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SEPTIC REGULATIONS AND SUBURBAN DEVELOPMENT PATTERNS:  
AN ANALYSIS BASED ON SOIL DATA IN NORFOLK COUNTY, MASSACHUSETTS 

by  

Timothy Reardon 

ABSTRACT  

Urban sanitation systems are fundamental elements of modern urban development.  

Decentralized, privately operated, on-site wastewater disposal systems have also 

played an important role in suburban and exurban development over the past fifty 

years.  This research is an attempt to assess the current influence of on-site 

wastewater disposal technology and regulations on land use patterns in Norfolk 

County, Massachusetts; to estimate the potential impacts of technological and 

regulatory change; and to assess the potential role of on-site sanitation policies in 

managing suburban and exurban development.  I grouped soil types into seven 

interpretive classes based on their limitations for wastewater disposal; and created a 

Soil Development Index, which represents the relative proportion of soil classes in 

available and developed land over time.   

I found that soils with high groundwater and slow permeability are systematically 

underrepresented in residential development utilizing on-site wastewater disposal; 

comparisons to sewer service areas suggest these patterns may be due to regulatory 

restrictions on the use of septic systems.  Slowly permeable soils and shallow 

bedrock areas are also associated with larger lot sizes in unsewered areas.  The 

land-consumptive patterns of development observed in unsewered suburbs suggest 

that the current system of on-site sanitation is closely linked to other public policies 

that promote large-lot single family large-lot development to the exclusion of more 

diverse development models.   

The history of centralized and decentralized sanitation systems in the United States 

demonstrates that sanitation policies have evolved over time to address a wider 

variety of social and political concerns, including explicit planning objectives.  

Additional research is necessary to assess how sanitation policies—including 

standards for on-site wastewater disposal—might be used as implementation 

mechanisms for land use and planning policies intended to promote sustainability.   

 





 

   

 

 

 

 

 

 

“The growth of population, the multiplication of inventions, the rise of hitherto unknown 

needs and the employment of uncertain techniques, the acceleration of change itself—all 

these conditions turned empirical and spontaneous coordination into helpless mockeries.  

For lack of conscious plan, the empire of muddle arose….”  

 

-Lewis Mumford 

The Culture of Cities 
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CHAPTER 1: WHY SEPTIC SYSTEMS? 

The form of human settlement patterns is a fundamental concern of modern city 

planning.  The arrangement of residential development within the landscape affects 

natural resources, housing affordability, community character, municipal service 

provision, and transportation patterns.  The massive growth of suburban and 

exurban development over recent years has brought a new imperative to managing 

these socioeconomic and environmental impacts, in order to promote a livable and 

sustainable society.   

Communities and planning practitioners engage in diverse strategies to protect 

resources and manage development; examples include land use controls, open space 

acquisition, tax and fee structures, municipal service provision policies, and building 

standards.  Because the production of waste is a fundamental aspect of human life, 

sanitation policies have long been a central concern of public agencies, and have 

influenced land use patterns.  The advent of central sewer systems improved the 

health and efficiency of dense urban development, and in outlying locations the 

absence of these systems has acted as a de facto growth control.  Over time, health-

oriented sanitation policies evolved to encompass a wider array of concerns, 

including explicit planning objectives such as the containment of urban densities.  

Another class of sanitation policies includes public standards for the on-site disposal 

of wastewater.  These regulations have influenced settlement patterns by prohibiting 

disposal on sites with unsuitable soil conditions.  Recently, advancing technologies 

and changing policies have enabled development on a wider variety of sites.  This 

research is an attempt to assess the current influence of on-site wastewater disposal 

regulations on land use patterns in Massachusetts, to estimate the potential impacts 

of technological and regulatory change, and to assess the potential role of on-site 

sanitation policies in managing suburban and exurban development.   

The Percolation Rate Debate 

In October 2002, the Massachusetts Department of Environmental Protection (DEP) 

proposed a change in the regulations for Title 5 of the Massachusetts Environmental 

Code (310 CMR 15.000), which governs the on-site disposal of sanitary wastewater.  

The regulations permit construction of wastewater disposal systems only where soils 

are deep enough to ensure adequate treatment of nutrients and pathogens, and 

permeable enough to allow adequate drainage of wastewater.  The proposed 
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regulatory change relaxed the standard for soil percolation rate (a measure of 

permeability) from 30 minutes per inch to 60 minutes per inch, permitting 

construction of septic systems on moderately permeable soils, where they had 

previously been prohibited.   

The proposal generated spirited debate.  Proponents of the change stated that the 

existing standard was unnecessary for the protection of human health and the 

environment, and that it acted as an artificial barrier to new home construction in a 

state with a notorious shortage of housing (Flint, 2002; Governor’s Commission, 

2002; Euchner, 2003).  Opponents countered that the change would enable more 

rapid conversion of marginal, environmentally sensitive lands; and that the likely 

result would be large houses on large lots that would not increase the supply of 

moderately priced housing for those who needed it most  (Metropolitan Area 

Planning Council, 2002; Flint, 2002).  Planners noted that DEP provided little 

information on potential land use impacts of the proposed change, information 

needed to create land use controls that effectively fill the regulatory ‘gap’ created by 

the removal of a de facto development control (Metropolitan Area Planning Council, 

2002; Albertson, 2002).  After public hearings, the DEP approved the change, which 

is to take effect January 1, 2004.   

Are Sanitation Policies Appropriate Planning Policies?  

The disagreement about the pending regulatory change exists within a broader 

debate about whether on site wastewater disposal regulations should be used as a 

mechanism for planning and growth control.  Some land is unsuitable for on site 

waste disposal due to natural conditions, and the prevailing existing technology has 

limited capacity for the treatment of wastewater even under the best conditions 

(Veneman, 1982).  Consequently, regulations designed to protect human health and 

maintain water quality must prohibit the use of conventional treatment technologies 

in certain unsuitable areas, and must limit overall housing density where the 

inevitable byproducts of these technologies may affect sensitive resources such as 

aquifers.  

These technical requirements and site limitations effectively prevent the continuous , 

dense development that is possible where centralized sewer collection and treatment 

systems exist.  Concerned with the aesthetic, environmental, and financial impacts of 

growth, many towns have decided against the construction of sewer systems in order 
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to take advantage of this de facto growth control (Twichell, 1978, Jacobs and 

Hanson, 1989; Rome, 2001; Goehring and Carr, 1980).  Some municipalities have 

adopted septic regulations more stringent than those promulgated by the state, 

often in combination with zoning that requires minimum lot sizes of one or two 

acres.  

It is a matter of debate as to whether these municipal restrictions are necessary to 

protect health and water quality as a result of local conditions, or whether they are 

intended to provide a further disincentive to development (Governor’s Commission, 

2002).  Whether or not they actually accomplish desirable planning objectives is yet 

another point of debate.  However, if health or environmental justifications act as a 

‘cover’ for planning objectives, the legality and effectiveness of these implicit growth 

controls may diminish with the growing institutional and popular acceptance of 

alternative technologies that can provide adequate treatment on a wider variety of 

site conditions (Hanson and Jacobs, 1989; LaGro, 1996).  

Research over the last 25 years (Popper, 1980, 1981; LaGro, 1994) has noted the 

decreasing influence of physiographic conditions on development.  Frank Popper 

(1980) observed that “many localities and states have in the past used health or 

sanitary codes in such a way as to inadvertently transform them into indirect devices 

to control land use or growth…the advent of the alternative [wastewater disposal] 

technologies may make this approach outmoded, and force some governments to 

deal with land use directly rather than indirectly for the first time….”   

Subsequently, Jacobs and Hanson (1989) researched the application of alternative 

wastewater technologies in Wisconsin, and found the land use impacts of alternative 

on-site technologies to be small in comparison to those of development relying on 

conventional technologies.  They concluded that “the policy mechanisms most suited 

to mitigating settlement impacts are settlement policies, that is, land use policies.”   

If sanitation policies are confined to the narrow task of preserving health and water 

quality, then their argument would also apply to the management of development 

impacts within areas served by centralized sewer systems.  Yet researchers and 

practitioners have developed—and public agencies and courts have adopted—water 

and sanitation infrastructure policies that function as implementation mechanisms for 

land-use plans.  These policies often use pricing and phasing mechanisms to promote 

development in designated areas and to discourage haphazard system extensions to 
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outlying areas1 (Downing, 1972; Binkley et al., 1975).  Courts have accepted the 

legality of these policies, so long as their planning objectives are valid and explicitly 

stated, and so long as statutory authority for land use planning is properly vested in 

the implementing agency (Stone, 1982; Herman, 1992; Biggs, 1990).   

In contrast, the formulation of septic regulations is generally limited to the narrowly 

defined environmental concerns of human health and water quality, while ignoring 

broader issues of land stewardship.  This is a result of the institutional and legislative 

history of on-site wastewater disposal controls.   

I agree with Jacobs and Hanson that explicit land use controls are the most 

appropriate (and most effective) primary mechanisms for the management of 

settlement patterns.  I also find the historical record demonstrates that effective 

planning demands the coordination of various streams of public policy (e.g., 

taxation, infrastructure, provision of municipal services, etc.) in order to achieve 

desired outcomes.  In this context, it may be appropriate and effective to create 

wastewater disposal regulations that explicitly complement land use controls, to the 

extent possible.  Both land use controls and wastewater regulations must account for 

the environmental, fiscal, and social impacts of different settlement patterns 

(Burchell, 1995) and promote consideration of these impacts in development 

decisions.   

There is also, admittedly, an important fiscal distinction between publicly owned and 

operated utilities and privately financed on-site systems, which affect municipal 

finances and services only secondarily, through the process of growth.  Yet the legal 

justification for planning-oriented sewer policies does not necessarily depend on a 

utility’s fiscal capabilities, but on whether the policies are a rational exercise of the 

police power to prevent the impacts of development.  

                                           
1 I consider Development Impact Fees to be one such pricing mechanism.  Municipalities 
assess these fees in order to recoup the financial impacts of new housing on municipal 
expenditures, impacts that vary with the location and density of development (Nelson, 1988; 
American Planning Association, 1988). 
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Disposal Standards and Their Role in Development Decisions 

Compared to the vast literature on the secondary impacts of centralized sewer 

systems, there is relatively little research that addresses the influence of septic 

regulations on land-use decisions.  Consequently, the policy debate in Massachusetts 

is characterized by a striking lack of data on the extent to which septic regulations 

constrain or guide development (if at all.)  This thesis is an attempt to fill the gap, 

through a theoretical and empirical analysis of how the site requirements of septic 

regulations (Title 5 in particular) may discourage or promote development under 

different soil conditions, and a quantitative assessment of this influence on 

settlement patterns. 

The results and methodology of this analysis will lend themselves to policy analysis 

and formulation.  They can be used to estimate the incremental impact of a proposed 

regulatory change; and they can support the creation of septic regulations that more 

effectively complement planning efforts and conventional land use controls.   

In particular, I am concerned with the extent to which the site requirements of Title 

5 influence development on sites characterized by high groundwater, shallow 

bedrock, or slowly permeable soils.  State and local codes may prohibit waste 

disposal on sites with unsuitable soil conditions; these sites are likely to remain 

undeveloped.  Marginally suitable conditions may require technologies or 

construction methods that add to the cost of development.  In areas of 

heterogeneous soil conditions, large lots may be necessary to include suitable 

disposal sites on each property.  Conceivably, reduced yield or higher development 

costs that result from septic requirements could have a deciding influence on the 

decision to develop.   

Prohibitions on development—or standards that affect construction cost or lot yield—

should be reflected in land use patterns that show relatively more development on 

favorable soil conditions and less development on sites with unfavorable soil 

conditions.   

In order to test this hypothesis, I evaluated land use change in four towns in 

Metropolitan Boston with extremely limited public sewer systems.  The goal of this 
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analysis is to determine whether residential development occurs on deep, permeable, 

well-drained soils relatively more often than on soils characterized by high bedrock, 

shallow groundwater, or slow permeability.  Relying on MassGIS2 land use data, I 

identified land developed for residential uses during three periods, 1971-1985 and 

1985-1999.  I also mapped the distribution of soil types, based on data from the 

U.S. Department of Agriculture National Resources Conservation Service.  I grouped 

soils types into 7 interpretive classes based on their suitability for septic system 

construction.   

I compared the relative proportion of these interpretive classes within developed 

areas to their proportion in land available for development3 at the beginning of each 

period (1971 and 1985.)  I then created a “Soil Development Index” (SDI) that 

represents the relative proportions of each class in available and developed land.4  

This approach was designed to account for the different soil distributions and 

amounts of development within each town, as well as the land scarcity problem 

potentially created by a preference for development on favorable soils.  For point of 

comparison, I also conducted the same analysis on four nearby towns that have 

extensive public sewer systems.   

                                           
2 MassGIS is the Massachusetts state agency that manages digital geographic data and makes 
it available to researchers and members of the public. 
3 For purposes of this research, ‘available’ land excludes wetlands, floodplains, permanently 
protected open space, and developed land.  In these areas, practical difficulties or regulatory 
constraints other than wastewater disposal standards are likely to be the dominant obstacle to 
development. 
4 An SDI of 1.0 indicates that the proportion of a specific class of soils within available land at 
the beginning of a period is equal to the proportion of that soil type within land developed 
during that period.  A value over 1.0 indicates that the soil class is over-represented in 
developed land as compared to available land.  Values below 1.0 indicate that developed areas 
contain relatively less of a soil class than the land available for development at the beginning 
of the period. 
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Summary of Results 

I found that development that relies on septic systems tends to occur relatively more 

often on deep, permeable soils with a low water table.  The presence of shallow 

groundwater appears to be a significant deterrent to development that relies on 

septic systems.  This influence appears to have become more significant over time 

and is not consistently reflected in development served by public sewer.   

I also found that during the period 1985-1999, slowly permeable soils experienced 

relatively low rates of development in unsewered areas.  Slowly permeable soils and 

shallow bedrock areas were also associated with larger lot sizes, though this finding 

may be attributable to an observed systematic zoning bias in favor of larger 

minimum lot sizes on soils with limitations for on-site wastewater disposal.   

My research also sought to estimate the potential influence of the pending Title 5 

regulatory change.  I found that the class of soils that would be affected by the 

proposed change (i.e., moderately permeable soils, without other limiting conditions) 

is relatively uncommon in the study area due to the geological history of the region, 

and that local bylaws stricter than Title 5 may still prevent development on these 

soils.  It is likely that impacts of the proposed change will be greater where 

moderately permeable soils are more common and local health bylaws do not 

establish permeability standards.  

Organization of the Thesis 

A central organizing theme of this thesis is the idea that the apparatus of modern 

sanitation—both centralized sewer networks and decentralized on-site facilities—is a 

complex system that emerges from a variety of technical, institutional, social, and 

environmental factors.  The evolving interaction of these four factors has contributed 

to the development of modern urban and suburban landscapes.  The situation in 

Massachusetts exemplifies this interaction.  Regulatory institutions (Title 5) stipulate 

the environmental (soil) conditions under which certain technologies (septic tanks) 

can be used; social and political pressures to increase housing production and reduce 

government regulation of the private market have supported changes in the 

regulatory institutions.  

The evolution of centralized sewer infrastructure provides a robust example of 

evolving technical systems.  Chapter 2 describes how legal institutions, social and 
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political priorities, and the availability of technology have shaped sewer 

infrastructure systems; and traces the effect of these systems on urban and 

suburban development.   

I find that the primary goals of 19th Century sewer systems were the protection of 

human health and the development of urban metropolises.  In the 1970s, social 

pressures led to Federal policies that made environmental protection (including the 

protection of water quality and wildlife habitat) a primary goal of sanitation 

infrastructure.  Subsequently, many states and municipalities incorporated explicit 

planning and land use objectives into sanitation policies, within the constraints 

imposed by legal institutions concerned with private property rights.   

The application of on-site wastewater systems has also been shaped by technical, 

social, and regulatory constraints.  Chapter 3 summarizes the history of on-site 

systems in the suburban environment, with attention to the expansion of regulatory 

control over their use, which occurred primarily at the state and local level.   

A historical analysis shows that on-site systems enabled widespread suburban 

development in the decades following World War II.  The environmental, aesthetic, 

and financial impacts of growth prompted many communities to adopt growth 

management policies, 5 including large lot zoning, refusal to create sewer utilities, 

and strict septic regulations.  The exclusionary effect (if not intent) of these policies 

has been cited by critics who argue that the septic regulations are being used 

inappropriately—that is, as land use policies rather than health and environmental 

safeguards.  As it turns out, they also proved to be ineffective land use policies that 

failed to prevent rapid growth rates and commonly resulted in inefficient, land-

consumptive development.   

Regardless of whether or not septic regulations are intended to control growth, they 

may influence land use patterns.  Since suitable environmental conditions do not 

exist uniformly across the landscape, septic standards may enable development in 

some locations while they impede development in other locations.  I provide 

hypothetical examples of mechanisms by which Title 5 standards may result in 

                                           
5 Many critics would include social and racial prejudices as implicit (or, sometimes, explicit) 
reasons for these policies as well.   
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increased development costs or lower lot yield on soils with high groundwater, 

shallow bedrock, or slow permeability. 

Chapter 4 describes the methodology of the analytical research, summarized above;  

Chapter 5 presents detailed results of this research (summarized above); and 

Chapter 6 includes interpretation and discussion of these results.   

I conclude that on-site wastewater disposal regulations do influence the location of 

development in unsewered areas but they cannot be implicated as a primary 

impediment to the development of affordable housing in Massachusetts, an honor 

that belongs to uniform one- and two-acre zoning that both eliminates the potential 

for compact, multi-use development and prevents the preservation of open space.  

Finally, I present considerations regarding the role of sanitation policies in promoting 

sustainable development.  
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CHAPTER 2: THE ROLE OF SEWERS IN URBAN DEVELOPMENT 

Modern urban development is made possible by a variety of technical systems, such 

as sewer networks, that influence the form and structure of the city.  These technical 

networks enable the efficient use of resources and the accumulation of capital while 

minimizing losses due to mortality, natural processes, and disaster (Tarr, 1985, 

1988).  Because these technical systems mediate the relationship between human 

development and nature (Graham, 2000) and understanding of their complex 

interactions is key to tracing the creation of the modern urban landscape and 

planning for its future.   

