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Abstract. 

This thesis is concerned with an investigation of the vibrational 

characteristics of oil lubricated journal bearings and, in particular, 

the instability known as oil whirl, which is a self-excited oscillation 

induced by the hydrodynamic forces generated in the bearing. The thesis 

is divided into two parts. In Part 1, linear stability theory is used 

to determine the critical parameter values at which oil whirl is initiated. 

This information is conveniently expressed on a two dimensional stability 

chart, separating regions of stability from those of instability. The 

vibrational characteristics of a variety of bearing models are contrasted 

with particular emphasis on the effect of adopting different cavitation 

boundary conditions at film rupture and the effect of oil film behaviour 

during journal vibration. An analysis of the single axial groove journal 

bearing is presented and the effects of groove location and oil supply 

pressure on the vibrational characteristics of the bearing are examined. 

In Part 2, attention is focused on the nonlinear aspects of oil whirl, 

one objective being to determine the motion of the journal beyond its 

stability threshold. Several nonlinear techniques are employed to analyse 

the nonlinear equations of motion and to identify different features 

(bifurcation theory, multiple scaling, the method of averaging and numer- 

ical integration). Particular emphasis is placed on examining the structure 

of periodic solutions of the equations of motion at and close to the 

position of neutral stability. It is shown that the onset of oil whirl 

is a bifurcation phenomenon in which the equilibrium position gives way 

to a small amplitude whirl orbit (limit cycle). Two different types of 

bifurcation behaviour are possible, depending on the operating parameters 

of the bearing. Results obtained from the different nonlinear techniques 

are contrasted and an assessment is made of how suitable these methods 

are for examining the phenomenon of oil whirl. 
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NOTATION 

A journal centre 

Bxx'Bxy non-dimensional bearing velocity coefficients 

Byx 'Byy 
D bearing diameter 

F bearing load 

Kxx, Kxy non-dimensional bearing displacement coefficients 

K 
yx' 

yy 

Fr, Ft radial and tangential hydrodynamic force components 

Fr, Ft non-dimensional force components (Fr=Fr/SF, etc. ) 

FX, Fy Cartesian force components 

FX, FY non-dimensional force components (FX FX/SF, etc. ) 

L axial bearing length 

0 bearing centre 

R bearing radius 

S Sommerfeld number (LR3Wu/Fc2) 

Ss modified Sommerfeld number (RL3Wu/Fc2) 

X1, Y1 journal centre co-ordinates 

X, Y non-dimensional co-ordinates (X=X1/c, etc. ) 

al, a2... a34 Taylor expansion coefficients 

bl, b2... b34 

c bearing radial clearance (R-r) 

d logarithmic decrement 

e journal eccentricity 

h fluid film thickness 

2m journal mass 

m non-dimensional mass (mcw2/F) 

p hydrodynamic pressure 

p non-dimensional pressure (c2p/R2tp) 



r journal radius 

t time 

xl, y1 journal centre co-ordinates 

x, y non-dimensional co-ordinates (x=x1/c, etc. ) 

z axial co-ordinate 

a real part (A) 

0 angular co-ordinate 

A eigenvalue 

A non-dimensional eigenvalue (a=a/w) 

11 lubricant viscosity 

small parameter 

v stability parameter (F/mcw2) 

a system parameter (S/w) 

non-dimensional time (wt) 

attitude angle 

w rotational speed 

W non-dimensional speed ((mc/F)1/2W) 

SI whirl frequency 

whirl frequency ratio (2/w) 

Subscripts 

s refers to steady state conditions 

crit denotes the thre shold of instability 

time derivative (d/dt) 

non-dimensional time d erivative (d/dT) 

Note 

Where the use of a symbol is confined to a short section of the thesis 

it is defined when it is introduced. 



INTRODUCTION. 
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A basic requirement of any piece of rotating machinery is that it 

should operate in a stable manner. This is equally true of a shaft of 

diameter 6mm in a dentist's drill rotating at half a million rpm and 

a 500MW steam turbine rotating at 3000rpm with a shaft diameter of 600mm. 

In recent years, with modern technology demanding larger machines oper- 

ating at greater speeds, much attention has focused on the vibrational 

characteristics of rotating machinery. A major factor influencing the 

vibrational characteristics of such machinery is the support bearings 

which are usually of the journal bearing type. 

This thesis is concerned with an investigation of the vibrational 

characteristics of a simple rotor system mounted symmetrically on two 

plain, cylindrical, oil lubricated journal bearings. This type of 

machinery may, under certain conditions, develop an instability due to 

the oil film in the bearings. The hydrodynamic forces so generated 

are capable of sustaining a self excited oscillation in which energy 

is transferred from the rotation of the rotor into a whirling motion 

of the journal. 

Oil whirl, which is the name given to the type of instability 

mentioned above, occurs above a specific rotor speed (the threshold 

speed). Once initiated, the instability may take either of two 

different forms. One possibility is for large amplitude motion in 

which the journal whirls around the bearing centre at a frequency close 

to half the running speed (for this reason the instability is often 

referred to as "half frequency whirl"). This is a dangerous operating 

condition for the machine since it may result in contact between the 

bearing and journal surfaces causing excessive wear and a sharp rise 

in temperature. The second possibility for whirling is a small amp- 

litude motion in which the journal centre whirls around the steady state 

equilibrium position in a stable closed orbit (limit cycle). Providing 

the amplitude is not too large this may well be an acceptable operating 
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condition for the machine. The parameters which determine the form of 

oil whirl are unclear, -this being one of the objectives of the present 

investigation. 

The model under investigation is of a rotor supported on two plain, 

cylindrical journal bearings (Figure 1). It is assumed that: 

i) the rotor is rigid, symmetric and perfectly balanced. 

ii) the rotor spins with constant angular velocity about its axis. 

iii) the load supported by the bearings is due to gravity and is 

divided equally between the two bearings. 

iv) the bearings are identical and have rigid supports. 

v) the hydrodynamic pressure generated in the bearings may be determined 

by solving the lubrication equation - the Reynolds equation. The ass- 

umptions made in deriving the Reynolds equation are given in Chapter 

1. To examine the qualitative features of oil whirl two approximate 

analytic solutions to the Reynolds equation are used throughout this 

work (see Chapter 1). 

A rigid rotor may whirl in two different modes: - cylindrical whirling, in 

which the two ends of the rotor are in phase (Figure 2(a)) and conical 

whirling, in which the two ends of the rotor are 180 degrees out of phase 

(Figure 2(b)). This investigation is confined to cylindrical whirling, 

which is the most frequently encountered form of whirling. This addit- 

ional assumption means that every point on the rotor performs the same 

planar motion, perpendicular to the rotor axis and it is sufficient to 

consider only one bearing. 

The objectives of the investigation are: 

i) to examine the role which cavitation plays in determining the vib- 

rational characteristics of the journal with particular emphasis on: 

a) the effect of using different cavitation boundary conditions 

at film rupture. 
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w 

Figure 1. A rigid rotor supported in fluid film bearings. The fluid in the 

bearings is represented by a spring-dashpot system. 

r"-.. %ft 
w 

2(b). Conical whirling. 

Figure 2. Whirling modes of a rigid rotor supported in fluid film bearings. 

r---------- --- -- -- -- --- - --- ----ý 
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b) the behaviour of the oil film during journal vibration. 

ii) to investigate the influence of groove position and oil supply 

pressure on the vibrational characteristics of the single axial groove 

journal bearing. 

iii) to determine the motion of the journal once oil whirl has been 

initiated and to investigate the factors governing the size and shape 

of any closed whirl orbits. 

This thesis is divided into two parts. Part 1 involves the use of 

linear stability theory to achieve objectives (i) and (ii). In part 2 

the following nonlinear techniques are used to pursue objective (iii): - 

bifurcation theory, multiple scaling, the method of averaging and num- 

erical integration. 

Two further objectives of the present work are: 

iv) to assess the limitations of a purely linear approach. 

v) to determine the applicability of-the various non-linear techniques 

to the. investigation of the phenomenon of oil whirl. 



Part 1. 

INVESTIGATION OF THE VIBRATIONAL CHARACTERISTICS OF OIL LUBRICATED 

JOURNAL BEARINGS USING LINEAR STABILITY THEORY. 



CHAPTER I 

BASIC CONCEPTS AND HISTORICAL REVIEW. 
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1.1 DESCRIPTION OF A PLAIN JOURNAL BEARING. 

A plain journal bearing is shown in Figure 1.1. It consists of a 

circular shaft rotating within a stationary, circular bearing shell. 

Under normal operating conditions the journal takes up a position in 

the bearing which is eccentric to the bearing centre. Thus, the annulus, 

which is wholly or partially filled with lubricant, is divided into a 

converging and a diverging region. Lubricant, which is generally forced 

into the bearing under a small supply pressure, is dragged into the con- 

verging film section by the rotation of the journal. Since the lubricant 

has progressively less space to occupy fluid film pressure forces are 

generated which in turn support the applied load. This pressure generating 

mechanism is the principle upon which hydrodynamic lubrication is based. 

The various parameters required to specify the bearing geometry are; 

the bearing radius R 

the radial clearance c= R-r 

the journal radius r 

the axial bearing length L. 

Two co-ordinates are required to specify the position of the journal 

centre. They are normally taken to be the eccentricity (e) of the journal 

centre with respect to the bearing centre and the attitude angle (m), 

the angle between the direction in which the applied load acts and the 

line connecting the centres of the journal and the bearing. The ecc- 

ectricity ratio (E) is defined as the eccentricity normalised with respect 

to the radial clearance (e = e/c). An angular co-ordinate 6 is used 

to locate positions round the bearing relative to the line of centres: - 

0= 0(n) corresponds to the position of maximum (minimum) film thickness. 

The film thickness (h) is very small (the ratio c/R is typically 1/1000) 

and to a good approximation it can be shown that; 

h= c(1+ecos9) 

1.2 THE REYNOLDS EQUATION. 

The equation describing the pressure distribution in a thin film 
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cavity 

oil s 
posit 

oil fi 

0= bearing centre 

A= journal centre 

w= rotational speed 

a= angular co-ordinate 

e= journal eccentricity 

V 

ý= attitude angle 

p= hydrodynamic pressure 

F= load 

ilm rupture 

osition 

6 =n 

Fr, Ft hydrodynamic force components 

Figure 1.1. Journal bearing under dynamic conditions. 
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was first derived by Reynolds (1886) and is known as the Reynolds equation. 

The full Reynolds equation for an incompressible lubricant in the 

lubrication situation shown in Figure 1.2 is: 

2 h3 h3 Ip ah 
ex u a x 

+ ez 11 z 
6U + 12V (1.1) 

ax 

The co-ordinate system is as shown in Figure 1.2 (with z into the paper); 

p is the hydrodynamic pressure, u is the lubricant viscosity, U is the 

tangential surface velocity and V the normal surface velocity. The terms 

on the right hand side of equation (1.1) contribute to the generation 

of pressure in the bearing in different ways: 

i) the first term represents the familiar "wedge-shaped" fluid film 

and arises because the film thickness varies with distance. 

ii) the second term represents the variation of film thickness with 

respect to time and is referred to as the "squeeze film" effect. 

mov 

tub 

sta Y. 0 

Z 
X % 

Figure 1.2. A typical lubrication situation. 
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Equation (1.1) may be derived from the full Navier Stokes equations 

of motion (Pinkus and Sternlicht(1961)). It is based upon the following 

assumptions: 

i) the film thickness is small and the effect of film curväture may 

be neglected. 

ii) fluid inertia is small compared to the viscous shear. 

iii) no external body forces act on the film. 

iv) there is no variation of pressure across the oil film (ap/ay = 0). 

v) the flow is laminar. 

In addition to the assumptions listed above it is assumed throughout 

this work that the lubricant viscosity remains constant. 

To write down the Reynolds equation for a journal bearing, consider 

a point M on the journal surface at an angular co-ordinate g (Figure 1.1). 

M has tangential and normal velocities relative to the point M1 on the 

surface of the bearing. These velocities are made up of the components 

of the velocity of the shaft centre relative to the bearing centre plus 

the velocity of the surface of the shaft Rw about its own centre. Thus: 

U=Rc, u+e sine -e$ cosO 

V=e cose +e$ sine 

also x= Rg and h= c(1+ccosg) 

Substituting into equation (1.1) yields: 

ae 
(1+ccose)3 

a8 + R2 
äZ 

f(1+ccosO)3 

= 6p 
(*)2 

- w-2$)sin6 + 2Ecos9 + 0(c/R) (1.2) c( 

The terms of order (c/R) inside the bracket on the right hand side of 

equation (1.2) are small compared with the remaining terms and are neg- 

lected. 

Equation (1.2) is a second order partial differential equation for 
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p(9, z). In its complete form it can only be solved numerically for all 

but the most special cases. The solution of equation (1.2) requires the 

specification of boundary conditions on pressure and it is here that 

problems arise since it is rarely clear where the fluid film starts and 

terminates. The geometry of a journal bearing, being typical of many 

hydrodynamic lubrication situations, is such that the bearing has a 

converging and a diverging film section. In general this means the fluid 

film pressure will be superambient over the converging film section, 

but will fall below atmospheric in the diverging film section. Consequently 

the oil'film will not be continuous: film rupture will occur and the space 

between the position of film rupture and film reformation will be filled 

with a mixture of oil and air. Although a considerable amount of work 

has been done in this area the exact boundary conditions which determine 

the film rupture and film reformation positions are not known precisely. 

Some of the models which have been developed to describe the oil film in 

the bearing are used in this thesis (see Chapters 2,3 and 4). 

There are two approximations of the full Reynolds equation which 

enable analytic solutions to be obtained. 

The Long Bearing Approximation. 

This approximation is due to Sommerfeld (1904). It is assumed that 

the bearing is of sufficient length in the axial direction to neglect 

the z dependence in equation (1.2), which then reduces to: 

2 äe 
{(1+ccoso)3 

de 6U 
C cý f_c(w_2i)sine 

+ 2EcosO (1.3) 

The assumption is equivalent to neglecting side leakage in the bearing. 

The Short Bearing Approximation. 

Short bearing theory was developed by Ocvirk (1953). It is based 

on the fact that in many applications the bearing is rather short ie. 

the length to diameter ratio L/D is small (L/D =} to 1). Ocvirk assumed 
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that the pressure gradient in the circumferential direction can be ignored 

in comparison with the pressure gradient in the axial direction. 

ie. a 
[h3 

<ea ae 
a 
3h3 

a 
ZP aZ 

Based on this assumption the Reynolds equation (1.2) reduces to: 

'TZ 

f(l+ccosO)3 
2-6 -e(w-2$)sin9 + 2Ecos6 (1.4) 

az =C 

Although equations (1.3) and (1.4) are only approximations to the 

real situation they do provide analytic expressions for the pressure 

distribution and the force components which are valuable, not only in 

checking numerical procedures, but in examining the qualitative features 

of oil whirl. Both long and short bearing theory are used in this thesis. 

Having solved a particular version of the Reynolds equation,, the 

hydrodynamic forces are calculated by integrating the pressure distri- 

bution over the oil film domain (Ar). It is usual to resolve the forces 

into two perpendicular components: 

i) a radial force component Fr acting along the line connecting the 

centres of the journal and the bearing. 

ii) a tangential force component Ft perpendicular to the line of centres: 

Referring to Figure 1.1: 

Fr = (( pcosO d(Ar) 

A1r 

Ft = jr psin6 d(Ar) 
JAJr 

1.3 DIFFERENT TYPES OF FLUID FILM INSTABILITY. 

(1.5) 

Newkirk and Lewis (1956), Pinkus (1956), Hori (1959) and Tondl (1961) 

have classified unstable whirling of rotor-bearing systems into two 

different types of motion: 
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i) half frequency whirl 

ii) resonant whip 

Sternlicht (1962) has classified three different types of rotor whirl 

motions: 

i) half frequency whirl 

ii) fractional frequency whirl 

iii) resonant whip 

Smith (1970) also found three different types of fluid film instability: 

i) light-load instability 

ii) half frequency whirl 

iii) low frequency whirl (similar to resonant whip) 

There is general agreement that light load instability as well as fractional 

frequency whirl are of the same general nature as half frequency whirl. 

This type of instability is most commonly observed with rigid rotors 

in plain fluid film bearings and occurs above a specific rotor speed (the 

threshold speed) which is a function of the stiffness and damping properties 

of the oil film. The frequency of the whirling motion is typically one 

half of the rotor speed. This type of instability, which is the subject 

of this investigation, will be referred to as oil whirl throughout this 

work. 

Resonant whip is a violent whirling of the rotor in its bearings. 

It is found with flexible rotors in plain fluid film bearings and occurs 

at rotor speeds above twice the first critical speed in bending of the 

rotor. The frequency of the whirling motion is typically the first crit- 

ical speed in bending of the rotor. This type of instability is not 

investigated in this thesis. 

It may therefore be concluded that there are two fundamentally 

different types of fluid film instability: 

i) oil whip 

ii) resonant whip 
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Unfortunately, owing mainly to confusion regarding the names given to 

these types of instability, they are sometimes confused in the literature. 

1.4 HISTORICAL REVIEW. 

Fluid film instability was first identified by Newkirk (1924),, who 

subsequently carried out a detailed experimental program involving a 

parametric study of both rigid and flexible rotor instability (Newkirk 

(1930,1956,1957), Newkirk and Taylor (1925), Newkirk and Grobel (1934), 

Newkirk and Lewis (1956). 

Both types of fluid film instability were encountered and it is 

clear that Newkirk was able to distinguish between them. Newkirk (1956) 

contrasted results obtained previously with a flexible rotor and a rigid 

rotor. The flexible rotor had a first critical speed in bending of 

1210rpm. The rotor whirled over the speed range 2300-5000rpm with a 

frequency around 1250rpm. The amplitude of the whirl orbit increased 

with increasing speed. The results were compared with those obtained 

using a very stiff rotor for which there were no discernible (bending) 

critical speeds up to 30,000rpm. This shaft whirled at low speeds with 

a frequency slightly less than half the running speed. It was also noted 

that the rigid rotor whirl died out at higher speed, which varied from 

7,000 to 18,000rpm, an effect which defies a simple explanation. 

The first attempt to investigate the motion of a rigid journal with- 

in a bearing using hydrodynamic theory was made by Harrison (1919), who 

derived expressions for the radial and tangential components of the fluid 

film forces. These expressions were based on the Reynolds assumptions 

applied to an infinitely long bearing operating with a complete film. 

Harrison neglected the inertia of the rotor in formulating the equations 

of motion of the journal and concluded that stable whirl orbits were 

possible once the journal was displaced from its steady state equilibrium 

position. 
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Robertson (1933) reconsidered Harrison's work and formulated the 

equations of motion for a journal supported in very long bearings)includ- 

ing the inertia of the rotor. Although Robertson was unable to solve 

the equations of motion to determine the path of the journal, he was able 

to show qualitatively that the journal was inherently unstable and once 

whirling commenced the journal spiralled outwards towards the bearing 

side with a frequency approaching one half of the running speed. 

Around the time that oil whip was identified by Newkirk in 1924, 

Stodola (1925) undertook a theoretical investigation of the influence 

of the journal bearings on the critical speeds of the rotor. In the 

course of this investigation both he and Hummel (1926) arrived independ- 

ently at the conclusion that the fluid film forces in a bearing induce 

rotor instability when the journal eccentricity is less than 0.7. 

Stodola's model, which neglected subambient pressures in the bearing, 

was based upon a linearisation of the fluid film forces. It was then 

possible to calculate the stability of the equilibrium position. The 

linearisation procedure has subsequently been greatly developed. To 

illustrate Stodola's analysis let the journal have a mass m and let the 

journal centre position have Cartesian co-ordinates (x, y). The fluid 

film force components Fx and Fy depend on the instantaneous position 

and velocity of the journal centre such that the linearised equations 

of motion become: 

öF 8F 8F 8F ( 

mx = FX(x, y, *, Y) =/x+1 ayX Iy+ x- /x+ aY Iy 
(1.6) 

8F (3F 8F. 8F. 
y my = Fy(XlY. X"Y) -X+yy+-k+ VY, 

where the partial derivatives are evaluated at the equilibrium position 

(x =y=X=y= 0). The equations are two simultaneous second order 

ordinary differential equations with constant coefficients which are 

readily tested for stability once the eight partial derivatives are known 
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(see section 1.5). 

Although Stodola's method is correct and simple it presents the 

problem of obtaining accurate values for the eight Taylor expansion 

coefficients (the bearing coefficients). Stodola neglected the four 

velocity coefficients (8Fx/ax, 3Fx/3y etc. ) and arrived at values for the 

four displacement coefficients (8Fx/8x, 3Fx/8y etc. ) from an estimate of 

the functional relationship between the applied load and the steady state 

equilibrium position of the journal centre. 

The interest in the problem of hydrodynamic instability increased 

considerably after World War II, beginning with Hagg (1946), and has 

grown ever since, primarily because of the trend towards high-speed 

machinery. This interest was reflected in a number of experimental 

investigations carried out in the 1950's (Pinkus (1956), Newkirk and 

Lewis (1956), Hori (1959), Tondl (1961)). However, experimental invest- 

igations are not so numerous as the analytic studies and frequently they 

are somewhat inconclusive owing to the lack of adequate instrumentation, 

or failure to recognise the governing system parameters. Furthermore, 

it is not always clear if extraneous factors have been eliminated 

totally from the test apparatus (eg. external damping and external 

vibration sources). 

An important contribution to the understanding of hydrodynamic in- 

stability was made by Poritsky (1953). He analysed a flexible rotor 

operating in fluid film bearings. In the first part of his paper he 

used the long bearing full film solution to the Reynolds equation, but 

confined his attention to small eccentricities. He reached the same 

conclusion as Robertson (1933) that the journal was inherently unstable 

and would whirl at all rotor speeds. However, Poritsky, unlike Robertson 

and many of the other early investigators, appreciated the significance 

of film rupture in the bearings. He postulated that the inclusion of 

cavitation would introduce a radial force component which is absent when 
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cavitation is neglected. Poritsky showed that when this term was incorp- 

orated into the equations of motion stability was predicted provided: 

mw2 

(Zl- 

+K<4 or w< 2w1 
rs 

(1.7) 

where Kr and Ks are the rotor stiffness and oil film stiffness respect- 

ively, m is the rotor mass, w the rotational speed and wl the first crit- 

ical speed of the rotor supported on the oil film. For w> 2w1) Poritsky 

showed that the rotor was unstable and would whirl at a frequency equal 

to ui in accordance with observed performance. This is an important 

result since it suggests that cavitation, which is generally considered 

to be an undesirable feature of journal bearings, is nevertheless 

crucial in providing stability. 

Poritsky's analysis neglected the influence of fluid film damping 

and no attempt was made to determine the value of the fluid film stiff- 

ness except to postulate that these would be linear with displacement 

for small amplitude motions. Later investigations into the elastic and 

damping properties of the cavitated fluid film (Sternlicht (1959)) 

verified the existence of the radial force component and also provided 

values for the velocity and displacement coefficients. 

Poritsky's work was extended by Hori (1959) in a particularly 

lucid investigation of hydrodynamic instability in fluid film bearings. 

Hori's model was similar to Poritsky's. Hori used the long bearing 

approximation to solve the Reynolds equation and allowed for cavitation 

by assuming that the oil film only occupied the converging film section 

of the bearing. Having formulated the equations of motion of the rotor, 

Hori analysed small amplitude vibrations by linearising the equations 

about the steady state equilibrium position. The linearised equations 

were then tested for stability by using Routh's criterion which led to 

the condition: 
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F2> K1(es) K2(es) + 
12 F for stability (1.8) 

mcw w1 me 

where F is the load supported by the bearing 

m is the rotor mass 

c is the radial clearance 

es is the steady state value of the eccentricity ratio 

wl is the first critical speed in bending of the rotor (by itself). 

The quantities K1 and K2 are functions only of the steady state eccen- 

tricity ratio. The stability condition described by equation (1.8) 

may be expressed as a two dimensional stability chart with axes F/mcw2 

and cs. A different stability borderline, which separates regions of 

stability from those of instability, is obtained for each value of 

1/w1 2 (F/mc). Hori's stability chart is reproduced in Figure 1.3. Such 

a stability chart may be used to determine whether or not a rotor will 

run stably at a given rotor speed. It can also be seen that a rotor is 

always stable above an eccentricity ratio of 0.8 and that the threshold 

of instability for a flexible rotor is lower than for a rigid rotor. 

Hori then examined the stability of large amplitude vibrations such 

that the shaft bends considerably and the journal centre rotates about 

the bearing centre. He showed that large amplitude vibrations (resonant 

whip) could not occur below a speed of twice the first critical speed 

in bending of the rotor. Although Hori's analysis of the large amplitude 

motion is based on some dubious assumptions, his results did enable him 

to explain successfully several observations made by Newkirk and Lewis 

(1956) and Pinkus (1956). He also obtained modest agreement with his 

own experimental results. 

Up to the 1950's the only available solution of the Reynolds 

equation was that for the long bearing approximation. Ocvirk's short 

bearing theory was developed in 1953 and it subsequently became fashion- 

able to use short bearing solutions (eg. Holmes (1960), Huggins (1963-64), 
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Stability parameter F/mcw2 
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Figure 1,3, Hod's stability chart 

Lund (1966)). In one of the first investigations, Holmes (1960) analysed 

the vibrational characteristics of a rigid rotor supported on two short 

journal bearings. He allowed for cavitation by assuming the lubricant 

only occupied the converging film section of the bearing. He adopted 

the now well-tested procedure of linearising the hydrodynamic forces 

about the steady state equilibrium position to obtain the eight bearing 

coefficients and tested for stability by using Routh's criterion. Holmes 

presented his results in terms of a two dimensional stability chart 

similar to the approach adopted by Hori (1959). 

With the development of high-speed digital computers in the early 

1960's it became possible to solve the full Reynolds equation by the 

finite difference method. The eight bearing coefficients and stability 

curves were presented by Lund (1966) for bearings with a range of L/D 

ratios. Several numerical methods were developed in the early 1970's 

to determine the bearing coefficients for bearings with finite L/D ratios 
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(Woodcock and Holmes (1970), Lundholm (1971), Lund and Thomsen (1978)). 

These methods are discussed in Chapter 4. This work has led to a wide 

variety of different bearing geometries being examined (Allaire (1980), 

Ruddy (1980)). 

Most of the recent experiments on rotor stability have been per- 

formed in connection with the validation of computer programs for stab- 

ility analysis. One such experimental study was made by Lund and 

Tonnesen (1978). Experiments were conducted on two rotor systems having 

the following details: 

Rotor 1 

Rotor mass 40kg 

Rotor length 1040mm 

Bearing span 880nan 

Shaft diameter 80mm 

Journal diameter 62.7mm 

Two types of bearings and supports were tested: 

i) rigid bearing with axial grooves. 

Rotor 2 

187.5kg 

1190M 

880mm 

80mm 

62.7mm 

ii) cylindrical bearing mounted on a flexible support with a squeeze 

film damper. 

Lund and Tonnesen calculated the stability threshold and whirl 

frequency ratio by a computer program and verified the predicted results 

experimentally with the two rotors described above. For the heavier 

rotor, the stability threshold in rigidly mounted bearings was found 

tobe 12,600rpm. The use of flexible foundations with a squeeze film 

damper enabled the same rotor to be operated at its maximum speed of 

20,000rpm without any indication of instability. 

Lund and Tonnesen obtained the following conclusions from their 

test program: 

i) the experiments confirmed the general validity of using an analytic 
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model to predict the threshold speed and whirl frequency of a rotor-bearing 

system. The linear model predicted the instability threshold in good 

agreement with the experimental findings. Discrepancies can more readily 

be ascribed to other causes than deficiencies in the analytic model. 

ii) unbalance vibrations were found to initiate a self-excited whirl, 

with the result that the instability threshold speed was lowered. 

iii) unstable whirling was itself found to excite a spectrum of frequencies 

in the rotor system but the whirl orbit was a stationary limit cycle, 

associated with a single frequency. If a large limit cycle amplitude 

can be accepted it is feasible to operate the test rotors past the onset 

of instability. In practice, - however, the threshold speed should be 

considered the maximum acceptable speed. 

iv) the addition of flexibility and damping to the foundation is the 

crucial point in the suppression of instability for a rotor-bearing 

system. 

In recent years attention has also focused on the nonlinear aspects 

of oil whirl. This interest has arisen from the observation that several 

machines have operated successfully at speeds considerably in excess 

of the instability threshold speed (Newkirk and Lewis (1956), Mitchell, 

Holmes and Byrne (1965-66), Tondl (1965)). It has been suggested that 

the nonlinearity of the hydrodynamic forces may be the stabilizing factor 

in the sense that, even if the steady state equilibrium position becomes 

unstable and therefore whirl is initiated, the whirl amplitude does not 

grow without bounds, but whirls in a closed orbit (limit cycle). 

Most of the investigations which have included nonlinear effects 

have been based upon numerical integration of the equations of motion 

using either: 

i) standard step-by-step marching techniques (eg. Runge-Kutta) on a 

digital computer (Reddi and Trumpler (1962), Mitchell, Holmes and Byrne 

(1965-66), Tolle and Muster (1969), Badgley and Booker (1969), McKay 

(1981)). 
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ii) an analogue computer (Jennings (1960), Huggins (1963-64), Mitchell, 

Holmes and Byrne (1965-66)). 

Mitchell, Holmes and Byrne (1965-66) performed a numerical invest- 

igation of the nonlinear equations of motion using both long and short 

bearing theory. They assumed the oil film was complete and integrated 

the equations using both an analogue and a digital computer. Whirl orbits 

were shown for a large range of parameter values. From their detailed 

investigations the authors concluded that the journal was inherently 

unstable for all rotor speeds and spiralled outwards towards the bearing 

side at a frequency close to half the running speed. This work confirmed 

the much earlier work of Robertson (1933) and Poritsky (1953), who had 

reached the same conclusion using linear techniques. 

It is of interest to note, however, that both Reddi and Trumpler 

(1962) and Tolle "and Muster (1969), who both analysed a bearing with a 

complete film, did not reach this conclusion. Under certain conditions 

they found that stable whirl orbits did exist for c<1. The vibration- 

al characteristics of bearings with complete films are discussed in 

Chapter 2 as a starting point for this investigation. This work confirmed 

the results of Mitchell, Holmes and Byrne (1965-66) and McKay (1981). 

These discrepancies illustrate the limitations of a purely numer- 

ical approach. The difficulties of using a digital computer are that 

many time . steps are needed to determine the journal path with the 

result that errors accumulate. The difficulty of using an analogue 

computer is that it is difficult to simulate exactly the fluid film 

forces. It is evident that where it is possible more rigorous mathemat- 

ical techniques should be employed in order to verify the numerical results 

and to highlight the important regions of parameter space. 

Surprisingly the author has found only a few numerical studies which 

have included nonlinear effects and allowed for cavitation. Badgley 

and Booker (1969) investigated the stability of plane cylindrical motion 
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of a rotor supported in plain, cylindrical journal bearings. They ob- 

tained expressions for the hydrodynamic forces by using long bearing 

theory, short bearing theory and Warner's finite length bearing approx- 

imation to the Reynolds equation (Warner (1963)). They included the 

effect of film rupture by considering only the superambient pressure 

region. The nonlinear equations of motion were solved on a digital 

computer. Results were presented only in terms of a two dimensional 

stability borderline. For given initial conditions they determined whe- 

ther or not the journal spiralled into or away from the equilibrium pos- 

ition. Not surprisingly the stability borderlines which they presented 

were in very good agreement with those obtained using linear theory. 

Badgley and Booker did not address themselves to the more interesting 

problem as to the motion of the journal above the threshold speed. 

Other nonlinear investigations which have included the effect of 

film rupture (Jennings (1960), Huggins (1963-64), Someya (1963-64)) are 

somewhat inconclusive owing to the difficulties already mentioned and 

the number of parameters involved. 

An alternative technique to numerical integration was developed by 

Lund (1966). By employing the method of averaging to solve the nonlinear 

equations of motion he was able to determine the size and orientation 

of any closed whirl orbits directly, not as a result of transient growth 

or decay. Lund presented results for the short bearing although in 

principle it can be employed with any bearing type. 

Broadly speaking the approach adopted by Lund is followed in this 

thesis, ie.: 

Q determine the onset of instability using linear theory 

ii) and then employ a combination of numerical and analytic techniques 

to solve the nonlinear equations of motion as the speed is altered away 

from the threshold speed. 

Lund found that stable small amplitude whirl orbits could exist at 
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speeds both above and below the threshold speed but were confined to a 

narrow speed range about the threshold speed. The method of averaging, 

together with Lund's results, is discussed fully in Chapter 7. 

Summary. 

The various investigations of fluid film instability cited above 

may be conveniently classified into four categories: 

i) qualitative studies. 

ii) evaluation of the threshold of instability by linearising the equations 

of motion. 

iii) studies of nonlinear effects. 

iv) experimental investigations. 

The important contributions to each of these categories are listed in 

Table 1.1. The list is not meant to be a complete bibliography of the 

subj ect. 

1.5 GENERAL THEORY OF LINEAR STABILITY ANALYSIS. 

For a -journal of mass 2m, with a load of 2F, the equations of motion 

are, in polar co-ordinates (e, ý): 

m 

[12t2 
e-e do 

=F cosq +F 
(e, de (1.9) 

(dt)] 

r dt dt 

2 
m ed-+2 

dedý 
=-Fsiný+F eý 

der 
0d 

dt2 dt dt t dt dt 

(see Figure 1.1). 

In general, the hydrodynamic force components are nonlinear functions of 

the journal centre's displacement and velocity. 

The equations may he non-dimensionalised by substituting: 

tV=FS= LR3wu (1.10) eFF_F=IT= Wt Fr 
SF t -9 F 

mail2 Fc2 

S is a non-dimensional bearing parameter referred to as the Sommerfeld 

number. The non-dimensional equations of motion are: 
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c- Eo2= v )coso + SFr (1.11) 

Eý + 2eß = -vIsin $- STt(e, c, ý, c )? 

The steady state solution to equation (1.11) is: 

costs =- SFrs sin 
s= 

Sits (1.12) 

_> tanks = Fts/-Frs S= (F S+ gt )-1/2 (1.13) 

denoting steady state conditions by the subscript "s". 

Since equations (1.11) are nonlinear, it is not possible to solve 

them analytically without first simplifying them. During a small amplitude 

vibration of the journal about its equilibrium position (Figure 1.4): 

e '' ES +6; 0 -1,. 0S +Y id « es, Y« 1) (1.14) 

01 O. bearing centre 
A. steady state Position of journal centre s 

Y 
A. journal centre during vibration 

r t6 
S 

A(E+d, ms+y) or A(x, y) 

AS /ESY 

A. the journal co-ordinates shown 

vi 
are nondiriensional; x =c, =" 

cc 
x 

Figure 1.4. Journal centre during small amplitude vibration about its 
stead" state equilibrium position. 

Substituting equations (1.14) into equations (1.11), neglecting terms 

higher than the first order and expanding the force components in a 

first order Taylor expansion yields: 



28 

aFr 
S 

aFr aFr 
S- 

aFr 
d-vS -i- d-v-, (c y) -vsv-- ts+ sY) 

s0 
ae 

s cs aý 
s 

ac 
s 

es a0 
s 
(1.15) 

apt ,S aFt , aFt a 't 
EY-vS , 

d-v- 
, 

(E Y)-vS d-v- F+ (E Y) 0 
s ac E a; S ac c rs 

TS 

SSSSSS 

It is convenient, at this stage, to introduce a Cartesian co-ordinate 

system (x, y), centred upon the steady state position of the journal centre. 

