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Abstract

We investigate the capacity needed to build a restorable satellite network and design
routing schemes to achieve high throughput. Speci�cally, the �rst part of this thesis
considers the link capacity requirement for a LEO satellite constellation. We model
the constellation as an N �N mesh-torus topology under a uniform all-to-all traÆc
model. Both primary capacity and spare capacity for recovering from a link or node
failure are examined. In both cases, we use a method of \cuts on a graph" to obtain
lower bounds on capacity requirements and subsequently �nd algorithms for routing
and failure recovery that meet these bounds. Finally, we quantify the bene�ts of
path based restoration over that of link based restoration; speci�cally, we �nd that
the spare capacity requirement for a link based restoration scheme is nearly N times
that for a path based scheme. In the second part of this thesis, we consider a packet
switching satellite network in which each node independently generates packets with
a �xed probability during each time slot. With a limited number of transmitters and
bu�er space onboard each satellite, contention for transmission inevitably occurs as
multiple packets arrived at a node. We consider three routing schemes in resolving
these contentions: Shortest Hops Win, Random Packet Win and Oldest Packet Win;
and evaluate their performance in terms of throughput. Under no bu�er case, the
throughput of the three schemes are signi�cantly di�erent. However, there is no
appreciable di�erence in the throughput when bu�er is available at each node. Also,
a small bu�er size at each node can achieve the same throughput performance as that
of in�nite bu�er size. Simulations suggests that our theoretical throughput analysis
is very accurate.

Thesis Supervisor: Eytan Modiano
Title: Assistant Professor
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Chapter 1

Introduction

Satellite networks provide global access to information, especially for users located in

remote area where the communication infrastructure is inadequate. Recently, demand

for satellite communication bandwidth for government, business, and individuals in-

creases signi�cantly. In military alone, it is projected that at least 16 gigabits per

second of satellite communication bandwidth (more than three-fold of current band-

width requirement) is required [22]. Satellite networks can also act as a safety valve

for the Next Generation Internet. For example, failures in the �ber infrastructure

or network congestion problems can be recovered easily by routing traÆc through a

satellite channel. For these reasons, here we investigate a future generation of satellite

networks that are based on a constellation of low earth orbit (LEO) satellites.

Our work consists of two parts. The �rst part deals with the capacity provi-

sioning and failure recovery in the LEO satellite network with a connection-oriented

(circuit switching) network structure. Link failures and node (satellite) failures are

not uncommon for satellite networks due to the potentially hazardous space weather

(e.g., coronal mass ejections, solar ares, geomagnetic storm) which they are exposed

to. Because of the di�culty associated with repairing the failed link or node, spare

capacity is embeded in the network for restoration. To minimize the cost of adding

such spare capacity in the network, we explore the minimum amount of spare capac-

ity needed on each satellite link, so as to sustain the original traÆc ow during the

time of a link or a node failure. The second part of our work analyzes the network

13



throughput under various scheduling schemes in the LEO satellite network with a

datagram (packet switching) network structure. Due to the increased popularity of

the internet, there is an increase emphasis on the use of IP routing technology for both

commercial and military satellites. With limited transmitters and bu�er space on-

board each satellite, contention for transmission inevitably occurs as multiple packets

arrived at a node. We investigate several scheduling schemes for resolving contention

and compare their performance in terms of throughput.

The thesis is organized as follows. In Chapter 2, we describe the network topology

used to represent the satellite network, along with necessary de�nitions and problem

statements. Capacity provisioning for satellite without any failure is also given. Then,

we �nd the minimum spare capacity needed on each link in case of a single link or

node failure. An algorithm for achieving the minimum spare capacity for a link failure

is also presented. In Chapter3, we investigate the throughput of a packetized satellite

network by using several di�erent scheduling schemes during contention. The e�ect

of bu�er size on the throughput is also invetigated. Chapter 4 concludes the thesis.

14



Chapter 2

Capacity Provisioning and Failure

Recovery for Low Earth Orbit

Satellite Constellation

2.1 Introduction

The total capacity required by a satellite network to satisfy the demand and protect

it from failures contributes signi�cantly to its cost. To maximize the utilization of

such a network, we explore the minimum amount of spare capacity needed on each

satellite link, so as to sustain the original traÆc ow during the time of a link or a

node failure. In general, for a link failure, restoration schemes can be classi�ed as

link based restoration, or path based restoration. In the former case, a�ected traÆc

(i.e. traÆc that is supposed to go through the failed link) is rerouted over a set of

replacement paths through the spare capacity of a network between the two nodes

terminating the failed link. Path restoration reroutes the a�ected traÆc over a set

of replacement paths between their source and destination nodes [1, 2, 3, 5, 6]. The

obvious advantages of using the link restoration strategy are simplicity and ability

to rapidly recover from failure events. However, as we will show later, the amount

of spare capacity needed for the link based scheme is signi�cantly greater than that

15



of path based restoration since the latter has the freedom to reroute the complete

source-destination using the most eÆcient backup path. On the other hand, the path

restoration scheme is less exible in handling failures [1, 2, 3].

We investigate the optimal spare capacity placement problem based on mesh-torus

topology which is essential for the multisatellite systems. An n � n mesh-torus is a

two-dimensional (2-D) n-ary hypercube and di�ers from a binary hypercube in that

each node has a constant number of neighbors (4), regardless of n. For the remainder

of this chapter, we will refer to this topology simply as a mesh. In particular, we are

interested in the scenario where every node in the network is sending one unit of traÆc

to every other node (also known as complete exchange or all-to-all communication)

[7]. This type of communication model is considered because the exact traÆc pattern

is often unknown and an all-to-all model is frequently used as the basis for network

design. Even in the case of a predictable traÆc pattern, links of a particular satellite

will experience di�erent traÆc demand as the satellite ies over di�erent location on

earth. Thus, each link of that satellite must satisfy the maximum demand. Again,

all-to-all traÆc model helps capturing this e�ect. Hence we also assume that each

satellite link has an equal capacity. Our results, while motivated by satellite networks

[9, 10, 11], are equally applicable to other networks with a mesh topology such as

multi-processor interconnect networks [12, 13, 14] and optical WDM mesh networks

[2, 3]. Furthermore, while our results are discussed in the context of an n � n mesh

for simplicity, they can be trivially extended to a more general n�m topology.

When using the path restoration schemes, the restoration can be performed at

the global level by rerouting all the traÆc (both those a�ected or una�ected by the

link failure) in a network. However, this level of restoration requires recomputing

a new path for each source-destination pair, thus it is impractical if a restoration

time limit is imposed or when disruption of existing calls is unacceptable. We can

also perform path restoration at the local level by rerouting only the traÆc which is

a�ected by the link failure. Obviously, the local level recon�guration will require at

least as much spare capacity as the global level recon�guration since the former is a

subset of the latter. Nevertheless, as we show in section 4, the lower bound on the
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No Link based Path based
restoration restoration restoration

Total Capacity (N odd) N3�N
4

N3�N
3

N2(N2�1)
2(2N�1)

Total Capacity (N even) N3

4
N3

3
N4

2(2N�1)

Spare Capacity (N odd) 0 N3�N
12

N3�N
4(2N�1)

Spare Capacity (N even) 0 N3

12
N3

4(2N�1)

Table 2.1: Capacity requirements under link based and path based restoration for a
link failure.

spare capacity needed, using global level recon�guration, can be achieved by using

local level recon�guration.

To obtain the necessary minimum spare capacity, our approach is to �rst �nd the

minimum capacity, say C1, that each link must have in order to support the all-to-

all traÆc. We then obtain a lower bound, C2, for the capacity needed on each link

to satisfy the all-to-all traÆc when one of the links or nodes fails. Consequently,

the minimum spare capacity needed, Cspare, should be greater than the di�erence of

C2 and C1. Since we do not restrict the recon�guration (global level or local level)

used to calculate C2; C2 � C1 is a lower bound on Cspare, both at global level and

local level. For a single link failure, we will show that this lower bound on Cspare is

achievable by using a path based restoration algorithm at a local level. Thus, the

minimum spare capacity needed using path restoration strategy is Cspare. Table 2.1

summarizes capacity requirements under link based and path based restoration for

link failure.

Communication on a mesh network has been studied in [4, 11, 14]. In [4], the

authors consider processors communicating over a mesh network with the objective

of broadcasting information. The work in [11] presents routing algorithm generating

minimum propagation delay for satellite mesh networks. In [14], the authors propose

new algorithms for all-to-all personalized communication in mesh-connected multi-

processors. These papers mentioned so far did not look into capacity provisioning

and spare capacity requirement of the mesh network.

Path based and link based restoration schemes have been extensively researched

17



[1, 2, 3, 5]. In [1], the authors study and compare spare capacity needed by using

link based and path based schemes. The work of [5] provides a method for capacity

optimization of path restorable networks and quanti�es the capacity bene�ts of path

over link restoration. In [2, 3], the authors examine di�erent approaches to restore

mesh-based WDM optical networks from single link failures. In all the aforementioned

papers, the spare capacity problem is formulated as an integer linear programming

problem which is solved by standard methods. Our work addresses the mesh structure

for which we can get a closed form results for the spare capacity.

The structure of this chapter is as follows: Section 2 gives necessary de�nitions

and statement of the problem. In section 3, a lower bound on C1 is given along with

a routing algorithm achieving this lower bound. The lower bound C2 for link failure

is presented also. We then show in section 4 that the lower bound on Cspare, C2�C1,

can be achieved by a path based restoration algorithm under a single link failure. In

section 5, we derive a lower bound on Cspare for the node failure case and present a

restoration scheme. Section 6 summarizes this paper.

2.2 Preliminaries

We start out with a description of the network topology and traÆc model, and follow it

with a sequence of formal de�nitions and terminology that will be used in subsequent

sections.

De�nition 1. The 2-dimensional N-mesh is an undirected graph G = (V;E), with

vertex set

V = f~a j ~a = (a1; a2) and a1; a2 2 ZNg;

where ZN denotes the integers modulo N , and edge set

E = f(~a;~b) j 9 j such that aj � (bj � 1) mod N

and ai = bi for i 6= j; i; j 2 f1; 2gg:

18
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Figure 2-1: A 2-dimensional 5-mesh.

The above de�nition is from [7]. A 2-dimensional N -mesh has a total of N2

nodes. Each node has two neighbors in the vertical and horizontal dimension, for a

total of four neighbors. We associate each satellite with a �xed node, (a1; a2), in the

mesh. Undirected edges of the mesh are also referred to as links. Fig. 3-1 shows a

2-dimensional 5-mesh. The notion 2-dimensional1-mesh is used to denote the case

where N is arbitrarily large, and it is the same as an in�nity grid.

De�nition 2. A cut (S; V � S) in a graph G = (V;E) is partition of the node set V

into two nonempty subsets, a set S and its complement V � S.

Here the notation Cut-Set(S; V � S) = f(~a;~b) 2 E j ~a 2 S;~b 2 V � Sg denotes

the set of edges of the cut (i.e. the set of edges with one end node in one side of the

cut and the other on the other side of the cut).

De�nition 3. The size of a Cut-Set(S; V�S) is de�ned as C(S; V�S) =j Cut-Set(S; V�
S) j.

For G = (V;E) and P(V ) denote the power set of the set V (i.e. the set of all

subsets of V ). Let Pn(V ) denote the set of all n-elements subsets of V .

De�nition 4. Let G = (V;E) be a 2-dimensional N-mesh, the function "N : Z+ !

19



Z+ is de�ned as

"N(n) = min
S2Pn(V )

C(S; V � S):

The function "N(n) returns the minimum number of edges that must be removed

in order to split the 2-dimensional N -mesh into two parts, one with n nodes and the

other with N2 � n nodes. Similarly, "1(n) is de�ned to be the minimum number of

edges that must be removed in order to split the1-mesh into two disjoint parts, one

of which containing n nodes.

To achieve the minimum spare capacity, we consider the shortest path algorithm.

Shortest paths on 2-dimensional N -mesh are associated with the notion of cyclic

distance which we will de�ne next [8].

De�nition 5. Given three integers, i, j, N , the cyclic distance between i and j mod-

ulo N is given by

DN(i; j) = minf(i� j)mod N); (j � i)mod N)g:

2.3 Capacity Requirement without Link or Node

Failures

To obtain the necessary capacity, C1, that each link must have in order to support

the all-to-all traÆc without link failure, we �rst provide a lower bound on C1. An

algorithm achieving the lower bound will also be presented. For the proof of the lower

bound on C1, we are aware of the existance of a simpler proof (using Proposition 1

in [4]) than the one we described below. However, the cut method we used here will

help us �nd the lower bound, C2, on the minimum capacity needed on each link in the

event of a link failure. Therefore, we decide to use the same cut method consistently

in proving the lower bound on C1 and the lower bound C2.

