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Abstract

We study the routing and wavelength assignment (RWA) problem in wavelength division multi-

plexing (WDM) networks with no wavelength conversion. In a high-speed core network, the traÆc

can be separated into two components. The �rst is the aggregated traÆc from a large number of

small-rate users. Each individual session is not necessarily static but the combined traÆc streams

between each pair of access nodes are approximately static. We support this traÆc by static pro-

visioning of routes and wavelengths. In particular, we develop several o�-line RWA algorithms

which use the minimum number of wavelengths to provide l dedicated wavelength paths between

each pair of access nodes for basic all-to-all connectivity. The topologies we consider are arbitrary

tree, bidirectional ring, two-dimensional torus, and binary hypercube topologies. We observe that

wavelength converters do not decrease the wavelength requirement to support this uniform all-to-all

traÆc.

The second traÆc component contains traÆc sessions from a small number of large-rate users

and cannot be well approximated as static due to insuÆcient aggregation. To support this traÆc

component, we perform dynamic provisioning of routes and wavelengths. Adopting a nonblocking

formulation, we assume that the basic traÆc unit is a wavelength, and the traÆc matrix changes

from time to time but always belongs to a given traÆc set. More speci�cally, let N be the number

of access nodes, and k denote an integer vector [k1; k2; :::; kN ]. We de�ne the set of k-allowable

traÆc matrices to be such that, in each traÆc matrix, node i, 1 � i � N , can transmit at most

ki wavelengths and receive at most ki wavelengths. We develop several on-line RWA algorithms

which can support all the k-allowable traÆc matrices in a rearrangeably nonblocking fashion while

using close to the minimum number of wavelengths and incurring few rearrangements of existing

lightpaths, if any, for each new session request. The topologies we consider are the same as for static

provisioning. We observe that the number of lightpath rearrangements per new session request is

proportional to the maximum number of lightpaths supported on a single wavelength. In addition,
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we observe that the number of lightpath rearrangements depends on the topological properties,

e.g. network size, but not on the traÆc volume represented by k as we increase k by some integer

factor.

Finally, we begin exploring an RWA problem in which traÆc is switched in bands of wavelengths

rather than individual wavelengths. We present some preliminary results based on the star topology.

Thesis Supervisor: Eytan H. Modiano
Title: Assistant Professor, Department of Aeronautics and Astronautics

Thesis Supervisor: Robert G. Gallager
Title: Professor, Department of Electrical Engineering and Computer Science
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Chapter 1

Introduction

1.1 Optical Bypassing in All-Optical Networks

Optical �ber is a communication medium with a potential transmission bandwidth up to 25

THz [Gre93]. Practical networks employ wavelength division multiplexing (WDM) in which the

�ber bandwidth is divided into multiple frequency bands often called wavelengths. In current prac-

tical WDM systems, only a portion of the �ber bandwidth is utilized. In addition, the highest

transmission rate over a single wavelength is 40 Gbps, whereas the total transmission rate over

multiple wavelengths in a single �ber is currently beyond 1 Tbps [RS01].

While processing WDM traÆc electronically at every network node may be technologically

feasible, it yields a very expensive network architecture. Electronic processing at every node was

adopted in the early days of communication networks, e.g. the ARPANET, when the cost of

transmission dominated the cost of processing at all the network nodes. However, for current high-

speed networks with optical transmission technology, we expect the cost of electronic information

processing to dominate the cost of optical information transmission. Therefore, it is desirable to

eliminate unnecessary electronic processing in the network. For example, consider the scenario in

�gure 1-1. There are two sources, each sending one wavelength worth of traÆc to the destination.

The wavelength from source 1, denoted by �1, can be combined with the wavelength from source

2, denoted by �2, using an optical multiplexer without any electronic processing. In this case, we

say that the traÆc session from source 1 optically bypasses electronic processing at node 2.

In the given example, the use of optical bypassing requires no more wavelengths than that
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source 1 source 2

node 1 node 2 node 3

destination

�1

�2

Figure 1-1: Example network to illustrate optical bypassing.

required by electronic processing. However, this is not always the case. Suppose for example that

each source in �gure 1-1 transmits only half a wavelength worth of traÆc to the destination. It

follows that, with optical bypassing of traÆc from source 1 at node 2, i.e. no multiplexing of traÆc

at the subwavelength level, we need to utilize two wavelengths on the link from node 2 to node 3.

If we use an electronic switch at node 2 to multiplex the two traÆc streams, then only a single

wavelength is required. Thus, optical bypassing may require more wavelengths when the bypassed

traÆc sessions have smaller rates than the rate of a single wavelength. Despite additional required

wavelengths, the cost savings from the elimination of electronic processing could still be attractive

enough to justify optical bypassing.

In an all-optical network architecture, each traÆc session optically bypasses electronic process-

ing at all intermediate nodes, i.e. nodes that are neither the source nor the destination of that

session. In other words, there is no electronic reception and retransmission of data packets by any

intermediate node. We shall concentrate on all-optical network architectures in this thesis.

Optical wavelength changers allow us to change the wavelength of a traÆc session at intermedi-

ate nodes without electronic processing. Since optical wavelength changers are very expensive, we

shall assume no optical wavelength conversion except when explicitly indicated. With this assump-

tion, each optically bypassed traÆc session is subjected to the wavelength continuity constraint,

which dictates that the session must travel on the same wavelength on all links from the source

node to the destination node. For a given traÆc session, de�ne its lightpath to be the route and the

wavelength used to support that session. There are usually multiple ways to assign a lightpath for

a given session. The problem of assigning lightpaths for all traÆc sessions in the network is called

the routing and wavelength assignment (RWA) problem, which is the main topic of this thesis.

We have seen an example in which optical bypassing increases the required number of wave-

lengths in a �ber when the rates of bypassed traÆc sessions are smaller than one wavelength unit.

The following example shows that, even when the rate of each session is equal to one wavelength,

10



optical bypassing may require additional wavelengths in a �ber due to the wavelength continuity

constraint. For example, consider the scenario in �gure 1-2. The rate of each session is one wave-

length. Without optical bypassing, the required number of wavelengths in each �ber is equal to

the maximum link load which is two wavelengths in this example. On the other hand, with opti-

cal bypassing, we need three wavelengths because each lightpath necessarily shares a transmission

link with each of the other two lightpaths and thus needs a distinct wavelength. Notice that two

wavelengths suÆce in this example if wavelength changers are employed.

on �1
session 1

session 2

session 3
on �3

on �2

Figure 1-2: Increase in the number of wavelengths due to the wavelength continuity constraint.

In short, optical bypassing serves as an approach to reduce the cost of electronic processing

of information at the network nodes, but possibly at the cost of additional wavelengths. In fact,

optical bypassing can be viewed as a special case of the general trade-o� between switching and

transmission costs in communication networks. What motivates us in this special case is the

potential of a signi�cant reduction in switching cost with only a slight increase in transmission

cost.

1.2 Recon�gurable Switching Node Model

Our generic model of a recon�gurable switching node is illustrated in �gure 1-3. TraÆc sessions on

each input �ber are separated by an optical demultiplexer (DMUX). The wavelengths (and hence

the traÆc sessions) on the same wavelength from di�erent input �bers go through a recon�gurable

optical switch dedicated to that wavelength. Such a switch is called a wavelength selective switch.
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Each wavelength selective switch is subjected to the crossbar constraint, which dictates that no more

than one input (output) can be connected to a single output (input). TraÆc sessions on di�erent

wavelengths switched to the same output �ber are combined by an optical multiplexer (MUX).

Some input sessions are terminated or dropped to the end users or the subnetwork connected to

this network node. Similarly, some output sessions are transmitted or added from the end users or

the subnetwork.

: : :
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recon�gurable
switch switch

: : :

receivers
fully tunable

input
�bers

output
�bers

MUXsDMUXs
switches

wavelength selective
recon�gurable

recon�gurable

Figure 1-3: Recon�gurable switching node model.

We shall assume that optical transmitters and receivers are fully tunable, i.e. a single transmitter

(receiver) can be used to transmit (receive) on any wavelength in the �ber. When possible, we

shall discuss how this assumption can be relaxed. The use of tunable transmitters and receivers

requires additional optical switches in order to guide the transmitted and received wavelengths to

appropriate optical switches, as illustrated in �gure 1-3.

Certain wavelengths may be used to provide dedicated static connections. For these wave-

lengths, the transmitters and receivers need not be tunable. In addition, we can replace recon�g-

urable wavelength selective switches with �xed wavelength selective switches. Figure 1-4 shows a

recon�gurable switching node model in which a subset of wavelengths, denoted by �V+1, ..., �W ,

are used for dedicated static connections. While this node model is less exible than the one in
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�gure 1-3, it can provide cost savings from the smaller number of recon�gurable components.
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Figure 1-4: Recon�gurable switching node model in which wavelengths �V+1, ..., �W are used for

dedicated static connections.

1.3 Switching of TraÆc in Larger Granularities

As the amount of traÆc among network nodes increases, it is more eÆcient to switch traÆc in

larger and larger traÆc units. More speci�cally, we expect to switch traÆc in units of wavelengths,

bands of wavelengths, �bers, bundles of �bers, and so on. At each increment of the traÆc unit,

there is a potential cost saving from bypassing the processing of traÆc in the smaller unit at

intermediate nodes. For example, if we expect a wavelength to be a common traÆc unit, then
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we can bypass electronic processing of traÆc at intermediate nodes, possibly at the price of more

wavelengths. If we expect a band of wavelengths to be a common traÆc unit, then we can bypass

wavelength-level optical MUXs and DMUXs, i.e. use only band-level optical MUXs and DMUXs,

possibly at the price of more bands of wavelengths. Notice that, for di�erent increments of the

traÆc unit, the logical problems of how to eÆciently bypass the processing of traÆc in the smaller

unit are similar. The main di�erences lie �rst in a common traÆc unit, and second in an available

switching technology for that unit. By an appropriate scaling of the common traÆc unit, a solution

for the bypassing problem with one common traÆc unit may be used for the bypassing problem

with another common traÆc unit.

However, the trade-o�s between the reduction in switching cost and the increase in wavelengths

can di�er greatly in the bypassing problems with di�erent common traÆc units. For example,

when a wavelength is a common traÆc unit, optical bypassing of electronic processing can o�er a

signi�cant saving in switching cost at a relatively small price of more wavelengths. On the other

hand, when a band of wavelengths is a common traÆc unit, bypassing of wavelength-level optical

processing can reduce wavelength-level optical MUXs, DMUXs, and recon�gurable switches but

may or may not justify a price of more bands of wavelengths. The detailed nature of these trade-

o�s are beyond the scope of this thesis. For the most part, we shall concentrate on the cases in

which a wavelength is a common traÆc unit and investigate how to switch wavelengths of traÆc

eÆciently. In the last part of this thesis, we shall explore how to eÆciently switch traÆc in bands

of wavelengths.

1.4 Core Network with Aggregated TraÆc

We shall focus our attention on the design of a high-speed core network that interconnects sub-

networks using electronic switches at the access nodes. Figure 1-5 shows an example of such a

core network. With respect to the core network, the access nodes act as entry and exit points for

traÆc from individual end users in the subnetworks. The core network may have nodes that are

not access nodes but are used to switch traÆc. Electronic switches at the access nodes can be used

to aggregate and deaggregate small-rate traÆc sessions from individual end users in subnetworks.

For large-rate sessions whose rates are approximately a wavelength, electronic switches can act as

14



electronic wavelength changers which relax the wavelength continuity constraint between a core

network link and a subnetwork link on a given lightpath.

core network link

core network node with
no electronic switch

core network access node
with electronic switch
at subnetwork interface

subnetwork link

subnetwork node

subnetwork 4

subnetwork 2subnetwork 1

subnetwork 3

subnetwork 5

Figure 1-5: A core network interconnecting subnetworks through electronic switches at the access nodes.

In the core network, each traÆc session is transmitted from one access node, referred to as

the source node, to another access node, referred to as the destination node. A single session may

result from traÆc aggregation of a large number of small-rate sessions in a subnetwork. In this case,

we expect each traÆc session to be somewhat static and shall provide its route and wavelength

in a static fashion. On the other hand, a single session may result from traÆc aggregation of few

large-rate sessions or even from a single large-rate session in a subnetwork. In this case, sessions

might have short lifetimes, so it is necessary to change routes and wavelengths in a dynamic

fashion. For the purpose of RWA algorithm designs, we can consider static provisioning of routes

and wavelengths as if we were to support static traÆc sessions. Throughout the thesis, we shall

use the terms static traÆc and dynamic traÆc to refer to the cases in which we perform static and

dynamic provisioning of routes and wavelengths respectively, even though each supported session

is not static under static provisioning.

We shall adopt all-optical network architectures and aim to develop RWA algorithms to support

both static and dynamic traÆc in the core network. Note that, in an all-optical network, each traÆc
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session is electronically processed only at the source node and the destination node. In both static

and dynamic traÆc models, we assume that each session has a rate equal to one wavelength unit.

This assumption is reasonable for the design of high-speed core networks in which each pair of

subnetworks have multiple wavelengths of traÆc to communicate. In addition, this assumption

allows us to neglect the additional wavelengths required for optical bypassing due to the traÆc

sessions whose rates are smaller than a wavelength.

1.5 Outline of the Thesis

The remaining parts of this thesis are organized as follows. Chapter 2 briey discusses existing

literature on the RWA problem in WDM networks. It also states our thesis objectives and presents

our problem formulations. Chapter 3 discusses static RWA and presents our RWA algorithms for

static traÆc. Chapter 4 discusses dynamic RWA and presents our RWA algorithms for dynamic

traÆc. Chapter 5 explores further reduction in switching cost by performing switching in bands of

wavelengths instead of in wavelengths. Finally, chapter 6 summarizes our achievements and points

out some directions for future research.
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Chapter 2

History and Problem Formulations

2.1 Existing Literature on the RWA Problem

Several papers investigate the routing and wavelength assignment (RWA) problem in a wavelength

division multiplexing (WDM) network under the wavelength continuity constraint. A comprehen-

sive overview of di�erent problem formulations and solution approaches taken by researchers is

available in [YB97, ZJM00]. We can categorize existing results into two groups based on whether

static or dynamic provisioning of routes and wavelengths is performed. For static provisioning, the

traÆc to be supported is assumed known and �xed over time. The goal is often to minimize the num-

ber of wavelengths used in the network [BM96, RS96]. Alternatively, if the number of wavelengths is

�xed in advance, one goal is to maximize the number of supported traÆc sessions according to some

known and �xed traÆc demands [CGK92, RS95, ZA95, CB96]. These problems can be formulated

as mixed integer linear programming (ILP) problems [RS95, ZA95, BM96, CB96, RS96], which are

known to be NP-complete [CGK92]. Consequently, the RWA problems are frequently divided into

two steps, the �rst for routing and the second for wavelength assignment. These two steps are then

solved separately and suboptimally. In some cases, partial routing decisions are made at the time

of wavelength assignment. For example, an RWA algorithm may assign a few routes in advance

for each session with the �nal choice to be made at the time of wavelength assignment [RS95]. For

some regular topologies and speci�c traÆc, e.g. all-to-all uniform traÆc in the bidirectional ring

topology, the overall RWA problem can be solved to obtain closed form solutions [Elr93, Wil96].

For arbitrary mesh topologies, bounds on the optimal costs have been derived [RS95, BYC97] and
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several heuristics have been developed [RS95, ZA95, BM96, CB96, LL96, Muk+96].

Dynamic provisioning of routes and wavelengths gives us exibility in supporting traÆc which

may change over time through session arrivals and session departures. To model dynamic traÆc,

session arrivals can be assumed to form stochastic processes [Bir96, SAS96]. In addition, session

lifetimes are stochastic. The goal is usually to develop an on-line RWA algorithm which minimizes

the average blocking probability for a new session request given a �xed number of wavelengths in

the network. We refer to this type of problem formulation as the blocking formulation. Due to

the complexity in computing blocking probabilities, some approximations are made to simplify the

analysis. For example, session arrivals on di�erent links are assumed to be independent [Bir96,

BH96], or correlated among adjacent links in the same fashion throughout the network [SAS96].

Based on such approximations, several dynamic RWA heuristics are developed [LS99, ZRP00].

Another type of problem formulation, referred to as the nonblocking formulation, assumes prior

knowledge of the set of all the traÆc matrices, or equivalently the traÆc demands, to be sup-

ported [Pan92, Ger+99, NLM02]. In [Ger+99], the set of traÆc matrices is characterized by the

maximum link load in the network. In [Pan92, NLM02], the set of traÆc matrices is characterized

by the number of tunable transmitters and tunable receivers at each end node. A new session is

said to be allowable if its arrival results in a traÆc matrix which is still in the set of supportable

traÆc. The goal is usually to develop an on-line RWA algorithm which does not block any allowable

session and uses the minimum number of wavelengths.

If we allow some existing lightpaths to be rearranged in order to support a new session, the cor-

responding RWA algorithm is said to be rearrangeably nonblocking.1 If we allow no rearrangement

of any existing lightpath in order to support a new session, the corresponding RWA algorithm is

said to be wide-sense nonblocking. Note that if an RWA algorithm is wide-sense nonblocking, it is

also rearrangeably nonblocking. Therefore, for the same set of traÆc matrices, the required num-

ber of wavelengths is higher for a wide-sense nonblocking RWA algorithm than for a rearrangeably

1The terminology comes from standard de�nitions in switching theory. A switching network is rearrangeably

nonblocking if any allowable session can be supported, possibly after some rearrangements of existing sessions. A
switching network is wide-sense nonblocking if any allowable session can be supported without rearrangement of
existing sessions provided that all the existing sessions have been routed according to some algorithm. Finally,
a switching network is strict-sense nonblocking if any allowable session can be supported without rearrangement
of existing sessions. Notice that, in a strict-sense nonblocking network, we can support each allowable session by
choosing any of the routes available at the time. By de�nition, a strict-sense nonblocking network is also wide-sense
nonblocking. In addition, a wide-sense nonblocking network is also rearrangeably nonblocking.
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nonblocking RWA algorithm.

Switching of traÆc in multiple levels of granularity appears in several investigations on the traÆc

grooming problem. In the traÆc grooming problem, the objective is to eÆciently aggregate small-

rate traÆc sessions onto wavelengths using electronic switches and to perform optical bypassing

to minimize the cost of electronic switches [BM00, CM00, GRS00]. Similar problems exist for

larger levels of traÆc granularity. In particular, as traÆc demands increase, we expect to reduce

the switching cost further by switching traÆc in bands of wavelengths instead of in wavelengths

when it is appropriate. In this case, the cost savings come from the reduction of optical switching

resources. For convenience, we shall refer to a switch whose basic traÆc unit is a wavelength as

a wavelength switch. Accordingly, we shall refer to a switch whose basic traÆc unit is a band of

wavelengths as a band switch. In addition, we shall refer to the RWA problem with wavelengths and

bands of wavelengths as the two levels of traÆc granularity as the band/wavelength RWA problem.

Despite their similarities, there are some fundamental di�erences between the traÆc grooming

problem and the band/wavelength RWA problem. Since we still operate in the optical domain, the

wavelength continuity constraint applies at the interface between a band switch and a wavelength

switch, whereas there is no such constraint at the electronic interface. In addition, the cost structure

of an optical switch is di�erent from that of an electronic switch. More speci�cally, the cost

of an electronic switch primarily depends on the total input traÆc rate, while the cost of an

optical switch may only depend on the total number of input ports. For example, with promising

microelectromechanical system (MEMS) technologies, an optical switch can be constructed from

a set of tiny mirrors used to reect traÆc streams in the form of light beams from input ports to

output ports [RS01]. Such an optical switch can be used as a band switch or a wavelength switch

without signi�cant cost di�erence.

2.2 Thesis Objectives

In this thesis, we consider the RWA problem in a WDM network under the wavelength continuity

constraint for both static and dynamic traÆc. By static traÆc, we refer to static provisioning of

routes and wavelengths for traÆc sessions. In a high-speed core network, such static provisioning of

resources can be used to support aggregated traÆc in which each individual session is not necessarily
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static but the combined traÆc streams between each pair of access nodes are approximately static.

By carefully choosing the locations of access nodes and the sizes of their corresponding subnetworks,

we may be able to form a core network such that aggregated traÆc streams among the access nodes

are somewhat uniform. Such uniformity of traÆc may not be achievable in practice. Nevertheless,

we are interested in the case of providing one or a few wavelength paths between each pair of

access nodes for basic all-to-all connectivity. In addition, having these dedicated wavelength paths

between all pairs of nodes can simplify network operations since most small-rate sessions can be

supported on dedicated paths and there is rarely a need to recon�gure the switching nodes as a

result of a small traÆc change. We view this static provisioning of routes and wavelengths as if we

were to support static uniform all-to-all traÆc. Our goal is to develop an o�-line RWA algorithm

which uses the minimum number of wavelengths for static uniform all-to-all traÆc.

On the other hand, by dynamic traÆc, we refer to dynamic provisioning of routes and wave-

lengths for traÆc sessions. In a high-speed core network, dynamic provisioning of routes and

wavelengths can be used to support traÆc streams which cannot be well approximated as static

due to insuÆcient aggregation. Adopting the nonblocking formulation, we assume that the traÆc

matrix changes from time to time but always belongs to a known traÆc set. Our goal is to design

an on-line RWA algorithms which can support all the traÆc matrices in the known traÆc set in a

rearrangeably nonblocking fashion while using the minimum number of wavelengths and incurring

few rearrangements of existing lightpaths, if any, for each traÆc change.

Instead of trying to solve the RWA problem for an arbitrarily given network topology, we aim

to investigate what topological properties contribute to good network architectures. To do so,

we formulate RWA problems in a tractable fashion so that eÆcient solutions can be analytically

derived. It is our hope that some of the analytical techniques developed in this thesis can contribute

to greater understanding of network architectures. To build an analytical framework, we consider

a few speci�c topologies including an arbitrary tree, a bidirectional ring, a two-dimensional (2D)

torus, and a binary hypercube. Notice that these topologies are listed from the least densely

connected to the most densely connected.

In the last part of this thesis, we perform preliminary study of the band/wavelength RWA

problem in a WDM network under the wavelength continuity constraint. Our goal is to understand

when and how individual wavelengths should be aggregated into bands of wavelengths to reduce
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the cost of optical switching. We present a two-level hierarchical network topology in which the

top-level network nodes switch traÆc in bands of wavelengths and the lower-level network nodes

switch traÆc in wavelengths.

In the remaining sections, we formulate in detail the static and the dynamic RWA problems of

interest in this thesis.

2.3 RWA Problem for Static TraÆc

This section formulates the RWA problem for static traÆc. This problem is investigated in detail

in chapter 3. Consider an all-optical WDM network with no optical wavelength conversion. In

any given network topology, assume that adjacent nodes are connected by two �bers, one in each

direction. Assume also that all �bers contain the same number of wavelengths, i.e. WDM channels.

We shall refer to a network node which sources and sinks traÆc as an end node. Let N be the

number of end nodes in the network. In the context of a core network, an end node corresponds

to an access node. Notice that there may be some network nodes which are not end nodes, e.g. a

switching hub node in the star topology.

De�ne l-uniform traÆc to be static traÆc in which each end node transmits l wavelengths to,

and receives l wavelengths from, each of the other end nodes.2 Note that l-uniform traÆc requires

l(N � 1) transmitters and l(N � 1) receivers at each end node. Since the traÆc is static, these

transmitters and receivers need not be tunable. Moreover, at each switching node, we can use �xed

optical switches instead of recon�gurable optical switches. The RWA problem for l-uniform traÆc

is given below.

Problem 1 (O�-Line RWA for l-Uniform TraÆc) For a given network topology with N end

nodes, let Ws;l denote the minimum number of wavelengths which, if provided in each �ber, can

support l-uniform traÆc with no wavelength conversion. We want to �nd the value of Ws;l and a

corresponding o�-line RWA algorithm.

In the above problem formulation, we model a traÆc stream which is the aggregation of a

large number of small-rate sessions as being static. The uniformity of static traÆc may not be

2We reserve the terms transmit and receive for the end nodes which source and sink traÆc sessions. Intermediate
nodes which only switch traÆc but neither source nor sink traÆc are not considered transmitting or receiving traÆc.

21



realistic. Nevertheless, we consider supporting l-uniform traÆc for tractable analysis. In addition,

supporting 1-uniform traÆc is an interesting problem in how to provide minimal optical all-to-all

connectivity among the end nodes.

2.4 RWA Problem for Dynamic TraÆc

In this section, we formulate the RWA problem for dynamic traÆc. We shall investigate this

problem in chapter 4. As in the RWA problem for static traÆc, we consider an all-optical WDM

network with N end nodes and no optical wavelength conversion. Assume that node i, 1 � i � N ,

is equipped with ki fully tunable transmitters and ki fully tunable receivers. At any time, node i

can transmit at most ki wavelengths and receive at most ki wavelengths. Such a traÆc matrix is

said to belong to a set of k-allowable traÆc, where k = [k1; k2; :::; kN ]. Assume that each traÆc

session has a rate of one wavelength. We model dynamic traÆc as a session-by-session arrival and

departure process in which sessions arrive and depart one at a time. In other words, a transition

from one traÆc matrix to another is a result of either a single session arrival or a single session

departure.

A new session request is allowable if the resultant traÆc matrix is still in the set of k-allowable

traÆc. The de�nition implies that, for each allowable session request, there is a free transmitter

at the source node and a free receiver at the destination node. We want to design a rearrangeably

nonblocking RWA algorithm which can assign a lightpath to any allowable session, perhaps after

some rearrangements of existing lightpaths. Our algorithms will be centralized in nature. We

assume that traÆc does not change too frequently and the RWA algorithms always have correct

knowledge of the RWA in the network. In addition, we assume there is suÆcient time for lightpath

rearrangements between consecutive transitions of the traÆc matrix.

Problem 2 (On-Line RWA for k-Allowable TraÆc) For a given network topology with N

end nodes, let Wd;k denote the minimum number of wavelengths which, if provided in each �ber,

can support dynamic k-allowable traÆc in a rearrangeably nonblocking fashion with no wavelength

conversion. We want to �nd the value of Wd;k and a corresponding on-line RWA algorithm which

uses minimal wavelengths and requires few, if any, lightpath rearrangements per new session request.
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Note that the set of k-allowable traÆc represents the largest set of traÆc matrices supportable

by the given number of fully tunable transmitters and receivers in k. In practice, past traÆc history

may suggest that we need to provide network resources only for a strict subset of k-allowable traÆc.

Nevertheless, we shall concentrate on supporting the entire k-allowable traÆc set. It is clear that,

for any network, the value of Wd;k is an upper bound on the minimum number of wavelengths

required to support any strict subset of k-allowable traÆc.

To establish some connection between static and dynamic traÆc, consider l-uniform traÆc.

When all the ki's are equal to l(N � 1), l-uniform traÆc belongs to the set of k-allowable traÆc.

It follows that Ws;l �Wd;k in this case. In addition, a given dynamic RWA algorithm can be used

to support l-uniform traÆc. However, the number of wavelengths used by the algorithm will be

higher than necessary.
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Chapter 3

RWA for Static l-Uniform TraÆc

In this chapter, we study the routing and wavelength assignment (RWA) problem for l-uniform

traÆc. In l-uniform traÆc, each end node transmits l wavelengths to and receives l wavelengths from

each of the other end nodes. While our goal includes understanding arbitrary mesh topologies, we

solve the RWA problem in a few special cases. The speci�c topologies we shall consider are arbitrary

tree topologies, a bidirectional ring, a two-dimensional (2D) torus, and a binary hypercube. Let

Ws;l denote the minimum number of wavelengths which, if provided in each �ber, can support

l-uniform traÆc with no wavelength conversion. In the future, we aim to extend our analytical

techniques to obtain a good bound on the value of Ws;l for any given topology.

Let Ls;l denote the minimum number of wavelengths in a �ber required to support l-uniform

traÆc given full wavelength conversion at all network nodes. It is clear that Ls;l � Ws;l for any

given topology. We shall see that, in all the network topologies for which we can obtain the closed

form expressions for Ws;l and Ls;l, we can perform RWA eÆciently to achieve Ws;l = Ls;l without

any wavelength converter in the network.

3.1 Arbitrary Tree Topologies

In this section, we solve the RWA problem for l-uniform traÆc in an arbitrary tree topology. In a

given tree topology, we assume there are N > 2 end nodes which are the leaf nodes of the tree.1

We describe a tree by a set of nodes N and a set of bidirectional links T . For the purpose of RWA,

1The RWA problem for a tree with two leaf nodes is trivial.
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we can assume that each non-leaf node has degree at least 3.2 Note that if a non-leaf node has

degree less than 3, then it can be removed from the tree without changing the RWA problem, as

illustrated in �gure 3-1. Since there is a unique route for each traÆc session, there is no routing

problem in a tree topology. Thus, we only have to perform wavelength assignment (WA) in the

RWA problem.

leaf node non-leaf node

non-leaf
node with
degree 2

modi�ed tree whose non-leaf
nodes have degree at least 3

Figure 3-1: Removal of a non-leaf node with degree less than 3.

Let us consider the WA problem for 1-uniform traÆc. The results are later extended, in a

straightforward manner, to l-uniform traÆc. Let Ls;1 denote the minimum number of wavelengths

which, if provided in each �ber, can support 1-uniform traÆc given full wavelength conversion at

all nodes. Each link e in the tree corresponds to a cut which separates the N end nodes into two

sets, denoted by Ne;1 and Ne;2. The amount of traÆc (in wavelengths) on a �ber across link e is

equal to jNe;1jjNe;2j. Let w� denote the maximum traÆc over all the �bers. Clearly, Ls;1 is equal

to w�, as given below.

Ls;1 = w� = max
e2T

jNe;1jjNe;2j (3.1)

Let Ws;1 denote the minimum number of wavelengths which, if provided in each �ber, can

support 1-uniform traÆc with no wavelength conversion. We shall show that Ws;1 is bounded

by Ws;1 � w�, which implies Ws;1 = Ls;1 = w�. We do so by constructing a WA algorithm.

Figure 3-2 illustrates an example scenario in which a greedy WA algorithm fails to support 1-

uniform traÆc using w� wavelengths. In this example, inspection shows that w� = 2. Note that

the same wavelength is assigned to the oppositely directed sessions between the same pair of nodes,

2Since we assume that each link consists of two �bers, one in each direction, the indegree and the outdegree of
any given network node are the same. We simply refer to their value as the node degree.
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e.g. sessions (1,2) and (2,1) on wavelength �1. After assigning wavelength �1 to sessions (1,2) and

(2,1) and wavelength �2 to sessions (1,3) and (3,1), neither �1 nor �2 can be assigned to support

session (2,3). It follows that more than w� = 2 wavelengths are required. Therefore, this example

scenario tells us that the design of a WA algorithm using w� wavelengths is not trivial. Figure 3-2

also demonstrates that, in order to use the minimum number of wavelengths, we may need to

support the oppositely directed sessions between the same pair of nodes on di�erent wavelengths.

(1,2)
(2,1)
(1,3)
(3,1)
(2,3)

(1,2) on �1
(2,1) on �1
(1,3) on �2
(3,1) on �2
(2,3) not on �1 or �2

�1 �2

�1 �2

�1 or �2

node 1

cannot use

w� = 2

node 2 node 3

sequence of
sessions for WA

(i; j) denotes a session from node i to node j.

corresponding
sequence of WA steps

Figure 3-2: An example in which a greedy approach requires more than w� wavelengths.

We now derive a few useful properties related to the minimum number of wavelengths w�. Let

e� denote the link associated with w�. Note that there may be multiple choices for e�. The exact

choice does not matter in the following discussion. We shall refer to e� as the bottleneck link since it

is the link with the maximum traÆc on a �ber. Link e� separates the leaf nodes into two sets Ne�;1

and Ne�;2. Without loss of generality, choose Ne�;1 such that jNe�;1j � jNe�;2j. Since we assume

there are more than two leaf nodes, Ne�;2 must contain multiple leaf nodes. De�ne the bottleneck

node v� to be the end point of e� opposite to Ne�;1, i.e. the subtree connected to v� by e� contains

all the leaf nodes in Ne�;1, as illustrated in �gure 3-3a.

We shall refer to each subtree connected to v� as a top-level subtree. Note that a top-level

subtree can be a single node. Figure 3-3b shows the top-level subtrees associated with the tree in

�gure 3-3a. Let d� be the degree of v�. Since v� is a non-leaf node, d� � 3. It follows that there

are d� � 3 top-level subtrees.

Let Si, 1 � i � d�, denote the set of all the leaf nodes in top-level subtree i, and xi = jSij.

