·
∫ T

0

(
k∏

i=1

m(ti)

)[
k∑

j=1

f(tj)

]
dt1 · · · dtk

=
∞∑

k=1

exp
(
−
∫ T
0
m(t)dt

)

(k − 1)!

(∫ T

0

m(t)dt

)k−1 ∫ T

0

f(t)m(t) dt

=

∫ T

0

f(t)m(t) dt,

where 0 ≤ t1 ≤ · · · ≤ tP (t) < T are the ordered arrival times up to time t.

Using (4.10) and (4.8), the conditional entropy of the ordered arrival times is

h(Y |X) = −E
[
log pY |X

]

= −E
[

M∑

m=1

log pYm|X

]

= −
M∑

m=1

E

[∫ T

0

log[µm(t)]dym(t)−
∫ T

0

µm(t)dt

]

= −
M∑

m=1

(
E

[
E

{∫ T

0

log[µm(t)]dym(t)

∣∣∣∣µm(t), 0 ≤ t < T

}]

− E

[∫ T

0

µm(t)dt

])

= −
M∑

m=1

(
E

[∫ T

0

µm(t) log[µm(t)]dt

]
−
∫ T

0

E[µm(t)]dt

)
, (4.11)

where the expectations in (4.11) are with respect to the stochastic rate functions

µm(t).

We now derive the unconditional entropy, h(Y ), of the ordered arrival times. The

output Y is a multi-channel, doubly-stochastic, Poisson process with density given
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by ([58],pg. 425):

pY = exp

[
M∑

m=1

(∫ T

0

log[µ̂m(t)]dym(t)−
∫ T

0

µ̂m(t)dt

)]
, (4.12)

where

µ̂m(t) ≡ E [µm(t) | y1(τ), . . . , yM (τ), 0 ≤ τ < t] = E [µm(t) | Y (t)] , (4.13)

is the causal least-squares estimator of µm(t) based on the M output processes.

Using (4.10), (4.12), and noting that E[µ̂(t)] = E[µ(t)], the unconditional entropy

is

h(Y ) = −E [log pY ]

= −
M∑

m=1

E

[∫ T

0

log[µ̂m(t)]dym(t)−
∫ T

0

µ̂m(t)dt

]

= −
M∑

m=1

(
E

[
E

{∫ T

0

log[µ̂m(t)]dym(t)

∣∣∣∣ µ̂m(t), 0 ≤ t < T

}]

− E

[∫ T

0

µ̂m(t)dt

])

= −
M∑

m=1

(
E

[∫ T

0

µ̂m(t) log[µ̂m(t)]dt

]
−
∫ T

0

E[µm(t)]dt

)
, (4.14)

where the expectations in (4.14) are with respect to the stochastic rate functions

µ̂m(t) and µm(t) as appropriate.

Substituting (4.11) and (4.14) into (4.7) gives the mutual information for the

MIMO Poisson channel,

I(X;Y ) =
M∑

m=1

E

[∫ T

0

{µm(t) log[µm(t)]− µ̂m(t) log[µ̂m(t)]} dt
]
. (4.15)

Paralleling the SISO capacity derivation by Davis [17], we manipulate the mutual
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information as follows. Define

φm(z) ≡ (λm + z) log(λm + z)− λm log λm, (4.16)

and note that

µ̂m(t) = E

[
N∑

n=1

αnmxn(t) + λm

∣∣∣∣∣Y (t)

]
=

N∑

n=1

αnmx̂n(t) + λm, (4.17)

where x̂n(t) ≡ E [ xn(t) | Y (t)]. The mutual information is then

I(X;Y )

=
M∑

m=1

E

[∫ T

0

{
φm

(
N∑

n=1

αnmxn(t)

)
− φm

(
N∑

n=1

αnmx̂n(t)

)}
dt

]

=
M∑

m=1

E

[∫ T

0

{∑N
n=1 αnmx̂n(t)

Rm

φm(Rm)− φm
(

N∑

n=1

αnmx̂n(t)

)

−
∑N

n=1 αnmxn(t)

Rm

φm(Rm) + φm

(
N∑

n=1

αnmxn(t)

)}
dt

]

=
M∑

m=1

E

[∫ T

0

{
hm

(
N∑

n=1

αnmx̂n(t)

)
− hm

(
N∑

n=1

αnmxn(t)

)}
dt

]
, (4.18)

with

hm(z) ≡
z

Rm

φm(Rm)− φm(z), (4.19)

Rm ≡
N∑

n=1

αnmAn. (4.20)

Equation (4.18) is the MIMO generalization of the SISO mutual information expres-

sion derived in [33] and [17]. The function hm(Rmp) is shown in Figure 4-1 as a

function of p for illustrative high and low background noise rates.

We have not been able to find the supremum in (4.6), but instead have derived

upper and lower bounds. The derivations of these bounds, given below, exploit the
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following rewritten form of (4.18):

I(X;Y )

=
M∑

m=1

∫ T

0

{
hm

(
N∑

n=1

αnmE[xn(t)]

)
− E

[
hm

(
N∑

n=1

αnmxn(t)

)]}
dt

−
M∑

m=1

∫ T

0

{
hm

(
N∑

n=1

αnmE[xn(t)]

)
− E

[
hm

(
N∑

n=1

αnmx̂n(t)

)]}
dt. (4.21)

We note that hm(z) is concave, which makes both summations positive, and that

mutual information is non-negative which makes the first sum greater than the second.

The Parallel-Channel Upper Bound

An upper bound on the capacity can be found by maximizing the first term in (4.21)

and ignoring the second term. Because the supremum of a sum cannot exceed the

sum of the supremums, we will upper bound the mutual information by maximizing

each term of the summation, i.e.,

C(α) ≤
M∑

m=1

sup
pX∈X

1

T

∫ T

0

{
hm

(
N∑

n=1

αnmE[xn(t)]

)

−E
[
hm

(
N∑

n=1

αnmxn(t)

)]}
dt. (4.22)

To maximize each term, fix the argument
∑N

n=1 αnmE[xn(t)] and consider the dis-

tribution that minimizes E
[
hm

(∑N
n=1 αnmxn(t)

)]
. Because hm(0) = hm(Rm) = 0,

this distribution is concentrated at x1(t) = · · · = xN(t) = 0 and x1(t) = A1, · · · , xN(t) =
AN at each time t. Notice that this distribution by construction satisfies the peak

transmit power constraint, and makes this expectation term zero.

Let pm(t) = Pr(x1(t) = A1, · · · , xN(t) = AN) for the m-th term. Noting that

E[xn(t)] = Anpm(t), we now find the argument,

N∑

n=1

αnmE[xn(t)] = Rmpm(t), (4.23)
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or, equivalently, the function pm(t), that maximizes the m-th term

1

T

∫ T

0

hm[Rmpm(t)] dt. (4.24)

The average power constraint requires that pm(t) obey

1

T

∫ T

0

pm(t)dt =
1

T

∫ T

0

E[xn(t)]

An

dt ≤ σ. (4.25)

Using the concavity of hm[Rm p (t)], the Taylor series expansion with respect to

Rmpm (t) about a point Rmp
∗
m, 0 ≤ p∗m ≤ 1, yields

hm[Rmpm(t)]− hm(Rmp
∗
m) ≤ h′m(Rmp

∗
m) [Rmpm(t)−Rmp

∗
m] , (4.26)

where

h′m(z) ≡
d

dz
hm(z)

=
φm(Rm)

Rm

− log [e(z + λm)]

=
(λm +Rm) log(λm +Rm)− λm log λm

Rm

− log [e(z + λm)]

= (1 + sm) log(1 + sm)− sm log sm − log

[
e

(
z

Rm

+ sm

)]

= log


 (1 + sm)

(1+sm)

essmm

(
z
Rm

+ sm

)


 , (4.27)

and sm ≡ λm
Rm

is the ratio of background noise to peak received power at the m-th

receiver, i.e., it is a reciprocal signal-to-noise ratio. Calling 1/sm a signal-to-noise ratio

is somewhat of a misnomer. Due to the inherent randomness of the photon arrivals,

the signal itself has a noise-like component that is not included in this signal-to-noise

ratio. The ratio simply relates the average peak receive power to the background

noise power.
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Averaging over the interval [0, T ) yields

1

T

∫ T

0

hm [Rmpm(t)] dt − hm(Rmp
∗
m)

≤ Rmh
′
m(Rmp

∗
m)

(
1

T

∫ T

0

pm(t)dt− p∗m
)
. (4.28)

Let p∗m = poptm ≡ min(pmax
m , σ) where

pmax
m =

(1 + sm)
(1+sm)

essmm
− sm, (4.29)

is the value of p that maximizes hm(Rmp) found by solving h′m(Rmp
max
m ) = 0 in (4.27).

If pmax
m ≤ σ, then poptm = pmax

m . Consequently, h′m(Rmp
max
m ) = 0 by definition, and the

right hand side of (4.28) is zero, making

1

T

∫ T

0

hm [Rmpm(t)] dt ≤ hm(Rmp
opt
m ), (4.30)

with equality when pm(t) ≡ pmax
m = poptm .

Similarly, when σ < pmax
m , then h′m(Rm σ) > 0 due to strict concavity. Further-

more, the average power constraint (4.25) makes the parenthetical term on the right

hand side of (4.28) non-positive when p∗m = σ. Consequently, (4.30) is also true,

holding with equality when pm(t) ≡ σ = poptm .

We can interpret the probability poptm as the optimal duty cycle of the m-th MISO

channel. Without the average power constraint, pmax
m would be the optimal duty

cycle. With a bound on average power, however, we must reduce the duty cycle to

the minimum of σ and pmax
m to satisfy this constraint.

We now have our parallel-channel upper bound on the instantaneous capacity

C(α), viz.,

C(α) ≤ CPC−UB(α) =
M∑

m=1

hm

(
N∑

n=1

αnmAnp
opt
m

)
, (4.31)

where our parallel-channel terminology is due to this expression’s being the sum of

the capacities of M independent N -by-1 MISO channels, to be shown shortly. This

terminology becomes clearer by expressing the mutual information via entropy chain
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rule and conditioning inequalities [14] as,

I(Y1, . . . , YM ;X) = h(Y1, . . . , YM)− h(Y1, . . . , YM | X)

= h(Y1, . . . , YM)−
M∑

m=1

h(Ym | X)

=
M∑

m=1

[h(Ym | Y1, . . . , Ym−1)− h(Ym | X)]

≤
M∑

m=1

[h(Ym)− h(Ym | X)]

=
M∑

m=1

I(Ym;X). (4.32)

We could then maximize each individual MISO mutual information term.

Equation (4.32) brings up an interesting question regarding a possibly simpler

derivation of the parallel-channel upper bound using entropy properties. This ap-

proach, however, requires calculating the capacity of a MISO Poisson channel with

peak and average power constraints. Lapidoth in [40] made a brief comment on the

capacity of a MISO Poisson channel in his conclusions. He compared the multiple-

access Poisson channel maximum throughput to the single-user MISO channel capac-

ity without regard to an average power constraint or background noise. Furthermore,

the peak power constraint was an aggregate constraint at the receiver. We will for-

mally calculate the MISO Poisson channel capacity by showing that our OOK lower

bound coincides with the parallel-channel upper bound for a single receiver (M = 1).

We will simplify the function hm(Rmp
opt
m ) to emphasize the capacity bound de-

pends on three quantities:

• Received peak power, Rm

• Background noise-to-signal ratio, sm

• Optimal OOK duty cycle, poptm
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To see this, substitute (4.16) into (4.19) and simplify

hm(Rmp) = p [(λm +Rm) log(λm +Rm)− λm log λm]

− [(λm +Rmp ) log(λm +Rmp )− λm log λm]

= pRm(1 + sm) log[Rm(1 + sm)]− pRmsm log(Rmsm)

−Rm(p+ sm) log[Rm(p+ sm)] +Rmsm log(Rmsm)

= Rm[p (1 + sm) log(1 + sm) + (1− p )sm log sm

−(p+ sm) log(p+ sm)] (4.33)

= RmI(p, sm), (4.34)

where

I (p, r) ≡ p (1 + r) log(1 + r) + (1− p ) r log r − ( p+ r ) log( p+ r ), (4.35)

is an information function with units of nats per photon for a given duty cycle p and

noise-to-signal ratio r. We can now rewrite the parallel-channel upper bound as

CPC−UB(α) =
M∑

m=1

Rm I
(
poptm , sm

)
. (4.36)

The On-Off Keying Lower Bound

A lower bound on the channel capacity can be found by restricting the supremum

in (4.6) to a subset of X , namely those input distributions that, in addition to the

peak and average power constraints, also satisfy x1(t) = A1, · · · , xN (t) = AN or

x1(t) = · · · = xN(t) = 0 for each time t. As in [33] and [17], switching between these

“on” and “off” states arbitrarily fast reduces the causal least-squares estimator, x̂n(t),

to the unconditional mean, E[xn(t)], which makes the second term in (4.21) vanish.

For details, see [8].

Because hm(0) = hm(Rm) = 0, the mutual information for rapidly switching OOK
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inputs reduces (4.21) to

I(X;Y ) =

∫ T

0

(
M∑

m=1

hm [Rmp(t)]

)
dt, (4.37)

where p(t) = Pr(x1(t) = A1, · · · , xN(t) = AN) is the probability that the inputs

are “on” at time t. We now find the duty cycle p(t) that maximizes the mutual

information (4.37).

For convenience, we write the mutual information explicitly as a function of the

duty cycle, defining

g[p (t)] ≡
M∑

m=1

hm [Rmp (t)] . (4.38)

Expanding g[p (t)] with respect to p (t) about a point p∗, 0 ≤ p∗ ≤ 1, and using the

concavity of g[p (t)] gives

g[p (t)]− g(p∗) ≤ g′(p∗)[p (t)− p∗], (4.39)

where

g′(p) =
d

dp
g(p)

=
M∑

m=1

Rmh
′
m (Rmp)

=
M∑

m=1

Rm log

[
(1 + sm)

(1+sm)

essmm (p+ sm)

]

= log

{
M∏

m=1

[
(1 + sm)

(1+sm)

essmm (p+ sm)

]Rm}
. (4.40)

Let p∗ = popt ≡ min(pmax, σ) where pmax is the value of p that maximizes g(p ), found

by solving
M∏

m=1

[
(1 + sm)

(1+sm)

essmm (pmax + sm)

]Rm
= 1. (4.41)

A closed form solution for this maximizing probability only exists in a few special

cases (e.g. M = 1 or sm ≡ s, ∀m). In general, numerical methods are needed to
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calculate pmax. We will see shortly, however, that in the low and high noise regimes,

this maximizing probability converges to 1/e and 1/2, respectively.

Similar to the derivation of the parallel-channel upper bound, we obtain

1

T

∫ T

0

(
M∑

m=1

hm[Rmp (t)]

)
dt ≤

M∑

m=1

hm(Rmp
opt), (4.42)

with equality when p (t) ≡ popt.

We now have a lower bound on the MIMO capacity C(α) for a given channel

realization,

C(α) ≥ COOK−LB(α) =
M∑

m=1

hm

(
N∑

n=1

αnmAnp
opt

)
, (4.43)

where COOK−LB is the capacity of using OOK signaling with arbitrarily fast toggling.

We can rewrite this lower bound using the normalized information function (4.35) as

COOK−LB(α) =
M∑

m=1

RmI
(
popt, sm

)
. (4.44)

Comparison of PC-UB and OOK-LB Bounds

Figure 4-1 shows the relationship between the upper and lower bounds on the MIMO

channel capacity. Assuming no average energy constraint (σ = 1), the PC-UB is the

sum of the concave functions hm(Rmp) evaluated at their respective maxima, whereas

the OOK-LB is the maximum of their sum.

Davis [17] and Wyner [67] have shown (see Appendix A.1) that the maximum of

hm(Rmp) occurs between 1/e for high signal-to-noise ratio (sm → 0), and 1/2 for low

signal-to-noise ratio (sm →∞). By the concavity in p of the functions hm(Rmp), the

maximizer of their scaled sum in the lower bound, pmax, lies between the largest and

smallest maximizers of the individual terms in the upper bound, i.e.,

1

e
≤ min

1≤m≤M
pmax
m ≤ pmax ≤ max

1≤m≤M
pmax
m ≤ 1

2
, (4.45)

which, in turn, implies that the PC-UB and OOK-LB are equal in both the high
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Figure 4-1: With no average power constraint, the the parallel-channel upper bound
(PC-UB) is the sum of concave functions evaluated at their respective maxima,
whereas the the OOK lower bound (OOK-LB) is the maximum of the their sum.
In this two receive aperture (M = 2) example, CPC−UB = h1(R1p

max
1 ) + h2(R2p

max
2 ),

and COOK−LB = h1(R1p
max) + h2(R2p

max).
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and low signal-to-noise ratio limits. Hence, in the low and high noise regimes, the

upper and lower bounds converge, i.e., pmax
m = pmax for 1 ≤ m ≤ M , and we have a

closed-form expression for the capacity of a given channel realization. See Figure 4-2

for a plot of the maximizing duty cycle pmax
m as a function of the noise-to-signal ratio

sm.
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Figure 4-2: The maximum of hm(Rmp) as a function of sm lies between 1/e ≈ 0.3679
for low noise (sm → 0) and 1/2 for high noise (sm →∞).

At high signal-to-noise ratio, i.e., the low noise regime in which sm → 0, 1 ≤ m ≤
M , the information function in (4.35) becomes (see Appendix A.2)

lim
r→0
I (p, r) = p log 1/p, (4.46)

and popt → min(1/e, σ) becomes the optimal OOK duty cycle of the capacity-achieving

distribution. The instantaneous capacity for a given channel realization known to
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both the transmitter and receiver is therefore,

C(α) =
(
popt log 1/popt

) M∑

m=1

N∑

n=1

αnmAn. (4.47)

At low signal-to-noise ratio, i.e., the high noise regime in which sm → ∞, 1 ≤
m ≤ M , the optimal transmit OOK duty cycle popt → min(1/2, σ). In this regime,

the information function becomes [17, 67] (see Appendix A.2)

I (p, r) ≈ p (1− p)/2r. (4.48)

As a result, the instantaneous capacity in the high noise regime is

C(α) =
popt(1− popt)

2

M∑

m=1

1

λm

(
N∑

n=1

αnmAn

)2

. (4.49)

In addition to the preceding high and low signal-to-noise regimes, there are several

other special cases for which COOK−LB(α) = C(α) = CPC−UB(α) prevails:

• the MISO channel (M = 1 case), in which case popt1 = popt;

• the flat signal-to-noise ratio case (s1 = · · · = sM), in which case popt1 = · · · =
poptM = popt;

• and the low average-power case (σ ≤ min1≤m≤M pmax
m ), in which case popt1 =

· · · = poptM = popt = σ. Because imposing an average power constraint can

only make the bounds closer, in many of the examples, we will not impose this

constraint, and set σ = 1.

The parallel-channel upper bound also coincides with the capacity when the channel

decouples, i.e., αnm = gnδnm, where gn is the path gain for the n-th sub-channel, and

δnm is the Kronecker delta.

For the SIMO Poisson channel (theN = 1 case), we have that C(α) = COOK−LB(α),

because the optimal distribution at any given time satisfies the OOK constraint. To

see this, we can ignore the second term in (4.21) and write an upper bound on the
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αnm m = 1 m = 2 m = 3

n = 1 0.2977 0.5760 0.1279

n = 2 0.0692 0.6979 2.0322

Table 4.1: Path gains for the upper and lower bound comparison in Figure 4-3

mutual information as

I(X;Y ) ≤
M∑

m=1

∫ T

0

{hm(α1mE[x1(t)])− E[hm(α1mx1(t))]} dt (4.50)

To minimize this upper bound, we can fix E[x1(t)] and minimize the second term

by choosing an OOK distribution on x1(t) with duty cycle p(t) = Pr(x1(t) = 1).

