Metadata, citation and similar papers at core.ac.uk

Provided by DSpace@MIT

VoicelLink: A Speech Interface For Responsive Media
by
YiLi

M.A.Sc. in Electricd Engineering, University of Toronto, Canada, 1999
B.Eng. in Electronics Engineering, Tsnghua Universty, China, 1997

SUBMITTED TO THE PROGRAM IN MEDIA ARTS AND SCIENCES,
SCHOOL OF ARCHITECTURE AND PLANNING,
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE IN MEDIA TECHNOLOGY
AT THE
MASSACHUSETTSINSTITUTE OF TECHNOLOGY
SEPTEMBER 2002

© 2002 Massachusetts Indtitute of Technology. All rights reserved.

Signature of Author
Program in Media Arts and Sciences
August 9, 2002
Certified by
V. Michad Bove Jr.
Principad Research Scientist
Object-Based Media Group, MIT Media Laboratory
Thesis Supervisor
Accepted by

Andrew B. Lippman
Chairman, Departmental Committee on Graduate Students
Program in Media Arts and Sciences

https://core.ac.uk/display/4384864?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

VoicelLink: A Speech Interface For Responsive Media

by
Yi Li

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning,
on August 9, 2002 in partid fulfillment of the
requirements for the degree of
Madter of Science in Media Technology

Abstract

We developed Voicelink, a speech interface package for responsive media applications.
It contains a s&t of gpeech interface modules that can interface with various multimedia
goplicaions written in ISs, a scripting programming language created a the MIT Media
Laboratory. Specificaly, we designed two command-and-control voice interfaces, one for
iCom, a multi-point audio/video communication system, and ancther for HyperSoap, a
hyperlinked TV program. The iCom module enables users to control an iCom dgation
using voice commands while the Hyper Soap module dlows viewers to select objects and
access related information by saying objects names. We aso huilt a speech software
library for Ids, which dlows users to develop speech aware gpplications in the ISs
programming environment.

We addressed a number of problems when designing VoiceLink. In the case of the iCom
module, visud information is used to seamlesdy inform users of voice commands and to
provide them with ingant feedback and indructions, making the speech interface
intuitive, flexible and eassy to use for novice usa's. The mgor chalenge for the
HyperSoap module is the open vocabulary problem for object sdection. In our design, an
item lig is displayed on the screen upon viewers request to show them sdectable
objects. We dso created an object name index to model how viewers may cal objects
goontaneoudy. Using a combination of item lig and name index in the HyperSoap
module produced fairly robust performance, meaking the speech inteface a useful
dterndive to traditiond pointing devices. The result of user evaudtion is encouraging. It
showed that a speech based interface for responsve media gpplications is not only useful
but aso practicd.

Thes's Supervisor: V. Michad Bove .
Title: Principal Research Scientist, MIT Media Laboratory

Thess Committee

Thes's Supervisor

Thess Reader

V. Michad Bove J.
Principal Research Scientist
MIT Media Laboratory

Thess Reader

Christopher Schmandt
Principal Research Scientist
MIT Media Laboratory

Deb Kumar Roy
Assistant Professor
MIT Program in Media Arts and Sciences

Acknowledgments

As dways, there are many people to thank. Foremost among them is V. Michadl Bove J.,
my advisor, whom | thank not only for his wise supervison, continuous encouragement
and ready accesshility, but dso for affording me the freedom to devdop my own
research project and pursue the directions that intrigued me most.

| would like to thank my committee members, Chrisopher Schmandt and Deb Kumar
Roy, for teaching me a lot aout speech interface design, and for carefully reviewing my
thess and providing useful suggestions.

A number of colleagues and friends a the Media Lab provided me with assstance and
encouragement during the course of the development of VoicelLink. | cannot help but
thank: Stefan Agamanclis for answering me numerous questions about Iss ad iCom;
Surj Patel for hdping me get the HyperSoap program up and running; Jm McBride and
Jacky Madlett for heping me solve many Linux configuration problems;, Kwan Hong Lee
and Jang Kim for helping me st up the IBM Viavoice SDK. Also, | would like to thank
dl the members of the Object-Based Media Group and the Speech Interface Group at the
Media Lab for paticipating in the user evduation and providing ingghtful comments and
suggestions.

Specid thanks go to Michad Rosenblatt, my officemate and a bicyde guru, for bringing
s0 many fun toys (including two cool bikes) to the office.

My grditude extends to Linda Peterson and Pa Solakoff for reminding me every
deadline during my Stay a the Media Lab, and to Pat Turner for taking care of ordering
al the equipments | needed.

Findly, none of the work | did would have been possble without the unfaling love and
continuous encouragement | received from my parents and sster throughout my life.

Contents

Chapter 1
a8 0o 18 Tox o] o ISR 13
00 Y 011 Y7 4o S 13
A€o 3ROSR 15
RIS 10 o SR 16
1.3.1 S0EECH rECOGNITION......ccueecieeiecie et r e ens 16
1.3.2 SPEECH INLEITACE ...ttt 16
1.3.3 INAUSLIY SEANCAIAScc.veeeeeiecie e 18
1.4 Challenges and aPPrOBCNEScocueieiieeieeie ettt s sa e re e ses 19
1.5 TRESIS OULIINE ...t 20

Chapter 2
Speech interface design for ICOMccevviivee e 21
2.1 Brief description Of TCOML.......ccoiiiiiiiriesie e 21
2.2 The SPEECh INEITACE.......ocuiie e 22
2.2.1 Functionalities of the iCom speech interface...........cocvvvvcveiiecceecee e, 23
2.2.2 Design of the iCom speech INtErfacecooveverererieeeses e 23
2.2.3 Theinteraction flow and the command Setccccevrieiininvencnceee 27
2.24Thenew iCom SCreen diSPlaycoeoererere i 28
2.3 VO0ICEMOUEL ..ottt st be b 31
2.4 SYStEM @ICNITECIUIE........ouiii et 31

Chapter 3
Speech interface design for HyperSoapcccovvvvvieeeie i, 33
3.1 Hyperlinked video and speech interface.........cccoevvececeeve e, 33
3.2 ThE ChalENGE ... et 35
3.3 Design of the Hyper Soap speech interface........ccoovececeecece e 36
1T 0 I 1 (=0 1 S 37

BB 2 NAMB INUEK. .ot e aeeennreeeeeeeeaans 39

3.3.3 RESOIVING @MDIGUITY....c.eeveeitieiieieeeeee et 40
3.3 4 TheinteraCtion flOW.........coviiiriiieeee s 41
3.3.5 OtNEN ISSUES......coitieiiieiesieeie ettt sttt sre et e st e eneesre e e e 43
Chapter 4
WSS Y= 1 LU = L1 o o TR 45
4.1 Subjects, tasks and PrOCEAUIES.eccueieerieeieceeste e re e sree e 45
4.2 ODSEIVELIONS......eueiitieiieeie sttt eee st stesee e e teeeesseesbeseesaeesseesaesseesbesnsesseessesnsesneensens 47
A3 FEEADACK ..ot 48
4.3.1 The CaSE fOr 1COM.....cieiiiieieiiesiee ettt sre e nee s 48
4.3.2 The Case fOr HYPEIr SOAPccviiiiriereeieesie ettt 50
Chapter 5
Speech softwarelibrary for 1SS ... 53
5.1 The ISis programming [anQUAOE..........ccceeiieeiieeiie et et ere e 53
5.2 1BM ViaVoice SDK and speech aware appliCationscccceverenerenenenieniennens 53
5.3 The Isis speech sOftware lHbrary........cccoceece e ceccececeee e 54
Chapter 6
(@] o: [0 o] 1S SRR 57
6.1 SUMIMBIY ...ttt r e sb e sn e e se e ne e e e sanenneenn e 57
6.2 FULUIE WOTK ...ttt sttt st 58
N] 0 1= [0 [oS3 SRR 61
A. Voice commands for the iCom speech interface..........cocoooevrieiciinnc e, 61
B. Object name index for HYPErS0aPcooveiereeie et 62
Bibliographycooiiieiie s 65

10

List of Figures

FIgUre 1.1 AN iCOM SEAION.couiiiiiiiisiesieeeee ettt be e 13
Figure 1.2 Viewer of HyperSoap clicks on the blue jeans using a laser pointer. 14
Figure 2.1 lllustration of iCom screen projections for different activities............ccceeue.... 22
Figure 2.2 The interaction flow of the iCom speech interface.cccccvvevivecececceceenee, 27
Figure 2.3 The modified iCom screen display tailored to the speech interface. 29
Figure 2.4 The modified iCom screen projections in different states.c.ccevvevvrnenee. 30
Figure 3.1 A pair of frames from HyperS0ap.cccooereereriinieneere e s 34
Figure 3.2 A frame from An Interactive Dinner At JUHA'S........ccoovevveieeneneneneneseeeeenes 34
Figure 3.3 An item list containing Desk items and Men’sitemsis displayed. 38
Figure 3.4 A frame containing the two-tier item list. ... 39
Figure 3.5 Explicit disambiguation: ortscreen confirmation.cccceeeeeveeveeceeseceene. 41
Figure 3.6 The interaction flow of the Hyper Soap speech interface.ccocvvvvreene. 42
Figure 3.7 Four frames of the Hyper Soap program in different states.ccccceevvvenenee. 43

11

12

Chapter 1

| ntroduction

1.1 Motivation

Many responsve media gpplications have been developed a the MIT Media Lab using

the 19s programming language [1]. Listed below are two examples.
iCom, a multipoint communication portd condsting of severd dations tha links
different workspaces of the MIT Media Lab with Media Lab Europe in Dublin. It
sarves severd purposes, including acting as an ambient porthole that provides a
constant sense of awareness, a live interpersond communication sysem, and a
community messaging center [2]. Figure 1.1 shows an iCom dation, which is
composed of a projection screen and a Stting area where users can control the
iCom dation using atrackbdl (a big mouse).
HyperSoap, a hyperlinked video program that resembles tdevison serid dramas
known as “sogp operas’, in which many items on the screen ae linked to
information stored in a database and can be sdlected by viewers usng a device
with point-and-click capability (i.e, mouse, laser pointer or touch screen) [3].
Figure 1.2 shows how Hyper Soap viewers can select objects using alaser pointer.