The following lemma provides useful properties of the top-level subtrees connected to v� as well as

bounds on the minimum number of wavelengths w�.
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top-level
subtree 3

top-level
subtree 2

top-level
subtree 1

e�

v�

5 leaf nodes

4 leaf nodes

2 leaf nodes

leaf node non-leaf node

e�

Ne�;1 Ne�;2

w� = 30

v�

(a) (b)

Figure 3-3: The bottleneck link e� and the bottleneck node v�.

Lemma 1 Number the top-level subtree connected to the bottleneck node v� by the bottleneck link

e� as top-level subtree 1, and the rest of the top-level subtrees from 2 to d�, where d� is the degree

of v�. Then,

1. xi � x1 � N=2 for all 1 � i � d�, and

2. the minimum number of wavelengths w� is bounded by

1

d�

�
1�

1

d�

�
N2 � w� �

N2

4
:

Proof:

1. De�ne f(x) = x(N � x). Note that f(xi) is the traÆc (in wavelengths) carried on each of

the two �bers between the bottleneck node v� and top-level subtree i. By the de�nition of

e�, f(x1) � f(xi) for all 2 � i � d�. We now prove that xi � x1 for all 2 � i � d� using

contradiction. Assume that xi > x1 for some i 6= 1. Since d� � 3, it follows that x1+xi < N ,

yielding xi < N � x1. As illustrated in �gure 3-4, f(x) is concave and symmetric around the

maximum value at x = N=2. Thus, the relation x1 < xi < N �x1 implies that f(xi) > f(x1),

yielding a contradiction.

Since top-level subtree 1 contains all the leaf nodes in Ne�;1 and jNe�;1j � jNe�;2j, it follows

that x1 � N=2. We conclude that xi � x1 � N=2 for all 1 � i � d�.

2. Note that f(x) = x(N � x) has the maximum value of N2=4 at x = N=2, as shown in

�gure 3-4. Since w� = f(x1), it is clear that w
� � N2=4. To prove the lower bound, note that
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w�

x1
N=2 N

f(x) = x(N � x)

x

N � x1

N2=4

Figure 3-4: Graph of f(x) = x(N � x).

w� = f(x1) is an increasing function of x1 for 0 < x1 < N=2. Thus, w� is minimized when x1

takes the lowest possible value which is equal to dN=d�e. It follows that

w� � f (dN=d�e) � f (N=d�) ;

which is the desired lower bound. 2

Before describing our WA algorithm, we describe some of the ideas behind it. De�ne a local

session to be a traÆc session whose source and destination are in the same top-level subtree.

Accordingly, a non-local session has its source and its destination in di�erent top-level subtrees.

Note that a non-local session has to travel through the bottleneck node v�, whereas a local session

does not have to travel all the way to v� and back to its destination, i.e. each session never uses

the same link twice in opposite directions.

Our WA algorithm �rst assigns wavelengths to all of the non-local sessions. It then assigns

wavelengths to all the local sessions in each top-level subtree. Consider top-level subtree 1. Since

there are in total x1(N�1) local and non-local sessions transmitted from nodes in this subtree while

there are only x1(N �x1) wavelengths available, it is clear that we need to reuse some wavelengths

previously assigned to non-local sessions to support local sessions. Such wavelength reuse is the

cause of the main complexity in the design of an eÆcient WA algorithm.

Let ni;j denote leaf node j in Si, where 1 � i � d� and 1 � j � xi. With respect to ni;j, de�ne

a reusable wavelength to be a wavelength used by ni;j to receive a non-local session (from a node

in a di�erent top-level subtree), but not used by ni;j to transmit a non-local session (to a node in
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a di�erent top-level subtree). Figure 3-5 shows two examples in which �1 is a reusable wavelength

with respect to ni;j. The following lemma states a basic property of non-local sessions and reusable

wavelengths.

(a) type-1 reusable wavelength

v�

ni;j ni;j0

non-local
receive
session session

transmit
non-local

�1

ni;j

v�non-local
receive
session

�1

�1

�1

�1

Local sessions are shown as thick lines.

ni;j0

�1 is not used to
transmit any non-local
session from this
top-level subtree.

(b) type-2 reusable wavelength

Figure 3-5: Reusable wavelength �1 with respect to node ni;j.

Lemma 2 In any given top-level subtree,

1. all the non-local sessions are received on distinct wavelengths,

2. all the non-local sessions are transmitted on distinct wavelengths, and

3. any two reusable wavelengths with respect to the same node or with respect to di�erent nodes

in the subtree are distinct.

Proof:

1. Consider top-level subtree i, where 1 � i � d�. Any pair of non-local sessions which are

received in this top-level subtree must traverse the �ber from the bottleneck node v� to top-

level subtree i. It follows that their wavelengths must be distinct, or else there would be a

wavelength collision on this �ber.

2. The proof is identical to that of statement 1, except that we consider a pair of transmitted

non-local sessions and the link from top-level subtree i to v�.

3. Since any pair of reusable wavelengths are used to receive two non-local sessions, it follows

from statement 1 that they must be distinct. 2
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With respect to node ni;j, de�ne a type-1 reusable wavelength to be a reusable wavelength

which is also used by a di�erent node in the same top-level subtree (i.e. top-level subtree i) to

transmit a non-local session. For example, in �gure 3-5a, with respect to ni;j, �1 is a type-1 reusable

wavelength. In addition, with respect to ni;j, de�ne a type-1 local node to be a di�erent node in the

same top-level subtree which transmits a non-local session on a reusable wavelength (with respect

to ni;j). For example, in �gure 3-5a, with respect to ni;j, ni;j0 is a type-1 local node.

With respect to ni;j, de�ne a type-2 reusable wavelength to be a reusable wavelength which is

not type-1, i.e. it is not used by any other node in the same top-level subtree to transmit a non-local

session. For example, in �gure 3-5b, with respect to ni;j, �1 is a type-2 reusable wavelength. In

addition, with respect to ni;j, de�ne a type-2 local node to be a di�erent node in the same top-level

subtree which is not type-1, i.e. it does not transmit a non-local session on any reusable wavelength

(with respect to ni;j). For example, in �gure 3-5b, with respect to ni;j, if ni;j0 does not use any

reusable wavelength (with respect to ni;j) to transmit a non-local session, then ni;j0 is a type-2

local node.

Notice that, by the above de�nitions, with respect to any given node ni;j, each node ni;j0,

j0 6= j, is either a type-1 or type-2 local node. The following lemma indicates one possible strategy

of assigning wavelengths to the local sessions transmitted from ni;j using reusable wavelengths with

respect to ni;j

Lemma 3 With respect to node ni;j, we have the following properties.

1. Node ni;j can transmit a local session to type-1 local node ni;j0 on a type-1 reusable wavelength

(with respect to ni;j) which is used by ni;j0 to transmit a non-local session.

2. Node ni;j can transmit a local session to type-2 local node ni;j0 on any type-2 reusable wave-

length (with respect to ni;j).

Proof:

1. Figure 3-5a illustrates statement 1 of the lemma. Let �1 denote the reusable wavelength of

interest. Let r denote the non-local session received by ni;j on �1. Let t denote the non-local

session transmitted by ni;j0 on �1. Let l denote the local session on �1 from ni;j to ni;j0. We

show below that these three sessions never share a �ber, and thus there is no wavelength

collision.
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Since all the �bers used by r are directed away from the bottleneck node v� while all the

�bers used by t are directed towards v�, r and t never use the same �ber. We now show

that r and l never use the same �ber. We proceed by contradiction. Assume that �ber e, i.e.

unidirectional link e, is used by both r and l. Since e is used by r, e is necessarily directed

away from v� and towards ni;j. If e is also used by l, then l must have traversed the link

which contains e in the opposite direction, i.e. towards v�, since there is a unique path from

ni;j to the starting point of e. This contradicts the fact that no local session uses the same

link twice in the opposite directions.

Similar arguments show that t and l never use the same �ber.

2. Figure 3-5b illustrates statement 2 of the lemma. The proof is identical to the proof for

statement 1 that r and l never use the same �ber. We shall not repeat the details here. 2

Lemma 3 suggests the following method of assigning wavelengths to the local sessions. Consider

the local sessions transmitted from node ni;j in top-level subtree Si. There are xi�1 such sessions.

Let P
(1)
i;j and P

(2)
i;j be the sets of type-1 and type-2 local nodes with respect to ni;j respectively.

Notice that type-1 local nodes (with respect to ni;j) have associated with them distinct reusable

wavelengths (with respect to ni;j). From statement 1 of lemma 3, ni;j can use a distinct type-1

reusable wavelength (with respect to ni;j) to transmit a local session to each type-1 local node in

P
(1)
i;j . It remains to provide wavelengths for the local sessions to type-2 local nodes (with respect

to ni;j).

We shall show shortly in our WA algorithm that it is always possible to assign wavelengths to

the non-local sessions so that there are at least jP
(2)
i;j j type-2 reusable wavelengths with respect to

each node ni;j in the tree. Given jP(2)
i;j j type-2 reusable wavelengths with respect to ni;j, statement

2 of lemma 3 implies that ni;j can use a distinct type-2 reusable wavelength (with respect to ni;j)

to transmit a local session to each type-2 local node in P
(2)
i;j .

We repeat the same process for all the leaf nodes. From statement 3 of lemma 2, since all

the reusable wavelengths (with respect to the same node or with respect to di�erent nodes) in

each top-level subtree are distinct, di�erent local sessions (transmitted from the same node or from

di�erent nodes) never use the same wavelength.
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In conclusion, the condition that there are at least jP
(2)
i;j j type-2 reusable wavelengths with

respect to each node ni;j is a suÆcient condition for the WA of all the local sessions to exist.

We state this conclusion formally in the following lemma, which is later used to develop our WA

algorithm.

Lemma 4 If there are at least jP
(2)
i;j j type-2 reusable wavelengths with respect to node ni;j for all

1 � i � d� and 1 � j � xi, then we can assign wavelengths to all the local sessions as follows.

Consider the local sessions transmitted from ni;j in Si.

1. To transmit a local session to a type-1 local node in P
(1)
i;j , ni;j uses a type-1 reusable wavelength

(with respect to ni;j) which is used by that node to transmit a non-local session.

2. To transmit a local session to a type-2 local node in P
(2)
i;j , ni;j uses a distinct type-2 reusable

wavelength (with respect to ni;j).

Our WA algorithm operates in three phases. In phase 1, we assign wavelength bands each

of which is used by the non-local sessions from one top-level subtree to another. In phase 2, we

performWA for individual non-local sessions based on the wavelength bands obtained from phase 1.

The goal of phase 2 is to assign wavelengths in such a way that enough type-1 and type-2 reusable

wavelengths exist to support all local traÆc. Finally, in phase 3, we perform WA for local sessions

independently in each top-level subtree. The following is our WA algorithm for 1-uniform traÆc in

an arbitrary tree topology. The algorithm uses w� wavelengths in each �ber. We shall refer to this

algorithm as the o�-line tree WA algorithm.

Algorithm 1 (O�-Line Tree WA Algorithm) (Use w� wavelengths in each �ber.)

Number the top-level subtrees so that the numbers of leaf nodes, denoted by x1; :::; xd� , satisfy

x1 � x2 � ::: � xd� . Note that w
� = x1(N � x1).

Phase 1: Assign the wavelength band for the non-local sessions from one top-level subtree to

another as follows. For convenience, let �(i;i0) denote the wavelength band for the non-local sessions

from Si to Si0 . Note that �(i;i0) contains xixi0 wavelengths. Figure 3-6 speci�es the wavelength

bands between all pairs of top-level subtrees. To obtain wavelength band �(i;i0), where i < i0, follow

the diagram in �gure 3-6a. There are d�� 1 rows of wavelength bands. In row i, 1 � i � d�� 1, we
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assign consecutive wavelengths starting from wavelength 1 (from left to right) to wavelength bands

�i;i+1, ..., �i;d�. For example, the wavelength band �(1;3) contains 6 wavelengths with indices 10

to 15. On the other hand, to obtain wavelength band �(i;i0), where i
0 < i, follow the diagram in

�gure 3-6b. There are d� � 1 rows of wavelength bands. In row i0, 1 � i0 � d� � 1, we assign

consecutive wavelengths starting from wavelength w� (from right to left) to wavelength bands

�i0+1;i0 , ..., �d�;i0 . For example, the wavelength band �(4;2) contains 3 wavelengths with indices 10

to 12. Although a speci�c example is illustrated, the general scheme should be clear.

1 5 7 9 11 13 15 173

x4 = 1

x3 = 2

x2 = 3

x1 = 3

v�

e�

w� = 18

top-level subtrees

indices

�(1;2)

wavelength

�(1;3) �(1;4)

�(2;3)

top-level subtree 2
transmitted from �(2;4)

top-level subtree 1
transmitted from

�(3;4)

top-level subtree 3
transmitted from

(a) wavelength bands �(i;i0) where i < i0

top-level subtree 1

top-level subtree 2

top-level subtree 3

transmitted to

transmitted to

transmitted to

(b) wavelength bands �(i;i0) where i > i0

�(3;1) �(2;1)

�(3;2)

�(4;1)

�(4;2)

�(4;3)

Figure 3-6: Phase 1 of the o�-line tree WA algorithm.

We shall show that, in each top-level subtree, the assigned receive wavelength bands do not

overlap, i.e. there is no wavelength collision between two non-local receive sessions in two di�erent

bands. In addition, the assigned transmit wavelength bands do not overlap. As a result, there

is no wavelength collision among the non-local transmit sessions and among the non-local receive

sessions in each top-level subtree.

As an example to show how the scheme works, consider two wavelength bands �(1;4) and �(2;4)

for non-local receive sessions in top-level subtree 4. The highest wavelength index in �(2;4), denoted

by �+(2;4), is x2x3+x2x4. The lowest wavelength index in �(1;4), denoted by ��(1;4), is x1x2+x1x3+1.

Since x1 � x2 � ::: � xd, it follows that x1x2 � x2x3 and x1x3 � x2x4. Thus,

33



��(1;4) = x1x2 + x1x3 + 1 > x2x3 + x2x4 = �+(2;4):

It follows that a non-local session in wavelength band �(1;4) and a non-local session in wavelength

band �(2;4) never share the same wavelength and therefore do not collide. A complete general proof

is given later in the proof of algorithm correctness.

Phase 2: In this phase, we assign wavelengths to individual non-local sessions based on the

wavelength bands obtained from phase 1. Our goal is to assign wavelengths so that there are at

least jP
(2)
i;j j type-2 reusable wavelengths with respect to node ni;j for all 1 � i � d� and 1 � j � xi,

as suggested by lemma 4.

We �rst perform partial WA as follows. For each wavelength band �(i;j) containing xixj wave-

lengths (used for the non-local sessions from Si to Sj), we break the band up into xj subbands of

xi contiguous wavelengths. The �rst subband is assigned to be receive wavelengths for node nj;1.

The second subband is assigned to be receive wavelengths for nj;2, and so on. For example, based

on the example in �gure 3-6, in top-level subtree 1, node n1;1 receives three non-local sessions from

top-level subtree 2 on the subband of �(2;1) containing wavelengths 10, 11, and 12. Notice that we

have not speci�ed which node in top-level subtree 2 uses a speci�c wavelength (10, 11, or 12) to

transmit to n1;1. Figure 3-7 illustrates the result of the partial WA in top-level subtree 1. Note

that the partial WA also speci�es the subbands used by the nodes in S1 to transmit to each node

in Si0 , i
0 6= 1, as shown in �gure 3-7b. For example, in �(1;2), wavelengths 1, 2, and 3 are used for

the non-local sessions from S1 to n2;1.

It remains to specify the source nodes for speci�c wavelengths in each subband, i.e. �lling the

empty slots in each subband in �gure 3-7b with n1;1, n1;2, and n1;3. Such speci�cations in top-

level subtree 1 can be done independently from the similar speci�cations in all the other top-level

subtrees since the lightpaths corresponding to each subband traverse the same set of �bers outside

top-level subtree 1. In other words, the WA outside top-level subtree 1 looks the same regardless

of how we �ll the empty slots in �gure 3-7b. Furthermore, such speci�cations yield, for each node,

the corresponding type-1 and type-2 reusable wavelengths together with type-1 and type-2 local

nodes.
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�(2;1)

13 15
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(from S4)

�(3;1)
(from S2)(from S3)

(a) nodes receiving non-local sessions from Si0 , i
0 6= 1, to S1 on speci�c wavelengths

nodes in S1
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session on speci�c
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to n2;1 to n2;2 to n2;3 to n3;1 to n3;2 to n4;1

�(1;2) �(1;3) �(1;4)
(to S2) (to S3) (to S4)

(b) nodes transmitting non-local sessions from S1 to Si0 , i
0 6= 1, on speci�c wavelengths (to be assigned)

Figure 3-7: The result of the partial WA in phase 2 of the o�-line tree WA algorithm for top-level subtree

1 in �gure 3-6.

Assume for now that the set of wavelengths used to receive and to transmit non-local sessions

are the same in a given top-level subtree i. (This is the case for top-level subtree 1 and any other

subtree i with xi = x1. However, the assumption does not always hold, e.g. top-level subtree 3 in

�gure 3-6.) We show below how to assign the source nodes in each wavelength subband so that

jP
(2)
i;j j = 0, i.e. no type-2 local node with respect to ni;j, for each node ni;j in Si. Note that the

condition jP
(2)
i;j j = 0 yields the suÆcient condition in lemma 4 for the WA of all the local sessions

in top-level subtree i to exist, i.e. there are at least jP
(2)
i;j j type-2 reusable wavelengths with respect

to each node ni;j in Si. The goal jP
(2)
i;j j = 0 is equivalent to jP (1)

i;j j = xi�1. That is, we must ensure

that, each node ni;j0, j
0 6= j, in Si transmits at least one non-local session on one of the wavelengths

used by ni;j to receive non-local sessions.

We can visualize the problem of assigning the source nodes in each subband using a bipartite

graph. We consider each top-level subtree separately. For top-level subtree i, construct a partial WA

bipartite graph denoted by (V1;V2; E) as follows. The set V1 contains the N � xi leaf nodes outside

top-level subtree i, i.e. fni0;j0 : i
0 6= i; 1 � j0 � xi0g. The set V2 is equal to Si, i.e. fni;j : 1 � j � xig.

In the set of edges E , an edge joins ni0;j0 in V1 and ni;j in V2 for each wavelength that is used to

receive a non-local session from a node in Si by ni0;j0 , and is used to receive a non-local session by

ni;j. There may be multiple edges between the same pair of nodes. For example, �gure 3-8a shows

the partial WA bipartite graph speci�ed by the partial WA in top-level subtree 1 in �gure 3-7. In

particular, the edge between n2;1 in V1 and n1;1 in V2 corresponds to wavelength 1 which is used

35



both to receive a non-local session from S1 by n2;1 and to receive a non-local session by n1;1. Two

edges between n2;3 in V1 and n1;3 in V2 correspond to wavelengths 8 and 9 which are used both to

receive a non-local session from S1 by n2;3 and to receive a non-local session by n1;3.
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n2;2

n2;3

n3;1

n3;2

n4;1

n1;1

n1;2

n1;3

n2;1

n2;2

n2;3

n3;1

n3;2

n4;1

n1;1

n1;2

n1;3

n2;1

n2;2

n2;3

n3;1

n3;2

n4;1

n1;1

n1;2

n1;3

n2;1

n2;2

n2;3

n3;1

n3;2

n4;1

n1;1

n1;2

n1;3

V1

(a) partial WA bipartite graph
for top-level subtree 1

Each edged is labelled with a distinct wavelength index.

V1

V2
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6

1 2

4

9

11

14

17

3

5

7

12

15

18

8

Each edge corresponds
to a distinct
wavelength.

is incident to all the nodes in V1 and V2
(b) partitioning of E so that each subset

subset E1 for n1;1 subset E2 for n1;2 subset E3 for n1;3

V1 V1

V2 V2 V2

Figure 3-8: Partial WA bipartite graph for top-level subtree 1 in �gure 3-6.

From the assumption that, in top-level subtree i, the set of non-local transmit wavelengths is

equal to the set of non-local receive wavelengths, it follows that every non-local transmit wavelength

corresponds one-to-one to an edge in the partial WA bipartite graph. Since each node ni0;j0 in V1

receives xi non-local sessions from Si, each node ni0;j0 has degree xi. Since each node ni;j in V2

receives N � xi non-local sessions, each node ni;j in V2 has degree N � xi. In addition, there are

in total xi(N � xi) edges in the partial WA bipartite graph.

We next partition the set of edges, or equivalently the set of non-local transmit wavelengths

from Si, into xi subsets each with N �xi edges. Each subset of wavelengths are then used by some

node ni;j in Si (or equivalently V2) to transmit its N � xi non-local sessions to the N � xi nodes

in V1. Thus, it is necessary that each subset of edges contains N � xi edges and is incident on

all the nodes in V1, or else there would be a node in V1 not reachable from Si in some subset of

wavelengths. To achieve the goal of having jP
(2)
i;j j = 0 for each ni;j in Si, we require in addition

that each subset of edges is incident to all the nodes in V2. To see why this additional requirement

is a suÆcient condition for our goal, consider a given node ni;j in Si. Since every subset of edges

is incident on ni;j, it follows that each of the other nodes in Si transmits a non-local session on a

wavelength used by ni;j to receive a non-local session, and is thus a type-1 local node with respect
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to ni;j. Therefore, with respect to each ni;j in Si, there is no type-2 local node, i.e. jP
(2)
i;j j = 0.

Therefore, we want to partition E into xi subsets of N �xi edges so that each subset is incident

to all the nodes in V1 and V2. We shall show that this partitioning problem can be solved by

reducing it to a bipartite matching problem. For example, for the partial WA bipartite graph

in �gure 3-8a, �gure 3-8b shows one possible partitioning of E such that each subset of edges is

incident to all the nodes in V1 and V2.

As mentioned above, after the partition of E , we assign the wavelengths corresponding to each

subset of E to each ni;j in Si to transmit its non-local sessions. For example, according to �gure 3-

8b, we assign subsets E1, E2, and E3 to n1;1, n1;2, and n1;3 respectively. Node n1;1 transmits its

non-local sessions on wavelengths 1, 6, 8, 10, 13, and 16 to n2;1, n2;2, n2;3, n3;1, n3;2, and n4;1

respectively. To complete the example in �gure 3-7, we specify the source nodes in each transmit

subband based on the partitioning of E in �gure 3-8b. The �nal result of phase 2 for top-level

subtree 1 is shown in �gure 3-9b.

n1;1 n1;1 n1;1 n1;1 n1;1 n1;1n1;2 n1;2n1;2n1;2n1;2n1;2n1;3 n1;3 n1;3 n1;3 n1;3 n1;3

1 2 3 75 9 11 174 6 8 10 12 14 16 18wavelength
indices

wavelengths
session on speci�c

receiving a non-local
nodes in S1 n1;1 n1;1 n1;1 n1;1 n1;1 n1;1n1;2 n1;2 n1;2 n1;2n1;2n1;2n1;3 n1;3 n1;3 n1;3 n1;3 n1;3

�(4;1) �(3;1) �(2;1)

13 15

from S4 from S3 from S2

(a) nodes receiving non-local sessions from Si0 , i
0 6= 1, to S1 on speci�c wavelengths

session on speci�c
wavelengths

to n2;1 to n2;2 to n2;3 to n3;1 to n3;2 to n4;1

�(1;3) �(1;4)

receiving a non-local
nodes in S1

�(1;2)
to S2 to S3 to S4

(b) nodes transmitting non-local sessions from S1 to Si0 , i
0 6= 1, on speci�c wavelengths

Figure 3-9: The �nal result of phase 2 of the o�-line tree WA algorithm for top-level subtree 1 in

�gure 3-6.

It remains to consider the top-level subtrees which do not satisfy the previous assumption that

the set of non-local transmit wavelengths is equal to the set of non-local receive wavelengths. As

an example, consider top-level subtree 3 based on the same example in �gure 3-6. The wavelength

bands used for non-local sessions to and from top-level subtree 3 are shown in �gure 3-10. Notice

that non-local receive wavelengths 3, 10, 11, and 12 are not used as non-local transmit wavelengths.
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By de�nition, each of these wavelengths is a type-2 reusable wavelength with respect to some node

in S3.

�(4;3)�(1;3)�(2;3)

�(3;2)�(3;1)�(3;4)

top-level subtree 3
transmitted from
wavelength bands

indices
wavelength 1 3 5 17151311972 4 6 8 10 12 14 16 18

transmitted to
top-level subtree 3

wavelength bands

Figure 3-10: Wavelength bands to and from top-level subtree 3 in �gure 3-6.

The result of the partial WA is shown in �gure 3-11. From the given partial WA, we can create

the partial WA bipartite graph for top-level subtree 3 in the same fashion as we have done for

top-level subtree 1. This partial WA bipartite graph is the bipartite graph shown in �gure 3-12a

but with only the solid lines as its edges. Note that only the non-local transmit wavelengths which

are also the non-local receive wavelengths in top-level subtree 3 correspond to the edges in the

partial WA bipartite graph. For example, the solid edges in �gure 3-12a correspond to wavelengths

1, 2, 4, 5, 6, 13, 14, 15, 17, and 18 which are both non-local transmit wavelengths and non-local

receive wavelengths in top-level subtree 3. However, the non-local transmit wavelengths 7, 8, 9,

and 16 do not correspond to any edge in the partial WA bipartite graph.

1 2 3 75 9 11 174 6 8 10 12 14 16 18wavelength
indices

13 15

wavelengths
session on speci�c

receiving a non-local
nodes in S3 n3;1

�(2;3) �(1;3) �(4;3)

n3;1 n3;1 n3;1 n3;1 n3;1 n3;1 n3;2n3;2 n3;2 n3;2n3;2 n3;2 n3;2

from S2 from S1 from S4

(a) nodes receiving non-local sessions from Si0 , i
0 6= 3, to S3 on speci�c wavelengths

nodes in S3
transmitting a non-local

session on speci�c
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to n4;1 to n1;1 to n1;2 to n1;3 to n2;1 to n2;2 to n2;3

�(3;4) �(3;1) �(3;2)

(b) nodes transmitting non-local sessions from S3 to Si0 , i
0 6= 3, on speci�c wavelengths (to be assigned)

to S4 to S1 to S2

Figure 3-11: The result of the partial WA in phase 2 of the o�-line tree WA algorithm for top-level

subtree 3 in �gure 3-6.
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Figure 3-12: Partial WA bipartite graph for top-level subtree 3 in �gure 3-6.

In general, given top-level subtree i which does not satisfy the assumption that the set of non-

local transmit wavelengths is equal to the set of non-local receive wavelengths, we can perform the

partial WA and construct the partial WA bipartite graph, as we have done for top-level subtree

3 in �gure 3-12a. Since some non-local transmit wavelengths will not be present in the partial

WA bipartite graph, we cannot partition the edges to assign the non-local transmit wavelengths to

each node ni;j in Si as we have done earlier for top-level subtree 1. To overcome this diÆculty, we

pair up in a one-to-one fashion each type-2 reusable wavelength with respect to some node in Si,

i.e. a non-local receive wavelength which is not a non-local transmit wavelength, with a non-local

transmit wavelength which is not a non-local receive wavelength. If k is the total number of type-2

reusable wavelengths in top-level subtree i, there are k! ways to do this pairing. However, in what

follows, it does not matter which way the pairing is carried out. For example, for top-level subtree

3 in �gure 3-11a, we can pair up type-2 reusable wavelengths 3, 10, 11, and 12 with non-local

transmit wavelengths 7, 8, 9, and 16 respectively.

We modify the set of edges E in the partial WA bipartite graph as follows. To create a new set

of edges, denoted by E 0, we regard each type-2 reusable wavelength as being equivalent to its paired

value, i.e. a non-local transmit wavelength. As before, an edge joins ni0;j0 in V1 and ni;j in V2 for

each wavelength that is used both to receive a non-local session from Si by ni0;j0 and to receive a

non-local session by ni;j.
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It follows that the modi�ed set of edges E 0 includes the original set of edges E together with

some extra edges corresponding to all the remaining non-local transmit wavelengths previously not

in the partial WA bipartite graph. For example, in �gure 3-12a, the dashed edges correspond to

non-local transmit wavelengths 7, 8, 9, and 16, which are previously not in the graph. Note that,

at this point, each node ni0;j0 in V1 has degree xi. Each node ni;j in V2 has degree N � xi. In

addition, there are in total xi(N � xi) edges in the partial WA bipartite graph.

Since all the non-local transmit wavelengths now correspond to an edge in E 0, we next partition

E 0 into xi disjoint subsets each of which corresponds to N �xi wavelengths and is assigned to each

node ni;j in Si to transmit its non-local sessions. As before, to obtain the goal of having at least

jP
(2)
i;j j type-2 reusable wavelengths with respect to each node ni;j in Si, we choose to partition E 0

such that each subset of edges is incident on all the nodes in V1 and V2. We then assign the non-

local transmit wavelengths corresponding to each subset of edges to each node ni;j in Si to transmit

its non-local sessions. For example, in �gure 3-12, the set E 0 is partitioned into two disjoint sets

E 01 and E 02, which are then assigned to n3;1 and n3;2 respectively. In particular, n3;1 transmits its

non-local sessions on wavelengths 4, 6, 8, 13, 15, 17 and 1 to n1;1, n1;2, n1;3, n2;1, n2;2, n2;3, and

n4;1 respectively.

We now argue that this procedure yields the desired goal of having at least jP
(2)
i;j j type-2 reusable

wavelengths with respect to each node ni;j in Si. Consider a given node ni;j in Si and a speci�c

subset of E 0 assigned to ni;j0; j
0 6= j. We know that this subset of E 0 is incident on ni;j. Consider

two cases.

1. In the subset of E 0 assigned to ni;j0, if there is an edge in E , i.e. a solid edge, incident on ni;j,

then ni;j0 is a type-1 local node with respect to ni;j since ni;j0 transmits a non-local session

on the wavelength used by ni;j to receive a non-local session.

2. In the subset of E 0 assigned to ni;j0, if there is no edge in E , i.e. no solid edge, incident on

ni;j. Then ni;j0 is a type-2 local node with respect to ni;j since ni;j0 does not transmit any

non-local session on the wavelength used by ni;j to receive a non-local session, i.e. ni;j0 is not

a type-1 local node with respect to ni;j.

For the reason explained below, we assign to ni;j0 a unique type-2 reusable wavelength with

respect to ni;j corresponding to one incident edge on ni;j.
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It follows that, with respect to ni;j, each of the other nodes in Si is either a type-1 local node or

a type-2 local node with a unique type-2 reusable wavelength assigned to it. Clearly, there are at

least jP
(2)
i;j j type-2 reusable wavelengths with respect to ni;j. Thus, our goal in phase 2 is achieved.

To complete the example in �gure 3-11, we specify the source nodes in each subband in �gure 3-

11b based on the partitioning of E 0 in �gure 3-12b. The �nal result of phase 2 is shown in �gure 3-13.

1 2 3 75 9 11 174 6 8 10 12 14 16 18wavelength
indices

13 15

wavelengths
session on speci�c

receiving a non-local
nodes in S3 n3;1

�(2;3) �(1;3) �(4;3)

n3;1 n3;1 n3;1 n3;1 n3;1 n3;1 n3;2n3;2 n3;2 n3;2n3;2 n3;2 n3;2

from S2 from S1 from S4

(a) nodes receiving non-local sessions from Si0 , i
0 6= 3, to S3 on speci�c wavelengths

n3;1 n3;2 n3;1 n3;1 n3;1 n3;1 n3;1 n3;1n3;2 n3;2n3;2 n3;2 n3;2n3;2nodes in S3
transmitting a non-local

session on speci�c
wavelengths

to n4;1 to n1;1 to n1;2 to n1;3 to n2;1 to n2;2 to n2;3

�(3;4) �(3;1) �(3;2)

(b) nodes transmitting non-local sessions from S3 to Si0 , i
0 6= 3, on speci�c wavelengths

to S4 to S1 to S2

Figure 3-13: The �nal result of phase 2 of the o�-line tree WA algorithm for top-level subtree 3 in

�gure 3-6.

Phase 3: In this phase, we assign wavelengths to local sessions in each top-level subtree. The

assignment based on lemma 4 can be carried out independently in di�erent top-level subtrees.

From phase 2, in top-level subtree i, there are at least jP
(2)
i;j j type-2 reusable wavelengths with

respect to node ni;j for all 1 � j � xi. Thus, we can assign wavelengths to all the local sessions as

follows. Consider the local sessions transmitted from ni;j in top-level subtree i.

1. To transmit a local session to a type-1 local node in P
(1)
i;j , ni;j uses a type-1 reusable wavelength

(with respect to ni;j) which is used by that node to transmit a non-local session.