The x-axis is taken along the line connecting the centres of the bearing 

and the journal (in equilibrium) and the y-axis is perpendicular to this 

line. (Figure 1.4). 

Thus x=6 and y=ey for small journal displacements from (1.16) 
s the equilibrium position. 

Introduce the following notation: 

8F aF 8F 
B=-S 

('Fr) 
B=-SrB=- S---t B=-St (1.17) 

8s 
s' 

es 
S 

YX ae 
s 

YY es 
s 

3Fr 
s_ aF 8F 8Ft 

K=-S K--F +r KS tK+ 
xx (3c) xy e is yx aE yy £ rs 8ý 

sssss 
(1.18) 

Equations (1.17) and (1.18) define the eight bearing coefficients, which 

consist of four velocity coefficients (equation 1.17) and four displ- 

acement coefficients (equation 1.18). The linearised equations of motion 

(equations 1.15) may now be written in the form: 

x+ vBxx x+ vBxyy + vKxxx + vKxyy -0 (1.19) 

y+ vB 
yx 

x+ vB 
yy 

y+ vK 
yx 

x+ vK 
yy 

ya0 

Seeking a solution of the form: 

x= x0eXT y= y0eXT (1.20) 

leads to the characteristic equation: 
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ý4 + v(B 
xx 

+B 
yy 

)a3 +v {(K 
xx 

+K 
yy 

)+ v(B 
XX 

Byy-B 
xy 

B 
yX 

)} 12 (1.21) 

+ v2 {B 
xx 

K 
yy 

+B 
yy 

K 
xx 

-B 
xy 

K 
yx -B yx 

K 
xy 

}+ v2 {K 
xx 

K 
yy 

-K 
xy 

K 
yx 

}=0 

The equation may be written: 

54+B73+C72+DX+E=0 (1.22) 

The stability of the equilibrium position is determined by an appl- 

ication of Routh's criterion, which for a quartic equation is: 

"A necessary and sufficient condition for the quartic equation (1.22) 

to have all four roots with negative real parts is: 

i) B>0. 

ii) C>0. 

iii) D>0. 

iv) E>0. (1.23) 

v) R= D(BC-D) - B2E > 0. " Hartog (1947). 

Thus, for equation (1.21), the stability conditions are: 

i) v(B 
XX 

+B 
yy 

)>0. 

ii) v{(KXX+Kyy) + v(BxxByy-BxyByx)} > 0. 

iii) v2 {B 
XX 

K 
yy 

+B 
yy 

K 
XX 

-B 
XY 

K 
yX 

-B 
yX 

K 
XY 

}>0. (1.24) 

iv) v2 {K K -K K}>0. 
XX yy XY yX 

v) R= v4 {B 
xx 

K 
yy 

+B 
yy 

K 
xx -B xy 

K 
yx 

-B yx 
K 

xy 
} {(K 

xx 
+K 

yy 
)+v (B 

xx 
B 

yy 
-B B) }ý 

XY Yx 
(B +B ) 

xx yy 
- v`` {B K +B K -B K -B K}2- v4 (B +B )2{K K -K K} >0 

xx yy yy xx xy yx yx xy xx yy xx yy xy yx 

In the vast majority of cases, the first four conditions are automatically 

satisfied and the fifth condition becomes a condition on v for stability; 

namely that: 

/ 
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(Bxac+B )(KxxK 
xy 

K 
x) 

(BxxKxx+B K +B K +B K) 
_ 

yy yy xy vx vx xy 
BK +B K -B K -B K (B +B ) 
xx yy yy xx xy vx yx xy xx yy 

(BxxByy BxyByx) (1.25) 

for stability 

or v> vcrit for stability. (1.26) 

Extensive use of the stability condition described by equation (1.25) is 

made throughout Part 1 of this thesis. 

At the position of neutral stability, two of the eigenvalues are 

purely imaginary: 

ie. at v= vcrit ±i5crit 

Substituting into equation (1.21): 

_> i2 = 
(BxxKyy+BYYKxx _BxyKpx _ByxKxy)vcrit 

1/2 

crit (1.27) 
(Bxx +Byy 

from which the critical value of the whirl frequency ratio may be cal- 

culated. 

For v>v Grit, 
the journal is stable to small perturbations from 

its equilibrium position. The degree of stability may be measured by 

calculating the logarithmic decrement associated with each mode of 

vibration. For example, suppose that: 

v>v 
crit 

ß±ib with >> a>0. 

In this case, the degree of stability may be measured by calculating the 

logarithmic decrement associated with the first pair of roots: 

logarithmic decrement, d=? a (1.28) 

The logarithmic decrement represents the logarithm of the decay in the 

amplitude of the vibration during one period of the oscillation (27/0). 

The larger the value of d, the greater the stability of the journal. 

Conversely, if d is negative, it may be used to measure the degree of 
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instability. 

Note. 

It is important to remember that the linearised equations of motion 

are valid only for small amplitude journal motion about the equilibrium 

position. 
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CHAPTER 2 

THE VIBRATIONAL BEHAVIOUR OF JOURNAL BEARINGS OPERATING 

WITH COMPLETE FILMS. 
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In this Chapter an investigation of the vibrational characteristics 

of a journal bearing operating with a complete film is made (Figure 2.1). 

Long and short bearing theory are used and it is shown that both models 

lead to the same conclusion - the steady state equilibrium position is 

unstable. This result is well known and has been shown several times 

(eg. Poritsky (1953), Holmes (1963)). The analysis is repeated here 

since it is appropriate to begin with a study of the simplest model. 

It is also important to understand the deficiencies of any mathematical 

model when compared to the real physical situation. It is the task of 

the applied mathematician to try and eliminate these deficiencies by 

refining the model. 

2.1 AN ANALYSIS USING LONG BEARING THEORY. 

The Reynolds equation for a long bearing was shown in Chapter 1 to be: 

(1+tcosO)3dp 
-_ 

6p c\2 (24-w)csin6+2ecos6 (2.1) 
dO 

This equation may be integrated twice using: 

i) the appropriate boundary conditions; p=0 at e0,2n, which model a 

complete film. 
1-c? 

ii) the Sommerfeld substitution l+cco$e l-£cosý 

Details of the substitution, together with a list of integralg required 

throughout this work, may be found in Appendix I. 

The pressure distribution may be re-written in terms of 6 as: 

c2p 6e(1-2b (2+ecose)sine +61-1E (2.2) 

CR) uw (2+E2)(1+ecosO)2 (1+ecose)2 (1+c)2 

The hydrodynamic forces generated in the bearing are calculated by 

integrating the pressure distribution over the bearing in two perpendicular 

directions (Figure 2.1). 
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1. 

1 film 

e=o 

"p 
""$ 

F 

Figure 2.1. Journal bearing operating with a complete film. 
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Fr = Radial Force = LR 
2 

p(O)cosOdO = -LRr2rdpsinOdO (By parts) 
dd d9 

Ft = Tangential Force = LR27rp(O)sinOdO = LRd 
2ýd. 

cosdO. 
d d9 

Substituting for*dp/de and evaluating the integrals (Appendix I):, 

cl2 
Fr 127re c2 

Ft 
- l21r6(1-2$) (2.3) CR/ 

LRwU 772 
CR) 

LRwu 
(1-e2)1 2(2+E2) 

The equations of motion of the journal in polar co-ordinates (c, ý) 

are: 

mc(e - c$2) = Fcos4 + Fr (Figure 2.1) (2.4) 

mc(el + 2E$) = -Fsin4' + Ft 

Substituting for Fr and Ft (equations 2.3) and putting T=wt yields the 

non-dimensional form of the equations of motion. 

E-E$2 =V COs - 12Sfc (2.5) 

(i-e, 

cý+2e$ _ -v sinO-12S ire(1-2ý) 

(1-E2)1 2(2+E2) 

where v=F, S= LR3wu 
1 

the Sommerfeld number. 

mewl Fc2 

The equations have a unique steady state solution for each value . 

of the Sommerfeld number denoted by (es, ýs) where: 

= it and S= (1-e 2)112(2+c 2) (2.6) ýs 
2ss 

127r e 
S 

Thus the theoretical locus of the journal centre under steady state 

conditions is a straight line with an attitude angle of 900 (Figure 2.2). 

Equation (2.6) establishes the relationship between the Sommerfeld number 

S and cs (Figure 2.3). 

The non-dimensional steady state pressure distribution is found 

by substituting 
e=ý=O in equation (2.2): 
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_C 
2p 

- 

6c (2+cscose)sinO 

ps IRý uw (2+e2)(1+c cosO)2 ss 

(2.7) 

This is frequently referred to as the Sommerfeld pressure distribution. 

A typical profile is shown in Figure 2.4 for es=0.6. It is anti- 

symmetric about 9=n, the importance of which will be discussed later in 

this Chapter. 

The steady state forces are: 

_F_ 
121re 

_s1 rs= Frs SF Fts 
(2+C2) (1-c2) 1/2 S 

(2.8) 

oil fi 

Figure 2.2. Theoretical steady state behaviour of a journal bearing 

operating with a complete film. 

The absence of a radial force means the load is supported entirely by 

the tangential component (hence OS=r/2). 

The equations of motion (2.5) are nonlinear and cannot be solved 

analytically. However, following the procedure outlined in Chapter 1, 

the equations may be linearised about the equilibrium position. The 

linearised equations are: 
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x+v(2+cs)x +vy (2.9) 
=0 

C (1-e2) c sss 

#1 8- v(2-c2+2es)Y 

=0 
ES C (1-C2) (2+c2) 

The eight velocity and displacement coefficients are: 

(2+e2) 
B=sB=B=0B=2 (2.10) 

es (1-C2) yx y Es 

-(2-e2+2e4) 
K=K=0K=ssK=1 

xx 9Y Yx es (1-es)(2+c2) es 

The characteristic or frequency equation is: 

14+v (4-es)7ý3 
+ 2v2 

(2+cs)a2+ v2(2-C2 s+2ss) 
=0 

(2.11) 

C (1-e2) e2(1-E2) e2(2+E2)(1-e2) 
sssssss 

B C E 

Applying Routh's criterion to this equation it is easily seen that: 

i) B, C, E>O V non-zero values of v and e s. 
ii) R=D(BC-D)-B2E=-B2E <0. 

Thus the conditionj R>Oj for stability cannot be satisfied. Therefore the 

equilibrium position is unstable for all values of v and es (apart from 

the special cases discussed below). 

i) As cs-*0 the frequency equation (2.11) reduces to: 

452 +1=0 a-±i/2 (neutrally stable). 

ii) As es-*l equation (2.11) reduces to: 

35 3+6v5 2+v=O=> as v-O Ä->0 

as v- a-+± r6 
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2-e2+2e4 1/2 
iii) As va -)- ±ssi (neutrally stable). 

2(2+ES)2 

The analysis above suggests that the parameters v and es may play 

a role in determining the degree of instability. This is discussed in 

more detail in section 2.3. 

2.2 AN ANALYSIS USING SHORT BEARING THEORY. 

The Reynolds equation for a short bearing was shown in Chapter 1 

to be: 

d ((l+ccoso)3dp 
= 6u {e(2ý-w)sinO+26cos9} (2.12) 

dz dz 
c2 

Integrating twice with the boundary conditions: 

p=0 at z=0, L 

c 12 P= 3z(z-L) -c(1-2ý)sin9+2ecos9 (2.13) CL 

/ Wu 2 L (1+ccos9)3 

The pressure is zero (ie. ambient) when: 

i 
(2.14) 9a 91, n+ 01,2ir + 01 where tan 61 

c-(1-2$) 

To investigate a short hearing operating with a complete film, the 

pressure distribution must be taken over 360°. Therefore the hydro- 

dynamic forces are calculated by integrating the pressure over the bearing 

from z-O, L and 0-0,2r (which is equivalent to integrating from Al, 

to 2n +0 1). 

r2ý 
p(A, z)sinAdOdz => Fr = 

01 

RrL 
of 

r27r 
p(A, z)cosod6dz Ft = 

of 
RjL 

of 

Substituting for p(e, z) from equation (2.13) and evaluating the integrals: 

- c12 
Fr 

__ 
ßr(1+2e2)e c 12 Ft 

= ne(1-2ý) (2.15) (. 
E LRuu (1-E2)5 2 CL/ 

LRwu 2(1-E2)3 2 
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The non-dimensional form of the equations of motion are: 

=v cos¢ -S Tr(1+2ee (2.16) E-0 2) 
s -ý-- 

(1-E2) 5/, 2 

eý + 2eý =w sin¢ - Ss ne(1-201) 
2(1 ý 

where Ss 
= 

RL3wu 
_4 

02 S, a modified Sommerfeld number. 

Fc2 
\D) 

The steady state solution to these equations is: 

2(1-s2)3/2 (2.17) n Ss s 
= 

2 ITC S 

For each value of the. modified Sommerfeld number Ss there is a unique 

steady state solution. The relationship between Ss and es is 

illustrated in Figure 2.3. 

The steady state pressure distribution is: 

ps 
_ 

()2 
_ 

-3z(z-L)csn9 (2.18) 

Uw L2(1+E cos9)3 
s 

A typical pressure profile is shown in Figure 2.4 for es = 0.6, z= L/2. 

It is similar to the Sommerfeld pressure profile, but with smaller 

magnitudes. 

The steady state forces are: 

Frs Frs 
_0 

Fts 
= 

Fts 
s 

TrEs 
a1 

(2.19) 

SFSF 2(1 S 
sSs 

There is a great similarity between the two models. Again the absence of 

a radial force means the theoretical steady state locus of the journal 

centre is at an attitude angle of 900 (Figurt 2.2). 

The linearised form of the equations of motion are: 
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(1+2Es it 
+ 2V + Vy 

c (1-c2) c 

y+2vy_ v(1+2es)x 
=o 

es es (1-c2) 

The eight velocity and displacement coefficients are: 

B= -2K = 
2(1+22) 

B= 2K -2 xx yx yy xy - 
Es(1-c2) Es 

B =B =K =K =0 xy yx xx yy 

The frequency equation is: 

+ 2v(2+es)ý3 + 4v2(1+2c2)ý2+ v2(1+2E2) 

es (1-E2) c2(1-e2) e2(1-e2) 

(2.20) 

(2.21) 

(2.22) 

This equation is very similar to equation (2.11). Again the absence 

of aA term means Routh's criterion cannot be satisfied. Hence the 

journal always has an unstable equilibrium position (apart from the 

special cases discussed below). In fact the result is known to be true 

for a bearing with any L/D ratio operating with a complete film (Marsh 

(1965)). 

As for the long bearing several limiting cases of the frequency 

equation may be discussed. 

i) As Es -+ 0a -º ± i/2 (neutrally stable) 

ii) As us -> 1 the frequency equation (2.22) reduces to: 

213 + 4V 12 +v-0 -> as v+0a-0 

vWa± i/2 (neutrally stable) 

iii) As vAm7-± i/2 (neutrally stable) 

2.3 RESULTS AND DISCUSSION. 

The two frequency equations (2.11 and 2.22) were solved numerically 

for a range of values of V and £s (0.02. v 4.1.5,0.05. es . 0.95). 
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It was found for both equations that only one complex pair of roots had 

a positive real part. Typical roots were: 

-1.17 ± 0.25i ;X=0.11 ± 0.35i 

STABLE UNSTABLE 

Therefore, by calculating the logarithmic decrement associated with the 

unstable root, it is possible to determine the degree of instability. 

The logarithmic decrement will always be negative - the greater the 

value of its modulus the greater will be the instability (see Chapter 

1). 

Curves of constant logarithmic decrement are shown in Figure 2.5. 

Both models show the same trends (the two charts are in fact very similar). 

It can be seen that the parameter v is an important factor influencing 

the degree of instability - the system becomes less unstable on 

increasing v. The same effect, but to a smaller degree, is achieved 

by decreasing es. 

The imaginary part of the unstable root corresponds to the whirl 

frequency ratio. Frequency curves are shown in Figure 2.6, and it may 

be observed, that for the cases studied, the ratio is always less than 

0.5. 

It is interesting to note that for bearings with complete films the 

eight Taylor coefficients reduce to four. They are illustrated for both 

models in Figure 2.7. The corresponding coefficients are similar (in 

fact K 
xy 

and B 
yy 

are identical for the two models). 

It is important to remember that the linearised analysis is valid 

only when the journal is close to its equilibrium position. The complete 

motion can only be found by solving the full equations (2.5 and 2.16). 

It is clearýhowever., that the journal cannot return to its equilibrium 

position since it would again become unstable. It must either continue 

to move outwards towards the bearing side, or go into a closed orbit 

about its equilibrium position. An investigation of the full equations 

of motion is made in section 2.4 by integrating the equations numerically. 
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2.4 NUMERICAL INTEGRATION OF THE EQUATIONS OF MOTION. 

The most suitable way of integrating the equations of motion 

numerically is to convert them to a system of first order equations. 

Consider, for example, the equations for a long bearing (equations 2.5): 

Substituting e= Y19 E= Y2, $= Y3' Y4 

the equations may. be written as a system of four first order ordinary 

differential equations: 

Y1 = Y2 

Yv cosY3 - 12S(es)wY2 + Y1Y4 
2=v 

(l-y12)3/2 

Y3 = Y4 

Y4 
=-1 

sinY3 - 12S(es)ir(1-2Y4) + 2Y2Y4 

I Y1 (1-Y2)1 2 (2±Y2) ylv 

with S(es) given by equation (2.6). Equations (2.23) are now in a 

(2.23) 

suitable form for a step-by-step integration with: 
1ý i) suitable initial condition for Yl, Y2, Y3, Y4, (i e. ci, Ei' 

ii) values for the governingparameters v and cs. 

The equations were integrated using a standard-Nottingham Aleoiithms 

Group-library routine (number D02AHF)_which advances the solution of a 

first order system of ordinary differential equations: 

dyi 
= fiiT, y1ýY2ý... yn) i=l, n 

di 

from T=T to T +AT using a variable order Adams method (Hall and Watt 
00 

(1976)). The routine obtains an estimate of the local error at each step 

and varies the order and step length automatically to keep this estimate 

below a given error bound. Since over a long range errors may accumulate 

in various ways, the step length and error bound were varied initially 
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to see how this affected the overall result. A step length of 1 was 

finally used with an error bound of 10-8. The required range of inte- 

gration depended upon the various parameters v and es, but was never 

more than 600 time steps, this being achieved by repeated calls of the 

routine. The integration was terminated when the journal was close to 

the bearing side (c+l) because of the singularity in equations (2.23) 

at e=1. 

The equations were integrated for a range of values of v, es and 

(C -C ) (Table 2.1). The investigation had several objectives: 
is 

i) to determine the complete motion of the journal for selected 

parameter values. Of particular interest, in this respect, is whether 

or not there are any closed orbit solutions. 

ii) to examine the effect of the governing parameters v, c s 
and also the 

initial displacement (c 
i- es ). (the initial values for the remaining 

dependent variables were put equal to their steady state values 

=n/2 ,c =0, ¢ =0). 

es 0.2. 0.2 0.2 
. 0.2 0.5 0.5 0.5 0.5 0.8 0.8 0 0.8 0.8 

v 0.1 0.5 1.0 2.5 0.1 0.5 1.0 1.0 0.1 0.5 1.0 2.5 

c 0.21 0.21 0.21 0.21 0.52 0.52 0.52 0.6 0.82 0.82 0.82 0.82 

FIGURE 2.8 FIGURE 2.9 FIGURE 2.10 

Table 2.1 Table Showing Parameter Values For Which The Equations of 

Motion Were Solved. 

The results are presented in graphic form (Figures 2.8,2.. 9,2.10). 

Each whirl orbit represents the motion of the journal centre. The 

broken circle, at c=1, is referred to as the clearance circle and 

represents the orbit of the journal centre when the journal makes contact 

with the bearing side (the largest amplitude vibration which is possible). 

The following conclusions may be drawn from Figures 2.8,2.9,2.10. 
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n, 5 

clearance 
circle 
c=1 

2.8(1) t=0.2 v=0.1 e. = 0.21 2.8(ii) e=0.2 v=0.5 e. = 0.21 
s1g1 

(arrows indicate the direction of whirling) 

\ \ 

2.8(iii) es = 0.2 v=1.0 ei = 0.21 2.8(iv) es = 0.2 v=2.5 c. = 0.21 

Figure 2.8 Whirl Orbits For a Long, Bearing Operating with a Complete Film. 
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2.9(iii) es = 0.5 v=1.0 ei = 0.52 2.9(iv) es = 0.5 v=1.0 Ei = 0.6 

Figure 2.9 Whirl Orbits For a Long Bearing Operating with a Complete Film. 
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Figure 2.10 Whirl Orbits For a Long. Bearing Operating with a Complete Film. 
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i) All the results suggest that the journal approaches the bearing side 

asymptotically with time (e -1 as T -* o). Apart from this limiting 

case there are no closed orbit solutions- the journal is unstable. It 

was also observed that'as e; 1.8 112, which may be deduced from the 

equations of motion (2.5). 

ii) The paramter v has an important effect on the number of loops within 

a given radius of the static eccentricity ratio; the number increasing 

with v (compare Figures 2.8(i) with 2.8(ii)). A similar effect, though 

to a lesser extent, is obtained by decreasing cs (compare Figures 2.10 

(ii) with 2.8(ii)). Once the orbit has enclosed the bearing centre 

the loops tend to close up, particularly for larger values of v (Figure 

2.8(iv)) and in these cases the journal approaches the bearing side 

very slowly. 

iii) Although the initial displacement (ci - es) affects the solution 

for the first few loops it does not alter the final motion of the 

journal (Figures 2.9(iii) and 2.9 (iv)). The shape of the initial 

loops is governed by es. Ase 
s 

is 'increased these loops become more 

elongated in the direction of the external load (Figure 2.10). 

As investigation of the equations of motion for a short bearing 

(equations 2.16) revealed very similar features to the ones described 

above. To conclude this secion it may be noted that, for both models 

with a complete film, an investigation of the full nonlinear equations 

of motion has not revealed any significant information about the 

vibration of the journal which has not already been deduced from the 

linearised analysis. This is certainly not true of later models 

analysed in this thesis. 

2.5 THE LIMITATIONS OF THE MODEL. 

The findings of this Chapter are in agreement with Holmes (1963 

and 1965), who used both linear and nonlinear analyses to investigate 

the vibrational characteristics of journal bearings operating with 
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complete films. The work described in this Chapter may also be related 

to that of Capriz (1963), and Reddi and Trumpler (1962). Capriz, in a 

detailed mathematical analysis of the whirling of a journal operating 

in a long bearing with a complete film and zero load (F = 0), has shown 

that the journal approaches the bearing side asymptotically with time, 

at a whirl frequency equal to half the rotational speed (c - 1, - 1/2 

as T co). Reddi and Trumpler, however, in considering the nonlinear 

whirling of a long bearing have concluded that for some cases a final 

closed orbit is possible (with c< 1). No such closed orbits were found 

in this work, nor in the work mentioned above. 

Given any mathematical model it is necessary to compare it with 

the real physical situation and to examine critically its validity. 

Through this examination it is possible to discover how the model may 

be improved. 

The most obvious deficiency in this work is the failure to account 

for rupture of the oil film. The assumption that the oil film is complete 

generates a pressure profile in the bearing which is anti-symmetric 

about the line of minimum film thickness (Figure 2.4). The subambient 

pressures are therefore as high in magnitude as the superambient ones. 

Under normal operating conditions, but possibly not with light loading, 

the oil film cannot withstand these subambient pressures and will rupture. 

A cavity will form somewhere in the diverging film section of the 

bearing. For steady state conditions the cavity may form in two ways: 

i) by ventilation from the surrounding atmosphere whenever subambient 

pressures occur. 

ii) by the emission of dissolved gases from solution when the lubricant 

pressure falls below the saturation pressure. 

In Chapter 3 the model is improved to account for cavitation and 

its effect on the vibrational characteristics of the journal will be 

analysed. In this work no distinction is made between the different 
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forms of cavitation. The pressure in the cavity is assumed to be 

ambient. 

2.6 CONCLUSIONS. 

i) A journal bearing operating with a complete film has an unstable 

equilibrium position. As whirling proceeds the journal spirals outwards 

towards the bearing surface at a frequency close to half the rotational 

speed. 

ii) The parameter v is an important factor governing the degree of 

instability. 

iii)' Under normal operating conditions the model is deficient because 

it does not take account of cavitation. 
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CHAPTER 3 

THE SENSITIVITY OF THE VIBRATIONAL CHARACTERISTICS OF JOURNAL 

BEARINGS TO DIFFERENT CAVITATION BOUNDARY CONDITIONS AT FILM 

RUPTURE. 
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The effect of cavitation on the vibrational behaviour of the 

journal is investigated. Many different boundary conditions have 

been proposed to model the rupture of the oil film in a journal bearing 

(Dowson and Taylor (1979)). This is an indication of the complexity 

of the phenomenon of cavitation in bearings and it is true to say 

that the present understanding of the cavitation mechanism is still 

incomplete. In this Chapter the vibrational characteristics of bearings 

operating with oil films satisfying different cavitation boundary 

conditions are contrasted. It is shown that an important additional 

factor is the behaviour of the oil film during a vibration of the 

journal. 

3.1 A LONG BEARING OPERATING WITH AN OSCILLATING HALF FILM. 

In this model, the oil film is assumed to extend from the line 

of maximum film thickness (A = 0) to the line of minimum film thickness 

(0 = n). Since this line moves during-any motion of the journal 

this means the film swings round with the line of centres (Figure 

3.1(a)). This is an assumption which is made about the behaviour 

of the oil film and is important since it is shown in this Chapter 

that such behaviour has a significant effect on the vibrational 

characteristics of the journal. A cavity is assumed to exist over 

the remaining, diverging film section of the bearing. The pressure 

in the cavity is assumed to be ambient and therefore to make no con- 

tribution to the hydrodynamic forces. The appropriate boundary conditions 

are: 

p=0 at 9=O, n ;p=0 for it <0< 2ir (3.1) 

These boundary conditions were first proposed by Gümbel (1921) and used 

by Hori (1959) in his work on flexible rotors. 
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e =n 
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Figure 3.1(a). A journal bearing operating with an oscillating half film. 

A= Journal centre 

A= Equilibrium position of 
s the journal centre. 

0=C 

Oil film 

U) 

e=R 

r-y 

Figure 3.1(b). A journal bearing operating with a static half film. 

Cavity (p = 0) 
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Integrating the Reynolds equation for a long bearing (equation 2.1) 

with the above boundary conditions yields the pressure distribution: 

c 2P 
_ 

6c(1-2c)(2+£cos9)sinO 
R" ýu (2+c2)(l+ccose)2 

+6c4 4-c2+3ccose sine - 

n (1-c2)3 2(2+c2)(l+ecos9)2 

where u= 
£+cos9 
1+ecos9 

The hydrodynamic forces are: 

(3.2) 

4cöslu 
*1-11 

ir(1-c2)2 L (l+ecose)2 (1+c)J c 

Fr = LRofr p(O)cosod9 Ft = LRO w 
p(O)sinOd9 

Integrating by parts, substituting for dp/d9 and evaluating the integrals 

(Appendix I): 

c l2 Fr 
12e2(1-2ý) 

+ 
6{ir2(2+e2)-16}e (3.3) ýR/ 

LRwu (2+e2) (1-c2) 7r(2+e2) (1-e2)3 2 

cy 
Ft 67re (1-2ý) 24ce (if 

LRuu (1-c2)1 
2(2+E2) 

(1-c2)(2+c2) 

The equations of motion are: 

E-E 2v Cosh-S 12e2(1-20) 
+ 

6{72(2+c2)-16}e (3.4) I (2+c2)(l-c2) r(2+e2)(l-e2) 
2 

e +2eý _ _v 
sind-S 6ne(1-21) 

+ 
24ee 

L2+c2l_c2h12 
(2+e2)(1-c2) 

The steady state solution to these equations is: 

12Sc2 
_ 

6Snc 
costs =-Sp 

rs 
=s sine = SF s (3.5) 

(2+c2)(l-c2) s is (2+e2)(l-e2)1 2 
ssss 
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n(1-E2)1/2 (2+E2)(1-c2) 

tan 4s (3.6) Sss (3.7) 
s 2c 6c {n2(1-es)+4es}1 2 

The relationship between the Sommerfeld number S and the steady state 

eccentricity ratio (equation 3.7) is illustrated in Figure 3.2. The 

presence of a steady state force in the radial direction means the locus 

of the journal centre (equation 3.6) is now approximately semicircular 

(Figure 3.3). The steady state pressure is equal to the Sommerfeld 

pressure (equation 2.7) taken over the range 0<8<n (Figure 3.4). 

The equations of motion (3.4) may be linearised about the equil- 

ibrium position following the precedure outlined in Chapter 1. The eight 

velocity and displacement coefficients are: 

{n2(2+E2) -16} 
Bxx 

Tre (1-E2)1 2 
(jr2 (1-e2)+4e2)1 

2 
ssss 

a -4 BB (3.8) 
xy YR (n2(1-c2)+4c2)1 

2 

Zlr(1-e2)1/2 4(2+e4) 
ss 

yy 
B 2Ký 

e (jr2 (1-E2)+4e2)1 2 Kxx 
(2+e2) (1-e2) (n2 (1-E2)+4E2)1 2 

sssssss 

-ir(2-c2+2c4) 2 
K_Q 

yx 
ES (2+c2)(1-C2)1/2 (n2 (1_c2)+4c2) 

12 yy (1(2 (1_c2)+4c2) %172 

The frequency equation is: 

4 
v(4Tr2-16-Tr2c2)7ý3 (6-c2+es) 

+ 
Ire (1-e2)1 2 (ire (1-e2)+4e2)1 2+ 2v 

(1-e2) (2+e2) (n2 (1-e2)+4c2)1 
ssssssss 

v(tr2-8) (2+c2) 
+s K2 (3.9) 

E2 ('r2 (1-c2)+4E2) 

2v2(6n2-16-7r2C2)j 
(2+(16_32)c2+32ct++(8_22)c6\ 

+s +v2 ss s0 
1r (1-ES)1 2(712(1-es)+4ES) 

E2 (1-E2)(2+c2)(if2(1-c2)+4c2) 

Unlike the frequency equations for the two models with complete films 

(equations 2.11 and 2.22), there is now aa term in this equation. An 
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application of Routh's criterion now leads to the condition: 

v>v 
cris , 

(c 
s) 

for stability (3.10) 

(see Chapter 1, equation 1.25) 

The critical frequency (non-dimensional) is: 

2(61x2-16-n2e2)v 1/2 

.0s cris. (see equation 1.27) (3.11) 
crit. " (47x2-16-7r2es) (7x2 (1-ES)+4ss)1 2 

A stability curve of vcrit. /cs is shown in Figure 3.5. The stability 

chart may be used to determine whether or not the journal will be stable 

for any given parameter values (v, e 
s 

). The critical frequency curve is 

shown in Figure 3.6. A full discussion of these curves is presented in 

section 3.6, where a comparison is made with the predictions of the other 

models investigated in this Chapter. 

With this simple model, which assumes an oscillating film, it has 

been shown that cavitation is a stabilizing mechanism (a bearing operating 

with a complete film is unstable for all values of v and es). The next 

objective is to investigate the effect of oil film behaviour on the 

vibrational characteristics of the journal. 

3.2 A LONG BEARING OPERATING WITH A STATIC HALF FILM. 

In this model the oil film is again taken to be 1800 in extent, but 

to begin and end along the equilibrium position of the line of centres. 

Therefore the film is assumed to remain static during any motion of the 

journal (Figure 3.1(b)). With y equal to the change in the attitude angle 

from its equilibrium value, fs, the appropriate boundary conditions are: 

p=0 at 6=-7, it -y: p=0 for it -Y<0< 21r -y (3.12) 

The Reynolds equation for a long bearing (equation 2.1) may be 

integrated twice together with the above boundary conditions to obtain the 
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pressure distribution 
jwhich may then be integrated to obtain the force 

components: 

Fr = LRYf-'rp(O)cosede Ft = LR jW-Y 
p(6)sinOd6 

The expressions for the pressure p and the force components Fr, Ft, are 

rather lengthy and are given in Appendix II. The equations of motion 

may then be formulated as in the previous cases. 

Under steady state conditions y=0 and hence the equilibrium solution 

is identical with that of the previous model (see equations 3.5,3.6, 

3.7). However, the linearised equations will not be the same because 

of the additional y terms. The eight velocity and displacement coefficients 

are calculated following the procedure outlined in Appendix II. They 

are: 

{n2(2+e2)-16} 

_s B 
ne (1-e2)1 2(n2(1-e2)+4e2)1 2 

ssss 

27r (1-c2)1/2 
B_s 

yy e ('r2(1-e2)+4£2)1 2 
sss 

-4 
s B B - 

x' y" (, r2 (i-ES)+4ES)1 i 

(3.13) 

4(2+£4) 
_s KXX 

1/2 
(2+c2) (1-c2) (R2 (i-c2)+4c2) 

{1f2 (2+e2) (1-e2)-16} 

K_ss 
XY 7res(2+e2)(1-es)1 

2(n2(1-es)+4e2)1 2 

-, r(2-e2+2e`') 4(1+e2) 
sss Kyx 

c (2+c2)(1-e2)1 2(7r2(1-c2)+4c2)1 2 KYY 
(2+c2)(n2(1-es)+4c2)1 

2 

The coefficients are identical with those of the first model (equations 

3.8), except for K 
XY 

and K 
yy 

K. This is to be expected since the only 

difference between the two models is the additional y terms (see Appendix 

II). 
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The eight coefficients may be used to calculate the frequency 

equation. The stability borderline is then calculated from an application 

of Routh's criterion (Figure 3.5). The critical frequency curve is 

shown in Figure 3.6. It is easily seen that there is a dramatic diff- 

erence between the stability characteristics of the two models examined 

so far. The bearing operating with the static film is much more stable 

than the oscillating film. It must be emphasized again that the only 

difference between the two models is in the behaviour of the oil film 

during a vibration of the journal. 

3.3 A LONG BEARING OPERATING WITH A HALF SOMMERFELD FILM. 

A third alternative model of a journal bearing operating with a 

half film is to take the Sommerfeld pressure and neglect the subambient 

pressures predicted by it (the cavity is assumed to exist in this region). 

Under dynamic conditions the Sommerfeld pressure is (equation 2.2): 

c1 C 2. p= 6c(1-2¢)(2+ccos9)sinO 
+61_1e R/ wu (2+c2)(1+ccosO)2 (1+ccose)2 (1+e)2 C 

=> p=0 at 6=0,2n and n+"a where a satisfies the equation: 

-c (1-2 (2-ccosa)sina 

(2+c2) (1-ccosa) 
+ 

(1-ccosa)2 -1 £9o 
2e (1+c) 

The pressure is superambient for 0<0<n+a and subambient for 

(3.14) 

+a<A< 2n. Therefore the cavity is assumed to exist in the region 

it +a<0< 2ir (Figure 3.7) . 
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Film start 
p=0 

Oil film 

ty (P = 0) 

Film rupture (n+a) 

Figure 3.7 A long bearing operating with a half Sommerfeld film. 