Figurel1.1 AniCom station.

13

Figure 1.2 Viewer of Hyper Soap clickson the blue jeansusing a laser pointer.

In these examples, an interface based on pointing devices is used to control and interact
with various media objects. Although very rdiable, such an approach has severd
limitations
While it is easy to st up an iCom projection screen in a public place such as the
hdlway of an office building, it is not dways possble to find a suitable gtting
areato place atable for the trackbdl. This limits the usability of theiCom system.
When sdecting objects from HyperSoap using a pointing device, it is difficult to
click on a samdl or fast-moving object. Also, once an object has disappeared from
the TV screen, it can no longer be accessed.
As the only means for users to control various media objects, the pointing device
limits the interface experience to mouse clicking. As we integrale more
responsve media gpplications into our dally environment, an interface tha could
enable more naturd, trangparent, and flexible interaction is desired.

The above problems can be avoided if viewers can interact with the iCom system or the
HyperSoap program through a speech-based interface. For example, a trackbal is no
longer needed if usars can control the iCom system religbly usng voice commands. With
a speech interface, HyperSoap viewers can sdect an object on the screen by smply
saying its name, no maiter how smdl it is and how fast it is moving. They can even sdect

14

objects not shown on the screen. More importantly, as an dternative to pointing devices,
a speech basad interface offers a more compelling and enjoyable interaction experience.
For example, an interface with voice control cgpability enadbles users to interact with an
iCom dation in a reaxed and hands-free manner, engaging them in a responsve
environment rather than making them fed like they ae just operding yet another
computer.

1.2 Goals

In this thess, we amed to develop a speech interface package cdled Voicelink, which
can inteface with vaious multimedia applications written in the ISs programming
language. The mgor god was to overcome the limitations of the pointing devices usad in
the iCom sysem and the HyperSoap program by designing two commeand-and-control
gpeech interface modules, one for iCom and another for Hyper Soap. With functiondities
gmilar to those of a trackball, the iCom module would enable users to control an iCom
dation usng voice commands. As an dtenative to a lasr pointer, the HyperSoap
module would alow viewers to sdect objects and access related information by saying
objects names. A second god was to build a speech software library for Iss, which
would dlow users to develop speech aware gpplications in the Iss programming
environment without having to know the detalls of the underlying speech recognition
system, thus lessoning the burden of developers.

Compared with pointing devices, a speech based interface has its own limitations. Speech
is inherently ambiguous and speech recognition is error prone, making a speech interface
less rdiable than pointing devices under certain circumgances. For example, while a
manudly impared user with a repetitive dress injury may prefer a Speech-based
interface, a user with heavy accent may find such an interface difficult to use. Therefore,
dthough VoicelLink was designed as a stand-adone speech interface, we did not expect it
to replace traditiond pointing devices completely a the current stage. Rather, the god
was to develop an dternative that can supplement the pointing devices and enhance ther
fundtiondities. The gspeech interface should be able to work interchangesbly with a

15

trackbal or a laser pointer to offer greater accessbility for diverse users and usage

context.

1.3 Related work

1.3.1 Speech recognition

Sgnificant progress in gpeech recognition technology has been made during the last
several decades. Large vocabulary, speaker-independent, continuous speech recognition
is now posshble. State of the at sysems are generdly developed based on dSatidtical
modding and data-driven approaches. With lexicon sze of more than 50,000 words, they
can achieve recognition rates of more than 90% for cooperative speskers in benign
environment. However, recognition of conversational speech involving multiple speskers
and poor acoudtic environment remains a chalenge. Lised below are some examples of
leading commercia speech recognition systems:
Dictation software, including Viavoice deveoped by IBM Corp,
NaturalySpeaking by Dragon Systems, and Voice Xpress by Lernout & Hauspie.
(Lernout & Hauspie acquired Dragon Systems in 2000 and discontinued its own
gpeech recognition software: VVoice Xpress.)
Teephone transaction systems developed by various companies, including AT&T
Corp., Nuance Communications Inc., SpeechWorks Internationad Inc., TdlMe
Networks Inc., and Philips Electronics NV.
In addition to the above commercia products, severd academic inditutions adso have
developed speech recognition systems. Among them are the Sphinx system [4] developed
a Carnegie Mdlon Univeraty and the SUMMIT system developed at MIT [5].

1.3.2 Speech interface

Speech interface is an active research area. State of the art speech recognition and
understanding systems have made speech aware applications practicd. However,

16

desgning a good voice interface for a given gpplication remains a chdlenge. A number
of approaches for speech interface design have been explored [6], including:
Vocabulary-driven command-and-control systems, which congrain what users
can say and explore the congtraint to produce robust performance.
Natura language processng based voice interface sysems, which accept and
react to users spontaneous speech.
Multi-moda interfaces, which combine speech, gesture and other means of
human communications to make the sysem more flexible and efficient.
User-derived interfaces, which learn and adapt to users behavior.

Lee [7] deveoped IMPROMPTU, an Internet Protocol based audio platform for mobile
communications and networked audio applications. A command-and-control voice
interface was implemented on IMPROMPTU cdlient to dlow users to switch applications
and control each application. Other examples of vocabulary-driven command-and-control
sysems include voice control interfaces for cars and many of the didogtree based
telephone transaction systems currently in use,

The Spoken Language Systems Group a MIT Laboratory for Computer Science
developed GALAXY [8], an architecture for integrating speech technologies to create
natura language understanding based conversationd spoken language sysems. With the
GALAXY architecture they have developed a wide variety of tdephone information
retrievd systems, induding: JUPITER - A weather information sysem; MERCURY - An
arline flight planning sysem; PEGASUS - An arline flight daius sysem; VOYAGER -
A city guide and urban navigation sysem [9].

Schmandt et al. built “Put That there’ [10], one of the fird multi-moda systems, which
combined speech and manud pointing to manipulate objects. Oviatt used a combination
of speech and penbased gesture to perform mutua disambiguation [11]. The result
showed that dthough speech recognition done performed poorly for accented English
peskers, their multi-moda recognition rates did not differ from those of native English
Speakers.

17

The systems described above are interface centered. Even for natural language processing
basad interfaces, a set of predefined rules or grammars are used to parse users input. An
dternative gpproach is to develop user-derived interfaces. Good et al. [12] built an
interface to accommodate novice usarS behavior. Through careful observation and
andyss of the actud behavior of many users a mal interface unusable by novices
evolved into one that adlows novices to do ussful work within minutes. More recently,
Roy [13] proposed Adaptive Spoken Interfaces, which learn individud user's speech

patterns, word choices, and associated semantics.

1.3.3 Industry standards

The SALT (Speech Application Language Tags) Forum [14] released “Speech
Application Language Tags Specification Verson 1.0° in July 2002. It dlows developers
to add speech “tags’ to Web applications written in XML (Extensble Markup Language)
and HTML (Hypertext Markup Language), meking it possble to creste multi-moda
programs that can be controlled by both voice and traditiond input methods. The SALT
specification is aso designed for applications that dont have a visud user interface, such
as those accessed by telephone. Founding members of the SALT Forum indude
Microsoft Corp., SpeechWorks International Inc., Cisco Systems Inc., Intel Corp. and
Philips ElectronicsNV.

A riva €ffort is under way to develop a standard for speech interfaces based on a
technology cdled VoiceXML [15]. This effort is led by a group of companies including
IBM Corp., Matorola Inc., AT&T Corp. and Lucent Technologies Inc. First announced in
early 1999, VoiceXML originaly was desgned to dlow applications to be accessed by
telephone. Efforts are under way to add the cgpability to voice-enabled applications that
are accessed using the Web.

18

1.4 Challenges and appr oaches

We encountered a number of problems during the development of VoicelLink. In the case
of the iCom module, the chdlenge is to make the voice interface intuitive and flexible so
that novice users in public places could easly underand how it works with minima
traning. In our desgn, we utilized the iCom projection screen to inform users of voice
commands and provide them with ingant visud feedback and indructions. Many voice
commands are seamlessly incorporated into the screen display to diminate the need for
users to remember them. To reduce fase darms, a press-to-tak button was implemented
to alow users to activate and deactivate the speech interface as needed so that normd
conversation between users at two locations will not be incorrectly taken as voice
commands by the speech interface. Users could aso toggle the dsate of the speech
interface by saying apair of keywords.