Technical systems are not comprised solely of physical elements such as sewer 

mains and flush toilets.  Otis Dudley Duncan and Leo Schnore (cited in Melosi, 2000) 

described the city as an “ecological complex” of four basic components: 

environment, population, technology, and social institutions.  These components are 

reflected in the technical systems that enable urban development.  Institutional 

aspects of technical systems include administrative entities, financial interests, 

bodies of technical expertise, and regulatory structures that stipulate the conditions 

under which specific technologies may be used.  Environmental conditions such as 

water availability and the presence of waterways create challenges and influence the 

physical form of wastewater systems.  Urban residents create demands for certain 

technologies through market choices.   

Technical systems exist “within limits imposed by the available technology [and 

environment], the hand of their operators, and the function dictated by their users” 

(Melosi, 2000).  Their evolution may be precipitated by developments within any one 

of the four components, as a result of mounting environmental problems, new 

technology, popular demand, or other factors.1   

                                           
1 The complex interaction among these many factors is a function of path dependence. The 
process of urbanism is guided by choices made throughout the process by individuals and 
institutions.  Numerous factors influence and constrain these decisions, including information, 
technology, fiscal constraints, and dominant political objectives.  Many of the existing 
conditions that constrain decisions are the result of previous arrangements and systems.  
Today’s choices will, in turn, become constraints for tomorrow’s decisionmakers.  A decision 
that favors permanence and durability may result in an infrastructure network that cannot be 
readily adapted to changing social or environmental conditions.  This path dependence 
controls the interaction between the four elements of a technical system (Melosi, 2000). 
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The identification of priorities (some sociopolitical, some technocratic and practical) 

drives technology choice and system design (Melosi, 2001; Graham, 2000).  For 

example, centralized collection systems lend themselves to bureaucratic 

administrative systems, while social norms and user expectations reduce the 

practical feasibility of certain technologies such as composting toilets.  

Wastewater Systems in 19th Century Industrial Cities  

The interaction between centralized technical systems and urban development is 

exemplified in the development of water and wastewater systems in cities such as 

Philadelphia, London, Chicago, and New York (Tarr, 1988; Keating, 1985; Melosi, 

2000; Moehring, 1985; Rosen, 1986).  These growing cities needed ample supplies 

of clean water for industry, fire suppression, and human consumption.   

The new waterworks brought huge volumes of water into the city, which exacerbated 

the problem of urban drainage.  In the absence of wastewater systems, sewage 

flowed through the streets—fomenting pestilence, hindering transportation, 

degrading the city’s image, reducing productivity, and repulsing the growing middle 

class.   

In response, planners, engineers, and politicians organized to develop sanitation 

systems.  The designs of these systems were shaped by prevailing environmental 

theories, forecasts of urban growth, and the desire for centralization and modernism.  

The sought after ideal of the 19th century city planner/theorist/politician was the 

completely networked and automated city.  The decentralized and labor-intensive 

systems of the preindustrial city would be replaced by sanitary, centralized, and 

capital intensive systems (Tarr, 1988).  This modernist approach, in combination 

with the definition of sanitary services as a public good (Melosi, 2001), led to the 

development of the centralized water carriage system.  Decisions about the design 

and funding of these systems had demonstrable influence on economic development, 

settlement patterns,2 expansion of municipal boundaries,3 and development of 

bureaucratic institutions.4   

                                           
2 Ann Keating (1985) describes the development of the sewer system in Chicago, which 
extended sewers based on local requests, and recouped costs through a system of 
betterments.  Once systems were constructed, betterment systems provided a financial 
inducement (and sanitary capacity) for property owners to construct denser development on 
the site in order to recoup the cost of the assessment.  Meanwhile, many low-income 
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Sanitation became a central theme in organization of the city and in early 

formulations of the planning profession.  Drainage and wastewater were dominant 

concerns of the first generation of comprehensive city plans in the late 19th and early 

20th centuries, and was often the raison d’etre of many urban improvements such as 

the Muddy River improvements in Boston, designed by Frederick Law Olmsted 

(Zaitzevzsky, 1982). 

Environmental Concerns and Sewer Extensions in the 1970s 

Through the first half of the 20th century, sanitation remained the province of 

municipal governments and local or regional agencies.  In the late 1960s, however, 

the issue of water quality and environmental protection rose to national prominence, 

largely as a result of the widespread impacts of unregulated septic system 

construction (discussed in the following chapter.)   

The 1972 amendments to the Federal Water Pollution Control Act (Clean Water Act, 

or CWA) provided funding for both pollution prevention planning and construction of 

wastewater treatment facilities.  What followed was the development of policies that 

responded to the environmental concerns of the day (and to the available funding 

sources) within the constraints of existing technology and dominant institutional 

structures.  

Section 208 of the 1972 CWA amendments outlined a joint federal/state program to 

conduct planning efforts intended to improve one environmental component, namely 

water quality (US EPA, 1974).  Not surprisingly, these planning efforts identified 

sanitary wastewater—from both point (discharge facilities) and nonpoint (septic 

                                                                                                                              

neighborhoods with low ability and willingness to pay resisted the construction of sewers and 
ensuing betterments.  Some low-income residents of Chicago actually moved to areas beyond 
city limits to avoid sewer assessments. 
3 Centralized sewer systems provided significant economies of scale.  As they grew, outlying 
communities found it advantageous to petition for inclusion in city’s sewer system.  This 
process was usually accompanied by annexation into the city, which expanded the influence of 
the city government and eventually brought more land under control of centralized land use 
controls.   The centripetal force of centralized utility districts provided a countervailing force 
for unity against the force of fragmentation in the metropolis (Tarr, 1988). 
4 Administration of centralized systems also required greater institutional capacity.  The 
development of centralized sewer management agencies occurred parallel to the creation of 
sophisticated urban bureaucracies, planning agencies, data-collection and long-range 
forecasting capabilities, fiscal planning efforts, and growth in the profession of urban 
engineering (Moehring, 1985; Rosen, 1986). 
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tank) sources—as a primary cause of water pollution that needed to be addressed 

directly.  The resulting plans commonly focused on centralized solutions such as 

sewer systems and wastewater treatment facilities, which provided certainty, 

facilitated monitoring of discharges, and ensured a relatively simple path for federal 

funding.   

Section 201 of the 1972 CWA amendments established federal subsidies for the 

construction of wastewater treatment facilities and sewer interceptors (Binkley et al., 

1975).  Over the next eight years, Congress allocated $30 billion to this program.  

(O’Connell as cited in Rome p111.) The ensuing expansion and improvement of 

sewer networks and treatment facilities had dramatic impacts on water quality 

nationwide, and the program is widely considered to be one of the most successful 

environmental programs ever.  The expansion of these networks also had significant 

secondary impacts on urban and suburban development.   

Assessing the Land Use Impacts of Sewer Policies 

The secondary impacts were the subject of numerous studies in the subsequent 

years.  Some of these studies addressed the impacts of sewers on suburban 

development generally,5 while others focused on the form of the federal grant 

program and its influence on financing, phasing, design, and location of decisions 

(Binkley et al., 1975; Stansbury, 1972.)6   

The water quality objectives established by public institutions, and the dominant 

technology choices of the day had a demonstrable influence on development.  The 

problem of failing septic systems was commonly addressed through the construction 

of sewer interceptors that connected remote areas to centralized treatment facilities.  

These interceptors often traversed undeveloped land where the need for wastewater 

                                           
5 Among the most quantitative of the general studies is Grace Milgram’s study of land price 
variation in relation to numerous factors, including sewer availability, in Northeast Philadelphia 
(Milgram, 1967).  This research measured the cost of vacant land over an 18 year period and 
found that the price of land with access to public sewer was commonly two to four times 
higher than unsewered land.  This difference might be attributable to two factors: 1) sewers 
led to increased market values through higher potential density and economic “rent;” or 2) 
authorities provided sewers to the most valuable and attractive areas where development 
pressure was greatest.  
6 At the same time, Bascom, et al (1975) published a review and bibliography of research on 
the secondary impacts of transportation and wastewater investments.  This report identifies 15 
studies concerned with the economic, social, political, legal, or land use impacts of wastewater 
projects. 
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disposal was a significant constraint on new construction.  Thus the technical solution 

to the failing systems (connection to a centralized system) created development 

alternatives that would not exist if public agencies had chosen an alternative 

technology (such as a local wastewater facility to serve only the failing systems.)7    

Even where sewer interceptors are present, technical constraints such as limited pipe 

capacity may limit overall development potential.  However, Binkley et al. (1975) 

find that many of the federally-funded wastewater projects intended to remedy 

environmental problems were commonly designed and built with significant excess 

capacity that provided infrastructure capacity for growth where it may or may not 

have been desired based on other planning criteria.  Excess capacity was a result of 

engineering assumptions about per capita use and elevated population projections 

that did not reflect local growth plans.8   

Planning objectives rarely figured in wastewater planning due to poor coordination 

occurred between the sewer design process and broader land use planning efforts, 

despite the fact that this coordination was stipulated by the grant regulations.  There 

was also limited public awareness of the potential growth impacts or distribution of 

costs association with sewer projects, and thus limited local demand for 

consideration of these impacts (Binkley et al., 1975).   

Nor was consideration of land use impacts a priority of state or federal institutions.  

The recently-formed U.S. Environmental Protection Agency (EPA) was hesitant to 

require consideration of land use impacts or evaluation of alternative technologies.  
                                           
7 The influence of new sewer construction is dependent in part on other limitations that may 
constrain development, such as restrictive zoning or limited access, which may prevent high-
density development (Millgram, 1967).  Yet under most conditions, new sewer construction 
alters site conditions to allow development at the maximum density allowed by zoning.  Rapid 
subdivision construction occurs as developers seek to capitalize on the new conditions before 
land prices rise to reflect the greater development potential on the site (Stansbury, 1972.)  
Here is a potential analogue to changing septic regulations—if septic constraints are reflected 
in lower unit land prices, will there be a rush to develop on previously unbuildable, and 
therefore inexpensive sites with slowly permeable soil before prices adjust to reflect the new 
development potential? 
8 These growth projections were in some respects self-fulfilling as the availability of 
infrastructure enabled rapid development and funding mechanisms provided fiscal incentives 
for communities to approve new growth.  Federal grants paid for 75% of the cost of 
construction; the remainder was often (though not always) covered by connection fees.  The 
need to recoup local costs encouraged communities to approve proposed development 
projects and to grant density variances based on the capacity of the new sewer; as a result, 
the inflated population and development projections of sewer design tended to be self-
fulfilling.  
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Institutional and statutory constraints led to a narrow focus on mitigation of narrowly 

defined “environmental” impacts such as erosion and, in some cases, air quality 

(which might be affected by increased development.)  The EPA stated that mitigation 

for land use impacts “must be provided locally” (quoted in Binkley, et al., 1975), 

effectively divorcing the policies intended to improve water quality from those 

intended to promote desirable settlement patterns.   

Other public interests impacted by sewer infrastructure construction may include the 

expansion of housing opportunities or the equitable distribution of development 

costs.  Where sewers are subsidized by the federal government or local communities 

(through general bond issues), and not recouped through betterments or connection 

fees, new development pays only a fraction of the cost of the infrastructure that 

exists to support it.  In some cases this may be appropriate, such as where new, 

dense development is desired by the community and provision of infrastructure is a 

recognized means of attracting investment.  Similarly, reduced development costs 

may enable (though rarely ensure) the construction of moderately-priced housing.  

Infrastructure Policies, Planning Objectives 

As the influence of sanitation policies on development became more fully understood 

during the 1970s, planners and researchers developed sewer policies that could 

complement land use planning efforts.  Many of these policies seek to promote 

compact development within sewer service areas and to discourage the extension of 

sewer service into areas planned for low-density development that could be served 

by on-site systems.   

Strict delineation of the municipal service area (which may include planned 

expansions) in accordance with land use plans was commonly identified as a primary 

mechanism to discourage haphazard extensions (Downing, 1972; Biggs, 1990; 

Tabors, et al. 1976).  Extension requests can also be discouraged through marginal 

cost pricing that involves higher user charges for properties in outlying areas.  

Binkley, et al. (1975) recommended reduction or elimination of federal subsidies for 

excess capacity designed to serve new development.  Local communities would be 

free to provide additional capacity to serve future growth; economic efficiency 

considerations would promote the provision of this capacity in developed areas 

rather than in dispersed areas where the per-unit cost of infrastructure and 

municipal services is generally higher.   
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Compact development is also promoted through benefit assessments for all served 

properties (whether connected or not.)  These assessments increase the carrying 

costs of undeveloped land in the service area and promote development, reducing 

demand for land in outlying areas.  Meanwhile, lot-area based connection fees 

promote smaller lots and more compact development (Downing, 1972).   

Subsequently, many municipalities sought to manage metropolitan development 

more effectively by providing closer coordination between land use planning and 

sanitation policies.  The emphasis of these efforts has been on the delineation of 

urban service boundaries; less attention has been given to alternative financing 

structures9.  

In Minneapolis –St. Paul, Minnesota, the Metropolitan Council has authority over the 

provision of regional sewer and transit systems, and is responsible for creation of a 

regional plan, which is intended to coordinate land use objectives and infrastructure 

development (Mandelker and Cunningham, 1979).10  Similar policies have been 

enacted in Sacramento, California, where the Sacramento Regional County 

Sanitation District can extend interceptors only to areas that have been formally 

designated by the City and County of Sacramento as designated growth areas 

(McCarthy, 2002).11   

Other water and sanitation agencies, such as the Massachusetts Water Resources 

Authority in the Boston Metropolitan Area, require consideration of land use impacts 

through an environmental review process, though statutory limitations may prevent 

them from denying projects based on planning criteria (as opposed to 

“environmental” criteria such as endangered species impacts.)  

                                           
9 Many communities have initiated the use of Development Impact Fees assessed to 
developments based on their estimated impact on the cost of municipal services, including 
water, sewer, roads, schools, and public safety. 
10 The Metropolitan Council does not have the authority to control or approve local land use 
plans.  This often results in situations where local zoning does not permit densities as high as 
those envisioned by the regional plan and enabled by the capacity of sewer infrastructure.  
The Met Council also has no authority to manage development in areas scheduled for, but not 
yet served by, regional sewers.  Where development pressures are strong, residential 
subdivisions may be constructed using septic systems, commonly at densities lower than 
proposed in the regional plan. 
11 This restriction extends even to the construction within the existing service area of 
oversized pipes designed to provide capacity sufficient for future expansion of the system. 
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Sanitation Policies are Constrained by Legal Institutions 

Because planning-oriented infrastructure policies have tremendous potential to limit 

development opportunities, they have been repeatedly challenged as an infringement 

of private property rights.  Property owners affected by the enactment of urban 

service area boundaries have claimed denial of equal protection, denial of due 

process, and takings without compensation.  In these cases, courts scrutinize the 

nature of the expectation to receive service, the rationale for the refusal to serve, 

and the source and extent of the discretion exercised by the utility (Biggs, 1990; 

Herman, 1992; Ramsay, 1974; Stone, 1982). 

The so-called “Public Utility Doctrine” requires a utility to provide connections for all 

those properties where it has “held itself out” as the provider of water or sanitation 

service (64 Am. Jur. 2d).  This obligation is not created solely through formal 

declarations; utility actions that create an expectation of service constitute an 

informal contract that has been recognized by the courts.   

Informal contracts notwithstanding, demonstrated “utility-related” (technical) 

reasons, such as capacity constraints, are generally accepted by courts as valid 

justifications for refusals to provide water or sewer service (Herman, 1992; Swanson 

v. Marin Co. 56 Cal. App. 3d).  While courts generally grant municipal utilities 

significant discretion in delineation of the service area, technical rationale for refusals 

to serve may be invalidated as a denial of due process or equal protection where 

capacity is available or where communities permit “utility related” constraints to 

persist indefinitely without valid justification.  The development of explicit planning 

or municipal rationale for service area boundaries can defuse both due process and 

equal protection claims.  

Due process challenges may be sustained where there is not demonstrated nexus 

between infrastructure policies and valid public purposes.  Public planning efforts can 

demonstrate that water and sanitation policies are rationally related to the exercise 

of a municipality’s police power.  As with zoning, these policies can be sustained if 

they further a community’s goal to develop in an orderly and compact way.   

Similarly, unequal protection claims can be defeated if a planning process has 

defined how one class of property owners (to be served) differs from another class 

(to be refused service) based on community-based planning criteria.  It is also 
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important to note that the implementing agency must be vested with the statutory 

authority to carry out land use planning policies.12  

Takings challenges that arise from refusals of service are rarely sustained by courts 

since the absolute right to municipal water or sewer service is not a legally 

recognized property interest.  Consequently, most refusals to serve do nothing to 

diminish the value of what aggrieved parties owned prior to the enactment of the 

disputed policy: unimproved land with no access to sewer infrastructure or a public 

water supply.  A notable exception exists where local land use regulations require 

public sewer service prior to development, but public utility policies refuse service on 

non-technical grounds.13 

There have been significant instances where courts have validated use of sewer 

policies as tools for implementation of planning goals.14  

                                           
12 In Reid Development Corp. v. Parsippany Troy Hills Township (10 NJ 89a 2d, 1952), a court 
invalidated the Township’s refusal to provide service to a development that did not meet the 
minimum lot sizes established by the public utility.  Because the town had not adopted the 
New Jersey Planning Act, it was vested by the state with the authority to exercise planning 
and zoning powers.   