Following a similar development as the lower bound, we find that the optimal duty

cycle is p(t) ≡ popt = min(pmax, σ) where pmax is given by (4.41). This upper bound

coincides the OOK lower bound for a single transmitter (N = 1).

In general, when the bounds are not equal, they are usually quite close, as can be

seen from Figure 4-3, which was computed for the N = 2, M = 3 special case using

the arbitrarily-chosen path gains given in Table 4.1.

Photon-Bucket Receivers

So far we have assumed that both the transmitter and receiver had knowledge of the

path gains, and that they made optimal use of this information. We saw that at both

high and low signal-to-noise ratios, however, the transmitter did not need to know

the path gains to achieve capacity. We will now demonstrate that a “photon-bucket”

or aperture-averaging receiver [49], which does not require path gain knowledge, can

achieve capacity in the low noise regime and in the high noise regime for a moderate

number of transmit apertures.

Instantaneous Capacity We will consider a photon-bucket (PB) receiver, shown

in Figure 4-4, that adds the photon counts from the M detectors to form the doubly-
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Figure 4-3: In general, the upper and lower bounds on channel capacity are quite
close. This figure shows the fractional difference between the PC-UB and OOK-LB
for the N = 2, M = 3 special case whose path gains are given in Table 1.

stochastic Poisson process y(t) =
∑M

m=1 ym(t) with rate

µ(t) =
M∑

m=1

µm(t) =
M∑

m=1

N∑

n=1

αnmxn(t) +
M∑

m=1

λm. (4.51)

This receiver structure is the optical analog of the equal-gain combiner in microwave

communications [32].

We will now determine a lower bound to capacity utilizing a photon-bucket receiver

for a given channel realization known only to the transmitter. Following Wyner’s

approach in [67], we partition the interval [0, T ] into smaller, non-overlapping sub-

intervals of length ∆, in which all transmit lasers are either on, xn(t) = An, 1 ≤ n ≤
N , or off xn(t) = 0, 1 ≤ n ≤ N . In each sub-interval, the receiver declares a “1”

(all transmitters on) if exactly one photon count occurred in that interval, and a “0”

(all transmitters off) otherwise. For a given channel realization α, this formulation

reduces the channel to a binary-input, binary-output, discrete memoryless channel

(DMC) [21] depicted in Figure 4-5.

Denote the binary input and output of this DMC during the k-th sub-interval,
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Figure 4-4: A photon-bucket receiver adds the photon counts from the M detectors
to form a doubly-stochastic Poisson process.
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Figure 4-5: Using an OOK transmitter and photon-bucket receiver with a threshold
decision rule creates a binary-input, binary-output discrete memoryless channel.
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(k − 1)∆ ≤ t ≤ k∆, as Xk ∈ {0, 1} and Yk ∈ {0, 1}, respectively. For sufficiently

small ∆, the resulting channel is described by the conditional probabilities

w10 ≡ Pr(Yk = 1 | Xk = 0) ≈ ∆L1 = ∆Rs (4.52)

w11 ≡ Pr(Yk = 1 | Xk = 1) ≈ ∆(R + L1) = ∆R(1 + s), (4.53)

where R =
∑M

m=1

∑N
n=1 αnmAn is the aggregate received peak power, s ≡ L1/R is

an aggregate noise-to-signal ratio, and L1 ≡
∑M

m=1 λm is the aggregate background

noise. Let q be the probability that all transmitters are on, i.e., q ≡ Pr(Xk = 1).

We want choose the duty cycle q to maximize the mutual information of the binary

input, binary output DMC, namely

I(X;Y ) = H(w10(1− q) + w11q)−H(w10)(1− q)−H(w11)q, (4.54)

subject to the average power constraint

1

T

∫ T

0

E[xn(t)/An]dt =
1

K

K∑

k=1

E[Xk] = q ≤ σ, (4.55)

whereK ≡ T/∆ is the number of sub-intervals andH(u) ≡ −u log u−(1−u) log(1−u)
is the binary entropy function. By construction, the OOK transmitted waveform

satisfies the peak power constraint, 0 ≤ xn(t) ≤ An, for 1 ≤ n ≤ N .

As we reduce the sub-interval length ∆ to zero, the channel probabilities w10 ≈
∆Rs and w11 ≈ ∆R(1 + s) also approach zero. We note that for small values of u

that the approximation H(u) ≈ −u log u + u holds. Using this approximation and
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simplifying, we can write the mutual information for small ∆ as

I(X;Y ) ≈ −[∆Rs(1− q) + ∆R(1 + s)q] log[∆Rs(1− q) + ∆R(1 + s)q]

+∆Rs(1− q) + ∆R(1 + s)q

+{∆Rs log[∆Rs]−∆Rs}(1− q)

+{∆R(1 + s) log[∆R(1 + s)]−∆R(1 + s)}q

= ∆R [ (s+ q){− log[∆R(s+ q)] + 1}

+s{log[∆Rs]− 1}(1− q) + (1 + s){log[∆R(1 + s)]− 1}]q

= ∆R [ q (1 + s) log(1 + s) + (1− q ) s log s− (s+ q ) log(s+ q ) ]

= ∆R I(q, s), (4.56)

where

I (p, r) ≡ p (1 + r) log(1 + r) + (1− p )r log r − (r + p ) log(r + p ), (4.57)

as previously defined. Because ∆R has the units of photons, from this expression we

get our interpretation that I(p, r) is an information function with units of nats per

photon for a given duty cycle p and noise-to-signal ratio r.

The instantaneous capacity of this OOK transmitter and photon-bucket receiver

configuration is the maximum mutual information per unit time for a given chan-

nel realization subject to the average power constraint q ≤ σ. Because the OOK

transmitter constraint can only decrease capacity, we have the lower bound

CPB−LB(α) ≥ max
0≤q≤σ

lim
∆→0

I(X;Y )/∆ = max
0≤q≤σ

R I(q, s). (4.58)

We emphasize that the right-hand side is a lower bound to the actual photon-bucket

receiver capacity, CPB−LB(α), because we imposed an additional transmitter OOK

constraint. Furthermore, on the left-hand side, we use the subscript notation LB

to emphasize that this photon-bucket receiver capacity is a lower bound to the in-

stantaneous capacity C(α) with no imposed transmitter or receiver structure, i.e.,
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C(α) ≥ CPB−LB(α).

The unconstrained maximum of I(q, s) with respect to q, found by differentiation

with respect to q, is

qmax =
(1 + s)(1+s)

ess
− s. (4.59)

Furthermore, I(q, s) is a concave function of q; therefore its constrained maximum

occurs at the minimum of σ and qmax, i.e., qopt = min(qmax, σ). As a result, the

instantaneous photon-bucket capacity is bounded by

CPB−LB(α) ≥ R I(qopt, s). (4.60)

We can show that the additional OOK transmitter constraint did not actually de-

crease capacity, i.e., CPB−LB(α) ≤ R I(qopt, s), by using the capacity result for a SISO

Poisson channel [33, 17, 67]. Because all transmitters are either on or off at the same

time, and the photon-bucket receiver adds the counts from each detector, we essen-

tially have created a SISO Poisson channel with rate of x̄(t) =
∑M

m=1

∑N
n=1 αnmxn(t)

plus a background noise L1 =
∑M

m=1 λm. The capacity of a SISO Poisson channel

with peak and average power constraints 0 ≤ x̄(t) ≤ R =
∑M

m=1

∑N
n=1 αnmAn and

1
T

∫ T
0
E[x̄(t)]dt ≤ σR, where 0 ≤ σ ≤ 1, is R I(qopt, s), assuming a given channel

realization α.

The “aggregate” power constraints considered in this SISO case, however, are

different than our original “per transmitter” peak and average transmit constraints.

We notice, though, that waveforms satisfying our peak power constraint 0 ≤ xn(t) ≤
An for 1 ≤ n ≤ N , automatically satisfy the SISO peak power constraint 0 ≤ x̄(t) ≤
R. Similarly, waveforms that satisfy our average power constraint 1

T

∫ T
0
E[xn(t)]dt ≤

σAn for 1 ≤ n ≤ N also satisfy the SISO average power constraint 1
T

∫ T
0
E[x̄(t)]dt ≤

σR. We see that our original transmitter power constraints are stricter than those

required for the SISO Poisson channel capacity result. Hence, this SISO Poisson
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channel capacity is an upper bound to the photon-bucket receiver capacity, and

CPB−LB(α) = R I(qopt, s) =
(

M∑

m=1

N∑

n=1

αnmAn

)
I(qopt, s). (4.61)

At high signal-to-noise ratio, i.e., when s → 0, we use the limit (4.46) in the

photon-bucket instantaneous capacity (4.61) to show that it converges to the optimal

receiver capacity (4.47). In this low noise regime, therefore, using photon-bucket

reception does not reduce capacity.

At low signal-to-noise ratio, i.e., when s → ∞, we use the approximation (4.48)

to write the photon-bucket instantaneous capacity as

CPB−LB(α) =
qopt(1− qopt)/2
∑M

m=1 λm

(
M∑

m=1

N∑

n=1

αnmAn

)2

. (4.62)

In this regime, photon-bucket receivers are suboptimal. The photon-bucket capacity

in high noise is related to the actual capacity (4.49) through Jensen’s inequality,

CPB−LB(α) =
qopt(1− qopt)/2
∑M

m=1 λm

(
M∑

m=1

[
λm∑M
l=1 λl

][∑M
l=1 λl
λm

]
N∑

n=1

αnmAn

)2

≤ qopt(1− qopt)/2
∑M

m=1 λm

M∑

m=1

[
λm∑M
l=1 λl

]([∑M
l=1 λl
λm

]
N∑

n=1

αnmAn

)2

=
qopt(1− qopt)

2

M∑

m=1

1

λm

(
N∑

n=1

αnmAn

)2

= C(α). (4.63)

Because squaring is a strictly convex function, equality occurs when ([14], pg. 25)

for 1 ≤ m ≤M
M∑

m=1

N∑

n=1

αnmAn =

[∑M
l=1 λl
λm

]
N∑

n=1

αnmAn. (4.64)

Even though photon-buckets are suboptimal in the high noise regime, we will show in

Section 4.1.2 that the average capacity gained through optimal path gain use at the

receiver vanishes when using moderate numbers of transmit apertures. This result

140



Bound Formula High SNR Approx. Low SNR Approx.

PC-UB
∑M

m=1 Rm I (popt
m , sm) (popt log 1/popt)

∑M

m=1 Rm
popt(1−popt)

2

∑M

m=1
R2

m

λm

OOK-LB
∑M

m=1 RmI (popt, sm) Same as PC-UB Same as PC-UB

PB-LB
(∑M

m=1 Rm

)
I(qopt, s) Same as PC-UB qopt(1−qopt)

2

(
∑

M

m=1
Rm)

2

∑
M

m=1
λm

Table 4.2: This table shows bounds on the MIMO Poisson channel capacity for a
given channel realization. The photon-bucket lower bound assumes a receiver struc-
ture that does not use path gain knowledge. The other two bounds assume the receiver
knows and uses the path gains optimally. All three bounds assume that the trans-
mitter optimally uses path gain knowledge. In the low and high signal-to-noise ratio
(SNR) regimes, however, the transmit optimal duty cycles do not require path gain
knowledge. In the high and low signal-to-noise ratio regimes, the optimal duty cycles
converge, i.e., poptm = popt = qopt, and equal min(1/e, σ) and min(1/2, σ), respectively.

becomes intuitive by examining the equality condition (4.64). For identical transmit-

ters, An ≡ A, and receivers, λm ≡ λ, increasing the number of transmit apertures

(N) causes the sum
∑N

n=1 αnmA/N to converge to its expected value, E[αnm]A = A.

The left- and right-hand sides of (4.64) are then roughly equal for large numbers of

transmit apertures. For large numbers of receive apertures and small numbers of

transmit apertures, photon-buckets are suboptimal, however.

Table 4.2 highlights the similarities and differences between the parallel-channel

upper bound (PC-UB), OOK lower bound (OOK-LB), and photon-bucket lower

bound (PB-LB) on the MIMO Poisson channel capacity for a given channel real-

ization.

Examining the Fast Toggling Assumption The preceding capacity develop-

ments did not impose a bandwidth constraint on the transmit waveform. As a result,

we saw that the capacity achieving waveforms were OOK with arbitrarily fast tog-

gling. Shamai in [53] considered the capacity of a SISO Poisson channel with limits on

how fast the input waveform can toggle. Also, Shamai and Lapidoth in [55] developed

capacity bounds for general spectral constraints.

The goal of this section is not to find the capacity of the spectrally-constrained

MIMO Poisson channel. Instead, we seek to examine the behavior of the photon-
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bucket capacity result (4.61) as the interval size ∆ approaches zero in the absence of

fading. This capacity is essentially the capacity of the SISO Poisson channel created

from OOK transmission and unit-threshold decisions.

We start by reexamining the mutual information of the binary-input, binary-

output, discrete-memoryless channel (4.54). The input distribution q = Pr(Xk = 1)

that maximizes the mutual information is found by differentiating it, setting the result

equal to zero, and solving for q. We note that the derivative of the binary entropy

function is
dH(u)
du

≡ H′(u) = log

(
1− u
u

)
. (4.65)

Consequently, the derivative of the mutual information with respect to the duty cycle

is

dI(X;Y )

dq
= H′(w10(1− q) + w11q)(w11 − w10) +H(w10)−H(w11)

= log

(
1− w10 − q(w11 − w10)

w10 + q(w11 − w10)

)
(w11 − w10)− [H(w11)−H(w10)].

Equating the above derivative to zero and solving for the duty cycle gives

qmax =
[1 + exp(ξ)]−1 − w10

w11 − w10

, (4.66)

where

ξ ≡ H(w11)−H(w10)

w11 − w10

. (4.67)

To check this result, notice that for small w11 and w10 we can use the approxima-
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tion H(u) ≈ −u log u+ u to show that

ξ ≈ −w11 logw11 + w11 + w10 logw10 − w10

w11 − w10

= 1 + log

{[
ww10

10

ww11

11

]1/(w11−w10)
}

= log




e(w11 − w10)

−1

(
w10

w11−w10

)( w10
w11−w10

)

(
w11

w11−w10

)( w11
w11−w10

)




,

and, therefore,

qmax ≈


w11 − w10 +

e
(

w10

w11−w10

)( w10
w11−w10

)

(
w11

w11−w10

)( w11
w11−w10

)




−1

− w10

w11 − w10

. (4.68)

For the decision rule, decide one, if exactly one count occurs, and zero otherwise, we

saw that w10 ≈ ∆Rs and w11 ≈ ∆R(1 + s) for small ∆. These probabilities imply

that w11 − w10 ≈ ∆R, w10/(w11 − w10) ≈ s, w11/(w11 − w10) ≈ 1 + s, resulting in

qmax ≈
(
∆R +

ess

(1 + s)(1+s)

)−1
− s ≈ (1 + s)(1+s)

ess
− s, (4.69)

for small ∆, which agrees with (4.59).

We will now consider a slightly different decision rule, that declares a one if one

or more counts occur. In other words, for an arbitrary interval length ∆, we will

decide zero if no counts occur during this interval, and one otherwise. The channel

probabilities are then characterized as

w00 ≡ Pr(Yk = 0 | Xk = 0) = 1− w10 = e−∆Rs (4.70)

w01 ≡ Pr(Yk = 0 | Xk = 1) = 1− w11 = e−∆R(1+s). (4.71)
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Using these probabilities, the mutual information becomes

I(X;Y ) = H(w00(1− q) + w01q)−H(w00)(1− q)−H(w01)q, (4.72)

The duty cycle that maximizes the mutual information is

qmax =
[1 + exp(ξ)]−1 − w00

w01 − w00

, (4.73)

where

ξ ≡ H(w01)−H(w00)

w01 − w00

. (4.74)

Notice that for small ∆ this decision rule is identical to our previous rule, because

the probability of two or more counts in an interval is negligible.

We have already examined the behavior of the mutual information and optimal

duty cycle for small interval lengths ∆. We now examine them for small noise-to-signal

ratios s. For small s, the channel probabilities become w00 → 1 and w01 → e−∆R.

These limits describe a “Z-channel” for this very simple transmitter and receiver

architecture. As the noise-to-signal ratio s approaches zero we have for a given duty

cycle q

lim
s→0

I(X;Y ) = H
(
{1− e−∆R}q

)
−H(e−∆R)q, (4.75)

and the duty cycle that maximizes the mutual information as s→ 0 is

lim
s→0

qmax =

[
1 + exp

(
H(e−∆R)
e−∆R−1

)]−1
− 1

e−∆R − 1
. (4.76)

We plot the capacity-achieving (without average power constraint) duty cycle

(4.73) in Figure 4-6 as a function of noise-to-signal ratio s and interval length ∆ for

R = 1. In Figure 4-7 we plot the capacity maxqI(X;Y )/∆ for this OOK transmitter

and unit-threshold receiver for different interval lengths ∆. In both figures, choosing

R = 1 photons/second makes the interval length ∆ indicative of the number of

photons per bit interval. Also, by setting R = 1 we are essentially ignoring fading,

and reducing the MIMO channel to a SISO channel.
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From these figures, we see that for low signal-to-noise ratios (high s) and large

numbers of photons per bit interval (large ∆), our simple transmitter and receiver

architecture performs poorly. This behavior is not surprising because of our simplistic

decision rule. We could have done better had we chosen a decision threshold greater

than one photon.

For small numbers of photons per bit and high signal-to-noise ratios, however,

this simple transmitter and receiver structure is not that bad. For example, when

R = 1, s = 0.001 and ∆ = 1, the capacity of this OOK transmitter and unit-threshold

receiver is 0.2987 nat/sec. As ∆→ 0, the capacity of using optimal transmitters and

receivers is 1/e ≈ 0.3679 nats/sec. In this case, the optimal receiver (OOK is already

optimal as ∆→ 0) capacity is 23% greater than the unit-threshold receiver.

We now explain the intuition regarding why this simple receiver performs just as

well as an optimal receiver at high signal-to-noise ratio and small numbers of signal

photons per bit. When the background noise rate and the interval length are small

enough, the probability of a photon count on any detector is small. In the case of

no background noise, if any detector records a photon, then the receiver knows for

certain that all transmitters were “on.” After all, there is a zero probability that a

photon will arrive when the Poisson rate function is zero, i.e., all transmitters are

“off.”

In fact, the receiver that decides one if one or more counts occurred at any detector,

is the minimum probability of error receiver. When background noise is negligible, a

photon-bucket is optimal because adding photon counts and using a unit-threshold

decision rule is equivalent to asking whether a photon arrived at any detector.

At low signal-to-noise ratio, however, optimally combining photon counts from

the different detectors is better than a photon-bucket receiver, because less emphasis

should be placed on the counts from detectors that have a low signal-to-noise ratio.

Less emphasis should be placed on these photon counts, because it is more likely that

the background noise generated them instead of the signal power.

145



0
2

4
6

8
10

0
0.5

1
1.5

2
2.5

3
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Interval Width [sec]

Capacity Achieving Distribution (R = 1)

Noise−to−Signal Ratio []

P
r(

 X
 =

 1
 )
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4.1.2 Ergodic Capacity

We now consider the ergodic (average) capacity of photon-counting, direct-detection

optical communication through the turbulent atmosphere using multiple transmit and

receive apertures [26]. In the high and low signal-to-noise ratio regimes, we show that

the ergodic capacity of this fading channel equals or exceeds that for a channel with

deterministic path gains. We will show that at high signal-to-noise ratio, the ergodic

capacity scales as the number of transmit apertures (N) times the number of receive

apertures (M), and can be achieved with neither transmitter or receiver knowing the

path gains. In the low signal-to-noise ratio regime, ergodic capacity scales as MN 2.