The mgor chdlenge for the HyperSoap module is the open vocabulary problem for
object sdection. When watching HyperSoap, people do not know what items on the
screen are sdectable, and in many cases they do not know how to cdl the items that they
want to sdect. Moreover, different viewers may refer to the same item using different
names, making it very difficult to assign a unique name to each object. To overcome this
problem, we used a combination of item lig and name index. An item ligt containing the
names of sdectable items is displayed on the screen upon viewers request to show what
objects are sdectable and how to cdl them. A name index is created to modd how
viewers may cal objects spontaneoudy. It contains a number of synonyms for each
sectable object, dlowing viewers to sdect items in a more naturd and flexible manner.
Ambiguity is another problem we must address a viewer may refer to different items
usng a common name and they do not know how to diginguish them when they want to
sdect one of them by spesking. We solved this problem using a combination of explicit
on-screen confirmation and implicit disambiguation based on timelines.

In our system, we used the IBM ViaVoice SDK software [16] for speech recognition. It
has a large vocabulary, spesker adaptive speech recognition engine. It aso provides a

19

Software Developer's Kit (SDK) that alows users to develop speech aware applications
usng a set of Application Programming Interfaces (APIs), which are desgned for use
with the C programming language. We implemented Voicelink usng a combination of C
and ISs under the Linux operating sysem. In our implementation, we inddled the IBM
Viavoice speech recognition engine on a speech application server and fed recognition
results to an 19s Sation running responsive media gpplications.

1.5 Thesisoutline

The rest of the thess is organized as follows Chapter 2 and Chepter 3 describe the
gpeech interface design for the iCom module and the HyperSoap module respectively;
Chapter 4 presents user evduation results; Chapter 5 describes the Isis speech software
library; Chapter 6 concludes this thesis with discussons on future work.

20

Chapter 2

Speech interface design for iCom

VoiceLink went through two iterations of desgn and test. Severd changes to the initid
design were made based on the lessons we learned from user evauation. This chapter
presents the find desgn of the iCom speech interface module. Section 2.1 provides a
brief description of the iCom sysem. Maor desgn consderations are discussed in
Section 2.2. A number of approaches for voice node adaptation are proposed in Section
2.3. The system architecture is described in Section 2.4.

2.1 Brief description of iCom

The iCom system connects severd Stes at the MIT Media Lab and Media Lab Europe 24
hours a day. Its normad mode is background, providing continuous ambient awareness
among dl dtes but a any time it can be transformed into a foreground mode for ad-hoc
tde-meetings or casud interaction, without the need to did teephones or wait for
connections to be established. Echo-canceling spesker/microphones endble full duplex
gpeech trangmisson. iCom aso functions as a bulletin board for community messages or
announcements, sent via emal. Message titles are liged in chronologica order with
varying sze to reflect the age and popuarity of a posting. The screen projections a each
dgte are synchronized s0 that people at different sites see exactly the same projection.
Figure 2.1 shows an iCom dation a the MIT Media Lab and a few screen projections for
different activities.

Users control an iCom dation usng a trackbdl: dicking the windows changes ther
arangement, dlowing the display to be customized for a particular activity. Specificdly,
the left button of the trackbal is labded as “Sdect” and the right button is labeled as
“Digmiss’. Left dicking on a window enlarges it while right dicking drinks it. Left
cicking on a message title causes its full text to be displayed. Right clicking on the

21

displayed text closes the message display. Audio a each sSte can be turned on or off by
left clicking or right clicking on its corresponding indicator box & the bottom of the

screen.

C M - Job
"Copenhagen”/Phy

Re: ALERT: Hacke:

Returned mail: Ser

air compressor .

Sublet, Central Square, 6/1 - 8/3

Figure 2.1 Illustration of iCom screen projectionsfor different activities.

(@ An iCom sation at the MIT Media Lab; (b) A typical iCom screen projection in the background

mode; (¢) iCom in foreground mode: users at two sites are having a chat; (d) An email message is

being displayed.

2.2 The speech interface

The god of the design is to make the speech interface as intuitive and as easy to use as
possble Although the functiondity of the interface is fairly smple it is gill a chdlenge

22

to design a robust interface that is going to be used by many novice usars in a public

place.

2.2.1 Functionalities of the iCom speech interface

The speech interface for iCom should dlow users to control an iCom dation the same
way they do with the trackball. There are four mgor functions for voice control of iCom:
Window sdection: sdecting (enlarging/dismissing) awindow.
Message sdection: displaying the text of a sdected message, scrolling up/down
the text page for along message, and dismissing the message after reading it.
Audio sglection: turning on/off audio at a selected Ste.
Feedback and indructions providing users with feedback and indructions when
necessary.

2.2.2 Design of the iCom speech interface

We faced three mgor design considerations for the i Com speech interface:
| dentifying voice commands.
How to inform users of voice commands.

How to reduce fse darms.

| dentifying voice commands

The firg dep to desgning a command-and-control speech interface is identifying a set of
voice commands that best match the requirements and expectations of the users. Two
questions need be answered when deciding what commands are to be included into the
vocabulary.

The fird question is whether to support a more naturd way of saying something instead
of specifying redrictive commands (for example, “please turn off the microphone” versus

“microphone off”)? Rather than defining a grammar file to enable the speech interface to

23

accept more natural speech inputs, we specified voice commands as a list of words and
ghort phrases for the following ressons: Unlike multi-step transactions that are typicd in
telephone based information retrieva agpplications, the task of voice control of iCom is
relaively smple - it is essentidly to dlow users to sdect an object, such as a window or
a message, on the projection screen. A command-and-control voice interface with a
word/phrase based vocabulary is sufficient for this task and should produce reasonably
robust peformance. Moreover, in our desgn, we informed users of many voice
commands usng visud information displayed on the iCom screen. So a grammar based
pasng dgorithm will provide vey limited additiond bendfits while ggnificantly
increasing the complexity of the system.

The second question is whether to support synonyms, or more than one way of saying a
command? The vocabulary can be as edrictive or as flexible as the gpplication needs to
be. A large vocabulary containing many synonyms will make the interface more intuitive.
But there is a trade-off of recognition speed and accuracy versus the sze of the
vocabulary. In our desgn, we provided synonyms to a number of frequently used
commands to make the interface more flexible (for example, users can say “closg’ or
“cdose message’ to dismiss the message being displayed on the iCom screen). The
increase in vocabulary size due to synonyms dd not dow down the recognition speed or
affect the recognition accuracy because the vocabulary is farly smdl - there are only
about 50 commands.

Showing userswhat to say

Unlike grammar based voice interfaces that accept more naturd user inputs, the iCom
command-and-control speech interface only accepts a set of predefined voice commands.
Firg time users of the interface don't know these commands beforehand. It is aso
difficult for frequent users to remember a lot of commands. Since the iCom speech
interface is to be used by a large number of users, including many novices, in an open lab
environment, its ussfulness largdy depends on whether it can inform uss of voice

commands during the course of interactions without extensive training.

24

In the case of voice intefaces designed for persond devices such as Persond Digitd
Assgants (PDAS), cel phones or cars, usars have to learn and remember voice
commands through manuas and repeated use, which is a burden for them. In telephone
based speech portds, a lig of menu items is usudly recited usng a text-to-gpeech engine
or a prerecorded message at each step in the diadog tree. Feedback aso takes the form of
gpeech output. The system response time is dow since speech output takes place over a
period of time [17]. These problems are avoided in our case because we utilized the iCom
projection screen to show users wha they can say and provide them with ingtant visud
feedback and indructions. In our design, we incorporated many voice commands into the
iCom screen display seamlesdy. For example, each window on the screen is labeled with
a unique name, and each message title is numbered. These window labels and message
numbers are actualy voice commands for window sdection and message sdection. A
visud indruction message containing al the voice commands will dso be displayed on
the screen upon users request, dlowing them to quickly browse through the command
set. Such a design not only enables users to understand how the interface works with little

training, but dso diminates the need for them to remember alot of commands.

Reducing false alarms

A voice interface should provide proper feedback to help users cope with recognition
erors. In our desgn, if the speech engine fails to recognize a user’s speech input twice, a
textbox will appear on the screen, prompting users to read ingructions for help. (The
indruction message will be displayed when usars sy “indruction”.) Since the speech
engine tries to recognize any input to its microphone, loud noise or users norma
conversation will trigger the feedback message (when the speech engine cannot recognize
the input) or cause an unintended action by the speech interface (when the speech engine
recognizes the input and takes it as a voice command). Frequent fase darms like this are

annoying and confusing to users.

To reduce the chance of fdse dam, the speech interface should be able to distinguish
voice commands and users normd conversdion automdicdly. But no exigting

techniques are rdiable enough for this task. In our system, we implemented two festures

25

that allow users to activate or deactivate the speech interface as needed: one is “press-to-
talk button”; the other is “keyword-trigger”.

The press-to-tak button is a microphone button displayed at the bottom of the iCom
screen. Users can activate/deactivate the speech interface by clicking on the button using
the trackbal. The speech engine is aways running, but the interface responds to users
voice commands only when it is active, and neglects users speech after it is deactivated.
The microphone button dso functions as an indicator, showing a labd “Mic is on” or
“Mic is off” depending on the date of the speech inteface When users click on the
button to activate the interface, a message box appears on the iCom screen briefly,
prompting them to issue voice commands and reminding them that they can see
indructions for help. This gpproach is reliable and can effectively reduce fdse darms
caused by users conversation and other noises. (To further reduce interference, the
volume of the iCom audio output could be turned down while the speech interface is
active) The limitation is that users have to use the trackbdl to toggle the date of the
gpeech interface. If we can acess the speech interface through a handheld device such as
a PDA or a cdl phone, however, the trackball is no longer needed since the press-to-tak
button could be implemented on the handheld device.