In Hidden Valley, CA, which lacked a planning authority, the court approved efforts by the 
water/sewer utility to develop and implement explicit planning-oriented policies  (Wilson v. 
Hidden Valley Mun. Water District, 256 Cal. App. 2d, 1967). 
13 An example is Charles v. Diamond (392 N.Y.S. 2d), in which the court ruled that the town 
could not prohibit development that relied on septic systems if the extension of public sewer 
system was unreasonably delayed. 
14 In Dateline Builders v. City of Santa Rosa (146 Cal. App. 3d, 1983), the City of Santa Rosa 
refused to extend service to an unincorporated area to serve a development inconsistent with 
the City’s General Plan.  On appeal, the court ruled that the refusal to serve was legal as “a 
proper exercise of the police power once the planning decision had been made,” thus 
highlighting the role of sanitation policies as implementation mechanisms of land use plans, 
not as arenas where land use decisions are made. 

During the period 1966-1969 the Town of Ramapo, New York adopted a master plan, a 
comprehensive zoning ordinance, and a capital improvements plan covering a period of 18 
years.  The capital improvements plan outlined the program for the extension of sewer 
infrastructure (among other municipal services) throughout the town; and the 1969 zoning 
ordinance amendments authorized the Town Board to refuse a permit for residential 
development for which adequate public services had not yet been provided under the capital 
plan.  Developers were free to provide the municipal improvements necessary, and the 
authority of the Board to refuse special permit applications terminated at the end of the 18-
year capital planning period, at which time all areas in the town should have been provided 
with the services required by the ordinance.  Property owners and a builders association 
brought a facial attack on the ordinance, which was denied by the U.S. Supreme Court, which 
found a rational basis for “phased growth.” (409 US 1003) 
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Expansion of Environmental Criteria and Institutional Change 

More recently, state and federal institutions have recognized sustainable land use 

management as a valid environmental objective, and have adopted policies to 

promote certain forms of development.  In a significant contrast with its approach to 

the Section 201 grants in the 1970s, the EPA has adopted a Smart Growth Agenda 

that goes beyond the traditional media-based regulatory approach to recognize 

settlement patterns and urban design as key influences on the environmental 

impacts of development.   

The EPA has provided guidance (U.S. EPA, 2000) for states to promote smart growth 

through the distribution of money from State Revolving Funds (SRF).  For example, 

Vermont is reforming SRF policies to include land use impacts as one consideration in 

determining priority projects for funding.  Projects within designated growth centers 

would receive higher rankings, while those in outlying areas would receive lower 

rankings or might not be funded at all.15  

Massachusetts limits the use of SRF funds to construct excess capacity.16  The Ohio 

Clean Water SRF provided funds to support interceptor construction contingent upon 

the adoption of a connection moratorium in sensitive riparian areas.  The State of 

Maine has proposed a “patient payback” period for qualifying sanitation projects 

funded through the SRF.17  

                                           
15 “Leapfrog” projects that do receive funding may come with restrictions.  For example, an 
interceptor constructed to an outlying property may be funded so long as the town is 
prohibited from making additional connections between the town center and the site. 
16 Collection systems must be designed with a capacity no greater than 133% of existing flows 
in April 1995. 
17 The cost of sewer construction is a disincentive to infill development when on-site treatment 
technology enables development on less expensive land.  The program proposed in Maine 
would provide a three-year grace period for payback of money used to construct sewers in 
areas where the minimum density is 3 units per acre.  Presumably, the presence of sewers 
and relatively high permitted density would, over the course of three years, attract 
development that will help to pay for the infrastructure (Monahan, 2002). 
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Key Findings  

The history of sewer systems described here illustrates four key points that are 

useful to considering the role of on-site disposal policies in shaping suburban 

development. 

• The purpose of the sanitation systems and policies has evolved in response to 

social and political priorities. 

• The mechanisms of sanitation systems, including design, financing, and 

phasing have changed in response to technological and institutional forces. 

• The impacts of sanitation systems are dependent on site conditions and other 

public institutions (such as land use controls.)  

• The legality of sanitation policies is constrained by institutional arrangements, 

constitutional protections, and informal property rights. 
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CHAPTER 3: THE SEPTIC HISTORY OF SUBURBAN DEVELOPMENT 

The sanitation systems that support human development are not limited to 

centralized sewer networks.  On-site wastewater disposal systems constitute a 

specialized (though decentralized) apparatus that shapes the form of modern 

suburbia, just as the development of the water carriage system influenced the 

development of industrial cities.  As with centralized networks, on-site systems 

contain four components: technology, environmental conditions, institutions, and 

communities.   

These four components have been extensively studied individually. Innumerable 

technical and environmental reports describe the water quality impacts of 

wastewater disposal, the merits of various technologies, and the evaluation of 

disposal sites.  Other researchers have studied administrative or institutional aspects 

of system operations such as permitting procedures and the establishment of 

successful septic system maintenance programs.   

However, relatively few studies address the impacts of this complex technical system 

on land development patterns.  Among these few, it is a common refrain that on-site 

systems enable metropolitan development beyond the boundaries of centralized 

sewer systems.  Yet their influence across the landscape is not homogenous.  

Regulatory constraints control the application of specific technologies under various 

site conditions.  The interaction of heterogeneous environmental conditions and local 

regulatory institutions influence landscape-scale patterns of development.   

This chapter traces the influence of on-site disposal systems in metropolitan 

development as a function of technical, environmental, institutional, and social 

factors.   

On-Site Disposal Technology 

On-site wastewater systems include a variety of technologies that enable the 

treatment and discharge of wastewater within the confines of a single property or a 

small group of properties.1  The dominant technology is the septic tank system, 

                                           
1 The category includes primitive systems such as privies and cesspools as well as composting 
toilets and “living machines” that rely on constructed ecosystems to treat wastewater. 
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which consists of an underground tank and a subsurface disposal area (commonly 

referred to as a leach field) where wastewater is discharged into the soil.   

The septic tank is designed so that solid material in the sewage settles to the bottom 

of the tank before wastewater moves to the disposal area2 where it is discharged 

through perforated pipes or walls and percolates into the soil.  Nutrients are oxidized 

and pathogens are digested in the anaerobic conditions that exist in unsaturated soil 

(Veneman, 1982).3  Once the wastewater enters saturated soil below the level of the 

water table, oxidation and digestion effectively cease, and pollutants can be rapidly 

transported away from the site to surface water bodies or groundwater supplies.  

Consequently, vertical separation from seasonal high groundwater is a key design 

element of septic systems.4   

Permeability is also a critical element of adequate treatment.  Sandy, rapidly 

permeable soils provide good aerobic environments for oxidation of nutrients, but 

short residence times reduce the effectiveness of purifying biological activity.  Slowly 

permeable soils may provide long treatment times, though they can also result in 

sewage backups, surface ponding, or saturated conditions that reduce treatment 

effectiveness.  The size of the disposal area is a function of design flow and soil 

permeability; slowly permeable soils require more disposal area per unit of 

wastewater.  

On-Site Systems and the Growth of Suburbia 

On-site wastewater systems, including septic tanks and cesspools, were common in 

rural development throughout the first half of 20th century.  Their usage grew 

dramatically during the housing construction boom following the Second World War.  

In 1945, 4.5 million homes used on-site wastewater systems (MacKenzie, 1953).  

Over the next 15 years, roughly 45% of new homes were built using septic tanks, so 

that by 1960 approximately 14 million residences utilized on-site systems (Nelson 

                                           
2 “Disposal area” includes leaching pits, trenches, chambers, and fields. 
3 A “biomat” of organic material commonly forms at the lower surface of the disposal area and 
acts as the substrate for most of the bacteria that act on the wastewater as it migrates 
downward. 
4 Treatment also effectively ceases when wastewater reaches bedrock, where it collects and 
travels in saturated conditions.   
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and Dueker, 1989).  Septic tanks were commonly constructed in huge numbers5 on 

relatively small lots.   

In the intervening years, the number of on-site systems has continued to increase, 

though they still account for roughly 25% of American households.   

Table 1: Growth of On-Site Systems in United States6 

Year Number of 
on-site 
systems 

Percent of 
all 

households

1970 16.6 million 25%  

1980 20.9 million 24%  

1990 24.6 million 24%  

Source: U.S. Census 

While sewer systems offer economies of scale and centralized management, many 

developers preferred septic systems for large subdivisions where their use did not 

limit net density (Twichell, 1978).  On-site systems are less capital intensive than a 

sewer system and can be built incrementally.  Permitting and approval are often 

simpler and require less bureaucracy and public involvement than sewer extensions.  

Septic systems are also institutionally simple because long-term maintenance is the 

responsibility of individual homeowner.  Their economic advantages are due in part 

to the fact that no mechanisms exist to recover the direct and secondary 

environmental costs associated with their use.   

The widespread use of septic tanks was one factor among many that promoted 

dramatic shifts in population to low-priced land in suburban and exurban7 areas; 

others factors included shifts in employment location, increased mobility, and urban 

decline.  Nelson and Dueker (1989) report that the population of exurban areas grew 

from 43 million in 1965 to 59 million in 1985.  This rapid development, which relied 

largely on septic systems, created health, environmental, and social problems that 

contributed to the rise of the national environmental movement and more local 

                                           
5 Rome (2001) reports that an 8,000-home subdivision relied on septic tanks (p 88.) 
6 The U.S. census recorded the number of on-site systems until 1990.  The 2000 census did 
not collect this data. 
7 Nelson and Dueker (1989) define exurban areas as noncontiguous residential developments 
within 70 miles of major cities (population >2 million) or 50 miles of smaller cities (population 
50,000 to 2 million.) 
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growth control efforts.  The technical-regulatory matrix that exists today is product 

of these environmental and social factors.  

Environmental Problems, Social Movements, New Institutions 

During the first major wave of suburban development beginning in 1945, 

construction of septic systems was largely unregulated.  If they existed at all, 

regulations established design guidelines, setbacks, and minimum lot size, but rarely 

addressed the suitability of site conditions to the disposal of waste.  Consequently, 

many systems were built on sites with slow permeability and high groundwater 

(Rome), resulting in nuisances, health problems, and water quality degradation.8  

The environmental impacts of ineffective wastewater treatment were numerous and 

dispersed.  Inadequately treated sewage killed amphibians and wildlife, and caused 

eutrophication of ponds and streams.  But it was public health concerns, not 

environmental issues, which created salience for the issue of septic tanks beginning 

in the 1960s.  Outbreaks of Hepatitis and other diseases were traced to septic tank 

pollution.  Alkly benzene sulfonate, the non-biodegradable sudsing ingredient of 

detergents, migrated through groundwater from septic tanks to drinking water wells, 

where it was extracted and produced unsightly and worrisome foam in drinking water 

(Rome, 2001).9  Even if salamander extinction could be ignored, the presence of 

contaminants in drinking water caught the attention of the American middle class.10  

Recognizing the growing social concern with septic systems and the pressure to 

control their impact, the development industry made efforts to improve its practices, 

promoting self-regulation in opposition to command and control mechanisms.  

Arguments against regulation often focused on the financial impacts of public 

intervention and their impacts on housing opportunities for middle class.  Many 

developers claimed regulation would slow housing production at a time when more 

housing was desperately needed.  This framing tactic set the two social concerns 

                                           
8 These problems were compounded by poor construction (such as compaction of the soil 
under the disposal area) and inadequate maintenance. 
9 Public health officials were concerned that detergent might allow bacteria and viruses to 
travel farther in groundwater.  The popular press speculated on the potential for these suds to 
cause stomach cancer if ingested. 
10 Meanwhile planners argued against the inefficiency of subdivisions served by on-site 
systems doomed to fail.  They promoted the provision of public services to protect 
health/environment and promote rational development. 
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(environment and housing) as being in opposition to one another.  Opponents of 

regulation also stated that on-site disposal standards would infringe on personal 

property rights.  The US Public Health Service noted a “widespread misconception 

that the owner of a farm has a certain inalienable right granted to him by the 

Constitution of the United States to become a subdivider…” (quoted in Rome, 2001) 

even if this resulted in environmental and health impacts.   

As described in the previous chapter, Federal institutions were primarily concerned 

with establishing water quality standards and funding sewage collection and 

centralized treatment projects.  The direct regulation of on-site systems was the 

responsibility of states.11  Section 208 of the 1972 CWA amendments required states 

to develop plans for the management of nonpoint source pollution (US EPA, 1974).  

Federal resources helped states to develop a better understanding of the technical 

and environmental aspects of wastewater disposal, in order to meet new water 

quality standards. 

As a result, many states developed more stringent regulations controlling septic 

system construction, Massachusetts among them.  The Commonwealth had 

regulated the construction of septic tanks through the 1962 and 1966 State Sanitary 

Code.  In 1975, Title 5 of the State Environmental Code transferred responsibility for 

this regulation to the Department of Environmental Quality Engineering,12 which 

enacted stricter septic regulations in 1977.  Title 5 regulations were revised and 

expanded in 1995.  A historical summary of Massachusetts wastewater disposal 

regulations is included as Appendix A.  

The development of state regulatory institutions was justified by a compelling state 

interest in preventing water pollution impacts that often necessitated public 

expenditures, often in the form of sewer extensions.  On-site disposal regulations 

were designed to achieve efficient distribution of scarce resources, and to reduce 

subsidies to development in exurban areas (Goehring and Carr, 1980).  The adoption 

of detailed state standards for on-site wastewater disposal represented acceptance of 

                                           
11 The Federal government did attempt to curb reliance on septic systems through the 
allocation of funds.  In 1965, the Federal Housing Administration prohibited federal aid to large 
subdivisions that relied on septic tanks.  This policy included one significant loophole: aid was 
available for those subdivisions where the extension of public sewers or construction of 
neighborhood sewer systems was deemed “infeasible.” 
12 The DEQE was subsequently renamed the Department of Environmental Protection. 
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on-site disposal as a permanent solution for the management of suburban 

wastewater, rather than an interim solution until construction of sewers. 

Local Growth, Local Controls 

Local responses to suburbanization were not limited to the protection of water 

quality.  To many observers, the growth of suburbia seemed a juggernaut destined 

to homogenize the American landscape.  The water quality impacts of septic tanks 

were only one aspect of the problem.  Other environmental impacts were the loss of 

open space and farmland, destruction of wetlands and wildlife habitat, increased 

energy usage, and degraded air quality.   

Social and institutional impacts included the visual chaos of strip development and 

the impacts of rapid growth on town character and municipal finances.  Only some of 

these impacts were addressed by the strictly “environmental” state and federal laws 

and regulations concerned with air quality, water quality, wetlands, and endangered 

species.  Jurisdictional distinctions, emphasis on home rule, and geographically 

limited impacts of local settlement patterns prevented federal or state institutions 

from the direct management of land use.  Even a wave of state land use planning 

efforts in the 1970s relied on local implementation of land use controls.  (Rome) 

Many towns took a simple approach to the dual problems of looming suburbanization 

and degraded water quality: they enacted zoning that permitted only single family 

homes on large lots, while rejecting proposals to construct sewers (Twichell, 1978; 

Rome, 2001).  The enforcement of septic regulations was relatively unsophisticated, 

and many towns relied on large lot size standards instead of rigorous site 

evaluations.  The intent of this approach was to minimize water quality impacts by 

limiting the overall density of on-site systems.13  

Twichell (1978) suggests that the refusal to develop municipal sewer systems did not 

achieve the growth management objectives desired by many towns.  Many 

Massachusetts towns that relied on on-site systems experienced growth rates of 

                                           
13 Low-density development also impeded the economically efficient development of 
centralized systems in the event of widespread failure.  Some communities were eager to 
prevent sewer construction even for remediation of failing systems, based on the concern that 
once the pipe had been laid, it would enable high-density development and spiraling utility 
costs due to compulsory service area expansion needed to remedy water quality problems.  
This has changed with the greater emphasis on decentralized alternatives in state wastewater 
planning guidance (Arenovski and Shephard, 1995). 
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50% or more during the period 1960-1970.14  The regulatory measures adopted by 

these towns had mixed results regarding actual growth rates, though they did 

produce a many secondary social and land use impacts.  Lack of sewer effectively 

prevents the widespread construction of apartments and dense single-family 

housing; large lot requirements in sanitary or zoning codes raise the cost of house 

lots and housing, resulting in exclusionary impacts.  Large lot requirements also 

cause higher rates of land consumption per housing unit.  Lack of sewers may also 

inhibit the development of industry that can strengthen the municipal tax base 

(Perkins, 2003).   

Technology Advancements and Regulatory Evolution  

The primary intent of state and local septic regulations is to limit the construction of 

septic systems to sites where soil conditions allow adequate treatment of 

wastewater.  In the absence of feasible alternative waste disposal options, these 

regulations may effectively prevent (or reduce) development on unsuitable sites.  

Alternative technology may be available, but not financially feasible or 

commensurate with user expectations.  Social, technical, and regulatory components 

of the on-site wastewater disposal system stipulate certain site conditions; the 

application of this technical system to support suburban development thus depends 

on the distribution of environmental conditions.  The presence of suitable soil 

conditions may act as an organizing principle in suburban areas in a manner 

analogous to the location of sewer networks in urban areas.   

The situation is not static.  The social, regulatory, and technical components of 

sanitary systems evolve over time; consequently, the resulting influence of certain 

environmental conditions on development also varies.  Growing social awareness of 

health or environmental problems may instigate expansion of regulatory controls 

that further restrict the use of on-site systems to in certain areas.  Meanwhile, 

institutional acceptance of improved treatment technologies may allow development 

                                           
14 During the period 1960-1970, 37 Massachusetts communities experienced population 
growth of more than 50%.  In 33 of these towns, the proportion of households that relied on 
sewer systems was less than 35%.  Meanwhile larger cities and towns with extensive sewer 
networks experienced lower relative rates of growth. Twichell concludes that the presence of 
sewers is not a strong growth incentive.  This conclusion is tenuous; many cities experiencing 
“low” rates of growth actually added more units and residents than small towns experiencing 
“high” rates of growth. 
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to occur where environmental conditions prevent the use of conventional systems 

(Nelson and Dueker, 1990; Jacobs and Hanson, 1989).  In Massachusetts, the social 

and political concern with housing production has been a leading factor in the 

decision to relax the permeability requirements for disposal areas (Governor’s 

Commission, 2002; Flint, 2002).   