Moreover, in this regime, knowing the path gains at the transmitter does not increase

capacity, and knowing them at the receiver does not appreciably increase capacity

when employing moderate numbers of transmit apertures.
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Optimal Receivers

We first consider systems in which both transmitter and receiver optimally use path

gain knowledge. Although the transmitter knows the path gains, in the low and high

signal-to-noise ratio regimes, the transmitter does not need to use the path gains to

set the optimal duty cycle. Furthermore, in these regimes, the parallel-channel upper

bound and OOK lower bound coincide, and the instantaneous capacity is given by

(4.47) and (4.49).

Recalling that we normalized the path gains such that E[αnm] = 1, the average

capacity at high signal-to-noise ratio is then

E[C(α)] =
(
popt log 1/popt

) M∑

m=1

N∑

n=1

E[αnm]An

=
(
popt log 1/popt

)
M

N∑

n=1

An (4.77)

= MP1 p
opt log 1/popt (4.78)

= MNA popt log 1/popt, (4.79)

where Pk ≡
∑N

n=1A
k
n. The last equality (4.79) is for identical transmit peak power

constraints A = A1 = · · · = AN . In this case, the average capacity in the low noise

regime scales as the product of the number of transmit and receive apertures. In

general—without equal limits on peak power—the average capacity scales linearly

with the number of receive antennas and the total transmit peak power P1.

Notice that the expression for capacity in the low noise regime does not depend

on the log-amplitude variance σ2
χ. In fact, had we replaced the path gains with their

expected values, i.e., set αnm = 1, then the capacity would not have changed. We

conclude that in the low noise regime, fading does not increase or decrease capacity

compared to a channel with unit path gains. We will show next that in the high noise

regime, fading actually increases capacity.

In the low signal-to-noise ratio regime, averaging over the path gains and using
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E[α2
nm] = e4σ

2
χ gives

E[C(α)] =
popt(1− popt)

2

M∑

m=1

1

λm

N∑

n=1

N∑

k=1

E[αnmαkm]AnAk (4.80)

=
popt(1− popt)

2

(
M∑

m=1

1

λm

)
[e4σ

2
χ − 1]

N∑

n=1

A2
n +

[
N∑

n=1

An

]2
 (4.81)

= L−1(P2S4 + P 2
1 )p

opt(1− popt)/2, (4.82)

where Lk ≡
∑M

m=1 λ
k
m and Sk ≡ exp(kσ2χ) − 1. Assuming identical transmit peak

power constraints and receiver background noise λ = λ1 = · · · = λM , the ergodic

capacity in the high noise regime is

E[C(α)] =
M(NA)2

2λ

(
1 +

e4σ
2
χ − 1

N

)
popt(1− popt) (4.83)

≈ M(NA)2popt(1− popt)/2λ, (4.84)

where the last approximation holds for a moderate number of transmit apertures, i.e.,

N À e4σ
2
χ − 1 ≈ 6 for severe fading (σ2

χ = 0.5). We also see from this last expression

that the average capacity of this fading channel (σ2
χ > 0) is greater than the capacity

of the deterministic channel with unit path gains (σ2
χ = 0) in the high noise regime.

In fact, (4.84) is the capacity of a unit path gain channel in the high noise regime.

The average capacity of the fading channel in the high noise regime is greater than

the unit gain channel because of convexity. In this regime, the instantaneous capacity

(4.49) is the sum of squared sums of random variables. Because the expected value

of a random variable squared is never less than the square of its expected value, i.e.,

variance is non-negative, the average capacity in the high noise regime is greater than

the unit gain capacity. A similar argument holds for photon-bucket capacity, (4.62).

In the low noise regime, we saw that there was no difference in average capacity

between the fading and unit path gain channels.

In our capacity formulation, the transmitter may need path gain knowledge to set

the optimal OOK duty cycle (e.g. (4.41) and (4.29)). But in the low and high noise
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regimes, i.e., sm → 0 and sm → ∞, the optimal duty cycle without average power

constraint converges to 1/e and 1/2, respectively. As a result, in these regimes the

transmitter does not need to know the path gains. Because the noise-to-signal ratio

sm depends on the random path gains, however, we must be careful to qualify what

“low and high noise-to-signal ratio regime” means.

Taking the limit of the background noise rates λm to zero or infinity will result

in the appropriate regime with probability one for a fixed log-amplitude variance σ2
χ.

Alternatively, we can vary the peak power constraints {An} to ensure that we are in

one of these regimes. In this way, the transmitter can determine the optimal duty

cycle without knowing the actual path gains. For convenience, we will refer to the

low (high) signal-to-noise ratio regime as the high (low) noise regime, and remind the

reader that “low” and “high” noise power is with respect to the signal power.

Photon-Bucket Receivers

We now come back to the question of how much a photon-bucket receiver degrades

the capacity performance compared to an optimal receiver. Surprisingly, we will show

that we did not lose much by using this suboptimal receiver structure.

We already observed that the capacity of a photon-bucket receiver (4.61) in the

high signal-to-noise ratio regime (s→ 0) is identical the the optimal receiver capacity

(4.47). In fact, in low noise, photon bucket reception is the minimum error probability

receiver structure for OOK repetition spatial coding. Thus, in the high signal-to-noise

ratio regime, photon buckets are capacity-achieving receiver structures.

In the low signal-to-noise ratio regime, averaging over the path gains in (4.62)

gives

E[CPB−LB(α)] =
qopt(1− qopt)/2

L1/M

[
S4P2 +MP 2

1

]
. (4.85)

Specializing this result for identical transmitters and detectors, the average capacity
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in this high noise regime becomes

E[CPB−LB(α)] =
M(NA)2

2λ

(
1 +

e4σ
2
χ − 1

MN

)
qopt(1− qopt) (4.86)

≈ M(NA)2qopt(1− qopt)/2λ, (4.87)

where the last approximation is valid when MN À e4σ
2
χ − 1 ≈ 6 in severe fading

(σ2χ = 0.5). Comparing the photon-bucket capacity (4.86) with the optimal receiver

capacity (4.83), we see that the only difference is a factor of M that discounts the

path gain variance e4σ
2
χ − 1. For large numbers of transmitters, the expressions are

identical.

Notice that this last approximation (4.87) in the high noise regime is independent

of the log-amplitude variance σ2
χ, and is the capacity of the unit path gain channel

(4.84). We conclude that for large numbers of transmit apertures in the low and high

noise regimes, both optimal and photon-bucket receivers mitigate the fading, and

achieve the same capacity as the unit path gain channel. As seen with the optimal

receiver capacity in the high noise regime (4.83), the average photon-bucket capacity

is greater than the unit path gain capacity.

Furthermore, comparing the photon-bucket average capacity (4.86) with the op-

timal receiver average capacity (4.83), we see that the capacity improvement, in the

high noise regime, realized by knowing the path gains at the receiver is at most

E[C(α)]

E[CPB−LB(α)]
=

e4σ
2
χ − 1 +N

(e4σ
2
χ − 1)/M +N

, (4.88)

which is close to unity for moderate numbers of transmit apertures. In the worst-case

scenario, when σ2χ = 0.5, N = 1, and M →∞, the photon-bucket receiver is within a

factor of e4σ
2
χ ≈ 7.4 of the optimal receiver in terms of average capacity. On the other

hand, for a two-transmit and two-receive aperture (N =M = 2) system in moderate

fading σ2χ = 0.1, using an optimal receiver with perfect path gain knowledge increases

the average capacity by only 11% over the photon-bucket receiver, which does not

require path gain knowledge and is simpler to implement. In mild fading, σ2
χ = 0.01,
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the average capacity gained is only 1%. A photon bucket, therefore, is a capacity-

achieving receiver structure in the low noise regime, and also in the high noise regime

for moderate numbers of transmit apertures.

Figure 4-8 shows the average capacity for a two-transmit and three-receive aper-

ture system in moderate fading. Notice that the parallel-channel upper bound (PC-

UB) from (4.36) and the OOK lower bound (OOK-LB) from (4.44) are nearly indis-

tinguishable, and in fact become identical in the low and high noise regimes.

We conclude this section by noting that our ergodic capacity development only

used the first and second moments of the fading distribution, never utilizing the fact

the fades were actually lognormal in distribution. This is important, as it is unwise to

assume that the distribution for atmospheric fading is lognormal deep into its tails.

4.1.3 Capacity-Versus-Outage Probability

When delay constraints prevent averaging over good and bad channel realizations, a

more appropriate measure of capacity is the probability that the channel can support

a given rate [5], i.e., Pr {C(α) > R0}. In general, characterizing the exact distribu-

tion of the instantaneous capacity is difficult because only bounds exist on C(α), and

these bounds, (4.36) and (4.44), are complicated functions of the path gains. In the

high and low noise regimes, however, we saw that these bounds converge. Further-

more, the capacity expressions become proportional to the scaled sums of lognormal

random variables, see (4.47) and (4.49). Recall that these high and low noise capac-

ity expressions assume that the receiver knows and uses the path gains optimally.

In these regimes, the transmitter does not need to know the path gains to set the

optimal duty cycle.

The distribution of the sum of independent, real, lognormal random variables,

however, does not have a nice closed-form expression [2]. As a result, we will develop

approximations for the outage capacity in the high and low noise regimes by taking

advantage of the “permanence” of the lognormal distribution in the sum of lognormal

random variables [43]. That is, the sum of real lognormal random variables converges

very slowly in distribution to a Gaussian, maintaining its lognormal “character” along
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Figure 4-8: The average capacity without average power constraint (σ = 1) for two
(N = 2) identical transmitters (A1 = A2 = 1) and three (M = 3) receivers (λ = λ1 =
λ2 = λ3) is shown as a function of background noise power λ. The parallel-channel
upper bound (PC-UB) and OOK lower bound (OOK-LB) from [25] are shown along
with the photon-bucket lower bound (PB-LB). All of these bounds have been averaged
over 20,000 channel realizations of moderate fading intensity (σ2

χ = 0.1). The average
capacity results for the high and low noise regimes, viz., (4.79), (4.83), and (4.86),
are shown as lines, along with the capacity of a unit path gain channel (σ2

χ = 0) and
its high noise asymptote (4.84).
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the way3. A natural approach of handling sums of real lognormal random variables

is then to approximate the sums themselves as lognormal random variables.

Several different methods exist to make this approximation. See [3] for a com-

parison of several popular methods. We will use a simple first- and second-order

moment-matching approach, known as Wilkinson’s method, which works well for the

small log-amplitude variances in our application [48].

We wish to approximate the sum S ≡ ∑K
k=1 exp(uk) by Z ≡ exp(u), where the

uk’s are jointly Gaussian with E[uk] ≡ µk, cov[uk, uj] ≡ νkj and u is Gaussian with

E[u] ≡ µ, var[u] ≡ ν2. We make this approximation by matching the first and second

moments, i.e., by choosing the mean µ and variance ν2 such that E[S] = E[Z] ≡ m

and var[S] = var[Z] ≡ v2. Equating the first and second moments, and solving for

the µ and ν2 gives the approximation (see Appendix A.3 for details)

µ ≡ E[u] = log

(
m√

1 + v2/m2

)
(4.89)

ν2 ≡ var[u] = log

(
1 +

v2

m2

)
, (4.90)

where

m ≡ E[S] = E[Z] =
K∑

k=1

eµk+νkk/2 (4.91)

v2 ≡ var[S] = var[Z] =
K∑

k=1

K∑

l=1

eµk+µl+[νkk+νll]/2 (eνkl − 1) . (4.92)

From (4.47) and (4.49), we can write the instantaneous capacity in the low and

high signal-to-noise ratio regimes as being proportional to the scaled sum of lognormal

random variables,

C(α) = γS(α). (4.93)

3Unlike sums of real lognormal random variables, sums of complex lognormal random variables
tend to a Gaussian much faster because of the random uniform phase, see for example Section 3.2.3.

154



In the low noise regime,

γ = popt log 1/popt (4.94)

popt = min(1/e, σ), (4.95)

and

S(α) =
M∑

m=1

N∑

n=1

αnmAn. (4.96)

In the high noise regime,

γ = popt(1− popt)/2 (4.97)

popt = min(1/2, σ), (4.98)

and

S(α) =
M∑

m=1

1

λm

(
N∑

n=1

αnmAn

)2

=
M∑

m=1

N∑

n=1

N∑

k=1

AnAk

λm
αnmαkm. (4.99)

Because the scaled product of lognormal random variables is still a lognormal

random variable, S(α) in each regime is the sum of lognormal random variables. In

the low noise regime it is the sum of MN independent lognormal random variables,

and in the high noise regime it is the sum of MN 2 dependent lognormal random

variables. In either case, we will approximate S(α) ≈ Z ≡ eu, where u is Gaussian

with mean E[u] ≡ µ and variance var[u] ≡ ν2.

These log-moments µ and ν2 will depend on the mean and variance of S(α) through

(4.89) and (4.90). In the low noise regime (see Appendix A.4),

m ≡ E[S(α)] =MP1 =MNA (4.100)

v2 ≡ var[S(α)] =MS4P2 =MNA2
(
e4σ

2
χ − 1

)
, (4.101)

where Pk ≡
∑N

n=1A
k
n and Sk ≡ exp(kσ2χ)−1 as previously defined. The last equalities

are for identical transmitters (A1 = · · · = AN = A). In the high noise regime (see
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Appendix A.5.1),

m ≡ E[S(α)] = L−1[S4P2 + P 2
1 ] =

M(NA)2

λ

(
1 +

e4σ
2
χ − 1

N

)
(4.102)

v2 ≡ var[S(α)] = L−2[(S8 + 1)S16P4 + 4(S4 + 1)S8(P1P3 − P4)

+2S8(P
2
2 − P4) + 4S4(P

2
1P2 − P 2

2 − 2P1P3 + 2P4)] (4.103)

=
MNA4

λ2

[
e8σ

2
χ

(
e16σ

2
χ − 1

)
+ 2

(
2e4σ

2
χ + 1

)(
e8σ

2
χ − 1

)
(N − 1)

+ 4
(
e4σ

2
χ − 1

)
(N − 1)(N − 2)

]
, (4.104)

where Lk ≡
∑M

m=1 λ
k
m as previously defined. The last equalities are again for identical

transmitters and receivers. The lognormal sum variance expression simplifies for large

numbers of transmitters to

v2 ≈ 4MN 3A4
(
e4σ

2
χ − 1

)
/λ2 (large N). (4.105)

A slightly less messy approximation to the lognormal sum S(α) in the high noise

regime is to approximate Rm as lognormal, square the resulting lognormal random

variable, and then approximate the sum of these squared lognormal random variables

as being lognormal. The details of this method are in Appendix A.5.2. This approx-

imate moment matching method approximates the first and second moments of the

sum (4.99) as

m ≡ E[S(α)] ≈ L−1 [S4P2 + P 2
1 ] =

M(NA)2

λ

(
1 +

e4σ
2
χ − 1

N

)
(4.106)

v2 ≡ var[S(α)] ≈ L−2 P
4
1

(
1 +

S4P2

P 2
1

)2
[(

1 +
S4P2

P 2
1

)4

− 1

]
(4.107)

=
M(NA)4

λ2

(
1 +

e4σ
2
χ − 1

N

)2


[
1 +

e4σ
2
χ − 1

N

]4
− 1


 , (4.108)

where again the last equalities are for identical transmitters and receivers. Comparing

(4.106) and (4.102) we see that this approximation preserves the mean of the lognor-

mal sum. This observation is not surprising because the mean of the lognormal sum
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S(α) in the high-noise regime depends only on the second moments of Rm, and this

latter approximation matches the first and second moments of Rm. Furthermore, we

see that the variance of the lognormal sum for large numbers of transmit apertures

becomes

v2 ≈ 4MN 3A4
(
e4σ

2
χ − 1

)
/λ2 (large N), (4.109)

using the approximation (1 + ε)4 ≈ 1 + 4ε for small ε = (e4σ
2
χ − 1)/N . Comparing

(4.105) and (4.109), we see that both high noise approximations are the same for

large numbers of transmit apertures.

Regardless of the method used to calculate the moments of the lognormal sum,

we will approximate S(α) ≈ eu, where u is Gaussian with mean E[u] ≡ µ and

variance var[u] ≡ ν2 given by (4.89) and (4.90). Consequently, the approximation

C(α) = γS(α) ≈ γeu leads to the following expression in the low and high noise

regimes for the probability that the channel can support a desired rate,

Pr {C(α) > R0} ≈ Pr {γeu > R0} = Q

(
logR0 − log γ − µ

ν

)
, (4.110)

where Q(x) =
∫∞
x
dz exp(z2/2)/

√
2π is the tail area under the standard normal dis-

tribution, ν and µ are given by (4.89) and (4.90), and γ will depend on the regime,

see (4.94) and (4.97). The capacity-versus-outage probability is one minus this prob-

ability.

Notice that in the low and high noise regimes, our outage capacity approximation

(4.110) becomes a step function at the ergodic capacity,

E[C(α)] = γE[S(α)] = γm, (4.111)

when the instantaneous capacity variance-to-mean-squared ratio,

v2

m2
=

var[S(α)]

E[S(α)]2
=

var[C(α)]

E[C(α)]2
, (4.112)

approaches zero. In other words, v2/m2 → 0 causes the log-variance ν2 → 0 by (4.90),
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and the outage capacity approximation becomes Pr{C(α) > R0} = 1 if R0 < γeµ, and

zero otherwise. But, as v2/m2 → 0, the log-mean µ→ logm by (4.89). Consequently,

as v2/m2 → 0, the outage capacity approximation Pr{C(α) > R0} = 1 if R0 <

γm = E[C(α)], and zero otherwise. This behavior indicates that as v2/m2 → 0, the

randomness of the instantaneous capacity is negligible, and reliable communication

can occur at all rates below the ergodic capacity. We will now examine scenarios in

which the variance-to-mean-squared ratio v2/m2 → 0, providing a consistency check

to our outage capacity approximation.

The first scenario is when fading is negligible. From (4.101), (4.104), and (4.108)

we see that as σ2χ → 0, the variance of the sum S(α) converges to zero, i.e., v2 → 0.

The sum mean µ, on the other hand, remains finite, see (4.100), (4.102), and (4.106).

Consequently, v2/m2 → 0 as σ2χ → 0 and the approximation to the outage capacity

becomes a step function at the ergodic capacity, (4.79) and (4.84), which in this case

is the unit path gain capacity. Of course, when σ2
χ = 0, there is no fading and the

capacity at all times equals the unit path gain capacity, so that the preceding step

function behavior is a consistent check on our approximation.

The same step function behavior also occurs for large numbers of transmit and

receive apertures. In the low and high noise regimes, the ratio v2/m2 is propor-

tional to 1/N and 1/M for large numbers transmit and receive apertures, respec-

tively. Consequently, as N → ∞ and/or M → ∞, the outage capacity approxi-

mation Pr{C(α) > R0} = 1 if R0 < E[C(α)], and zero otherwise. In the low and

high noise regimes, the ergodic capacity converges to the unit path gain capacity for

large numbers of transmit apertures, see (4.79) and (4.83). In this case, the incoher-

ent averaging of the received power contributions from the many transmit apertures

mitigates the fading, resulting in the unit path gain capacity. For large numbers

of receive apertures, the ergodic capacity from optimal combining will in general be

greater than the unit path gain capacity, see (4.83).

