
PREDICTING AND MANAGING SYSTEM INTERACTIONS AT EARLY PHASE

OF THE PRODUCT DEVELOPMENT PROCESS

by

QI DONG

B.S., Mechanical Engineering
University of Kentucky, 1997

S.M., Mechanical Engineering

Massachusetts Institute of Technology, 1999

Submitted to the Department of Mechanical Engineering
in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY IN MECHANICAL ENGINEERING

AT THE
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

JUNE 2002

 2002 Massachusetts Institute of Technology. All rights reserved.

Signature of Author…………………………………………………………………………….
Department of Mechanical Engineering

February 22, 2002

Certified by…………………………………………………………………………………….
Dr. Daniel E. Whitney, Senior Research Scientist

Center for Technology, Policy, and Industrial Development
Thesis Supervisor

Certified by……………………………………………………………………………………..

David Wallace, Associate Professor of Mechanical Engineering
Chairman, Doctoral Committee

Certified by……………………………………………………………………………………..

Warren P. Seering, Professor of Mechanical Engineering
Committee Member

Certified by……………………………………………………………………………………..

Steven D. Eppinger
Professor of Management Science and Engineering Systems

Committee Member

Accepted by…………………………………………………………………………………….
Ain A. Sonin

Department of Committee on Graduate Students

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/4384851?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

- 2 -

- 3 -

Predicting and Managing System Interactions at Early Phase of
the Product Development Process

by

QI DONG

Submitted to the Department of Mechanical Engineering
on February 22, 2002 in Partial Fulfillment of the

requirements for the Degree of Doctor of Philosophy in
Mechanical Engineering

ABSTRACT

The activity of designing and developing large, complex, discrete, physical, and engineered
products faces the challenges in the physical product system, the organization of people, and
the larger systems in which the product resides—the natural and societal systems.

This thesis defines system interactions as the interactions amongst design variables within the
physical product. Knowing system interactions early in the product development process is
critical for project management, design concept selection, and system architecture decisions.
However, existing methods that address the system interactions issues, such as the Design
Structure Matrix (DSM), are good analysis tools, but cannot be used during conceptual
synthesis when the most important decisions about the system designs are made.

System level knowledge is defined as the knowledge concerning system interactions. System
level knowledge is organizational knowledge that resides in the collective minds of members
in the organization. System level knowledge is critical to the success of the design of large
systems, yet is often missing due to its empirical nature. A knowledge management
framework was proposed in this thesis and tested in industry cases from Ford and CVC.

This thesis developed a method to predict and analyze system interactions at early phase of
the design process. The method transforms an Axiomatic Design’s Design Matrix (DM) into
a DSM based on solving systems of linear equations using substitution. Since a DM is more
easily constructed during early design phases, we can use this method to obtain a DSM
during concept design. Consequently, the advantages of the DSM system analysis tools and
methods can be applied to make better decisions on system design, system architecture, and
project management.

The method was tested using two industry cases at CVC and Johnson and Johnson Ortho-
clinical Diagnostics. Both case studies showed that the method was effective in real
engineering projects. Further observations in the case studies also revealed that a DSM could
also be easily converted back into a DM. The interchangeability between DSM and DM

- 4 -

allows engineering organizations to predict system interactions early on in a project, while
capturing and managing system level knowledge throughout the product lifecycle.

Thesis Supervisor: Dr. Daniel E. Whitney
Title: Senior Research Scientist, Center for Technology, Policy, and Industrial Development

- 5 -

Acknowledgement
As I am finishing up the writing of this thesis, I come to realize that the completion of this

piece of work is more than my one person’s effort. Without the support and help from many

people and organization, I would not have arrived at this point.

First, I would like to thank NSF Engineering Research Center program for providing the

necessary funding for this research (Cooperative Agreement No: EEC-9529140). I would

also like to thank the MIT Center for Innovation in Product Development (CIPD) for

providing me the opportunities to collaborate with industries. Product development research

is not the kind of research one can do by sitting in a room and thinking up some ideas.

Product development researchers must get out to the real engineering world to identify where

the problems are, and why they exist. Product development research results also must be

able to withstand the test of case studies and eventually the implementation in real

engineering projects. CIPD has been a great support in providing the right environment for

product development researches, and facilitating the network of a group of passionate

researchers and industry practitioners. I cannot say enough thanks for how much I have

benefited in this environment.

Next, I would like to thank my thesis advisor Dr. Daniel E. Whitney. I could not have asked

for better guidance, help, and support than what Dr. Whitney has given to me starting at the

formation of the ideas of this thesis research until all the way through the writing of this

thesis. Yet, looking beyond the completion of this piece of research, the more important

things that I am taking away with me by working with Dr. Whitney in the past five year are

how to think as a researcher. I learned from him how to believe yet doubt everything that is

said, and how to trust oneself yet be critical to oneself. I learned from him that life is a

continuous learning process, and everything can be relevant to everything else. I learned

from him to be confident in myself yet be modest. All of these lessons, I believe, will take

me far in life beyond what a PhD diploma can do. For this, I owe great debts to Dr. Whitney.

I would also like to thank the rest of my thesis committee members—Professor Warren

Seering, Professor Steve Eppinger, and Professor Dave Wallace for their help and guidance

- 6 -

throughout the thesis research. I benefited greatly for having diverse opinions and comments

in each of the committee meeting, which helps me to see the complete picture. I have also

many thanks to them for reading and commenting my on my thesis drafts.

The completion of this thesis is impossible without the help from many of the engineers and

manager in the case study companies. Although some of the names I will mention below do

not work at the same company any more, their support for this thesis cannot be forgotten. At

CVC, I want to thank Christine Whitman and Bill Starks for accepting my preliminary

research ideas and encouraging me to conduct the first case study in the company. Matthew

Coon, Xiangqun (Shawn) Chen, Bill Messner, and Dino Mastrosimone helped me to gather

data and were very supportive and encouraging to my research. At Johnson and Johnson

Ortho Clinical Diagnostics, I want to first thank Brian Blaser for recognizing the value of my

research work and introducing me to the company executives. Laura LaBauve, the OASIS

program manager, Jeff Helfer and Ted Farrel, the OASIS systems engineering managers

provided me all the necessary help and support for my case study. I also want to thank Mark

Raymond and the OASIS system engineering team for their help.

I want to dedicate this thesis to my late grandfather Zhenshun Dong (董振舜). Grandpa had

always been a role model for me in my life. He was a medical doctor, a well-respected

senior chemical engineer, and a loving grandpa. I still remember the nice time and good

conversations we shared since I was a little kid. When I just started learning reading, I used

to spend all my days indulging in children’s storybooks. In the evening, when grandpa came

home from work and we sat together under the starry night sky, I would make up stories

based on what I read in the day. He was always the patient audience for all my childish

elaborations and reflections on things and people. He left us a year too early to see me

finishing this thesis. But I know somewhere up there, he is probably smiling at this piece of

not-so-childish-any-more work. Or maybe he is smiling because when I told him those

stories I made up, I did not think they were childish at all.

The completion of this thesis would not have been possible without the rest of my family.

My 85-years old grandmother Shuhe Hou (侯淑和) handled grandpa’s death with a very

- 7 -

strong heart. She has become an example for me in the past year to stay strong and finish my

research work. I am so glad she will be present at my hooding ceremony. My mother Dalin

Ma (馬大林), father Shaojing Dong (董紹靜), and brother Huayi (驊怡) have always

provided me support and encouragement. My fiancé Onno endured years of separation and

traveling with still so much love to support me so that I could focus on my thesis. Finally,

this thesis work is coming to an end, and we will start a new chapter in our lives.

Of course, many of the thanks shall also go to my numerous friends and colleagues who

helped me and encouraged me in the past five years. My accomplishment here is a collective

effort, and I am in debt with everyone who had a part of this experience.

Qi Dong (董騏)

February 20, 2002

- 8 -

- 9 -

Table of Contents

LIST OF ACRONYMS... 19

1 INTRODUCTION... 21

1.1 RESEARCH MOTIVATION .. 21

1.1.1 Living with Systems ... 21

1.1.2 Challenges in the Design and Development of Large Complex Systems........ 22

1.1.2.1 Understanding the Challenges from Systems’ Perspective......................... 23

1.1.2.2 The Interface Dilemma.. 24

1.1.2.3 Emergent Property... 27

1.1.2.4 Dynamic Behavior... 28

1.1.2.5 Both Science and Art... 29

1.2 RESEARCH GOALS.. 29

1.2.1 Research Scope ... 29

1.2.2 Challenges in Product Development... 29

1.2.3 Research Questions ... 31

1.2.3.1 Obtaining System Interactions at Early Stage of the Design Process 31

1.2.3.2 Managing System Level Knowledge .. 36

1.3 RESEARCH APPROACH ... 39

1.4 THESIS STRUCTURE AND CHAPTER OUTLINES.. 40

1.4.1 Thesis Structure... 40

1.4.2 Chapter Outline... 41

2 LITERATURE REVIEW... 45

2.1 SYSTEMS ENGINEERING ... 45

2.1.1 What is Systems Engineering .. 45

2.1.2 System Engineering Methods that Deal with System Interactions.................. 48

2.1.2.1 Heuristics... 48

2.1.2.2 Graphs and Digraphs... 48

2.1.2.3 Trees .. 49

2.1.2.4 IDEF.. 50

- 10 -

2.1.2.5 CPM, PERT, and Gantt chart .. 51

2.1.2.6 Design Structure Matrix .. 52

2.1.2.7 QFD... 58

2.1.2.8 Axiomatic Design’s Design Matrix... 59

2.1.2.9 Requirements Classification.. 64

2.1.2.10 Summary on the Methods Dealing with System Interactions 70

2.2 DESIGN THEORY .. 72

2.2.1 European Design Models .. 72

2.2.2 Total Quality Deployment ... 74

2.2.3 Axiomatic Design .. 74

2.2.4 Summary of Design Theories Reviewed .. 76

2.3 KNOWLEDGE MANAGEMENT.. 77

2.3.1 System Level Knowledge Management in Literatures 77

2.3.2 System Level Knowledge Classification.. 81

2.4 PROGRESS MADE REGARDING RESEARCH QUESTIONS... 81

2.5 SUMMARY .. 83

3 RESEARCH METHOD ... 85

3.1 A FRAMEWORK FOR MANAGING SYSTEM LEVEL KNOWLEDGE 85

3.1.1 Requirements on the System Level Knowledge Management Framework...... 85

3.1.2 Proposed System Level Knowledge Management Framework 87

3.1.3 How the Requirements on System Level Knowledge Management Methods are

fulfilled by This Framework .. 89

3.2 THE MATRIX TRANSFORMATION METHOD... 91

3.2.1 Motivation for Obtaining a Design Structure Matrix from a Design Matrix . 91

3.2.2 A Look at Solving Systems of Linear Equations.. 93

3.2.3 The Three Steps to Transfer a DM into a DSM .. 94

3.2.4 The Choice of Output Variables.. 97

3.2.5 Assumptions Used in the Matrix Transformation Method 99

3.3 DESIGN OF THE TWO CASE STUDIES... 101

3.3.1 CVC Case Study .. 101

3.3.2 Johnson and Johnson Ortho Clinic Diagnostics Case Study........................ 102

- 11 -

3.3.3 Strengths and Limitations on Learning from Case Studies........................... 102

3.4 PROGRESS MADE REGARDING RESEARCH QUESTIONS... 103

3.5 SUMMARY .. 104

4 CVC CASE STUDY.. 107

4.1 THE RESEARCH SETTING.. 107

4.1.1 About the Company CVC .. 107

4.1.2 Case Study Description ... 108

4.1.2.1 The Product ... 108

4.1.2.2 Case Study Objectives... 109

4.1.2.3 Case Study Scope .. 111

4.2 DATA GATHERING PROCESS... 111

4.2.1 Sources of Inputs ... 111

4.2.2 Constructing a DSM from Requirements Using the Matrix Conversion

Process 112

4.2.3 Testing the System Level Knowledge Management Framework................... 113

4.3 RESULTS AND ANALYSIS.. 114

4.3.1 The Design Matrix for ESC Integration Project ... 114

4.3.2 The DSM Obtained from the DM Using the Matrix Transformation Method

 121

4.3.3 Benefits of the DSM Obtained from DM ... 123

4.3.3.1 Prediction of System Interactions ... 123

4.3.3.2 A Requirement-driven Process.. 123

4.3.3.3 Manage the Communication Across Organization Boundaries 126

4.3.3.4 Summary of the Benefits... 126

4.3.4 When to Stop the Decomposition in the DM and DSM Construction 126

4.3.5 The Validity of the DSM Obtained from Matrix Transformation Method 132

4.3.5.1 Reviews from the CVC Engineering Experts ... 132

4.3.5.2 DSM System Interaction Density.. 133

4.3.6 The Choice of Output Variables.. 134

4.3.6.1 The Logical Approach... 134

4.3.6.2 The Mathematical Approach... 138

- 12 -

4.3.6.3 Summary for Both Approaches... 140

4.3.6.4 Implication on the Conversion between DM and DSM............................ 141

4.3.7 Not All Design Requirements are Decomposed .. 141

4.3.8 Managing System Level Knowledge at CVC... 142

4.3.9 Results from Testing the Knowledge Management Framework 144

4.4 PROGRESS MADE REGARDING THE RESEARCH QUESTIONS.................................... 146

4.5 SUMMARY .. 150

5 JOHNSON AND JOHNSON CASE STUDY ... 155

5.1 THE RESEARCH SETTING.. 155

5.1.1 About Johnson and Johnson Ortho-Clinical Diagnostics (JNJ OCD) 155

5.1.2 Case Study Description ... 156

5.1.2.1 The Product and Process ... 156

5.1.2.2 Case Study Scope .. 158

5.1.2.3 Case Study Objectives... 160

5.1.2.4 Chapter Outline ... 161

5.2 DATA GATHERING PROCESS... 162

5.2.1 Building a Design Matrix Based on the Architecture Definition Document 163

5.2.2 Identify System Interactions Using Function Flow Diagram 164

5.2.3 Identify System Interactions Using Mechanical Interface Document........... 166

5.2.4 Identify Subsystem Interactions Driven by Product Requirements 166

5.2.4.1 Was the Matrix Transformation Method Used?.. 168

5.2.4.2 When is DM Necessary? ... 170

5.2.5 Identify Subsystem Interactions from Hazard Analysis and Mitigation

Document .. 171

5.2.6 When to Use DM and When to Use DSM.. 172

5.2.7 The DSM built by JNJ OCD Engineering Experts Using the Traditional DSM

Construction Method... 173

5.3 RESULTS AND DISCUSSION... 174

5.3.1 How Realistic is the Prediction DSM from Requirements 175

5.3.1.1 Compare the DSM Constructed Using All Design Documents and the DSM

Constructed from Only Requirements... 175

- 13 -

5.3.1.2 The DSM Constructed by the Experts .. 177

5.3.1.3 Compare the Requirement-driven DSM to the Experts’ DSM 180

5.3.1.4 System Interaction Density ... 197

5.3.1.5 The Topology of System Interfaces .. 197

5.3.1.6 The System Element Priority List ... 199

5.3.1.7 What Makes Two DSM’s Similar? ... 201

5.3.1.8 Summary of the Effectiveness of Building a DSM from Requirements... 202

5.3.2 The Requirements Decomposition Process vs. Various Types of Requirements

 204

5.3.2.1 Requirements Decomposition ... 205

5.3.2.2 Which Types of Requirement Drive System Interfaces............................ 222

5.3.2.3 Summary on Requirements Decomposition.. 228

5.3.3 The Sources of System Level Knowledge .. 229

5.3.3.1 Which Document Tells the Most about System Interactions.................... 229

5.3.3.2 How well the System Level Knowledge is Documented.......................... 235

5.3.3.3 Summary on the Documentation of System Level Knowledge 242

5.4 PROGRESS MADE REGARDING THE RESEARCH QUESTIONS.................................... 243

5.5 SUMMARY .. 247

6 STATUS OF RESEARCH QUESTIONS ... 251

6.1 THE INITIAL RESEARCH QUESTIONS... 251

6.1.1 Obtaining System Interactions at Early Stage of the Design Process 251

6.1.2 Managing System Level Knowledge in the Organization 252

6.2 PROGRESS MADE AND FUTURE RESEARCH QUESTIONS ... 253

6.2.1 Obtaining System Interactions at Early Stage of the Design Process 253

6.2.1.1 Existing Methods Dealing with System Interactions (Q1-a) 254

6.2.1.2 A New Method to Predict System Interactions (Q1-b) 254

6.2.1.3 The Limitations of the Method (Q1-c).. 263

6.2.1.4 Future Research Directions for Predicting System Interactions 264

6.2.2 Managing System Level Knowledge in An Organization.............................. 270

6.2.2.1 Existing Practices in Managing System Level Knowledge (Q2-a)........... 270

6.2.2.2 System Level Knowledge Management Framework (Q2-b) 270

- 14 -

6.2.2.3 The Best Source of System Interaction Knowledge (Q2-c)...................... 271

6.2.2.4 Current Industry Status in Documenting System Level Knowledge (Q2-d)

 272

6.2.2.5 Deployment of the Knowledge Management System (Q2-e) 272

6.2.2.6 Future Research Directions for Managing System Level Knowledge...... 273

6.3 SUMMARY .. 274

7 CONCLUSIONS AND FUTURE WORK .. 275

7.1 SUMMARY ON THE RESEARCH QUESTIONS... 275

7.1.1 Obtaining System Interactions at Early Stage of the Design Process 275

7.1.2 Managing System Level Knowledge in An Organization.............................. 277

7.2 CONTRIBUTIONS TO PRODUCT DEVELOPMENT RESEARCH AND PRACTICE............. 278

7.2.1 A Matrix Transformation Method to Bridge the Axiomatic Design, Design

Structure Matrix, and Robust Design.. 278

7.2.2 A Requirements-driven Design Process.. 280

7.2.3 Managing System Level Knowledge.. 281

7.2.4 Summary of Contributions .. 282

7.3 FUTURE RESEARCH DIRECTIONS .. 283

REFERENCES.. 285

APPENDIX A: OASIS PRODUCT REQUIREMENTS ... 294

- 15 -

List of Figures

Figure 1-1: System View of Product Development .. 24

Figure 1-2: Design Changes in Product Development Process .. 34

Figure 1-3: Where was Ford Throttle Body Design Knowledge [Dong (1999)] 37

Figure 2-1: A Diagraph ... 49

Figure 2-2: An Example of A Tree ... 49

Figure 2-3: A Typical IDEF Block [Grady (2000 pp. 252)] ... 50

Figure 2-4: Typical IDEF Diagram [Grady (2000 pp. 252)]... 51

Figure 2-5: An Example of a Design Structure Matrix and its Corresponding Graph............ 53