20



2.3.1 A Lower Bound on the Primary Capacity

Corner Node

Wn

Wn

Wn

Wn

Leaf Node

Figure 2-2: Representation of corner node and leaf node.

To �nd a lower bound on C1, we state the following lemmas which will prove

to be useful tools in the subsequent sections. First, we give a brief explanation of

the terminology and notation used in the lemmas and their proofs. For G = (V;E)

de�ned as an in�nite mesh, an inner edge (i, j) of a set W � V is (i; j) 2 E such

that i 2 W and j 2 W . A corner node x of the set W is de�ned to be a node x 2 W

such that two of its four neighboring nodes are also in the set W while the other two

are in W . And of those two neighboring nodes in W , they form a 90Æ angle with

respect to node x (as shown in Fig. 2-2). Similarly, a leaf node x of set W is de�ned

to be a node x 2 W such that three of its four neighboring nodes are in W , and the

last one is in W . When all nodes in W are connected, we use the term shape of the

set W to refer to the collective shape of nodes in W . For example, we say that the

shape of the set shown in Fig. 2-3(a) is square and the shape of the set in Fig. 2-3(b)

is rectangular. Lastly, we use the term minimum set Wn to refer any set such that

C(Wn;Wn) = "1(n).

Lemma 1. Let G = (V;E) be an in�nite mesh. An arbitrary set Wn 2 V such that
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(a) (b)

Figure 2-3: An illustration of the square shape and the rectangular shape.

"1(n) = C(Wn;Wn) must satisfy the following properties:

1. 8x 2 Wn; 9 y 2 Wn such that (x; y) 2 E. In other words, nodes in Wn should

be connected.

2. Nodes in Wn should be clustered together to form a rectangular shape (including

square) if possible.

3. "1(n) is an even number for all n 2 Z+.

4. "1(n) is a monotonically nondecreasing function of n.

Proof. Property (1) is easy to show. If there exists a node s 2 Wn such that s is

not connected to any other nodes in Wn, simply discarding s and adding a new node

which is connected to nodes ofWn will result in a smaller C(Wn;Wn), a contradiction

to the de�nition of "1(n).

To show (2), suppose the set Wn is not clustered together to form a rectangular

shape, then by grouping nodes into rectangle will decrease C(Wn;Wn). Again, we

have a contradiction.
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Property (3) is true because we have C(Wn;Wn) = 4n� 2(number of inner edge

in Wn), for any set of Wn. Therefore, "1(n) will always be an even number.

To show that "1(n) is a nondecreasing function, suppose there exists k 2 Z+ such

that m1 = "1(k + 1) < "1(k) = m2 where "1(k + 1) = C(Wk+1;Wk+1). The set

Wk+1 must contain a corner node, say a; or a leaf node, say b. If node a or node b is

removed from Wk+1, the resulting set, say W 0
k, will have k nodes remaining. We get

C(W 0
k;W

0
k) � m1 which contradicts the fact that "1(k) = m2 > m1. Thus, property

(4) is true.

Lemma 2. Let G = (V;E) be an in�nite mesh, then

"1(n
2) = 4n

and

"1(n2 + k) =

8<
: 4n+ 2 for 1 � k � n

4n+ 4 for n + 1 � k � 2n+ 1

for n; k 2 Z+ where Z+ denotes the set of positive integer.

The above lemma gives the minimum number of edges that must be removed from

E in order to split a speci�ed number of nodes from the mesh. Intuitively, the set of

n nodes to be removed from the mesh must be clustered together.

Proof. We will show "1(n2) = 4n, 8n 2 Z+, and the set of n2 nodes must be

arranged in a square shape in order to achieve the minimum size of the cut. From the

properties of the minimum set in the previous lemma, we know the minimum set has

to be clustered in a rectangular shape. Suppose we have a set of n2 nodes arranged

in the rectangular form shown in Fig. 2-4. We know that ab = n2 for some a; b 2 Z

and size of the cut is 2(a + b). Minimizing the size of the cut results in a = b = n.

The uniqueness of a square con�guration can be shown by inspection. To show that

"1(n2+ k) = 4n+2 for 1 � k � n, we prove that "1(n2+ k) � 4n+2 for 1 � k � n.
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a

b

Figure 2-4: An arrangement of n2 nodes in rectangular shape.

Then, by construction, "1(n2 + k) = 4n + 2 for 1 � k � n. From property (4) and

the uniqueness of the square con�guration, we see that "1(n2 + 1) > "1(n2) = 4n.

From property (3), "1(n2 + 1) 6= 4n + 1. Therefore, "1(n2 + 1) � 4n + 2. By the

monotonicity of "1(�), "1(n2 + k) � 4n+ 2 for 1 � k � n. To show achievability, we

�rst arrange the n2 nodes in square. Then, connecting the extra k nodes around the

square will yield "1(n2 + k) = 4n+ 2 for 1 � k � n.

Showing that "1(n2+k) = 4n+4 for n+1 � k � 2n+1 can be done similarly.

Corollary 1. For "1(n) de�ned in above lemma, "1(n) � 4
p
n for n 2 Z+.

Proof. The statement is obviously true for n such that n = k2 for some k 2 Z+. Now

consider the case where n 6= k2 for 8k 2 Z+. Let m be the largest integer such that

m2 < n. From Lemma 1, we then have

n�m2 > m ) "1(n) = 4m+ 4

n�m2 < m ) "1(n) = 4m+ 2

So for n such that (m + 1)2 > n > m2 +m, we have 4m + 4 = 4
p
(m + 1)2 > 4

p
n.

Similarly, for n such that m2 + m > n > m2, we have 4m + 2 = 4
q
(m+ 1

2
)2 >

4
p
m2 +m > 4

p
n. Thus, "1(n) � 4

p
n for n 2 Z+.
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Corollary 2. Let G = (V;E) be an in�nite mesh with an arbitrary link failure, then

"1(n2) = 4n� 1

and

"1(n2 + k) =

8<
: 4n+ 1 for 1 � k � n

4n+ 3 for n + 1 � k � 2n+ 1

for n; k 2 Z+ where Z+ denotes the set of positive integer.

Proof. The proof of this corrollary follows similar steps to those used in the proof of

the lemma. By including the failed link in the cut set, the number of edges needed

to be removed for this new topology is one less than that of regular in�nite mesh

(without link failure).

So far the function "1(n) has been the focus of our discussion. Since the satellite

network that we model is a 2-dimensional N -mesh, it is essential to know "N(n). In a

2-dimensional N -mesh, a horizontal row of nodes (a vertical column of nodes) forms

a horizontal (vertical) ring. When n is very small compared to N , splitting a set of n

nodes from the N -mesh is similar to cutting the set of n nodes from 1-mesh; more

precisely, "1(n) = "N(n). The ring structure of the 2-dimensional N -mesh does not

a�ect the minimum size of a cut when n is relatively small. Nevertheless, when n is

large, taking advantage of the ring structure of the 2-dimensional N -mesh will result

in "N(n) < "1(n).

Now, let's de�ne the following sets:

A1 �f1; 2; : : : ; N
2

4
g;

A2 �fx j x 2 fN
2

4
+ 1; : : : ;

N2

2
g and (x mod N) 6= 0g;

A3 �fx j x 2 fN
2

4
+ 1; : : : ;

N2

2
g and (x mod N) = 0g;

O1 �f1; 2; : : : ; N
2 � 1

4
g;
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O2 �fx j x 2 fN
2 � 1

4
+ 1; : : : ;

N2 + 1

2
g

and (x mod N) 6= 0g; and

O3 �fx j x 2 fN
2 � 1

4
+ 1; : : : ;

N2 + 1

2
g

and (x mod N) = 0g:

Figure 2-5: Ways of splitting the N -mesh into two disjoint parts.

Lemma 3. Let G = (V;E) be a 2-dimensional N-mesh, for N even,

"N(n) =

8>>><
>>>:

"1(n) for n 2 A1

2N + 2 for n 2 A2

2N for n 2 A3
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for N odd,

"N(n) =

8>>><
>>>:

"1(n) for n 2 O1

2N + 2 for n 2 O2

2N for n 2 O3

Proof. From Fig. 2-5, we see that "N(n) � 2N 8n such that (n mod N) = 0 and

"N(n) � 2N + 2 if (n mod N) 6= 0. For n small, "N(n) = "1(n). When n = N2

4
+ k

for k � 1, we have "1(N
2

4
+ k) � 2N +2. Therefore, we can use the splitting method

in Fig. 2-5, which will result in a cut size of 2N + 2, to separate the two sets. For N

odd, "1(N
2�1
4

+ 1) = "1((N�1
2
)2 + N�1

2
+ 1) = 4(N�1

2
) + 4 = 2N + 2. Again, we can

use the method in Fig. 2-5 to separate the sets.

Theorem 1. On a 2-dimensional N-mesh, the minimum capacity, C1, that each link

must have in order to support all-to-all traÆc is at least N3

4
for N even, and N3�N

4

for N odd.

Proof. Consider a �xed n between 1 and N2� 1. The idea is to use a cut to separate

the network (N -mesh) into two disjoint parts, with one part containing n nodes and

the other containing N2 � n nodes. Based on the all-to-all traÆc model, we know

the exact amount of traÆc, Ccross = 2n(N2 � n), that must go through the cut.

Therefore, from max-ow min-cut theorem [15] we know that simply dividing Ccross

by the minimum size of cutset "N(n) will give us a lower bound on C1, and let's call

this bound Bn. It implies that each link in the network must have capacity of at least

Bn in order to satisfy the all-to-all traÆc demand. This prompts us to �nd BC1
max

which is the maximum of Bn over all n 2 f1; : : : ; N2 � 1g. We say that BC1
max is the

best lower bound for C1 in the sense that it is greater or equal to any other lower

bound for C1.

For N even, let

BC1
max = max

n2f1;::: ;N2�1g

�
2(N2 � n)n

"N(n)

�
(2.1)
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= max

�
max
n2A1

�
2(N2 � n)n

"1(n)

�
;

max
n2A2

�
2(N2 � n)n

2N + 2

�
;

max
n2A3

�
2(N2 � n)n

2N

��
: (2.2)

The case for N odd is the same except that A1;A2; and A3 in (2) are replaced by

O1;O2; and O3. Solving the maximization problem, we get

BC1
max =

8<
:

max
n
�e;

N4

2(2N+1)
; N

3

4

o
for N even

max
n
�o;

N4�1
2(2N+1)

; N
3�N
4

o
for N odd

where �e (�o) in the above equation is the result of the �rst term of equation (2.2)

for N even (odd). Here, explicit evaluation of �e and �o is unnecessary. Instead, by

using Corollary 1, an upper bound on �e and �o will be suÆcient for us to solve the

maximization problem. Since "1(n) � 4
p
n for n 2 Z+, the following equation holds:

�e = max
n2A1

�
2(N2 � n)n

"1(n)

�
� max

n2Z+

�
2(N2 � n)n

"1(n)

�

� max
n2Z+

�
2(N2 � n)n

4
p
n

�
=

3N3

16
<
N3

4

�o <
N3�N

4
can be shown similarly. Thus, we have

BC1
max =

8<
:

N3

4
for N even

N3�N
4

for N odd

Corollary 3. On a 2-dimensional N-mesh with an arbitrary link failure, the lower

bound, C2, on the minimum capacity that each link must have in order to support

all-to-all traÆc is N4

2(2N�1)
for N even, and N2(N2�1)

2(2N�1)
for N odd.

Proof. The proof of this corollary is similar to the proof of Theorem 1. We still use

the max-ow min-cut theorem to compute the best lower bound C2. In this case, we
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have

BC2
max = max

n2f1;::: ;N2�1g

�
2(N2 � n)n

"N(n)� 1

�
(2.3)

= max

�
max
n2A1

�
2(N2 � n)n

"1(n)� 1

�
;

max
n2A2

�
2(N2 � n)n

2N + 2� 1

�
;

max
n2A3

�
2(N2 � n)n

2N � 1

��
(2.4)

Notice the di�erence between the above equations and equations (1) and (2) in the

proof of theorem 1. Because of the failed link, the denominator of (3) is changed to

"N(n)� 1 by Corollary 2.

