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 Mechanistic Studies of Electron Transfer, Complex Formation, C–H Bond 
Activation, and Product Binding in Soluble Methane Monooxygenase 

 
by 

 
Daniel A. Kopp 

 
Submitted to the Department of Chemistry on December 16, 2002, in partial 

fulfillment of the requirements for the Degree of Doctor of Philosophy 
 
Chapter 1. Soluble Methane Monooxygenase: Activation of Dioxygen and 
Methane  

The mechanisms by which soluble methane monooxygenase uses 
dioxygen to convert methane selectively to methanol have come into sharp focus. 
Diverse techniques have clarified subtle details about each step in the reaction, 
from binding and activating dioxygen, to hydroxylation of alkanes and other 
substrates, to the electron transfer events required to complete the catalytic cycle. 
 
Chapter 2. Electron Transfer Reactions of the Reductase Component of Soluble 
Methane Monooxygenase from Methylococcus capsulatus (Bath) 

Soluble methane monooxygenase (sMMO) catalyzes the hydroxylation of 
methane by dioxygen to afford methanol and water, the first step of carbon 
assimilation in methanotrophic bacteria. This enzyme comprises three protein 
components: a hydroxylase (MMOH) that contains a dinuclear non-heme iron 
active site, a reductase (MMOR) that facilitates electron transfer from NADH to 
the diiron site of MMOH, and a coupling protein (MMOB). MMOR uses a non-
covalently bound FAD cofactor and a [2Fe-2S] cluster to mediate electron 
transfer. The gene encoding MMOR was cloned from Methylococcus capsulatus 
(Bath) and expressed in Escherichia coli in high yield. Purified recombinant 
MMOR was indistinguishable from the native protein in all aspects examined, 
including activity, mass, cofactor content, and EPR spectrum of the [2Fe-2S] 
cluster. Redox potentials for the FAD and [2Fe-2S] cofactors, determined by 
reductive titrations in the presence of indicator dyes, are FADox/sq, -176 ± 7 mV; 
FADsq/hq, -266 ± 15 mV; and [2Fe-2S]ox/red, -209 ± 14 mV. The midpoint potentials 
of MMOR are not altered by the addition of MMOH, MMOB, or both MMOH 
and MMOB. The reaction of MMOR with NADH was investigated by stopped-
flow UV-visible spectroscopy, and the kinetic and spectral properties of 
intermediates are described. The effects of pH on the redox properties of MMOR 
are described and exploited in pH jump kinetic studies to measure the rate 
constant of 130 ± 17 s-1 for electron transfer between the FAD and [2Fe-2S] 
cofactors in two-electron reduced MMOR. The thermodynamic and kinetic 
parameters determined significantly extend our understanding of the sMMO 
system. 
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Chapter 3. Structural Features of the MMOH/MMOR Complex as Revealed by 
Mass Spectrometric Analysis of Covalently Cross-linked Proteins.  

Soluble methane monooxygenase requires complexes between its three 
component proteins for efficient catalytic turnover. The hydroxylase (MMOH) 
must bind both to the reductase (MMOR) for electron transfer and to the 
regulatory protein (MMOB) to allow reaction with substrates. Although 
structures of MMOH, MMOB, and one domain of MMOR have been determined, 
little is known about structures of the complexes. Proteins cross-linked by a 
carbodiimide reagent were analyzed by specific proteolysis and capillary HPLC-
mass spectrometry. Tandem mass spectra conclusively identified two amine-to-
carboxylate cross-linked sites involving the alpha subunit of MMOH and the 
[2Fe-2S] domain of MMOR (MMOR-Fd). The amino terminus of the MMOH 
alpha subunit cross-links to the side chains of MMOR-Fd residues Glu56 and 
Glu91. These Glu residues are close to one another on the surface of MMOR-Fd 
and far from the [2Fe-2S] cluster. The amino terminus of the alpha subunit of 
MMOH is disordered in the crystal structure of MMOH, precluding a detailed 
structural model of the complex based on the cross-link. A proposed binding site 
for MMOR on MMOH can be ruled out, however. The MMOR Glu56Gln 
Glu91Gln double mutant retains >80% of its NADH oxidase activity, yet limits 
maximal sMMO activity to ~65% of the level supported by wild type MMOR. 
The double mutatation diminished but does not abolish cross-linking to MMOH, 
indicating that other residues of MMOR also form cross-links to MMOH. 

 
Chapter 4. Cationic Species Can Be Produced in Soluble Methane 
Monooxygenase-Catalyzed Hydroxylation Reactions; Radical Intermediates 
Are Not Formed 

Reactions of methylcubane (1) with cytochrome P450 enzymes and with a 
methane monooxygenase (MMO) system have been studied.  Oxidation of 1 by 
P450 isoenzymes (2B1, ∆2B4, ∆2B4 T302A, ∆2E1, ∆2E1 T303A) gave 
cubylmethanol (2), 2-, 3-, and 4-methylcubanols (3), and 1-homocubanol (4) with 
different regioselectivities.  The soluble methane monooxygenase (MMO) 
systems from M. capsulatus (Bath) and M. trichosporium OB3b hydroxylated 1 at 
all available positions in the ratio 2:3:5 (2, 3, 4 respectively).  Product 4, the major 
product, derived from a cationic rearrangement of the cubylmethyl system was 
identified by comparison to an authentic sample.  These results suggest that the 
formation of cationic rearrangement products from both enzymic systems may 
derive from a solvolysis-type reaction such as first-formed protonated 
cubylmethanol by the insertion of the elements of OH+.  The implication of a 
cationic component also supports some mechanistic similarities between P450 
and MMO hydroxylation reactions. 
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Chapter 5. Evaluation of Norcarane as a Probe for Radicals in Cytochome P450- 
and Soluble Methane Monooxygenase-Catalyzed Hydroxylation Reactions  

Norcarane was employed as a mechanistic probe in oxidations catalyzed 
by hepatic cytochome P450 enzymes and by the soluble methane 
monooxygenase (sMMO) enzyme from Methylococcus capsulatus (Bath). In all 
cases, the major oxidation products (>75%) were endo- and exo-2-norcaranol. 
Small amounts of 3-norcaranols, 2-norcaranone, and 3-norcaranone also formed. 
In addition, the rearrangement products (2-cyclohexenyl)methanol and 3-
cycloheptenol were detected in the reactions, the former possibly arising from a 
radical intermediate and the latter ascribed to a cationic intermediate. The 
formation of the cation-derived rearrangement product is consistent with one or 
more reaction pathways and is in accord with the results of previous probe 
studies with the same enzymes. The appearance of the putative radical-derived 
rearrangement product is in conflict with other mechanistic probe results with 
the same enzymes. The unique implication of a discrete radical intermediate in 
hydroxylations of norcarane may be the consequence of a minor reaction 
pathway for the enzymes that is not manifest in reactions with other probes. 
Alternatively, it might reflect a previously unappreciated reactivity of norcaranyl 
cationic intermediates, which can convert to (2-cyclohexenyl)methanol. We 
conclude that generalizations regarding the intermediacy of radicals in P450 and 
sMMO enzyme-catalyzed hydroxylations based on the norcarane results should 
be considered hypothetical until the origin of the unanticipated results can be 
determined. 
 
Chapter 6. Product Binding to the Diiron(III) and Mixed-Valence Diiron 
Centers of Methane Monooxygenase Hydroxylase Studied by 1,2H and 19F 
ENDOR Spectroscopy 

The binding of ethanol and 1,1,1-trifluoroethanol (TFE) to both the Hmv 
and Hox forms of soluble methane monooxygenase (sMMO) in solution has been 
studied by Q-band (35 GHz) CW and pulsed ENDOR spectroscopy of 1H, 2H and 
19F nuclei of exogenous ligands. As part of this investigation we introduce 19F, in 
this case from bound TFE, as a new probe for the binding of small molecules to a 
metalloenzyme active site. The Hmv form was prepared in solution by chemical 
reduction of Hox. For study of Hox itself, frozen solutions were subjected to γ-
irradiation in the frozen solution state at 77 K, which affords an EPR-visible 
mixed-valent diiron center, denoted (Hox)mv, held in the geometry of the 
diiron(III) state. The 19F and 2H ENDOR spectra of bound TFE together with 1,2H 
ENDOR spectra of bound ethanol indicate that the alcohols bind close to the 
Fe(II) ion of the mixed-valence cluster in Hmv and in a bridging or semi-bridging 
fashion to Hox. DMSO does not affect the binding of either of the ethanols or of 
methanol to Hox, nor of ethanol or methanol to Hmv. It does, however, displace 
TFE from the diiron site in Hmv. These results provide the first evidence that 
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crystal structures of sMMO hydroxylase into which product alcohols were 
introduced by diffusion represent the structures in solution. 
 
Thesis Supervisor: Stephen J. Lippard 
Title: Arthur Amos Noyes Professor of Chemistry 
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Introduction1,2 

It looks so simple on paper. The conversion of methane to methanol 

(Equation 1) appears to be a straightforward reaction: 

     CH4 + ½O2 → CH3OH          (1) 

In practice, however, it is very difficult to prevent the reaction of methane 

with dioxygen from proceeding rather vigorously or even explosively to afford 

carbon dioxide and water, as happens with a gas stove. Although reagents have 

been developed that can convert methane to a methanol derivative in good yield, 

even using dioxygen as oxidant, most catalysts that activate alkanes still suffer 

serious drawbacks such as the requirement of high pressures and temperatures.3 

On the other hand, nature's own catalyst, methane monooxygenase (MMO), op-

erates in neutral aqueous solution at moderate temperatures and atmospheric 

pressure. The selective conversion to methanol is achieved by reductive activa-

tion of dioxygen, as illustrated in Equation 2: 

CH4 + O2 + NADH + H+ → CH3OH + H2O + NAD+        (2) 

MMOs occur in bacteria that obtain all the energy and carbon needed for 

life from methane. MMO carries out the first step of carbon metabolism by such 

organisms, conversion of methane to methanol. The methanol is further oxidized 

by a dehydrogenase to formaldehyde, which can either be incorporated into 

biomass or oxidized to CO2 to provide energy for the cell.4 Two varieties of 

MMO have been discovered in methanotrophic bacteria. The first is a copper-

containing, membrane-bound enzyme known as pMMO, for particulate MMO.5 
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A soluble, iron-containing MMO (sMMO) has been characterized more thor-

oughly and is the focus of this chapter.6,7 In particular, sMMOs from the species 

Methylosinus trichosporium OB3b and Methylococcus capsulatus (Bath), referred to 

hereafter as Mt and Mc, respectively, have been studied extensively. 

The sMMO system requires three proteins to achieve catalysis (Figure 1.1). 

The active site (Figure 1.2) for dioxygen activation and methane hydroxylation is 

located within a four-helix bundle in the α subunits of the α2β2γ2 hydroxylase 

(MMOH). The catalytic cycle shown in Figure 1.3 illustrates the roles of the three 

proteins. In the presence of the regulatory protein MMOB, MMOHred binds and 

reductively activates dioxygen, proceeding through putative superoxo and per-

oxo intermediates before converting it to the strongly oxidizing MMOHQ inter-

mediate. MMOHQ is the species that hydroxylates methane, leaving MMOH in 

the resting diiron(III) form called MMOHox. The iron-sulfur flavoprotein MMOR 

uses two electrons derived from NADH to return MMOHox to its reduced state, 

completing the catalytic cycle. 

Although the gross features have been understood for some time, recent 

experiments have uncovered increasingly subtle aspects of the sMMO mecha-

nism. The earliest steps of dioxygen activation are being elucidated, and probe 

substrates continue to provide information on the nature of the C–H bond activa-

tion step. Site-directed mutagenesis has suggested how MMOB might alter the 

behavior of MMOH. Other features of the sMMO system are coming under scru-

tiny. Included are aspects of electron transfer, binding of substrate analogues and 
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products to the active site, the nature of binding interactions between the protein 

components, and the existence of a fourth protein (MMOD) that interacts with 

MMOH. The function of MMOD remains to be determined. 

 

Dioxygen activation 

As is the case for cytochrome P450 enzymes (P450s), the ability of sMMO 

to hydroxylate unactivated hydrocarbon substrates derives from a high-valent 

iron(IV) intermediate. Consequently, much effort has been devoted to under-

standing the nature of this intermediate and how it is formed. The following sec-

tions detail the early part of the catalytic cycle, in which the MMOHred/2MMOB 

complex reacts with dioxygen to produce intermediates capable of hydroxylating 

a variety of substrates. 

 

Early Steps of Dioxygen Activation: Conversion of MMOHred to 

MMOHperoxo. The existence of a Michaelis complex between dioxygen and 

MMOHred was inferred from the lack of an O2 concentration dependence on the 

kinetics of disappearance of the characteristic g = 16 EPR signal of MMOHred,8 

depicted as O2∙MMOHred in Figure 1.3. Although MMOHperoxo is the first spectro-

scopically observable intermediate that occurs after mixing of 

MMOHred/2MMOB with dioxygen, conversion of O2∙MMOHred to MMOHsuperoxo 

is supported by three lines of evidence. Results from both density functional the-

ory (DFT) and 18O isotope effect studies point to the existence of a superoxo 
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complex occurring before formation of MMOHperoxo.9,10 The 18(V/K) values of 

1.0167 ± 0.0010 (no substrate) and 1.0152 ± 0.0007 (acetonitrile) are consistent 

with a reduction in O–O bond order of 0.5, as would be expected for a one-

electron reduction of dioxygen with concomitant iron binding.11 DFT calcula-

tions revealed a Fe(II)Fe(III)(O2-) species of intermediate energy between 

MMOHred and MMOHperoxo.9 Characteristic Mössbauer and optical spectroscopic 

features identify the MMOHperoxo intermediate, which occurs after mixing of 

MMOHred/2MMOB with dioxygen.12 Stopped-flow kinetic experiments with Mt 

MMOH also indicate that a species forms after O2∙MMOHred but before MMOH-

peroxo.13,14 

Conversion of MMOHsuperoxo to MMOHperoxo has been reported to have a 

significant pH dependence for Mt sMMO. A pKa of 7.6 was determined for a 

functional group relevant to this process, with a rate constant approaching zero 

at pH 8.6.14 No such effect has been observed with Mc sMMO, however.12 Muta-

tion of a conserved histidine to alanine in the N-terminal region of MMOB 

(His33Ala of Mt MMOB) leads to a >50-fold decrease in the rate constant for 

formation of MMOHperoxo, while having only a small effect on steady-state activ-

ity.15 This effect was assigned to the step in which MMOHperoxo is formed from 

its immediate precursor, not a prior event such as binding of dioxygen to 

MMOHred. 

Conversion of MMOHperoxo to MMOHQ. The formation of MMOHQ is re-

tarded at high pH for Mt MMOH, like formation of MMOHperoxo. A functional 
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group involved in this process also had a pKa of 7.6. Proton inventory plots de-

rived from kinetic solvent isotope effect studies indicate that a single proton is 

involved in each step.13 A histidine to alanine site-directed mutant (Mt MMOB 

His5Ala) had a decreased rate constant for formation of MMOHQ.15 On the other 

hand, both DFT9,16 and experimental12 data for Mc MMOH indicate that 

MMOHperoxo can convert to MMOHQ in a proton-independent manner. This con-

version traverses an (η2,η2)peroxodiiron(III) species that homolyzes to form the 

di(µ-oxo)diiron(IV) unit in MMOHQ. 

 

C–H Bond Activation 

The ability of sMMO to hydroxylate unactivated C–H bonds has led to 

many comparisons with cytochrome P450. In particular, it has been assumed that 

sMMO operates analogously to the radical rebound mechanism proposed for 

P450.17 Compared with the large number of P450s described, sMMO is unique in 

its ability to hydroxylate the simplest and least reactive of saturated hydrocar-

bons, methane. Recent studies aimed at understanding the C–H activation chem-

istry of sMMO are described in this section. 

Alkane Substrates. The discovery of non-linear Eyring or Arrhenius plots 

for the reaction of MMOHQ with methane14,18 was a major surprise. Other steps 

in the catalytic cycle including formation of MMOHperoxo and its conversion to 

MMOHQ do not show such non-linear temperature-dependent behavior. A 

change in the rate-determining step as a function of temperature has been as-
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signed as the cause of the non-linear effect.14,18 In a recent sequential mixing ex-

periment in which MMOHQ is allowed to accumulate before addition of meth-

ane, the non-linear effect is abrogated (Ambundo EA and Lippard SJ, unpub-

lished observations), conflicting with an earlier report.14 The Arrhenius plot de-

rived from sequential mixing data reported14 are, in our hands, equally well re-

produced by linear and non-linear fits (Ambundo EA and Lippard SJ, unpub-

lished observations). The measured activation energies also provide a means to 

evaluate the validity of theoretical calculations of sMMO-catalyzed alkane hy-

droxylation (see below). 

The effect of an MMOB variant containing four point mutations (MMOB-

quad)15 on single turnover reactions revealed no changes in kinetic properties of 

MMOHperoxo or MMOHQ formation, but there was a significant increase in the 

rate constant of MMOHQ decay in the presence of furan or nitrobenzene. Steady-

state turnover for these substrates is also accelerated compared with that for 

wild-type MMOB. When methane is the substrate, the MMOBquad mutant re-

duces the rate constant for MMOHQ decay. It was proposed that MMOBquad fa-

cilitates access of the larger substrates to the MMOH active site.15 

Kinetic Isotope Effects. The reaction of MMOHQ with methane shows a 

remarkable kinetic isotope effect (KIE) of 23 or more when comparing CH4 to 

CD4.18-20 This value greatly exceeds the maximum KIE of 7 for a classical, pri-

mary 1H/2H isotope effect. A combination of primary and secondary isotope ef-

fects may contribute to this value. Hydrogen tunneling has also been suggested 
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as a reason for the large magnitude of the KIE for methane. A combination of ki-

netic and thermodynamic isotope effects is yet another possibility. 

In view of the large value of the KIE for methane, the result obtained 

when ethane is investigated is even more remarkable. The kH/kD for reaction of 

C2H6 vs. C2D6 with MMOHQ is exactly 1.20,21 This result clearly indicates that the 

rate-limiting step for ethane hydroxylation does not involve C–H bond breaking, 

in sharp contrast to the corresponding methane reaction.  

An isotope effect of 2 for ethane is observed, however, when the MMOB-

quad mutant is substituted for wild type MMOB.21 The KIE for ethane reflects a 

twofold increase in the rate constant for decay of MMOHQ. Under the same con-

ditions, the rate constant for decay of MMOHQ decreases sevenfold when meth-

ane is the substrate, such that the kH/kD is 6 for MMOBquad. Rate constants for re-

action with the deuterated alkanes were unchanged when the MMOB mutant 

was used. 

The KIE results were interpreted in terms of the model depicted in eq 3: 

Q + S QS products
ksb kCH

          (3) 

In the case of methane, kCH is rate determining, and so decay of MMOHQ dis-

plays an isotope effect. For ethane, substrate binding (ksb) must be rate determin-

ing to explain the lack of an isotope effect. It was proposed that MMOH can dis-

criminate between the two hydrocarbons by virtue of their size. The absence of 

any isotope effect for propane (C3H8 vs. C3D8) is consistent with this interpreta-
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tion.21 Additional evidence for a substrate-binding step occurring before C–H 

bond activation comes from the observation that the rate constant for decay of 

MMOHQ can be saturated at high concentrations of the substrates nitromethane 

and acetonitrile.20 

Alteration of the kinetic rate constants by use of MMOBquad was proposed 

to diminish the size discrimination effect, increasing ksb for ethane such that kCH 

becomes at least partially rate-limiting, revealing an isotope effect. The decreased 

value of kCH for methane with the MMOB mutant was postulated to be a conse-

quence of changes in MMOH protein dynamics, removing any tunneling contri-

butions from the C–H bond activation step. The resulting measured kH/kD value 

of 6 is consistent with classical transition state theory.21 The suggested ability of 

the MMOH active site to discriminate between methane and ethane based upon 

size seems somewhat remarkable, especially in view of its ability to hydroxylate 

bulky substrates, such as octane,22 adamantane23 and methylcubane.24-26  

A somewhat different interpretation of these effects is suggested by stud-

ies with substituted methanes CH3X, where X = CN, NO2 and OH.20 This alterna-

tive model also explains why a substrate such as acetonitrile has a much lower 

rate constant for reaction with MMOHQ than does methane or ethane, despite 

having a significantly weaker (~10 kcal mol-1) C–H bond. Based on the size dis-

crimination argument, acetonitrile should not display a KIE, because it is similar 

to ethane. The KIE for acetonitrile was determined to be 46, indicating that kCH is 

rate-limiting for this substrate.20 The rate-limiting step for any particular sub-
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strate, ksb or kCH, depends on both the C–H bond energy and the energy required 

to translocate the solvated substrate into the hydrophobic cavity at the active 

site.27 Ethane lacks a KIE because its C–H bond energy is sufficiently low to drop 

the value of kCH below that of ksb. Desolvation of polar substrates like acetonitrile 

is unfavorable, increasing the total activation energy, thus reducing the rate con-

stant for MMOHQ decay. 

Probe Substrates. A new catalytic reaction, desaturation of alkanes to af-

ford olefins, was added to the list of known activities of sMMO.28,29 Oxidation of 

ethylbenzene afforded a mixture of phenylethanol, ethylphenol, styrene and sty-

rene epoxide. Styrene is the desaturation product, and styrene epoxide is the 

consequence of further oxidation of styrene. Cyclohexadienes were converted to 

mixtures of epoxides, alcohols and benzene. No desaturation products were de-

tected in oxidations of ethane, ethylene, or cyclohexane. The desaturation prod-

ucts are thought to arise by loss of H+ from a cationic intermediate, which could 

form by one-electron oxidation of a radical precursor,29 or by loss of water from 

a protonated alcohol.26 Substrates that yielded desaturated products all contain 

an activated C–H bond, such that any radical or cation that might lie on the reac-

tion coordinate would be stabilized by conjugation to a benzylic or allylic π sys-

tem.29 

Substrates that can undergo rearrangements of their carbon skeleton to in-

form on the mechanism of activation continue to be used in the study of sMMO. 

Early work suggested the involvement of cationic and radical species,30 but later 
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experiments were inconsistent with long-lived radical intermediates.31-33 Sub-

strates that can distinguish between radical and cationic mechanisms, such as 

methylcubane24-26 and norcarane, have been the subjects of recent attention.34,35 

The reaction of sMMO with methylcyclopropanes36 was reinvestigated in 

experiments in which 1,1,2,2-tetramethylcyclopropane and 1,1-dimethylcyclo-

propane, both of which are hydroxylated α to a quaternary carbon, yielded rear-

ranged products. Methylcyclopropanes lacking a quaternary carbon, such as cis- 

and trans-1,2-dimethylcyclopropane and trans-2-phenylmethylcyclopropane, did 

not afford rearranged products. The failure to observe rearrangements of prod-

ucts deriving from the phenylmethylcyclopropane radical is surprising in view 

of its fast ring-opening chemistry, which is three orders of magnitude greater 

than the corresponding radicals of the methylcyclopropanes.35 It was suggested 

that steric factors cause bulky substrates to react via a radical intermediate, 

whereas less hindered substrates may approach the activated oxygen atom of 

MMOHQ more closely, allowing the hydroxylation to proceed too quickly for 

carbon skeletal rearrangement. It could be interesting to see whether the MMOB-

quad mutant, proposed to increase access of large substrates to the active site,15 

would alter the relative yield of rearranged products from such cyclopropanes. 

Norcarane (1) is one of several probe substrates that can undergo different 

rearrangements depending on the mechanism of C–H bond activation (Figure 

1.4).24,29,34,35 The major products of norcarane oxidation are the two di-

astereomers of 2-norcaranol, accounting for ~80% of the products; only small 
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amounts of the radical- and cation-derived products were observed. Because the 

norcaran-2-yl radical (2) has a comparatively slow rate constant for rearrange-

ment,37,38 even the small amount of cyclohexenylmethanol (3) observed indicates 

a relatively long lifetime for the radical intermediate, on the order of 20–150 

ps.34,35 

At first glance, the results suggest that both radical and cationic species 

are involved in the formation of products from norcarane. Yet the broader pic-

ture is confusing. Considering the several probe substrates that have been ap-

plied to investigate sMMO hydroxylation chemistry, there is no clear correlation 

between yield of rearranged product and the rearrangement rate constant.34,35 In 

the case of Mc sMMO, norcarane is the only probe substrate to provide evidence 

for a radical intermediate with a significant (> 1 ps) lifetime, despite having a re-

arrangement rate constant 2–3 orders of magnitude slower than probes that do 

not rearrange.33,39 Further complicating the norcarane analysis, cationic species 4 

rearranges to give mostly 3-cycloheptenol (5), but also some of the ‘radical-

derived’ product 3.40 The formation of a ‘radical-derived’ product from a cationic 

reaction manifold was not considered in the analysis of norcarane hydroxylation 

results from Mt sMMO.34 

The conclusion from the probe substrate work is that different substrates 

are almost certainly hydroxylated by different mechanisms. For instance, propyl-

ene is converted to its epoxide whereas propane is converted to an alcohol.22 

New information is making it clear that a single substrate, such as norcarane, 
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may react by different mechanisms. Clues to this behavior were available in ear-

lier studies. cis-2-Butene is oxidized to afford a ~1:1 mixture of the epoxide and 

alcohol.23 High-level theoretical calculations find that methane and ethane parti-

tion between concerted and bound-radical pathways upon reaction with 

MMOHQ (see below). 

Theoretical Investigations of Alkane Hydroxylation by MMOHQ. Quan-

tum chemical investigations are of increasing importance for achieving mecha-

nistic understanding of metalloenzymes, and sMMO is no exception.41,42 Several 

theoretical studies concur that methane hydroxylation by MMOHQ begins with a 

nearly linear approach of a C–H bond to a bridging oxo group of the di(µ-

oxo)diiron(IV) core in this intermediate.42-44 The transition state found for this 

geometry features a nearly linear O–H–C arrangement with the O–H distance 

slightly shorter (0.02–0.06 Å) than the C–H distance, the C∙ ∙ ∙O distance being 

about 2.5 Å. 

Calculations based on a model of the sMMO active site consisting of two 

iron atoms ligated by formates, imidazoles and solvent-derived ligands, were 

used to create models of the various species in the catalytic cycle.16 Using this 

model, activation of methane was found to proceed by conversion of MMOHQ 

from a diiron(IV) singlet to an Fe(III)Fe(IV)O• state. The oxygen radical form of 

MMOHQ can abstract a hydrogen atom from CH4 through the linear transition 

state described above. The reaction then proceeds by a radical recoil/rebound 
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mechanism, where a methyl radical first recoils away from the oxo group of 

MMOHQ, then rebounds to form the new C–O bond of the product. 

In another study that used a large (~100 atom) model of the sMMO active 

site,9 two alternative pathways from transition state to product were identified.44 

The first resembles a radical recoil/rebound mechanism. The second pathway 

features a non-linear O–H–C geometry; the H atom rotates up out of the O–C 

axis and the C–O distance contracts to form the new bond. 

This latter work was extended by applying molecular dynamics to probe 

the partitioning of alkane substrates between these two reaction channels.45 Eth-

ane was chosen as the substrate to determine whether the calculations could re-

produce and explain a well-known result. Oxidation of chiral ethane, CH3CHDT, 

by sMMO gave the surprising result of partial (72%) retention and 28% inversion 

of stereochemistry.31,32 A radical mechanism would be expected to give com-

plete scrambling and afford a racemic mixture of products; a fully concerted 

mechanism would be expected to yield products of a single configuration. 

The theoretical result (69–84% retention of configuration) matches the ex-

perimental number closely, validating the approach and providing a framework 

for understanding the chiral ethane result. Depending on whether or not tunnel-

ing effects are included in the calculations, 12–16.5% of the products are formed 

from the concerted reaction channel. The remaining products derive from a 

bound radical, with a mean lifetime of 320–400 fs. This lifetime agrees with the 

majority of the probe substrate results, with some notable exceptions.33-35 
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Similar studies could shed light on the behavior of the larger probe sub-

strates such as norcarane. For instance, a series of transition states for activation 

of methylcyclopropane has been computed. Like methane, a linear C–H–O ge-

ometry was found for the H atom abstraction transition state. In contrast to 

methane, the transition state for the rebound step featured little spin density and 

high charge on the methyl carbon, indicating considerable cationic character.16 

 

Other sMMO Research Frontiers 

In addition to the mechanistic studies that focused on the reactivity of the 

diiron site, other aspects of sMMO are actively being investigated. Structural 

studies continue to describe the various redox states and complexes with prod-

ucts and substrate analogues of the hydroxylase.27,46,47 Advanced EPR method-

ologies have measured the interaction of products and product analogues with 

the diiron site in the solution phase, complementing and supporting the results 

obtained from X-ray crystallography.48 Calculations are also being extended to 

include effects of the protein environment.49-51 Component interactions have 

been investigated by covalent modification of positively charged residues on 

MMOH, interfering with protein complex formation, but not with hydrogen-

peroxide-mediated catalysis.52 

The interaction of MMOB with MMOH has been probed by extending the 

NMR studies carried out in pursuit of the MMOB solution structure.53,54 The 

binding surface of MMOB has been described by examination of the location of 
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those residues that have the greatest line broadening upon formation of an 

MMOH/MMOB complex.53,55 Target residues for site-directed mutagenesis 

were selected on the basis of such information, and some of the effects of those 

mutations were described above.15,21 Mutants with successive deletions from the 

N-terminus of Mc MMOB have pinpointed the region Ser4–Tyr7 as critical for 

full sMMO activity and MMOB autocatalytic degradation,56 complementing the 

Mt MMOB mutation studies.15 

The diiron center of MMOH is ~15 Å from a spin-label positioned on the 

native Cys89 of Mc MMOB, as determined in a saturation recovery EPR study.57 

This distance constrains MMOB to bind in the canyon region of MMOH. MMOB 

most likely contacts a single helix, E or F, of the α subunit that contains iron-

ligating Glu residues. 

The solution structure of the [2Fe–2S] domain of MMOR has been 

solved,58 and that of the C-terminal domains including the FAD and NAD(H) 

binding sites is underway. These structures will allow detailed analysis of the 

electron-transfer and redox properties of MMOR, which have recently been 

scrutinized.59 

Crystallization of an MMOH/MMOB complex, as was recently reported, 

could provide an atomic resolution structure of the MMOHred active site as it ex-

ists in a complex with MMOB.60 Such a structure might illuminate the changes in 

the active site that allow productive reaction with dioxygen. 
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Development of techniques for recombinant expression of MMOH raises 

the possibility of mechanistic studies on site-directed mutants of MMOH.61,62 

Very recently, expression and purification of site-directed mutants of MMOH has 

been achieved.63,64 Alterations in the vicinity of the active site of the α subunit 

could not only reveal the roles of individual residues, but also provide new tools 

for understanding the chemistry of the active site, as has occurred in the P450 

field.65,66  

A fourth protein, MMOD, has been identified in Mc cells expressing the 

sMMO proteins. The ‘extra’ gene in the mmo operon, orfY, that encodes MMOD 

was previously thought not to be expressed in vivo.5 Addition of recombinant 

MMOD inhibits sMMO activity in vitro and alters the spectroscopic properties of 

the diiron centre of MMOH.67 The functional role of this protein in vivo remains 

obscure, and for this reason MMOD is certain to be the subject of further scru-

tiny. 