Figure 2-6: DSM after Partitioning ... 54

Figure 2-7 Four Types of Product Innovation [Henderson and Clark (1990) p.12] 56

Figure 2-8 Typical Time A DSM Research is done.. 56

Figure 2-9: The QFD House of Quality [Cohen (1995) p.70] .. 58

Figure 2-10: The Four Houses of QFD [Clausing (1994) p.68] ... 59

Figure 2-11 Axiomatic Design Matrices... 60

Figure 2-12: Sequential Model between Function and Form.. 73

Figure 2-13: Axiomatic Design’s Four Domains.. 74

Figure 2-14 Axiomatic Design Decomposition .. 75

Figure 2-15: Classification of Knowledge Management Literatures 77

Figure 3-1: A Framework for Managing System Level Knowledge 87

Figure 3-2: The Choice of Output Variables... 98

Figure 3-3: The Choice of Output Variables for Elements Not Involved in System Iterations

... 98

Figure 4-1: A Typical CVC Cluster Machine ... 108

Figure 4-2: Schematic of the Electro-static Chuck ... 109

Figure 4-3: The ESC System Integration Design Matrix.. 116

Figure 4-4: ESC DM with only the Decomposition of FR1 ... 117

Figure 4-5: ESC Functional Requirement 1 Decomposition Diagram 118

Figure 4-6: ESC DM with Only the Highest Level of Decoomposition............................... 119

Figure 4-7: Database to Record the Rationale behind Each Interactions in the DM 120

- 16 -

Figure 4-8: DSM of the Lowest Level Elements for ESC Integration.................................. 122

Figure 4-9: Wafer Cooling Heat Transfer Circuit ... 124

Figure 4-10 The Heat Transfer Design Problem... 125

Figure 4-11: DSM at the Fifth Level of Decomposition (one level higher than the leaf level)

... 129

Figure 4-12: DSM at the Fourth Level of Decomposition (two levels higher than the leaf

level).. 130

Figure 4-13: DSM at the Third Level of Decomposition (three levels higher than the leaf

level).. 130

Figure 4-14: DSM at the Second Level of Decomposition (four levels higher than the leaf

level).. 131

Figure 4-15: DSM at the First Level of Decomposition (the highest Level in the tree) 131

Figure 4-16: How well CVC Documents System Level Knowledge in the ESC Project..... 143

Figure 5-1: OASIS Analyzer Model ... 156

Figure 5-2: OASIS Subsystems .. 159

Figure 5-3: Location of Major Subsystems... 160

Figure 5-4: The Use of Each OCD System Engineering Design Documents....................... 162

Figure 5-5: Building a DSM from Function Flow Diagram ... 165

Figure 5-6: Requirements Decomposition Process ... 167

Figure 5-7: The DSM Constructed Using all Document Sources in Figure 5-4 175

Figure 5-8: DSM Constructed Based on Requirements and Architecture Definition........... 176

Figure 5-9: February Expert DSM .. 178

Figure 5-10: August Expert DSM ... 179

Figure 5-11: Combined Experts Prediction DSM from February and August 180

Figure 5-12: Compare the Experts’ DSM with The DSM from Requirements 182

Figure 5-13: Matching and Unmatched Marks in the Requirements DSM and the Expert

DSM .. 183

Figure 5-14: The Requirement Prediction DSM... 184

Figure 5-15: The Expert DSM Combining February and August Results............................ 184

Figure 5-16: Percentage of Various Unmatched System Interaction Marks......................... 194

Figure 5-17: Potential Overlapping between the Requirements and Expert DSM 196

- 17 -

Figure 5-18: Two DSM’s with the Same Number of Elements but Different Topology 198

Figure 5-19: Contribution to System Interactions from Various Types of Requirements 223

Figure 5-20: The Final DSM Derived from All Types of Requirements.............................. 225

Figure 5-21: The DSM Due to Functional Requirements ... 225

Figure 5-22: DSM Due to Maintainability Requirements... 226

Figure 5-23: DSM Due to Performance Requirements... 226

Figure 5-24: System Interactions Obtained from Architecture Definition 230

Figure 5-25: System Interactions Obtained from Function Flow Diagram 230

Figure 5-26: System Interaction Obtained from Mechanical Interface Document............... 231

Figure 5-27: System Interactions Obtained from Requirements Document (Same as Figure

5-14) .. 231

Figure 5-28: System Interactions Obtained from Hazard Analysis Document..................... 232

Figure 5-29: Percent Contribution to Identifying Subsystem Interactions from Each

Document Source .. 234

Figure 5-30: Information Sources for PRD Decomposition ... 237

Figure 5-31: Potential Improvement on Documented Requirements Decomposition 238

Figure 5-32: The Improvement on Documenting System Level Knowledge after

Documenting Requirements Decomposition .. 241

Figure 6-1: A More Complete Framework for Predicting and Capturing System Interactions

... 262

Figure 6-2: Which Matrix to Use for Which Type of Product Innovation 265

Figure 6-3 Which Matrix to Use at Which Phase of the Technology “S” Curve 268

- 18 -

List of Tables

Table 1-1: Research Questions Discussed in Each Chapter.. 41

Table 2-1 Relating Product Design Stakeholders to Requirements Categories 68

Table 2-2 Design Stakeholders vs. Flexibility of the Requirements....................................... 69

Table 2-3 Summary of the System Engineering Methods Concerning System Interactions .. 71

Table 2-4: Summary of the Comparison among Design Theories.. 76

Table 3-1: Comparison between DM and DSM.. 92

Table 5-1: Converting the Experts’ System Elements to the Official Subsystem Names 174

Table 5-2: Summary of Unmatched Marks... 195

Table 5-3: How Various Types of Requirements were Decomposed................................... 208

Table 5-4: Requirements Decomposition Summary ... 221

Table 5-5: Contribution of Each Type of Requirements to the System Interactions 223

Table 5-6: Contribution of Each Information Source in Identifying Subsystem Interactions

... 233

Table 5-7: Number of Interactions Identified by Single or Multiple Information Sources .. 235

Table 6-1: Research Questions Discussed in Each Previous Chapter................................... 253

- 19 -

List of Acronyms

DM: Design Matrix (from Axiomatic Design)

DP: Design Parameter (from Axiomatic Design)

DSM: Design Structure Matrix

ESC: Electro-static Chuck

FR: Functional Requirements (from Axiomatic Design)

HAMG: Hazard Analysis and Mitigation Document (from Johnson and Johnson case study).

JNJ: Johnson and Johnson

MOCVD: Metal Organic Chemical Vapor Deposition (from Guru Prasanna’s CVC project)

OCD: Ortho-clinical Diagnostics

PRD: Product-level Requirements Document. May also be used to refer to the actual product

requirements (from Johnson and Johnson case study).

SSRD: Subsystem-level Requirements Document. May also be used to refer to the actual

subsystem requirements (from Johnson and Johnson case study).

- 20 -

- 21 -

1 Introduction

1.1 Research Motivation

Changes in the World’s political, economic and technological realms in the

past century have placed great stresses on approaches to management and

system design. The changes that have had the greatest impact are the

increase in size and complexity of the human organizations and technical

systems needed in the world today, and the rate of change in the external

environment with which these organizations and systems must cope.

Joel Moses, Provost, MIT [Hughes 1998 p.3]

1.1.1 Living with Systems

We live in a universe of systems. The systems around us include three categories: The

natural system, the technological system, and the societal system. Human beings can

determine technological system’s and societal system’s structures. Therefore, these two

systems can be viewed as man-made systems in contrast to natural system whose existence

and behavior are not dictated by human wishes [Simon (1981)].

The natural system is the most basic system we are in. Human bodies are biological and

chemical systems, which must be viewed as a whole consisting of interacting parts [Zimmer

(1999), Weng, et al. (1999), Koch, et al. (1999), Systems Biology (2001)]. Human, other

living beings, and the environment form the ecological system [Service (1999), Parrish, et

al.g (1999)]. The ecological system on the earth is greatly influenced by the solar system we

are in [Werner (1999)]. The sun affects the health of the lives on earth. The moon changes

the tide in the water bodies and maybe even the mental state of human beings. The solar

system is only a small part of the Milky Way Galaxy. It rotates round the center of the Milky

Way together with other stars. The relative motion of the Milky Way changes with respect to

- 22 -

other galaxies, indicating interactions between our galaxy and the rest of the universe

[Kaufman and Freedman (2000)].

Living within the natural system, humans created man-made systems. To maintain the

stability of their lives, humans created the societal system such as the political and

economical systems. To make their lives more convenient, humans developed technological

systems, such as the airplanes, the automobiles, the telephone network, etc. Historian of

Technology Thomas P. Hughes (1998 p.3) observes that by the twentieth century,

“Americans had transformed a natural world into a human-built one characterized by

technological systems and unmatched complexity.” This trend is continuing in the 21st

Century.

In the process of developing large complex systems, human beings have learned through

mistakes about the interactions between the societal system and the technological system,

and the interaction between the man-made systems and the natural system. The

environmental regulations are the responses from the societal system in order to control the

effect of the technological system on the natural system. Marketing is the work to bridge the

societal system and the technological system. In short, the man-made systems and the

natural system are highly interactive. Anything we humans do must be put into the context

of the systems.

1.1.2 Challenges in the Design and Development of Large Complex Systems

The interest of this thesis is on man-made systems. The natural system exists regardless of

human wishes. It is the duty of scientists to observe and discover the laws governing the

behaviors of the natural systems. As an engineering thesis, this research concerns how

humans can best design and develop man-made systems, especially large complex ones.

Large complex man-made systems are interesting because of two reasons. First, in the past

century, many large complex man-made systems have fundamentally changed the way we

live. For instance, the automobiles and the airplanes have improved people’s mobility. The

- 23 -

telephone system has changed people’s ability of communication, and signal is forever

separated from its carrier [Mindell (2000)]. The satellite system has enhanced our

understanding to the atmosphere and changed way we view the world. People desire more,

better, and bigger such systems in the future. The second reason for which large complex

man-made systems are worth studying is the challenges we face in developing such systems.

One good example can be found in Walton’s Car (1997) that depicts the trouble and chaos

Ford Motor Company went through in developing the Taurus. Yet, despite the challenges,

people still want these products, and want them even bigger and better. Companies want to

design and develop these systems better, faster, and cheaper. Therefore, it is worthwhile to

understand the challenges in the design and development of large complex systems, so that

we can discover ways to overcome them.

This section summarizes some of the challenges found in the literatures on developing large

complex systems. The list below is not intended to be exhaustive, but rather to bring the

readers’ awareness of the issues, and to direct the readers to see the issues in the light of

systems.

1.1.2.1 Understanding the Challenges from Systems’ Perspective

Hughes and Hughes (2000) observe, “After World War II, a systems approach to solving

complex problems and managing systems came into vogue among engineers, scientists, and

managers.” A systems perspective is critical because large complex systems are not only

systems themselves, but also interact with other major systems (Figure 1-1). The successful

design and development of large complex systems require a mix of knowledge from natural

science, social science, and engineering technology [Rechtin (1991) p. xiii-xiv]. No one

person in any of these fields can do the job alone.

- 24 -

Figure 1-1: System View of Product Development

Yet, each of us was trained to know only some aspects of one or more circles in Figure 1-1.

The challenge of taking a system perspective is to stay unbiased by our own background, and

to stay aware of all aspects of the problem. We must consider the impact of all three systems

in Figure 1-1 on the object we are designing and developing. As Rechtin (1991 p.3) puts it,

“complex product design has many constraints imposed on them. Hence a technical

optimum may not be politically or economically optimum.” We must be aware of the

constraints imposed on a system by the “larger world” the current system is in.

1.1.2.2 The Interface Dilemma

One of the most significant characteristics of any system is the interconnection among a set

of elements [Rechtin (1991), Alexander (1968), Simon (1981)]. Grady (2000) points out “it

is through these interfaces that a system attains its superiority over an unorganized collection

of things (p. 272).” The richer the complexity, the more synergy we get from the system.

Yet, dealing with large amount of system interfaces is challenging for human beings. The

difficulties come from both individual human beings’ cognitive capability and how people

work together in organizations.

Individual human beings are incapable of dealing with large complex system interfaces

without proper outside aids. Miller’s research (1956) indicates seven plus minus two is the

Social
System

Technical
System

Natural
System

Design and
Development of Large
Complex Systems

- 25 -

limit for average people to deal with items and their relationships along a single dimension or

system attribute without any outside aids. Complex systems usually consist of more than

seven interfaces and more than one system attribute, and hence are difficult for people who

try to understand and manage them. As evidence, Sterman (2000 p.669) observed in many

decision making process, the complexity of the feedbacks among the variables makes it

impossible to think of the optimal strategy. Usually, people resort to heuristics and rules of

thumb. Furthermore, as Simon (1957 p. 198) points out, “the capacity of the human mind for

formulating and solving complex problem is very small compared with the size of the

problem whose solution is required for objectively rational behavior in the real world or even

for a reasonable approximation to such objective rationality.” The recognition of Bounded

Rationality won Simon the Nobel Prize in economics in 1979. Hence, in order to work on

large complex systems, we must understand human limitations and develop tools to help

ourselves overcome the limitations.

Due to the limitation of individual human beings, complex systems are usually worked on by

organizations of people. Complex systems are challenging for human organizations. To

divide the work among the people in an organization, complex systems are typically

decomposed into many pieces called subsystems or components [Alexander (1968), Simon

(1981), Rechtin (1991)]. One or more people from various disciplines and backgrounds

work on various pieces of the system. To manage the people in the organization, each

organization typically has a hierarchical reporting structure. The structure of the

organization usually does not match the architecture of the physical system being designed.

The reason is that an organization can work on more than one system. Organizing the people

differently for each product is impractical. Therefore, each group in the organization must

collaborate to correctly address the system interface and system integration issues.

The first challenge regarding organization communication is what information is exchanged

among groups of people. Each person may form a different picture about the system based

on his/her view. Sterman (2000) calls these “pictures” the mental model (p.694). The mental

models will determine how information is used and how decisions are made. Different

mental models among the people who work on the same system will result in the so-called

- 26 -

“Spread-thinking”, where people try to discuss an issue using different definitions [Warfield

(1995)]. Information may get lost or misunderstood. The result is frustration among the

people and sub-optimal or even incorrect decisions by the groups.

The second challenge regarding organization communication is how effectively the

communication can take place. Allen (1977) pioneered a stream of research to investigate

how effective communications stimulate the performance of development organizations, and

hence the resulting performance of the systems they are working on. Allen (1977 and 1997)

suggests the distance between the people affects how much they would communicate with

each other. Ulrich and Eppinger (2000) emphasize the need to facilitate the exchange of

essential information in order to speed up the development process. Griffin and Hauser

(1992) show that using Quality Function Deployment (QFD) practices enhances technical

communication within the boundaries of the development teams, but reduces the

communication levels across team’s boundaries. Sosa (2000) further reveals the following

observations regarding the relationship between the product architecture and the

communication between development teams:

1. The distributed nature of the integrative systems forces design teams to

overcome organizational barriers in order to handle design interfaces

with all the systems. That is, effects of organizational barriers are

more severe among teams that design modular systems.

2. Design interfaces across modular systems are more difficult for design

experts to recognize than interfaces with integrative systems.

3. Design teams handle some design interfaces according to their type.

We found that spatial-type design interfaces are largely addressed in

the design of modular systems while transfer-type design interfaces

are more likely to be handled in the design of integrative systems.

- 27 -

Therefore, human beings have limitations in dealing with complex system interfaces when

working individually or as groups. We must acknowledge the limitation and find ways to

improve the situation.

In summary, the interface dilemma shows the incompatibility between the natural system

(humans) and the man-made system. On one hand, complex system interaction is what

makes systems more desirable than individual parts. On the other hand, due to the inherent

human limitation, complex system interfaces are difficult for us to deal with. Finding the

right balance between the system interface complexity and the human capability is the

dilemma.

1.1.2.3 Emergent Property

Emergent property is the same as saying the whole is more than the sum of parts [Bertalanffy

(1968) p.55]. In other words, emergent property of the system rises from the interactions of

its lower level entities, none of which shows it. For instance, the properties of gases are not

the properties of the individual gas molecules. The function of the brain is reflected in the

structure makeup, rather than individual neural cells [Koch et al. (1999) p. 97].

Emergent property of the system has two sides. On the positive side, this characteristic

makes systems more desirable than the collection of its components. When designing man-

made systems, we can design the system components to interact in such a way that the

system as a whole delivers desirable functions that its components cannot.

On the negative side, this property brings the possibility that some of the system behaviors

may not be what was initially intended. A more severe implication is that the designers of

the system may not be able to predict all of the system behaviors. The investigation of

Apollo 13’s problem revealed exactly this point [Compton (1989), NASA Apollo 13 (2001)].

An Oxygen tank from previous mission was used on Apollo 13 whose heating switch was

operating under 28 volts instead of the new standard 65 volts. The operation voltage

difference should not have mattered if the Oxygen tank were operating normally. However,

- 28 -

a loose fitting tube caused the Oxygen tank not to empty properly during testing prior to

flight. The tank was heated up in order to empty the Oxygen. When the tank was heated up

to 80 degree F, the heater switches in the tank opened. The current generated by 65 volts

rather than 28 volts caused arcing between the two ends of the heater and permanently

welded them together. So the heater in the Oxygen tank B was constantly working when

they should not be. The overheated components melted the Teflon insulation, and eventually

caused explosion when exposed to the pure Oxygen. From Apollo 13’s lesson, we learned

that system behaviors are not always predictable. The emergent property of systems can

come from long chain of causes. Some of the causes may occur only accidentally, and

therefore making the end result surprising and dreadful.

1.1.2.4 Dynamic Behavior

Senge (1994 p.71) and Sterman (2000 p. 21) point out there are two types of complexity.

One is the detailed complexity, and the other is the dynamic complexity. Detailed

complexity is about system variables and the possible combinations among them. An

example of detailed complexity is airline scheduling. Dynamic complexity is about the

outcomes of system interactions over time. A system with only a few elements (low in

detailed complexity) can give high dynamic complexity. A good example is the Beer Game

[Sterman (1989)]. Suh (1999) also suggested the concept of time dependent complexity. He

says the future could be unpredictable and introduce a lot of uncertainties into the system,

which are not initially considered by the designers. Yet the outcome of the system will still

be dependent on past decisions made.

Thus the design and development of large complex systems must take into consideration the

dynamics of the natural and societal systems. The customer requirements and market needs

may change. The competitors may introduce new products. The technology may become

obsolete. We must recognize the dynamic environment we are in and try to discover and use

tools to help us better achieve our goals.

- 29 -

1.1.2.5 Both Science and Art

The design and development of large complex systems are both science and art. Although

scientists have learned a lot about this world, we really don’t have a complete understanding

about how everything works in this universe. The capability of science is limited. As

Rechtin puts it, “Single-value optimization and multi-value trade-offs are not sufficient for

design situations…in dealing with complex system, analytical knowledge is not enough.