The hydrodynamic forces are: 

rC12 Fr 

= 
c(1-20) {4E (coO2-1)-(cost*2-1)} 

LR3wu 4(1-E2)(2+c2) 

2e {2ý -sin2ý } 
+ 

4(1-e2)3/2 
22 

cl2 
Ft 

__ 
E(1-2ý) {2sin2i, 

2-4csinp2+4(1-E2)42} CR) LR3w 41-2322+E2 

+ 
21 {4c(cosip2-1)-(cos2P2-1)} 

4(l-c2)2 

where ý2'is the Sommerfeld angle corresponding to n+a. 

The equations of motion of the journal are: 

Eý 
- CO2 = v(cosO+SFr) cý + 2e¢ = -v(sin¢-SFt) 

(3.15) 

(3.16) 

These equations together with equation (3.14) describe the full motion 

of the journal which can only be determined numerically in a step by 

step integration which solves equation (3.14) for -a after each step. 

Under steady state conditions a=0 and hence the equilibrium solution 
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to equations (3.16) is identical with the previous two models (see 

equations 3.5,3.6,3.7 and Figures 3.2,3.3,3.4). 

The first stage in linearising equations (3.16) is to obtain an 

expression fora from equation (3.14). During a small amplitude vib- 

ration of the journal about its equilibrium position a will be a small 

quantity (see equation 3.14). Substituting e= es +S and _s+y 

into equation (3.14) and retaining only first order terms: 

4(2+e2)ä 
s (3.17) 

(1+c )2(2-cS) 

Using the Sommerfeld relation (Appendix I) and the fact that a is a 

small angle the following expressions may be derived: 

-(l-c2)1/2 a (l-c2)1/2 a 
cos42 = -1 sin*2 as ý2 =x+s 

(1-cs) (1-es) 

2(1-c2)1/ 
ä 

cos2ý2 °1 sin2,2 =s (3.18) 
(1-cS) 

The procedure for linearising equation (3.16) is: 

i) Substitute c=c+d, ¢=0+Y. 

ii) Use equations (3.18) to eliminate ý2. 

iii) Use equation (3.17) to eliminate a. 

iv) Neglect terms higher than the first order. 

v) Collect like terms and put 6=x, csx=Y. 

The eight velocity and displacement coefficients are: 

(2+ £2) s Bxx 

fs(1_C2)1 
2(n2(1-ES)+4c2)1 2 

-4(1-£ ) (2+E2) 

_ss Byx 
C (, _C2 ) (11 2(1_ C2)+4 E2)1 2 

s 

B= -2K = 
-4 

YY (n2(1-e2)+4c )1 2 

2n(1-E2)1/2 
B= 2K =S (3.19) 
yy XY 

ES(n2(1-ES)+4e2)1 
2 
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4(2+£'') 
_s R 

(2+£S) (1-£2) (7r2 (1_C2)+4£S) 
1/2 

-n(2-E2+2E4) 
aSS KyX. 

C (2+c2)(1_c2)1 2(n2(1-c2)+4c2)1 2 

The eight coefficients may be used to derive the frequency equation. 

The stability borderline is then calculated from an application of 

Routh's criterion (Figure 3.5). The critical frequency curve is shown 

in Figure 3.6. A full discussion of these curves is postponed until 

section 3.6. However, it is evident from Figures 3.5 and 3.6 that the 

three models investigated so far have very different stability charac- 

teristics even though superficially they appear to be very similar. 

The assumption that the film terminates at or close to the line 

of minimum film thickness with ambient pressure is not an accurate 

description of the physical situation. It is used for mathematical 

convenience as a simple way of modelling cavitation. A more accurate 

boundary condition is the one attributed to Reynolds (1886). It is most 

easily formulated from considerations of flow continuity. For a'two 

dimensional flow situation the lubricant flow rate just before film 

rupture is (Figure 3.8): 

h3 dp+ Uh 
1211 dx 2 

(3.20) 

In the cavitating region, assuming a finger pattern of air cavities, 

the pressure is assumed to be ambient, and so only Couette flow need 

be considered. Just after film rupture, assuming that the cavities 

occupy only a very small fraction of the total bearing width (ie. the 

cavities are "pointed") the flow rate per unit width is: 

Uh 
2 (3.21) 
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avities. 

Figure 3.8 Plan view of two dimensional film rupture. 

Equating the flow rates before and after rupture leads to the boundary 

condition: 

p 
äX 

=0 at film rupture (3.22) 

This analysis shows the incorrectness of Gümbefs boundary condition 

which has a negative pressure gradient at the cavity interface (Figure 

3.4). In the next section the vibrational behaviour of a bearing oper- 

ating with an oil film satisfying the Reynolds boundary condition is 

investigated. 

3.4 A LONG BEARING (FILM SATISFYING THE. REYNOLDS BOUNDARY CONDITION). 

In this model the oil film is assumed to begin at or around the line 

of maximum film thickness with zero (ambient) pressure and to end beyond 

the line of minimum film thickness where both the pressure and the 

pressure gradient are zero (Figure 3.9). The boundary conditions are: 

p=0 at 0= 91, film formation (3.23) 

and p- 
äe 

=0 at 0= 92, film rupture 

Line of film rupture 
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e=o 

rupture position 

_ 
do 

_. 0 
de 

e=n 

3.9(a). Oscillating film model. A. Journal centre during vibration 

As. Steady state position of 
journal centre 

8 =0 

3.9). Static film model. 9= n-Y 

m rupture position 
d' 

=0 dam? 

e =n 

Figure 3.9. Journal bearing operating with a film satisfying the Reynolds 
boundary condition at film rupture. 
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Integrating the Reynolds equation (2.1): 

11 

6 
c(1-2e)(cos9-cos92)+2c(sin6-sin92 

(3.24) c 1_ d CKý 
a uw 

de 
(1+ccose)3 

(which satisfies (dp/de)e 
2= 

0) 

S 
3E(1-20#)F(c, ý, ý1, V'2) 3EQ(c, *, V1,2) (3.25) 

\R uw 2(l-E2)3/2(1-ECOS*2) (1-E2)2(1-ccos* 
2) 

(which satisfies p(e1)=0) 
* 1, *2 are the Sommerfeld angles corresponding to 81, '02 respectively. 

r 
The location of film rupture at 0= 02 is determined from the equation: 

e(1-e2)1/2(1-20)F(c, p1. i2) + 2eQ(E, 41, p2) =0 (3.26) 

The hydrodynamic forces are calculated by integrating the above 

pressure distribution. Throughout this work there are many lengthy 

algebraic expressions and it is necessary to introduce some notation 

to represent them (eg. F, Q). The full expression including the hydro- 

dynamic forces may be found in Appendix II . 

The equations of motion are: 

e- 
C42 = v{cos4 + SFr(c, 

e; 
ý, ý1, *2)} (3.27) 

co + 2c4 = -v{sinO-SF t(s, 
e, 

o, ý1, ý2)} 

where ý2 and hence 92 is determined from equation (3.26) 

The steady state solution to these equations provides the relation- 

ship between the Sommerfeld number S and the steady state eccentricity 

ratio (Figure 3.2) and the locus of the journal centre (Figure 3.3). 

The steady state pressure profile fore 
s=0.6,01 

=0 is shown in Figure 

3.4 (the expressions are given in Appendix II). 

To compute the complete motion of the journal for given initial 

conditions it would be necessary to integrate the equations of motion 
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numerically in a step by step routine which solves equation (3.26) for 

*2 (02) after each step. It is evident from equation (3.26) that even 

during a small amplitude vibration of the journal i, 2 will not remain 

at its steady state value but will become ß, 2s+d*2. The first stage in 

linearising the equations of motion is to obtain an expression for 6ý2 

by linearising equation (3.26) (see Appendix II). 

After some tedious algebra it is possible to obtain expressions 

for the eight velocity and displacement coefficients as functions of 

Es'*1s'*2s (see Appendix II). A computer program was written to calculate 

the eight coefficients. Once values of es and *ls had been specified 

2s was determined by solving equation (3.26) numerically using the 

11 
Newton-Raphson method (with c=0= 0). The stability borderline and 

critical frequencywere then calculated from Routh's criterion (Figures 

3.5 and 3.6). 

An investigation was carried out into how the position of the oil 

film build up at 6= Al influenced the vibrational characteristics of 

the journal. It was found that, for values of eI close to the line of 

maximum film thickness (-15° < 01 < 15°) the effect was insignificant 

and hence results are shown only for 91 = 0. A more detailed examination 

is made in Chapter 4 for the axial groove bearing. 

It was found, however, that the behaviour of the oil film during 

a vibration of the journal was important. Two different models may 

be examined - an oscillating film, or a static film (Figure 3.9). 

Substituting Al =0 into the preceding analysis models an oscillating 

film which swings to and fro with the vibration (Figure 3.9(a)). In 

the static film model the oil film is assumed to begin at the equil- 

ibrium position of the line of maximum film thickness (and continue to 

do so during the vibration) ie. at 01 = -y (Figure 3.9(b)). This will 

alter the film rupture position at 0= 02 since A2 depends upon 61 

(equation 3.26). The details of the analysis for this model may be 
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found in Appendix II. Under steady state conditions the two models are 

" identical but they have different stability characteristics (Figures 

3.5 and 3.6). Data for the Reynolds boundary condition is not widely 

available in the literature and so is presented in Table 3.1 for the 

two models. 

3.5 A SHORT BEARING OPERATING WITH A HALF FILM. 

The final model examined in this Chapter is a short bearing oper- 

ating with a half film. It was shown in Chapter 2 (equation 2.12) 

that the pressure generated in a short bearing is: 

Ccl2 2= 3z(_ zz-_L) -c(1-2¢)sinO+2EcosA (3.28) 
L/ uw L2 1+ecosA 3 

_> p=0 at z=0, L and at 0= el, n+el, 2n+e1 

where tan 91 
2e (3.29) 

e(1-2ý) 

The assumptions made in simplifying the Reynolds equation for a short 

bearing are so drastic that the pressure distribution cannot be altered. 

The subambient pressures are neglected in this model by assuming a 

cavity exists in the region n+01<A<2n+91 (Figure 3.10). This model 

was also considered by Holmes(1960) and Lund (1966). 

The hydrodynamic forces are: 

Fr a RJL0 JTr+91 P(e, z) cosOdOdz 

1 

2 Fr 
c 4 -\L) LRwu -2(1-2c)I4+I6e 

(see Appendix I). 

Ft RIe ýr+e 
J1 p(e, Z)SlneaeaZ 
i 

CL 
YF 

LRwu = 2(1-20)I5-I4e (3.30) 

and the equations-of motion are: 



%D 00 N N 00 1-4 O 

.,. ý c'1 0 M N fr uy N 
ON 00 %a -7 r-i 00 N 

U IT .7 -7 cn m c O 
1C-- O O O O O O O 

Aj en rý GO .ý v, . O 
.,. 01 ON r, f- 00 O' O' 

ý ü 
Cl) CV) N N -4 0 O 0 

O O O O O C; C; O 

O a' 00 - O' n N 1- N 
rý O1 cß'1 O r-4 C11 n llO 00 

" " " * " " 

N 0' O 0 O O 0 

C) r4 Lt1 Lf1 .-4 O U1 N 00 
r4 -4 N- 0 ýG Cl) O cc n 

00 - N N 11 1-1 r-- 0 0 

N. O 't LM %0 00 
4.1 N . M I- .D O IT 

r" u1 N O r 'Y O. 00 
Lt tf1 it uP .Y ý7 M O 

IG O O O O O O O O O 

%, D CIM I7 r, r-1 p %0 jM 
"ý %M 0% u1 N r- M I7 

CO cM .o I- %D u1 '--i N 
u p r-+ , -4 . -a P-4 -4 P-+ O O 

O O O CD .O 
O 

00 IM -Ir o% u1 N IT t+1 v1 
u1 0ý "-1 p oý aý o\ rn 

x M r-- 1-4 -4 1-4 o O 
ö ö 

u1 u_I M N .O . -4 'Y r-+ %D x as N r. O % it '2 cc % 
x o0 

1 
IT 

1 
N 

1 
N 

1 
P-4 
I 

r-4 
1 

"d 
1 

r1 
I 

N 
1 

C ý-4 O O Ln co - 00 
" M ýD O N N. M O 00 v1 

x (> 
1 1; 

M N r ' º- O O 

5C cc N 00 
r- 

1ý O ýO r-1 00 

AG M fV "ý '--i N N ýt CO 

op O N 0 O O ' i c p 

1 

Phi pp O% %O '7 M N N P4 
41 

k 
%O N N. 00 O u) N. tut 0% 
-l C% Co M r-ý O% 00 00 Co 

1ý M N N N r. 4 rl rý r. 4 
x 1 1 I 1 I 1 I 1 1 

00 

k N ýO U_I -4 N. -1 -a 1, N 
x - ýO N N n O cc N 

PCI ýO 00 ýG ý1 ýY . u Uy 00 

y N r-1 cc ýD N. N N 
ON 

m 0, % P. 4 ri %0 Cy». cm %M C ý 
le -t M N -' -4 O Ö 
N N lV cV GV fV N fV r-1 

O C' ºý 1 ýO M N ý--ý N 1ý 

%C IM %0 %0 Lr1 L1 -7 .' M 

%D cyý 1.0 O N C ^ 0 
VJ 1D M N N i G O O 

O O O O O O O O p 

w O O O 0 O O 0 O O 

a) 
b 
0 
E 
6 

4 
w 
u 

. -4 u 

. -. 
.c v 

ri 

0 6 
6 

ac 

cd 

., a 
u 
0 

0-1 

M 

cu P-4 ý+ u a) 
N+_e O 
oa Ei 
w C) 
1J ". + 

ea mw 
-v "-4 et 
w 
o C) . -l b ji 
i+O tu 
uE f--4 b 
ZE". + 

"-4 . -4 u 
C0 m4 fA 
EWO 
4J 
xu aý 

"j. +4, 
.o co 

" +J 0 ýyý 

0 
u 
. -, b 
r. 
0 
u 

c0 
b 
a 
Z 
0 

ri 

H 

77 



78 

it 
-2=v cosh-Ss [- 2(1-2$)I4+I6El (3.31) 

C¢ + 2c4 _ -v 
fsin4_Ss[.. 

(1_2)I5_I4e 

with 0l determined from equation (3.29). 

The relationship between the modified Sommerfeld number and the 

steady state eccentricity ratio is: 

4(1-e2)2 
S=s (see Figure 3.2) (3.32) 

S es{n2(1-es)+16es}1 
2 

Film star 
(p=o, e =e I 

Oil film 

ty (P = o) 

Film rupture (T+e1) 

6=n 

Figure 3.10 A short bearing operating with a half.. filrn. 

The locus of the journal centre under steady state condition is described 

by: ir(l-c2)1/2 
tans 4E 

(see Figure 3.3) (3.33) 
S 

A typical steady state pressure profile is shown in Figure 3.4 for 

eS=0.6, z= L/2. 
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Equations (3.31), together with equation (3.29) for 61, describe 

the complete motion of the journal. It follows from equation (3.29) 

that during a small amplitude vibration of the journal 01 will be a 

small quantity: 

ie. 61 =tan-t to first order (3.34) 
s/ 

The equations of motion may then be linearised following a similar 

procedure to the one outlined in section 3.3 for the model with the 

half Sommerfeld film. In this case the "A1 terms" make no contribution 

to the'linearised equations - the result is the same as taking the 

oil film from 0 to it. However this is not obvious and is peculiar to 

the short bearing. It would not be correct to neglect the "01 terms" 

in a large amplitude motion of the journal since 01 would not then 

necessarily be a small angle. 

The eight velocity and displacement coefficients are: 

2n (1+2c2) 
__s x Bxx 

y 
es(1-ES)1 

2 (Ir 
s)+16es)1 

2 

B_ -K 
-8 (3.35) 

x YX Y (tr2 (1-ES)+16c2)1/2 

21r(1-c2)1/2 8(1+c2) 
S 

Bý 2Ký = 
es (n2 (1-es)+16c2)1 2 Kxx 

(1-c2) (, r2 (1_c2)+16c2)ß, 1 

from which the stability borderline (Figure 3.5) and the critical freq- 

uency (Figure 3.6) may be calculated. 

3.6 RESULTS AND DISCUSSION. 

Stability borderlines and critical frequency curves for all the 

models examined in this Chapter are shown in Figures 3.5 and 3.6 resp- 

ectively. The velocity and displacement coefficients are illustrated 
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in Figures 3.11 and 3.12. The inclusion of cavitation has a stabilising 

effect on the journal which is now stable provided the parameter v 

exceeds a critical value. However the critical value varies considerably 

for the range of different cavitation boundary conditions. These 

differences will now be examined in more detail. 

i) A bearing operating with a static half film is much more stable 

than with a swinging film (ie. requires a lower value of v for stability). 

Thus. 
0 the stability of the journal depends upon the behaviour of the 

oil film during vibration. An accurate model must therefore reflect 

the correct oil film behaviour. In the linear analysis only two of 

the eight coefficients are different for the two models (equations 

3.8 and 3.13): - Kxy and Kyy. It is instructive to think about the 

situation more closely. 

In the case of the oscillating, or swinging film model (Figure 

3.1(a)), the oil film occupies the same section of the bearing during 

journal vibration as under steady state conditions (ie. the converging 

film section of the bearing). The hydrodynamic forces so generated are 

functions of c, c, ; (but not 4). Thus, the expressions for the two 

displacement coefficients K 
xy 

and K 
yy 

defined by equations (1.18) reduce 

to: 

'S ,s_S 
Kxy 

es 
Fts Kyy 

es 
Frs (3.36) 

The situation is different for the static film model, where additional 

forces are generated during journal vibration because the oil film does 

not occupy the same section of the bearing as under steady state conditions 

(see Figure 3.1(b). and also equation 11.4). It is these additional terms, 

being implicit functionsof ý, which alter the two displacement coefficients 

KXy and Kyy 
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In this case the Kyy coefficient is not altered significantly 

(Figure 3.12(d)), but the KXy coefficient is much lower and goes neg- 

ative for es > 0.55 (Figure 3.12(c)). This means the difference in 

the cross coupled displacement terms (KXY - Kyx) is much lower than 

for the oscillating film. Holmes (1966) and Smith (1963) have both 

indicated that a low value of-(K 
XY - Kyx) favours stability. Thus 

the static film is more stable than the oscillating one. 

ii) The model with a half Sommerfeld film is also much more stable 

than the oscillating half film. Basically the two models are different 

because the pressure distributions have different e terms (see equations 

2.2 and 3.2). This means the velocity coefficients B 
xx 

and B 
yx 

are 

different for the two models (Figure 3.11); the remaining six coefficients 

are identical. It is interesting to note that the half Sommerfeld 

model is the only model in which the cross coupled velocity coefficients 

BXy and ByX were found not to be equal. 

iii) The stability curves all predict that above some values of e, 
s 

the journal will be stable for all values of v (ie. v 
crit= 

0). This 

value is close to 0.8 for all the models apart from the static half 

film model when it is 0.55. High eccentricity ratios therefore favour 

stability. 

iv) With the exception of one model the critical frequency curves are 

similar and, predict whirl frequency ratios below 0.6. For the model 

with the oscillating half film the ratio is much higher and has a max- 

imum value of 1.15. It must be stressed that this is only the frequency 

of a small amplitude oscillation about the equilibrium position. 

v) The two models with the Reynolds boundary condition have different 

stability borderlines. Surprisingly in this case it is the oscillating 

film model which is more stable (the reverse of the trend for the half 

film). The stability of the journal thus depends upon the cavitation 

boundary conditions as well as oil film behaviour. An accurate model 
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must therefore incorporate the correct boundary conditions and the correct 

behaviour of the oil film during vibration. 

The two coefficients KXy and Kyy are again the only two terms which 

are altered in the stability analysis (for the same reasons as discussed 

previously). In this case it is the Kyy coefficient which is altered 

significantly (Figure 3.12(c), (d)) and for the static film it is negative 

at low eccentricities. A negative value of K may be associated with 
yy 

instability and is the reason why the static film model is less stable 

than the oscillating film model. 

vi) The stability borderline for the short bearing is not vastly different 

to several of those for the long bearing when eccentricity ratio is 

used as an operating parameter. However, since a decrease in bearing 

length increases cs, short bearings are likely to give greater stability 

when other parameters remain constant. 

The stability borderlines may be used to determine whether or 

not a rotor system is stable at a particular rotor speed. The'critical 

value of the parameter v corresponds to a maximum rotor speed below 

which the system will be stable (the threshold speed). The threshold 

speed clearly depends upon which model is used. To illustrate this 

consider a rotor mounted on two plain identical cylindrical journal 

bearings with the following parameters: 

L=0.05m U=0.1 Pa s. 

D=0.05m F= 3000N (the load on each bearing) 

R=0.025m c=0.00025m 

Assuming a rotor speed of 5000rpm, and that long or short bearing theory 

is applicable, the Sommerfeld number may be calculated and the equil- 

ibritm position determined from Figures 3.2 and 3.3. Figure 3.5 may 

then be used to calculate the threshold speed and whether or not the 

system is stable. The results are summarised in Table 3.2. 
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Rotor speed 5000rprm. 

MODEL cs v 
crit 

THRESHOLD 
SPEED RPM 

STABILITY? 

1 0.44 0.77 2150 Unstable 

2 0.44 0.08 6700 Stable 

3 0.44 0.15 5600 Stable 

4 0.37 0.17 4600 Unstable 

5 0.37 0.27 3650 Unstable 

6 0.58 0.135 5150 Stable 

For key to 
model numbers 
see Figure 3.11 

Table 3.2 An example showing the variation in the threshold speed 

for the different models. 

The table illustrates the wide discrepancies which occur in the 

estimate of the system's threshold speed by making different assumptions 

about the oil film in the bearings. Therefore to obtain an accurate 

value of the threshold speed the oil film must be modelled correctly. 

Another factor not normally considered in the stability analysis 

is the degree of stability (or instability). A stability borderline 

can only be used to determine whether or not the journal is stable 

for given parameter values. The degree of stability may be determined 

by solving the frequency equation associated with the linearised 

equations, and calculating the logarithmic decrement of the roots. 

Consider, for example, the frequency equation for a short bearing (half 

film) derived from equations (3.35): 

2vf(2+e2)X3 (3+e2 
a) -4 

+s4s 
E (1c 2)1 2 

(n2(1-e2)+16e2)1/2 
+v 

(1--e2) (n2 (1-e2)+16x2 )1 2 
sssssss 

v(n2(1+2c2)-16e2) - 
+s .S2 (3.37) 

s2 (n2 (1-ES )+16c2) 



88 

8v2ir(3+E2) Jý 
132c2(1+C2)+fl2(1_c2)(j. 

+2c2) 
+s+ v2 ssss0 

E (1_c2)1 2(n2(1_c2)+16E2) 
C2(1-C2)(112(1-E2)+16e2) 

ssssssss 

The equation was solved numerically for a range of values of v 

and S (0.01 :V. 1.0,0.01 .C. 0.99). Typical roots of the equation 

are: 

_ -0.02±0.57i, -0.94±0.581 for Es = 0.50, v=0.20 (Stable) 

= 0.03±0.391, -0.42±0.481 for Es = 0.50, v=0.08 (U. nstable) 

It was found that for all cases in which the journal was unstable only 

one pair of roots had a positive real part and thus the degree of 

instability could be measured by calculating the logarithmic decrement 

of the unstable root. When the journal was stable both pairs of roots 

had negative real parts with one pair having a much smaller modulus 

(by at least an order of magnitude). Thus the degree of stability 

could be measured by calculating the logarithmic decrement of this 

root. Curves of constant damping (ie. constant logarithmic decrement) 

are shown in Figure 3.13. 

The curves are extremely interesting since they show that increasing 

the parameter v does not necessarily increase the damping of the system. 

At low and high eccentricities the damping is always weak and even for 

low values of the logarithmic decrement the curves do not "follow" the 

stability borderline. The damping is "sharpest" for moderate eccentri- 

cities. 

It is possible to derive analytic expressions for the curves of 

constant damping for small es and to investigate why the damping is 

always weak. Letting es +0 so that 0(c2) terms may be neglected the 

frequency equation (3.37) reduces to the cubic equation: 
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T3 + 52 + vä + 4V =0 (3.38) 
ss 

Consider now the general cubic equation: 

s3 + A2s2 + Als + A0 =0 (3.39) 

which has one real root and a pair of complex conjugate roots: 

-pl, p2±iq2 say. Routh's criterion for a cubic equation is: 

Ao, Al, A2 >0 and R= AlA2 Ao >0 for stability. 

At the point of neutral stability pl is positive and p2 zero. It follows 

therefore that close to the point of neutral stability p2 is small. 

The cubic equation may be written: 

(s+pl)(s-p2-1g2)(s-p2+iq2) =0 (3.40) 

Expanding the above equation, neglecting p2 terms and equating powers 

of s with equation (3.39): 

=> A2 = p1 - 2p2 Al = -2p1p2 + q2 Ao = plg2 (3.41) 

Eliminating pl, g2 from the equations: 

_> p2 = -R (for small p2) (3.42) 
2 (Al+A2) 

Returning to the cubic equation (3.38), substituting for A2, Al, Ao gives 

the following expression for the real part of the root close to the 

stability borderline: 

_ -s S 
(24v-7r) 

p2 
87tv 

(3.43) 
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It can be seen from this expression that: 

p2 -0 as cs -0 
Vv 0. Thus increasing v for sufficiently small 

es will not increase the damping (Figure 3.13). 

ii) P2 is also zero when v= r/24 (0.1308). 

L2 
p2 by the logarithmic decrement d ie. d= -2ýr = -4np2 

and rearranging equation (3.43): 

ire 
_> V=s 

2(12c -d) 
s 

which is the equation of constant damping curves (for small es, d). 

The equation represents a family of hyperbolae for different values 

of d (Figure 3.14). Comparing Figures 3.13 and 3.14 it can be seen 

that there is a reasonable agreement between the two sets of curves. 

Smalley and Malanoski (1978) have stated that in practice the 

(3.44) 

logarithmic decrement should not be below 1/2. Figure 3.13 shows that 

the curve for d=0.5 is vastly different to the stability curve (d = 0). 

The curve can be used to calculate the maximum speed at which the 

damping will be greater than 0.5. This speed will be much lower than 

the threshold speed. Consider for example the rotor system described 

previously and assume that the rotor speed varies from 1000 to 6000 

rpm. For each operating speed the modified Sommerfeld number may be 

calculated from which the steady state position is deduced (Figures 

3.2 and 3.3). The threshold speed and the maximum speed at which the 

damping is greater than 0.5 is then calculated from Figure 3.13. The 

results are summarised in table 3.3. 

The table shows the wide variation between the threshold speed 

when the system becomes unstable and the maximum speed for which d=0.5. 

The system becomes unstable at a speed just in excess of 5000 rpm, 

but the damping falls below 0.5 above a speed of 3400 rpm. 
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w rpm S 
S 

Es THRESHOLD 
SPEED 

UNSTABLE OR 
STABLE 

SPEED AT 
WHICH 
d=0.5 

d 

1000 0.17 0.82 so STABLE 2900 2.20 

2000 0.35 0.72 8450 STABLE 3200 1.30 

3000 0.53 0.66 6000 STABLE 3350 0.70 

4000 0.70 0.62 5250 STABLE 3500 0.30 

5000 0.87 0.58 5150 STABLE 3600 0.08 

6000 1.04 0.55 5050 UNSTABLE 3650 -0.25 

Table 3.3 An example showing the degree of damping for a range of 

rotor speeds. 

It is possible of course to solve the frequency equations for the 

other models discussed in this Chapter. It is found that a similar 

pattern emerges - the damping is weak at low and high eccentricities. 

The results are not shown because of this similarity. 

Several of the models discussed in this Chapter have been invest- 

igated by other authors. Holmes (1960) examined the vibrational chara- 

cteristics of a'short bearing operating with a half film and the 

stability borderline shown in Figure 3.5 agrees with his. Hori (1959) 

used the oscillating half film model for a long bearing in his work 

on flexible rotors. The stability borderline shown in Figure 3.5 

corresponds to Hori's curve for the case of infinite shaft stiffness. 

Holmes (1966) has also shown a stability curve for the long bearing 

with Reynolds' boundary condition using values for the eight coefficients 

derived by Smith (1963). Smith's model corresponds to an oscillating 

film and he calculated the coefficients from the steady state data and 

an interpolation method. The stability curve shown by Holmes is in 

rough agreement with the curve shown in Figure 3. S, which in based upon 

a more accurate calculation of the coefficients described in this Chapter. 

Hahn (19 7b) has reached similar conclusions about the degree of damping 
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in the system ie. at low and high eccentricities the journal may be 

stable theoretically, but be only weakly damped. The remainder of the 

work in this Chapter, particularly the sensitivity of the vibrational 

characteristics to different cavitation boundary conditions and oil 

film behaviour, does not appear to have been widely studied. 

In general in this Chapter it is the boundary conditions at film 

rupture which have been investigated. Little attention has so far been 

given to the boundary conditions at the start of the oil film. The 

assumption that the film begins at the line of maximum film thickness 

is widely used. This is not as accurate boundary condition since it 

violates flow continuity at the boundary unless an oil groove is sit- 

uated there through which oil is admitted to the bearing. However this 

is not a satisfactory solution because a groove is fixed in space, 

whereas the line of maximum film thickness alters for each equilibrium 

position (and also during a vibration of the journal). The correct 

approach for the axial groove bearing is to carry out the analysis for 

a fixed position of the groove. An investigation of the axial groove 

bearing is made in Chapter 4. 
) where many of the ideas developed is this 

Chapter regarding boundary conditions and oil film behaviour are used 

to produce an accurate model. 

3.7 CONCLUSIONS. ' 

i) Cavitation is a stabilising mechanism. The journal is stable 

provided the parameter v exceeds a critical value. Thus from a vibra- 

tional point of view it is desirable to have cavitation in bearings. 

ii) The vibrational characteristics of the journal are sensitive both 

to different cavitation boundary conditions at film rupture and to 

the behaviour of the oil film during vibration. An accurate model must 

adopt accurate boundary conditions and account correctly for the behaviour 

of the oil film. 

iii) High eccentricity ratios favour stability and hence short bearings 
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are likely to be more stable than long ones (but also see iv below). 

iv) The journal may be stable theoretically but be only weakly damped. 

Any vibrations will therefore persist and this could adversely affect 

the smooth running of the journal. The damping is particularly weak 

at low and high eccentricity ratios and4in these regions the degree 

of damping is insensitve to the stability parameter v. 



CHAPTER 4 

VIBRATIONAL CHARACTERISTICS OF THE AXIAL GROOVE JOURNAL BEARING. 
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In practice, oil is admitted to bearings through axial or circum- 

ferential grooves located in the bearing sleeve. In this Chapter an. 

investigation of the axial groove journal bearing is made with part- 

icular emphasis on the effect of the groove position and oil supply 

pressure on the vibrational characteristics of the bearing. The actual 

grooving arrangement may be quite complicated with several grooves 

distributed around the bearing sleeve. This investigation is confined 

to a single axial groove. 

The findings in Chapter 3 have highlighted the need for a model which 

utilises accurate boundary conditions at both film-rupture and film 

reformation and which also accounts correctly for the behaviour of the 

oil film during vibration. As far as possible these features are 

incorporated into the model. 

4.1 DESCRIPTION OF THE AXIAL GROOVE JOURNAL BEARING. 

The axial groove journal bearing is illustrated in Figure 4.1. The 

axial groove is located in the bearing sleeve, fixed in space, at a given 

angle ß to the loadline. The oil may be fed into the bearing under 

pressure which is usually small compared with the hydrodynamic pressures 

generated in the bearings. 

Initially it was assumed that the oil film build up began at the 

groove and ended where both the pressure and the pressure gradient were 

zero (Figure 4.1(a)). The appropriate boundary conditions were then: 

P= pg at 9= 01 Film formation (4.1) 

p= 
de 

=0 at 6 02 Film rupture 

where pg = the oil supply pressure. 

The cavity was assumed to exist over the remaining section of the bearing 

and to be at ambient pressure. Thus, the formation of the film up- 

stream of the groove over which the oil film pressure will rise to the 

supply pressure was neglected (the limitations of the model are discussed 
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4.1(a). Start of film at the groove. 
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p=0 e=el 

4.1(b). Film termination at the groove. 

-o 

Film rupture 
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ie 

-o 

Film end groove 
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Figure 4.1. The axial Groove iournal bearing. 
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later in this Chapter). 

The Reynolds equation for the long bearing (equation 2.1) was solved 

with the above boundary conditions to obtain the hydrodynamic pressure 

and forces. The equations of motion were then formulated and linearised 

to obtain the eight velocity and displacement coefficients. The details 

of this work, which follows very closely the work relating to the Reynolds 

boundary condition described in Chapter 3, are given in Appendix II. 

During a vibration of the journal about its equilibrium position, 

the position of the line of centres varies in space and hence the 

groove position relative to the line of centres is altered (Figure 4.2(a)). 

Thus: 

els - 01 0 _y during jöurnal vibration 

In this model the oil film behaviour is determined through the assumption 

that the oil film build up begins at the groove and continues to do so 

during journal vibration. The variation of the groove position relative 

to the line of centres during journal vibration must be accounted for 

in the stability analysis, otherwise the model will be inaccurate (as 

shown in Chapter 3). 

A computer program was written to calculate the steady state data 

and the eight velocity and displacement coefficients for given values 

of g (the groove position) and oil supply pressure. Since the groove 

position relative to the line of centres is different for each value 

of es (Figure 4.2(b))ß it was necessary to use an iteration procedure to 

locate the groove position relative to the line of centres. A flow- 

chart of the computer program is given in Figure 4.3. After calculating 

the steady state data it was possible to calculate the velocity and 

displacement coefficients. Routh's criterion was then used to calculate 

the critical values of the stability parameter and whirl frequency ratio. 

The model described in the preceding pages was adequate for 

investigating groove positions less than 1800 before the loadline. 
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4.2(b). For different equilibrium Positions. 

Figure 4.2. Variation of the line of centres w. r. t. the groove position. 
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Read in values for p and Figure 4.3. Flow chart of computer 
g 

(Supply pressure and groove position) program to calculate data for the 

axial groove journal bearing. 

e=0.10 
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91s=0 ie. assume oil film begins 

at maximum film thickness 
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Calculate Film Rupture Position 
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ss 
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YE 

Calculate velocity and displacement 

coefficients (Subroutine) 

Calculate stability borderline Is E<0.91? 
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Print Results YES 
. 
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For ß greater than 1800, with the groove far into the diverging film 

section of the bearing (Figure 4.1(b)), the assumption that the oil film 

began at the groove was no longer valid (an attempt to use this assum- 

ption failed because the film rupture positions could not be determined). 

If the formation of the oil film is not at a groove the appropriate 

boundary conditions are rather complicated (see section 4.3), although 

it is usually assumed that the film forms close to the position of 

maximum film thickness. 

To examine values of ß greater than 1800 a simple model was taken. 