The intuition behind why increasing the number of transmitters and receivers

decreases the instantaneous capacity variance-to-mean-squared ratio comes from ex-

amining the expressions for the instantaneous capacity and loosely applying the law
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of large numbers. Without loss of generality, we will consider identical transmit power

constraints and receiver background noise. In the low noise regime, the instantaneous

capacity (4.47) shows that increasing either the number of transmit or receive aper-

tures has the same effect. For example, as the number of receive aperturesM becomes

large, the law of large numbers suggests that the path gain sum 1
M

∑M
m=1

∑N
n=1 αnmA

becomes close to its average NA. Writing,

C(α) ∝M

(
1

M

M∑

m=1

N∑

n=1

αnmA

)
≈ME

[
N∑

n=1

αnmA

]
=MNA, (4.113)

we see that the capacity is proportional to MNA, in the sense that fractional devi-

ations from this proportionality become negligible for large numbers of receive aper-

tures. In other words, the variance-to-mean-squared ratio

var[C(α)]

E[C(α)]2
=
e4σ

2
χ − 1

MN
, (4.114)

decays to zero as the number of receive and/or transmit apertures increases without

bound.

In the high noise regime, however, the instantaneous capacity (4.49) behaves dif-

ferently as the number of transmit or receive apertures increases. Increasing the

number of transmit apertures causes the instantaneous capacity to scale as

C(α) ∝
M∑

m=1

N2

(
1

N

N∑

n=1

αnmA

)2

≈MN2(AE[αnm])
2 =M(NA)2, (4.115)

which agrees with the ergodic capacity for large N and the unit path gain capacity

(4.84). For large N , we see that the capacity variance-to-mean-squared ratio in the

high noise regime

var[C(α)]

E[C(α)]2
=

4
(
e4σ

2
χ − 1

)

MN
, (4.116)

decays four times slower than in the low noise regime, see (4.114).

On the other hand, increasing the number of receive apertures causes the instan-
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taneous capacity to scale as

C(α) ∝ M


 1

M

M∑

m=1

(
N∑

n=1

αnmA

)2

 (4.117)

≈ ME



(

N∑

n=1

αnmA

)2

 (4.118)

= M(NA)2

(
1 +

e4σ
2
χ − 1

N

)
, (4.119)

which agrees the ergodic capacity (4.83). This ergodic capacity for large numbers

of receive apertures M is in general greater than the capacity of a unit path gain

channel in the high noise regime. Using either high noise variance expression (4.104)

or (4.108), the capacity variance-to-mean-squared ratio decays as 1/M for increasing

numbers of receive apertures. We conclude that increasing either the number of

transmit or receive apertures forces the instantaneous capacity variance-to-mean-

squared ratio to zero, providing another consistency check to our approximation.

Figures 4-9 through 4-12 plot the outage capacity and the moment matching ap-

proximations for moderate fading. Figure 4-9 plots the probability that the channel

can support a given rate in the low noise regime. The solid lines are the moment

matching approximation (4.110) and the symbols are the empirical complementary

cumulative distribution function from Monte Carlo realizations of the channel capac-

ity. Figure 4-10 plots the rate the channel can support 99% of the time in the low

noise regime versus the number of transmit and receive apertures. Figures 4-11 and

4-12 plot similar quantities, but for the high noise regime.

From these figures, we see that the outage capacity is symmetric with respect to

the number of transmit and receive apertures in the low noise regime. Like the ergodic

capacity, however, the outage capacity in the high noise regime improves more from

increasing the number of transmit apertures than increasing the number of receive

apertures, cf. the (N = 3, N = 2) and (N = 2, M = 3) curves.

The outage capacity approximations tend to be worse in the high noise regime

because the lognormal sum consists ofMN 2 components, compared to theMN com-
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ponents in the low noise regime. As seen in Figures 4-11 through 4-14, in the range

of outage probabilities of interest, the approximate moment matching method tends

to be more accurate. Both approximation methods fail in the high noise regime for

moderate numbers of apertures and strong fading as demonstrated in Figure 4-13. For

large numbers of apertures, however, fractional deviations from the ergodic capacity

become negligible, and both approximations become quite good, see Figure 4-14. For

example, the variance-to-mean-squared ratio of the 300,000 channel capacity realiza-

tions in Figure 4-13 was approximately 0.43, while that of the 3,000 realizations in

Figure 4-14 was 0.0014. Notice that for large numbers of transmit apertures, (4.116)

predicts that this latter ratio should be 0.0012.

4.2 Coding

Space-time codes for heterodyne wireless communications such as the Alamouti scheme

[1] have the property that the transmitted codewords add incoherently at the receiver.

In other words, the received signal during each time slot is the sum of transmitted

symbols multiplied by magnitude-squared path gains plus noise. Poor reception oc-

curs when this sum of magnitude-squared path gains is small compared to the noise.

By their very nature, direct-detection systems lend themselves well to space-time

coding. In a sense, we gain some space-time coding for “free” by construction. We

have assumed that the transmitters are sufficiently separated in angle or frequency

such that optical powers add. This assumption leads to channel models in which the

received signal is the sum of transmitted powers scaled by the power path gains plus

noise. Like the Alamouti scheme, poor performance occurs when all the paths are

in deep fades. We will take advantage of this construction, and examine space-time

codes that have good error probability characteristics and low complexity.

Spatial and temporal coding can improve the reliability of communication through

the turbulent atmosphere. Chan in [12] considered the benefit of using coded pulse-

position modulation to reduce the required average transmit power for a desired error

probability. Davidson and Koh analyzed interleaved convolutional [15] and concate-
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Figure 4-11: The probability that the channel can support a given rate is shown
for the high noise regime in moderate fading (σ2

χ = 0.1) with no average power
constraint (σ = 1). The solid lines are the lognormal approximation of (4.110) using
the exact moments of the lognormal sum, see (4.102) and (4.104). The dashed lines are
also the lognormal approximation using approximate moments of the lognormal sum,
see (4.106) and (4.108). The symbols are the empirical complementary cumulative
distribution of 300,000 channel capacity realizations. We assume that the identical
transmitters (A1 = · · · = AN = 1) and receivers (λ = λ1 = · · · = λM) know and use
the path gains optimally.
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Figure 4-12: The rate achieved 99% of the time is plotted versus the number of
transmit and receive apertures in the high noise regime in moderate fading (σ2

χ = 0.1)
with no average power constraint (σ = 1)

165



0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

x 10−7

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Rate [nats/sec]

P
r(

 C
ap

ac
ity

 >
 A

bs
ci

ss
a 

)

High Noise Outage Capacity (A = 1 photon/sec, σχ
2 = 0.35, λ = 1e+009)

(N,M) = (10,10)

Figure 4-13: The probability that the channel can support a given rate for ten trans-
mit and ten receive apertures (N = M = 10) in the high noise regime for strong
fading (σ2χ = 0.35) with no average power constraint (σ = 1). The solid line is the
lognormal approximation of (4.110) using the exact moments of the lognormal sum,
see (4.102) and (4.104). The dashed line is also the lognormal approximation using
approximate moments of the lognormal sum, see (4.106) and (4.108). The symbols
are the empirical complementary cumulative distribution of 300,000 channel capacity
realizations.
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Figure 4-14: The probability that the channel can support a given rate for one hundred
transmit and one hundred receive apertures (N =M = 100) in the high noise regime
for strong fading (σ2

χ = 0.35) with no average power constraint (σ = 1). The solid line
is the lognormal approximation of (4.110) using the exact moments of the lognormal
sum, see (4.102) and (4.104). The dashed line is also the lognormal approximation
using approximate moments of the lognormal sum, see (4.106) and (4.108). The
symbols are the empirical complementary cumulative distribution of 3,000 channel
capacity realizations (only 3,000 realizations were used due to limited computational
resources).
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nated coding [39] through the turbulent atmosphere, and experimentally verified its

performance. Shapiro and Harney in [50] calculated error probability bounds for

block and convolutional coded transmission using multiple receive apertures. Spatial

diversity at the receiver [30] and transmitter [10, 37] can also help mitigate fading

due to atmospheric turbulence.

In this section, we will develop error probability bounds for space-time codes

employing a minimum probability of error receiver. We will then examine the per-

formance of simple space-time codes such as repetition spatial coding and switching

diversity.

4.2.1 Minimum Probability of Error Decoding

Consider a space-time codeword waveform X ≡ {x1(t), . . . , xN (t) | 0 ≤ t ≤ T} from a

space-time code X. This codeword will induce a Poisson process at the m-th detector

ym(t) with rate

µm(t) ≡
N∑

n=1

αnmxn(t) + λm, (4.120)

Conditioned on the codeword and path gains, each detector’s Poisson process is in-

dependent of the others. Using the arrival time density (4.8), the log-likelihood of

observing the detector waveforms Y ≡ {y1(t), . . . , yM(t) | 0 ≤ t ≤ T} given the path

gains α ≡ {αnm | 1 ≤ n ≤ N, 1 ≤ m ≤M} and that codeword X was sent is

log pY |X,α =
M∑

m=1

log pYm|X,α, (4.121)

where Ym ≡ {ym(t) | 0 ≤ t ≤ T} is the m-th detector’s count record and

log pYm|X,α =

∫ T

0

log[µm(t)]dym(t)−
∫ T

0

µm(t)dt, (4.122)

is the ordered, arrival time density, with stochastic integration defined by (4.9). As-

suming that the transmitter is equally likely to send each codeword, the minimum

probability of error receiver will choose the codeword that was most likely to have
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produced the observed photon record Y , i.e.,

X̂ = argmax
X∈X

log pY |X,α. (4.123)

In the above expression, we have assumed that the receiver knows and uses the path

gains in making its decision.

The probability of error conditioned on a path gain realization α is

Pe(α) ≡
1

|X|
∑

X∈X

∑

X̄∈X
X̄ 6=X

Pr(Decide X̄ | X sent, α ), (4.124)

where |X| denotes the number of codewords in the space-time code X. The uncondi-

tional error probability is then

Pe ≡ E[Pe(α)], (4.125)

where the expectation is with respect to the path gains.

4.2.2 Bounds on Pairwise Error Probability

We can use the union bound to upper bound the error probability (4.124) in terms

of pairwise error probabilities,

Pe(α) ≤
1

|X|
∑

X∈X

∑

X̄∈X
X̄ 6=X

Pr(X → X̄ | α ), (4.126)

where Pr(X → X̄ | α ) is the probability of decoding codeword X as X̄ in the

absence of other codewords. This sum is usually dominated by terms of codeword

pairs with largest pairwise error. We will, therefore, focus on analyzing the pairwise

error probability.

In terms of the decision rule, the pairwise error probability is

Pr(X → X̄ | α ) ≡ Pr( log pY |X̄,α > log pY |X,α | X,α ). (4.127)
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We will develop an upper bound on this pairwise error probability conditioned on

the path gains using the Chernoff bound [21]. This bound relates the probability of

a random variable exceeding a particular value to its moment-generating function.

Specifically, for any τ ≥ 0 and random variable Z,

Pr(Z > z) ≤ E
[
eτZ
]
e−τz. (4.128)

In our context, the pairwise error probability is

Pr(X → X̄ | α ) = Pr

(
M∑

m=1

∫ T

0

[log µ̄m(t)− log µm(t)] dym(t)

>
M∑

m=1

∫ T

0

[µ̄m(t)− µm(t)] dt
∣∣∣∣∣ X,α

)
, (4.129)

where µ̄m(t) is the rate function induced by the codeword X̄. Defining,

Z ≡
M∑

m=1

∫ T

0

[log µ̄m(t)− log µm(t)] dym(t), (4.130)

and

z ≡
M∑

m=1

∫ T

0

[µ̄m(t)− µm(t)] dt, (4.131)

we can use the Chernoff bound to find an upper bound on the pairwise error prob-

ability. Because the detector processes are conditionally independent given the path

gains and transmitted codeword, the conditional moment generating function of Z is

E
[
eτZ | X,α

]
=

M∏

m=1

E

[
exp

{∫ T

0

log

[
µ̄m(t)

µm(t)

]τ
dym(t)

} ∣∣∣∣∣ X,α
]
. (4.132)

Letting 0 ≤ tm1 ≤ tm2 ≤ . . . ≤ tmym(T ) < T denote the photon arrivals at the m-th
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detector, the m-th term of the above product is

E

[
exp

{∫ T

0

log

[
µ̄m(t)

µm(t)

]τ
dym(t)

} ∣∣∣∣∣ X,α
]

= E

[
exp

{∫ T

0

log

[
µ̄m(t)

µm(t)

]τ
dym(t)

} ∣∣∣∣∣ X,α, ym(T ) = 0

]
Pr[ym(T ) = 0]

+E

[
exp

{∫ T

0

log

[
µ̄m(t)

µm(t)

]τ
dym(t)

} ∣∣∣∣∣ X,α, ym(T ) > 0

]
Pr[ym(T ) > 0]

= exp

(
−
∫ T

0

µm(t)dt

)

+
∞∑

k=1

∫ T

0

∫ tk

0

· · ·
∫ t2

0

(
k∏

j=1

µm(tj)

[
µ̄m(tj)

µm(tj)

]τ)
exp

(
−
∫ T

0

µm(t)dt

)
dt1 · · · dtk

= exp

(
−
∫ T

0

µm(t)dt

)

+
∞∑

k=1

1

k!

∫ T

0

∫ T

0

· · ·
∫ T

0

(
k∏

j=1

µm(tj)
1−τ µ̄m(tj)

τ

)
exp

(
−
∫ T

0

µm(t)dt

)
dt1 · · · dtk

=
∞∑

k=0

1

k!

(∫ T

0

µm(t)
1−τ µ̄m(t)

τdt

)k
exp

(
−
∫ T

0

µm(t)dt

)

= exp

(∫ T

0

µm(t)
1−τ µ̄m(t)

τdt−
∫ T

0

µm(t)dt

)
(4.133)

For any τ ≥ 0, we have via (4.128), (4.132), (4.133), and (4.129), a bound on the

conditional pairwise error probability,

Pr(X → X̄ | α ) ≤
M∏

m=1

exp

(∫ T

0

{µm(t)1−τ µ̄m(t)τ − (1− τ)µm(t)− τ µ̄m(t)}dt
)
.

(4.134)

The bound is valid for any choice of non-negative τ , and we could in theory choose

the τ that minimizes this upper bound. Performing this optimization, however, is

difficult, and we will, for convenience, choose τ = 1/2. This choice of τ yields the

bound

Pr(X → X̄ | α ) ≤
M∏

m=1

exp

(
−1

2

∫ T

0

{√
µm(t)−

√
µ̄m(t)

}2

dt

)
, (4.135)
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or, equivalently

Pr(X → X̄ | α ) ≤

exp


−

1

2

M∑

m=1

∫ T

0





√√√√
N∑

n=1

αnmxn(t) + λm −

√√√√
N∑

n=1

αnmx̄n(t) + λm





2

dt


 . (4.136)

Equation (4.136) is the MIMO generalization to the Chernoff bound commonly used

in the photon-counting receiver literature, e.g., [12, 15, 11]. In the following sections,

we will evaluate this bound for a few simple space-time coding techniques.

4.2.3 Repetition Spatial Coding

We saw in Section 4.1.1 that an OOK repetition spatial code, i.e., all transmit lasers

turn on or off in unison, is a capacity-achieving signalling scheme in both the low and

high signal-to-noise ratio regimes. We now will evaluate the Chernoff bound (4.136)

for an OOK repetition spatial code with minimum probability of error detection

(4.123).

We will divide the transmission block [0, T ] into K non-overlapping intervals of

width ∆ = T/K. In each of these intervals, all transmit lasers are either on or off,

i.e., xn(t) = AnXk, (k− 1)∆ ≤ t < k∆, and Xk ∈ {0, 1}. Let X ≡ {X1, . . . , XK} and
X̄ ≡ {X̄1, . . . , X̄K} be two codewords from this OOK repetition spatial code. Using

this transmission scheme, the Chernoff bound on pairwise error probability becomes

Pr(X → X̄ | α )

≤ exp

(
−∆

2

M∑

m=1

K∑

k=1

Rm

{√
Xk + sm −

√
X̄k + sm

}2
)

(4.137)

= exp

(
−∆D[X, X̄]

2

M∑

m=1

Rm

{√
1 + sm −

√
sm
}2
)

(4.138)

where D[X, X̄] =
∑K

k=1(Xk − X̄k)
2 is the Hamming distance between the two code-

words, Rm ≡
∑N

n=1 αnmAn is the peak received power at the m-th aperture, and

sm = λm/Rm is a noise-to-signal ratio at the m-th detector. We will now simplify
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this bound on the pairwise error probability for the low and high signal-to-noise ratio

regimes.

High Signal-to-Noise Ratio Regime

In the high signal-to-noise ratio regime, i.e., sm → 0, we have

Pr(X → X̄ | α ) ≤ exp

(
−∆R

2

K∑

k=1

{
Xk − X̄k

}2
)

= exp

(
−∆R

2
D[X, X̄]

)
, (4.139)

where R =
∑M

m=1Rm =
∑M

m=1

∑N
n=1 exp(2χnm)An is the aggregate peak received

power. Notice that this pairwise error probability is very similar to the pairwise error

of an orthogonal design STC for coherent detection receivers (3.49). The uncondi-

tional pairwise error probability is then bounded by

Pr(X → X̄ ) = E[Pr(X → X̄ | α )]

≤
M∏

m=1

N∏

n=1

E

[
exp

(
−∆AnD[X, X̄]

2
αnm

)]

=
N∏

n=1

[
Fr

(
∆AnD[X, X̄]

2
;−σ2χ, σ2χ

)]M
(4.140)

=

[
Fr

(
∆AD[X, X̄]

2
;−σ2χ, σ2χ

)]MN

(4.141)

where the last equality holds for identical transmitters (An = A), and

Fr(a;m, s2) ≡
∫ ∞

−∞

1√
2πs2

exp
(
−ae2x

)
exp

(
− 1

2s2
(x−m)2

)
dx, (4.142)

is the lognormal density frustration function [28].

Low Signal-to-Noise Ratio Regime

We can also express the Chernoff bound approximately in terms of the frustration

function in the low signal-to-noise ratio regime. Using the approximation
√
1 + ε ≈
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1 + ε/2 for small ε, we have for sm À 1

Pr(X → X̄ | α ) ≤ exp


−∆

2

M∑

m=1

K∑

k=1

Rmsm





√
1 +

Xk

sm
−

√

1 +
X̄k

sm





2


≈ exp

(
−∆

2

M∑

m=1

K∑

k=1

Rmsm

{
1 +

Xk

2sm
−
[
1 +

X̄k

2sm

] }2
)

= exp

(
−∆

8

M∑

m=1

R2
m

λm
D[X, X̄]

)
. (4.143)

Averaging over the path gains, the unconditional pairwise error probability is

approximately bounded by

Pr(X → X̄ ) .

M∏

m=1

E

[
exp

(
−∆D[X, X̄]

8λm
R2
m

)]
. (4.144)

We can approximate the sum of independent lognormal random variables Rm =
∑

n=1 αnmAn as being lognormal using moment matching (see Appendix A.5.2). Specif-

ically, we approximate Rm ≈ exp(um), where um is Gaussian with mean and variance

E[um] = log


 P1√

1 + S4P2
P 2
1


 = log


 NA√

1 + e4σ
2
χ−1
N


 (4.145)

var[um] = log

(
1 +

S4P2

P 2
1

)
= log

(
1 +

e4σ
2
χ − 1

N

)
, (4.146)

where the last equalities are for identical transmitters. Using these log-moments,

results in an approximate upper bound to the unconditional pairwise error probability

at low signal-to-noise

Pr(X → X̄ ) .