Experience and judgment are necessary (2000, p.XV, p.6).” Therefore, the field of the

design and development of large complex systems is challenging and interesting. We must

continuously learn from our experience and develop new methods and tools. We must revise

or abandon obsolete methods and tools when necessary. We must stay open-minded and

acknowledge the need to learn from other unfamiliar fields.

1.2 Research Goals

1.2.1 Research Scope

This research focuses on the design and development of large complex products, specifically

discrete engineered physical products, such as automobiles, airplanes, copy machines, etc.

Therefore, the object of study here is the technical system (Figure 1-1), not the natural

system or the societal system. In addition, products such as books and clothing are not the

focus of this study because they are not large complex systems. Software and service are

also not the emphasis here because they are not discrete physical products.

Nonetheless, narrowing down the research scope is only to focus the study. This research

takes a general systems approach. The results of this research can be the foundation for

improving the design and development of other systems and products.

1.2.2 Challenges in Product Development

Product development is about orchestrating two large complex systems—the large complex

product and the organization that develops the large complex product. The product

development process must take into consideration the coordination between the above two

- 30 -

systems. Prior discussions on the challenges in developing large complex systems are

applicable to product development. Furthermore, these challenges can be detailed for

product development situations in the following list [Ulrich and Eppinger (2000) p.6]:

1. Trade-offs: recognize the product itself is a system. One attribute may be optimized

at the expense of another attribute.

2. Dynamics: recognize the uncertainties the societal, natural, and other technical

systems may introduce over time.

3. Details: recognize the complexity of decision-making in product development. One

must take a system perspective and consider all three systems in Figure 1-1. One

must consider the dynamics. This challenge is caused by human limitation in

managing detailed complexity as mentioned in the “The Interface Dilemma” section.

4. Time Pressure: This is a pressure coming from the societal system where we want to

deliver products to the customers before other competitors. This pressure also comes

from the dynamic environment the product development is in. Technology and the

market change fast. If we do not deliver the product quickly, the technology may

become obsolete and the market may not be there any more. Time pressure may

force decisions to be made without complete information. Therefore, the design and

development of large complex products are both science and art.

5. Economics: This challenge reveals the fundamental relationship between the societal

and the technical system (Figure 1-1).

6. Creativity and Team Management: This is also the challenge caused by the

interactions between the technical system and the societal system. Different from the

economical challenges, this challenge comes from the recognition that humans are the

ones that develop the technical systems. The products can only be good if the people

are doing the right thing. Better team management and team diversity can address

“The Interface Dilemma”. Allowing creativity is acknowledging the need for both art

and science in product development.

This list may not be exhaustive. Yet it is enough for us to conclude that the design and

development of large complex products face the same challenges as dealing with system

- 31 -

complexity. Therefore, this thesis takes a systems perspective to address the issues in

product development. Not only existing product development methods, but also system

engineering methods are examined in the Literature Review section of this thesis.

1.2.3 Research Questions

Issues relevant to the design and development of large complex products are numerous. The

main research questions in this thesis are:

1. How to predict system interactions in the product at early stage of the design process?

2. How to manage the system level knowledge in the organization?

A series of sub-questions are listed below for each of the main research questions.

1.2.3.1 Obtaining System Interactions at Early Stage of the Design Process

1.2.3.1.1 What are System Interactions

System interactions here are defined as the interactions among the key design variables in the

system of interest. In this study, the systems are large complex products. The design

variables can be either physical parts or the features and design parameters of the product.

For instance, let’s take an automobile as a system. The door and the body frame have

interaction between them. They must be designed to fit snugly. Therefore, the physical parts

in the system--the door and the body frame--are the design variables. The system interaction

between these design variables is a packaging relationship. Take another example; the

engine must be designed so that it has enough power to pull the body weight. Therefore, the

body frame cannot be too heavy for the engine chosen, or the engine cannot be too small for

the body size. In this case, the design variables are the engine power and the body weight,

which are design parameters rather than physical parts. The system interaction between these

two design variables is an energy relationship.

- 32 -

The tasks in product development are not the design variables in this thesis. Examples of

tasks are “create CAD models”, “order material from vendor”, “build prototype”, etc. Hence,

the system interactions studied here are the interactions among design variables in the

product, not the tasks involved in creating the product. To understand how to manage the

tasks in a product development project, the readers may want to consult literatures such as

Eppinger’s DSM research [Eppinger et al. (1994)], Gantt charts, Pert charts, Critical Path,

and other project management techniques [Ulrich and Eppinger (2000) p. 321].

In addition, the system interactions here are not the direct interaction between people

involved in the design and development of the product, such as the interactions studied by

Allen (1977 and 1997). However, this is not to say that human interactions have nothing to

do with the system interactions here. From the discussion in the “The Interface Dilemma”

section, the system interface in the physical product will affect how the people who are

designing the product should interact with one another. Furthermore, although this thesis

focuses on the design and development of physical products, the same technique can be used

to design organization structures. When the system is the human organization and the design

variables are the people in the organization, then the interactions among the people become

the system interactions.

In short, this thesis takes a product-view of the product development process. The author

believes that the interactions in the product itself should determine how the tasks in the

project need be completed and how people need to interact during product design and

development. This product-view is a hypothesis. One of the future tasks generated from this

thesis can be to test this hypothesis. Nonetheless, this hypothesis does not affect the research

in this thesis. This thesis is based on the fact that large complex products are systems.

Taking a systems view on the product helps to design and develop the product better and

faster.

- 33 -

1.2.3.1.2 Why It is Important to Obtain System Interactions Early

The biggest mistakes in any large system design are usually made on the first

day.

Dr. Robert Spinard

Vice Presendent of Xerox Corporation

[Hooks and Farry (2000) p. 3]

Imagine you are going to an unfamiliar town. What is the best way to get to your

destination? It is probably using the help of a map of that town. A map can help you to

avoid unnecessary detours and reach the destination quickly.

Knowing system interactions about a product is like having the map of a town. Large

complex products are complex systems. It is a common knowledge in product development

that as time elapses in a project, the flexibility for design change decreases and the cost of

design change increases (Figure 1-2). If we do not put in effort to understand system

interactions early, we may discover that we designed the product without knowing some of

the important system interfaces. Late design changes can have ripple effects throughout the

entire system and affect every engineering department. Such changes take a lot of time and

money to implement. Besides project cost and schedule overrun, if not all relevant

departments in the organization are informed about the design change, product quality

problems may arise, and cause the company to lose revenue. Therefore, the earlier we know

about system interactions in the product, the better decision we can make about the design.

Consequently, late design changes because of the discovery of new system interfaces may be

reduced. Yet, we must realize that due to the emergent properties of systems, it is impossible

to predict all of the system interfaces upfront. The next section will carry out further

discussion regarding this point.

Knowing system interactions early is important for project management. The design and

development of large complex products usually takes the work of more than a dozen to

- 34 -

hundreds people over the time span of several months to several years. The Interface

Dilemma tells us that human beings need outside aids to deal with the complexity in the

products. When system interactions are known, there exist methods to predict project

length, budget estimation, and how to facilitate communications between people and

different groups (see sections about DSM and other project management tools in the

Literature Review chapter). Therefore, the earlier we know about system interactions, the

better management decisions we can make for the product development process.

Figure 1-2: Design Changes in Product Development Process

Knowing system interactions can help concept selection and system architecture decisions.

When comparing different concepts for a large complex product, the design that makes the

system interactions simpler is the more desirable design. Being able to tell what system

interactions are in the system will help us to choose the right concept to start. Of course,

sometimes due to technology risk, market trend, etc., we may end up choosing a concept that

has more complicated system interactions. Then knowledge of system interactions becomes

even more important to help us navigate through the project more easily.

Time

Flexibility for
Design Change

Cost of Design
Change

- 35 -

1.2.3.1.3 The Possibility of Obtaining All System Interactions from Early On

Based on the previous discussion on system emergent property, it is impossible to obtain all

system interactions during early phase of the design process. We will always learn about

more new system interactions as the project moves on. So is it still necessary to even try to

predict system interactions?

The answer is yes. Managers and engineers are making decisions without complete

information at early phase of the design process. The Interface Dilemma says any tool and

method that can help the decision making when dealing with large complex system is

needed. With all the benefits of knowing system interactions early, it is still worth the work

to find ways to predict system interactions from early on. How helpful this prediction can be

will be one of the questions this thesis research will look at.

1.2.3.1.4 Research Questions Under This Topic

Before inventing anything new, the first step should be to take a look at what existing

methods are there and whether they serve the purpose of predicting system interactions. This

will include an analysis of the strengths and weaknesses of the existing methods. The Design

Structure Matrix (DSM) method is of particular interest here because it has shown

tremendous capability in dealing with system interactions. Therefore, its strengths,

limitations, and the ability to predict system interactions are reviewed. If there are no

existing methods that can predict system interactions, then what method can be developed?

How well does the method work? How complete is the prediction?

The research questions related to predicting system interactions at early phase of the design

can be summarized into the following list.

Q1-a. What methods have been used in the past to capture system level interactions?

What are the strengths and weaknesses of existing methods? Is DSM a good way to

predict system level interactions? What are its strengths and limitations?

- 36 -

Q1-b. How to predict system interactions early? How to predict system interactions for

new technology?

Q1-c. If we can predict system interactions, how complete is the prediction?

1.2.3.2 Managing System Level Knowledge

1.2.3.2.1 What is System Level Knowledge

System level knowledge is a concept only applicable to large complex systems. The design

and development of large complex systems rely on the work of more than a dozen to

hundreds of people. These people are from different disciplines and they work on different

parts of the system. For instance, in the automotive industry, industrial designers work on

the styling of the car. Mechanical engineers work on the body frame, engine, etc. Electrical

engineers work on the electrical system, motors, etc. Material scientists work on the material

selection for safety. Such division of work is based on disciplines. Another way of

specialization is based on product attributes. There are engineers who specifically deal with

fuel economy, Noise-Vibration-Harshness, crash testing, etc. The cause of such division of

labor is the human’s cognitive limitation in dealing with large complex systems. Each

person must focus on portions of the systems instead of the whole system in order to deliver

useful work. The result of such labor division in the design and development of large

complex systems is that no one single person knows everything about the system. The

knowledge about the system resides in many people’s head.

We can define the knowledge each person has about his/her piece of the system as

“Component Level Knowledge.” Component level knowledge is something one individual

can easily get his/her arms around without relying on other people. The “System Level

Knowledge” is the knowledge about the entire system, which must be learned through

collaboration with other people. System Level Knowledge consists of the following four

parts:

1. What the system components are;

2. How system components interface with each other to achieve the desired functions

and the undesired system behaviors;

- 37 -

3. Who has the knowledge about each system component;

4. Where to find the documented knowledge about each system component.

1.2.3.2.2 Why Pay Attention to Managing System Level Knowledge

The management of system level knowledge involves capturing, storing, and providing easy

retrieval of system level knowledge. From the discussion about what system level

knowledge is, we can conclude that system level knowledge is organization knowledge, not

individual’s knowledge. Because of the human cognitive limitation, no one person can

remember everything about a large complex system. The company must initiate the effort to

document system level knowledge. Yet, companies currently are doing poorly on

documenting system level knowledge. A study at Ford Motor Company [Dong (1999)]

revealed system level knowledge is not well documented (see Figure 1-3). Ford Motor

Company relies heavily on experts to address system level issues. When Figure 1-3 was

shown to representatives from other non-automotive industries, the author was told time after

time that it was true for their companies too.

Figure 1-3: Where was Ford Throttle Body Design Knowledge [Dong (1999)]

Poor documentation of system level knowledge naturally turns the control of the system to

the subjective empirical knowledge of experts. Relying on people’s experience is important,

but also could cause many problems in a company that designs large complex systems. The

discussion earlier on the Interface Dilemma applies here. People have “Bounded

85%
56%

30%
0%

20%

40%

60%

80%

100%

Part Assembly System

experience
document

- 38 -

Rationality.” Each person sees only part of the entire system. The inconsistent mental

pictures among people that are working on the system together can cause misunderstandings

and cause delays in the project and even quality problems in the product. In addition, People

can change jobs, move away, or retire. When system experts leave the organization, they

take away a large portion of the system level knowledge. The replacement has to learn

everything again from scratch. Unfortunately, the system level knowledge takes many years

to learn by experience. Therefore, the frequent change of personnel for the system

engineering position causes inefficiency in the organization, which is highly undesirable in

today’s competitive product market.

In the 1980s and 1990s, companies recognized the problem with the dispersion of expert

knowledge in the companies, and started the Knowledge-based engineering (KBE) effort

[Sferro (1999), Whitney (1999)]. KBE has not made large impact on the design of large

complex products because the system level knowledge is simply not there to be programmed

into software [Whitney (1999)]. The first step for KBE is to understand and manage

knowledge at system level rather than hurry into software coding.

In addition, if we just record all the learning experiences in text or drawings, the

documentation for a large complex system can grow to an enormous amount, which may be

very difficult to find information for future reuse. We can offer help through a knowledge

and document-browsing tool. To fundamentally solve the problem, a better framework on

what knowledge to document and in what format is needed. Therefore, it is important to

provide a good system level knowledge management strategy so that the organization

knowledge is not only well documented, but also done in a way for easy retrieval.

In short, system level knowledge is poorly documented in companies. Relying on expert’s

experience to deal with large complex systems limits companies’ ability to deliver quality

product quickly to market. Good system level knowledge management can enable

companies to take advantage of the Knowledge-based engineering tools to improve their

system design and shorten design cycle. Therefore, managing system level knowledge is an

- 39 -

important research topic. We must also not forget to document system level knowledge for

the purpose of retrieval.

1.2.3.2.3 Research Questions Under This Topic

First of all, this research is interested in collecting data similar to Figure 1-3 in other

companies in order to see if the lack of documentation of system level knowledge is a

common problem in different companies and different industries. Second, we must survey

the existing literature to find out what has been done on managing system level knowledge

already. Third, knowledge management inevitably run into the challenge of persuading

engineers to document. Engineers working on large complex systems are usually busy with

the project and have little interest in additional documentation. This research is interested in

investigating ways to encourage engineers to document. The research questions are

summarized below:

Q2-a. What has been done in managing system level knowledge?

Q2-b. Is there a better way to capture, store, and represent system level knowledge?

Q2-c. What are the best sources of information for predicting system interactions?

Q2-d. How companies are doing with managing system level knowledge?

Q2-e. How to encourage engineers to document system level knowledge? Make

recommendations to the management.

1.3 Research Approach

In order to answer the above research questions, this thesis research developed a matrix

transformation method, which allows us to obtain a Design Structure Matrix (DSM) at early

phase of the design process from a Design Matrix (DM) used in Axiomatic Design [Suh

(2000)]. The construction of a DM is feasible at early phase of the design process, because

the inputs for the DM—product requirements and how the elements in the design concept

meet the requirements—are available early on in the design process. Transforming the DM

into a DSM allows us to predict system interactions before committing detailed design work.

The prediction DSM captures the system interactions that are driven by design requirements.

- 40 -

System analysis carried out from the prediction DSM can facilitate us to have a requirement-

driven design process.

In addition a framework for managing system level knowledge is proposed. The matrix

transformation method fits in as part of the knowledge management framework, and enable

the capturing of system interaction knowledge starting early in the design process. Both the

matrix transformation method and the knowledge management framework will be detailed in

Chapter 3.

In order to test the effectiveness of the above two proposals, and to investigate the research

questions posed earlier, two case studies are carried out at CVC, and Johnson and Johnson

Ortho Clinical Diagnostics division. From the two case studies, we found answers to some

of the research questions and were able to ask better questions for future researches.

1.4 Thesis Structure and Chapter Outlines

1.4.1 Thesis Structure

This thesis concentrates on answering the research questions posed earlier. Here is a

summary of all the questions:

Q1: How to predict system interactions early in the product development process?

Q1-a. What methods have been used in the past to capture system level interactions?

What are the strengths and weaknesses of existing methods? Is DSM a good way to

predict system level interactions?

Q1-b. How to predict system interactions early? How to predict system interactions for

new technology?

Q1-c. If we can predict system interactions, how complete is the prediction?

Q2: How to manage system level knowledge?

Q2-a. What has been done in managing system level knowledge?

Q2-b. Is there a better way to capture, store, and represent system level knowledge?

- 41 -

Q2-c. What are the best sources of information for predicting system interactions?

Q2-d. How companies are doing with managing system level knowledge?

Q2-e. How to encourage engineers to document system level knowledge? Make

recommendation to the management.

The table below lists which questions each chapter intends to address. At the end of the

thesis, not all questions have an answer. Some of the questions are re-written into better

questions for future research.

Chapter Number Research Questions Investigated

Chapter 2 Literature Review Q1-a, Q2-a

Chapter 3 Research Method Q1-b, Q2-b, c, d

Chapter 4 CVC Case Study Q1-b, c; Q2-b, c, d, e

Chapter 5 Johnson and Johnson Case Study Q1-b, c; Q2-b, c, d

Chapter 6 Status of Research Questions All

Chapter 7 Conclusions and Future Work ------------------------------

Table 1-1: Research Questions Discussed in Each Chapter

1.4.2 Chapter Outline

Chapter 2 reviews relevant literature, which sets the stage for the need of this thesis research.

In this chapter, the existing methods in dealing with system interactions and the existing

knowledge management techniques are studied. Their strength and limitations are discussed.

The limitations of the existing methods bring the need to new approaches.

Chapter 3 introduces a matrix transformation method that enables us to obtain a DSM from

the design requirements. In addition, this matrix transformation is also a part of the system

level knowledge management tool proposed in this thesis. The assumptions used in this

method are listed. Two case studies were designed to test this method in real engineering

projects to find out its feasibility, strengths, and limitations.

- 42 -

Chapter 4 details the first case study conducted at CVC, a semiconductor manufacturing

equipment producer. This case study shows the matrix transformation method in Chapter 3

works in a real engineering project. The outcome of the method is a very meaningful DSM,

which can be used to help the planning of the system integration phase of the project. The

method in Chapter 3 is also further refined for the selection of output variables based on the

learning from CVC case study.

Chapter 5 concerns the second case study at Johnson and Johnson Ortho Clinical Diagnostics

(JNJ OCD) division. OCD produces automated clinical chemistry systems that analyze

patient body serums in hospitals. In this case study, the matrix transformation method

introduced in Chapter 3 is tested again on a different product from a different industry. The

method produced a useful DSM for the planning of the system integration work. The

prediction DSM generated from the matrix transformation method matched the DSM’s

produced by the JNJ engineers based on their expert experiences. We learned more

guidelines about effectively using the matrix transformation method. This case study also

revealed that not all requirements can be decomposed and be used to predict system

interactions. Hence, the prediction DSM is never a complete view of the system interactions.