With keyword-trigger, users could activate/deactivate the peech interface by saying a
par of keywords, in our case, “microphong’ for activation and “microphone off” for
deactivation. Keyword-trigger enables users to control an iCom dation completely hands-
free, diminating the need for the trackbal. However, the gpproach itsdf is prone to fase
dam (this did not hgppen in our usr testing though). Also, having to know and
remember the two keywords is an extra burden for users. In our find design, the two
features can work interchangeably. Users could choose either of them based on ther

preferences.

26

2.2.3 Theinteraction flow and the command set

Users speech

Actions by the
speech interface

: Users' speech -
“Microphone” [€— —®| Other voice commands
V_ \ : Is the speech interface active?
Recognizes Fails to recognize
\ 4 Yes No:
The speech Processes Ignores
interface becomes users speech. users speech
active, prompting
userstoissue v
voice commands. i i i
Fails to recognize Recognizes
i \ 4
Displays feedback Responds to users
message, prompting voice commands
usersto see
instructions. / l
Deactivates the speech Window control;
interfaceif users say Message control;
“microphone off”. Audio control;
Showing instructions.

v
Waiting for users speech.

<

Figure 2.2 Theinteraction flow of theiCom speech interface.

27

Figure 2.2 depicts the interaction flow of the iCom speech interface. Voice commands for
the iCom speech interface are listed in Appendix A. Many commands consst of two or
three words. A multi-word command can be defined usng structured grammar, but we
amply define it as a phrase snce the IBM Viavoice SDK accepts such a multi-word
phrase as one entry in a vocabulary. A benefit of usng multi-word phrases as commands
is that it can reduce unintended actions by the speech interface in noisy environment
without increasing the rgection rate. Commands for window sdection such as “garden”
and “cube’ are actudly the names of the open workspaces in different parts of the MIT
Media Lab, where iCom ddions are locaied. Windows showing images of those
workspaces are labeled with their corresponding names. Commands for message
section takes the form “message’ + message number, such as “message eeven’. By
default, the maxima message number is thirty, because it is very rare that more than
thirty message titles gppear on the iCom screen a the same time. There are about 80
voice commands (including the 30 message sdection commands) for the iCom speech
interface. The exact number depends on how many dations are connected to the iCom
system.

2.2.4 The new iCom screen display

Figure 2.3 shows the modified iCom screen display thet is tallored to the speech interface.
Figure 2.4 shows the modified iCom screen projections in different Sates. We tried to
keep the change in the gppearance of the origind iCom screen projection a a minimum.
However, the following changes are necessary:

A message number, Sarting from one, is shown in front of each messagetitle.

Window labds are dways shown. (In the origind iCom system, a window labd is

displayed for afew seconds after users click on awindow.)

A microphone button is displayed at the bottom of the i Com screen.

Message boxes for feedback and ingtructions are displayed when necessary.

Two tags, labded as “page up” and “page down” respectively, are shown when

long messages are being displayed, alowing users to scroll the message text by

saying “page up” or “page down”.

28

In Figure 2.3 and Figure 2.4, no images are shown in the windows on the iCom screen
because we didn’t ingtdl the speech interface on ared iCom dation.

Window |abel

Msg.15 MLE All H o
Msg.16 Starting a ' ections’: episode #
Msg.17 anybody go?

Msg.18 statisi
Msg.19 Missir

Msg.20 MLE / lnication Meetir

Msg.21 Press =

Msg.22 thinkp .- ieeded

Msg.23 MLE adventure oujgng - ORGANISED
Msg.24 Pledging for the MS ride

Msg.25 free! multi-volume set: hardcover, i

[iklin Cube Gonden Bt
Audo Audc Sdio

M essage number Audio label Microphone button

Figure 2.3 Themodified i Com screen display tailored to the speech interface.

Several changes are made to the original iCom screen display: Message numbers are shown in front

of message titles; A microphone button is displayed to indicate the state of the speech interface; Each
window islabeled with a unique name, which isshown all thetime.

29

| TRIP FC{ll Msg.23 = ady | TRIP FC

Pled ing for the M5 ride

25 free! multi-volume set: hardcover, ill Msg.25 free! multi-volume set: hardcover, iliv

|TRIP FO
Msg.24 Ph .
Msg.25 fn) s deover, ill

Figure 2.4 Themodified iCom screen projectionsin different states.

(@) When users click on the microphone button to activate the speech interface, a text messagein blue
box appears on the screen briefly, prompting them to issue voice commands, (b) When the speech
engine fails to recognize users speech, a feedback message in blue box is shown briefly, reminding
users to read instructions for help; (c) An instruction box containing all the voice commands is
displayed upon users request; (d) When a long message is being displayed, two light-blue tags
labeled as “page up” and “page down” are placed beneath/above the up/down arrows respectively,

allowing usersto scroll the message text by saying “ page up” or “page down”.

30

2.3 Voice model

The IBM ViaVoice speech recognition engine is a speaker adaptive recognizer. With the
default generd voice modd, it can produce decent recognition results for users with a
vaiety of voice characterigics. But recognition peformance can be further improved if
each user creates hisher own voice model by completing an enrollment program and uses

this speaker specific mode for speech recognition.

In our implementation, we used the generd modd for dl users. Right now, there is no
good mechanism for the speech interface to switch voice models adaptively. In the future,
however, severa approaches for voice modd adaptation can be explored. For example, a
drop-down user ID list corresponding to different voice models can be displayed on the
screen, and a new user ID will be added to the lis when a new voice modd is created.
Users could sdect their own voice models from the lis when necessary. In a redtricted
environment with a limited number of frequent users, such as the Media Lab, face
recognition or spesker identification agorithms may be employed to determine a user’s
ID so that the gpeech interface could choose the corresponding voice mode
automaticaly. Ancther approach is to access the speech interface through a handheld
device, as dready mentioned. In this case, each user ID is associated with a device ID.
When a device tries to access the speech interface, the speech interface will know which
voice modd to use.

2.4 System ar chitecture

We implemented the speech interface using a combination of 1sis and the C programming
language under the Linux operating sysem, since iCom is written in Is9s while the IBM
Viavoice SDK is designed for use with C. A socket is wsed for communication between
the iCom process and the Viavoice SDK process. Each iCom dation has a
pesker/microphone for audio communication, which can be used for the gpeech
interface. A separate microphone also could be used to make the syslem more flexible.

31

Two types of system architectures can be employed for the iCom speech interface: one is
centralized gpeech server architecture; the other is localized speech interface architecture.
In the first gpproach, a single speech server is used to process \oice commands from dl
iCom dations. The speech input is digitized locally a each iCom dation and is sent to the
central speech sarver for recognition. Obvioudy, this approach saves computing
resources snce only one gspeech engine is needed. But its major limitations ae
complexity and dow response time. Because only one speech client can access the speech
engine a a time, some polling or queuing protocols are needed so that two or more
clients can share the speech engine. Heavy network traffic will dow down the speech
interface’ s response time, and loss of packets will reduce recognition rates.

We chose the locdized speech interface architecture in our implementation for its
amplicity. In this architecture, each iCom dation runs its own speech interface. Usars
voice commands are directed to the loca speech engine for processing. A problem with
this approach is that the IBM Viavoice speech recognition engine cannot be ingaled on
the machine running the iCom process, because the Creative Sound Blaster Live PCI
sound card used in our current sysem does not work properly if both ALSA (the
Advanced Linux Sound Architecture used for the Igs audio utilities) and the Viavoice
gpeech engine are present in the system. Therefore, an extra machine is needed at each
iCom dte. This problem can be avoided by usng another commercidly available sound
cad: the Credtive Labs Ensonic Audio PCI card, which works well for both ALSA and
the ViaV oice speech engine at the sametime.

In our experiment, we planed to ingadl the speech interface a only one iCom dte, so only
one microphone button is displayed. If the speech interface were to be inddled a severd
iCom gites, extra microphone buttons are needed to indicate the state of the loca speech
interfaces, and they can be placed above the audio indicators of their corresponding Sites.

32

Chapter 3
Speech interface design for Hyper Soap

As in the case of the iCom module, we made severd improvements to the HyperSoap
module during the course of user tedting. This chapter presents the find design of the
HyperSoap speech interface. Section 3.1 discusses speech-enabled interactions in
hyperlinked TV programs. Section 3.2 explans the mgor problems we must solve
Section 3.3 describes the details of the speech interface design.

3.1 Hyperlinked video and speech interface

New techniques in multimedia Sgna processing have made it possble to produce truly
interactive TV shows such as HyperSoap, a hyperlinked video program produced by the
Object-Based Media Group at the MIT Media Lab. In HyperSoap, many objects are made
sdectable through an interface based on pointing devices, and the user's interactions with
these objects modify the presentation of the video. Using a laser pointer or a mouse,
Hyper Soap viewers can click on clothing, furniture, and other items on the screen to see

information about how they can be purchased, as shown in Figure 3.1.

Ancther example of hyperlinked video program is An Interactive Dinner At Julia’'s [3],
which is an interactive cooking show. Stating with a dinner paty a Julids house,
viewers can click on entrees and decordtive items & the dinner table and be shown video
cips in which Julia creates them. Sdecting ingredients and cooking utensls generates
text boxes with rdevant detalls Icons are used to indicate the “path” viewers have
travded through in the show, dlowing them to navigae among the video clips Figure
3.2 shows a frame from An Interactive Dinner At Julia’s, in which a textbox of the
sdected item (highlighted with green mask) is diglayed. Also, viewers can switch to
another video clip by clicking on the icon shown at the top-1eft corner of the screen.