 

Conclusion 

The sMMO system represents a paradigm for dioxygen activation by non-

heme diiron proteins. It also represents one extreme of reactivity in this class. 

Diiron sites in biology achieve a variety of reactions ranging from O2 transport in 

hemerythrin, to desaturation of alkyl chains in stearoyl-ACP 9 desaturase, one-

electron oxidation of tyrosine in the R2 protein of ribonucleotide reductase, and 

hydrocarbon hydroxylation by MMO.68 
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A broad arsenal of techniques has been applied to study the mechanism of 

sMMO. Kinetic and spectroscopic methods, site-directed mutagenesis, isotope 

effect experiments, use of probe substrates, X-ray, NMR and EPR structural 

methods, and quantum mechanics have all made important contributions to our 

knowledge about sMMO. The future holds the promise of an even more intimate 

understanding, as results of structural studies of protein complexes, further cal-

culational work, and advances in the molecular biology of sMMO become avail-

able. 
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Figure 1.1. Protein components of sMMO Mc. (A) X-ray crystal structure of 

MMOH.69 The α subunit is colored red, the β subunit blue, and the γ subunit 

green. Iron atoms are shown as purple spheres. (B) Solution structure of MMOB. 

Flexible regions of N- and C- termini are not shown.53 (C) Structure of MMOR. 

The solution structure of the [2Fe-2S] domain of MMOR,58 is shown with a car-

toon representing the FAD and NAD(H) binding domains. The Fe and S atoms of 

the [2Fe-2S] cluster are shown as purple and yellow spheres, respectively. The 

structures of MMOH and MMOB from Mt have also been solved.54,70 Figures 

prepared from PDB coordinates using MOLMOL.71 

A. 

B. C. 
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A. 

 

B.  

 

Figure 1.2. Active site structures of (A) MMOHox and (B) MMOHred.69 Colors: 

grey, carbon; red, oxygen; blue, nitrogen; orange, iron. 
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Chapter Two:  

 

Electron Transfer Reactions of the Reductase Component of Soluble Methane 

Monooxygenase from Methylococcus capsulatus (Bath) 
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Introduction1,2 

 Methanotrophic bacteria use methane as their sole source of carbon and 

energy. These organisms are of interest for their role in regulating atmospheric 

concentrations of methane, a potent greenhouse gas,3 and for environmental bio-

remediation applications.4,5 Chemists are intrigued by the ability of methano-

trophs to oxidize methane selectively to methanol in buffered aqueous solution, 

using dioxygen as the oxidant at ambient pressure and temperature. Methane 

monooxygenase, the enzyme system that catalyzes this remarkable transforma-

tion, has been scrutinized for over two decades.6-10  

 Two classes of MMO have been identified, a copper-containing, mem-

brane-bound (particulate) form referred to as pMMO11 and a soluble form, 

sMMO, that contains non-heme iron. The sMMO from Methylococcus capsulatus 

(Bath) uses three proteins to carry out the reaction in eq. 1. MMOH is a 251 kDa 

  CH4 + O2 + NADH + H+ → CH3OH + NAD+ + H2O         (1) 

multimeric hydroxylase that houses a carboxylate-bridged diiron active site in 

each of its two α subunits. Reducing equivalents are delivered to the active sites 

of MMOH by MMOR, a 38.5 kDa protein with FAD and [2Fe-2S] cofactors. A 

15.9 kDa coupling protein termed MMOB serves to couple oxidation of NADH to 

methane hydroxylation.9,10,12 

The catalytic cycle of sMMO is illustrated in Figure 2.1. A complex of the 

reduced, diiron(II) MMOH and MMOB reacts with dioxygen, proceeding 

through a series of spectroscopically characterized, transient intermediates.13,14 
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A diiron(IV) species is believed to be responsible for the hydroxylation of meth-

ane.13,15 In the final stages of the reaction cycle, the diiron(III) centers of MMOH 

are reduced by intermolecular electron transfer from MMOR, and methanol is 

discharged from the active site. The methane and dioxygen activation steps of 

the sMMO reaction have been extensively studied, but until now the electron 

transfer reactions required for catalysis have received little attention.  

 MMOR has been grouped with other electron transfer proteins, including 

Fd and FNR, PDR, E3, nitrate reductase, cytochrome b5 reductase, and cyto-

chrome P450 reductase, on the basis of function and sequence homology.16,17 

Other bacterial mono- and dioxygenases have related systems, including alkene 

monooxygenase and phenol hydroxylase.18-21 These proteins all use a flavin to 

convert reducing equivalents between the two-electron currency of NAD(P)H 

and the single-electron units required by metal centers.  

 This chapter reports thermodynamic and kinetic investigations of the in-

teraction of MMOR with NADH. The distribution of electrons between FAD and 

[2Fe-2S] cofactors in MMOR2e- was also examined, as was the effect of pH on this 

distribution. The redox potentials of the MMOR cofactors were determined rela-

tive to one another as a function of pH. By pH jump methodology, we deter-

mined the rate constant for electron transfer between the FAD and [2Fe-2S] cofac-

tors, providing the first direct measurement of an isolated electron transfer step 

in the sMMO reaction cycle. The results of these studies are described herein. 
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Materials and Methods 

 Materials and General Methods. Taq DNA polymerase was obtained 

from Gibco BRL (Gaithersburg, MD), restriction enzymes EcoRI and HindIII from 

New England Biolabs (Beverly, MA), plasmid pKK223-3 from Amersham Phar-

macia Biotech, (Piscataway, NJ), and alkaline phosphatase from Boehringer 

Mannheim (Indianapolis, IN).  

The FAD content of MMOR was determined by boiling a sample of the 

protein for 3 min, centrifuging for 5 min at 10,000g to pellet the denatured pro-

tein, and measuring the optical spectrum of the supernatant using ε450FAD = 

11,300 M-1 cm-1. Iron determinations were made by the ferrozine method.22,23 

EPR spectra were recorded with a Bruker EMX spectrometer fitted with an Ox-

ford ESR 900 liquid helium cryostat. UV-visible spectra were obtained with an 

HP 8453 diode array spectrophotometer.  

Expression and Purification of Recombinant MMOR. The expression 

plasmid pRED-K22 was transformed into E. coli JM105 cells. Cells were grown to 

saturation at 37 °C and with 200 rpm shaking in 100 mL of LB-Ap (100 µg/mL) 

medium. The saturated culture was diluted 100-fold into six 1 L quantities of LB-

Ap (100 µg/mL). When the culture reached an OD600 of 0.4, 1.0 mL of a freshly 

prepared and filter-sterilized 100 mM solution of Fe(NH4)2(SO4)2⋅6H2O was 

added to each liter of medium. MMOR expression was induced at OD600 of 0.6 by 

adding IPTG to a final concentration of 1 mM. Expression was continued for an 

additional 3.5 h before the cells were harvested. The cells were disrupted by 
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sonication, and insoluble debris was removed by centrifugation at 100,000g for 35 

min. After passage through 0.2 µm membranes, the soluble fraction was applied 

to a DEAE-Sepharose CL6B (Amersham Pharmacia) column (2.6 × 15 cm) equili-

brated in buffer A (20 mM Tris, pH 7.0, 8 mM sodium thioglycolate, and 50 mM 

NaCl). Proteins were eluted with an 800 mL gradient of buffer A to buffer B (20 

mM Tris, pH 7.0, 8 mM sodium thioglycolate, and 500 mM NaCl). MMOR eluted 

at approximately 380 mM NaCl. Fractions containing MMOR, as determined by 

their optical spectra and SDS-PAGE analysis, were pooled and concentrated by 

ultrafiltration. Further purification was carried out by affinity chromatography 

on a 5’-AMP Sepharose (Sigma) column (2.6 × 11 cm). After applying MMOR to 

this column, contaminating proteins were washed off with 100 mL of buffer A. 

Most of this fraction (~80-90%) consisted of MMOR lacking FAD but containing 

an intact [2Fe-2S] cluster. Elution with buffer B containing 1 mM NADH afforded 

> 95% pure MMOR, as judged by SDS-PAGE, containing both FAD and [2Fe-2S] 

cofactors. Pure protein was exchanged into 25 mM MOPS, pH 7.0, 1 mM DTT 

buffer with a Biogel P6 desalting column. A typical preparation yielded 15 mg of 

pure MMOR per L of starting E. coli culture. Samples for mass spectrometry were 

prepared as previously reported.24 

Redox Potential Determination. The midpoint potentials of the FADox/sq, 

FADsq/hq, and [2Fe-2S]ox/red couples of MMOR were determined with a series of 

reductive titration experiments in the presence of redox indicator dyes. Each ti-

tration included approximately 30 µM MMOR and dye in 1 mL of 50 mM potas-
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sium phosphate buffer, pH 7.0, at 25 °C. The indicators were phenosafranine (E°’ 

= -252 mV), anthraquinone-2-sulfonate (E°’ = -226 mV), anthraquinone-2,6-

disulfonate (E°’ = -184 mV) and anthraquinone-1,5-disulfonate (E°’ = -174 mV). 

Titrations with the high potential anthraquinone disulfonate dyes were very 

slow to reach equilibrium. In order to circumvent this problem, titrations with 

high potential dyes were performed with a small concentration (~10% relative to 

the anthraquinone dye) of phenosafranine. 

Aliquots of 1-2 mM sodium dithionite were added by means of a gas-tight 

Hamilton syringe equipped with a repeating dispenser. Titrations were carried 

out in a sealed quartz cuvette under an anaerobic nitrogen atmosphere. UV-

visible spectra were recorded after each addition, allowing 3-10 min for equili-

bration. 

Data were processed by first correcting the spectra for dilution and then 

subtracting the starting (oxidized) spectrum from each spectrum of the titration. 

Each difference spectrum was then fit as a linear combination of component 

spectra (KaleidaGraph 3.0, Synergy Software, Reading, PA), as shown in eq. 2. 

The component spectra, represented by ∆εi(λ) in eq. 2, correspond to the 

    ∆A(λ) = Σ ∆εi(λ) ∆ci            (2) 

 absorption spectral differences for the reduced minus the oxidized states of each 

chromophore for 380 < λ < 800 nm.  

Initial protein and dye concentrations were determined by fitting the start-

ing spectrum to a linear combination of oxidized protein and dye spectra to 
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make the analysis internally consistent and eliminate any errors due to inaccu-

rate extinction coefficients. The chromophores considered were FADox, FADsq, 

FADhq, [2Fe-2S]ox, [2Fe-2S]red, dyeox, and dyered. The dye and [2Fe-2S] spectra 

were determined experimentally by titrating the dyes or the MMOR-Fd domain 

with dithionite; component spectra of the MMOR-FAD domain were determined 

by evolving factor analysis (Specfit, Spectrum Software Associates, Marlborough, 

MA) of a reductive titration.25 

 Concentration differences were converted to ratios of reduced/oxidized 

chromophores according to eq. 3. The solution potential was calculated from the  
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ratio of reduced to oxidized dye and related to the midpoint potential of one of 

the MMOR cofactors by the Nernst relationship, eq. 4. In principle, each 
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 spectrum of a titration provides a measurement of the midpoint potential for 

each redox couple of MMOR. In practice, only those spectra for which the solu-

tion potential, dye midpoint potential, and estimated MMOR potential fell 

within 40 mV of one another were used in calculating the midpoint potentials of 

the cofactors. 

Relative redox potentials at various pH values were determined as above, 

except that no indicator dyes were included. The difference spectra were fit with 
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component spectra that had been determined at the relevant pH.25 Without indi-

cator dye, the solution potential is unknown; thus, the redox potential of each 

couple was determined relative to the other redox couples of MMOR. The pKa 

values determined from these data were obtained by fitting to equations follow-

ing the form of eq. 6 (see below). 

 Stopped-Flow Experiments. A Hi-Tech model SF-61 DX2 was used for all 

experiments, equipped with either a photomultiplier and a tungsten lamp for 

single wavelength mode, or a diode array detector using a 75 W xenon arc lamp 

for multiwavelength illumination. The flow system was first made anaerobic by 

flushing with a solution of sodium dithionite; alternatively, glucose oxidase, 

catalase, and 1 mM glucose were employed. Anaerobic buffer was then used to 

rinse the flow system. MMOR was made anaerobic by 8-10 cycles of vacuum gas 

exchange with O2-free N2. NADH solutions were made anaerobic by purging 

with N2 for at least 20 min. Experiments were thermostatted at 4 °C. Concentra-

tions of MMOR were in the 10-25 µM range and NADH concentrations were ~10 

times that of MMOR, except when otherwise specified. Where MMOB was in-

cluded, it was loaded in the syringe with NADH. Data were fit (eq. 5) to a sum of 

    Absλ(t) = Σ Aiexp(-kit) + C           (5) 

three or four exponential decays, as appropriate. 

Analysis of Diode Array Spectra. Diode array spectra of MMOR2e-, re-

corded between 1 and 2 s after mixing MMOR and NADH as described above, 

were fit as a sum of component spectra, with the following additional con-
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straints. The concentration of FADsq was equal to the concentration of [2Fe-2S]red, 

and the total concentration of [2Fe-2S] was equal to the total concentration of 

FAD. Because equilibration between molecules of MMOR is slow on the time 

scales used in kinetic experiments (up to 2 s), the two electrons of MMOR2e- can 

reside either both on FAD (FADhq) or one on FAD and one on the [2Fe-2S] clus-

ter. Thus, the concentrations of FADsq and [2Fe-2S]red must in principle always be 

equal in MMOR2e-.  

Procedures for Variable-pH Experiments. For experiments in which the 

pH was varied, MMOR was prepared in 1 mM MOPS, pH 7.0 and mixed with 

strongly buffered solutions at the desired pH. Buffers used were 50 mM MES for 

5.27 ≤ pH ≤ 6.30; 50 mM MOPS for 6.31 ≤ pH ≤ 7.50; and 50 mM TAPS for 7.51 ≤ 

pH ≤ 8.50. Constant ionic strength of 100 mM was maintained in all solutions by 

addition of NaCl.  

To determine the pKa associated with pH-dependent effects on the reac-

tion of MMOR with NADH, the change in absorbance at 625 nm over 1 s was re-

corded with the stopped-flow instrument. The data were fit to a sum of three ex-

ponentials, and the fit parameters were used to calculate A625 at t = 0 s and t = 1 s. 

The difference between these two values was computed and plotted as a function 

of pH. The relationship defined in eq. 6 was used to fit these data and determine 

    ( )apKpH

AAAA −+
∆−∆

−∆=∆
101

minmax
max            (6) 
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 the pKa, where∆Amax and ∆Amin are the maximum and minimum values of ∆A625, 

respectively. 

A double-mixing pH jump experiment was carried out by first mixing 160 

µM MMOR with 160 µM NADH to generate MMOR2e-, followed by mixing with 

a buffer of different pH after a 1 s delay. To jump to a higher pH value, MMOR 

and NADH were prepared in 50 mM MES (pH 5.79) and mixed with 50 mM 

TAPS (pH 9.68). The final pH of the mixture was 8.10. To jump to a lower pH, 

MMOR and NADH were prepared in 50 mM TAPS (pH 8.02) and mixed with 50 

mM MES (pH 4.82). The final mixture had a pH of 5.78. 

 

Results 

 Characterization of Recombinant MMOR. Several experimental results 

establish the identity of recombinant MMOR with that isolated from the native 

M. capsulatus (Bath) bacteria. Table 2.1 compares important parameters for native 

and recombinant MMOR. The cofactor content of recombinant MMOR was de-

termined to be 1.1 ± 0.1 FAD and 2.06 ± 0.05 Fe per mole protein, respectively, in 

agreement with literature values.26 The UV-visible spectrum was the same as 

that of native MMOR. Substituting recombinant MMOR for native MMOR in 

sMMO activity assays afforded identical results. Mass spectrometric analysis 

gave a molecular weight within experimental error of the computed value for the 

apoprotein with the N-terminal methionine intact.24 In addition, the EPR spec-

trum of fully reduced recombinant MMOR shows a rhombic signal characteristic 
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of a mixed valence [2Fe-2S]+ cluster with g values very close to those observed 

for native MMOR.27 

 Redox Potentials of MMOR. Selected difference spectra obtained from a 

reductive titration of MMOR in the presence of the indicators phenosafranine 

and anthraquinone-2,6-disulfonate are shown in Figure 2.2. For a titration with a 

single dye, fitting to the difference spectra required fewer independent variables 

(four) than for fits to the raw spectra (seven). The calculated midpoint potentials 

for the three redox couples are displayed in Table 2.2.  

 Redox potentials of MMOR were also measured in the presence of the 

other two sMMO components (Table 2.2). Complexes of the type 

MMOH/2MMOR and MMOH/2MMOR/2MMOB were examined, as was an 

equimolar mixture of MMOR and MMOB. The potentials of MMOR in the com-

plexes do not change from those of free MMOR, within the error of the meas-

urements. Although MMOH forms complexes with MMOR and MMOB, the lat-

ter two do not interact with one another.12,28  

Kinetic Behavior of MMOR Reduction by NADH. The reaction of oxi-

dized MMOR with NADH was investigated by stopped-flow optical spectros-

copy. Preliminary studies of this reaction were reported previously,12,29,30 and 

spectra of intermediates in the reaction were derived from fits to the diode array 

kinetic traces.12 Figure 2.3A shows the time-dependent changes in absorbance at 

three wavelengths, 458, 625, and 740 nm. Fits to these changes are superimposed 

on the data, reflecting the steps outlined in Figure 2.4. The reduction chemistry 
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begins with NADH binding to MMOR to produce a species with a charge-

transfer interaction between the nicotinamide ring of NADH and the flavin isoal-

loxazine. The charge-transfer intermediate, termed CT1, has a visible band cen-

tered at about 575 nm (Figure 2.3B). Transfer of hydride produces NAD+ and the 

reduced flavin (FADhq). The resulting species, CT2, has a more intense charge-

transfer band that is red-shifted (λmax ~ 740 nm) relative to that of CT1 (Figure 

2.3B). Formation of CT2 is apparent in Figure 2.3A as an increase in A740 at t < 8 

ms. Release of NAD+ is observed by the disappearance of the CT2 band, which 

occurs simultaneously with electron transfer from FADhq to [2Fe-2S]ox. The 

NAD+ release phase appears in Figure 2.3A as a decrease in A740 for t > 10 ms, 

due to loss of the charge-transfer interaction between NAD+ and FADhq, and the 

continuing increase in A625 arising from the increasing concentration of FADsq. 

The final species, SQ, has a spectrum characteristic of FADsq and [2Fe-2S]red (Fig-

ure 2.3B). 

The reduction kinetics of MMOR were also measured in the presence of 

MMOB. Addition of 1 to 5 equivalents of MMOB to the reaction of MMOR with 

NADH had no effect on the reaction rates or spectra of the intermediates.  

Complexes of MMOR with NAD(H). The binding that was observed 

upon mixing MMOR with NADH was originally modeled as a single step with 

an observed rate constant.12 Investigation of the NADH concentration depend-

ence of this reaction, however, reveals that binding occurs in more than one step. 

Specifically, the rate constant for the formation of the first observed intermediate, 
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CT1, can be saturated (Figure 2.3C). This result implies the existence of a spectro-

scopically silent species that forms prior to CT1. This species is termed MC1 for 

Michaelis complex 1 (Figure 2.4). A fit to the data reveals a Kd value of 3.8 µM for 

NADH binding to oxidized MMOR.  

In order to investigate the binding of NAD+ to oxidized MMOR, the kinet-

ics of the reaction of MMOR with NADH were studied in the presence of varying 

concentrations of NAD+ and at three different wavelengths (Figure 2.5). As ex-

pected, the reaction is inhibited by NAD+. The data were modeled according to 

Figure 2.2 with HopKINSIM.31,32 The Kd value for NAD+ binding to MMORox 

was estimated to be ~5 µM. In addition, the Kd value for NAD+ binding to two-

electron reduced MMOR was estimated from the absorbance changes at 725 nm 

at 1 s after mixing (Figure 2.5C) to be 70 ± 24 µM. Increased absorbance at 725 nm 

at 1 s is due to the formation of a CT2-type charge-transfer complex between 

MMOR2e- and excess NAD+.  

Effect of pH on the Reaction of MMOR and NADH. This reaction was 

also examined in buffers at twelve different pH values in the range 5.3 to 8.3. Be-

low pH 5.0, MMOR precipitates from solution; thus, the pH was kept above this 

value to ensure that no protein precipitated in the stopped-flow spectrometer. 

Figure 2.6A shows that, at high pH, the final value of A625 is significantly larger 

than at low pH. It is also evident that the maximum value of A725 is reduced at 

low pH values. The rates of the processes described in Figure 2.4 are unchanged. 
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The net change in absorbance at 625 nm between 0 and 1 s as a function of pH 

reflects a process having a pKa of 6.2 ± 0.1 (Figure 2.6B).  

Figures 2.7A and 2.7B display the effect of pH on the reaction of MMOR 

with NADH as monitored spectrophotometrically from 400 to 700 nm. Differ-

ences in the initial spectra recorded after mixing reveal pH effects on the absorb-

ance of MMORox, which arise mainly from changes in the spectrum of FAD.25 

Comparison of spectra recorded at 1.5 s after mixing at pH 5.27 and 8.01 illus-

trates the different distribution of the two electrons among the FAD and [2Fe-2S] 

cofactors (Figure 2.7C). To quantify this electron distribution, the spectra were fit 

as a sum of the component spectra, and the results of the fit are shown in Table 

2.3. The component spectra used in the fitting were determined at the appropri-

ate pH. Of the five redox states accessible to the two cofactors (FADox, sq, hq and 

[2Fe-2S]ox, red), only the spectra of FADox and FADhq undergo significant pH-

dependent changes (Figure 2.8).  

Effect of pH on Relative Redox Potentials. The observed effect of pH on 

electron distribution in the kinetically generated MMOR2e- led us to investigate 

the effect of pH on the thermodynamic redox potentials of MMOR. Reductive 

titrations of MMORox were performed at varying pH values, and difference spec-

tra were fit as sums of component difference spectra recorded at the appropriate 

pH. Since no redox indicator dye was included, the solution potential was un-

known, and the redox potential of a particular couple was determined relative to 

the other redox couples of MMOR. These results are presented in Figure 2.9. The 
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difference between the potentials of the [2Fe-2S] cluster and the FADsq/hq couple 

(EFeS - EFAD2) varies from 2.8 ± 6.3 mV at pH 5.62 to 83.9 ± 11.7 mV at pH 8.01. Fit-

ting the data to eq. 6 reveals a pKa of 6.3 ± 0.2. The value of EFeS - EFAD1 changes 

from -45.6 ± 3.5 mV to 31.1 ± 3.7 mV over the same pH range, and the corre-

sponding pKa value is 7.3 ± 0.1 mV. The pH-dependent difference between the 

two FAD couples, EFAD2 - EFAD1, has an inverted bell-shaped profile with a mini-

mum value of -93.5 ± 3.9 mV at pH 7.00, and approaches a value of ~ -50 mV at 

the extremes of the pH range examined. The two pKa values derived from fits of 

the data are 6.6 ± 0.5 and 7.6 ± 0.9 for the low and high pH ranges, respectively 

(Figure 2.9).   

Measurement of Electron Transfer by pH Jump. The pH dependence of 

the electron distribution among cofactors in MMOR makes possible the meas-

urement of electron transfer rates in the absence of other complicating factors, 

such as the presence of excess quantities of NAD(H). By preparing MMOR2e- at 

one pH value, it is possible to follow the redistribution of electrons following a 

rapid change in solution pH. Such an experiment was carried out by using the 

double-mixing stopped-flow method. In the first mixing event, MMOR was 

mixed with an equimolar amount of NADH. Following a 1-s delay, a second 

mixing event changed the pH. The absorbance at 625 nm was followed as a func-

tion of time after the pH change, as shown in Figure 2.10. The traces were readily 

fit to a single exponential function and the computed rate constants were 126 ± 

22 s-1 for jumping to a higher pH and 134 ± 5 s-1 for jumping to a lower pH. The 
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rate constant determined using data for both the forward and reverse reactions is 

130 ± 17 s-1. In both directions, the electron transfer between FAD and [2Fe-2S] 

occurred with a greater rate constant than observed upon mixing MMOR with 

NADH (k3 = 90 s-1, Figure 2.2), where electron transfer is accompanied by release 

of NAD+.  

 

Discussion 

 Recombinant MMOR. The first high-yield recombinant system for ex-

pression of MMOR has been achieved. Good yields of pure protein with a full 

complement of cofactors can be obtained in a few days. A previous account de-

tailing the expression of M. capsulatus (Bath) MMOR in E. coli demonstrated the 

reconstitution of MMOR activity in E. coli cell extracts, but the yield was no 

greater than that from the native organism, and no purification of the MMOR 

protein was reported.33 Development of a high-yielding recombinant system has 

made feasible the kinetic and thermodynamic studies in the present work. The 

amount of MMOR in Methylosinus trichosporium OB3b cells is ~10% of the 

amount of MMOH,34 and only small quantities of MMOR (~ 5-10 mg) can be pu-

rified from 100 g of M. capsulatus (Bath) cell paste in a routine preparation. With 

the recombinant system, we can easily obtain the 100 mg quantities required for 

extensive kinetic and thermodynamic characterization.  

In addition, the purification of MMOR from the present recombinant sys-

tem is more convenient than from the native organism. The protocol has fewer 
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steps, and E. coli are simpler to grow than M. capsulatus (Bath), because the latter 

requires methane for growth and, even under optimal conditions, grows slowly 

by comparison with E. coli. The recombinant system also makes possible 

mutagenesis studies. 

Redox Potentials of MMOR Cofactors. The reduction potentials of the 

MMOR cofactors determined here are more accurate than those reported previ-

ously.27 The FADox/sq potential we measured is 26 mV more negative than the 

published value,27 although the two are within experimental error of one an-

other, given the larger error in the latter. The method used here has the advan-

tage of treating data from many wavelengths simultaneously and generates mul-

tiple measurements of the redox potential per experiment. In addition, fitting of 

difference spectra allows the use of fewer parameters than would otherwise be 

necessary. Having fewer parameters improves the chance of finding a unique so-

lution for the fit. Our study has also measured the potentials in the presence of 

several redox dyes, covering a range of 78 mV, thereby decreasing the possibility 

that systematic errors are introduced by a non-ideal dye-protein combination.  

Addition of MMOB does not affect these potentials within experimental 

error, consistent with other observations indicating that no complex is formed 

between MMOB and MMOR.12 The midpoint potentials for the MMOR cofactors 

are also unaltered in complexes with MMOH and MMOH/2MMOB. Previous 

studies have revealed that, for the sMMO of Methylosinus trichosporium (OB3b), 

binding of MMOR to MMOH alters the potentials of the non-heme diiron active 
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site of MMOH.35,36 We show here for the first time that the reverse is not true; 

the potentials of MMOR are unchanged in the MMOH/MMOR complex. 

Electron Transfer Properties. Electron transfer reactions involving 

NAD(P)H, flavin, and [2Fe-2S] cofactors have been studied in detail for other en-

zymes. Phthalate dioxygenase reductase37and E338in particular have been well 

characterized. MMOR, PDR, and E3 share similar mechanisms in their reactions 

with NADH. Each binds NADH, proceeds through two charge-transfer interme-

diates, and finally passes one electron to a [2Fe-2S] center. The existence of an 

MC1-type pre-complex has been established for PDR but not for E3.37,38  

Based on the stopped-flow optical experiments, we propose the following 

model for the reduction of MMOR by NADH (Figure 2.2). The initial step is 

rapid binding of NADH to MMOR to produce a Michaelis complex, MC1. The Kd 

value for this interaction is calculated to be 3.8 µM (Figure 2.4). Formation of 

MC1 does not alter the spectrum of MMOR; its existence is inferred from the ki-

netic behavior of the enzyme. In an earlier kinetic study of the interaction of 

NADH with MMOR,29 a precomplex of this sort was proposed on the basis of a 

linear double-reciprocal plot. A subsequent investigation30 reported that such a 

complex did not exist; rather, MMOR and NADH reacted with a second order 

rate constant of 2.9 × 106 M-1 s-1. These studies were carried out at 18 °C; at this 

temperature, the early phases of the reaction (including CT1 formation) occur 

largely or completely during the dead time of the instrument, making their true 

rate constants difficult to determine. At 4 °C, the temperature used in this study, 
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we find the value of CT1 formation to be 350 s-1 with saturating NADH. With the 

2 ms dead time of our instrument approximately 50% of the optical change will 

be observed, enough to make an accurate determination of the rate constant. For 

these reasons, we stand by our proposed mechanism for MMOR reduction (Fig-

ure 2.4) involving a pre-complex of NADH with MMOR prior to the first ob-

served intermediate.  

Next, a conformational change is presumed to occur, with an observed 

rate constant of 350 s-1, that gives rise to the charge-transfer interaction of CT1. 

Transfer of hydride from NADH to FAD ensues with a rate constant of 190 s-1, 

yielding the CT2 species. CT2 has a more intense, lower energy charge-transfer 

band than CT1. The breakdown of CT2 occurs with a rate constant of 90 s-1. Since 

this process is slower than the rate at which it is formed, CT2 builds up to appre-

ciable concentrations under the conditions examined.  

Electron transfer and release of NAD+ are observed to occur simultane-

ously, affording the SQ species with reduced [2Fe-2S] and FADsq. A more com-

plete description of the SQ state is that of an equilibrium between 

FADsq/[2Fe-2S]red and FADhq/[2Fe-2S]ox. The spectrum of SQ shows maxima at 

approximately 600 and 650 nm, consistent with a neutral flavin semiquinone. 

This information alone does not distinguish between the possibilities that (i) the 

electron transfer and NAD+ release steps are independent and coincidentally oc-

cur at similar rates, (ii) the two steps are truly coupled, or (iii) that one event 
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triggers the rapid execution of the other. Similar behavior was also observed for 

PDR and E3.37,38  

Influence of pH on Redox Properties of MMOR. Figure 2.6A shows the 

effect of pH on the reaction of MMOR with NADH. From single wavelength 

stopped-flow data, it can be concluded that the kinetics of MMOR reduction by 

NADH are not altered as a function of pH (Figure 2.6A). Thus, the reduced A725 

values at low pH measured ~ 10 ms after mixing (Figure 2.6A) are due to a lower 

value of ε725 for CT2, not decreased concentrations of CT2. Although the kinetics 

of the reaction do not change with pH, the distribution of electrons between FAD 

and [2Fe-2S] in MMOR2e- is affected by changes in pH. The pKa for the process 

affecting the final value of A625 is 6.2 ± 0.1 (Figure 2.6B).  