Solving the maximization problem, we get

BC2
max =

8<
:

max
n
�e;

N4

2(2N+1)
; N4

2(2N�1)

o
for N even

max
n
�o;

N4�1
2(2N+1)

; N
2(N2�1)
2(2N�1)

o
for N odd

where �e (�o) in the above equation is the result of the �rst term of equation (2.4)

for N even (odd). Again, explicit evaluation of �e and �o is unnecessary. Instead, by

using 4
p
n�1 � 3:5

p
n 8n � 5, an upbound on �e and �o will provide us the essential

information to solve the maximization problem. Since "1(n) � 4
p
n for n 2 Z+, the

following equation holds

�e = max
n2A1

�
2(N2 � n)n

"1(n)� 1

�
� max

n2Z+

�
2(N2 � n)n

"1(n)� 1

�

� max

�
max

n2f1;��� ;4g
2(N2 � n)n

"1(n)� 1
;max
n�5

2(N2 � n)n

3:5
p
n

�

<
N4

2(2N � 1)

�o <
N2(N2�1)
2(2N�1)

can be shown similarly. Thus, we have

BC2
max =

8<
:

N4

2(2N�1)
for N even

N2(N2�1)
2(2N�1)

for N odd
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2.3.2 Algorithm Achieving the Lower Bound on C1

In this section, we show that the lower bound on C1 can be achieved by using a

simple routing algorithm called the Dimensional Routing Algorithm. As we have

mentioned earlier, the routing algorithm will use the shortest path between source

and destination nodes. Below is a description of the Dimensional Routing Algorithm:

1. From the source node ~p = (p1; p2), move horizontally in the direction of shortest

cyclic distance to the destination node ~q = (q1; q2); if there is more than one way

to route the traÆc, pick the one that moves in the (+) direction (mod N), i.e.

(p1; p2)! ((p1+1)modN; p2)! ((p1+2)modN; p2)! � � � ! (q1; p2): Route the

traÆc for DN(p1; q1) hops where DN (p1; q1) denotes the shortest cyclic distance

(hops) between ~p and ~q in horizontal direction.

2. Move vertically in the direction of shortest cyclic distance to the destination

node; if there is more than one way to route the traÆc, pick the one that

moves in the (+) direction (mod N). Route the traÆc for DN(p2; q2) hops

where DN(p2; q2) denotes the shortest cyclic distance (hops) between ~p and ~q in

vertical direction.

That is, the routing path will include the following nodes, ~p = (p1; p2)! (q1; p2)!
(q1; q2) = ~q. The above algorithm ensures the existence of a unique shortest path

between every node ~p and ~q regardless of whether N is even or odd, and consequently,

facilitates the analysis of link load.

Theorem 2. Let G = (V;E) be a 2-dimensional N-mesh, by using the Dimensional

Routing Algorithm above, to satisfy the all-to-all traÆc, the maximum load on each

link is N3

4
for N even and N3�N

4
for N odd.

Proof. The Dimensional Routing Algorithm ensures one unique path between a

source and destination pair. Thus, in order to compute the maximum load on a
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e

d

c

b

a

Figure 2-6: An illustration of traÆc ow into node c by using Dimensional Routing
Algorithm.

link, we need only count the (maximum) number of pairs of nodes that communicate

through a speci�c link. Without loss of generality, consider the link l~b~c in Fig. 2-6. We

see that ten units of traÆc heading for node ~c must go through l~b~c. By the symmetry

of the mesh topology and Dimensional Routing Algorithm, �ve units of traÆc heading

for node ~d must go through l~b~c since �ve units of traÆc heading for node ~c go through

l~a~b. Extending this argument, we see from Fig. 2-6 that an additional ten units of

traÆc destined for node~b and �ve units of traÆc headed to node ~a must communicate

through l~b~c. Again, by symmetry, the total load on any link of the graph (denoted by

Tl), in the case of N = 5, is Tl = 5 + 10 + 10 + 5 = 30. In general, for N odd, we

have the following formula:

Tl = 2N

N�1

2X
i=1

i =
N3 �N

4
:

For N even, using the same routing algorithm, we get Tl =
N3

4
.

Clearly, using the Dimensional Routing Algorithm, we see that the lower bound

of link capacity in the Theorem 1 is achieved. Now, with the minimum link capacity
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needed (C1) and the lower bound of link capacity for mesh with a failed link (C2)

computed, we are able to derive the minimum spare capacity that each link must

have in order to sustain the all-to-all traÆc during the time of a link failure.

2.4 Capacity Requirement for Recovering from A

Link Failure

Under the condition of an arbitrary link failure, we investigate the spare capacity

needed to fully restore the original traÆc, using the link based restoration method

and path based restoration method.

2.4.1 Link Based Restoration Strategy

Consider that an arbitrary link, l~u~v (connecting nodes ~u and ~v), failed in the 2-

dimensional N -mesh. We know from the previous section that there are N3�N
4

unit

of traÆc on l~u~v have to be rerouted for N odd and N3

4
for N even. Since the link

based restoration strategy is used here, these N3�N
4

units of traÆc in and out of node

~u have to be rerouted through the remaining three links connecting to node ~u (l~u~v is

already broken). We then have the following theorem:

Theorem 3. Using link based restoration strategy in the event of a link failure, the

minimum spare capacity that each link must have in order to support the all-to-all

traÆc is N3�N
12

for N odd and N3

12
for N even.

Proof. By using link based restoration scheme, a lower bound on spare capacity is

N3�N
12

for N odd and N3

12
for N even from the argument stated in the previous para-

graph. To show achievability, we refer to Fig. 2-7. Since the restoration paths are

disjoint, we can reroute 1
3
of the a�ected traÆc through each of the three disjoint

paths. Hence, the lower bound is achieved.
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u

v

3 disjoint restoration paths

Figure 2-7: Restoration paths using link based recovery scheme.

2.4.2 Path Based Restoration Strategy

Lower Bound on the Minimum Spare Capacity

Theorem 4. On a 2-dimensional N-mesh with an arbitrary failed link, the minimum

spare capacity, Cspare, that each link must have in order to support all-to-all traÆc is

at least N3

4(2N�1)
for N even, and N3�N

4(2N�1)
for N odd.

Proof. From Theorem 2, for a regular 2-dimensional N -mesh, we know that the ca-

pacity that each link must have in order to satisfy all-to-all traÆc is N3

4
for N even,

and N3�N
4

for N odd. In case of an arbitrary link failure, from Corollary 3, at least

a capacity of N4

2(2N�1)
(N

2(N2�1)
2(2N�1)

) is needed on each link to sustain the original traÆc

ow for N even (odd). We need to have an extra capacity of Cspare � C2 � C1 on

each link. Thus, we have

Cspare �
8<
:

N4

2(2N�1)
� N3

4
= N3

4(2N�1)
for N even

N2(N2�1)
2(2N�1)

� N3�N
4

= N3�N
4(2N�1)

for N odd
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Algorithm Using Minimum Spare Capacity

In this section, we will show that the minimum spare capacity needed on each link is

N3

4(2N�1)
forN even and N3�N

4(2N�1)
forN odd. In other words, the lower bound in Theorem

4 is tight. We show the achievability by presenting a primary routing algorithm, and

subsequently, a path-based recovery algorithm which fully restores the original traÆc

by using the minimum spare capacity in case of a link failure. We focus on the case of

N odd for simplicity. To show the achievability for N even, a di�erent set of primary

routing algorithm and recovery algorithm is needed (not presented in this paper).

90

Figure 2-8: Routing path of the Rotational Symmetric routing algorithm. Rotating
the graph by 90Æ does not change the con�guration.

First, we describe the primary routing algorithm that we call Rotational Symmet-

ric Routing Algorithm, or RS Routing Algorithm, used to route the all-to-all traÆc.

We use the RS Routing Algorithm instead of the Dimensional Routing Algorithm

as our primary routing algorithm because the former simpli�es the construction and

analysis of the restoration algorithm. Speci�cally, with the Dimensional Routing Al-

gorithm, the traÆc routes on horizontal and vertical links are not symmetric; hence

a di�erent restoration algorithm would be required for vertical and horizontal link

failure. In contrast, the RS Routing Algorithm is symmetric and vertical or hori-
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zontal link failure can be treated using the same recovery algorithm. The case of a

horizontal link failure is the same as the vertical link failure if we rotate the topology

by 90Æ (shown in Fig. 2-8).

RS routing algorithm

Each node ~a in a 2-dimensional N -mesh has a pair of integers (a1; a2) associated

with it. To route one unit of traÆc from the source node ~p to the destination node

~q, do the following:

1. Change coordinate and compute the relative position of the destination node

with respect to the source node. Speci�cally, shift the source node to (0; 0) by

applying the transformation T~p. Here, the transformation T~p : ZN � ZN !
ZN � ZN is de�ned as T~p(q1; q2) = (d1; d2), where for i = 1; 2

di =

8>>>>>>>>>>>><
>>>>>>>>>>>>:

qi � pi;

if � N�1
2
� qi � pi � N�1

2

(qi � pi) mod N;

if � (N � 1) � qi � pi < �N�1
2

�([�(qi � pi)] mod N);

if N�1
2

< qi � pi � N � 1

Here, (�n) mod p is de�ned as p� n mod p if 0 < n mod p < p. Thus, we will

have T~p(~p) = (0; 0). Fig. 2-9 illustrates this transformation.

2. Divide the nodes of the 2-dimensional N -mesh into four quadrants with the

source node as the origin (shown in Fig. 2-9). Spec�cally, let

Q1 = f(a; b) j a; b 2 ZN and 0 � a � N � 1

2
; 0 < b � N � 1

2
g;

Q2 = f(a; b) j a; b 2 ZN and � N � 1

2
� a < 0;�N � 1

2
� b � 0g;

Q3 = f(a; b) j a; b 2 ZN and � N � 1

2
� a � 0;�N � 1

2
� b < 0g; and

Q4 = f(a; b) j a; b 2 ZN and 0 < a � N � 1

2
;�N � 1

2
� b � 0g:
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Figure 2-9: Change of coordinate by using transformation T~p.

3. If ~d = T~p(~q) 2 (Q1 [Q3), route the traÆc vertically in the direction of shortest

cyclic distance to the destination node by DN(p2; q2) hops. Then, route the

traÆc horizontally in the direction of shortest cyclic distance to the destination

node by DN(p1; q1) hops.

If ~d = T~p(~q) 2 (Q2[Q4), route the traÆc horizontally in the direction of shortest

cyclic distance to the destination node by DN(p1; q1) hops. Then, route the

traÆc vertically in the direction of shortest cyclic distance to the destination

node by DN(p2; q2) hops.

Now, considering all traÆc that has a particular node ~c as their destination, their

routing paths are rotational symmetric by the above algorithm. That is, rotating
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all of the routing paths by an integer multiple of 90Æ will result in having the same

original routing con�guration. This idea is best illustrated by Fig. 2-8. RS routing

algorithm also achieves the lower bound on C1. The proof is straightforward and thus

omitted here.
b
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f

Primary Routing
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Restoration Routing Path

(b)

α

β

Figure 2-10: Routing path of the restoration algorithm

Our goal here is to recover the original traÆc ow by adding an extra amount of

capacity, which is equal to the lower bound calculated in Theorem 4, on each link.

Now, we present an example to illustrate the key ideas of the recovery algorithm.