2. To transmit a local session to a type-2 local node in P
(2)
i;j , ni;j uses a distinct type-2 reusable

wavelength (with respect to ni;j).
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Before we prove the algorithm correctness, we state Hall's theorem and derive a few useful

lemmas related to bipartite matchings. We denote a general bipartite graph with three components

(V1;V2; E), where V1 and V2 specify two disjoint sets of nodes, and E speci�es a set of edges each of

which connects a node in V1 to a node in V2. Figure 3-14a shows an example of a bipartite graph.

w3

w4

w2

w1

w3

w4

w2

w1

w3

w4

w2

w1

(b) two perfect matchings in E(a) bipartite graph (V1;V2; E)

V1 V2 M1 M2

v3

v4

v2

v1

v3

v4

v2

v1

v3

v4

v2

v1

Figure 3-14: Bipartite graph and its perfect matchings.

A matching in a bipartite graph, or in short a bipartite matching, is a subsetM of E such that

no two edges in M are adjacent. A matching M is said to saturate set V1 if, for every node in V1,

there is an edge in M incident on that node. A matching M which saturates set V1 is called a

perfect matching. In �gure 3-14b, M1 and M2 are two di�erent perfect matchings of (V1;V2; E).

To describe Hall's theorem, for each subset S of V1, let N (S) denote the neighborhood of S

de�ned as follows. The neighborhood N (S) is a subset of V2. Each node w in V2 is in N (S) if

and only if there is a node v in S such that (v; w) is an edge in E . For example, in �gure 3-14a, if

S = fv1; v2g, then N (S) = fw1; w2; w3g. Alternatively, if S = fv2; v4g, then N (S) = fw1; w3g.

Hall's Theorem [Ber85] In a bipartite graph (V1;V2; E), there exists a perfect matching if and

only if, for every subset S of V1, we have jN (S)j � jSj.

The next lemma is a consequence of Hall's theorem and was proved in [Lin96]. Since it is less

known than Hall's theorem, we provide the proof below.

Lemma 5 [Lin96] In a bipartite graph (V1;V2; E) in which each node in V1 and in V2 has degree

m, the set E can be partitioned into m disjoint perfect matchings.3

3The degree of a node in a bipartite graph (V1;V2; E) is the number of distinct edges in E incident on that node.
For example, in �gure 3-14a, the degree of each node in V1 is 2.
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Proof: We proceed by induction. If m = 1, then it is clear that E is a perfect matching. Assume

the lemma holds for degree m� 1. We now show that the lemma also holds for degree m.

We �rst show that the existence condition for a perfect matching in Hall's theorem is satis�ed.

We proceed by contradiction. Suppose there exists a subset S of V1 such that jN (S)j < jSj. There

are mjSj edges incident on S. These mjSj edges are also incident on N (S). Since jN (S)j < jSj,

it follows that some node in N (S) must have degree greater than m, contradicting the assumption

that all nodes have degree m. Thus, by Hall's theorem, a perfect matching exists in the bipartite

graph of degree m.

Removing the edges corresponding to the above matching, we are left with a bipartite graph of

degreem�1. By induction hypothesis, the set of edges can be partitioned intom�1 disjoint perfect

matchings. Therefore, there are in total m disjoint perfect matchings in E . Since jEj = mjV1j, each

edge in E belongs to one of these m perfect matchings. In conclusion, the set E can be partitioned

into m disjoint perfect matchings. 2

We now prove the correctness of the o�-line tree WA algorithm.

Proof of algorithm correctness: It remains to prove the two claims made earlier in the

algorithm description. One claim is in phase 1 and the other is in phase 2.

Proof of the claim in phase 1: The claim in phase 1 states that, in each top-level subtree, the

assigned receive (transmit) wavelength bands do not overlap. We shall prove the statement for the

transmit wavelength bands in top-level subtree i, 1 � i � d�. Similar arguments can be used for

the receive wavelength bands.

De�ne a group-1 session to be a session from top-level subtree i to top-level subtree i0 where

i < i0. Similarly, de�ne a group-2 session to be a session from top-level subtree i to top-level subtree

i0 where i > i0. We shall show that, in top-level subtree i, (1) no two group-1 sessions from di�erent

bands collide, (2) no two group-2 sessions from di�erent bands collide, and (3) no group-1 session

collides with a group-2 session.

(1) It suÆces to show that wavelength bands �(i;i+1);�(i;i+2); :::;�(i;d�) do not overlap. Since these

wavelength bands are speci�ed on the same row in �gure 3-6a, they contain distinct wavelengths

and do not overlap.
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(2) It suÆces to show that wavelength bands �(i;1);�(i;2); :::;�(i;i�1) do not overlap. From �gure 3-

6, notice that wavelength band �(i;i0) is a horizontal mirror image of wavelength band �(i0;i). Thus,

proving that wavelength bands �(i;1);�(i;2); :::;�(i;i�1) do not overlap is equivalent to proving that

wavelength bands �(1;i);�(2;i); :::;�(i�1;i) do not overlap. For convenience, we shall prove the latter

statement. For example, consider i = 4 in �gure 3-6a, we see that wavelength bands �1;4;�2;4 and

�3;4 do not overlap.

We proceed by showing that, for 1 � i0 � i�2, the smallest wavelength index in �(i0;i), denoted

by ��(i0;i), is strictly greater than the largest wavelength index in �(i0+1;i), denoted by �+(i0+1;i). We

can express ��(i0;i) and �+(i0+1;i) as

��(i0;i) =
X

i0+1�k�i�1

xi0xk + 1; �+(i0+1;i) =
X

i0+2�k�i

xi0+1xk:

To show that ��(i0;i) > �+(i0+1;i), we use the following inequality which results from the fact that

x1 � x2 � ::: � xd.

X
i0+1�k�i�1

xi0xk �
X

i0+1�k�i�1

xi0+1xk �
X

i0+2�k�i

xi0+1xk

As a consequence of the above inequality, we show that ��(i0;i) > �+(i0+1;i) below.

��(i0;i) � �+(i0+1;i) =

0
@ X
i0+1�k�i�1

xi0xk �
X

i0+2�k�i

xi0+1xk

1
A+ 1 � 1

Therefore, we have shown that wavelength band �(i0;i), 1 � i0 � i� 2, contains the wavelength

indices all of which are greater than those in wavelength band �(i0+1;i). It follows that �(1;i);�(2;i),

..., �(i�1;i) do not overlap.

(3) It suÆces to show that, among the non-local sessions transmitted from top-level subtree i, the

wavelength index of any group-2 session is strictly greater than the wavelength index of any group-1

session.

The largest wavelength index of any group-1 session from top-level subtree i, denoted by �+i ,

is in wavelength band �(i;d�). The smallest wavelength index of any group-2 session from top-level

subtree i, denoted by ��i , is in wavelength band �(i;1). We can express �+i and ��i as

�+i =
X

i+1�k�d�

xixk; ��i = w� �
X

2�k�i

xkx1 + 1:
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We prove that ��i > �+i as follows

��i � �+i = w� �

0
@ X
2�k�i

xkx1 +
X

i+1�k�d�

xixk

1
A+ 1

� w� �

0
@ X
2�k�i

xkx1 +
X

i+1�k�d�

x1xk

1
A+ 1

= w� �
X

2�k�d�

x1xk + 1 = 1;

where the last equality follows from the fact that w� = x1(x2 + x3 + ::: + xd�). It follows that

a group-1 session from top-level subtree i cannot collide with any group-2 session from top-level

subtree i.

Proof of the claim in phase 2: The claim in phase 2 states that the set of edges E in the partial

WA bipartite graph (V1;V2; E) of top-level subtree i, 1 � i � d�, can be partitioned into xi disjoint

subsets each of which is incident to all the nodes in V1 and V2.

We �rst discuss basic properties of the partial WA bipartite graph of top-level subtree i. Con-

sider the set V1. Notice that jV1j = N � xi, and each node in V1 has degree xi. Consider the set

V2. Notice that jV2j = xi, and each node in V2 has degree N � xi. In addition, since xi � N � xi,

it follows that jV1j � jV2j.

If jV1j = jV2j, then each node in V1 and V2 has degree xi. It follows from lemma 5 that E can be

partitioned into xi disjoint perfect matchings. By de�nition, each perfect matching is incident on

the set V1. Moreover, each perfect matching must be incident on V2, or else there would be some

adjacent edges in some matching. Thus, E can be partitioned into xi disjoint subsets each of which

is incident on all the nodes in V1 and V2.

It remains to consider the case with jV1j > jV2j. In this case, we can construct a new bipartite

graph, denoted by (V1;V 02; E
0) as follows. The set V1 is the same as before. Add jV1j � jV2j dummy

nodes to the set V2 to create the modi�ed set of nodes V 02, i.e. jV
0
2j = jV1j. Label nodes in V 02 from

1 to jV1j such that the dummy nodes are labeled from jV2j+ 1 to jV1j. For 1 � j � jV2j, we select

from E a set of xi edges incident on node j in V2 (in the original graph). We include these sets of

edges in E 0 without any modi�cation. This step is always possible since each node in V2 originally

has degree N � xi � xi. For the remaining edges in E , we reassign their end points originally in

V2 to the dummy nodes in V 02 such that xi edges are incident on each dummy node. This step is
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always possible since there are in total jV 02jxi edges in E .

In the new bipartite graph (V1;V
0
2; E

0), jV 02j = jV1j and each node has degree xi. From the above

discussion, E 0 can be partitioned into xi disjoint subsets E
0
1, ..., E

0
xi each of which is incident on V1

and V2. We can create the desired disjoint subsets of edges E1, ..., Exi in the original graph from

E 01, ..., E
0
xi as described next. For 1 � j � xi, we construct part of Ej from E 0j . From E 0j , include in

Ej the set of edges incident on nodes 1 to jV2j in V
0
2 without any modi�cation. For the remaining

edges, their end points were previously reassigned. We include them in Ej after reassigning their

end points to the original ones. By construction, it is clear that E1, ..., Exi are disjoint, and each

Ej is incident on all the nodes in V1 and V2.

Finally, one standard algorithm for �nding a perfect matching in a bipartite graph can be found

in [CLR90]. Such an algorithm can be used successively for our task of �nding xi disjoint perfect

matchings in a bipartite graph with node degree xi. 2

The construction of the o�-line tree WA algorithm implies the following theorem.

Theorem 1 In an arbitrary tree topology with 1-uniform traÆc among leaf nodes, Ws;1 is given

by

Ws;1 = Ls;1 = w� = max
e2T

jNe;1jjNe;2j:

Theorem 1 tells us that wavelength conversion cannot decrease the wavelength requirement for

1-uniform traÆc in an arbitrary tree topology. In addition, from statement 2 of lemma 1, the

minimum value of w� is at least 1
d� (1 �

1
d� )N

2. The tree topologies with w� close to this lower

bound are the ones in which each top-level subtree has approximately N=d� leaf nodes. Roughly

speaking, it is desirable to have all the top-level subtrees support an equal amount of traÆc.

It is a simple extension to establish that Ws;l = lWs;1. First, we use the same argument as in

the derivation of w� in (3.1) to show that the bottleneck link e� carries lw� wavelengths in each

�ber. Thus, Ls;l � lw�. To show that Ws;l � lw�, we apply the o�-line tree WA algorithm l times

on l disjoint sets each of which contains w� wavelengths. We state the result formally as a corollary

to theorem 1.
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Corollary 1 For an arbitrary tree topology with l-uniform traÆc among leaf nodes, Ws;l is given

by

Ws;l = Ls
l = lw� = lmax

e2T
jNe;1jjNe;2j:

The following example illustrates the resultant WA from the o�-line tree WA algorithm.

Example 1 In this example, we shall present the overall WA for 1-uniform traÆc in the example

tree given in �gure 3-6a. Although several parts of the WA are previously shown in the algorithm

description, for completeness we shall present all the steps of the o�-line tree WA algorithm below.

Figure 3-15 is identical to �gure 3-6, which shows the wavelength bands �(i;j), i 6= j, 1 � i; j � 4,

for the non-local sessions among the four top-level subtrees. These bands are assigned in phase 1

of the algorithm. For example, band �(2;4) contains wavelengths 7, 8, and 9.

1 5 7 9 11 13 15 173

x4 = 1

x3 = 2

x2 = 3

x1 = 3

v�
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w� = 18

top-level subtrees

indices
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�(1;3) �(1;4)

�(2;3)

top-level subtree 2
transmitted from �(2;4)

top-level subtree 1
transmitted from

�(3;4)

top-level subtree 3
transmitted from

(a) wavelength bands �(i;i0) where i < i0

top-level subtree 1

top-level subtree 2
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transmitted to

transmitted to
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(b) wavelength bands �(i;i0) where i > i0

�(3;1) �(2;1)

�(3;2)

�(4;1)

�(4;2)

�(4;3)

Figure 3-15: Phase 1 of the o�-line tree WA algorithm for example 1.

Figures 3-16, 3-18, 3-20, and 3-22 show the results of phase 2 of the o�-line tree WA algorithm

for top-level subtrees 1, 2, 3, and 4 respectively. In each of these �gures, we also present the

underlying partial WA bipartite graph and the partition of its edges into disjoint subsets each of

which are incident to all the nodes in the graph. For example, consider the result of phase 2 for
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top-level subtree 2 in �gure 3-18. Node n2;1 transmits its non-local sessions on wavelengths 10, 15,

17, 1, 4, and 7 to n1;1, n1;2, n1;3, n3;1, n3;2, and n4;1 respectively. Now consider the result of phase

2 for top-level subtree 4 in �gure 3-22. Since there is only a single node in top-level subtree 4, the

partial WA yields the complete WA for all the non-local sessions to and from S4. There is no need

to create the partial WA bipartite graph and partition its edges as we have done for all the other

three top-level subtrees. Moreover, since there is no local session in top-level subtree 4, we need

not perform phase 3 for top-level subtree 4.

Figures 3-17, 3-19, and 3-21 show the results of phase 3 of the o�-line tree WA algorithm for

top-level subtrees 1, 2, and 3 respectively. For example, consider the result of phase 3 for top-level

subtree 2 in �gure 3-19. Node n2;1 transmits its local sessions on wavelengths 13 and 14 to n2;2 and

n2;3 respectively. Notice that the choice of the wavelengths for the local sessions may not be unique.

From �gure 3-18, since wavelengths 2 and 3 are non-local receive wavelengths for n2;1 and are used

as non-local transmit wavelengths for n2;2 and n2;3 respectively, n2;1 may also use wavelengths 2

and 3 to transmit its local sessions to n2;2 and n2;3 respectively.
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Figure 3-16: Phase 2 of the o�-line tree WA algorithm for top-level subtree 1 in example 1.
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Figure 3-17: Phase 3 of the o�-line tree WA algorithm for top-level subtree 1 in example 1.
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Figure 3-18: Phase 2 of the o�-line tree WA algorithm for top-level subtree 2 in example 1.
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Figure 3-19: Phase 3 of the o�-line tree WA algorithm for top-level subtree 2 in example 1.
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Figure 3-20: Phase 2 of the o�-line tree WA algorithm for top-level subtree 3 in example 1.
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Figure 3-21: Phase 3 of the o�-line tree WA algorithm for top-level subtree 3 in example 1.
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Figure 3-22: Phase 2 of the o�-line tree WA algorithm for top-level subtree 4 in example 1.

3.1.1 Regular Tree Topologies

For some regular tree topologies, we can describe a WA scheme compactly as an algebraic expression

which we shall refer to as a WA code. Let N be the number of end nodes, which we label as nodes

0; 1; :::; N � 1. For each of the N nodes, a code speci�es a WA vector, which is an N -vector

containing wavelength indices used to transmit to nodes 0; 1; :::; N �1 respectively. We present two

examples of WA codes below.

Example 2 (Star Topology) A star topology is a special case of an arbitrary tree topology. The

star topology with N end nodes is shown in �gure 3-23a. For 1-uniform traÆc, w� = N � 1. Since

each top-level subtree is a single node, only phase 1 of the o�-line tree WA algorithm is required.

For example, when N = 4, the resultant WA is illustrated in �gure 3-23b. From this WA, we

can write down the WA vector vj for node j, 0 � j � 3, as follows

v0 =

2
66666664

0

1

2

3

3
77777775
; v1 =

2
66666664

3

0

1

2

3
77777775
; v2 =

2
66666664

2

3

0

1

3
77777775
; v3 =

2
66666664

3

0

1

2

3
77777775
;

where we use wavelength 0 as a dummy wavelength index for the self-traÆc entries. More generally,

for node j, 0 � j � N , the WA vector vj can be expressed compactly as
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�(2;1)

�(3;2)
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N = 4

Figure 3-23: Star topology and its WA

vj = cN � jeN mod N;

where cN = [0; 1; :::; N � 1] and eN = [1; 1; :::; 1].

Example 3 (Binary Tree Topology) Consider a binary tree topology containing N = 2n end

nodes for some positive integer n, as illustrated in �gure 3-24. For 1-uniform traÆc, w� = N2=4.

Although one WA code can be obtained from the o�-line tree WA algorithm by choosing node v in

�gure 3-24 as the bottleneck node with three top-level subtrees, we can obtain a di�erent WA code

which can be expressed more compactly by choosing the root node as the bottleneck node v�.

With the root node as the bottleneck node v�, there are only two top-level subtrees, violating

the previous assumption of having at least three top-level subtrees. However, in this special case in

which the bottleneck link e� separates leaf nodes into two equal sets, i.e. x1 = x2 = N=2, the o�-line

tree WA algorithm can still be applied. When there are only two top-level subtrees with x1 > x2,

the algorithm breaks down since each node in top-level subtree 1 may not be able to possess up to

x1�1 reusable wavelengths in phase 2. To see this, note that each reusable wavelength corresponds

to a non-local receive session. When x1�1 > x2, there are strictly less than x1�1 non-local receive

wavelengths with respect to each node in top-level subtree 1. Thus, phase 2 of the algorithm cannot

terminate with x1� 1 or more reusable wavelengths with respect to each leaf node. With only two

top-level subtrees but with x1 = x2 = N=2, such a problem does not occur.

Number leaf nodes n1;1, n1;2, ..., n1;N
2
, n2;1, n2;2, ..., n2;N

2
from 0 to N � 1. By applying the

o�-line tree WA algorithm with two top-level subtrees, the WA code is shown in �gure 3-24 for
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N = 8 and w� = 16. We use 0 as a dummy wavelength index for the self-traÆc entries.

node 0 node 1 node 3 node 4 node 5 node 6 node 7node 2

vv�

v0 v1 v2 v3 v4 v5 v6 v7
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5
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4

8

12

16

1 2 3 4

0 5 9 13

5 6 7 8

2 0 10 14

9 10 11 12

3 7 0 15

13 14 15 16

4 8 12 0

Figure 3-24: Binary tree topology and its WA code

For a general value of n, phase 2 of the o�-line tree WA algorithm is illustrated in �gure 3-25.

For example, consider the non-local sessions transmitted by node n1;j, where 1 � j � N
2 . Node

n1;j transmits to n2;1, n2;2, ..., n2;N
2
on wavelengths j, N

2 + j, ..., (N2 � 1)N2 + j respectively. With

respect to n1;j, wavelength (j � 1)N2 + k, where k 6= j, is a type-1 reusable wavelength used by

n1;k to transmit a non-local session. Thus, in phase 3 of the o�-line tree WA algorithm, node n1;j

transmits a local session to n1;k on wavelength (j � 1)N2 + k.

From the above discussion, WA vectors v0, v1, ..., and vN
2
�1 for the leaf nodes in top-level

subtree 1 are given by

2
66664

j j j

v0 v1 � � � vN
2
�1

j j j

3
77775 =

2
666666666666666664

0 N
2
+ 1 2N

2
+ 1 (N

2
� 1)N

2
+ 1

2 0 2N
2
+ 1 (N

2
� 1)N

2
+ 2

3 N
2
+ 2 0 � � � (N

2
� 1)N

2
+ 3

..

.
..
.

..

.
..
.

N
2

2N
2

3N
2

N2

4

1 2 3 � � � N
2

N
2
+ 1 N

2
+ 2 N

2
+ 3 � � � 2N

2

...

(N
2
� 1)N

2
+ 1 (N

2
� 1)N

2
+ 2 (N

2
� 1)N

2
+ 3 � � � 0

3
777777777777777775

:
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Figure 3-25: Phase 2 of the o�-line tree WA algorithm for a binary tree topology.

Note that the �rst N
2 entries in each WA vector correspond to local sessions, while the last N

2

entries in each WA vector correspond to non-local sessions.

To express the WA code compactly, de�ne matrix Ck to be a k � k matrix whose ith row,

0 � i � k � 1, is [ik + 1; :::; ik + k]. In addition, de�ne the matrix CT0k to be the transpose of Ck

with all the diagonal entries set to 0. For example,

C4 =

2
66666664

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

3
77777775
; CT04 =

2
66666664

0 5 9 13

2 0 10 14

3 7 0 15

4 8 12 0

3
77777775
:
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In terms of matrices CN=2 and CT0N=2, the above WA vectors v0, ..., and vN
2
�1 can be expressed

as 2
66664

j j j

v0 v1 � � � vN
2
�1

j j j

3
77775 =

2
64 CT0N=2

CN=2

3
75 :

To construct WA vectors vN
2
, ..., and vN�1 for the leaf nodes in top-level subtree 2, consider

again phase 2 of the o�-line tree WA algorithm in �gure 3-25. Notice that the WA in top-level

subtree 2 di�ers from that in top-level subtree 1 only in the source and destination node indices.

It follows that WA vectors vN
2
; :::;vN�1 are the same as v0; :::;vN

2
�1 but with the exchange of the

�rst N
2 rows and the last N

2 rows, i.e.

2
66664

j j j

vN
2

v1 � � � vN�1

j j j

3
77775 =

2
64 CN=2

CT0N=2

3
75 :

In conclusion, we can express the WA code compactly as

2
66664

j j j

v0 v1 � � � vN�1

j j j

3
77775 =

2
64 CT0N=2 CN=2

CN=2 CT0N=2

3
75 :

3.2 Bidirectional Ring Topologies

In this section, we discuss the RWA for l-uniform traÆc in a bidirectional ring topology. Figure 3-26

shows a bidirectional ring topology with N > 2 end nodes.4 Unlike section 3.1 on arbitrary tree

topologies, we assume that each node in the network is an end node.

Let Ls;l denote the minimum number of wavelengths which, if provided in each �ber, can

support l-uniform traÆc given full wavelength conversion at all nodes. To obtain a lower bound

on Ls;l, we use the argument referred to as the link counting bound in [Pan92]. Let H be the sum

4The RWA problem for the ring with two nodes is trivial.
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node 1
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bidirectional.

Figure 3-26: The bidirectional ring topology with N > 2 nodes.

of the number of hops traversed by each of the sessions under shortest path routing, and F be the

number of �bers in the network. Then some �ber must support at least dH=F e wavelengths, i.e.

Ls;l � dH=F e. For l-uniform traÆc in the N -node ring, it is straightforward to derive H as shown

below.

H =

8><
>:

lN(N2 � 1)=4; N odd;

lN3=4; N even

Since F = 2N , it follows that

Ls;l �

�
H

F

�
=

8><
>:

l(N2 � 1)=8; N odd;

dlN2=8e; N even:

Note that, for N odd, (N2 � 1)=8 = (N � 1)(N + 1)=8 is always an integer since one of the factors

(N � 1) and (N + 1) is divisible by 4 while the other is divisible by 2.

Let Ws;l denote the minimum number of wavelengths which, if provided in each �ber, can

support l-uniform traÆc with no wavelength conversion. There are some known results about the

value of Ws;l. For N odd, Ws;l = l(N2 � 1)=8 [Elr93, Wil96]. In addition, for N even and l = 1,

Ws;1 = N2=8 if N is divisible by 4, and Ws;1 = N2=8 + 1=2 if N is not divisible by 4 [Wil96].

In [Wil96], an explicit RWA algorithm is given as a proof on the value of Ws;1. Since the proof

in [Wil96] is rather involved, an alternative and simple proof based on induction was suggested as

an exercise in [RS01] to show that Ws;l � l(N2 � 1)=8 for N odd. In what follows, we use the idea

of the inductive proof to derive a general expression for the upper bound

Ws;l �

8><
>:

l(N2 � 1)=8; N odd;

dlN2=8e; N even;
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which implies Ws;l = Ls;l.

We �rst consider N odd and l = 1. For N = 3, it is easy to see that, under shortest path

routing, Ws;1 = 1. For a higher value of N , we �nd the RWA by inserting two new nodes at a

time and updating the RWA, starting from the 3-node ring. More speci�cally, given a k-node ring,

where k is odd, we add two new nodes so that they are (k+1)=2 hops apart, as shown in �gure 3-27

for k = 3 and k = 5.

existing node new node

k = 3

Two new wavelengths are shown
as solid and dash lines.

k = 5

(k + 1)=2 new wavelengths in each step

as solid, dash, and dotted lines.
Three new wavelengths are shown

Figure 3-27: RWA update step for the k-node ring, where k is odd. Only the new sessions are shown.

The RWA of the sessions not terminated, i.e. transmitted and/or received, at the new nodes

remain the same, although their path lengths may increase. The RWA of the sessions terminated

at the new nodes is shown in �gure 3-27. In particular, the RWA is chosen based on shortest path

routing and eÆcient wavelength reuse such that each new wavelength is used on every �ber. Note

that each RWA update step, i.e. adding two new nodes to the k-node ring, requires (k + 1)=2 new

wavelengths. By repeating the update step until we obtain the N -node ring, it is clear that all the

N(N � 1) sessions in 1-uniform traÆc are assigned some wavelength. Accordingly, the number of

wavelengths used is

1 +

�
3 + 1

2

�
+

�
5 + 1

2

�
+ :::+

�
(N � 2) + 1

2

�
=

N2 � 1

8
:

It follows that Ws;1 � (N2 � 1)=8.

For N odd and l > 1, we can repeat the above RWA l times on l disjoint sets of wavelengths.
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Thus, Ws;l � lWs;1 � l(N2 � 1)=8.

We now consider N even and l = 1. For N = 2, it is trivial that Ws;1 = 1. We choose to route

the two sessions in the clockwise (CW) ring direction, as shown in �gure 3-28a, for the reason to

be explained shortly. For a higher value of N , we update the RWA starting from the 2-node ring

by inserting two new nodes in each step. Given a k-node ring, where k is even, we add two new

nodes so that they are k=2 + 1 hops apart, as shown in �gure 3-28b for k = 2 and k = 4.

existing node new node

(a) RWA for the
2-node ring

k = 2

Two new wavelengths are shown
as solid and dash lines. as solid, dash, and dotted lines.

Three new wavelengths are shown

k=2 new wavelengths in each step

k = 4

The two longest sessions are
in the CCW direction.

The two longest sessions are
in the CW direction.

k
2 + 1 new wavelengths in each step

(b)

Figure 3-28: RWA update step for the k-node ring, where k is even.

The RWA of the new sessions (terminated at the new nodes) is shown in �gure 3-28b. In

particular, the RWA is based on shortest path routing and eÆcient wavelength reuse such that each

new wavelength is used on every �ber, except for the wavelength used by the two longest sessions

(between the two new nodes). We choose to route the two longest sessions in the counterclockwise

(CCW) direction when k is not divisible by 4 and in the CW direction when k is divisible by 4.

Notice that, in each step when k is not divisible by 4, we can reuse the wavelength which is used

only in the CW direction (for the two longest sessions) in the previous step. This is the reason for

the above RWA for the 2-node ring. It follows that the number of new wavelengths used in each

step is k=2 + 1 if k is divisible by 4, and k=2 if k is not divisible by 4.

By repeating the update step until we obtain the N -node ring, the number of wavelengths used
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is, for N divisible by 4,5

1 +
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8
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&
N2

8

'
:

It follows that Ws;1 � dN2=8e for N even and divisible by 4.

For N not divisible by 4, the number of wavelengths used is 6

1 +

�
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�
+

�
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2
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&
N2

8

'
:

Therefore, Ws;1 � dN2=8e for all N even.

For N even and l � 1 odd, we use a procedure similar to the case with l = 1. In this case, we

route l session pairs instead of one session pair between each node pair. For the 2-node ring, we

route (l+1)=2 session pairs in the CW direction and the other (l� 1)=2 session pairs in the CCW

direction. In each RWA update step, for k divisible by 4, we route (l + 1)=2 of the longest session

pairs in the CW direction and the other (l�1)=2 of the longest session pairs in the CCW direction.

For k not divisible by 4, we route (l + 1)=2 of the longest session pairs in the CCW direction and

the other (l� 1)=2 of the longest session pairs in the CW direction. When k is divisible by 4, there

is one new wavelength used only in the CW direction. When k is not divisible by 4, we can reuse

the wavelength used only in the CW direction in the previous step. It follows that the number of

new wavelengths used in each step is lk=2 + (l+1)=2 if k is divisible by 4, and lk=2+ (l� 1)=2 if k

is not divisible by 4. After repeating the update step until we obtain the N -node ring, the number

of wavelengths used is, for N divisible by 4,
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l
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For N not divisible by 4, the number of wavelengths used is

l + 1

2
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2
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Therefore, Ws;l � dlN2=8e for all N even and l odd.

5When N is divisible by 4, N2 is divisible by 8. Thus N2=8 is an integer, i.e. dN2=8e = N2=8.
6When N is not divisible by 4, N = 4m+ 2 for some positive integer m. We can express N2=8 as (4m+ 2)2=8 =

2m2 + 2m+ 1=2, from which it is easy to see that dN2=8e = N2=8 + 1=2.
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Finally, for N even and l � 1 even, we use a procedure similar to the case with l odd. However,

in each step, we can route l=2 of the longest session pairs in the CW direction and the other l=2 of

the longest session pairs in the CCW direction. Thus, each new wavelength can be used on every

�ber. It follows that the number of new wavelengths used in each step is lk=2+ l=2. After repeating

the update step until we obtain the N -node ring, the number of wavelengths used is

l

2
+

�
l
2

2
+

l

2

�
+

�
l
4

2
+

l

2

�
+ :::+

�
l
N � 2

2
+

l

2

�
= l

N2

8
=

&
l
N2

8

'
:

In conclusion, we have shown that Ws;l � dlN2=8e for all N even and all l � 1.

We summarize the discussion in this section in the following theorem.

Theorem 2 In the bidirectional ring topology with l-uniform traÆc among N nodes, Ws;l is given

by

Ws;l = Ls;l =

8><
>:

l(N2 � 1)=8; N odd;

dlN2=8e; N even:

Theorem 2 tells us that wavelength conversion cannot decrease the wavelength requirement for

l-uniform traÆc in a bidirectional ring topology.

3.3 2D Torus Topologies

In this section, we discuss the RWA for l-uniform traÆc in a two-dimensional (2D) torus topology.

Figure 3-29 shows the R � C torus topology with N = RC end nodes, where R and C are the

numbers of rows and columns respectively.

Let Ls;l denote the minimum number of wavelengths which, if provided in each �ber, can support

l-uniform traÆc given full wavelength conversion at all nodes. To derive a lower bound on Ls;l,

we use the link counting bound described in section 3.2. Let H be the sum of the number of hops

traversed by each of the sessions under shortest path routing, and F be the number of �bers in

the network. Then some �ber must support at least dH=F e wavelengths, i.e. Ls;l � dH=F e. For

l-uniform traÆc in the R� C torus topology, it is straightforward to derive H as shown below.
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R = 4,
C = 5,
N = 20

Each link is
bidirectional.

Figure 3-29: The R�C torus topology with N = RC end nodes.

H =

8>>>>>>><
>>>>>>>:

lR3C2=4 + lR2C3=4; R even; C even;

lR3C2=4 + lR2C(C2 � 1)=4; R even; C odd;

lR(R2 � 1)C2=4 + lR2C3=4; R odd; C even;

lR(R2 � 1)C2=4 + lR2C(C2 � 1)=4; R odd; C odd:

Since F = 4RC, it follows that

Ls;l �

�
H

F

�
=

8>>>>>>><
>>>>>>>:

dlRC(R+ C)=16e; R even; C even;

dlRC(R+ C � 1
C )=16e; R even; C odd;

dlRC(R+ C � 1
R)=16e; R odd; C even;

dlRC(R+ C � 1
R � 1

C )=16e; R odd; C odd:

(3.2)

Let Ws;l denote the minimum number of wavelengths which, if provided in each �ber, can

support l-uniform traÆc with no wavelength conversion. The derivation of Ws;l was previously

studied in [Mar+93]. In [Mar+93], the authors claim that, if both R and C are divisible by 4, then

there exists, by construction, an RWA scheme which uses the number of wavelengths equal to the

lower bound of Ls;l given in (3.2), i.e. Ws;l = Ls;l = dlRC(R + C)=16e = lRC(R + C)=16. The

derivation of Ws;l for general values of R and C remains to be investigated.