Some researchers have recently explored the tension between social and political 

demands, regulatory institutions, and advancing technology, with attention to its 

influence on land development patterns.  Jacobs and Hanson (1989; and Hanson and 

Jacobs, 1989) describe the impact of alternative on-site wastewater systems on land 

use development patterns in Wisconsin.15  Their survey of rural residents finds that 

personal preference for rural settings creates the market demand for residential 

development in areas beyond the reach of sewer systems.  Type of waste disposal 

was not a major factor in locational choices, though they do find that primary home 

owners avoided the use of holding tanks, which entail the higher operating costs of 

frequent pumping.  This suggests that the cost of waste disposal, especially 

maintenance costs, may be a factor in locational or technology decisions.16  A field 

survey of 240 sites found that development patterns did not vary greatly by the type 

of sewage system.17 Jacobs and Hanson conclude that on-site systems in general 

                                           
15 In 1980, Wisconsin initiated a program to test the use of mounded systems in rural areas.  
These systems would allow the use of on-site systems in areas of high groundwater and other 
limiting conditions.  The environmental impact statement prepared before the initiation of the 
program suggested that the marginal impact of the program would be insignificant, based on 
the view that areas limited by high groundwater could already be developed through the use 
of holding tanks.  Opponents of the program suggested that the mound system would permit 
development on a greater range of rural sites, especially critical land resources such as 
wetland buffers and agricultural land; and would promote greater outmigration of people from 
the states urban areas, leaving excess capacity of urban infrastructure and creating greater 
demands on public services in rural areas.  Supporters suggested that alternative on-site 
systems would 1) allow more compact land development; 2) reduce pressure on prime 
farmland by allowing the conversion of marginal land; and 3) obviate the need for centralized 
infrastructure investment in rural areas.  It is also conceivable that increasing the supply of 
developable rural land would lower housing prices and promote affordability. 
16 The observation that primary residences are less likely to rely on expensive holding tanks 
suggests that the cost of wastewater alternatives may have some influence on development 
decisions and locational choice, through consumer preference for lower cost options.  Greater 
attention needs to be given to this influence as regulations are modified to accommodate new 
technologies and to complement the next generation of land use controls. 
17 Most systems were used on scattered, dispersed homesites.  Roughly one third of all sites 
were used in clustered developments of five or more dwelling units.  Only 6% of all systems 
were found in infill development (contiguous to or within 1/4 mile of an urbanized area.)  The 
proportion of mounded systems in infill development was even smaller than that of 
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facilitate dispersed development on rural land, and that alternative technologies have 

a small marginal impact on settlement patterns when compared to the impact of 

conventional systems.   

Massachusetts Septic Regulations and Development: 

Mechanisms of Influence 

My research was precipitated by the debate over a proposed change in the 

Massachusetts regulations controlling the use of on-site systems.  Both opponents 

and proponents of the change assert that current state and local regulations have a 

significant impact on development patterns, including location and density of 

housing.  Presumably, the pending regulatory change will facilitate development on a 

wider variety of sites.  An accurate understanding of the potential impacts of this 

change requires an understanding of how current regulations influence development.  

That is, how do technical and regulatory requirements affect development under 

various environmental conditions?    

It is clear that septic regulations prohibit all on-site systems in certain areas, such as 

wetlands, floodplains, and areas served by public sewer systems.  In marginally 

suitable areas, however, regulatory requirements may raise the cost of construction 

or the reduce the lot yield of a subdivision development.   

I will present a series of hypothetical examples that demonstrate how regulatory 

elements have differential effects on development based on site conditions.  I have 

not attempted to quantify the costs or cost differentials associated with these 

examples.  My hypothesis requires only an understanding of the relative costs of 

waste disposal under certain conditions, not the absolute cost.  My assumption is 

that, all other development factors being equal, development is more likely to occur 

on sites where wastewater disposal costs are lower and potential yields are higher.18   

                                                                                                                              

conventional systems, suggesting that the role of mounded systems as an enabler of compact 
development on marginal sites was not significant.  The most important application of mound 
technology may be on sites with poor soil conditions where conventional systems are 
prohibited by law and holding tanks are avoided for their long-term maintenance costs. 
18 Examples given here are based on a hypothetical four-bedroom house, a size not 
uncommon in suburban Boston.  The design standards in Title 5 establish 110 gallons per 
bedroom per day as the design flow for disposal systems.  For the calculation of effective 
infiltration area, I am assuming the use of infiltration trenches one foot deep and three feet 
wide, spaced nine feet apart, allowing the space in between to be used as a reserve area in 
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Slowly Permeable Soils May Affect Development Cost or Reduce Yield 

One of the most basic standards in Title 5 is the relationship between permeability 

and size of the disposal area.  Slowly permeable soils require larger disposal areas.  

Assuming favorable site conditions,19 a four-bedroom house would require a disposal 

area of 1200-1400 square feet.20  On more slowly permeable soils,21 the same house 

would require a disposal area of 2380 square feet.22  If a garbage grinder is 

proposed, Title 5 requires an increase of 50% in the infiltration area.23  This would 

require a disposal area of 4,000 square feet.24  Under the new standards, disposal 

areas are permitted on soils with percolation rates as slow as 60 minutes per inch, 

where a four bedroom house with garbage grinder would require an 8,000 square 

foot disposal area.   

If the site evaluation determines that soils on the site include impermeable layers,25 

additional measures are required to permit development.  If impermeable soils are 

located in the upper portion of a deep soil, they can be removed and replaced with 

clean, permeable fill.  This will add to the design and construction costs of the 

system.  If impermeable layers are deep in the soil profile at the proposed disposal 

site, the developer may need to look elsewhere on the lot, perhaps at some distance 

from the proposed home site.  If the disposal area is higher than the house, a pump 

will be necessary, increasing the cost of both design and operation.    

If suitable sites are present but limited at the site of a subdivision, a developer may 

need to create fewer, larger lots in order to include an area of permeable soils in 

each one.  This will result in a lower development yield for the subdivision overall.  

                                                                                                                              

case of failure  This yields 5 square feet of effective infiltration area per foot of pipe.  Required 
infiltration area is based on the Long Term Acceptance Rates based on permeability and soil 
texture, established in the Title 5 regulations (310 CMR 15.242). 
19 A deep, level, well-drained sandy loam with permeability of 10 minutes per inch. 
20 Title 5 would require 733 square feet of effective infiltration area.  Two 75’ trenches would 
require roughly 1200 square feet, while three 50’ trenches would require 1400 square feet. 
21 e.g., a silt loam with a permeability of only 30 minutes per inch. 
22 This would provide an effective infiltration area of 1333 square feet. 
23 Garbage grinders lead to increased water usage and a higher “strength” wastewater with 
more organic solids that can clog a system. 
24 Four 100’ trenches. 
25 Defined by Title 5 as soils with a percolation rate slower than 60 minutes per inch. 
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High Groundwater May Increase Construction and Operation Costs 

Title 5 requires a minimum vertical separation of 4 feet between the bottom of the 

disposal area and the elevation of seasonal high groundwater.26  Sites subject to high 

groundwater conditions may require the construction of a mounded system that 

creates sufficient vertical separation.  Mounds are expensive to construct and must 

be designed with retaining walls or shallowly sloping sides to prevent breakout.  

Construction of a 2’ high mound may double or triple the land area dedicated to 

wastewater disposal.27  If the disposal area is raised above grade but the house is 

not, a pump will be necessary, raising the cost of construction and operation.   

Shallow Bedrock May Increase Lot Size 

The presence of shallow bedrock presents similar problems with the siting of disposal 

areas, since they require an area with at least four feet of naturally occurring soil.  

Shallow bedrock is commonly found in soil complexes where it may co-occur with 

areas of deep, permeable soils.  Areas of suitably deep soils may comprise only a 

small portion of the total area, and they may be too small to serve as disposal areas.  

Development on properties with a limited number of suitable disposal sites may 

require increased lot size in order to include deep soils on each lot.   

Summary 

The increased cost of construction associated with these alternatives, or the 

decreased yield associated with increased lot size will affect the cost and income 

calculations that comprise a development decision.  As noted above, I have not 

attempted to assess or quantify these costs.  I have attempted to demonstrate the 

following: other factors being equal, development on deep, permeable soils with a 

low water table will have a higher yield and/or lower development costs than on 

marginal sites that have high groundwater, shallow bedrock, or slowly permeable 

soils.  If this were true, then residential development would occur less often on 

constrained sites, and these sites would tend to have larger lots.    

                                           
26 The required separation is increased to 5 feed in rapidly permeable soils (with percolation 
rates faster than 2 minutes per inch.) 
27 If a 2’ high mound were required to serve our hypothetical home with slowly permeable 
soils and a garbage grinder, it would require 15’ level area on either side of the disposal area 
and 6’ wide sloping sides.  Grading necessary for a 4,000 square foot disposal area would 
increase the total area of construction to over 8,000 square feet. 
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Key Findings  

On-site wastewater disposal is a technical system that evolves in response to 

changing social, technical, and environmental conditions.  The influence of this 

technical system on land development depends on how technical, regulatory, and 

social constraints influence development under different site conditions.  Prior to the 

development of rigorous septic regulations, septic technology allowed the extensive 

production of high-density single-family subdivisions in demand at the time.  The 

ensuing phase of the system involved more stringent regulation of septic systems, 

coupled with land use controls intended to prevent high-density subdivisions.  Many 

communities also avoided the construction of local sewer systems because of the 

potential for multifamily development and compulsory expansion that might lead to 

spiraling municipal costs.  Current regulations include standards that—theoretically 

and according to conventional wisdom—prevent or discourage development on 

certain soil conditions.  Social and political concerns with the production of housing 

have prompted the relaxation of permeability standards in Massachusetts.  The effect 

of this regulatory change on land use patterns will depend on a) the current influence 

of soil-based siting regulations and b) the extent of geographical areas affected by 

the proposed change (i.e., those areas where development will be permitted.)   
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CHAPTER 4: RESEARCH METHODOLOGY AND DATA SOURCES 

The intent of this research is to quantitatively assess the influence of state and local 

septic regulations on the location and density of residential development in 

Massachusetts.  The last section of the previous chapter describes the mechanisms 

through which septic regulations might influence development and design decisions.  

Two questions arise:  

• Does development occur more relatively more often on deep, permeable soils 

with a low water table, as compared to soils with conditions unfavorable for 

septic system construction?  

• Does development on sites with unfavorable soil conditions tend to exhibit larger 

lot sizes than development on sites with favorable soil conditions?   

Research Program 

In order to test this hypothesis, I compared the distribution of soil types underlying 

unsewered, developed areas to the distribution of soil types in the “parent population” 

of available sites that existed prior to development.  If soil conditions had no influence 

on residential development decisions, then I would expect these proportions to be 

roughly equal, or to vary randomly from town to town and through time.  Evidence for 

the suspected influence might be found in systematic overrepresentation of “favorable” 

soils and underrepresentation of “unfavorable” soils in areas in different towns and over 

multiple time periods.   

Soil conditions may have some influence on development decisions even in the absence 

of the requirements associated with septic system construction.  For example, shallow 

bedrock may require blasting for foundation construction or road and utility installation.  

Consequently, I also evaluated the distribution of soils in developed areas served by 

centralized sewer systems.  

Selection of Study Area 

I conducted my analysis on eight cities and towns (all are referred to hereafter as 

towns) in Norfolk County, Massachusetts (Figure 1 and Table 2).  The study area was 

chosen based on its location in Metropolitan Boston, the availability of digital soils data 

and interpretive tables, and reliance on different forms of wastewater disposal within 

the study area.  Four of the towns studied rely almost exclusively on on-site  
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Figure 1: Study Area in Norfolk County MA; Boundaries of Sewer Service Areas 
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Sources: MassGIS (town boundaries); MWRA (Canton, Randolph, Walpole sewer service areas); U.S. 

Geological Survey (Franklin sewer service area) 

 

Table 2: Summary Table of Town Characteristics 

Name 
 

Population, 
2000 

Population 
Growth, 

1970-2000 

Town Size 
(acres) 

Residential 
land use, 

1999 (acres)

New Residential 
Development 
1971-1999 

(acres) 

households 
served by 

public sewer,
1990 

Canton 20,775 21% 12,487 3,618 1,050 81%
Dover 5,558 23% 9,878 2,623 643 1%
Franklin 29,560 117% 17,269 5,548 2,987 70%
Norfolk 10,460 152% 9,853 2,816 1,700 4%
Randolph 30,963 19% 6,691 3,097 496 97%
Sharon 17,408 66% 15,626 4,311 1,707 6%
Walpole 22,824 53% 13,508 4,336 1,495 60%
Wrentham 10,554 113% 14478 3021 1601 7%
Source: U.S. Census, MassGIS, Harvard Map Library 

DOVER 

WALPOLE 

  RANDOLPH CANTON 

NORFOLK SHARON 

FRANKLIN 

WRENTHAM 
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wastewater disposal; the other four towns have extensive public sewer systems.  I also 

chose these towns because they experienced significant amounts of residential 

development during the study period; in most towns, at least 1,000 acres of land was 

converted from undeveloped land to residential uses during the period 1971-1999 

(Table 1).1   

The study periods were chosen based on the availability of historical land use data.  

Statewide land use maps, based on aerial photographs, were prepared in 1971, 1985, 

and 1999.  Consequently, I have results for three development periods: pre-1971, 

1971-1985, and 1985-1999.   

Summary of the Analysis 

The analysis was based primarily on geographic data obtained from MassGIS, a 

Massachusetts state agency.   

I grouped soil types into seven interpretive classes based on their regulatory limitations 

for the construction of septic systems. This interpretive system has separate classes for 

soils characterized by high groundwater, slow permeability, high groundwater and slow 

permeability, and shallow bedrock.  Another class includes soil types considered 

favorable for septic tank construction.   Two additional classes include hydric soils and 

altered soils such as gravel pits and quarries.  Additional information about these 

classes is provided in Table 3 (below) and in Appendix B.   

I then identified land “available” for development at the beginning of each study period 

by excluding developed land, wetlands, waterways, floodplains, and permanently 

protected open space.2  I calculated the proportion of soil classes within the available 

land. I also identified those areas converted from undeveloped to residential uses 

during a given time period3 and calculated the relative proportion of soil classes 

underlying this residential land.   

                                           
1 The exceptions are Dover and Randolph, which experienced 643 acres and 496 acres of new 
residential development, respectively. 
2 Wetlands and floodplains are not likely to have been significant regulatory constraints on 
development in the pre-1971 period, though they may have presented practical obstacles to 
development..  I excluded them from the analysis for this period for consistency’s sake. 
3 For the pre-1971 period this is all residential development that existed in 1971. 
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In order to account for different soil distributions, different levels of development, and 

the scarcity problem that would be created by development on favorable soils, I created 

a Soil Development Index (SDI) that measures the extent to which soil classes are 

over- or under-represented in developed areas as compared to the land available for 

development at the beginning of the time period.  This index is calculated by dividing 

the percentage of developed areas overlying a particular soil class by the percentage of 

available land containing the same soil.  A value of 1.0 indicates a soil class comprises 

the same proportion of available and developed land.  A value greater than one 

indicates that developed areas contain proportionately more of a particular soil type; a 

value of less than one indicates that developed areas have proportionately less of a 

particular soil type.  

Soil Classes 

The United States Department of Agriculture Natural Resource Conservation Service 

(NRCS) published the Norfolk County Soil Survey in 1989, based on aerial photos and 

field surveys.4  The many map units that comprise a soil survey are distinguished based 

on soil structure, depth, texture, permeability, slope, stoniness, presence of organic 

material, depth to groundwater, and other features.  

I am relying on a set of interpretive classes prepared by Jim Turrenne of the NRCS 

office in West Wareham MA.  This system assigns each map unit to a class based on soil 

features pertinent to the construction of on-site wastewater systems.  The original 

system had ten categories, with some complex soil units assigned multiple categories.  

I combined certain classes to create a system with seven categories, described in Table 

3.  The map units assigned to each class are identified in Appendix B. 

                                           
4 This data was digitized in 1997.  Digital soil coverages are based on 1:25,000 orthophoto base 
maps, which were scanned at 500 dots per inch, registered, and converted to vector data by 
NRCS. 
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Soil Surveys and Scale   

It is important to remember that soils conditions vary widely across the landscape, 

sometimes over small distances (USDA, 1995).  Soil surveys and soil interpretive 

systems are limited by the scale of the source materials on which they are based.  Soil 

units are mapped at a relatively small scale (1:25,000, in the case of Norfolk County.)  

They do not always represent transitions between different soil types accurately due to 

the challenges associated with identifying these features on aerial photos.  There is also 

a problem with detail; 1:25,000 scale soil maps generally do not represent features 

smaller than 4-6 acres.  They are mapped at the scale of a subdivision, not an 

individual house lot.   

Individual map units may be comprised of co-dominant soil types or may contain 

inclusions of other soil types with different characteristics.  Soil survey tables identify 

the proportion of a map unit that may be inclusions or other soil types.  Fortunately, 

most map units within the study area of this research are relatively homogenous, 

commonly comprising 90% of the mapped area.5   

Due to the scale of mapping and the existence of heterogeneity within soil units, it may 

therefore be possible to find conditions favorable for septic construction within areas 

mapped as septic-limited, just as there may be sites with limiting conditions within 

areas mapped as favorable.  Soil types and interpretive classes representing a 

significant probability of finding certain soil conditions at a randomly selected site within 

a map unit, not a certainty.   

                                           
5 The only complex with significant amounts of co-dominant soil types is comprised of Charlton 
Soils, Hollis Soils, and Rock outcrops in varying proportions; this complex is comprises Class 5 in 
my analysis.  This class is characterized by significant heterogeneity; the three components are 
very different and are found in varying proportions throughout the study area.  Charlton soils are 
generally deep soils with rapid permeability and depth to groundwater of greater than 5 feet.  
They comprise 25% to 45% of mapped areas within this complex.  Hollis soils are shallow (less 
than two feet) sandy loams that are located on the tops and slopes of bedrock hills; they 
comprise 20% to 40% of this complex.  Exposed bedrock is found in 10% to 50% of the mapped 
areas.   Up to 25% of the mapped areas are covered with other soils, including sandy soils, 
loams, and wetland soils in low-lying depressions.   
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Land Use Data—Definition of Developed and Undeveloped Land 

My analysis relies on land use data from MassGIS.  Land use maps are based on aerial 

photos and classifications based on the MacConnell land classification system.6  The first 

statewide land use map was created from aerial photos in 1971.  Additional maps were 

created based on 1:40,000 scale aerial photos taken in the summer of 1985 and 

1:25,000 scale photos taken in 1999.  