It was assumed that the oil film was complete with the pressure specified 

at the groove: 

pp at 6= e2,02 + 2ir (4.2) 

Any subambient pressures were neglected and the film was assumed to form 

at a position of ambient pressure. 

ie. at 6=6l where p(91) =0 (4.3) 

The pressure distribution was then taken over the range 91 <0< 02 

with the cavity occupying the remaining film section of the bearing 

(Figure 4.1(b)). Thus, the oil film was assumed to end at the groove 

and, for a non-zero supply pressure, the "tail-off, ' as the pressure falls 

to ambient downstream of the groove position was neglected. This is a 

reasonable assumption only if the supply pressure is small compared with 

the hydrodynamic pressure generated in bearings. 

The Reynolds equation was solved with the above boundary conditions 

(equations 4.2 and 4.3) and the velocity and displacement coefficients 

etc. were calculated (the details of the work, which is similar to that 

described in Chapter 3 for the half Sommerfeld film, are given in 

Appendix III). With a combination of the two models described in the 

preceding pages it was possible to analyse any groove position 
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(00 <ß< 3600). 

4.2 RESULTS AND DISCUSSION. 

Results are presented for the following values of ß and p 

(the non-dimensional supply pressure): 

B- 30 0 60° 90° 135° 180° 270° 

pg =000000 

1.0 1.0 1.0 1.0 1.0 1.0 

where 
r12 1 

pg IR/ pg 1iw 

The values above are representative of a more comprehensive study which 

was carried out. Five values of'ß less than 180 0 
were chosen and only 

one for ß greater than 180 0 because, in general, a bearing would not be 

designed with an axial groove at an angle greater than 180° before the 

loadline (a typical groove position would range from 90 0 to 180 0 before 

the loadline). Also the model described in section 4.1 is more accurate 

when ß is less than 1800. 

A non-dimensional supply pressure of 1.0 was chosen because it 

represents a compromise between the need to choose a value large 

enough to affect the bearing performance, but not be unrealistic. 

For a bearing with: 

i 
c) 

= 0.002, u=0.004 Pa. s. and w- 250 rad/sec (= 2,500rpm) 

a non-dimensional supply pressure of 1.0 corresponds to an actual supply 

pressure of 2.5 atmospheres (approximately). In practice the supply 

pressure is usually small compared with the hydrodynamic pressure 

generated in the bearing. Figure 4.4 shows a pressure profile for 

90 0 pg = 0, es=0.6. The profile shows a maximum value for the 

pressure of 5.0. Thus, in this case, supplying oil to the bearing at 

a pressure of 1.0 would represent roughly 20% of the maximum hydro- 

dynamic pressure. 
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Figure 4.4. Theoretical steady state Pressure distribution for the 

axial groove bearing. Groove nosition 900 before the loadline. 
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Curves are presented of: 

i) the film extent (02s - Ols) in Figure 4.5 

ii) stability borderlines in Figure 4.6 

iii) whirl frequency ratios in Figure 4.7 

Tables of values for the steady state data and the eight velocity and 

displacement coefficients are given in Appendix II. 

Discussion. 

i) It is evident from Figure 4.6 that the groove position has an important 

effect on the stability of the journal, both charts showing the same 

trends. As ß is increased from 30 0 to 90 0 the stability of the system 

increases for all eccentricity ratios. For $ greater than 900 (up to 

180°) there is a decrease in stability for low eccentricity ratios, whilst 

an increase for higher values. The reason for this decrease in stability 

is to be found in the film extent which increases as ß varies from 30 0 

to 1800 (Figure 4.5). Thus the cavity extent is contracting over the 

range 30 0<ß< 180 0 
and since no cavity means complete instability%it 

may be anticipated that this will adversely effect the stability of the 

journal. It is interesting to note in this respect, that a groove position 

of 30° before the loadline is the least stable over a full range of 

eccentricity ratios and is also the position which has the largest cavity. 

It would appear, therefore, that too much cavitation can also adversely 

affect the stability of the system. 

With the exception of the case ß- 2700 all the curves indicate that 

above a specific value of the eccentricity ratio the journal will 

operate in a stable -manner for all values of v (the value ranges from 

0.76 for ß= 1800 to 0.94 for $= 300). The stability borderline for 

ß= 2700 does not follow the same pattern as the other curves. At low 

eccentricities it is1 in fact1the most stable, but it becomes less stable 

as Es increases. Since most bearings operate at moderate to high eccentricity 

ratios this is one explanation of why bearings are not normally designed 
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with an axial groove in this region. 

The stability charts may be used when designing the bearing to select 

the groove position which will optimise the stability of the journal (and 

hence minimise vibrational problems). The optimum groove position depends 

on both the supply pressure and the journal eccentricity (and thus on 

the operating speed range of the bearing). Over a range of eccentricities, 

a groove position of 900 before the loadline would appear to be the most 

suitable, increasing to 1800 for higher eccentricities. From a vibrational 

viewpoint a groove position of around 300 (or less) before'the loadline is 

unsuitable. 

ii) The oil supply pressure is also a factor which influences the 

vibrational behaviour of the journal (Figure 4.6(a) and 4.6(b)). Apart 

from one case it was always found that increasing the oil supply pressure 

was a destabilising factor, the exception being for ß= 2700, where the 

stability was slightly increased for es > 0.5. Figure 4.5 shows that 

the film extent is increased by raising the supply pressure implying 

a correspondence decrease in the cavity extent. Not surprisingly the 

effect of the supply pressure is most pronounced for small values of c 
s 

when the supply pressure is comparable to or greater than the hydro- 

dynamic pressure. 

The results regarding the effect of oil supply pressure are at 

variance with a number of experimental observations where it has been 

found that increasing the oil supply pressure reduced whirling (eg. 

Pinkus (1956), Holmes (1963)). The grooving atrangements in these 

experiments were more complicated than in the model described here. 

The argument that increasing the oil pressure reduces the cavitation 

region and hence makes the journal less stable does seem to be a 

reasonable one. The apparent discrepancy between theoretical prediction 

and experimental observation is worthy of further investigation. 

iii) Curves of the critical whirl frequency ratio are shown in Figure 
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4.7. For ß= 300 the ratio may be as high as 0.9, but for the remaining 

values of ß(> 60°) the ratio is less than 0.6. The ratio is increased 

slightly by raising the oil supply pressure. 

iv) The steady state data and the eight velocity and displacement co- 

efficients for the axial groove bearing may be found in Appendix II 

(Tables II. 1 - 11.12). The displacement coefficient K 
yY 

is negative 

for low values of cs (apart from the case ß= 270 °). This is due to a 

combination of oil film behaviour during journal vibration and use of 

Reynolds' condition at film rupture (as shown in Chapter 3). For all 

the cases studied with ß< 180 0 the cross term velocity coefficients 

Bxy and Byx were found to be identical. The boundary conditions used 

for 8= 270° do not yield equal values for these coefficients (as 

discussed in Chapter 3). 

4.3 DISCUSSION OF THE MODEL. 

The model of the axial groove journal bearing presented in this 

Chapter is, like any mathematical model, based upon a number of assump- 

tions. It is important, not only to be aware of these assumptions, but 

of their limitations when compared with the real situation. The main area 

for discussion centres around the boundary conditions which have been 

used to model the lubricating film in the bearing. Cavitation is a phen- 

omenon which has been extensively studied with the result that numerous 

models have been proposed to explain the different features which have 

emerged (a thorough account of the history of modelling cavitation is 

given by Dowson and Taylor (1979)). The purpose of this section is to 

highlight the deficiences of the model presented in this Chapter and to 

discuss briefly some alternative models. 

Film Rupture. 

In this work the Reynolds condition was used to locate the film 

rupture position (provided the groove was not located there). The 

deficiency of the Reynolds condition lies in its inability to predict 



113 

the frequently observed subambient pressure loop immediately upstream 

of the cavitating region (Dowson (1957)). 

Such observations led to the idea that flow separation may play 

a role in film rupture (Hopkins (1957), Birkhoff and Hays (1963)). In 

such a model the cavity is assumed to form where fluid separates from 

the stationary surface ie. where the velocity and tangential stress 

are both zero (Figure 4.8). Translating this into a condition on 

pressure gradient yields, 

dX 
- 2u U 

at rupture (4.4) 
h? 

c 

for the two dimensional situation (hc is the gap thickness at rupture). 

Thus, the pressure gradient is positive at rupture, and this, together 

with the assumption of zero pressure, implies that subambient pressures 

exist immediately upstream of the separation position (Figure 4.9). 

The separation model assumes that a considerable proportion of the 

lubricant will be carried away over the cavitating region by the moving 

surface (Figure 4.8). The reverse flow region that develops downstream 

of the separation point indicates a mechanism whereby gas bubbles may be 

directed to form a cavity. This simple explanation of cavitation relies 

on the questionable assumption that, the introduction of a cavity, which 

extends upstream to the separation point, does not effect where the 

fluid film separates from the stationary surface. The cavity is assumed 

to form at the separation point and thus if there is no separation 

there is no cavity (separation does not occur in journal bearings for 

eccentricity ratios below 0.3). 

Coyne and Elrod (1970,1971) have developed the separation model 

in a detailed,, two dimensional analysis of the cavity - fluid interface 

when a thin viscous film separates from a stationary surface and is 

swept away by the moving surface (Figure 4.10). Comparing flow rates 

in the x- direction just upstream of rupture and far downstream where 
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Separation point (u = du/dy - 0) 

Figure 4.8. Separation from a stationary surface. 
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0 

Figure 4.9. Pressure profile using a separation model. 
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Figure 4.10. Separation with a linuid-gas interface. 
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a uniform fluid film of thickness h, is formed leads to the following con- 

dition on pressure at rupture: 

h P= 611 Ui-2 co (4.5) 
dx h2h 

cc 

A condition on pressure gradient was also derived, namely that: 

T+ AP (4.6) ý R1 

where R1 is the radius of curvature of the free film at the separation point, 

T is the surface tension between the lubricant and the air and AP represents 

the pressure change across the transition region from the lubrication type 

flow just upstream of the cavity. 

Coyne and Elrod were also able to determine the ratio h,, /hc and Rl/ham as functions 

of the surface tension parameter pU/T, the importance of which had been 

demonstrated previously by Bretherton (1960) and Taylor (1963). 

Smith (1975) obtained very good theoretical / experimental agree- 

ment using the Coyne and Elrod rupture boundary condition for the cylinder- 

plane geometry. However, Smith (1975) and Savage (1977) have both shown 

that the Coyne and Elrod model is not strictly applicable to loaded 

journal bearings. The reason for this lies in the nature of the cavity - 

fluid interface which has frequently been observed to consist of "sharp- 

pointed"fingers separated by fluid. Such an interface does not fullfil 

the requirements of Coyne and Elrod's theory which assumes the presence of 

a continuous cavity - fluid interface above which all the fluid flows to 

form a uniform layer. 

The Reynolds condition, while failing to predict subambient pressures, 

does assume sharp-pointed finger-like cavities (see Figure 3.8). It provides 

a reasonably accurate description of film rupture for journal bearings 

sustaining moderate to high loads (the. magnitude of the subambient pressure 

is then small compared with the superambient pressure), but not under 

conditions of light loading. Since most journal bearings operate with 
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moderate to high loads, use of the Reynolds condition is justified. 

Film Reformation. 

The assumption that the oil film build up began at the groove is less 

easy to justify. In practice and particularly where the supply pressure is 

superambient, the film will form upstream of the groove and over this region 

the lubricant pressure will rise to the supply pressure. However, the bound- 

ary condition used, namely p- pg at the groove, is simple to apply and does 

not violate flow continuity at the formation of the film (assuming the film 

to start upstream of the cavity would violate flow continuity). Also, it 

was found in Chapter 3 that the actual position of film formation did not 

significantly affect the bearing characteristics. 

Film reformation in journal bearings has not been as widely studied 

as film rupture and remains an important area for future research. Floberg 

(1975), using a continuity of flow argument, has derived the following 

boundary condition to locate the film reformation position for the three 

dimensional situation: 

;p_a 
hl) 

ax 
6uU(h2 

ax az 3z1 h2 

where h1 and h2 are the oil film thickness at rupture and at reformation 

respectively at a particular axial location. The subscript 1 indicates 

the position of film start. 

The model could therefore be improved by allowing for film reformation 

eg. by use of the above boundary condition. This would have the most effect 

when the supply pressure is superambient. It would also give a more accurate 

model when the oil film terminates at the groove (ß 2700). However, such 

an analysis would be rat'her complicated to undertake sincr_ both boundaries 

are then unknown. It would be best treated by numerical calculation using 

one of the methods described later in this Chapter. 
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Other Considerations. 

The boundary conditions which were used in this model were derived under 

steady state conditions (as is nearly all the work an film rupture and re- 

formation). The assumption that these boundary conditions remain valid 

during small amplitude vibrations is widely made. In this work the movement 

of the rupture boundary during journal vibration was included in the analysis. 

The model accounted correctly for the behaviour of the oil film. during 

journal vibration by allowing for the movement of the line connecting the 

centres of the journal and the bearing with respect to the groove position. 

Experimental Work. 

To test the theoretical predictions of the influence of groove position 

and-oil supply pressure on the vibrational characteristics of the axial 

groove journal bearing, a test rig, consisting of a rotor mounted on two 

plain journal bearings, was designed and built. The design of the rig, 

together with an account of some early testing and the problems which were 

encountered, is discussed in Appendix IV. 

4.4 COMPARISON WITH OTHER WORK AND NUMERICAL METHODS. 

Finally in this Chapter it is appropriate to compare the results obtained 

with those of other workers and to discuss briefly the numerical methods which 

are available to calculate the eight velocity and displacement coefficients 

for bearings with finite L/D ratios. 

In reality. side leakage cannot be neglected and is an important factor 

influencing the bearing performance. The long bearing approximation to the 

Reynolds equation is no longer valid and a numerical solution of the full 

equation must be sought. However, analytic solutions are important since 

they can be used to check a numerical method and it is easier to assess the 

importance of such factors as oil film behaviour and movement of the rupture 

boundary with an analytic model. 

Several numerical methods have been devised to calculate the eight bearing 
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coefficients. Three such methods are discussed briefly below, together with 

a comparison of the coefficients calculated using these methods with those 

obtained from the present work. 

i) Woodcock and Holmes (1970). 

The numerical method described by Woodcock and Holmes is based upon a 

finite difference solution of the Reynolds equation followed by numerical 

integration of the pressure field to calculate the hydrodynamic forces. The 

equation is first solved under steady state conditions at an. eccentricity 

ratio cs. The. eight coefficients are then calculated by numerical different- 

iation; for example, the journal centre is given a small displacement (ax) 

in the x-direction from equilibrium and the equation re-solved. The proc- 

edure is repeated for a displacement (-Sx)and the displacement coefficient 

K 
xx 

may then be calculated via: 

fx(xs 
K- 

xx 25x 

-S x) 

where fx(xs + 5x) is the x- component of the force at x= xs + dx, etc. 

Programs based upon this method have been developed by Craighead (1976) 

and Ruddy (198 0) to study a wide variety of bearing types. Results obtained 

for the long axial groove bearing indicate reasonable agreement with the 

results presented in the Chapter (private communication with A. V. Ruddy). 

The method calculates any movement of the rupture boundary which may 

occur when the journal is displaced from equilibrium (the Reynolds condit- 

ion is normally used). Any variation of the line of centres with respect to 

the groove position is automatically considered (and hence its importance 

remains unnoticed). The method always gives BXy # Byx, the difference being 

, most pronounced at low eccentricities. It is generally felt that the reason 

for this is the movement of the rupture boundary which is included in the 

method. This is incorrect however, since the analysis described in this 

+dx) -f (x 
xs 

Chanter perturbs the rupture boundary (A2 +0 ls + 602), but still yields 
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BXY = Byx. It is interesting to note that experimental work does not give 

equal values for these coefficients (private communication with G. E. C. ). 

The method is fairly lengthy in computing time in comparison with 

method 3 and suffers from the inherent inaccuracies of numerical differen- 

tiation (which is one possible explanation of why Bxy I Byx). 

ii) Lundholm (1969,1971,1973). 

Lundholm (1969,1971,1973) has made a complete study of both the axial 

groove journal bearing and the circumferential groove bearing for a range 

of L/D ratios. For the axial groove bearing the boundary conditions used 

by Lundholm were: 

p=0 and ä==0 e (4.8) 

at film fupture (provided the groove is not located there). Equation (4.8) 

represents the generalisation of the Reynolds condition to the three 

dimensional situation. The start of the oil film was assumed to be at the 

groove or downstream of it. Lundholm found that if the angle between the 

groove and the loadline was less than 900 the film start was always at the 

groove. However, if it was greater than 900 the same assumption caused 

negative pressures to be generated in a limited region after the groove. 

The formation of the film was then located from a continuity condition sim- 

ilar to Floberg's condition for film reformation (equation 4.7), which 

gives at a particular z location: 

3 Uh3 

- 

Uhl hl 1-R äA 
22 12u Rae 8z 8z 

(4.9) 
8=el 

where subscript 1 indicates the position of film start and 3 the groove. 

The above conditions apply to finite bearings. For the long bearing 

Lundholm found that this problem did not arise. The film was assumed to 

start at the groove (or end at it). Lundholm did not discuss clearly the 

boundary conditions for the situation in which the film ended at the groove 
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(eg. B= 2700). Apart from this cases the boundary conditions used by Lund- 

holm are identical to those described in this Chapter and thus a direct 

comparison of the results can be made. 

The technique used by Lundholm to calculate the velocity and displacement 

coefficients is a mixed method which utilises both finite difference solutions 

to the Reynolds equation and information deduced from the steady state 

characteristics. The equation is first solved under steady state conditions 

from which the attitude - eccentricity curve is deduced. The four displacement 

coefficients are then expressed as functions of the load capacity and attitude 

characteristics. Two of the velocity coefficients Bxy and Byy are calculated 

similarly, with the remaining two coefficients calculated by solving the 

Reynolds equation with the squeeze film terms included. 

Table 4.2 compares results obtained from this Chapter with Lundholm's 

results for a long bearing with $- 900, pg =0 (Lundholm did not consider 

the effect of oil supply pressure). The first column is taken from"Lund- 

holm's work in 1971. It can be seen that the steady state data (S, 0s) and 

the four velocity coefficients are in good agreement for the two methods. 

The four displacement coefficients, however, do not agree. Part of the reason 

for this is that Lundholm's original work (1971) did not include the variation 

of the line of centres with respect to the groove position during journal 

vibration. Lundholm (1973) has subsequently corrected for this error and the 

results obtained with the more accurate theory are shown in column 2 of 

Table 4.2. There is then good agreement with the results of the Chapter, 

although it is unclear why, in Lundholm's corrected work, all four displace- 

ment coefficients are altered instead of just the two coefficients K and 
Xy 

Kyy (as discussed in Chapter 3). Comparing Lundholm's work in 1971 and 

1973 shows that there are considerable differences in the stability charact- 

eristics for the same values of ß and es - the more accurate theory predicting 

the bearing to be less stable. Surprisingly Lundholm does not comment on this 

difference. 
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iii) Lund and Thomsen (1978). 

Lund and Thomsen (1978) have devised a numerical method for calculating 

the velocity and displacement coefficients based upon a first order expansion 

of the full Reynolds equation. 

äe 
ýR3 

+ R2 
äz h3 äz 

= 6u 
(. )2_c(1_2)sine 

+ 2e1cos9 (4.10) 

The linearisation is carried out before integrating (instead of after). 

During a small amplitude vibration of the journal about its equilibrium 

position, the journal centre has co-ordinates (x, y) or (d, esy) - see Figure 

4.11. The film thickness h may be written: 

h1 +ccos9 = (1+cscose') + cos61dx + sin616y (4.11) 

hs + cos816x + sin916y 

In the above expression 0, the angular co-ordinate, is replaced by 61 -y 

ie. the analysis is based upon the angular co-ordinate measured from the 

equilibrium position of the line of centres (Figure 4.11). This is done to 

introduce ay term into the equations. Its importance in relation to boundary 

conditions is discussed later. 

Ac. Journal centre in equilibrium 

za1 centre during vibration 

I 
V 

J1 (x y 

Xl 

Figure 4.11. Co-ordinate system used in perturbing the Reynolds equation. 
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A-first order expansion of the pressure may be written as: 

p= PS + pxx + pyy + p*k + per (4.12) 

Substituting equations (4.11) and (4.12) into (4.10) and retaining only first 

order terms yields five equations: 

p 
s 

p 
x 

3a+ R2 
a3a py 

ael s ael az s DZ pi 

p 

2 
- 6u (-) essin91 

- 6u 
(R ) 

sinel -3a h2cose1 
aps 

`ý ael s aeý 
ap 

611 
(.. )2 

cose 1-3a h2sine1 S 
c ae' s ael 

2 
121 

("") 
cos91 

(R)2 
12p sine1 

The boundary conditions are: 

at z=0, L 

91 = Al p =0 => Ps =pX=py=p*=pß -0 

61 = 91 
2 

(4.13) 

(4.14) 

where z=0, L are the bearing edges, 91 = Ai the film start (assumed to be at 

a groove, or the line of maximum film thickness), and 91 = 01 the film rupture 

position. In the three dimensional case the film rupture position at 61 = 012 

is a function of z and the boundary curve is located by the condition that, 

in addition to the pressure being zero along the curve, the pressure gradient 

normal to the curve is also zero: 
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ate' =92 (z): p=2-2=0 => p=ae =ä=0 (4.15) 

The boundary curve is determined by an iterative procedure when solving for 

the static pressure ps. Under dynamic conditions a point on the curve 

(81, z) moves to a new position (81 + 08; 'z + Az) and requiring the pressure ssss 

to be zero on the new boundary yields: 

p(e2, z2) =0= p(e2s, z2s) + eel + 
22 Az (4.16) 

ae2 aZ 
Writing equation (4.12) as p= ps + ep and substituting into equation (4.16) 

yields: 

Az (4.17) 
ap s pP(e2, 

zs) =0= Ps(92s, z25) + AP(O 5, z2s) + 
ae 

lie, + 
aaýZ-S)s 

from which it follows that Ap(95, zs) =0 because Ps and its gradients are 

zero on the original boundary curve. Hence, the boundary conditions at the 

film rupture are: 

at e1 = 61 (z) p= 
aps 

= 
aps 

=0 (4.18) 
2s ae az 

pX=py =pk=pß =o 

With the given boundary conditions, the five equations (4.13) may be 

solved numerically by the finite difference method. The pressures are then 

integrated numerically over the film domain to obtain the static forces and 

the eight linear coefficients. 

zl 
eg. K_ -of el 

je 2 
pX coseldeldz (4.19) 

This method has several advantages over the one devised by Woodcock and 

Holmes (1969-70). Less computing time is involved since equations (4.13) 

are basically similar, differing only in their right hand sides. It is also 

a more accurate method since it does not rely on numerical differentiation. 

Results published by Lund and Thomsen (1978) for a variety of bearing types 

and grooving arrangements always show that B 
Xy 

-B 
yx . Unfortunately they did 
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not publish results for the axial groove bearing. However, by making the long 

bearing approximation to equations (4.13) they may be integrated analytically 

to determine the eight coefficients. Results obtained using this alternative 

method were found to be identical with the results given in this Chapter. 

As a means of simply obtaining the linear coefficients this method has 

much to recommend it. The boundary conditions are easier to apply since the 

pressure field is written as a first order expansion, with the static pressure 

chosen to satisfy: 

ps =0 at 81 = Bis. ps = 
dps 

=0 at 81 = 01 (4.20) 
d81 

The perturbed pressures are then superimposed on the static boundary 

eg. pX =0 at e' = eis and at 01 = Als (4.21) 

In the scheme described in this Chapter and the previous one, the full 

boundary conditions were applied to the pressure "en bloc" which then required 

movement of the rupture boundary during vibration (A2 4 Als + so2). The 

intention in this work was to derive the full nonlinear equations and then 

linearise. In the end the two methods are equivalent since they give 

identical results. 

In Lund and Thomsen's method the angular co-ordinate 91 is measured from 

the equilibrium position of the line of centres. Thus, there is no variation 

of the angular co-ordinate with respect to the groove position to account 

for during vibration. To elucidate this point note that if the equations are 

solved for a half film model with: 

p=0at01 =0, n (4.22) 

the results obtained are identical with those of the static half film model 

discussed in Chapter 3. The method is therefore well suited to examine bearings 

with grooves and static films. To model an oscillating film the boundary 

conditions would have to include ay variation eg. the appropriate boundary 
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conditions for the oscillating half film are: 

p0 at 91 - Y, it +Y (4.23) 

4.5 CONCLUSIONS. 

i) A detailed analysis of the axial groove bearing (neglecting side leakage) 

has been made in which careful consideration has been given to the approp- 

riate boundary conditions which are applicable at both film reformation and 

rupture. The analysis accounts correctly for the behaviour of the oil film 

during vibration. 

ii) The location of the axial groove is an important factor influencing the 

vibrational characteristics of the bearing. By selecting the optimum groove 

position it is possible to raise the threshold speed, thus minimising the 

threat of 'vibrational problems. 

iii) Increasing the oil supply pressure contracts the cavitation region and 

has a destabilising effect by lowering the threshold speed. 

iv) The numerical methods used to calculate the velocity and displacement 

coefficients for finite bearings give reasonable results for the long 

bearing when compared with the results given in this Chapter. There appears 

to be, however, a lack of clarity in the assumptions made about boundary 

conditions and oil film behaviour during vibration. This arises because the 

importance of these assumptions is not fully appreciated. 
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PART 2. 

THE APPLICATION OF NONLINEAR TECHNIQUES TO EXAMINE THE PHENOMENON 

OF OIL WHIRL IN FLUID FILM JOURNAL BEARINGS. 
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INTRODUCTION TO PART 2. 

Linear stability theory provides information about the instability 

threshold which is conveniently displayed on a stability chart. It is 

easily deduced from the stability chart whether the bearing will operate 

stably, or unstably, at a particular rotor speed. However, it is import- 

ant to remember that linear stability theory is valid only when the 

Journal is close to its equilibrium position. Above the threshold speed 

the journal is unstable and will spiral away from its equilibrium 

position. Under these conditions, linear analysis cannot describe the 

motion of the journal for very long, since nonlinear effects must, at 

some stage, become important. Therefore, an investigation of the full 

nonlinear equations of motion is necessary to determine the complete 

motion of the journal. This is carried out in Part 2, where the follow- 

ing nonlinear techniques are employed to solve the equations of motion: 

i) bifurcation theory 

ii) multiple scaling 

iii) the method of averaging 

iv) numerical integration. 

These techniques are used to establish various features of the equations 

and, in particular, to examine the structure of periodic solutions for 

rotor speeds close to the threshold speed. Results obtained from the 

different techniques are contrasted and an assessment is made of how 

suitable these methods are for examining the phenomenon of oil whirl 

in fluid film journal bearings. 
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CHAPTER 5 

HOPF BIFURCATION THEORY APPLIED TO THE EQUATIONS GOVERNING OIL WHIRL 

IN FLUID FILM JOURNAL BEARINGS. 
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In this Chapter, Hopf bifurcation theory is used to establish 

rigorously the existence of small amplitude periodic solutions of 

the equations governing the motion of a rotor supported in fluid film 

journal bearings. It is shown that two different types of bifurcation 

may occur: - supercritical bifurcation in which a stable periodic orbit 

bifurcates from the steady state equilibrium position for rotor speeds 

just in excess of the threshold speed, or subcritical bifurcation 

in which an unstable periodic orbit bifurcates from the equilibrium 

position for rotor speeds just below the threshold speed. The type 

of bifurcation which occurs depends upon the region of parameter space 

in which the rotor is operating - both types cannot occur simultaneously. 

A numerical investigation supports the findings of the analytic 

results and in addition makesit possible to pursue the development 

of the whirl orbit as the rotor speed is altered. This combined analytic 

and numerical approach establishes that the onset of oil whirl is 

a bifurcation phenomenon and identifies several features of oil whirl 

which have not been previously observed. 

5.1 HOPF BIFURCATION THEORY. 

Hopf bifurcation theory is concerned with the bifurcation of 

periodic orbits from the equilibrium points of a real n-dimensional 

first order system of ordinary differential equations (O. D. E. ) as a 

parameter crosses a critical value. Consider the differential equation: 

dxF (x, v) 
dt 

(5.1) 

which is a real n-dimensional autonomous first order system of O. D. E. 

(n > 2). v is a real parameter. Assume that: 

i) x= av is an equilibrium point of equation (5.1) (<=> F(a; v)= 0). 

ii) the Jacobean matrix Fx (a; 0) has exactly two non-zero purely imaginary 
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eigenvalues ±i2o(1o>0) and (n-2) eigenvalues with non-zero real parts. 

iii) F is analytic in a neighbourhood of (x, v) = (ao0). 

iv) (da/dv) 
(aoo) 

# 0, where. a(v)+i12(v) denotes that eigenvalue of 

F (a, v) which is a continuous extension of +i12 . 

Under these conditions Hopf (1942) proved that a nonconstant periodic 

orbit bifurcates from (x, v) = (ao, 0). Hopf also supplied a uniqueness 

theorem and information regarding stability. Besides the smoothness 

assumptions on F(x, v) the essential requirements in this theorem are 

those on the eigenvalues of the matrix F (a°, 0) and the non-zero derivative 
-x - 

of the real part of the eigenvalue a(v)+iS2(v) at v=0. In applications, 

these requirements are often satisfied when there-is an exchange in the 

stability of an equilibrium point as two complex conjugate eigenvalues 

cross the imaginary axes. 

Although it is fairly straightforward to establish the existence 

of a Hopf bifurcation in concrete examples, (which essentially requires 

an analysis of the eigenvalues of the linearised system of equations), 

a major difficulty with the theory lies in determining the direction 

of bifurcation (ie. v<0, or v> 0) and the stability of the periodic 

orbit. 

In Hopf's original approach the determination of the direction 

of bifurcation and the stability of the orbit for concrete examples 

is possible, but difficult. Subsequently several authors have sought 
U 

to simplify the calculation (Friedrichs (1965), Hsu and Kazarinoff (1976), 

Marsden and McCracken (1976)). Most of the available methods require a 

transformation of the equations by introducing new variables. For 

equations in which n>3 and with several nonlinear terms these 

transformations become extremely complicated. Poore (1976) has removed 

many of these difficulties by deriving algebraic criteria which are 

sufficient to determine the direction of bifurcation and the stability 

of the periodic orbit. It is this aspect of Poore's work which is of 
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primary importance here and therefore it is valuable to present the 

essential features of his work. 

Consider again the differential equation (5.1). Poore makes the 

following change of variables: 

=v xä+ uZ t= i1+un)s 

v= US (u) vBv = Av - A° 

F iav+UZýv) =UÄ Z, +112Q ( 'u. v) 

AY =F (av, v) 

B° dA (5.2) 

�=0 
c(X, u, aýn)=BBUaX+nAU6Y+(1+un(u))Q 

which transforms equation (5.1) to: 

d (5.3) 
ds 

The purpose of the change in variables is to reduce the problem 

of periodic solutions of equation (5.1) to a perturbation problem in 

u in equation (5.3). At u=0 equation (5.3) has two linearly independent 

2n/no periodic solutions corresponding to the eigenvalues ±in° of the 

matrix A. The various parameters are introduced for the following ° 

reasons: 

i) u is a measure of the amplitude of the periodic orbit (x=a"+-ij). 

In general the bifurcated periodic orbit will not be differentiable in 

v at v=0, but will be differentiable in u at u=0. 

ii) 6 in v= p5(i) is used to determine the relationship between v and 

u" 

iii) n in the time scale is introduced to account for the change in 

the period of oscillation in t as p varies. 

p is the independent small parameter thoughout with n and d to be 

determined. The statement of the existence theorem proved by Poore 

is contained in theorem 1. 
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Theorem 1 

Referring to the differential equation (5.1) assume that: 

i) x= av is an equilibrium point of the equation. 

ii) the Jacobean matrix F(a°, 0) has exactly two non-zero purely imag- 

inary eigenvalues ±iS2o(i2°>0) and (n-2) eigenvalues with non-zero real 

parts. 

iii) F(x, v) E Ck (Dx(-vo, vo)), k. 3. D is a domain in Rn containing 

ä; 
and 'v > 0. 

iv) the derivative al(0) = (da/dv)V 0, where a(v)+iQ(v) denotes the 

eigenvalue of A which is a continuous extension of the eigenvalue +iSto. 

For any fixed integer p'I define T= 2Trp/00 and RT to be the Banach 

space of all T- periodic continuous vector functions which map R1 to 

Rn with the norm IIYII = sup (IZ(s)I :0<s<V. 

Then, for some sufficiently small ul > 0,3 real-valued functions 

601). n(U) e Ck-2 (-p1, u1) and y(s, p) E RT such that: 

6 (0) =n (0) =0 and 

x(t, p) = a'j(u)+uy(s, u) is a (l+i (u))T - periodic solution of equation 

(5.1) for v(u) = ud(u). 

If d= 661) and n= n 6l) in equation (5.3)., then Y(s, p) is aT- 
k-2 

periodic solution of equation (5.3) with y(s, p) 6C (-u1'111)) 

uniformly in s. 

It is now possible to discuss the significance of the functions 

n(u) and 6 (u): 

i)* Since v= yd(u) = u2al(0) + 0(u3) as p+0 the bifurcated periodic 

orbit exists for (x, p) in a sufficiently small neighbourhood of (ä 
, 0) 

only for v>0 if dl (0) > 0; or only for v<0 if dl(0) < 0. 

Therefore the sign of 6 l(0) 
determines the direction of bifurcation 

(provided 61(0) it 0). 

ii) The period of oscillation of the periodic solution x(t, u) is: 
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T(1+un(u)) = p2n (1+u2n1(0)+O(u3)) as u-0. n 
0 

Hence the period increases, or decreases from T= 27p/c 
0 

according to 

the sign of nl(0). 

Poore discusses the stability of the bifurcated periodic orbit 

and shows that this depends upon the sign of the quantity al(0)d1(0) 

and the remaining (n-2) eigenvalues of the matrix Ao. The result is 

contained in theorem 2. 

Theorem 2 

If al(0)di(0) >0 and the remaining (n-2) eigenvalues of the matrix 

Ao have negative real parts the bifurcated. periodic orbit will be 

asymptotically orbitally stable. However, if al(0)d1(0) < 0, or any 

of the remaining eigenvalues has a positive real part, the orbit will 

be unstable. 

Having established the importance of the quantities 51(0), 

al(0)d1(0) and n1(0) Poore derives algebraic expressions for these 

quantities. The result is contained in theorem 3. 

Thun-ram i 

Let F(x, v) satisfy all the conditions of theorem 1 and let u and 

v denote left and right eigenvectors respectively for the eigenvalue 

+iQ of the matrix A°. If u and v are normalised by the requirement 

v=1 then: 

al (0)dl (0)+i(c21(0)dl (0)+cö 1(0)) (5.4) 

3F R-2R2r_ 

" k2 u! C ax a ax vjvkvn+ 2uZ 
ax a vj(Ao-1)kr ax ax vp"q 

pJpq 

a2F R-2r 
+uv ((Ao-2icý I)-1 

aFvv 

9, axj axk j o- kr axpaxq pq 



135 

where a1(0)+ic21(0) denotes the derivative of the complex eigenvalue 

a(v)+ifl(v) at v=0, the partial derivatives a2FR/axjaxk etc. 