It must be kept as a live document to react to new knowledge about a system. This

observation matches the emergent property of systems. Third, this case study also revealed

which existing documents are the best sources for collecting system level knowledge for

knowledge management.

Chapter 6 summarizes the learning from the CVC and JNJ case studies. The research

questions posed in Chapter 1 are reviewed. What we learned from the case studies about

each questions are listed. We found answers for some of the questions, and the rest remain

questions. But because of better understanding about system interactions and system level

knowledge, we are able to revise some of the questions and pose better ones for future

researches.

- 43 -

Chapter 7 discusses how the findings in this thesis research can be applied to solve some of

the issues in product development. It concludes the thesis with future research directions.

- 44 -

- 45 -

2 Literature Review

2.1 Systems Engineering

2.1.1 What is Systems Engineering

Systems engineering as a field of research does not have a very long history. Based on

Hughes and Hughes (2000 p.1), the Engineering Index had no entry for “Systems

Engineering” in 1964. By 1969, the number had jumped to eight pages of citation for

“System Engineering.” Systems thinking came into form during World War II in military

realm. After WWII, its applications gradually entered the civil realm. The influence of

systems thinking not only reached physicist, mathematicians, and engineers, but also

management specialist and social scientists.

Since systems engineering is a fairly recent research field, in various literatures, the

definitions of System Engineering are not the same. In 1962 when Hall wrote about this

subject, he did not even attempt to give a clean-cut definition (1962 p.4). Thirty-six years

later when Blanchard wrote his book on system engineering and management (1998 p. 12),

he admitted that there is still variety of approaches. The readers can look through the

literatures to see how each of them defined systems engineering. The literature review here

combines the viewpoints of many authors and attempts to provide a comprehensive list of

what systems engineering does:

1. Systems engineering is to recognize the system being designed and developed is a

whole, not just parts [Blanchard (1998) p.13, Chestnut (1965) p. 8, Thome (1993) p.

23].

2. Systems engineering is about tradeoffs of different objectives. One must optimize the

overall system rather than parts [Chestnut (1965) p.8, Stevens, et al. (1998) p.4,

Westerman (2001) p.6].

3. Systems engineering must pay attention to the dynamics and the lifecycle of the

system [Blanchard (1998) p. 13, Chestnut (1965) p.11, Sage and Amstrong (2000)

- 46 -

p.9]. This includes considering the “-ilities” of the system in addition to the function

of the system during design. Examples of “-ilities” are reliability, maintainability,

etc.

4. System engineering must also address the integration, verification and validation of

the systems [Martin (1997) p.3, Stevens, et al. (1998) p.4]

5. Systems engineering must pay attention to not only the system within the boundary,

but also the broader system outside the boundary [Chestnut (1965) p.19].

6. Systems engineering is about trying to model and simulate the system in order to

predict the system behaviors, and try to control the emergent behaviors. The idea is

that it is cheaper and quicker to calculate or measure a model or simulation than to

build an actual system [Chestnut (1965) p.21, Thome (1993) p. 23, Stevens, et al.

(1998)].

7. Systems engineering must understand the requirements on the system [Blanchard

(1998) pp. 13, Chestnut (1965) p. 24, Martin (1997) p. 3, Stevens, et al. (1998) p. 4.,

Sage and Amstrong (2000) p. 10].

8. Systems engineering develops the architecture of the system and synthesizes parts of

the system to meet the various objectives [Chestnut (1965) p. 25, Thome (1993) p. 23,

Martin (1997) p. 3, Stevens, et al. (1998) p. 4, Westman (2001) p.6].

9. Systems engineering methods and techniques are independent to the system being

studied, whether the system is mechanical, software, or electrical system [Thome

(1993) p. 23, Stevens, et al. (1998) p.4].

10. Systems engineering is the management of the technical development of a system.

System engineers must communicate across many groups involved in the

development. System engineering is a teamwork effor [Blanchard (1998) p. 13, Hall

(1962) p. 16, Martin (1997) p.3, Stevens, et al. (1998) p.4, Sage and Armstrong

(2000) p.10.].

From the above list, we can see that the kind of work systems engineering does targets at the

challenges in the design and development of large complex products (see Chapter 1). Not

surprisingly, systems engineering methods are used widely for every phases of the product

development process, especially for large complex products.

- 47 -

There are two basic categories of system engineering methods—management and

engineering. Martin (1997 p.56) listed the subcategories of each category:

a. Management

(1) Planning

(2) Organization

(3) Control

(4) Direction

(5) Integration

b. Engineering

(1) Requirements Analysis

(2) Functional Analysis (or Structured Decomposition)

(3) Architecture Synthesis

(4) System Analysis and Optimization

(5) System Element Integration and Verification

(6) Engineering Documentation

Since system engineering takes a holistic view of the development of large complex

products, the results of applying systems engineering methods in either management or

engineering category usually affect the decision in the other category. For instance, the N-

Square diagram method [Grady (1993)], which is also called the Design Structure Matrix,

belongs to the Functional Analysis subcategory, which belongs to the engineering category.

The system study using the N-Square diagram may also contribute to the management

decisions such as process planning and organization design.

Browsing through the system engineering literatures, we can find a long list of system

engineering methods. This thesis focuses on the methods that deal with system interactions

among the design variables in the product.

- 48 -

2.1.2 System Engineering Methods that Deal with System Interactions

This section reviews many of the commonly used system engineering methods that addresses

the system interaction issues. The methods are briefly introduced, and the pros and cons of

each method are examined.

2.1.2.1 Heuristics

The most basic method in dealing with system interactions is the use of heuristics. Rechtin

(1996) wrote a book about the heuristics on designing system architecture, most of which

concerns how to address issues related to system interfaces. Heuristics are very useful when

there is no analytical method available. The common sense learned from past experiences

are always good guidelines for future actions.

However, heuristics are usually used at higher level of abstraction during system engineering

process than non-heuristic techniques [Martin (1997)]. The analytical capability of the

heuristics is limited. The execution of the heuristics also highly depends on individual’s

understanding, experience, and subjective judgment. We need methods that are more

objective. The heuristics do not help with the human cognitive limitation on dealing with

large amounts of system interactions. Therefore, a method that can help to record and

visualize the complex system interactions is needed.

2.1.2.2 Graphs and Digraphs

Graphs and diagraphs are common techniques used to capture and visualize system

interactions. Most system engineering literatures mention these methods [Alexander (1964),

Buede (2000) p.91, Sage (1981) p.12, Steward (1982)]. Figure 2-1 shows a diagraph, which

is just a normal network graph with directions indicated on the braches.

- 49 -

Figure 2-1: A Diagraph

Although good at visualizing system interactions, the graphs lose this advantage when a lot

of system interactions have to be shown at once [Dong (1999), Sage (1981), Steward (1981)].

The graphs also cannot easily show indirect interactions such as the one between B and D in

Figure 2-1. In addition, graphs, although they help people to visualize the system

interactions, they cannot help to analyze the system. People must use trial and error to find

the best ways to traverse the graph, which may be a very difficult task when the graph

involves a large amount of system interactions.

2.1.2.3 Trees

Trees are special types of graphs (Figure 2-2). All the elements in a tree are arranged

hierarchically. Therefore, a tree structure gives the system an order. Typically, trees are

used to represent the hierarchical order among subsystem and components that form the

system. Trees are also used to present requirements decomposition structure or organization

structure.

Figure 2-2: An Example of A Tree

A

CB D

Automobile

Wheels Body Engine …

- 50 -

However, trees cannot represent the interactions among the elements in a system because

they do not allow connections between the leaf-elements and branch-elements. Therefore,

the use of trees in helping dealing with complex system interactions is very limited.

2.1.2.4 IDEF

IDEF's roots began to form when the Air Force, in response to the identification of the need

to improve manufacturing operations, established the Integrated Computer-Aided

Manufacturing (ICAM) program in the mid-1970s. The requirement to model functions

(processes), data, and dynamic (behavioral) elements of the manufacturing operations

resulted in the initial selection of the Structured Analysis and Design Technique (SADT)

method (SADT is a registered trademark of SofTech). SofTech’s Doug Ross developed

SADT in the early 1970s. A subset of SADT was the basis for the Air Force's ICAM

language notation. A major development from the ICAM program was the Integrated

DEFinition methodology or IDEF as it is now called [Wisnosky and Batteau (1990, pp. 8-

11), Grady (1993 pp.251)].

Figure 2-3 and Figure 2-4 show the typical IDEF block and diagram. The blocks represent

process steps. The diagram provides a way to characterize development and manufacturing

process.

Figure 2-3: A Typical IDEF Block [Grady (2000 pp. 252)]

Activity

Control

Mechanism
Input

Output

- 51 -

Figure 2-4: Typical IDEF Diagram [Grady (2000 pp. 252)]

IDEF diagrams are suitable for capturing business processes, but not the interactions among

the components in a physical product. Like any graph, IDEF diagrams can get very cluttered

with interconnecting lines when the system involves a lot of interactions. In addition, IDEF

diagrams do not allow feedbacks between tasks. Rework and iterations exist in real projects,

and IDEF is not able to capture them.

2.1.2.5 CPM, PERT, and Gantt chart

CPM, PERT, and Gantt chart are popular project management techniques. They are very

much related to each other. Each technique is first briefly introduced here. Details about

each technique can be found in most project management literatures [Weist and Levy (1990),

Moder, et al. (1995), Steward (1981)]:

Aircraft post
flight
inspection

Aircraft
refurbishment

Aircraft
servicing

 Air force
technical orders Crew report

Returned
aircraft Repair needs

Servicing needs

Reports

Reports

Flight ready
aircraft

Unit
maintenance
Personnel

Support
equipment and
facilities

- 52 -

CPM is short for Critical Path Method. It is a technique developed by Remington-Rand and

Dupont. It provides a mechanism for rapid assessment of alternatives and consequences so

best actions can be implemented. CPM helps to schedule tasks in parallel. It provides an

analytical way to project the completion time of a project based on the time it takes for each

tasks to complete.

PERT is short for Program Evaluation and Review Technique. PERT is used to project

completion dates with uncertainties factored into elemental activities. It uses the probability

distribution of each tasks completion time to make better prediction.

Gantt Chart shows the scheduling of tasks along time axis. It can show tasks that are on the

critical path and that are not. Tasks that are not on the critical path have earliest and latest

completion time. However, Gantt chart is the output of CPM or PERT. Itself is not an

analysis tool.

Like IDEF, all of the above three techniques concern the interactions among the tasks in a

project. They are not suitable for studying the interactions among the system elements in a

product. The most severe weakness about the above three techniques is that they do not

work with processes that include feedback loops. In other word, rework encountered in the

actual design process cannot be reflected by these techniques.

2.1.2.6 Design Structure Matrix

Design Structure Matrix method (DSM) has a long history. Steward (1965, 1981) and

Warfield (1973, 1976) are the two most important figures that brought the matrix

representation of graphs into the area of system engineering and system management.

Rogers (1989) developed a piece of software for DSM that was used by NASA projects.

Whitney, Eppinger, and their students at MIT applied the method to the design and

development of large complex products [Eppinger, et al. (1990)], and started a DSM

community among the researchers and practitioners all over the world (MIT DSM website).

- 53 -

DSM is a matrix representation of the graphs. It has other names such as N-squared diagram,

dependency matrix, etc. Figure 2-5 shows an example of the DSM. Each link in the graph is

represented by a mark (“1” in this case) in the DSM. For example, in the graph we see an

arrow pointing from D to I. This arrow is presented by a “1” in column D and row I in the

DSM. Therefore, DSM can capture all of the information presented in a graph.

Figure 2-5: An Example of a Design Structure Matrix and its Corresponding Graph

In addition, the DSM partitioning algorithm enables us to re-sequence the elements in the

graph so that we can find the tasks that are in sequence, in parallel, and iterative [Steward

(1965, 1981), Warfield (1973)]. The result of partitioning the DSM in Figure 2-5 is shown in

Figure 2-6. The elements in the same level can be completed in parallel. Elements in

different levels must be completed in sequence. Elements involved in an iteration block

(such as E, G, C, and I in this case) must be done concurrently.

A

B

C

D

E
F

G

H

I

J K
A B C D E F G H I J K

A 1 1
B 1
C 1 1 1
D
E 1
F 1 1
G 1 1
H
I 1 1 1 1
J
K 1 1

- 54 -

Figure 2-6: DSM after Partitioning

The partitioning result of any DSM is unique. It enables us to analytically discover the best

approach to deal with complex systems. This technique can be used for both project

management and the design of large complex products (see MIT DSM Website for

references to papers). The matrix representation of system interactions is preferred over

graphs when there are a large amount of system interactions [Dong (1999), Steward (1981)].

In addition to partitioning, many other techniques have also been developed to use DSM as a

system analysis method. Steward (1981) developed the tearing method to identify the key

elements that determine large iteration loops. Thebeau (2001) presented ways to cluster the

elements in a system so as to aid the system architecture decision. Smith and Eppinger

(1997) used Eigen value and Eigen vector concept to identify the convergence rate of a DSM,

and the controlling system elements in the design iteration. Browning (1998, 1998b, and

Eppinger 1998) and Carascosa (1998) developed models to use DSM to predict the

probability of completing projects on time and on budget. Dong (1999), Bartowski (2000)

and Glynn (2000) used DSM as a way to manage the knowledge about complex system

design. Cho (2001, and Eppinger 2001) developed means to apply the analysis results from

DSM back to PERT and Gantt charts to facilitate project management.

H J F D E G C I B K A
H
J
F 1 1
D
E 1
G 1 1
C 1 1 1
I 1 1 1 1
B 1
K 1 1
A 1 1

A

B
C

D

E

F

G

H

I

J

K

Level 1

Level 2

Level 3

Level 4

- 55 -

Therefore, as a system analysis tool, DSM provides many advantages over the previously

introduced methods. Furthermore, DSM can also serve as a place to record the system

emergent properties discovered throughout the product lifecycle, so that the system can be

analyzed again using the DSM techniques and better decisions can be made according to the

new situation. However, DSM has its own weakness. Two weaknesses of DSM method are

discussed below. Both weaknesses originate from the traditional ways to construct a DSM.

First, current DSM analysis only improves the design of mature products. In previous DSM

researches, in order to construct a DSM, researchers and practitioners interviewed people

who were experienced with the system of interest. The experts told the researcher what the

interactions were based on their experience. The researchers then constructed DSMs based

on interview data. The DSMs were then analyzed using one or more of the techniques listed

above. Recommendations were then made about the organization structure, product design,

or project management.

However, the expert knowledge about the system interactions is difficult to obtain at early

phase of the design process for a new product that has never been designed before. Let us

borrow Henderson and Clark (1990)’s framework for the types of product innovation (Figure

2-7). The traditional DSM interview method works the best for incremental innovations

because the expert knowledge about the system interactions and components can be reused,

and DSMs can be easily constructed through interviews. Yet, for modular innovations,

although the knowledge about the linkage between the module and the rest of the system is

known, the design of the new module is not known. Therefore, DSM technique does not

provide a lot of help with the design of the part of the system that is new. Furthermore, for

architecture and radical innovations, the knowledge about system interactions is not available

at early phase of the design process because past experience about the system is not reusable.

Therefore, interviewing experts does not provide sufficient information about system

interactions. From the author’s personal experience, the experts just could not tell what the

system interactions would be during concept development phase of a new product.

Consequently, a sufficient DSM cannot be constructed until the product design is already in

- 56 -

the detailed-design phase when the engineers learn most of the system interactions (Figure

2-8). At that time, it is already too late for the DSM research results to have much impact on

the current project. What about keeping the DSM results as lessons-learned? This lessons-

learned would only be useful when the next generation of the product falls into incremental

innovation. If the next product is modular, architectural, or radical innovation, little previous

DSM study can be applied again.

 Core Concept

 Reinforced Overturned

Unchanged
Incremental
Innovation

(DSM)

Modular
Innovation

?

Li
nk

ag
e

 b
et

w
ee

n
C

or
e

C
on

ce
pt

s a
nd

C

om
po

ne
nt

s

Changed
Architecture
Innovation

?

Radical
Innovation

?

Figure 2-7 Four Types of Product Innovation [Henderson and Clark (1990) p.12]

Figure 2-8 Typical Time A DSM Research is done

Time

Flexibility for
Design Change Cost of Design

Change

Typical time DSM research is done for
architectural or radical innovation.

- 57 -

The second weakness of the DSM method is that it only improves the as-is process. Because

the system interactions DSMs collected are based on expert experience, the DSM analysis

only analyzes the system interactions that the experts think should happen. Most of the time,

what the experts consider as system interactions is correct. However, the experts’ subjective

judgment based on how they always approached the design of a product may not be the best

way to design the product (see the example later in section 4.3.3.2). In addition, what experts

recall about what happened already may not always be accurate. Therefore, we need a

method to objectively capture the interactions in the product system, and use those

interactions to direct how people should communicate. If the method to capture the system

interactions from a product perspective can be developed, this method will benefit not only

products with architectural or radical innovations, but also mature product that experience

incremental or modular innovations by learning how to come out of the box of how things

are always done.

In short, DSM has been proven by many researches to be a very powerful tool for analyzing

system interactions. Many additional analysis tools have been developed based on DSM to

aid product design and project planning. However, the way DSM’s are constructed limits the

applicability of DSM techniques on the development of new products, where system analysis

is most needed at early phase of the design process. Therefore, there is a need to construct

DSM’s at early phase of the design process by means other than using experts’ experiences.

What engineers and managers think about at early phase of the design process are the design

requirements and how design requirements can be met by the design concept. Both QFD

(Quality Function Deployment) and Axiomatic Design’s Design Matrix can be applied at

early phase of the design process because they make use of the design requirements. The

next section discusses QFD. The section following discusses the Design Matrix in

Axiomatic Design.

- 58 -

2.1.2.7 QFD

Figure 2-9 shows the typical House of Quality used in QFD. A full scale QFD has four

houses (Figure 2-10). Customer needs are traced through total system design requirements.

System design requirements are translated into subsystem requirements then piece-part

specifications. The piece-part specification is then translated into production process

requirements, and finally production operation requirements [Clausing (1994)]. The top of

the roof shows the relationship among the elements in the top row of each house.

Figure 2-9: The QFD House of Quality [Cohen (1995) p.70]

- 59 -

Figure 2-10: The Four Houses of QFD [Clausing (1994) p.68]

The advantage of QFD is that the matrices can be constructed at early phase of the design

process because QFD matrices start with customer requirements. However, QFD is not quite

the answer we are looking for to improve the weakness of DSM. First, the interactions

captured by the roof of the QFD are still put in subjectively by experts. Therefore, the same

problem as DSM exists for QFD. We cannot capture the interactions very well for radical

and architectural innovations (Figure 2-7). Second, the top rows of each QFD matrix are the

specifications rather than implementations. Therefore, we can say the QFD matrices stay in

the requirements domain rather than cross over to the physical domain. The roof of each

QFD matrix gives only the interactions among the requirements. We cannot infer the

interactions among the components in the physical system from the roofs. Third, unlike

DSM, QFD does not provide any analytical tools to deal with system couplings.