From the data collected with the diode array, it is apparent that the spec-

trum of MMORox is altered by pH (initial spectra, Figures 2.7A and 2.7B). In Fig-

ure 2.7C, the changes in electron distribution are demonstrated in the final spec-

tra. The pH effect on electron distribution is quantified in Table 2.3. At pH 5.27, 

nearly all of the MMOR is in the FADhq/[2Fe-2S]ox state. At pH 8.01, there is a 

mixture of FADhq/[2Fe-2S]ox and FADsq/[2Fe-2S]red. This observation suggests 

that the difference between the [2Fe-2S]ox/red and FADsq/hq couples (EFeS - EFAD2) 

within a given molecule is diminished at low pH. This pH-dependent change in 

potential need not be reflected in the true thermodynamic potentials for the pro-

tein co-factors, since interprotein electron transfer reactions cannot occur to es-

tablish equilibrium on this time scale (vide infra). Only this ∆E needs to be con-
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sidered for the stopped-flow reaction, because the FADox redox state is also inac-

cessible on the time scale studied.  

Equilibrium titrations of MMOR at varying pH reveal that the true EFeS - 

EFAD2 difference is also diminished at low pH (Figure 2.9). At pH 8.0 the value of 

EFeS - EFAD2 is 83.9 mV, meaning that electron transfer from FADhq to [2Fe-2S]ox is 

favorable. At pH 5.6 this value is only 2.8 mV and there is little driving force for 

the same electron transfer. The pKa values for EFAD2 - EFAD1 (6.6 ± 0.5 and 7.6 ± 

0.9) coincide with those found for EFeS - EFAD2 (6.3 ± 0.2) and EFeS - EFAD1 (7.3 ± 

0.1), respectively. The agreement of these values is consistent with the titratable 

group(s) being associated with the flavin moiety. In addition, the pKa calculated 

for changes in EFeS - EFAD2 compares well with the pKa of 6.2 ± 0.1 determined in 

stopped-flow studies. 

An artificial value for EFeS - EFAD2 under the conditions employed in the 

stopped-flow experiment can be calculated from the species distribution by using 

the Nernst equation (Table 2.3). Doing so reveals that EFeS - EFAD2 increases with 

increasing pH, consistent with the thermodynamic experiment (Fig. 7). In fact, 

the pKa measured in both the titration and stopped-flow experiments is identical 

within error (~ 6.3). It is not surprising, however, that the EFeS - EFAD2 values de-

termined in titration experiments, 2.8 and 83.9 mV at low and high pH, respec-

tively, are significantly different from those calculated from the stopped-flow 

data. At least three differences between the kinetic and thermodynamic experi-

ments may contribute to this discrepancy. The major reason is that the titration 
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experiments measure true equilibrium differences in potential; several minutes 

were allowed to elapse between the addition of reducing agent and the recording 

of a spectrum to assure that equilibrium was attained. Spectra from the diode-

array during the stopped-flow experiment were recorded 1.5 s after mixing 

MMORox and NADH. On this time scale, disproportionation between molecules 

of MMOR2e- is slow, and the reaction does not reach thermodynamic equilib-

rium. Moreover, the stopped-flow experiments were conducted at 4 ºC, whereas 

the titrations were performed at 25 ºC. In addition, MMORox was allowed to react 

in the stopped-flow experiment with 10 equiv of NADH to ensure pseudo-first-

order behavior. As a consequence, the derived ∆E values are measured for a mix-

ture of species in which NAD(H) is bound to the protein. The titrations were per-

formed in the absence of any such pyridine nucleotide.  

The increase of EFeS - EFAD2 with increasing pH must arise from an increase 

in EFAD2, a decrease in EFeS, or a combination of both effects. The evidence sug-

gests that the majority of the effect arises from an increase in EFAD2. There is no 

pH effect on the optical spectrum of the [2Fe-2S] cluster in either redox state, 

whereas the spectra of FADox and FADhq are pH-dependent (Figure 2.8).25 In ad-

dition, the pH dependence of EFAD2 - EFAD1 shows two pKa values (6.6 ± 0.5 and 

7.6 ± 0.9), each of which is very close to a pKa determined for one of the other ∆E 

values (Figure 2.9). It appears that there is one pKa associated with EFAD2, meas-

ured as 6.6 ± 0.5 and again as 6.3 ± 0.2; and a second pKa associated with EFAD1, 

measured as 7.6 ± 0.9 and a second time as 7.3 ± 0.1. By this reasoning, there is a 
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pKa of ~ 7.3 affecting the value of EFAD1, and pKa of ~ 6.3 for EFAD2, which is con-

sistent with the value of 6.2 determined in the stopped-flow experiment. Fur-

thermore, it appears that there is no macroscopic pKa associated with EFeS. After 

correcting for the pH effect on proton-coupled redox reactions, an additional 

protein-centered pKa of 6.5 ± 0.2 is revealed.25 

Presumably, protonation of some group(s) on, or hydrogen bonded to, the 

FAD isoalloxazine ring increases the FADsq/hq reduction potential relative to that 

of the [2Fe-2S] cluster. Specifically, we propose that the N1 position of the flavin 

is a likely site of protonation (Figure 2.11). In the hydroquinone state, N1 is typi-

cally deprotonated at pH 7 and bears substantial negative charge, as judged by 

15N and 13C NMR spectral studies for all flavoproteins that have been investi-

gated.39 One-electron transfer from FADhq (FADH-) to [2Fe-2S]ox removes this 

negative charge from the flavin, affording the neutral semiquinone. Protonation 

of N1 affords a neutral FADhq (FADH2), thereby rendering electron transfer to 

[2Fe-2S] less favorable. Mutagenesis studies of flavodoxins also reveal that re-

moving acidic residues in the vicinity of N1 increases the semi-

quinone/hydroquinone reduction potential.40-42 Protonation of the N1 site is 

also consistent with the observation of lower ε725 for CT2 at low pH. The charge-

transfer interaction between the pyridine moiety of NAD+ and FADH2 will be 

much weaker than between NAD+ and FADH-. The measured pKa of 6.2 for 

FADhq is within the range of values measured for the N1 position of other flavo-

proteins .43 More extensive studies could further our understanding of the mo-
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lecular basis of the pH effects described above. Without more information, how-

ever, we cannot completely rule out the possibility that pH effects occur at both 

FAD and [2Fe-2S] cofactors.  

Intramolecular Electron Transfer. Electron transfer between FAD and 

[2Fe-2S], as measured by the pH jump method, occurs with a rate constant of 130 

± 17 s-1. This value probably does not reflect the true rate of electron transfer. 

Calculations indicate that electron transfer between redox centers located 14 Å or 

less apart typically occurs at rates in the 107 -1013 s-1 range.44 The X-ray structure 

of PDR reveals the 8-CH3 group of the flavin and Fe1 of the [2Fe-2S] cluster to be 

separated by 7.2 Å.17 This distance is well within the 14 Å range predicted to al-

low very rapid electron transfer, independent of other factors such as pathway or 

the packing density of the intervening protein. MMOR is expected to have a 

similar structure, and although the flavin-to-[2Fe-2S] distance may be greater in 

MMOR than in PDR, it is likely to be less than 14 Å. We therefore conclude that 

the relatively slow rate constant for electron transfer in MMOR reflects a rate-

limiting, preceding step such as a conformational change of the protein, perhaps 

one that is coupled with proton transfer. The link between the FAD and [2Fe-2S] 

domains of MMOR may be sufficiently flexible to allow these two cofactors to be 

positioned such that rapid tunneling cannot occur in all conformations.  

The greater electron transfer rate constant measured in the pH jump, 

compared to the constant pH (90 s-1, k3 in Figure 2.2), experiments suggests that 

NAD+ release is rate-limiting in the latter case. In the pH jump experiment, a mi-
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nority fraction of MMOR2e- has bound NAD+, owing to the weak binding con-

stant (Kd ~ 70 µM) and the use of equimolar concentrations of MMOR2e- and 

NAD+.  

 

Conclusion 

The studies of intramolecular electron transfer in the sMMO system de-

scribed here, coupled with forthcoming structural information about the [2Fe-2S] 

domain of MMOR,25,45 will provide a detailed understanding of intermolecular 

electron transfer in the sMMO system.12 Electron transfer steps in the overall 

catalytic cycle of sMMO have been the subject of little work until now. With the 

availability of large quantities of recombinant MMOR, this previously neglected 

aspect of the sMMO system can now be investigated. For not only is the hy-

droxylation of the C–H bond in methane a remarkable feat of chemistry, but the 

carefully orchestrated intra- and interprotein electron transfer steps are as well. 

Knowledge of these processes will not only enrich our understanding of the 

sMMO system, but will also contribute to the general field of electron transfer in 

biology. 
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Table 2.1. Properties of Native and Recombinant MMOR 

 native MMOR recombinant MMOR 

MW measureda (Da) 38,545.6b ± 3.9 38,546.9 ± 3.9 

Fe content (mol/mol protein) 1.92c 2.06 ± 0.05 

FAD content (mol/mol protein) 1.00c 1.1 ± 0.1 

λmax (nm), pH 7.0, 25 °C 334, 394, 458 334, 394, 458 

g values (fully reduced) 2.047, 1.960, 1.864c 2.047, 1.958, 1.871d 

aExpected 38,542.6 Da for apoprotein with N-terminal methionine intact. bAs 

reported.24 cAs reported.26 dEPR recorded at 10 K, 50 µW, modulation ampli-

tude 25.7 G. 
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Table 2.2. Midpoint Potentials at 25 °C and pH 7.0 of MMOR Alone and in 

Complexes with Other sMMO Proteins. 

 FADox/sq (mV) [2Fe-2S]ox/red 

(mV) 

FADsq/hq 

(mV) 

MMOR nativea -150 ± 20 -220 ± 20 -260 ± 5 

MMOR recombinant -176 ± 7 -209 ± 14 -266 ± 15 

MMOR + MMOB -178 ± 1 -200 ± 6 -255 ± 4 

MMOH/2MMOR -167 ± 14 -207 ± 5 -260 ± 9 

MMOH/2MMOB/2MMOR -160 ± 2 -208 ± 6 -258 ± 8 

a As reported.27 
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Table 2.3. pH-Dependent Distribution of Electrons in MMOR2e- 

 % of total cofactor 

Species pH 5.27 pH 8.01 

[2Fe-2S]ox 99.5 67.4 

[2Fe-2S]red 0.5 32.6 

FADox 0.3 0.3 

FADsq 0.5 32.6 

FADhq 99.2 67.1 

EFeS – EFAD2a -244 mV -35 mV 

aArtificial difference in redox potential between the [2Fe-2S]and FAD co-

factors computed from the species distribution given in this table by ap-

plication of the Nernst equation. 
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Figure 2.1. Simplified view of the sMMO catalytic cycle. 
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Figure 2.2. Difference spectra for the reductive titration of a 1 mL mixture of 29 

µM MMOR, 3.8 µM phenosafranine, and 39 µM anthraquinone-2,6-disulfonate 

by dithionite. Spectra 1-8 correspond to the addition of 110, 130, 150, 170, 190, 

210, 220, and 240 µL, respectively, of a solution of ~1 mM sodium dithionite. Fits 

(dashed lines) are superimposed on the data over the wavelength range 380-800 

nm.  
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Figure 2.3. Reaction of MMORox with NADH studied by stopped-flow UV-

visible spectroscopy. (A) Time-dependent absorbance changes at 458, 625, and 

725 nm during the reaction of 20 µM MMORox with 200 µM NADH at 4 °C. 

Dashed lines are fits to eq. 5. (B) Derived spectra of species (circles, MMORox; 

diamonds, CT1; crosses, CT2; triangles, SQ) observed in the reaction. Species 

MMORox, CT1, CT2, and SQ are defined in Figure 2.2. Inset – enlargement of 

long-wavelength region. (C) Dependence of k1 (Figure 2.2) on the concentration 

of NADH.  
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Figure 2.4. Reaction of MMORox with NADH. 
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Figure 2.5. Product inhibition of reaction of MMORox and NADH. Time-

dependent absorbance changes were recorded at 458 nm (A), 625 nm (B), and 725 

nm (C) by allowing a 22.4 µM MMORox solution to react with 224 µM NADH in 

the presence of varying concentrations (circles, 0 µM; squares, 62.5 µM; dia-

monds, 250 µM; crosses, 500 µM; triangles 1.5 mM) of NAD+.  
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Figure 2.6. Effect of pH on the reduction of MMORox by NADH. (A) 25 µM 

MMORox was allowed to react with 250 µM NADH at 4 °C. Traces recorded at 

458, 625, and 725 nm are shown for pH values of 5.35 (circles), 7.10 (squares), and 

8.50 (diamonds). (B) Net change in absorbance at 625 nm as a function of pH. 

Dashed line is a fit to eq. 6.  
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Figure 2.7. (A) Spectra recorded at ~3 ms intervals by diode array stopped-flow 

spectrophotometry in the first 68 ms after mixing MMORox with a ten-fold excess 

of NADH at pH 5.27. (B) As in (A), but at pH 8.01. (C) Spectra recorded 1.5 s after 

mixing. Circles, pH 5.27; squares, pH 8.01. Dashed lines are fits to sums of com-

ponent spectra. 
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Figure 2.8. Spectra of FADox (circles) and FADhq (squares) at pH 5.47 (solid lines) 

and pH 8.01 (dashed lines).25 
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Figure 2.9. Differences between the redox potentials of MMOR at varying pH. 

Circles, EFeS – EFAD1; squares, EFAD2 – EFAD1; diamonds, EFeS – EFAD2. Dashed lines 

are fits of the same form as eq. 6. 
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Figure 2.10. Equilibration of electrons in MMOR2e- following a pH jump. Absorb-

ance at 625 nm is shown as a function of time; circles, after jump from pH 5.79 to 

8.10; squares, after jump from pH 8.02 to 5.78. Dashed lines are single exponen-

tial fits. 
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Figure 2.11. Protonation states of fully reduced FAD. 
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Chapter Three: 

 

Structural Features of the MMOH/MMOR Complex as Revealed by Mass 

Spectrometric Analysis of Covalently Cross-linked Proteins 
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Introduction 

Methanotrophic bacteria rely on metalloenzymes to catalyze methane hy-

droxylation (eq 1), the first step in the metabolic pathway that  

        CH4 + O2 + NADH + H+ → CH3OH + H2O + NAD+        (1) 

supplies all the carbon and energy required by the cells. In the presence of suffi-

cient concentrations of copper, Methylococcus capsulatus (Bath) produces a mem-

brane-bound copper enzyme, particulate methane monooxygenase (pMMO), to 

convert methane to methanol. When copper is unavailable, an iron-containing 

soluble methane monooxygenase (sMMO) is employed.1  

The sMMO system comprises three proteins. A hydroxylase (MMOH) 

contains the carboxylate-bridged diiron active site for oxygen and methane acti-

vation; a reductase (MMOR) is responsible for electron transfer from NADH to 

the active site of MMOH; and a regulatory protein (MMOB) is required for full 

activity. A fourth protein (MMOD) encoded within the mmo operon binds to the 

hydroxylase and inhibits catalysis in vitro, but the function of MMOD in vivo has 

yet to be determined.2  

Complex formation between MMOH, MMOR, and MMOB is required for 

sMMO catalysis.3 MMOH itself is composed of three polypeptides with α2β2γ2 

stoichiometry. Each alpha subunit houses a dinuclear iron active site. The cata-

lytic cycle begins with the Fe2III resting state. MMOR binds to MMOH in order to 

transfer two electrons (derived from NADH) to the active site, affording the Fe2II 

state of MMOH. In the presence of MMOB, the Fe2II active site can react with O2 
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to produce a series of intermediates that hydroxylate substrates. Turnover is very 

low in the absence of MMOB.3,4 An MMOB:MMOH ratio of 2 produces maximal 

activity, and increasing additional amounts of MMOB inhibit activity. Binding of 

MMOB to MMOH  not only changes its reactivity toward dioxygen, but the re-

dox potentials and spectroscopic properties of the diiron center are altered and 

electron transfer from MMOR is accelerated.1,3  

Three-dimensional structures of MMOH, MMOB and the [2Fe-2S] domain 

of MMOR (termed MMOR-Fd), depicted in Figure 3.1, have provided much use-

ful information about sMMO catalysis.5-7 Despite the importance of protein-

protein interactions in the catalytic cycle, only limited structural information is 

available for the complexes between the three components. The sMMO proteins 

can be covalently cross-linked by the reagent 1-ethyl-3-(3-dimethylaminopropyl)-

carbodiimide (EDC).8 SDS-PAGE analysis of the cross-linked reaction products 

allowed identification of the polypeptides involved in the interaction. These 

early cross-linking studies also correctly identified some, but not all of the poly-

peptides in close proximity in the MMOH holoprotein before its crystal structure 

was determined.9,10 From small-angle X-ray scattering studies it was concluded 

that, in a ternary MMOH-MMOB-MMOR complex, the hydroxylase component 

undergoes a large structural rearrangement.11 NMR titrations with MMOH have 

indicated residues on MMOB and MMOR-Fd that interact with MMOH (Figure 

3.1).6,7,12 Modification of positively charged residues on the surface of MMOH 

inhibits the binding of MMOB and electron transfer from MMOR.13 Measure-
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ments of the distance between the diiron site and a site-specific spin label on 

MMOB have provided information about where MMOB must contact MMOH.14 

Mass spectrometric analysis of proteins has matured in recent years into a 

powerful technique, capable of studying protein complexes.15,16 The components 

of a protein complex can be identified by peptide mapping, whereby the mass 

spectrum recorded of peptides resulting from proteolytic digestion is matched to 

a sequence database.17,18 In some cases, mass spectrometry has located the sites 

of chemical cross-linking within such a protein complex.19,20 Interaction sites of 

protein complexes involved in vision,21,22 DNA replication,23-25 and interprotein 

electron transfer20,26 have all been elucidated in this manner. 

In the present chapter we report the results of cross-linking reactions in-

volving the components of sMMO. LC-MS analysis of peptides derived from in-

gel digestion led to the identification of two EDC-promoted cross-links between 

MMOR-Fd and MMOHα.  The structures implied by these cross-link sites are de-

scribed, and the resulting functional implications for sMMO complexes are dis-

cussed.  

 

Methods and Materials 

 Cross-linking reagents EDC, N-succinimidyl(4-vinylsulfonyl)benzoate 

(SVSB), N-succinimidyl-3-(2-pyridylthio)propionate (SPDP), and N-5-azido-2-

nitrobenzoyl-oxysuccinimide (ANB-NOS) were from Pierce (Rockford, IL) Di-
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bromobimane was purchased from Calbiochem (La Jolla, CA). Other biochemi-

cals were from Sigma (St. Louis, MO). 

 Protein Purification. MMOH was isolated from cultures of Methylococcus 

capsulatus (Bath), as previously described.3 Conditions for purification of recom-

binant MMOB, MMOR, MMOR-FAD, and MMOR-Fd from E. coli have also been 

reported.3,27,28 

 EDC Cross-linking reactions. Typically, solutions of 10-20 µM protein in 

25 mM MOPS (pH 7.0) were allowed to react with 25 or 50 mM EDC for 5 min at 

ambient temperature. Reactions were quenched by addition of an equal volume 

of 2x SDS loading buffer, or an equal volume of 100 mM Tris pH 7.2, 200 mM 

DTT.  

 SVSB Cross-linking Reactions. A 2.4 µL aliquot of 0.5 M SVSB freshly 

prepared in DMSO was added to a 120 µL portion of a 60 µM solution of MMOB 

in 25 mM MOPS at pH 7.0. After a 1.5 h incubation at ambient temperature, 

MMOB was separated from excess SVSB by gel filtration and concentrated. Ap-

proximately 2 equiv of MMOH were added to modified MMOB and allowed to 

react for an additional 30 min.  

 In-gel Proteolytic Digestion. Samples of the cross-linking reactions were 

separated by SDS-PAGE, using either 7.5% or 4-20% Ready Gels (Bio-Rad, Her-

cules, CA). Gels were stained either with Coomassie Blue or with a negative zinc 

stain. Zinc staining was carried out by soaking the gel in 0.2 M imidazole for 10 

min, then rinsing briefly with water and incubating in 0.2 M ZnSO4. When the 



 95 

desired degree of opacity was reached, the zinc solution was removed and the 

gel stored in water. 

Bands of interest were excised from the gel and cut with a clean razor 

blade into pieces approximately 1×1×1 mm, and placed in a clean 1.5 mL centri-

fuge tube. The gel pieces were washed 3× with 100 µL of 100 mM ammonium bi-

carbonate, pH 8.5, 50% acetonitrile, and finally once with 100 µL of acetonitrile.  

After drying for 15 min in a centrifugal evaporator, the gel pieces were 

treated with 30 µL of 20 mM DTT in 100 mM ammonium bicarbonate in 5% ace-

tonitrile and incubated for 1 hr at 55 ºC. DTT was removed by washing with 100 

µL of 100 mM ammonium bicarbonate, then with 100 µL of acetonitrile. Cysteine 

alkylation was then accomplished by addition of 30 µL of 100 mM iodoacetamide 

in 100 mM ammonium bicarbonate, followed by incubation for 30 min at room 

temperature in the dark. Gel pieces were washed twice with 100 mM ammonium 

bicarbonate and acetonitrile before drying in a centrifugal evaporator. 

Gel pieces were rehydrated with 20 µL of 50 mM ammonium bicarbonate. 

Sequencing grade trypsin (Sigma, St. Louis MO or Promega, Madison WI) was 

added to give an enzyme:substrate ratio of approximately 1:100 by weight. Di-

gestion was allowed to proceed overnight at 37 ºC.  

Peptides were extracted from the gel pieces with 100 µL of 20 mM ammo-

nium bicarbonate; then twice with 100 µL of 1:1 water:acetonitrile plus 1% TFA; 

then once with 100 µL of acetonitrile. All extracts were combined in a fresh tube, 
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flash frozen and dried in a centrifugal evaporator. Dried extracts were stored at –

20 ºC until analyzed.  

MALDI-TOF Mass Spectrometry. Dried samples were resuspended in 10 

µL of water with 0.1% TFA added and desalted with C18 ZipTips (Millipore, 

Bedford MA) according to the manufacturer’s instructions. Spots were prepared 

on a stainless steel target by combining 0.5 µL matrix solution with 0.5 µL of 

sample and allowing the solvent to evaporate. The matrix solution was either 2,5-

dihydroxybenzoic acid or α-cyano-4-hydroxycinnamic acid at a concentration of 

10 mg/mL in 30% acetonitrile. Mass spectra of positive ions were recorded in 

linear mode on a Finnegan MAT Vision 2000 or in reflectron mode on a Bruker 

ReflexIV, both with delayed extraction. A total of 50-100 shots from a UV nitro-

gen laser were summed for each spectrum. All mass spectra were recorded in the 

Mass Spectrometry Resource at the Boston University School of Medicine. 

Capillary LC-MS. Samples were analyzed with an LC Packings capillary 

LC coupled to an Applied Biosystems Inc. (Foster City, CA) Sciex QSTAR quad-

rupole orthogonal time-of-flight (QoTOF) mass spectrometer using information 

dependent acquisition. Peptide separation was achieved by using a 256 µm ID × 

20 cm homemade capillary column packed with Michrom (Auburn, CA) Magic 

C18  stationary phase. A 100 min gradient from 95:5 CH3CN:H2O with 0.1% for-

mic acid to 85:10:5 CH3CN:iPrOH:H2O with 0.1% formic acid was run at 1 

µL/min. Eluent was sprayed at 4500 V and tandem MS data were generated with 

collision energies of 18, 24, and 36V for each selected peptide.  
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Data Analysis. Amino acid sequences of sMMO proteins29 (dervied from 

the DNA sequence) were used to calculate masses of tryptic peptides, employing 

the programs PEPTIDEMASS30 or GPMAW.31 Observed masses were manually 

matched to calculated values to make assignments.  

 Site-Directed Mutagenesis. The MMOR variant carrying Glu56Gln and 

Glu91Gln mutations was prepared from pRED21 according to the QuikChange 

method (Stratagene, La Jolla, CA). pRED21 contains the M. capsulatus (Bath) 

mmoC gene in a pET21 vector.7 The Glu56Gln mutation was introduced first with 

the primer 5’-GCAAGGCCTTGTGCAGCCAAGGGACTACGACC-3’ and its re-

verse complement. Positive clones for the Glu56Gln mutation were selected and 

sequenced at the MIT Biopolymers Lab using a ABI 3730 sequencer. The 

Glu91Gln mutation was introduced in the Glu56Gln background using the 

primer 5’-CCGAAGACCGACCCTGCAAATCGAACTGCCCTATAC-3’ and its 

reverse complement. The DNA sequence of the double mutant was similarly 

verified, and the plasmid pRED21 E56Q E91Q was transformed into E. coli 

BL21(DE3). Expression of MMOR Glu56Gln Glu91Gln, referred to hereafter as 

MMOR EQ2, was similar to that of wild type MMOR, except that an IPTG con-

centration of 0.1 mM, rather than 1.0 mM, was used for induction. Purification 

was performed in the same manner as for MMOR. 

NADH Consumption Assays. The activity of sMMO was measured by 

combining 1 µM MMOH and 2 µM MMOB with varying amounts of MMOR or 

MMOR EQ2.3 Propylene saturated buffer (25 mM MOPS, pH 7.0) was added to 
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give a final propylene concentration of 0.8 mM. Reactions, thermostatted at 25 

°C, were initiated by addition of NADH to a final concentration of 160 µM, in a 

total volume of 400 µL in a quartz cuvette. The absorbance at 340 nm was meas-

ured for 2 min, and the rate of NADH consumption calculated as a linear fit of 

∆A340 vs. time. 

 

Results 

 Chemical Cross-linking of sMMO Complexes. EDC reacts to facilitate 

amide bond formation betweens amine and carboxylate groups, forming intra- or 

intermolecular cross-links on proteins, as illustrated in Figure 3.2A. Products re-

sulting from EDC cross-linking of MMOH alone and in complex with MMOR-Fd 

are shown in Figure 3.2B. MMOH forms several intramolecular cross-links, in-

cluding MMOHα:MMOHβ, MMOHβ:MMOHβ, and with extended reaction times, 

MMOHα:MMOHβ:MMOHγ. The band arising from cross-linking between 

MMOH and MMOR-Fd, assigned as MMOHα:MMOR-Fd based on its mobility, 

and confirmed by proteolytic digestion and mass spectrometry (see below). Full-

length MMOR was also found to cross-link to the alpha subunit of MMOH, in 

contrast to previous findings for sMMO from M. trichosporium OB3b.8 Incubation 

of MMOH and MMOR-FAD with EDC did not produce a cross-link, indicating 

that the site for cross-linking to MMOHα lies within the [2Fe-2S] domain of 

MMOR. A mixture of MMOR-Fd and MMOR-FAD did not form a cross-link 

upon reaction with EDC, suggesting that surfaces of these domains may not be in 
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close contact in the full-length protein. Electron transfer kinetic and ITC experi-

ments also support this conclusion.28 Figure 3.2C displays the EDC-promoted 

cross-link between MMOH and MMOB, in which the alpha subunit participates. 

MMOH will also cross-link to MMOD.2  

The reagent SVSB facilitates cross-link formation between MMOB and 

MMOHα, as well as between the MMOH subunits. The structure of SVSB and 

evidence of its ability to cross-link MMOH and MMOB are presented in Figure 

3.3. SVSB was unable, however, to cross-link MMOR-Fd to MMOH. 

Other cross-linking reagents, shown in Figure 3.4, were allowed to react 

with MMO complexes but did not produce cross-links. The amine-to-thiol cross-

linker SPDP has the capability to react with the same residues as SVSB, but it 

does not produce a cross-link between MMOH and MMOB. Presumably, the re-

activity of the dithiopyridyl moiety is less than that of the vinyl sulfone of SVSB, 

or the residues involved in the SVSB cross-link cannot accommodate the shorter 

spacer arm of SPDP (6.8 Å vs. 8.3 Å). The photoactivatable reagent ANB-NOS, 

like SVSB, has a succinimidyl ester to react with amines. If a protein amine reacts 

with that succinimidyl ester, a cross-link can be made by photolysis of the aryl 

azide, producing a highly reactive nitrene. Attempts to cross-link sMMO compo-

nents with this reagent were unsuccessful. The fluorogenic cross-linker dibromo-

bimane can react with two cysteine thiols. Peptides containing this cross-linker 

are fluorescent, providing a convenient means them. It was able to modify, but 
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not cross-link, MMOHα and MMOR-Fd. Other sMMO proteins did not react with 

dibromobimane. 

In-gel Digestion and MALDI-TOF Analysis of Unmodified sMMO Pro-

teins. The isolated MMO proteins were subjected to in-gel proteolysis and mass 

spectrometric analysis. Figure 3.5 shows a MALDI-TOF spectrum of tryptic pep-

tides of MMOHα, and the data are also presented in Table 3.1. A summary of the 

sequence coverage observed for the MMO proteins is displayed in Table 3.2.  

 Figure 3.6 reveals the locations of the peptides listed in Table 3.1 in the 

MMOHα sequence. A difficulty of the in-gel digestion approach is apparent from 

this plot, namely, the presence of many overlapping peptides that provide re-

dundant information. Peptides containing a missed trypsin cleavage site, or a 

modification such as methionine oxidation or sodium ionization, further compli-

cate the spectra but frequently without providing additional information about 

the protein. For example, the sequence LWTLDDIKR, correspoinding to residues 

506-514 of MMOHα, occurs in three different peptides due to missed cleavage 

sites (Figure 3.6). As a result, the abundance and therefore signal intensity of 

each of those peptides is less than if complete proteolysis had occurred, making 

it more difficult to detect them. 

 In-gel Digestion and MALDI-TOF Analysis of MMOHαααα:MMOR-Fd. The 

major cross-linked product resulting from treatment of the MMOH/MMOR-Fd 

complex with EDC is the 71.5 kDa Hα:MMOR-Fd band shown in Figure 3.2B. 

This material was subjected to in-gel digestion and the resulting peptides ana-
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lyzed by MALDI-TOF mass spectrometry. Table 3.3 lists the peptides observed 

and their assignments. The sequence coverage was 76% and 77% for MMOHα 

and MMOR-Fd, respectively.  

 The remaining, unidentified peptide masses were then compared to a list 

of hypothetical cross-linked peptide masses, the latter generated by calculating 

tryptic digests of MMOHα and MMOR-Fd. The mass of a cross-linked peptide is 

taken to be equal to the sum of the masses of a peptide derived from MMOHα 

and the mass of a peptide derived from MMOR-Fd, minus 18.01 Da to account 

for the loss of water upon formation the peptide bond (Figure 3.2A). A hypo-

thetical cross-link was scored as chemically reasonable only if one peptide con-

tains an internal lysine residue or a native protein amino terminus, and the other 

peptide contains an aspartate or glutamate residue or native protein carboxyl ter-

minus. Several unassigned masses did match hypothetical cross-links, but upon 

further inspection, most were not chemically reasonable. 