33

JCPenneye

Figure 3.1 A pair of framesfrom Hyper Soap.

(@) A frame during normal playback; (b) When the viewer clicks on the earring, it is highlighted with

agreen mask, and awindow pops up, showing itsbrand, priceand retailer.

Chop horseradish roots, pickle in
cold pint jar using 1 tsp. salt and
white vinegar

Figure3.2 A framefrom An Interactive Dinner At Julia’s.

Although very effective, the exigting interface for hyperlinked video programs, which is
based on pointing devices, has severd limitations. (1) It is difficult for viewers to click on
a smdl or fat-moving object. (2) Repid change in scene makes it difficult to sdect
objects that appear on the screen only for a short period of time. Once they move out of
the screen, they can no longer be accessed. (3) Object sdection is based on postion

information. This implies tha, to produce a show like HyperSoap, we have to idertify
and track sdlectable regions in every frame, which isa difficult process.

We could overcome the above problems by incorporating a speech interface into
hyperlinked video programs, which engbles viewers to sdect objects by saying ther
names. With such a speech interface, viewers can easly sdect any hyperlinked items no
meatter how smal they are or how fagt they are moving. They can even access items not
shown on the screen. Moreover, object segmentation and tracking is no longer needed for
the production of hyperlinked video programs. (The segmentation/tracking process is dill
necessary if highlighting a selected object is a desired feature.)

The concept can be extended to other types of interactive programs as well. For example,
a speech interface can be embedded in a role-playing computer game, in which players
can use voice commands to control their corresponding roles actions. With a speech
interface, basketbdl fans can retrieve a player’s ddidics by saying his name when
watching a game on TV. (In this case, object segmentation and tracking is not only very
difficult but also unnecessary.) So a speech based interface is well suited for certain types
of interactive TV programs, and if properly designed, it could not only enhance
traditiona interface experiences but aso enable new forms of interactions. However,
little research has been done in this area in part because truly interactive TV shows do not
exigt until recently.

3.2 Thechallenge

Although the functiondity of the HyperSoap speech interface is very smple dlowing
viewersto select hyperlinked objects by spesking, it posestwo difficulties:

The open vocabulary problem for object sdection.

The ambiguity (or imprecision) problem for object selection.

When waiching Hyper Soap, people do not know what items on the screen are sdlectable,

and in many cases they do not know what names or access terms they can use to sdlect

35

the dedred items. Moreover, different viewers may refer to the same item using different
names, making it hard to assgn a unique name to each object. So identifying a proper
vocabulary for HyperSoap is extremdy difficult. To make the sysem more accessible to
untutored users, we must provide a number of access terms (or synonyms) for each
sdectable item. However, many synonyms are shared by two or more items. When users

try to make object sdection usng one of those terms, ambiguity arises.

Actudly, open vocabulary and ambiguity are two common problems for human
computer interface design. In many compuer applications, users must enter correct
words for the desred objects or actions. To increase usdbility and accesshility, the
system must recognize terms that are chosen spontaneoudy by untutored users, and
should be able to resolve ambiguities when necessary. Furnas et al. [18] studied these
problems extensvely and concluded that: “There is no one good access term for most
objects. ... Even the best possble name is not very useful.” In their sudy, they andyzed
gpontaneous word choice for objects or actions in five goplication domans and found
surprisngly large variability in word usage. For example, the probability that two typids
will use the same verb in describing an editing operation is less than one in fourteen; that
two cooks will use the same keyword for a recipe is less than one in five. In dl five cases,
the probability that two people favored the same term is less than 0.20. Ther smulaions
show that, the popular approach in which access is via a sngle word chosen by the
system designer will result in 80-90 percent falure rates in many common applicaions.
To achieve redly good performance, many synonyms are needed and should be collected
fromred users.

3.3 Design of the Hyper Soap speech interface

To address the open vocabulary problem, we used a combination of item lis and name
index: An item lig contaning the names of sdectable items is displayed on the screen
upon viewers request to show them what to say; A name index containing severd

synonyms for each item is crested to modd how viewers may cdl an object

36

goontaneoudy. We dso addressed the problem of ambiguity using a combination of

explicit on-screen confirmation and implicit disambiguation based on timelines.

3.3.11tem list

The basc idea is to use visud information to inform users of sdectable items. An item
liss may be displayed upon users request, or it could be displayed automaticaly when it
is appropriate to do so. In ether case, it will appear on the screen for a few seconds. The
item lig not only indicates what objects are selectable but adso shows users what to say.

Unlike the case of the iCom speech interface, where an ingruction box containing dl the
voice commands could be shown to usars, it is impractical to display a lig of dl
selectable items in Hyper Soap, because users smply don’'t have enough time to browse a
long lig while the video is congtantly playing. Therefore, we grouped sdectable items
into 5 categories, each forming a andl item lig such as lady’s item, men's items and
furnishing.

We implemented the item lig in two varidions. In the firg one the item lig is dther
displayed upon users request (when users say “item lig”) or triggered when the speech
engine fals to recognize users speech. In dther case, items in the lig ae automaticaly
matched to what are shown on the screen. For example, when the scene contains a man
ganding in front of a desk, men's items and items on the desk will be displayed in the
item ligt, as shown in Figure 3.3. This gpproach has two Imitations. Firs, in Hyper Soap,
there are dways a lot of hyperlinked items shown on the screen, making the item ligt
long, and therefore difficult to read for viewers. Second, the item list is triggered by noise
once in a while, which is digracting and confusng to viewers. (In our initid design,
when the item lig is turned on, the corresponding objects are highlighted to give viewers
a better sense of what objects are hyperlinked. But some viewers fdt that such a feature is
annoying and unnecessary. So we didn’t incorporate it into our find design.)

37

However, the design described above may work wel for shows containing a smdl
number of hyperlinked objects, such as An Interactive Dinner At Julia’s. The item lig in
this show will not be difficult to read since it contains only a few items a any time. In
fact, in this paticular case, we could have the item lig digplayed al the time without
digracting users because there is no rapid change in scene in the program. Items in the
lig could be updated automaticaly when viewers switch to another video clip. To hdp
viewers better associate item names in the list with objects shown on the screen, we could
highlight the hyperlinked objects briefly when the item lig is updated. An dterndive to
showing the item list is to display a nametag around each sdectable object, since the
position information for each hyperlinked object is available.

! Frame
Desk lamp

Cat
Telephone
Dol

Men's tems

Flannal shirt
Jeans

Figure 3.3 Anitem list containing Desk itemsand Men’sitemsisdisplayed.

In the second variaion, we implemented a two-tier item lig. In this mode, a category list
is dways shown at the bottom-left corner of the screen. Users can choose to see items in

a paticular category by saying the category’s name. Also, when the speech engine falls

38

to recognize users speech, the system will display a feedback message, prompting users
to see item list for hyperlinked objects. Most users fdt that this design is better than the
previous one for the HyperSoap program, since users have better control over which item

lig to see. Figure 3.4 shows the two-tier item list.

Men's lbems

Suit

¥

Figure 3.4 A frame containing the two-tier item list.

A category list is always shown at the bottom-left corner. Viewers can choose to see items in a

particular category by saying the category’sname, such as“men’sitems’.

3.3.2 Name index

To make hyperlinked objects more accesshble to viewers, we crested a name index to
mode how viewers may cdl those objects spontaneoudy. It contains a number of
synonyms for each hyperlinked object, alowing viewers to sdect items without having to
see the item lig fird. As suggested in [18], a large number of synonyms are needed for a
redly effective name index. However, in the case of HyperSoap, cresting an object name

39

index of moderate sze is sufficient because, unlike abstract concepts or actions that are
difficult to describe usng common terms, most of the sdectable items in Hyper Soap are
ordinary objects in our daily life, such as jacket, shirt and shoes, each having only one or

two widely used access terms.

We fird initidized the name index usng the object names shown in the item list. Then
we collected synonyms for each object name from red users to make the name index
more “knowledgeable’. In each user testing sesson, we documented the terms users used
to sdlect various objects, and added new terms to the index. We aso asked users to
provide extra synonyms if they can. The resulting name index is shown in Appendix B:
the left column in the table shows the category names the middle column shows the
names used in the item ligt; the right column shows the synonyms for sdectable objects.

3.3.3 Resolving ambiguity

It can be seen that severd terms in Appendix B are shared by two or more items. For
example, the word “lamp” is shared by “table lamp” in Desk items and “floor lamp” in
Furnishing. Ambiguity will arise if viewers say “lamp’. Note that this is not only an
ambiguity to the sysem but dso an ambiguity to the viewers snce viewers may want to
choose one of the lamps but don't know how to disinguish the two by spesking. This
however, is not a problem for the interface based on pointing devices since users could
aways click on the desired object.

Initidly, when ambiguity occurs, we smply displayed information about the item that we
think users are most likely referring to. This gpproach didn’t produce consstent results.
SO we addressed the ambiguity problem usng a combination of explicit on-screen
confirmation and implicit disambiguation based on timdines If the items involved in an
ambiguity dtudion appear on the streen dmultaneoudy, we will ask for usars
confirmation explicitly by displaying a set of didinguishable names for dl the rdevant

items on the screen and prompting users to choose one. Figure 3.5 shows such a Situation.

40

&% Which one?

Figure 3.5 Explicit disambiguation: on-screen confirmation.

A viewer says “lamp”, resulting in an ambiguity. The system displays both the “table lamp” and the

“floor lamp”, asking for the viewer’s confirmation.