Without loss of generality, suppose that link l~c~d failed in the 2-dimensional 7-mesh

shown in Fig. 2-10(a). We need to �nd all possible source destination pairs (S-D

pairs) that are a�ected by the failed link �rst. From the RS routing algorithm, these
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S-D pairs can be determined exactly. Let F denote the set of all possible such S-D

pairs. Then, we have F = F1 [ F2 [ F3 [ F4 [ F5 [ F6 where

F1 = f(~s;~t) 2 F j ~s 2 A2 and ~t 2 L4g;
F2 = f(~s;~t) 2 F j ~s 2 L2 and ~t 2 A3g;
F3 = f(~s;~t) 2 F j ~s 2 A4 and ~t 2 L2g;
F4 = f(~s;~t) 2 F j ~s 2 L4 and ~t 2 A1g;
F5 = f(~s;~t) 2 F j ~s 2 L4 and ~t 2 L2g; and
F6 = f(~s;~t) 2 F j ~s 2 L2 and ~t 2 L4g:

In the 2-dimensional 7-mesh with a link failure, the sets A1, A2, A3, A4, L2 and L4

are shown in Fig. 2-10(a). More generally, with a failed vertical link connecting nodes

~v = (v1; v2) and ~u = (v1; (v2 + 1)modN), after taking the transformation T~v, we can

de�ne these sets as the following:

A1 = f(a; b) j a; b 2 ZN and 1 � a � N � 1

2
; 1 � b � N � 1

2
g;

A2 = f(a; b) j a; b 2 ZN and � N � 1

2
� a � �1; 1 � b � N � 1

2
g;

A3 = f(a; b) j a; b 2 ZN and � N � 1

2
� a � �1;�[N � 1

2
� 1] � b � 0g;

A4 = f(a; b) j a; b 2 ZN and 1 � a <
N � 1

2
;�[N � 1

2
� 1] � b � 0g;

L2 = f(a; b) j a; b 2 ZN and a = 0; 1 � b � N � 1

2
g; and

L4 = f(a; b) j a; b 2 ZN and a = 0;�[N � 1

2
� 1] � b � 0g:

A simple way for recovering a failed traÆc is to reverse its routing order. That is,

if the primary routing scheme is to route the traÆc horizontally in the direction of

shortest cyclic distance �rst, the recovery algorithm will route the traÆc vertically

�rst (shown in Fig. 2-10(b)). Thus, traÆc that is supposed to go through the failed

link will circumvent the failed link. Consider now the vertical links crossing line �

in Fig. 2-10(a) and the a�ected traÆc in the set F1 [ F2 [ F3 [ F4. Rerouting (i.e.
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reversing the routing order) all of the a�ected traÆc in F1 [ F2 [ F3 [ F4 through

the vertical links crossing line � will add an additional 12 units of traÆc on each

of these six vertical links. Fig. 2-11(a) illustrates the recovering paths of the traÆc

(originating from nodes a0, b0, and c0) in the set F1, which are being rerouted through

the link l~c0 ~d0 . Recovering paths for the traÆc in F2, although not shown here, is just

a ip of Fig. 2-11(a) with respect to the line �. The total amount of rerouted traÆc

in F1 [ F2 added on link l~c0 ~d0 , which is 12, exceeds the lower bound of spare capacity,

C2 �C1 = d N3�N
4(2N�1)

e = 7. However, utilizing the ring structure of the mesh topology,

we can reroute half of the a�ected traÆc through links crossing line � (illustrated

in Fig. 2-11(b)). This way, we have a total of six units traÆc through the link l~c0 ~d0

(three from F1 and three from F2). For the traÆc in the set F5 [ F6, we can reroute

half of them (six units) through the link l~g~a. The remaining six units of traÆc can be

routed evenly through the six vertical links crossing line �. Thus, we can restore the

original traÆc ow by using only an additional C2 � C1 amount of capacity on each

vertical link.
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Figure 2-11: Restoration path for the 2-dimensional 7-mesh

So far we have only discussed the load on a vertical link. Now, we will address the

question of whether the additional traÆc on each horizontal link will exceed C2�C1.
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For example, on the link l~d0 ~d in Fig. 2-10(a), one may �nd that the amount of rerouted

traÆc from the set F1 [ F2, nine, exceeds C2 � C1 = 7 after reversing the routing

order of the a�ected traÆc. However, as we reroute the a�ected traÆc circumventing

the failed link, we not only put an additional nine units of traÆc (~s 2 A2;~t = ~d)

on link l~d0 ~d but also take nine units of traÆc (~s 2 L2;~t 2 L3) away from link l~d0 ~d.

Overall, we have zero additional rerouted traÆc from the set F1 [F2 go through link

l~d0 ~d. Nevertheless, traÆc in the set F5 [ F6 does add extra units of traÆc on the link

l~d0 ~d. By rerouting half of the traÆc in F5 [ F6 (six) through the link l~g~a (without

using any horizontal link), we can then distribute the rest of the traÆc in F5 [ F6

(six) evenly, so as to satisfy the spare capacity constraint.

As we have mentioned earlier, only the traÆc in the set
S6

i=1 Fi are being rerouted

in our path based recovery algorithm. TraÆc which is una�ected by the failed link

remains intact in the recovery algorithm.

Next, we present the full detail of the path based restoration algorithm. We also

show that the lower bound on the spare capacity (C2 � C1) is indeed achievable.

Path based restoration algorithm

Again, we focus on the case of N odd for simplicity. From the source node ~p to

the destination node ~q, we consider the case that its routing path includes the failed

link. Without loss of generality, we assume an arbitrary vertical link failed (the case

of a horizontal link failure is the same because of symmetry provided by the primary

routing algorithm). The two nodes connected by the failed link are referred to as

node ~u and ~v with node ~u on the top of ~v, i.e. (v2 + 1) mod N = u2. When we route

a unit of traÆc vertically along the column of the destination node, there are two

disjoint paths leading to the destination node. One path is in the direction of the

shortest cyclic distance to the destination node which will be called the vs direction.

The opposite of vs direction will be called the vl direction. Below are the steps of the

recovering algorithm:

1. Shift coordinate by applying transformation T~v so that node ~v will be moved to

the origin. Let ~s = (s1; s2) = T~v(~p) and ~t = (t1; t2) = T~v(~q).
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2. Reverse the routing order of the primary routing path.

3. When route the traÆc vertically, the direction (vs or vl) is determined by the

following criteria:

Let g(w) =
Pw

i=1 i,  = 1
2

PN�1

2

i=1 i, a =
Pw

i=1 i � b1
2

PN�1

2

i=1 ic, and b =
Pw

i=1 i �
d1
2

PN�1

2

i=1 ie where w is de�ned below:

(a) For ~s 2 A2 and ~t 2 L4, let w = N+1
2
� js2j.

Case 1: g(w) � , choose vl direction.

Case 2: g(w) > , g(w � 1) � , and jt2j 2 f0; � � � ; (a � 1)g, choose vs
direction.

Case 3: g(w) > , g(w � 1) � , and jt2j 2 fa; � � � ; N�1
2
� 1g, choose vl

direction.

Case 4: g(w) >  and g(w� 1) > , choose vs direction.

(b) For ~s 2 L2 and ~t 2 A3, let w = N+1
2
� jt2j � 1.

Case 1: g(w) � , choose vl direction.

Case 2: g(w) > , g(w�1) � , and js2j 2 f1; � � � ; bg, choose vs direction.
Case 3: g(w) > , g(w � 1) � , and js2j 2 fb + 1; � � � ; N�1

2
g, choose vl

direction.

Case 4: g(w) >  and g(w� 1) > , choose vs direction.

(c) For ~s 2 L4 and ~t 2 A1, let w = N+1
2
� jt2j.

Case 1: g(w) � , choose vl direction.

Case 2: g(w) > , g(w � 1) � , and js2j 2 f0; � � � ; (a � 1)g, choose vs
direction.

Case 3: g(w) > , g(w � 1) � , and js2j 2 fa; � � � ; N�1
2
� 1g, choose vl

direction.

Case 4: g(w) >  and g(w� 1) > , choose vs direction.
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(d) For ~s 2 A4 and ~t 2 L2, let w = N+1
2
� js2j � 1.

Case 1: g(w) � , choose vl direction.

Case 2: g(w) > , g(w�1) � , and jt2j 2 f1; � � � ; bg, choose vs direction.
Case 3: g(w) > , g(w � 1) � , and jt2j 2 fb + 1; � � � ; N�1

2
g, choose vl

direction.

Case 4: g(w) >  and g(w� 1) > , choose vs direction.

(e) For ~s 2 L2 and ~t 2 L4, route the traÆc in the ring which contains the

souce ~s and destination ~t.

(f) For ~s 2 L4 and ~t 2 L2, route the traÆc in a way such that the traÆc cross

line � and � are evenly distributed.

With the restoration algorithm presented, we now investigate the additional amount

of traÆc added on each vertical link after rerouting the a�ected traÆc. For a partic-

ular vertical link, the newly added traÆc comes from rerouting the a�ected traÆc in

the set F1 [ F2 [ F3 [ F4 (traÆc such that its source and destination nodes are not

in the same vertical ring) and the a�ected traÆc in the set F5 [ F6 (traÆc such that

its source and destination nodes are in the same vertical ring). We �rst consider the

amount of traÆc added on an arbitrary vertical link by rerouting the traÆc in the

set F1 [ F2 [ F3 [ F4. To facilitate the calculation of the additional traÆc added on

the vertical link, we associate each node in the vertical ring which node ~v0 belongs to

with an integer number (shown in Fig. 2-12) and consider N such that 1
2
(
PN�1

2

i=1 i) is

an integer. In Fig. 2-12, node ~z (associated with the number 1) will send one unit

of traÆc to nodes in D4. Similarly, node ~u0 (associated with the number N�1
2
) will

have N�1
2

units of traÆc destined to nodes in D4 by the primary routing algorithm.

Also, before the link failure, traÆc with source node in D2 and destination node in D4

will go through link l~u~v. After the link failure, these traÆc will be routed in vertical

direction �rst, and they have to go through either l~u0 ~v0 or l~w~z.

Without loss of generality, we consider the increment of the amount of traÆc on

an arbitrary vertical link l~m~n. The distance (hops) between node ~m and ~v0 is denoted
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Figure 2-12: Numbering of nodes used in path based restoration algorithm

by d1 (shown in Fig. 2-12). Since the link l~m~n is on the right side of the link l~u~v, only

the traÆc in the set F1 [ F2 contributes to the traÆc increment on l~m~n. Now, after

rerouting the a�ected traÆc in F1 (traÆc goes from D2 to D4), let's calculate the

exact amount of traÆc added on the link l~m~n.

First, we dvide the nodes in D2 into three subsets{B1 = f~s j ~s 2 D2 and s2 2
f1; � � � ; � � 1gg, B2 = f~s j ~s 2 D2 and s2 2 f�gg, and B3 = f~s j ~s 2 D2 and s2 2
f� +1; � � � ; N�1

2
gg, where � = b1+

p
1+4�
2

c and � = 1
8
(N2 � 1). � is the largest integer

such that
P��1

i=1 � 1
16
(N2 � 1). The reason that we introduce � here is that we need

to split the traÆc in F1 into two equal parts, with one part go through link l~u0 ~v0 and

the other part go through l~w~z.
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The following equations give us the amount of traÆc in F1 added on the link l~m~n.

Let �up =
1
2

PN�1

2

i=1 i�P��1
i=1 i and �down = � � �up.

1. TraÆc added on l~m~n with source node in B3, denoted as TB3 , is

TB3 =

8<
:
PN�1

2

i=�+1 i� (N�1
2
� �)(d1 + 1) for 0 � d1 � N�1

2

0 otherwise

2. TraÆc added on l~m~n with source node in B1, denoted as TB1 , is

TB1 =

8<
:
P��1

i=��1�d1 i if d1 + 1 < �P��1
i=1 i otherwise

3. TraÆc added on l~m~n with source node in B2 through the link l~w~z, denoted as

TB2a , is

TB2a =

8>>><
>>>:

0 if d1 + 1 � �down

d1 + 1� �down if d1 + 1 � � and d1 + 1 > �down

�up if d1 + 1 > �

4. TraÆc added on l~m~n with source node in B2 through the link l~u0 ~v0 , denoted as

TB2b , is TB2b = max(0; �down � d1 � 1).

Similarly, the following equations give us the amount of traÆc in F2 (traÆc goes

from D4 to D2) added on the link l~m~n.

TD4
=

8>>>>>><
>>>>>>:

�up if d1 =
N�1
2
� �

�down if d1 =
N�1
2
� � � 1

�up +
Pd1�[N�1

2
��]

i=1 (� � i) if d1 >
N�1
2
� �

�down +
P(N�1

2
��)�(d1+1)

i=1 (� + i) if d1 + 1 < N�1
2
� �

Theorem 5. On a 2-dimensional N-mesh, to restore the original all-to-all traÆc in

the event of a link failure, we need a spare capacity of N3�N
4(2N�1)

on each link for N odd
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and N3

4(2N�1)
for N even by using the restoration algorithm.

Proof. Again, we assume that an arbitrary vertical link connecting nodes ~u and ~v

failed. Then, by showing separately that the rerouted traÆc added on each horizontal

link and on each vertical link are less or equal to N3�N
4(2N�1)

, we prove the minimum spare

capacity needed on each link is N3�N
4(2N�1)

for N odd. The amount of rerouted traÆc

added on a horizontal link will be investigated �rst. Pick an arbitrary horizontal

link in the mesh and call it l~m~n (the two nodes connecting this link are called ~m

and ~n). From the primary routing algorithm, we know exactly what the a�ected

traÆc is and their routing paths. Let n~m~n denotes the number of failed traÆc in the

set F1 [ F2 [ F3 [ F4 that go through the link l~m~n. After applying the restoration

algorithm, n~m~n units of failed traÆc are removed from link l~m~n and n~m~n units of

rerouted traÆc are added on link l~m~n. Overall, traÆc in the set F1[F2[F3[F4 does

not a�ect the amount of traÆc ow through link l~m~n (i.e. no spare capacity needed

on l~m~n to restore the a�ected traÆc in the set F1 [ F2 [ F3 [ F4). However, traÆc in

the set F5 [ F6 does add extra units of traÆc on link l~m~n. But its amount is small,

and it is less than N3�N
4(2N�1)

. Thus, we have shown that a spare capacity of N3�N
4(2N�1)

on

each horizontal link is enough to restore the original traÆc by using the restoration

algorithm.