Analysis of the SVSB-Promoted MMOH:MMOB Cross-link. Digestion 

and analysis of MMOB proved to be somewhat difficult. Samples of MMOB and 

MMOBSVSB contained many more peptides than would be expected, the majority 

of the peptides could not be assigned. These samples were prepared from gels 

having a 4-20% polyacrylamide gradient, and the MMOB was excised from a 

high percentage polyacrylamide region of the gel. It is possible that the high 

polyacrylamide percentage interfered with digestion and/or sample recovery. 

Nonetheless, several unassigned peptides were observed in the MMOBSVSB sam-
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ple that were not present in the unmodified MMOB sample. These were ana-

lyzed as being potential intramolecular cross-links. Three close mass matches 

were found, but none made chemical sense based on the expected reactivity of 

SVSB. Examination of unassigned peptides from MMOH:MMOBSVSB revealed 

four peptides that matched in mass, but again, none made chemical sense. 

 

Other Approaches to Sample Preparation. 

 In response to the concern that the in-gel digestion procedure might in-

hibit recovery of large peptides from the gel matrix after proteolysis, a number of 

other sample preparation methods  were investigated.  

 Solution Digestion and Off-Line HPLC. A 2 nmol EDC cross-linking re-

action of MMOH and MMOR-Fd was carried out and quenched with sodium 

acetate. Following buffer exchange and lyophilization, the protein mixture was 

dissolved in 8M urea, reduced and alkylated. After dilution to reduce the urea 

concentration, trypsin was added and digestion allowed to proceed overnight at 

37 °C. The resulting peptide mixture was separated by RP-HPLC and the frac-

tions collected. The fractions in turn were lyophilized, dissolved in an appropri-

ate solvent, and spotted on a MALDI target with α-cyano-4-hydroxycinnamic 

acid as the matrix. 

 In total, 1,000 peptides were detected. Many of these, however, repre-

sented the same peptide in multiple fractions, collected on a simple time-window 

basis. Sequence coverage was 79% for MMOHα, 84% for MMOHβ, 100% for 
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MMOHγ, and 97% for MMOR-Fd (Table 3.2). A total of 450 peptides remained 

unidentified. This method provided a great deal of information, but without a 

separation step prior to proteolytic digestion, identification of a cross-linked pep-

tide against a background of an excess of unmodified peptides is impossible. 

Based on the success of the solution digest to produce good sequence coverage, 

other methods were sought to allow solution digestion on cross-linked material 

previously separated from unmodified proteins. 

 SDS-PAGE and Electroelution of Cross-linked Bands. An 

MMOHα:MMOR-Fd EDC cross-linking reaction was performed and the 

quenched reaction mixture was separated by SDS-PAGE. The cross-linked band 

was excised and loaded in an electroelution apparatus that uses an applied elec-

tric field to move proteins across a barrier and trap them with a low molecular-

weight cutoff dialysis membrane. Following electroelution, SDS was removed by 

precipitation. Figure 3.7 shows recovery of purified MMOHα:MMOR-Fd by this 

procedure. The proteins were then treated with DTT and iodoacetamide to alky-

late cysteine residues, and digested with trypsin. The MALDI-TOF spectrum of 

the resulting peptides was very poor, due to the presence of residual SDS. At-

tempts to carry out electroelution with SDS-free buffer failed to return protein. 

Neither dialysis, gel filtration, nor ultrafiltration of electroeluted proteins could 

remove SDS to sufficiently low levels that good MALDI-TOF spectra could be 

obtained.  
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 Affinity Tags. Both MMOB and MMOR-Fd can be expressed in E. coli, 

and so the potential exists to engineer affinity tags as part of their amino acid se-

quence. An MMOB expression system prepared using pET32 produces an 

amino-terminal fusion of thioredoxin, a His6 tag, a thrombin cleavage site, an S-

tag, and a Factor Xa site at the native N-terminus (Trx-MMOB). Affinity purifica-

tion might facilitate isolation of cross-linked products and allow their digestion 

in solution. S-tag MMOB, prepared by thrombin treatment of Trx-MMOB, failed 

to cross-link to MMOH upon reaction with EDC, however. 

 Both N- and C- terminal His6 fusions of MMOR-Fd were next prepared. 

The N-terminal His6 fusion was created by cloning MMOR-Fd into pET15b, 

which installs a 20 amino acid N-terminal fusion peptide of the sequence 

MGSSHHHHHHSSGLVPRGSH. A C-terminal His6 tag was added to MMOR-Fd 

by cloning into pET24b, adding the sequence KLAAALEHHHHHH. Both His-

tagged constructs were expressed in E. coli and purified by Ni2+ affinity chroma-

tography. Neither was able to form cross-links to MMOH in the presence of EDC 

(Figure 3.8).  

 

LC-QoTOF MS Analysis of MMOHαααα:MMOR-Fd. 

Rationale. The in-gel digestion method, while imperfect, offers the advan-

tage of separating cross-linked from unreacted proteins prior to proteolysis. In 

order to avoid some of the drawbacks of MALDI-TOF, the peptide mixture was 

analyzed by LC-QoTOF MS. Coupling a chromatographic separation to mass 
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spectrometry results in simpler spectra. The QoTOF spectrometer also has excel-

lent mass accuracy and the ability to acquire tandem mass spectra automatically 

during the LC run. The tandem MS capability offers a solution to another prob-

lem of MALDI-TOF analysis, providing means to confirm that a putative cross-

link actually has the proposed composition.  

LC-QoTOF and Tandem MS Data. A sample of the MMOHα:MMOR-Fd 

EDC cross-link was subjected to LC-MS analysis on a QoTOF instrument. Data 

were recorded by using information dependent acquisition (IDA). Under IDA, 

the spectrometer selects ions for tandem mass spectra on the fly. Under the con-

ditions used for tandem mass spectrometry of peptides, fragmentation occurs 

most commonly on the peptide backbone. Figure 3.9 illustrates the naming 

scheme used for the peptide fragment ions. Differences between prominent frag-

ment ions are compared to a list of exact residue masses for each of the 20 amino 

acids.32 Consequently, accurate masses and sequence information are available 

for many major components of the peptide mixture. Unmodified peptides were 

assigned on the basis of exact mass, and tandem mass spectra were used (when 

available) to help identify any remaining peptides.  

The total ion chromatogram is shown in Figure 3.10, and sequence cover-

age statistics are presented in Table 3.2. In all, 177 unique peptide masses were 

observed, and 88 of them were identified. Of those that were identified, 34 

unique peptides were from MMOHα,  12 from MMOHβ, 10 from MMOR-Fd, and 

2 contained cross-links. The remainder of the identified peptides involved simple 
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modifications of observed peptides. For instance, a peptide might appear in both 

its [M+2H]2+ and [M+H+Na]2+ states. The intensities of the unidentified peptides 

were generally lower than those of identified peptides.  

Nearly all the residues of MMOR-Fd were observed, as was the majority 

of MMOHα sequence. The presence of MMOHβ in the sample is most likely due 

to imperfect resolution of proteins during SDS-PAGE. Intensities of MMOHβ 

peptides were low compared to those of the MMOHα or MMOR-Fd peptides. 

Four major gaps in the MMOHα sequence accounted for the most of its missing 

residues. Those gaps involved residues 95-134, 183-245, 331-360, and 392-419. 

The large size of these tryptic peptides most likely limited the efficiency of their 

extraction from the gel, and thus they were not observed by LC-MS. 

The mass spectrum of peptides eluting at 33.5 min is presented in Figure 

3.11. The electrospray ionization method frequently generates ions in more than 

one charge state. Both 2+ and 3+ ions of a peptide with mass 1942.15 Da can be 

seen in Figure 3.11. In such a case, mass measurements can be made from the iso-

topic series of each charge state, allowing multiple measurements from a single 

spectrum. As shown in the inset of Figure 3.11, the resolving power, defined as 

M/∆m measured full width at half maximum, of the QSTAR exceeds 5,000. At 

this resolving power, the isotopic distribution is clearly discernable for typical 

tryptic peptides. The peak at lowest m/z is the monoisotopic peak, containing 

only 12C, 1H, 14N, 16O and 32S. Each successive peak contains one more atom of a 

heavy isotope than the previous peak. The relative height of each isotopic peak 
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can be calculated based on the known natural abundances of the isotopes. The 

occurrence of 13C dominates the shape of the isotopic distribution of peptides. 

Identification of Two MMOHαααα:MMOR-Fd Cross-links. Peaks marked 

with an asterisk in Figure 3.10 are branched peptides resulting from EDC cross-

linking. The mass spectrum of one of these is depicted in Figure 3.11. The ob-

served mass, 1942.15 Da, closely matches that calculated, 1941.93 Da, for a cross-

link between MMOR-Fd 52-62 (sequence: ALCSEGDYDLK) and MMOHα 2-8 

(sequence: ALSTATK). At first glance, this pair does not appear chemically rea-

sonable. The MMOR-Fd derived peptide contains three carboxylate side chains, 

but the MMOHα derived peptide lacks the required internal Lys residue. 

MMOHα 2-8 has the N-terminal amine of native MMOHα, however. Numbering 

of MMOHα begins at the initial Met, even though it is missing from the mature 

protein as expressed in M. capsulatus (Bath).33 Thus, the N-terminal Ala residue 

is given the number 2. This numbering scheme is used to in order to remain 

consistent with that used in X-ray crystallographic studies.  

The tandem mass spectrum of precursor ion 648.43+ (Figure 3.12) confirms 

the assignment. The entire y-ion series is present, and it demonstrates unambi-

guously that Glu56 is the only one of the three carboxylates on MMOR-Fd 52-62 

involved in a cross-link. Table 3.4 lists the ions observed in the tandem spectrum 

and shows their assignments.  

A second cross-linked peptide, consisting of MMOR-Fd 88-98 (sequence: 

TDLEIELPYTH) and MMOHα 2-8 was also identified. The calculated mass of the 
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peptide, 2002.03 Da, matches that observed for a peptide eluting at 42.5 min, 

2002.23 Da. The tandem data recorded for this peptide are shown in Figure 3.13 

and presented in Table 3.5. The tandem data locate the cross-link at Glu91 of 

MMOR-Fd, and rule out Asp89 and Glu93 as possible sites of cross-linking. 

MMOR-Fd 52-62 and 88-98 were also observed in the LC-MS data as un-

modified peptides. The residues of MMOHα 2-8, however, were only identified 

as part of a cross-link to MMOR-Fd. These observations are consistent with 

MMOHα having a single site of cross-linking at the N-terminus, which can react 

with either MMOR-Fd Glu56 or Glu91.  

Examination of the solution structure of MMOR-Fd7 reveals that Glu56 

and Glu91 are well exposed to solvent and quite close to one another (Figure 

3.14A). The carboxylate oxygen atoms of the two side chains are ~ 6 Å apart. In 

the crystal structure of MMOH, the most N-terminal residue is Ala15.34 The re-

mainder of the N-terminal polypeptide is disordered. Figure 3.14B depicts the 

structure of MMOH with the position of Ala15 highlighted. 

A previous mass spectrometric investigation of MMOH reported N-

terminal variants of MMOHα. In addition to the native protein, with Ala2 at the 

N-terminus, two truncated forms were discovered. Lys8 was at the N-terminus 

of one truncate, Ala10 at the other.33 No cross-links to MMOR-Fd involving these 

truncates were detected in our study, nor were they found in unmodified form. 

The MMOR EQ2 Mutant. In order to confirm that the EDC-promoted 

cross-links between MMOHα and MMOR(-Fd) involve the site identified, the 
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double mutant MMOR Glu56Gln Glu91Gln (MMOR EQ2) was prepared. MMOR 

EQ2 was expected to be similar to MMOR in most respects, but to lack the ability 

to form the identified cross-links. Indeed, the UV-visible spectrum of purified 

MMOR EQ2 is identical to that of MMOR. Similar levels of NADH oxidase activ-

ity (Table 3.6) in the two variants indicate that binding of NADH, reduction and 

re-oxidation of cofactors is not seriously affected by the mutations. Steady-state 

activity of the sMMO system, however, is impaired with MMOR EQ2.   

A comparison of EDC cross-linking of MMOR and MMOR EQ2 to MMOH 

is made in Figure 3.15. MMOR EQ2 still forms cross-links to MMOHα, although 

the yield of cross-linked material is lower than for MMOR.  

 

Discussion 

 Recently, mass spectrometric analyses of protein cross-linking reactions 

have identified protein are components of a complex,17,18 or the precise residues 

involved in chemical cross-links.19-22,35 The high sensitivity and suitability to 

automation of mass spectrometry allow it to identify proteins and protein com-

plexes on a proteome-wide scale.36,37 Since for sMMO, crystals of MMOH-

MMOB and MMOH-MMOD complexes as yet have not yielded X-ray diffraction 

patterns suitable for structure determination, cross-linking presents an alterna-

tive method to investigate the structures of sMMO complexes. 

 Cross-linking Reactions of sMMO Proteins. The zero-length cross-linker 

EDC reacts with sMMO proteins to produce several different products.8 The pre-
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sent work confirms most of these earlier results. The subunits of MMOH cross-

link to afford MMOHα:MMOHβ and MMOHβ:MMOHβ products. The regulatory 

protein MMOB cross-links to MMOHα, consistent with its ability to influence the 

reactivity of the diiron active site located within this polypeptide.1 In contrast to 

previous work, however, we find that MMOR (and MMOR-Fd) cross-links to 

MMOHα, not MMOHβ.8 This and other structural considerations are discussed 

below.  

 Thiol-to-amine cross-linking between MMOB and MMOH was achieved 

with SVSB. MMOB has only one cysteine residue, and it reacts slowly with thiol-

modifying reagents.38 Thus, the MMOHα:MMOB SVSB cross-link most likely in-

volves a lysine from MMOB and a cysteine from MMOHα. 

Digestion and Mass Spectrometric Analysis of Unmodified sMMO Pro-

teins. In-gel digestion followed by MALDI-TOF analysis of the individual pro-

teins of sMMO resulted in good sequence coverage of each protein (Table 3.2). 

Generally, more complete sequence coverage is associated with smaller proteins. 

Regions of a protein may not be observed either because the peptides were not 

present in the sample or because they failed to ionize in the mass spectrometer. 

Certain peptides might remain in the gel pieces during extraction. In a complex 

mixture, some species may become ionized preferentially to others, leading to 

the loss of signal for some components.  

MALDI-TOF Analysis of Cross-linked sMMO Proteins. In the MALDI-

TOF spectrum of MMOHα:Fd, there were 21 peptides observed that were candi-



 111 

date cross-links. Thirteen of these had masses that matched (within 0.1%) one or 

more hypothetical cross-link masses, but most were not chemically reasonable. 

One particular mass (2240 Da) matched seven different hypothetical cross-links, 

though only two were reasonable.  

A sample of MMOHα:MMOBSVSB was similarly analyzed. Sequence cover-

age was lower than for the MMOHα:MMOR-Fd cross-link, and the MALDI-TOF 

mass spectrum contained a large number of unassigned masses. Those unas-

signed masses were compared to a list of hypothetical masses calculated for 

cross-links between amines and thiols, and accounting for the additional mass 

introduced by the cross-linker. No chemically reasonable matches between ob-

served and hypothetical masses were found. 

Considering the number of unassigned masses that were observed in 

these spectra, another method of sample preparation was sought. Concerns 

about in-gel digestion followed by MALDI-TOF included the possibility that 

cross-linked peptides would not be observed in the mass spectrum. Such pep-

tides might be too large to be extracted from the gel, and/or the complexity of 

the peptide mixture might give rise to ion suppression effects that preclude 

measurement of the desired peptides. Initial attempts to avoid these problems 

focused on digestion of the cross-linked mixture in solution. 

Solution Digestion and Other Methods of Sample Preparation. Diges-

tion in solution, rather than in the gel, and HPLC were applied to address the 

concerns described above. Solution digestion omits the need for extraction; all 
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peptides resulting from digestion are certain to be present in the mixture. The 

mixture itself was separated by reverse-phase HPLC to reduce the number of 

peptides present in a particular MALDI sample, and thereby lessen concerns re-

lated to ion suppression. Unlike the in-gel digestion method, the solution digest 

approach does not separate cross-linked material from other proteins present in 

the sample. The digest contains peptides derived from unmodified MMOHα, 

MMOHβ, MMOHγ, and MMOR-Fd; cross-links between MMOH subunits; and 

the cross-link of interest, between MMOHα and MMOR-Fd. The amount of 

MMOHα:MMOR-Fd cross-link is ~10% that of other proteins in the sample, so 

detection becomes challenging. Sequence coverage was improved relative to the 

in-gel method, but no cross-links were identified.  

 It was then clear that separation of cross-linked proteins prior to digestion 

in solution would be the preferred method of sample preparation. Unfortunately, 

the only separation method that worked well was SDS-PAGE. Attempts to purify 

and recover by electroelution cross-linked protein for solution digestion were 

problematic, failing to remove SDS to low enough levels for mass spectrometry. 

Affinity tags, intended to allow a simple chromatographic purification, interfered 

with cross-linking. 

 Thus, although the in-gel digestion method has drawbacks, it did produce 

a useful quantity of sufficiently pure material for MS analysis. We therefore 

abandoned efforts to modify the sample preparation steps and focused instead 

on different MS techniques. LC-MS was selected because it can separate peptides 
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prior to their introduction into the mass spectrometer. The QoTOF instrument 

used also has tandem MS capability, offering a means to gain more detailed 

structural information about the peptides analyzed than is available from mass 

alone. 

 LC-QoTOF Analysis of MMOHαααα:MMOR-Fd. The LC-QoTOF analysis of 

in-gel tryptic digests of MMOHα:MMOR-Fd provided similar sequence coverage 

to MALDI-TOF analysis of the same material. Unlike MALDI-TOF, the separa-

tion of peptides, greater mass accuracy and tandem MS capability of LC-QoTOF 

allowed the positive identification of cross-links between MMOHα and MMOR-

Fd. 

The identities of two EDC-promoted cross-links between MMOHα and 

MMOR-Fd involve an amide bond between the N-terminal amino group of 

MMOHα and the Glu56 or Glu91side chain of MMOR-Fd. The close proximity of 

Glu56 and Glu91 in the solution structure of MMOR-Fd (Figure 3.14) suggests 

that the two cross-links represent only a single interaction between the two pro-

teins. That interaction presumably involves electrostatic attraction between the 

positively charged N-terminus of MMOHα and a negatively charged region con-

taining Glu56 and Glu91 of MMOR or MMOR-Fd.  

Based on their intensity in the LC-MS data, we conclude that the MMOHα 

Ala2:MMOR Glu56/Glu91 cross-links account for a significant fraction of total 

cross-linking, but cross-links between other residues are also present. Figure 3.15 

reveals that MMOR EQ2, lacking carboxylates at positions 56 and 91, still forms 
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cross-links to MMOHα.  The sites of these cross-links are as yet unidentified, but 

determination of their nature will be facilitated by use of the MMOR EQ2 mutant 

or a similar double mutation of MMOR-Fd. 

Implications Regarding the MMOH/MMOR Complex. Although the oc-

curence of the identified cross-links is not in doubt, we must consider two issues. 

Does MMOR-Fd faithfully model of the interactions of MMOR with MMOH and, 

if so, does the cross-link represent a real interaction in the MMOH/MMOR-Fd 

complex?  

We have several lines of evidence to support the conclusion that MMOR-

Fd recapitulates the important features of the MMOH/MMOR complex. Disso-

ciation constants for binding of MMOR and MMOR-Fd to MMOH, measured by 

isothermal titration calorimetry, are within an order of magnitude of one an-

other.3,28 Chemically reduced MMOR-Fd transfers electrons efficiently to the dii-

ron center of MMOH.28 Finally, the FAD domain of MMOR (MMOR-FAD) does 

not cross-link to MMOH, suggesting that it interacts weakly or not at all with 

MMOH (data not shown). 

Among MMOR proteins from several species, only Glu or Asp residues 

occur at position 56, and only Glu or His at position 91.7 MMOHα protein se-

quences are highly conserved along the entire polypeptide, including the N-

terminus.29 It is possible that the cross-link does not reflect a functionally impor-

tant protein complex, but rather reflects the greater reactivity of these groups on 

the protein surfaces. Such is unlikely, however, since we have identified only two 
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specific cross-links, and those represent only a single interaction. There are many 

of surface-accessible carboxylates and amines on both MMOR-Fd and MMOHα. 

Protein pairs that do not to form tight complexes (MMOH and MMOR-FAD; 

MMOB and MMOR) do not cross-link under the same conditions.  

Structural Implications of the Identified Cross-links. Because MMOR 

must deliver electrons to the diiron site of MMOHα, it is likely that the MMOH-

MMOR complex brings the [2Fe-2S] cluster of MMOR within about 14 Å of the 

diiron site to allow efficient electron transfer.39 The canyon region of MMOHα is 

the only protein surface within such a distance of the diiron site, and that region 

has been proposed as a binding site for both MMOR and MMOB.9,14 An exami-

nation of crystal packing interactions led to a model where MMOR could bind in 

the vicinity of MMOHα, namely, Lys385. In MMOHα, Lys385 is more than 75 Å 

from Ala15.34 If the 14 residues between the N-terminus and Ala15 were adopt a 

fully extended conformation, then Ala2 could be at most 54 Å from Ala15. The 

cross-linking results rule out MMOR binding in the vicinity of MMOHα Lys385. 

Thus, the canyon does appear to be a likely site for MMOR binding to MMOH, a 

conclusion similarly reached for MMOB binding to MMOH.14 From an analysis 

of steady state kinetic behavior, MMOB and MMOR do not appear to compete 

for the same binding sites on MMOH.3 

The disorder of the N-terminus of the α subunit in the MMOH crystal 

structure may suggest that it is unstructured. If so, then cross-linking to a specific 
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location on MMOR-Fd might reflect only those carboxylate residues that are ac-

cessible to it upon complex formation. We must consider the possibility that the 

crystal structure might not reflect the structure of the components in complex 

with other proteins. It has been proposed on the basis of small-angle X-ray scat-

tering experiments that MMOH undergoes a large structural change upon forma-

tion of a ternary MMOH/MMOB/MMOR complex.11 

M. capsulatus (Bath) MMOR forms cross-links to MMOHα whereas M. 

trichosporium OB3b MMOR apparently cross-links to MMOHβ.8 This alternative 

cross-linking beahvior, if real, may be a reflection of differences in the location of 

reactive residues on the surfaces of the proteins from the two species. The struc-

tures of the two MMOH proteins are quite similar,9,40 and sequence identities for 

MMOHα, MMOHβ, and MMOR proteins are 81, 59, and 42 percent, respec-

tively.29 These facts suggest that MMOR binds to a location on MMOH where 

the α and β subunits are in close proximity to one another.  

NMR binding studies of MMOR-Fd and MMOH revealed the residues on 

MMOR-Fd that comprise the binding surface. The residues are on the same face 

of the protein as the [2Fe-2S] cluster, consistent with a model in which the two 

proteins bind in a manner to bring the redox active [2Fe-2S] and carboxylate-

bridged diiron centers close to one another. The residues of the MMOR-Fd β-

sheet, including Glu56 and Glu91, experience the least change in backbone 15N 

line width upon binding to MMOH.7 It is not clear why Glu56 and Glu91, resi-

dues that form cross-links and thus presumed to be involved in the binding in-
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teraction, as supported by the diminution of sMMO activity in the MMOR EQ2 

mutant, should appear from the NMR experiment not to be a part of the binding 

face of MMOR-Fd.  

Other Approaches to Understanding Structures of sMMO Protein Com-

plexes. Besides chemical cross-linking, other methods to elucidate the binding 

modes of sMMO complexes have been attempted. Analysis of inter-protein pack-

ing interactions in crystals of MMOH led to a model for binding of MMOR to 

MMOH, although the results of the present cross-linking studies seem to rule out 

this model.34 Solution structures of MMOB and MMOR-Fd have been deter-

mined by NMR spectroscopy, and line-broadening experiments have provided 

information about the surfaces of those proteins that contact MMOH upon bind-

ing.6,7 Saturation-recovery EPR experiments can measure distances between the 

diiron active site and a spin label site-specifically attached to MMOB. This 

method has determined that MMOB Cys 89 is ~ 15 Å from the diiron active 

site.14 This information, coupled with structural information about MMOH, sug-

gest that MMOB binds with Cys 89 approaching helices E and F of MMOHα, in 

the canyon region of MMOH. 

 

Conclusion 

 Two EDC-promoted cross-links between MMOR-Fd and MMOHα, N-

terminus of MMOHα to MMOR-Fd Glu56 and Glu91, were identified through the 

use of LC-QoTOF mass spectrometry. Accurate masses combined with tandem 
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mass spectra confirmed the structures of the cross-links. The locations of Glu56 

and Glu91 on MMOR-Fd, close to each other on strands β4 and β6, suggest that 

the two cross-links represent only a single interaction between the N-terminus of 

MMOHα and the negatively charged region formed by those two carboxylates.  

 Mutation of full length MMOR Glu56 and Glu91 both to Gln reduces 

sMMO activity without seriously curtailing the NADH oxidase activity of iso-

lated MMOR. This result suggests that the interaction identified by the cross-

linking study is relevant to the formation of the MMOH/MMOR complex. The 

double mutant still forms cross-links to MMOH, indicating that other sites of 

cross-link formation exist and remain to be identified.  
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Table 3.1. Peptides Observed in the MALDI-TOF Spectrum of MMOHα In-Gel Digest. 

observed MH+ (Da)a range Calcd. MH+ (Da)a   MMOHα sequence MCb rel. area ∆ (Da) % error modification 
550.2      3.7    
575.8      2.8    
628.3      1.3    
807.2 324-330 807.88  YGVESPR 0 16.3 -0.68 0.084  
814.0 176-182 815  TIGPLWK 0 8.5 -1 0.123  
830.1      1.6    
836.0      4.5    
895.2 386-391 895.99  IYEEWR 0 28 -0.79 0.088  
917.0      2.3    
973.7 9-18 974.06  AATDALAANR 0 3.3 -0.36 0.037  

1034.5 494-502 1035.23  TLIAQPHVR 0 23.7 -0.73 0.071  
1056.7      3.2    
1079.1      2.1    
1094.8 41-49 1096.23  NNRTKYATK 2 100 -1.43 0.130  
1116.8 41-49 1118.22  NNRTKYATK 2 4.5 -1.42 0.127 Na+ adduct 
1139.0      3.5    
1160.0 506-514 1160.36  LWTLDDIKR 1 7 -0.36 0.031  
1219.3 515-524 1219.49  LNCVFKNPVK 1 20.9 -0.19 0.016  
1236.3 78-88 1236.37  QFGSLQDALTR 0 51.5 -0.07 0.006  
1257.9 78-88 1258.36  QFGSLQDALTR 0 3.7 -0.46 0.037 Na+ adduct 
1309.5 19-30 1309.42  APTSVNAQEVHR 0 9.9 0.08 0.006  
1333.7 420-431 1333.59  VSQVPFCPSLAK 0 5.6 0.11 0.008  
1347.4      3.2    
1355.7 Hβ 123-134 1355.49  FLQGYSADGQIR 0 2.3 0.21 0.015 beta contaminant 
1371.9 31-40 1371.54  WLQSFNWDFK 0 23.2 0.36 0.026  
1392.7 135-146 1391.57  NGYLAQVLDEIR 0 45.9 1.13 0.081  
1414.7 135-146 1413.56  NGYLAQVLDEIR 0 7.1 1.14 0.081 Na+ adduct 
1461.1 503-514 1460.67  GDKLWTLDDIKR 2 13.5 0.43 0.029  

-cont’d- 
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Table 3.1., cont’d. Peptides Observed in the MALDI-TOF Spectrum of MMOHα In-Gel Digest. 
observed MH+ (Da)a range Calcd. MH+ (Da)a   MMOHα sequence MCb rel. area ∆ (Da) % error modification 

1467.0 477-489 1466.68  ELSEVIAELHGLR 0 46 0.32 0.022  
1482.9 477-489 1482.68  ELSEVIAELHGLR 0 2.4 0.22 0.015 oxidized +16 
1489.5      6.8    
1532.0 50-61 1533.75  YKMANETKEQFK 2 4.7 -1.75 0.114  
1556.5      5.5    
1638.5 308-320 1637.84  WVYEDWGGIWIGR 0 23.4 0.66 0.040  
1756.2 31-43 1755.93  WLQSFNWDFKNNR 1 27.9 0.27 0.015  
1858.5 266-280 1857.03  YLNTDLNNAFWTQQK 0 29.9 1.47 0.079  
1880.8 89-104 1881.21  LNAGVRVHPKWNETMK 2 10.3 -0.41 0.022  
2077.9 246-265 2075.31  HMANGYQTVVSIANDPASAK 0 13.9 2.59 0.125  
2098.9 246-265 2097.3  HMANGYQTVVSIANDPASAK 0 3.2 1.6 0.076 Na+ adduct 
2225.2 438-455 2223.35  VHEYNGEMHTFSDQWGER 0 83.3 1.85 0.083  
2243.2 75-94 2247.48  DERQFGSLQDALTRLNAGVR 2 18.1 -4.28 0.190  
2266.7 9-30 2264.46  AATDALAANRAPTSVNAQEVHR 1 8.1 2.24 0.099  
2287.3 9-30 2286.45  AATDALAANRAPTSVNAQEVHR 1 1.4 0.85 0.037 Na+ adduct 
2695.1 506-527 2693.19  LWTLDDIKRLNCVFKNPVKAFN 4 4.8 1.91 0.071  
2752.7 456-476 2750.04  MWLAEPERYECQNIFEQYEGR 1 31.2 2.66 0.097  
2767.4 281-303 2767.31  YFTPVLGMLFEYGSKFKVEPWVK 2 17.5 0.09 0.003  
2958.6 337-360 2956.33  QDAYWAHHDLYLLAYALWPTGFFR 0 4.3 2.27 0.077  
3094.4 78-104 3098.56  QFGSLQDALTRLNAGVRVHPKWNETMK 3 39.1 -4.16 0.134 
3094.4 361-385 3090.36  LALPDQEEMEWFEANYPGWYDHYGK 0 39.1 4.04 0.131 

ambiguous 

3113.1 394-419 3109.51  GCEDPSSGFIPLMWFIENNHPIYIDR 0 11.4 3.59 0.115  
3127.1 394-419 3125.51  GCEDPSSGFIPLMWFIENNHPIYIDR 0 8.4 1.59 0.051 oxidized +16 
3144.1 62-88 3140.59  LIAKEYARMEAVKDERQFGSLQDALTR 4 4.5 3.51 0.112  
3219.1 105-134 3214.58  VVSNFLEVGEYNAIAATGMLWDSAQAAEQK 0 14.8 4.52 0.141  
3236.2 438-463 3236.53   VHEYNGEMHTFSDQWGERMWLAEPER 1 7.4 -0.33 0.010   

aObserved and calculated are average masses. bMC reports the number of missed trypsin cleavage sites in the peptide. 
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Table 3.2. Sequence coverage of unmodified sMMO proteins following in-gel di-

gestion. 