2.1.2.8 Axiomatic Design’s Design Matrix

Axiomatic Design as a design theory involves many different aspects in its study [Suh (1990

and 2000)]. For the purpose of the discussion here, only the design matrix in the Axiomatic

Design is briefly introduced here. The Axiomatic Design’s Design Matrix (DM) relates

requirements to design concept, and judges whether the system of the product is coupled

using design matrix. A DM is a matrix that relates Functional Requirements (FR) to Design

Parameters (DP). Functional Requirements are defined as “the minimum set of independent

- 60 -

requirements that characterize the functional needs of the product [Suh (2000)].” Design

Parameters are “the key physical variables (or other equivalent terms in the case of software

design, etc.) that characterize the design that satisfies the specified FRs [Suh (2000)].”

Figure 2-11 shows three Design Matrices (DM). The row headings are the Functional

Requirements and the column headings are the Design Parameters. The marks in each matrix

indicate the DP in the column heading contributes to the fulfillment of the FR in the row

heading. When all of the marks in a DM are on the diagonal, the design is called uncoupled

because adjusting any DP would affect only one FR. Therefore, the FR’s in the design are

independent of each other. When all of the marks in the DM are below diagonal, the design

is called decoupled. In a decoupled design, although the change of a DP may affect more

than one FR, we can adjust the DP’s in the order of left to right. Then the FR’s can be

fulfilled in the order of top to bottom. Both uncoupled design and decoupled design maintain

the independence of the FR’s, and hence meet the first axiom in Axiomatic Design, although

an uncoupled design is more desirable than a decoupled design. When not all marks in the

DM fall on or below diagonal, such as the third DM in Figure 2-11, the FR’s are no longer

independent to each other. For instance, in the coupled design example in Figure 2-11,

adjusting DP1 will affect FR2, which can cause DP2 to be adjusted. When DP2 is adjusted,

DP has to be readjusted in order to fulfill FR1 again. Therefore, the design change between

DP1 and DP2 are iterative in order to fulfill both FR1 and FR2, and FR1 and FR2 are no

longer independent of each other.

DP1 DP2 DP3
FR1 x
FR2 x
FR3 x

DP1 DP2 DP3
FR1 x
FR2 x x
FR3 x x x

DP1 DP2 DP3
FR1 x x
FR2 x x x
FR3 x x x

Figure 2-11 Axiomatic Design Matrices

Uncoupled
Design

Coupled
Design

Decoupled
Design

- 61 -

Axiomatic Design has many advantages over other system engineering methods. Two of the

advantages that are relevant to this thesis are discussed here. First of all, Axiomatic Design

Matrix prompts us to think about the system couplings in the physical form at early phase of

the design process. This capability is exactly what DSM and other traditional system

engineering analysis methods lack. The first Axiom prompts the design engineers to choose

simple uncoupled design concept over complex interacting system designs in order to reduce

problems associated with couplings in a system such as design rework, maintenance

difficulty, etc. Therefore, Axiomatic Design takes the objective product-view in dealing with

system interactions, unlike DSM, which relies on experts’ subjective experience to capture

system interactions.

Second, Axiomatic Design matrix enables us to think across two domains—the function and

the form. Most of the existing system engineering methods, including QFD, only work in

either domain alone. For instance, the DSM can be constructed to show the interactions

among the requirements [Grady (1990) p.227] or that among the components in the hardware

system. All requirements trace-ability tools including QFD deal with only the interactions

among requirements. The Function Analysis System Technique (FAST) deals with only the

functions, not the physical embodiment. However, based on psychology study of how people

think when they design [Guindon (1990)], no one can think in only requirements domain or

only physical domain. The thought process goes back and forth between the two domains.

Therefore, the zigzagging process proposed by Axiomatic Design matches the natural

thinking process of designers, and hence is very easy to apply during early phase of the

design process.

However, Axiomatic Design also has many weak points. Four of them are relevant to this

thesis research and will be discussed here. First, in order to avoid all the trouble that comes

with system coupling, Axiomatic Design ask the designers to choose a design concept that

makes the system uncoupled or decoupled (Figure 2-11). Although DM strives for ideal

engineering design, the reality is that the ideal engineering design may not be feasible. From

system architecture literatures, system design and decomposition must consider many aspects

of the product development. Products are partitioned based on functional modules [Otto and

- 62 -

Wood (2000), Ulrich and Eppinger (2000)], geometric integration and precision [Ulrich and

Eppinger (2000)], supply chain design [Ulrich and Eppinger (2000), Fine (1998), Parker

(2000), Whitney (1993)], product family platform [Otto and Wood (2000), Gonzalez-Zugasti,

et al. (1998 and 1999), Simpson (1998)], ease of assembly [Boothroyd and Dewhurst

(1994)], cost [Gonzalez-Zugasti (1999)], etc. In addition, several searchers such as Rechtin

(1991) and Ulrich and Eppinger (2000) mentioned partitioning the product for the ease of

integration in their heuristic list. Therefore, products are never partitioned for the optimal of

any single dimension, including system integration. The idea of designing the architecture so

that we can have a completely decoupled or uncoupled design and will not have integration

problems is naïve.

The second limitation of the Axiomatic Design DM is that it does not provide system

analysis techniques to deal with the couplings in a design if the couplings cannot be avoided.

Axiomatic Design insists that any good design should conform to the Axioms, and hence is

either decoupled or uncoupled. Therefore, there would be no need for system analysis

techniques such as the partitioning algorithm used for DSM. However, in reality, not only

the ideal design in Axiomatic Design sense is hard to achieve, but it also takes time for a

company to change the design of their current products. For instance, the already invested

manufacturing facilities cannot be changed overnight for the new products. Axiomatic

Design does not provide any tool to help with the transition period of a product design.

The third limitation of the DM is that it does not provide a clear way to deal with all types of

design requirements. Axiomatic Design classifies requirements into two groups—the

functional requirements and design constraints. Functional requirements can be decomposed

through the construction of a Design Matrix using the zigzagging technique. However,

constraints cannot be clearly decomposed like FR. Axiomatic Design advises the readers to

keep in mind the constraints during decomposition. Tate suggests guidelines for constraint-

decomposition (1999). He first classifies constraints into:

• Critical Performance Specifications

• Interface Constraints

• Global Constraints

- 63 -

• Project Constraints

• Feature Constraints

Then the general guidelines for decomposing constraints are:

• All Critical Performance Specifications will become lower level FR’s.

• Interface Constraints will be converted into sub FR’s.

• Global Object Constraints will not be refined into sub-FR’s. They will remain

constraints at lower level.

• Project Constraints will not be refined into sub-FR’s.

• Project Constraints can be conditional.

All these guidelines seem good except that the classification of constraints is very foreign to

design engineers. There exists a large body of requirements classification and management

literatures already. If we could link the existing requirements classification to the FR and

Constraints concepts, Axiomatic Design would be easier to implement in the practical world.

The fourth limitation is the most important weakness of Axiomatic Design. Axiomatic

Design believes the effects of all requirements (FR and DP) on system interactions can be

predicted in the DM, and hence the first Axiom states that an uncoupled or decoupled design

matrix gives an uncoupled or decoupled design. This is rather a reductionism’s view. Even

from Tate’s thesis (1999), we know not all requirements can be decomposed. Therefore,

Axiomatic Design is not prepared to address the system interactions due to system emergent

properties.

The first two weaknesses of Axiomatic Design—cannot address couplings and does not

provide system analysis—are the strengths of Design Structure Matrix method. The third

weakness of Axiomatic Design requires us to look further into requirements categorization in

requirements management literatures. This way, we may get a better understanding on what

the constraints in Axiomatic Design really are. In dealing with the last weakness, DSM is a

suitable alternative for recording the system interactions generated by emergent system

properties.

- 64 -

2.1.2.9 Requirements Classification

Looking through the requirements management literatures [Blanchard and Fabrycky (1981),

Buede (2000), Hooks and Farry (2001), Gershenson et al. (1994), Grady (1993)],

requirements categorizations fall into the following three categories:

1. Categorization based on the source of requirements

2. Categorization based on the subject of the requirements

3. Categorization based on the flexibility and tradability of the requirements

2.1.2.9.1 Categorization Based on the Source of Requirements

Gershenson et al. (1994), Buede (2000 p.122), and Martin (1997) categorize requirements

based on the sources of the requirements. The purpose of this way of categorization is to

make sure all stakeholders of the product design have inputs in the requirements for the

product. The four major stakeholders are:

• The end user and the user context

Typically, the requirements from the end users are collected in marketing analysis

documents/customer needs analysis.

• The corporate stakeholders

This category includes all departments downstream of the design phase, such as

manufacturing, finance, service, distribution, etc. These departments set the internal

design requirements for the product.

• The regulatory agency

The government regulatory requirements are included. This also includes standards in

for the design.

• The technical design group

This is the technical group that is involved in the design. They set most of the technical

requirements for the product.

- 65 -

2.1.2.9.2 Based on the Subject of the Requirements

Hooks and Farry (2001) and in their recent book on requirements have proposed a list of

requirements. This categorization is based on the different aspects in a product’s lifecycle

that a design team has to consider. The list is as follows:

• Functional Requirements

This type of requirements describes what function the product performs. For example:

“The systems shall be able to track and manage the inventory of all on-board

consumables.”

• Performance Requirements

This type of requirements describes how well a function has to be performed. For

example: “The systems shall be capable of performing…within both of the following

intervals: (1) 30 minutes from a cold startup at an ambient temperature of 20oC; (2) 45

minutes from a cold startup at an ambient lab temperature of 15oC.” Some of the

performance requirements go along with the functional requirements, and hence can be

combined with functional requirements. Some of the performance requirements are

system level behaviors, and can hardly be decomposed, such as this one.

• Classical Reliability

This type of requirements describes how long should a product last before any failure. It

can be measured by service call per machine per year, availability of the machine, mean-

time-between-failure, etc.

• Analytical Reliability

This type of reliability checks on the probability of malfunctioning of the machine.

FMEA is used. Where analytical reliability is not guaranteed, monitoring devices and

warning signs are placed.

• Maintainability/serviceability

This type of requirements checks on the ease of performing maintenances and service.

For example, “routine maintenance should be automated.”

• Operational Environment

This type of requirement states the environment the product has to work in, such as the

temperature, pressure, etc.

- 66 -

• Operability

This type of requirements states the ease of operation of the product. For instance,

“There should be minimal operator involvement in programming tests.” Sometimes, the

operability requirements can be translated to functional requirements of the product.

Sometime, it is a trial error process of understanding what the user needs.

• Safety

This type of the requirements concerns this safety of the machine. For instance, fluid

bottle caps and lines carrying fluids shall be designed to eliminate user contact with those

liquids and to be simple to connect and replace.” From this example, we can see

sometimes safety requirements can also be translated into functional requirements of the

product.

• Appearance

Requirements on the appearance of the product.

• Packaging

Requirements on the assembly, spatial arrangement of the product.

• Weight and Size

Requirements on the weight and size of the product. For instance, “The analyzer should

be no larger in size and weight than a XXX.”

• Installation

This contains the ease of installation and the reliability of the product at installation.

• Upgrading, expandability/configureability

This requirements considers the future and the use environment of the product. For

instance, “Future analyzer derivatives should be able to accommodate hybrid

technologies and highly sensitive assays.” Expandability and configureability

requirements are similar to functional requirements. They can be seen as the functions

the product must have for the future use.

• Transportation (including storage, loading, logistics)

The requirements about the non-operational environment that the product has to

withstand. For instance, “The packaged system and components shall withstand the

following non-operational environment without degrading performance: Cold XXX, Heat

XXX, Humidity XXX, Altitude XXX…”

- 67 -

• Manufacturing and assembly

Requirements on how to make the product easy and cheap to manufacture and assembly.

For example: “Slotted screw heads shall not be used.”

• Training

Requirements on the training of users. For instance: “The analyzer should be easy to use

so that training can be on- or off-site and should not take more than 4 days.”

• Retirement, disposal

requirements on the retirement and disposal of the product. For instance, “ Packaging

materials should be recyclable.”

• Cost

Requirements on how much the product will cost the consumers.

• Timing, funding

Requirements on the completion date and the budget of the project.

• Patents

What patent to be aware of cannot be explicitly stated on the requirements. This type of

requirements usually just state being aware of the patents in general.

• Policy and Procedure, Regulatory requirements

• Reuse of components

• Design Constraint

Introduce fixed design implementation to narrow the choice of design concepts during

synthesis. This design constraint is defined differently from that in Axiomatic Design.

The constraints in Axiomatic Design are design inputs that cannot be decomposed as

Functional Requirements using the Design Matrix.

Table 2-1 shows an attempt to relate the type of requirements and the contributing sources.

The significance of constructing such a table is to help the design team to examine if all

stakeholders have provided inputs, and if all subjects of the design for the product life cycle

have been considered in the requirements generation phase.

- 68 -

ID Requirement Type End user Corporate Technical
Team

Regulatory

1 Functional X X
2 Performance X X
3 Reliability (Classical

and Analytical
X X X

4 Maintainability X X X
5 Operational

Environment
X X

6 Operability X X
7 Safety X X X
8 Appearance X X
9 Weight/Size X X
10 Packaging X
11 Installation X X
12 Upgrade/configurability X X X
13 Transportation X X X
14 Manufacturing X X
15 Training X X
16 Retirement X X
17 Distribution X
18 Cost X
19 Timing and funding X
20 Patent X X
21 Policy and Procedure X X
22 Reuse of Components X X
23 Design Constraint X X X X

Table 2-1 Relating Product Design Stakeholders to Requirements Categories

2.1.2.9.3 Based on the Flexibility and Tradability

In many System Engineering documents, one may find requirements classification based on

the flexibility of the requirements [Grady (1993), Stevens, et al. (1998), Sage and Rouse

(1999)]. The categories are:

• Constraints—boundary conditions within which a designer must remain while

satisfying the aggregate of the performance requirements for the item [Grady (1993)

p. 355]. Constraints rule out certain possible design choices. For instance, a product

- 69 -

must function in the temperature between 0 and 32 Fahrenheit degree is a constraint

on the design. In Pahl and Beitz (1995 p. 45), constraints include safety, ergonomics,

production, quality, assembly, transport, operation, maintenance, recycling, and

expenditure.

• Requirements—the range of acceptable measures for a successful design [Buede

(2000) p.121]. For instance, if the customer wants a fast vehicle. The requirement on

the speed of the vehicle can be set based on interpretation of how what fast means to

a particular customer or customer group. The definition of requirement here is

narrower than that used in this section (2.1.2.9).

• Goals—the desirable but not essential features of a product. Not achieving a goal

does not mean the failure of the product design.

The flexibility increases from Constraints to Goals. Note the definition of constraints here is

different from that used in Axiomatic Design. The constraints in Axiomatic Design are the

requirements on the product that cannot be categorized as Functional Requirements [Suh

(2000)]. Also, the definition of constraints used in this thesis (see section 2.1.2.9.2) is

narrower than the constraint defined in this section.

Relating them to the stakeholders of product design to the flexibilities of the requirements,

we can construct the table below (Table 2-2).

 End user Corporation Technical Team Regulatory

Constraints X X X

Requirements X X X X

Goals X X X

Table 2-2 Design Stakeholders vs. Flexibility of the Requirements

- 70 -

This table shows us the flexibility of each stakeholder in the design of the product. The

technical team is the only one that has more flexibility. Technical teams must be aware of

the constraints imposed by end user, corporation, and regulatory.

2.1.2.9.4 Based on the Design Approaches

The above three means of requirements categorization all focus on collecting a complete list

of requirements, and identifying the priorities among the requirements. In fact, all of the

requirements management techniques including requirement-traceability management remain

in the domain of requirements. However, the reality is that one cannot work in the

requirements domain only [Guindon (1990)]. Requirements and the selection of the physical

form of the product must go hand-in-hand. For instance, if the high level requirement is

“Fasten two plates.” The high level form we can choose including gluing, welding, using

clamps, using bolts and nuts, etc. Choosing gluing or clamping will result in very different

requirements in the next level of decomposition.

Axiomatic Design’s Design Matrix helps to relate the requirements to the physical design.

Yet, Axiomatic Design does not have a good framework on how to deal with various types of

requirements. Therefore, combining the two methods (Axiomatic Design and Requirements

Management) may give us the advantages of both methods.

2.1.2.10 Summary on the Methods Dealing with System Interactions

Table 2-3 summarizes the system engineering methods reviewed in this section. DSM, DM,

and requirements classification are complementary to one another. This thesis research

intends to combine the strength of the above three methods in order to better deal with

system interactions in the development of large complex systems.

 Heuristics Graphs and
Diagraphs Trees IDEF CPM, PERT,

Gantt chart DSM QFD DM Requirements
Classification

This
Thesis

Help to deal with system interactions X X X X X X X X X
Visualize system interactions X X X X X X X
Show the Hierarchical Order of System Elements X X X
Can be used to both understand the interactions in the
physical system and manage tasks in a project X X X X

Sequence elements in the same hierarchical level X X X X
Provide analytical system analysis to predict project
completion time X X X

Allow feedback loops X X X
Analytically identify the inevitable iterations and
eliminate unnecessary iterations X X

Cluster the elements in the system for architectural
design X X

Identify the rate of convergence in the feedback loops,
and the controlling factors in the iteration X X

Can capture emergent system properties X X
Manage system interaction knowledge in complex
system designs X X

Relate the requirements and the physical system
design of the product X X

Can be constructed early in the design process X X X X
Can be applied to new products X X X
Fits the design engineers’ natural thinking process for
concept generation X X

Prescribe system interactions rather than describe how
things are always done X X

Prompt the engineers to compare the system
complexity of different design concepts X X

Provide a complete understanding of all requirements X X

Table 2-3 Summary of the System Engineering Methods Concerning System Interactions

2.2 Design Theory

There exist many literatures on design theory [Finger and Dixon (1989), Tate and Norland

(1995)]. The literature review here will sample a few of the representative schools and

compare the differences between them. The discussions below focuses on the research

question of how system interactions are treated by different design theories, and their pros

and cons.

2.2.1 European Design Models

The two most representative European schools for design process are Hubka (1980), and Pahl

and Beitz (1995).