If the items involved in an ambiguity Stuation gppear in different parts of the show, we
can resolve the ambiguity implicitly based on timelines we smply choose the item thet is
shown on the current screen, assuming users ae referring to the visble item. For
example, the term “photo” is shared by two items: a photo on the table (in Table items)
that appears in the first haf of the show, and a photo on the bookcase (in Bookcase items)
that appears in the second hdf of the show. If a viewer says “photo” in the firg haf of the
show, information about the photo on the table will be shown.

3.3.4 Theinteraction flow

Figure 3.6 depicts the interaction flow of the HyperSoap speech interface. Figure 3.7
shows four frames of the Hyper Soap program in different Sates.

41

Users speech

Actions by the
speech interface

Users speech
Category name] Pl Item name
(i.e, Men'sitems) / (i.e., Suit)
Recognizes Fails to recognize Recognizes
l i \ 4
Displaysitem list Displays feedback Is there an ambiguity?
of the selected message,
category. prompting users
to seeitem list.

\ 4
No: Yes.
Highlights the selected Displays
object and displaysthe distinguishable
information window. names for relevant
items, prompting
usersto choose one.

\ 4
Waiting for users gpeech.

Figure 3.6 Theinteraction flow of the Hyper Soap speech interface.

42

' Kodak
| Digital Imaging

$5

(d)

Figure 3.7 Four frames of the Hyper Soap program in different states.

(@ A normal frame; (b) The photo is selected; (c) A feedback message box is displayed when the
speech engine fails to recognize the viewer’s speech, prompting the viewer to see item list; (d) The
viewer says “picture’, resulting in an ambiguity. The system displays the names for two relevant

items: “photo” and “ painting”, asking the viewer to select one.

3.3.5 Other issues

In addition to the open vocabulary problem and the ambiguity problem, the following two

issues aso need to be considered.

43

Dynamic vocabulary

The IBM ViaVoice SDK supports dynamic vocabulary management: it dlows multiple
vocabularies to be active a the same time. This feature is very useful for improving the
recognition rate, because instead of using a single large vocabulary for an application, we
can divide it into a set of smdler ones, and activate/deactivate them as needed so that the
actud vocabulary gze is smdl. We used a sngle vocabulary for the Hyper Soap program
snce the sze of the vocabulary is moderate. (The running time for HyperSoap is about 2
minutes. There are 45 hyperlinked items in the show, ad the totd number of
words/phrases in the vocabulary, including the synonyms and the category names, is
aound 90.) For a longer program, say, a 30 minute show, with a large number of
hyperlinked items, we can creste a set of smdl vocabularies by segmenting the show into
a sies of consecutive intervas, ether with equd length (2 minute, for example) or
corresponding to different shots, each containing a smal number of sdectable items that
form asmdl vocabulary.

Interference of audio

In a normd TV-waching setting, HyperSoap’'s audio will interfere with viewers speech.
This will result in poor recognition performance. A practicd approach to solve this
problem is to use a high qudity directiona microphone with echo-cancelation capability.
But a more sophisticated method involving the separation of TV audio from viewers
gpeech dso could be employed in the future.

Chapter 4

User evaluation

This chapter presents user evduation results for Voicelink. Section 4.1 describes the
evduation procedures. Section 4.2 summarizes the observations we made during user
evauation. Section 4.3 discusses the lessons we learned from users feedback and severd

improvements we made based on their suggestions.

4.1 Subjects, tasksand procedur es.

Hfteen people participated in the user evauation. They represent a range of different
voice characteriftics, language skills and prior experiences in usng speech recognition
software. Among the subjects are 3 femae speakers and 5 non-naive but fluent English
soeakers. Two native English speskers have British accents. Severd subjects are
experienced and frequent users of speech recognition systems, while the others have little
or no experience in using speech recognition software. Thirteen subjects are Media Lab
dudents or faculty members who are familiar with the iCom system and the Hyper Soap
program; the other two are students of other departments at MIT, who have never seen
the demondtrations of iCom and Hyper Soap before.

The evduation condsts of two rounds. Seven people peformed user testing in the first
round. We made severa improvements to the initiad design based on their feedback, and
tested the system with the remaning subjects in the second round. All the user testing
sessons were held in an office The noise levd in the office varied from sesson to
sesson: ometimes it was quiet and sometimes it was very noisy due to a busy
surrounding environment. In a few sessons, background audio/music was dso played.
Both the iCom module and the Hyper Soap module are tested on an IBM workstation to
evaluate their voice control capabilities In the future, we plan to indal VoiceLink on a

45

red iCom ddion to evauae its usefulness in red application settings during extended
periods of use.

The procedures for a testing sesson are as follows. It takes about 20 to 30 minutes for
each subject to complete the evaluation.

An orientation of the iCom system and the HyperSoap program is given to usars
who have never used them before. After completing the tasks lised below using
the speech interface, they were dso asked to complete the same tasks using
mouse/trackbal for comparison.
Test the iCom speech interface module using a generd voice mode, completing
the following tasks.

= Lean how the inteface works and find out vaid voice commands by

using the system.
= Sdect three different windows, enlarging each of them to its maxima sze
and reducing it to itsminimd sze.

* Read at least five messages.
Test the HyperSoap speech interface module using the generd voice modd,
completing the following tasks

= Learn how theinterface works by using the system.

= Sdect a least 10 objects while watching Hyper Soap.
Repeat the above two tests using speaker-specific voice modes, and compare the
results with those obtained using the general voice modd. To create a Spesker-
gpecific voice mode, a user need to complete the IBM ViaVoice user enrollment
program, which tekes about 10 minutes. (Only two native English speskers and
two non-native English speskers performed user enrollment, because we found
that the genera voice mode worked fairly wel for most users))
Data gathering for the name index used in HyperSoap: each subject was asked to
provide synonyms for object names.
Findly, subjects were interviewed briefly about the effectiveness and ussfulness
of Voicelink, itsfeatures, and its overal performance.

46

4.2 Observations

VoicelLink performed very well in quiet environment, and is robust under the presence of
light noise. All the users were able to learn how to use the sysem very quickly and
completed the tasks without difficulties. Usng the generd voice modd, the speech
engine could accuratdly recognize valid voice commands for mogt of the usars dthough
it had problems recognizing some of the commands issued by a couple of users with
heavy accents. In those cases, using speaker-specific voice modes resulted in sgnificant

increase in recognition rates.

The response time of the speech interface is comparable to that of the mouse or the
trackball. For most voice commands, there is no noticeable delay in system response due
to the time needed for speech recognition. Only a little delay was observed for message

selection using voice commands.

There were four types of errors, which are shown below. Some of the errors are identical
from auser’s point of view. We differentiate them here for clarity.
Regection: The speech engine faled to recognize vdid voice commands. This
happened occasionaly to native speskers due to the interference of noise
Reection rates were higher for accented speskers, but they could ill interact
with the sysem and finish the required tasks smoothly. Usng the generd voice
mode for al users, the overdl recognition rate for valid voice commands is above
80% in normd office environment. There is no dgnificant difference in
recognition rate due to gender.
Replacement: The speech engine incorrectly recognized a vaid voice command
as another command with smilar pronunciation. This happened occasondly to
users with strong accents. For example, when using the genera voice modd for
one user, the speech interface dways replaced the word “shirt” with “chair”, both
of which are sdectable itemsin Hyper Soap.
Out-of-vocabulary: iCom usars used invdid voice commands, HyperSoap users
tried to pick sdectable items using names not included in the object name index,

a7

or tried to pick items that are not sdectable. Out-of-vocabulary is the mgor
source of erors for both the iCom module and the HyperSoap module. It,
however, didn't result in serious user frudration or confusion, because after a few
faled attempts, most users were able to know what to say by reading the
indruction message for iCom or the item list for Hyper Soap.

Fdse darm caused by noise The feedback message or unintended actions were
triggered by noise. This happened occasiondly under the presence of light noise
and occurred quite often under loud noise (for example, when loud musc was
being played in the office during user testing). Frequent fdse darms of this kind

were annoying and confusing to users.

Replacement errors and unintended actions can be reduced by raisng the rgection
threshold, which is a speech engine parameter that can be adjusted using the ViaVoice
SDK. However, the threshold should not be set too high, otherwise, reection rate will
increese. (The rgection threshold is essentidly the confidence level for gpeech
recognition results. We used the system default value, zero, in our experiment, so that any
recognition results will be accepted.)

4.3 Feedback

Many usars provided ingghtful comments and suggestions on the design of Voicelink,
leading to a number of improvements to the sysem. The following two sections describe
user feedbacks on the iCom module and the Hyper Soap module respectively.

4.3.1 Thecasefor iCom

Mogt users fdt that the iCom speech interface is intuitive and easy to use, and is effective
for contralling the iCom daion. They sad that it is very hepful to incorporate voice
commands into the iCom screen display and to provide an indruction message containing

al the voice commands for quick browsing.

48

Many users dated that the speech interface is a useful feature for the iCom system, and
they would like to use it on ared iCom dation for the following two reasons:
The speech interface enables hand-free control of iCom, making the sysem more
convenient to use under certain circumgtances. For example, when severa users
are gtting in front of an iCom dation, they can use voice commands to control the
system when the trackball is out of reach.
The speech interface offers users a better interaction experience. It makes them
fed that they ae interacting with a responsve environment in a natura and
relaxed manner, rather than operating a computer system.
However, a few users thought that the iCom speech interface is unnecessary because the
trackbal works perfectly wel while the speech interface is not robust enough a the
current stage, especidly for accented users.