M∏

m=1

E

[
exp

(
−∆D[X, X̄]

8λm
e2um

)]

=

[
Fr

(
∆D[X, X̄]

8λ
;E[um], var[um]

)]M
, (4.147)

where the last expression holds for identical receivers (λm = λ). Notice that for large
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numbers of transmit apertures N À e4σ
2
χ − 1, the log-variance var[um] approaches

zero, the log-mean E[um] approaches logNA, and we have

Pr(X → X̄ ) . exp

(
−∆D[X, X̄]M(NA)2

8λ

)
. (4.148)

For large numbers of identical detectors, the sum
∑M

m=1R
2
m/λM approaches its

mean (4.102). The error probability for identical transmitters, and large numbers of

identical receivers, is approximately less than

Pr(X → X̄ ) . exp

(
−∆D[X, X̄]M(NA)2

8λ

[
1 +

e4σ
2
χ − 1

N

])
. (4.149)

As with capacity, we see that increasing the number of transmit apertures in

the low signal-to-noise ratio regime is more beneficial (up to the accuracy of this

approximate bound) than increasing the number of receive apertures. In the high

signal-to-noise ratio regime, the bound improves the same amount when changing

either the number of transmit apertures or receive apertures.

4.2.4 Switching Diversity

Traditionally, switching diversity refers to using a branch (e.g., a laser and detector

pair) until the branch signal-to-noise ratio drops below some specified threshold, then

“switching” to the next branch [32]. We will examine a slightly different version of

switching diversity, in which we will continually switch between transmit apertures,

regardless of signal-to-noise ratio, and decode using a minimum probability of error

receiver.

Motivation

We examine this form of switching diversity because of intuition that we gained from

the development of space-time codes for coherent detection (see Chapter 3). For co-

herent detection, the space-time code that minimized the pairwise error probability

satisfied a particular design criterion. We will see that the conditional pairwise er-
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ror probability for photon-counting receivers in the low signal-to-noise regime has a

similar structure to that of coherent detection receivers.

In the low signal-to-noise regime (λm → ∞), we can use the approximation
√
1 + ε ≈ 1+ε/2 for small ε to write the conditional pairwise error probability (4.136)

as

Pr(X → X̄ | α )

. exp


−1

8

M∑

m=1

1

λm

∫ T

0

{
N∑

n=1

αnm[xn(t)− x̄n(t)]
}2

dt




= exp

(
−1

8

M∑

m=1

N∑

n=1

N∑

k=1

αnmαkmAnk/λm

)
, (4.150)

where

Ank ≡
∫ T

0

[xn(t)− x̄n(t)][xk(t)− x̄k(t)]dt. (4.151)

Notice the similarities between the coherent detection pairwise error probability (3.14),

(3.17), and (3.18) with that of photon-counting in high noise, (4.150) and (4.151). In

the coherent detection case, we saw that choosing Ank = βδnk, for some constant β,

minimized the unconditional pairwise error probability. Although, we will not per-

form a similar optimization for photon-counting receivers, we will use the coherent

detection result to motivate a similar choice for Ank here.

Code Construction and Performance

We will now construct a signalling scheme that satisfies Ank = βnδnk. In this scheme,

the transmitter will continually switch between transmit apertures as follows. Divide

the transmission block [0, T ] into N intervals of width ∆. During the n-th interval,

transmit aperture n will send xn(t) = AnXn, (n− 1)∆ ≤ t < n∆, Xn ∈ {0, 1}, while
the other transmit apertures send nothing. For two codewords X ≡ {X1, . . . , XN}
and X̄ ≡ {X̄1, . . . , X̄N}, this “switching” space-time code satisfies

Ank = A2
n[Xn − X̄n]

2∆δnk. (4.152)
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The receiver performs minimum probability of error detection with knowledge of the

path gains.

Low Signal-to-Noise Ratio Regime In the low signal-to-noise regime (λm →∞),

the conditional pairwise error probability bound (4.150) becomes

Pr(X → X̄ | α ) . exp

(
−∆

8

M∑

m=1

N∑

n=1

N∑

k=1

αnmαkmA
2
n[Xn − X̄n]

2δnk/λm

)

= exp

(
−∆

8

M∑

m=1

N∑

n=1

α2
nmA

2
n[Xn − X̄n]

2/λm

)
, (4.153)

for our switching diversity scheme. The unconditional error probability is then

Pr(X → X̄ ) .

M∏

m=1

N∏

n=1

E

[
exp

(
−∆

8
α2
nmA

2
n[Xn − X̄n]

2/λm

)]

=
M∏

m=1

N∏

n=1
n:Xn=X̄n

Fr

(
∆A2

n

8λm
;−2σ2χ, 4σ2χ

)
(4.154)

=

[
Fr

(
∆A2

8λ
;−2σ2χ, 4σ2χ

)]MD[X,X̄]

, (4.155)

where the last equality holds for identical transmitters and receivers.

The error probability for identical transmitters, and large numbers of identical

receivers, is approximately less than

Pr(X → X̄ ) . exp

(
−∆D[X, X̄]MA2

8λ
e4σ

2
χ

)
. (4.156)

High Signal-to-Noise Ratio Regime In the high signal-to-noise regime (λm =

0), the conditional pairwise error probability bound from (4.136) becomes

Pr(X → X̄ | α ) ≤ exp

(
−∆

2

M∑

m=1

N∑

n=1

{√
αnmAnXn −

√
αnmAnX̄n

}2
)

= exp

(
−∆

2

M∑

m=1

N∑

n=1

αnmAn

{
Xn − X̄n

}2
)
, (4.157)
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for our switching diversity scheme. The unconditional pairwise error is then bounded

by

Pr(X → X̄ ) ≤
N∏

n=1
n:Xn 6=X̄n

{
E

[
exp

(
−∆An

2
αnm

)]}M

=
N∏

n=1
n:Xn 6=X̄n

[
Fr

(
∆An

2
;−σ2χ, σ2χ

)]M
(4.158)

=

[
Fr

(
∆A

2
;−σ2χ, σ2χ

)]MD[X,X̄]

, (4.159)

where the last equality is for identical transmitters and receivers.

4.2.5 Comparison of Repetition and Switching Diversity

Repetition and switching diversity are both simple space-time coding schemes. Rep-

etition diversity requires multiple lasers operating at different wavelengths (or sep-

arated sufficiently in angle) driven by a common modulator. Switching diversity, if

done optically, only requires one laser, however. The cost of a high-speed optical

switch, though, could negate this advantage.

As proposed, the OOK repetition spatial space-time code uses N times the total

transmit power of the OOK switching code. To compare the error performance of

these two schemes, let P be the average power per receiver per bit, assuming equally

likely ones and zeros. For repetition spatial coding, the average power per receiver

is P = NA/2. Because only one transmitter is active during each bit interval, the

average power per receiver for switching diversity is P = A/2. In the low noise regime,

the Chernoff bound on switching diversity pairwise error probability is (4.159) with

A = 2P ,

Pr(X → X̄ ) ≤
[
Fr
(
∆P ;−σ2χ, σ2χ

)]MD[X,X̄]
. (4.160)
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The bound on repetition diversity (4.141) with A = 2P/N in the low noise regime is

Pr(X → X̄ ) ≤
[
Fr

(
∆P
D[X, X̄]

N
;−σ2χ, σ2χ

)]MN

(4.161)

To compare these two bounds, suppose that the number of intervals in the repetition

code is equal to the number of transmit apertures, i.e., K = N . Furthermore, suppose

that we are interested in codewords that are maximally separated, i.e., D[X, X̄] = N .

In this case, the bounds on pairwise error probability become identical.

A relevant example, in which D[X, X̄] = N = 2, is binary pulse-position mod-

ulation with two transmit apertures. In this case, the codewords are X = {1, 0}
and X̄ = {0, 1}. To the accuracy of the Chernoff bounds, repetition and switching

diversity have the same error performance in the high signal-to-noise ratio regime.

Essentially, the switching space-time code averages over all the path gains in time,

while the repetition space-time code spatially averages the path gains.

In the low signal-to-noise ratio regime, we can compare the error probability ap-

proximate upper bounds (4.149) and (4.156) for large numbers of receive apertures.

Setting A = 2P/N for the repetition spatial code we have,

Pr(X → X̄ ) . exp

(
−∆D[X, X̄]MP 2

2λ

[
1 +

e4σ
2
χ − 1

N

])
. (4.162)

The switching bound for large receive apertures using A = 2P is

Pr(X → X̄ ) . exp

(
−∆D[X, X̄]MP 2

2λ
e4σ

2
χ

)
. (4.163)

Because 1+(exp[4σ2χ]−1)/N ≤ exp[4σ2χ], to within the accuracy of these approximate

Chernoff bounds, switching diversity appears to be slightly better at low signal-to-

noise ratio than repetition spatial coding, especially for large numbers of transmit

and receive apertures.
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Chapter 5

Optically-Preamplified Receivers

The second direct-detection channel consists of intensity modulation, atmospheric

propagation, and optically-preamplified direct detection. Optical amplification pulls

the received signal power above the transimpedance amplifier thermal noise floor,

and creates a channel sharing characteristics of both a photon counting channel and

an additive, white, Gaussian noise channel. With optical amplification, the required

power to achieve a given bit error rate is much less than without amplification. For

example, without optical amplification, the single-transmitter, single-receiver, 1.25

Gbps direct detection testbed in Chapter 6 requires -25 dBm average receive power

per bit to achieve 10−9 error rates. With amplification, however, it only requires

one-hundredth the power, -45 dBm.

We model our optically-preamplified direct detection channel as follows. The n-th

transmitter sends a sequence of symbols (intensities) { xn(t) | 1 ≤ t ≤ T } over

T , non-overlapping time-slots. We assume that the overlap between symbols at the

transmitter and receiver is negligible. In other words, we avoid the complications that

arise from intersymbol interference, and assume that the receiver samples conditioned

on the path gains and transmitted symbols are statistically independent. Further-

more, we approximate these sample statistics by those arising from the application of

constant transmit power. In this chapter, we use the index t to denote discrete time.

Generalizing the derivation of Section 2.3.4 to an N transmit and M receive

aperture system, we model the output of the m-th receiver during the t-th symbol
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period as

ym(t) =
N∑

n=1

αnmxn(t) + wm(t), (5.1)

where wm(t) is a real-valued Gaussian noise with zero mean and signal-dependent

variance

σ2m(t) = σ2 + γ

N∑

n=1

αnmxn(t). (5.2)

The constants in this expression come from (2.57), (2.58), (2.59), and (2.60),

σ2 =
1

G2
O





Thermal Noise︷ ︸︸ ︷(
eη

hfc

)−2
NTIABE+

Beat Noise︷ ︸︸ ︷
DpolN

2
O(2BO −BE)BE

+

Shot Noise︷ ︸︸ ︷

e

(
eη

hfc

)−1
[PD +DpolNOBO] 2BE




, (5.3)

and,

γ =
4NOBE

GO




Shot Noise︷ ︸︸ ︷
hfc

2ηNO

+

Beat Noise︷︸︸︷
1


 . (5.4)

We have also included the number of noise polarization modes Dpol in the variance.

Because we are coupling into a single mode fiber (see Figure 2-8), each transmitter

must use a different carrier frequency, spaced sufficiently apart, such that their optical

powers add, i.e., (2.28) holds. Consequently, the optical bandwidth BO must scale

with the number of transmit apertures in a system designed to minimize collection

of extraneous light.

For the communication systems considered in this chapter, however, we will use a

fixed optical bandwidth of 41 GHz. We do so for two reasons. First, this bandwidth

corresponds to the nominal bandwidth of the optical filter in the optical carrier (OC)-

24 testbed of Chapter 6. With data rates of 1.25 Gbps, this optical bandwidth can
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easily accommodate several transmit apertures. Using a fixed optical bandwidth will

slightly bias our results in favor of transmit diversity, because adding receive apertures

also increases the noise, but adding transmit apertures does not. In practice, reducing

the optical bandwidth will reduce the fixed component of the noise variance, σ2,

improving communication reliability.

Second, if in the future, multi-mode optical amplifiers become prevalent, we could

use transmitter angle separation to create the incoherent addition of the optical fields.

In this case, the optical bandwidth would not need to scale with the number of

transmit apertures.

As in Chapter 4, we use the notation αnm to represent the power path gain from

transmitter n to receiver m. The path gains are normalized so that atmospheric

propagation does not on average attenuate or amplify the transmitted power, i.e.,

E[αnm] = E[exp(2χnm)] = 1, by setting var[χnm] = −E[χnm] = σ2χ. Also, xn(t) is

the n-th transmit power in Watts measured at each receive aperture in the absence

of fading1.

Under our no intersymbol interference approximation, conditioned on the trans-

mitted symbols and path gains, we assume that the noise is independent from symbol

to symbol and across receivers, i.e., { wm(t) | 1 ≤ m ≤M, 1 ≤ t ≤ T } are condition-

ally independent.

5.1 Capacity

Although this channel is still an additive noise channel [21], the signal-dependent

noise makes evaluation of its capacity difficult. Furthermore, a capacity comparison

with the photon-counting receiver channel of (5.1) under peak- and average-power

constraints is difficult. A closed form solution for the capacity of the peak- and

average-power constrained Gaussian channel does not exist in general [57, 54], let

alone for signal-dependent noise. Furthermore, without a peak-power constraint, the

1Although a quadrature amplitude modulator could produce the transmitted symbols, the detec-
tor only responds to the squared magnitude of the optical field. For this reason, we only consider
intensity modulation.
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capacity of the MIMO Poisson channel is infinite.

Smith [57] and Shamai [54] show that for peak- and average-power constrained

Gaussian channels, the capacity achieving distribution is discrete. This observation

will motivate us to examine discrete signalling schemes such as on-off keying.

Ben-Eli, et. al., derived bounds on the cutoff rate for the optically pre-amplified,

direct detection channel in the shot-noise limited regime for OOK signalling [4]. While

they did not use to a conditional Gaussian approximation, they neglect background

and thermal noise.

In what follows, we will develop lower bounds based on discrete memoryless

channel (DMC) representations of the MIMO, atmospheric propagation, optically-

preamplified, direct detection channel (5.1). These DMC representations assume an

OOK spatial repetition transmitter and a linear combining, threshold-decision re-

ceiver. We will show that equal-gain combining minimizes the error probability for

this architecture class when the fixed component of the noise variance is much smaller

than the signal-dependent component. When the fixed component dominates, how-

ever, maximal ratio combining is the best weighting scheme. Under nominal fading

conditions, the average received power threshold that delineates these two regimes is

-56 dBm for the 1.25 Gbps testbed in Chapter 6. When using more much power than

this threshold, equal-gain combining is the best linear combining strategy.

We then develop approximations to the probability that the channel can support a

desired bit error rate. We also show how these approximations are useful in reducing

the number of computations necessary to simulate the error performance for equal-

gain combining receivers and selection diversity schemes.

5.1.1 Discrete Memoryless Channel Representations

We will develop a simple lower bound to the capacity of our optically-preamplified

channel (5.1) under a peak power constraint, that reflects current, technological imple-

mentations. We will develop a lower bound by restricting ourselves to OOK signalling,

satisfying a peak power constraint. We have already seen in Chapter 4 that OOK

repetition spatial coding is capacity achieving for photon-counting receivers. While
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repetition spatial coding might not be optimal for this channel, we will, nonetheless,

restrict ourselves to this transmitter structure, i.e., xn(t) = AnXt, where Xt ∈ {0, 1}.

Furthermore, we will use a linear-combining receiver structure with threshold

detection. We further assume that the receiver knows and uses the path gains to set

the threshold ξ and combining weights cm. During each time-slot the receiver will

make a hard decision as to whether a one or zero was sent based on the received

sample,

y(t) =
M∑

m=1

cm(α)ym(t), (5.5)

and threshold, yielding

Yt =





1, y(t) > ξ(α)

0, otherwise.
(5.6)

The pairwise error probabilities for this OOK spatial repetition transmitter, and

linear-combining, threshold-decision receiver are ([46], pg. 188)

Pr(Yt = 0 | Xt = 1, α) = Q

(
m1 − ξ
s1

)
, (5.7)

and

Pr(Yt = 1 | Xt = 0, α) = Q

(
ξ −m0

s0

)
, (5.8)

where, for x ∈ {0, 1},

mx = E[ y(t) | Xt = x, α ] = x

M∑

m=1

cm

N∑

n=1

αnmAn, (5.9)

and

s2x = var[ y(t) | Xt = x, α ] = σ2
M∑

m=1

c2m + xγ

M∑

m=1

c2m

N∑

n=1

αnmAn (5.10)

are the conditional means and variances, respectively. We assume that s1, s0 > 0. We

will address the case when s0 = 0 in Section 5.1.2.

The threshold that minimizes the probability of error, assuming equally likely ones
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and zeros, is ([46], pg. 198)

ξ =
m0s

2
1 −m1s

2
0 + s0s1

√
(m1 −m0)2 + 2(s21 − s20) log(s1/s0)
s21 − s20

, (5.11)

for s1 6= s0. For s1 = s0, the optimal threshold is the average (or midpoint) of the

conditional means,

ξ =
m0 +m1

2
. (5.12)

The instantaneous bit error rate using midpoint thresholding is

Pr(Yt 6= Xt | α) =
1

2
Q

(
m1 −m0

2s1

)
+

1

2
Q

(
m1 −m0

2s0

)
, (5.13)

assuming equally likely ones and zeros.

We will now examine two DMC representations of this channel. The first uses

a threshold that makes the probability of decoding a zero as a one the same as the

probability of decoding a one as a zero. This threshold is near optimal in the “high

signal-to-noise ratio regime,” to be quantified shortly. The second channel represents

the case when the fixed component of the noise vanishes. In this case, the “Z-Channel”

is a good model for communication.

Binary Symmetric Channel Representation

When (m1−m0)
2 À 2(s21−s20) log(s1/s0), as is the case for high signal-to-noise ratios,

the optimum threshold becomes

ξ ≈ m0s1 +m1s0
s1 + s0

. (5.14)

This threshold makes the pairwise error probabilities equal, and

ε ≡ Pr(Yt = 1 | Xt = 0, α) = Pr(Yt = 0 | Xt = 1, α) = Q

(
m1 −m0

s1 + s0

)
(5.15)

= Q




∑M
m=1 cmRm√

σ2
∑M

m=1 c
2
m +

√
σ2
∑M

m=1 c
2
m + γ

∑M
m=1 c

2
mRm


 , (5.16)
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is the cross-over probability for a binary symmetric channel (BSC) [14], where Rm ≡
∑N

n=1 αnmAn is the received peak power on the m-th receive aperture. The instan-

taneous capacity of this OOK spatial repetition transmitter, and linear-combining,

near-optimal threshold detection receiver is, therefore,

CBSC(α) = log 2−H(ε), [nats/use] (5.17)

where H is the binary entropy function [14].

Z-Channel Representation

When the fixed component of the noise variance is small compared to the signal-

dependent component, i.e.,

σ2
M∑

m=1

c2m ¿ γ

M∑

m=1

c2mRm, (5.18)

we say that we are operating in the “low noise regime.” We call this the low

noise regime because the fixed component of the noise variance contains the thermal

noise, background and amplified spontaneous emission (ASE) shot noise, ASE-plus-

background beat noise, and dark current shot noise, see (5.3). The signal-dependent

component of the noise contains the signal and ASE-plus-background beat noise and

the signal shot noise, see (5.4).

Nominally, for An ≡ A and Rm ≈ NA, being in the low noise regime means,

σ2 ¿ γNA = 2Pγ, (5.19)

where P ≡ NA/2 is the average power per bit at each receiver, assuming equally

likely ones and zeros.

Although, technically, being in the “low noise” regime depends on the random path

gains and combining weights, we can vary the transmit peak power A, until we are

confident that the fixed component of the noise variance is much less than the signal-

dependent component. Furthermore, the optimal duty cycle might not be one-half
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for non-symmetric channels. Regardless, we will use (5.19) to nominally characterize

the “low noise” regime. For example, using the parameters of the 1.25 Gbps testbed

in Table 5.1, an average receive power much greater than P À σ2/2γ ≈ −56 dBm

results in low noise operation most of the time.