Sample MS method Protein 

Residues 

observed 

(total) % coverage 

MMOHα MALDI-TOF MMOHα 361 (526) 69 

MMOHβ MALDI-TOF MMOHβ 270 (388) 70 

MMOHγ MALDI-TOF MMOHγ 154 (169) 91 

MMOB MALDI-TOF MMOB 141 (141) 100 

MMOR-Fd MALDI-TOF MMOR-Fd 95 (98) 97 

MMOBSVSB MALDI-TOF MMOB 112 (141) 80 

MMOHα:MMOBSVSB MALDI-TOF MMOHα 208 (526) 40 

  MMOB 66 (141) 47 

MMOHα:MMOR-Fd  MALDI-TOF MMOHα 402 (526) 76 

  MMOR-Fd 76 (98) 78 

MMOH:MMOR-Fd MMOHα 416 (526) 79 

 

Off-line HPLC/ 

MALDI-TOF MMOHβ 326 (388) 84 

  MMOHγ 169 (169) 100 

  MMOR-Fd 95 (98) 97 

MMOHα:MMOR-Fd  LC-QoTOF MMOHα 359 (526) 68 

  MMOHβ 126 (388) 32 

  MMOR-Fd 90 (98) 92 
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Table 3.3. Peptides Observed in MALDI-TOF Spectrum of MMOHα:MMOR-Fd Cross-Link. 
observed 

MH+ 
(Da) 

pro-
tein range 

calculated 
MH+ (Da)   sequence MC ∆ (Da) 

rel. 
area. % error modification 

807.4 Hα 324-330 807.88  YGVESPR 0 0.48 3.4 0.059  
814.0 Hα 176-182 815  TIGPLWK 0 1 15.9 0.123  
829.5        2   
836.4        1.7   
845.5        0.2   
864.6        0.3   
869.9        0.5   
882.0 Fd 44- 51 882.99  EGGCATCK 0 0.99 1.4 0.112  
888.6        3.7   
895.0 Hα 386-391 895.99  IYEEWR 0 0.99 13.9 0.110  
910.5        0.6   
916.8        0.7   
926.9        1.5   
969.8        1.5   
977.0 Hα 58- 65 977.19  EQFKLIAK 1 0.19 0.7 0.019  
979.9 Hα 70- 77 978.11  MEAVKDER 1 -1.79 0.9 -0.183  
985.8 Hα 50- 57 985.15  YKMANETK 1 -0.65 0.4 -0.066  
997.5        1.4   

1003.6 Hα 44- 51 1003.19  TKYATKYK 2 -0.41 0.6 -0.041  
1033.5 Hα 296-303 1033.26  FKVEPWVK 1 -0.24 19.5 -0.023  
1041.1        0.4   
1049.1        1.1   
1056.4        0.7   
1095.0 Hα 41- 49 1096.23  NNRTKYATK 2 1.23 18.7 0.112  
1105.3 Hα 321-330 1106.27  LGKYGVESPR 1 0.97 0.6 0.088  
1111.1        2.3   

-cont’d- 
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Table 3.3., cont’d. Peptides Observed in MALDI-TOF Spectrum of MMOHα:MMOR-Fd Cross-Link. 
observed 

MH+ 
(Da) 

pro-
tein range 

calculated 
MH+ (Da)   sequence MC ∆ (Da) 

rel. 
area. % error modification 

1130.0 Hα 176-185 1131.43  TIGPLWKGMK 1 1.43 0.7 0.126  
1146.1        0.5   
1154.9        0.5   
1159.7 Hα 506-514 1160.36  LWTLDDIKR 1 0.66 2 0.057  
1172.3        2.3   
1190.1 Fd 23- 33 1190.3  SDEDVITAALR 0 0.2 1.2 0.017  
1219.3 Hα 515-524 1219.49  LNCVFKNPVK 1 0.19 19.8 0.016  
1226.0 Hα 52- 61 1226.4  MANETKEQFK 1 0.4 1.7 0.033  
1236.4 Hα 78- 88 1236.37  QFGSLQDALTR 0 -0.03 34.2 -0.002  
1256.7 Fd 34- 43 1256.49  QNIFLMSSCR 0 -0.21 3.8 -0.017  
1270.9 Fd 52- 62 1271.39  ALCSEGDYDLK 0 0.49 1.5 0.039 
1270.9 Hα 95-104 1270.5  VHPKWNETMK 1 -0.4 1.5 -0.031 

ambiguous 
assignment 

1286.1 Hα 176-186 1287.62  TIGPLWKGMKR 2 1.52 1.2 0.118  
1304.3 Hα 503-513 1304.49  GDKLWTLDDIK 1 0.19 4.1 0.015  
1322.5        0.8   
1333.1 Hα 420-431 1333.59  VSQVPFCPSLAK 0 0.49 9.5 0.037  
1344.5        1.2   
1357.2 Hα 494-505 1357.54  TLIAQPHVRGDK 1 0.34 4.5 0.025 Na+ adduct 
1372.1 Hα 31- 40 1371.54  WLQSFNWDFK 0 -0.56 27.5 -0.041  
1392.5 Hα 135-146 1391.57  NGYLAQVLDEIR 0 -0.93 17.4 -0.067  
1460.9 Hα 503-514 1460.67  GDKLWTLDDIKR 2 -0.23 21.1 -0.016  
1467.1 Hα 477-489 1466.68  ELSEVIAELHGLR 0 -0.42 21 -0.029  
1638.7 Hα 308-320 1637.84  WVYEDWGGIWIGR 0 -0.86 24.3 -0.053  
1653.1 Hα 52- 65 1651.97  MANETKEQFKLIAK 2 -1.13 6.8 -0.068  
1669.9        2.4   
1706.7 Hα 514-527 1708.04  RLNCVFKNPVKAFN 3 1.34 0.6 0.078  

-cont’d- 
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Table 3.3., cont’d. Peptides Observed in MALDI-TOF Spectrum of MMOHα:MMOR-Fd Cross-Link. 
observed 

MH+ 
(Da) 

pro-
tein range 

calculated 
MH+ (Da)   sequence MC ∆ (Da) 

rel. 
area. % error modification 

1712.9        1.4   
1756.7 Hα 31- 43 1755.93  WLQSFNWDFKNNR 1 -0.77 73.6 -0.044  
1771.2        8.9   
1788.1        0.6   
1804.0 Hα 147-160 1803.01  HTHQCAYVNYYFAK 0 -0.99 7.1 -0.055  
1822.3 Fd 84- 98 1821.04  TYPKTDLEIELPYTH 1 -1.26 3 -0.069  
1846.0 Hα 78- 94 1847.08  QFGSLQDALTRLNAGVR 1 1.08 1.5 0.058  
1858.4 Hα 266-280 1857.03  YLNTDLNNAFWTQQK 0 -1.37 79.6 -0.074  
1880.6 Hα 89-104 1881.21  LNAGVRVHPKWNETMK 2 0.61 3.7 0.032  
1892.8        3.7   
1922.9 Hα 62- 77 1923.24  LIAKEYARMEAVKDER 3 0.34 1.7 0.018  
2006.8        1.5   
2078.1 Hα 246-265 2075.31  HMANGYQTVVSIANDPASAK 0 -2.79 9.6 -0.134  
2132.8 Fd 44- 62 2135.36  EGGCATCKALCSEGDYDLK 1 2.56 2.4 0.120  
2166.8        2.3   
2196.8 Hα 70- 88 2195.46  MEAVKDERQFGSLQDALTR 2 -1.34 2.1 -0.061  
2225.6 Hα 438-455 2223.35  VHEYNGEMHTFSDQWGER 0 -2.25 100 -0.101  
2241.0        16.3   
2266.4 Hα 9- 30 2264.46  AATDALAANRAPTSVNAQEVHR 1 -1.94 3.9 -0.086  
2278.4 Hα 9- 30 2280.46  AATDALAANRAPTSVNAQEVHR 1 2.06 4.5 0.090 oxidized +16 
2344.6 Hα 494-513 2342.69  TLIAQPHVRGDKLWTLDDIK 2 -1.91 1.5 -0.082 Na+ adduct 
2468.0        2.4   
2481.9        2.2   

2555.8 
tryp-

sin 100-125 2552.25  VASISLPTSCASAGTQCLISGWGNTK 0 3.5 2.2 0.137  
2662.3 Hα 19- 40 2661.94  APTSVNAQEVHRWLQSFNWDFK 1 -0.36 3.7 -0.014  

-cont’d- 
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Table 3.3., cont’d. Peptides Observed in MALDI-TOF Spectrum of MMOHα:MMOR-Fd Cross-Link. 
observed 

MH+ 
(Da) 

pro-
tein range 

calculated 
MH+ (Da)   sequence MC ∆ (Da) 

rel. 
area. % error modification 

2754.5 Hα 456-476 2750.04  MWLAEPERYECQNIFEQYEGR 1 -4.46 6.4 -0.162  
2814.8        0.7   
2874.6 Fd 63- 87 2876.28  GCSVQALPPEEEEEGLVLLCRTYPK 1 1.68 3.2 0.058  
3042.9 Hα 19- 43 3046.33  APTSVNAQEVHRWLQSFNWDFKNNR 2 3.43 1.9 0.113  
3095.2 Hα 78-104 3098.56  QFGSLQDALTRLNAGVRVHPKWNETMK 3 3.36 12 0.108  
3111.8 Hα 394-419 3109.51  GCEDPSSGFIPLMWFIENNHPIYIDR 0 -2.29 2.6 -0.074  
3220.3 Hα 105-134 3214.58  VVSNFLEVGEYNAIAATGMLWDSAQAAEQK 0 -5.72 15.4 -0.178  
3235.4 Hα 494-520 3238.83  TLIAQPHVRGDKLWTLDDIKRLNCVFK 4 3.43 1.7 0.106  
3985.2 Hα 361-391 3983.32  LALPDQEEMEWFEANYPGWYDHYGKIYEEWR 1 -1.88 4.8 -0.047 oxidized +16 
4096.1        2   

4605 Hα 266-303 4605.32   YLNTDLNNAFWTQQKYFTPVLGMLFEYGSKFKVEPWVK 3 0.32 3.4 0.007   
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Table 3.4. Tandem MS Data for Peptide with Cross-Link between MMOR-Fd 
Glu56 and MMOHα N-terminus. 

Mass 
(mono.) Mass (calc.) 

Difference 
(Da) error (ppm)   structure ion type 

1942.144 1941.935 0.208 107  ALCSE(ALSTATK)GDYDLK precursor 
1871.028 1870.898 0.130 70  LCSE(ALSTATK)GDYDLK y10 
1833.131     ?  
1758.013 1757.814 0.199 113  CSE(ALSTATK)GDYDLK y9 
1739.973 1739.804 0.168 97  CSE(ALSTATK)GDYDLK y9-H2O 
1682.905 1682.754 0.151 89  ALCSE(ALSTATK)GDYD b9 
1597.954 1597.784 0.170 107  SE(ALSTATK)GDYDLK y8 
1510.896 1510.752 0.144 95  E(ALSTATK)GDYDLK y7 
1498.777     ?  
1322.718 1322.589 0.129 98  ALCSE(A)GDYDLK b1

α 
1232.722 1232.615 0.107 87  ALCSE(ALSTATK) b5 
1214.729 1214.615 0.114 94  ALCSE(ALSTATK) b5-H2O 
1048.584 1048.490 0.094 90  CSE(ALSTATK) y9b5 
1030.560 1030.480 0.080 77  CSE(ALSTATK) y9b5-H2O 

709.400 709.328 0.072 101  GDYDLK y6 
690.456 690.399 0.057 82  ALSTATK y7

α 
652.380 652.307 0.073 111  DYDLK y5 
619.423 619.354 0.069 111  LSTATK y6

α 
537.335 537.280 0.055 102  YDLK y4 
506.325 506.270 0.055 108  STATK y5

α 
450.192     ?  
419.292 419.238 0.053 128  TATK y4

α 
393.154     ?  
374.261 374.217 0.044 118  DLK y3 
344.193 344.160 0.033 97  ALC b3 
318.240 318.190 0.050 156  ATK y3

α 
278.127     ?  
259.220 259.190 0.030 117  LK y2 
247.170 247.153 0.017 67  TK y2

α 
241.181     ?  
184.147 184.129 0.018 95  AL b2 
156.145 156.134 0.011 73  AL a2 
146.126 146.106 0.020 140  K y1(α) 
135.085 135.030 0.055 409  Y immonium 
132.056 132.030 0.026 198  C immonium 
128.114     ?  

85.104 85.080 0.024 286   L immonium 
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Table 3.5. Tandem MS Data for Peptide with Cross-Link between Fd Glu91 
and MMOHα N-terminus. 
Mass (mono.) Mass (calc.) diff error (ppm)  structure ion 

2002.249 2002.030 0.219 109  TDLE(ALSTATK)IELPYTH precursor 
1786.114 1785.950 0.164 92  LE(ALSTATK)IELPYTH y9 
1673.039 1672.870 0.169 101  E(ALSTATK)IELPYTH y8 
1485.983 1485.800 0.183 123  TDLE(ALSTATK)IEL b7 
1372.880 1372.716 0.164 119  TDLE(ALSTATK)IE b6 
1243.803 1243.674 0.129 103  TDLE(ALSTATK)I b5 
1215.806 1215.679 0.127 105  TDLE(ALSTATK)I a5 
1130.708 1130.590 0.118 104  TDLE(ALSTATK) b4 

914.593 914.520 0.073 80  LE(ALSTATK) y9b4 
886.575     ?  
871.531 871.440 0.091 104  IELPYTH y7 
773.505     ?  
758.440 758.360 0.080 106  ELPYTH y6 
756.480     ?  
740.414 740.350 0.064 86  ELPYTH y6-H2O 
690.491 690.390 0.101 147  ALSTATK y7

α 
629.395 629.320 0.075 120  LPYTH y5 
624.385     ?  
619.426 619.350 0.076 123  LSTATK y6

α 
516.295 516.233 0.062 120  PYTH y4 
506.342 506.270 0.072 142  STATK y5

α 
498.302     ?  
491.296 491.260 0.036 74  LSTAT  y6

αb1
α 

419.278 419.238 0.040 96  TATK y4
α 

419.278 419.180 0.098 234  YTH y3 
402.227     ?  
361.203     ?  
329.204 329.167 0.037 112  TDL b3 
318.228 318.190 0.038 119  ATK y3

α 
301.207 301.172 0.035 115  TDL a3 
256.147 256.117 0.030 118  TH y2 
247.186 247.153 0.033 133  TK y2

α 
238.146     ?  
232.159     ?  
216.104 216.082 0.022 103  TD b2 
194.116     ?  
188.118 188.089 0.029 152  TD a2 
170.106     ?  
155.094 155.070 0.024 155  H y1 
128.095     ?  

85.103 85.080 0.023 270  I/L immonium 
73.064 73.047 0.017 226   T immonium 
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Table 3.6. NADH Oxidation Activity of sMMO with MMOR or MMOR EQ2. 

 NADH oxidation activity  

(turnover number, s-1) 

 

MMOH:MMOB:MMOR (µM) MMOR MMOR EQ2 Ratio 

0:0:1 0.187 0.161 86% 

1:2:1 0.679 0.425 63% 

1:2:2 0.814 0.517 64% 
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Figure 3.1. 3-D Structures of sMMO component proteins. Ribbon diagrams of 

MMOH, MMOR-Fd and MMOB are shown on the left. For MMOH, the alpha 

subunits are red, beta subunits blue, and the gamma subunits green. On the 

right, in the same orientation, are presented electrostatic surfaces of the proteins. 

Red and blue regions represent areas of negative and postive charge, respec-

tively. Structures are drawn to the same scale. MMOR-Fd and MMOB are ori-

ented to reveal the faces predicted by NMR studies to contact MMOH.6,7 
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Figure 3.2. (A) Structure of EDC and mechanism of EDC-promoted crosslinking 

between carboxylate and amine functional groups of proteins P1 and P2. EDC is 

considered a zero-length cross-linker because the new bond formed includes no 

atoms of the cross-linker. (B) SDS-PAGE analysis of EDC-promoted crosslinking 

of MMOH (lane 1) and the MMOH/MMOR-Fd complex (lane 2). Subunits of 

MMOH are indicated as Hα, Hβ, and Hγ. Crosslinked bands are indicated with 

arrows. (C) SDS-PAGE analysis of EDC-promoted crosslinking of MMOH (lane 

1) and the MMOH/MMOB complex (lane 2). Labels as in (B).  
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Figure 3.3. (A) Structure of SVSB and its means of protein cross-linking. (B) 

Time-dependent cross-linking of MMOB to MMOH with SVSB. MMOB was in-

cubated with 10 mM SVSB for 2 hr at room temperature prior to addition of 

MMOH for up to 1 h (lanes 1-3). In lanes 4-6, no MMOB was present. Arrows in-

dicate bands formed differentially in prescence or absence of MMOB. (C) Deniso-

tometry traces of lanes 1 and 4; the arrow indicates the band arising from cross-

linking between MMOH and MMOB. 
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Figure 3.4. Structures of cross-linking reagents that failed to facilitate cross-link  

formation of complexes between sMMO components.  
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Figure 3.5. MALDI-TOF specturm of in-gel tryptic digest of MMOHα. Peaks are 

labelled with measured m/z (MH+) and the assigned residues of MMOHα. See 

also Table 3.1 and Figure 3.6. 
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     1 -ALSTATKAATDALAANRAPTSVNAQEVHRWLQSFNWDFKNNRTKYATKYKMANETKEQF 
               <--------------------><----------->      <------>    
               <-----------------Na+><--------><------->            
               <--------><---------->                               
 
    61 KLIAKEYARMEAVKDERQFGSLQDALTRLNAGVRVHPKWNETMKVVSNFLEVGEYNAIAA 
        <-------------------------><--------------><--------------- 
                     <------------------>                           
                        <--------->                                 
                        <------Na+>                                 
 
   121 TGMLWDSAQAAEQKNGYLAQVLDEIRHTHQCAYVNYYFAKNGQDPAGHNDARRTRTIGPL 
       -------------><---------->                             <---- 
                     <-------Na+>                                   
 
   181 WKGMKRVFSDGFISGDAVECSLNLQLVGEACFTNPLIVAVTEWAAANGDEITPTVFLSIE 
       ->                                                           
 
   241 TDELRHMANGYQTVVSIANDPASAKYLNTDLNNAFWTQQKYFTPVLGMLFEYGSKFKVEP 
            <------------------><-------------><------------------- 
 
   301 WVKTWDRWVYEDWGGIWIGRLGKYGVESPRSLKDAKQDAYWAHHDLYLLAYALWPTGFFR 
       -->    <----------->   <----->      <----------------------> 
 
   361 LALPDQEEMEWFEANYPGWYDHYGKIYEEWRARGCEDPSSGFIPLMWFIENNHPIYIDRV 
                                <---->  <------------------------>< 
                                        <---------------------Na+>  
 
   421 SQVPFCPSLAKGASTLRVHEYNGEMHTFSDQWGERMWLAEPERYECQNIFEQYEGRELSE 
       ---------->      <------------------------>             <--- 
                        <----------------><-------------------><--- 
 
   481 VIAELHGLRSDGKTLIAQPHVRGDKLWTLDDIKRLNCVFKNPVKAFN 
       -------->    <------->   <-------------------->              
       ------ox>             <----------><--------> 
                                <------->                           

 

Figure 3.6. Sequence of MMOHα and tryptic digest peptides observed by 

MALDI-TOF following SDS-PAGE and in-gel digestion. See also Figure 3.5 and 

Table 3.1.  
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Figure 3.7. Recovery of gel purified MMOHα:MMOR-Fd by electroelution. Lane 

1, molecular weight markers; lane 2, empty; lane 3, MMOH/MMOR-Fd mixture; 

lane 4, MMOH:MMOR-Fd cross-linking reaction; lane 5, empty; lane 6, 

MMOHα:MMOR-Fd after electroelution. 

1       2      3       4      5       6 
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Figure 3.8. Inability of MMOR-Fd His6 fusion constructs to cross-link to MMOH. 

(A) Lane 1, Products of EDC reaction with MMOH and MMOR-Fd. Lane 2, 

Products of EDC reaction with MMOH and N-terminally His-tagged MMOR-Fd. 

(B). As in (A), but lane 2 contains C-terminally His-tagged MMOR-Fd. 

A.       1          2          B.      1           2 
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Fd 

α:Fd 
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Figure 3.9. Nomenclature of peptide fragment ions.32  
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Figure 3.10. Total ion chromatogram from LC-QoTOF analsysis of a tryptic di-

gest of MMOHα:MMOR-Fd. Peak marked with * are cross-linked peptides, as de-

scribed in the text. 
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Figure 3.11. Mass spectrum recorded at 33.5 minutes during LC-MS run (peak 

starred in Figure 3.10). The two labelled peaks represent the doubly- and triply-

charged ions of a peptide with Mobs = 1942.15 Da. The inset shows the isotoptic 

cluster for the 3+ ion. The predicted isotopic distribuition calculated for the struc-

ture shown in Figure 3.12A is shown by the small circles. 
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Figure 3.12. Cross-link between MMOHα N-terminus and MMOR-Fd Glu56. (A) 
Structure of cross-link indicating fragments observed in the tandem mass spec-
trum. Fragments are named according to Figure 3.9, with the α superscript 
indicating numbering with respect to the portion of the peptide derived from 
MMOHα. (B) Tandem mass spectrum recorded upon fragmentation of precursor 
ion 648.43+.  
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Figure 3.13. Cross-link between MMOHα N-terminus and MMOR-Fd Glu91. (A) 
Structure of cross-link, indicating fragments observed in the tandem mass spec-
trum. Fragments are named according to Figure 3.9, with the α superscript indi-
cating numbering with respect to the portion of the peptide derived from 
MMOHα. (B) Tandem mass spectrum recorded upon fragmentation of precursor 
ions 668.33+ and 1002.122+. 
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Figure 3.14. Locations of cross-linking residues. (A) Two views of MMOR-Fd, 

with Glu56 and Glu91 shown in ball-and-stick. (B) MMOH, with MMOHα Ala15  

alpha carbon depicted as a yellow sphere.  

Glu56 
Glu91 Glu56 Glu91 
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Figure 3.15. EDC cross-linking of MMOH to MMOR or MMOR EQ2. Lane 1, 

MMOH and MMOR cross-linking. Lane 2, MMOH and MMOR EQ2 cross-

linking. 
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Chapter Four: 

 

Cationic Species Can Be Produced in Soluble Methane Monooxygenase-

Catalyzed Hydroxylation Reactions; Radical Intermediates Are Not Formed 
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Introduction1,2 

Soluble methane monooxygenase (MMO) systems from methanotrophic 

bacteria contain hydroxylase enzymes (MMOH) that have a diiron moiety at the 

active site. The MMOH enzymes efficiently oxidize methane to methanol, one of 

the more remarkable reactions in nature. Several intermediates in the catalytic 

cycle of MMOH accumulate and have been characterized spectroscopically.3 The 

mechanisms of catalytic hydroxylation of unactivated C–H bonds by these en-

zymes are not fully understood, however, and remain a subject of considerable 

research effort. The MMO hydroxylation reactions could be related to hydroxyla-

tions by cytochrome P450 enzymes.4  

Various mechanistic probes have been employed in studies of the two 

well-characterized MMO systems, those from Methylococcus capsulatus (Bath) and 

Methylosinus trichosporium OB3b. The results from oxidations of chiral (by virtue 

of isotopic substitution) alkanes5,6 and hypersensitive cyclopropane-based 

probes7,8 are in general agreement that the "lifetimes" of putative radicals in 

MMO hydroxylation are too short for true intermediates and thus implicate in-

sertion reactions. In a study reported by our groups in 1996, the regiochemistry 

of reactions of methylcubane with the tert-butoxyl radical, a cytochrome P450 

enzyme, and the sMMO system from M. capsulatus (Bath) were compared.9 We 

reported that, whereas P450 oxidized all C–H positions to give four alcohol 

products, the MMO oxidation gave only cubylmethanol, and we proposed an in-

sertion mechanism for this oxidation. Recently, it was reported10 that the M. 
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trichosporium OB3b sMMO system oxidized methylcubane at all positions and 

that the major alcohol product derived from rearrangement of the cubylcarbinyl 

radical, thus implicating a radical-based mechanism. 

We have now reinvestigated methylcubane oxidation by both sMMO sys-

tems. All positions of this substrate are indeed functionalized by both sMMOs, 

and the observed10 rearranged alcohol is produced in both cases. That rear-

ranged product, however, is shown here to be the known compound 1-

homocubanol, which derives not from a radical intermediate but from a cationic 

rearrangement process. In addition, a hypersensitive cyclopropane-based 

mechanistic probe designed to distinguish between "radical" and "cationic" spe-

cies was successfully oxidized by the M. capsulatus (Bath) MMOH, and a cationic 

rearrangement product was detected as a minor product. The results clearly im-

plicate a "cationic" component in MMO hydroxylation reactions as previously 

suggested,11 and they support the conclusion that more than one species can ef-

fect oxidation in sMMO systems.3 

 

Experimental Section 

 Protein Purification. MMOH from both M. capsulatus (Bath) and M. 

trichosporium OB3b was prepared from cell paste of the respective bacteria as de-

scribed.  M. capsulatus (Bath) MMOR and MMOB were purified from recombi-

nant systems, whereas M. trichosporium OB3b MMOR and MMOB were purified 

from the native organism, following literature procedures.12,13 
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 Preparation of Substrates and Authentic Product Standards. Methylcu-

bane (1) and its hydroxylation products (2-4) were prepared according to litera-

ture methods.9,14 Probe 5 and its products 6-8 were prepared using methods 

analogous to those used in preparation of the t-butoxyl analog of 5.8 

 Substrate Hydroxylation and Product Analysis. MMOH, MMOB, and 

MMOR were combined in a 1:2:0.25 µM ratio in 25 mM MOPS at pH 7.0. A vol-

ume of substrate was added to make a saturated solution. NADH was added to a 

final concentration of 1 mM to initiate the reaction, and the hydroxylation was 

allowed to proceed 10-20 min at 45 °C. Reactions were quenched by addition of 

methylene chloride. Hydroxylation products were extracted three times, and the 

organic layers combined and concentrated. GC and GC-MS analysis was per-

formed by using a 30 m carbowax column with a Hewlett-Packard 5980 gas 

chromatograph with either flame ionization or mass spectrometric detection. 

 

Results and Discussion 

Oxidations of methylcubane (1) were performed with the MMO systems 

from M. capsulatus (Bath) and M. trichosporium OB3b.13,15,16 GC and GC-MS 

analyses of the product mixtures revealed the presence of five alcohol products 

from the M. c. (Bath) MMO oxidation (Figures 4.1 and 4.2). The same products 

were formed in lower yields in the M. t. OB3b MMO oxidation, although the GC 

traces from these reactions were complicated by the presence of traces of com-

pounds from the enzyme mixture. Oxidation of methylcubane by the purified 



 152 

cytochrome P450 isozyme CYP2B18 in a control experiment gave a clean product 

sample containing four of the five alcohol products. Cubylmethanol (2) was iden-

tified by comparison of the GC retention time and mass spectral fragmentation 

pattern to those of the known compound.17 The three methylcubanol products 

(3) were identified by their mass spectral fragmentation patterns.10 

The fifth alcohol product from MMO oxidations, the major product, was 

not formed in detectable amounts in the P450-catalyzed oxidation. This product 

is the rearranged compound 1-homocubanol (4) as determined by comparison of 

its GC retention time and mass spectral fragmentation pattern (Figure 4.3) to 

those of an authentic sample.14 The mass spectrum of 4 is the same as that shown 

for the major product of methylcubane hydroxylation by M. trichosporium OB3b 

sMMO, and there is little doubt that this product is the one ascribed to a radical 

rearrangement.10 A control experiment showed that alcohol 2 does not convert to 

4 during steady-state hydroxylation of acetonitrile, a good substrate for MMO.18 

To confirm product identities, a mixture of products from M. c. (Bath) was 

treated with acetic anhydride and pyridine to give acetates that were character-

ized by GC and GC-MS. We found five acetates with GC retention times and MS 

fragmentation patterns matching those of the known9,19 acetates from products 2 

and 3 and the acetate prepared from 4. An authentic sample was prepared reac-

tion of 4 with acetic anhydride and pyridine as described.9 

The production of 1-homocubanol in the MMO oxidations is inconsistent 

with formation of a radical intermediate. The cubylcarbinyl radical ring opens by 
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a series of bond cleavage reactions that destroy the cube skeleton.17,20 Ring ex-

pansion of the cubylmethyl system to the homocubyl system is only known for 

cationic rearrangements.14,17,21 

In a typical experiment, the GC (flame-ionization) peak areas of the alco-

hols obtained from the M. c. (Bath) MMO oxidation of methylcubane were in the 

ratio 2:3:5 (2, 3, 4), and product 4 was the major one with M. t. OB3b as previ-

ously reported (Figure 4.2).10 The methylcubanols and 1-homocubanol are un-

stable compounds, however, and a control reaction containing a small amount of 

cubylmethanol (2) showed that this compound was consumed by MMO. The 

product instabilities might account for the differences in the present results from 

those we previously found with M. c. (Bath).9 These instabilities require that the 

product ratios be considered as qualitative rather than quantitative measures. 

An alternative molecular architecture that can distinguish between radical 

and cationic intermediates is afforded by the hypersensitive cyclopropane-based 

probe 5 (Figure 4.4). The cyclopropylcarbinyl radical from 5 rearranges to give 

products derived from a benzylic radical, but the cyclopropylcarbinyl cation ring 

opens to the methoxy-substituted cation (an oxonium ion).22,23 In the context of 

hydroxylation reactions, alcohol 7 is produced from radicals, whereas aldehyde 8 

is formed from cations via hydrolysis of the initially formed hemiacetal and 

isomerization of the β,γ-unsaturated aldehyde in buffer. We attempted to oxidize 

the tert-butoxy analogue of probe 5 with the M. c. (Bath) sMMO system, but that 

compound was an inhibitor and not a substrate.8 Probe 5 is a substrate, albeit a 
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relatively poor one, for the sMMO from M. c. (Bath). Oxidations of 5 gave the un-

rearranged alcohol 6 as the major product and both radical-derived (7) and 

cation-derived (8) rearrangement products. Two diastereomers of 7 are possible, 

but only one was detected. The product alcohols from the MMO oxidation were 

identified by comparisons of GC retention times and mass spectral fragmentation 

patterns to those of authentic samples.24 The yields of alcohols were small, ren-

dering quantitation difficult, but the product ratios from four oxidations of 5 

were 80:14:6 for 6, 7, and 8, respectively. 

The accumulated results of probe studies of MMO hydroxylations permit 

the firm conclusion that no radical intermediates are formed. No radical rear-

rangement products are found from methylcubane. From the product ratio and 

rate constant for ring opening of the cyclopropylcarbinyl radical derived from 

probe 5,23 the "radical" lifetime was computed to be 250 fs, corresponding to a 

capture rate constant of 4 × 1012 s-1. The small amounts of inversion found in 

MMO hydroxylations of chiral ethane5,6 and butane6 require that the lifetimes of 

the "radicals" be on the order of 100-200 fs. A variety of hypersensitive cyclopro-

pane-based radical probes that cannot distinguish between radical and cationic 

rearrangements previously gave little or no rearrangement products3,7 requiring 

that the "radical" lifetimes be 250 fs or less. The lifetimes being measured are 

those of transition states. 