Hubka proposes a phased design process (1980 p. 35). The design process starts with

problem statement and the development of design specifications. Then function structures

are built according to the specifications. Afterwards, the design concept iterates through

various dimensions of the function structures until all functions are fulfilled. Then the design

progresses into the preliminary layout stage, dimensional layout, and finally detailed

assembly drawings. At this point, the design process is complete. Although design iterations

are very much stressed by Hubka, the iteration in his design process occurs within each of the

design phases. Iterations between different phases of the design process is not explicitly

represented by Hubka’s design model.

Pahl and Beitz (1995) is the most representative design literature for European design

schools. They also propose a phased design process including the following three stages (p.

67):

• Conceptual design phase decomposes the functions. When the functions are

decomposed, consider the design concept that could meet the functions.

- 73 -

• Embodiment phase considers the spatial relationship and the “–ilities” such as

reliability, maintainability, etc. The system emergent properties are taken into

consideration in this phase. The non-functional requirements are addressed here.

• Detailed design phase optimize the details of the design. Pahl and Beitz recognize

that engineers may still come up with better design ideas in detailed design phase and

the design can still change and evolve, as the understanding of the design and the

system becomes more mature. This recognition of late design change reflects the

acceptance of emergent property of the system in Pahl and Beitz design theory.

The design processes proposed by both above literatures are very similar. Both Hubka, and

Pahl and Beitz suggest that function comes before form. Their design models regarding the

relationship between function and form can be summarized as Figure 2-12. The interactions

among functions are considered only in the function domain. The interactions among the

forms are considered only in the Form domain. Neither schools of literature explicitly stated

the relationship between the two types of system interactions.

Figure 2-12: Sequential Model between Function and Form

In addition, both literatures stopped the design process at the generation of the CAD

drawings. The collaboration among various departments in an organization such as the

relationship between manufacturing activities and design are not stressed in these literatures.

……

Function Form

The direction in which the design progresses.

- 74 -

2.2.2 Total Quality Deployment

Total Quality Deployment (TQM) is a design process promoting the concurrent collaboration

among traditionally segregated departments in an organization during the design. QFD

(Figure 2-9 and Figure 2-10) is the core method used in TQM to reflect the interrelationship

among various parts of the organization, so as to achieve a holistic view of product design.

However, the relationship among the function and form in TQM is still the same as that in

Figure 2-12. QFD’s decompose the requirements from system level to subsystem level until

piece-part level without representing the physical form of the design. Then the piece-part

level specifications are translated into the manufacturing specifications and operations

specifications. In addition, there is no explicit mention on how to deal with emergent

properties of the system.

2.2.3 Axiomatic Design

Axiomatic Design proposes four domains in the design (Figure 2-13). Design Matrices are

used to relate the domain to its adjacent domain. For instance, the design matrices in Figure

2-11 relate the functional domain to the physical domain.

Figure 2-13: Axiomatic Design’s Four Domains

CA FR DP PV

Customer

Domain

Functional

Domain

Physical

Domain

Process

Domain

- 75 -

The four domains of Axiomatic Design are very similar to the four houses in QFD (Figure

2-10). The main differences between the Design Matrix (DM) and the House of Quality

(HOQ) matrices are the following:

• DM relates the requirements with the physical form. HOQ stay in the requirements

domain.

• DM generates the requirements hierarchy through the zigzagging method between the

function and the form (Figure 2-14). HOQ generates the hierarchy in the

requirements without referencing to the form (Figure 2-12).

Figure 2-14 Axiomatic Design Decomposition

Psychology experiment has shown that people cannot think only in the function or form

domain [Guindon (1990)]. Therefore, Axiomatic Design provides a design process that is

more natural to the thought process of the engineers than the previous design theories.

• However, Axiomatic Design does not consider the issue of system emergent

properties. Axiomatic Design believes by decomposing the functional requirements

Function Form

Decompose the functional requirements and relate the decomposition of the functions to
that of the form through out the system hierarchy (zigzagging process in Axiomatic
Design [Suh (2000)]).

When the lower level function cannot be met by the form chosen, the design engineers
may trace back to the decision at higher level of the system and redesign the form at
higher level.

- 76 -

using the zigzagging process, we can predict the interactions among the DP’s, and

hence the couplings among the FR’s. The first Axiom judges whether a system is

uncoupled using the engineers’ understanding on the relationship between the FR’s

and DP’s at the beginning of the design process. What Axiomatic Design neglected

is the system emergent properties, which may introduce more couplings as more

details of the design become mature. Although neither the European design theories

nor the Axiomatic Design provide any means to deal with the additional system

interactions introduced by emergent properties, the failure of addressing the system

emergent property in the design axioms reduced the credibility of Axiomatic Design

theory.

2.2.4 Summary of Design Theories Reviewed

Table 2-4 compares the design theories reviewed above. Note the comparisons made in this

section only focused on the metrics that are important to this thesis research. Many more

strengths and limitations of the design theories are not listed in Table 2-4. This thesis will

take Axiomatic Design as the starting point because it has the most advantages, and discover

ways for the Axiomatic Design to deal with emergent properties in the design, so as to

improve the capability of Axiomatic Design.

 Hubka,
Pahl and
Beitz

Total Quality
Deployment

Axiomatic
Design

This
thesis

Provide a framework for design
process X X X X

Address the emergent property of
the system X X

Stress the collaboration among
various departments in the
organization

 X X X

Indicate the relationship between
the functions and the interactions
among the components in the
physical form

 X X

Table 2-4: Summary of the Comparison among Design Theories

- 77 -

2.3 Knowledge Management

2.3.1 System Level Knowledge Management in Literatures

In chapter 1 (section 1.2.3.2.1), we have defined the system level knowledge as the

knowledge about the entire large complex system. It is the knowledge that must be learned

through collaboration with other people, and hence is the knowledge that belongs to an

organization rather than any one individual. Many knowledge management literatures exist.

The relationship among them and where managing system level knowledge fits in are shown

in Figure 2-15.

Figure 2-15: Classification of Knowledge Management Literatures

First, the definitions of epistemology and ontology are provided here. Epistemology is the

branch of philosophy that studies knowledge. It attempts to answer the basic question: what

Ontology
Dimension

Epistemology
Dimension

Tacit
Knowledge

Explicit
Knowledge

Large
Organization

Individual

Textbook Knowledge,
Education, Artificial
Intelligence

Psychology, Cognitive
Science, Ullman’s
research

Organizational
Learning,
Ritchie’s thesis
[Richie (1999)],
DOME

System Level
Knowledge
Management,
Ontology, DSM

- 78 -

distinguishes true (adequate) knowledge from false (inadequate) knowledge? Practically, this

question translates into issues of scientific methodology: how can one develop theories or

models that are better than competing theories? It also forms one of the pillars of the new

sciences of cognition, which developed from the information processing approach to

psychology, and from artificial intelligence, as an attempt to develop computer programs that

mimic a human's capacity to use knowledge in an intelligent way.

Ontology specifies the most fundamental categories of existence, the elementary substances

or structures out of which the world is made. Ontology will thus analyze the most general

and abstract concepts or distinctions that underlie every more specific description of any

phenomenon in the world, e.g. time, space, matter, process, cause and effect, system.

Recently, the term of "(formal) ontology" has been up taken by researchers in Artificial

Intelligence to use it to designate the building blocks out of which models of the world are

made. An agent (e.g. an autonomous robot) using a particular model will only be able to

perceive that part of the world that his ontology is able to represent. In that way, ontology

becomes the basic level of a knowledge representation scheme [Uschold and Gruninger

(1996)].

In Figure 2-15, the epistemology dimension represents the understanding of the knowledge.

Tacit knowledge is knowledge not being formalized. In engineering design situation, they

are usually gathered through experience, and exists in forms of past design stories. Explicit

knowledge is knowledge formalized. The knowledge we learn from school in the textbooks

is the best example of explicit knowledge. In the engineering design situation, explicit

knowledge may exist in the form of technical report, design rules and guidelines, etc. The

ontology dimension in Figure 2-15 does not have the same meaning as the artificial

intelligence community’s definition. Rather, this dimension represents whether the learning

and storage of the knowledge belong to individuals or organizations.

From Figure 2-15, we can see where past knowledge management literatures fit in. When

the study is about how individuals learn and process information (the lower left quadrant in

Figure 2-15), most of the research can be found in cognitive science and psychology

- 79 -

literatures. For instance, Guindon (1990) discovered that individual design engineers think in

a highly non-linear and iterative fashion. Gick and Holyoak (1980) wrote about how people

use analogy to solve unfamiliar problems. Genter (1983) proposed a framework for

knowledge transfer. Ullman, et al. (1983, 1995), and Kuffner and Ullman (1991) have done

extensive research using psychology techniques to understand what knowledge engineers

need to design a product.

The upper left quadrant of Figure 2-15 is about how individuals learn and use explicit

knowledge. Education is the field that studies this topic. In addition, the very popular

Knowledge-based Engineering design applications using Artificial Intelligence Experts

System also belong to this area. Artificial intelligence has been successful in dealing with

design problems concerning small components and assemblies [Tong and Sriram (1992)].

The design rules must also be explicit in order to be programmed into the expert system.

However, AI has not focused its effort on dealing with large complex systems [Whitney

(1999), Dong (1999)]. One of the causes may be that the system level knowledge about the

design of large complex systems is not well understood yet.

Now moving to the organization knowledge side. Look at the lower right quadrant in Figure

2-15 first. Many of the organization learning researches [Nonaka and Takeuchi (1995),

Ritchi (1999)] concern facilitating the exchange and capturing of tacit knowledge within

organizations. Since the unit in an organization is the individual human beings, the research

concerning the individual’s knowledge and learning discussed above are also relevant to the

organization learning research. DOME—the MIT design knowledge-sharing-and-simulation

platform developed by Professor D. Wallace and his students—helps the organizations to

overcome the widespread of tacit knowledge [Abrahamson (1999 and 2000), Senin, et al.

(2000)]. Yet, being a successful system engineering technology enabler, DOME does not

provide answers as what knowledge needs to be communicated. Instead, it provides a free

marketplace for design information exchange. Hence, DOME is a very suitable tool to deal

with the tacit knowledge about system interactions.

- 80 -

Last but not least is the upper right quadrant in Figure 2-15. This quadrant represent the

definition of managing system level knowledge in this thesis—explicitly capture the

understanding about system interfaces and facilitate the reuse of this knowledge. So far in

literatures, only Design Structure Matrix (DSM) has been used to capture the explicit system

level knowledge. The author’s master degree thesis first showed this capability of DSM

[Dong (2000)]. Bartowski (2001), and Glynn and Pelland (2000) at Pratt and Whitney

applied DSM to capture the system interaction knowledge for a module-centered business.

Thebeau (2001) uses the process of building DSM as the process of capturing system level

knowledge. Therefore, we can conclude that DSM is a suitable method for managing system

level knowledge.

In addition to representing the system level knowledge using DSM, research work in

ontology is also relevant to the upper right quadrant in Figure 2-15. Ontology helps to unify

the terms used in a domain so as to improve the communication among people or software

agents [Uschold and Gruninger (1996), Noy and Hafner (1997)]. In order to set up a

framework to enable knowledge sharing at system level, ontology is needed [Borse, et al.

(1996)]. However, ontology is different from classification. Ontology concerns the terms

used to communicate. Classification concerns the similarity/difference between two entities.

This thesis is interested in understanding what types of system level knowledge there are.

Therefore, knowledge classification is the focus rather than ontology.

At the end of this section, it is important to realize that the four quadrants in Figure 2-15 are

not independent and separated. Individuals are the units of organizations. Explicit

knowledge comes from tacit knowledge. The research in each quadrant benefits the

understanding in other quadrants. The intention of Figure 2-15 is to show what work has

been done in the literature and what the focuses were. Figure 2-15 suggests there has not

been a lot of methods and tools developed for managing system level knowledge. Therefore,

more work is needed in this area.

- 81 -

2.3.2 System Level Knowledge Classification

In order to understand what system level knowledge is, a classification for system level

knowledge is needed. There exist many ways to classify knowledge. Various classifications

have different basis and serve various purposes. For instance, library subject indexing serves

as a way for easy knowledge browsing and retrieval. Epistemology classifies knowledge in

order to measure the level of adequacy of a piece of knowledge (tacit vs. explicit). Prasanna

(2000) has a comprehensive review of various knowledge classifications.

However, only a few pieces of work have been done on the classification of knowledge used

by design engineers. Ullman, et al. (1983) studies the types of knowledge individual

designers requests so that all knowledge types can be incorporated in the intelligent CAD

design tool. Hutton and Klein (1999) classified the knowledge based on what makes an

engineer the expert in a decision making process. Patil (2000) classified the design

knowledge into What, How, Who, and Why based on how each type of knowledge is

addressed by existing IT design tools, so that we can identify which area of knowledge the

existing IT methods and tools are inadequate.

This thesis intends to classify system level knowledge for the ease of capturing, storage, and

retrieval. The classification of system level knowledge is different from the classification of

an individual human being’s knowledge, because system level knowledge is organizational

knowledge. System level knowledge is also more than the engineering knowledge about the

dynamical physical system design. It involves also the human aspect in the organization

such as who had a particular piece of information. Only Patil (2000)’s work had relevance to

the goal of this thesis. Therefore, this thesis research will propose a system level knowledge

management ontology built upon the basis of Patil’s work.

2.4 Progress Made Regarding Research Questions

This chapter searches past research with the goal of answering two research questions in

Chapter 1: Q1-a and Q2-a. The answers to these two research questions are summarized as

follows.

- 82 -

Q1-a: What methods have been used in the past to capture system level interactions? What

are the strengths and weaknesses of existing methods? Is DSM a good way to predict system

level interactions?

A review of system engineering methods and design theories showed that many existing

methods could capture system level interactions. Table 2-3 summarizes the strengths and

limitations of various systems engineering methods. Among the methods surveyed, Design

Structure Matrix (DSM) is most suitable for not only capturing system level interactions, but

also providing analysis to the system interactions to aid the design and management of the

system. However, DSM is hard to use at early phase of the design process or for new

product development using the current interview method to construct a DSM.

Axiomatic Design’s Design Matrix (DM) provides many of the capabilities DSM lacks,

including being able to apply at early phase of the design, can be applied to new products,

prescribing system interactions rather than capturing the experts subjective opinion, allowing

engineers to compare the system complexity of various design concepts, fitting into the

natural thinking process of design engineers, etc. In addition, Table 2-4 shows Axiomatic

Design is one of the most advanced design theory except for its negligence of emergent

properties of systems. Yet, DM’s weaknesses such as not being able to deal with iterations in

the system and not being able to reflect emergent properties of the system are strengths of

DSM. DM is also lack to solid techniques to deal with various types of design inputs

(requirements) other than functional requirements (FR). Requirements management

literatures on the other hand provide great resources for understanding various types of

requirements.

Therefore, the review of literature suggests that we should find ways to combine the

strengths of DSM, DM, and requirements classification so that we can have a method to

predict and analyze system interactions at early stage of the design process.

Q2-a: What has been done in managing system level knowledge?

- 83 -

Figure 2-15 shows the various types of existing literatures concerning knowledge

management. Very little can be found about managing system level knowledge except for

some of the recent DSM studies. DSM has been shown to be a good method to capture

system level knowledge. Very little work also has been done regarding classification of

system level design knowledge. This thesis will start from Patil’s knowledge classification to

propose a classification for system level knowledge.

2.5 Summary

This chapter reviewed existing literatures in the field of system engineering techniques,

Design theory, and knowledge management. The current practices, their strengths and

weakness are compared in Table 2-3, Table 2-4, and Figure 2-15. The following conclusions

were made:

1. DSM and DM complement each other’s capability in dealing with the interactions in

complex systems. Combing the two methods will enable us to predict and analyze

system interaction at early phase of the design process, so as to avoid costly rework

and delay later.

2. Existing requirements classification should be used so that we can take into

consideration all of the important design inputs for a product.

3. Axiomatic Design is one of the most advanced design theory among all of the

existing ones. However, Axiomatic Design neglected the system emergent

properties. DSM enhances Axiomatic Design by providing the capability to capture

system emergent properties.

4. Little work has been done in managing system level knowledge. DSM has been

shown to be a good way to capture system level knowledge.

5. Managing system level knowledge requires the ontology of system level knowledge.

Very little previous work has been done in the area of classifying system level

knowledge.

- 84 -

- 85 -

3 Research Method

The main research goals of this thesis established in Chapter 1 are the follows:

• Obtaining and managing system interactions at early stage of the design process

• Managing system level knowledge

Literature search in Chapter 2 reveals that little work has been done in managing system

level knowledge. Therefore, Section 3.1 in this Chapter introduces a framework proposed by

this thesis research to manage system level knowledge.

Literature search also reveals that the Design Structure Matrix method can help to manage

system interactions but is difficult to apply at early phase of the design process, while the

Axiomatic Design’s Design Matrix can predict system interactions early on. Section 3.2 in

this chapter proposes a matrix transformation method to transfer a DM into a DSM so that we

can take advantage of both methods to achieve the objective of both obtaining and managing

system interactions at early stage of the design process.

A large portion of this thesis research is to test the knowledge management framework and

the matrix transformation method using case studies conducted in real engineering

companies. Section 3.3 introduces the two case studies used in this thesis research to test the

framework and method explained in Section 3.1 and 3.2.

In the end, Section 3.4 and 3.5 concludes the chapter by summarizing the progress made on

answering the research questions listed in Chapter 1.

3.1 A Framework for Managing System Level Knowledge

3.1.1 Requirements on the System Level Knowledge Management Framework

As discussed in Chapter 1, system level knowledge in this thesis includes four major parts:

- 86 -

1. What the system components are

2. How system components interface with each other to achieve the functions

3. Who has the knowledge about each system component

4. Where to find the documented knowledge about each system component

The system level knowledge management framework must incorporate all four above

aspects. In addition, since the system level knowledge also has the organization management

aspect, we cannot ignore the project management types of knowledge such as scheduling,

budgeting, etc.

In addition, the framework must allow the engineers to capture knowledge throughout the

design process. The reason is that our knowledge about the system grows as the

development process is carried out. The emergent properties of a system are usually learned

during system integration, verification and validation, or even field service. The framework

must service as a basis to record the continuous learning experience, and keep the system-

level knowledge in the organization. Therefore, the system level knowledge management

framework should reflect various stages in the design process.

Furthermore, a system level knowledge management framework must provide incentives for

documentation. Knowledge management is good for an organization in the long term, but

usually adds work to the already very busy engineers and managers. The most common

complaint I get from talking to the engineers about knowledge management is that they are

so busy dealing with design problems that they do not have the time to document. In order to

encourage the engineers to spend time to document the latest learning about the system

emergent properties, the knowledge management tools and methods must provide not only

long-term benefits to the organization, but also short-term benefits to the engineers and

managers who are involved with the system design and development. Or else the method

must be designed to capture the knowledge in background of the design activities

automatically. The research in this thesis takes the former approach.