62



3.4 Binary Hypercube Topologies

In this section, we solve the RWA problem for l-uniform traÆc in a binary hypercube topology.

A binary hypercube topology contains N = 2n end nodes for some positive integer n. Figure 3-

30 illustrates the cases with N = 4 and N = 8. The N end nodes can be labeled using n-bit

binary strings. Two nodes are adjacent if their labels di�er in only one bit. Unlike all the previous

topologies in which the maximum node degree can be kept constant as N grows large, a binary

hypercube has its node degree equal to n, which increases logarithmically with N .

00 10

01 11

011

101 111

001

000 010

100 110

Figure 3-30: Binary hypercube topologies

Let us consider the RWA problem for 1-uniform traÆc. The results can later be extended to

l-uniform traÆc in a straightforward fashion. Let Ls;1 denote the minimum number of wavelengths

which, if provided in each �ber, can support 1-uniform traÆc given full wavelength conversion at

all nodes. We �rst derive a lower bound on Ls;1. Partition the nodes into two disjoint subsets,

one with the nodes whose labels start with bit 0 and the other with the nodes whose labels start

with bit 1. Note that each subset contains N=2 nodes. There are N=2 �bers leaving from one

subset to the other. For 1-uniform traÆc, the amount of traÆc from one subset to the other is

N=2 � N=2 = N2=4 wavelengths. It follows that one �ber connecting the two sets of nodes must

support at least (N2=4)=(N=2) = N=2 wavelengths. Therefore, Ls;1 � N=2.

Let Ws;1 denote the minimum number of wavelengths which, if provided in each �ber, can

support 1-uniform traÆc with no wavelength conversion. To derive an upper bound on Ws;1, we

construct an RWA algorithm. Our algorithm, which uses N=2 wavelengths in each �ber, implies

that Ws;1 = Ls;1 = N=2.

To route each session, we use a �xed routing scheme which we refer to as label matching routing.

In label matching routing, a route from a source to a destination is obtained by changing the source
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label one bit at a time from the most signi�cant bit to obtain the destination label. For example,

a route from source 000 to destination 111 goes through the following nodes: 000 ! 100 ! 110 !

111.

Using label matching routing, it is still necessary to perform wavelength assignment (WA). We

shall express our WA scheme as a WA code.7 To do so, we make a few useful observations. De�ne

a type-i link, 0 � i � n� 1, to be a unidirectional link, or equivalently a �ber, between two nodes

whose labels di�er only in the ith signi�cant bit. For example, the link from node 100 to node 101

is a type-0 link, while the link from node 110 to node 010 is a type-2 link. Figure 3-31 illustrates

the following observations.

1. Based on label matching routing, a type-i link is used to reach 2i destinations by any source

which utilizes it.

2. The type-i link from node n1 to node n2 is used by the 2n�i�1 sources whose lowest i+1 bits

are the same as those in the label of n1. Consequently, the labels of those 2n�i�1 sources,

when viewed as integers, are each separated by an integer multiple of 2i+1.

001

source destination

type-0 link (111,110) used by
nodes 001, 011, 101, and 111
to reach node 110

type-2 link (001,101) used by
node 001 to reach
nodes 100, 101, 110, and 111

nodes 001 and 101
to reach nodes 111 and 110

type-1 link (101,111) used by

011

000 010

101

100 110

111 001

000

011

010 100 110

111101 001 011

000 010 100 110

111101

(c)(b)(a)

Figure 3-31: Properties of type-i links.

The above observations suggest the following WA code construction. From the above observa-

tions, a �ber can be shared only by sources which all have the least signi�cant bit equal to 0, or

some sources all of which have the least signi�cant bit equal to 1. In other words, a source with the

least signi�cant bit equal to 0 never shares the same �ber with any source with the least signi�cant

bit equal to 1. For example, source 000 and source 001 never use the same �ber since their least
7The de�nitions of a WA code and a WA vector are given in section 3.1.1.

64



signi�cant bits di�er. It follows that wavelength collision is avoided even if we assign the set of

WA vectors v0;v2; :::;vN�2 independently from the set of WA vectors v1;v3; :::;vN�1. We shall

construct v0;v2; :::;vN�2 and use the same construction for v1;v3; :::;vN�1.

We shall use N=2 wavelengths in each �ber. For simplicity, we choose each WA vector to contain

consecutive wavelength indices in an increasing order modulo N=2, e.g. [1; 2; :::; N2 ; 1; 2; :::;
N
2 ]. No-

tice that each wavelength index may appear more than once in a given WA vector. This multiplicity

does not pose a problem since, according to label matching routing, the routes from each source to

the nodes whose labels start with bit 0 never overlap with the routes from the same source to the

nodes whose labels start with bit 1. Therefore, we can repeat the same set of entries twice in each

WA vector. We choose to assign the �rst WA vector as v00 = [1; 2; :::; N2 ; 1; 2; :::;
N
2 ]. We use the

notation v00 instead of v0 because we shall eventually construct v0 from v00 by using 0 as a dummy

wavelength index for the self-traÆc entry, i.e. v0 = [0; 2; :::; N2 ; 1; 2; :::;
N
2 ].

From the above observations, each type-i link must carry 2i wavelengths from each of the

sources whose labels, when viewed as integers, are each separated by an integer multiple of 2i+1.

This observation suggests shifting the entries of v00 by 1 unit to create v
0
2, shift the entries of v

0
2 by

1 unit to create v04, and so on. More explicitly,

v00 =

2
666666666666664

1

2

..

.

N
2

1

2

..

.

N
2

3
777777777777775

; v02 =

2
666666666666664

2

...

N
2

1

2

...

N
2

1

3
777777777777775

; � � � ; v0N�2 =

2
666666666666664

N
2

1

2

...

N
2

1

..

.

N
2
� 1

3
777777777777775

:

It follows that two sources which are 2i+1 units apart have their WA vectors o�set by 2i units.

Thus, based on this scheme, no wavelength collision occurs on any type-i link, 0 � i � n� 1.

We use the same construction to assign v01 = v00;v
0
3 = v02; :::;v

0
N�1 = v0N�2. Given a square

matrix C, let C0 denote the same matrix but with all its diagonal entries set to 0. The WA code

can be expressed as
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2
66664

j j j

v0 v1 � � � vN�1

j j j

3
77775 =

2
66664

j j j

v00 v01 � � � v0N�1

j j j

3
77775

0

=

2
666666666666664

1 1 2 2 N
2

N
2

.

..
.
..

.

..
.
.. 1 1

N
2

N
2

...
...

N
2

N
2

1 1 � � � N
2

N
2

1 1
...

... 1 1

...
... N

2
N
2

...
...

N
2

N
2

1 1 N
2
� 1 N

2
� 1

3
777777777777775

0

:

To express the above WA code more compactly, de�ne ~cN = [1; :::; N2 ; 1; :::;
N
2 ]. In addition, for

0 � j � N�1, de�ne ~c
(j)
N to be the vector with the entries of ~cN shifted up by j units. For example,

~c
(0)
8 = [1; 2; 3; 4; 1; 2; 3; 4] and ~c

(3)
8 = [4; 1; 2; 3; 4; 1; 2; 3]. Using this notation, we can express the WA

code as 2
66664

j j j

v0 v1 � � � vN�1

j j j

3
77775 =

2
66664

j j j j j j

~c
(0)
N ~c

(0)
N ~c

(1)
N ~c

(1)
N � � � ~c

(N=2�1)
N ~c

(N=2�1)
N

j j j j j j

3
77775

0

:

The construction of our RWA algorithm implies the following theorem.

Theorem 3 In a binary hypercube topology with 1-uniform traÆc among N nodes, where N = 2n

for some positive integer n, Ws;1 is given by

Ws;1 = Ls;1 = N=2:

Let Ls;l and Ws;l denote the minimum number of wavelengths which, if provided in each �ber,

can support l-uniform traÆc with full wavelength conversion at all nodes and without wavelength

conversion respectively. It is a simple extension to establish that Ws;l = lWs;1 = lN=2. First, we

can use the same argument as in the derivation for the lower bound of Ls;1 to show that one of

the �bers connecting the set of nodes whose labels start with bit 0 and the set of nodes whose

labels start with bit 1 must carry at least lN=2 wavelengths. Thus, Ls;l � lN=2. To show that

Ws;l � N=2, we apply the RWA algorithm l times on l di�erent sets each with N=2 wavelengths.

We state the result formally as a corollary to theorem 3.
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Corollary 2 In a binary hypercube topology with l-uniform traÆc among N nodes, where N = 2n

for some positive integer n, Ws;l is given by

Ws;l = Ls;l = lN=2:

The following example illustrates our RWA algorithm in detail.

Example 4 Consider a binary hypercube with N = 8. Theorem 3 states that 4 wavelengths suÆce

to support 1-uniform traÆc. With label matching routing, the corresponding WA code based on

our RWA algorithm is given below.

2
66664

j j j

v0 v1 � � � v7

j j j

3
77775 =

2
66666666666664

0 1 2 2 3 3 4 4

2 0 3 3 4 4 1 1

3 3 0 4 1 1 2 2

4 4 1 0 2 2 3 3

1 1 2 2 0 3 4 4

2 2 3 3 4 0 1 1

3 3 4 4 1 1 0 2

4 4 1 1 2 2 3 0

3
77777777777775

Figure 3-32 explicitly illustrates the routes and wavelengths of the sessions transmitted by node

001. For example, node 001 transmits to node 000 on wavelength 1. Node 001 transmits to node

101 on wavelength 2.

000 010 100 110

111

1 3 1

2

3

44
001

101
011

Figure 3-32: Routes and wavelengths of the sessions from node 001.
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3.5 Arbitrary Topologies

In this section, we discuss the RWA problem for l-uniform traÆc in an arbitrary topology. Let Ls;l

and Ws;l denote the minimum number of wavelengths which, if provided in each �ber, can support

l-uniform traÆc with full wavelength conversion at all nodes and without wavelength conversion

respectively.

We shall describe two lower bounds on Ls;l and two upper bounds on Ws;l. Since Ls;l � Ws;l,

given a lower bound on Ls;l and an upper bound on Ws;l, the actual value of Ws;l lies between the

two bounds.

3.5.1 Lower Bound on Ls;l: the Link Counting Bound

To derive a lower bound on Ls;l, we can use the link counting bound from [Pan92] which is described

in section 3.2. Let H be the sum of the number of hops traversed by each of the sessions under

shortest path routing, and F be the number of �bers in the network. Then some �ber must support

at least dH=F e wavelengths, and thus Ls;l � dH=F e.

The link counting bound is reasonably tight when there exists a routing scheme which distributes

traÆc evenly on all the �bers. For example, for l-uniform traÆc in a bidirectional ring, an RWA

scheme described in section 3.2 uses e�ectively the same number of wavelengths on all the �bers.

Thus, the link counting bound is tight in this case.

As an example in which the link counting bound is not tight, consider the N -node binary tree

topology in example 3, where N = 2n for some positive integer n. From corollary 1, we know that

Ls;l = lN2=4. To use the link counting bound, it is straightforward to derive H as shown below

H = 2lN [N(log2N � 1) + 1]:

Since F = 4(N � 1), it follows that

Ls;l �

�
H

F

�
=

l

2

N

N � 1
[N(log2N � 1) + 1];

which is approximately (lN log2N)=2 for large N . Since Ls;l = lN2=4, the link counting bound is

not tight in this example.
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3.5.2 Lower Bound on Ls;l: the Cut Set Bound

A cut set in a connected network is a subset of (bidirectional) links whose removal results in two

disjoint connected subgraphs.8 A lower bound on Ls;l can be obtained by forming a cut set in

the network and determine the minimum amount of traÆc that one �ber across the cut has to

support [BB97].

Consider a cut set C which separates the end nodes into two sets NC;1 and NC;2. The amount of

traÆc (in wavelengths) across this cut from NC;1 to NC;2 is ljNC;1jjNC;2j. Since there are jCj �bers

fromNC;1 to NC;2, one �ber across this cut must support at least dljNC;1jjNC;2j=jCje wavelengths, i.e.

Ls;l � dljNC;1jjNC;2j=jCje. To tighten the bound, we search for the cut which yields the maximum

lower bound, i.e.

Ls;l � max
C

�
ljNC;1jjNC;2j

jCj

�
: (3.3)

We shall refer to the above lower bound of Ls;l as the cut set bound. Notice that, in section 3.2,

we use the cut set bound to de�ne the value of w� in (3.1). In a tree topology, the cut set is a

single link, and the bottleneck link yields the cut set bound. From corollary 1, we know that the

cut set bound is tight for a tree topology.

Interestingly, for other topologies we consider, the cut set bound is also tight. For example, the

cut set bound for an N -node bidirectional ring is given by

Ls;l �

8>><
>>:

�
lN�1

2
N+1
2

2

�
= lN

2�1
8 ; N odd;�

lN
2

N
2

2

�
=

l
lN

2

8

m
; N even:

From theorem 2, the cut set bound is tight. As another example, in section 3.4, we have used the

cut set bound argument to derive the lower bound Ls;l � lN=2 for the N -node binary hypercube.

From corollary 2, the cut set bound is tight.

To our knowledge, there is no known topology for which the cut set bound is not tight for

l-uniform traÆc. On the other hand, there is no known proof that the cut set bound is tight for

l-uniform traÆc in an arbitrary topology. We state this problem as an open problem for future

research below.

8Equivalently, a cut set in a connected network is a subset of links such that the network is no longer connected
after its removal, but is still connected after a removal of its strict subset.
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Problem 3 For l-uniform traÆc in an arbitrary topology, determine whether or not the cut set

bound in (3.3) is always tight.

3.5.3 Upper Bound on Ws;l: the Embedded Tree Bound

In this subsection, we shall return to the wavelength assignment (WA) problem for l-uniform traÆc

in an arbitrary tree topology considered in section 3.1 and relax the assumption that only leaf

nodes are end nodes. This relaxation allows us to embed a tree topology in an arbitrary connected

topology. The o�-line tree WA algorithm can then be used to derive an upper bound on Ws;l. As

a speci�c example, �gure 3-33a shows an arbitrary topology. One possible embedded tree is shown

in �gure 3-33b. Note that nodes 2, 4, and 5 are non-leaf nodes.

node 1

6

associated with (b)
(c) generic tree topology

2

3

4

5

�1

node 1

2

5

6

3

4

(b) embedded
tree topology

3

4
�1

The end nodes are colored grey.

non-leaf node leaf node newly created leaf node

(a) mesh topology

node 1

2

5

6

Figure 3-33: Embedded tree topology and its associated generic tree topology.

Given an embedded tree topology with non-leaf end nodes, we can create the associated generic

tree topology with no non-leaf end node as follows. For each non-leaf end node, create a new leaf

node attached to it. The new leaf node is an end node, while the existing non-leaf node is no

longer an end node. For example, �gure 3-33c shows the generic tree topology associated with the

embedded tree topology in �gure 3-33b. In particular, there are three new leaf nodes in �gure 3-33c

created from the three non-leaf end nodes in �gure 3-33b.

The following theorem states that the minimum number of wavelengths for l-allowable traÆc

for the generic tree, denoted by Ws;l;g, is the same as for the embedded tree, denoted by Ws;l;e.
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Theorem 4 For l-uniform traÆc, the wavelength requirements for an embedded tree and for its

associated generic tree are the same, i.e. Ws;l;e =Ws;l;g.

Proof: We �rst argue that Ws;l;e � Ws;l;g. Observe that, for the same traÆc matrix, the WA for

the generic tree can be used for the embedded tree as described next. Each lightpath in the generic

tree can be mapped to an identical lightpath in the embedded tree except for all the newly created

links in the generic tree. For example, the three-hop lightpath on wavelength �1 from leaf node 5

to leaf node 4 in �gure 3-33c is mapped to the one-hop lightpath on �1 from node 5 to node 4 in

�gure 3-33b. It follows that Ws;l;e �Ws;l;g.

We now argue that Ws;l;e � Ws;l;g. From the de�nition of w� for a generic tree given in (3.1),

we claim that the bottleneck link e� in the generic tree can always be chosen so that it is not one

of the newly created links as compared with the embedded tree. To see this, note that any newly

created link separates a single end node from all the other end nodes, and the ow across a �ber

in this link is equal to l[1(N � 1)] = l(N � 1) wavelengths, which is the minimum possible �ber

load in a tree with l-uniform traÆc among N end nodes. Thus, if a newly created link can serve

as the bottleneck link, so can any existing link. (In fact, in this case, the generic tree topology is

necessarily a star.) With the above choice of the bottleneck link e�, link e� exists in the embedded

tree and up to lw� wavelengths of traÆc can traverse across it in one direction. It follows that

Ws;l;e � lw�. Since Ws;l;g = lw�, we have shown that Ws;l;e �Ws;l;g. In conclusion, we have proved

that Ws;l;e =Ws;l;g. 2

Theorem 4 tells us that the de�nition of w� in (3.1) yields the minimum number of wavelengths

for l-uniform traÆc in an arbitrary tree topology with non-leaf end nodes. After we embed a tree

topology in a given arbitrary topology, the value of Ws;l;e for the embedded tree can be used in an

upper bound on Ws;l. We summarize the discussion below as a corollary to theorem 4.

Corollary 3 For l-uniform traÆc, the generic tree associated with the embedded tree can be used

to obtain the embedded tree bound in place of the embedded tree, i.e. Ws;l �Ws;l;g =Ws;l;e.

For example, the value of Ws;l;g for the generic tree associated with the embedded tree in

�gure 3-33b is equal to 8l. Thus, for the topology given in �gure 3-33a, Ws;l � 8l.
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We shall refer to the upper bound on Ws;l obtained in this fashion as the embedded tree bound.

The embedded tree bound is a reasonable estimate on Ws;l when the network nodes are sparsely

connected. However, for a densely connected network, it can perform poorly. For example, consider

the N -node binary hypercube. We know from corollary 2 that Ws;l = lN=2. From statement 2 of

lemma 1, any embedded tree with N end nodes has w� � 1
d� (1 �

1
d� )N

2, where d� is the degree of

the bottleneck node. Since d� in the N -node binary hypercube is equal to log2N , it follows that

the embedded tree bound lw� is at least 1
log2 N

(1� 1
log2 N

)lN2, which is approximately lN2=(log2N)

for large N . Since Ws;l = lN=2, the embedded tree bound is not tight in this example.

3.5.4 Upper Bound on Ws;l in term of Ls;l: the Graph Coloring Bound

In this section, we discuss an upper bound of Ws;l in term of Ls;l using a known argument

in [Agg+96]. Given the routing assignment for all the sessions, i.e. the routes of all the light-

paths, such that the maximum load in a �ber is Ls;l wavelengths, we derive an upper bound

on Ws;l by keeping the same routing assignment and performing wavelength assignment (WA).

In [CGK92], it is shown that the WA problem can be reduced to a graph coloring problem in which

we try to color all the nodes in the new graph so that no adjacent nodes have the same color using

the minimum number of colors. More speci�cally, given a network topology and the routes of all

the lightpaths, we can create the corresponding path graph as follows. Each lightpath is mapped

one-to-one to a node in the path graph. Two nodes in the path graph are connected if and only

if the two corresponding lightpaths share a �ber. For example, consider the 3-node star network

with 1-uniform traÆc in �gure 3-34a. Note that there is no routing problem in this example. The

corresponding path graph is shown in �gure 3-34b. In the path graph, there are in total six nodes

corresponding to the six lightpaths under 1-uniform traÆc. We denote each node in the path graph

by its route, e.g. node 1-0-2 refers to the lightpath of session (1,2). Node 1-0-2 is adjacent to node

1-0-3 since they share the �ber from on link 1-0.

In this speci�c example, the graph coloring problem is to color all the six nodes so that no

adjacent nodes have the same color using the minimum number of colors. It is easy to see that

the minimum number of colors required in this example is 2. After coloring the nodes in the path

graph, we map the node colors one-to-one to the wavelengths which we assign to the corresponding

lightpaths. For example, �gure 3-34b shows the node colors after the graph coloring problem is
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node 1

3 2

(a) 3-node star network (b) path graph for 1-uniform traÆc

2-0-1

1-0-2

Figure 3-34: The path graph for the 3-node star with 1-uniform traÆc.

solved. From the node colors, we assign the �rst wavelength to lightpaths 1-0-2, 2-0-3, and 3-0-1,

and the second wavelength to lightpaths 1-0-3, 2-0-1, and 3-0-2.

In general, the graph coloring problem is hard to solve and is known to be NP-complete [GJ79].

However, it is known that any graph with maximum node degree d can be colored with d + 1

colors [Ber85]. Given the maximum �ber load Ls;l and the length (in hops) of the longest lightpath

h, each lightpath shares a �ber with at most h(Ls;l � 1) other lightpaths. It follows that the

maximum node degree in the path graph is h(Ls;l � 1). Therefore, h(Ls;l � 1) + 1 wavelengths are

suÆcient to support l-uniform traÆc, i.e.

Ws;l � h(Ls;l � 1) + 1: (3.4)

We shall refer to the above upper bound on Ws;l as the graph coloring bound. Unfortunately,

the graph coloring bound tends to be quite pessimistic for l-uniform traÆc. For example, consider

the N -node bidirectional ring topology. We know from theorem 2 that Ws;l = Ls;l. However, the

graph coloring bound in (3.4) yields

Ws;l �

8><
>:

N
2 (Ls;l � 1) + 1; N even;

N�1
2 (Ls;l � 1) + 1; N odd;

which is clearly not tight.

Interestingly, for all the topologies in which we can obtain closed form expressions for Ls;l and

Ws;l, we see that Ws;l = Ls;l. In particular, we have seen that Ws;l = Ls;l for arbitrary tree,

bidirectional ring, and binary hypercube topologies.
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To our knowledge, there is no known topology with Ws;l > Ls;l. On the other hand, there is no

known proof that Ws;l = Ls;l in any arbitrary topology. We state this problem as an open problem

for future research below.

Problem 4 For l-uniform traÆc in an arbitrary topology, determine whether or not Ws;l = Ls;l.
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Chapter 4

RWA for Dynamic k-Allowable TraÆc

In this chapter, we study the routing and wavelength assignment (RWA) problem for k-allowable

traÆc, where k = [k1; k2; :::; kN ] and N is the number of end nodes in the network. In k-allowable

traÆc, node i, 1 � i � N , transmits at most ki wavelengths and receives at most ki wavelengths.

Let Wd;k denote the minimum number of wavelengths which, if provided in each �ber, can support

dynamic k-allowable traÆc in a rearrangeably nonblocking fashion with no wavelength conversion.

As in the case of l-uniform traÆc, we solve the RWA problem in a few special cases with the hope

of extending our analytical techniques to obtain a good general bound on the value of Wd;k for

any given topology. The speci�c topologies we shall consider include arbitrary tree topologies, a

bidirectional ring, a two-dimensional (2D) torus, and a binary hypercube.

Let Ld;k denote the minimum number of wavelengths which, if provided in each �ber, can

support dynamic k-allowable traÆc in a rearrangeably nonblocking fashion given full wavelength

conversion at all nodes. It is clear that Ld;k �Wd;k for any given network topology. For convenience,

de�ne symmetric k-allowable traÆc to be the k-allowable traÆc in which all the ki's are equal to

k. Throughout the chapter, we make the following assumption on k-allowable traÆc.

Assumption 1 Let kmax = max1�i�N ki. Assume that kmax �
�P

1�i�N ki
�
=2.

Assumption 1 is reasonable since the node with kmax fully tunable transmitters (receivers) can

transmit (receive) at most (
P

1�i�N ki)�kmax wavelengths to (from) all the other nodes. Therefore,

kmax need be no greater than (
P

1�i�N ki)� kmax, yielding the condition in assumption 1.
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4.1 Star Topologies

In this section, we solve the RWA problem for k-allowable traÆc in a star topology. In the next

section, we extend the results to the case of arbitrary tree topologies. Figure 4-1 shows an example

of a star topology with 3 end nodes connected through a central hub. Since there is a unique route

for each traÆc session, there is no routing problem. Thus, we only have to perform wavelength

assignment (WA) in the RWA problem.

(1,2)
(2,1)
(1,3)
(3,1)
(2,3)

arrivals
of session
sequence

from node i to node j.
(i; j) denotes a session

�1 �2

�1 or �2

node 1

cannot use

node 2 node 3

�1 �2

kmax=2
k1=k2=k3=2

(1,2) on �1
(2,1) on �1
(1,3) on �2
(3,1) on �2
(2,3) not on �1 or �2

WA steps
sequence of

corresponding

Figure 4-1: An example in which a greedy approach requires more than kmax wavelengths.

Let Ld;k and Wd;k denote the minimum number of wavelengths which, if provided in each �ber,

can support k-allowable traÆc with full wavelength conversion at all nodes and without wavelength

conversion respectively. It is clear that Ld;k � Wd;k. Notice that Ld;k and Wd;k are the number

of wavelengths required to support any traÆc matrix in the k-allowable set. Thus, for a speci�c

traÆc matrix, we may need fewer wavelengths than in the worst-case. To derive Ld;k, consider the

�ber from the node with traÆc parameter kmax to the hub node. This �ber must support up to

kmax wavelengths, which is the maximum link load. It follows that Ld;k = kmax.

We shall show that Wd;k � kmax, which impliesWd;k = Ld;k = kmax. We do so by constructing

an on-line WA algorithm. Figure 4-1 illustrates an example scenario in which an on-line greedy

WA algorithm fails to support an instance of k-allowable traÆc using kmax wavelengths. In this

example, N = 3, k = [2; 2; 2], and the traÆc matrix to be supported is uniform all-to-all traÆc,

i.e. each node sends one wavelength to each of the other two nodes. As shown in �gure 4-1, the

same wavelength is assigned to the oppositely directed sessions between the same pair of nodes,

e.g. sessions (1,2) and (2,1) on wavelength �1. After assigning wavelength �1 to sessions (1,2) and
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(2,1) and wavelength �2 to sessions (1,3) and (3,1), neither �1 nor �2 can be assigned to support

session (2,3). It follows that more than kmax = 2 wavelengths are required. Therefore, this example

scenario tells us that the WA algorithm design using kmax wavelengths is not trivial. Figure 4-1

also demonstrates that, to use the minimum number of wavelengths, we may need to support the

oppositely directed sessions between the same pair of nodes on di�erent wavelengths.

Our algorithm is based on bipartite matchings. For a given traÆc matrix, we construct the

traÆc bipartite graph, denoted by (V1;V2; E), as follows. For convenience, we consider each leaf

node as one distinct source node and one distinct destination node. The set of nodes V1 contains

the N source nodes. The set of nodes V2 contains the N destination nodes. In the set of edges

E , an edge between node i in V1 and node j in V2 exists for each traÆc session from source i to

destination j. Figure 4-2a shows an example of the traÆc bipartite graph and its traÆc matrix.

Note that there may be multiple edges between the same pair of nodes. For example, since there

are two sessions from source 1 to destination 2, there are two parallel edges between s1 in V1 and

d2 in V2 in �gure 4-2a.
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Figure 4-2: TraÆc bipartite graph and its matchings.

Figure 4-2b shows one partition of the set E into two disjoint bipartite matchings M1 andM2.

Observe that the sessions in a bipartite matching can be supported on a single wavelength without

wavelength collision. To see this, note that, in a matching, at most one edge is incident on each

source (destination) node. Thus, in each �ber to (from) the hub node, every wavelength is used at

most once. Our algorithm will assign a single bipartite matching to a single wavelength. In what

follows, we shall refer to the matching in the traÆc bipartite graph which is assigned to wavelength

77



�1 simply as the bipartite matching of �1. Figure 4-2b shows an example of bipartite matchings of

speci�c wavelengths.

Before presenting our on-line WA algorithm, we derive a few useful lemmas related to bipartite

matchings. These lemmas are consequences of Hall's theorem and lemma 5 introduced in section 3.1.

The �rst lemma is a more general version of lemma 5.

Lemma 6 In a bipartite graph (V1;V2; E) with jV1j = jV2j = V , if each node has degree at most m,

the set E can be partitioned into m disjoint bipartite matchings.

Proof: If all nodes have degree m, then lemma 5 can be applied. It remains to consider the cases

in which some node has degree less than m.

When some node has degree less than m, we can add extra edges to make each node have degree

m. Such extra edges can be added one by one as follows. Label nodes in V1 and in V2 from 1 to

V . Find the lowest-index node in V1 with degree less than m. Add an edge from this node to the

lowest-index node in V2 with degree less than m. Repeat the process until all nodes in V1 have

degree m. Since the sum of the degrees of the nodes in V1 is equal to the sum in V2, there is always

a node in V2 for each extra edge. When all nodes in V1 have degree m, there are mV edges incident

on nodes in V2. Since we never add an extra edge to a node in V2 with degree m, all nodes in V2

also have degree m in the modi�ed graph.

By lemma 5, the edges in the modi�ed bipartite graph can be partitioned into m perfect

matchings. By removing the extra edges from each matching, we obtain our desired m disjoint

bipartite matchings. 2

Lemma 6 can be used to argue that kmax wavelengths are suÆcient to support any traÆc matrix

in the k-allowable set. Given a traÆc matrix, we can write down the corresponding traÆc bipartite

graph in which each node has degree at most kmax. By lemma 6, the set of edges can be partitioned

into kmax disjoint bipartite matchings. The sessions in each matching can be supported on a single

wavelength. Thus, kmax wavelengths are suÆcient to support any k-allowable traÆc matrix.

The main idea of our on-line WA algorithm involves keeping kmax disjoint bipartite matchings

of kmax wavelengths such that each traÆc session corresponds to an edge in one bipartite matching.

When a session departs, we simply remove its corresponding lightpath from the network. When a

new session arrives, we update the WA by �nding up to two wavelengths whose bipartite matchings
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can be reassigned to include the new session. Instead of �nding kmax disjoint bipartite matchings

every time a new session arrives as suggested by lemma 6, our on-line WA algorithm needs to �nd

only two disjoint bipartite matchings.

In particular, suppose (i; j) is the new session, i.e. a new session is from source i to destination j.

Note that (si; dj) is the corresponding new edge in the traÆc bipartite graph. If there is a bipartite

matching of some wavelength, say �0, which is incident on neither si in V1 nor dj in V2, i.e. �0

is used by neither source i nor destination j, then the new session can be added to this bipartite

matching so that the resultant set of edges is still a matching. In this case, the new session can be

supported on �0 without any rearrangement of existing lightpaths. If such a wavelength �0 does

not exist, then we �nd two bipartite matchings of two wavelengths, say �1 and �2, such that the

bipartite matching of �1 is not incident on si, i.e. �1 is not used by source i, whereas the bipartite

matching of �2 is not incident on dj , i.e. �2 is not used by destination j. In this case, we partition

the edges in the bipartite matchings of �1 and �2 as well as the new edge (si; dj) into two disjoint

matchings. We then assign one matching to �1 and the other to �2. For jV1j = jV2j = V , �1 and

�2 each contain at most V � 1 existing lightpaths, so the number of lightpath rearrangements is

bounded above by 2(V � 1). The following lemma makes the above discussion rigorous and states

a tighter upper bound on the number of lightpath rearrangements.

Lemma 7 In a bipartite graph (V1;V2; E) with jV1j = jV2j = V , given a new edge (si; dj), si 2 V1,

dj 2 V2, a matching M1 of wavelength �1 which is not incident on si, and a matching M2 of

wavelength �2 which is not incident on dj, there exist two disjoint bipartite matchings which contain

all the edges in M1 and M2 as well as the new edge (si; dj).

In addition, these two disjoint bipartite matchings can be assigned to �1 and �2 so that the

number of lightpath rearrangements is at most V � 1.

Proof: Consider the bipartite graph (V1;V2; E 0) whose set of edges E 0 contains all of the edges in

M1 and M2 as well as the new edge (si; dj). Observe that each node has degree at most 2. From

lemma 6 with m = 2, there exist two disjoint bipartite matchings, denoted by M0
1 and M

0
2, which

contain all the edges.

Without loss of generality, assume that (si; dj) belongs to M0
1. Let set P contain the edges in

M1 assigned to M0
2 and the edges in M2 assigned to M0

1. Let set Q contain the edges in M1
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assigned toM0
1 and the edges inM2 assigned toM0

2. Notice that P and Q contain all the edges in

M1 andM2. Since there are at most 2V �2 edges inM1 andM2, it follows that jPj+jQj � 2V �2.