Now, we calculate the amount of rerouted traÆc added on a vertical link and show

that it is less than N3�N
4(2N�1)

. Consider an arbitrary vertical link l~m~n which is d1 hops

away from node v0. For the case of N such that d1+1 � �down and d1+1 < N�1
2
� �,

we calculate the amount of traÆc in the set F1 [ F2 added on the link l~m~n, which is

called TF1;F2.

TF1;F2 = TB1 + TB2a + TB2b + TB3 + TD4
(2.5)

=

N�1

2X
i=�+1

i� (
N � 1

2
� �)(d1 + 1)

+
��1X

i=��1�d1
i+ (�down � d1 � 1) + �down
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+

(N�1

2
��)�(d1+1)X
i=1

(� + i) (2.6)

= � �N � d1 + 2�down +
1

4
N2 � �2

�Nd1 + 2�d1 � 5

4
(2.7)

We then show that TF1;F2 is less than or equal to 1
8
(N2 � 1). Speci�cally,

1

8
(N2 � 1)� TF1;F2 = �� +N + d1(1 +N)� 2�down

�1

8
N2 + �2 � 2�d1 +

9

8
(2.8)

= (N � 2�)(d1 + 1) + 1 (2.9)

From Eq.2.8 to Eq.2.9, the formula 2(
P��1

i=1 i+ �up) =
1
8
(N2 � 1) was used. Since

� < N�1
2
, TF1;F2 is less than or equal to 1

8
(N2 � 1).

For the case of d1 + 1 � �down, d1 + 1 > N�1
2
� �, and d1 + 1 < �, we calculate

that

TF1;F2 = TB1 + TB2a + TB2b + TB3 + TD4
(2.10)

=

N�1

2X
i=�+1

i� (
N � 1

2
� �)(d1 + 1)

+
��1X

i=��1�d1
i+ (d1 + 1� �down)

+�up +

d1�(N�1

2
��)X

i=1

(� � i) (2.11)

= �� � d1 + �up � �down + 2�d1 � d1
2 (2.12)

and

1

8
(N2 � 1)� TF1;F2 = �2� + d1 + 2�down � 2�d1

+
1

8
N2 + d1

2 � 1

8
(2.13)
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= (� � d1 � 1)(� � d1) (2.14)

Eq.2.14 is positive since d1 + 1 < �. The other cases of d1 (i.e. whether d1 is

less than or greater than �down) can be shown similarly. Thus, we've proved that the

rerouted traÆc from the set F1[F2[F3[F4 added on any arbitrary vertical link is less

than or equal to 1
8
(N2�1). Now, for the rerouted traÆc from thet set F5[F6 (S-D pairs

in the same vertical ring), there are total of 1
4
(N2� 1) units of them. Simply routing

half of these traÆc within the vertical ring, we have now on each vertical link of the

mesh an additional amount of rerouted traÆc no greater than 1
8
(N2 � 1). The other

half of the traÆc in the set F5 [F6 (
1
8
(N2� 1) units of them) can be rerouted evenly

through 2N � 1 vertical links crossing line � and �. Thus, the total rerouted traÆc

on each vertical link is no greater than 1
8
(N2 � 1) + [1

8
(N2 � 1)]=(2N � 1) = N3�N

4(2N�1)
.

Therefore, a spare capacity of N3�N
4(2N�1)

on each link is enough for us to restore the

original all-to-all traÆc.

2.5 Capacity Requirement for Recovering from A

Node Failure

In this section, we investigate the spare capacity needed to fully restore the original

traÆc in the case of an arbitrary node failure. When a node failed in the network,

all of the traÆc destined for or generated from that node are terminated. And all of

the traÆc that passed through the failed node need to be rerouted. Next, we present

the following theorem which gives us a lower bound on the spare capacity needed to

restore the original traÆc.

Theorem 6. On a 2-dimensional N-mesh with an arbitrary node failure, the min-

imum spare capacity, Cspare, that each link must have in order to support all-to-all

traÆc is at least N2(N�4)
4(2N�1)

for N even and N(N2�4N+3)
4(2N�1)

for N odd.

The proof of this theorem follows the similar steps in the proofs of theorem 1

47



and theorem 4. Speci�cally, under an arbitrary node failure, the lower bound on the

minimum capacity each link must have in order to support the all-to-all traÆc is

1=2(N2�1)N2�N(N�1)
2N�1

. Here, the numerator represents the total traÆc across the cut,

and the denominator is the size of the cut. The lower bound on the spare capacity

follows from [1=2(N
2�1)N2�N(N�1)

2N�1
]� C1 where C1 =

1
4
(N3 �N).

Again, we use RS routing algorithm as the primary routing algorithm.

Restoration algorithm:

For traÆc that goes through the failed node, reverse the routing order. Speci�cally,

if the original traÆc goes vertically �rst in the direction of shortest cyclic distance to

the destination node and then moves horizontally to the destination node, we reroute

the traÆc horizontally in the direction of shortest cyclic distance �rst and then reroute

the traÆc vertically.

To calculate the spare capacity required by using the above restoration scheme, we

consider the spare capacity needed on the set of links surrounding the failed node. By

examining the rerouted traÆc, we can see that those links are the ones that require

the most spare capacity. First, we calculate the relinquished capacity on each of these

links to be (N�1)2

4
. After rerouting the a�ected traÆc, the newly added traÆc on each

link is at most d1
8
N2 � 9

8
+ (N�1)2

4
e. Therefore, a total of d1

8
N2 � 9

8
e spare capacity is

needed to fully restore the original traÆc. A more rigorous proof of these statements

will follow the line of proof shown in the appendix. We can see that the spare capacity

required by our restoration algorithm is asymptotically equal to the lower bound on

spare capacity in Theorem 6.

2.6 Summary

This chapter examines the capacity requirements for mesh networks with all-to-all

traÆc. This study is particularly useful for the purpose of design and capacity pro-

visioning in satellite networks. The technique of cuts on a graph is used to obtain

a tight lower bound on the capacity requirements. This cut technique provides an
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eÆcient and simple way of obtaining lower bounds on spare capacity requirements for

more general failure scenarios such as node failures or multiple link failures.

Another contribution of this work is in the eÆcient restoration algorithm that

meets the lower bound on capacity requirement. Our restoration algorithm is rel-

atively fast in that only those traÆc streams a�ected by the link failure must be

rerouted. Yet, our algorithm utilizes much less spare capacity than link based restora-

tion (factor of N improvement). Furthermore, in order to achieve high capacity uti-

lization, our algorithm makes use of capacity that is relinquished by traÆc that is

rerouted due to the link failure (i.e. stub release [5]).

Interesting extensions include the consideration of multiple link failures, for which

�nding an eÆcient restoration algorithm is challenging. Finally, for the application

to satellite networks, it would also be interesting to examine the impact of di�erent

cross-link architectures.
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Chapter 3

Throughput Analysis in Satellite

Network

3.1 Introduction

Satellite networks provide a global coverage and support a wide range of data commu-

nication needs of businesses, government, and individuals [11]. It is foreseeable that

both LEO (Low Earth Orbit) and GEO (Geostationary Orbit) networks will consti-

tute an essential part of the Next-Generation Internet. Thus, future generations of

satellite networks are envisioned to provide integrated services that carry a wide range

of data types. Currently, connection-oriented routing (circuit switching) has been the

focus of LEO satellite networks. Little analysis has been done in the performance

of packet switching satellite network. In this work, we address the throughput of a

packet switching satellite network.

We model the satellite network as a N � N mesh-torus where each satellite has

k transmitters and m receivers. We focus on the case of k = 1 and m = 4 (i.e., the

satellite can transmit to only one of its neighbors and receive from all of its neighbors

simultaneously). This assumption was used in [4] and follows from the use of optical

beams or highly directive antennas for communication. The analysis of the more

general m receivers and k transmitters case can be done by following the similar

steps shown in this chapter. We further assume that each satellite uses its only
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transmitter onboard for both inter-satellite communication and satellite-to-ground

communication. However, as we show later, our results can also be applied to the

case where each satellite has two transmitters: one for inter-satellite communication

and the other for satellite-to-ground communication.

We consider �xed shortest path routing schemes (e.g., Rotational Symmetrical

Routing in Sec. 2.4.2) for node-to-node communication in mesh satellite networks,

and we analyze their performance under a stochastic traÆc environment. In partic-

ular, we assume that packets having a single destination are generated at each node

of the mesh according to some probabilistic rule. The destination of the new packet

is uniformly distributed over all mesh nodes (except its source node).

The network operation is similar to one discussed in [18]. That is, the nodes

operate synchronously: the time axis is divided into slots and each node can relay

one packet per time slot. A new packet is generated independently at each node

locally with probability p0 during each time slot. Thus, the arrival process of new

packets is modeled as a Bernoulli process with rate p0 packets per time slot. At the

end of a slot there are u continuing packets (received from other neighboring nodes

during this time slot) o�ered to the node. Since at most one packet can be received

at each receiver, u is less than or equal to four. As more than one packets arrive at a

particular node, contention for transmission in the next time slot will occur. Hence,

we need to develop a transmission scheduling scheme for resolving this conict. After

a packet arrives at its destination node at the end of a time slot, it is not immediately

removed from the system since it has to be sent to the ground. Instead, this packet

has to compete with other incoming packets for transmission in the next time slot. In

the case of each satellite having two transmitters, a packet is removed from the system

as soon as it arrives its destination node, provided that the dedicated transmitter for

satellite-to-ground communication can send the data fast enough (i.e., no downlink

contention).

Routing schemes for solving packets' contention in a regular topology have been

investigated by numerous researchers. In [16], Greenberg and Hajek provided an

approximate analysis of the transient and steady state behavior of deection routing
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in hypercube network. Stamoulis and Tsitsiklis [17] studied the eÆciency of greedy

routing in hypercube network. In [18], the authors propose two di�erent hypercube

routing schemes and evaluate the throughput of both the bu�ered and the unbu�ered

version of these schemes. Their results are also approximate. In all the aforementioned

papers, the topology that they used is hypercube.

In this chapter, we propose several scheduling schemes and compare, for each

scheme, the average throughput of the network when it reaches steady state. Specif-

ically, we study the throughput of Shortest Hop Win (SHW ) scheme, Oldest Packet

Win scheme (OPW ), and Random Packet Win (RPW ) scheme. Both the analytic

and simulated results show that, in the case of no bu�er at each node, SHW scheme

attains the best throughput performance, OPW scheme the second, and RPW the

worst. When there is a bu�er at each node, the performance of the three schemes

have no appreciable di�erence. Also, a small bu�er size can achieve throughput close

to that of an in�nite bu�er size. In all of the three schemes mentioned above, we give

the newly generated packet the lowest priority (i.e., new packet can enter the system

only if there is no continuing packet and no bu�ered packet). Therefore, most of the

packet drops occur because new packets cannot enter the system.

The structure of this chapter is as follows. In section 2, we describe the stability

region of the network under uniform traÆc. Section 3.1 and 3.2 provide an approxi-

mate theoretical analysis of the thoughput of Shortest Hop Win scheme for both the

bu�er and no bu�er cases. Simulation results of the throughput are also presented.

Theoretical analysis of the throughput of Oldest Packet Win scheme is given in sec-

tions 3.3 and 3.4. In section 3.5, we compare the throughput of these three schemes

in case of no bu�er at each node. In section 3.6, for the bu�er case, we describe a

few additional routing schemes of interest and compare their performance with the

three aforementioned schemes. Section 3.7 investigates the throughput performance

in relation with the bu�er size. Section 4 summarizes this chapter.
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Figure 3-1: A 2-dimensional 5-mesh.

3.2 Stability Analysis

We consider now an N � N mesh (shown in Fig. 3-1) with N2 nodes, each of which

generates packets independently according to a random process of rate � packets per

second to be sent to a uniformly chosen destination node. The packet takes exactly

one unit of time to be transmitted. Each node can only transmit to one of its neighbors

during a given slot, but can receive packets from all neighbors simultaneously. We

�rst derive a necessary condition for stability.

Theorem 7. A necessary condition for the system to be stable is

�(E[d] + 1) < 1 (3.1)

where E[d] is the expected number of hops from source node to destination node.

Proof. The total number of new packets generated in the network per unit time is �m,

where m = N2. During each time unit, an average total demand of � �m � (E[d] + 1)

packet transmissions are generated in the system, where E[d] + 1 is the expected

number of hops from source node to destination node plus the last hop from satellite

to ground. Since at most m transmissions may take place per unit of time, we have

�m(E[d] + 1) < m, or �(E[d] + 1) < 1.
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Next, we will show that by employing a �xed shortest path routing scheme(i.e.,

every node sends out traÆc according to the same set of routing rules via the shortest

path to the destination node, for example, the Rotational Symmetrical Routing Algo-

rithm described in the previous chapter), the network is stable for all �(E[d]+1) < 1.