In contrast to the firm conclusion regarding the absence of radical inter-

mediates, the detection of cationic rearrangement products from both methylcu-
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bane and probe 5 permits only qualitative statements. The lifetimes, and even the 

identities, of these species cannot be determined. A similar conclusion resulted 

from M. t. OB3b sMMO oxidation of 1,1-dimethylcyclopropane which gave some 

1-methylcyclobutanol product.11 Candidates for the cationic species are proto-

nated alcohols. 

The oxidations catalyzed by the sMMO and cytochrome P450 enzyme sys-

tems have been compared;4 the intermediate oxidants inferred for P45024-26 may 

be related to the spectroscopically observed intermediates found for MMO (Fig-

ure 4.5). Two electrophilic oxidant forms, presumed to be the hydroperoxo-iron 

complex and the iron-oxo, are implicated in the P450 reactions.25 The hydroper-

oxo-iron species apparently hydroxylates by inserting "OH+" into C–H bonds to 

give protonated alcohols, whereas the iron-oxo inserts an oxygen atom.24 Single 

turnover experiments with MMOH from M. c. (Bath) indicate that either Hperoxo 

or, more likely, a hydroperoxo species derived therefrom by protonation is an 

active oxidant that can epoxidize propene. This oxidant did not hydroxylate 

saturated hydrocarbons methane, ethane, or propane, however.3 If the hydrop-

eroxo species in MMOH were able to hydroxylate the substrates studied here, 

then, by analogy to P450, the first-formed products would be the protonated al-

cohols 9 and 10 produced by insertion of "OH+" into C-H bonds (Figure 4.6). 
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Conclusion 

In summary, the rearrangement product from sMMO-catalyzed hydroxy-

lation of methylcubane is 1-homocubanol, formed via a cationic rearrangement, 

and production of a cationic species was also demonstrated in sMMO hydroxyla-

tion of probe 5. Mechanistic studies of sMMO hydroxylations involving chiral 

alkanes,5,6 hypersensitive cyclopropane-based probes,7,8 methylcubane, and 

probe 5 provide compelling evidence that true radical intermediates are not pro-

duced in these reactions. The implication of a cationic component in MMO hy-

droxylations complicates the mechanistic picture, but it reinforces some similari-

ties between P450 and MMO hydroxylation reactions.4 Future mechanistic stud-

ies of MMO hydroxylations of alkanes will focus on further assessment of the 

oxidizing properties of the Hperoxo and Q intermediates, both of which can be ob-

served. 



 157 

References 

1) This work was previously published in a slightly different form. See refer-

ence 2. 

2) Choi, S. Y.; Eaton, P. E.; Kopp, D. A.; Lippard, S. J.; Newcomb, M.; Shen, R. 

N. J. Am. Chem. Soc. 1999, 121, 12198-12199. 

3) Valentine, A. M.; Stahl, S. S.; Lippard, S. J. J. Am. Chem. Soc. 1999, 121, 

3876-3887. 

4) Stahl, S. S.; Lippard, S. J. ; Ferreira, G. C., Moura, J. J. G. and Franco, R., 

Ed.; Wiley-VCH: Wenheim, 1999, pp 303-321. 

5) Priestley, N. D.; Floss, H. G.; Froland, W. A.; Lipscomb, J. D.; Williams, P. 

G.; Morimoto, H. J. Am. Chem. Soc. 1992, 114, 7561-7562. 

6) Valentine, A. M.; Wilkinson, B.; Liu, K. E.; KomarPanicucci, S.; Priestley, 

N. D.; Williams, P. G.; Morimoto, H.; Floss, H. G.; Lippard, S. J. J. Am. Chem. Soc. 

1997, 119, 1818-1827. 

7) Liu, K. E.; Johnson, C. C.; Newcomb, M.; Lippard, S. J. J. Am. Chem. Soc. 

1993, 115, 939-947. 

8) Valentine, A. M.; LeTadic-Biadatti, M. H.; Toy, P. H.; Newcomb, M.; Lip-

pard, S. J. J. Biol. Chem. 1999, 274, 10771-10776. 

9) Choi, S. Y.; Eaton, P. E.; Hollenberg, P. F.; Liu, K. E.; Lippard, S. J.; New-

comb, M.; Putt, D. A.; Upadhyaya, S. P.; Xiong, Y. S. J. Am. Chem. Soc. 1996, 118, 

6547-6555. 

10) Jin, Y.; Lipscomb, J. D. Biochemistry 1999, 38, 6178-6186. 



 158 

11) Ruzicka, F.; Huang, D. S.; Donnelly, M. I.; Frey, P. A. Biochemistry 1990, 29, 

1696-1700. 

12) Gassner, G. T.; Lippard, S. J. Biochemistry 1999, 38, 12768-12785. 

13) Fox, B. G.; Froland, W. A.; Jollie, D. R.; Lipscomb, J. D. Methods Enzymol. 

1990, 188, 191-202. 

14) Della, E. W.; Janowski, W. K. J. Org. Chem. 1995, 60, 7756-7759. 

15) Pilkington, S. J.; Dalton, H. Methods Enzymol. 1990, 188, 181-190. 

16) Willems, J. P.; Valentine, A. M.; Gurbiel, R.; Lippard, S. J.; Hoffman, B. M. 

J. Am. Chem. Soc. 1998, 120, 9410-9416. 

17) Eaton, P. E.; Yip, Y. C. J. Am. Chem. Soc. 1991, 113, 7692-7697. 

18) Stahl, S. S.; Francisco, W. A.; Merkx, M.; Klinman, J. P.; Lippard, S. J. J. 

Biol. Chem. 2001, 276, 4549-4553. 

19) Eaton, P. E.; Yang, C. X.; Xiong, Y. S. J. Am. Chem. Soc. 1990, 112, 3225-3226. 

20) Choi, S. Y.; Eaton, P. E.; Newcomb, M.; Yip, Y. C. J. Am. Chem. Soc. 1992, 

114, 6326-6329. 

21) Eaton, P. E. Angew. Chem. Int. Ed. 1992, 31, 1421-1436. 

22) Newcomb, M.; Chestney, D. L. J. Am. Chem. Soc. 1994, 116, 9753-9754. 

23) Le Tadic-Biadatti, M. H.; Newcomb, M. J. Chem. Soc., Perkin Trans. 2 1996, 

1467-1473. 

24) Newcomb, M.; Shen, R.; Choi, S. Y.; Toy, P. H.; Hollenberg, P. F.; Vaz, A. 

D. N.; Coon, M. J. J. Am. Chem. Soc. 2000, 122, 2677-2686. 



 159 

25) Vaz, A. D. N.; McGinnity, D. F.; Coon, M. J. Proc. Natl. Acad. Sci. USA 1998, 

95, 3555-3560. 

26) Toy, P. H.; Newcomb, M.; Coon, M. J.; Vaz, A. D. N. J. Am. Chem. Soc. 

1998, 120, 9718-9719. 



 160 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1. Hydroxylation of methylcubane (1) by MMO affords products 2-4. 
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Figure 4.2. GC (FID) traces of products from reactions of methylcubane with (A) 

the MMO system from M. capsulatus (Bath), (B) the MMO system from M. 

trichosporium OB3b, and (C) the cytochrome P450 isozyme CYP2B1. (D) A com-

posite of GC traces from authentic cubylmethanol (2) and authentic 1-

homocubanol (4). Peaks corresponding to the three methylcubanol peaks (3) 

products elute at 12.5, 12.7 and 13.0 minutes; although these peaks are virtually 

absent in the trace from the M. t. OB3b product mixture, they were observed at 

higher sensetivity.  
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Figure 4.3. (A) Mass spectral fragmentation pattern of the major product from 

the oxidation of methylcubane by the MMO system from M. capsulatus (Bath). (B) 

Fragmentation pattern from authentic 1-homocubanol (4). The absence of some 

small peaks in the pattern from the enzyme product mixture results from the fact 

that the concentration of 4 in the authentic samples was about 100 times greater 

than that in the enzyme product mixture. 
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Figure 4.4. Hydroxylation of radical probe substrate 5 by MMO affords products 

6-8. 
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Figure 4.5. Possible analogous intermediates produced in cytochrome P450- and 

MMOH-catalyzed oxidations. The porphyrin ring of P450 and the surrounding 

protein of MMO have been removed. The intermediates for P450 and the hy-

droperoxo complex for MMO are putative. The structures shown are speculative. 
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Figure 4.6. Cation-derived products may form by loss of water with coupled 

cationic rearrangment from protonated alcohols 9 and 10. 
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Chapter Five:  

 

Evaluation of Norcarane as a Probe for Radicals in Cytochome P450- and Solu-

ble Methane Monooxygenase-Catalyzed Hydroxylation Reactions 

 



 167 

Introduction1,2 

The mechanistic details of enzyme-catalyzed hydroxylation reactions have 

intrigued chemists and biochemists for decades. Alkane hydroxylations are read-

ily achieved at ambient temperature by the cytochome P450 enzymes (P450),3 

and methane monooxygenase (MMO) enzymes can accomplish the remarkably 

difficult hydroxylation of methane with ease.4 Simple chemical analogies of these 

reactions are not available, although some complex model systems behave in a 

biomimetic manner. Increasingly sophisticated instrumental techniques5-7 and 

high-level computational studies8-11 undoubtedly provide important details 

about the mechanisms of the hydroxylation reactions, but much information cur-

rently available comes from probe studies that seek evidence for transients 

formed in the reactions. 

Mechanistic probe substrates for oxidations are straightforward in con-

cept, although interpreting the implications of their application can sometimes be 

difficult. One identifies a characteristic process of a transient of interest, such as a 

cation or radical, and then employs a substrate that might be used to detect the 

formation of the transient. For example, oxidation of a chiral compound at the 

asymmetric center might occur with racemization if a long-lived radical or cation 

formed in the reaction but with retention or possibly inversion if a concerted 

process occurred. Alternatively, a strained cyclopropyl substrate could ring open 

if a radical or cation were produced at the cyclopropylcarbinyl position but not 
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in a concerted process. Both chiral substrates and substituted cyclopropanes have 

been employed as probes of enzyme-catalyzed hydroxylation reactions. 

One mechanistic probe that has been employed in studies of enzyme-

catalyzed hydroxylations is bicyclo[4.1.0]heptane (norcarane). In principle, nor-

carane is a highly advanced probe because the radical and cation produced at C2, 

the cyclopropylcarbinyl position, react differently. The norcaran-2-yl radical ring 

opens predominantly (ca. 50:1) to the (2-cyclohexenyl)methyl radical,12 and the 

rate constant for this ring opening reaction, 2 × 108 s-1, can be estimated from the 

results of tin hydride trapping studies12 and the rate constant for reaction of a 

radical with tin hydride.13 C2 cationic species from norcarane react mainly by 

cleavage of the bridge bond to give ring-expanded products derived from 3-

cycloheptenol, but cleavage of an exocyclic cyclopropyl bond to give products 

from (2-cyclohexenyl)methanol also occurs.14 The formation of the latter prod-

ucts from cationic reactions of 2-norcaranol appears to have been overlooked in 

previous studies that employed norcarane as a mechanistic probe. In addition, 

the cationic manifold is biased against ring cleavage in solvolytic reactions; for 

example, solvolyses of 2-norcaranol 3,5-dinitrobenzoate esters afforded mainly 

mixtures of endo- and exo-2-norcaranol.15 

Norcarane was employed in mechanistic studies with cytochome P450 by 

White et al.,16 but no rearranged alcohol products were detected. More recently, 

Austin et al. used norcarane in a study of hydroxylation by the AlkB hydroxylase 
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enzyme from Pseudomonas oleovorans.17 Consistent with earlier probe results that 

implicated a relatively long-lived radical intermediate in hydroxylations by this 

enzyme,18 they observed partial rearrangement in the alcohol products that led 

to an estimated radical lifetime in the oxidation reaction of about 1 ns.17 Quite 

recently, while the present work was in its final stages, Brazeau et al. reported a 

study of norcarane oxidation by the soluble methane monooxygenase (sMMO) 

from Methylosinus trichosporium (Ms. trichosporium) OB3b wherein small amounts 

of rearrangement products were found; the authors concluded that both a cati-

onic species and a discrete radical intermediate were produced.19 Although evi-

dence for cationic intermediates in sMMO hydroxylations had been reported 

previously,20,21 other probe studies of hydroxylation catalyzed by the sMMO of 

this species and by the related sMMO from Methylococcus capsulatus (Mc. capsula-

tus) (Bath) were consistent with reactions proceeding without formation of dis-

crete radical intermediates.  

The latter mechanistic inconsistency with norcarane is mirrored in oxida-

tions that we have studied with both P450 and sMMO enzymes. We report here 

the results of hydroxylation of norcarane catalyzed by the sMMO enzyme from 

Mc. capsulatus (Bath). Norcarane hydroxylations by hepatic P450 enzymes were 

studied concurrently and in collaboration with Prof. Martin Newcomb and co-

workers, and are included here for comparison. In all cases, small amounts of re-

arrangement products derived from putative cationic intermediates and radical 

intermediates were found, much like the recent results with Ms. trichosporium 
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OB3b. These results are in stark contrast to those obtained for the same enzymes 

with other probes. We conclude that mechanistic generalizations based on results 

with norcarane are unwarranted. The small amounts of rearrangement products 

likely result from multiple pathways in the enzyme-catalyzed hydroxylation re-

actions. 

 

Experimental Section 

Bicyclo[4.1.0]heptane22 (norcarane, 1), 3-(hydroxymethyl)cyclohexene23 

(2), 3-cycloheptenol12 (3), endo-bicyclo[4.1.0]heptan-2-ol24 (endo-2-norcaranol, 4), 

endo-bicyclo[4.1.0]hetptan-3-ol25 (endo-3-nocaranol, 6), bicyclo[4.1.0]heptan-2-

one26 (2-norcaranone, 8), and bicyclo[4.1.0]heptan-3-one25 (3-norcaranone, 9) 

were prepared by literature methods. exo-Bicyclo[4.1.0]heptan-2-ol (exo-2-

norcaranol, 5) was obtained as a mixture with 4 (70:30, 5:4) from LAH reduction 

of 8,26 and exo-bicyclo[4.1.0]heptan-3-ol (exo-3-norcaranol, 7) was obtained as a 

mixture with 6 (13:87, 7:6) from LAH reduction of 9.25 

Solvolysis Reactions. In a representative reaction, alcohol 4 (125 mg, 1.1 

mmol) was added to a solution of freshly distilled MsCl (96 µL, 1.21 mmol) and 

Et3N (0.23 mL) in 10 mL of dry THF at -20 °C. After 1 h at -20 °C, the mixture was 

treated with 0.07 mL of water. The mixture was stirred at -20 °C for 1 h and at 

room temperature for 12 h. The reaction was quenched by addition of excess wa-

ter, and products were isolated by an extractive workup (ether, acid). The ethe-

real solution was dried over MgSO4 and analyzed by GC. 
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P450-Catalyzed Oxidations. The P450 enzymes were prepared as previ-

ously reported.27-29 In a typical reaction, a mixture of 1 nmol of P450 ∆2B4 and 2 

nmol of P450 reductase was allowed to stand in an ice bath for 5 min. A mixture 

of 0.96 nmol of DLPC suspended in 20 mM potassium phosphate buffer (pH = 

7.4), sonicated before use, was added to the enzyme mixture. The mixture was 

diluted to a volume of 2 mL with buffer. A solution of 10 µL of 1 in MeOH (15 

mg/mL) was added. The mixture was incubated at 37 °C for 5 min. The oxida-

tion was initiated by the addition of NADPH buffer solution; the final concentra-

tion of NADPH was 1.2 mM. The mixture was gently shaken at 37 °C for 30 min 

and then extracted with CH2Cl2 (3 × 2 mL). The combined organic phase was 

dried (MgSO4) and filtered. A solution of tridecane was added as an internal 

standard, and the solution was concentrated to ca. 0.05 mL by fractional distilla-

tion with a 60-70 °C oil bath. 

The resulting mixture was analyzed by GC and GC-MS on 0.52 and 0.25 

mm, respectively, Carbowax columns. Products 2 and 6 were not resolved and 

appeared as a merged peak. Whereas the MS of both 2 and 6 contained ions at 

m/z = 79, the MS of 2 had an ion at m/z = 81 that was not present in the MS of 6. 

Using authentic samples of 2 and 6, the relative intensities of the ions at m/z = 79 

were determined as well as the relative intensities of the ions from 2 at m/z = 79 

and m/z = 81. The ratio of 2:6 was then determined in the product samples from 

the GC-MS results and the measured ion ratios. 
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sMMO-Catalyzed Oxidations. The sMMO hydroxylase was purified from 

batch cultures of Mc. capsulatus (Bath) according to published procedures.30 The 

reductase and coupling protein components of sMMO were purified from re-

combinant expression systems.30,31  

Norcarane hydroxylations with sMMO were carried out as follows. A 10 

nmol portion of MMOH, 20 nmol of MMOB, and 5 nmol of MMOR were com-

bined in a total volume of 400 µL of 25 mM MOPS, pH 7.0, in a septum-capped 

vial. The enzyme was incubated for 1 min at 45 °C before addition of 8 µL of nor-

carane (neat) was added by means of a gastight syringe. The reaction was initi-

ated by addition of 1.6 µmol of NADH and was incubated at 45 °C for 20 min 

with stirring. Addition of 2 mL of methylene chloride quenched the reaction by 

causing the proteins to precipitate. The organic layer was removed and the aque-

ous layer extracted twice more with 2 mL portions of methylene chloride each 

time. The organic layers were combined, dried with MgSO4, and filtered. The 

product mixture was concentrated by distillation, reducing the volume of the or-

ganic fraction from ~6 to ~0.5 mL. Concentrated extracts were analyzed by GC-

MS as described above, and the yields are reported on the basis of the relative 

ionizations from each product. 

 

Results 

Enzyme-Catalyzed Oxidations. Norcarane (1) was oxidized with P450 en-

zymes that were overexpressed in Escherichia coli (E. coli) and purified. P450 2B4 
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is the phenobarbital-induced hepatic P450 from rabbit, and P450 ∆2B4 is an ex-

pressed version of the same enzyme with a short deletion at the N-terminus. 

P450 ∆2E1 is the truncated version of the ethanol-inducible hepatic P450 from 

rabbit, and P450 ∆2E1 T303A is a mutant of this enzyme in which threonine in 

the active site was replaced with alanine. The preparations and purifications of 

these enzymes were reported previously.27-29 The reconstituted P450 enzyme 

preparations contained the purified P450 enzyme, 2 equiv of P450 reductase, and 

NADPH in DLPC liposomes in buffer solutions. The oxidation reactions were 

allowed to proceed for 30 min at 37 °C. 

Norcarane also was oxidized with the sMMO system from Mc. capsulatus 

(Bath). In these reactions, the enzyme system was a 1:2:0.5 mixture of the hy-

droxylase, coupling protein, and reductase components. Reactions were con-

ducted at 45 °C, the optimal growth temperature of the organism. 

Following an extractive workup, products were identified by GC-mass 

spectral comparisons to authentic samples and quantitated by GC analysis. The 

products are shown in Figure 5.1. Oxidations at the 2- and 3-positions gave both 

endo and exo alcohols (4-7). Overoxidation of these alcohols gave the correspond-

ing ketones 8 and 9 that were detected in low yields. In addition, small amounts 

of both possible rearranged products from oxidation of the C2 position, 3-

(hydroxymethyl)cyclohexene (2) and 3-cycloheptenol (3), were detected in all 

cases. Table 5.1 lists the regioselectivity of the oxidations, the stereoselectivity in 

the alcohol products from oxidation at C2 and C3 of the substrate, and the per-
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centages of rearrangement products 2 and 3 relative to the total amount of prod-

ucts from oxidation at C2. 

The rearrangement products 2 and 3 are important with respect to mecha-

nistic interpretations, and they were found in low yields. Various studies con-

firmed that these two products were formed in the oxidation reactions. In multi-

ple run experiments, the deviations in yields of 2 and 3 were small. A product 

mixture from a P450 2B4 oxidation and one from an sMMO oxidation were ana-

lyzed in another laboratory using a different GC-MS protocol, and the results 

confirmed the presence of both 2 and 3.[NOTE:GC-mass spectral analyses were 

conducted with a low-polarity column that gave a different order of product elu-

tion. We are grateful to Prof. J.T. Groves for providing us with these results.] In 

the case of P450 2B4, we determined the stability of 2 and 3, as well as alcohol 4, 

under enzyme-catalyzed hydroxylation conditions. In matched experiments, 

P450 2B4 oxidations were conducted with 1 and with mixtures of norcarane that 

contained products 2-4. This type of control reaction provides realistic informa-

tion about the stability of the products as they are being formed in the enzyme 

reactions because substrate 1 is always present in large excess during the reaction 

and might serve as a competitive inhibitor for oxidation of the small amounts of 

products. The results are listed in Table 5.2. Product 2 was slightly degraded in 

the control reaction, and product 3 was stable. 

The major products were from oxidation of the C2 position of norcarane, 

consistent with the reduced C–H bond energy at a cyclopropylcarbinyl position 
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of about 3 kcal/mol.32 The relatively large differences in regioselectivity, stereo-

selectivity, and the amounts of rearrangement products formed between P450 

∆2E1 and its T303A mutant are noteworthy because the mutation involves re-

placement of a highly conserved threonine that is thought to be involved in the 

protonation reactions in the evolution of the active oxidants. Similar differences 

in product distributions have been reported for this pair previously,29,33 and the 

T303A mutant gave larger amounts of cationic rearrangement products than the 

wild-type (wt) enzyme.34 The near identity in the results for P450 2B4 and its ex-

pressed version containing an N-terminal deletion, P450 ∆2B4, indicate that there 

is little difference in the reactions of the natural and truncated enzymes. The 

product distribution found in oxidation by the sMMO of Mc. capsulatus (Bath) is 

similar to that reported from oxidation by the sMMO of Ms. trichosporium 

OB3b.19 

Solvolysis Studies. Previously reported solvolysis studies of the 3,5-

dinitrobenzoate esters of 2-norcaranol conducted at 80 °C gave predominantly 

bicyclic alcohols.15 We briefly investigated reactions of 2-norcaranyl mesylates at 

lower temperatures. The mesylate from endo-2-norcaranol was prepared from 

reaction of the alcohol with methanesulfonyl chloride and Et3N in tetrahydrofu-

ran (THF) at -20 °C and allowed to stand at -20 °C for 1 h. Water was then added 

at -20 °C, and the mixture was stirred at room temperature for 12 h. Following an 

extractive workup procedure, GC analysis of the products showed a mixture of 

endo-2-norcaranol (4), exo-2-norcaranol (5), and 3-cycloheptenol (3) in a 67:28:5 
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ratio in approximately 50% yield. To the limit of detection (ca. 0.5%), no (2-

cyclohexenyl)methanol (2) was formed. When the reaction sequence was re-

peated using a mixture of endo- and exo-2-norcaranol (30:70) for preparation of 

the mesylate, a similar mixture of products was obtained. The same product ra-

tios were obtained when the reactions were repeated with the exception that the 

mesylates were prepared at room temperature. 

The results of the mesylate solvolysis reactions are similar to those found 

in the solvolysis of the 3,5-dinitrobenzoate esters in aqueous acetone, where a 

67:23:10 ratio of 4, 5, and 3 were found from both the endo and exo esters.15 The 

consistent ratio of products found from mesylates prepared from the endo alcohol 

and from the mixture of endo and exo alcohols shows that the mesylates were 

formed and reacted in solvolyses reactions in high yields. 

 

Discussion 

Mechanistic probe studies of enzyme-catalyzed oxidations have proven to 

be quite difficult to understand. Part of the confusion comes from probe studies 

that sought to test for a radical intermediate but employed probes that provided 

no method for differentiation between cationic and radical intermediates, and 

much of the mechanistic work reported for P450 and sMMO enzymes falls into 

this category. When no rearrangement or racemization of such a probe is ob-

served, one can deduce that neither transient is produced with an appreciable 

lifetime, but a calculation of a radical lifetime from an observed product distribu-
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tion is essentially meaningless if the probe gives the same products from a radi-

cal and a cationic intermediate. In addition, experimental results have been mis-

interpreted and products misidentified. Another layer of complexity arises from 

the possibility that more than one hydroxylation reaction pathway might exist 

for these enzymes. 

Figure 5.2 displays the iron-oxygen species that form in the evolution of 

the oxidants in P450 and sMMO. In P450, the resting enzyme is reduced to an 

iron(II) species that can bind dioxygen. Further reduction gives a peroxo-iron 

species that converts to a hydroperoxy-iron unit upon protonation. A second 

protonation and loss of water give the ultimate oxidant, an iron-oxo species. Re-

cent "cryoreduction" studies resulted in the EPR detection of the peroxo-iron and 

hydroperoxy-iron intermediates,5,35 but the iron-oxo species apparently is too 

short-lived to detect,5 despite its tentative identification in an earlier report.6 In 

sMMO, two iron atoms are reduced to the Fe(II) level, and dioxygen binding af-

fords a species termed Hperoxo. Hperoxo converts to the ultimate oxidant, an oxo-

bridged diiron(IV) species termed Q. For the Ms. trichosporium OB3b enzyme the 

Hperoxo to Q conversion apparently depends on protonation of Hperoxo,36 but this 

conversion is independent of pH for sMMO from Mc. capsulatus (Bath).37 Unlike 

with P450, the Hperoxo and Q intermediates accumulate and are detectable during 

the reaction cycle of sMMO,38 although the structures depicted in Figure 5.2 for 

these species are speculative. 
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Evidence has been reported that two electrophilic oxidants are formed in 

both P450 and sMMO oxidations. For P450, the evidence involves changes in re-

gioselectivity in oxidations catalyzed by wild-type and mutant P450s,29,33 similar 

to the differences found here for P450 ∆2E1 and its T303A mutant, and the find-

ing that rearranged and unrearranged alcohols from oxidation of the methyl 

group in a methylcyclopropane mechanistic probe are formed with different 

Michaelis parameters, different kinetic isotope effects, and different solvent iso-

tope effects.39 The two oxidants are presumed to be the iron-oxo species and ei-

ther the hydroperoxy-iron intermediate or iron-complexed hydrogen peroxide. 

For the sMMO from Mc. capsulatus (Bath), single-turnover studies revealed that 

Hperoxo or its immediate successor in the reaction cycle is capable of epoxidizing 

propene37 and other substrates,40 adding a second oxidizing species to Q, the ac-

tive methane oxidant. 

Computational studies of the iron-oxo species in P450 indicate that two 

reactive spin states are accessible, a low-spin ensemble that reacts by insertion 

and a high-spin ensemble that reacts by H-atom abstraction from substrate to af-

ford a radical,8 and multiple spin state reactions of iron-oxo in P450 are sup-

ported by recent experimental results.39 Theoretical analysis of sMMO hydroxy-

lation of ethane41 indicates that the transition state can evolve into alcohol 

through both concerted and bound radical pathways. These pathways do not 
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represent "fundamentally different reaction mechanisms," as sometimes stated,19 

but rather reflect the character of a late transition state. 

The experimental and computational evidence for multiple reactive spe-

cies and multiple reaction channels in hydroxylations catalyzed by P450 and 

sMMO enzymes indicates the difficulty one has in interpreting the results from 

any mechanistic probe in isolation. With that caution, we evaluate the results 

with norcarane in the context of other experimental and theoretical results. The 

mechanistic issues involve whether one can implicate discrete cationic and radi-

cal intermediates. 

Cationic Rearrangement Product. The implication of a cationic intermedi-

ate in norcarane oxidation is consistent with previous mechanistic studies em-

ploying probes that give unique rearrangements upon formation of a cation 

(Figure 5.3). In the case of P450, the methylcyclopropane substrates 10 and me-

thylcubane (11) afforded some cation-derived rearrangement products with sev-

eral hepatic P450s, including the P450 enzymes studied in this work.34,42 For 

sMMO, evidence for production of cationic transients comes from oxidation 

studies with 1,1-dimethylcyclopropane21 (12), probe 10a,20 and methylcubane 

(11).20,43 In all of these studies, cation-derived products were obtained, but one 

cannot estimate the extent of cation formation because the rates, partitioning, and 

even the identities of the cationic intermediates are unknown. The norcarane re-

sults provide this same type of evidence, namely, that a cationic species is impli-

cated, but the extent of its occurrence cannot be determined. 
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It is important to note that the detection of cationic rearrangement prod-

ucts does not necessarily demand that a norcaranyl C2 carbocation was pro-

duced. There exist two reasonable routes to cationic species in the enzyme-

catalyzed oxidations. One is formation of a radical that is subsequently oxidized 

to a cation, favored by Groves and coworkers for norcarane (Figure 5.1).44 This 

route is unlikely in the case of the hypersensitive probes 10 because the cyclo-

propylcarbinyl radicals produced from such species ring open with rate con-

stants of (5-8) × 1011 s-1 to give benzylic radical products,45 but benzyl-substituted 

products were not formed in substantial amounts in the enzyme-catalyzed oxida-

tions of probes 10.20,34,42 

A second route to cationic products involves insertion of the elements of 

"OH+", the expected reaction effected by the iron-hydroperoxy species in P450 or 

by a protonated form of Hperoxo in sMMO (Figure 5.1). Protonated alcohols thus 

formed could be deprotonated to give unrearranged product or react by loss of 

water with concomitant cationic rearrangement. We have previously argued the 

logic of this route to cationic products.20,34,42 In their recent study of norcarane 

oxidation by the sMMO from Ms. trichosporium OB3b, Brazeau et al. attempted to 

detect reactions of Hperoxo (or its immediate successor) by stopped-flow kinetics 

methods but found no kinetic effect to suggest that norcarane was oxidized by 

these species.19 The authors assumed that the amount of cationic intermediate 

formed in the sMMO reaction with norcarane was significantly greater than the 

amount of cationic rearrangement product 3 they detected in the products.19 If, 
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however, the ca. 1.2% of 3 they report19 represents most of the norcarane that re-

acted by the cationic pathway in steady-state turnover, then perhaps no devia-

tion in the observed single-turnover stopped-flow kinetics would be detectable 

(see also Appendix). 

We therefore conclude that the detection of cationic rearrangement prod-

ucts from norcarane provides supporting evidence for cationic intermediates 

similar to that found in previous studies with probes that distinguish between 

cationic and radical intermediates.20,21,34 Given the high reactivity of cations and 

the small amounts of cationic products from all probes, it is likely that "cationic" 

reaction pathways are minor in both P450 and sMMO. 