(R, j, k = 1,2,.... n) are evaluated at x=äv=0, (A°_1)kr denotes the 

element in the kth row and the rth column of A°-1, vj denotes the complex 

conjugate of v., k2 is a positive constant and repeated indices within 

each term imply a sum from 1 to n. Equation (5.4) represents two real 

equations for 61(0) and nl(0). Since k2 is a positive constant the sign 

of the real and imaginary parts of the right hand side of equation (5.4) 

are independent of the value of k2. 

Note 

i) Provided F is analytic in a neighbourhood of (x, v) = (ä 
, 0) the 

periodic solutions of equation (5.1) occur in a sufficiently small 

neighbourhood of (a°, 0) for one, and only one of three cases: 

v<0, v=0orv>0 

This result is stated by Poore and contained in a uniqueness theorem 

proved by Hopf. Thus only one-sided bifurcation can occur. The situation 

in which the periodic solutions exist only for v identically equal to 

zero is a rather special case characterised by the function 5(p) being 

identically equal to zero. 

ii) If S 
(0) Ar 0 the relationship between v and u is given by: 

v= j261 (0) as 11 -0 

Hence the amplitude of the periodic solution is proportional to: 

IVI1/2 as v -ý- 0. 

iii) Poore has reduced the calculation of the existence, the stability 

and the direction of bifurcation to an algebraic problem (provided 

51(0) * 0). The algebraic criteria derived by Poore do not require 

F(x, v) to be in any special form, nor is it necessary to transform the 
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equations to new variables. In applications to concrete examples this 

is a considerable advantage. 

The situation may be summarised by assuming that at v=0 the re- 

maining (n-2) eigenvalues of the matrix F have negative real parts 
I 

and the derivative (da/dv)v=o > 0. Discounting the special case in 

which the bifurcated periodic orbit exists only for v- 0ýthe two 

possibilities which can occur are illustrated in Figure 5.1. If 

61(0) <0 bifurcation occurs for v<0 (subcritical bifurcation), whereas 

if 61(0) >0 bifurcation occurs for v>0 (supercritical bifurcation). 

In each case the stability of the bifurcated periodic orbit is deduced 

from theorem 2,, which shows subcritical bifurcation to be unstable 

(Figure 5.1(i)), and supercritical bifurcation to be stable (Figure 

5.1(ii)). 

Amplitude 

Unstable 

periodic 
orbit 

Stable equilibrium Unstable 

solution equilibrium 
solution 

v 

5.1(i) Subcritical (61(0)<O, v<O) 

Amplitude 

V 

ii) Supercritical (61(0)>O, v>O) 

Figure 5.1. Bifurcation diagrams (for the case al(0)>O) 

5.2 THE APPLICATION OF BIFURCATION THEORY TO THE EQUATIONS GOVERNING 

OIL WHIRL. 

Stable 
periodic 
orbit 

The purpose of this section is to: 
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i) establish the existence of a Hopf bifurcation to equations which 

model oil whirl in a simple rotor-bearing system and hence to prove 

the existence of small amplitude periodic solutions to the equations. 

ii) determine the direction of bifurcation and the stability of the 

bifurcated periodic orbit. 

iii) determine whether or not the period increases, or decreases from 

its value at u=0 (27p/n0 ). 

The model used for this investigation is the same as that used 

throughout this thesis -a rigid, symmetric rotor mounted in two identical 

plain. cylindrical, journal bearings. The type of whirling considered 

is cylindrical whirling in which the two ends of the rotor remain in 

phase. It is sufficient, thereforeop to consider only one bearing, which 

then carries a load equal to half the weight of the rotor. With the 

rotor mass equal to 2m and the journal centre having displacements 

(X1, Y1) (Figure 5.2), the equations of motion of the journal centre are: 

m d2X1 
_ 

FX(X', Y1, dX'', dY1, S). m d2Y1 
= 

FY(X1, Y1dX1, dY1, S) (5.5) 

dt2 dt dt dt2 dt dt 

where S= 
LR3wu 

the Sommerfeld number. 
Feg 

The forces Fx and FY consist of the hydrodynamic forces generated 

in the bearing together with the applied load F (Figure 5.2). In general 

these forces are nonlinear in the four arguments X1'Y19Xl'Y1. The 

equations may be non-dimensionalised by writing: 

wt x 
Xl 

Y= Y1 W_ 
1/2w FX_ FX pF (EFC) 

SF SF 

which yields the non-dimensional form of the equations of motion: 

XSP (X, Y, 
X, Y, 

S) Y_ S FY(X, Y, 
X, Y, 

S) 
W2 W2 

(5.6) 

(5.7) 
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Xi 

0= Bearing centre 

A= Journal centre 

FY 

Figure 5.2. The Cartesian co-ordinate system. 
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Note 

i) The equations of motion have been written in terms of a fixed Cartesian 

co-ordinate system (Figure 5.2), rather than in polar co-ordinates 

(e, ý), which were used extensively in Part 1. There are a number of 

reasons for switching to a Cartesian system, the main one being that 

both equations now have a similar form. This symmetry in the equations 

makes the theory easier to apply. 

ii) The stability parameter v= F/mcw2 used throughout part 1 is re- 

placed by w the normalised rotor speed (w - 1/ v /2). 
The reasons for 

doing this will become apparent later in this Chapter. 

., 
polar co-ordinates (c, 4) are In solving the Reynolds equation 

used and the hydrodynamic forces are calculated as a radial and a tan- 

gential component as functions of e, 
e, 

o, 
o. 

Therefore, it is necessary 

to transform these expressions to Cartesian components and to express 
1I 

e, 
e, 

4,4 in terms of X, Y, X, Y. Referring to Figure 5.2: 

FX f Frcosq - Ftsinq FY 
rsin¢ 

t Ftcos4 (5.8) 
S 

With the origin of the X-Y co-ordinate system located at the bearing 

centre 0,, the relationship between the polar-and the Cartesian co- 

ordinates are: 

X= ecos+ Y- csin4 (5.9) 

The transformation is discussed more fully in Appendix III, where, for 

example, it is shown how to calculate the force derivatives aFXA X etc. 

The transformation, together with equation (5.8) define the force com- 

-onents Fx and FY as functions of X, Y, X, Y. Since Fr and Ft are analytic 

functions of e, 
E, ýj (for 0. e< 1) it follows that FX and FY are 

t 
analytic functions of X, Y, X, Y (for 0< X2+ y? - < 1). 

So far in this Chapter no attention has been given to the assump- 

tions which have been made. about the oil film in the bearing. It is 
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possible to discuss some general properties of the equations of motion 

(equations (5.7)) without referring explicitly to a particular model. 

At this stage it is necessary only to assume that film rupture is in- 

cluded (by using one of the models discussed in Part 1). Towards the 

end of the Chapter a simple model will be chosen to extend the theory. 

In order to apply the Hopf bifurcation theorem (theorem 1) it 

is necessary to convert equations (5.7) to a first order system of 

ordinary differential equations. Writing: 

1 
X1=X X2=X 

I 
X3=Y x4=Y (5.10) 

equations (5.7) become: 

1 
X1 =x2 
1 
X2 =S FX(X1'X2. X3, X4. S) 

w2 
dX 

X3 = X4 => = F(x, W, S) (5.11) 

FY(X1'X2X3'X4'S) X4_s 
dz 

W2 

The system of equations (5.11), which describe the motion of a journal 

supported in fluid film journal bearings, is now in a suitable form 

for the application of the Hopf bifurcation theorem, with w, the norm- 

alised rotor speed, taking on the role of the bifurcation parameter v 

in the general theory. 

Equilibrium Solutions. The steady state solution of equations(5.11) 

is governed by the value of the Sommerfeld number S. 

F(XsfW, S) =0 <_>, s= s(cs) 
2 

1ý 
1/2 

(5.12) 
(Frs+Fts) 

F 
and tangy = is (5.13) 

s 
-F rs 
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with Xls= cscosýs Xis -cs 2'- sins X2s X4s= 0 

Equation (5.12) describes the relationship between the Sommerfeld number 

and the steady state eccentricity ratio (the relationship is illustrated 

for various models in Part 1- Figure 3.2). The important 

point here is that for each value of the Sommerfeld number there is a 

unique equilibrium position. Equation (5.13) describes the locus of the 

journal centre under steady state conditions (Figure 3.3).. 

Stability of the Equilibrium Position. The stability of the equilibrium 

position is examined by calculating the Jacobean matrix of F with respect 

to X: 

0 1 0 0 

KXX - BXX K 
VIY - BF 

A(w)a 0F (X9W9S) _W 
W W 

X (5.14) 

X=X 
0 0 0 

) 
1 

- -S 
-YX -Bm I -BYY 

w2 w2 W2 w 

E af. 9 
XUX 

S --S 

-S ZFX S 8X -S öFX - S 8FX 

where Kam =-- 
ax 3 

B -- = ax4 etc. 

The eigenvalues of the matrix A(m) satisfy the familiar characteristic 

equation: 

ý4+1 (B +B )P3+1 {(K+K-ý) +1 (B B -B B )} ý2 
W2 XX YY Z2 XX YY -2 XX YY XY YX 

+1{ BXXKyy+ByyIxX BXY 
YX-BYXKXY) 

7+ 1 {K 
xx 

K 
yyKXYKYX} =0 (5.15) 

As discussed at some length in Part 1 the roots of this equation are 

examined by using Routh's criterion which leads to the condition: 

&J, < Wth (£s) for stability 
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The normalised threshold speed nth is a function only of the steady 

state eccentricity ratio. Below the threshold speed the equilibrium 

position is stable (all four eigenvalues have negative real parts). At 

the threshold speed two of the eigenvalues are purely imaginary and 

the equilibrium position is neutrally stable (Figure 5.3). Above the 

threshold speed two eigenvalues cross the imaginary axes into the right 

half plane and the equilibrium position becomes unstable. 

A large number of stability borderlines (vcrit/es=nth/2/ES) have 

been presented in Part 1 (Figures3.5 and 4.6). In general, the 

equilibrium position is always stable above an eccentricity ratio of 

approximately 0.8 (ie. wth - for cs > 0.8). Therefore, there'is a 

bifurcation point in parameter space at (cS, 
th) 

for every cs less than 

approximately 0.8. 

The critical, or threshold value of the whirl frequency ratio is 

easily calculated from the characteristic equation (see Chapter 1, 

equation (1.27)). Since the frequency is never zero for any es < 0.8 

(Figures 3.6 and 4.7), it follows that the eigenvalues which cross the 

imaginary axes at (ES'Wth) do not pass through the origin. 

The derivative (da/dw) is also required. In this calculation 
wth 

it is nesessary to consider the relationship between the parameters 

w, S and es. A change in the rotor speed w alters the Sommerfeld 

number and hence the corresponding equilibrium position. It is necessary, 

therefore, to introduce a system parameter a, independent of the rotor 

speed, which is constant for any rotor system (assuming the lubricant 

viscosity u remains constant). 

LR3 3u 
Define S= 

Fc2u 
= Qw 

(Fmc 
a= 

LRl2c2 

) 

The introduction of a system parameter, independent of 
, 
the rotor speed? 

follows the approach of Lund and Saibel (1967). Their work, which 
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concentrated exclusively on the short bearing, is discussed in Chapter 

7. The derivatives (da/dam)- and (dQ/dw)- may be calculated from 
Wth wth 

the characteristic equation for constant values of a (see Appendix III). 

It follows that (da/dw)- >0 since the equilibrium position loses its 
Wth 

stability as the rotor speed is increased through its threshold value. 

(This is the main reason for using w instead of v as the bifurcation 

parameter). To summarise, it has been shown that the system of equations 

(5.11) possess the following properties: 

i) F(X, w) is analytic in a suitable neighbourhood of (X, w) (s wth)' 

ii) a locus of equilibrium points determined by the Sommerfeld number. 

For each value of the Sommerfeld number there is a unique equilibrium 

position. 

iii) the matrix AWth has a single pair of complex conjugate, purely 

imaginary eigenvalues ±inth ( 
th>0) 

for each es less than approximately 

0.8. The remaining two eigenvalues have negative real parts. 

iv) (da/dw)- 
th 

>0 for each es<0.8. 
n 

Therefore all the conditions of theorem 1 are satisfied. The existence 

of small amplitude periodic solutions of the system at speeds close to 

the threshold speed has been proved. 

Since (da/dw)- >0 and the remaining two eigenvalues of AWth 
Wth 

have negative real parts, theorem 2 implies that stable whirl orbits 

may exist only at speeds above the threshold speed (supercritical 

bifurcation), whereas whirl orbits below the threshold speed will be 

unstable (subcritical bifurcation). 

It remains to determine: 

i) the direction of bifurcation (ie. for w< wth, or (a > wth). The 

stability of the bifurcated orbit will then follow from the comment 

made above. 

ii) whether the period increases or decreases from its value at u=0. 
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This information may be deduced by calculating the sign of the quantities 

61(0), n1(0) as discussed in section 5.1. This was achieved by using 

the algebraic formula derived by Poore (equation 5.4), which required 

the calculation of the following: 

i) the left and right eigenvectors u and v for the eigenvalue +iQth 

of Auth. 

ii) the second and third order partial derivatives of F 

(le. ; 2F 
9 

a. 3Ft 
s lsJ rkýý " 1ý2ý3,4). 

ax ý a. xk a Xia. Xi a. 

iii) the inverse of the matrices A'th and (AAth _2i? ). 

In order to carry out the calculation it was necessary to take a 

specific model. In theory any of the models discussed in Part 1 could 

have been used. However, the calculation is a lengthy and unpleasant 

one even for the simplest of models, the two major difficulties being 

the length of the calculation and the determination of the second and 

third order partial derivatives of F. For this reason the calculation 

was performed only for a simple model -a long bearing operating with 

an oscillating half film (as discussed in Chapter 3, section 3.1). 

The hydrodynamic forces for this model are: 

12c2(1-20) + 6(ir2(2#E2)-l6)e (5.16) - Fri 
(2+e? ) (l-e2) 7r (2+E2) (l-s2)3 2 

6, re (1-2ý) 24ee Ft = 
(2fe2) (1-e2)1 2+ (2+e2) (1-e2) 

The relationship between the Sommerfeld number and es is given by: 

(2+c2)(1-c2) 
$(e }a Qmm 

s 6c {n2(1-e2)+4e2}1 2 
sss 

(5.17) 

and the locus of the journal centre under steady state conditions is: 



146 

n(l-e)1/2 
tans= -S 

s 
(5.18) 

The stability borderline (wth/es) for this model is shown in Figure 

5.4, together with a series of operating curves for different values 

of the system parameter a. Each curve illustrates the relationship 

between the rotor speed and the corresponding unique equilibrium 

position. The derivatives (da/dw)- and (dQ/dw)- were calculated 
Wth Wth 

for constant values of a and are given in Table 5.1 (details of the 

calculation may be found in Appendix III). 

Having specified the model, it was possible to calculate all the 

quantities required to use Poore's formula (equation 5.4) and hence 

determine the sign of the quantities 61(0) and n1(0). Even for this 

simple model the calculation was extremely tedious and took several 

weeks to perform. An outline of the calculation is given in Appendix 

III. 

5.3 RESULTS. 

The results of the calculation are summarised in Table 5.1. They 

are extremely interesting since they indicate that there are three 

distinct regions of parameter space to be considered (Figure 5.4). 

Region I (0 <c0.14). In this region 61(0) <0 and therefore 

subcritical bifurcation takes place (ie. for w< wth). The periodic 

orbit is unstable (theorem 2). From the uniqueness theorem proved by 

Hopf (1942) no small amplitude orbits may exist for w> wth (but there 

may be large amplitude ones). Also in this region n1(0) > 0, hence 

the period of the unstable orbit increases from. its threshold value 

(21rp/5th). 

Region II (0.15< cs < 0.74). The largest of the three regions; 

61(0) >0 and therefore supercritical bifurcation occurs (ie. for 

W> wth). The periodic orbit is stable with the period increasing from 

its threshold value (n1(0) > 0). 
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ss S Wth cth 0th) nth 1 
th 

6l(o) nl(0) a1(0)611 

0: 01 10.61 0.94 11.26 0.04 1.15 -0.0 <0 >o <0 

0.05 2.12 0.95 2.24 0.19 1.15 -0.03 <0 >0 <0 

0.10 1.06 0.95 1.11 0.35 1.14 -0.11 <0 >0 <0 

0.14 0.76 0.96 0.79 0.45 1.13 -0.19 <0 >0 <0 

0.15 0.70 0.96 0.73 0.47 1.13 -0.22 >0 >0 >0 

0.20 0.53 0.98 0.54 0.54 1.11 -0.33 >0 >0 >0 

0.30 0.35 1.03 0.34 0.55 1.07 -0.53 >0 >0 >0 

0.40 0.25 1.10 0.23 0.46 1.02 -0.62 >0 >0 >0 

0.50 0.19 1.21 0.16 0.35 0.96 -0.63 >0 >0 >0 

0.60 0.15 1.37 0.11 0.23 0.88 -0.55 >0 >0 >0 

0.70 0.11 1.73 0.07 0.10 0.72 -0.38 >0 >0 >0 

0.74 0.10 2.13 0.05 0.05 0.60 -0.26 >0 >0 >0 

0.75 0.10 2.31 0.04 0.04 0.55 -0.22 <0 <0 <0 

0.76 0.09 2.57 0.04 0.03 0.50 -0.18 <0 <0 <0 

0.77 0.09 2.98 0.03 0.02 0 443 -0.14 <0 <0 <0 

0.78 0.09 3.77 0.02 0.01 0.35 -0.09 <0 <0 <0 

0.79' 0.08 6.43 0.01 0.00 0.20 -0.03 <0 <0 <0 

al(Wth) _ (do- 51(wth) _ (dQ/dw)w ath S/wth 
Wth th 

o) 

Table 5.1. Results obtained from bifurcation theory. 
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Region III (0.75, < cs < 0.795). Similar to region I. Subcritical 

bifurcation takes place and the resulting periodic orbits are unstable 

(6 l(0) 
< 0). The period decreases from its threshold value since 

n1 (o) < o. 

Thus, for the particular model investigated, the direction of 

bifurcation depends upon the region of parameter space (cs'Wth) in 

which the bearing is operating. 

5.4 NUMERICAL INVESTIGATION. 

A. numerical investigation was also carried out to verify the results 

of the theory and to investigate how the whirl orbits evolve as the 

rotor speed is increased (or decreased) from the threshold speed. 

The equations of motion (equations 5.11) were integrated using a 

standard Nottingham Algorithms Group library routine which integrates 

a system of first order ordinary differential equations over a suitable 

step length using a variable order Adams method (Hall and Watt (1976)). 

It was necessary to specify: 

i) the system parameter a and rotor speed 
II 

ii) initial conditions for X, X, Y, Y. 

The results of the investigation are summarised here by selecting 

three different values of the system parameter: a-0.035,0.2 and 2.0. 

The operating curves for these three rotor systems are shown in Figure 

5.4. These particular values were chosen because the curves cross the 

stability borderline in separate regions of parameter space (a = 0.035 

in region III, aS0.2 in region II, a=2.0 in region I). For each 

value of a the equations were integrated for a range of values of the 

rotor speed and suitable initial conditions. Particular emphasis was 

placed on how the initialconditions affected the final motion of the 

journal (if at all). 

The results are shown in graphic form obtained by using a Calcomp 
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plotter (Figure 5.5,5.6,5.7). Each plot represents the motion of 

the journal centre. The outer circle is known as the clearance circle 

and is of a radius equal to the radial clearance of the bearing - the 

location of the journal centre must be contained within this circle 

if no distortion of the bearing components occurs. 

Figure 5.5 illustrates the behaviour of a rotor system with a 

system parameter equal to 0.035. Well below its normalised threshold 

speed of 2.655, the journal is stable and spirals into its equilibrium 

position (Figures5.5(i), 5.5(ii)). However, at a rotor speed of 2.5 

(< wth) there are two different solutions, depending on the initial 

conditions (Figures 5.5(iii), 5.5(iv)). Close to its equilibrium 

position the journal is stable (Figure 5.5(iii)), but if the journal 

is started a long way from its equilibrium position)the final motion 

is a large amplitude whirl orbit (Figure 5.5(iv)). This is evidence 

for the existence of a stable limit cycle surrounding the unstable 

periodic orbit established by bifurcation theory. The same features 

are observed at a rotor speed of 2.6, which is still below the thres- 

hold speed - the limit cycle is slightly larger (Figures 5.5(v), 5.5 

(vi)). At speeds above the threshold speed the journal is completely 

unstable for all initial conditions (Figures 5.5(vii), 5.5(viii)). 

The term "completely unstable" is used here to imply that there are 

no closed orbit solutions for c<1- the journal approaches the 

bearing surface (c -º 1). 

The behaviour of a rotor with a system parameter equal to 0.2 is 

shown in Figure 5.6. At rotor speeds below the threshold value of 

1.138 only the equilibrium solution is observed (Figures 5.6(i), 5.6 

(ii)). However, immediately above the threshold speed, a stable small 

amplitude whirl orbit appears, which is independent of the initial 

conditions (Figures 5.6(iii), 5.6(iv)). This is the stable periodic 

orbit established by bifurcation theory. The amplitude of the whirl 
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orbit increases steadily as the rotor speed is increased, but the orbit 

remains independent of the initial conditions (Figures 5.6(v), 5.6(vi), 

5.6(vii), 5.6(viii), 5.6 (ix), 5.6(x)), before becoming unstable at a 

rotor speed of approximately 2.0 (Figures 5.6(xi), 5.6(xii)). 

It is evident from Figure 5.7 that the behaviour of a rotor with a 

system parameter equal to 2.0 'may be quite complex. Well below its 

threshold speed of 0.945 the journal is stable and spirals into its 

equilibrium position (Figures 5.7(i), 5.7(ii)). At a rotor speed of 

0.75 there are two possible solutions depending on the initial conditions: - 

stable if started close to the equilibrium position (Figure 5.7(iii)), 

or a limit cycle if started well away from the equilibrium position 

(Figure 5.7(iv)). This is again evidence of a stable limit cycle 

surrounding the unstable periodic orbit established by bifurcation 

theory. Above the threshold speed two solutions are still possible 

depending on the initial conditions: - a limit cycle (Figures 5.7(v), 

5.7(vi)), or-the journal may be completely unstable (Figures 5.7(vii), 

5.7(viii)). These features remain as the rotor speed is increased 

(Figures 5.7(ix), 5.7(x)), with the limit cycle decreasing slightly in 

amplitude (compare Figures 5.7(x) and 5.7(vi)), but with the journal more 

prone to become completely unstable (compare Figures 5.7(vi) and 5.7 

(ix)). Around a rotor speed of 2. l, the journal becomes completely 

unstable for all initial conditions (Figures 5.7(xi), 5.7(xii)). 

A detailed numerical investigation suggests that the complete 

bifurcation diagrams for the three rotor systems are as shown in Figure 

5.8. 

5.5 DISCUSSION. 

A combination of two alternative techniques - bifurcation theory 

and numerical integration provides a comprehensive investigation of 

the equations governing oil whirl in a long bearing operating with a 
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half film. Bifurcation theory has been used to examine in some detail 

the structure of periodic solutions of the equations at speeds close to 

the threshold speed and to identify regions of parameter space where 

different behaviour occurs. Once these regions have been identified 

they may be investigated numerically. It is also possible to pursue 

the development of the whirl orbits as the rotor speed is increased, 

or decreased away from the threshold speed. 

In theory it is possible to carry out similar investigations for 

all the models described in Part 1. In practice, however, it would 

be extremely difficult to use Poore's formula to determine the direction 

of bifurcation for the more complicated models, the major difficulty 

being in calculating the second and third order force derivatives. 

The model used for the present investigation was chosen for its simp- 

licity and not because it is the most accurate model (see Chapters 

3,4). It has, for example, already been mentioned that the model has 

a rather high value for the critical frequency ratio when compared with 

the other models (Figure 3.6). The purpose here and in the remaining 

Chapters) is to carry out a detailed examination of the full equations 

for one model using different techniques. In this way many different 

features of the equations may be observed and the validity of the 

various techniques may be assessed. 

Note 

During the preparation of this thesis the author learnt of a book 

which has recently been published in which the Hopf bifurcation is 

discussed comprehensively . 
(Hassard, Kazarinoff and Wan (1981)). A 

major objective of this work is the determination of the direction of 

bifurcation, stability etc. for systems of equations which are too large,, 

or too complicated for the calculation to be performed by hand. To 

this end the authors have developed a computer program to perform the 
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the complete Hopf bifurcation calculation numerically. (This program 

will shortly be available on the Amdahl computer at Leeds University). 

Such work may make it possible, in the near future, to perform the Hopf 

bifurcation calculation for a more accurate model. 

5.6 CONCLUSIONS. 

i) The onset of oil whirl in a simple rotor system supported in fluid 

film journal bearings is a bifurcation phenomenon which may be examined 

using Hopf bifurcation theory. The existence of small amplitude 

periodic solutions of the equations which govern oil whirl has been 

established for rotor speeds close to the threshold value. 

ii) For the particular case studied (ie. a long bearing operating with 

a half film), it was found that the bifurcation may be subcritical, or 

supercritical depending on the value of the steady state eccentricity 

ratio. 

iii) A numerical investigation supports-the findings of the analytic 

work and the combination of the two methods provides a comprehensive 

examination of the features of the equations governing oil whirl. 

iv) When supercritical bifurcation occurs there is a gradual trans- 

ition from stability to complete instability. A stable, small amp- 

litude whirl orbit appears as soon as the rotor speed exceeds its 

threshold value. The amplitude of the orbit increases gradually as 

the rotor speed is increased and the journal does not become completely 

unstable until well above the threshold speed. 

v) When subcritical bifurcation occurs the behaviour of the rotor is 

more complicated and, in general, dependent on the initial conditions. 

Stable whirl orbits may exist both above and below the threshold speed. 

There is no gradual transition from stability to instability. 

vi) Since the features described in this Chapter are due to the non- 

linearity of the equations the limitationsof a purely linearised 
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approach are exposed. This is not to say that nonlinear effects should 

always be included in bearing calculations, but there should certainly 

be a greater awareness of the role which the nonlinear terms may play 

in the phenomenon of oil whirl. 
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CHAPTER 6 

THE METHOD OF MULTIPLE SCALING APPLIED TO THE EQUATIONS GOVERNING OIL 

WHIRL IN FLUID FILM JOURNAL BEARINGS. 
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6.1 INTRODUCTION. 

Consider the ordinary differential equation: 

d2x 
+ w2X au fix, dx 

(6.1) 
dt2 ° dt 

in which 5 is a small parameter and wo is a constant. - The solution of 

the equation for u0 is: 

x0 =a cos(w0t + 9) ( a, 9 are constants) (6.2) 

The simplest method of obtaining a solution for u small, but non-zero, 

is to seek a perturbation expansion of the form: 

x(t, u) = xo(t) + xl(t) + ý2x2(t) + .... (6,3) 

Unfortunately this straightforward approach is often not very useful 

since it leads to secular terms (ie. terms of the form xl = bt cos(wt+pl)). 

Such terms "blow up" as t+ and the expansion is valid only for t< 1/ü. 

Several mathematical techniques, referred to as singular perturbation 

methods, have been developed to overcome this problem (Nayfeh (1972)). 

Two such methods are described in Chapters 6 and 7 and applied to the 

equations governing oil whirl in plain1cylindrical journal bearings. 

They are the method of multiple scaling and the method of averaging. 

Results obtained using these methods are compared with those derived in 

the previous Chapter. 

6.2 THE METHOD OF MULTIPLE SCALING. 

The method is most easily illustrated through the following example. 

Consider the differential equation: 

it 

x+ (x2 -V)x+x=0 (6.4) 

in which v is a real parameter (jvj < 2). Linearising the equation 

about the equilibrium position at x=0 yields the characteristic equation: 
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X2 - 'VA +1=0 => a=2+i 
(4-v22) 1/2 

(6.5) 

=>a(v) _ c1 (v) = 
(4-v2)1/2 

' 
da 

=1 (6.6) 2ý 2 dv 2 

using the notation of the previous Chapter. Hence, by the Hopf bifurcation 

theorem discussed in the previous Chapter, a periodic orbit bifurcates 

from (x, v) = (0,0). Using bifurcation theory, Murray: (1976) has shown 

that a stable periodic orbit exists for v>0. The existence of per- 

iodic solutions may also be investigated by using the method of mult- 

iple scaling. 

The motivation for this approach comes from the following reasoning; 

consider equation (6.4) for v just greater than zero. In this region 

the equilibrium point at x=0 is unstable (based upon a linearised 

analysis), which implies that perturbations from x=0 will initially 

grow exponentially with time. This (linearised) exponentially growing 

function cannot represent the solution for very long because the non- 

linear terms must, at some stage, become important. Suppose, now, this 

exponentially growing function tends to a stable oscillatory, solution 

(limit cycle) then growth on another time scale must come into play. 

Thus, the perturbation from the unstable equilibrium point should ex- 

hibit a multi-time scale representation of the form x(T) = A(T*)P(s) 

where P(s) represents a periodic oscillation on a "fast time" and 

A(t*) represents "slow time" modulation, which perhaps approaches a 

constant value as time r -ý 00. 

To investigate periodic solutions in the region v>0: 

put v= 62 (6.7) 

introduce two time scales: 

T* = 62T "slow time" (6.8) 

s (1+6w1+62w2+... )T "fast time" (6.9) 
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and seek a solution of the form: 

x(s, T*) = 6x1(s, T*) + 62x2(s, T*)-+ 63x3(s, t*) + .... (6.10) 

The success of the method depends upon the correct choice of the 

forms (6.7 - 6.10). The correct scaling for the slow time scale T* 

is governed by the growth rate of the linearised exponential function 

as v- 0: 

ie. ea(v)T } eal(0)vT as v-0 (a(0) - 0) 

Thus, from the remarks made earlier the slow time scale must be of 

O(vT). The quantities w1 and the other unknowns which will occur are 

chosen according to the principle that secular terms are suppressed in 

such a way that a self-consistent procedure for determining bounded 

functions xi . 
(s, T*) with modulation only on the slow time scale t* is 

generated. The reason for seeking a solution in powers of d and not, 

for example 6 l/2 
will be explained later. 

The two time scales defined by equations (6.8) and (6.9) imply 

that: 

dT 
= (1+dwl+d2w2+ ++ 62 3 

T* 
(6.11) 

aXt 
+ 

aX2 aXl aX3 aX2 aX aX äT -aas d28s + wl as + d3 as + wl as + w2 8s1 + aT* 
(6.12) 

d2x a2x a2x a2X a2x a2x a2X 
=d 

l+ 
g2 

2+ 2w 
11+ 

63 
3+ 

2w 2+ 2w 1 

dt2 as2 as2 as2 
1 

as2 
1 

as2 
2 

as2 

a2X a2x 
+W2 

1+2 1 (6.13) 1 
as2 asaT* 

Substituting equations (6.10), (6.12) and (6.13) into equation (6.4) 

and equating the coefficient of like powers of 6 yields: 

a2x 
Order (d) 

aS21 
+ xl =0 (6.14) 
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Order (62) 
a 2x 2+x 2w 

a2x1 
(6.15) 

as2 21 as2 
32x3 

. 
ax1 92x2 32x1 

2 
32x1 

Order (63) + x3 = (1-x2l) - 2w1 - 2w wl 
as2 as as2 2 as2 as2 

a2x 

-21 (6.16) 
asaz* 

The solution to equation (6.14) is: 

xI(s, T*) A1(T*)eis + A1(T*)e 
is (6.17) 

where the unknown function A1(T*) will be determined at a later stage 

of the perturbation procedure. Al T*) denotes the complex conjugate 

of A1. Substituting equation (6.17) into the right hand side of equation 

(6.15) yields: 

2 a 

22 
+ x2 = 2wl 

fA1(r*)e'5 
+ Al(T*)e is (6.18) 

as 

from which it can be seen that the suppression of secular terms requires 

that wl =0 and thus the solution to equation (6.18) is: 

x2(s, T*) = A2(T*)eis + A2 T*)e 
is (6.19) 

where A2(t*) may also be determined at a later stage of the perturbation 

procedure. Equation (6.16) now becomes: 

32 x3 
+ x3 = iA1 + 2w2A1 - iA1lAll2 - 2i dA1 

eis - iA1 e3is + C. C. 
as2 

dz* (6.20) 

(c. c. denotes the complex conjugate of the preceeding expressions). 

The suppression of secular terms requires that: 

dAl 
i= Al w2 +1 (1-I. A11 2) (6.21) 

dt* 2 

Equation (6.21) represents a complex amplitude equation for A1. The 

real and imaginary parts may be separated out by writing A1(T*) = R(T*)e 
i8 (t*) 
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which yields: 

dR R 
dT* 2 

(1-R2) amplitude equation (6.22a) 

and 
dO 

_ -w2 phase shift equation (6.22b) 

The important equation is the amplitude equation for R (equation 6.22a), 

the solution to which is: 

R2 = 
1_T* 

_> R -ý 1 as T* c* (C constant) 
1+Ce 

(6.23) 

Thus, equations (6.10) and (6.23) show an approach to a limit cycle 

of the form: 

x(t) = 2/ cos 
f (1+0(V))t3 + 0(v) as v -> 0 (6.24) 

(to within a phase shift) 

Therefore, it has been established that a periodic solution of the form 

(6.24) bifurcates from (x, v) = (0,0) for v>0. 

The stability of the orbit immediately follows from equation (6.22a) 

since: 

for 0<R<1 
dR* 

> 0, whereas for R>1 
äR* 

<1 

which implies that, for R(T*) less (greater) than k=1, dR/dr* is great- 

er (less) than zero implying motion towards the periodic orbit (ie. 

stability). 

The existence of periodic solutions for V<0 may be investigated 

similarly by substituting v=- 62 into equation (6.4). This approach 

yields an amplitude equation: 

dR* 
=R (-1-R2) _> R2= 

T 

Ce -1 
(6.25) 

Thus, as T* 110, R -* 0, which implies that there are no periodic solutions 

of equation (6.4) for v<0. All states approach the equilibrium solution. 



170 

Note 

i) In solving equations (6.14-6.16) it is simpler to write the solution 

in terms of complex exponentials rather than cos and sin terms. 

ii) The complex amplitude equation (6.21) includes w2, which is indeter- 

minate as far as the perturbation procedure is taken. It does not, how- 

ever, appear in the equation for R (equation (6.22a)). 

iii) The coefficient of R in equation (6.22a)represents the linear growth 

rate (a! (o) = 1/2). 

iv) The amplitude equation contains both linear and cubic terms on the 

right hand side (equation 6.22a). The periodic solution exists when these 

terms are in balance and this is achieved by seeking a solution in powers 

of a (equation 6.10). The form of equation (6.10) also agrees with the 

scaling obtained from the Hopf bifurcation theorem (see Chapter 5). 

The method of multiple scaling as described here is a fairly straight- 

forward approach and is successful here in establishing the existence of 

periodic solutions of equations (6.4). There are-various other forms 

which the method of multiple scaling may take (Nayfeh (1972)). A very 

similar approach to the one described here is used by Cohen (1972) to 

investigate periodic solutions of equations in chemical reactor theory. 

The technique has also been successfully adopted to investigate the 

non-linear development of the Kelvin-Helmholtz instability by Weissman 

(1979). 