We �rst present several lemmas that will be useful. The following lemma is from [4].

Lemma 4. Consider any start node x and let nx(i) be the number of nodes exactly i

hops away from node x. Then

nx(i) =

8>>>>>>>>><
>>>>>>>>>:

1 ; i = 0

4i ; 0 < i < N
2

4i� 2 ; i = N
2

4(N � i) ; N
2
< i < N

1 ; i = N

Proof. See [4].

Next, consider a scenario in which every node of the network sends out one unit of

traÆc to every other node (also known as complete exchange or all-to-all communi-

cation) [7] by using a �xed shortest path routing algorithm. Each source-destination

pair uniquely de�nes a di�erent class of traÆc. The load of a particular link is de�ned

to be the number of di�erent classes of traÆc that pass through that link. We are

interested in the average load of a link under all-to-all traÆc.

For a 2-dimensional N-mesh, the total number of nodes in the network is N2; the

total number of unordered node pairs is N(N�1)
2

; and the total number of links is 2N2.

The following lemma gives us the average load of a link under all-to-all traÆc.

Lemma 5. For a 2-dimensional N-mesh under all-to-all traÆc, the average load of

a link is 1
4
(N3 � N) for N odd, and 1

4
N3 for N even by using a �xed shortest path

routing algorithm.

Proof. We �rst consider the case where N is odd. From Lemma 4, we see that there

are a total of 1
2
(4i)N2 unordered pairs that are i hops away from each other for
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0 < i � N�1
2
, and a total of 1

2
(4(N � i))N2 unordered pair for N�1

2
< i � N � 1.

Here, the maximum length between two nodes in the network is N � 1.

Let D denote the average path length between two nodes. We then have

D =

PN�1

2

i=1 i(2iN2) +
PN�1

i=N�1

2
+1
i(2(N � i)N2)

(N(N�1)
2

)
=

N3 �N

2(N2 � 1)
:

The total traÆc in this network is N2(N2� 1) N3�N
2(N2�1)

= 1
2
(N5�N2). Thus, since

all links have the same load due to the symmetry of the network and the �xed shortest

path routing, the average load on a link is the total traÆc divided by the number of

links 1
2
(N5 �N2)=2N2 = 1

4
(N3 �N).

The case for N even can be shown similarly.

Now, assuming there is a separate bu�er for each class of traÆc that is going to be

served at a node, we de�ne a service policy u0 to be the round-robin service discipline.

That is, the transmitter serves each queue with an equal amount of time. In the case

of an empty queue, the transmitter will be idle for a period of time that is allocated

to that queue. Then, we have the following theorem:

Theorem 8. With packet's arrival rate � and the destination node uniformly chosen,

the 2-dimensional N-mesh network is stable for all � < 1
E[d]+1

, where E[d] = N
2
is the

expected length between two nodes, under a �xed shortest path routing scheme and

policy u0.

Proof. Consider a 2-dimensional N-mesh for N odd. There is a total of N2(N2 � 1)

classes of traÆc in this queueing network, each corresponding to a unique source-

destination pair (i; j). For an arbitrary node k in the network, since the packets are

arriving at a rate of � externally and destinations are uniformly chosen, packets of

class (k; j) arrives at the rate of �
N2�1

for all nodes j 6= k. Because of the �xed shortest

path routing scheme, we know exactly how many classes of traÆc need to be served

at node k. Speci�cally, from Lemma 5, for the four links connecting node k, each of

them has 1
2
� 1
4
(N3 �N) classes of traÆc that are required to go to or through node

k (the term 1
2
is there because we only consider the traÆc coming into node k). We
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call these classes of traÆc internal arrivals, and the N2 � 1 classes of traÆc which

are generated locally external arrivals. Since policy u0 serves each class in a round

robin fashion, a constant fraction of service is allocated to each class of traÆc. Under

policy u0, node k can be viewed as having many dedicated servers (one for each class

of traÆc) with identical service rate. Hence, all queues at node k are independent,

and they are stable as long as the service rate is greater than the arrival rate for each

class of traÆc. A paticular class of traÆc may go though several nodes to reach its

destination. If all nodes on its path to the destination are serving this class of traÆc

at a rate greater than the arrival rate, the series of queues are also stable (Theorem

7.4.12,[21]). Then the total internal arrival rate is

4 � 1
8
(N3 �N) � (arrival rate of a single class) =

1

8
(N3 �N) � �

N2 � 1

Therefore, the total arrival rate to node k (the sum of the external and internal

arrival rates) is

4 � 1
8
� (N3 �N) � �

N2 � 1
+ � = �(

N

2
+ 1)

Consider a service discipline with service rate of 1. Thus, for the queue to be stable,

we must have

� <
1

E[d] + 1

Moreover, for routing schemes that choose a random shortest path between the

source and destination node, it can be shown that the stability region is still � <

1
E[d]+1

.
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3.3 Analysis and Simulation of Throughput

In this section, we present the main results of this work. Serveral scheduling schemes

for resolving contention for transmission are discussed. Detailed theoretical analysis

and simulation results of throughput are provided. First, we give a general overview of

these transmission schemes which will be analyzed in the later sections. We assume

that, at each node, there is bu�er which can hold up to k packets, in addition to

the packet under transmission. Because only one transmitter is available at each

node, conicts result from simultaneous arrivals of more than one packet from the

neighboring nodes or a new packet generated in the current node. Even if a packet

has reached its destination node, this packet has to compete with other packets to be

sent to the ground in the next time slot. Contention may be resolved by assigning

di�erent priority to the incoming packets (both the continuing packets and the new

packet). Below we propose several schemes to resolve the contention. In all schemes,

packets follow �xed shortest paths to their destination nodes.

1. Shortest Hop Win (SHW): If more than one continuing packets arrive at a node,

SHW chooses the one with the shortest hop distance to its destination node to

be transmitted in the next time slot. The other packets are stored in the bu�er

if there is space available. When the bu�er space cannot accommodate all of the

continuing packets that need to be stored in the bu�er, SHW randomly picks

packets among these continuing packets to �ll up the bu�er (the other packets

are dropped). In case of no continuing packet arriving, SHW picks the head of

bu�er packet to be transmitted in the next time slot. If the bu�er is empty,

SHW sends the newly generated packet (if there is one) in the next time slot.

In case of contention, new packets are discarded.

2. Random Packet Win (RPW): If more than one continuing packets arrive at

a node, RPW randomly chooses the one to be transmitted in the next time

slot. The other packets are stored in the bu�er if there is space available.

When the bu�er space cannot accommodate all of the continuing packets that

need to be stored in the bu�er, RPW randomly selects packets among these
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continuing packets to �ll up the bu�er (the other packets are dropped). In case

of no continuing packet arriving, RPW picks the head of bu�er packet to be

transmitted in the next time slot. If the bu�er is empty, RPW sends the newly

generated packet (if there is one) in the next time slot. In case of contention,

new packets are discarded.

3. Oldest Packet Win (OPW): If more than one continuing packets arrive at a

node, OPW chooses the one that has travelled the most hops to be transmitted

in the next time slot. The other packets are stored in the bu�er if there is space

available. When the bu�er space cannot accommodate all of the continuing

packets that need to be stored in the bu�er, OPW randomly selects packets

among these continuing packets to �ll up the bu�er (the other packets are

dropped). In case of no continuing packet arriving, OPW selects the head of

bu�er packet to be transmitted in the next time slot. If the bu�er is empty,

OPW transmits the newly generated packet (if there is one) in the next time

slot. In case of contention, new packets are discarded.

4. Shortest Hops Win 2 (SHW2): Among the continuing packets, the head of the

bu�er packet, and the new packet (if there is one) at a node, SHW2 chooses

the one with shortest hop distance to its destination to be transmitted in the

next time slot. Packets that did not win the contention are stored in the bu�er

if there is space in the bu�er.

5. Shortest Hops Win 3 (SHW3): The packet at the head of the bu�er (if there is

one) is always transmitted at the beginning of next time slot. The continuing

packets and the new packet (if there is one) are stored in the bu�er if there is

enough space available. In case of not enough bu�er space, SHW3 drops the

packets with greatest hop distance to their destination.

We will give a detailed analysis on the throughput of Shortest Hop Win scheme

and Oldest Packet Win scheme in the subsequent sections. The analysis of Random

Packet Win scheme is similar to the Shortest Hop Win scheme and, therefore, omitted

for brevity.
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We also introduce the following notation which will be useful in the later sections.

For an arbitrary packet P, let sP denote its source node; tP denote its destination

node; and dH(sP ; tP) the shortest hop distance between sP and tP .

3.3.1 Throughput analysis for Shortest HopWin (SHW) scheme

with bu�er

The arrivals of packets on di�erent links to a particular node may not be indepen-

dent. However, under our uniform traÆc and random destination assumption, they

should behave in an almost independent way. Hence, we make two approximating

assumptions here.

1. Packet arrivals on each of the di�erent incoming links to a particular node are

independent during a time slot.

2. The arrivals of packets to a node in one slot is independent of the arrivals to

the node during previous slot.

At the beginning of a time slot, the transmitter at an arbitrary node, say node

a, sends a packet P to one of its neighbor, say node k. Before the start of the

transmission at node a , if the packet P is i hops away from its destination node, we

say the packet is of type i; more precisely, dH(a; tP) = i. When the packet P arrives

at node k, it competes with other arriving packets for transmission during the next

time slot. A packet is said to be the winning packet if it will be transmitted in the

next time slot. The SHW scheme selects amongst continuing packets at node k the

one with the shortest hop distance to its destination to be the winning packet. If

there are j; j > 1, packets have the same shortest hop distance to their respective

destination nodes, SHW randomly selects one packet to be the winning packet among

these j packets. If P has the shortest hop distance to its destination node among the

continuing packets at node k, it is said to be a winning packet of type (i� 1) at node

k. If no continuing packet arrives at node k during a time slot, the winning packet

is the head of bu�er packet if the bu�er is nonempty. Similarly, the newly generated

packet is the winning packet if there are no continuing packets and bu�ered packets
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at node k.

In the steady state, due to the same externally arrival rate p0 and uniform destina-

tion for each newly generated packet, by symmetry each node has the same statistics

(i.e., the probability that a winning packet is of type i, 0 � i � d, is the same for

all nodes) without the approximation assumption. However, to get the exact value of

these statistics, we have to utilize the two approximations made above. Speci�cally,

by considering only one node k in the network, let Ai, 0 � i � d, denote the event

that node k has a winning packet of type i. Similarly, let E denote the event that

node k is empty. We can then write the probabilities P (Ai)'s and P (E) recursively,

in terms of the same probabilities at neighboring nodes, by using the property that

each node has the same statistics and by considering the interactions between node

k and its neighboring nodes. Throughout this section, we focus on �nding P (Ai)'s.

The throughput is thus obtained as P (A0) in the Shortest Hop Win scheme.

Again, considering an arbitrary node k, we de�ne

� Bi, 0 � i � 4, to be the event that node k received packets from i out of the

four neighboring nodes.

� Hi, 0 � i � d, to be the event that the head of the bu�er packet is of type i.

� Ui, 1 � i � d, to be the event that a new packet that is i hops away from the

destination node is generated at node k.

� BE to be the event that the bu�er at node k is empty.

� BEc to be the event that the bu�er at node k is nonempty.

With the relevant events de�ned, we now write the equations for solving P (Ai) in

terms of these events. For 1 � i � d� 1, we have

(i) = P (Ai) = P (AijB1)P (B1) + P (AijB2)P (B2) + P (AijB3)P (B3)

+ P (AijB4)P (B4) + P (Hi)P (BE
c)P (B0) + P (Ui)P (BE)P (B0):

(3.2)
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Similarly, for i = 0

(0) = P (A0) = P (A0jB1)P (B1) + P (A0jB2)P (B2) + P (A0jB3)P (B3)

+ P (A0jB4)P (B4) + P (H0)P (BE
c)P (B0)

(3.3)

and for i = d

(d) = P (Ud)P (BE)P (B0):

To derive the above equations, consider the events that take place at node k.

Since we give the �rst priority to the continuing packets, next priority to the bu�ered

packet, and the lowest priority to the new packet, event Ai occurs if and only if one

of the following events occur:

� A continuing packet of type i arrives at node k and wins the contention.

� The head of bu�er packet is of type i, and no continuing packet arrives.

� A new packet of type i is generated at node k; no continuing packet arrives;

and the bu�er is empty.

Eq.[3.2] enumerates all of the above events. Now, we write the individual terms out.