If jPj � V � 1, assigning M0
1 to �1 and M0

2 to �2 yields the desired result that the number

of lightpath rearrangements, which is equal to the sum of the number of edges in M1 assigned to

M0
2 and the number of edges in M2 assigned to M0

1, is at most V � 1. Otherwise, it is true that

jQj � V � 1. In this case, assigning M0
1 to �2 and M

0
2 to �1 yields the desired result. 2

A general algorithm for bipartite matching is available in [CLR90]. In particular, the general

algorithm in [CLR90] is based on converting a bipartite matching problem into a maximum ow

problem. For a bipartite graph (V1;V2; E), the corresponding running time is proportional to the

product V E, where V = jV1j = jV2j and E = jEj. For our purpose of partitioning the edges in

a bipartite graph with maximum node degree 2 into two disjoint matchings, the running time is

O(V 2) for the general algorithm.1 In appendix A, we provide an eÆcient specialized procedure to

�nd such two disjoint bipartite matchings with the running time O(V ).

The following is our on-line WA algorithm for a star topology with k-allowable traÆc which

uses kmax wavelengths in each �ber, is rearrangeably nonblocking, and requires at most N � 1

lightpath rearrangements per new session request. We shall refer to this algorithm as the on-line

star WA algorithm.

Algorithm 2 (On-Line Star WA Algorithm) (Use kmax wavelengths in each �ber.)

Session termination: When a session terminates, simply remove its associated lightpath from

the network without any further lightpath rearrangement.

Session arrival: When a new session arrives and the resultant traÆc matrix is still k-allowable,

proceed as follows. Assume that the new session is from source i to destination j.

Step 1: If there is a wavelength, denoted by �0, which is used by neither source i nor destination j,

i.e. its matching in the traÆc bipartite graph (V1;V2; E) is incident on neither si nor dj, then assign

the new session to �0. In this case, no lightpath rearrangement is required. Otherwise, proceed to

step 2.
1By running time O(g(n)), we mean the running time can be expressed as a function f(n) of the problem size n

such that there exist a positive real constant c and a positive integer n0 satisfying 0 � f(n) � cg(n) for all n � n0.
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Step 2: Find a wavelength, denoted by �1, which is not used by source i, i.e. its bipartite matching

is not incident on si, and another wavelength, denoted by �2, which is not used by destination j,

i.e. its bipartite matching is not incident on dj . Since the new session is allowable, there are at

most kmax� 1 sessions from source i. Since there are kmax available wavelengths, it follows that �1

exists. By the same argument, �2 always exists.

Modify the WA of only the sessions on �1 and �2. Construct the traÆc bipartite graph

(V1;V2; E
0) in which the set of edges E 0 contains the bipartite matchings of �1 and �2 as well

as the new edge (si; dj). From lemma 7, we can partition the set E 0 into two disjoint bipartite

matchings. In addition, since jV1j = jV2j = N , lemma 7 tells us that the two matchings can be

assigned to �1 and �2 such that at most N � 1 existing lightpaths need to be rearranged.

The construction of the on-line star WA algorithm implies the following theorem.

Theorem 5 For the star topology with N nodes and k-allowable traÆc, Wd;k is given by

Wd;k = Ld;k = kmax = max
1�i�N

ki:

In addition, there exists, by construction, an on-line WA algorithm which uses kmax wavelengths

in each �ber and requires at most N � 1 lightpath rearrangements per new session request.

The following example illustrates the operations of the on-line star WA algorithm.

Example 5 Consider a 4-node star network with the traÆc matrix given in �gure 4-2a. Note that

Wd;k = 2. Assume that the WA is given by the two bipartite matchings of wavelengths �1 and �2

as shown in �gure 4-2b. Now assume the following changes in the traÆc matrix.

1. Existing session (3,4) on �1 terminates.

2. Existing session (4,1) on �2 terminates.

3. A new session (3,1) arrives.

After the second session termination, the bipartite matchings of �1 and �2 are shown in �gure 4-

3a. To support the new session, the star WA algorithm performs step 2. In particular, it creates a

traÆc bipartite graph whose edges are the bipartite matchings of �1 and �2 as well as the new edge

(s3; d1). The algorithm then partitions the set of edges into two disjoint bipartite matchings and
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assigns them to �1 and �2, as shown in �gure 4-3b. In particular, session (3,4) on �2 is reassigned

to �1, and the new session is then assigned to �2. In this example, one rearrangement of an existing

lightpath is made to support the new session.
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Figure 4-3: Example operations of the on-line star WA algorithm.

The next example demonstrates that the on-line star WA algorithm may perform up to N � 1

lightpath rearrangements to support a new session request. Consider the following WA scenario.

Assume that each wavelength supports one of the two bipartite matchings shown in �gure 4-4a.
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Figure 4-4: An example case in which N � 1 lightpath rearrangements are made to support a new

session.

Suppose the new session is transmitted from source 1 to destination 3. In this case, the on-line

star WA algorithm needs to perform step 2. After choosing two bipartite matchings of wavelengths
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�1 and �2, as shown in �gure 4-4a, the algorithm creates a traÆc bipartite graph whose edges are

all the edges in the bipartite matchings of �1 and �2 as well as the new edge (s1; d3). The algorithm

then partitions the set of edges into two disjoint bipartite matchings and assign them to �1 and

�2, as shown in �gure 4-4b. In this example, the algorithm needs to perform N � 1 lightpath

rearrangements to support the new session.

In the next section, we shall extend the on-line star WA algorithm to create an on-line WA

algorithm for an arbitrary tree topology.

4.2 Arbitrary Tree Topologies

In this section, we solve the RWA problem for k-allowable traÆc in an arbitrary tree topology.

Since there is a unique route for each traÆc session, there is no routing problem in a tree topology.

Thus, we only have to perform wavelength assignment (WA) in the RWA problem. We shall extend

the on-line star WA algorithm to create an on-line WA algorithm for an arbitrary tree topology.

In a given tree topology, assume there are N > 2 end nodes which are the leaf nodes of the tree.2

We shall ignore all the non-leaf nodes with degree 2 since their removal does not change the WA

problem. We describe a tree by a set of nodes N and a set of bidirectional links T .

Let Ld;k denote the minimum number of wavelengths which, if provided in each �ber, can

support k-allowable traÆc given full wavelength conversion at all nodes. We �rst determine Ld;k.

Each link e in the tree corresponds to a cut which separates N leaf nodes into two sets, denoted

by Ne;1 and Ne;2. The maximum possible traÆc, in wavelength units, in a �ber across this link is

equal to min(
P

i2Ne;1
ki;
P

i2Ne;2
ki). The maximum over all links of the traÆc on a �ber is denoted

by w�. This is the value of Ld;k, as given below.

Ld;k = w� = max
e2T

min

0
@ X
i2Ne;1

ki;
X

i2Ne;2

ki

1
A (4.1)

Let Wd;k denote the minimum number of wavelengths which, if provided in each �ber, can

support k-allowable traÆc with no wavelength conversion. We shall show that Wd;k � w�, which

implies Ld;k = Wd;k = w�. We do so by constructing an on-line WA algorithm. We shall refer

2The WA problem for a tree with two leaf nodes is trivial.
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to w� as the worst-case number of wavelengths since w� wavelengths are necessary and suÆcient

to support any traÆc matrix in the k-allowable traÆc set. Since a star topology is also a tree

topology, �gure 4-1 illustrates that the WA algorithm design using w� wavelengths is not trivial

for an arbitrary tree topology.

We now derive a few useful properties related to the worst-case number of wavelengths w�. Let

e� denote the link associated with w�. Note that there may be multiple choices for e�. When there

are multiple choices for e�, the exact choice does not matter in the following discussion. We shall

refer to e� as the bottleneck link since it is the link with the maximum load under the worst-case

traÆc.

Link e� separates the leaf nodes into two sets Ne�;1 and Ne�;2. Without loss of generality, choose

Ne�;1 such that the sum of ki's in this set is w
�. We assume for now that Ne�;2 contains multiple leaf

nodes, as illustrated in �gure 4-5. De�ne the bottleneck node v� to be the end point of e� opposite

to Ne�;1, i.e. the subtree connected to v� by e� has the sum of ki's equal to w�, as illustrated in

�gure 4-5.

e�

w� = 6

3

4
2

2

2
Node labels are the values of ki's.

v�

Ne�;2

Ne�;1

Figure 4-5: De�nition of the bottleneck node v�.

We shall refer to each subtree connected to v� as a top-level subtree. Note that a top-level

subtree can be a single node. Let d� be the degree of v�.3 Since v� is a non-leaf node, d� � 3. It

follows that there are d� � 3 top-level subtrees, as illustrated in �gure 4-6a.

If the set Ne�;2 contains a single node, we have the scenario illustrated in �gure 4-6b. In this

case, assumption 1 implies that the value of ki for the leaf node in Ne�;2 is equal to w
�. We argue

that, with N > 2 leaf nodes, this scenario can be transformed to the scenario in �gure 4-6a by

exchanging the roles of Ne�;1 and Ne�;2. After the exchange, the set Ne�;2 will contain multiple

3Since we assume that each link consists of two �bers, one in each direction, the indegree and the outdegree of
any given network node are the same. We simply refer to their value as the node degree.
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Figure 4-6: Illustrations of the bottleneck node v� and the top-level subtrees.

nodes, and we have a scenario as illustrated in �gure 4-6a. Therefore, we shall consider only the

scenarios in which v� exists and d� � 3, as illustrated in �gure 4-6a.

Note that the location of the bottleneck node v� depends on the speci�c tree topology and

the traÆc vector k, but not on the current traÆc matrix being supported. The following lemma

provides useful properties of the top-level subtrees connected to v� as well as bounds on the worst-

case number of wavelengths w�.

Lemma 8 Under assumption 1, the following properties hold.

1. Let Kj ; 1 � j � d�, denote the sum of ki's in top-level subtree j. For all 1 � j � d�, Kj � w�.

2. Let K =
P

1�i�N ki. The worst-case number of wavelengths w� is bounded by

K=d� � w� � K=2:

Proof:

1. Number the d� top-level subtrees from 1 to d� such that top-level subtree 1 is connected to

v� by e�. By the de�nition of v�, we know that K1 = w�. For 2 � j � d�, consider the link ej

which isolates top-level subtree j from v�. Let Nej ;1 contain the leaf nodes in top-level subtree

j, and Nej ;2 contain all the other leaf nodes. Consequently,
P

i2Nej ;1
ki = Kj . In addition,P

i2Nej ;2
ki = K �Kj > K1 = w� since there are at least three top-level subtrees. From the

de�nition of w� in (4.1), we must have that Kj � w�, or else ej instead of e� would be the

bottleneck link. It follows that Kj � w� for 2 � j � d�. Thus, Kj � w� for all 1 � j � d�.
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2. From the de�nition of w�, it is clear that w� � K=2. To prove the lower bound, we use

statement 1 of the lemma, i.e. Kj � w� for all 1 � j � d�, to show that

K =
X

1�j�d�

Kj � d�w�:

The above inequality yields the desired lower bound w� � K=d�. 2

As in the on-line star WA algorithm, the algorithm in this section is based on bipartite match-

ings. The main di�erence has to do with what a node in a bipartite graph represents. In the on-line

star WA algorithm, a node represents a single source or a single destination. In this section, a node

represents a set of sources or a set of destinations in a top-level subtree.

For a given traÆc matrix, we construct the top-level subtree bipartite graph, denoted by (V1;V2; E),

as follows. We consider each leaf node as one distinct source and one distinct destination. Number

the d� top-level subtrees from 1 to d�. The set V1 contains d� abstract nodes, denoted by S1, S2, ...,

Sd� . Node Si, 1 � i � d�, represents the set of sources contained in top-level subtree i. Similarly,

the set V2 contains d� abstract nodes, denoted by D1, D2, ..., Dd� . Node Dj , 1 � j � d�, represents

the set of destinations contained in top-level subtree j. In the set of edges E , an edge from node

Si in V1 to node Sj in V2 exists for each traÆc session from a source in top-level subtree i to a

destination in top-level subtree j. Figure 4-7 shows an example of the top-level subtree bipartite

graph and its traÆc matrix. Note that there may be multiple edges between the same pair of nodes.

For example, since there are two sessions from top-level subtree 3 to top-level subtree 4, there are

two parallel edges between the set of sources S3 and the set of destinations D4 in �gure 4-7d.

De�ne a local session to be a traÆc session whose source and destination are in the same top-

level subtree. Accordingly, a non-local session has its source and its destination in di�erent top-level

subtrees. A non-local session has to travel through the bottleneck node v�, whereas a local session

does not have to travel all the way to v� and back to its destination, i.e. each session does not use

the same link twice in the opposite directions. A non-local session corresponds to an edge from

some node Si in V1 and some node Dj in V2, where i 6= j. On the other hand, a local session

corresponds to an edge between some node Si in V1 and node Di in V2. For example, the top-level

subtree bipartite graph in �gure 4-7d contains seven non-local sessions and one local session. The

local session is from a source in top-level subtree 2 to a destination in the same top-level subtree.
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Figure 4-7: Top-level subtree bipartite graph.

Observe that the sessions belonging to a matching in the top-level subtree bipartite graph can

be supported on a single wavelength without wavelength collision. To see this, note that any two

sessions in a bipartite matching are transmitted from di�erent top-level subtrees and to di�erent

top-level subtrees. Consequently, if these two sessions travel in the same top-level subtree, one

session must be transmitted from that subtree while the other session must be received in that

subtree. It follows that these two sessions always traverse links belonging to the same top-level

subtree in the opposite directions and do not collide.

Our algorithm will assign a single bipartite matching to a single wavelength. We shall refer to

the matching assigned to wavelength �1 as the bipartite matching of �1. Figure 4-8 shows example

bipartite matchings of speci�c wavelengths.
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Figure 4-8: Bipartite matchings of speci�c wavelengths.

We now argue that w� wavelengths are suÆcient to support any traÆc matrix in the k-allowable

set. From statement 1 of lemma 8, each top-level subtree can transmit at most w� wavelengths and

receive at most w� wavelengths. Thus, for a given a traÆc matrix, each node in the corresponding

top-level subtree bipartite graph has degree at most w�. By lemma 6, the set of edges can be

partitioned into w� disjoint bipartite matchings. The sessions in each matching can be supported

on a single wavelength. Thus, w� wavelengths are suÆcient to support any k-allowable traÆc

matrix. Notice that, by �nding w� disjoint bipartite matchings, we provide the WA for both local

and non-local sessions simultaneously.

The main idea of our on-line WA algorithm involves keeping w� disjoint bipartite matchings

of w� wavelengths such that each traÆc session corresponds to an edge in one bipartite matching.

When a session departs, we simply remove its corresponding lightpath from the network. When a

new (local or non-local) session arrives, we update the WA by �nding up to two wavelengths whose

bipartite matchings can be reassigned to include the new session.

The following is our on-line WA algorithm for an arbitrary tree topology with k-allowable traÆc

which uses w� wavelengths in each �ber, is rearrangeably nonblocking, and requires at most d�� 1

lightpath rearrangements per new session request. We shall refer to this algorithm as the on-line

tree WA algorithm.
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Algorithm 3 (On-Line Tree WA Algorithm) (Use w� wavelengths in each �ber.)

Session termination: When a session terminates, simply remove its associated lightpath from

the network without any further lightpath rearrangement.

Session arrival: When a new session arrives and the resultant traÆc matrix is still k-allowable,

proceed as follows. Assume that the new session is from a source in top-level subtree i to a

destination in top-level subtree j. When i = j, the new session is local. Otherwise, it is non-local.

In either case, follow the same procedures below.

Step 1: If there is a wavelength, denoted by �0, which is used by neither a source in top-level

subtree i nor a destination in top-level subtree j, i.e. its matching in the traÆc bipartite graph

(V1;V2; E) is incident on neither Si nor Dj, then assign the new session to �0. In this case, no

lightpath rearrangement is required. Otherwise, proceed to step 2.

Step 2: Find a wavelength, denoted by �1, which is not used by any source in top-level subtree

i, i.e. its bipartite matching is not incident on Si, and another wavelength, denoted by �2, which

is not used by any destination in top-level subtree j, i.e. its bipartite matching is not incident on

Dj . Since the new session is allowable, there are at most w� � 1 sessions from top-level subtree

i. Since there are w� available wavelengths, it follows that �1 exists. By the same argument, �2

always exists.

Modify the WA of only the sessions on �1 and �2. Construct the top-level subtree bipartite

graph (V1;V2; E 0) in which the set of edges E 0 contains the bipartite matchings of �i and �j as well

as the new edge (Si;Dj). From lemma 7, we can partition the set E 0 into two disjoint bipartite

matchings. In addition, since jV1j = jV2j = d�, lemma 7 tell us that the two matchings can be

assigned to �1 and �2 such that at most d� � 1 existing lightpaths need to be rearranged.

The construction of the on-line tree WA algorithm implies the following theorem.

Theorem 6 For an arbitrary tree topology with k-allowable traÆc among N leaf nodes and the

bottleneck node v� with degree d�, Wd;k is given by

Wd;k = Ld;k = w� = max
e2T

min

0
@ X
i2Ne;1

ki;
X

i2Ne;2

ki

1
A :
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In addition, there exists, by construction, an on-line WA algorithm which uses w� wavelengths in

each �ber and requires at most d� � 1 lightpath rearrangements per new session request.

Theorem 6 tells us that wavelength conversion cannot decrease the wavelength requirement for

k-allowable traÆc in an arbitrary tree topology. In addition, if we scale the traÆc vector k by an

integer factor, then the location of the bottleneck node v� remains �xed, and the upper bound on

the number of lightpath rearrangements per new session request does not increase. Finally, from

statement 2 of lemma 8, among the tree topologies with N leaf nodes, the minimum value of the

worst-case number of wavelengths w� is at least (
P

1�i�N ki)=d
�. The tree topologies with w� close

to this lower bound are the ones in which each top-level subtree has the sum of ki's approximately

equal to (
P

1�i�N ki)=d
�. Roughly speaking, it is desirable to have all the top-level subtrees support

an equal amount of traÆc.

The following example illustrates the operations of the on-line tree WA algorithm.

Example 6 Consider the tree network with the traÆc matrix given in �gure 4-7. Note thatWd;k =

2. Assume that the corresponding WA is given by the two bipartite matchings of wavelengths �1

and �2 as shown in �gure 4-8. Now assume the following changes in the traÆc matrix.

1. The existing session from source 3 in top-level subtree 2 to destination 2 in top-level subtree

1 on �1 terminates.

2. The existing session from source 1 in top-level subtree 1 to destination 5 in top-level subtree

3 on �2 terminates.

3. A new session from source 1 to destination 2 in top-level subtree 1 arrives.

After the second session termination, the bipartite matchings of �1 and �2 are shown in �gure 4-

9a. To support the new session, the tree WA algorithm performs step 2. In particular, it creates a

top-level subtree bipartite graph whose edges are the bipartite matchings of �1 and �2 as well as

the new edge (S1;D1). The algorithm then partitions the set of edges into two disjoint bipartite

matchings and assign them to �1 and �2, as shown in �gure 4-9b. In particular, the session from

top-level subtree 4 to top-level subtree 3 on �1 is reassigned to �2. In addition, the session from

top-level subtree 4 to top-level subtree 1 on �2 is reassigned to �1. The new session is then assigned

to �2. In this example, two rearrangements of existing lightpaths are made to support the new

session.
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Figure 4-9: Example operations of the on-line tree WA algorithm.

Finally, an example similar to the one based on the WA given in �gure 4-4 for a star topology

can be constructed to show that the on-line tree WA algorithm may perform up to d�� 1 lightpath

rearrangements to support a new session request. We shall not repeat the details here.

4.3 Bidirectional Ring Topologies

In this section, we study the RWA problem for k-allowable traÆc for an N -node bidirectional ring

topology, where N > 2.4 We �rst consider symmetric k-allowable traÆc, i.e. k-allowable traÆc in

which all the ki's are equal to k. Let Wd;k denote the minimum number of wavelengths which, if

provided in each �ber, can support symmetric k-allowable traÆc. In [NLM02], it was shown that,

Wd;k = dNk=3e for N � 7. In addition, an o�-line RWA algorithm that uses at most dNk=3e

wavelengths in each �ber (or equivalently in each ring direction) was developed.

In appendix B, we derive Wd;k for the other values of N , i.e. N < 7, to obtain the closed-form

expression

Wd;k =

8>>>>>>><
>>>>>>>:

d3k=4e; N = 3;

k; N = 4;

d5k=3e; N = 5; 6;

dNk=3e; N � 7:

(4.2)

4The RWA problem for a ring with two end nodes is trivial.
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We �rst show that Wd;k � dNk=3e for N � 7. Consider the symmetric k-allowable traÆc in

which each node sends k wavelengths to the node (N � 1)=2 hops away in the clockwise (CW) ring

direction for N odd, and N=2�1 hops away for N even. Figure 4-10 illustrates this traÆc for k = 1

in the 7-node ring and the 8-node ring.

node 1 node 1

7

6

5 4

3

2
2

3

4

5

6

7

8

N = 7 N = 8

Figure 4-10: Symmetric k-allowable traÆc for the lower bound of Wd;k for N � 7.

De�ne a directed wavelength as a wavelength in either the clockwise (CW) or the counter-

clockwise (CCW) ring direction. Given w wavelengths in each �ber, there are w CW directed

wavelengths, and w CCW directed wavelengths. Note that any traÆc session can be supported on

a directed wavelength in either ring direction.

We next show that, for the traÆc described above, a CW directed wavelength can support at

most two sessions, while a CCW directed wavelength can support at most one session. Consider

N odd. Any set of three sessions has the sum of path lengths in the CW direction equal to

3(N � 1)=2, which is greater than N , the number of links in each directed wavelength, for N � 5.

(More explicitly, 3(N � 1)=2�N = (N � 3)=2 > 0 for N � 5.) In addition, any set of two sessions

has the sum of path lengths in the CCW direction equal to 2(N + 1)=2, which is greater than N .

(More explicitly, 2(N + 1)=2 �N = 1 > 0.)

ConsiderN even. Any set of three sessions has the sum of path lengths in the CW direction equal

to 3(N=2� 1), which is greater than N for N � 8. (More explicitly, 3(N=2� 1)�N = N=2� 3 > 0

for N � 8.) In addition, any set of two sessions has the sum of path lengths in the CCW direction

equal to 2(N=2 + 1), which is greater than N . (More explicitly, 2(N=2 + 1)�N = 2 > 0.)

We conclude that, for N � 7, a CW directed wavelength can support at most two sessions,

while a CCW directed wavelength can support at most one session. Thus, each wavelength can

support at most three sessions. Since there are in total Nk sessions in the traÆc described above,

it follows that Wd;k � dNk=3e.
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We shall present an on-line RWA algorithm that uses d(
PN

i=1 ki)=3e wavelengths in each �ber to

support k-allowable traÆc. Note that, for N � 7, our algorithm can be used to support symmetric

k-allowable traÆc using the minimum number of wavelengths, i.e. dNk=3e wavelengths in a �ber.

In all the other cases, the algorithm yields an upper bound on Wd;k, the minimum number of

wavelengths which, if provided in each �ber, can support k-allowable traÆc with no wavelength

conversion, i.e. Wd;k � d(
PN

i=1 ki)=3e.

We now describe the main idea behind our algorithm. Two sessions are said to be adjacent if

the destination node of one session is the source node of the other session. The main idea behind

our algorithm involves sharing a directed wavelength between two adjacent sessions, as suggested

by the following known lemma in [NLM02].

Lemma 9 [NLM02] In a bidirectional ring, any pair of adjacent sessions can either be supported

on one CW directed wavelength or one CCW directed wavelength.

The proof of lemma 9 is immediate from �gure 4-11, where if the two corresponding lightpaths

overlap in one ring direction, they do not overlap in the other direction. For example, lightpaths

corresponding to a pair of adjacent sessions (1,4) and (4,2) collide in the CW direction, but do not

collide in the CCW direction. In what follows, when an adjacent session pair is supported on one

directed wavelength, we say that they share a directed wavelength.
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5
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Figure 4-11: Adjacent sessions share a directed wavelength.

The main idea of our algorithm is to maintain the following two RWA conditions at all times:

(i) only adjacent sessions share a directed wavelength, and (ii) at most two adjacent sessions share

a directed wavelength.
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To give some intuition about the main idea of our algorithm, consider the special case with

all the ki's equal to 1, i.e. symmetric 1-allowable traÆc. In this case, our algorithm uses dN=3e

wavelengths. We next describe informally how to use dN=3e wavelengths to support the traÆc. We

ignore integer rounding in the informal discussion below.

Given a traÆc matrix, form as many adjacent session pairs as possible, up to N=3 pairs, in a

greedy fashion, i.e. it does not matter if we end up with less than the maximum possible number

of pairs. Let p denote the number of adjacent session pairs formed. Consider two cases.

� Case 1: p = N=3. In this case, we support N=3 adjacent session pairs containing 2N=3

sessions on N=3 directed wavelengths in the required ring directions. This is always possible

since there are N=3 directed wavelengths available in each ring direction. Having done so,

there are at most N � 2N=3 = N=3 remaining sessions each of which we support on one

directed wavelength in any ring direction. Thus, the total number of directed wavelengths

required is at most N=3 +N=3 = 2N=3. It follows that N=3 wavelengths are suÆcient.

� Case 2: p < N=3. In this case, we support p adjacent session pairs containing 2p sessions on

p directed wavelengths in the required ring directions. This is always possible since there are

N=3 directed wavelengths available in each ring direction. Note that we cannot form any new

adjacent session pair in this case.

Observe that each adjacent session pair has at least one common node. Figure 4-12 shows

two adjacent session pairs, i.e. (7,4) and (4,3) together with (1,8) and (8,7), whose common

nodes are nodes 4 and 8 respectively. In general, given p adjacent session pairs, there are at

least p common nodes.

adjacent
session pair

adjacent
session pair

3

2

4

5

6

8

node 1

7

The sessions in adjacent pairs
are shown in solid lines.
The remaining sessions are
shown in dashed lines.

Nodes 4 and 8 are common nodes.
Nodes 1, 2, 3, 5, and 6 are free nodes.

Figure 4-12: Adjacent session pairs, common nodes, and free nodes.

For convenience, we shall refer to all nodes other than the common nodes which can still
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transmit and/or receive a wavelength as free nodes. For example, in �gure 4-12, after forming

the above two adjacent session pairs, nodes 1, 2, 3, 5, and 6 are free nodes. Since there are

at least p common nodes, there are at most N � p free nodes.

Observe that each free node terminates, i.e. either transmits or receives, at most one re-

maining session. To see this, note that each free node cannot transmit (receive) more than

one remaining session since it only has one transmitter (receiver). Moreover, each free node

cannot transmit a remaining session and receive a remaining session simultaneously, or else

we could form another new adjacent session pair, i.e. have more than p pairs. Thus, each

remaining session is terminated at two distinct free nodes. For example, in �gure 4-12, the

remaining session (2,1) is terminated at free nodes 1 and 2. No other remaining session is

terminated at either node 1 or node 2. Since there are at most N � p free nodes, there are

at most (N � p)=2 remaining sessions. We support each remaining session on one directed

wavelength in any ring direction. Thus, the total number of directed wavelengths required

is p + (N � p)=2 = N=2 + p=2 < N=2 + N=6 = 2N=3. It follows that N=3 wavelengths are

suÆcient.

We shall later prove by similar arguments that d(
PN

i=1 ki)=3e wavelengths are suÆcient to

support k-allowable traÆc. We now describe our on-line RWA algorithm which is rearrangeably

nonblocking, uses d(
PN

i=1 ki)=3e wavelengths in each �ber, and requires at most three lightpath

rearrangements per new session request. We shall refer to this algorithm as the on-line ring RWA

algorithm.

Algorithm 4 (On-Line Ring RWA Algorithm) (Use d(
PN

i=1 ki)=3e wavelengths in each �ber.)

Session termination: When a session terminates, simply remove its associated lightpath from

the ring without any further lightpath rearrangement.

Session arrival: When a session arrives and the resultant traÆc matrix is still k-allowable, proceed

as follows.

Step 1: If there is a nonsharing session, i.e. a session which does not share its directed wavelength

with any session, and it is adjacent to and can share its directed wavelength with the new session,
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assign the two sessions to share that directed wavelength. In this case, no lightpath rearrangement

is required. Otherwise, proceed to step 2.

Step 2: If there is a free directed wavelength in either ring direction, assign a free directed wavelength

to the new session. In this case, no lightpath rearrangement is required. Otherwise, proceed to

step 3.

Step 3: Among the nonsharing sessions and the new session, we claim and shall prove shortly

that there must exist a pair of adjacent sessions. Form such an adjacent session pair by searching

through all pairs of sessions in some order, e.g. from sessions terminating at node 1 to sessions

terminating at node N . Once an adjacent session pair is found, there are two possibilities.

(3a) If the adjacent session pair can share the directed wavelength of one session in the pair, assign

the adjacent session pair to share that directed wavelength. In this case, the adjacent session

pair does not include the new session since step 1 would have otherwise applied. Therefore,

one existing lightpath must be rearranged. Sharing of the directed wavelength by the adjacent

session pair will free one directed wavelength on which the new session can be supported with

only one lightpath rearrangement. Figure 4-13 illustrates this scenario. In particular, existing

sessions (1,5) and (5,2) form an adjacent session pair which can be supported on the directed

wavelength of session (5,2). After the lightpath of session (1,5) is rearranged, the new session

(1,4) is supported on the directed wavelength previously used by session (1,5).
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Rearranged sessions are shown as dashed lines.
The new session is shown as a dotted line.

Figure 4-13: Step 3a of the on-line ring RWA algorithm.

(3b) If the adjacent session pair cannot share the directed wavelength of either session in the

pair, we claim and shall prove shortly that there must exist a directed wavelength with a

nonsharing session in the opposite ring direction, i.e. the ring direction in which the adjacent
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session pair can share a directed wavelength. Remove the lightpath of that nonsharing session

from its directed wavelength, and assign the adjacent session pair to share that directed

wavelength. When the adjacent session pair includes the new session, the new session will

now be supported, and sharing of the directed wavelength by the adjacent session pair will

free one directed wavelength on which the removed nonsharing session can be supported.

In this case, a total of two lightpath rearrangements are made. Figure 4-14 illustrates this

scenario. In particular, existing session (1,5) and the new session (5,2) form an adjacent

session pair which can be supported on the directed wavelength of existing session (3,8).

After the lightpaths of sessions (1,5) and (3,8) are rearranged, the new session (5,2) shares a

directed wavelength with session (1,5) on the directed wavelength previously used by session

(3,8), while session (3,8) is supported on the directed wavelength previously used by session

(1,5).
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Figure 4-14: Step 3b case 1 of the on-line ring RWA algorithm.

When the adjacent session pair does not include the new session, sharing of the directed

wavelength by the adjacent session pair will free two directed wavelengths on which the

removed nonsharing session and the new session can be supported. In this case, a total of

three lightpath rearrangements are made. Figure 4-15 illustrates this scenario. In particular,

existing sessions (1,5) and (5,2) form an adjacent session pair which can be supported on

the directed wavelength of existing session (3,8). After the lightpaths of sessions (1,5), (5,2),

and (3,8) are rearranged, the adjacent session pair (1,5) and (5,2) are supported on the

directed wavelength previously used by session (3,8), session (3,8) is supported on the directed

wavelength previously used by session (1,5), and the new session (1,4) is supported on the

directed wavelength previously used by session (5,2).
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Figure 4-15: Step 3b case 2 of the on-line ring RWA algorithm.

Before proving the correctness of the on-line ring RWA algorithm, we establish two useful

lemmas related to step 3 of the algorithm. The �rst lemma gives an upper bound on the number of

adjacent session pairs which share a directed wavelength in step 3 before the new session request.

The second lemma gives an upper bound on the number of nonsharing sessions in step 3 before the

new session request. In what follows, let p be the number of adjacent session pairs which share a

directed wavelength before the new session request. Let q be the number of nonsharing sessions

before the new session request. Let w be the number of wavelengths in use before the new session

request. Note that w = p+ q. For convenience, de�ne K =
PN

i=1 ki.

Lemma 10 In step 3 of the on-line ring RWA algorithm, p < bK=3c.

Proof: Since the total number of sessions is at most K in k-allowable traÆc, it follows that

2p+ q < K before the new session request. Thus, w is bounded by

w = p+ q < p+ (K � 2p) = K � p:

In step 3, since there is no free directed wavelength for the new session, it follows that the number

of wavelengths in use w is equal to the total number of directed wavelengths 2dK=3e. Therefore,

K � p > w = 2dK=3e, yielding the desired relation

p < K � 2dK=3e � bK=3c: 2
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Lemma 11 In step 3 of the on-line ring RWA algorithm, if no adjacent session pair can be formed

among the nonsharing sessions and the new session, then q � b(K � p)=2c.

Proof: Note that node i, 1 � i � N , is equipped with ki tunable transmitter/receiver pairs.