6.3 THE APPLICATION OF THE METHOD OF MULTIPLE SCALING TO THE EQUATIONS 

GOVERNING OIL WHIRL. 

The technique described in the previous section is now applied to the 

equations governing oil whirl in plain cylindrical journal bearings. 

In principle the technique is precisely the same, the only difference 

being the amount of algebra involved. The equations of motion may be 

written in the form: 

1! Stt of S X= w2 FX(X, Y, X, Y, S) Y=2 FY(X, Y, X, Y, S) (6.26) 
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with S =Qw = S(es) 

The derivation of these equations may be found in Chapter 5. The Cartesian 

co-ordinate system used is as shown in Figure 6.1. 

The right hand side of equation (6.26) may be expanded as a Taylor 

series about the equilibrium position: 

to 1ýX= 
a1X + a2AY + a3A. X + a4AY +2 a5tX2 +2 a6AY2 

+ a7AX, &Y + a8tXAX + a9AYAY + a10AX0Y + a11AXAY 
(6.27) 

+la AX3+la AY3+la QX2tY+la AX2AX+la AX2AY 
6 15 6 16 2 17 2 18 19 

+1a AYZAX +1a AY2t& +1a &Y2AY +a L1XDYAX +a AXAYAY 
2 20 2 21 2 22 23 24 

8F " 8F 8F 8FX 

where: a= ST a= S -T aS a4 =SX (6.28) 
1 

(a-x 

2 8Y 3 a}{ Y 
ssss 

(a2\F 

as =X S 
axe 8 

AX=X -X s 

a3p! ) 

a15 Sa 
X3 

AY=Y -Y s 

and similarly for the Y- equation (replacing ai with bi). 

(6.29) 

As. Steady state position of journal 
centre. 
El Y1 

X=-Y=c 

1 
AX = 

OX 
AY _ 

AY1 
cc 

AY1 

X1 

etc. 

Figure 6.1. Cartesian co-ordinate system. 

0 hearinn centre ýY1 
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The missing terms in the Taylor expansion above are identically zero for 

the model of a long bearing operating with an oscillating half film which 

is used here to illustrate the technique. The coefficients a1 - a34' 

b1 ; b34 for this model are given in Appendix III. 

Before proceeding with the two timing approach it is useful to con- 

sider the following system of two ordinary differential equations: 

d20X al dOX a2 dAY a3 a4 
_ _ _ Ay OX _ 

dr2 w2 th 
dt W2 th 

dr w2 th w2 th 

_ gle 
0thi+ qle inthT 

+ m1e2i5 thT + m1e 2S2thT 
+ n1 (6.30) 

d2LY 
b1 

dOX 
b2 dAY 

b 3 b 4 
_ _ _ AY AX- 

dT2 j2 dT wth _ dz wth _ wth 

s g2eiothz + q2e iSlthT 
+ m2e2ill thr+ m2e 2iQthT 

+ n2 

The left hand sides of these equations correspond to the linearised form 

of equation (6.26) at the point of neutral stability. Neglecting trans- 

ients, the solution to equations (6.30) may be written in the form: 

AX(T) = Ae1ýthT + r1Te1ýthT + r2elrlthT + u1e2intht + 21 + c. c. 

(6.31) 
TT 12 T 2i T 

V2 

1Y(T) = XAe th + Ar1Te th +s2e th + u2e th +2+C. C. 

where A is a constant and A 
(1) 

represents the eigenvector-corresponding 

to the eigenvalue 4inth of the homogeneous form of equation (6.30). 

The remaining quantities rl, r2, ul, vl, s2, u2, v2 are determined by seeking 

the appropriate particular integral. In fact, it follows from the lin- 

earity of the equations that: 

rl 
= 

, Bl B2 ql ul 
= 

B5 B6 ml 
(6.32) 

r2 B3 B4 q2 u2 B7 BR m2 



173 

v1 
_ 

(B9 B10 nl 

v2 B11 B12 n2 

where the B's may be complex. They may be determined by substituting 

equations (6.31) back into equations (6.30) etc. - the process is straight- 

forward but tedious. It follows from equation (6.31) that the elimination 
60 

of secular terms requires: 

rl =0 => B1g1 + B2g2 =0 (6.33) 

This is the only piece of theory needed to carry out the two timing 

approach for equations (6.26). 

To investigate the existence (or otherwise) of small amplitude per- 

iodic solutions of equations (6.26) for rotor speeds close to the thresh- 

old speed 

substitute w= wth + 62 (ie. w> wth) (6.34) 

introduce two time scales; 

T* = 62T "slow time" (6.35) 

s= (1+6w1+6'w2+... )t "fast time" (6.36) 

and seek a solution of the form: 

AX(s, z*) = dX(s, T*) + 62X2(s, T*)+ d3X3(s, i*) +... (6.37) 

DY(s, t*) = SY1(s, T*) + 5LY2(s, T*)+ 63Y3(s, T*) +... 

The appropriate scaling for the slow time variable T* is again governed 

by the non-zero value of the derivative (da1dw)_ 
_ 

for the reasons 
wsw 

discussed previously. The w! s in equation (6.36) arehunknowns which are 
i 

chosen according to the principle that secular terms will be suppressed. 

Substituting equations (6.34), (6.37) into equations (6.27), making 

use of equations (6.11), (6.12) and (6.13) and equating like powers of S, 

yields: 
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Order (S) 

32X1 ax1 
- 

ay1 
-- 

8s2 
al 

as 
- a2 

as 
- a3X1 - a4Y1 =0 (6.38a) 

_ 
a2Y ax ay, 
3s21 

- bl 
8si 

b2 i- b3X1 - b4Y1 =0 (6.38b) 

Order (d2) 

; 2x2 
- ax2 - 

ay2 
- 

a2- -1 
as 

- a2 
8s 

- a3X2 - a4Y2 

2 

2wla 
X1 

+ ý11aX1 + a2w1aY1 +5 X2 + a6y2 
as2 as as 221 

__ 
ax 1_ aY1 

_ 
aY1 

_ 
ax1 

+ a7x1Y1 + a8x1 + a9Y1 + a10x1 + a11Y1 (6.39a) 

as as as as 

a2Y2 ' axe Y2 
as2 

- blas - blas - b3X2 - b4Y2 

92Y1 
_ 

ax 
_ 

aY 
=- 2w1as2 + blw -+ b2wlas1 +2 b5x1 

21 as 
+1 b6Y1 

ax aY 
_ 

aY 
_ 

ax 
+ b7X1Y1 + b8X1 1+ b9 Y1 1+ 

b10X1 1+ b11Y1 1 (6.39b) 

as as as as 

Order (ö3) 

a2X3 
- 

ax3 ay3 
--- - 

3s2 
- alas - alas a3X3 aJ3 

32 Xa 2x a 2x a 2x ax ax ax 
=-2w 

22 
w 

1-2 l_2 l+a 1+ 
w 

1+ 
w2 lase 2as2 as DT last 1 at 2aS las 

_ 
(Dyl 8Y 8Y2 a da de aX 

+11s1 +a+w 
1+ 

w+ 2_i 2a 
T* 

2 as las 
wth wthd Es dw as 

+_ 2a2 +1 
dal des 8Y1 

+_ Za3 +1 
da3 des 

__x wth 3 -: 2 wthdes dw as wth wthdss dw 1 
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a4 1 da4 des 

YI + a5X1X2 + a6ylY2 + a7(X1Y2+Y1X2) --)- +_ 24h + 
Wth des dw 

ax1 ax ax1 ayl ay2 ay1 
+axw++x+ayu++y 81 las as 

las 91 las as 
las 

_ 
aY aY aY 

_ 
ax aX ax 

+aX 
1+ 2+ 

x 
1+ 

ayw 
1+ 2+ 

y1 
10 1 las as 

las 11 1 las as 
las 

ax ay 
+1 a X3+1a Y3+1 XZY + x2 1+1 X2 -l 

6 15 16 16 12 17 112 18 1 as 2 19 las 

_ 
'X l.. 1- aY 

_ 
ax ay 

+la Y2X +la 2--L +la y2 l+a XY 
l+a XY 1 (6.40a) 

2 20 112 21 las 2 22 las 23 1 las 24 1 las 

a2y ax ay 
as23 

-b7- b2as3 - b3X3 - b4Y3 

a2Y ; 2y 
l 2 1 1 

a2Y ax ax 
l l l 

ax2 

=-2w 2w 13S2 2as2 -2 -2 - 
asaT* 

+b + w2 1 as2 1 at* 
2as +w las 

flay ay 
1 1 

aY b db dE aX 
1 11t 

b 1 2 alb de aY 
21 

+ +b +w- w 2 
aT* 

2as las + + + 2 
w3 w2 de dw as 

bs th t 

+ -2 
w3 w2 th th 

de dw as 
s . 

21 db3 
+- b+ 3 - 

des 

_ 
X+ 1 

21 db4 des 
b +- 4 

bxX 
Y+ 512 1 

+bYY 6 I2 
3 wth des dw w2 de dw wt 

h th s 

aX 
1 

aX aX 
2 1 

aY ay A 
1 2 1 

+b (XY+YX) +b 712128 Xj 1 i + +X +b y la 91 w + la a 
+y 2a 

as s as s s s 

_ 
aYl aY 2 

aYl 
_ 

ax ax2 aXi 
+ b10 X1 wl + 

as as 
+ X2 

as 
+ bll Y1 wl + 

as as 
+ y2 

as 

__ +1b X3 +1 b16Y1 + 
is 1 

1b 
171Y1 

ax1 
_ 

aY1 
+1 b18 X1 +1 b19x1 _ +1 b20y1x1 

6 6 2 2 as 2 as 2 

23x l_ ax aY 
+1 21y1 

1+1 b2LY1 1+ b23X1Y1 1+ b74X1Ylas1 (6.40b) 
2 as 2 as as 

where al = 
a21 

= 
b2 

etc. 
Wth Wth 
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Neglecting transients the solution to equations (6.38) is: 

X1(s, t*) = A1(z*)e1Stths + c. c. (6.41) 

Y1(s, T*) = AA1(T*)e0ths + c. c. 

Substituting these expressions into the right hand side of equations 

(6.39) it is evident that the elimination of secular terms requires 

wl=0. The right hand side of equations (6.39) may then be written in 

the form: 

2n 
A2 (T*)Mle2N ths + IA1I 

21 + c. c. 

2 
Ai(T*)m2e 

2 iý ths + 1A11 n2 
2+c. 

c. (see equations 6.30) 

The solution to equations (6.39) is: 

V 

X2(s. T*) = A2(T*), eiSiths + Ai(-r*)ule2i12ths + IAl(T*)1221 + c. c. (6.42) 

V 

Y2(sýT*) - XA2(T*)ein ths + Ai(T*)u2e2i52ths + JA1(T*)1222 + c. c. 

where (B5 B6 ml (vi 
__ 

B9 B10 nl 
- (see equations 6.32) 

ýý2) 

B7 B8 m2 °2 B11B12 n2 

Consider now the right hand side of equations (6.40). It is not 

necessary to write down the solution, but merely to suppress secular terms 
i5 Sn which will come from the e th terms on the right hand side of equations 

(6.40). Substituting equations (6.42) into equations (6.40) the coeffic- 

ient of the e0 the term on the right hand side of equation (6.40) may 

be written in the form; 

dA 

Y1 dT* + A1(Y2+Y3IA1I2) = q1 

dA 
Y4 dT- + A1(Y5+Y6IA112) = q2 (see equations 6.30) 

Referring to equation (6.33) it is seen that theelimination of secular 

terms requires: 
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B 
fY dA1 

+A (Y +Y 1A 12) +B 
ýY45T-* dAl 

+A (Y 1A 12) 0 
1 1dT* 1231? 21 5+y6 1 

which leads to a complex amplitude equation of the form: 

clA 
d -r* 

a Al (n2 -n 3 
IA1 12) (6.43) 

Separating out the real and imaginary parts by writing: 

A(T*) = R(T*)e 
ie(T*) 

n2=n2r+in2i n3=n3r+in3i 

yields: 

dR* 
= R(n2r n3rR2) Amplitude equation (6.44a) 

dTe* 
=n 2i n 3. R2 Phase shift equation (6.44b) 

Consider now the amplitude equation (6.44a). The coefficient of R 

in the equation is positive and is equal to the linear growth rate 

(da/dw)Z 
th 

. The sign of the coefficient of R3(-r13r) determines whether 

or not the equation will have periodic solutions. This is most easily 

seen by writing down the solution of equation (6.44a) which is: 

/n n /n 
R2(, *) a 

nr3r 
C constant; R2(0) = 

2r 3r (6.45) 
1+Ce 

2 n2r 1+C 

There are two cases to consider: 

i)' r r> 
o a> R(T*) ; (n2r/n3r) 1/2 

as T* -º - and hence equations (6.37) 

show an approach to a limit cycle of the form: 

(1/2 
AX(T) =2 n2r (w-wth)1/2cosýi2th(1+0(w-wth))Tj + 0(w-wth) 

3r J 

1/2 

/as 

w->wth 

AY(T) = 21AI( (W-Wth1/2sin 
Othu+O(W-Wth))T+V 

+ 0(w-wth) (6.46) 
3 

where p1 = tan 
l(-Xr/xi) x= xr + IAi 
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The stability of the periodic orbit follows immediately from equation 

(6.44a). For R less (greater) than (n2r/n3r) 1/2 dR/dT*is greater (less) 

than zero which implies motion towards the periodic orbit (ie. stability). 

The period of the limit cycle is: 

-1+0 
(w-wth) as w -º wth 

fl 
th 

(6.47) 

ii) n3r < 0. Equation (6.44a) implies that dR/dt* >0 
VT* 

and there is 

no evolution towards a periodic orbit. The system is therefore unstable 

(at least as far as this scaling is concerned). 

In a similar way to the method described previously, the existence 

of periodic orbits in the subcritical region may also be investigated. 

This is achieved by substituting: 

wth - 62 (6.48) 

into equations (6.27). This approach yields precisely the same amplitude 

equation as equation (6.44a) except the coefficient of R now has opposite 

sign. In this case 2r =- (da/dw)W < 0. There are two additional 
th 

cases to consider: 

iii) n3r >0 n2r < 0. Equation (6.45) implies that R2(T*) 0 as T* 00 

ie. all states approach the equilibrium solution. 

iv) n3r <0 n2r < 0. The most interesting case since the final solution 

depends upon the initial value of R(R(O)). A periodic sölution is theor- 

etically possible: 

ie. R2(T*) = n2r/n3r provided R2(0) = n2r/n3r 

However, the orbit is unstable, since for R2(0) > n2r/n3r. 1 
dl/dT* is 

always positive indicating movement away from the periodic orbit, whereas 

for R2(0) < n2r/n3r; dR/dT* is always negative indicating movement away 

from the periodic orbit towards the equilibrium position. 
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The four possibilities for the amplitude equation are illustrated in 

Figure 6.2. 

Having analysed the theoretical possibilities it remains to deter- 

mine the value of the functions n2r, n3r for a particular value of Es. 

This was done by following the procedure outlined in the preceding pages. 

Although the calculation of n2r, n3r is rather tedious, it is relatively 

straightforward (the details are omitted for this reason). 

6.4. RESULTS and DISCUSSION. 

The calculated values of n2r, n3r are shown in Table 6.1 for a range 

of values of es. It may be seen that, once again, there are three regions 

of parameter space corresponding to the regions identified by bifurcation 

theory. 

i) Region I (0 < es < 0.14). Throughout this region n3r 'c- 0 and thus 

from the preceding discussion of the amplitude equation an unstable 

limit cycle exists for w<w of the form: 

/th (r2 
(Wth W)1/2cos 

kh (l+o; 
th_; 

)) 
]+ 

0(wh ) AX(T) =2 
r-- 

n21/2 -- 1/2 
as with 

AY(T) = 21X1 
(..! ) 

(wth w) sin 
ýOth (1+o(wth_))t 

+ßy1? +0(Wth w) 

(6.49) 

As far as this scaling is concerned, no periodic orbits may exist for 

w> wth 

ii) Region II (0.15 . es < 0.74). Throughout this region n3r> 0 which 

implies that a stable periodic orbit of the form (6.46) bifurcates from 

(X' _ (Xs'wth) for w> wth. For w< wth all states approach the 

equilibrium state. 

iii) Region III (0.75, <c 
s<0.795). 

Identical to region I; n3r< 0 

which implies that an unstable periodic orbit of the form (6.49) bifurcates 

from (X, w) = (Xs, wth) for w< wth" 

It is apparent that the method of multiple scaling as developed in 

this Chapter may be used to investigate the existence of periodic solu- 
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R2 (0 

R2 (0 

R1(t*) 

R2 (0) 

C 

R2 (T*) 

6.2(i) n2r ý0 n3r >0 

>0 6.2(iii) n2r<0n3r 

(t* 

0 
T* 

In3r 
----i ------------ 

6.2(ii) n2r >0 n3r <0 

a) R2 (0) > n2r/n3r 
(T*) TIaI 

c) R2 (0) =n /n 
2r 3r 

In 
3r [""ý 1 

b) R2(0) < n2r/n3r 

1 

0 
i* 

6.2(iv) n2r <0 n3r <Q 

Figure 6.2. Different solutions of the amplitude equation. 
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Es nth th 
±n 2r n 3r rt 3r 

ýr ýi 
Remarks 

0.01 0.94 1.15 0.04 -159.1 0.02 -0.0 -2.30 Unstable 

0.05 0.94 1.15 0.19 -87.0 0.05 -0.01 -2.29 whirl orbits 

0.10 0.95 1.14 0.35 -22.2 0.13 -0.01 -2.28 exist for 

0.14 0.96 1.13 0.45 -2.66 0.17 -0.01 -2.26 W< Wth 

0.15 0.96 1.13 0.47 0.41 1.03 -0.01 -2.26 

0.20 0.98 1.11 0.54 8.41 0.25 -0.02 -2.23 Stable 

0.30 1.03 1.07 0.55 13.53 0.20 -0.03 -2.13 whirl 

0.40 1.10 1.02 0.46 11.35 0.20 -0.04 -1.98 orbits 

0.50 1.21 0.96 0.35 8.01 
. 
0.21 -0.05 -1.76 exist for 

0.60 1.37 0.88 0.23 4.71 0.22 -0.09 -1.45 W> Wth 

0.70 1.73 0.72 0.10 1.42 0.27 -0.16 -1.01 

0.74 2.13 0.60 0.05 0.09 0.75 -0.21 -0.77 

0.75 2.31 0.55 0.04 -0.22 0.43 -0.22 -0.70 Unstable 

0.76 2.57 0.50 0.03 -0.50 0.24 -0.24 -0.61 whirl orbits 

0.77 2.98 0.43 0.02 -0.72 0.17 -0.25 -0.52 exist for 

0.78 3.77 0.35 0.01 -0.81 0.11 -0.27 -0.40 < Wth 

0.79 6.43 0.20 0.0 -0.54 0.0 -0.29 
FO. 

23 

Table 6.1.. Results obtained from the method of multiple scaling. 
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tions of the equations which describe the motion of a journal supported 

in fluid film journal bearings. It is interesting to note that the 

results obtained in this Chapter are in agreement with those obtained 

using bifurcation theory. The Hopf bifurcation theorem is a more rig- 

orous mathematical method, since it is primarily an existence theorem. 

However, the method of multiple scaling is spectacularly successful here, 

if only for its simplicity. The method also describes the evolution 

from the equilibrium position to the periodic orbit through an amplitude 

equation. The stability of the orbit is easily deduced from the 

amplitude equation. The amount of algebra involved in calculating the 

terms in the amplitude equation is roughly equivalent to using Poore's 

bifurcation formula (see Chapter 5). 

6.5. CONCLUSIONS. 

i) The method of multiple scaling, as described in this Chapter, may be 

used to establish the existence of small amplitude periodic solutions 

to equations which describe the motion of a rotor supported in fluid 

film journal bearings. 

ii) The evolution from the equilibrium position to the periodic orbit 

is governed by an, amplitude equation. It is easily deduced from the 

amplitude equation that whirl orbits which exist above the threshold 

speed are stable, whereas whirl orbits below the threshold speed are 

unstable. It is also apparent that both types of orbit cannot occur 

simultaneously. 

iii) For the particular model studied, it was found that the type of 

orbit which occurs is dependent upon the value of the steady state ecc- 

entricity ratio. The regions of parameter space identified by this 

method correspond exactly to those obtained using bifurcation theory. 
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CHAPTER 7 

THE METHOD OF AVERAGING AND ITS APPLICATION TO THE EQUATIONS GOVERNING 

OIL WHIRL IN FLUID FILM JOURNAL BEARINGS. 
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The method of averaging has been developed by Lund (1966), and Lund 

and Saibel (1967) to. solve the equations governing oil whirl in short 

journal bearings. In this Chapter Lund's technique is used to solve 

the equations of motion for a long bearing assumed to be operating with 

a half film. The results are compared with those derived in the previous 

two Chapters. There then follows a discussion on the validity of this 

method and an analysis of Lund's results for the short bearing. 

7.1 THE PRINCIPLE of the METHOD of AVERAGING. 

To discuss briefly the principle of the method of averaging consider 

the general weakly nonlinear second order equation: 

d. 2 
x+ w2x ýfx, 

dx 

dt 2° dt) 
(7.1) 

in which 11 is a small parameter and w0 is a constant. The solution 

of the equation for p- 0 is: 

x=a cos(wt+9) a, O constant (7.2) 

To determine an approximate solution for small, but non-zero, 

assume a solution of the form (7.2), but with a, 9 now time dependent. 

ie. x= a(t)cos(w t"+ 0 (t)) (7.3) 
0 

and subj ect to the condition that: 

dt woa(t)sin(wot+e(t)) (7.4) 

da 
cos (wot+6(t))-a ät 

sin(wot+ 9(t)) -0 (7.5) 

Differentiating equation (7.4), making use of equation (7.5) and sub- 

stituting into equation (7.1) yields: 
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wo dt sin s+ ao 
ät 

cos s= -yf(a cos s, -awosin s) (7.6) 

(S=w0t+e(t)) 

Equation (7.6) may be combined with equation (7.5) to yield: 

da 
=-W sin s f(a cos s, - awosin s) (7.7) 

0 

de 
=-i? 

71 
cos sf (a cos s, - aw sin s) 

dt aw 0 
0 

Equations (7.7) represent two first order ordinary differential equations 

for the amplitude a and the phase"e. The right hand sides of these 

equations are periodic in s: 

-' d-°(1), d= °(u) 

Therefore, a and-6 are slowly varying functions of time which implies 

that they will change very little over the period OCs< 27. Averaging 

equations (7.7) over a cycle and taking a and 9 to be constant on the 

right hand side (as a first approximation) yields: 

da 
=-u of it 2nw o7 sins f(a cos s, -awosin s)ds (7.8) 

0 

d9 
S-u 

f2ir 
dt 2nw ao coss f(a cos s, -awo sin s)ds (7.9) 

0 

As an example consider Duffing's equation: 

d2x + w2X = -ý x _> f(X, 5c) - -X3 (7.10) 
dt2 0 

Equations (7.8) and (7.9) imply that: 
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=w 
3a2 

u- => 0=w 3a2 da 
=0 => a=ao (constant) and d 

d9 
t 8w 8w dt lit 

00 

2 
_> x(t, u) = aocos wo 

f1 
+ 

3a 
t+ 0(u) 

8w2 
0 

The basic technique for the method of averaging is due to Krylov 

and Bogoliubov. (1947). A more recent and formal approach was developed 

by Bogoliubov and Mitropolsky (1961). The method has been discussed 

comprehensively by Nayfeh (1972). 

7.2 APPLICATION TO OIL WHIRL. 

With the co-ordinate system as described in Chapter 5 the equations 

of motion are (see equations 5.7): 

x=S FX(X, Y, X, Y, S) 

w2 

With S=S (c )- UW 

it sI 
Y=- FY(X, Y-, X, Y, S) 

w2 
(7.11) 

To apply the method of averaging to equations (7.11) it is necessary to 

write them in a suitable form and to consider briefly the linearised 

equations. Transforming the origin of the X-Y co-ordinate system from 

the bearing centre to the steady state equilibrium position (Figure 

7.1) and replacing m2by the non-dimensional mass m the equations of 

motion become: 

It f1- 11 1f 

MAX - SFX(/X, 1Y, &X, AY, S) MAY - SFY(AX, AY, AX, AY, S) 

where m= 
meF2 = M2 AX - X-X 

s 
AY - Y-Ys 

The linearised form of the equations are: 

_n1 
; AX + BXxs /X+ BXYs AY + KXXs p. X +Is AY -0 

MAY + BYXs OX + BYYs AY + KY_Xs DX + KYYs AY =0 

(7.12) 

(7.13) 
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elliptic whirl orbit 

1 centre 

AY 

Figure 7.1. Co-ordinate system used in solving the 

averaged equations of motion. 

nb. Nondimensional co-ordinate system is shown 

111 
ie. e=ex= 

X1 
Y=Y AX =X tY = 

ýY 

ccccc 
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The subscript s is included in the force derivatives to emphasize that 

they are evaluated at the steady state equilibrium position. At the 

threshold of instability the solution of equations (7.13) has the form: 

AX = (X +iX 
i 

)einthT LY = (Y +iY 
i 

)einthT 
rr 

Substituting into equations (7.13): 

(IXIXs -K th+if2thBXXs 

K YXs+i'thBUs 

where Kth mth52 

(KXYs+isith BXYs) AX 

YYs Kth+0 thBYYs AY 

=0 

(7.14) 

(7.15) 

(7.16) 

K is a spring. coefficient introduced to define the oscillatory nature 

of the solution. A non-trivial solution to equations (7.15) implies 

that: 
(KXXsByys+KyysBXXs-KXYsBYXS-KyXsBXY., 

Kth = (B +B 
(7.17) 

XXs YYs 

2= 

1(Kxx_K 
th) 

( 
YYs 4th) XYs 1'Xs? (7: 18) 

nth 
Yxs) 

th = Kth/52 (7.19) 

The preceding analysis of the linearised equations is equivalent to 

using Routh's criterion. The mode of the self-excited oscillation 

described by equations (7.14) may be written in the form: 

AX = Xrcosi2tht (putting Xi= 0) AY - YrcosSZtht-Yisinftht (7.20) 

K 
Y( XXs th)KXYs+5 

2 
thBXXsBXYs 

where r=- (7.21) 
Xr (I ý2ýý +E2 B2 l XYs th XYs, 
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r 
th C2 2 B2 

Yi I(Kxx_th)B_K, (B sXXs 
, 

Kos +ýthBXYs 
(7.22) 

Equations (7.20) describe an elliptic whirl orbit centred at the steady 

state equilibrium position. Let the major semi-axis be A, the minor 

semi-axis be B and the angle of rotation be a, measured from the AX' 

axis to the major semi-axis positive in the direction of rotation 

(Figure 7.1). After some co-ordinate geometry it may be shown that: 

22+2_1 
1+ +1 r2 

(2)2+ ()2]11'2 X 

rr r1 i1r (7.23) 

B 
Yi/Xr 

Xr =±A Xr tan 2a 
2X /X- 

rr S 

E«Y 
(Y)2] 

r 

Information about the linearised whirl orbit is given in Table 7.1 

for the long bearing operating with a half film. 

Return now to the full equations of motion (equations 7.12) and 

assume that the equations admit an oscillatory solution with frequency 

Define a spring coefficient K= RF and rewrite the equations as: 

-it MAX + KLX - (SFX+m-2AX) =0 

mAY + KAY - (SFY+mQ20Y) =0 

(7.24) 

Comparing these equations with equation (7.1) it can be seen that it 

is necessary to introduce a small parameter u into the equations. Let 

the assumed oscillatory solution to equations (7.24) be: 

AX = Xo, AY = Yo, n= sl 0 and define: 

ýSFXý r2, r. ISFX(Xo. Yo, X0. Yo, S)+m. 2 
o 

XI d(SZr) (7.25) 
27rmn2 of 

0 
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S)+nIQ2yI d(ET) IISFYII =I ý2ýISFY(Xa, Yo, XoY 
a0o 2irtn ?2o 

0 

(IISFXII2+IISFYII2)1/2 (7.26) 

The equations of motion may now be written: 

of -SFX-mQ2AX 
; AX + K. EX +0 (7.27) 

(I I SFXll2+IISFYII2)1 
2 

-SPY- ; j52AY 
mLY + KLY + 11 

_=0 (1lSFX112+1ISFYII2)1 2 

The introduction of the small parameter u defined by equation 

(7.26) is due to Lund (1966). It is most easily understood from the 

following physical explanation. The assumed oscillatory solution may 

be written in the form: 

X=a cos nt => X= -S22X 00000 

it 
Y=b sin(? t+Q _>y =-52y 00000 

_> ISFX(X0, Y0, X0, Y, 
0,0 

S) + 
0X0 

= ISFX 
0I 

which represents the absolute error with which the assumed solution sat- 

isfies equations (7.12). The error is averaged over a cycle and normal- 

ised with respect to ; H2 to conform with the overall strategy of the 
0 

method of averaging. The smallness of the parameter 5 can be measured 

by comparing its value to the amplitude of the motion. Conversely, 

the error in the calculated results for the amplitudes will be of order 

V. Having established an error criterion it is possible to solve the 

equations of motion approximately by using the method of averaging. 

Define the co-ordinate transformation: 

AX =c+ Xr(T)cos5t-Xi(T)sin? T (7.28) 

AY =d+ Yr(T)cos? T-Yi(T)sin? T 
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with OX = -Ex r(T)SinSZT-SaXi(T)COSSZT 
(7.29) 

AY = -Hy 'r 
(T) s in5T-S2Yi (T) COSHT 

Comparing equations (7.28) and (7.29) leads to the compatibility 

conditions: 

Xr cos2t-X 
i 

simQT =0 (7.30) 

r-r 
YrCOSc2r-YisinQT =0 

Using equations (7.28) and (7.29) the equations of motion (7.12) become: 

-52XrcosSZt+52Xisin T-SZXrsinSit-nXicoS T= FX (7.31) 

m 

-ý2y cosýT+j2Yisirir_ YrsinS2r-92YicosNT =S FY 
m 

Combining equations (7.31) with (7.30) produces a system of four first 

order ordinary differential equations: 

Xr = -SýXrcosSZtsinS2t+? Xisin2S T- -_- FXsinStt 
mS2 

TsinS2t- - FXcosS2t (7.32) Xi = -EX 
mS2 

Yr -SYrcosSttsinS2t+? Yisin2S2t- ° FYsinl2t 
mit 

Yi = -? y cos2S2t+nYicos 
itsinStt- 

- FYcosS2t 
r 

Assuming that the equations permit a stationary periodic motion with per- 

iod 27r/5, then the requirement that the motion be stationary implies that: 

Xr(T) = Xr(T + 
2ýý 

and similarly for Xi, Yr, Yi' 
S2 

Thus, the averaged values of Xr ,Yr , Xi, Yi must vanish over a cycle: 

2n 
ie. Xr =2 of 

Xrd(SZt) =0 etc. (7.33) 

Since the righthand sides of equations (7.32) are proportional to u 
I 

(see equations 7.25 and 7.26), it follows that Xr , Xi, Y 
r ,Yi are small 

quantities such that Xr , Xi, Y 
r ,Yi, are slowly varying functions of time dur- 

ing the period 2w/5. As a first approximation, therefore, they may be 

considered constant. Thus: 
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X1 Ex. 
-1 I2ir SF sin s ds -0 where s= HT (7.34) 

r21 211 01X 

TTT 
(and similarly for Xi'Yr'Yi)' 

It is seen from equation (7.28) that the journal motion describes 

an ellipse with centre (c, d). Thus, an allowance is made in the theory 

for the centre of the elliptic whirl orbit to move away from the equ- 

ilibrium position. 

Analagous to requiring the averaged values of the velocities AX 
I 

and AY to be zero over a cycle in order for the whirl orbit to be 

stationary, a similar requirement may be imposed on the averaged values 
n of 

of AX, Y. 

of 2n � 2ir 
_ ie. AX =, AXds 

1j 
SFXds 0 (7.35) 

21rm 

(and similarly for Y). 

Thus, there are six equations in seven unknowns: - X ,X ,Y Y , it, c, d. 
r r i i 

The missing equation is a relati onship remov ing the arbitrariness in 

defining the origin of the time scale. For convenie = 0. nce put X i 

The six equations are: 
2rr 

(X = 0) 7 
f 

SF sin s ds =0 (7.36i) 
r o X 

(X = 0) + a2X 1 s r2n 
cos s ds SF -0 (7.36ii) 

r o X 

(Y - 0) _ -FIP Yi + 
f 2a 

sin s ds SF =0 (7.36iii) 
r ro Y 

(Y = 0) m52Yr + 
j 

11 

2w 
SFYcos s ds =0 (7.36iv) 

(AX - 0) 7 s 2a 
_ SFXds =0 (7.36v) 

o 

(AY = 0) ý ! 2A 

ds SF =0 (7.36vi) 
o Y 

The six unknowns are: 

Xr+Yr. Yi, S2, c, d (7.37) 
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Method of Solution. 

Equations (7.36) are a system of six nonlinear algebraic equations. 

They were solved using Newton's iterative procedure. An initial trial 

solution was estimated; Xr = Xrl' Yr = Yrl' 2= n1' c= cl, d= dl, Yi = vif. 

The functions in equations (7.36) were then expanded as a first order 

Taylor series about the initial estimate (by substituting Xr = Xrl + 

SXrl, Yr= Yrl+6Yrl, Yi =Y' l+6yil, 
C= 5l+65l, c= cl+6cl, d= dl+6dl). 

Censider, for example, the first equation of equations (7.36), which 

becomes an expanding about the initial estimate: 

Sgrl 8+ dyrl 
+ 

dyll 
+ 

dgl a+ dc1 8+ Shc 9 

axr Syr ayi aQ 
ac öd 

1 2n 
_ 

of 
SFXsin s ds 

1 
1f 2n 

_ 
o 

SFXsin s ds 1 

Introduce the following notition: 

2n 
KXX=1 

it of 
1 2n 

KXX3 
n of 
1 2n 

Kxx5 
Tr of 

I costs ds 

I cos s sin s ds 

Isin s ds 

r 27r 
1 K J 

XX2 n o 
27r 

= f 
xx4 o 

2Tr 1 r 
K f XX6 n o 

KXXsin2s ds 

Icos s ds (7.38) 

Kxx ds 

(and similarly for Bxx etc. ) 

Using equations (7.28) and (7.29) the equation may be written in the form: 

(KXX3 5BXX2)16Xr + (KXY3 5BXY2)1dYr - (KXY2+3BXY3)16Yi 

_ 
(gl 2n 

_ 
- (XrBXX2+YrBXY2+YiBXY3) 

ldý + (KXXS) 
ldc + (KXY5 ldd cj SFXsin s ds) 1 

The remaining five equations were treated similarly and yield: 

R72+ -QB ) dX + (K -QB ) dY - (K +QB ) dY 
CX1 XX3 1r XY1 XY3 1r XY3 XY1 1i 

-(2msZXr+XrBXX3+YrBXY3+y BXY1)16S2 + (I 4)1dc + (KXY4)1ö. d 

((02X 1 r27r 
_ 

r)1 
+ 

7r 0 il 
SFXcos s ds)1 
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(K 
3-5BYX2)1SXr + (I 

Y3-5B 2)1syr + (mt22-I. 
2-HBYY3)16Yi 

+ (2uQYi XrBYX2-YrBYY2 Y. BYY3)1o + (YX5)1Sc + (YY5)1dd 

/1 
(-2Y1)1 +( 

i j2ir 
SFYsin s ds J1 (7.39) 

(KyX1 5BYX3)1'Xr + (-; 52+K l )BYY3)1&Yr - (IL3+5BYY1)16Yi 

- (2; NYr+XrBYX3+YrBYY3+YiBYY1)65 + (KYX4)16c + (I 
Y4)15d 

r2ir 
_ (; 52y 

r)1 
+1 

of 
SFYcos s ds 

}1 

(K cBXX5) ld%r + (KXY4 S2BXY5)1dYr -(KXY5+5Bxy4)16Yi 

- (XrBXX5+Y BXY5+BXY4)ld5 + (KXX6)1Sc + (KXY6)18d 

1I_ 
o 

SFXds) 
1 C. 