The probability that a new packet with i hops to its destination is generated is the

following:

P (Ui) =
nx(i)

N2 � 1
� p0

where nx(i) denotes the number of nodes that are i hops away (see Lemma 1) and

N2 � 1 is the total number of possible destination node. We also get for 0 � n � 4

�n = P (Bn) =

�
4

n

�"
1

4

dX
j=1

(j)

#n "
1� 1

4

dX
j=1

(j)

#4�n
(3.4)

The term [1
4

Pd
j=1 (j)] denotes the probability that a neighboring node of k sends

a packet to node k. Similarly, (i+1)
Pd

j=1 (j)
is the probability that a node is sending

62



a packet of type i + 1 given that node is sending a packet; and
Pd

j=i+2 (j)
Pd

j=1 (j)
is the

probability that a node is sending a packet of type m, where i + 2 � m � d, given

that node is sending a packet.

Then, letting ai =
(i+1)
Pd

j=1 (j)
and ci =

Pd
j=i+2 (j)
Pd

j=1 (j)
, we have for 0 � i � d� 1

P (AijB1) = ai (3.5)

P (AijB2) = a2i +

�
2

1

�
aici (3.6)

P (AijB3) = a3i +

�
3

2

�
a2i ci +

�
3

1

�
aic

2
i (3.7)

P (AijB4) = a4i +

�
4

3

�
a3i ci +

�
4

2

�
a2i c

2
i +

�
4

1

�
aic

3
i (3.8)

To interpret the above equation, consider P (AijB2). Recall that packet with

shorter distance to its destination has priority. Given that exactly two packets arrived

from two of the four neighboring nodes of node k, the event that the winning packet

is i hops away from its destination, or type i packet, is the union of the following two

disjoint events:

� at node k, both of these two arriving packets are type i packets (The �rst term

in Eq.[ 3.6], a2i , for example).

� at node k, one of these two packets is a type i packet and the other one is of

type j, where i+1 < j � d (The second term in Eq.[ 3.6],
�
2
1

�
aici, for example).

Next, we will investigate the probability that a head of bu�er packet is of type i.

Let Gi denote the event that an arbitrary packet, say P, that is i+1 hops away from

its destination node before the start of its transmission to node k, subsequently loses

the contention with other packets at node k. Assuming node a is a neighbor of node

k, we then have

P (Hi) = P (a packet in the bu�er is of type i) (3.9)

=
P (type i packet gets sent to the bu�er)

P (packet gets sent to bu�er)
(3.10)
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=
(i+ 1)P (Gi+1)Pd

j=1 (j)P (Gj)
(3.11)

Notice also that a packet of type d (newly generated packet with d hops to its

destination node) will never be stored in the bu�er by the priority rule. Packet P,
which just became a type i� 1 packet after reaching node k, may lose the contention

if one of the following events occur:

� Event E0(i): Out of the three remaining neighboring nodes of node k, there is

at least one of them which is sending a packet of type j, where j < i, to node

k.

� Event E1(i): Out of the three remaining neighboring nodes of node k, there is

exactly one of them which is also sending a packet of type i to node k, while

the others are either not sending a packet to node k or sending packets of type

j (j > i) to node k.

� Event E2(i): Out of the three remaining neighbor of node k, there are exactly

two of them which are also sending packets of type i to node k, while the other

neighboring node is either not sending a packet to node k or sending packet of

type j, j > i, to node k.

� Event E3(i): Out of the three remaining neighbor of node k, each one of them

is sending a packet of type i to node k.

From the above description, we get for 2 � i � d

P (E0(i)) = 1�
"
1� 1

4

i�1X
j=1

(j)

#3
; 8 i > 1; and P (E0(1) = 0) (3.12)

P (E1(i)) =

�
3

1

��
(i)

4

� "
1� 1

4

iX
j=1

(j)

#2
(3.13)

P (E2(i)) =

�
3

2

��
(i)

4

�2 "
1� 1

4

iX
j=1

(j)

#
(3.14)

P (E3(i)) =

�
(i)

4

�3
(3.15)
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Figure 3-2: Markov chain of the number of packets in a bu�er of size k.

When event E0(i) occurs, packet P will be sent to the bu�er with probability one

(although it may be dropped due to bu�er overow). Likewise, when event E1(i), or

E2(i), or E3(i) occurs, packet P will be sent to the bu�er with probability 1
2
, 2

3
, 3

4

respectively. Now, P (Gi) can be obtained as:

P (Gi) = P (E0(i)) +
1

2
P (E1(i)) +

2

3
P (E2(i)) +

3

4
P (E3(i))

To get P (BE), we denote by bi, i = 0; 1; � � � ; m, the probability that there are i

packets at a node's bu�er at the beginning of slot. Since there are four receivers at

a node, at most three continuing packets may arrive at the bu�er during a time slot.

Fig. 3-2 is a �nite state markov chain which describes the evolution of the number of

packets in a bu�er of size k. The state represents the number of packets in the bu�er.

Thus, we have

P (BE) = b0 = b0�1 + (b0 + b1)�0 (3.16)

b1 = b0�2 + b1�1 + b2�0 (3.17)

b2 = b0�3 + b1�2 + b2�1 + b3�0 (3.18)

bj = bj�3�4 + bj�2�3 + bj�1�2 + bj�1 + bj+1�0 (3.19)

bk = bk(�1 + �2 + �3 + �4) + bk�1(�2 + �3 + �4)

+bk�2(�3 + �4) + bk�3�4 (3.20)
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Theoretical Simulation
p0 Throughput Throughput

0.1 0.0645 0.0649
0.2 0.0952 0.0960
0.3 0.1128 0.1153
0.4 0.1241 0.1228
0.5 0.1318 0.1302
0.6 0.1373 0.1378
0.7 0.1414 0.1392
0.8 0.1446 0.1446
0.9 0.1472 0.1461
0.95 0.1483 0.1477
0.99 0.1491 0.1488

Table 3.1: A comparison of simulation result and theoretical result for 2-dimensional
11-mesh using Shortest Hop Win scheme 1 with bu�er.

With the above equations, we can solve for (i) numerically. For our simulation,

a 2-dimensional 11-mesh with a bu�er size of four at each node is used. As Table 3.1

shows, our numerical results is very accurate compare with the simulation result.

3.3.2 Throughput analysis for Shortest HopWin scheme with-

out bu�er

In this section, we consider the throughput of the Shortest Hop Win scheme without

bu�er at each node. The analysis is similar to the one in the previous section. The

notation, if not speci�ed, will be the same as the one de�ned previously. Again, we

give priority to the continuing packet over the newly generated packet (i.e. the new

packet can be transmitted only if there is no continuing packet arrives at that node).

Thus, we have for 1 � i � d� 1

(i) = P (Ai) = P (AijB1)P (B1) + P (AijB2)P (B2) + P (AijB3)P (B3)

+ P (AijB4)P (B4) + P (Ui)P (B0)
(3.21)
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Theoretical Simulation
p0 Throughput Throughput

0.1 0.0450 0.0449
0.2 0.0635 0.0631
0.3 0.0756 0.0780
0.4 0.0845 0.0841
0.5 0.0917 0.0914
0.6 0.0976 0.0984
0.7 0.1027 0.1028
0.8 0.1071 0.1061
0.9 0.1110 0.1102
0.95 0.1129 0.1140
0.99 0.1142 0.1144

Table 3.2: A comparison of simulation result and theoretical result for 2-dimensional
11-mesh using Shortest Hop Win scheme without bu�er.

Similarly, we have for i = 0,

(0) = P (A0) = P (A0jB1)P (B1) + P (A0jB2)P (B2) + P (A0jB3)P (B3)

+ P (A0jB4)P (B4)
(3.22)

and for i = d,

(d) = P (Ud)P (B0) (3.23)

P (AijB1); � � � ; P (AijB3) and P (Ui) can be calculated by using the exact same

formulas given in the previous section.

Again, we calculate the theoretical throughput for a 2-dimensional 11-mesh and

compare with simulation results. Fig. 3-3 is a plot of the throughput of a system with

bu�er and a system without bu�er under SHW. The throughput increases signi�cantly

when every node has a bu�er. This can be explained by noting that packets can be put

in the bu�er temporarily if it lost the competition instead of just dropping them in the

case of no bu�er. Dropping a packet which has already travelled a certain number of

hops waste the previous transmissions of that packet become wasted, thus decreases

the throughput of system. Intuitively, we would like to minimize the wasted work and
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hope that every transmission is going to contribute to the increase of throughput.
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Figure 3-3: A comparison of throughput of system with or without bu�er using SHW.

3.3.3 Throughput analysis for Oldest Packet Win scheme

with bu�er

We continue to use the approximations made in the analysis of the throughput of

Shortest Hop Win scheme. At the beginning of a time slot, the transmitter at an

arbitrary node, say node a, sends a packet P to one of its neighbor, say node k. Before

the start of the transmission at node a , if the packet P has already travelled i hops

from its starting node (dH(a; sP) = i), we say the packet is of type i. Notice that the

de�nition of the type of a packet here is di�erent from that in the previous section.

In the analysis of the SHW, a packet of type i implies that it is i hops away from its

destination node. During the transmission, we say that the packet is travelling on its

(i + 1)th hop from its starting node. When P arrives at node k, it becomes a type

68



(i + 1) packet and has to compete with other arriving packets for the transmission

right of the next time slot. Among all of the continuing packets at node k, a packet

is said to be the winning packet if it travelled the longest hop distance from its origin

node. In case of a tie, the winning packet is selected at random from the packets

that have travelled the longest distance. When no continuing packets arrive at node

k during a time slot, the winning packet is the head of bu�er packet if the bu�er is

nonempty. Similarly, the newly generated packet is the winning packet if there are

no continuing packets and no bu�ered packets at node k.

In the steady state, similar to the analysis in the previous section, each node still

has the same statistics without the approximation assumption. Let Ai denote the

event that an arbitrary node has a winning packet of type i, and E denote the event

that node k is empty. Again, we use the two approximations made previously to get

a set of P (Ai)'s and P (E), which solve the equations below and sum to one. The

throughput can thus be obtained from P (Ai); 0 � j � d.

Let �(i) = P (Ai) and Cpass(i) = Pr(a packet must travel at least one additional

hop on its way to the destination node j it has already travelled i hops).

Cpass(i) =

Pd
j=i+1 nx(j)Pd
j=i nx(j)

To get �(i), notice that a node has a winning packet of type i if and only if one of

the following events occur during a time slot:

� Event O1: No continuing packet is transmitted to node k, and the head of bu�er

packet at node k is of type i.

� Event O2: Of the four receivers at node k, there are at least one of them received

a packet of type i, while the others either did not receive any packet or received

packet of type j (j < i).
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We then have for 1 � i � d

�(i) =

"
1� 1

4

d�1X
j=0
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#4
(1� b0)Pr(Hijbu�er nonempty)

+

�
4

1

�"
1� 1

4

d�1X
j=i�1

�(j)Cpass(j)

#3 �
1

4
�(i� 1)Cpass(i� 1)

�

+

�
4

2

�"
1� 1

4

d�1X
j=i�1

�(j)Cpass(j)

#2 �
1

4
�(i� 1)Cpass(i� 1)

�2

+

�
4

3

�"
1� 1

4

d�1X
j=i�1

�(j)Cpass(j)

# �
1

4
�(i� 1)Cpass(i� 1)

�3

+

�
1

4
�(i� 1)Cpass(i� 1)

�4

(3.24)

and

�(0) = p0b0

"
1� 1

4

d�1X
j=0

�(j)Cpass(j)

#4
(3.25)

The �rst term in Eq.[ 3.24] represents the probability of event O1, and the rest terms

denotes the probability of event O2. The term
h
1� 1

4

Pd�1
j=i�1 �(j)Cpass(j)

i
represents

the probability that there is no type j (j � i � 1) packet travelling on a particular

link.

Let the events Bi and Hi be similarly de�ned as in the previous section. Then,

we have for 0 � n � 4

P (Bn) =

�
4

n

�"
1

4

dX
j=0

�(j)Cpass(j)

#n "
1� 1

4

dX
j=0

�(j)Cpass(j)

#4�n

Similar to the previous analysis on the throughput of Shortest Hop Win scheme,

the probability that a bu�ered packet is of type i, 1 � i � d, is

P (Hi) =
�(i� 1)Cpass(i� 1)P (Gi)Pd�1

j=0 �(j)Cpass(j)P (Gj+1)
(3.26)
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Again, Gi is the event that an arbitrary packet has already travelled i hops from its

starting node after reaching node k, it subsequently lost the contention with other

packets at node k.