Overall, we have a total of K transmitter/receiver pairs. Each pair of adjacent sessions which

shares a directed wavelength utilizes one transmitter/receiver pair at some node, one transmitter

at another node, and one receiver at yet another node.

Let pi be the number of adjacent session pairs which share a directed wavelength and have

node i as a common node. Since an adjacent session pair may have more than one common node,PN
i=1 pi � p. Let k0i = ki�pi denote the number of transmitter/receiver pairs which are not used by

those pi adjacent session pairs at node i. Note that k0i + pi = ki. In addition, let kti and kri denote

the number of nonsharing sessions transmitted and received at node i respectively. It is clear that

kti � k0i and kri � k0i.

Since no new adjacent session pair can be formed among the nonsharing sessions, it follows

that, at each node i, either kti = 0 or kri = 0. Thus, kti + kri � k0i. Because each nonsharing session

uses one transmitter and one receiver, it follows that

2q =
NX
i=1

(kti + kri ) �
NX
i=1

k0i = K �
NX
i=1

pi � K � p:

Since q is an integer, it follows that q � b(K � p)=2c. 2

Proof of algorithm correctness: From the algorithm description, it is clear that we always

keep the two desired RWA conditions, i.e. (i) only adjacent sessions share a directed wavelength,

and (ii) at most two adjacent sessions share a directed wavelength. In addition, it is clear that at

most three lightpath rearrangements are made to support each new session request.

It remains to prove the two claims in step 3. The �rst claim states that there always exists a new

adjacent session pair. We proceed by contradiction. Suppose that no new adjacent session pair can

be formed among the nonsharing sessions and the new session. From lemma 11, q � b(K � p)=2c.

Since there is no free directed wavelength for the new session in step 3, it follows that the number

of wavelengths in use w is equal to the total number of directed wavelengths 2dK=3e. Therefore,

p+ b(K � p)=2c � p+ q = w = 2dK=3e:
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It follows that

p � 2dK=3e � b(K � p)=2c � 2K=3 � (K � p)=2;

or equivalently, p � K=3, which contradicts the fact that p < bK=3c in step 3 from lemma 10.

Hence, a new adjacent session pair always exists in step 3.

We now prove the second claim in step 3 that if we need to �nd a nonsharing session in the

opposite ring direction, i.e. the ring direction in which the new adjacent session pair can share

a directed wavelength, one always exists. The claim is a direct consequence of lemma 10, i.e.

p < bK=3c in step 3. In other words, the number of sharing session pairs is less than the number

of directed wavelengths in each ring direction. Since step 2 was not taken, all the other 2dK=3e� p

directed wavelengths are taken by nonsharing paths. Therefore, in either ring direction, a directed

wavelength with a nonsharing session exists. 2

The construction of the on-line ring RWA algorithm implies the following theorem.

Theorem 7 For a bidirectional ring with N nodes and k-allowable traÆc, Wd;k is upper bounded

by

Wd;k �

&PN
i=1 ki
3

'
:

In addition, there exists, by construction, an on-line RWA algorithm which uses d(
PN

i=1 ki)=3e

wavelengths in each �ber and requires at most three lightpath rearrangements per new session request.

When N � 7 and all the ki's are equal to k (i.e. symmetric k-allowable traÆc), it was shown in

[NLM02] that Wd;k = dNk=3e. In this case, the above upper bound is tight. Otherwise, the above

upper bound is not necessarily tight and our algorithm may use more than the minimum number of

wavelengths. An interesting example is an N -node bidirectional ring which contains one hub node,

say node 1, with k1 = N�1, and the other N�1 nodes each with ki = 1. We shall show in the next

section that, in this case, Wd;k = d(N�1)=2e, which is less than the upper bound d2(N�1)=3e from

theorem 7. To do so, we develop an on-line RWA algorithm which uses d(N � 1)=2e wavelengths

and requires at most four lightpath rearrangements per new session request.

The following example illustrates the operations of the on-line ring RWA algorithm.
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Example 7 Consider symmetric 1-allowable traÆc in the 6-node bidirectional ring. The on-line

ring RWA algorithm uses two wavelengths, or equivalently two CW directed wavelengths and two

CCW directed wavelengths. Assume the traÆc matrix in which each node transmits a wavelength

to the node two hops away in the CCW ring direction. In addition, assume that the current RWA

on the four directed wavelengths is as given in �gure 4-16a.
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Figure 4-16: Example operations of the on-line ring RWA algorithm.

Now assume the following changes in the traÆc matrix.

1. Existing session (1,5) terminates.

2. Existing session (4,2) terminates.

3. A new session (4,5) arrives.

After the termination of sessions (1,5) and (4,2), the RWA is shown in �gure 4-16b. When the

new session (4,5) arrives, it forms an adjacent session pair with either session (5,3) or session (6,4).

In either case, the new session cannot share the directed wavelength of the existing session in the

pair. Thus, the algorithm cannot perform step 1. Since there is no free directed wavelength, the
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algorithm does not perform step 2. In this example, the algorithm performs step 3a case 1. There

are multiple possible RWA updates in this step. In one possible RWA update, existing session (3,1)

is rearranged from its CW directed wavelength to the CCW directed wavelength previously used by

session (6,4). The adjacent session pair (6,4) and (4,5) is then supported on the freed CW directed

wavelength. There are two lightpath rearrangements made (corresponding to sessions (3,1) and

(6,4)), as shown in �gure 4-16c.

4.3.1 RWA for a Single-Hub Bidirectional Ring

In this subsection, we give an example scenario for k-allowable traÆc in which the on-line ring RWA

algorithm does not use the minimum number of wavelengths. Consider a bidirectional ring with N

nodes. In particular, node 1 acts as a hub node with k1 = N�1. In addition, for 2 � i � N , ki = 1.

Note that the non-hub nodes can directly transmit and/or receive wavelengths among themselves.

We �rst derive a lower bound on the minimum number of wavelengths Wd;k. Consider a cut

set corresponding to the two links adjacent to the hub node. The maximum traÆc across the two

�bers leaving from the hub occurs when the hub node transmits N�1 wavelengths. Since there are

N�1 wavelengths traveling on two �bers, one �ber must support at least d(N �1)=2e wavelengths.

Thus, Wd;k � d(N � 1)=2e.

We prove informally below that Wd;k � d(N � 1)=2e, yielding Wd;k = d(N � 1)=2e. Our formal

proof is based on a new on-line RWA algorithm for a single-hub ring which uses d(N � 1)=2e

wavelengths and is given in appendix C. Note that the general on-line ring RWA algorithm given

earlier uses d2(N � 1)=3e wavelengths, which is greater than the minimum number of wavelengths.

As in the general on-line ring RWA algorithm, the main idea of our new RWA algorithm involves

sharing of a directed wavelength by an adjacent session pair. In addition, we de�ne a special kind

of adjacent session pairs as described next. Two sessions form a mutual adjacent session pair if

they have two common nodes, i.e. the source node of one session is the destination node of the

other session and vice versa. For convenience, we refer to an adjacent session pair which is not

mutually adjacent as a nonmutual adjacent session pair. While a nonmutual adjacent session pair

can share a directed wavelength in only one ring direction, a mutual adjacent session pair can share

a directed wavelength in any ring direction, as shown in �gure 4-17. In particular, the nonmutual

adjacent session pair (1,4) and (4,2) can share a CCW directed wavelength, but not a CW directed
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wavelength. On the other hand, the mutual adjacent session pair (2,4) and (4,2) can share a

directed wavelength in any ring direction.
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Figure 4-17: Supporting a mutual adjacent session pair on a directed wavelength.

We shall refer to an adjacent session pair in which the hub node is one common node as an

adjacent session pair at the hub. Our RWA is based on the following two RWA conditions: (i) only

adjacent session pairs at the hub share a directed wavelength, and (ii) all mutual adjacent session

pairs at the hub share a directed wavelength.

Below is our informal proof that d(N � 1)=2e wavelengths are suÆcient to support the traÆc.

We ignore integer rounding in the informal discussion below.

Given a traÆc matrix, form all the mutual adjacent session pairs at the hub, but do not assign

directed wavelengths for them at this point. Then form all the nonmutual adjacent session pairs

at the hub. Let r and s denote the number of mutual and nonmutual adjacent session pairs at the

hub respectively. Let t be the number of the remaining sessions. Note that we cannot form any

new adjacent session pair at the hub among these t sessions.

We �rst support the s nonmutual adjacent session pairs at the hub on s directed wavelength in

the required ring directions. We now show this is always possible. Observe that each non-hub node

terminates, i.e. transmits or receives, at most one session in these s adjacent pairs. To see this,

note that each non-hub node cannot transmit (receive) more than one session since it only has one

transmitter (receiver). Moreover, each non-hub node cannot transmit a session and receive a session

in these s adjacent pairs simultaneously, or else we can form another mutual adjacent session pair

at the hub. It follows that each nonmutual adjacent session pair at the hub is terminated at two

non-hub nodes, and no other nonmutual adjacent session pair at the hub is terminated at any of

these two nodes. Since there are N � 1 non-hub nodes, it follows that s � (N � 1)=2. Since there
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are (N � 1)=2 directed wavelengths available in each ring direction, there are enough wavelengths

to support the s session pairs.

We next support the r mutual adjacent session pairs at the hub on any r unused directed

wavelengths. We now show this is always possible. Note that each mutual adjacent session pair at

the hub is terminated at one distinct non-hub node. From the above discussion, each nonmutual

adjacent session pair at the hub is terminated at two distinct non-hub nodes. Since there are N �1

non-hub nodes, it follows that r + 2s � N � 1, or equivalently r � (N � 1) � 2s. Since there are

(N � 1)� s unused directed wavelengths left for this step, the inequality r � (N � 1)� 2s implies

that there are enough directed wavelengths to support the r session pairs.

In the �nal step, we support the t remaining sessions on any t unused directed wavelengths.

We now show this is always possible. Since we cannot form any adjacent session pair at the hub

from these t sessions, the hub node can either transmit or receive some or all of these t sessions

but not both. Without loss of generality, assume that the hub node transmits none of these t

sessions. Consider the transmitters at the non-hub nodes. Each of the r mutual adjacent session

pairs at the hub uses one transmitter at some non-hub node. Similarly, each of the s nonmutual

adjacent session pairs at the hub uses one transmitter at some non-hub node. Since the hub node

does not transmit any of the t remaining sessions, each of the t sessions uses one transmitter at

some non-hub node. Since there are N � 1 non-hub nodes, it follows that r + s + t � N � 1, or

equivalently t � (N � 1)� r � s. Since there are (N � 1)� r � s unused directed wavelengths left

for this step, there are enough directed wavelengths to support the remaining t sessions.

Based on the above main idea of our RWA, we can construct an on-line RWA algorithm which

uses d(N �1)=2e wavelengths in each �ber, is rearrangeably nonblocking, and requires at most four

lightpath rearrangements per new session request. We shall refer to this algorithm as the on-line

single-hub ring RWA algorithm. We present the algorithm and its correctness proof in appendix C.

4.3.2 Bidirectional Ring with Wavelength Converters

In this subsection, we give an example in which wavelength converters can reduce the number of

wavelengths required to support k-allowable traÆc in a bidirectional ring. Let Ld;k denote the

minimum number of wavelengths which, if provided in each �ber, can support k-allowable traÆc
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given full wavelength conversion at all nodes. This example implies that, for a bidirectional ring,

it is possible that Ld;k < Wd;k.

Consider the 7-node ring with symmetric 1-allowable traÆc, i.e. the k-allowable traÆc in which

all the ki's are equal to 1. We know that Wd;k = d7=3e = 3. We shall show below that Ld;k = 2.

To derive the lower bound Ld;k � 2, consider the cut set which separates the ring into two

connected subnetworks with three and four nodes respectively. It is easy to see that the maximum

traÆc across the two �bers from the 3-node subnetwork to the 4-node subnetwork is three wave-

lengths. Since there are three wavelengths travelling on two �bers across the cut, one �ber must

support at least d3=2e = 2 wavelengths. Thus, Ld;k � 2.

We now show that Ld;k � 2. Without loss of generality, we shall assume that any given

symmetric 1-allowable traÆc matrix is maximal in the sense that we cannot add an extra session

to the traÆc matrix (except perhaps for self-traÆc which we do not consider). When the traÆc

matrix is not maximal, we can add extra sessions to make it maximal, solve the RWA problem, and

then remove the extra sessions. It is easy to see that, in any maximal traÆc matrix, the sessions

form a set of cycles.

For symmetric 1-allowable traÆc in the 7-node ring, there are eight possible scenarios for the

set of cycles, as listed below.

1. Three 2-cycles.5

2. Two 2-cycles and one 3-cycle.

3. One 2-cycle and one 4-cycle.

4. One 2-cycle and one 5-cycle.

5. Two 3-cycles.

6. One 3-cycle and one 4-cycle.

7. One 6-cycle.

8. One 7-cycle.

In scenarios 1, 3, 5, and 7, we can ignore the node which neither transmits nor receives traÆc

and view the network as the 6-node ring. Equation (4.2) tells us thatWd;k = d6=3e = 2 wavelengths

are suÆcient. We consider scenarios 2, 4, 6, and 8 separately below. Notice that only scenario 8

requires wavelength converters.

5An m-cycle is a cycle which contains m sessions.
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Two 2-cycles and one 3-cycle: Viewing the 3-cycle as being in the 3-node ring, equation (4.2) tells us

that Wd;k = d3=4e = 1 wavelength can support the 3-cycle. Since each 2-cycle is a mutual adjacent

session pair, it can be supported on one directed wavelength in any ring direction. It follows that

one wavelength (two directed wavelengths) can support the two 2-cycles. Thus, two wavelengths

are suÆcient to support the traÆc.

One 2-cycle and one 5-cycle: From the 5-cycle, form two adjacent session pairs and support them

on two directed wavelengths in the required ring directions. The remaining session from the 5-

cycle can be supported on one directed wavelength in any ring direction. Similarly, one directed

wavelength in any ring direction can support the 2-cycle. Thus, two wavelengths (four directed

wavelengths) are suÆcient to support the traÆc.

One 3-cycle and one 4-cycle: Viewing the 4-cycle as being in the 4-node ring, equation (4.2) tells

us that Wd;k = 1 wavelength can support the 4-cycle. From the above discussion, one wavelength

can support the 3-cycle. Thus, two wavelengths are suÆcient to support the traÆc.

One 7-cycle: In this scenario, we use the argument from [CM02]. Let HCW and HCCW be the total

number of hops traversed by all the sessions in the CW and CWW ring directions respectively.

Since a session which traverses x hops in the CW direction traverses 7 � x hops in the CCW

direction, HCCW = 49 �HCW . Since all the sessions form a cycle in the 7-node ring, the possible

values of HCW are 7, 14, 21, 28, 35, and 42. If HCW is equal to 7 or 14, routing all the sessions

in the CW direction incurs the maximum �ber load of two wavelengths, and thus two wavelengths

are suÆcient to support the traÆc. If HCW is equal to 35 or 42, then HCCW is equal to 14 or 7,

and thus routing all the sessions in the CCW direction requires at most two wavelengths.

Let us now consider the case with HCW = 21. We claim that, when HCW = 21, there must

exist a set of four adjacent sessions which traverse at most 12 hops in total in the CW direction. To

justify the claim, let x0; x1; x2; x3; x4; x5, and x6 denote the numbers of hops traversed in the CW

direction by all the sessions in the adjacent order. We prove the claim by contradiction. Assume

that every set of four adjacent sessions traverse more than 12 hops in the CW direction. Then

we have the inequalities xi + xi+1 mod 7 + xi+2 mod 7 + xi+3 mod 7 > 12 for all 0 � i � 6, e.g. the

inequality x0 + x2 + x3 + x4 > 12 corresponds to i = 0. By summing all the inequalities over all
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0 � i � 6, we have that 4(x0 + x1 + ::: + x6) > 84, yielding HCW = x0 + x1 + ::: + x6 > 21,

contradicting the fact that HCW = 21.

Given a set of four adjacent sessions which traverse at most 12 hops in total in the CW direction,

we can support them on two CW directed wavelengths. Since HCW = 21, the remaining three

adjacent sessions traverse at least 9 hops in total in the CW direction, or equivalently at most 12

hops in the CCW direction. It follows that we can support them on two CCW directed wavelengths.

In conclusion, two wavelengths are suÆcient to support the traÆc.

Finally, when HCW = 28, we have HCCW = 21. By exchanging the roles of the CW and CCW

ring directions, the same arguments as for the case with HCW = 21 can be applied to argue that

two wavelengths are suÆcient to support the traÆc.

In conclusion, we have shown that, for symmetric 1-allowable traÆc in the 7-node bidirectional

ring, Ld;k = 2 < Wd;k = 3. More generally, it is shown in [CM02] that, in the N -node bidirectional

ring, for symmetric k-allowable traÆc, Ld;k is bounded by

dNk=4e � Ld;k � dNk=4e + 1; N even;

d(N � 1)k=4e � Ld;k � dNk=4e + 1; N odd:

SinceWd;k = dNk=3e forN � 7, it is clear that wavelength converters can reduce the wavelength

requirement for symmetric k-allowable traÆc for a suÆciently large value of N .

4.4 2D Torus Topologies

In this section, we study the RWA problem for k-allowable traÆc in a two-dimensional (2D) torus

topology. We shall consider only symmetric k-allowable traÆc, i.e. k-allowable traÆc in which all

the ki's are equal to k. The RWA problem for general k-allowable traÆc remains to be investigated

in the future.

Consider an R�C torus topology with N nodes, where N = RC and R � C. Let Ld;k denote

the minimum number of wavelengths which, if provided in each �ber, can support k-allowable

traÆc given full wavelength conversion at all nodes. We �rst derive a lower bound on Ld;k.

Lemma 12 For an R� C torus topology with R � C, Ld;k � dk(R � 1)=4e.
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Proof: For R even, consider a cut set which separates R=2 consecutive rows of nodes from the

other R=2 consecutive rows. Assume a traÆc matrix in which each node transmits k wavelengths

to a node in the other set. In this traÆc, a total of kRC=2 sessions travel from one set of nodes to

the other set of nodes on 2C �bers. It follows that one �ber connecting the two sets of nodes must

support at least
l
kRC=2
2C

m
= dkR=4e wavelengths. Thus, Ld;k � dkR=4e.

For R odd, consider a cut set which separates (R � 1)=2 consecutive rows of nodes from the

other (R + 1)=2 consecutive rows. Assume a traÆc matrix in which each node in the smaller set

transmits k wavelengths to a node in the other set. In this traÆc, a total of kC(R� 1)=2 sessions

travel from one set of nodes to the other set of nodes on 2C �bers. It follows that one �ber

connecting the two sets of nodes must support at least
l
kC(R�1)=2

2C

m
= dk(R � 1)=4e wavelengths.

Thus, Ld;k � dk(R � 1)=4e.

In conclusion, for a general (odd or even) positive integer R, Ld;k � dk(R � 1)=4e. 2

We shall construct an RWA algorithm which uses dkR=2e wavelengths in each �ber. Let Wd;k

denote the minimum number of wavelengths which, if provided in each �ber, can support k-allowable

traÆc with no wavelength conversion. The algorithm yields the upper boundWd;k � dkR=2e. This

upper bound on Wd;k is about twice the value of our lower bound on Ld;k.

De�ne a directed wavelength in a 2D torus topology as follows. Each wavelength consists of an

upward directed wavelength and a downward directed wavelength as described next. An upward

directed wavelength is directed upwards along any column and to the right along any row, as

as illustrated in �gure 4-18a. On the other hand, a downward directed wavelength is directed

downwards along any column and to the left along any row, as illustrated in �gure 4-18b.

We shall apply column-�rst routing where each lightpath travels along the source column and

then along the destination row. In addition, each lightpath is supported by no more than one

directed wavelength, i.e. if it travels upwards along the source column, then it must travel to the

right along the destination row according to the de�nition of a directed wavelength. The main idea

of our RWA algorithm is based on the following observation.

Lemma 13 For an R�C torus topology, under column-�rst routing, a set of sessions from distinct

source columns to distinct destination rows can all be supported on a single directed wavelength,

which can be either upward or downward directed.
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Figure 4-18: Directed wavelength and its supported sessions.

Proof: Since the sessions come from distinct source columns, at most one session utilizes the

�bers in a given column. Similarly, since the sessions go to distinct destination rows, at most one

session utilizes the �bers in a given row. It follows that there is no wavelength collision on any �ber

in the network. 2

Let ni;j denote the node in row i and column j. Let (ni;j; nk;l) denote a session from ni;j to nk;l.

Figure 4-18b illustrates the statement of lemma 13. In particular, there are two sessions (n4;1; n2;3)

and (n3;2; n1;4) which are transmitted from two distinct source columns to two distinct destination

rows. The two sessions can be supported on either an upward or a downward directed wavelength.

We can view the set of sessions from distinct source columns to distinct destination rows as

a matching in a bipartite graph. For a given traÆc matrix, we can construct the column-to-

row bipartite graph, denoted by (V1;V2; E), as follows. The set of abstract nodes V1 contains C

nodes corresponding to the C source columns. The set of abstract nodes V2 contains R nodes
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corresponding to the R destination rows. In the set of edges E , an edge between node i in V1

and node j in V2 corresponds to a session from a source in column i to a destination in row j.

Figure 4-19(a-b) shows an example of the column-to-row bipartite graph and its traÆc matrix.

Note that there may be multiple edges between the same pair of nodes. For example, since there

are two sessions from C3 to R4, i.e. (n2;3; n4;2) and (n4;3; n4;1), there are two parallel edges between

C3 and R4.
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Figure 4-19: Column-to-row bipartite graph.

Figure 4-19c shows one possible partition of the set of edges E into four disjoint bipartite

matchings. Observe that the sessions belonging to a matching in the column-to-row bipartite graph

are transmitted from distinct source columns to distinct destination rows. From lemma 13, these

sessions can be supported on one directed wavelength using column-�rst routing. Our algorithm
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will assign a single bipartite matching to a single directed wavelength. In what follows, we shall

refer to the bipartite matching assigned to directed wavelength �1 simply as the bipartite matching

of �1. Figure 4-19c shows example bipartite matchings of speci�c directed wavelengths. Note that

there are at most C sessions in each matching.

Before presenting our on-line RWA algorithm, we derive a few useful lemmas related to bipartite

matchings. The following lemma is a slightly more general version of lemma 6 in section 4.1. The

di�erence is that we assume jV1j � jV2j instead of jV1j = jV2j.

Lemma 14 In a bipartite graph (V1;V2; E) with jV1j = C � jV2j, if each node has degree at most

m, the set E can be partitioned into m disjoint bipartite matchings.

Proof: If jV1j = jV2j = C, then lemma 6 can be applied. It remains to consider the cases with

with jV1j = C < jV2j.

From (V1;V2; E), we can construct a new bipartite graph, denoted by (V 01;V2; E), as follows.

Add jV2j � C dummy nodes to the set V1 to create the modi�ed set of nodes V 01. The set of nodes

V2 and the set of edges E are the same as before. In the resultant bipartite graph (V 01;V2; E),

jV 01j = jV2j and each node has degree at most m. From lemma 6, we can obtain m disjoint bipartite

matchings, denoted by M1, M2, ..., and Mm. Since each bipartite matching Mi, 1 � i � m, is

also a matching in the original bipartite graph (V1;V2; E), it follows that M1, M2, ..., and Mm

obtained in this fashion are the desired m disjoint bipartite matchings. 2

Lemma 14 can be used to argue that kR directed wavelengths are suÆcient to support any

traÆc matrix in the symmetric k-allowable set. Given a traÆc matrix, we can write down the

corresponding column-to-row bipartite graph in which each node has degree at most kR. By

lemma 14, the set of edges can be partitioned into kR disjoint bipartite matchings. The sessions on

each bipartite matching can be supported on a single directed wavelength. Therefore, kR directed

wavelengths are suÆcient to support any symmetric k-allowable traÆc matrix.

Our on-line RWA algorithm for a 2D torus topology is constructed in a similar fashion to the

on-line star WA algorithm in section 4.1. Both algorithms involve �nding matchings in a bipartite

graph. The main di�erence has to do with what a node in a bipartite graph represents. In the

on-line star WA algorithm, a node represents a single source or a single destination. In this section,

a node represents a source column or a destination row.
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The main idea of our on-line RWA algorithm involves keeping kR disjoint bipartite matchings

of kR directed wavelengths such that each traÆc session corresponds to an edge in one bipartite

matching. When a session departs, we simply remove its corresponding lightpath from the network.

When a new session, say (Ci;Rj), arrives, we �nd one directed wavelength which is not used by any

source in column i, and one directed wavelength which is not used by any destination in row j. If

the two directed wavelengths are the same, we can support the new session without any lightpath

rearrangement. Otherwise, we rearrange some existing lightpaths on the two directed wavelengths

to support the new session. The following lemma makes the above discussion concrete and states

an upper bound on the number of lightpath rearrangements. Note that the lemma is slightly more

general than lemma 7 in section 4.1 since we assume jV1j � jV2j instead of jV1j = jV2j.

Lemma 15 In a bipartite graph (V1;V2; E) with jV1j = C � jV2j, given a new edge (Ci;Rj), Ci 2 V1,

Rj 2 V2, a matching M1 of directed wavelength �1 which is not incident on Ci, and a matching M2

of directed wavelength �2 which is not incident on Rj, there exist two disjoint bipartite matchings

which contain all the edges in M1 and M2 as well as the new edge (Ci;Rj).

In addition, these two disjoint bipartite matchings can be assigned to �1 and �2 so that the

number of lightpath rearrangements is at most C � 1.

Proof: The proof is identical to the proof of lemma 7. The only di�erence is that, in this proof,

we use lemma 14 instead of lemma 6 to argue the existence of the two disjoint bipartite matchings

which contain all the edges in M1 and M2 as well as the new edge (Ci;Rj). We shall not repeat

the details here. 2

The following is our on-line RWA algorithm for a 2D torus topology with symmetric k-allowable

traÆc. The algorithm uses dkR=2e wavelengths in each �ber, is rearrangeably nonblocking, and

requires at most C � 1 lightpath rearrangements per new session request. We shall refer to this

algorithm as the on-line torus RWA algorithm

Algorithm 5 (On-Line Torus RWA Algorithm) (Use dkR=2e wavelengths in each �ber.)

Session termination: When a session terminates, simply remove its associated lightpath from

the network without any further lightpath rearrangement.
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Session arrival: When a session arrives and it is allowable, proceed as follows. Let i and j denote

the source column and the destination row of the new session.

Step 1: If there is a directed wavelength, denoted by �0, which is used by neither a source in column

i nor a destination in row j, then assign the new session to �0, and use column-�rst routing. In

this case, no lightpath rearrangement is required. Otherwise, proceed to step 2.

Step 2: Find a directed wavelength, denoted by �1, which is not used by any source in column i,

i.e. its bipartite matching is not incident on Ci, and another directed wavelength, denoted by �2,

which is not used by any destination in row j, i.e. its bipartite matching is not incident on Rj. We

claim and shall prove shortly that �1 and �2 exist.

Modify the RWA of only the sessions on �1 and �2. Construct the column-to-row bipartite

graph (V1;V2; E 0) in which the set of edges E 0 contains the bipartite matchings of �1 and �2 as well

as the new edge (Ci;Rj). Notice that jV1j = C � R = jV2j and each abstract node has degree at

most 2. From lemma 15, the set E 0 can be partitioned into two disjoint bipartite matchings. In

addition, lemma 15 tells us that the two matchings can be assigned to �1 and �2 such that at most

C � 1 existing lightpaths need to be rearranged.

Proof of algorithm correctness: It remains to prove the claim in step 2, which states that the

directed wavelengths �1 and �2 as de�ned in step 2 must exist. We shall prove the existence of �1.

Similar arguments can be used to prove the existence of �2. Since the new session is allowable, there

are at most kR � 1 sessions transmitted from source column i. Since there are 2dkR=2e directed

wavelengths, the number of directed wavelengths available for a session transmitted from source

column i is at least

2dkR=2e � (kR� 1) � kR� (kR � 1) � 1:

Therefore, �1 always exists. 2

Although we concentrate on an R � C torus topology with R � C, similar results can be

obtained for an R�C torus topology with R � C by reversing the roles of rows and columns. We

summarize the results in this section in the following theorem.
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Theorem 8 For an R� C torus network with symmetric k-allowable traÆc, Wd;k is bounded by

�
k(max(R;C)� 1)

4

�
� Ld;k �Wd;k �

�
kmax(R;C)

2

�
:

In addition, there exists, by construction, an on-line RWA algorithm which uses dkmax(R;C)=2e

wavelengths in each �ber and requires at most min(R;C)� 1 lightpath rearrangements per new ses-

sion request.

As a comparison, when min(R;C) = 1, we have a bidirectional ring with N nodes, where

N = RC. The torus RWA algorithm in this section uses dkN=2e wavelengths in each �ber while

the ring RWA algorithm specialized for the ring topology uses dkN=3e wavelengths. Hence, while

the torus RWA algorithm is more general, it uses more wavelengths for the ring topology.

The following example illustrates the operations of the on-line torus RWA algorithm.

Example 8 Consider the 4 � 3 torus network with the symmetric 1-allowable traÆc given in

�gure 4-19. Theorem 8 tells us that Wd;k � 2, i.e. four directed wavelengths are suÆcient. Assume

that the current RWA is given by the bipartite matchings of directed wavelengths �1, �2, �3, and

�4 in �gure 4-19. Now assume the following changes in the traÆc.

1. The existing session from n2;3 in column 3 to n4;2 in row 4 on �1 terminates.

2. The existing session from n1;2 in column 2 to n3;3 in row 3 on �2 terminates.

3. A new session from n2;3 in column 3 to n3;3 in row 3 arrives.

After the second session termination, the bipartite matchings of �1 and �2 are shown in �gure 4-

20a. To support the new session, the on-line torus RWA algorithm performs step 2. In particular,

it creates a column-to-row bipartite graph whose edges are the bipartite matchings of �1 and �2

as well as the new edge (C3;R3). The algorithm then partitions the set of edges into two disjoint

bipartite matchings and assigns them to �1 and �2, as shown in �gure 4-20b. In particular, the

existing session from n4;3 in column 3 to n4;1 in row 4 on �2 is reassigned to �1, and the new session

is then assigned to �2. In this example, one rearrangement of an existing lightpath is made to

support the new session.
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Figure 4-20: Example operations of the on-line torus RWA algorithm.

4.5 Binary Hypercube Topologies

In this section, we briey mention a known result on the RWA problem for k-allowable traÆc in

a binary hypercube topology with N = 2n end nodes, where n is a positive integer. We shall

concentrate on symmetric 1-allowable traÆc, i.e. k-allowable traÆc in which all the ki's are equal

to 1.

We �rst derive a lower bound on Ld;1, the minimum number of wavelengths which, if provided

in each �ber, can support 1-allowable traÆc given full wavelength conversion at all nodes. Consider

symmetric 1-allowable traÆc in which each node sends one wavelength to the node which is n hops

away. More speci�cally, if we label the nodes using n-bit binary strings as in section 3.4, then each

node transmits a wavelength to the node whose label is the bit-by-bit binary complement of its

label, e.g. node 001 transmits to node 110, node 101 transmits to node 010. Given this traÆc,

all the sessions traverse an aggregate of Nn hops under shortest path routing. Since there are Nn

�bers in the N -node binary hypercube, one �ber must support at least dNn=Nne = 1 wavelength,

yielding the trivial lower bound Ld;1 � 1.

Since the bound Ld;1 � 1 is trivial, the above derivation may seem pointless. However, note

that, since each session in the above traÆc is between a pair of nodes which are the furthest

apart, Nn is the maximum possible total number of hops under shortest path routing. The above

discussion suggests that, for any symmetric 1-allowable traÆc, one wavelength may be suÆcient.
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Let Wd;1 denote the minimum number of wavelengths which, if provided in each �ber, can

support 1-allowable traÆc with no wavelength conversion. In [AR95], it was shown that Wd;1 � 8.

The proof of this bound given in [AR95] is based on the construction of an RWA algorithm and

is rather involved. We shall not discuss it here. To our knowledge, there is no known example

scenario in which one wavelength is not suÆcient. Thus, it remains to be investigated whether or

not Wd;1 = Ld;1 = 1. So far, we know that 1 � L1;d �W1;d � 8.

4.6 Arbitrary Topologies

In this section, we discuss the RWA problem for k-allowable traÆc in an arbitrary topology. Let

Ld;k and Wd;k denote the minimum number of wavelengths which, if provided in each �ber, can

support k-allowable traÆc with full wavelength conversion at all nodes and without wavelength

conversion respectively.