The 21 categories of land uses are listed in Table 4.  Shaded categories are considered 

developed land uses. Unshaded land uses are considered “available” for development 

based on the methodology for statewide town buildout analyses prepared by the 

Executive Office of Environmental Affairs.7  Consequently, new residences built on 

previously developed land (infill or redevelopment) are not included in the class of “new 

residential development.” 

The buildout analysis methodology also considers Passive Recreation Land (7) and 

Urban Open Space (17) to be available land uses.  In many cases these lands have 

limited protection or are undeveloped portions of public or private institutional or 

educational properties.  Ownership and established uses are likely a more significant 

factor than septic disposal in limiting development on these sites (which may include 

cemeteries and urban public parks.)  However, they constitute a relatively small portion 

of each town and their inclusion in the available land category is not likely to strongly 

influence the data. 

I identified land developed during each time period by performing queries that excluded 

land in any developed category at the beginning of the period.  (e.g.: (LU1985 = 10 or 

11 or 12 or 13) and (LU1971 <7 or 17 or 21.))8   

 

                                           
6 Photointerpretation and automation were conducted by the Resource Mapping Project (RMP) at 
University of Massachusetts, Amherst. 
7 While redevelopment or infill may be possible on previously developed sites, it is not a 
significant proportion of development in any of the towns studied, and is not a primary concern of 
this research, which is intended to assess conversion of land from undeveloped to developed use. 
8 Some residential land was reclassified from one density to another (e.g., from 1/2 acre to 1/4 
acre) in 1985 or 1999.  This land was not considered new residential development, as it cannot 
be determined whether to attribute this change to infill development or interpretation. 
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Table 4: MassGIS Land Use Classification System 

Category Description 

1 Cropland 
2 Pasture 
3 Forest 
4 Nonforested freshwater wetland 
5 Mining; sand, gravel, and rock quarries) 
6 Open land; abandoned agriculture, power lines 
7 Participation recreation; golf, tennis, playground, skiing 
8 Spectator recreation; stadiums, racetracks, fairgrounds 
9 Water-based recreation; beaches, marinas, pools 
10 Multifamily residential 
11  Single family residential lots, <1/4 acre * 
12  Single family residential lots, 1/4 – 1/2 acre * 
13  Single family residential lots, >1/2 acre * 
14  Salt Marsh 
15 Commercial land; urban areas, shopping centers 
16 Industrial land 
17 Urban open; parks, lawns, cemeteries, vacant undeveloped land 
18 Transportation; highways, freight storage, railroads, airports 
19 Waste disposal; landfills, sewage lagoons 
20 Water 
21 Orchard, nursery, cranberry bog 
Source: MassGIS. Lot sizes for residential land are based on aerial photo interpretation of 
average amount of developed area associated with each house, not on analysis of property 
boundaries.   

 

Development Constraints 

Unless explicitly noted as a “Town Total” analysis, all calculations in this research 

exclude lands constrained by wetlands, floodplains, or permanent open space 

protection, which are generally referred to as “constraints” and which are excluded 

from the definition of “available” land.   Any development that occurred within 

constrained areas is not analyzed with respect to soil type.  

Wetlands and Floodplains 

State and local wetland and floodplain regulations are significant, though not absolute, 

constraints on development.  Consequently, I excluded mapped wetlands and 
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regulatory floodways from the definition of available land,9 in order to more effectively 

isolate the effect of Title 5 and local septic regulations.10  Table 5 demonstrates that 

very little development has occurred in these areas during the study period.   

Table 5: Residential Development in Floodplains and Wetlands, 1971-1999. 

Residential development in 
wetlands or floodplains, 1971-

1999 

TOWN Public 
Sewer? 

Total 
Residential 

Development 
1971-1999 

(Acres) 
acres % 

Dover No 643 14 2% 
Canton Yes 1050 53 5% 
Franklin No 2987 59 2% 
Norfolk Yes 1700 48 3% 
Randolph No 496 40 8% 
Sharon Yes 1707 61 4% 
Walpole  No 1495 51 3% 
Wrentham Yes 1601 72 5% 
Total  11680 398 3% 
 

Permanently Protected Open Space 

I also excluded permanently protected open space from land considered available for 

development in any of the three study periods.  This step relied on an open space 

datalayer maintained by MassGIS, which identifies the current “protection status” of 

open space parcels.11  Historical data on protection status is not available.  The 

protection status of parcels may have changed over time;12 and some parcels that lack 

permanent protection (such as state hospitals) may have been effectively unavailable 
                                           
9 Wetland boundaries were obtained from MassGIS data based on interpretation of infrared aerial 
photos.  Floodplain boundaries were also obtained from MassGIS and are digitized from maps 
prepared by the Federal Emergency Management Agency. 
10 Since these features systematically relate to certain soil types, the effect on the analysis is to 
remove significant amounts of hydric and floodplain soils from the stock of available land (as 
compared to the town overall.) 
11 Protection Status categories are: Permanent, Limited, Temporary, and None.   Other datalayer 
attributes identify the owner (if available) and the name of the open space. 
12 e.g., land purchased for conservation by the town or a private land trust in 1990 may have 
been available for development up to that time.  This classification problem will tend to exclude 
some potentially developable land from the class of available land, especially for earlier periods of 
the analysis. 
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for development through the entire study period.13  Consequently, the current open 

space map may not be entirely accurate with respect to legal or practical protection of 

open space in the past.  Overall, however, the amount of affected by this classification 

is small, and a majority of permanently protected open space is owned by the public 

agencies whose ownership likely extended prior to 1971.   

Zoning 

This analysis does not consider zoning constraints in the identification of available land.  

While current zoning maps are available through GIS, zoning restrictions and 

boundaries have changed through time.  Historical zoning maps are not readily 

available and do not exist in digital format.  Consequently, the calculation of available 

land includes areas that are zoned for commercial and industrial uses, a strong, though 

not absolute, disincentive against residential development (rezoning is always an 

option.)  The inclusion of this land could affect the analysis if there is a systematic 

relationship between zoning and soil type, such that residential areas are more or less 

likely to be located on favorable or unfavorable soils.   

I assessed the magnitude of this problem by comparing the proportion of soil types in 

available land to soil types in all residentially-zoned land. I found that the interpretive 

soil classes used in the analysis are not systematically over- or underrepresented in 

residentially-zoned land, with the exception of Altered Soils, which are associated with 

quarries and landfills, and which are underrepresented in residentially zoned areas in all 

towns.  The results of this analysis are included in Appendix C. 

Sewer Coverage 

There is no central source or standard for the creation of sewer coverage databases in 

Massachusetts.  I obtained generalized sewer coverage information for three towns 

(Canton, Walpole, and Randolph) from the MWRA,14 and a digital map of the sewer 

collection system in Franklin.15  

                                           
13 Where possible, I attempted to exclude these sites from available land on a case-by-case basis 
(e.g., Wrentham State School), but the effect of this classification problem is to include some 
(essentially) undevelopable land in the class of available land. 
14 The MWRA provided a single coverage for the portions of each town considered to be within the 
sewered area. In the absence of more accurate coverage or historical data about the expansion 
of the collection network, I assumed that all development within the currently sewered area was 
connected to the sewer service at the time of construction (and was therefore not subject to the 
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With the exception of Franklin, I excluded all new residential development outside of 

sewer service areas from the analysis, though I considered all land in town, whether 

sewered or not, to be available for development because of the history of sewer 

extensions in these towns.   

The town of Franklin is only partially sewered and the unsewered portions of town 

experienced over 1300 acres of residential development during the period 1971-1999.  

Consequently, I divided the town into sewered and unsewered areas and evaluated 

them accordingly.16  In this report, “unsewered areas” refers to the four unsewered 

towns and the portions of Franklin outside of the sewer service area.   

Based on discussions with town officials in Sharon (Andrews, 2003), I also excluded 

from the analysis roughly 150 acres of residential development (“Sharon Woods”) which 

was served by an extension of the Foxborough sewer system.   

                                                                                                                                  

restrictions of Title 5.)  Thus the analysis of “sewered” development may include some residences 
originally or currently served by on-site septic systems.  Consequently, my analysis may 
underestimate the differences between development patterns in sewered and unsewered areas, if 
they exist. 
15 The availability of this detailed information allowed me to more accurately identify recent 
development beyond the reach of the public sewer system (and therefore reliant on septic 
systems.)  I created a buffer of 100 meters around the public sewer network and assumed that 
all development within this buffer was served by public sewer.  Development outside of this 
buffer was assumed to be served by private septic systems; most of this development was 
separated from the buffer by some undeveloped land so it is unlikely that private, unmapped 
collection systems serve these sites.  
16 Available land for the sewer service area in Franklin includes all available land in town, while 
available land for the unsewered portion of Franklin excludes land within 100 meters of the sewer 
service area. 
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Data Analysis 

I created a master table for each town by intersecting the multiple datalayers to form a 

coverage with attributes for each of the following:  

• Soil Map unit 

• Septic capability interpretive rating 

• Land use (1971, 1985, 1999) 

• Current zoning 

• Wetlands  

• Regulatory floodways 

• Open space attributes  

• Access to public sewer 

 

I conducted the analysis by querying for the attributes that identified available land and 

land developed during certain periods.  The results are presented in the following 

chapter.   
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CHAPTER 5: RESULTS 

Patterns of Residential Development with Respect to Soil Type 

The primary goal of this research was to assess patterns of residential development 

with respect to soil type in areas served by on-site wastewater disposal, and to 

compare these patterns to those in sewer service areas.   

In order to account for the variation in soil distributions across towns and the 

different amounts of development in different time periods, I created a Soil 

Development Index (SDI.)  The SDI is the ratio of the percentage of a soil type 

within land developed during a certain period, divided by the percentage of the soil 

type within land available for development at the beginning of that period.  The SDI 

also accounts for the land scarcity problem potentially created by the conversion of 

favorable soils during prior periods. 

Tables 6 and 7 present the results of this analysis for unsewered areas and sewer 

service areas, respectively.  Soil Development Indices for each town, period, and soil 

type are graphed in Figures 2 and 3.  A description of the results follows the Figures. 
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Figure 2: Soil Development Index (SDI) values for Residential Development, 
Unsewered Areas 

Residential Development Pre-1971; Unsewered Areas
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Residential Development 1971-1985; Unsewered Areas
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Wrentham; 471 acres Sharon; 784 acres Norfolk; 946 acres Dover; 286 acres Franklin; 445 acres

NOTES: The number of acres after each town name represents the total amount of unsewered residential 

development during that period.  Soil Development index is calculated by dividing the percentage of soil 

type within developed areas, by the percentage in land available for development at the beginning of the 

period.  See Table 3 for detailed descriptions of soil interpretive classes.  Analysis excludes wetlands, 

floodplains, permanently protected open space, and previously developed land. Sources: MassGIS (land 

use and constraints) and NRCS (soil data). 
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Figure 2, Continued: Soil Development Index (SDI) values for Residential 
Development, Unsewered Areas 

Residential Development 1985-1999; Unsewered Areas
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Wrentham; 1050 acres Sharon; 862 acres Norfolk; 706 acres Dover; 343 acres Franklin; 904 acres
 

* SDI value for Altered Soils in Dover (1985-1999) = 8.0 (8% of total residential development) 

NOTES: The number of acres after each town name represents the total amount of unsewered residential 
development during that period.  Soil Development index is calculated by dividing the percentage of soil 
type within developed areas, by the percentage in land available for development at the beginning of the 
period.  See Table 3 for detailed descriptions of soil interpretive classes.  Analysis excludes wetlands, 
floodplains, permanently protected open space, and previously developed land. Sources: MassGIS (land 
use and constraints) and NRCS (soil data). 
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Figure 3: Soil Development Index (SDI) values for Residential Development, 
Sewer Service Areas 

Pre-1971 Development; Sewered Towns
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Development 1971-1985; Sewered Towns
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* SDI value for High Groundwater soils in Randolph (1971-1985) = 3.0 (39% of total residential dev’t) 

NOTES: The number of acres after each town name represents the total amount of residential 
development within sewer service areas during that period.  Soil Development index is calculated by 
dividing the percentage of soil type within developed areas, by the percentage in land available for 
development at the beginning of the period.  See Table 3 for detailed descriptions of soil interpretive 
classes.  Analysis excludes wetlands, floodplains, permanently protected open space, and previously 
developed land. Sources: MassGIS (land use and constraints) and NRCS (soil data). 
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Figure 3, Continued: Soil Development Index (SDI) values for Residential 
Development, Sewer Service Areas 

Development 1985-1999; Sewered Towns
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NOTES: The number of acres after each town name represents the total amount of residential 
development within sewer service areas during that period.  Soil Development index is calculated by 
dividing the percentage of soil type within developed areas, by the percentage in land available for 
development at the beginning of the period.  See Table 3 for detailed descriptions of soil interpretive 
classes.  Analysis excludes wetlands, floodplains, permanently protected open space, and previously 
developed land. Sources: MassGIS (land use and constraints) and NRCS (soil data). 
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Class 1: Favorable Soils 

Deep soils with rapid permeability and low water tables experience relatively high 

rates of development in both sewered and unsewered areas.  With a few exceptions, 

SDI values for Class 1 soils are above 1.0 for all periods, indicating that favorable 

soils comprise a higher percentage of developed land than of land that was available 

for development at the beginning of the period.   

Class 2: Soils with High Groundwater 

Non-Hydric soils with seasonal high water levels less than 5 feet from the surface 

comprised only 3% to 5% of the original available land area in all four unsewered 

towns.  They comprise 4% to 15% of original available land in towns served by 

public sewer systems.   

Since 1971, high groundwater soils have experienced relatively little development 

that utilizes on-site wastewater disposal.  The calculated SDI is below 1.0 in all the 

unsewered areas during the period 1971-1999 (range: 0.4-0.9), with the exception 

of Wrentham during the period 1971-1985 (SDI=1.5), and unsewered portions of 

Franklin during the period 1985-1999 (SDI=1.1.) 

The patterns observed post-1971 are notably different from the earlier period, when 

development served by on-site systems occurred relatively often in high groundwater 

areas, despite the fact that these soils constituted a small portion of available land.  

Pre-1971 SDI values for Class 2 soils in the four unsewered towns range from 1.4 to 

1.8, and the SDI value for Class 2 soils in Franklin is 0.9 during this period.   

Development within sewer service areas exhibits higher and more variable SDI 

values for high groundwater soils.  SDI values were above 1.0 in three out of four 

towns during each study period.  Randolph shows a Class 3 SDI value of 3.0 during 

the period 1971-1999, when these soils constituted 13% of available land.   
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Class 3: Slowly Permeable Soils 

Soils with moderate to slow permeability1 comprise from 4% to 11% of the original 

available land in the four unsewered towns, and 4% to 15% of the original available 

land in towns with public sewer.   

The tendency for unsewered development to locate on slowly permeable soils has 

varied over time, with relatively low rates of development occurring during the 

period 1985-1999.  Pre-1971 development on Class 3 soils in the unsewered areas 

had SDI values between 0.5 and 1.0.  During the subsequent period (1971-1985), 

relatively high rates of development occurred on slowly permeable soils; three towns 

had SDI values between 1.4 and 1.7 on these soils.  Wrentham and unsewered areas 

of Franklin had values of 0.2 and 0.7, respectively.  During the period 1985-1999, 

SDI values for Class 3 soils ranged from 0.4 to 1.1; four of five areas had values 

below 1.0.   

Development within sewer service areas occurred relatively often on slowly-

permeable soils during the pre-1971 period and in the period 1985-1999.  During the 

interim period, SDI values were more variable.  Franklin and Walpole, the only towns 

in which Class 3 soils constituted more than 5% of available land, exhibit SDI values 

of 2.3 and 0.2, respectively.   

Class 4: Slowly Permeable Soils with High Groundwater 

Class 4 soils, characterized by both slow permeability and high groundwater, are 

associated with relatively less development than either condition alone.  These soils 

comprise 4% to 14% of original available land in the four unsewered towns and 3% 

to 12% of towns with public sewer.   

SDI values for Class 4 soils in the unsewered areas are consistently below 1.0 for all 

unsewered areas 1971-1999, with the exception of Norfolk during the period 1971-

1985 (1.2).  This pattern differs markedly from development in the pre-1971 period, 

when SDI values were above 0.9 for the four areas in which slowly permeable soils 

constituted more than 5% of available land. 

                                           
1 This class includes soils estimated to have a percolation rate slower than 30 minutes per 
inch, with estimated depth to seasonal high water greater than 5 feet. 
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Surprisingly, development within sewer service areas also occurs relatively rarely on 

soils with high groundwater and slowly permeable soils; SDI values for Class 4 soils 

within sewer service areas are generally less than 1.0.  The exception is the Town of 

Canton, which shows SDI values above 1.4 during the pre-1971 period and between 

1985 and 1999, when Class 4 soils constituted 7% and 6% of available land, 

respectively.    

Class 5: Shallow Bedrock Areas 

Shallow bedrock areas are prevalent in the study area.  This class of soils comprises 

9% of the original available land in Sharon and 18%-32% of the original available 

land in the other three unsewered towns.  Shallow bedrock is also found in 14%-

17% of the original available land in Canton, Randolph, and Franklin, and just 4% of 

the original available land in Walpole.  

Overall, shallow bedrock areas experience low to moderate rates of development 

when compared to their availability.  SDI values for all areas and time periods range 

from 0.0 to 1.4.   

The relative frequency of septic-dependent development on shallow bedrock has 

increased slightly over time.  SDI values for bedrock areas in were below 1.0 in five 

unsewered areas prior to 1971, in four unsewered areas in 1971-1985, and in three 

unsewered areas in 1985-1999.   