Radical Rearrangement Product. Although there is now general agree-

ment for both P450 and sMMO hydroxylation reactions that the transition state 

for C–H bond activation has radical character, the key question is whether there 

is evidence for discrete radical intermediates. That is, does a radical species "live" 

significantly longer than the transition-state lifetime of the reaction, which is 

about 0.2 ps at ambient temperatures? Despite long histories of this claim for 

both types of enzymes, most of the evidence for discrete radicals was circumstan-

tial. With little exception,21 early mechanistic work involved the use of probes 

that gave the same rearrangement product from radicals and cations, and the 

formation of rearranged products was assumed to involve radicals. Now that 

one has strong evidence that some type(s) of cationic species is (are) formed in 
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P450 and sMMO-catalyzed hydroxylations, that assumption is seen to be without 

foundation. 

The detection of radical-derived rearrangement product 2 from the P450 

enzymes, the sMMO enzyme from Mc. capsulatus (Bath) studied in this work, and 

the sMMO from Ms. trichosporium OB3b,19 is, therefore, apparently spectacular. It 

is seemingly unequivocal evidence for production of discrete radical intermedi-

ates by these enzymes, and it can lead to a mechanistic conclusion regarding dis-

crete radical intermediates that is diametrically opposed to that deduced from 

studies with other probes that permit "radical lifetime" estimates. 

Mechanistic probes that do not permit differentiation between a radical 

and a cationic intermediate provide equivocal information about the lifetime of a 

radical when rearrangement products are observed. The absence of any rear-

rangement products from such a probe is not equivocal because it eliminates the 

possibility of any intermediate with a lifetime adequate for formation of detect-

able amounts of rearranged product. For P450 enzymes, hydroxylations of sev-

eral probes gave only unrearranged alcohol products to the limits of detection, 

which were typically less than 1% relative yield. These include methylcyclopro-

pane,46,47 dimethylcyclopropanes,47 and isopropylcyclopropane,47 each of which 

is a potential precursor to a cyclopropylcarbinyl radical that ring opens with a 

rate constant similar to that of the norcaran-2-yl radical, on the order of 1 × 108 s-

1. Interestingly, even norcarane was reported to be hydroxylated by P450 without 

formation of any rearrangement products,16 but the result probably reflects low 
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analytical sensitivity in that study because the enzyme employed was P450 2B4, 

the same enzyme used here in a reconstituted system. The observation of radical-

derived product 2 from P450-catalyzed hydroxylation of norcarane in the present 

work is in marked contrast to other results. 

In the case of sMMO-catalyzed hydroxylations, the dichotomy is more 

apparent. No rearranged products were detected from the Mc. capsulatus (Bath) 

sMMO oxidations48 of trans-1,2-dimethylcyclopropane and bicy-

clo[2.1.0]pentane, radicals from which ring opening rate constants are 2 × 108 and 

2 × 109 s-1, respectively.49,50 Nor was any rearrangement found in the Mc. capsula-

tus (Bath) hydroxylations of "hypersensitive" radical probes, the radicals from 

which rate constants for radical ring openings exceed 1 × 1011 s-1.48,51 The detec-

tion of product 2 in norcarane hydroxylation catalyzed by this MMO is clearly 

out of character. 

Although equivocal concerning the origins of the rearranged products, the 

product ratios when rearrangement is found from probes that do not differenti-

ate between cations and radicals can be used to establish upper limits on the life-

times of a putative radical. The general trend in P450 mechanistic studies has 

been that smaller upper limits for radical lifetimes occur as the rate constants for 

the radical rearrangements increase. That is, the relative amounts of rearranged 

products change little, and the upper limits on the radical lifetimes are calculated 

to be smaller when the rate constants for the radical rearrangements are greater. 

For example, the limit for a radical lifetime from hydroxylation of bicy-
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clo[2.1.0]pentane46,47 (k for the radical of 2 × 109 s-1)49,50 is 100 ps, the limit from 

hydroxylation of hexamethylcyclopropane47 (k for the radical of 5 × 109 s-1 at 37 

°C)49 is 4 ps, and the limit from hydroxylation of several aryl-substituted methyl-

cyclopropanes47,52-54 (k for the radicals in the range of (1-5) × 1011 s-1) is about 0.3 

ps. These values are limits to a radical lifetime. Direct calculations of radical life-

times in P450 hydroxylations, however, are available from results with probes 10 

that differentiate between radicals and cations; those results give radical lifetimes 

in the range of 0.08-0.2 ps,34,42 or about the lifetime of a transition state. 

Radical lifetimes for the sMMO hydroxylations also are on the order of the 

lifetime of a transition state. Very short upper limits are calculated from the par-

tial racemizations observed in hydroxylation of chiral (by virtue of isotopic sub-

stitution) ethane by the sMMO from Ms. trichosporium OB3b55 and of chiral eth-

ane and chiral butane by the sMMO from Mc. capsulatus (Bath).56 Assuming that 

fast rotation of the alkyl radical (k = 5 × 1012 s-1)57 is the limiting process for ra-

cemization, one calculates an upper limit on the radical lifetime of less than 0.2 

ps from the chiral alkane oxidations. As discussed elsewhere,41 the rotation of a 

bound radical must be accompanied by recoil from the hydroxylating OH group, 

but even with inclusion of this vibrational component the bound radical lifetime 

is only 0.3 ps. The radical lifetime upper limit calculated from the oxidation of an 

aryl-substituted methylcyclpropane by the sMMO from Ms. trichosporium OB3b 
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was less than 0.2 ps.43,48 In the hydroxylation of probe 10b by the sMMO from 

Mc. capsulatus (Bath), the calculated radical lifetime was 0.25 ps.20 

Thus, radical lifetimes for P450 and sMMO oxidation reactions obtained 

from studies with probes that can differentiate between radicals and cations are 

0.25 ps or less. In many cases, results from studies with probes that cannot differ-

entiate between radicals and cations give upper limits on the radical lifetimes of 

0.3 ps or less. Much larger upper limits for the radical lifetimes can be calculated 

from studies with some probes that do not differentiate between radicals and 

cations, but to do so is pointless because they are, after all, only limits. The pre-

ponderance of probe-derived evidence, then, is that the radical has a lifetime on 

the order of that of a transition state or about 0.2 ps. 

In comparison to the above, the present results with norcarane suggest 

that radical intermediates are formed with relatively long lifetimes if one path-

way gives alcohols 2, 4, and 5. A rate constant of 2 × 108 s-1 for the norcaran-2-yl 

radical ring opening was previously estimated17 from product distribution re-

sults in tin hydride trapping reactions.12 Using that value, one calculates appar-

ent radical lifetimes in the P450-catalyzed oxidations of norcarane of 15-160 ps. 

For the oxidation of norcarane by the sMMO from Mc. capsulatus (Bath), one cal-

culates an apparent radical lifetime of 150 ps, and, using the results for norcarane 

oxidation by the sMMO of Ms. trichosporium OB3b,19 one calculates an apparent 

radical lifetime in the range 20-150 ps. Although these are short lifetimes, they 

are 2-3 orders of magnitude greater than those determined previously. 
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The calculation of radical lifetimes from the norcarane results requires the 

assumption of a single pathway giving rearranged alcohol 2 and unrearranged 

alcohols 4 and 5. If that condition is assumed, as it was by Brazeau et al.,19 then 

the conclusion that hydroxylation proceeds through a radical intermediate is 

predetermined. 

We reject the assumption of a single reaction pathway on the basis of the 

preponderance of experimental and computational evidence that multiple oxi-

dants and multiple pathways exist for both P450 and sMMO. It seems likely that 

the amounts of rearranged alcohol 2 from norcarane oxidations are not reporting 

on the lifetimes of radical intermediates at all but instead reflect the amounts of 

substrate that react by different channels, one involving an insertion process and 

the other involving a bound radical. For both P450 and sMMO, computational 

work indicates that such reaction channels are available. 

In the case of P450, a two-state model for reaction of the iron-oxo species 

was presented and has been further refined by Shaik and co-workers.8,58 Both 

low-spin and high-spin reaction ensembles are found computationally for iron-

oxo plus substrate. The low-spin reaction pathway resembles a hydrogen-

abstraction reaction, but collapse of the nascent radical with oxygen is barrier-

free, resulting in an insertion reaction. The high-spin reaction pathway gives a 

radical from substrate because a barrier to collapse exists.58 Recent computa-

tional work by Yoshizawa et al. suggests that a barrier should exist on both the 

low-spin and high-spin surfaces, but limited dynamic simulations suggest a 
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short (ca. 200 fs) radical lifetime.10 Nonetheless, the Shaik two-state mechanism 

was invoked as an explanation for norcarane oxidation results similar to those 

described here.44 

The barriers for iron-oxo oxidation of methane on the two spin surfaces 

are computed to be similar,10,58 but the transition states for the reactions have 

different degrees of polarization with the low-spin TS being more highly polar-

ized.58 An increase in the donor properties of the substrate will favor reaction on 

the low-spin surface. This property seems to be an especially attractive explana-

tion for why evidence for a discrete radical can be found for norcarane but not 

with probes 10. Alkyl substitution and the cyclopropane ring in norcarane will 

increase the donor character of this substrate relative to methane, but the aryl 

and alkoxy groups in substrates 10 undoubtedly increase the donor character 

even more and would further favor reaction on the low-spin surface. Recent ex-

perimental results provided evidence that supports the two-state model for reac-

tions of iron-oxo in P450, and the probe in that study was a methylcyclopropane 

that should have donor character similar to that of norcarane.39 

Computations of hydroxylation by sMMO11,41 by density functional and 

dynamics calculations find two approximately isoenergetic channels evolving 

from a common transition state in the reaction of Q with methane or ethane. One 

channel can be considered a bound radical recoil/rebound pathway; the other, a 

nonsynchronous concerted reaction.11 Varying distribution into these channels 
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by different probe substrates may be responsible for the lack of correlation be-

tween kr and the amount of rearranged product, although a more detailed de-

scription will have to await the completion of computations for these larger hy-

drocarbons. Molecular dynamics calculations of the activation of ethane by Q, 

however, does indicate that the partition ratio between bound radical re-

coil/rebound and concerted mechanisms is influenced by the mass of the sub-

strate.41 As the mass of the substrate is increased, the insertion reaction becomes 

more highly favored. 

For both enzyme types, the computations offer one possible rationale for 

the small amount of norcarane that appears to be processed by a radical channel. 

For P450, perhaps the spin state is important. For sMMO, a radical must some-

how escape the bound radical state, perhaps because its secondary carbon atom 

cannot approach the bridging oxygen atom in Q as closely as the primary carbon 

atoms in the more massive substrates 10. It appears reasonable that the radical 

channels might be insignificant for the latter substrates. 

Although one can rationalize the results with norcarane in the context of 

minor hydroxylation pathways proceeding through a radical, they are so novel 

that one should use caution in drawing such a conclusion. Moreover, there exists 

a particularly worrisome aspect of the cation chemistry of norcarane that might 

be important in evaluating its reliability as a mechanistic probe. The premise that 

alcohol product 2 was formed by a radical reaction pathway is based on the as-

sumption that the norcaran-2-yl cation does not react to give products derived 
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from the (2-cyclohexenyl)methyl cation, but that is not correct. Acid-catalyzed 

acetolysis of 2-norcaranol was found to give predominantly the acetate from al-

cohol 3, but the acetate from alcohol 2 also was formed as a minor product.14,59 

The solvolysis results previously reported for the 3,5-dinitrobenzoate esters of 2-

norcaranol15 and found here for the corresponding mesylates show that alcohol 2 

is not formed in measurable amounts in these reactions. The solvolysis products 

are skewed heavily toward the cyclic system, 2-norcaranol, and the results are 

similar to those found in many reactions that involve putative cyclopropylcar-

binyl cations that are trapped to give predominantly cyclopropylmethanol de-

rivatives.60 Thus, it would seem logical to anticipate that alcohol products 2 and 

3 would be minor products from a cationic reaction in the enzyme-catalyzed oxi-

dations, but, then, they were minor products in the reactions we studied. A better 

understanding of the norcaranyl cation chemistry would therefore appear to be 

important for interpreting the results of norcarane probe studies of P450 and 

sMMO. 

 

Conclusion 

Small amounts of cation- and putative radical-derived rearrangement 

products are found in P450 and sMMO enzyme-catalyzed hydroxylations of nor-

carane. Formation of the cationic rearrangement product is consistent with the 

growing consensus that some type of cation-forming reaction is possible with 

these enzymes, perhaps involving reactions of predecessors of the ultimate oxi-
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dants that insert OH+ into a C-H bond of substrate. Formation of small amounts 

of the radical rearrangement product might indicate the extent of radical forma-

tion by minor pathways of the ultimate oxidants in the enzymes and is not neces-

sarily a measure of the radical lifetimes in a single reaction pathway. It is also 

possible that the production of the radical-derived product is artifactual and re-

flects an unappreciated aspect of norcaranyl cation chemistry. One is well-

advised not to formulate generalizations about P450- and sMMO-catalyzed hy-

droxylation pathways from the unexpected findings with norcarane. 
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Table 5.1. Results of Enzyme-Catalyzed Oxidations of Norcarane. 

Enzymea Regiob 

Stereo 

(C2)c 

Stereo 

(C3)d % 2e %3e 

2B4 91:9 76:24 49:51 0.31 ± 0.06 0.4 ± 0.1 

∆2B4 92:8 78:22 53:47 0.4 0.5 

∆2E1 94:6 27:73 62:38 0.5 ± 0.1 0.16 ± 0.01 

Mc. capsulatus (Bath) 89:11 65:35  3 2 

Ms. trichosporium OB3bf 91:9 63:37  1.5 1.2 

aThe first four enzymes listed are cytochromes P450. The last two enzymes are 

sMMOs. bRegioselectivity: ratio of products from oxidation of norcarane at C2 

and C3; standard deviations from multiple run experiments are <1.  cStereoselec-

tivity at C2: ratio of endo/exo alcohols (4:5).  dStereoselectivity at C2: ratio of 

endo/exo alcohols (6:7).  ePercentage of products 2 and 3 relative to all products 

from oxidation at C2; standard deviations are given for multiple runs.  fResults 

from ref 19.  
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Table 5.2. Results of Stability Control Studies.a 

Product nmol addedb nmol foundc 

2 0 3.1 

 10 9.7 

3 0 0.7 

 15 16.7 

4 0 190 

 200 380 

aReactions conducted with 1 nmol of P450 2B4. bAmount of product added be-

fore oxidation reation. cYield of product in nmol. 
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Table 5.3. Products from Enzyme-Catalyzed Oxidations of Norcarane. 

Enzyme nmolb 2 3 4 5 6 7 8 9 

2B4 2 1.1 1.3 337 102.5 5.7 17 20.3 3.1 

2B4 2 1.8 2.5 356.6 107.8 9.2 18.8 20.3 4.1 

2B4 2 1.4 2.1 344.8 113.8 8 25.2 22.8 7.1 

∆2B4 4 0.9 1.2 168 46.3 4.5 9.7 8.6 2 

∆2E1 2 0.5 0.14 21.6 57.1 2 3.4 1.6 0.3 

∆2E1 4 0.7 0.25 41.2 108.4 3.1 4.9 3.7 0.7 

∆2E1 T303A 2 1.2 0.32 19.5 15.6 0.45 5.4 1 1.5 

∆2E1 T303A 2 1.6 0.13 21.8 22.7 0.82 6.8 2.3 1.3 

sMMOc 10 3 2 53 28 3 4 7 <1 

sMMOc 10 3 2 53 29 3 3 6 <1 

sMMOc 10 3 3 52 29 3 3 6 <1 

aNanomoles of products obtained in P450 oxidations are listed. bNanomoles of 

enzyme used in the oxidation reaction. cYields in nmol of products were not de-

termined for sMMO reactions; the numbers listed are percentages of products. 
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Figure 5.1. Norcarane (1) and products observed from its enzyme-catalyzed hy-

droxylation reactions. Major products 4 and 5 are boxed. Only products 2 and 3 

are informative regarding hydroxylation mechanism. 
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Figure 5.2. Iron–oxygen intermediates produced in P450 and sMMO oxida-

tions.3,7 
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Figure 5.3. Other probe substrates that can distinguish between radical and cati-

onic rearrangements. 
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Figure 5.4. Representative GC-MS trace from oxidation of norcarane by sMMO. 

Products are identified by their compound numbers. 
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Chapter Six:  

 

Product Binding to the Diiron(III) and Mixed-Valence Diiron Centers of 

Methane Monooxygenase Hydroxylase Studied by 1,2H and 19F ENDOR Spec-

troscopy 
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Introduction1,2 

The oxidation of methane to methanol catalyzed by the soluble methane 

monooxygenase (sMMO) enzyme systems of Methylococcus capsulatus (Bath) and 

Methylosinus trichosporium OB3b has been studied extensively.3-5 Interest in these 

systems remains high to obtain a better understanding of the dioxygen and C–H 

bond activation steps and to provide an efficient low-temperature conversion of 

methane to methanol on an industrial scale.6  

Methane monooxygenase catalyzes the first step in the metabolic pathway 

of methanotrophic bacteria, according to eq 1. sMMO from M. capsulatus (Bath) 

   CH4 + O2 + NADH + H+ → CH3OH + H2O + NAD+        (1) 

 has three protein components required for activity, a 251 kDa hydroxylase, a 

38.5 kDa reductase, and a 15.9 kDa coupling protein. The hydroxylase compo-

nent, an α2β2γ2 dimer, contains a non-heme dinuclear iron center in each of its α 

subunits. The reduced diiron(II) form of the enzyme reacts with dioxygen to 

produce a high-valent iron intermediate that reacts with methane and a variety 

of other substrates, including alkanes up to C8, alkenes, aromatics, and haloal-

kanes.7-10 

Structural studies of the hydroxylase component by X-ray crystallography 

have revealed the geometry of the active site in both the resting diiron(III) and 

diiron(II) states, as well as the mixed-valent Fe(II)Fe(III) state.11-14 Kinetic and 

spectroscopic measurements have elucidated the nature of intermediates in the 
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reaction of MMOH with dioxygen.15-18 Electron-nuclear double resonance 

(ENDOR) spectroscopy serves as an important complement to X-ray crystallo-

graphic techniques in the study of metalloenzymes.19 Its use in the study of 

sMMO has primarily been to investigate the binding of exogenous ligands to the 

available sites of the diiron center, Figure 6.1. Early studies established the pres-

ence of a hydroxo bridge and characterized the binding of DMSO in the para-

magnetic, mixed-valence, Fe(II)Fe(III) state of the cluster,20 denoted Hmv, in 

which S = 2 and S = 5/2 centers couple antiferromagnetically to give a ground-

state spin of 1/2. 

Knowledge of the substrate- or product-bound states of the enzyme pro-

vides valuable clues for unraveling details of the MMOH catalytic mechanism. A 

previous ENDOR study revealed that methanol coordinates to chemically pre-

pared Hmv.21 The only spectroscopic evidence for the binding of this product al-

cohol to the oxidized diiron(III) center came through examination22 of samples of 

the frozen methanol and phenol complexes of the EPR-silent diiron(III) form 

(Hox) that had been radiolytically cryoreduced.23 This technique yields an EPR-

visible mixed-valence state, denoted (Hox)mv, that maintains the geometry of the 

precursor diferric cluster. When Hox binds an alcohol or other small molecule, the 

cryoreduced state is designated (Hox + alcohol)mv. Dramatic differences between 

the EPR spectra of (Hox + methanol)mv and of (Hox)mv disclosed ligation of the al-

cohol to the diiron(III) active site.22 
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In the present work we have investigated the interactions of ethanol and 

1,1,1-trifluoroethanol (TFE) with both the Hmv and Hox forms of sMMO in solu-

tion by Q-band (35 GHz) CW and pulsed ENDOR spectroscopy of 1H, 2H, and 19F 

nuclei. As part of this study we introduce 19F, in this case from bound TFE, as a 

new probe for the binding of small molecules to a metalloenzyme active site. 

This approach is most favorably applied when the ENDOR measurements are 

made at 35 GHz or higher frequency. These measurements have been carried out 

in parallel with, and are discussed in terms of, the crystallographic studies of 

Hmv14 and of alcohol binding to Hox.24 The crystal structures have led us to rein-

vestigate the ENDOR signals from the exchangeable protons of water bound to 

the mixed-valence diiron center both in the presence and absence of bound alco-

hol. The combined results suggest that alcohols bind differently to Hox than to 

Hmv, permit a unified model for product binding to the enzyme, and confirm that 

the structures of the enzyme with product alcohols introduced by diffusion into 

preformed crystals are consistent with the structures in solution.  

 

Experimental Section 

Protein Purification and Sample Preparation. MMOH was purified from 

M. capsulatus (Bath) with the iron content and activity as reported previously.25 

Chemical reduction to the Hmv state was accomplished as described elsewhere.21 

In brief, the protein was concentrated to ~1 mM by ultrafiltration, mixed with an 

equimolar amount of electron-transfer mediators (phenazine methosulfate, po-
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tassium indigo tetrasulfonate, and methylene blue), and reduced with sodium 

dithionite. Small molecules were added prior to reduction to a final concentra-

tion of ~1 M. At 1 M concentration, ethanol is almost certain to inhibit activity, 

since it is a product and binds to the active site. A crystal structure of MMOH de-

termined following a 1 M ethanol soak24 reveals that the native structure is un-

perturbed, other than alcohol binding to the active site. Ethanol is also a sub-

strate of the sMMO system, yielding acetaldehyde. Samples were allowed to 

equilibrate with the mediator solution for 1 h before being loaded in Q-band 

sample tubes and frozen. Samples of Hox were similarly concentrated, mixed 

with small molecule, loaded in an EPR tube, and frozen prior to cryoreduction. 

Cryoreduction by γ-irradiation at 77 K to form EPR-visible (Hox)mv states was per-

formed as described.22 Samples were prepared in the equilibrium mixed-valence 

Hmv form either by equilibration of (Hox)mv at ambient temperature22 or by 

chemical reduction. The two kinds of preparations yielded equivalent ENDOR 

signals. Most data displayed were collected by the former method, which af-

forded 2-3 times greater EPR, and therefore ENDOR, intensities. 

ENDOR Spectroscopy. Previously described 35 GHz continuous wave 

(CW)26 and pulsed27 ENDOR instrumentation and procedures were applied. CW 

100 kHz, rapid passage absorption spectra were recorded at 2 K. All ENDOR 

signals displayed here arise from nuclei with Larmor frequencies ν > A/2, which 

in a single-crystal spectrum consists of a doublet centered at the Larmor fre-
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quency and split by the hyperfine interaction, A. 2H signal peaks are further split 

or broadened by the nuclear quadrupole interaction. 

The Mims three-pulse28,29 and Re-Mims four-pulse30 techniques were 

used to collect pulsed ENDOR spectra. The Mims technique utilizes a three-pulse 

electron spin-echo sequence (tp - τ - tp - T - tp - τ - echo) and the Re-Mims se-

quence utilizes a four-pulse sequence (tp - τ1 - tp - T - tp - τ2 - 2tp - (τ1 + τ2) - echo), 

where tp is the microwave pulse width. The Rf pulse is inserted during the inter-

val T. For a signal characterized by a hyperfine constant, A, the Mims and Re-

Mims pulsed ENDOR techniques have a response R that depends on the prod-

uct, Aτ (Aτ1 for Re-Mims), according to eq 2. This function has zeroes (hyperfine 

     R ∝ (1 – cos(2πAτ))           (2) 

 "suppression holes") at Aτ = n; n = 0, 1, ..., and maxima at A = (2n + 1)/2; n = 0, 

1, .… Such hyperfine selectivity is very useful in cases when signals from differ-

ent nuclear species overlap. Here, we have used this property to help distinguish 

between 19F and 1H signals. On the 35 GHz pulsed ENDOR instrument, however, 

cavity ringdown limited experiments to ones with τ > 300-350 ns; where shorter 

values of τ were necessary, the Re-Mims sequence was used. The Re-Mims gives 

results equivalent to those of the Mims sequence, but it is independent of in-

strumental deadtime limitations. 

 For a nucleus (n) of a ligand coordinated terminally to one iron (i) of an 

exchange-coupled diiron center (i = 1, 2), the hyperfine tensor arising from dipo-

lar coupling to the mixed-valence cluster with modest g-anisotropy has the sim-
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ple axial form shown by a nucleus bound to a mononuclear site, where the 

unique axis for the tensor A lies along the vector between the nucleus (n) and the  
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Fe to which it is bound. The scale factor, Ti(n), is the product of three factors: one 

is the inverse cube of the Fei-n distance (ri); the second, t(n) is a product of fun-

damental constants and is specific to each nucleus; the third is a vector-coupling 

coefficient for Fei, Ki, which is determined by the spin-coupling scheme for the 

cluster. For convenience we list the t(n) constants for several nuclei of interest in 

a spin-coupled cluster with total spin S = 1/2, comprising an Fe3+ (S = 5/2) anti-

ferromagnetically coupled to an Fe2+ (S = 2). 

   t(1H) = 80 MHz· Å3; t(2H) = 12.29 MHz· Å3 

 t(13C) = 20 MHz· Å3;t(19F) = 75.30 MHz· Å3         (4) 

 |K| = 7/3 for Fe3+ (S = 5/2); 4/3 for Fe2+ (S = 2) 

When the nucleus interacts with both Fe ions, as it would in a bridging or semi-

bridging position, the dipolar interaction depends on the distances to both Fe 

ions and both Ki in a more complicated, but well-defined fashion.20,31-34 ENDOR 

simulations were performed following the algorithms described.19 

To interpret the 19F hyperfine couplings for a bound TFE and 1H couplings 

for bound water, a search of the Cambridge Structural Database was performed 

to determine typical binding geometries. For TFE coordinated to iron (or 
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trifluoroacetic acid which has approximately the same size), sample Fe-F dis-

tances for the three fluorine atoms in a single structure range between 3.9 and 5.0 

Å. For a TFE bound terminally to one iron ion of Hmv, these distances correspond 

to T(19F) ≈ 5.4-2.5 MHz if the atom is Fe3+ and T(19F) ≈ 2.6-1.1 MHz for Fe2+. The 

Fe-O distances to the oxygens of water or hydroxide terminally coordinated to 

Fe3+ and Fe2+ are expected to be 1.9 and 2.1 Å, respectively; the Fe-O distances in 

an Fe-O-Fe bridge are ~1.8-1.9 Å. Assuming a tetrahedral O geometry, the corre-

sponding Fe-H distances would be ~2.5-2.6 Å for a bridging hydroxide or water 

bound to the Fe3+ and ~2.8-2.9 Å for a water bound to Fe2+. 

  

Results and Discussion 

EPR. Figure 6.2 presents the EPR spectra of Hmv (g = 1.95(6), 1.86(8), ~1.76) 

and Hmv to which were added methanol, ethanol, or TFE. As shown previ-

ously,21 coordination of methanol to Hmv changes the EPR spectrum (g = 1.95(5), 

1.85(5), 1.74), shifting g2 to a slightly lower value and making it broader at fields 

higher than g2. The Hmv + ethanol and Hmv + TFE samples have almost identical 

EPR spectra, g = 1.94(2), 1.86(3), ~1.7, and also differ from those of Hmv, though 

less than that of Hmv + MeOH, suggesting that these alcohols, like methanol, may 

bind to the active site. Slight variations in the spectra of Hmv from different 

preparations have been observed, but the ENDOR spectra from all samples of a 

given state are the same. 
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The EPR spectra of (Hox)mv and (Hox + MeOH)mv have been reported pre-

viously.22 They are heterogeneous, showing the presence of multiple forms of 

Hox, one class of which has a rather narrow g-spread (g = 1.95, 1.85, ~1.75) and 

the other a larger g-spread (g = 1.94, 1.73, ~1.6). The spectrum for (Hox + EtOH)mv 

is qualitatively similar to that of (Hox + MeOH)mv; the one for (Hox + EtOH)mv is 

more homogeneous, comprising primarily a signal with smaller g-anisotropy (g2 

= ~1.94, gz = 1.79), similar to that of p-nitrophenol and p-fluorophenol.22 

1,2H ENDOR of Exchangeable Protons of Hmv. Figure 6.3 shows 35 GHz 

CW 1H ENDOR spectra collected at g2 for Hmv in H2O and D2O buffer, and for 

Hmv in H2O to which the several alcohols of interest have been added. The con-

tributions from exchangeable protons have been visualized both by comparison 

of the 1H spectra of the mixed-valence center in H2O and D2O buffers and by di-

rect detection in 35 GHz 2H pulsed ENDOR. Both modes are illustrated in Figure 

6.3 for Hmv + TFE. 

Our earliest investigation showed that the Hmv center exhibits ENDOR 

signals from the exchangeable proton of the hydroxo-bridge.35 At g2 this signal 

extends out to almost 30 MHz (not shown), but only a small fraction of the inten-

sity of the exchangeable signals in the narrowed frequency range of Figure 6.3 

arises from the bridge. As first found for Hmv and Hmv + MeOH,21,35 in each case 

the spectra show a strong signal from exchangeable proton(s) with splitting AH ≈ 

8 MHz (ν+/- = νH ± A/2, where A is the hyperfine coupling), which is ascribed to 

terminally bound water.35 Binding of methanol to Hmv does not displace this wa-
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ter, as shown previously;21 Figure 6.3 shows that the same is true for the binding 

of ethanol and TFE. The 1H Hmv + TFE spectrum does show better resolution of 

some features with A ≈ 13 MHz, an effect also observed upon the addition of 

DMSO,20 but the features are present in the other spectra as well. 

Our earlier discussions of this bound water were based on the simple as-

sumption that a terminal water binds with an Fe-O distance of r(Fe-O) ≈ 2 Å. In 

this case, the main intensity from exchangeable protons in the g2 spectrum of Hmv 

and of Hmv + methanol, with A ≈ 8 MHz, was best assigned to the "perpendicu-

lar" feature, with A ≈ T (eq 3), for a terminal water bound to Fe2+. 

The crystallographic investigation of Hmv carried out concurrently with 

the ENDOR studies14 confirms that Hmv indeed binds water but indicates that 

the hydroxo-bridged diiron site binds two H2O ligands. These waters nominally 

bind to a single iron ion (Fe1),14 with this Fe being six-coordinate while the other 

iron (Fe2) can be three-, four-, or five-coordinate, varying with shifts of the car-

boxylate of Glu243 (Figure 6.1).14 For Hmv and for Hmv plus each of the alcohols, 

comparison of the CW ENDOR spectra taken in H2O and D2O at g2 demonstrates 

that at least one, and probably both, of the water molecules remain coordinated 

to the center upon binding an alcohol. 

It is intuitively appealing to assign the six-coordinate Fe seen in the struc-

ture as being the ferric ion. Normally 1,2H ENDOR is an ideal way to test this in-

ference, through the dependence of the dipolar interaction parameter (Ti(H)) of 
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the water protons on the valence of the coordinating iron, eq 3. However, the 

crystal structure indicates that the waters are not 'simple' terminal ligands, but 

rather are 'semi-bridging' and do not have typical Fe-O distances. For example, 

the oxygen atom of one water in protomer 1 nominally occupies position 3 (Fig-

ure 6.1), but with an Fe1-O distance of 2.5 Å and an Fe2-O distance of 3.1 Å. 