We shall describe two lower bounds on Ld;k and two upper bounds on Wd;k. Since Ld;k �Wd;k,

given a lower bound on Ld;k and an upper bound on Wd;k, the actual value of Wd;k lies between

the two bounds.

4.6.1 Lower Bound on Ld;k: the Link Counting Bound

In section 3.5.1, we used the link counting bound argument from [Pan92] to derive a lower bound

on the required number of wavelengths for l-uniform traÆc with full wavelength conversion at all

nodes. For k-allowable traÆc, we can also use the link counting bound argument to derive a lower

bound on Ld;k. More speci�cally, given the traÆc, let H be the sum of the number of hops traversed

by each of the sessions under shortest path routing, and F be the number of �bers in the network.

Then some �ber must support at least dH=F e wavelengths, and thus Ld;k � dH=F e.

However, the diÆculty in applying the link counting bound for k-allowable traÆc has to do with

�nding the traÆc matrix which yields the tightest bound. For static l-uniform traÆc in section 3.5,

this diÆculty does not exist. In what follows, we shall refer to a traÆc matrix which yields the

tightest bound on Ld;k as a limiting traÆc matrix.

The link counting bound is reasonably tight when, given a limiting traÆc matrix, there exists a

routing scheme which distributes traÆc evenly on all the �bers. For example, consider supporting
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symmetric 1-allowable traÆc, i.e. k-allowable traÆc in which all the ki's are equal to 1, in the N -

node bidirectional ring. One limiting traÆc matrix is such that each node transmits a wavelength

to the node N=2 hops away in the clockwise (CW) ring direction for N even, and (N � 1)=2 hops

away for N odd. In this example, the link counting bound is

Ld;k �

8><
>:
l
N(N=2)
2N

m
=
l
N
4

m
; N even;l

N(N�1)=2
2N

m
=
l
N�1
4

m
; N odd:

As mentioned in section 4.3.2, we know from [CM02] that Ld;k � dN=4e+1 for any N (even or

odd). Thus, the link counting bound is quite tight in this case.

As an example in which the link counting bound is not tight, consider symmetric 1-allowable

traÆc in the N -node binary tree topology in example 3, where N = 2n for some positive integer

n. From theorem 6, we know that Ld;k = N=2. For the link counting bound, one limiting traÆc

matrix is such that each node sends a wavelength to another node on the opposite side of the binary

tree. Under this traÆc, it is straightforward to show that H = 2Nn. Since F = 4(N �1), it follows

that Ld;k � dNn=(2(N � 1))e, which is approximately n=2 for large N . Since Ld;k = N=2, the

link counting bound is not tight. Notice that there is a bottleneck link in the N -node binary tree

topology. Therefore, it is not possible to distribute traÆc evenly on all the �bers.

4.6.2 Lower Bound on Ld;k: the Cut Set Bound

In section 3.5.2, we used the cut set bound argument from [BB97] to derive a lower bound on the

required number of wavelengths for l-uniform traÆc with full wavelength conversion at all nodes.

For k-allowable traÆc, we can also use the cut set bound argument to derive a lower bound on Ld;k

in the similar fashion as described next.

Consider a cut set C which separates the end nodes into two sets NC;1 and NC;2. The amount of

traÆc (in wavelengths) across this cut fromNC;1 toNC;2 can be up to min(jNC;1j; jNC;2j). Since there

are jCj �bers fromNC;1 to NC;2, one �ber across this cut must support up to dmin(jNC;1j; jNC;2j)=jCje

wavelengths, i.e. Ld;k � dmin(jNC;1j; jNC;2j)=jCje. To tighten the bound, we search for the cut which

yields the maximum lower bound, i.e.

Ld;k � max
C

�
min(jNC;1j; jNC;2j)

jCj

�
:
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Notice that, in section 4.3, we used the cut set bound to de�ne the value of w� in (4.1). In a

tree topology, the cut set is a single link, and the bottleneck link yields the cut set bound. From

corollary 1, we know that the cut set bound is tight for a tree topology.

We now give an example in which the cut set bound is not tight. Consider symmetric 1-

allowable traÆc in the 5-node bidirectional ring. Any cut set which separates the 5-node ring

into two connected subnetworks with two and three nodes respectively yields the cut set bound

Ld;k � dmin(2; 3)=2e = 1. However, we argue below that Ld;k � 2.

Consider the symmetric 1-allowable traÆc matrix in which each node sends one wavelength to

the node two hops away in the CW ring direction. It is easy to see that one CW directed wavelength

can support at most two sessions, whereas one counterclockwise (CCW) directed wavelength can

support at most one session. Since there are in total �ve sessions, we need more than one wavelength

to support the given traÆc. Thus, Ld;k � 2.

Although the cut-set bound is not tight in the above example, we have not found an example in

which the cut-set bound is not tight in the asymptotic sense, i.e. the di�erence between the bound

and the actual value of Ld;k grows larger as the network size increases. The tightness of the cut-set

bound remains to be investigated further.

4.6.3 Upper Bound on Wd;k: the Embedded Tree Bound

In this subsection, we shall return to the wavelength assignment (WA) problem for k-allowable

traÆc in an arbitrary tree topology considered in section 4.2 and relax the assumption that only

leaf nodes are end nodes. This relaxation allows us to embed a tree topology in an arbitrary

connected topology, as we have done for l-uniform traÆc in section 3.5.3. The on-line tree WA

algorithm can then be used to derive an upper bound on Wd;k. As a speci�c example, �gure 4-21a

shows an arbitrary topology. One possible embedded tree is shown in �gure 4-21b. Nodes 2, 4, and

5 are non-leaf end nodes.

Given an embedded tree topology with non-leaf end nodes, we can create the associated generic

tree topology with no non-leaf end node as follows. For each non-leaf end node, create a new leaf

node attached to it with the same value of ki. The new leaf node is an end node, while the existing

non-leaf node is no longer an end node. For example, �gure 4-21c shows the generic tree topology

associated with the embedded tree topology in �gure 4-21b. In particular, there are three new leaf
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Figure 4-21: Embedded tree topology and its associated generic tree topology.

nodes in �gure 4-21c created from the three non-leaf end nodes in �gure 4-21b.

We now argue that the minimum number of wavelengths for k-allowable traÆc for the generic

tree, denoted by Wd;k;g, is at least the minimum number of wavelengths for the embedded tree,

denoted by Wd;k;e. To see this, observe that, for the same traÆc matrix, the WA for the generic

tree can be used for the embedded tree as described next. Each lightpath in the generic tree can be

mapped to an identical lightpath in the embedded tree except for all the newly created links in the

generic tree. For example, the three-hop lightpath on wavelength �1 from leaf node 5 to leaf node

4 in �gure 4-21c is mapped to the one-hop lightpath on �1 from node 5 to node 4 in �gure 4-21b.

It follows that Wd;k;e �Wd;k;g. We state this relationship formally as a lemma below.

Lemma 16 For k-allowable traÆc, the wavelength requirements for an embedded tree and for its

associated generic tree are related by Wd;k;e �Wd;k;g.

Figure 4-22 shows an example scenario in which Wd;k;e < Wd;k;g. In the embedded tree shown

in �gure 4-22a, there are two leaf nodes with k1 = k2 = 1 and one non-leaf end node with k3 = 2.

By inspection, we see that at most one wavelength is used in each �ber. Thus, Wd;k;e = 1. In

the associated generic tree shown in �gure 4-22b, there are three leaf nodes with k1 = k2 = 1 and

k3 = 2. From theorem 6, we know that Wd;k;g = 2. Thus, Wd;k;e < Wd;k;g.

The following theorem indicates the scenarios in which Wd;k;e =Wd;k;g.
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Figure 4-22: Example scenario in which Wd;k;e < Wd;k;g.

Theorem 9 Let Wd;k;g = w�. If the value of ki for each non-leaf end node in the embedded tree

topology is less than w�, then Wd;k;e =Wd;k;g = w�.

Proof: Suppose that the value of ki for each non-leaf end node in the embedded tree is less than

w�. From the de�nition of w� for a generic tree given in (4.1), we see that the bottleneck link e� in

the generic tree is not one of the newly created links as compared with the embedded tree, or else

w� would be smaller than what it is. Thus, this bottleneck link e� exists in the embedded tree and

up to w� wavelengths of traÆc can traverse across it in one direction. It follows that Wd;k;e � w�.

Since Wd;k;e �Wd;k;g (from lemma 16) and Wd;k;g = w�, Wd;k;e =Wd;k;g = w�. 2

In a suÆciently large tree in which no end node has a signi�cantly large value of ki, we expect

ki for each non-leaf node i to be less than w�, and thus Wd;k;e = Wd;k;g = w�. Consequently, in

most arbitrary topologies of interest, we expect to be able to embed a tree topology whose generic

tree has the same wavelength requirement as the embedded tree. In these scenarios, the on-line

tree WA algorithm can be used to obtain the WA for the generic tree which is then mapped to the

WA for the embedded tree using the same number of wavelengths. The value of Wd;k;e can then be

used as an upper bound on Wd;k. We summarize the discussion below as a corollary to theorem 9.

Corollary 4 Let Wd;k;g = w�. If the value of ki for each non-leaf end node in the embedded tree

topology is less than w�, then the generic tree can be used to obtain the embedded tree bound in

place of the embedded tree, i.e. Wd;k �Wd;k;g =Wd;k;e.

For example, in �gure 4-21c, the value of w� is equal to 2. Since the ki's for all the non-leaf

node are less than 2, corollary 4 tells us that, for the topology given in �gure 4-21a, the bound

from the embedded tree in �gure 4-21b is Wd;k �Wd;k;g =Wd;k;e = 2.
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The embedded tree bound is a reasonable estimate onWd;k when the network nodes are sparsely

connected. However, for a densely connected network, it can perform poorly. For example, consider

symmetric 1-allowable traÆc in an R � R torus topology. We know from theorem 8 that Wd;k �

dR=2e. From statement 2 of lemma 8, the generic tree associated with any embedded tree with R2

end nodes has w� � R2=d�, where d� is the degree of the bottleneck node. Since d� in the generic

tree is at most 5, it follows that Wd;k;g � R2=5. From theorem 9, Wd;k;e = Wd;k;g in this example.

Thus, the embedded tree bound Wd;k;e is at least R
2=5. Since Wd;k = dR=2e, the embedded tree

bound is not tight in this example.

4.6.4 Upper Bound on Wd;k in term of Ld;k: the Graph Coloring Bound

In section 3.5.4, we used the graph coloring bound argument from [Agg+96] to derive an upper

bound on the required number of wavelengths for l-uniform traÆc with no wavelength conversion.

For k-allowable traÆc, we can also use the graph coloring bound argument to derive an upper

bound on Wd;k in a similar fashion as described next.

Given a routing assignment for all the sessions, i.e. the routes of all the lightpaths, for all

k-allowable traÆc matrices such that the maximum load in a �ber is Ld;k wavelengths, we derive

an upper bound on Wd;k by keeping the same routing assignment and performing wavelength

assignment (WA).

As mentioned in section 3.5.4, the WA assignment problem can be reduced to the graph coloring

problem in the path graph. For a given traÆc and the routes of all the lightpaths, we create the

corresponding path graph as follows. Each lightpath is mapped one-to-one to a node in the path

graph. Two nodes in the path graph are connected if and only if the two corresponding lightpaths

share a �ber. Let h be the length of the longest lightpath over all traÆc matrices. Then, for any

given traÆc, each lightpath shares a �ber with at most h(Ld;k� 1) other lightpaths. It follows that

the maximum node degree in the path graph is h(Ld;k� 1). Therefore, h(Ld;k� 1)+1 wavelengths

are suÆcient to color the path graph associated with any given traÆc matrix, i.e.

Wd;k � h(Ld;k � 1) + 1:

Unfortunately, the graph coloring bound can be quite pessimistic. For example, consider sym-

metric 1-allowable traÆc in the N -node bidirectional ring with N even. From section 4.3, we know
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that Wd;k = dN=3e for N � 7. We also know from [CM02] that dN=4e � Ld;k � dN=4e+1. For the

length (in hops) of the longest lightpath, it is clear that h = N=2. Therefore, the graph coloring

bound is approximately N
2

l
N
4

m
� N2=8. Since Wd;k = dN=3e, the graph coloring bound is not

tight in this example.
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Chapter 5

Band/Wavelength RWA Problem

We nowmotivate studying the band/wavelength RWA problem. The goal is to understand when and

how individual wavelengths should be aggregated into bands of wavelengths for optical switching

in order to reduce the cost of optical switches. We shall present some preliminary results and point

out directions for future research.

Recall that an optical switch is subjected to a crossbar constraint, which dictates that no more

than one input (output) can be connected to a single output (input). An optical switch can direct

traÆc sessions from each input �ber to its designated output �ber. For current optical switches in

practice, there is no signi�cant di�erence whether each input �ber carries traÆc sessions on one

wavelength or multiple wavelengths. In the previous chapters, each optical switch in a switching

node acts as a wavelength selective switch, i.e. each input �ber contains one wavelength of traÆc. In

this chapter, we allow each input �ber to an optical switch to carry a band of multiple wavelengths.

Accordingly, we shall refer to an optical switch used in this fashion as a band switch. In addition,

we shall refer to switching of traÆc optically in band of wavelengths (instead of in wavelengths)

simply as band switching.

For convenience, throughout the chapter, an optical switch refers to a recon�gurable optical

switch. When we discuss a �xed optical switch, we shall specify explicitly.
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5.1 Reduction in Optical Switches through Band Switching

In this section, we use a simple scenario to show how band switching can reduce the number of

optical switches required in the network.

Consider the N -node star topology with symmetric k-allowable traÆc, i.e. k-allowable traÆc in

which all the ki's are equal to k. Assume that each end node is connected to optical switches at the

hub node. In addition, we assume that k is signi�cantly greater than N . Under this assumption,

each node is likely to send several wavelengths to each of its destinations, and band switching of

traÆc among the N nodes is attractive. On the other hand, if k is smaller than N , each node is

likely to send only a small number of wavelengths to each of its destinations, and would utilize only

a small fraction in each band under band switching. In this case, band switching is not attractive.

More speci�cally, consider symmetric 6-allowable traÆc in the 3-node star topology as shown

in �gure 5-1. For clarity, we consider each end node as one distinct source node and one distinct

destination node. Without band switching, theorem 5 in section 4.1 tells us that six wavelengths

are required to support the traÆc. Consequently, we need six units of 3� 3 optical switches at the

hub node, as shown in �gure 5-1a.

s1

s2

s3

�2

�3

�4

�5

�6

�1

d1

d2

d3

s1

s2

s3

d1

d2

d3

(a) wavelength switching

(�1; �2)

(�3; �4)

(�5; �6)

(�7; �8)

(b) band switching

switches

switches
bandwavelength

DMUXs
wavelength
MUXs

band
DMUXs

band
MUXs

hub node
hub node

wavelength

Figure 5-1: The 3-node star topology in which each end node is connected to optical switches at the

hub.

Consider band switching with the band size of two wavelengths. As will be shown shortly, we

can support symmetric 6-allowable traÆc using eight wavelengths and four units of 3 � 3 optical
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switches, as illustrated in �gure 5-1b. We shall derive general expressions for the required number

of band switches and the required number of wavelengths below. With current technology, there is

no signi�cant cost di�erence between a 3� 3 optical switch for band switching and a 3� 3 optical

switch for wavelength switching. Roughly speaking, in this example, band switching saves two

optical switches at the expense of two additional wavelengths.

Let b denote the band size in wavelengths. For symmetric k-allowable traÆc in the N -node star

network in which each end node is connected to optical switches at the hub, let B(N; k; b) denote

the required number of optical switches at the hub, and W (N; k; b) denote the required number of

wavelengths in a �ber with no wavelength conversion.

If each node pair communicates in units of bands (instead of wavelengths), the traÆc can be

viewed as symmetric k0-allowable traÆc with a band as a traÆc unit and k0 � k=b. From theorem 5

in section 4.1, we know that B(N; k; b) � k=b. Since W (N; k; b) = bB(N; k; b), it follows that

W (N; k; b) � k.

However, when the end nodes transmit in units of wavelengths, there may be some transmission

bands which are underutilized. In this case, we need more than k=b transmission bands, and thus

more than k=b optical switches at the hub and more than k wavelengths.

For example, consider a scenario in which node 1 transmits one wavelength to nodes 2, ..., N�1

and k � (N � 2) wavelengths to node N . The number of optical switches required at the hub to

support the traÆc to nodes 2, ..., N � 1 is N � 2. In addition, the number of optical switches

required at the hub to support the traÆc to node N is � (k � (N � 2))=b. Thus, in total, we need

at least � (N � 2) + (k � (N � 2))=b = k=b+ (1� 1=b)(N � 2) switches.

The following theorem provides exact expressions for B(N; k; b) and W (N; k; b) for k � N � 1.

Theorem 10 For symmetric k-allowable traÆc in the N -node star network in which each end node

is connected to optical switches at the hub, if k � N � 1, then B(N; k; b) and W (N; k; b) are given

by

B(N; k; b) = (N � 1) +

�
k � (N � 1)

b

�
;

W (N; k; b) = b(N � 1) + b

�
k � (N � 1)

b

�
:
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Proof: Consider a particular end node, say node 1. Let B1 be the minimum number of transmit

bands from node 1 required to support symmetric k-allowable traÆc. We �rst show that B1 �

(N � 1) +
j
k�(N�1)

b

k
. Consider the traÆc in which node 1 sends one wavelength to nodes 2, 3, ...,

N � 1 and k� (N � 2) wavelengths to node N . In this case, from node 1, N � 2 bands are required

to support the traÆc to nodes 2, 3, ..., N � 1, and
l
k�(N�2)

b

m
bands are required to support the

traÆc to node N . The total number of bands is the lower bound on B1 given below.

B1 � (N � 2) +

�
k � (N � 2)

b

�
= (N � 1) +

�
k � (N � 1)

b

�

The last equality can be justi�ed as follows. If k�(N�2)
b is an integer, then

l
k�(N�2)

b

m
= k�(N�2)

b =j
k�(N�1)

b

k
+1. If k�(N�1)

b is an integer, then
l
k�(N�2)

b

m
= k�(N�1)

b +1 =
j
k�(N�1)

b

k
+1. In all the

other cases, we have
l
k�(N�2)

b

m
=
l
k�(N�1)

b

m
=
j
k�(N�1)

b

k
+ 1.

We next show that B1 � (N � 1) +
j
k�(N�1)

b

k
. Let N 0 denote the set of destination nodes

to which node 1 transmits partially utilized bands, and N 0 = jN 0j. For each node i in N 0, let q0i

denote the number of utilized wavelengths in the partially utilized bands from node 1.

To support the traÆc from node 1, we can use N 0 bands for
P

i2N 0 q0i wavelengths and additional

(k �
P

i2N 0 q0i)=b fully utilized bands. Thus we have that B1 � N 0 + (k �
P

i2N 0 q0i)=b. It remains

to show that this upper bound is at most (N � 1) +
j
k�(N�1)

b

k
, i.e.

N 0 +
k �

P
i2N 0 q0i
b

� (N � 1) +

�
k � (N � 1)

b

�
:

If N 0 = N � 1, i.e. there are partially utilized bands to all the N � 1 destinations from node 1,

then q0i � 1 for every node i in N 0, and thus
P

i2N 0 q0i � N 0 = N � 1. Since (k �
P

i2N 0 q0i)=b is an

integer, (k �
P

i2N 0 q0i)=b = b(k �
P

i2N 0 q0i)=bc. It follows that

N 0 +
k �

P
i2N 0 q0i
b

= N 0 +

�
k �

P
i2N 0 q0i
b

�

= (N � 1) +

�
k �

P
i2N 0 q0i
b

�
� (N � 1) +

�
k � (N � 1)

b

�
:

On the other hand, if N 0 < N � 1, using the fact that
P

i2N 0 q0i � N 0 and N 0 � N � 2, we can

bound N 0 + (k �
P

i2N 0 q0i)=b as follows.

N 0 +
k �

P
i2N 0 q0i
b

� N 0 +
k �N 0

b
�

�
1�

1

b

�
(N � 2) +

k

b
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= (N � 1) +
k

b
�
N � 1

b
� 1 +

1

b
� (N � 1) +

�
k � (N � 1)

b

�
+

1

b

Since b > 1 and N 0 + (k �
P

i2N 0 q0i)=b is an integer, it follows that

N 0 +
k �

P
i2N 0 q0i
b

� (N � 1) +

�
k � (N � 1)

b

�
:

Therefore, we have shown that B1 = (N � 1) +
j
k�(N�1)

b

k
. Since the above choice of node 1

is arbitrary, we conclude that the minimum number of transmit bands required at each node is

(N � 1) +
j
k�(N�1)

b

k
. By similar arguments, the minimum number of receive bands required at

each node is (N � 1) +
j
k�(N�1)

b

k
.

What we have here is a traÆc scenario in which each node transmits up to (N �1)+
j
k�(N�1)

b

k
bands and receives up to (N � 1) +

j
k�(N�1)

b

k
bands. This traÆc is similar to symmetric k0-

allowable traÆc with k0 = (N � 1)+
j
k�(N�1)

b

k
. The di�erence is that, in this case, the traÆc unit

is a band instead of a wavelength. It follows from theorem 5 in section 4.1 that (N�1)+
j
k�(N�1)

b

k
is the minimum number of bands required to support this traÆc. Consequently, B(N; k; b) =

(N � 1) +
j
k�(N�1)

b

k
.

Since each band contains b wavelengths, it follows that W (N; k; b) = bB(N; k; b) = b(N � 1) +

b
j
k�(N�1)

b

k
. 2

Consider again the example in �gure 5-1 where N = 3, k = 6, and b = 2. Theorem 10 tells us

that the minimum number of switches required at the hub is B(3; 6; 2) = 2 + b(6 � 2)=2c = 4. In

addition, the required number of wavelengths is W (3; 6; 2) = 4 + 2b(6 � 2)=2c = 8.

It is worth noting that B(N; k; b) � k, i.e. band switching never requires more optical switches

than wavelength switching. To see this, we use the assumption that k � N � 1 to obtain the last

inequality below.

B(N; k; b) = (N � 1) +

�
k � (N � 1)

b

�
�

�
1�

1

b

�
(N � 1) +

k

b

�

�
1�

1

b

�
k +

k

b
= k:

For �xed values of N and k, B(N; k; b) as given in theorem 10 is a decreasing function of b. As

we increase the band size (in wavelengths), we expect to use fewer optical switches in the network.

However, the price to pay is the increase in the required number of wavelengths W (N; k; b). With
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an appropriate choice of b, we expect the decrease in optical switches to outweigh the increase in

wavelengths. We shall investigate this trade-o� in more details in the next section.

5.2 Trade-O� between Optical Switches and Wavelengths

In this section, we study the trade-o� between the decrease in optical switches and the increase in

the number of wavelengths as a result of band switching. Consider again the N -node star topology

in which each end node transmits (receives) traÆc to (from) optical switches at the hub. Under

symmetric k-allowable traÆc, where k > N�1, theorem 10 indicates the required number of optical

switches B(N; k; b) and the required number of wavelengths W (N; k; b).

In what follows, we shall make an approximation by ignoring integer rounding in the expressions

of B(N; k; b) and W (N; k; b). This approximation allows us to see the trade-o� between B(N; k; b)

and W (N; k; b) more clearly. In particular, ignoring integer rounding, B(N; k; b) and W (N; k; b)

are given by

B(N; k; b) � (N � 1) +
k � (N � 1)

b
;

W (N; k; b) � b(N � 1) + k � (N � 1):

From the above expressions, it is clear that, for �xed values of N and k, B(N; k; b) decreases

with b, whereas W (N; k; b) increases with b. Roughly speaking, the larger band size decreases the

number of optical switches at the expense of more wavelengths.

At this point, it is natural to ask what band size b minimizes the system cost due to optical

switches and transmission wavelengths. The cost structure of optical equipment is rapidly changing

and is beyond the scope of this thesis. However, to illustrate the cost trade-o�, we use a simple

linear cost structure below.

Let c1 and c2 be the linear cost coeÆcients for optical switches and transmission wavelengths

respectively. Assume that the system cost due to optical switches and transmission wavelengths,

denoted by c(b), can be expressed as

c(b) = c1B(N; k; b) + c2W (N; k; b)

� c1

�
(N � 1) +

k � (N � 1)

b

�
+ c2 [b(N � 1) + k � (N � 1)] :
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Figure 5-2 shows the graphs of optical switching cost and transmission cost as a function of the

band size b. To minimize the cost c(b), we solve for the optimal band size, denoted by b�, which is

the solution to the equation

0 =
dfC
db

(b) = �
c1
b2
(k � (N � 1)) + c2(N � 1):

The corresponding solution is b� =

r
c1(k�(N�1))
c2(N�1) .

c1

h
(N � 1) + k�(N�1)

b

ioptical switching cost

optical transmission cost

c2 [b(N � 1) + k � (N � 1)]

c(b)

b� b

c1(N � 1)

c2k

c1k

1

Figure 5-2: Cost trade-o� between optical switches and transmission wavelengths.

As expected, when the cost coeÆcient c1 for optical switches is low compared to the cost

coeÆcient c2 for transmission wavelengths, the expression for b� suggests us to use a small band

size. On the other hand, when c1 is high compared to c2, a large band size is more attractive.

5.3 Alternative Network Architecture for Band Switching

In this section, we present an alternative network architecture which can further reduce the number

of optical switches while using approximately the same number of wavelengths under band switch-

ing. As in sections 5.1 and 5.2, consider the N -node star topology with symmetric k-allowable

traÆc, where k > N � 1. However, in this section, we allow the use of �xed optical switches at

the hub. Given the band size of b wavelengths, let B(N; k; b) and W (N; k; b) denote the minimum

numbers of band switches and wavelengths required to support the traÆc.
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We begin with an informal discussion in which we ignore integer rounding. As previously

mentioned in section 5.1, if each node pair communicates in units of bands (instead of wavelengths),

then B(N; k; b) � k=b and W (N; k; b) � k. However, when the end nodes communicate in units

of wavelengths, there may be some transmission bands which are underutilized. In this case,

theorem 10 tells us that B(N; k; b) � (N � 1) + (k � (N � 1))=b = k=b + (1 � 1=b)(N � 1) and

W (N; k; b) � k + (b � 1)(N � 1). The excess amount of resources, i.e. (1 � 1=b)(N � 1) optical

switches and (b� 1)(N � 1) wavelengths, can be viewed as the cost penalty due to underutilization

of the bands.

We now present an alternative network architecture which no longer needs the excess number

of optical switches while using approximately the same number of wavelengths. The main idea is

based on the observation that we need up to k=b+ (1� 1=b)(N � 1) bands to handle the scenarios

in which each node distributes its traÆc to all the other nodes. This observation motivates us to

provide a dedicated band connection between each node pair. Notice that this scheme is similar

to providing dedicated resources for 1-uniform traÆc, but with a band (instead of a wavelength)

as a traÆc unit. On top of dedicated provision of resources, we provide some optical switches at

the hub node as before. We shall support the traÆc by �rst using the dedicated bands, and then

the shared bands (through optical switches) if necessary. In what follows, we shall refer to this

alternative architecture as the semi-recon�gurable architecture.

As an example, consider the same scenario given in �gure 5-1, i.e. N = 3, k = 6, and b = 2. Fig-

ure 5-3 shows the corresponding semi-recon�gurable architecture. Note that the semi-recon�gurable

architecture uses two optical switches instead of four, and still use eight wavelengths as before.

We ignore the cost of �xed optical switches which are usually much less expensive than recon-

�gurable optical switches. The following theorem provides general expressions for the required

number of optical switches B(N; k; b) and the required number of wavelengths W (N; k; b) in the

semi-recon�gurable architecture.

Theorem 11 For symmetric k-allowable traÆc in the N -node star network with the semi-recon�gurable

architecture, if k � N � 1, then B(N; k; b) and W (N; k; b) are given by

B(N; k; b) =

�
k

b

�
� 1;

W (N; k; b) = b

�
(N � 1) +

�
k

b

�
� 1

�
:
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Figure 5-3: The semi-recon�gurable architecture for the 3-node star topology with symmetric 6-allowable

traÆc.

Proof: To show that B(N; k; b) � dk=be � 1, consider the case in which node 1 transmits k

wavelengths to node 2. Given a band as a traÆc unit, node 1 needs to transmit dk=be bands to

node 2. Since there is one dedicated band connection from node 1 to node 2, the number of bands

required to go through optical switches is dk=be � 1. Thus, B(N; k; b) � dk=be � 1.

To show that B(N; k; b) � dk=be� 1, consider the traÆc transmitted from node 1. Let ~k be the

total number of wavelengths utilized in the dedicated bands. If a shared band through an optical

switch is needed, then it is necessarily true that ~k > b. Thus, from node 1, a suÆcient number of

bands is
k � ~k

b
�

k � b

b
�

�
k

b

�
� 1:

By the same argument, a suÆcient number of bands to node 1 is dk=be � 1. Since the choice of

node 1 is arbitrary, it follows that the traÆc through optical switches can be viewed as symmetric

k0-allowable traÆc with a band as a basic traÆc unit and k0 = dk=be � 1. From theorem 5 in

section 4.1, dk=be � 1 bands are suÆcient, i.e. B(N; k; b) � dk=be � 1.

Thus, we have shown that B(N; k; b) = dk=be � 1. Apart from B(N; k; b) bands which go

through optical switches, each node has N�1 dedicated band connections with all the other nodes.

Therefore, W (N; k; b) = b[(N � 1) +B(N; k; b)] = b[(N � 1) + dk=be � 1]. 2
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As in section 5.2, we now study the cost trade-o� between the decrease in optical switches and

the increase in the number of wavelengths. We shall make an approximation by ignoring integer

rounding in the expressions of B(N; k; b) and W (N; k; b), as shown below.

B(N; k; b) � k=b� 1

W (N; k; b) � b(N � 1) + k � b

In comparison to the basic architecture in sections 5.1 and 5.2 where B(N; k; b) � k=b + (1 �

1=b)(N�1) andW (N; k; b) � b(N�1)+k�(N�1), we see that B(N; k; b) for the semi-recon�gurable

architecture is smaller while W (N; k; b) is approximately the same provided that the product Nb

dominates the terms N and b.

To �nd an appropriate value of the band size b (in wavelengths), let c1 and c2 be the linear cost

coeÆcients for optical switches and transmission wavelengths respectively. Assume that the system

cost due to optical switches and transmission wavelengths, denoted by c(b), can be expressed as

c(b) = c1B(N; k; b) + c2W (N; k; b)

� c1

�
k

b
� 1

�
+ c2 [b(N � 1) + k � b] :

Figure 5-4 shows the graphs of optical switching cost and transmission cost as a function of the

band size b. To minimize the cost c(b), we solve for the optimal band size, denoted by b�, which is

the solution to the equation

0 =
dfC
db

(b) = �
c1
b2
k + c2(N � 2):

The corresponding solution is b� =
q

c1k
c2(N�2) .

As in section 5.2, when the cost coeÆcient c1 for optical switches is low compared to the cost

coeÆcient c2 for transmission wavelengths, a small band size is attractive. On the other hand,

when c1 is high compared to c2, a large band size is attractive.
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Figure 5-4: Cost trade-o� between optical switches and transmission wavelengths for the semi-

recon�gurable architecture.

5.4 TraÆc Aggregation for Band Switching

In this section, we consider the use of band switching in a network with N end nodes and symmetric

k-allowable traÆc with k < N � 1. When k < N � 1, using a band instead of a wavelength as a

traÆc unit is not attractive since each node may transmit to k di�erent destinations and would

utilize only one wavelength in each band it transmits.

To overcome low utilization of transmission bands, one possible strategy is to use a two-level

hierarchical architecture as described next. Some nodes in the network serve as aggregation nodes.

Each end node is connected to one aggregation node or more. The aggregation nodes switch

traÆc to and from its connected end nodes in wavelength units. However, the aggregation nodes

switch traÆc among themselves using only band switching. As an example, �gure 5-5 shows a

two-level 9-node star network with three aggregation nodes. The aggregation nodes switch traÆc

in wavelengths, while the central hub node switches traÆc in bands.

Consider symmetric 2-allowable traÆc among the end nodes. The traÆc among the three

aggregation nodes can be viewed as symmetric 6-allowable traÆc. Notice that, if we view the

aggregation nodes as end nodes, we have the same scenario as the example in section 5.3, i.e.

symmetric 6-allowable traÆc among three end nodes. Thus, the semi-recon�gurable architecture

in �gure 5-3 can be used at the central hub. Figure 5-6 shows the detailed architecture for the

two-level 9-node star. For simplicity, we route all the traÆc through the central hub, even though
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aggregation node

end node

central hub node

Figure 5-5: Two-level architecture with traÆc aggregation for band-switching.

some sessions are among the end nodes connected to the same aggregation node.