- 87 -

3.1.2 Proposed System Level Knowledge Management Framework

In light of the above requirements, a system level knowledge management framework is

proposed (Figure 3-1). This framework is based on the Axiomatic Design theory (Figure

2-13) with additional modification. Each of the polygons represents a domain of knowledge

in the design. The first domain--Customer Needs and Enterprise Strategy—is only Customer

Needs in Axiomatic Design. The Enterprise Strategy is added here to include the effects of

internal stakeholders in a company. The second domain—Functional Requirements and

Constraints--represents the design inputs. The third domain—Design Parameters—

represents the design itself. The fourth domain—process variables—represents the

manufacturing process design. The second, third, and fourth domains maintain the same

meaning as they were in Axiomatic Design. In addition, the fifth domain—Product—is

added here in order to address the emergent properties of the system that are learned through

integration, verification, and field service.

Figure 3-1: A Framework for Managing System Level Knowledge

Functional
Requirements
and
Constraints

Design
Parameters

Process
Variables

What

Product

How1 How1How1

Why1 Why1 Why1

Why2
Why2

How2

How1
How1

Customer Needs
and Enterprise
Strategy

- 88 -

The types of knowledge involved in each domain and between domains are listed below.

Note that not all knowledge types below are shown in the graph in Figure 3-1. The

knowledge classification below is an attempt to set up system knowledge management

ontology.

What: the facts in design. It can be what the customer requirements and enterprise strategies

are, what the requirements and constraints are, what the physical design solutions are,

what the manufacturing processes are, and what the product is. In Figure 3-1, the

“What’s” are the dark dots in each domain.

How1: The first type of “how”—“How1”—concerns the solution to requirements, or the

requirement flow-down. This type of “How” is indicated in Figure 3-1 by the arrows

going from left to right or top to bottom. For example, how a functional requirement

is fulfilled by the DP solutions belongs to this type of how.

How2: The second type of how deals with the interface among the elements (What’s) in each

domain. For example, the interactions among the design parameters belong to this

category of how. How2 type of knowledge exists in each domain in Figure 3-1. This

type of knowledge may also concern the sensitivity of certain elements to the output

and the dynamic relation of the elements to the total output.

When: When type of knowledge concerns the sequence of completing design tasks. This

knowledge can be inferred from the knowledge regarding system interactions (How2)

using the partitioning technique in the Design Structure Matrix method.

Where: The location of information and hardware.

Who: This is a subset of Where. It refers to the person who owns particular pieces of

information.

Which: Contains the logic for choosing among alternatives. This concept is applicable to

both DP’s and PV’s.

Why1: This type of Why corresponds to How1. In Figure 3-1, the arrows for Why1 goes in

parallel but opposite directions of the arrows for How1. Why1 type of knowledge

records the trace-ability of design intent and design requirements.

Why2: This Why explains the emergent system behavior that occurs during system

integration and perhaps field service. It is a different type of knowledge from the

- 89 -

Why1. Why1 traces the intended design rationales. Why2 records the unintended

system behavior.

Rules: These can be categorized as conclusions from past experiences. They may be backed

up by Why’s, but they may just be heuristics. They may be viewed as common

senses.

3.1.3 How the Requirements on System Level Knowledge Management Methods are

fulfilled by This Framework

The above framework fulfills the requirements for a system level knowledge management

framework (see Section 3.1.1). It addresses all four aspects of the system level knowledge

listed in Chapter 1. First, the “What” type of knowledge contains the knowledge about

system components. Second, the “How1”, “How2”, “Why1”, and “Why2” types of

knowledge address the interconnections among the system components. The “When”

knowledge derived from “How” knowledge aids the project management effort. Fourth, the

“Where” and “Who” knowledge addresses the issue of finding the source of the knowledge

and easy browsing of the knowledge database. In addition, the “Which” and “Rules” types

of knowledge further prompt the engineers to learn from past lessons and deduce knowledge

from experiences for future use. The rules summarized from experiences can be used in the

Knowledge-based Engineering applications, and transfer tacit knowledge to explicit

knowledge. In reference to Figure 2-15, this framework is capable of addressing system

level knowledge in large organizations, and tries to record the system level knowledge in an

explicit fashion by proposing knowledge categories. Therefore, it falls into the upper righter

quadrant in Figure 2-15.

The framework proposed here (Figure 3-1) follows the Axiomatic Design process [Suh

(2000)]. The comparisons in Table 2-4 show that Axiomatic Design has one the most

advanced design process. Also, the “product” domain in this knowledge management

framework (Figure 3-1) addresses the negligence of emergent properties in Axiomatic

Design. Therefore, this framework can be used to produce a live document of the system

level knowledge starting at the beginning of the product development process and throughout

- 90 -

the product lifecycle. The “Why2” type of knowledge collects the learning about the system

emergent properties. The end product of using this framework is a complete documentation

of a project kept in an organization, which can serve easily as a lessons-learned for future

activities because of the knowledge browsing capability of this framework.

This framework provides incentives for documentation from two perspectives. First, the

“How1” and “Why1” types of knowledge keep track of the requirements flow down. System

verification and validation plans thus can be made from these types of information. Design

changes can also be evaluated by relating the effects of change back to customer

requirements and enterprise strategy. Second, if a method is developed to link the “How1”

and “How2” types of knowledge, then the documentation of requirements flow down can be

automatically turned into the knowledge regarding the system interactions (this method is

presented in Section 3.2). This “How2” knowledge can thus use the DSM partitioning

techniques to help project planning and organization structuring. Therefore, documenting

system level knowledge using the framework proposed here can not only benefit the

organization in the long term, but also provide short-term benefits to the engineers who are

documenting.

In summary, the proposed framework for knowledge management meets all the requirements

for such a framework. Yet, this framework is just a hypothesis. This hypothesis needs to be

tested on real engineering cases and will be revised based on our learning from cases. In

addition, the method to transfer “How1” knowledge to “How2” knowledge needs to be

developed. The “How1” type of knowledge can be recorded using the Axiomatic Design’s

Design Matrix (DM). The “How2” knowledge can be recorded using a Design Structure

Matrix (DSM). In the next section, a matrix transformation method for converting a DSM

from a DM is introduced, which enables us to transfer the “How1” knowledge into “How2”

knowledge.

- 91 -

3.2 The Matrix Transformation Method

3.2.1 Motivation for Obtaining a Design Structure Matrix from a Design Matrix

The motivation for developing a transformation method between Design Matrix (DM) and

Design Structure Matrix (DSM) really comes from the strength and limitations of both

methods. In the Literature Review chapter of this thesis, DM and DSM are discussed in

details (Table 2-3). Here is a summary of what they do well and what they don’t.

The strength of DSM method is its system analysis capability. Once a DSM is built to

describe the system interactions, there exist the method to partition the matrix so that

unnecessary iterations in the system can be avoided. A piece of software has been written to

transfer the partition result into GANTT Chart for project planning [Cho (2001)]. The DSM

clustering algorithms can identify the most tightly coupled elements in the system and

suggest system architecture. The DSM simulation models based on Markov chain can

predict the likelihood of a project to complete on time and on budget. In short, DSM analysis

tools provide us plenty of ways to manage system couplings.

The limitation of DSM method lies on the way a DSM is constructed. To build a DSM, we

need detailed knowledge about the interconnections within a system. This detailed

knowledge is usually only available during detailed design phase or for a mature product.

Thus, traditionally a DSM is built by interviewing experienced engineers during the detailed

design phase of a project. The results of DSM analysis, although usually reveal means for

improvement, come too late in the development process after all the important decisions

about a system has already been made. Therefore, the traditional DSM method is only

helpful for mature products with little change from their last generation. In addition, the

DSM construction relies on people’s subjective judgment about where system interactions

should occur. The way a DSM is constructed lacks objective knowledge on what system

interactions need to occur and why. Therefore, improvements made based on the subjective

expert knowledge may not be the optimal solution for a system.

- 92 -

The strength of the DM in Axiomatic Design is that it provides a way to look at system

interactions from requirements perspective. Requirements are the ultimate goals of product

design activities. DM provides a way of identifying system interactions based on how

requirements are fulfilled through a design concept. Therefore, the construction of DM’s

prompts a design engineer to think of ways to reduce system couplings upfront. In addition,

requirements are available at early stage of the design process. Thus the knowledge of

system interactions can be obtained from early on in the design process when the most

important decisions about a system are made.

There are two limitations about the Axiomatic DM. First, the DM is constructed under the

guideline of Axiom 1. Couplings and iterations in a system are not allowed. Consequently,

DM is also unable to deal with couplings if they exist in a system. From earlier discussions

in Chapter 2, we know that couplings are not easy to avoid for real large complex

engineering systems. Therefore, DM although strives for the ideal solution, is incapable of

dealing with the real world situations. The second limitation of the DM is that it assumes all

requirements can be decomposed. This is rather a reductionism’s view. Hence DM cannot

address the interactions within a system due to system emergent properties.

 Design Matrix (DM) Design Structure Matrix
(DSM)

Can be applied at early stage
of the design process

Yes No

Can deal with system
couplings

No Yes

Can capture the emergent
properties of a system

No Yes

Does not rely on subjective
understanding of the system
interactions from experts

Yes No

Have system analysis tools No Yes

Table 3-1: Comparison between DM and DSM

- 93 -

Table 3-1 summarizes the above discussions on DM and DSM. Compare DM and DSM,

they complement each other in many aspects. Both methods are concerned with system

interactions. Both methods try to provide solutions to improve system designs. If we could

combine the strengths of these two matrices, we will have a way to:

• Reduce the amount of system coupling using good system design concept.

• Forecast system interactions before detailed design phase.

• When system couplings cannot be avoided for the reason of cost, technology

maturity, etc., apply system analysis tools to manage system iterations, so that the

project can go through the system interactions more efficiently.

• Capture system emergent properties as the design work carries out. Reflect the

emergent properties back to the requirements they affect.

Now the question left is how to obtain a DSM from a DM. The inspiration of finding the

answer comes from solving systems of linear equations using substitution.

3.2.2 A Look at Solving Systems of Linear Equations

The inspiration of transferring a DM into a DSM comes from linear algebra—how to solve a

system of liner equations using substitution. Equation (1) and (2) show an example of such a

problem:

3 * X1 + 5 * X2 = 6 (1)

2 * X1 –X2 = 4 (2)

Solve for X1 and X2.

There are many ways to solve this system of linear equations. The method we are about to

use here is substitution. From Equation (1), we get:

X1 = 2 – 5/3 * X2 (3)

- 94 -

From equation (2), we get:

X2 = 4 – 2 * X1 (4)

Substitute (3) into (4), we get:

X2 = 4 – 2 * (2 – 5/3 * X2)

Therefore,

X2 = 0

Substitute into equation (3), then:

X1 = 2

The answer to the question is:

X1 = 2 and X2 = 0

The process of writing X1 in terms of X2 and X2 in terms of X1 is the process of discovering

the relationship between X1 and X2. From equation (3) and (4), we can conclude that X1 and

X2 are coupled. If we were to solve these two equations numerically, we will have to iterate

several times before we can get the actual answers. Methods of numerically solving systems

of linear equations can be found in mathematics books [Strang (1986) and Steward (1962)].

3.2.3 The Three Steps to Transfer a DM into a DSM

The Design Matrix has many similarities to a system of linear equations. Let’s take the

Design Matrix below as an example:

- 95 -

 DP1 DP2 DP3

FR1 X O X

FR2 X X O

FR3 O X X

There are three Functional Requirements (FR) and three Design Parameters (DP). The “X”

in the matrix represents the corresponding DP affects the fulfillment of the corresponding

FR. The “O” means no relationship exists between the corresponding DP and FR.

Each row of the DM can be seen as a linear equation in a system of linear equations. Thus

the DM above can be translated into:

FR1 = a11 * DP1 + a13 * DP3 (5)

FR2 = a21 * DP1 + a 22 * DP2 (6)

FR3 = a32 * DP2 + a33 * DP3 (7)

Where aij are coefficients. Solve for DP1, DP2, and DP3.

We can thus apply the substitution method to this set of equations.

DP3 = f(FR1, DP1) from equation (5)

DP1 = f(FR2, DP2) from equation (6)

DP2 = f(FR3, DP3) from equation (7)

According to mathematical definitions, DP3, DP1, and DP2 here are called the Output

Variables of equation (5), (6), and (7), respectively.

Therefore, we can represent the relationship among the three design variables in the DSM

below:

- 96 -

 DP1 DP2 DP3

DP1 X X O

DP2 O X X

DP3 X O X

Through the above procedures, we started with a DM and arrived at a DSM. If we compare

the DM and the resulting DSM, we can observe that the DSM is the DM permuted by rows to

move the output variables to the diagonal position. This rule holds true for all

transformations in this nature [Steward (1962)].

Therefore, the above matrix transformation procedure can be summarized into three steps:

Step 1: Construct an Axiomatic Design Matrix.

 DP1 DP2 DP3

FR1 X O X

FR2 X X O

FR3 O X X

Step 2: Choose the output variables in each row (circled out in the matrix below).

 DP1 DP2 DP3

FR1 X O X

FR2 X X O

FR3 O X X

Therefore, we have:

DP3 = f(FR1, DP1) from row 1

DP1 = f(FR2, DP2) from row 2

DP2 = f(FR3, DP3) from row 3

Step 3: construct the final DSM by permute the rows of the DSM to move the output

variables to the diagonal position, or by using the relationship in the equations in Step 2.

- 97 -

 DP1 DP2 DP3

DP1 X X O

DP2 O X X

DP3 X O X

We may also get a DSM for the Functional Requirements (FR) by permuting the columns of

the DM instead of the rows, and then transpose the DSM. Without transposing the DSM, the

information flow direction is from row headings to the column headings.

 FR1 FR2 FR3

FR1 X O X

FR2 X X O

FR3 O X X

3.2.4 The Choice of Output Variables

The three steps of matrix transformation seem quite straightforward. Yet, a careful observer

may discover that the choice of the output variables in Step 2 is not unique. In the example

in the last section, the output variables can also be chosen as the elements on the diagonal.

The comparison of the both choices is shown in Figure 3-2. By choosing different output

variables, we go through the iteration in different directions. Yet the iteration is involves the

same system elements and the same interactions (without taking into account the direction of

interactions).

- 98 -

DP1 DP2 DP3
FR1 X O X
FR2 X X O
FR3 O X X

DP1 DP2 DP3
DP1 X X O
DP2 O X X
DP3 X O X

DP1 DP2 DP3
FR1 X O X
FR2 X X O
FR3 O X X

DP1 DP2 DP3
DP1 X O X
DP2 X X O
DP3 O X X

Figure 3-2: The Choice of Output Variables

In addition, there can only be one output variable in each row and column of the DSM

[Steward (1962)]. Therefore, the choice of output variables is unique when the system

interactions do not involve coupling, but rather are sequential or uncoupled. In this case, the

output variables are always the diagonal elements. Only among the system elements that are

coupled, the choice of system elements is not unique. Figure 3-3 shows this point. The

choice of the output variable for the first two rows is unique because DP1 and DP2 are

related in sequence rather than coupling. DP1 must be solved first before DP2 can. DP3, 4,

and 5 have more than one output variable choices because they are coupled.

DP1 DP2 DP3 DP4 DP5
FR1 X O O O O
FR2 X X O O O
FR3 X O X O X
FR4 X X X X O
FR5 X X O X X

DP1 DP2 DP3 DP4 DP5
DP1 X O O O O
DP2 X X O O O
DP3 X O X X O
DP4 X X O X X
DP5 X X X O X

DP1 DP2 DP3 DP4 DP5
FR1 X O O O O
FR2 X X O O O
FR3 X O X O X
FR4 X X X X O
FR5 X X O X X

DP1 DP2 DP3 DP4 DP5
DP1 X O O O O
DP2 X X O O O
DP3 X O X O X
DP4 X X X X O
DP5 X X O X X

Figure 3-3: The Choice of Output Variables for Elements Not Involved in System Iterations

DP1

DP3 DP2

DP1

DP3DP2

DP3

DP5DP4

DP3

DP5 DP4

- 99 -

The choice of output variables does not matter very much in mathematics. Because the

iteration is still the same iteration, the Eigen value is the same no matter which direction we

take to go through the iteration. Therefore, there is little written about which output variable

to choose in mathematics literatures [Steward (1962)]. However, when this technique is

applied to a product development situation, different choices of output variables give

different work procedures. What does this mean in a real engineering design project? Does

one choice of output variables make the design process converge faster? These questions are

answered in this thesis research from observations made in the case studies (see later Section

4.3.6).

3.2.5 Assumptions Used in the Matrix Transformation Method

Two assumptions are used in the matrix transformation method. Later on in the thesis, these

assumptions are examined, and the limitations of the matrix transformation method are

discussed.

Assumption 1: It is assumed that the Design Matrix (DM) is always constructed based on the

Axiomatic Design method [Suh (2000)], and hence the DM is always square.

According to Axiomatic Design, a DM is constructed using the following steps:

1. Take a Functional Requirement (FR) and identify the Design Parameters that address

the FR. Add a new row in the DM for the FR and a new column in the DM for the

corresponding DP. Put a mark on the corresponding diagonal of the DP.

2. Identify other existing DP’s that have side effects on the FR, and put off-diagonal

marks in the DM.

The first consequence of this assumption is that the resulting DM from the above two steps is

a square matrix, because each FR is identified with a DP. The consequence of this

assumption is that the diagonal marks in the DM always carry more weight/importance than

- 100 -

the non-diagonal marks. For the FR-DP pair represented by the diagonal marks reflects the

main reason for a DP to exist. The FR-DP pair represented by the off-diagonal marks shows

only the side effects a DP has on another FR.

The second consequence of this assumption is that not all requirements for a product can be

called Functional Requirements. A requirement like “Allow the passengers to enter/leave the

vehicle” is a FR because we can identify a DP, such as “a door”, for this FR. However, a

requirement like “Meet XXX reliability measure” is not a FR because all parts of the system

are important to this requirement, and no one dominant DP can be identified. Putting a

reliability requirement into the DM will make the matrix have more rows than columns.

Therefore, reliability requirement cannot be directly put into a DM like other FR’s.

Axiomatic Design calls these non-FR types of requirements “Constraints”, and does not

provide a systematic way to reflect the effects of constraints in the DM. Hence, with this

assumption, the matrix transformation method introduced in this chapter carries the danger

not to be able to represent all of the system interactions introduced by requirements.

Assumption 2: The second assumption of this method is also originated from Axiomatic

Design theory. Constructing a DM to predict system interactions implies that all of the

important requirements about a system can be decomposed. This is rather a reductionism’s

view. From the discussion in Chapter 1, we know systems have emergent behavior. Not all

requirements can be decomposed clearly at the early phase of the design process. For

instance, a machine may produce unexpected noise after all the components are assembled.