A packet, transmitted from one of node k's neighbors (say node a), just �nished

travelling its ith hop may lose the contention at node k if one of the following events

occur:

� Event E0(i): Out of the three remaining neighboring nodes of node k, there is

at least one of them which is sending a packet of type j, where j � i, to node

k.

{ Comment: Since j � i, after reaching node k, that packet will be type

j +1. The packet from node a will de�nitely lose in the competition since

its hop distance to its source node, i, is strictly shorter.

� Event E1(i): Out of the three remaining neighboring node of node k, there is

exactly one neighboring node, say b, which is also sending a packet of type i�1

to node k, while the other neighboring nodes are either not sending a packet to

node k or sending packets of type j (j < i� 1) to node k.

{ Comment: Packet from node a will compete with packet from node b for

the transmission right of next slot. Since both of packets are of the same

type, each one wins the competition with probability one half.

� Event E2(i): Out of the three remaining neighbor of node k, there are exactly

two of them which are also sending a packet of type i � 1 to node k, while

the other neighboring node is either not sending a packet to node k or sending

packet of type j (j < i� 1) to node k.

� Event E3(i): For the three remaining neighbor of node k, each of them is sending

a packet of type i� 1 to node k.
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We have for 1 � i � d

P (E0(i)) = 1�
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4
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�(j)Cpass(j)

#3
(3.27)
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P (E2(i)) =
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P (E3(i)) =

�
1

4
�(i� 1)Cpass(i� 1)

�3
(3.30)

Now, P (Gi) is obtained from the following equation:

P (Gi) = P (E0(i)) +
1

2
P (E1(i)) +

2

3
P (E2(i)) +

3

4
P (E3(i))

The probability that there are i packets at a node's bu�er, bi(i = 0; 1; � � � ; m), has

exactly the same form as in the previous section (see equations [3.16]-[3.20]). Lastly,

we introduce the event that a packet reached its destination node given it has already

travelled i hops. More precisely,

Cend(i) = Pr(packet P reached its destination node j it has already travelled i hops)

=
Pr(dH(sP ; tP) = i)

Pr(dH(sP ; tP) � i)
=

nx(i)Pd
j=i nx(j)

With all equations available, the throughput of Oldest Packet Win scheme can be

computed as follows

Throughput =
dX

j=1

�(j)Cend(j)

Solving for the values of �(i) and subsequently the throughput numerically for

a 2-dimensional 11-mesh with a bu�er size of four at each node, we again obtain

accurate results as compared with simulations, as shown in Table 3.3.
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Theoretical Simulation
p0 Throughput Throughput

0.1 0.0645 0.0645
0.2 0.0951 0.0951
0.3 0.1126 0.1102
0.4 0.1237 0.1235
0.5 0.1311 0.1310
0.6 0.1364 0.1342
0.7 0.1402 0.1398
0.8 0.1432 0.1427
0.9 0.1454 0.1448
0.95 0.1463 0.1456
0.99 0.1470 0.1462

Table 3.3: A comparison of simulation result and theoretical result for 2-dimensional
11-mesh using Oldest Packet Win scheme.

3.3.4 Throughput analysis for Oldest Packet Win scheme

without bu�er

The case of no bu�er at each node is very similar to the case with bu�er in terms

of throughput analysis. With a few minor modi�cations on Eq.[3.24], we get the

following equation (1 � i � d):
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and

�(0) = p0

"
1� 1

4

d�1X
j=0

�(j)Cpass(j)

#4
(3.32)
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For a 2-dimensional 11-mesh, we again calculate the theoretical throughput of the

system without bu�er and compare it with the simulation results. We also see that

the throughput for a system with bu�er is signi�cantly greater than the throughput

of a system without bu�er, shown in Fig. 3-4.
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Figure 3-4: A comparison of throughput of system with or without bu�er using OPW.

3.3.5 A comparison of di�erent schemes in the no bu�er case

Following the analysis of previous two sections, we can also get the throughput for

the Random Packet Win scheme (with bu�er or without bu�er). For system without

bu�er, of the three schemes dicussed so far (SHW, OPW, RPW), we expect that

SHW to perform better than the other two schemes in terms of throughput since

the continuing packets in the system are likely to have a shorter distance to the

destination node. Also, the Oldest Packet Win scheme should perform better than

the Random Packet Win scheme since it tries to minimize the amount of wasted work
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done for a continuing packet. Fig. 3-5 below substantiates the above statements.
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Figure 3-5: A comparison of throughput of system without bu�er using di�erent
schemes.

3.3.6 Simulation of other schemes

The theoretical analysis of the Random Packet Win scheme, Shortest Hops Win

scheme 2 and Shortest Hops Win scheme 3 can be carried out by following the analysis

in the previous two sections. Here we provide simulation results of the aforementioned

schemes and compare their performance. First, we want to compare the throughput

of a system with bu�er under the Random Packet Win scheme, Oldest Packet Win

scheme, and Shortest Packet Win scheme. For all of the three schemes, the continuing

packet is given the hightest priority. Bu�ered packet will be transmitted only if there

are no continuing packets. Likewise, the newly generated packet will be transmit-

ted only if there are no continuing packets and no bu�ered packets. Fig. 3-6 plots

the throughput for the three scheme. We expect that SHW scheme would perform
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Figure 3-6: A comparison of throughput of system with bu�er using di�erent schemes.

signi�cantly better than the other two schemes just as it did in the no bu�er case.

Surprisely, however, we see that the throughput for three schemes is about the same,

although SHW performs slightly better than the other two schemes in the high p0

region. It seems that the bu�er has a neutralizing e�ects on the system's throughput

(i.e., the choice of which scheme to use becomes less important). An explanation

to the rather counterintuitive result is the following. After a packet arrived at the

receiving node, the packet which lost the contention is stored in the bu�er if there is

any space available. Notice that we do not decide which packet to put in the bu�er.

If there is enough space for all of the packets which did not win the contention, all of

them will be stored in the bu�er. In the event that there is not enough bu�er space

for all losing packets, we randomly pick amongst them to be placed in the remaining

spots of the bu�er. The packets in the bu�er will eventually be transmitted. Unlike

the system without bu�er, these packets are not dropped immediately, although they

did not win the contention. It is in this sense that the contention is not a strict com-
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petition (since they are still in the system). Therefore, the di�erence in throughput

using di�erent schemes is not very signi�cant. To increase the throughput, one may

want to develop an additional scheme in choosing which packet to be sent to the

bu�er instead of choosing it randomly.

To verify the above explanation, we also investigate the throughput of a rather

\bad" scheme called Furthest Hops Win scheme. This scheme is identical to the

SHW scheme except that during a contention the latter scheme chooses the packet

with shortest hop distance to the destination to win while the former scheme chooses

the packet with longest hop distance to the destination to win. We expect that the

Furthest win scheme would perform much worse than all of the schemes mentioned

so far. However, as Fig.3-7 shows, the throughput of Furthest Hops Win scheme

performs only slightly worse than other schemes.
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Figure 3-7: A comparison of throughput of system with bu�er using FHS.

For all of the schemes mentioned so far, the highest priority is assigned to the

continuing packets, and the new packets can only enter the system if there are no
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continuing packets or bu�ered packets. This prompts us to think that the throughput

can be improved if we allow all of the continuing packets, the head of bu�er packet and

the newly generated packet compete for the transmission right in the next slot instead

of just letting the continuing packets to compete. A modi�ed version of SHW scheme

choose the packet with shortest hop distance to its destination node to win. Packets

which loss the contention will be stored into the bu�er if there is space available. We

call this scheme Shortest Hops Win scheme 2. Again, an unexpected simulation result

(see Fig. 3-8 below) shows that throughput is lower than the four schemes discussed

so far. A closer look at the distribution of number of hops to the destination node for

the head of bu�er packet reveals that, with high probability, the head of bu�er packet

has a long hop distance to its destination node. This can be explained by noting that

the head of bu�er packet is transmitted only if it has the shortest hop distance to

its destination. Consequently, packets with longer hop distance to their destination

than the head of bu�er packet will be placed in the bu�er. Eventually, the bu�er

will be �lled with packets with d hops (the maximum hop distance between a source

and destination pair) to their destination nodes. As a result, we have a system with

e�ectively no bu�er, thus the througput is lower.

Examing the throughput results of OPW, RPW, and SHW schemes closely, we

�nd that these schemes do not achieve high throughput when p0 is inside the stability

region. Ideally, we should be able to attain a throughput level which is the same as the

arrival rate p0 when p0 is within the stability region. However, for all three schemes,

the throughput is only about 0.065 when p0 is 0.1. We develop next a scheme, called

Shortest Hops Win scheme 3, that achieves high throughput when p0 is relatively

small. SHW3 works as follows: The new packet and the arriving packets are sent

to the bu�er if there is space available. If there is not enough space available for all

the incoming packets (including the arriving packets and the new packet), we put

packets with shorter hop distance to the destination node in the bu�er �rst. At the

beginning of a time slot, the packet at the head of bu�er is going to be transmitted.

Simulation shows that SHW3 achieve a throughput level close to the arrival rate when

p0 is within the stability region. However, as p0 increases, the throughput of SHW3
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Figure 3-8: A comparison of throughput of system with bu�er using SHW2 and
SHW3.

is lower than that of the RPW, OPW, and SHW schemes.

3.3.7 Throughput and bu�ersize

To investigate the relationship between the bu�er size and the throughput, we eval-

uate the througput for SHW and SHW3 at p0 = 0:1, p0 = 0:5, and p0 = 0:9 by using

vairous bu�er size. Fig. 3-9 illustrates that a network with moderate bu�er size such

as four or eight can achieve the same level of throughput as a network with signi�-

cantly larger bu�er size. In other words, the throughput of system does not increase

with the increase of bu�er size.
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3.4 Summary

In this chapter, we analyzed a problem where nodes of the 2-dimensional N-mesh

generate packets independently at the beginning of each time slot with probability

p0. Each packet has unit transmission time and is destined for a uniformly selected

node. We showed the stability region of such network. Then, we consider three

routing schemes (Shortest Hop Win, Random Packet Win, and Oldest Packet Win)

and compare their throughput performance. As multiple packets arrive at a particular

node in a time slot, SHW chooses the one with shortest hop distance to its destination

to be transmitted in the next slot; RPW randomly picks one to be transmitted;

and OPW selects the one with longest hop distance to the destination. In all three

schemes, continuing packets have priority over the bu�ered packets, and the bu�ered

packets have priority over the new packets. Both the analytic and simulated results

show that SHW scheme attains the best throughput performance, OPW scheme the

second, and RPW the worst in the case of no bu�er at each node. In the bu�ered

case, the three schemes have similar performance. Also, a small bu�er size can achieve

throughput close to that of the in�nite bu�er size. Most of the packet drops occur

because the new packet cannot enter the system.
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Figure 3-9: Relation of throughput and size of bu�er using SHW and SHW3.
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Chapter 4

Conclusion

This �rst part of this thesis examines the capacity requirements for mesh networks

with all-to-all traÆc. This study is particularly useful for the purpose of design and

capacity provisioning in satellite networks. The technique of cuts on a graph is used to

obtain a tight lower bound on the capacity requirements. This cut technique provides

an eÆcient and simple way of obtaining lower bounds on spare capacity requirements

for more general failure scenarios such as node failures or multiple link failures.

Another contribution of this work is in the eÆcient restoration algorithm that

meets the lower bound on capacity requirement. Our restoration algorithm is rel-

atively fast in that only those traÆc streams a�ected by the link failure must be

rerouted. Yet, our algorithm utilizes much less spare capacity than link based restora-

tion (factor of N improvement). Furthermore, in order to achieve high capacity uti-

lization, our algorithm makes use of capacity that is relinquished by traÆc that is

rerouted due to the link failure (i.e. stub release [5]).

Interesting extensions include the consideration of multiple link failures, for which

�nding an eÆcient restoration algorithm is challenging. Finally, for the application

to satellite networks, it would also be interesting to examine the impact of di�erent

cross-link architectures.

In the second part of this thesis, we analyzed a problem where nodes of the 2-

dimensional N-mesh gnerate packet independently at the beginning of each time slot

with probability p0. Each packet has unit transmission time and is destined for a
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uniformly selected node. We showed the stability region of such network. Then, we

consider three routing schemes (SHW, RPW, and OPW) and compare their through-

put performance. Both the analytic and simulated results show that SHW scheme

attains the best throughput performance, OPW scheme the second, and RPW the

worst in case of no bu�er at each node. In the bu�ered case, the three schemes have

similar performance. Also, a small bu�er size can achieve throughput close to that of

the in�nite bu�er size. Most of the packet drop occur because the new packet cannot

enter the system. Once a new packet is admitted to the system, it has a rather high

probability to reach its desintation node.
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