As σ → 0, the optimum threshold (5.11) approaches zero. Noting that m0 = 0

and s0 ∝ σ, the probability of decoding a zero as a one vanishes,

lim
s0→0

Pr(Yt = 1 | Xt = 0, α) = lim
s0→0

Q

(
−m1s

2
0 + s0s1

√
m2

1 + 2(s21 − s20) log(s1/s0)
(s21 − s20)s0

)

= Q

(
lims0→0

√
m2

1 + 2(s21 − s20) log(s1/s0)
s1

)

= 0. (5.20)

On the other hand, the probability of decoding a one as a zero persists

δ ≡ lim
s0→0

Pr(Yt = 0 | Xt = 1, α) = Q

(
m1

s1

)
= Q




∑M
m=1 cmRm√

γ
∑M

m=1 c
2
mRm


 (5.21)

These conditional probabilities describe the “Z-channel”, often associated with optical

communications [59]. The capacity in nats per use of this channel is [59, 64],

CZ(α) = H
(

1

eκ + 1

)
− κ

eκ + 1
= log

(
1 + e−κ

)
≈ log 2− 1

2
H(δ), (5.22)

where κ ≡ H(δ)/(1 − δ), and the last approximation holds for small δ. Comparing

the Z-channel capacity with the binary symmetric channel capacity in the low noise

regime,

lim
σ→0

CBSC(α) = log 2−H(δ), (5.23)

we see that, capacity is maximized in both cases by maximizing the ratio m1/s1.

Notice that the optimum receiver using a likelihood ratio test as σ → 0 decides zero

if the received sample y(t) = 0, and decides one if y(t) 6= 0. Because the probability

of a continuous random variable taking on a given value is zero, the error probabilities

are zero. By restricting ourselves to threshold receivers, we will sometimes decode
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a one as a zero erroneously. Having this restriction, however, is more realistic, as

practical receivers cannot sample with infinite precision.

5.1.2 Choosing the Combining Weights

In the BSC representation, for cross-over probabilities less than one-half, to maximize

the capacity, we want to minimize the cross-over probability, or equivalently, maximize

the Q-function argument of (5.16)

J ≡ m1 −m0

s1 + s0
(5.24)

=

∑M
m=1 cmRm√

σ2
∑M

m=1 c
2
m +

√
σ2
∑M

m=1 c
2
m + γ

∑M
m=1 c

2
mRm

. (5.25)

Our goal is to find the combining weights to maximize this Q-function argument. We

will show that when the signal-dependent component dominates the noise variance,

i.e., σ2 ¿ 2Pγ, equal-gain combining is the optimal linear combining strategy for op-

timal (5.11) and near-optimal (5.14) threshold receivers. When the fixed component

dominates, i.e., σ2 À 2Pγ, maximal ratio combining is best.

Low Noise Regime

When the fixed component of the noise variance is small compared to the signal-

dependent component, i.e., σ2 ¿ 2Pγ, the Q-function argument in both the BSC

(near-optimal threshold) and Z-channel (optimal threshold) representations is bounded

via the Cauchy-Schwarz inequality2,

J ≈
∑M

m=1 cmRm√
γ
∑M

m=1 c
2
mRm

≤

√∑M
m=1Rm

γ
, (5.26)

with equality when cm ≡ β for some scalar β. Therefore, the optimal combining

strategy in the low noise regime is to equally weight the detector outputs, e.g., choose

2An alternate proof is to differentiate with respect to the combining weight cm, set it equal to
zero, and solve for this weight. This optimal weight will be independent of the receive aperture
index m.
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cm ≡ 1.

In the low noise regime, the probability of decoding a one as a zero for an equal-

gain combining receiver is, therefore,

δ ≡ lim
σ→0

Pr(Yt = 0 | Xt = 1, α) = Q

(√
R

γ

)
, (5.27)

where R =
∑M

m=1Rm is the aggregate peak received power.

Notice that when the fixed component of the variance is much smaller than the

signal-dependent component, the variance of the one bit is much greater than the

variance of the zero bit, i.e., s21 À s20. As a result, the bit error rate for midpoint

thresholding is dominated by the probability of decoding a one as a zero. Con-

sequently, the best combining strategy when using midpoint thresholding is again

equal-gain combining, which minimizes the probability of decoding a one as a zero,

i.e., the first term of (5.13).

High Noise Regime

When the fixed component dominates the noise variance, i.e., σ2 À 2Pγ, the condi-

tional variances of the one and zero bit are roughly equal, and the argument of the

Q-function using the optimal midpoint threshold (5.12) is bounded by

J ≈
∑M

m=1 cmRm

2σ
√∑M

m=1 c
2
m

≤ 1

2σ

√√√√
M∑

m=1

R2
m, (5.28)

with equality when cm = βRm for some scalar β. In the high noise regime, we see

that classical maximal ratio combining [32] is the best linear combining strategy. The

maximal ratio combining, optimal threshold (5.12) receiver, in the high noise regime,

yields a BSC with cross-over probability

ε ≈ Q



√∑M

m=1R
2
m

4σ2


 . (5.29)
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Parameter Symbol Value Units

Opt. BW BO 41 GHz

Elect. BW BE 750 MHz

ASE Factor nsp 1

Opt. Gain GO 40 dB

Opt. Wavelength λ 1550 nm

Num. Pol. Modes Dpol 2

Det. Quant. Eff. η 1

Dark Power PD 0 W

TIA PSD NTIA 0 A2/Hz

Backgrd. Power NB 0 W/Hz

Fixed Noise Comp. σ2 2.00× 10−18 W2

Sig. Dep. Noise Factor γ 3.85× 10−10 W

Table 5.1: This table shows the nominal parameters of the 1.25 Gbps testbed used
in this chapter. These parameters represent a best case scenario with negligible
background and thermal noise, ideal quantum efficiency, and minimum ASE noise.

Maximal ratio combining is also optimal in the high noise regime for midpoint

thresholding, because midpoint thresholding is the optimal threshold in this regime.

5.1.3 Ergodic Capacity

We now examine the ergodic or average capacity of the binary symmetric channel

lower bound on the optically preamplified, direct detection channel. Because the

optimal duty cycle of the BSC is one-half, the transmitter does not need to know the

path gains. We assume that the receiver can use the path gains to set the optimal

threshold and choose the linear combining weights. We will examine this lower bound

using the nominal parameters (Table 5.1) of the 1.25 Gbps experimental testbed in

Chapter 6.

Figures 5-1 and 5-2 and Tables 5.2 and 5.3 show the ergodic capacity (averaged
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over 500,000 channel realizations) for the OOK spatial repetition transmitter and

linear combining, threshold-decision receiver, BSC representation. The receiver in

Figure 5-1 uses equal-gain combining, while the receiver in Figure 5-2 uses maximal

ratio combining. The average capacity is shown as a function of transmit and receive

aperture numbers (N = M) and average optical power per bit at each receiver,

P = NA/2, for identical transmitters, An ≡ A.

Both receivers use the threshold (5.14), which makes the probability of decoding a

one as a zero the same as the probability of decoding a zero as a one. This threshold is

near optimal when (m1−m0)
2 À 2(s21−s20) log(s1/s0). For example, using Rm ≈ NA,

P = −65 dBm average receive power, equal-gain combining, and M = 1, we see that

this condition requires

2MP À γ log

(
1 +

2Pγ

σ2

)
, (5.30)

and evaluates to

6.3× 10−10 > 4.4× 10−11, (5.31)

with the left-hand side an order of magnitude greater than the right-hand side. For

small 2Pγ/σ2 ≈ 0.12 (P = −65 dBm), the optimality condition becomes M À
γ2/σ2 ≈ 0.07, which holds for M ≥ 1 under these operating conditions.

Notice from Figures 5-1 and 5-2 that the capacity grows linearly as a function of

aperture number for small average receive power (P = −65 dBm). From Tables 5.2

and 5.3 we see that for P = −62 dBm, maximal ratio combining is slightly better than

equal-gain combining (at most an 18% improvement for M = N = 3 in severe fading

σ2χ = 0.35). For large enough power (P = −55 dBm), the error probability becomes

small enough that even in severe fading (σ2
χ = 0.35), five or six apertures is enough

to attain the largest capacity for this channel (log 2 ≈ 0.693 nats/use). Also notice

that an increase in log-amplitude variance increases the capacity for small power, but

decreases it for large power.

In practice, for an optical amplifier gain greater than one, the noise variance fixed

component σ2 will always contain the ASE shot noise and the ASE-ASE beat noise,

even in the absence of background, thermal, and dark current noises. The parameters
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Figure 5-1: The average capacity for OOK spatial repetition transmitters and equal-
gain combining receivers using near-optimal thresholds is shown as a function of log-
amplitude variance and average optical power per bit at each receiver, i.e., P = NA/2.
The standard error (sample standard deviation divided by the square root of the
number of samples) on each estimate is less than 10−3.
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Log-Amp. Var. (σ2χ)

N =M 0.01 0.1 0.35

1 0.056 0.065 0.070

2 0.105 0.110 0.114

3 0.151 0.153 0.155

4 0.194 0.195 0.194

5 0.233 0.233 0.231

6 0.269 0.269 0.266

7 0.303 0.302 0.299

8 0.333 0.333 0.329

9 0.362 0.361 0.357

10 0.388 0.387 0.383

Table 5.2: Equal-gain combining average capacity [nats/use] from Figure 5-1 for an
average optical power per bit at each receiver of P = −62 dBm. The standard error
(sample standard deviation divided by the square root of the number of samples) on
each estimate is less than 10−3.
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Figure 5-2: The average capacity for OOK spatial repetition transmitters and max-
imal ratio combining receivers using near-optimal thresholds is shown as a function
of log-amplitude variance and average optical power per bit at each receiver, i.e.,
P = NA/2. The standard error on each estimate is less than 10−3.
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Log-Amp. Var. (σ2χ)

N =M 0.01 0.1 0.35

1 0.056 0.065 0.070

2 0.106 0.117 0.131

3 0.152 0.163 0.183

4 0.195 0.205 0.229

5 0.234 0.244 0.269

6 0.270 0.279 0.305

7 0.304 0.312 0.337

8 0.334 0.342 0.368

9 0.363 0.370 0.394

10 0.389 0.396 0.419

Table 5.3: Maximal ratio combining average capacity [nats/use] from Figure 5-1 for
an average optical power per bit at each receiver of P = −62 dBm. The standard
error on each estimate is less than 10−3.
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in Table 5.1 reflect these ideal operation conditions.

We now examine the low and high noise regimes as the optical gain varies. Had

we set the optical gain to one, GO = 1, we would have eliminated the ASE noise,

and made the fixed component zero, in the absence of thermal, dark, and background

noises. The only remaining noise would have been the signal shot noise, and we

would be operating in the “low-noise” regime. In practice, however, without optical

amplification, thermal, dark, and background noises can be much greater than the

signal shot noise.

On the other hand, increasing the optical gain, increases the ASE noise, until the

ratio of ASE-ASE and ASE-signal beat noises (5.19) becomes

lim
GO→∞

σ2

2Pγ
=
Dpolnsphfc(2BO −BE)

8P
≈ DpolnsphfcBO

4P
, (5.32)

where the last approximation is for optical bandwidths much greater than the elec-

trical bandwidth, BO À BE. Alternatively, the average receive power must be large

enough such that

P À DpolnsphfcBO

4
≈ −55.80 dBm, (5.33)

to be in the low noise regime for high optical gain, e.g., GO = 40 dB. The last

evaluation is for the nominal parameters in Table 5.1. Notice that this high optical

gain threshold is within one tenth of a decibel of the nominal regime threshold σ2/2γ ≈
−55.85 dBm.

In theory, because the receiver knows the path gains, it can switch between equal

gain and maximal ratio combining (or any weighting in between) when operating

close to this regime threshold. For simplicity, however, in our simulations, we assume

that the receive always uses either equal gain or maximal ratio combining.

Because the received powers in the ergodic capacity results were at or below this

threshold, we conclude that we were barely operating in the high noise regime. At

these power levels, the ergodic capacity results suggest that MRC is slightly better

than EGC.
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5.2 Coding

In this section, we will further examine the error probabilities of the OOK spatial

repetition transmitter and linear combining, threshold-decision receivers developed

in the previous section. As with outage capacity in Chapter 4, we will characterize

the distribution of the bit error rate in the low and high noise regimes. We will also

examine the average bit error rate for equal gain combining, maximal ratio combining,

and selection diversity receivers using near-optimal and midpoint thresholding. These

average bit error rate curves are indicative of the ideal performance of the testbed in

Chapter 6 using perfect optical amplifiers (nsp = 1).

5.2.1 Bit Error Rate Versus Outage Probability

When delay requirements prevent averaging over many channel realizations, the dis-

tribution of the instantaneous error probability, i.e., the error probability conditioned

on the path gains, is a useful measure of communication reliability. That is, we want

to characterize the probability that fading conditions yield a bit error rate worse than

a desired level,

pout = Pr {Pr(Yt 6= Xt | α) > BER} , (5.34)

where, assuming equally likely ones and zeros, and near-optimal threshold (5.14), the

conditional error probability (5.16) is

Pr(Yt 6= Xt | α) = Q




∑M
m=1 cmRm√

σ2
∑M

m=1 c
2
m +

√
σ2
∑M

m=1 c
2
m + γ

∑M
m=1 c

2
mRm


 (5.35)

We now develop approximations to this outage probability in the low and high noise

regimes.
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Low Noise Regime

We saw in Section 5.1.2 that in low noise, i.e., σ2 ¿ 2Pγ, equal-gain combining,

cm ≡ 1, minimizes the instantaneous error probability (5.35), and

Pr(Yt 6= Xt | α) ≈ Q



√∑M

m=1

∑N
n=1 αnmAn

γ


 . (5.36)

As with the outage capacity development in Chapter 4, we will approximate the sum

(4.96) as being lognormal with log-moments (4.89) and (4.90).

We will shortly see that in the high noise regime with maximal ratio combining,

we can also express the outage probability in a similar form as equal gain combining

in the low noise regime,

pout ≈ Pr

{
Q

(√
S(α)

τ

)
> BER

}
, (5.37)

where in the low-noise regime, τ ≡ γ and S(α) ≡
∑M

m=1

∑N
n=1 αnmAn ≡ R. Using

the approximation S(α) ≈ eu, where E[u] ≡ µ and var[u] ≡ ν2 gives

pout ≈ Pr
{
S(α) ≤ τ [Q−1(BER)]2

}
(5.38)

≈ Pr
{
u ≤ log τ + 2 logQ−1(BER)

}
(5.39)

= 1−Q
(
log τ + 2 logQ−1(BER)− µ

ν

)
. (5.40)

For identical transmitters, An ≡ A, these log-moments are (see (4.89), (4.90), (4.100)

and (4.101)),

µ ≡ E[u] = log


 MNA√

1 + e4σ
2
χ−1

MN


 (5.41)

ν2 ≡ var[u] = log

(
1 +

e4σ
2
χ − 1

MN

)
. (5.42)

Figure 5-3 shows the low noise outage probability approximation (5.37) using the
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parameters in Table 5.1. The moment matching approximation is quite accurate for

small numbers of apertures and small log-amplitude variances.

Although not shown, at -50 dBm average receive power, the low noise approxima-

tion (5.36) to the bit error rate is not that accurate. In other words, at this power

level, because our optical bandwidth is so large, the fixed component of the noise

variance is not negligible, and these figures represent an optimistic estimate of the

bit error rate versus outage probability. For the parameters in Table 5.1, operating

deep in the low noise regime, e.g., P = −40 dBm, yields extremely small error prob-

abilities. For the sake of displaying more interesting error rates, we chose to use less

power.

High Noise Regime

In the high noise regime, i.e., σ2 À 2Pγ, the maximal ratio combiner minimized the

error probability (5.29), resulting in

Pr(Yt 6= Xt | α) ≈ Q




√√√√
∑M

m=1

(∑N
n=1 αnmAn

)2

4σ2


 . (5.43)

Again, we see that the outage probability has the same form as that of equal-gain

combining in low noise (5.37). Here, the sum is

S(α) =
M∑

m=1

(
N∑

n=1

αnmAn

)2

, (5.44)

and the constant is τ ≡ 4σ2. Notice this sum is the same sum that we encountered

with the outage capacity expressions in the high noise regime for photon-counting

receivers (4.99) with the background noise rate set to one, λm ≡ 1. As in Section

4.1.3, we can use exact or approximate moment matching (see Appendices A.5.1 and

A.5.2) to approximate this sum as lognormal with exact moments (4.102) and (4.104)

or approximate moments (4.106) and (4.108).

Figure 5-4 shows the outage probability in the high noise regime using maximal-
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Figure 5-3: The bit error rate versus outage probability in the low noise regime using
equal-gain combining and near-optimal thresholding is shown as a function of log-
amplitude variance and aperture number. The solid lines depict the approximation
(5.37), while the symbols are the empirical complementary cumulative distribution
function of 100,000 bit error rate realizations. Note that the two transmitter, single
receiver curve is not equal to the one transmitter, two receiver curve because we have
defined P to be the average power per receiver. Consequently, the two transmitter
system transmits half the power of the two receiver system.
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ratio combining. At this power level, however, the signal-dependent component of

the noise variance is not negligible, and (5.43) is not a good approximation to the

instantaneous bit error rate (5.35). For the sake of displaying meaningful error rates,

however, we chose to use this higher power.
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Figure 5-4: The bit error rate versus outage probability in the high noise regime using
maximal ratio combining and near-optimal thresholding is shown as a function of log-
amplitude variance and aperture number. The solid lines depict the approximation
(5.37) using approximate moment matching, while the symbols are the empirical
complementary cumulative distribution function of 100,000 bit error rate realizations.

5.2.2 Average Bit Error Rate

In this section we will examine the average bit error rate of equal gain combining,

maximal ratio combining, and selection diversity techniques. We will quantify the

performance gained through the use of the near-optimal threshold (5.14) versus the
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easier to implement, midpoint threshold (5.12). In this section, we will assume that

each transmitter uses an identical transmit power, An ≡ A.

Equal Gain Combining

An equal gain combining receiver simply adds, with equal weighting, the detector

outputs. The instantaneous bit error rate for an OOK spatial repetition transmitter

and an equal gain combining, near-optimal thresholding (5.14) receiver is (5.35)

Pr(Yt 6= Xt | α) = Q


 2(P/N)

∑M
m=1

∑N
n=1 αnm√

Mσ2 +
√
Mσ2 + 2γ(P/N)

∑M
m=1

∑N
n=1 αnm


 , (5.45)

where P ≡ NA/2 is the average power per receive aperture, assuming equally likely

ones and zeros. We are also assuming that all transmitters use the same peak power

An ≡ A.

A midpoint threshold (5.12) in practice is easier to implement than an optimal

threshold, as it corresponds to AC-coupling the combiner output to a simple posi-

tive/negative comparator. The instantaneous bit error rate using midpoint thresh-

olding is

Pr(Yt 6= Xt | α) =
1

2
Q

(
(P/N)

∑M
m=1

∑N
n=1 αnm√

Mσ2

)

+
1

2
Q


 (P/N)

∑M
m=1

∑N
n=1 αnm√

Mσ2 + 2γ(P/N)
∑M

m=1

∑N
n=1 αnm


 . (5.46)

Figures 5-5 through 5-10 show the instantaneous bit error rates averaged over a million

channel realizations for various diversity schemes under different fading conditions.