(Kyx4 HBYX5)1tXr + (Ic4 5BYYS)1öyr -(KOS+5BYY4)1oy1 

- (XrBYX5+yrBYY5.1BYY4)1dý +(KyX6)1dc + (I 
Y6)16d 

Or21r 
SFyds) 1 

1J 

C 
Equations (7.39) are six homogeneous linear equations which were 

solved for 5Xrl' 6yrl' 5Yil, 6Stl, dcl, ddl. The process was then repeated 

with Xr = Xr2 = Xrl + SXrl, etc. The iteration procedure was terminated 

when 

16x I+IdY I+16YiI+l6ffl+ldcl+kddI 
rr< 10-5 

IXrI+IYrl+IY1I+IfI+l cl+l dl 

To solve the equations it was necessary to specify the Sommerfeld 

number S and the non-dimensional mass m. The initial estimate for 

the solution had to be reasonably close to the actual solution for the 

scheme to be successful. The initial estimate was either based upon 

the solution to the linearised equations (equations 7.21 and 7.22), 

or by extrapolating results obtained for a slightly different value 
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of. Usually only 4-5 iterations were required to obtain a solution 

to the required accuracy. 

The integrals in equation (7.39) were evaluated by numerical 

integration using the Trapezoidal rule: 

alb 

af 
(x)dx -h{ 

Zf (a)+f (a+h)+f (a+2h)+... +f (a+(n-1)h)F2f (b) (7.40) 

where h= 
(b-a) 

n 

The forces FX, Fy were evaluated from the expressions: 

FX =S+ Frcos¢-Ftsinq FY = Frsin4+Ftcos4 (7.41) 

and the co-ordinate transformation defined by: 

AX - Ecosq- escos ýs AY = csin¢-cssincs (Figure 7.1) 

_> e2 = (DX+Xs)2 + (. Y+Ys)2 (Xs=cseosq 
s, 

Ys=essinýs) (7.42) 

OX+X QY+Y 
cos4 -cs sinO =cs 

e DXcos¢+LYsin¢ 
I 

AYcosq'-AXsin4 

Equations (7.41) and (7.42) define the forces FX, FY as functions of 

r 
AX, AY, AX, AY. In evaluating the integrals in equations (7.39) which 

involve FX, FY, the four arguments AX, AY, AX, AY are given by equations 

(7.28) and (7.29). The force derivatives KXX, BXX etc. are calculated 

by differentiating equations (7.41) with respect to X, Y, X, Y and using 

the relationships between the co-ordinate derivatives given in Appendix 

III (equations III. (4)). The procedure yields the following expressions: 

8FX 8Fr 1 öFt öFt 1 3Fr 
B= .$, _$- -r- cos24)- - -I- sin2ý+ 

(ac 

--i- +-I sin4)C054) 
ax ac E -Do E öý 

aF aF 
B3CY _ -S -T =S-1 

a-ý 
cos2ý+ 

a-ý 
sin2ý +- Ir +1t sinýcosý 

c 8ý ac ac c DO 

aF aF aF aF aF 
Byx = -S ýx =Cos-+1 ýt sinýcosý 

ax ac c 34 ac c aý 
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F öF öF 
Byy = -S 

aFy 
=S 

aFt 
cos2e --r sin2ý -1r+t sin¢cose (7.43) 

8y e 8¢ 8e a 8e 

XX = -S 
aFX 

=S 
aFr 

cos24 +1 
r- 

F+F. sin24 
ax 8e e` r2 

e 

+--1 
(Ft 

+e 
aFL1 

sintcos¢ - BXy 
ac ce 

. xy t 

aFX I1( er _ -S =S-F+J cos. sin2ý 
ay ec a¢ ac 

+( 
aFr Or 

-e 

aFt1 
sin4cos¢ + Boo 

ac cc aq 
J 

YX 

aFY 
=S- 

aFt 
cos? -1Ct+ 

a-T) 
sin2ý 

ax aE EEa 

- 

aFr 

-1r Fr -£- sintcoso -B¢ C /1 ae EE a0 
aF 8F 8F 

I- -S 
Y=S-fF-E 

--r- 

) 
cos2ý +r sin4 

8Y \\\ rc 80 8c 

- 

aFt 

-1 
ýFt 

+c r- sinýcoso +Bý 
ac cc öo 

The hydrodynamic forces are: 

12E2(1-2ý) 6 
(n2(2+E2)-16)E 

Fr =- 
(2+c2)(1-e2) 1r(2+e2)(1-c2)3 

2 

67re(1-2c) 
Ft 

(1-e2)1 2(2+E2) 
24EE 

(1-E2)(2+c2) 

and the required force derivatives are: 

8Fr 

=-6 
(n2(2+£2)-16)£ aFt 

= T1 
ö£ 7r(2+£2)(1-£2)3 

2 
ö£ 

1 
3Ft 

-12w 
T 

(2+c2) E 84 (1-c 2)1/2 

(7.44) 

(see equation 3.3) 

1 DFr 
_ 

24c 
-T- 
E (1-c2)(2+e2) 

(7.45) 
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aFr 
_ 

24c(1-2c) (2+E4) 
+ 

6E 
f 

(12n2-64)+(12n2-80)e2+3ir2E`'? E: 
öE (2+E2)2(1-E2)2 Tr(2+E2)2(1-E2)5/2 

8Ft 
_ 

6n(1-2ý)(2-E2+2c 
+ 

24(2+e2+3E4)e 

2e (2+c2)2(1-e2)3 2 (2+c2)2(1-c2)2 

A flowchart of the computer program which was written to solve equations 

(7.36) is given in Figure 7.2. 

Stability of the Whirl Orbit. 

Once a solution to the equations had been found it was necessary to 

determine whether or not the whirl orbit was stable. The quantities; 

XrYrYi define the size and orientation of the elliptic whirl orbit. 

The stability of the orbit may be examined by forming the variational 

equations from equations (7.36(i), (iii), (iv)). Let Xr Xro'Yr S Yro' 

Y. Yio satisfy equations (7.36(i), (iii), (iv)) and expand the three 

equations as a first order Taylor series about Xr = Xro'Yr = Yro'Y1 - Yio 

(ie. substitute Xr=X 
ro 

+dX 
r ,Yr=Y ro 

+dY 
r, 

yi =Y 10 
+6Y 

1 . 
). Consider, 

for example, equations (7.36(i)) which becomes: 

r 
ax =-1 

(6x a+ 6Y a+ ay a (j2i Si Xs ds r 27rni r 8Xr r eYr 1 eYi X0 

2ast6Xr - (KXX3 f2BXX2)5Xr + (I 3 fBXY2)5Yr - (KXY2+s2BXY3)SYi 

The two remaining equations are treated similarly and yield: 

2ai26Xr = (I 
X3-S2Bm2)SXr + (I 

3 
HByy2)SYr (I 

, 2+OByy3-mt22)6Yi 

1 --2 2- ZdY. ° (YX1 SZByX3)' 
r+ 

(KYY1-OBYY3-mQ ) dYr - (I 
3+SZBYY1) 6Yi 

i 

The three variational equations above may be written in the form: 

oxr = a11OXr + a12OYr + a13OYi 
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Read in values for a and w. Figure 7.2. Flowchart 

of computer program 

Calculate S and cs. to solve the averaged 

equations. 

Calculate velocity and displacement 

coefficients, threshold speed, 

critical frequency and dimensions 

of linearised whirl orbit. 

Solve nonlinear' equations. 

I) Estimate values for Xr, Yr' 

Yi, 5, c, d. 

Evaluate integrals Bxx2, BxX3 etc. Xr=Xr+dXr, Yr=Yr+dYr 

Solve linear equations for Yi=Yi+iYi, 2=0+60 

dX 
r, 

dX 
1 ., 

dY 
r, 

dYi, 65,6c, sd. 
- c=c+dc, d-d+dd 

iv) Is 
16Xr! +1kYrl+1sYil+'&ý2l+l 6cl+16di 

-5 10 NO Xr J+Y 
r 

+Y 
i 

+St+c+dI 

YES 

Calculate major, minor axes of 

elliptic whirl orbit. 

Calculate stability of Print 
END 

orbit. s results 
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1 
dYr = a216Xr + a226Yr + a23SYi 

6Yi = a315Xr + a32cYr + a336Yi 

(7.46) 

The variational equations have a characteristic equation which is cubic: 

13+A2a2+A17 +A0=0 

where A2 =- (a11+a22+a33) 

(7.47) 

Al 
f(a11a22-a12a21) 

+ (a11a33 a13a31) + (a22a33 a23a32)] (7.48) 

Ao =- 
fa11(a22a33_a23a32) 

- a12(a21a33 a23a31) + a13(a21a32-a31a22)/ 

For the whirl orbit tobe stable the perturbed solution must 

vanish asymptotically with time. This means the roots of the charac- 

teristic equation must have negative real parts. A necessary and suff- 

icient condition for this to be so is provided by an application of 

Routh's criterion, which for a cubic equation is (Hartog (1947)): 

Ao, A1, A2>O; R= Al A2-A0>0 

7.3 RESULTS and DISCUSSION. 

(7.49) 

In Chapter 5a numerical investigation of three different rotor 

systems was carried out by introducing a system parameter a, independent 

of the rotor speed defined by: 

S= Qw. 

The equations were solved for a=0.035,0.2,2.0-(Figures 5.5,5.6,5.7) 

and a range of rotor speeds. To make a comparison between the method 

of averaging and the results obtained by numerical integration equations 

(7.36) were also solved for a=0.035,0.2,2.0. For each value of Cr 

the equations were solved for a range of rotor speeds. The results are 

shown in graphic form (Figure 7.3), which illustrates the relationship 

between the amplitude of the elliptic whirl orbit and the rotor speed. 
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Figure 7.3 may be compared with the bifurcation diagrams shown in Fig- 

ure 5.8. The calculated values of XrYrYi'R'c, d etc. are given in 

Tables 7.2,7.3,7.4. For all three rotor systems no whirl orbits were 

found which were unstable. The quantity Ao, defined in equations (7.48), 

is included in the tables of results to represent the stability cal- 

culation. 

The behaviour of a rotor with a system parameter equal to 0.035 

is shown in Figure 7.3(i). A stable whirl orbit was found to exist 

below the threshold speed (mth=2.655). The amplitude of the orbit 

increased (from zero) as the rotor speed was decreased away from the 

threshold speed. The frequency of the whirl orbit increased from its 

threshold value of 0.484 as the speed was decreased. It is apparent, 

therefore, that the whirl orbit corresponds to the subcritical bi- 

furcated periodic orbit established'in Chapter 5. This implies that 

there is an anomaly in the measurement of the orbit's stability 

(subcritical bifurcation is unstable). The stability argument used 

here corresponds to the one used by Lund (1966). It is discussed more 

fully in section 7.5. 

No whirl orbits were found below a rotor speed of 2.35 (apart 

from the equilibrium solution). Numerical integration of the equations 

of motion indicated that this value-was approximately 2.45 (Figure 

5.8(1)). No whirl orbits were found for rotor speeds in excess of the 

threshold speed. The parameter u was zero at the threshold speed and in- 

creased gradually as the speed was reduced below the threshold speed 

(Table 7.2). An increase in u implies an increase in the error of 

the calculated solution. 

Figure 7.3(ii) shows the whirl orbits which were found for a rotor 

with a system parameter equal to 0.2. No solutions were found below 

the threshold speed (wth= 1.138). As soon as the threshold speed was 

exceeded, a stable whirl- orbit was found increasing in amplitude (from 
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zero) with increasing speed. Above a rotor speed of 1.8 no closed 

orbit solution could be found - the journal approached the bearing side 

(c-1). Numerical integration suggested that this value was close to 

1.9 (Figure 5.8(ii)). The frequency of the whirl orbit decreased 

from its threshold value of 1.10 as the speed was increased. Comparing 

these results with those obtained in Chapter 5 (Figures 5.6,5.8(ii)) 

it may be seen that there is very good agreement between bifurcation 

theory (which predicts supercritical bifurcation), numerical integration 

and the method of averaging. 

Comparing Figure 7.3(iii) with the results obtained in Chapter 

5 for a rotor with a system parameter - 2.0 (Figures 5.7,5.8(iii)) 

it can be seen that there is a discrepancy in the results (bifurcation 

theory predicts subcritical bifurcation and numerical integration 

establishes that a stable whirl orbit surrounds the unstable solution). 

On solving the averaged equations no solutions were found below the 

threshold speed (Figure 7.3(iii)), but a stable whirl orbit was found 

above the threshold speed (wth 0.945), over the speed range 0.945 

w. 1.55. The frequency of the orbit decreased from its threshold 

value of 1.14. In this case u is larger than the amplitude of the 

orbit (eg. at w-1.0, A - 0.0323,0.0775) and thus, there is a 

large error in the solution. This is one possible explanation of why 

there is a discrepancy, in the results for rotor speeds close to the 

threshold speed. 

7.4 DISCUSSION OF LUND'S RESULTS. 

The application of the method of averaging to the equations gov- 

erning oil whirl was developed by Lund (1966), who used the technique 

to analyse a short bearing operating with a half film Lund also pre- 

sented results in terms of a system parameter (denoted here by as), 

which was defined as: 
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`2 
vs = 

(W 

)S Ss = modified Sommerfeld number. II 
s 

Results were shown for four different rotor systems (as = 0.2,6.0, 

35,200). The results are summarised in Figure 7.4 which shows the 

amplitude of the elliptic whirl orbit as a function of the rotor speed. 

In two cases; as = 6.0,35 stable whirl orbits were found for rotor 

speeds in excess of the threshold speed, the amplitude increasing with 

increasing speed. For these two rotor systems no whirl orbits were 

found below the threshold speed. For the two remaining systems; 

as = 0.2,200 stable whirl orbits were found to exist just below the 

threshold speed. This effect is referred to by Lund as a hysteresis effect. 

The fact that whirl orbits were only found either above or below 

the threshold speed confirms the bifurcation character of the onset of 

oil whirl. Lund's results suggest that a rotor supported on short 

journal bearings with a system parameter equal to 6.0 or 35 will exhibit 

supercritical bifurcation, whereas subcritical bifurcation will occur 

for a rotor with a system parameter equal to 0.2 or 200. It would be 

extremely interesting to analyse the short bearing using, either 

bifurcation theory, or the method of multiple scaling to determine 

rigorously the direction of bifurcation. This remains an area for 

future work. 

Lund found that the whirl orbits were confined to a relatively 

small speed range around the threshold speed: eg. for a. rotor with 

as = 6.0 whirl orbits were found only over the speed range 2.64 <w 

2.70. This is not true of the long bearing where the whirl orbits 

appear to exist over a greater speed range: eg. for a rotor with 

a=0.2 whirl orbits were found over the speed range 1.14 <Z41.8. 

As for the long bearing Lund found that whirl orbits above and 

below the threshold speed were stable. However, as discussed in 

Chapter 5, subcritical bifurcation to periodic orbits is unstable. 
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Thus, under certain conditions, the stability argument used in the 

method of averaging gives incorrect results. 

7.5 DISCUSSION of the STABILITY ARGUMENT. 

The stability of the whirl orbit was found by forming the vari- 

ational equations from the averaged equations (equations 7.36(i), (iii) 

(iv)). This approach yields three linear equations with constant 

coefficients (equation 7.46). Using this approach leads to anomaly 

as far as the stability of any subcritical bifurcation is concerned. 

An alternative approach is to return to the original equations 

of motion (equations 7.11). Let the obtained solution be given by 

AX = X0, AY = Yo. The stability of the whirl motion may be examined 

by forming the variational equations from equations (7.11). Sub- 

stituting AX = X0 + SX, tY = Yo + dY into equations (7.11) and retain- 

ing only first order terms yields: 

mdX = SFx(X, Y, X, Y) - SFx(Xo, YO$Xo, Y0) 

Saa = (x) 6x+S X dY+S 
aFX 0 

(aiYFo 

and analogously for the dY equations. 

aF 
IaF --r ax +S -r dY 

xr aY o 

(7.50) 

Since the force derivatives are 

functions of X0 and Yo they are periodic in s with period 2n and may 

therefore be expanded as a Fourier series: 

=l7IXncos(ns) 
+ Ansin(ns) dX mdX + 

2AXX0+ 
nE 

Go 1 
+. 

1z 
+nE AXYncos(ns) + 

4sin(ns)3 dY 

' 
+ 2BXX0 

+n=1BXXncos(ns) + BXXnsin(ns)1 dX 

1] 
+ 2Bri0 +Ji B 

XYncos(ns) + B' sin(us)( dY 0 XYn 
(7.51) 

where the Fourier coefficients are given by: 
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n=ý or27r 
(RL)0cos(ns)ds 1n-1 

or27r 
(KXX)Osin(ns)ds (7.52) 

and similarly for the remaining coefficients. This approach means that 

the coefficients of the 5X, SY terms in equation (7.51) retain their time 

dependence. These equations are alternative variational equations to 

the ones used in this work. It is felt that an analysis of these 

equations may resolve the stability anomalies which have been discovered 

in this Chapter. One approach, which was adopted by Lund (1980) 

was to include only the terms (n=0,1) in the Fourier expansion and 

seek a series solution. 

7.6. CONCLUSIONS. 

i) The method of averaging is an alternative technique which may 

be used to solve the equations governing oil whirl in plain cylindrical 

journal bearings. The whirl orbit is assumed to be elliptic and is 

calculated directly, not as a result of transient growth or decay. 

The error in the solution may also be calculated and if this error 

becomes large it is reasonable to assume that the whirl orbit is no 

longer elliptic. 

ii) When the results for a long bearing obtained using the method 

of averaging were compared with the results derived using other 

methods some discrepancies were uncovered. Since the method of 

averaging is an important technique in this field (see (iii) below) 

the resolution of these discrepancies is an area for future work. 

It is probable that improvements can be made in the application of 

the method of averaging (for example in the method used to determine 

the stability of the whirl orbit). 

iii) The method of averaging is an important technique in the invest- 

igation of the vibrational characteristics of oil lubricated journal 

bearings because: 
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a) it is relatively simple to apply the technique to a more compli- 

cated model (for example by using a more accurate boundary condition 

at film rupture, or by incorporating additional features into the 

model such as rotor flexibility, mass unbalance). 

b) it is possible to pursue the development of the whirl orbit for 

rotor speeds away from the threshold speed (provided the error lies 

within acceptable limits). 
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SUMMARY OF PART 2. 

The use of four different techniques to solve the equations of motion 

provides a very comprehensive examination of the phenomenon of oil whirl 

in fluid film journal bearings. Of particular importance in Part 2, was 

the use of bifurcation theory to establish the existence of periodic 

solutions of the equations of motion for rotor speeds close to the thresh- 

old speed. Both bifurcation theory and multiple scaling were then used 

to investigate the form and structure of the periodic solutions. The 

features which were identified by these techniques were illustrated by 

integrating the equation numerically. An investigation of the use of the 

method of averaging to solve the equations governing oil whirl was also 

carried out. A summary of the four techniques is given in the Table on 

the following page. 

I 
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CHAPTER 8. 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK. 
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8.1 CONCLUSIONS. 

1. Plain cylindrical journal bearings operating with complete lubricating 

fluid films are inherently unstable at all rotor speeds. As whirling 

proceeds the journal spirals outwards towards-the bearing surface with a 

frequency approaching half the rotational speed. 

2. When cavitation is incorporated in the bearing model, linear stability 

theory has shown that the journal is stable below its threshold speed. 

Thus, although cavitation is commonly regarded as an undesirable feature 

of journal bearings (for example, due to a reduced load capacity), cav- 

itation is a stabilising mechanism, crucial to the smooth operation of the 

bearing. 

3. The threshold speed is sensitive to: 

i) different cavitation boundary conditions at film rupture. 

ii) oil film behaviour during journal vibration. 

An accurate model must, therefore, incorporate precise boundary conditions 

at film rupture (and film reformation) and also account correctly for 

the behaviour of the oil film during journal vibration. These details 

are often overlooked in the analysis of rotor-bearing systems. 

4. Increasing the steady state eccentricity ratio has a stabilising effect 

on the journal by raising the threshold speed. An important point to 

bear in mind, however, is that, although the journal may be stable theor- 

etically, the stability may be marginal, such that vibrations are only 

weakly-damped. This effect is most pronounced at low and high eccentric- 

ity ratios. 

5. Two factors which influence the vibrational characteristics of the 

single axial groove journal bearing are: 

i) the groove position 

ii) the oil supply pressure 

In theory, it-is possible to maximise the threshold speed, thus minimising 

vibrational problems, by selecting the optimum groove position. 
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6. The onset of oil whirl in plain journal bearings is a bifurcation 

phenomenon, which may be examined by using the Hopf bifurcation theorem. 

It has been established that the. equations of motion have small amplitude 

periodic solutions for rotor speeds close to the threshold speed. Two 

distinct types of bifurcation are possible, depending on the operating 

parameters of the rotor-bearing system: 

i) supercritical bifurcation. The journal is stable below its 

threshold speed (the journal spirals into its equilibrium 

position when displaced from it). As the threshold speed is 

exceeded, the equilibrium point bifurcates to a stable limit 

cycle, whose amplitude increases (from zero) as the speed is 

increased further above the threshold speed. There is a grad- 

ual transition from stability to complete instability and thus 

it is feasible to operate the machine above its threshold speed. 

ii) subcritical bifurcation. Bifurcation to unstable whirl orbits 

occurs below the threshold speed. Large amplitude stable whirl 

orbits may exist outside the unstable limit cycle and, in gen- 

eral, the orbit of the journal is dependent on its initial 

conditions. Above the threshold speed the journal may, or may 

not be completely unstable. Since there is no gradual transition 

from stability to complete instability in this case it is not 

feasible to operate the machine above its threshold speed. 

7. A detailed analysis of the structure of periodic solutions at rotor 

speeds close to the threshold speed can only be obtained by using non- 

linear mathematical analysis (eg. bifurcation theory and multiple scaling). 

Although, it is not possible to apply these techniques to complicated 

models, their importance lies in describing the qualitative features of 

oil whirl in simple models and in identifying regions of parameter space 

where different behaviour occurs. 

8. Three nonlinear techniques were used to investigate the equations of 
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motion. Two of these methods, namely bifurcation theory and multiple 

scaling produced identical results, but are suitable only for simple models 

primarily because both methods require the calculation of the second and 

third order partial derivatives of the hydrodynamic force components. 

The third method, the method of averaging, is a more adaptable technique, 

but a detailed comparison of results obtained from the method of averaging 

with those derived from bifurcation theory and multiple scaling has ind- 

icated some areas of discrepancy which are worthy of further investigation. 

9. The importance of numerical integration lies in complementing the 

theoretical work by checking features obtained theoretically and in 

widening the investigation to cover regions of parameter space in which 

existing theories are invalid. An entirely numerical investigation is 

not only expensive in computing time, but limited, because there are 

large parameter ranges to cover with no, identification of the regions 

where different behaviour occurs. 

10. This thesis has investigated some of the features of oil whirl which 

are due to the nonlinearity of the hydrodynamic forces. The limitations 

of a purely linearised approach have been exposed. This is not to say 

that bearing calculations should always include nonlinear effects, but 

there should be a greater awareness of the role which the nonlinear terms 

play in the phenomenon of oil whirl. 
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8.2 RECOMMENDATIONS FOR FUTURE WORK. 

1. There is a need for more carefully controlled experiments in the exam- 

ination of the vibrational characteristics of oil lubricated journal bear- 

ings and in relating theoretical work to experimental results. It is 

envisaged that experimental work could be carried out in three main areas: 

i) The determination of the behaviour of the oil film during journal 

vibration. At present, there is little experimental evidence 

to suggest whether the oil film remains static during journal 

vibration, or swings round with the whirling motion. An import- 

ant additional factor is the extent of the cavitating region 

during whirling. An experimental project specifically designed 

to investigate these effects would be important since it has 

been shown in this thesis that such factors have a significant 

influence on the vibrational. characteristics of the bearing. 

ii) The investigation of the significance of groove position and oil 

supply pressure on the vibrational characteristics of the single 

axial groove journal bearing and the comparison of the results 

with the theoretical predictions made in Chapter 4. A test 

apparatus has already been designed and built for this purpose 

(see Appendix IV). 

iii) The examination of the onset of oil whirl in a simple rotor- 

bearing system. Much of the theoretical work described in 

Part 2 of this thesis was concerned with the onset of instability 

and the different whirling motions which were possible once 

whirling was initiated. It would be interesting to carry out 

an experimental project to determine whether these different 

features actually occurred in a real rotor-bearing system. 

It would be necessary to design the apparatus so that the sys- 

tem parameter could be altered - this could be achieved by 

using oils of different viscosities. 
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2. This work has emphasised the importance of incorporating accurate 

boundary conditions at film rupture and film reformation, which is 

essential in providing a quantitative description of the vibrational 

characteristics of the bearing. Future work should be directed towards 

a more comprehensive understanding of film rupture and film reformation 

in journal bearings under both steady state and dynamic conditions. 

3. A significant extension of the present work would be to carry out 

an investigation of the short bearing (half film) similar to the analysis 

of the long bearing made in Part 2. Either bifurcation theory or mult- 

iple scaling could be used and the results contrasted with those from 

a numerical investigation and with Lund's results obtained from the 

method of averaging. 

4. Future work should also be directed towards improving the applicat- 

ion of the method of averaging to the equations governing oil whirl. 

The method of averaging is an important technique in the investigation 

of oil whirl because it is more adaptable than the other nonlinear 

techniques (the method of averaging requires only the calculation of the 

first order partial derivatives of the hydrodynamic force components). 

However, there is a need to resolve the present discrepancies which exist 

between results obtained from the method of averaging and those obtained 

from bifurcation theory and multiple scaling. 

5. The model used throughout this work was a simple one. Future work 

could be carried out in a similar manner to that described here, but 

the model could be extended in various ways by incorporating: 

i) rotor flexibility 

ii) journal misalignment 

iii) mass unbalance 

iv) different bearing geometries. 

Of the most theoretical interest, is the analysis of a simple model which 

includes the effect of mass unbalance. Some mass unbalance in the rotor 
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is inevitable due to limitations in the manufacturing accuracy and intro- 

duces periodic forcing terms into the equations. Under these conditions 

the steady state solution is no longer an equilibrium point, but a closed 

orbit. The effect of mass unbalance on oil whirl has not been widely 

studied (some recent work was carried out by Lund (1980)). It is envis- 

aged that an initial investigation could be made by using the method of 

multiple scaling. 

It is evident that there are many interesting aspects of oil whirl 

in fluid film journal bearings which remain to be examined. These prob- 

lems are a challenge to the applied mathematician and engineer alike. 

J 
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APPENDIX I: THE SOMMERFELD SUBSTITUTION. 

Integrals. of the form Ie2 cosOdO which occur frequently 
81 (1+ecosO)3 

when solving the Reynolds` equation may be evaluated by using the 

substitution: 

1- ecos* = 1-e2 
1+ccose 

It is commonly referred to as the Sommerfeld substitution with 4' the 

Sommerfeld angle. A list of the integrals which have been used through- 

out this work appears below. 

J2 dO 1 --7- { e2 (sin2* sin2ý 1)-8c 
(sin*2 sin*l) 

1 (1+ccose)3 4(1-c2)5 22 

+2(2+c2)iý2 Ali} I1 

J02 sined6 1 
1 {e(cos2* -cos2ý)-4(cosý-cosýl)} 12 212 1 (1+ccose)3 '4(1-s2)2 

e 
Jet cosede - {4(1+e2)(sin*2 siný1)-6e(ý2-*1) 

1 (1+ccos8)3 4(1-e2)5 2 

-c(sin24'2-S in2i1)} 13 

e 

J02 
sinecosede 

=1 2l21 
{4e(cosý-cos* )-(cos2ý-cos2ý)} 14 

1 (1+ccose)3 4(1-c2)2 

e 
fe2 ce 1 {2(ý2 -(sin2p2-sin2iP1)} 15 

1 (i+Ccoscos0)3 4(l-C2)3 2 

r°2 cos2oae 1 {(sin2ý -sin2* )-8e(sin* -sind e1 l (1+ccose)3 4(1 2121 

+2(1+2c2)('2'*1)) 16 

where ý2ý1 are the Sommerfeld angles corresponding to 02,01 respectively. 

Note that 4 coincides with 0 at 0, n and 2n. 
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APPENDIX II. DETAILS OF THE LINEARISATION FOR VARIOUS MODELS. 

II(i) A LONG BEARING OPERATING WITH A STATIC HALF FILM. 

Integrating the Reynolds equation for a long bearing twice (equation 

2.1) with the boundary conditions: 

p(-y) = p(n-y) =0 (see Figure 3.1) (II. 1) 

2 

_> 
es e(1-2ý) 4(1+e2)(sini-sinp1) - 6c(i-41) - e(sin24, -sin2*1) 

'RI 4(1-e2)5 2j+ Cl c2(sin2ý-sin2p, 1 
)-8e(sin4, -sini, 1)+2(2+e2) 

(ip-Vý1)J 

+eý,: (cos2p-cos2p1) - 4(cos4- cos* l) 
(11.2) 

2(1-e2)2 

where '1' *2 are the Sommerfeld angles corresponding to -y n-y. respectively. 

and Cl 13 2e(1-e2)1 2 12 (see Appendix I) (11.3) 
I1 c (I-20) I1 

The hydrodynamic forces are: 

2 Fr 
c- (j) 

LRcou = 6e (1-20) (I4+C1. I2) + 12. I5c (11.4) 

2 Ft >I 
(R) LRWII - 6c(1-24)(I6+C1. I3) + 12. I4c 

The equations of motion are: 

c- e¢2= v(cos¢+SFr) c¢ + 2e¢ - -v(sin4-SF t) 
(II. 5) 

During a small amplitude vibration of the journal about its equilibrium 

position y will be « 1. Hence the following relationships can be 

derived from the Sommerfeld substitution (Appendix I): 

siný2 - siný1 = 
21 

2 cosi2 - cosýl = -2 cos 2i2 - cos 241 =0 
(1-C2) 

sin 2ý2 - sin 2ý1 
4Ye 

sI7- ý2 - ý1 
lye 

- ý2 (11.6) 
(1-es) (1-es) 

The procedure for linearising the equations of motion is: 
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i) Substitute c= es + d, 0= ýs + Y. 

ii) Use the above relationships to eliminate ip 2,1, 

iii) Retain_ only first order terms. 

iv) Collect like terms and convert to Cartesian co-ordinates by putting 

aaX, cy: Y. 

This procedure yields the eight velocity and displacement coefficients 

given in Chapter 3 for this model (equations 3.13). 

II(ii) THE AXIAL GROOVE JOURNAL BEARING. (including the work on the 

Reynolds boundary condition described in Chapter 3). 

a) Film Start at the Groove Position. 

For this model the boundary conditions are: 

p=pg at 0= el, the groove position. (II. 7) 

p= 
äe 

=0 at 0= 02, the film rupture position. 

Integrating the Reynolds equation for the long bearing: 

2 c(w-2ý) (cose - cos92) + 2E(sin8 - sin82) 
611 

dA 

CC) 

(l+ecos9)3 

which satisfies 
()s0 

at 0- 02. 

Integrating again: 

2 (P-P ) 3c(1-24)F(c. Vi"41"P2) 3EQ(c, , P1, P2) 
(II. 8) (R) 

uw 2(1-c2)3 2(1-ccosp2) (1-e2)2(1-ccosý 2) 

which satisfies p(01) - pg. 1 and *2 are the Sommerfeld angles corres- 

ponding to 01 and 92 respectively. 92, the film rupture position is 

determined by solving the equation p(02) - 0: 

E(1-20)(1-e2)1/2F(e, *1. *2 + 2eQ(c, p1.42) +3 pg(1-e2)2(1-ccos42) =0 

(11.9) 

For the functions F, Q etc. see equations (11.19). 
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The hydrodynamic forces are: 

Fr = LR r? p(6)cosOd9 = LRIp(O)sinOle2 - LR fe 2 de 
sinOdO 

e1J 01 61 

= JZ 
Ie 

Ft L8 p(9)sin9d9 =- LRIp(6)cos9i2+ LR 1e2 de 
cos9d9 

1I11 

I 
3c(1-24) (cosy 2 cos4, l)2 3T(c, ºV1, tp2)c 

_> F=-p sine -- (II. 10) 
r91 (1-e2) (1-ecosý 

2) 
(1-e2)3 2 (1-ecosý 2) 

3c (1-2ý)A(e, * 1. *2) 
Ft p9 cös9 1+ý 2(1-c2)3 2(1-ccosý 

2) 

Steady State Expressions. 

3V(e, ýV*2)e 

(1-c2)2 (1-ECOS1p2) 

3c 4(1+escos*2s) (sin4-sin P) 
PS P+ sg 2(1-es)3 2(1-e 

s 
cosýV2s) 

- 2(eä+2cosý 
2s) 

4-els)-es(sin2ý-sin2ý 
ls) 

'2s satisfies the equation: 

cs F(c 
s'*ls''2s 

)+3 pgil-es)3/2(1-escosi2s) -0 (II. 12) 

which may be solved for *2s, after specifying es, *ls and pg, by the 

Newton-Raphson technique. 

Frs - p9sine ls 

tan 
Fts 

s 
-F rs 

3cs(cos*2s-cos*ls)2 

(1-c2)(1-C 
scosý2s) 

3esMes'*ls'*2s) 
Fts p cos9 i+ 9s 2(1-es)3 2(1-escosp2s) 

S( )2 12 
2 

Frs+F 

Linearised Equations of Motion. 

The full equations of motion are: 

to t it ft 

e- e42 =v(cosq+SFr) EO + 2c4 v(siný-SFt) 

(II. 13) 

(11.14) 

with Fr, Ft given by equations (II. 10) and p2 specified by equation(II. 9). 