We leaned many vduable lessons through user testing, and made the following

improvementsto our initia design of the iCom speech interface:
Supporting synonyms. dlowing more than one way of saing a command.
Initidly, we defined a concise command set without providing any redundant
commands (one command for one function). After saverd user evauation
sessions, we added a number of synonyms frequently mentioned by the users to
make the interface more intuitive and flexible. This dso improved the congstency
of the command format. For example, we only defined “closg” as the command
for dosng message display initidly, but after usng the “close garden” command
to close a window, many users tried to close the message display by saying “close
message’, assuming a “verb + object” command forma. So usng “cdose
message’ as a synonym for “closg’ results in a better maich between voice
commands and users expectations.
Adding the Keyword-trigger festure. It dlows users to activate/deactivate the
interface by saying a par of keywords, ingead of having to click on the press-to-
tak button usng the trackbal. This feature enables users to control an iCom
dation completely hands-free.

49

Improvement on ingruction message: we replaced wordy descriptions with smple
examples to make the ingtruction message more informative.

Reducing the frequency of feedback. Initidly, a feedback message is displayed
each time the speech engine fals to recognize the speech input. However, noise
often triggers the feedback message, which is confusng and annoying to users. In
our find desgn, we cut the feedback frequency in hdf: the feedback message is
displayed after the speech engine fails to recognize the speech input twice.

Some users dso suggested that we should modify how windows are managed on the
iCom screen. For example, they said that it would be better if a window could be reduced
dl the way down to its minima sSze when usars want to close it. We didn't make any
change to window management because we want to keep the origind iCom system
design intact.

For a couple of users, visud feedback faled to capture their attention - they kept saying
invaid commands without noticing the feedback message on the screen. This suggests
that proper auditory cues might be used in conjunction with visud feedback to better
ass s users to understand the speech interface.

4.3.2 The case for HyperSoap

Most users enjoyed the interaction experience. They felt that the HyperSoap speech
interface worked farly wel and the item lig was very hdpful. They were able to select
the desired objects most of the time. Overdl, they thought that the speech interface is a
useful feature to the HyperSoap program, and it makes the interaction more seamless.
However, one user in the first round of user teting said that the speech interface was not
very effective because he followed the item list instead of waiching the video. The mgor
disadvantage of the speech interface, as some users mentioned, is the ambiguity problem,
which does not arise a dl when pointing devices are used.

50

We made the following changes to the HyperSoap speech interface during the course of
user evaluation:
Implementing the two-tier item list, which is described in detail in Section 3.3.1.
Improving the object name index. We collected synonyms for the object name
index to make it more “knowledgedble’, as described in Section 3.3.2 This
improved the hit rate for users spontaneous speech, making the object selection
process more naturd and flexible.
Providing ambiguity resolution. Intidly, the gpeech inteface did not have
disambiguation capability. When users said a name that is shared by more than
two items, the speech interface picked one of them randomly. But quite often, the
randomly chosen item was not the intended one. So we added the disambiguation
capability to the system, as discussed in Section 3.3.3.

Some users suggested that when they sdlected an item not shown on the screen, a small
picture of the item should be dislayed dongsde the information window to give them a
better sense of what they actudly sdected. Some users aso suggested that we should
dlow them to browse through the video clip (fast forwardireverse or jumping to a
particular point) usng voice commands. These features could be implemented and tested
in thefuture.

51

52

Chapter 5

Speech softwarelibrary for Isis

The god was to lesson the burden of speech interface developers by dlowing users to
develop Id9s based speech aware gpplications in the ISs programming environment
without having to know the details of the IBM ViavVoice SDK. The Ids programming
language and the IBM ViaVoice SDK are briefly introduced in Section 5.1 and Section
5.2 respectively. The speech software library is described in Section 5.3.

5.1 Thelsisprogramming language

Isis is a programming language crested @ the MIT Media Lab in 1995 by Stefan
Agamandlis. It is specidly talored to support the development of demanding multimedia
goplications. Iss is very flexible and can operate on a vaiety of plaforms, from high
power workstations and servers to set-top boxes and handheld devices. It is designed to
be accessble to a wide variety of usars of different levels of expertise. Its smdl yet
complete syntax lessens the burden on programming novices while ill adlowing
experienced programmers to teke full advantage of ther skills 1d9s adso provides an
efficient mechaniam for extending functiondity by accessng software libraries written in
other languages such as C. Many of the projects being developed at the Media Lab se
I9s as the development tool because of its flexibility and Smplicity.

5.21BM ViaVoice SDK and speech awar e applications

The IBM Viavoice Software Deveopers Kit (SDK) includes a set of application
programming interfaces (APIS) known as the Speech Manager API, or SMAPI for short,
which enables an gpplication to access the speech recognition engine. The ViaVoice
goeech recognition engine supports U.S. English, sx European, and three Asan

53

languages. Multiple languages can be inddled on one sysem, and Viavoice dlows the
user to switch between them as needed. The ViaVoice SDK, by default, runs with the
gengd office domain in the sdected language. This generd office domain contains more
than 20,000 words representative of the office environment. The SMAP! is designed for
use with the C language, but any language that supports C function calls can access the
Viavoice SDK library.

The Viavoice SDK has severd features that are very useful for developing speech aware
goplications:

It dlows multiple vocabularies to be active at the sametime.

It alows users to add/remove words to/from a vocabulary dynamicaly at runtime.

It dso dlows multiple concurrent connections to the speech engine, even from

within the same gpplication.

There is a darter st of less than 20 SVIAPI cdls that one can use to develop a full-
function gpeech aware gpplication, which can handle the following tasks:

Establishing arecognition sesson

Defining and enabling vocabularies

Directing the engine to process speech

Processing recognized commands

Disconnecting from the engine
In addition to the darter set, Viavoice SDK includes many other SMAPI cdls that
provide more capabilities, such as sesson sharing and querying sysem parameters
(including task ID, user 1D, enrollment 1D, and rejection threshold).

5.3 Thelsis speech softwarelibrary

To build the speech software library, we wrote a voice interface routine in C usng the
basc Viavoice SMAPI cdls and bind it into Iss It could handle dl the basc tasks
needed for a command-and-control speech application. Programmers can access this

routine (thus the Viavoice speech engine) in the IsSs programming environment. We
crested severd 19s functions that dlow programmers to change the routin€'s behavior as
needed:
Defining a vocabulary. Developers can define an gpplication specific vocabulary
consging of a ligt of words and/or phrases as an Isis lig, and pass it to the voice
interface routine. Currently, we don't support grammar based speech aware
goplications.
Adding/removing words to/from a vocabulary. Developers can add/remove words
toffrom a vocabulary dynamicdly. This feature is useful when a developer does
not know dl the possble items in the vocabulary at the time of application desgn.
For example, in a telephone dider gpplication, the program can load new diders
names into the vocabulary a run time.
Specifying a user ID. Developers can pass a user ID to the voice interface routine.
Thisis essentidly to dlow the speech engine to use a user specific voice modd.
Turning on/off the microphone. Developers can pass a flag (a True/Fdse vaue in
ISs) to the voice interface routine to turn on /off the microphone as needed.
Accepting speech recognition results. When the speech engine recognizes users
speech, it outputs the corresponding string. If it fals to recognize the speech, it
sends out an empty sring. The voice interface routine can write the recognition
results to a file or send them to an ISs process through a socket, depending on
which method devel opers choose to use.
Adjusing the rgection threshold. As dready mentioned in Section 4.2, the
rgection threshold is basicdly the confidence level for speech recognition results.
Raising the threshold can reduce fse darms caused by noise.

To use the software library, the IBM ViavVoice SDK should be ingdled on a machine
running Isis, and at least one ViaVoice user account has to be created. Please refer to the
Isswebsite [19] for detailed documentation about the speech software library.

The functions described above dlow ISs programmers to build a very basc yet full-
function speech aware application. More features, such as grammar definition, session

55

sharing for multiple speech applications, and dynamic vocabulary management could be
induded into the library to allow usersto develop more complex applications.

56

Chapter 6

Conclusions

This chapter concludes the thess with a summary of the VoicelLink design in Section 6.1

and discussions on future work in Section 6.2.
6.1 Summary

In this thess, we developed Voicelink, a speech interface package, which can interface
with various multimedia gpplications written in the Ids programming language. It
contains two command-and-control speech interface modules, one for the iCom system
and another for the HyperSoap program. With functiondities smilar to those of a
trackbal, the iCom module enables users to control an iCom daion usng voice
commands. As an dterndtive to a laser pointer, the HyperSoap module dlows viewers to
select objects and access rdated information by saying objects names. We dso built a
gpeech software library for 19s, which dlows users to develop speech aware applications
in the Id9s programming environment without having to know the detals of the
underlying peech recognition system, thus lessoning the burden of developers.

We encountered a number of problems during the development of VoiceLink. In the case
of the iCom module, the chalenge is to build a robust and easy-to-use speech interface
that could be used by novice users in public places with minima training. In our desgn,
visud information is displayed on the iCom projection screen to show users what to say
and provide them with ingtant feedback and ingtructions. Through such a design, we not
only inform users of many voice commands seamlesdy but dso diminate the need for
users to remember those commands. To reduce fase darms, a press-to-tak button was
implemented to alow users to activate and deactivate the speech interface as needed, so
that norma conversation between users a two locations will not be incorrectly taken as
voice commands by the speech interface.