Maximal Ratio Combining

A maximal ratio combining receiver weights each detector output in proportion to the

signal power on that branch. The instantaneous bit error rate for an OOK repetition

spatial transmitter and maximal ratio combining, near-optimal thresholding receiver
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is

Pr(Yt 6= Xt | α) = Q




2(P/N)
∑M
m=1

(∑N
n=1

αnm
)2

√
σ2
∑M
m=1

(∑N
n=1

αnm
)2

+

√
σ2
∑M
m=1

(∑N
n=1

αnm
)2

+ 2γ(P/N)
∑M
m=1

(∑N
n=1

αnm
)3


 .

(5.47)

Using midpoint thresholding the instantaneous bit error rate is

Pr(Yt 6= Xt | α) =
1

2
Q




P

σN

√√√√
M∑

m=1

(
N∑

n=1

αnm

)2




+
1

2
Q




(P/N)
∑M
m=1

(∑N
n=1

αnm
)2

√
σ2
∑M
m=1

(∑N
n=1

αnm
)2

+ 2γ(P/N)
∑M
m=1

(∑N
n=1

αnm
)3


 . (5.48)

Figures 5-5 through 5-10 compare maximal ratio combining against other diversity

schemes.

Selection Diversity

Transmitter and Receiver Selection Diversity A simple alternative to equal-

gain combining and maximal ratio combining is to use the best transmitter and

receiver pair. This architecture assumes that both the transmitter and receiver know

the path gains, and can use the best path for communication. For simulation perfor-

mance, we can use a single uniform random number to generate this path gain. The

maximum of the MN independent, identically, distributed random path gains αnm is

distributed as

F (a) = p ≡ Pr(max{αnm} ≤ a) =

[
Φ

(
1

2σχ
log a+ σχ

)]NM
, (5.49)

where Φ(x) ≡
∫ x
−∞ exp(z2/2)/

√
2π dz is the standard normal cumulative distribution

function. Evaluating the inverse of this cumulative distribution function,

max{αnm} = a = F−1(p) = exp
[
2{σχΦ−1(p1/MN )− σ2χ}

]
, (5.50)
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at a uniform random number p on the interval [0, 1] provides a realization of the best

path gain. Notice that for M = N = 1 this equation produces a lognormal fade. As

MN increase, the uniform random variable p is raised to a smaller fractional power,

resulting in larger values for the greatest path gain.

The instantaneous bit error rate for selection diversity at both the transmitter

and receiver using near-optimal thresholding is

Pr(Yt 6= Xt | α) = Q

(
2P max{αnm}√

σ2 +
√
σ2 + 2γP max{αnm}

)
, (5.51)

Using midpoint thresholding gives an instantaneous BER of

Pr(Yt 6= Xt | α) =
1

2
Q

(
P max{αnm}

σ

)

+
1

2
Q

(
P max{αnm}√

σ2 + 2γP max{αnm}

)
. (5.52)

In the above equations, P is still the average power per receiver. Because only one

transmitter is in use at a time, however, the average power per receiver is P = A/2.

Receiver Selection Diversity If path gain knowledge at the transmitter is not

known, the receiver can choose the detector with the largest signal power. In this

case, the instantaneous bit error rate for near-optimal thresholding is

Pr(Yt 6= Xt | α) = Q




2(P/N)max
{∑N

n=1 αnm

}

√
σ2 +

√
σ2 + 2γ(P/N)max

{∑N
n=1 αnm

}


 (5.53)
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Using midpoint thresholding gives an instantaneous BER of

Pr(Yt 6= Xt | α) =
1

2
Q



(P/N)max

{∑N
n=1 αnm

}

σ




+
1

2
Q




(P/N)max
{∑N

n=1 αnm

}

√
σ2 + 2γ(P/N)max

{∑N
n=1 αnm

}


 . (5.54)

Figures 5-5 through 5-10 compare selection diversity against other diversity schemes.
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Figure 5-5: The average bit error rate for different transmitter and receiver diversity
schemes with midpoint thresholding (5.12) is shown as a function of average power
per receiver and number of apertures in mild fading (σ2

χ = 0.01).
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Figure 5-6: The average bit error rate for different transmitter and receiver diversity
schemes with midpoint thresholding (5.12) is shown as a function of average power
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χ = 0.1).

207



−60 −58 −56 −54 −52 −50 −48 −46 −44 −42 −40 −38 −36 −34 −32 −30
10−6

10−5

10−4

10−3

10−2

10−1

100

Average Power Per Receiver [dBm]

A
ve

ra
ge

 B
E

R

Average BER with Midpoint Thresholding (σχ
2 = 0.35)

1 Tx, 1 Rx
2 Tx, 2 Rx; EGC
2 Tx, 2 Rx; MRC
2 Tx, 2 Rx; Rx Sel
2 Tx, 2 Rx; Tx & Rx Sel
4 Tx, 4 Rx; EGC
4 Tx, 4 Rx; MRC
4 Tx, 4 Rx; Rx Sel
4 Tx, 4 Rx; Tx & Rx Sel

Figure 5-7: The average bit error rate for different transmitter and receiver diversity
schemes with midpoint thresholding (5.12) is shown as a function of average power
per receiver and number of apertures in strong fading (σ2

χ = 0.35).
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Figure 5-8: The average bit error rate for different transmitter and receiver diversity
schemes with near-optimal thresholding (5.14) is shown as a function of average power
per receiver and number of apertures in mild fading (σ2

χ = 0.01).
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Figure 5-9: The average bit error rate for different transmitter and receiver diversity
schemes with near-optimal thresholding (5.14) is shown as a function of average power
per receiver and number of apertures in moderate fading (σ2

χ = 0.1).
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Figure 5-10: The average bit error rate for different transmitter and receiver diversity
schemes with near-optimal thresholding (5.14) is shown as a function of average power
per receiver and number of apertures in strong fading (σ2

χ = 0.35).
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An Approximate Method to Calculate EGC BER

We have seen that for OOK spatial repetition transmitters and linear combining,

threshold-decision receivers, if the signal-dependent component of the variance domi-

nates the fixed component, then equal-gain combining using optimal thresholds, min-

imizes the error probability. We now examine some simple Monte Carlo averaging

techniques to calculate the average error probability for equal-gain combining re-

ceivers using near-optimal thresholds (5.14) and midpoint thresholds (5.12) for the

nominal parameters in Table 5.1. Our error rate approximations can be implemented

using spreadsheets such as Excel.

For equal-gain combining receivers, the error probability, (5.46) and (5.45), is a

function of the sum ofMN lognormal random fades, R =
∑M

m=1

∑N
n=1 αnmA. We will

approximate this sum as being lognormal. Instead of generating a channel of NM

lognormal random variables, we only generate one lognormal random variable with

appropriately chosen moments. This lognormal random variable can be generated

from a single uniform random variable on the interval [0, 1], using the transformation:

L(p) = exp
[
ν Φ−1(p) + µ

]
, (5.55)

where the log-moments µ and ν2 are given by (5.41) and (5.42), respectively.

A comparison of this approximate Monte Carlo averaging method (solid lines)

and the exact bit error rate (symbols) averaged over one million channel realizations

is shown in Figures 5-11 through 5-13 under various fading conditions. From these

figures we see that this approximation is quite accurate for mild and moderate fading.

For severe fading, this approximate method tends to give conservative estimates of

the average bit error rate.

Increase the Power or the Number of Apertures?

We have seen in Figures 5-5 through 5-10 that atmospheric turbulence greatly impacts

the the BER performance of a single-transmit, single-receive aperture system. For

example, from Figures 5-8 and 5-10 we see that we lose the equivalent of about 17
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Figure 5-11: A comparison of the exact and approximate average bit error rate for
equal gain combining receivers with near-optimal thresholding (5.14) is shown as a
function of average power per receiver in mild fading (σ2

χ = 0.01).
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Figure 5-12: A comparison of the exact and approximate average bit error rate for
equal gain combining receivers with near-optimal thresholding (5.14) is shown as a
function of average power per receiver in moderate fading (σ2

χ = 0.1).

213



−60 −58 −56 −54 −52 −50 −48 −46 −44 −42 −40 −38 −36
10−6

10−5

10−4

10−3

10−2

10−1

100

Average Power Per Receiver [dBm]

A
ve

ra
ge

 B
E

R

Average BER with Near−Optimal Thresholding (σχ
2 = 0.35)

2 Tx, 2 Rx; EGC (Exact)
2 Tx, 2 Rx; EGC (Approx)
3 Tx, 3 Rx; EGC (Exact)
3 Tx, 3 Rx; EGC (Approx)
4 Tx, 4 Rx; EGC (Exact)
4 Tx, 4 Rx; EGC (Approx)

Figure 5-13: A comparison of the exact and approximate average bit error rate for
equal gain combining receivers with near-optimal thresholding (5.14) is shown as a
function of average power per receiver in strong fading (σ2

χ = 0.35). In strong fading,
our lognormal approximation provides a conservative estimate of error probability.

dB in power at 10−5 error rates as fading worsens from mild to severe. To improve

the performance we could

• Increase the transmit power,

• Increase the number of transmit apertures,

• Increase the number of receive apertures,

or any combination, thereof. In this section, we address the advantages and disad-

vantages of each choice.

To make a fair comparison between these choices, we will consider the average

total receive power, PM , required to achieve a particular average bit error rate. In

other words, for combining receivers, if we double the number of apertures, we must

halve the transmit power. For selection diversity at both the transmitter and receiver,

the average total receiver power is just P .
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Figures 5-14 and 5-15 show the average bit error rate for different diversity schemes

involving one and two apertures. The average bit error rate is plotted against the

average power per receiver, P . We will examine the power reduction in total average

receive power, PM , gained through diversity at 10−5 average bit error rates in severe

fading (σ2χ = 0.35). For example, from Figure 5-14 using one transmit and two receive

apertures with maximal ratio combining and midpoint thresholding requires -40 dBm

average power per receiver, or -37 dBm average total receive power, to achieve 10−5

average bit error rates. Figures 5-7 and 5-10 show the average bit error rates for two

transmit and two receive apertures.

Table 5.4 shows the average total receive power required for 10−5 average bit error

rates for the different diversity schemes. Notice that transmitter and receiver selection

diversity perform the same for one transmit, two receive apertures and two transmit,

one receive apertures, and we only list receiver selection diversity.

The power saved from using a near-optimal threshold over a midpoint threshold is

at most a decibel in severe fading. Note that in mild and moderate fading, the power

savings are greater, approximately one to two decibels; for example, compare Figures

5-5 and 5-8, and Figures 5-6 and 5-9. The relatively small threshold gain indicates

that in severe fading, the average bit error rate is dominated by deep channel fades.

During these deep fades, the fixed component of the receiver noise dominates, and

midpoint thresholds are optimal. Furthermore, maximal-ratio combining tends to be

slightly better (about a tenth of a decibel) than equal-gain combining because it also

performs better when the fixed component dominates.

We now examine the incremental improvement and trade-offs of adding either a

receive or transmit aperture over the single aperture system. As seen in Table 5.4,

selection diversity saves approximately 7 dB in power compared to a single trans-

mit, single receive aperture system. Selection diversity, however, requires path gain

knowledge at either the transmitter or receiver. A momentary application of power

on each path is needed to determine the path gains. This power required for channel

estimation is not included in our comparison, however.
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Transmitter diversity saves approximately 6 dB in power, and does not require

path gain knowledge. Similarly, both equal gain and maximal ratio combining save

about 5 dB, with the former not requiring path gain knowledge or complicated non-

uniform combining. Transmitter diversity has a further advantage in that, presently,

lasers are much less expensive than optical amplifiers.

Transmitter diversity, however, requires either angle or frequency separation to get

the incoherent addition of optical fields. Angle separation requires coupling multiple

spatial modes into the receiver, which is not compatible with single-mode optical

amplifiers.

Although, frequency separation will create the desired addition, it also faces a

similar problem. To obtain uncorrelated fades, transmitters must be sufficiently sep-

arated in distance. If this distance creates too large of an angle between transmitters

at the receiver, then coupling into a single-mode fiber might be difficult.

In terms of complexity and performance, an on-off keying, repetition spatial trans-

mitter and/or an equal-gain combining receiver with midpoint thresholding is a very

cost-effective method for combatting atmospheric turbulence. In severe fading, this

combination can save about five to six decibels in total receive power in a dual versus

single aperture system. We could further increase these savings by more transmit or

receive apertures without having to increase the power; e.g., two transmit and two

receive apertures save around nine decibels.
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Figure 5-14: The average (over one million channel realizations) bit error rate for
different diversity techniques with midpoint thresholding (5.12) is shown as a function
of average power per receiver in strong fading (σ2

χ = 0.35).
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Figure 5-15: The average (over one million channel realizations) bit error rate for
different diversity techniques with near-optimal thresholding (5.14) is shown as a
function of average power per receiver in strong fading (σ2

χ = 0.35).
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Midpoint Near-Optimal Thres. Gain
[dBm] [dBm] [dB]

1 Tx, 1 Rx -31.9 -32.5 0.6
1 Tx, 2 Rx (EGC) -36.9 -37.3 0.4
1 Tx, 2 Rx (MRC) -37.0 -37.5 0.5
2 Tx, 1 Rx -37.8 -38.5 0.7
1 Tx, 2 Rx (Sel) -38.7 -39.4 0.7
2 Tx, 2 Rx (EGC) -40.9 -41.5 0.6
2 Tx, 2 Rx (MRC) -40.9 -41.6 0.7
2 Tx, 2 Rx (Rx Sel) -42.4 -43.4 1.0
2 Tx, 2 Rx (Tx & Rx Sel) -43.6 -44.5 0.9

Table 5.4: The average total receive power (MP for combining schemes, and P for
selection diversity) in dBm required for 10−5 average bit error rates in severe fading
(σ2χ = 0.35) is shown for different diversity and thresholding schemes. The accuracy
of the power is approximately ±0.1 dBm. The power gained in decibels from using a
near-optimal versus a midpoint threshold is shown in the right most column.
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Chapter 6

Experimental Results

In this chapter, we report an experimental study of the performance of a two receive

aperture, optically-preamplified receiver. We compare the bit error rate performance

with that predicted by the model in Chapter 5. Figure 6-1 shows our experimental

configuration for a single transmit and receive aperture system.

A bit error rate tester (BERT) generates a pseudo-random bit sequence that mod-

ulates the amplitude of a continuous-wave (CW) laser carrier. The presence of light

after the modulator indicates a ‘1’ bit, while its absence, a ‘0’ bit. The optical signal

exits the transmitter via a telescope, travels through the atmosphere for 125 meters,

reflects off a mirror, travels back another 125 meters, enters the receiver via another

telescope, and then couples into a single-mode fiber. An erbium-doped fiber amplifier

(EDFA) optically amplifies the received signal, adding amplified spontaneous emis-

sion (ASE) noise in the process. This noise is spectrally flat over the optical filter

passband.

The resulting filtered signal and noise pass through a photodetector and tran-

simpedance amplifier. A limiting amplifier amplifies the resulting voltage signal, clip-

ping its amplitude to a test-equipment-compatible level. The BERT makes a hard

decision as to whether the received signal is a ‘1’ or a ‘0’, and compares the trans-

mitted sequence to this received bit sequence. The BERT then computes the ratio of

bits received in error to the total bits transmitted. A digital communication analyzer

(DCA) also samples the received waveform, and plots the eye diagram. Table 6.1
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summarizes the parameters of the experiment configuration.

10 x

Telescope

cw
laser Mod

EDFA

p-i-nTIA 41-GHz
optical filter

Limiting
amp

rf
amp

BERT

Eye diagram

10 x

Telescope

Figure 6-1: The experimental configuration for a single transmit and receive aper-
ture system consists of an externally modulated laser transmitter and optically-
preamplified, direct-detection receiver. Test equipment such as the BERT and DCA
analyze the communication system performance, such as the eye diagram shown here.

Surprisingly, despite all the approximations we used to arrive at our optically-

preamplified, direct-detection channel in (5.1), the model captures the experimental

data behavior well in mild and moderate fading. Figures 6-2 and 6-3 shows the bit

error rate (BER) as a function of average optical power per receiver branch for 1.25

Gbps (OC-24, or gigabit ethernet) data rates through an optical fiber using midpoint

thresholding and equal gain combining. The theoretical curves assume ideal filters

and no intersymbol interference, and seem to differ from the measured curve by at

most 0.5 dB. The model uses the parameters in Table 6.1. Figure 6-2 shows the bit

error rate through optical fiber of a single-transmit, single-receive aperture and single-

transmit, dual-receive aperture with equal-gain combining and midpoint thresholding.

Figure 6-3 shows the performance of the same two systems in mild fading (σ2
χ ≈ 0.02).

These measurements were taken during a clear evening. From these figures we see

that this mild fading increases the average power required to maintain 10−7 error
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Parameter Symbol Value Units

Opt. BW BO 41 GHz

Elect. BW BE 750 MHz

ASE Factor nsp 1.09

Opt. Gain GO 40 dB

Opt. Wavelength λ 1550 nm

Num. Pol. Modes Dpol 2

Det. Quant. Eff. η 1

Dark Power PD n/a W

TIA PSD NTIA n/a A2/Hz

Backgrd. Power NB n/a W/Hz

Link Distance 250 m

Transmit Power ≈ 2 mW

Receiver Separation 17.8 cm

Receiver Pupil Diameter 2.5 cm

Fixed Noise Comp. σ2 2.38× 10−18 W2

Sig. Dep. Noise Factor γ 4.19× 10−10 W

Table 6.1: This table summarizes the parameters of the OC-24 experimental testbed.
The dark power, transimpedance amplifier thermal noise, and background power were
negligible compared to the amplified spontaneous emission noise; hence, these entries
are marked not appreciable (n/a).
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rates by about a decibel.

Figures 6-4 and 6-5 show the empirical log-amplitude distribution for the two

receivers. The log-amplitude is defined as

Log-Amplitude ≡ 1

2
log(Received Faded Signal Power in mW). (6.1)

Writing the received signal power as e2χP , where P is the average power per receiver,

the log-amplitude is

Log-Amplitude =
1

2
logP + χ. (6.2)

The received signal power, as measured through a detector monitor, was sampled

every 0.5 ms for 20,000 samples. The log-amplitude variance (σ2
χ) for the first and

second receiver was 0.012 and 0.0098, respectively, and the correlation between chan-

nels was 0.11. These measurements were again taken during a clear evening. From

these figures, we see that the lognormal model is a decent description of the fading

around the density’s mode, but the measured density tends to be skewed in the tails.

Although not shown, we have observed that this skewness is very sensitive to the

alignment of the single-mode fiber coupler. Regardless, Figure 6-3 suggests that a

lognormal model is appropriate for determining the average bit error rate performance

in mild fading.
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Figure 6-2: This figure plots the measured and theoretical BERs versus the average
received optical power for 1.25 Gbps data rates using midpoint thresholding (5.12) in
the absence of fading (fiber transmission) for single and dual receiver configurations.
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Figure 6-3: This figure plots the measured and theoretical BERs versus the average
received optical power for 1.25 Gbps data rates using midpoint thresholding (5.12) in
mild fading (σ2χ ≈ 0.02) for single and dual receiver configurations.
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Figure 6-4: The empirical probability density function of the log-amplitude, i.e.,
0.5 log( Signal Power in mW ), for the first receiver is shown with its Gaussian fit.
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Figure 6-5: The empirical probability density function of the log-amplitude, i.e.,
0.5 log( Signal Power in mW ), for the second receiver is shown with its Gaussian fit.
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Chapter 7

Conclusions

Atmospheric turbulence causes random power fluctuations in wireless optical commu-

nication systems. Because the coherence time of this fading channel is on the order

of milliseconds, a single fade can obliterate millions of bits at gigabit per second data

rates. This thesis examined methods to improve the reliability of communication

through the turbulent atmosphere.