Notably, SDI values for shallow bedrock soils within sewer service areas are 

consistently at or below 1.0 for the post 1971 periods.   

Class 6: Hydric Soils 

Hydric soils comprise 4% to 10% of the original available land in the study area.  

Development occurs relatively infrequently on these soils; SDI values are less than 

1.0 for almost all towns and time periods.  The highest range of SDI values for hydric 

soils is found in sewer service areas during the period 1985-1999; these values 

range from 0.4 to 1.3.  Hydric soils appeared to be a constraint on development 

even in the pre-1971 period, suggesting that this pattern cannot be attributed solely 

to the regulatory influence of wetland or septic regulations.   
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Class 7: Altered Soils 

Development occurs relatively infrequently on altered soils in unsewered towns and 

within sewer service areas.  SDI values are generally below 1.0.2 

The Influence of Soil Conditions on Lot Size 

As discussed in previous chapters, the requirements for a permeable disposal area of 

suitable size may require developers to create lot sizes larger than would otherwise 

be required by market and zoning conditions.3  If this were true, then a higher 

percentage of large lot development would overly restrictive soils, and a higher 

proportion of small lots would be located on favorable soils.   

Figures 6 through 9 graphically represent the proportion of “small” (1/4-1/2 acre) 

and “large” (>1/2 acre) lots located on favorable soils, slowly permeable soils, and 

shallow bedrock areas, respectively.4  

Favorable Soils 

In unsewered areas, small lot residential development is more likely than large lots 

to be located on Class 1, Favorable soils, with the exception of Franklin.  In sewer 

service areas, large lots occur (slightly) more often on favorable soils during the 

period 1971-1985, and small lots occur more often during the later period.   

                                           
2 The high values calculated for Dover during the pre-1971 period and between 1985-1999 are 
due in part to the fact that altered soils comprise just 1% of the available land in town during 
the three periods.  Thus a small amount of development can result in high SDI values.   
3 This may be due to the need for a large disposal area or heterogeneous soil conditions that 
require large lots to include an area of suitable soils.   
4 Excluded from this analysis are towns where development was exclusively or predominantly 
one class of density.  This includes Randolph, 1971-1999 (no lots >1/2 acre); Dover, 1971-
1985 (no lots <1/2 acre); and Wrentham, 1985-1999 (lots <1/2 acre comprised only 6% of all 
development.)  Consequently, I did not evaluate the relative distribution of lot sizes in these 
towns during the periods noted.  
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Figure 4: Lot Sizes on Class 1 (Favorable) Soils, 1971-1999 

Percentage of lots on Class 1 
(Favorable) soils; 1971-1985
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Percentage of lots on Class 1 
(Favorable) soils; 1985-1999
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Note: Excluded from the analysis are towns where development was exclusively or 
predominantly one class of density.  This includes Randolph, 1971-1999 (no lots 
>1/2 acre); Dover, 1971-1985 (no lots <1/2 acre); and Wrentham, 1985-1999 (lots 
<1/2 acre comprised only 6% of all development.)   Lot sizes from MassGIS based 
on aerial photo interpretation.  See Table 3 for definition of Soil Interpretive Classes. 
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Figure 5: Lot Sizes on Class 3 (Slowly Permeable) Soils, 1971-1999 

Percentage of lots on Class 3 Soils
(Slowly Permeable); 1971-1985
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Percentage of lots on Class 3 Soils 
(Slowly Permeable); 1985-1999
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Note: Excluded from the analysis are towns where development was exclusively or 
predominantly one class of density.  This includes Randolph, 1971-1999 (no lots 
>1/2 acre); Dover, 1971-1985 (no lots <1/2 acre); and Wrentham, 1985-1999 (lots 
<1/2 acre comprised only 6% of all development.)   Lot sizes from MassGIS based 
on aerial photo interpretation.  See Table 3 for definition of Soil Interpretive Classes. 
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Figure 6: Lot Sizes on Class 5 (Shallow Bedrock) Soils, 1971-1999 

Percentage of lots on Class 5 
(Shallow bedrock) soils; 1971-1985

0%

10%

20%

30%

40%

50%

Wrentham Sharon Norfolk Franklin Franklin Walpole Canton

P
er

ce
n

ta
g

e 
o

f 
lo

ts
 in

 
sh

al
lo

w
 b

ed
ro

ck
 a

re
as

1/4 -1/2 acre lots >1/2 acre lots
 

Percentage of lots on Class 5 
(Shallow bedrock) soils; 1985-1999
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Note: Excluded from the analysis are towns where development was exclusively or 
predominantly one class of density.  This includes Randolph, 1971-1999 (no lots 
>1/2 acre); Dover, 1971-1985 (no lots <1/2 acre); and Wrentham, 1985-1999 (lots 
<1/2 acre comprised only 6% of all development.)   Lot sizes from MassGIS based 
on aerial photo interpretation.  See Table 3 for definition of Soil Interpretive Classes. 
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Slow Permeability 

During the period 1985-1999, in Dover, Norfolk, and the unsewered portions of 

Franklin, large lot residential development occurred more often on Class 3 (slowly 

permeable) soils than did small lot development.  This contrasts with the 

development that occurred 1971-1985; during this period, large and small lots using 

on-site systems occurred with roughly equal frequency on slowly permeable soils.   

In towns with public sewer, a higher percentage of all development is located on 

slowly permeable soils, though the data do not demonstrate that large or small lots 

are more common on these soils.   

Shallow Bedrock 

The presence of shallow bedrock is correlated with larger lot sizes in unsewered 

areas.  In the four unsewered areas where a mix of lot sizes could be analyzed for 

each period, a greater proportion of large lots versus small lots were located in 

shallow bedrock areas, with the exception of Franklin during the period 1985-1999, 

when large and small lots were located on shallow bedrock with equal frequency.    

In sewer service areas, small lot development is more common on shallow bedrock 

areas during the period 1971-1985; this correlation is reversed in the following 

period, when large lots are more common on shallow bedrock areas. 

High Groundwater  

The presence of Class 2 (High Groundwater) and Class 4 (High Groundwater/Slow 

Permeability) soils is not associated with a higher frequency of small or large lots in 

unsewered areas.  However, I did find that larger lots occur more frequently on 

these soils in sewer service areas.   

The Influence of Zoning on Lot Size 

It is important to note that the observed association of large (>1/2 acre) lots with 

certain restrictive soils in unsewered areas is not necessarily a result of restrictive 

septic regulations that cause developers to create larger lots.  The minimum lot sizes 

embodied within zoning regulations also have a critical impact on lot size.  The 

distribution of soil classes within currently available land in various zoning districts is 

presented in Table 8. 
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Table 8: Available Land in Residential Zoning Districts: Soil Type  
and Minimum Lot Size  

Residentially Zoned Available Land,  
by Minimum Lot Size 

 Available 
land 1999 
(all zoning 
districts) 

>2 acres 1-2 acres 1/4-1 
acre 

<1/4 
acre 

DOVER  

TOTAL ACRES 3815 2400 669 13 0 

1-Favorable 23% 18% 51% 73% - 

2-High Groundwater 3% 2% 11% 4% - 

3-Slowly Permeable 12% 17% 7% 0% - 

4-GW & Permeability 15% 19% 7% 7% - 

5-Shallow Bedrock 38% 35% 13% 0% - 

6-Hydric Soil 9% 9% 11% 16% - 

7-Altered Soil 0% 0% 1% 0% - 

NORFOLK  

TOTAL ACRES 4116 0 2359 674 0 

1-Favorable 51% - 49% 82% - 

2-High Groundwater 3% - 3% 1% - 

3-Slowly Permeable 5% - 3% 0% - 

4-GW & Permeability 7% - 9% 0% - 

5-Shallow Bedrock 19% - 22% 10% - 

6-Hydric Soil 9% - 12% 4% - 

7-Altered Soil 6% - 2% 3% - 

SHARON  

TOTAL ACRES 4625 1021 3171 238 6 

1-Favorable 51% 39% 56% 45% 32% 

2-High Groundwater 5% 3% 6% 3% 42% 

3-Slowly Permeable 7% 4% 8% 15% 26% 

4-GW & Permeability 5% 4% 5% 15% 0% 

5-Shallow Bedrock 13% 30% 10% 0% 0% 

6-Hydric Soil 14% 15% 12% 15% 0% 

7-Altered Soil 4% 6% 3% 7% 0% 

WRENTHAM  

TOTAL ACRES 6593 3830 1860 577 0 

1-Favorable 35% 22% 55% 66% - 

2-High Groundwater 3% 4% 4% 1% - 

3-Slowly Permeable 5% 7% 2% 0% - 

4-GW & Permeability 5% 5% 6% 1% - 

5-Shallow Bedrock 36% 48% 26% 3% - 

6-Hydric Soil 9% 11% 5% 8% - 

7-Altered Soil 7% 3% 2% 22% - 
Source: MassGIS, NRCS.  Zoning districts based on data from MA EOEA buildout analysis. Available land 
excludes wetlands, floodplains, permanently protected open space, and developed land.  See text for 
details.   
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This table shows that, in towns lacking public sewer, zoning districts with small 

minimum lot sizes tend to include a higher percentage of soils favorable for on-site 

waste disposal, and large-lot districts include a higher percentage of restrictive soils.5  

Higher density districts also include significantly smaller amounts of shallow bedrock 

areas as compared to low-density districts.  Also with the exception of Sharon, low-

density districts include more slowly permeable soils (Class 3 and Class 4) than do 

higher density districts. 

Consequently, the higher lot sizes may not be a direct result of septic regulations but 

rather of zoning districts that reflect the existing limitations and mandate large lots a 

priori of any site evaluation regarding feasibility of on-site disposal.  It is important 

to note that, in the towns studied, the overwhelming majority of residentially zoned 

land has minimum lot sizes greater than 1 acre.  

Land Consumption Rates 

I evaluated land use and household data to assess patterns of land conversion in 

sewered and unsewered towns.   

I compared the number of new households to the amount of land converted to 

residential uses during (roughly) the same period (Figure 9).  I found that in towns 

lacking public sewers, development consumed a significantly greater amount of land 

per new household.  The weighted average of the four unsewered towns is 0.88 

acres per household, while in towns with public sewer the rate of land conversion is 

0.37 acres per household.  For each new household, towns lacking public sewer are 

converting land to residential uses at a rate more than twice that of towns with 

public sewer.   

                                           
5 This is true with the exception of the 1/4 – 1 acre district in Sharon, which constitutes just 
5% of available, residentially zoned land.   
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Figure 7: Land Consumption (1971-1999) per New Household (1970-2000) 

Residential land use (1971-1999) per new household (1970-2000)
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 Sources: MassGIS (land use data) and U.S. Census (household data) 

This difference in land conversion rates cannot be attributed solely to the land use 

requirements of on-site waste disposal.  Towns without public sewers generally have 

zoning codes that require lower densities over larger proportions of the town, as 

shown in Figure 10.   

Figure 8: Prevalence of minimum lot sizes >1 acre 

Prevalence of >1 acre Minimum lot sizes in 
all Residentially Zoned Land (town total)
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Because towns often enact large lot zoning as a means of “slowing growth” and 

preserving open space, I compared the amount of land developed during the period 

1971-1999 to the amount of land available at the beginning of the period, to 

determine whether towns with large lot zoning are effectively conserving their 

available land.  The results are presented in Table 10. 

Table 9: Proportion of Available Land (1971) Converted to Residential Uses, 
1971-1999 

 
Residential Development 

1971-1999 

 

Available land, 
1971, (acres) 

acres % of available 
land 

Sewered Towns    
Canton 4042 999 25%
Franklin 10574 2928 28%
Randolph 1538 450 29%
Walpole 6469 1444 22%

Unsewered Towns    

Dover 4446 629 14%
Norfolk 5800 1651 28%
Sharon 6348 1646 26%
Wrentham 8325 1521 18%
Source: MasGIS; Analysis excludes wetlands, floodplains, and  
permanently protected open space 

Impacts of the Pending Regulatory Change 

The pending change in the Title 5 regulations will permit construction of on-site 

waste disposal systems on soils where the measured percolation rate is 30-60 

minutes per inch.  I will refer to these soils as “moderately permeable” soils.6  

Previously, on-site disposal was permitted only on rapidly permeable soils where 

percolation rates are faster than 30 minutes per inch.  The land use impacts of this 

change will depend on the distribution of moderately permeable soils, and the extent 

to which their presence impedes development under the current regulatory regime.  

Evaluation of the soil types within the study area shows that there are three soil 

types where permeability is the primary limitation on septic system construction.7  

                                           
6 The NRCS definition of Moderately Permeable soils includes those with listed percolation 
rates of 30 – 100 minutes per inch.  
7 These are the Montauk, Newport, and Paxton soils.  
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These soils, which comprise Class 3 of my analysis, have a relatively limited 

distribution within the study area, depicted in Figure 11.   

Figure 9: Distribution of Class 3 (Slowly Permeable) Soils in Norfolk County  
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Sources: MassGIS (town boundaries); MWRA (Canton, Randolph, Walpole sewer service areas); U.S. 
Geological Survey (Franklin sewer service area) 

 

I also calculated the amount of moderately and slowly permeable soils within 

available land in each unsewered town.   

Table 10: Available Land with Class 3 (Slowly Permeable) Soils,  
Unsewered Towns 

Town 
 

 % of Available, 
residentially-zoned  
land, Class 3 soils 

Dover 15%
Norfolk 3%
Sharon 8%
Wrentham 5%
Source: MassGIS, NRCS; Available land excludes developed areas, wetlands, floodplains, and permanently 
protected open space.   
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It is important to note that in Dover an existing local Board of Health Bylaw prohibits 

development on soils with percolation rates slower than 25 minutes per inch.  This 

standard will be unaffected by the pending change in Title 5.   

The proposed regulatory change will permit development only on a subset of these 

soils; namely, those with moderate permeability.  While the NRCS soil survey reports 

that the three Class 3 soils types have moderate permeability (30-100 minutes per 

inch) in the upper layers, they have moderately slow to very slow permeability 

deeper in the soil column.  A thorough site evaluation of a soil with typical 

characteristics should determine that it would not satisfy even the relaxed standards 

of the new code.8  However, soils do exhibit considerable heterogeneity, and not all 

soils exhibit typical characteristics.  Consequently, it is possible that the pending 

regulatory change will allow developers to identify adequately permeable soils on 

sites with marginally permeable suitable conditions.   

It is also important to note that slow permeability is generally associated with silt 

and clay soils derived from glacial till.  The underlying geology of the study area is 

primarily sand and gravel outwash deposits overlying bedrock.9  The presence of 

glacial till is generally limited to the tops and sides of hills.  Different conditions are 

found in Central and Western Massachusetts, where the surficial geology is 

dominated by glacial till deposits, and coarse outwash deposits are rare.  

Consequently, the potential impacts of the proposed regulatory change may be more 

significant in that region.   

                                           
8 Jim Turrene of the NRCS speculated that the Montauk Soils (with a listed permeability of 
moderate/moderately rapid in the upper layer, and moderately slow to slow permeability in 
the substratum) may be able to pass a percolation test under the new standards.   
9 Jim Andrews, the Health Agent of Sharon, provided a simple description of soil conditions in 
that town: “sand and rocks.”  
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CHAPTER 6: DISCUSSION OF FINDINGS 

Four key findings emerge from the data presented in the previous chapter.  First, 

residential development patterns with respect to certain soil types are different in 

towns with and without public sewer systems; unsewered development occurs less 

often on soils with slow permeability or shallow groundwater.  Second, the patterns 

of unsewered residential development have changed over time, reflecting the 

changes in state and local regulations that govern on-site wastewater disposal.  

Third, the limited distribution of moderately permeable soils within the study area 

suggests that the pending regulatory change will have a small marginal impact on 

the location of residential development.  Finally, lot sizes and per-new-household 

land use are significantly higher in towns that lack public sewers; the prevalence of 

large lots on favorable soils suggest that these land-consumptive patterns may be 

attributable more to zoning and market demand than to septic regulations.   

Influence of High Groundwater on Development Patterns 

High groundwater soils (whether rapidly or slowly permeable) are strongly correlated 

with relatively low rates of septic-dependent development.1  Further, the relative 

frequency of unsewered residential development on these soils has decreased over 

time.  This change parallels the enactment of stricter standards on the siting of 

disposal areas, from the 1966 State Sanitary Code through the 1978 and 1995 Title 

5 regulations.2   

The presence of high groundwater does not appear to be a strong influence on lot 

sizes in unsewered areas; the proportion of large and small lots on high groundwater 

soils varies significantly from town to town and over the two study periods.  This 

                                           
1 It is also important to note that high groundwater areas (especially those with rapid 
permeability) are also often associated with aquifer recharge districts, where state and local 
regulations may impose stricter standards on wastewater disposal regardless of soil type.  I 
did not evaluate the potential influence of these standards. 
2 The 1966 State Sanitary Code required either two or four feet of separation from 
groundwater, depending on soil conditions, and did not proscribe procedures for assessing the 
elevation of the water table.  The 1977 Title 5 regulations stipulated a 4-foot separation in all 
soils and required observation of the water table at the time of maximum elevation.  The 1995 
Title 5 regulations mandate a 5-foot separation in very rapidly permeable soils and require 
determination of seasonal high water by certified soil evaluators.  See Appendix A for a more 
complete discussion of regulatory history of state and local septic regulations in 
Massachusetts.   
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suggests that increased lot size does not provide a significant opportunity for 

overcoming the practical and regulatory limitations associated with on-site 

wastewater disposal in high groundwater areas. 

The observed influence of regulatory constraints on locational decisions is supported 

by the fact that development within sewer service areas occurs relatively frequently 

in high groundwater areas with rapid permeability.  However, the data also indicate 

that development has occurred relatively infrequently on soils with high groundwater 

and slow permeability over the entire study period.  This finding suggests that 

relatively low rates of land conversion on high groundwater/slow permeability soils 

may be attributable to constraints that apply to both sewered and unsewered 

development such as wetland regulations, general soil limitations on development, or 

landscape position.  I also observed an unexplained positive correlation between the 

presence of high groundwater and larger lot sizes in sewer service areas.  Additional 

research is necessary to assess the influence of high groundwater and slow 

permeability on development rates and lot size in sewer service areas.   