57

The mgor chdlenge for the HyperSoap module is the open vocabulary problem for
object sdection. We overcame this problem usng a combination of item lig and name
index. An item lis containing the names of sdectable items is displayed on the screen
upon viewers request to show them what objects are hyperlinked and how to cal them.
A name index is crested to modd how viewers may cal objects spontaneoudy. It
contains a number of synonyms for each sdectable object, dlowing viewers to sdlect
items in a more naturd and flexible manner. We dso addressed the problem of ambiguity
usng a combination of explicit on-screen confirmation and implicit disambiguation based
on timdines

Voicelink overcomes severa limitations of traditiond pointing devices and produced
robust performance. The result of user evaluaion showed that a speech based interface
for responsve media applications is not only useful but dso feashble, and has great
potentid to offer better interface experiences than traditiond pointing devices. Due to the
limitations of gpeech recognition, however, the VoicelLink speech interface is Hill less
relidble than pointing devices. Therefore, we should not expect that Voicelink could
replace traditiond pointing devices completely a the current dtage. Rather we should
dlow the two types of inteface modds to function interchangegbly to offer greater
accesshility for diverse users and usage context.

6.2 Futurework

A number of problems should be addressed in the future to further improve the
performance of VoiceLink.
In addition to visua feedback, auditory cues may be employed to help users better
understand the system. For example, a sound dert scheme or a text-to-speech
engine could be used to indicate that the speech engine cannot recognize users
gpeech and prompt usersto read instructions.
The HyperSoap module is just one feature of speech interface for interactive TV.
Other features dso could be incorporated into a speech interface for interactive

58

TV programs. Voice enabled channd switching and a TV program
guide/reminder driven by atext-to- gpeech engine are two such examples.

Currently, the Isis speech software library only supports vocabulary based speech
aware gpplications. Extenson should be made to dlow users to define smple
grammars. Text-to-gpeech cagpability also could be incorporated into the library.

While the generd voice mode produces robust recognition performance for most
of the users, it does not work very well for heavy accented users. In those cases,
gpeech recognition rates may be improved by usng spesker gpecific voice
models. A number of approaches for voice mode adaptation can be explored,
which are discussed in Section 2.3.

Although VoicelLink is designed to function as a stand-aone interface, it can be
incorporated into a multi-moda architecture. For example, speech recognition
may be combined with gesture recognition to enable better interaction experiences
and more robust and flexible control of various respongve media applications.

In addition to iCom and Hyper Soap, speech interfaces may be developed for other
responsve media applications. Reflection of Presence [20], for example is
another program in which usars can control and interact with various media
objects using speech. We aso should explore new approaches for the production
of interactive TV programs tailored to speech-enabled interactions.

Recently, IBM discontinued its offering of the Viavoice SDK for Linux software.
A good dternative is the Sphinx speech recognition system [4], which produces
comparable performance as that of Viavoice It dso has an APl that dlows users
to develop speech aware applications. More importantly, it is open-source
software. So future development of speech interfaces for Iss applications could
be based on Sphinx.

Currently, users can sdect objects in HyperSoap only by saying their names as
isolated words or phrases. In the future, a keyword-spotting agorithm [21] could
be used to extract object names from users casud conversations. For example,
the system could spot the word “shirt” from a speech input such as “I like the
shit”. Such a keyword spotting capability will lead to more transparent and
engaging interactions. Furthermore, we could incorporate a speech understanding

59

engine into the sysem so that the speech interface would be able to digtinguish
two different inputs such as “I like the shirt” and “I don't like the shirt”, and react
to them differently.

60

Appendices

A. Voice commandsfor theiCom speech interface

Functions

Commands

Behavior

Window control

Window label, or “open” + window label.

Example

(LTS "

“garden”, “cube”, “open garden”.

Enlarges the selected window.

“close” + window label.

Example: “close garden”.

Shrinks the selected window.

M essage control

“message” + message number.

Example: “message one”.

Displays the selected message.

“page up”,
“page down”.

Scrolls up/down message text for long

messages that have more than one

page.

“next”, or “next message”,

“previous”’, or “previous message”.

Displays the next message or the

previous message.

“close” or “close message”.

Closes the message display.

Audio control

Audio label, or “open”+ audio label.

Example

“garden audio”, “open garden audio”.

Turns on the audio at the selected

location.

“close” + audio label.

Example: “close garden audio”.

Turns off the audio.

Instruction “instruction”. Shows instructions on the screen.
“closeinstruction”. Dismisses instructions.
Interface control “microphone”, or “microphoneon”. Activates the speech interface.

“close microphone” or “microphone off”.

Deactivates the speech interface.
(Users also can toggle the state of the
speech interface by clicking on the

microphone button using the trackball.)

61

B. Object nameindex for Hyper Soap

Categories Object names | Synonyms
Lady’sitems Blouse Shirt, Blue shirt, Lady’ s shirt
Hair salon Hair, Lady’shair, Hair style
Earrings
Bracelet
Necklace Pearl necklace
Lady’ swatch Watch, Wristwatch, Swatch
High Heels Shoes, Lady’ s shoes
Jacket Sirt
Ring
Pantyhose Stockings, Leg
Men'sitems Suit Coat
Hair cut Hair, Men’s hair
Yellow shirt Shirt, Men’s shirt
Men'swatch Watch, Wristwatch
Shoes Dress shoes, Men'’ s shoes
Flannel Shirt Shirt
Jeans
Tableitems Tissue box Box
Mug Cup, Coffee mug
Jewelry box Box
Clock Desk clock, Table clock
Tissue Napkin
Picture Frame Frame
Digital Image Picture, Photo
Dek lamp Lamp, Tablelanmp
Sculpture Cat
Telephone Phone
Magic Frame Frame
Doll
Bookcaseitems | Bookcase Bookshelf
Teddy bear Bear, Teddy
Globe
Being digital Book
Perl 5 Book, Computer programming
Photo Picture
Plants
Painting Print, Picture

62

Furnishing

Lamp Hoor lamp

Chair

Antique Fillar, Column

Carpet Rug

Sofa Couch

Print Painting, Large painting, Picture
Poster Painting, Print

Framed Print Painting, Small painting, Picture, Print

63

Bibliography

[1] S. Agamanolis, “Ids, Cabbage, and Viper: New Tools and Strategies for Designing
Responsive Medid’, PhD Thes's, MIT Media Lab, June 2001.

[2] The iCom website. http://Awww.media abeurope.org/hc/projects/i Com/

[3] V. M. Bove, J. J Dékss E. Chdom, and S. Agamanadlis, “Hyperlinked television
research at the MIT Media Laboratory,” IBM Systems Journal, Vol. 39, No. 3-4, 2000.

[4] The Sphinx speech recognition system. http:// www.speech.cs.cmu.eduw/sphinx/

[5] J Glass, J Chang, and M. McCandless, “A Probabilistic Framework for Feature-
Based Speech Recognition”, Proc. ICSLP 96, pp. 2277-2280, Philadelphia, PA, October
1996.

[6] R. Rosenfdd, X. Zhu, et d, “Towards a universa speech interface”, Proceedings of
the International Conference on Spoken Language Processing, Beijing, China, 2000.

[7] K. H. Lee, “IMPROMPTU: Audio Applications for Mobile IP’, Master of Science
Thesis, MIT Media Lab, September 2001.

[8] S. Seneff, E. Hurley, R. Lau, C. Pao, P. Schmid, and V. Zue, “GALAXY-IIl: A
Reference Architecture for Conversationd System Development”, Proc. ICSLP 98,
Sydney, Austrdia, November 1998.

[9] The MIT Spoken Language Systems Group. http://Amww.dslcsmit.edw/d sresearch/

[10] C. Schmandt and E. A. Hulteen, “The Intdligent Voice Interactive Interface’,
Proceedings, Human Factors in Computer Systems, National Bureau of Sandards/ACM,
Gaithersburg, MD, 1982.

[11] S Owviat, “Mutua disambiguation of recognition erors in a multimoda
architecture’, Proceedings of the ACM CHI 99, Pittsburgh, USA, pp. 576-583.

[12] M. D. Good, J. A. Whiteside, D. R. Wixon, and S. J. Jones, “Building a user-derived
interface’, Communi cations of the ACM, October 1984, Vol. 27, No. 10. pp. 1032-1043.

[13] D. K. Roy, “Leaning from Sights and Sounds. A Computationd Modd”, Ph.D.
Thesis, MIT Media Laboratory, September 1999.

[14] The SALT Forum. http:/Amww.saltforum.org.

[15] VoiceXML. hitp:/Mmww.voicexml.org/.

[16] The IBM ViaVoice SDK. http://Aww- 3.ibm.com/software/speech/dev/

65

[17] C. Schmandt, Voice Communication with Computers Conversational Systems, Van
Nostrand Reinhold, 1994.

[18] G.W. Furnas, T.K. Landauer, L.M. Gomez, and ST. Dumais, “The vocabulary
problem in humansysem communications’, Communications of the Association for
Computing Machinery, 30(11): 964-972, 1987.

[19] The IS's web site. http://web.mediamit.edu/~sefanfiss

[20] S. Agamanalis, A. Westner, and V. M. Bove, J., “Reflection of Presence: Toward
More Naurd and Responsve Tdecollaboration”, Proc. SPIE Multimedia Networks,
3228A, 1997.

[21] T. Burianek, “Building a Speech Underdanding Sysem Usng Word Spotting

Techniques’, Magtler of Engineering Thess, MIT Depatment of Electricd Engineering
and Computer Science, July 2000.

66