During journal vibration about the equilibrium position: 
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C -s Cs + d, ý -' 0s + Y' ý2 ; ß'2s + 6ß'2' ýl ; *ls + dß'1 (11.15) 

sin* lsd 
(1-es cos*1s)y 

where dgl 
2-212 

(11.16) 
(1-es) (1-es) 

4+ 

since *1' 1(e). since Al+Ols-y during journal vibration 

Substituting these expressions into equation (11.9) and retaining only 

first order terms yields an equation of the form: 

6ý i 2c y (1-es)1/2 Fs - 26Qs - F6s6 + F45Y (II. 17) 

The equations of motion are linearised by substituting equations 

(11.15), (11.16) and (11.17) into equations (11.14), using the steady 

state expressions and retaining only first order terms. The eight vel- 

ocity and displacements coefficients obtained by this procedure are: 

3STs 6Sgses(co"2s co"ls)(2-es cos*2s-escosýls)sW 2s 
a BXX 

(1-c2) 3 2(1-c 
cosip2s) 

+ 
(1-e2)(1-eseosý2s)2 

-6S(cos42s-cosipls)2 6SESs(cosIP 
2s-co"ls)(2-cscosý2s-cscoO ls)sin*2s 

XY (1-e2)(1-escos42s) (1_c2)1 2(1-escosp )2 
s 2s 

- 3SVs 3Ses 
1(aA/p2)(i-cscosý2s 

)-Ascssinp2s 
? 

Qs 
B+ 
YX (1-ss)2(1-escosý2s (1-C2)3 2(1-c 

cosb2s)2 

3SAs 3Ses 
1(aA/aip2)(i-c5cosp2s)-Asessin*2s 

Fs 
B 

'' (1-C2)3 2(1-C 
cosý2s) (1-C2)(1-escosip2s)2 

Km 
xx 

3S(cosp2s-cosi, ls 
)2 (1+es 2cscosýY2s) 

(1-EZ) 2(1-cscosp2sa2 

6Scs (coslp 
2s-co"ls)sin24 is 

(1-C2)2(1-cscosi 
2s) 

3SF6ses(cosp2s-coshs) (2-cscosý2s-cscosVjs)sin*2s 
+ (II. 18) 

(1-c2) (1-c cosý23) 2 

s 

3F S (cos 4' -cos P) (2- e cos y' -E cosy' ) sinI' 
KS_ (F -p cos 9)- 4s 2s is s 2s s is 2s 

xy cs 
is 9. is (1- 

S) 
(1- 8cos ýV2s) 2 

6S (cos *2s-cos *ls)sinVls (1- scos Vls) 

(1-c2)3/2 
s 

(1-escos*2s) 
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3Scs(3A/84,1)ssinýls 3S)As(1+2cs-3cscos*2s)+es(8A/8c)s(1-cs)(1-escosp 
K 

yX 2(1-es)5 2(1-escosýU2s 2(1-es)' 

3Ses 
c(8A/8*2)s(1-escosý2s)-essinp2sAs ?i 

6s 

2(1-c2)3 
2(1-cscos42s )2 

s 

SF- 
3S(aA/a*1 )s (1-c cos4ils) 

IC =-c rs+pgsinels 
)+ 

S 2(1-cs)2(1-escos4U2s) 

3S 
f(aA/8i2)s(1-csco"2s)-cssini2sAS 

F4s 

2(1-c2)3/2(1-cscos42s)2 

where: 

(1-cscosý2s)2 

F(c,, P, ý1' 2)- = 4(1+ccosý 2) (sing-sin*1)-2(E+2cosV 2) 
(P-P1) 

-c(sin2tp-sin2ý1) 

Q(e, ý, ýl, ýy2) 
IC (cos2ý-cos2ý 

1)-4(cos*-coO 1)1 
(1-ecosý'2) 

-sin* 2 fc2(sin2*-sin2ý1)-8e(sinv-siniPl)+2(2+E2) (*-*1)] 

T(E, *1, *2) = 2(1-ecosT2M 2 ý1)-(1-ccos)2)(sin242 sin2ý1) 

-csin*2(cos242 cos2*1. )+4sin*2(cos42-cosI1) 

V(e, *1, *2) = 4E(1-ccos*2)(coO 2-cosý1)-(1-ccos*2)(cos2ý2 cos2*1) 

-4 (1+E2)(siný2 sin* )siný2+6csiný2(ý2 ý1)+esiný2(sin2ý2-sin2ý1') 

A(c, 41, *2) ffi (sin2*2 sin2P1)+2(1+2ecos*2) (ý 
2 ý1)-4(siO 2-siný1) 

(e+cos*2) 

(II. 19) 

(3F% 
= sin4 sin2* -4cos* sinýV -2(Vý -* ) 

ae 
s 

2s4* is 2s is 2s is 

rä 
=4 (Vp2s-Výls)sinýU2s+e sin*2ssin*1S cssin2ý2s 

1 2s 

= 2(e +2cosý )+2e cost -4cos (l+e cosh ) 
8ý, 1, s 2s s is is s 2s 

s 
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Fos °e 
(3F\ 

s alp 
(l_c cos*1s) 

1 
s 

FSs es(1-E2)1/2 
O2)+3p 

CS(1-C2)2sin*2s 

s 

1/2 F 
(1-2c2) 

F6s es(1-e2s) 18eI 
s+ (1-E2)1 2 Fs -3 pg(1-E2s)(4es+(1-5e2s)cos* 2s 

s 

- 
essinýis öF 1 

-E2) 
1/2 

("5 

J 
s1 

(1 
s 

Fs 6 Fs/F5 s Qs/F5s- F4s F4s/F5s F6s F6s/F5s 

(! i 
=4 +sin4) -sind ad 

s 
2s is 2s 

., 

/DA 
4 

[sin24 
-e (* -p )sind -s in* sind aý2 

) 
2s s 2s is 2s is 2s 

s 

aA 
=4 cosh cosh -cos2iy +e cosh -e cosy (8ýy1)s 1s 2s is s is s 2ss 

To obtain the eight velocity and displacement coefficients for the 

model with the Reynolds condition at film rupture described in Chapter 3 

substitute pg =0 and Al = 6ls =0 into the preceding expressions. The 

values obtained correspond to those for the static film where the film 

forms at the maximum film thickness in equilibrium and remains there dur- 

ing journal vibration. To model the oscillating film also described in 

Chapter 3 the procedure is identical except that equation (11.16) reduces 

to: 

sing d 
dgl a- 

is 
-0 fore 

s 
als 0 (11.20) 

(1-ES) 1 

_> 6ý2 = 2csYi1-es)1/2FS-2Qsd-F6s6 

Only two of the eight bearing coefficients (Kxy and Kyy) are altered. For 
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this model the expressions are: 

KXY 
es 

its Kyy 
es 

Frs 

b) Film Termination at the Groove Position. 

For this model the boundary conditions are: 

(II. 21) 

p=pg .0= A2 Film rupture (11.22) 

p=08= of Film start 

Integrating the Reynolds equation for the long bearing twice with 

the boundary conditions: 

pM at 0=02,02+211 
g 

2 3c(1-2ý) 
2 

IR/ 
(p-p) 2(2-e ) (sin*-siný 

2)-c(sin2ty-sin2ý2 9 l1w (1-c2)3 2 (2+E2) 

+1 
E2 2 

1cos2_c0s22)4os402)] 
(II. 23) 

Let p=0 at 6a el; p>0 for 01<e< e2. 

01 satisfies the equation: 

(1-e2)2(2+e2) 
pg+ e(1-e2)1/2(1-2$)F1(e, 419p2) +e F2(e, p1, P2) °0 (11.24) 

3 

For the expressions F1, F2 etc. see equations (11.30). 

The hydrodynamic forces are; 

_- 
3e(1-20) 

r(cos2Ycos2ý2)+2c(cosý1-cos*2) 

F 
r= 

pgsin9 2- 
(11.25) 

(1-e2) (2+E2) 

- 
3e 

2 2(*2-ý1)-(sing*2-sin2ý1)J 
(1-e )J 

3C(1-24) i (sin2P2-sin2ý 1)-2e(sinP2-siný 1)+2(1-C2) 
('V2-1 

Ft =- pgcos92 + 
(1-E2)3/2 (2+C2) 
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3e f4c(cosp2-cos*1) 
+- (cos2ý2 cos2e1) 

(1-c2)2 J 

Steady State Expressions. 

3es rl 
Ps p+i 2(2-es)(siný-sin* 2s 

)-e 
s 2s 

(sin2ý-sin2ý)1(I1.26) 
g (1-c2)3 2 (2+c2) ` JJ 

als is the solution of the equation: 

(1-C2)3'2 (2+c2) 
P9 + es F1CES. 'ls' 2s) °0 (11.27) 

3 

_ 
3cs 

ý(cos24ls-cos242s)+2cs(cosýls-cosý2s) 

Frs =p sin92s - (11.28) 
g (1-cs)(2+e2) 

_- 
3es 

c(sin2*2s-sin2ýls)-2cs(sin*2s-sinýls)+2(1-c2)(ý2s-ýls) 

- is pg cosA 2s + 
22 (1-E) 2(2+ES) 

S 

Linearised Equations of Motion. 

The equations of motion are then formulated and linearised following 

a similar procedure to case (a). The eight velocity and displacement 

coefficients so obtained are: 

3S(2(i2s-als)-(sin2i2s-sin24ls)) 6SF2ses(sin2ils+cssiO 
ls) B+ 

XX (1-es)3 2 (1-c2)(2+c2) 

B 
6S(As+Bsss) 12Ses(sin2ils+essin* ls)FIs a-- 

xy' (1-c2)(2+ss) (1-c2)1 2(2+e2) 

i- 3S(As-2B 
ses) + 

3Ses(BG/3ý1)si2s 
Byx 

(1-c2)2 (1-c2)3 2(2+c2) 

6SGs 6S(2G/ap1)sflscs 
BC- (11.29) 
YY (1-es)3 2(2+ES) (1-es)(2+es) 

3S 
I(As+2Bses)(1-ss)(2+c2)+2E2(As+Bses)(1+2c2)ý 

K 
xx (1-ES) 2 (2+ES) 2 
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6Se 
s 

sind 2s 

fSifl21p2+CsSifl4)2 

s+ 
6SF4s es 

ISmfl2iSmfl4)i1 

(1-E2)2(2+E2) (1-es)(2+E2) 

K=S+ cos9 _ 

6S 
fsin242s+essin* 

sI 
(1-Cs cos*2s) 

xy 
E 

is Pg 2s 
1_c2 

32 
2+e2 

s( s) S) 

6S 
fsin2ý}"+essinils 

EsF3s 

(l-c2) (2+c ) 

3S 
c(Gs+cs 

(8G/ c)S) (1-c2) (2+c 2)+e2Gs (4+5c2) 
Km- 

yX (1-e2)5/2 (2+e2)2 

3Sss(8G/ap2)ssini2s 
+ 

3Ses(8G/4 
1)s'4s 

+ 
(1_ES)S 

2(2+ES) 
(1-ES)3 

2(Z+c2) 

3s (3G/42) 
s 

(1-escos*2s) 
K 

yy c rs+pgsinA 2s + 
1-c2 2 2+e2 

S(S(S 

3s(ac/ap1 )sF3s£s 
(1-es)3 2(2+ES) 

where: 

F1(e, 41,42) = 2(2-e2)(sin*1-sini2) - e(sin241-sin2p2) 

F2(c, i1,42) - (2+c2) 
fc(cos24i1-cos2iP2) 

- 4(cospl-cosp2) 
I 

(3F, 

ac 

) 
(sin2ý 

2s-sin2ý is) + 4es isiný 
2s-sin* isý 

s 

aFl Caý 

= 2ESCOS2ý 2(2-ES)COSý 

(; _:: )j= 2( 2-e)cosj- 2ccos2ýlFas 

=1aß) (1-cscosP2s) 
2 

s 

(11.30) 
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ls 3Fl sinJ2s 2 1/2 aFl (1-2e2)F r r 
Fos es (1-ES) 

8e +212 es 18V' J 2)1 2 
s (1-es) 2s (1-es 

+ pg3 
(2esi1-esý-4csi1-es)i2+es)/ 

Fls 
Fls 

es(l_es)1 
2(3F1/841)s similarly for F2s' F3s' F4s 

As - cos2bls - cos2T2s Bs a 2(cos*ls - cos*2s) 

Gs - (sin242s - sin24ls) -"2es(siniP2s - sin*ls) + 2(1-c2 )(42s-4ls) 
s 

aG 
=- 2(sin, -sin* )- 4c 

eel 
s 

2s is s 2s is 

Aa- 
2cos2ýls + 2cscos*ls - 2(1-c 

S. 1 1- 
s 

(äff 
2cos2ý2s - 2escosý2s + 2(1-c2) 

2 
S 
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APPENDIX III. An Outline of the Bifurcation Calculation. 

i) Note on the Co-ordinate Transformation. 

With the origin of the X-Y co-ordinate system at the bearing centre 

0 (Figure-5.2) the relationship between the Cartesian and polar co- 

ordinates is: 

X= EcoO ,Y= csin4 III (1) 

_> EZ = X2+Y2 cos¢ =X sin4 =Y EE 

Differentiating equation III(1) with respect to T: 

X= ecosý-e¢sin¢ Y= esin¢+cocos4 

=> e= Xcosq+Ysino Eý = Ycos4-Xsinq 111(2) 

Referring to Figure 5.2: 

FX =S+ Frcos4 - Ftsino FY = Frsiný + Ftcoso III(3) 

Equations III(l), III(2), III(3) define the force components FX and 

FY as functions of X, X, Y , Y; " To calculate the force derivatives 

(8FX/ax)setc. the relationship between the co-ordinate derivatives 

is required. They are derived from equations III(1) and 111(2) and are: 

. 
LC 

= cos 
ac 

= sillo 
aE 

_ 
a£ a=a 

_ 

ax ay ax aY ax ay 
t 

t 

-Lo ax -E sind c cosh 
t ;c- 
4)sino 

äY 
4)cos¢ III(4) 

t 

ao 
t 

{esinO-c4cosO} {Ecoso+E4sin4} 

ax C e2 ay e2 
t 

T 
I 

= cosO 
1 

sind 

t 

ac 
= sind 

t 

-ý 
=1 cost 

ax ax c ay ay e 

The eight first order force derivatives may now be calculated by diff- 

erentiating equations 111(3) with respect to X, X, Y, Y and using equations 

III(4). For the model investigated in Chapter 5 (ie. a long bearing 
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operating with a half film) the eight coefficienrs are: 

2{2ES(n2(2+ES)-lÖ)+n2(1-E2)(7r2(1+ES)+HES)} 
Ba 

XX 
TrE (1_E2)1 2 {Tr2(1_E2)+4E2}3 2 

SSSS 

2(2+c2)(n2-8) 
=B XY YX {n2(1_c2)+4c2}3 2 

n (1' C2) 
1/2 (2+'C2) (n2-8) 

a 

e{fr2(1-c2)+4e2}3 
2 

s 

2{ßE2 (2+e4)+, r2 (1-e2) (2-e2+2e`') } 
Ksssss 
ýQC (2+es)(1-es){n2(1-es)+4c 

it{8c2(2+es)+112(1-c2)(2-es+2es)} 

(2+e2) (1-c2)1 2{7r2 (1-e2)+4e2}3 2 
ssss 

n{4e'`-rt2 (1-e2)2 }- 2{4e2+n2 (2-c2) } 
KyX aSS Kyy asS 

es(1-C2)1 
2{ir2(1-es)+4es}3 2 {n2(1_c2)+4c2}3 2 

ii) The Calculation of (da/dw)- and (cM /dw)Wth 
wth 

The characteristic equation (equation 5.15) may be written in 

the form: 

III(5) 

I 

74 +_ 
1 

A(e )a3 +1 
(B 

(c )+_ C(e 
ýA2 

+1 D(c )a +1 E(c )=0 

t2s -2 
`s w2 s (A) s w4 s 

where: A(es) = BXX+Byy B(c) =I +I, C(ES) - BXXBYY BXYBYX 

D(ES) = BXX KYY+BYYKXX-BXYK 
X 

BYXKXY E(cs) = XX YY XY YX 

The Sommerfeld number is a function of the steady state eccentricity 

ratio: S= S(c ) 
s 

Since S= aw => Qw =S (C ) (a constant) s dS(c ) 
Differentiating with respect to c _> 

dý 
=1s 111(6) 

s de a de 
ss 

At the threshold speed w= wth' nth +th 

dw 
+i 

da dý 
nth+dlý at w= wth + dw A= loth + da 

- 

(d; )_ 
- 

Wth Wth 
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Substituting the above expressions into the characteristic equation 

and retaining only first order terms yields: 

4 (iSZth) 3- 
23 

A Steh + 
-22 

i 
(B 

+ 
-21 

C S2th +wD da 

th th th th 

+1 
dA dES 

_1A (i5th)3_ 1 dB 
+1 

dC 
dc 

_ 
2B 

2 de dw c3 w2 de w4 de I dw w3 
th s th th s th s th 

+i1 
dD dES 

_ 
4D n+ 

dE des 
- 

4E di =0 kh 
de dth de ds 

th th s th 

4C 
J52 

;5 th 
th 

I11(7) 

from which the derivative (d5/dw)- may be determined. Separating out 
Wth 

the real and imaginary parts of the expression yields the required 

derivatives: 

i and 
dý)_ 

`dam - dý 
nth nth 

iii) The Calculation of the Eigenvectors u and v. 

Let v denote the right eigenvector of AWth of the eigenvalue +isl th' 

then by definition: 

(AWth - ist I) v=0 with v= v2 111(8) 
3 

v4 

and Awth defined by equation (5.14). Equation 111(8) represents 4 

equations, one of which is redundant. Taking the first three equations 

and omitting the subscript th : 

-iS2 vl + v2 =0 

(J)2 

K vl +2B +iSZ 
1 

v2 + 
-2 RXv3 + 

-2 B v4 0 HIM 
I 

- ic2v3 + v4 =0 

Let Vl =T= Tl + iT2 a complex parameter then: 
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the first equation of equation 111(9) 4 V2 = OT 

52-2-iýýýý i5B -7CX 
the second equation 4 V3 =_ 

Xi 
It III(10) 

I +if2BXY 

the third equation 4 V4 = inV3 

Let u denote the left eigenvector of A'W th for the eigenvalue +inth 

then by definition: 

u (Ruth -0 thI) -0 with u- (u1 u2 u3 u4) III(11) 

Again considering the first three equations: 

+2 Kyxu4 =0 iS2u1 + 1i)2 KXXu2 
w 

u1 -ri B +0 
ýu2 

-1 BYXu4 =0 111(12) 
1w2 //! W2 

1 
KXYu2 + it2u3 + 

12 
Kyy u4 0 

ww 

Taking u4 =1 and eliminating u1 from the first two equations of equa- 

tions 111(12): 

(I+iS2B, ) 

_> u= 

Substituting into the second and third equations of equation 111(12): 

_ 
+iS2B 

_> u1 
1 Bm + 

(-2 1B 
+iEKyX YX 

III(13) 
W2 (w2St2- )-iEBXX 

and u1K+ 
KXY ýýý 

(KyX+itB 
YX) 

3 i5 W2 (W-2i22-KXX)-0Bxx 

In the bifurcation calculation it is necessary to calculate the real 

and imaginary parts of the components of u and v. This is a straight- 

forward, but tedious process. T. the complex parameter, is chosen 

to satisfy the normalisation requirement uv 
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_> ulv1 + u2v2 + u3v3 + u4v4 =1 

iv) The Inverse of the Matrices Awth and (AWth - 2iQ 
t 

I). 

It is easily verified that the inverse of Awth is: 

w4 

(BYX 
XY-BIX YY) W2 -4 

(BYY 
7iY-BXY YY) . 72 XY 

(AWth)-1 - Det A W4(KXY y 
KXX 

YY) 
000 

14 (YXBXX 
- JQ 

BYX) y% 
4 

(BXY 
yi-KXXBYY) 

KXX 

W4 .2ww 

00- 
4( YXKXY-KXX 

KYY) 0 

111(14) 

where Det A=4 (KXX 
YY XY YX) 

In fact only four non-zero elements of A are required in the calculation: 

they are (A 1)12 (A 1) 
32 

(A 1)14 (A 1) 
34 

Let C Awth - 2iHthI 

2in 100 

C- 
1Kýý- 

-1B -litt - -1 ý- -1B 111(15) 

w2 
XX 

w2 
XX w XY 

w2 
XY 

00 -20 1 

-ý1 _1B -ý1 B -2iS2 W2 YX ý2 YX 
W-2 

YY Z2 YY 

The elements of C-1 which are required in the calculation are: 

(C 1)12 
' (C-1) 

22' 
(C 1) 

32 
(C 1) 

42 
(C-1)14 (-C71)24 (C-1) 

34 (C-1)44 

These elements are calculated following the usual procedure for matrix 

inversion: 

ýý1)12a 
(OZ2-Kyy)-2iS Byy 

W2 Det C 
(C 1) 

_ 
4Q2BYY+21SI(4n2w2-Kyy) 

22 
Z2 Det C 
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KX+ 2i5BYX 
ýC )32 = 

w2 Det C 

(C_1) 
K+ 20BXY 

14 ý2 Det C 

(C-1)34 
(452Z2 2I )-2i5BXX 

w Det C 

(C 
-4S22BYX+21 

iKy 

42 = 
w2 Det C 

-1, 
-4522 

(C 
BXY+2iSIKXY 

s 

24 w Det C 2 

(C 1 4p2B +2i5 (452? 2-IXX) 
)44 a 

;2 Det C 

111(16) 

where Det C- 1654- 
2(g 

+KY-) +1 (BB -B B)+1 (K K KK ) 
w2 7CC Y ý2 XX YY 

. XY YX -4 7IX YY- XY YX 

3 
- 6i 5 (B +B ) 

w2 

It is necessary to calculate the real and imaginary parts of the above 

expressions. 

v) The Calculation of a2F1/axjaxk, a3F&/axiax3. axk (i, j, k, t = 1,2,3,4) 

Referring to equation (5.11): 
X2 

S2 FX (X1, ) 2, X3x4S) 
w 

F (X, w, S) X4 

S2 FY (X1, X2, X3, X4, S) 
W2 

(where X= X1, X = X2, Y = X3, Y = X4) 

Since F1 = X2 32F1 a3Fi => _-0V j', k, p 
ax axk ax. ax ax k 

a2F3 a3F3 v 
and F3 = X4 => _-0Dj, k, p 

ax. axk axjaxkaxp 

111(17) 

111(18) 

111(19) 

2- 
F2= 

SF 
=> 

a2F2 
=Sa 

FX 
a3F2 

=S 
a3FX 

_ 
111(20) 

w-2 X axiaxk ý2 axýaxk axýaxkaxp w2 axýaxkaxp 

and similarly for F4 =S FY etc. 
w2 

The derivatives of FX and Fy are calculated be differentiating 

equations 111(3) and using equations 111(4). For the model under 
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investigation the hydrodynamic forces Fr, Ft are given by equations 

(5.16). For the purpose of calculating the derivatives they are most 

conveniently written in the form: 

- Fr - (1-2¢) A(c) + B(e)e 
IU 

Ft = (1-20) C(c) + D(c)c 

where A(c) = 
12e2 

(2+E2) (1-E2) 

111(21) 

B(E) a6 
(n2 (2+e2)-16)2 " 111(22) 

n(2+e2)(1-e2) 

_ C(E) a wi 
2 D(E) 

(1-E2) (2+E2) 

24e 

(2+c2)(1-e2) 
a 

2A(c) 

e 

The derivatives are all evaluated at the steady state equilibrium 

position and with w- wth in equation 111(20). 

The derivatives are: 
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The derivatives of FY (b5 - b34) are obtained from the corresponding der- 

ivatives of FX by replacing A by -C, B by -D, C by A and D by B (this fact 

may be deduced from equations 111(3) and 111(21)). 
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Note that: 

a2F a2F 
Y T (ie. b8 = a10) 
axax axaY 
a3F a3F 
Yr 

ax2ax 

X 

ax2ay 
(ie. ba) 

18 19 

a3F a3F Yr 

ay2ax 
= 

Xý 

ay2ay 
(ie. b=) 21 a 22 

a2F a2F 
=X (ie. b11 = a9) 

ayax ayay 

a3F a3F 

-y =x (ie. b23 a24) 
axaYax axaYaY 

Thus all the quantities required to use Poore's bifurcation formula 

( equation (5.4)) have been determined. The calculation is completed by 

writing out equation (5.4) in full (ie. summing over the repeated indices 

from 1 to 4) and separating out the real and imaginary parts. The sign 

of the quantities 61(0), nl(0) may then be determined. 
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APPENDIX IV. DESIGN OF TEST APPARATUS. 
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ufacture and construction of the apparatus. 

IV. 1. INTRODUCTION. 

This appendix describes the initial stages of an experimental 

project, which had the following objectives: 

i) to test the theoretical predictions of this work regarding the influ- 

ence of groove location and oil supply pressure on the vibrational 

characteristics of the single axial groove journal bearing (see Chapter 4). 

ii) to provide, in the longer term, a basic test apparatus for examining 

the stability of a rotor supported in oil lubricated journal bearings. 

Unfortunately, owing to a shortage of time and problems which were 

encountered with the instrumentation, it was only possible to design 

and construct the test apparatus. A description of the test apparatus 

is given, together with theoretical predictions of shift behaviour and 

a discussion of the problems which were encountered. 

IV. 2. DESCRIPTION OF THE APPARATUS. 

The apparatus consisted of a steel rotor mounted horizontally on 

two, plain, cylindrical, oil lubricated journal bearings. The dimensions 

of the rotor are as shown in Figure IV. l. A photograph of the complete 

apparatus is shown in Figure IV. 2. For a more detailed specification 

of the test apparatus, the reader is referred to the detailed drawings 

in the Mechanical Engineering Department of Leeds University (drawing 

numbers Al - 3911,3912,3914). 
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The system was designed initially, by employing the results of 

Chapter 4 to predict the load capacity, steady state eccentricity ratio, 

attitude angle and the instability threshold speed of the rotor in 

the support bearings. When the basic dimensions of the rotor had been 

decided, a more comprehensive investigation of the rotor-bearing model 

was undertaken with the assistance of Dr. A. V. Ruddy (1981). A comp- 

uter program, developed by Dr. Ruddy, was used to calculate the damped 

natural frequencies, critical speeds and response to mass unbalance of 

the rotor-bearing system. The theoretical behaviour of the rotor is 

discussed in section IV. 4. 

The rotor was driven by an induction motor, attached to the rotor 

through a belt-coupling arrangement, such that the shaft could vibrate 

with minimal interference from the motor. The rotor speed could be 

continuously varied up to a maximum speed of 6500rpm. 

The bearings were identical, plain, cylindrical journal bearings 

with the following dimensions: 

axial length 50mm. 

diameter 50mm. (L/D = 1) 

radial clearance 0.14mm. 

The lubricant used was a very light viscosity oil, Tellus R5 

(u = 0.004 Pas at 550C), which was fed into the bearing through an axial 

groove located in the bearing sleeve. The oil was supplied to the 

bearings under gravity, from a resevoir mounted above the rotor (Figure 

IV. 2) - the small supply pressure due to gravity was sufficient to force 

the oil into the bearings. 

In order to model as closely as possible the long bearing model 

described in Chapter 4, rubber seals were attached to the rotor to 

restrict side leakage from the bearings. This meant that, unless 

removed, oil would be continually circulating round the bearing, getting 
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hotter and hotter. This situation was avoided by providing an outlet 

groove just upstream of the inlet groove, so that some oil was forced 

out of the bearing during each revolution. It was hoped that this would 

be sufficient to achieve a stable operating temperature. 

The bearings were specifically designed so that the bearing sleeve 

and hence the axial groove, could be rotated relative to the bearing 

pedestal. Therefore, the axial groove could be placed in any position 

relative to the loadline. The groove was fixed by screws located around 

the. bearing pedestal. 

INSTRUMENTATION. 

The instruments which were used to measure the shaft displacement 

were: 

i) four contactless displacement transducers of the inductance type. 

ii) two carrier frequency amplifiers and bridges. 

iii) an oscilloscope to observe the shaft orbit. 

A speed measuring control unit with a magnetic pick-up was used to 

determine the rotational speed of the rotor. Some time was spent 

becoming familiar with the instrumentation and it was here that problems 

were encountered. A major difficulty was the setting up and calibration 

of the transducers. 

Transducers. 

Two matched pairs of contactless inductance displacement transducers 

were used to measure the horizontal and vertical displacements of one 

end of the shaft. The arrangement was as shown in Figure IV. 3. 

Ideally it should have been possible to measure the displacement of both 

ends of the shaft simultaneously. This was not possible because of a 

shortage of suitable transducers and carrier frequency amplifiers 

(four matched pairs of transducers and four carrier frequency amplifiers 

would have been required for this-purpose). 
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One matched pair To carrier frequency 
of transducers amplifiers 

Bearing\ Rotor Blaring 
1 Transducers 2 

Transducer 
Rotor housing 

Figure IV. 3. The arrangement of the transducers. 

Initally, each transducer was set at a distance of 0.2mm from the rotor 

when it was central in its bearings. Special inserts were manufactured 

to enable this to be accomplished. The process also relied upon the 

careful design and manufacture of the apparatus, particularly in relation 

to the bearing pedestals. 

Carrier Frequency Amplifier. 

Each transducer. pair was connected to a carrier frequency amplifier 

in a half bridge circuit, one for measuring the horizontal displacement 

and the other, the vertical displacement. The vibration levels were 

monitored by recording the linearised output of the amplifiers after 

demodulation on the accompanying meters. The two amplifiers were 

synchronised to avoid the phenomenon of beats. 

The output signals were conected to the Xand Y plates of an 

oscilloscope so that the shaft orbit could be observed directly. 

IV. 3. INITIAL TESTING; PROBLEM AREAS AND SUGGESTION FOR MODIFYING 

THE APPARATUS. 

Having established the test apparatus and the instrumentation 

described in section IV. 2, several major problems were encountered 

Ix1 
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when it was tried to carry out a meaningful experimental program. 

The initial test procedure was: 

i) The carrier frequency amplifiers were switched on. and allowed to 

warm up: - this took approximately one hour. The oscilloscope was also 

switched on. 

ii) The valves from the oil resevoir were opened to allow oil to flow 

into the bearings. 

iii) The motor and speed measuring unit were turned on. 

iv) The rotor speed was gradually increased to 1000rpm and the apparatus 

allowed to settle. 

v) The meter readings showing the horizontal and vertical displacements 

of the rotor were recorded together with the rotor speed. The shaft 

orbit was observed on the oscilloscope. 

vi) The rotor speed was increased by 500rpm and after a few minutes the 

same measurements were recorded. This was repeated up to a rotor speed 

of 6000rpm. 

vii) The rotor speed was reduced gradually by 500rpm and the measurements 

again recorded. 

A set of test results are shown in Table IV. l. 

It was envisaged that a similar test program could be carried out 

for different groove positions and oil supply pressures. However, it 

became apparent that such a 'test program would only be meaningful if 

considerably more time than was available. was spent on the instrumentation. 

Various problems were encountered in the initial test stages. 

i) When test runs were repeated, widely different results were obtained. 

This could have been due to "running in" of the machine, failure to 

allow the carrier frequency amplifiers to warm up sufficiently, or 

failure to set up the transducers properly (for example, by balancing 

them incorrectly). Another possibility was that the oil temperature 

was varying and hence altering the oil viscosity. It is clearly nec- 

essary to install thermocouples to measure the inlet and outlet temp- 



2 70 

Rotor speed Vibrometer readings Rotor speed Vibrometer readings 
rpm Horizontal Vertical rpm Horizontal Vertical 

1000 100 35 6000 53 20 

1500 90 30 5500 50 20 

2000 80 25 5000 50 20 

2500 80 30 4500 55 22 

3000 80 30 4000 55 20 

3500 85 32 3500 55 20 

4000 80 32 3000 80 35 

4500 80 35 2500 82 35 

5000 80 40 2000 82 30 

5500 62 25 1500 90 35 

6000 53 20 1000 100 35 

Table IV. 1. Some initial test results. Groove position 180°before loadline. 

erature of the oil. 

ii) No attempt was made to calibrate the instrumentation, owing to 

shortage of time. Vibrometer readings were merely recorded with no idea 

of the actual level of vibration. This is an important omission from 

the work and it is crucial that when the work is continued, considerable 

time and effort is spent on calibration. In theory, with the transducer 

arrangement described in the previous section, it is possible, after 

calibration, to measure actual journal displacements from the bearing 

centre. 

iii) It was observed that the shaft orbit was not a simple closed orbit, 

but a series of loops. Typical orbits are shown below. 

It is generally accepted that the occ 
^ 

ence of double loop orbits is 

because the vibrations are made up of different frequency components 

eg. due to half frequency whirl and mass unbalance (full frequency whirl). 

The investigation could be simplified by filtering out any synchronous 

vibrations. 
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Figure IV. 4. Typical orbits observed on the oscilloscope. 

iv) Side seals were added to the bearings to restrict side leakage and 

so approximate to the long bearing model discussed theoretically in 

Chapter 4. At high speeds, it was noticed that oil was spraying from 

the seals. It is not possible to predict the effect of the rubber seals 

on the vibrational characteristics of the bearing. In future work, the 

side seals could be removed and a more comprehensive theory, which takes 

into account side leakage, could be used to predict the performance of 

the system. 

IV. 4. THEORETICAL PREDICTIONS OF THE ROTOR BEHAVIOUR. 

Initially, in designing the test apparatus, the theoretical bearing 

characteristics reported in Chapter 4 were used to predict the behaviour 

of the rotor. A summary of this work is given in Table IV. 2, which shows 

the Sommerfeld number, steady state eccentricity ratio, attitude angle 

and threshold speed for a range of rotor speeds and three different groove 

positions (B - 30°, 90°, 180°). The threshold speed is predicted to be 

1800rpm for ß= 180°, 4400rpm for S= 90° and 2100rpm for ß= 30°. 

This information was obtained from the stability chart shown in Figure 

4.6. 

A more comprehensive study of the theoretical behaviour was then 
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carried out by A. V. Ruddy (1981), who has developed a computer program 

to calculate the damped natural frequencies, normal modes, critical 

speeds and response to mass unbalance of a rotor-bearing system. The 

method used to perform the calculation is discussed fully by Ruddy 

(1980). 

A siumnary of the investigation is shown in Figure IV. 5., which shows 

the natural frequency curves as functions of the rotor speed for a 

groove position of 1800 before the loadline. The four lowest natural 

frequencies only are shown, corresponding to the four rigid body modes 

(two cylindrical and two conical whirling modes). The numbers on the 

curves indicate the logarithmic decrement of the vibration. When the 

logarithmic decrement changes sign from positive to negative, the stab- 

ility threshold has been reached. It can be seen that the threshold 

speed is reached at a rotor speed of 1800rpm, when the mode correspond- 

ing to the lowest natural frequency becomes unstable. This result, as 

with those for the other groove positions, corresponds to the theoretical 

predictions made in Chapter 4. 



274 

1200 

1100 
0.21 0.15 0.14 0.14 0.15 0.15 

0.97 0.72 0.60 0.49 
10(o 

900 

800 

N 

it 

50 
U 

c 

t'' 40 

30 

20 

10 

LI 
0 

Synchronous / 
.1 

excitation / -1.07 
/ 

.5 
-0.90 

/ 1.2 
/ -0.74 

3.1 -0.63 

the numbers on the curves 

-0.15 are the logarithmic decrements 

11.3 associated with the vibration 

0.13 Unstable modes 

0.72 

1000 2000 3000 40 0 5000 6000 
Rotor speed rpm. 

Figure IV. 5. Damped natural frequencies of the rotor. 