The Influence of Slow Permeability on Development Patterns 

Since 1985, unsewered residential development has occurred on soils limited by slow 

permeability alone at rates equal to or slightly lower than would be expected based 

on their distribution in available land.  This observed pattern contrasts markedly 

from that of development served by public sewer during the same period, which 

occurred relatively frequently on the same soils.  I attribute this difference to the 

influence of state and locate septic regulations that establish minimum permeability 

rates for on-site disposal.   

Data from 1985-1999 also indicate that, in unsewered areas, residential house lots 

larger than 1/2 acre are somewhat more likely to be located on slowly permeable 

soils than are lots smaller than 1/2 acre.  This suggests that in areas of 

heterogeneous soil conditions, larger lot sizes may allow developers to satisfy 

regulatory requirements by including an area of suitably permeable soils in each lot, 

or that the larger disposal area required may affect lot size.  

Interestingly, on-site disposal standards did not exert a strong influence on location 

or density of development on slowly permeable/deep groundwater soils during the 

period 1971-1985, when both small lot and large lot development occurred relatively 

frequently on these soils.   
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If the change in development patterns on slowly permeable soils from 1971 to 1999 

is attributable to regulatory constraints, it is probably not due to changing 

percolation rate limits, (which have remained relatively constant at 30 minutes per 

inch) but to increasing accuracy of percolation tests, the methodology of which was 

described with increasing levels of detail and specificity in the 1966, 1978, and 1995 

state codes, as well as in local septic bylaws.  (See Appendix A for a more detailed 

description of the standards of each code.)   

The Influence of Shallow Bedrock on Development Patterns 

Shallow bedrock, which is relatively common in most of the towns in the study area, 

is associated with moderate to low rates of development.  The frequency with which 

unsewered development has occurred in shallow bedrock areas has increased very 

slightly over time.  Sewer service areas also experience low rates of development on 

these soils, and the rate of development has decreased very slightly over time.   

I observed a strong correlation between larger lot sizes and shallow bedrock in 

unsewered towns.  A similar correlation is not observed in sewer service areas.  The 

heterogeneity of these soils may enable developers to find small pockets of soils 

suitable for construction of on-site systems, though at the expense of smaller lot 

sizes, and current zoning codes generally include a higher proportion of shallow 

bedrock areas in districts with larger minimum lot sizes.  In towns with public 

sewers, I suspect (admittedly without hard evidence) that undulating topography, 

steep slopes, and extensive ledge may impede the construction of gravity drained 

sewer systems.  Additional research is necessary to assess the mechanisms by which 

shallow bedrock may influence development decisions in shallow bedrock areas.   

Impacts of the Pending Change In Title 5 Percolation Standards 

My findings suggest that the pending change in Title 5 regulations to permit on-site 

wastewater disposal on sites with percolation rates of 30-60 minutes per inch will 

have a relatively small incremental impact on development patterns in the study 

area, as compared to the effect of current regulations.   

Due to geologic conditions, soils that limit on-site waste disposal due to moderate 

permeability are rare in the study area.  Slowly permeable soils free from other 

limitations on wastewater disposal comprise just 4% to 8% of the land area in the 

four unsewered towns studied, and just 3% to 8% of residentially-zoned land 

classified as “available” for development in Norfolk, Sharon, and Wrentham.  These 
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soils also constitute less than 5% of the Vacant Developable Land identified through 

a different methodology developed by the Massachusetts Executive Office of 

Environmental Affairs for conduct of a statewide Buildout Analysis.   

It is important to note that Class 3 (slowly and moderately permeable) soils comprise 

15% of the available residentially zoned land in Dover.  However, a local bylaw 

prohibits on-site wastewater disposal on sites with percolation rates slower than 25 

minutes per inch.  This bylaw will remain in effect following the change in Title 5, 

highlighting the institutional complexity of controls on wastewater disposal.   

The decreasing frequency of development on slowly permeable soils over time (when 

the standards remained relatively constant) also demonstrates the increasing 

sophistication of the permitting process in general and the role of percolation test 

methodology in particular.  Stricter local regulations and more meticulous 

enforcement of existing regulations may partially compensate for the relaxation of 

standards at the state level.   

I also find that the current percolation rate standards are not an overwhelming 

deterrent to development, which occurs on slowly permeable soils with deep 

groundwater at rates that are comparable to or slightly less than would be expected 

based on their distribution within available land.  The prevalence of large lots on 

slowly permeable soils indicates that larger lots allow developers to find areas of 

suitably permeable material on otherwise marginally suitable sites.  Because a strong 

market exists for these larger lots, the cost of the land can be rolled into the sale 

price.   

These historical patterns suggest that, if percolation rate standards are influencing 

lot sizes, then the relaxed standards might enable development of smaller lots on 

slowly permeable soils.  However, my data demonstrate that the vast majority of 

available, residentially zoned land with slowly permeable soils is located in zoning 

districts with minimum lot sizes of at least 1 acre (Sharon and Norfolk) or 2 acres 

(Dover and Wrentham.)  Due to the heterogeneity of soil conditions, it is likely that 

developers may be able to find suitably permeable sites on such large lots, whether 

the standard is 30 minutes per inch or 60 minutes per inch.   

Septic Regulation and Zoning 

The observed tendency in unsewered towns for zoning districts with smaller 

minimum lots sizes to include relatively larger amounts of favorable soils suggests 
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that soil conditions and their relation to on-site wastewater disposal may be one 

factor that is considered during the zoning process.  Twichell (1978) reports, on the 

basis of interviews with local officials, that many communities enact large lot zoning 

in order to minimize the potential health and environmental impacts that may occur 

in the event of system failure.   

Large lot zoning may be construed by these communities an anticipatory measure to 

prevent concentrated water quality impacts.  It also has the effect of ensuring that, 

in the event of widespread failure, the burden for remediation will lie with 

homeowners, since construction of centralized wastewater collection systems is 

generally less cost effective in low-density areas.  This latter point is especially 

critical for communities that wish to avoid the construction of sewer systems because 

of their potential to enable higher density development.   

Concerns regarding septic system failure are valid, especially since the development 

of effective septic management districts designed to ensure proper use, 

management, and repair of systems has proved elusive.  However, zoning codes that 

tend to require larger lots on unsuitable soils rarely permit significantly higher 

densities on more suitable soils.  While lower-density (>1 acre) zoning districts may 

include the majority of the slowly permeable soils in most towns, they also cover 

most of the favorable soils, where careful permitting, siting, and construction could 

allow the use of conventional on-site systems at moderate to high densities, and 

advanced technologies or shared systems at high densities.  

Considerations for Environmental Sustainability and Housing 

Affordability 

The findings of this research demonstrate that the current technical-regulatory 

system of on-site wastewater disposal has some effect on spatial distribution of 

development.  Yet I also find that this sanitation system is bound up in a system of 

land use controls that prevent the efficient use of land, regardless of natural 

opportunities or constraints on waste disposal.  The result is development that 

consumes land at dramatically higher rates than are observed in towns with public 

sewer.   

On average, each new household in the unsewered towns studied here consumes 

twice as much land as each new household in towns with public sewer systems.  In 

all the sewered towns combined, approximately 6,000 acres of new residential 
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development (1971-1999) accommodated roughly 24,000 new residents in 16,100 

new households (1970-2000.)  A comparable amount (5,700 acres) of residential 

development occurred in the unsewered towns, though population growth here was 

just 15,100 new residents, housed in 6,500 new households.   

Meanwhile, the system of septic systems and large lot zoning does little to prevent 

growth or mitigate its effects.  The population of unsewered towns in the study area 

grew 23% to 125% during the period 1970-2000, as compared to 15% to 66% in 

the towns with public sewer systems.  The pattern of this growth did little to 

conserve the supply of undeveloped land.  From 1971-1999, the proportion of 

available land converted to residential uses in unsewered towns was comparable to, 

or slightly less than, the proportion of available land converted in unsewered towns.3   

Many researchers and members of the development community in Massachusetts 

claim that septic regulations are significantly limiting the production of housing and 

contributing to the housing crisis in Massachusetts (Flint, 2002, Euchner, 2003).  I 

find these claims to be unsubstantiated by this research.  Septic regulations remove 

from the market land with soils unsuitable for on-site disposal, thus influencing the 

location of new residential development.  However, low-density zoning codes 

mandate a highly inefficient use of the land that does remain, regardless of its 

suitability for on-site disposal.  As demonstrated by the population growth in my 

study area, there is a consumer market for the product of this system (namely, 

houses on large lots.)  Relaxing the standards of septic regulations will thus permit 

the development community to create a slightly greater supply of the same product.   

Yet it is debatable as to whether an increased supply of this product will help to 

achieve the housing affordability, growth management, and land stewardship goals 

of the Commonwealth and its individual communities.   Large lots require a 

significant investment in land that places homeownership beyond the reach of many 

residents of the metropolitan area.  Dispersed development places increased 

pressure on community services, impedes access to schools and recreation facilities, 

and contributes to auto-dependency, with its resulting air quality and traffic impacts.  

Widespread conversion of undeveloped land disrupts ecological infrastructure (LaGro, 

                                           
3 Development in unsewered towns during the period 1971-1999 consumed 14% to 28% of 
land available for development in 1971, while development in the four sewered towns 
consumed 22% to 29% of available land.  
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1994), destroys prime farmland soils at a time when there is growing market support 

for local agriculture, and contributes to water quality and wildlife habitat degradation 

through increased runoff (Center for Watershed Protection, 1998).   

An alternative approach to land use and housing affordability promotes compact 

development in areas easily accessible to commercial districts and public transit, 

while enabling construction of clustered housing or very low-density development 

designed to preserve wildlife habitat and protect water quality (Katz, 2002; Arendt, 

1996).  A new approach to land use controls is clearly fundamental to achieving this 

vision.  Components of this approach might include multi-use districts, site design 

guidelines, and programs to enable the transfer of development rights.  

Complementary measures include acquisition of open space; taxation policies that 

promote preservation of undeveloped and agricultural land, while ensuring equity 

across communities; and transportation policies that promote public transit and limit 

public investments in road improvements in outlying areas. 

Complementary sanitation polices are also critical to achieving sustainable 

development patterns.  Local wastewater treatment districts, whether publicly or 

privately operated, will enable compact multi-use development.  On-site disposal 

regulations that facilitate the construction of clustered housing will promote more 

efficient use of land in outlying areas.  Septic system requirements that more fully 

account for the secondary environmental and financial impacts of dispersed 

development (including future costs) will discourage the use of individual systems to 

serve land-consumptive subdivisions.  In particular, wastewater management 

districts may be one mechanism to create a greater public interest in on-site disposal 

and the land uses it enables.   

Additional research is necessary to demonstrate the link between on-site wastewater 

disposal and the secondary impacts of the development it enables, and to explore 

the legal and institutional challenges associated with the creation of on-site disposal 

policies with explicit planning components.   
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CHAPTER 7: CONCLUSIONS IN THE CONTEXT OF SUSTAINABILITY 

Sanitation systems—comprised of technical, institutional, environmental, and social 

elements—are fundamental to urban and suburban development.  The creation of 

centralized sewer systems facilitated the rise of urban metropolises in the 19th 

Century, and the availability of on-site wastewater disposal systems enabled the 

enormous growth of suburban development since the 1950s.  Through time, 

sanitation systems have been structured to serve specific purposes; and through 

time they have also had diverse secondary impacts on development patterns and 

environmental quality.  As the institutional, technical, and social factors of sanitation 

systems have changed, so have the resulting secondary impacts.  

The current system of privately owned and operated on-site wastewater disposal 

systems, the use of which is controlled by state and local regulations, has had a 

demonstrable impact on development patterns in the study area of this research 

over the past 30 years.  On-site systems have enabled extensive settlement of areas 

not served by centralized sewer systems.  This influence became prominent in the 

1960s and continues to shape current land use patterns in Massachusetts, where 

extensive single-family residential development occurs in outlying suburban and 

exurban towns.  

Increasing awareness of the water pollution attributable to the inadequate treatment 

provided by many on-site systems led public institutions to enact regulations that 

control the siting, design, and construction of these systems, in order to minimize 

threats to public health and water quality.  These standards permit on-site disposal 

only where suitable conditions are present, resulting in landscape-scale development 

patterns that reflect the thickness, permeability, and depth to water table of 

underlying soils.   

My research found that unsewered development since 1985 has occurred relatively 

more often on deep, rapidly permeable soils with a low water table, and relatively 

less often on slowly permeable soils or rapidly permeable soils with high 

groundwater, as compared to development within sewer service areas.  The 

tendency for development to avoid slowly permeable soils or soils with high water 

tables has increased over time, reflecting increasingly restrictive standards regarding 

depth to groundwater, and increasing sophistication of the permitting process with 

regard to assessment of percolation rates.  
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My findings suggest that the pending change in Title 5 regulations that will permit 

on-site disposal on some slowly permeable soils will have a small marginal impact on 

development in the study area, especially in comparison to the effect of existing 

sanitation policies and land use controls.  Slowly permeable soils without other 

limiting conditions are relatively rare in this portion of Massachusetts, and the 

regulatory change will affect only a small class of these—those with percolation rates 

between 30 and 60 minutes per inch.  The change in Title 5 will also have no effect 

on development where local health bylaws establish stricter limits on permeability.  

The change in the state standards is likely to have a greater effect where slowly 

permeable soils constitute a greater proportion of developable land, such as Central 

Massachusetts, where slowly permeable soils derived from glacial till are more 

common.  Many small towns also lack the willingness or capacity to develop stricter 

local standards and consistently enforce them.  This example vividly demonstrates 

the importance of institutional and environmental factors with regard to the influence 

of on-site sanitation systems on development patterns.  

Many critics of strict local septic bylaws contend that they are being used as implicit 

planning mechanisms to control growth, rather than as sanitation policies to protect 

health and water quality.  My research suggests that concerns over wastewater 

disposal are important components of, and justifications for, broader systems of 

growth control.  Yet the primary mechanisms of these systems are zoning codes that 

mandate minimum lot sizes of one or two acres throughout a town, not septic bylaws 

that prohibit development on a limited class of soils.   

Regardless of whether or not sanitation policies are implicated in the efforts of many 

communities to limit growth, I find that these efforts do not necessarily result in land 

use patterns that further the goals of housing affordability, livability, or 

environmental sustainability.  The primary characteristic of these patterns is rapid 

loss of open space and inefficient use of land, which places homeownership beyond 

the reach of most families in the metropolitan area.  The septic bylaw reform called 

for by the development community may increase the effective supply of land or 

facilitate more rapid development, but it will not promote the efficient use of land.  

Rather, it will enable greater production of a product (large lot housing) that 

consumes large amounts of open space but does not provide housing opportunities 

for the residents of the Commonwealth who need it most.   
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Many researchers, planners, and advocates have identified more sustainable land 

use models that promote land-efficient development and the preservation of open 

space, with land use controls as the primary implementation mechanism.  A 

sophisticated approach to wastewater management will be required to enable 

compact density where it is desired and to discourage development in outlying areas.  

My research demonstrates that sanitation policies have a demonstrable influence on 

the location of residential development.  Thus the capacity of soils to treat 

wastewater might act as one organizing principle for land use plans, and on-site 

wastewater disposal policies may be a useful mechanism for their implementation.   

Many observers state that it is inappropriate to use septic regulations as 

implementation mechanisms for land use plans; they argue that the purpose of these 

policies should be limited to the protection of human health and the prevention of a 

narrowly defined set of water quality impacts.  I find that the history of sanitation 

systems in the United States demonstrates that it is conceptually and legally feasible 

to modify the institutional and technical components of sanitation systems to achieve 

broader planning and municipal goals.   

As a result of changing social priorities, political and bureaucratic institutions have 

expanded the stated purpose of sanitation policies over time.  Witness the emphasis 

on health in industrial cities; the increased focus on water quality impacts during the 

massive sewer-building phase of the 1970s; and the adoption of funding, phasing, 

and locational policies designed to promote desirable settlement patterns in more 

recent years.  These sanitary policies evolved to address a wider variety of 

development impacts as public awareness and political salience of these issues 

increased.   

A similar pattern can be found in the history of on-site disposal regulations in 

Massachusetts.  Over time, these policies have evolved to more effectively protect an 

increasingly comprehensive set of environmental resources, such as wetland ecology 

(through requirements for increased setbacks) and enclosed, nitrogen-sensitive 

embayments (through density limitations and enhanced treatment.)   

I submit that on-site wastewater disposal policies can continue to expand in scope to 

more comprehensively address the secondary impacts of development.  Research 

that clarifies the link between the use of this sanitation system and the land 

consumptive patterns it enables, with their appurtenant environmental and 
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socioeconomic impacts, will foster the development of sanitation policies with explicit 

planning objectives.   

Finally, I must note the fact that such an approach will, inevitably, challenge 

conceptions of private property rights.  So be it.  Our courts have repeatedly 

reaffirmed the right—and the duty—of communities to prevent harm through the 

control of activities that have demonstrable negative impacts on public and private 

resources.  There is a growing awareness across many segments of society that 

today’s unsustainable land use patterns are damaging our environment and 

threatening the livelihood of future generations.  This awareness justifies public 

efforts to ensure responsible development, and the imperative nature of the problem 

necessitates the use of whatever tools we have at hand, sanitation policies among 

them.   
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MASSACHUSETTS REGULATORY ENVIRONMENT 

This chapter summarizes the development of on-site disposal regulations in 

Massachusetts since the 1960s and their relevance to development decisions.  I will 

pay particular attention to requirements regarding soil and site conditions.   

1966 State Sanitary Code  

In 1966 Massachusetts adopted amendments to Article XI of the State Sanitary 

Code: Minimum Requirements for Disposal of Sanitary Sewage in Unsewered Areas.  