In the two-level architecture shown in �gure 5-6, we use in total 24 units of 3�1 optical switches,

24 units of 1 � 3 optical switches, 2 units of 3 � 3 optical switches, and 8 wavelengths. If we do

not use band switching, the architecture similar to �gure 5-1a in section 5.1 requires 2 units of

9 � 9 optical switches and 2 wavelengths. In this example, it may look ineÆcient to use band

switching. However, as the number of end nodes N gets large, the cost of an N �N switch may get

prohibitively high. In that case, the two-level architecture may become attractive since it requires

optical switches with smaller numbers of ports.

The cost comparison between di�erent architectures is beyond the scope of this thesis. However,

investigation in this area should play an important role for the choice of network architecture. We

leave this topic for future research.
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Figure 5-6: Detailed architecture for the network in �gure 5-5.

135



Chapter 6

Conclusion and Directions for Future

Research

We considered the design of an all-optical wavelength division multiplexing (WDM) core network

connecting multiple local networks through electronic switches at the access nodes. In the core

network, we expect that traÆc can be separated into two components. In the �rst component,

each session (between a pair of access nodes) is an aggregate of a large number of small-rate end-

to-end sessions. Each individual end-to-end session is not necessarily static but, through statistical

averaging, an aggregate of individual sessions is approximately static. We support traÆc sessions

of this type by static provisioning of routes and wavelengths. In the second traÆc component, each

session (between a pair of access nodes) cannot be well approximated as static due to insuÆcient

aggregation. Thus, we support traÆc sessions of this type by dynamic provisioning of routes and

wavelengths.

The wavelengths used for dynamic provisioning need to be equipped with recon�gurable compo-

nents including recon�gurable optical switches and tunable transmitters/receivers. To reduce the

network costs, the wavelengths used for static provisioning can be equipped with non-recon�gurable

components such as �xed optical switches and non-tunable transmitters/receivers.

We studied routing and wavelength assignment (RWA) problems for both static and dynamic

traÆc with no wavelength conversion. More speci�cally, for static traÆc, we studied how to pro-

vide l dedicated wavelength paths between each pair of access nodes, i.e. l-uniform traÆc, for

basic all-to-all connectivity. Our goal is to develop o�-line RWA algorithms which use the min-
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imum number of wavelengths to support l-uniform traÆc. We described the existing literature

for the bidirectional ring and two-dimensional (2D) torus topologies, and developed o�-line RWA

algorithms for arbitrary tree and binary hypercube topologies. We observed that, as the network

topology gets more densely connected, i.e. the number of �bers per node increases, the required

number of wavelengths decreases.

Let Ls;l and Ws;l denote the minimum number of wavelengths which, if provided in each �ber,

can support l-uniform traÆc with full wavelength conversion at all nodes and without wavelength

conversion respectively. Interestingly, in all the topologies for which we were able to obtain closed

form expressions for Ws;l and Ls;l, we found that Ws;l = Ls;l, i.e. wavelength converters cannot

decrease the wavelength requirement for l-uniform traÆc.

For arbitrary network topologies, we discussed several known bounds on Ws;l and Ls;l, and

introduced an upper bound on Ws;l based on embedding a tree topology in any given arbitrary

topology. We observed that the cut set bound yields the exact value of Ls;l in several arbitrary

topologies. Whether or not the cut set bound yields the exact value of Ls;l in any arbitrary topology

remains an open problem. In addition, we suspect that the equationWs;l = Ls;l is also valid for any

arbitrary topology. Whether or not Ws;l = Ls;l for any arbitrary topology is another open problem

for static RWA.

To study dynamic RWA, we adopted the nonblocking formulation. We assume that the basic

traÆc unit is a wavelength, and the traÆc matrix changes from time to time but always belongs

to the k-allowable traÆc set de�ned based on the numbers of fully tunable transmitters and fully

tunable receivers at the access nodes. In addition, we assume that a transition from one traÆc

matrix to another is a result of either a single session arrival or a single session departure. Our

goal is to design on-line RWA algorithms which can support all the k-allowable traÆc matrices in a

rearrangeably nonblocking fashion while using the minimum number of wavelengths and incurring

few rearrangements of existing lightpaths, if any, for each new session request.

We provided on-line RWA algorithms for arbitrary tree, bidirectional ring, and 2D torus topolo-

gies, and described the existing literature on binary hypercube topologies. We observed from our

on-line RWA algorithms that the number of lightpath rearrangements per new session request is

closely related to the number of lightpaths supported on a single wavelength. Roughly speaking,

a higher amount of wavelength reuse incurs a greater number of lightpath rearrangements. In all
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cases, we observed that the number of lightpath rearrangements depends on the topological prop-

erties, e.g. network size, but not on the actual size of the traÆc k as we increase k by some integer

factor.

Let Ld;k and Wd;k denote the minimum number of wavelengths which, if provided in each �ber,

can support k-allowable traÆc with full wavelength conversion at all nodes and without wavelength

conversion respectively. For arbitrary network topologies, we discussed several known bounds on

Wd;k and Ld;k, and introduced an upper bound onWd;k based on embedding a tree topology in any

given arbitrary topology. There exist examples which show that none of those bounds are tight.

Developing good bounds on Wd;k is an interesting topic for future research. Also interesting is the

design of on-line RWA algorithms for arbitrary topologies in which we can derive bounds on the

number of lightpath rearrangements per new session request.

Unlike the case of static l-uniform traÆc, the use of wavelength converters can reduce the

wavelength requirement for dynamic traÆc. For example, it is known that, for symmetric k-

allowable traÆc in an N -node bidirectional ring topology, Ld;k < Wd;k for a suÆciently large

N . Therefore, the investigation of how wavelength converters can be used eÆciently is another

interesting topic for future research in dynamic RWA.

Having developed o�-line and on-line RWA algorithms for several speci�c network topologies,

we hope that our analytical approaches and techniques can be used in the development of similar

RWA algorithms for a wider class of network topologies in the future.

Finally, we began exploring the band/wavelength RWA problem in which we switch traÆc

in bands instead of individual wavelengths. Our goal is to understand when and how individual

wavelengths should be aggregated into bands of wavelengths to reduce the cost of optical switching.

We considered symmetric k-allowable traÆc in the N -node star topology. For k signi�cantly greater

than N , we argued that band switching is attractive, and demonstrated the trade-o� between the

number of optical switches and the number of wavelengths as a function of the band size (in

wavelengths). For k smaller than N � 1, we presented a two-level architecture. In the lower level,

the aggregation nodes switch traÆc to and from the end nodes using wavelength switches. In the

higher level, the aggregation nodes exchange traÆc among themselves using only band switches at

the central hub. The cost comparisons among di�erent choices of network architecture remain to

be investigated in the future.
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Appendix A

EÆcient Bipartite Matchings with

Maximum Node Degree 2

In this section, we provide an eÆcient algorithm for partitioning the edges in a bipartite graph

(V1;V2; E) with jV1j = jV2j = V and maximum node degree 2 into two disjoint matchings. As

pointed out in section 4.1, the general algorithm for bipartite matching in [CLR90] can be used for

our task with the running time O(V 2).1 Our algorithm performs the same task with the running

time O(V ).

Assume for now that each node in V1 has degree 2. The assumption implies that each node

in V2 has degree 2. To see this, assume some node in V2 has degree less than 2. Since there are

2V edges incident on V nodes in V2, there must exist a node in V2 with degree greater than 2,

contradicting the assumption of maximum node degree 2.

The main idea of our algorithm is as follows. In a bipartite graph with node degree 2, the edges

in E form a set of disjoint cycles each of which contains an even number of edges. For example,

�gure A-1 shows three disjoint cycles in a bipartite graph with node degree 2.

For each cycle, we move along the edges of the cycle and alternately assign them to two match-

ings, denoted byM1 andM2, such that no two adjacent edges belong to the same matching. Note

that this is possible since there are even number of edges in each cycle. Finally, we collect the edges

in all disjoint cycles to form two matchings M1 and M2, as illustrated in �gure A-2. We describe

1By running time O(g(n)), we mean the running time can be expressed as a function f(n) of the problem size n
such that there exist a positive real constant c and a positive integer n0 satisfying 0 � f(n) � cg(n) for all n � n0.
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Figure A-1: Cycles in a bipartite graph with node degree 2.
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Figure A-2: Assignment of edges to matchings M1 and M2.

the algorithm formally below. We shall refer to this algorithm as the degree-2 bipartite matching

algorithm.

Algorithm 6 (Degree-2 Bipartite Matching Algorithm) Given a bipartite graph (V1;V2; E)

with jV1j = jV2j = V and node degree 2, form two matchings M1 and M2 as follows.

Step 1: Form a new cycle disjoint from all the previous cycles starting from the lowest-index node

in V1 with an incident edge not yet assigned to either M1 or M2. Assign the edges in this cycle

alternately to M1 and M2 such that no two adjacent edges in the cycle are assigned to the same

matching.

Step 2: Look for the next lowest-index node in V1 with an incident edge not yet assigned to either

M1 or M2. If such a node exists, proceed to step 1. If such a node does not exist, terminate the

algorithm.
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Proof of algorithm correctness: We �rst argue that each iteration of step 1 terminates with

a new cycle. Note that, except for the starting node in V1, step 1 arrives at any other node on one

of its incident edges and leaves on the other. Thus, when it terminates, step 1 must terminate at

the starting node and form a new cycle. Since the number of nodes is �nite, step 1 cannot keep

visiting new nodes forever and has to terminate.

We next show that each cycle has an even number of edges. To see this, choose a node in V1

as the starting node for the cycle. If we move along the cycle by an odd number of edges, we end

up in V2. On the other hand, if we move along the cycle by an even number of edges, we end up

in V1. Thus, when we end up at the starting node in V1, we must have traversed an even number

of edges.

We now show that each node belongs to exactly one cycle. Consider a given node v. Since each

cycle containing v has two edges incident on v, node v which has degree 2 cannot belong to two

or more disjoint cycles. To argue that v must belong to some cycle, we proceed by contradiction.

Assume that v does not belong to any cycle. Since step 2 cannot terminate if v is in V1, it follows

that node v must be in V2. However, the existence of such a node v in V2 implies that there is a

node in V1 connected to v by an edge not yet assigned to either M1 or M2. This contradicts the

terminating condition in step 2.

Since each node belongs to exactly one cycle, all the edges in the bipartite graph are assigned

to M1 and M2. In addition, since there are even number of edges in each cycle, the algorithm

successfully assigns adjacent edges in the same cycle to two di�erent matchings. It follows that

no two edges in M1 are incident on the same node. We conclude that M1 is indeed a matching.

Similar arguments show that M2 is indeed a matching. 2

Since the degree-2 bipartite matching algorithm visits each node in the bipartite graph exactly

once, it follows that the running time of the algorithm is O(V ).

We now relax the assumption that each node in V1 has degree 2. If there is a node in V1 with

degree less than 2, we can add extra edges to the bipartite graph to make all the nodes in V1 and

V2 have degree 2 as follows. Label the nodes in V1 and in V2 from 1 to V . Find the lowest-index

node in V1 with degree less than 2. Add an edge from this node to the lowest-index node in V2

with degree less than 2. Repeat the process until all the nodes in V1 have degree 2. When all the
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nodes in V1 have degree 2, all the nodes in V2 also have degree 2. After using the degree-2 bipartite

matching algorithm to partition the edges into two disjoint matchings, we can remove the extra

edges to get the two desired matchings. Since adding and removing the extra edges can be done

with the running time O(V ), the overall algorithm has the running time O(V ).
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Appendix B

Wd;k for Bidirectional Rings

In this section, we derive the general expression for Wd;k, the minimum number of wavelengths in a

�ber required to support symmetric k-allowable traÆc (k-allowable traÆc in which all the ki's are

equal to k) without wavelength conversion, for the bidirectional ring topology with N � 3 nodes.1

More speci�cally, we shall prove that

Wd;k =

8>>>>>>><
>>>>>>>:

d3k=4e; N = 3;

k; N = 4;

d5k=3e; N = 5; 6;

dNk=3e; N � 7:

In section 4.3, we prove that Wd;k = dkN=3e for N � 7. The same proof can be used to show

that dkN=3e for N = 5. It remains to justify the above expression of Wd;k for N = 3; 4; 6. We shall

consider each value of N separately below. In each case, we make use of a known lemma in [Pan92]

which is a direct consequence of lemma 6

Lemma 17 [Pan92] A symmetric k-allowable traÆc matrix can be partitioned into k symmetric

1-allowable traÆc matrices.

Proof: Given a symmetric k-allowable traÆc matrix, we can construct the traÆc bipartite graph

as de�ned in section 4.1. Each node in the bipartite graph has degree at most k. From lemma 6, we

1The RWA problem for the 2-node ring is trivial. It is obvious that Wd;k = dk=2e for N = 2.
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can partition the set of edges into k disjoint bipartite matchings. Since each matching corresponds

to a symmetric 1-allowable traÆc matrix, the lemma statement follows. 2

Throughout this section, we shall assume that, whenever we partition a given symmetric k-

allowable traÆc matrix into k symmetric 1-allowable traÆc matrices, each 1-allowable traÆc matrix

is maximal in the sense that we cannot add an extra session to the traÆc matrix (except perhaps

for self-traÆc which we do not consider). When the assumption does not hold, we can add extra

sessions to make the traÆc matrix maximal, solve the RWA problem, and then remove the extra

sessions. It is easy to see that, in any maximal traÆc matrix, the sessions form a set of cycles.

B.1 Proof of Wd;k = d3k=4e for N = 3

To derive a lower bound on Wd;k, consider the symmetric k-allowable traÆc in which each node

transmits k wavelengths to the node one hop away in the clockwise (CW) ring direction. A CW

directed wavelength can support up to three sessions, while a counterclockwise (CCW) directed

wavelength can support only one session. Thus, each wavelength can support up to four sessions.

Since there are in total 3k sessions, it follows that Wd;k � d3k=4e.

It remains to prove that Wd;k � d3k=4e. Assume there are d3k=4e wavelengths in a �ber. Par-

tition any given symmetric k-allowable traÆc matrix into k symmetric 1-allowable traÆc matrices.

In each 1-allowable traÆc matrix (assumed to be maximal), the sessions form either a 2-cycle or a

3-cycle.2 Each 2-cycle is a mutual adjacent session pair, i.e. the source (destination) of one session

is the destination (source) of the other session, and can be supported on one directed wavelength

in any ring direction. By inspection, it is easy to see that each 3-cycle can be supported on one

directed wavelength in some ring direction, as illustrated in �gure B-1. In particular, there are only

two possible scenarios for a 3-cycle in the 3-node ring. The 3-cycle can be supported on one CW

directed wavelength in one scenario, and on one CCW directed wavelength in the other. Therefore,

each 1-allowable traÆc matrix can be supported on one directed wavelength.

We can support d3k=4e symmetric 1-allowable traÆc matrices on d3k=4e directed wavelengths

in the required ring directions. This is possible since there are d3k=4e wavelengths available. Having

done so, there are k�d3k=4e remaining 1-allowable traÆc matrices. These matrices contain at most

2An m-cycle is a cycle which contains m sessions.
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Figure B-1: Supporting a 3-cycle on one directed wavelength in the 3-node ring.

3(k � d3k=4e) sessions each of which we support on one directed wavelength in any ring direction.

The total number of directed wavelengths required is d3k=4e+3(k�d3k=4e) � 2d3k=4e. It follows

that d3k=4e wavelengths are suÆcient.

B.2 Proof of Wd;k = k for N = 4

To derive a lower bound on Wd;k, consider the symmetric k-allowable traÆc matrix in which

each node transmits k wavelengths to the node two hops away in the CW direction. A directed

wavelength in any ring direction can support up to two sessions. Thus, each wavelength can support

up to four sessions. Since there are in total 4k sessions, it follows that Wd;k � d4k=4e = k.

It remains to prove that Wd;k � k. Assume there are k wavelengths in a �ber. Partition any

given symmetric k-allowable traÆc matrix into k symmetric 1-allowable traÆc matrices. We claim

and shall prove below that each 1-allowable traÆc matrix can be supported on one wavelength. It

follows that k wavelengths are suÆcient to support k symmetric 1-allowable traÆc matrices, and

thus the original traÆc matrix. Therefore, Wd;k � k.

We now prove the claim that a symmetric 1-allowable traÆc matrix can be supported on one

wavelength. We consider three possible scenarios for the set of cycles in a 1-allowable traÆc matrix

(assumed to be maximal).

1. Two 2-cycles: We can support one 2-cycle on a CW directed wavelength and the other on a

CCW directed wavelength. Thus, one wavelength is suÆcient.

2. One 3-cycle: Ignoring the node which neither transmits nor receives traÆc, we see from

�gure B-1 that a 3-cycle can be supported on one directed wavelength in some ring direction.

Thus, one wavelength is suÆcient.

3. One 4-cycle: If there exists an adjacent session triplet which can be supported on one directed
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wavelength, support the session triplet on one directed wavelength in the required ring di-

rection.3 We then support the remaining session on one directed wavelength in the opposite

ring direction. Thus, one wavelength is suÆcient.

Otherwise, i.e. no such session triplet exists, we form two adjacent session pairs from the

4-cycle. The two session pairs can be supported on two directed wavelengths in the required

ring directions. We now show that the two required ring directions cannot be the same, and

thus one wavelength is suÆcient.

We proceed by contradiction. Let s1; s2; s3, and s4 denote the four contiguous sessions in

the 4-cycle. Moreover, (s1; s2) and (s3; s4) are the two adjacent session pairs. Let x1; x2; x3,

and x4 denote their path lengths (in hops) in the CW direction, and X = x1 + x2 + x3 + x4.

Suppose each session pair can be supported on a CW directed wavelength, but not on a CCW

directed wavelength. Since (s1; s2) can be supported on a CW directed wavelength but do

not form a 2-cycle, x1 + x2 < 4. Similarly, x3 + x4 < 4. Thus, X < 8. Since (s1; s2; s3) is not

a session triplet which can be supported on one CW directed wavelength, x1 + x2 + x3 > 4.

Thus, X > 4. The inequalities 4 < X < 8 contradict the fact that the sum of path lengths in

any cycle in the 4-node ring must be an integer multiple of 4.

We conclude that the two adjacent session pairs cannot require two CW directed wavelengths.

Reversing the roles of CW and CCW directions in the above arguments, we see that they

cannot require two CCW directed wavelengths. It follows that one CW directed wavelength

and one CCW directed wavelength, i.e. one wavelength, are suÆcient.

B.3 Proof of Wd;k = d5k=3e for N = 6

To derive a lower bound on Wd;k, consider the symmetric k-allowable traÆc matrix which can be

partitioned into k symmetric 1-allowable traÆc matrices each of which contains the sessions shown

in �gure B-2. In particular, there are �ve sessions: (1,3), (3,6), (6,2), (2,5), and (5,1).

By inspection, a CW directed wavelength can support up to two sessions, while a CCW directed

wavelength can support only one session. Thus, each wavelength can support up to three sessions.

3An adjacent session triplet is a set of three sessions s1; s2, and s3 such that the destination of s1 is the source of
s2, and the destination of s2 is the source of s3.

146



1

35

6 2

4

A CW directed wavelength can
can support at most two sessions.

The sessions are (1,3), (3,6), (6,2),
(2,5), and (5,1).

A CCW directed wavelength can
can support only one session.

Figure B-2: Symmetric 1-allowable traÆc for the lower bound of Wd;k for N = 6.

Since there are in total 5k sessions, it follows that Wd;k � d5k=3e.

It remains to prove that Wd;k � d5k=3e. Assume that there are d5k=3e wavelengths in a

�ber. Partition any given symmetric k-allowable traÆc matrix into k symmetric 1-allowable traÆc

matrices. We claim and shall prove later that each symmetric 1-allowable traÆc matrix can either

be supported on two CW directed wavelengths and one CCW directed wavelength, or on one CW

directed wavelength and two CCW directed wavelengths. Let p be the number of 1-allowable

traÆc matrices which can be supported on two CW directed wavelengths and one CCW directed

wavelength. These pmatrices can be supported on 2p CW directed wavelengths and p CCW directed

wavelengths. The other k � p matrices can be supported on k � p CW directed wavelengths and

2(k�p) CCW directed wavelengths. Thus, in total, we can support the given symmetric k-allowable

traÆc matrix on k+p CW directed wavelengths and 2k�p CCW directed wavelengths. We consider

three cases below.

� Case 1: k + p � d5k=3e. Support d5k=3e session pairs in the CW direction. This is possible

since there are d5k=3e wavelengths available. Having done so, there are k + p � d5k=3e

remaining session pairs which can share a CW directed wavelength. However, we support

these pairs without sharing using 2(k + p� d5k=3e) CCW directed wavelengths. In addition,

there are 2k�p session pairs which can share a CCW directed wavelength. Thus, the number

of CCW directed wavelengths required is

2(k + p� d5k=3e) + 2k � p � 2k=3 + p � d5k=3e:

Thus, d5k=3e wavelengths are suÆcient.

� Case 2: 2k � p � d5k=3e. This case is similar to case 1. By reversing the roles of CW and
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CCW directions, we obtain the same conclusion that d5k=3e wavelengths are suÆcient.

� Case 3: k + p � d5k=3e and 2k � p � d5k=3e. In this case, it is clear that d5k=3e directed

wavelength in each ring direction, i.e. d5k=3e wavelengths, are suÆcient.

We now prove the claim that each symmetric 1-allowable traÆc matrix can either be supported

on two CW directed wavelengths and one CCW directed wavelength, or on one CW directed

wavelength and two CCW directed wavelengths. We consider six possible scenarios for the set of

cycles in a 1-allowable traÆc matrix (assumed to be maximal).

1. Three 2-cycles: We can support two 2-cycles on two CW directed wavelengths and the other

on one CCW directed wavelength. Thus, the claim follows.

2. One 2-cycle and one 3-cycle: Consider the 3-cycle. By ignoring the nodes which neither

transmit nor receive traÆc, we see from �gure B-1 that the 3-cycle can be supported on one

directed wavelength in some ring direction. For the 2-cycle, we can support it on one directed

wavelength in any ring direction. The claim then follows.

3. One 2-cycle and one 4-cycle: Consider the 4-cycle. By ignoring the nodes which neither

transmit nor receive traÆc, we see from the previous section that one wavelength is suÆcient

to support the 4-cycle. For the 2-cycle, we can support it on one directed wavelength in any

ring direction. The claim then follows.

4. Two 3-cycles: From the above argument, each 3-cycle can be supported on one directed

wavelength in some ring direction. Thus, the claim follows.

5. One 5-cycle: We can form two adjacent session pairs and support them on two directed

wavelengths in the required ring directions. Since the remaining session can be supported on

one directed wavelength in any ring direction, the claim follows.

6. One 6-cycle: If there exists an adjacent session triplet which can be supported on one directed

wavelength, support the session triplet on one directed wavelength in the required ring di-

rection. Then form another adjacent session pair and support it on one directed wavelength

in the required ring direction. Since the remaining session can be supported on one directed

wavelength in any ring direction, the claim follows.

Otherwise, i.e. no such session triplet exists, we form three adjacent session pairs from the 6-

cycle. The three session pairs can be supported on three directed wavelengths in the required
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ring directions. We show below that the three required ring directions cannot be the same,

and thus the claim is valid.

We proceed by contradiction. Let s1; s2; s3; s4; s5, and s6 denote the six contiguous sessions

in the 6-cycle. Moreover, (s1; s2), (s3; s4), and (s5; s6) are the three adjacent session pairs.

Let x1; x2; x3; x4; x5, and x6 denote their path lengths (in hops) in the CW direction, and

X = x1+x2+x3+x4+x5+x6. Suppose each session pair can be supported on a CW directed

wavelength, but not on a CCW directed wavelength. Since (s1; s2) can be supported on a

CW directed wavelength but do not form a 2-cycle, x1 + x2 < 6. Similarly, x3 + x4 < 6 and

x5 + x6 < 6. Thus, X < 18. Since (s1; s2; s3) is not a session triplet which can be supported

on one CW directed wavelength, x1+x2+x3 > 6. Similarly, x4+x5+x6 > 6. Thus, X > 12.

The inequalities 12 < X < 18 contradict the fact that the sum of path lengths in any cycle

in the 6-node ring must be an integer multiple of 6.

We conclude that the three adjacent session pairs cannot require three CW directed wave-

lengths. Reversing the roles of CW and CCW directions in the above arguments, we see that

they cannot require three CCW directed wavelengths.
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Appendix C

On-Line Single-Hub Ring RWA

Algorithm

In this section, we present the on-line single-hub ring RWA algorithm, as mentioned in section 4.3.1,

as well as its correctness proof. In the algorithm below, we maintain two RWA conditions at all

time: (i) only adjacent session pairs at the hub share a directed wavelength, and (ii) all mutual

adjacent session pairs at the hub share a directed wavelength.

Algorithm 7 (On-Line Single-Hub Ring RWA Algorithm) (Use d(N � 1)=2e wavelengths

and perform at most four lightpath rearrangements per new session request.)

Session termination: When a session terminates, simply remove its associated lightpath from

the ring without any further lightpath rearrangement.

Session arrival: When a session arrives and the resultant traÆc matrix is still k-allowable, proceed

as follows.

Step 1: If the new session, denoted by u, can form a mutual adjacent session pair at the hub with

some existing session, denoted by x, there are two possibilities.

(1a) If x is not sharing its directed wavelength, assign the mutual adjacent session pair u and x

to share this directed wavelength. In this case, no lightpath rearrangement is required.
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(1b) If x is sharing a directed wavelength with another existing session, denoted by y, then x and

y are not mutually adjacent at the hub, or else u and x cannot be mutually adjacent at the

hub. Remove y from its directed wavelength and assign the mutual adjacent session pair u

and x to share the directed wavelength of y.

If there is a free directed wavelength, use it to support y. In this case, one lightpath rear-

rangement is made. Otherwise, we claim that y can form another adjacent session pair at

the hub with some nonsharing session, denoted by z. Note that y and z cannot be mutually

adjacent at the hub, or else they would have shared a directed wavelength.

If the directed wavelength of z can support y, assign y and z to share this directed wavelength.

In this case, one lightpath rearrangement is made. Otherwise, we claim that there must exist

either a nonsharing session or a mutual adjacent session pair in the opposite ring direction.

In the case of a nonsharing session in the opposite ring direction, we remove that nonsharing

session and support y and z on its directed wavelength. The removed nonsharing session can

then be supported on the directed wavelength of z. In this case, a total of three lightpath

rearrangements are made. In the case of a mutual adjacent session pair in the opposite ring

direction, we remove that mutual adjacent session pair and support y and z on their directed

wavelength. The removed mutual adjacent session pair can then be supported on the directed

wavelength of z. In this case, a total of four lightpath rearrangements are made.

Step 2: If u cannot form a mutual adjacent session pair at the hub with any existing session and

there is a free directed wavelength, use a free directed wavelength to support u. In this case, no

lightpath rearrangement is made.

Step 3: If u cannot form a mutual adjacent session pair at the hub with any existing session and

there is no free directed wavelength, we claim that, among nonsharing sessions and u, a nonmutual

adjacent session pair at the hub can be formed. Denote this session pair by y and z. There are two

possibilities.

(3a) If u is in the session pair, i.e. y = u or z = u, assume without loss of generality that y = u. If

the directed wavelength of z can support y, assign y and z to share this directed wavelength.

In this case, no lightpath rearrangement is required. Otherwise, we claim there must exist
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either a nonsharing session or a mutual adjacent session pair in the opposite ring direction.

In the case of a nonsharing session in the opposite ring direction, we remove that nonsharing

session and support y and z on its directed wavelength. The removed nonsharing session can

then be supported on the directed wavelength of z. In this case, a total of two lightpath

rearrangements are made. In the case of a mutual adjacent session pair in the opposite ring

direction, we remove that mutual adjacent session pair and support y and z on their directed

wavelength. The removed mutual adjacent session pair can then be supported on the directed

wavelength of z. In this case, a total of three lightpath rearrangements are made.

(3b) If u is not in the session pair, then y 6= u and z 6= u. If the directed wavelength of either

y or z can support the session pair, assign y and z to share this directed wavelength. This

sharing frees one directed wavelength on which u can be supported. In this case, one lightpath

rearrangement is made. Otherwise, we claim that there must exist either a nonsharing session

or a mutual adjacent session pair in the opposite ring direction. In the case of a nonsharing

session in the opposite ring direction, we remove that nonsharing session and support y and

z on its directed wavelength. The removed nonsharing session and the new session can then

be supported on the directed wavelengths of y and z. In this case, a total of three lightpath

rearrangements are made. In the case of a mutual adjacent session pair in the opposite ring

direction, we remove that mutual adjacent session pair and support y and z on their directed

wavelength. The removed mutual adjacent session pair and the new session can then be

supported on the directed wavelengths of y and z. In this case, a total of four lightpath

rearrangements are made.

Proof of algorithm correctness: From the algorithm description, it is clear that we always

keep the two desired RWA conditions, i.e. (i) only adjacent sessions at the hub share a directed

wavelength, and (ii) all mutual adjacent sessions at the hub share a directed wavelength. In

addition, it is clear that at most four lightpath rearrangements are made to support each new

session request. We shall prove the two claims in step 1, and the other three claims in step 3.

The �rst claim in step 1 and the �rst claim in step 3 are essentially the same. We shall prove

the two claims at the same time. The claim states that if a session to be supported, denoted by w,

is not mutually adjacent to any existing session at the hub and there is no free directed wavelength
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to support it, then there exists among nonsharing sessions and w an adjacent session pair at the

hub, denoted by y and z.

We proceed by contradiction. Assume that an adjacent session pair at the hub cannot be

found. Let p be the number of mutual adjacent session pairs at the hub. Let q be the number

of nonmutual adjacent session pairs at the hub which share a directed wavelength. Let r be the

number of nonsharing sessions including session w. We argue that r � N � 1� p� q. To see this,

de�ne rti and rri , 1 � i � N , to be the number of nonsharing sessions transmitted and received

at node i respectively. Since there is no adjacent session pair at the hub (node 1) among these r

sessions, we have that either rt1 = 0 or rr1 = 0. Without loss of generality, assume rt1 = 0. Note

that each of the p + q sharing session pairs which are adjacent at the hub uses one transmitter

at a nonhub node. There are in total N � 1 transmitters at nonhub nodes. Thus, the number of

transmitters used for nonsharing sessions at nonhub nodes are bounded by
PN

i=2 r
t
i � N�1�p�q.

It follows that

r =
NX
i=1

rti = rt1 +
NX
i=2

rti � N � 1� p� q:

Since we have a total of 2d(N �1)=2e directed wavelengths, the number of directed wavelengths

available to support nonsharing paths is 2d(N � 1)=2e � p � q, which is at least the number of

nonsharing paths N � 1 � p � q. This contradicts the assumption that there is no free directed

wavelength to support w. Thus, we have shown that an adjacent session pair at the hub must exist.

The second claim in step 1 and the last two claims in step 3 are essentially the same. We shall

prove them all at the same time. The claim states that if a nonmutual adjacent session pair at the

hub, denoted by y and z, cannot �t on a directed wavelength of either y or z and there is no free

directed wavelength in the opposite ring direction, then there exists either a nonsharing session or

a mutual adjacent session pair on a directed wavelength in the opposite ring direction. As de�ned

above, let p be the number of mutual adjacent session pairs at the hub. Let q̂ be the number of

nonmutual adjacent session pairs at the hub including sessions y and z. Note that each of these

q̂ session pairs may or may not share a directed wavelength. We �rst show that q̂ � b(N � 1)=2c.

De�ne the following quantities for node i, 2 � i � N . Let q̂ti and q̂ri denote the number of sessions

in those q̂ session pairs which are transmitted and received at node i respectively. It is clear that

q̂ti � ki and q̂ri � ki. By de�nition, each of these q̂ session pairs is not a mutual adjacent session
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pair at the hub. Thus, at each nonhub node i, either q̂ti = 0 or q̂ri = 0. It follows that q̂ti + q̂ri � ki.

Because each of the q̂ session pairs uses one transmitter and one receiver at nonhub nodes, it follows

that

2q̂ =
NX
i=2

(q̂ti + q̂ri ) �
NX
i=2

ki = N � 1:

Since q̂ is an integer, we have shown that q̂ � b(N � 1)=2c.

The claim is now apparent from the fact that q̂ � b(N � 1)=2c. In other words, the number

of supported nonmutual adjacent session pairs at the hub q̂ � 1 is strictly less than the number

of directed wavelengths in each ring direction d(N � 1)=2e. Given that there is no free directed

wavelength, it follows that, in either ring direction, either a nonsharing session or a mutual adjacent

session pair exists. 2
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