Thus, the dipole interaction of the water protons with each Fe is less than for a 

typical distance. Indeed, a proton on an Fe3+-bound water located at the crystal-

lographic r(Fe-O) distance would exhibit essentially the same T as would a pro-

ton on a water bound to Fe2+ at a typical distance. As a result, the expected 

ENDOR patterns for protons associated with the crystallographically character-

ized waters are not sensitive to the valence assignment as would be the case if 

the assumptions of terminal binding and typical Fe-O bond distances 

held.[NOTE:The crystal structure, at 2.07 Å resolution, of course does not visual-

ize the protons and thus does not provide additional metrical parameters for 

analyzing the spectra.] 

An attempt to analyze two-dimensional (2D), orientation-selective, field-

frequency plots comprising numerous 2H Mims pulsed ENDOR spectra collected 

across the EPR envelope of Hmv (Figure 6.4) was thwarted by the task of locating 

the four water protons in each of the two nonidentical protomers, self-

consistently and uniquely, along with the determination of the valency assign-

ment. 
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1,2H ENDOR measurements on the alcohol-bound Hmv center showed that 

the patterns for the exchangeable protons are very similar to those for Hmv, and 

include contributions both from bound water and the OH- bridge. Consideration 

of 2D ENDOR patterns (Figure 6.4) indicates that replacement of a water by a 

protonated bridging alcohol is unlikely but does not discriminate among other 

possibilities, such as replacement of terminal waters by an alcohol in the same 

position, or replacement of a water by a deprotonated bridging alcohol. 

ENDOR of Nonexchangeable 1,2H of Alcohols Bound to Hmv. To examine 

the binding of ethanol and TFE to Hmv, and if possible to determine the binding 

site, Fe(II) or Fe(III), and geometry (terminal, bridging), we performed Q-band 

Mims pulsed 2H ENDOR measurements on Hmv + CD3CD2OH and Hmv + 

CF3CD2OH, and compared them to similar results for Hmv + CD3OH.21 As seen 

in Figure 6.5, Hmv + CD3CD2OH shows a poorly resolved 2H ENDOR doublet 

signal that is slightly more intense but of similar shape to that of the Fe(II)-bound 

CD3OH of Hmv + CD3OH (A(2H) ≈ 0.5 MHz, corresponding to A(1H) ≈ 3.3 

MHz).21 Moreover, the 2D pattern of field-dependent 2H spectra for Hmv + 

CD3CD2OH (Figure 6.6) is identical with that previously obtained for Hmv + 

CD3OH.21 Therefore, the same analysis applies, and we conclude that ethanol, 

like methanol, coordinates through oxygen to an Fe atom of the Hmv diiron core. 

An assumption of normal Fe-O bond length leads to the suggestion that MeOH 

binds to the Fe(II), and the same argument would apply to ethanol. Although a 

semi-bridging structure with the alcohol closer to Fe(II), rather than Fe(III), can-
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not be excluded, comparison between these results and those reported below for 

perdeuterated EtOH bound to Hox support the assignment that CD3CD2OH is a 

terminal ligand to Fe2+ in Hmv. When the same measurements were made with 

Hmv + CF3CD2OH, a 2H doublet signal was observed (Figure 6.5), indicating that 

TFE also binds. The coupling is ~0.8 MHz. 

DMSO coordinates to the Fe(III) iron of Hmv and changes its EPR spectrum 

without displacing bound methanol.21 Addition of DMSO to Hmv + ethanol 

changed the EPR spectrum to that characteristic of Hmv + DMSO, but similarly 

did not eliminate the 2H ENDOR signal from CD3CD2OH. Thus, as with metha-

nol, ethanol can bind simultaneously to Hmv with DMSO. 

ENDOR of Nonexchangeable 1,2H of Alcohols Bound to (Hox)mv. To ex-

amine the binding of ethanol and TFE to Hox, we added the deuterated alcohols 

to the enzyme in H2O buffer, cryoreduced the enzyme, and examined the result-

ing state by ENDOR spectroscopy. The samples (Hox + CD3CD2OH)mv (data not 

shown) and (Hox + CF3CD2OH)mv (Figure 6.5) both give well-resolved 2H 

ENDOR signals, clearly indicating that ethanol and TFE bind to Hox. The hyper-

fine couplings are almost double those for Hmv + CD3OH and the Hmv + 

CD3CD2OH complexes throughout a set of spectra at multiple fields (Figure 6.7). 

If we assume that the alcohols bind with comparable Fe-O bond lengths in both 

Hmv and Hox, then according to eq 3, one may self-consistently conclude that the 

smaller couplings for the Hmv + alcohol complexes reflect binding to the ferrous 

ion as suggested above, whereas the larger 2H couplings for the alcohol com-
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plexes of the latter are compatible with alcohol binding to Hox in the semi-

bridging fashion (Position 3/4, Figure 6.1) found crystallographically for crystals 

prepared by diffusion of methanol or ethanol into crystalline Hox.24 

19F ENDOR. 19F ENDOR of isotopically labeled TFE (CF3CD2OH) pro-

vides a new probe of the geometry of small-molecule binding to a metalloen-

zyme active site when the microwave frequency is sufficiently high. At X band 

the difference between the 19F and 1H Larmor frequencies is very small, less than 

1 MHz. As a result, the respective 19F and 1H ENDOR signals would overlap 

completely for almost any protein sample. At 35 GHz, the difference between the 

19F and 1H Larmor frequencies is more than 3 MHz at g = 2, although in H2O 

buffer, the signals are barely distinguishable from the baseline and often ob-

scured by strongly coupled protons. It is possible, however, to resolve 19F signals 

from TFE in 35 GHz CW ENDOR spectra collected from a sample that is pre-

pared in D2O buffer and thus does not exhibit the broad 1H ENDOR signals from 

the bound water shown in Figure 6.3. Far better results are obtained, however, 

through use of the Mims/Re-Mims Q-band pulsed ENDOR technique, and in 

this case it is not necessary to use D2O buffers. A comparison of the 19F signal ob-

tained in CW or pulsed ENDOR is presented in Figure 6.8. This pulsed-ENDOR 

approach allowed us to prepare a single sample with deuterated TFE 

(CF3CD2OH) in H2O buffer, and to examine both its 19F and nonexchangeable 2H 

ENDOR responses. For ease of presentation, we first discuss results for (Hox + 

CF3CD2OH)mv, then for Hmv + CF3CD2OH. 
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19F ENDOR of (Hox + TFE)mv. Figure 6.9 shows 35 GHz Mims pulsed 

ENDOR spectra of (Hox + CF3CD2OH)mv at several values of τ. The arrows in the 

figures indicate the Mims "suppression holes" in the spectra, the minima of the 

sinusoidal Mims response function, eq 2.[NOTE:An anonymous reviewer sug-

gested that we show curves for both the proton and fluorine response functions 

superimposed on each spectrum; the approach we adopt keeps the spectra dis-

tinct and focuses attention to the points where one signal is absent and another 

one may be present.] In all cases, the highly visible 1H signals that extend to 

A(1H) = 8-10 MHz, in the CW spectra of Figure 6.2, are diminished in intensity 

relative to signals with smaller coupling by Mims suppression effects. The more 

strongly coupled 1H signals are not gone, however. This is best seen in the por-

tion of the τ = 228 ns spectrum with ν > νH, which shows a low-intensity "scal-

loped" shape given by 1H suppression holes in 1H ENDOR signals from the 

bound water. 

This Mims suppression of 1H signals unmasks the 19F signals, indicated in 

Figure 6.9, which are not mirrored to the high-frequency side of νH, as 1H signals 

would be.36 Figure 6.9 also contains a spectrum showing that the 19F signal is un-

changed by DMSO binding. The top two spectra in Figure 6.9 reveal how the ap-

pearance of the 19F signals is sensitive to τ. With τ = 228 ns, a 19F doublet centered 

at νF and split by an apparent coupling of A ≈ 2 MHz is clearly seen. In the spec-

trum with τ = 144 ns, the ν+(19F) branch is largely obscured by 1H signals because 

the latter are not so fully suppressed, but one can see that the 19F intensity actu-
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ally spreads over a broader range of frequencies, corresponding to maximum 

couplings of A(19F) ≈ 4-5 MHz. In the τ = 228 ns spectrum, the tails of the 19F sig-

nals are suppressed.  

19F ENDOR spectra also were taken over a range of magnetic fields to 

produce a 2D field-frequency plot (Figure 6.10); they reveal splittings of the main 

19F intensities, similar to the ones shown in Figure 6.9. The expected "through-

space" dipolar coupling for an Fe-F distance of 3.9-5.0 Å is 5.4-2.5 MHz if the Fe 

atom is Fe3+ and 2.6-1.1 MHz (1.6-0.4 MHz axial) for Fe2+. The 19F 2D-plot (Figure 

6.10) reveals a moderate amount of anisotropy in the 19F hyperfine coupling, but 

due to the presence of multiple Mims suppression holes and the partial overlap 

with the 1H signal, it is not possible to determine unambiguously whether the 19F 

hyperfine interaction contains a substantial isotropic component. Therefore, 

these data alone do not yield a structural model for the bound TFE. Because the 

data for Hmv + TFE show much smaller 19F couplings, however, we self-

consistently interpret them with a model where TFE binds to the (Hox + TFE)mv at 

the Fe3+ ion, or in a bridging mode (see below). 

19F ENDOR of Hmv + TFE. Analogous 19F ENDOR measurements were 

made with Hmv + CF3CD2OH, and Figure 6.11 shows 19F Mims and Re-Mims 

pulsed ENDOR spectra collected at g2 at several values of τ. As in Figure 6.9, the 

portion of the spectrum with ν > νH shows a low-intensity "scalloping" given by 

1H suppression holes in the 1H ENDOR signals from the bound water. Again, the 

suppression of the water proton signal discloses a 19F doublet centered around F, 
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with the suppression pattern confirming the assignment of this doublet to 19F. In 

the top, Re-Mims, spectrum, with τ = 148 ns, the short τ places the 19F suppres-

sion holes well outside the 19F intensity; the doublet splitting appears to be 

roughly A ≈ 1.3 MHz, with the ν+ peak being largely hidden under the proton 

signal intensity. 

The τ = 400 and 480 ns Mims ENDOR spectra respectively place a proton 

suppression hole at the ν- and ν+ peaks of the doublet assigned to 19F. The fact 

that this doublet is not suppressed confirms that the intensity is indeed due to 

19F. From these two spectra we conclude that a somewhat better value for the 19F 

hyperfine coupling is A ≈ 1 MHz, roughly half that in (Hox + TFE)mv, as is the case 

for the 2H couplings. Thus, with the assumption of standard bond lengths, the 19F 

ENDOR measurements of TFE are consistent with the 1,2H measurements of 

MeOH and EtOH. The alcohols bind terminally to the ferrous ion of Hmv, while 

binding in a bridging or semi-bridging fashion to Hox, as found crystallographi-

cally for the MeOH complex of Hox.24,[NOTE: If bond lengths vary appreciably, 

other options may become plausible. ] 

DMSO Binding to Hmv (+ Alcohols). The τ = 400 spectrum in Figure 6.11 

is overlaid with a trace from a Hmv sample that contains both DMSO and TFE, 

which has an EPR spectrum that is the same as that reported for Hmv + DMSO. 

The 19F signal seen for Hmv + TFE is eliminated, however, by the addition of 

DMSO, while the 1H signals remain identical. Overlays of the ν+ proton intensity 

over the ν- peaks shows that some of the intensity left over in the region around F 
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is actually proton intensity, with less than 20% of it due to 19F signals. Although 

the elimination of TFE is not complete, this result indicates that DMSO binding 

to the Fe(III) ion of Hmv prevents most of the TFE binding that occurs in the ab-

sence of DMSO. This competition between DMSO and TFE contrasts with the ob-

servation that DMSO binding to the Fe(III) of Hmv does not preclude methanol21 

or ethanol binding to Fe(II). 

 

Conclusion 

The present study has combined 1,2H and 19F ENDOR measurements to 

examine ethanol and TFE bound to both the Hox and Hmv diiron centers of solu-

tion MMOH and has compared these results to those from X-ray diffraction stud-

ies of preformed crystals into which alcohol had been diffused. In the process we 

have introduced 19F ENDOR spectroscopy as a valuable complement to the use 

of 1,2H ENDOR spectroscopy in probing the structure of substrates or products 

bound to catalytic metal centers in enzymes. The 1,2H ENDOR spectra of d5-

ethanol and of d2-TFE, and the 19F ENDOR of TFE obtained for the alcohols 

bound to solution Hox, as visualized by cryoreduction to (Hox)mv, are compared 

with those for the alcohols as bound to Hmv prepared in solution. The results, as 

interpreted in terms of eq 3, indicate that the alcohols bind close to Fe(II) of the 

EPR-active, mixed-valence cluster of Hmv, either in a terminal or semi-bridging 

fashion, as previously suggested for MeOH.21 They bind to Hox in a bridging, or 

semi-bridging fashion closer to the Fe3+ ion of (Hox)mv, consistent with crystallo-
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graphic structures for complexes prepared by diffusion of alcohols into pre-

formed crystals of Hox.22 The early proposal that alcohols bind to the diiron(III) 

state in a bridging mode and distal to the histidine ligands in the active-site cav-

ity (positions 3 and 4, in Figure 6.1),11 is thus strongly supported by the crystal-

lographic result obtained from alcohol-treated Hox crystals,24 by the ENDOR 

studies on the enzyme in solution, and by recent density functional calculations37 

on the reaction of methane with intermediate Q. 1,2H ENDOR spectra of ex-

changeable protons further suggest that the ethanols, like methanol,21 bind to 

Hmv without replacing coordinated water. Detailed examination of the 2H 

ENDOR spectra of Hmv and Hmv + ethanol shows that the structural flexibility of 

the diiron centers (illustrated by differences in the crystal structure protomers) 

precludes an in-depth analysis, but the data are consistent with the crystallo-

graphic result14,24 that two waters bind weakly to one of the Fe ions of Hmv.  

DMSO does not affect the binding of either of the ethanols or of methanol 

to Hox, nor of ethanol or methanol to Hmv. It does, however, displace TFE from 

the diiron site in Hmv, a difference consistent with the weaker coordinating abil-

ity of this alcohol owing to the electron-withdrawing fluorine atoms. 
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Figure 6.1. A representation of the MMOH active site based on the crystal struc-

ture of MMOHmv; the actual cluster is highly flexible, adopting a variety of struc-

tures associated with shifts of the carboxylate of Glu243.14 Black spheres repre-

sent iron; light gray spheres, carbon; dark gray spheres, nitrogen; unfilled 

spheres, oxygen. Numbered positions represent known sites for binding exoge-

nous ligands. 
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Figure 6.2. MMOHmv EPR spectra in the presence and absence of substrates: 35.1 

GHz MW frequency; modulation amplitude = 1.7 G; T = 2 K. 
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Figure 6.3. 1H ENDOR spectra of Hmv, as well as Hmv in the presence of TFE, 
ethanol, or methanol. The spectrum of the sample exchanged in D2O is represen-
tative of that of Hmv, as well as in the presence of the alcohols. (a) 35.02 GHz MW 
frequency, g = 1.87; negative scan direction; scan speed 1 MHz/s; 200 kHz (full 
width) broadening of rf excitation; modulation amplitude = 1.3 G. (b) As in (a) 
but 35.06 GHz, g = 1.862; modulation amplitude = 1.7 G; scan speed 1 MHz/s. (c) 
As in (a) but 35.105 GHz MW frequency, g = 1.840; negative scan direction; scan 
speed 2 MHz/s; modulation amplitude = 4.2 G. (d) As in (a) but 35.048 GHz MW 
frequency, g = 1.841; positive scan direction; scan speed 1 MHz/s; modulation 
amplitude = 1.7 G. (e) Re-Mims (four-pulse) sequence30 with a π/2 microwave 
pulse = 32 ns, with 20 µs rf pulse and τ = 164 ns; no rf excitation broadening; 
34.836 GHz MW frequency, g = 1.86; pulse sequence repetition time = 20 ms; 30 
averaged data shots per point; 40 scans. (f) As in (e) but 35.051 GHz MW fre-
quency; pulse sequence repetition time 20 ms; 30 averaged data shots per point; 8 
scans. 
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Figure 6.4. Re-Mims 2D Plot with Simulations. Hmv + TFE/D2O – field depend-

ence of the 2H 35 GHz ReMims pulsed ENDOR spectra overlaid with a simula-

tion. 2H Mims suppression holes are indicated by arrows. Spectra are identified 

by their g values. Re-Mims sequence with a π/2 microwave pulse = 32 ns, with 

20 µs Rf pulse and τ = 164 ns; no Rf exciation broadening; 35.051 GHz MW fre-

quency, pulse sequence repetition time 20 ms; 30 averaged data shots per point. 

6-17 scans recorded per spectrum. 
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Figure 6.5. 2H 35 GHz Mims ENDOR of Hmv, to which CD3OH, or CD3CD2OH, 
or CF3CD2OH have been added, and of (Hox + CF3CD2OH)mv; 2H Mims suppres-
sion holes are marked on each spectrum. (a) Hmv + CD3OH at g2 = 1.86.21 (b) 
Mims sequence with a π/2 microwave pulse = 50–52 ns, with 60 µs rf pulse, τ = 
452 ns; 34.695 GHz MW frequency, g = 1.864; pulse sequence repetition time = 25 
ms; 40 averaged data shots per point; 8 scans; the seventh proton harmonic at 
8.09 MHz (-0.6 MHz in the figure) causes a slight asymmetry in this spectrum. 
(HνL = 56.62 MHz). (c) As in (b) but τ = 400 ns; no broadening of rf excitation; 
34.594 GHz MW frequency, g = 1.84; pulse sequence repetition time = 20 ms; 30 
averaged data shots per point; 10 scans. (d) As in (b) but Mims sequence with 60 
µs rf pulse and τ = 360 ns; 34.584 GHz MW frequency; pulse sequence repetition 
time = 20 ms; 11 scans. 
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Figure 6.6. Hmv + CD3CD2OH – field dependence of 2H 35 GHz Mims ENDOR 

spectra. 2H Mims suppression holes are indicated by arrows. The 7th proton har-

monic at approximately -0.6 MHz from νD causes a slight asymmetry in these 

spectra. Mims sequence with a π/2 microwave pulse = 50-52 ns, with 100 µs Rf 

pulse and τ = 452 ns; 40 kHz Rf excitation broadening; 34.695 GHz MW fre-

quency. Spectra are designated by their g values.  
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Figure 6.7. (Hox + CF3CD2OH)mv/H2O – field dependence of the 2H 35 GHz Mims 

pulsed ENDOR spectra. 2H Mims suppression holes are indicated by arrows. 

Mims sequence with a π/2 microwave pulse = 50-52 ns, with 60 µs Rf pulse and τ 

= 360 ns; no Rf excitation broadening; 34.695 GHz MW frequency. 
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Figure 6.8. Typical CW vs. pulsed 1H/19F ENDOR of Hmv +TFE. νF at these fre-

quencies is ~ -3.4 MHz relative to νH and is marked on the figure. (a) Typical CW 

19Fsignal sample in H2O buffer, 34.84 GHz MW frequency, g = 1.844; 200 kHz Rf 

excitation broadening, modulation amplitude 5 G, 16 scans, time constant = 128 

ms, gain = 320. (b) Best CW 19F signal, sample in D2O buffer, 35.05 GHz MW fre-

quency, g = 1.841; 200 kHz Rf excitation broadening, modulation amplitude 0.5 

G, 64 scans, time constant = 64 ms, gain = 1000. (c) Typical pulsed Mims ENDOR 

signal, sample in H2O buffer. Mims sequence with a π/2 microwave pulse = 50-

52 ns, with 20 µs Rf pulse and τ = 480 ns; no Rf excitation broadening; 34.850 

GHz MW frequency, g = 1.838, pulse sequence repetition time 15 ms, 60 averaged 

data shots per point, 6 scans.  
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Figure 6.9. (Hox + CF3CD2OH)mv – τ-dependence of the 1H/19F ENDOR signal. 

All spectra taken on a sample containing DMSO, except as indicated for the last 

(bottom) spectrum (without DMSO). Arrows indicate Mims suppression holes, 

normal and feathered arrows refer to the proton and fluorine signals, respec-

tively. Some arrows are addressed in the text and are printed in boldface for ease 

of finding them. The spectra are identified by τ: (144 ns) Re-Mims (four-pulse) 

sequence30 with a π/2 microwave pulse = 32 ns, with 20 µs rf pulse, τ = 144 ns; 

34.720 GHz MW frequency, g = 1.776; pulse sequence repetition time = 5 ms; 200 

averaged data shots per point; 10 scans. (228 ns) As in (144 ns) but τ = 228 ns. 
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Figure 6.10. (Hox +CF3CD2OH)mv/H2O – field dependence of the 19F ENDOR sig-

nals. 
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Figure 6.11. Hmv + TFE – τ-dependence of the proton/fluorine spectra. All spec-

tra were taken on a sample NOT containing DMSO except as indicated for one of 

the spectra with τ = 400. (148 ns) Re-Mims (four-pulse) sequence30 with a π/2 

microwave pulse = 32 ns, with 20 µs rf pulse, τ = 148 ns; 34.638 GHz MW fre-

quency, g = 1.840; pulse sequence repetition time = 25 ms; 40 averaged data shots 

per point; 20 scans. (400 ns) Mims sequence with a π/2 microwave pulse = 50-52 

ns, with 20 s rf pulse, τ = 400 ns; 34.596 GHz MW frequency, g = 1.840; pulse se-

quence repetition time = 25 ms; 40 averaged data shots per point; 3 scans. (400 ns 

+ DMSO) As in (400 ns) but spectrum of Hmv + TFE + DMSO, τ = 412 ns; 34.741 

GHz MW frequency, pulse sequence repetition time = 30 ms; 30 averaged data 

shots per point; 2 scans; (overlaid with (400 ns) spectrum). (480 ns) As in (400 ns) 

but τ = 480 ns; 1 scan; (600ns) As in (400 ns) but τ = 600 ns; 2 scans; (1000 ns) As 

in (400 ns) but τ = 1000 ns; 5 scans. 



 237

 

 

 

 

 

 

 

 

 

Appendix: 

 

Single Turnover Hydroxylations of Norcarane 
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Introduction 

 The formation of both cation- and radical-type rearrangement products 

upon oxidation of norcarane was proposed to be a result of the action of multiple 

oxidant species.1 Single turnover experiments are well suited to exploring the 

reactivity of the oxygen intermediates of sMMO. Due to their distinctive optical 

spectra, the time course for Hperoxo and Q formation and decay can be followed 

by stopped flow methods. Double mixing stopped-flow spectrophotometry is 

particularly useful because it can isolate the intermediates in time. Such experi 

ments have provided evidence for the reaction of Hperoxo with substrates such as 

propylene2 and acetonitrile.3 Both single and double mixing methods were used 

to investigate the reaction of norcarane with sMMO. 

  

Experimental 

MMO single turnover reactions were performed according to published 

procedures.2 A solution of MMOH/2MMOB was combined with an equal 

amount of methyl viologen, degassed, and reduced with an excess of sodium di-

thionite. Dithionite and methyl viologen were removed from the protein solution 

by dialysis in an anaerobic glove box. All data were recorded with a Hi-Tech SF-

61 DX2 instrument. In single mixing experiments, the MMOHred/2MMOB solu-

tion was rapidly mixed with a dioxygen-saturated solution containing either 

saturated norcarane or no substrate.  
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For double mixing experiments, MMOHred/2MMOB is mixed first with 

dioxygen-saturated buffer. After a delay designed to maximize the amount of 

either Hperoxo or Q formed, the protein is mixed with buffer that lacks substrate or 

is norcarane-saturated. The formation and decay of intermediates Hperoxo and Q 

were monitored at 725 and 420 nm, respectively. Data were fit either as a sum of 

exponential decays using the Hi-Tech KinetAsyst software, or by numerical 

simulation using DynaFit.4 

 

Results 

Single-Turnover Oxidation of Norcarane: Single Mixing. The reaction of 

norcarane with sMMO intermediates was measured by stopped-flow optical 

spectroscopy in two configurations, single mixing and double mixing. In the sin-

gle mixing experiment, a solution of MMOHred/2MMOB is mixed with a buffer 

solution saturated with dioxygen containing either no substrate or saturated nor-

carane. Traces recorded at 420 and 725 nm are presented in Figure A1. A sum-

mary of rate constants determined from these data by fitting to a sum of three 

exponentials is shown in Table A1. This analysis indicates that addition of norca-

rane clearly accelerates the decay of Q, but the effect on decay of Hperoxo is less 

clear. The fitting routine returns a lower value for Hperoxo decay (monitored at 725 

nm) upon addition of norcarane. If norcarane reacted only with Q, then there 

should be no effect on the Hperoxo to Q conversion rate constant. If, on the other 
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hand, norcarane reacts with both Hperoxo and Q, then the overall rate for decay of 

Hperoxo should increase.  

 Numerical simulations of the kinetic traces (Figures A2, A3, A4) improve 

our understanding of the changes that occur between reactions without substrate 

and with norcarane. In Figure A2, data recorded at two wavelengths in the ab-

sence of substrate are simulated by the mechanism Hred → Hperoxo → Q → prod-

ucts. The rate constant for the conversion of Hred to Hperoxo was fixed at 19.0 s-1, 

the value obtained by multiple-exponential fitting to 725 nm data. The other rate 

constants and extinction coefficients were allowed to float to find a best-fit value, 

with the constraint that a single set of rate constants must fit data recorded at 

both 420 and 725 nm. Figure A3 shows the results of a simulation of data re-

corded in the presence of norcarane, using the mechanism described above. In 

this case, the extinction coefficients were fixed to the values obtained from Figure 

A2. This mechanism provides a poor fit to the data. Figure A4 shows a simula-

tion of the same data, but with a mechanism that allows conversion of Hperoxo → 

products, representing the hydroxylation of substrate by Hperoxo. Again, the ex-

tinction coefficients were fixed to the values determined in the absence of sub-

strate. The fit is much better than in Figure A3. 

Single-Turnover Oxidation of Norcarane: Double Mixing. A double mix-

ing experiment was also performed, in which MMOHred/2MMOB is mixed with 

dioxygen, allowed to age, and then mixed with buffer ± norcarane. After the sec-

ond mixing event, absorbance values at either 420 or 725 nm are recorded (Figure 
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A5). A summary of rate constants obtained by fitting the traces shown to a sum 

of two exponentials is presented in Table A2. The two rate constants determined 

from 725 nm data represent Hperoxo decay and Q decay; the two determined from 

420 nm data represent two phases of Q decay.  Decay rates of both Hperoxo and Q 

are accelerated by addition of norcarane. 

 

Discussion 

In order to address the question of multiple oxidants possibly reacting 

with norcarane, single turnover experiments were carried out where the kinetic 

behavior of Hperoxo and Q can be monitored spectroscopically in the presence or 

absence of norcarane.  Extinction coefficients and rate constants in the absence of 

substrate determined by numerical simulation of single mixing stopped-flow 

data (Figures A1, A2) agree with those determined previously.2 Addition of nor-

carane clearly accelerates Q decay, as expected (Figure A1).5 Numerical simula-

tions are also clear in showing that a model that allows only changes in the rate 

constants of Q formation and decay is inadequate to model the reaction in the 

presence of norcarane (Figure A3). A model allowing reaction of both Hperoxo and 

Q with norcarane (Figure A4) fits well, but one cannot exclude other models on 

this basis alone. 

 Results of a double mixing experiment recapitulate those found in single 

mixing mode (Figure A5, Table A2). Q decay is accelerated, and Hperoxo decay is 

similarly accelerated.  None of the preceding data, however, can rule out possi-
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bilities that norcarane alters the kinetic behavior of the protein by, for instance, 

speeding up conversion of Hperoxo to Q, or changing the rate of autodecay. 

 

Conclusion 

 The stopped-flow data are consistent with the conclusion that Hperoxo acts 

as an oxidant upon norcarane. Before such a statement can be made with great 

confidence, however, two more experiments should be performed. If Hperoxo does 

indeed react with norcarane, then the rate constant for Hperoxo decay should show 

a linear dependence on the concentration of norcarane. Such an analysis has 

helped confirm that Hperoxo can react with substrates such as propylene and ace-

tonitrile.2,3 Rapid chemical quench experiments would allow the formation of 

hydroxylated products to be followed as a function of time after mixing, poten-

tially providing further evidence that at early time points, only Hperoxo is kineti-

cally competent to produce the products observed. This technique also has the 

advantage of allowing products to be identified, to answer the question of 

whether Hperoxo gives rise to a different product distribution than does Q. 
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Table A1. Rate Constants for Single Turnover of MMOH in the Presence or Ab-

sence of Norcarane, Measured by Single Mixing Stopped-Flow Spectroscopy. 

 rate constant (s-1) 

Norcarane - + 

wavelength (nm) 420 725 420 725 

Hperoxo formation -- 19 ± 3 -- 64 ± 19 

Hperoxo decay/Q forma-

tion 

8.20 ±  0.03 9 ± 1 8.2 ± 0.17 6.0 ± 0.9 

Q decay 0.31 ± 0.01 0.203 ± 0.003 0.48 ± 0.05 0.29 ± 0.05 

Q decay (slow) 0.054 ± 0.003 -- 0.58 ± 0.08 -- 
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Table A2. Summary of Rate Constants Observed for Reaction of Norcarane with 

Hperoxo and Q Monitored by Double Mixing Stopped-Flow. 

 sub-

strate 

k1 

(Hperoxo decay) (s-1) 

k2 

(Q decay) (s-1) 

k3 

 (Q decay) (s-1) 

- 3.57 ± 0.09 0.32 ± 0.07 -- 
725 nm 

+ 7.63 ± 0.08 0.80 ± 0.07 -- 

- -- 0.78 ± 0.10 0.15 ± 0.04 
420 nm  

+ -- 1.25 ± 0.13 0.49 ± 0.06 
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Figure A1.  Single turnover reaction in single mixing mode of 

MMOHred/2MMOB with (circles) or without (squares) norcarane.  Upper traces 

recorded at 420 nm, lower traces at 725 nm.  
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Figure A2. Simulation of single mixing data in the absence of substrate. Data 

with simulations are shown at left. Black dashed lines are simulations. Kinetic 

models are shown at right. All parameters were allowed to vary except where 

indicated.  
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Figure A3. Simulation of single mixing reaction of MMOHred/2MMOB + O2 + 

norcarane. Kinetic model does not include reaction of Hperoxo with norcarane. 
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Figure A4. Simulation of single mixing reaction of MMOHred/2MMOB + O2 + 

norcarane. Kinetic model includes reaction of Hperoxo with norcarane. 
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Figure A5. Double mixing stopped flow traces of the reaction of Q (420 nm) or 

Hperoxo (725 nm) with norcarane (circles) or no substrate (squares). Age times af-

ter the first mix were 400 ms (420 nm traces) or 55 ms (725 nm traces). 
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