These regulations were enacted in response to widespread failures of septic tanks 

and cesspools constructed during first wave of suburbanization.  Enforced through 

local boards of health which had to approve issuance of all building permits to ensure 

compliance, the state code established licensing requirements for septic system 

installers and forbade the construction of a septic system if connection to a public 

sewer was feasible.  

Site Requirements 

Article XI required developers to conduct a percolation test, and prohibited 

construction in soils with percolation rates slower than 30 minutes per inch.  The 

standards also required a 4-foot vertical separation between seasonal high water 

table and the bottom of the disposal area, though this standard was reduced to 2 

feet in rapidly permeable soils (faster than 2 minutes per inch.)  This is odd because 

wastewater that moves rapidly through the soil column must travel farther to 

achieve the same level of treatment as soil that moves slowly through tighter soils.  

The code provided minimal guidance on percolation test procedures and 

determination of seasonal high water.  There was no requirement for a certain depth 

of naturally occurring pervious soil underlying the disposal area.  Thus systems could 

be constructed in fill over shallow soils.  Article XI also established setbacks from 

both constructed and natural features.  Disposal areas were prohibited within 100 

feet of a water supply well or surface water supply, and within 25 feet of 

watercourses.   

Design Standards 

It established sizing standards for infiltration area, based on percolation rate and 

design flow (a function of the number of bedrooms.)  It required a 25% increase in 

the size of the disposal area if a garbage grinder was proposed, and it also required 

evaluation and designation of a reserve area for disposal if the first system were to 
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fail.  Unlike later codes, the code identified seepage pits as the preferred design for 

on-site disposal, rather than fields or trenches.  It permitted the usage of composting 

toilets and cesspools, though the latter were discouraged.   

Implementation 

Enforcement of the 1966 code varied widely.  The factors that influenced 

implementation include: institutional and technical capacity of the municipal board of 

health, local health and water quality conditions, and the level of local concern with 

growth and development issues.  The code required property owners to maintain 

septic systems, though it did not require inspections.  

Adoption of Title 5 

Section 208 of the 1972 Clean Water Act amendments provided federal funding for 

nonpoint source pollution prevention planning.  While point sources of pollution can 

be managed through treatment at or before the point of discharge, nonpoint sources 

(which may include construction areas, agricultural fields, roads, and malfunctioning 

septic systems) are numerous and diffuse, requiring a systematic approach to 

management.  Recognizing the broad environmental impacts of on-site wastewater 

disposal, the Massachusetts legislature moved responsibility for the regulation of 

these systems from the Department of Public Health to the new Department of 

Environmental Quality Engineering [or DEP?] through the adoption of Title 5 of the 

state Environmental Code in 1975. DEQE immediately adopted, with minor 

modifications, the 1966 State Sanitary Code, and then set about developing its own 

regulations.  [Footnote: The only modification of significance to this study was a 

requirement that disposal areas be located on sites with at least 4 feet of naturally 

occurring pervious material.]   

1978 Title 5 Regulations  

In 1977 DEQE developed a new set of regulations for the management of on-site 

wastewater disposal (310 CMR 15.000.)  The purpose of these regulations was to 

“provide minimum standards for the protection of human health and the 

environment.” (emphasis added.)  [Footnote: These regulations were adopted in 

1977 and became effective January 1, 1978.  Consequently, they are sometimes 

referred to as the 1977 regulations, and sometimes as the 1978 regulations.]  The 

new regulations were considerably more sophisticated than those based on the 

sanitary code, with detailed standards for site evaluation, design, and construction.   
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Site Requirements 

The 1978 code required a more thorough site evaluation than previous regulations.  

Proponents were required to dig at least two observation holes at the site of a 

disposal area, at the “time of maximum elevation” in order to determine the height 

of seasonal high water.  Vertical separation from groundwater was required to be 

four feet in all soils.  The regulations also provided more detailed guidance on the 

methodology for a percolation test.  The 1978 code maintained the required 

separation of 100 feet between disposal areas and wells and surface water supplies, 

while increasing the required setback for watercourses from 25 to 50 feet.  It also 

established a 25 foot setback from subsurface drains.   

Design Standards 

As with previous sanitary codes, the size of the infiltration area was based on the 

permeability of the underlying soil.  The code permitted the use of leaching pits, 

galleries, and chambers, and included design standards for these facilities.  The 

slowest permissible permeability of underlying soil was 30 minutes per inch, but soils 

with percolation rates slower than 20 minutes per inch would not count towards the 

effective infiltration area if located in the “bottom area” of a trench or leaching 

chamber.  The disposal area was to be increased by 50% if a garbage grinder was 

proposed.  Systems serving multiple households were prohibited.  Reserve areas 

were prohibited.   

Implementation 

As with previous codes, local boards of health were authorized to enforce the 

regulations.  They were also permitted to grant variances from certain requirements.   

1995 Title 5 Regulations  

Roughly ten years after implementation of the 1978 regulations, the Department of 

Environmental Protection funded a report on the effectiveness of Title 5.  This report, 

prepared by the consultant DeFeo-Wait, was issued in 1991, after which DEP 

developed new regulations.   

Site Requirements 

The 1995 regulations established new requirements for siting on-site disposal 

systems.  It included more detailed procedures for the conduct of percolation tests, 
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and permitted a limited number of pilot systems to be built in soils with percolation 

rates between 31 and 60 minutes per inch.  

Recognizing the fact that travel times affect treatment effectiveness, the new 

regulations also increased the vertical separation between disposal area and 

seasonal high water from four feet to five feet in soils with a percolation rate faster 

than 2 minutes per inch.  The placement of fill was permitted if necessary to achieve 

the required vertical separation to groundwater.  Such “mounded” systems must 

have gentle side slopes (no greater than 3:1) or waterproofed, reinforced concrete 

retaining walls.  The new code also permitted use of soil indicators to determine the 

elevation of seasonal high water at any time during the year. 

DEP retained the requirement for four feet of naturally occurring pervious soil 

underlying disposal areas.  Upper, slowly permeable layers can be removed if four 

feet of suitable material exist below the depth of excavation.  If natural soil depths 

are less than four feet due to bedrock, however, fill or replacement will not permit 

construction.   

The 1995 code established new controls on wastewater disposal in Nitrogen Sensitive 

Areas, where nutrients can affect drinking water quality or cause eutrophication of 

enclosed waterbodies.  The code limits system capacity to four bedrooms per acre, 

unless the system uses enhanced nitrogen removal technology or site planning 

ensures acceptable densities.   

The new regulations also increased the required separation from disposal areas to 

natural features.  A 100-foot setback is required for vernal pools, private water 

supply wells (no change), and wetlands or surface drains contributing to a surface 

water supply.  Setbacks for surface water supplies and their tributaries were 

increased to 400 feet and 200 feet, respectively.  Systems are prohibited within the 

Zone 1 (direct recharge area) of public water supply wells.  The 1995 code also 

prohibited construction within regulatory floodways.   

Design Standards 

In a significant change, the 1995 regulations required leach field sizing based on 

Long Term Acceptance Rates, instead of soil percolation rates.  The LTAR account for 

the influence of the biomat that forms underneath the disposal area and slows 

percolation.  The new code also permitted the use of shared systems.  It also 

established procedures for the evaluation and use of alternative/innovative systems 
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(A/I systems) such as composting toilets, recirculating sand filters, effluent tee 

filters, and others.   In general, alternative systems are only permitted for general 

use in new construction on sites where a site evaluation has demonstrated the 

feasibility of a conventional septic system and disposal area. 

Implementation 

The new standards for determining the elevation of seasonal high groundwater 

require specialized technical assessment of soil features.  This procedural change 

required training and certification of soil evaluators.  The 1995 regulations 

established transition periods during which compliance with 1978 standards is 

permitted on pre-1995 lots where compliance with new standards is not feasible.  

Local Regulations 

Consistent with the strong emphasis on “home rule” in Massachusetts, Title 5 allows 

local authorities to enact regulations more stringent than state standards in order to 

protect public health and the environment in the context of local environmental or 

site conditions. Numerous communities have adopted local septic bylaws since 1978.  

At least 125 have filed local regulations with the DEP, as required by Title 5.  A 2002 

report (Barriers to Housing) identified six classes of requirements in local bylaws:  

• Procedural requirements, such as limits on the timing of percolation tests, or 
methodology for the assessment of high groundwater.  These may be 
necessitated based on site conditions, such as sandy soils that make it 
difficult to determine elevation of seasonal high water tables based on soil 
features. 

• “Oversizing” requirements, such as an automatic increase of 50% in the 
required disposal area.  These are precautionary measures in case of later 
additions or post-construction installation of garbage grinders.  

• Additional requirements for reserve areas, such as setbacks or requirements 
that the reserve area be constructed at the same time as the primary disposal 
area.   

• Stricter limits on percolation rates, which may prohibit construction in either 
rapidly or slowly permeable soils, in order to prevent pathogen transmission 
or ponding, respectively.   

• Restrictions on the construction of mounded systems or systems constructed 
in fill, or an increase in the required vertical separation between disposal 
areas and groundwater.   

• Limitations or prohibitions on the use of alternative or shared systems.   

It is important to note that there is (apparently) no systematic inventory of 

municipal septic bylaws that provides data on the prevalence of various types of local 
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restrictions.  It is impossible to ascertain whether the examples above are 

widespread or unique; and other categories of local restrictions may exist.  

Determining the content, rationale, and effectiveness of local bylaws would be a 

significant project in and of itself.  It is sufficient to note that communities have 

enacted diverse regulations that contribute to the complexity of the regulatory 

environment.   



 

  107  

 

 

 

 

 

 

APPENDIX B 

SOIL INTERPRETIVE CLASSES
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Interpretive 
Class 

Soil Map Unit 

Canton fine sandy loam, 3 to 25 % slopes 
Haven very fine sandy loam, 0 to 8 % slopes 
Hinckley gravelly sandy loam, 3 to 8 % slopes 
Hinckley loamy sand, 15 to 35 % slopes 
Hinckley sandy loam, 8 to 15 % slopes 
Merrimac fine sandy loam, 0 to 15 % slopes 
Windsor loamy sand, 0 to 15 % slopes 
Canton - Urban land complex 3 to 15 % slopes 

1 

 

Merrimac-Urban land complex 0 to 8 % slopes 
Deerfield loamy sand, 0 to 8 % slopes 
Sudbury fine sandy loam, 3 to 8 % slopes 
Udorthents, wet substratum 

2 

Woodbridge - Urban land complex 3 to 15 % slopes 
Montauk fine sandy loam, 3 to 15 % slopes 
Newport loam, 3 to 25 % slopes 

3 

Paxton fine sandy loam, 3 to 25 % slopes 
Pittstown loam, 3 to 8 % slopes 
Scio very fine sandy loam, 3 to 8 % slopes 
Scituate fine sandy loam, 3 to 8 % slopes 

4 

Woodbridge fine sandy loam, 0 to 8 % slopes 
Charlton-Hollis-Rock outcrop complex 3 to 35 % slopes 
Hollis-Rock outcrop-Charlton complex 3 to 35 % slopes 

5 

Rock outcrop-Hollis complex 3 to 35 % slopes 
Freetown muck or peat, 0 to 3 % slopes 
Ipswich muck peat 
Raynham silt loam 
Ridgebury fine sandy loam, 0 to 8 % slopes 
Scarboro and Birdsall soils 
Swansea muck 

6 

Walpole fine sandy loam 0 to 5 % slopes 
Pits, Gravel 
Pits, Quarry 

7 

Udorthents 
 

NRCS Required disclaimer:  “The Norfolk County Soil Survey geographic database 

was produced by the US Department of Agriculture NRCS and cooperating agencies.  

The soils were mapped at a scale of 1:25,000 with a 4-acre minimum size 

delineation.  Enlargement of the maps to scales greater than that at which they were 

originally mapped may cause misunderstanding of the detail of mapping.  If 

enlarged, maps do not show small areas of contrasting soil that could have been 

shown at a larger scale.  The depicted soil boundaries and interpretations derived 

from them do not eliminate the need for onsite sampling, testing, and detailed study 
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of specific sites for intensive uses.  Thus, the soil survey and interpretive tables are 

intended for planning purposes only.”



 

  111  

 

 

 

APPENDIX C 

SOIL CLASS DISTRIBUTIONS WITHIN TOWN, AVAILABLE LAND, 
AND RESIDENTIALLY ZONED LAND 
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Septic 
Interpretive 

Rating 

Town Total, 
excluding water 

 Town Total, 
excluding 

Constraints 

 Residentially-zoned 
land 1999 (developed 

and undeveloped), 
excluding constraints 

WRENTHAM acres %  acres %  acres % SZI 
1-Favorable 5165 37%  4678 45%  4163 35% 0.8 
2-High GW 411 3%  328 3%  322 3% 0.8 
3-Permeability 586 4%  468 4%  428 5% 1.2 
4-GW & Perm. 491 4%  418 4%  404 5% 1.3 
5-Bedrock 4262 31%  3018 29%  2854 36% 1.2 
7-Hydric 2105 15%  722 7%  695 9% 1.3 
8-Disturbed 875 6%  822 8%  466 7% 0.9 
  13895 100%   10456 100%   9333 100%   
          
SHARON acres %  acres %  acres % SZI 
1-Favorable 7296 49%  5576 60%  5366 60% 1.0 
2-High GW 646 4%  466 5%  453 5% 1.0 
3-Permeability 1010 7%  760 8%  751 8% 1.0 
4-GW & Perm. 882 6%  507 5%  502 6% 1.0 
5-Bedrock 1611 11%  817 9%  815 9% 1.0 
6-Floodplains 55 0%   0%   0% 1.0 
7-Hydric 3044 20%  859 9%  806 9% 1.0 
8-Disturbed 472 3%  368 4%  321 4% 0.9 
  15016 100%   9353 100%   9015 100%   
          

NORFOLK acres %  acres %  acres % SZI 
1-Favorable 4433 46%  3925 55%  3491 60% 1.1 
2-High GW 353 4%  199 3%  149 3% 0.9 
3-Permeability 372 4%  368 5%  230 4% 0.8 
4-GW & Perm. 519 5%  463 7%  394 7% 1.0 
5-Bedrock 1392 15%  1263 18%  1038 18% 1.0 
6-Floodplains 162 2%  11 0%  9 0% 1.0 
7-Hydric 1932 20%  488 7%  396 7% 1.0 
8-Disturbed 418 4%  361 5%  107 2% 0.4 
  9581 100%   7079 100%   5816 100%   
          
DOVER acres %  acres %  acres % SZI 
1-Favorable 2780 29%  1983 31%  1853 33% 1.1 
2-High GW 408 4%  243 4%  238 4% 1.1 
3-Permeability 814 8%  735 11%  734 13% 1.1 
4-GW & Perm. 1250 13%  920 14%  1531 27% 1.9 
5-Bedrock 2889 30%  2062 32%  848 15% 0.5 
6-Floodplains 70 1%  7 0%  7 0% 1.1 
7-Hydric 1448 15%  456 7%  391 7% 1.0 
8-Disturbed 56 1%  50 1%  40 1% 0.9 
  9715 100%   6456 100%   5642 100%   
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Septic 

Interpretive 
Rating 

Town Total, 
excluding water 

 Town Total, 
excluding 

Constraints 

 Residentially-zoned 
land 1999 (developed 

and undeveloped), 
excluding constraints 

FRANKLIN acres %  acres %  acres % SZI 
1-Favorable 6018 35%  5367 39%  4665 41% 1.0 
2-High GW 348 2%  263 2%  239 2% 1.1 
3-Permeability 2394 14%  2087 15%  1932 17% 1.1 
4-GW & Perm. 1894 11%  1679 12%  1157 10% 0.8 
5-Bedrock 2633 15%  2307 17%  2098 18% 1.1 
6-Floodplains 288 2%  31 0%  30 0% 1.0 
7-Hydric 2693 16%  1128 8%  926 8% 1.0 
8-Disturbed 890 5%  760 6%  416 4% 0.7 
  17159 100%   13623 100%   11462 100%   
          
WALPOLE acres %  acres %  acres % SZI 
1-Favorable 6594 50%  5702 59%  4840 60% 1.0 
2-High GW 288 2%  192 2%  157 2% 1.0 
3-Permeability 987 8%  916 9%  857 11% 1.1 
4-GW & Perm. 1032 8%  881 9%  794 10% 1.1 
5-Bedrock 433 3%  359 4%  335 4% 1.1 
6-Floodplains 37 0%  9 0%  4 0% 1.0 
7-Hydric 2900 22%  930 10%  791 10% 1.0 
8-Disturbed 857 7%  752 8%  350 4% 0.6 
  13129 100%   9740 100%   8129 100%   
          
NORFOLK acres %  acres %  acres % SZI 
1-Favorable 4575 38%  3638 49%  2783 47% 1.0 
2-High GW 903 8%  599 8%  489 8% 1.0 
3-Permeability 383 3%  295 4%  290 5% 1.2 
4-GW & Perm. 796 7%  541 7%  530.34 9% 1.2 
5-Bedrock 1437 12%  1043 14%  923 16% 1.1 
6-Floodplains 790 7%  23 0%  13 0% 1.0 
7-Hydric 2270 19%  524 7%  442.32 8% 1.1 
8-Disturbed 885 7%  799 11%  425.68 7% 0.7 
  12039 100%   7462 100%   5897 100%   
          
RANDOLPH acres %  acres %  acres % SZI 
1-Favorable 2429 39%  2080 45%  1783 45% 1.0 
2-High GW 960 15%  883 19%  818 21% 1.1 
3-Permeability 261 4%  167 4%  153 4% 1.1 
4-GW & Perm. 252 4%  122 3%  114 3% 1.1 
5-Bedrock 827 13%  624 14%  578 15% 1.1 
6-Floodplains 186 3%  16 0%  15 0% 1.0 
7-Hydric 703 11%  176 4%  164 4% 1.1 
8-Disturbed 669 11%  541 12%  310 8% 0.7 
  6288 100%   4608 100%   3936 100%   

Source: MAssGIS.  Constraints= Wetlands, Floodplains, Permanently Protected Open 
Space.  SZI=Soil Zoning Index (Proportion in residentially zoned land/proportion in 
available land)  