In Chapter 3, we presented a framework for developing space-time codes for an

atmospheric optical heterodyne communication system. We introduced a normalized

fading strength, which acts as a “figure of merit” for space-time codes, based on

the variance-to-mean-squared ratio of codeword energy difference. Through a central

limit theorem approximation, we related this figure of merit to the pairwise error

probability. Using this approximation, we found that a diagonal design matrix mini-

mized the pairwise probability of codeword error. Although developed for lognormal

fading, this method generalized to other fading distributions in which the fades are

zero-mean and independent.

Our design criterion also satisfied the rank and determinant criteria presented in

[61] for Rayleigh channels. Furthermore, orthogonal designs provided a method of

constructing space-time codes that satisfied our criterion, and required only linear

processing at the receiver [60]. We demonstrated the improvement gained in code

error rate for a popular orthogonal design, the Alamouti scheme.

In Chapter 4, we introduced the MIMO Poisson channel with peak and average
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transmit power constraints for a given set of path gains. We derived upper and

lower bounds on the channel capacity that were equal in a number of special cases,

such as for channels with low or high background noise, a single receiver (the MISO

channel), or low average input power constraints. The lower bound was equal to the

MIMO capacity for the single transmitter case (the SIMO channel). When the bounds

coincided, the capacity achieving distribution was on-off keying with all transmitters

turning on and off in unison.

We developed formulas for the ergodic and outage capacities of photon-counting

receivers suffering from turbulence-induced fading. Fading did not reduce capacity

at high signal-to-background ratio, and actually increased capacity at low signal-to-

background ratio. This improvement was at most 7.4 for a single transmit aperture

system in severe fading, and diminished with increasing numbers of transmit aper-

tures.

We showed that path gain knowledge at the transmitter did not increase ergodic

capacity at high or low signal-to-background ratios. Path gain knowledge at the

receiver increased the ergodic capacity in the high-noise regime by at most a factor

of 7.4, attained by using a single transmit aperture and an infinite number of receive

apertures. However, for a more realistic case of two transmit and two receive apertures

in mild to moderate fading, the use of an optimal receiver provided only one to

ten percent capacity improvement over that attained with a simple photon-bucket

receiver. In other words, photon-bucket receivers are capacity achieving at high signal-

to-noise ratio and nearly optimal at low signal-to-noise ratio for moderate numbers

of transmit apertures.

When delay constraints prevent coding over many channel realizations, the dis-

tribution of the instantaneous capacity is a more appropriate measure of reliable

communication rates. We developed approximations to the capacity-versus-outage

probability in the high and low noise regimes for photon-counting receivers. We con-

firmed that these approximations are quite good for moderate numbers of apertures

in mild and moderate fading using Monte Carlo simulations.

In Chapter 5 we examined optically-preamplified receivers, and developed discrete
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memoryless channel representations using linear combining receivers and OOK spa-

tial repetition transmitters. Optical preamplification can increase receiver sensitivity

one-hundred fold at 10−9 error probabilities for 1.25 Gbps data rates. We showed that

equal-gain combining is the best linear combining strategy when using much more

than -56 dBm average receive power. For low receive power, maximal ratio combin-

ing was best. We also developed approximations to the bit-error-rate-versus-outage

probability, and verified their efficacy through Monte Carlo simulations.

We built a single-transmit, dual-receive aperture, equal-gain combining, optically-

preamplified receiver with midpoint thresholding to examine the validity of our mod-

els. We found good agreement between our model and this experimental 1.25 Gbps

testbed. Although, the measured fading was not lognormal deep into the tails, the

lognormal model provided a good description of the measured average bit error.

For both direct detection channels, we have shown the merits of equal-gain com-

bining. For photon-counting receivers, equal-gain combining is a capacity-achieving

receiver in low noise. In fact, for OOK repetition spatial coding, it is the minimum

probability of error receiver at high signal-to-noise ratio. We have also seen that for

optically-preamplified channels, when the fixed component of the variance is much

less than the signal-dependent component, equal-gain combining is the best linear

combining strategy. These findings provide theoretical reinforcement to the results of

[47, 51] and to common industry practices [16, 10].

Equal-gain combining and repetition spatial coding are attractive architectures

for direct detection channels, both in terms of performance and simplicity. For the

nominal parameters of the 1.25 Gbps testbed, a single-transmit and dual-receive

aperture, equal-gain combining receiver with midpoint threshold saves about five

decibels in average total receive power at 10−5 average error rates in severe fading.

Using dual-transmit, and single-receive apertures saves around six decibels. Neither

system requires path gain knowledge, and both have simple implementations.
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Appendix A

Derivation Details

A.1 High and Low Noise Duty Cycles

The duty cycle p that maximizes I(p, s) for a given background noise-to-signal ratio

s has the form (see (4.59) and (4.29))

pmax =
(1 + s)(1+s)

ess
− s. (A.1)

We first examine the case in which the background noise-to-signal ratio approaches

zero, i.e., s→ 0. By continuity of the righthand side, and noting that ss → 1 as s→ 0

we have

lim
s→0

pmax =
1

e lims→0 ss
=

1

e
. (A.2)

The asymptotic expression for the duty cycle in the high noise regime is derived

in [67, 17] using the power series expansions log(1+x) = x−x2/2+x3/3−x4/4+ · · ·
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and exp(x) = 1 + x+ x2/2! + x3/3! + · · ·

pmax =
1 + s

e

(
1 +

1

s

)s
− s

=
1 + s

e
exp

[
s log

(
1 +

1

s

)]
− s

=
1 + s

e
exp

[
s

{
1

s
− 1

2s2
+O

(
1

s3

)}]
− s

=
1 + s

e
exp

[
1− 1

2s
+O

(
1

s2

)]
− s

=
1 + s

e
e

[
1− 1

2s
+O

(
1

s2

)]
− s

=
1

2
+O

(
1

s

)
, (A.3)

where the notation f = O(g) means that f(x) ≤ Cg(x) for some constant C and all

x in the domain.

A.2 High and Low Noise Information Functions

We now examine the behavior of the information function (4.35)

I (p, r) ≡ p (1 + r) log(1 + r) + (1− p ) r log r − ( p+ r ) log( p+ r ), (A.4)

for small and large values of the background noise-to-signal ratio r. Noting that

r log r → 0 as r → 0, we have

lim
r→0
I (p, r) = −p log p . (A.5)
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For large r, we again use the expansion log(1 + x) = x− x2/2 + x3/3− x4/4 + · · · to
obtain [67]

I (p, r) = p (1 + r) log

(
1 +

1

r

)
− ( p+ r ) log

(
1 +

p

r

)

= p (1 + r)

[
1

r
− 1

2r2
+O

(
1

r3

)]
− ( p+ r )

[
p

r
− p2

2r2
+O

(
1

r3

)]

=
p(1− p)

2r
+O

(
1

r2

)
. (A.6)

A.3 Lognormal Moment-Matching

In this appendix we derive the first- and second-order moment-matching approxima-

tion to the sum of real, correlated, lognormal random variables, see (4.89) through

(4.92). Utilizing the Gaussian moment-generating function, the first and second mo-

ments of Z are

E[Z] = E[eu] = exp(µ+ ν2/2) (A.7)

E[Z2] = E[e2u] = exp(2µ+ 2ν2). (A.8)

Solving for µ and ν2 in terms of E[Z] and E[Z2] gives

ν2 = log

(
E[Z2]

E[Z]2

)
= log

(
1 +

var[Z]

E[Z]2

)
(A.9)

µ = log

(
E[Z]2√
E[Z2]

)
= log

(
E[Z]2√

var[Z] + E[Z]2

)
. (A.10)

Substituting m ≡ E[Z] = E[S] and v2 ≡ var[Z] = var[S] gives (4.89) and (4.90).
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The moments of the sum are

E[S] =
K∑

k=1

E[euk ] =
K∑

k=1

eµk+νkk/2 (A.11)

E[S2] =
K∑

k=1

K∑

l=1

E[euk+ul ]

=
K∑

k=1

K∑

l=1

eµk+µl+[νkk+νll+2νkl]/2. (A.12)

Consequently,

var[S] = E[S2]− E[S]2

=
K∑

k=1

K∑

l=1

eµk+µl+[νkk+νll]/2 (eνkl − 1) , (A.13)

as desired.

A.4 Low Noise Regime Lognormal Sum Moments

In this appendix we derive the mean and variance of the sum S(α) in (4.96). Each

term in the sum is an independent lognormal random variable with log-mean and

log-covariances,

µnm ≡ E[log(Anαnm)] = logAn − 2σ2χ

νnm,n̄m̄ ≡ cov[log(Anαnm), log(An̄αn̄m̄)] =





4σ2χ n = n̄ and m = m̄

0 otherwise
.

Substituting these into (4.91) and (4.92) we get (4.100) and (4.101), respectively,

m ≡ E[S(α)] =
M∑

m=1

N∑

n=1

eµnm+νnm,nm/2

=
M∑

m=1

N∑

n=1

Ane
−2σ2χ+4σ2χ/2 =MP1, (A.14)
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and

v2 ≡ var[S]

=
M∑

m=1

N∑

n=1

M∑

m̄=1

N∑

n̄=1

exp(µnm + µn̄m̄ + [νnm,nm + νn̄m̄,n̄m̄]/2) (e
νnm,n̄m̄ − 1)

=
M∑

m=1

N∑

n=1

exp(2µnm + νnm,nm) (e
νnm,nm − 1)

=
M∑

m=1

N∑

n=1

A2
n exp[2(−2σ2χ) + 4σ2χ]

(
e4σ

2
χ − 1

)
=MS4P2. (A.15)

A.5 High Noise Regime Lognormal Sum Moments

A.5.1 Mean and Variance of the Lognormal Sum

Calculating the mean (4.102) and variance (4.104) in the high noise regime is slightly

more involved than in the low noise regime. The terms of the sum (4.99) are

AnAk

λm
αnmαkm ≡ eumnk , (A.16)

where

umnk ≡ log

(
AnAk

λm

)
+ 2(χnm + χkm). (A.17)

The log-mean and log-covariances are

µmnk ≡ E[umnk] = log

(
AnAk

λm

)
− 4σ2χ

νmnk,m̄n̄k̄ ≡ cov[umnk, um̄n̄k̄] = 4 cov[χnm + χkm, χn̄m̄ + χk̄m̄]

= 4 (cov[χnm, χn̄m̄] + cov[χnm, χk̄m̄] + cov[χkm, χn̄m̄] + cov[χkm, χk̄m̄])

= 4σ2χ(δnn̄ + δnk̄ + δkn̄ + δkk̄)δmm̄, (A.18)
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where δij = 1 if i = j and zero otherwise. Substituting these moments into (4.91) we

have

m ≡ E[S] =
M∑

m=1

N∑

n=1

N∑

k=1

exp(µmnk + νmnk,mnk/2)

=
M∑

m=1

N∑

n=1


exp(µmnn + νmnn,mnn/2) +

N∑

k=1
k 6=n

exp(µmnk + νmnk,mnk/2)




=
M∑

m=1

N∑

n=1



A2
n

λm
exp(−4σ2χ + 16σ2χ/2) +

N∑

k=1
k 6=n

AnAk

λm
exp(−4σ2χ + 8σ2χ/2)




=

(
M∑

m=1

1

λm

)

(
e4σ

2
χ − 1

) N∑

n=1

A2
n +

(
N∑

n=1

An

)2

 = L−1[S4P2 + P 2

1 ]. (A.19)

Calculating the variance is an exercise in counting. The variance is (4.92)

v2 ≡ var[S] =
∑

m,n,k

m̄,n̄,k̄

exp(µmnk + µm̄n̄k̄ + [νmnk,mnk + νm̄n̄k̄,m̄n̄k̄]/2) (e
νmnk,m̄n̄k̄ − 1)

≡ T1 + T2 + T3 + T4, (A.20)

where the terms T1, T2, T3, and T4 are defined as follows. Using (A.18), we can set

m = m̄ because the m 6= m̄ portion of (A.20) is zero. Next, we break the remaining

sum into four terms based on the structure of the log-mean and log-covariance. The

first term is the case when n = k and n̄ = k̄

T1 ≡
M∑

m=1

N∑

n=1

N∑

n̄=1

A2
nA

2
n̄

λ2m
e−8σ

2
χ exp([16σ2χ + 16σ2χ]/2)

(
e4σ

2
χ(4δnn̄) − 1

)

=
M∑

m=1

N∑

n=1

A4
n

λ2m
e8σ

2
χ

(
e16σ

2
χ − 1

)

= L−2(S8 + 1)S16P4. (A.21)
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The second term is the case when n = k and n̄ 6= k̄,

T2 =
M∑

m=1

N∑

n=1

N∑

n̄=1

N∑

k̄=1
k̄ 6=n̄

A2
nAn̄Ak̄

λ2m
e−8σ

2
χ exp([16σ2χ + 8σ2χ]/2)

(
e4σ

2
χ(2δnn̄+2δnk̄) − 1

)

=
M∑

m=1

N∑

n=1




N∑

n̄=1
n̄6=n

A3
nAn̄

λ2m
e4σ

2
χ

(
e8σ

2
χ − 1

)
+

N∑

k̄=1
k̄ 6=n

A3
nAn̄

λ2m
e4σ

2
χ

(
e8σ

2
χ − 1

)



= 2e4σ
2
χ

(
e8σ

2
χ − 1

) M∑

m=1

λ−2m

N∑

n=1

[
A3
n

(
N∑

n̄=1

An̄ − An

)]

= 2L−2(S4 + 1)S8(P1P3 − P4). (A.22)

The third term is the case when n 6= k and n̄ = k̄. By symmetry, this term is equal

to the term that we just calculated, i.e., T3 = T2.

The last term is the hardest, and is the case when n 6= k and n̄ 6= k̄,

T4 ≡
M∑

m=1

N∑

n,k=1

n6=k

N∑

n̄,k̄=1

n̄6=k̄

AnAkAn̄Ak̄

λ2m
e−8σ

2
χ exp([8σ2χ + 8σ2χ]/2)

(
e4σ

2
χ(δnn̄+δnk̄+δkn̄+δkk̄) − 1

)

=
M∑

m=1

N∑

n,k=1

n6=k

N∑

n̄,k̄=1

n̄6=k̄

AnAkAn̄Ak̄

λ2m

(
e4σ

2
χ(δnn̄+δnk̄+δkn̄+δkk̄) − 1

)
. (A.23)

There are 16 possible equality and inequality relationships in the pairs of variables

(n, n̄), (n, k̄), (k, n̄), (k, k̄) that appear in the Kronecker delta terms of the exponent.

The possibilities that n = k = n̄ = k̄ and that equality exists in exactly three of the

four pairs, e.g. n = n̄, n = k̄, k = n̄, and k 6= k̄, are precluded in this case by our

assumption that n 6= k and n̄ 6= k̄. The case when inequality exists in all four pairs,

i.e., n 6= n̄, n 6= k̄, k 6= n̄, and k 6= k̄, is not of interest to us because these terms in

T4 are zero. This leaves the two cases in which equality exists in exactly one and two

pairs.

Because of our assumption in this last term that n 6= k and n̄ 6= k̄, equality can

exist exactly twice in these four pairs only when n = n̄ 6= k = k̄ or n = k̄ 6= k = n̄.
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For example, the assignment n 6= n̄, n = k̄, k 6= n̄, and k = k̄ is not possible because

n = k̄ and k = k̄ implies n = k. Let’s examine the case when n = n̄ 6= k = k̄,

T42 ≡
M∑

m=1

N∑

n=1

N∑

k=1
k 6=n

A2
nA

2
k

λ2m

(
e8σ

2
χ − 1

)

=
(
e8σ

2
χ − 1

)( M∑

m=1

λ−2m

)
N∑

n=1

A2
n

[
N∑

k=1

A2
k − A2

n

]

= L−2S8(P
2
2 − P4). (A.24)

By symmetry, the case when n = k̄ 6= k = n̄ is the same.

Now we examine the T4 case when equality exists in exactly one pair (n, n̄), (n, k̄),

(k, n̄), (k, k̄) and inequality exists in the others. For example, consider the case when

n = n̄, n 6= k̄, k 6= n̄, and k 6= k̄. Notice that n 6= k̄ and k 6= n̄ are redundant because

we have by assumption that n 6= k and n̄ 6= k̄ for the term T4. Evaluating this case,

T41 ≡
M∑

m=1

N∑

n=1

N∑

k=1
k 6=n

N∑

k̄=1
k̄ 6=k
k̄ 6=n

A2
nAkAk̄

λ2m

(
e4σ

2
χ − 1

)

=
(
e4σ

2
χ − 1

) M∑

m=1

λ−2m

N∑

n=1

A2
n

N∑

k=1
k 6=n

Ak

N∑

k̄=1
k̄ 6=k
k̄ 6=n

Ak̄

= L−2S4

N∑

n=1

A2
n

N∑

k=1
k 6=n

Ak

(
N∑

k̄=1

Ak̄ − An − Ak

)

= L−2S4

N∑

n=1

A2
n

[
N∑

k=1

Ak (P1 − An − Ak)− An (P1 − 2An)

]

= L−2S4

N∑

n=1

A2
n

[
P 2
1 − P2 − 2AnP1 + 2A2

n

]

= L−2S4(P
2
1P2 − P 2

2 − 2P1P3 + 2P4). (A.25)

By symmetry, the other three cases in which exactly one pair is equal are the same.
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So the last term is

T4 = 2T42 + 4T41 = L−2[2S8(P
2
2 − P4) + S4(P

2
1P2 − P 2

2 − 2P1P3 + 2P4)]. (A.26)

Putting these four terms together, T = T1 + T2 + T3 + T4, we get (4.104).

A.5.2 Approximate Mean and Variance of the Lognormal

Sum

In this appendix, we calculate an approximation to the first and second moments

of the lognormal sum S(α) in the high noise regime (4.99). We start by using a

lognormal approximation to the sum Rm whose mean and variance are

E[Rm] =
N∑

n=1

E[αnm]An = P1 (A.27)

var[Rm] =
N∑

n=1

var[αnm]A
2
n = S4P2 (A.28)

We can then approximateRm ≈ eūm where ūm are independent, identically distributed

Gaussian random variables with moments given by (4.89) and (4.90)

µ̄ ≡ E[ūm] = log


 P1√

1 + S4P2
P 2
1


 = log


 NA√

1 + e4σ
2
χ−1
N


 (A.29)

ν̄2 ≡ var[ūm] = log

(
1 +

S4P2

P 2
1

)
= log

(
1 +

e4σ
2
χ − 1

N

)
, (A.30)

where the last equalities are for identical transmitters. Next, we approximate the

sum (4.99) as

S(α) =
M∑

m=1

R2
m/λm ≈

M∑

m=1

e2ūm/λm, (A.31)
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with moments

m ≡ E[S(α)] ≈
M∑

m=1

E
[
e2ūm

]
/λm

= L−1e
2(µ̄+ν̄2) = L−1 [S4P2 + P 2

1 ]

=
M(NA)2

λ

(
1 +

e4σ
2
χ − 1

N

)
(A.32)

v2 ≡ var[S(α)] ≈
M∑

m=1

var
[
e2ūm

]
/λ2m

= L−2

(
E
[
e4ūm

]
−
{
E
[
e2ūm

]}2)

= L−2

(
e4µ̄+8ν̄2 − e4µ̄+4ν̄

)

= L−2 e
4(µ̄+ν̄2)

(
e4ν̄

2 − 1
)

= L−2P
4
1

(
1 +

S4P2

P 2
1

)2
[(

1 +
S4P2

P 2
1

)4

− 1

]

=
M(NA)4

λ2

(
1 +

e4σ
2
χ − 1

N

)2


[
1 +

e4σ
2
χ − 1

N

]4
− 1


 , (A.33)

where again the last equalities are for identical transmitters and receivers.
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