The noise is then an emergent behavior of the system. The system interactions that

contribute to meeting the noise requirement cannot be captured in a DM. Therefore, the

reductionism’s view Axiomatic Design takes may limit the capability of the matrix

transformation method.

In short, both assumptions for this method reveal that employing the Axiomatic Design

Matrix may limit our capability of predicting all of the system interactions. Yet, the matrix

transformation method for obtaining a DSM from a DM is still worth trying for two reasons.

First of all, people currently make decisions at early phase of the design with very limited

- 101 -

knowledge about the system. People cannot predict the emergent behavior of the system

anyway. This matrix transformation method at least provides a framework to put everyone’s

mental model about the system on paper and reach a common understanding about the

system. Plus, the system analysis methods and tools associated with DSM method can be

used to help make better decisions at early phase of the design process. Second, prediction

does not have to be perfect. People make judgments without complete information anyway.

If the matrix transformation method can give more insights to the system, it will help with

better decisions at the most important phase of the design process.

3.3 Design of the Two Case Studies

Two case studies were designed to test the method of obtaining a DSM from a DM in order

to predict system interactions at early phase of the product development process. The

knowledge management framework is also examined in one of the case studies.

3.3.1 CVC Case Study

The first case study was carried out at CVC between May and August 2000. CVC was a

semiconductor manufacturing equipment producer located in Rochester, New York. CVC

has been acquired by VEECO in spring 2000 and the merger complete in the fall of 2000.

Besides the author, another Master’s degree student Guru Prasanna [Prasanna (2000)] went

to CVC as well in order to investigate whether the framework of managing system level

knowledge proposed by the author was feasible.

The objectives of this case study corresponding to the research questions raised for this thesis

(see Chapter 1) are the followings:

• Test the framework for managing system level knowledge—Guru Prasanna and Qi

Dong(Q2-b)

• Discover the situation of documenting system level knowledge at CVC—Qi Dong

(Q2-c, d)

- 102 -

• Testing the matrix transformation method—Qi Dong (Q1-b, c, and Q2-e)

Note the “Qm-n” types of symbols in the parentheses are the same notation used in Chapter 1

for each research questions.

3.3.2 Johnson and Johnson Ortho Clinic Diagnostics Case Study

The second case study was carried out at Johnson and Johnson’s Ortho Clinical Diagnostics

(JNJ OCD) between May and August 2001. Only the author conducted this case study. The

research questions investigated in this case study include:

• Testing the matrix transformation method (Q1-b)

• Testing the correctness of the prediction DSM (Q1-b)

• Discover the completeness of the prediction (Q1-c)

• Discover the situation of documenting system level knowledge (Q2-c, d)

Again, note the “Qm-n” types of symbols in the parentheses are the same notation used in

Chapter 1 for each research questions.

3.3.3 Strengths and Limitations on Learning from Case Studies

Case studies are necessary steps for product development research. Any method and tools

development in research must be tested on real product development cases to discover their

feasibilities and limitations. The system level knowledge management framework and the

DM to DSM matrix transformation method developed in this chapter are no exceptions.

Case studies are the time these methods are tested in real life.

The limitation of case studies is that it is hard to generalize the conclusions from a case

study, because each case is a specific example. Something worked for one case may not

work for another case. We need many cases with similar set up and controlled conditions to

generalize a conclusion. Therefore, the readers of this thesis must keep in mind that the

conclusions drawn from the two case studies may only be specific to these case studies.

- 103 -

Yet, the Scientific Method [Wilson (1952)] suggests that no hypothesis can be proven right.

We can only find counter examples to prove them wrong. The hypothesis that stood correct

through many cases are elevated to become law and theories. The methods proposed here to

manage system level knowledge and to obtain a DSM from a DM can only be proven wrong

from cases. We do not know how many product development examples we need to make a

general conclusion. The value of the case studies are to find out whether the methods can

stand strong for at least two cases, and the future directions for this research.

3.4 Progress Made Regarding Research Questions

In this chapter, the research questions addressed include Q1-b, Q2-b, c, and d.

Q1-b: How to predict system interactions early? How to predict system interactions for new

technology?

The DM-DSM matrix transformation method introduced in this chapter is a way to predict

system interactions early in the design process. The DM can be constructed during the

concept development phase, because the information needed to construct a DM is available at

that time. The requirements on the system are developed during concept generation. How

requirements are met by the design parameters is decided at the same time too. DM collects

this information and hence is very easy to construct during early phase of the design process.

Once a DM is obtained, the matrix transformation method enables us to get a DSM from the

DM. This DSM contains the prediction on system interactions before the detailed design

work starts. This technique works for early phase of the design, and also works for new

technologies.

The matrix transformation method will need to be tested on real engineering projects. The

selection of the output set is still a question that needs further investigation in later chapters.

- 104 -

Q2-b: Is there a better way to capture, store, and represent system level knowledge?

A system level knowledge management framework is introduced in this chapter. This

framework is based on Axiomatic Design’s four domains for product development. It also

added the fifth domain to capture the learning about the emergent properties of a system.

Eight types of system level knowledge were proposed. They are What, How, When, Where,

Who, Which, Why, and Rules. This framework may enable companies to manage system

level knowledge throughout the design and development process.

How well this framework work needs to be tested. Whether the proposed categories of

system level knowledge are complete also needs investigation through case studies.

Q2-c. What are the best sources of information for predicting system interactions?

If the knowledge management framework is used, the best source of system interactions will

be the requirements decomposition document. This claim needs also to be tested out in case

studies.

Q2-d: How companies are doing with managing system level knowledge?

From the author’s Master degree thesis, it is known that system level knowledge is not well

managed at Ford Motor Company. This thesis will look at two more companies and compare

them with Ford Motor Company.

3.5 Summary

This chapter first introduced a system level knowledge management framework. This

framework is based on Axiomatic Design’s four domains for product development. It also

added the fifth domain to capture the learning about the emergent properties of a system.

Eight types of system level knowledge were proposed. They are What, How, When, Where,

Who, Which, Why, and Rules.

Next, a method to obtain a Design Structure Matrix (DSM) from a Design Matrix (DM) is

introduced. This method enables us to take advantage of the strengths of both matrices and

- 105 -

reduce the limitation of each method. This matrix transformation method will enable us to

predict system interactions from early on in the design phase, so that we can plan the project

and organize the people better in order to avoid unnecessary rework. This transformation

method also enables us to systematically trace requirements throughout the system. The

resulting matrices can serve as a life document throughout the product life cycle to capture

the learning about the system level knowledge. Thus we can be less dependent on human

experts, and keep the system level knowledge in the organization.

These two methods will be tested on two case studies—CVC, and Johnson and Johnson.

Each case study serves to answer some of the research questions for this thesis. The details

of each case study are introduced in the next two chapters.

- 106 -

- 107 -

4 CVC Case Study

4.1 The Research Setting

4.1.1 About the Company CVC

CVC was a semiconductor manufacturing equipment producer. Its headquarters were located

in Rochester, NY. In spring 2000, CVC was acquired by VEECO. The merger started in

May 2001 and went through August 2001. CVC now is a subdivision of VEECO. When this

case study was set up in January 2001, the acquisition of the company was not known yet.

When the case study was carried out during summer 2000, CVC was undergoing a transition

from the merger. The author is very thankful to many engineers and managers at CVC who

provided great help and support to this research work even though they were going through a

lot of changes themselves.

Before the merger, CVC’s core competency was the data storage process equipment. It was

in fact the market leader in this area. CVC produced cluster machines that can manufacture

thin film magnetic heads for data storage purposes. The cluster machines consist of a central

wafer handling system and many wafer processing modules around it. The processing

modules can be physical vapor deposition modules, ion-beam deposition modules, ion-beam

etching modules, etc. When a wafer enters the system, the deposition and etching processes

it has to go through (called the “recipe”) is already programmed into the control system. A

robot in the Central Wafer Handler will take the wafer from its storage area and put it into the

first processing chamber. After the first step, the robot will take the wafer out of the first

processing chamber and place it into the second module, and so on, until the entire recipe is

completed. Figure 4-1 shows a typical cluster machine CVC produced, and now is listed as

VEECO products (http://www.veeco.com). For the throughput efficiency, usually more than

one wafer or even more than one kind of recipe are processed simultaneously. Therefore, the

logistics of the central wafer handler is important to the capability of this manufacturing

equipment.

- 108 -

Figure 4-1: A Typical CVC Cluster Machine

Before the merge, CVC was a company with about 400 employees. It had acquired several

smaller companies and laboratories over the past years. With about 200 employees located

in Rochester, NY, CVC had the rest of the employees in Virginia, Texas, California, etc. The

differences in working culture and the difficulties of communication among these sites were

increasing challenges for CVC. CVC was interested in DSM as a way to structure

collaborations among different locations in order to facilitate the system engineering effort of

their projects.

4.1.2 Case Study Description

4.1.2.1 The Product

This research case study concerns the system integration project for an Electrostatic Chuck.

The Electrostatic Chuck—ESC (Figure 4-2) is used in various wafer process modules in the

cluster machines (Figure 4-1). When in use, ESC loads the chuck table and the wafer with

opposite static charges, and the wafer is held down on the chuck table by the electro-static

force. After the wafer is processed, the chuck table and wafer are discharged, and the wafer

is de-clamped. Contrary to a conventional mechanical clamp, ESC does not exert contact

Central Wafer
Handler

Wafer
Processing
Module

Wafer
Processing

Module

- 109 -

force on the processing side of the wafer. Hence, ESC is particularly suitable for processing

wafers plated with brittle materials. ESC also contains backside gas channel and cooling

system designed to maintain wafer temperature during processing. Each ESC has an

interface plate that is designed so that the ESC can be assembled in all wafer-processing

modules CVC is selling in the market. Based on Henderson and Clark’s (1990) four types of

product innovation (see Figure 2-7), the ESC project belongs to the modular innovation. The

core concept of the wafer chuck design is changed. The architecture interface between the

chuck and the cluster machines however remain the same.

Note the bold characters indicate the elements that are actually in the ESC. The regular characters indicate

components that are not part of the ESC.

Figure 4-2: Schematic of the Electro-static Chuck

4.1.2.2 Case Study Objectives

4.1.2.2.1 CVC’s Objectives

CVC recognized the market need to replace the mechanical chucks in many of their existing

process modules with ESC. By April 2000, the advanced research group in Dallas, Texas

completed the technical feasibility study of the ESC as a stand-alone component.

Wafer

Electro-statically
charged chuck table

Backside gas channel

Cooling Plate

Plate for interface with
various process modules

Standard interface on all
process modules

Backside Gas, Cooling
Water, Electricity

Process Chamber

Electrostatic
chuck

- 110 -

Recommendations were made to the Rochester design-engineering group regarding the

design specifications of ESC. The Rochester engineering department must work out the

details to integrate the ESC concept into existing modules.

The system integration of the ESC faced two challenges. First, the integration had to be

completed within six months so that the ESC feature could reach the market before the

competitors did. Second, due to the geographical distance between the Texas group and the

Rochester group, the communication across organization boundaries had been historically

problematic. The advanced research engineers in Texas sometimes miss the details of the

production units during testing. The product-engineering department in Rochester also could

send the wrong information to Texas.

Therefore, CVC’s main objective in this case study was to use the matrix transformation

method to obtain a DSM before the integration work was really carried out, so that mistakes

could be prevented, and they could complete the project in time. CVC’s second objective

was to use this project to discover how to better set up a communication channel among the

various dispersed divisions all over the nation.

4.1.2.2.2 Thesis Research Objectives

The objectives of the author’s research matched very well with CVC’s interests. The matrix

transformation method was to be tested to see if it works in a real engineering project. If the

method worked, then the result would be a DSM that predicted what would occur during the

system integration phase of the ESC project. In addition, the author was interested in the

existing situation of system level knowledge documentation in CVC, and to see if the system

level knowledge management framework was applicable in an industry setting. These two

research goals matched with CVC’s agenda for understanding what could be done to improve

the communication among their organizations.

The research objectives of this case study are summarized here again. The parentheses

indicate which research question is related to which objective.

- 111 -

• Test the framework for managing system level knowledge—Guru Prasanna and Qi

Dong (Q2-b)

• Discover the situation of documenting system level knowledge at CVC—Qi Dong

(Q2-c, d)

• Test the matrix transformation method—Qi Dong (Q1-b, c, Q2-e)

4.1.2.3 Case Study Scope

This case study is interested in the system interfaces of the ESC design. The details of the

ESC design itself and the details of the design of the rest of the cluster machine are not the

focus.

4.2 Data Gathering Process

4.2.1 Sources of Inputs

The information sources for this case study include two types—the documents and the

people. The documents include:

1. ESC design specifications

2. The technical report from the advanced research group in Texas

3. ESC preliminary design drawings

The people who provided information about the project are:

1. Matthew Coon, CVC Rochester System Engineer, ESC project manager before July

15, 2000.

2. Shawn Chen, CVC Garland, TX advanced project development engineer.

3. Steve Buckner, CVC Rochester software and controls engineers. He is the primary

software developer for the ESC project.

4. Gary Denton, CVC Rochester software and controls project manager.

5. Blake Reese, CVC Rochester Electrical Engineer.

6. Judd Prozeller, CVC Rochester Vice President of Quality.

- 112 -

Due to the merger of CVC and VEECO, CVC experienced substantial restructuring. By the

end of the summer, many of the people listed above were no longer CVC employees.

Consequently, the progress of the ESC project as well as the information gathering process of

this research project was affected. The information gathering stage for this project took 1.5

months, while it could have taken less than a month in a normal condition.

4.2.2 Constructing a DSM from Requirements Using the Matrix Conversion Process

The following steps were taken in order to apply the DM to DSM transformation in this case

study.

1. Understood the ESC project background, and the progress made in the design. Matthew

Coon was the main contact for this information in January 2000. Shawn Chen was the

main contact for this information in March 2000.

2. Constructed the Design Matrix (DM) for the ESC system integration, starting in May

2000. This step can be split into two sub-steps:

2.1. First, the highest-level design specifications for the ESC project were obtained

from the project document.

2.2. Next, the author used the zig-zagging method in the Axiomatic Design [Suh

(2000)] to decompose the requirements and to relate them to the Design

Parameters (DP). CVC did not have lower level design requirements documents.

Therefore, the process of constructing the DM was also the process that CVC

engineers decided the subsystem requirements for the ESC. Mathew Coon and

Shawn Chen helped to construct hardware subsystem requirements. Steve

Buckner constructed the software requirements.

3. Derived the DSM from the DM using the three steps for matrix transformation, where the

diagonal elements were selected as output variables. Other possible selections of output

variables were also tried.

- 113 -

4. Verified the DSM with the Advanced Product Development engineer Shawn Chen, the

software engineer Steve Buckner, the software manager Gary Denton, and the Electric

Engineer Blake Reese. The above individuals revised the DSM obtained from DM.

5. Compared the DSM revised by the individuals listed in Step 3 with that derived from the

Design Matrix.

6. Partitioned the Design Structure Matrix for the planning of the ESC integration.

7. Constructed the function decomposition diagram of the ESC requirements and the

architecture decomposition of the ESC.

4.2.3 Testing the System Level Knowledge Management Framework

A Master’s degree student from MIT—Guru Prasanna—came to CVC during the same

period. Guru was assigned to review the following documents:

• CVC Metal Organic Chemical Vapor Deposition (MOCVD) module chuck design

documents

• CVC ESC project design documents

• CVC ESC design DSM (see Figure 4-8)

• Ford’s design documents for throttle body

• Ford’s throttle body design DSM’s [Dong (1999)]

His goal was to see if all of the documented knowledge in the above cases could fit into the

categories in the proposed system level knowledge management framework (See Chapter 3).

The details of Guru’s work are in his thesis [Prasanna (2000)]. As a short summary, Guru

read each line of the CVC and Ford design documents, as well as the DSM’s built by the

author for the CVC ESC project and Ford throttle body. Lines of text in the documents were

used as units of counting. The types of knowledge in each line were counted. For

- 114 -

ambiguous sentences, Guru discussed with the author of this thesis to decide if new

categories were needed or if the definition of the existing categories should be broadened.

4.3 Results and Analysis

4.3.1 The Design Matrix for ESC Integration Project

The Design Matrix for the ESC system integration is shown in Figure 4-3. The size of the

DM is too large to show all the details on one page. Therefore, the first FR and its

decomposition are shown in Figure 4-4 with more visible details. Note the DM includes six

levels of decomposition. In order to demonstrate the decomposition structure of the FR and

DP, again the FR1 is used as an example. The decomposition structure of the FR1 and DP1

are shown in Figure 4-5 in a tree structure. By following the Axiomatic Design’s zigzagging

process, the function flow structure and the product architecture tree are generated. The DM

in Figure 4-3 includes all six levels of decomposition. The interactions that occur among

lower-level elements are also reflected by the interactions among higher-level elements. We

can also hide other levels and only show one level at a time. In Figure 4-6 only the first level

of FR and DP are shown. We can do the same for other levels of FR and DP.

In addition, each DP can be assigned to a person or a group (see the “team” assignment in the

DM’s in Figure 4-3 and Figure 4-4). Then looking across the row, we can easily identify the

groups that are responsible for each functional requirement. The FR’s that are assigned to

more than one team deserve special attention because they may cause issues in system

integrations.

Furthermore, the sources of each FR can be identified and recorded in the DM (Figure 4-4).

This information can be valuable at time when certain requirements are in question. The

same thing can be done for DP’s. In addition, the reason for each mark in the DM to exist

can also be recorded in a database. The database used in this case study employed a simple

EXCEL worksheet (Figure 4-7). This database proved to be helpful to keep track of the

rationales behind each interaction in the DM. When disagreement rose among engineers who

- 115 -

provide information for this research, this database helped to keep the understanding in the

team consistent.

Based on the Axiomatic Design Axiom I [Suh (2000)], a good design should have its DM as

a diagonal matrix (uncoupled design) or lower triangular matrix (decoupled design). The

Design Matrix in Figure 4-3 is a coupled design and hence is not acceptable by Axiomatic

Design standards. According to Axiomatic Design, CVC should redesign the rest of the

cluster machine and the electrostatic chuck so that the entire system is not coupled.

However, the real situation is that CVC had been selling the cluster machines for many years.

They are pressured for delivery time to beat the competitors. CVC does not have time to

redesign everything, and it cannot convince its customers to invest in new cluster machines

just because electrostatic chucks are installed in the process modules. CVC had to work

with the less ideal situation—to live with the existing design of the system and make sure the

ESC can be integrated into the existing machines. Therefore, in this case study, it is

unrealistic to push for the Axiomatic Design’s Axioms. The matrix transformation method

introduced in Chapter 3 is going to use the power of the DSM method to deal with the

inevitable system couplings in this design.

- 116 -

Teams: 1—Supplier, 2—Software, 3—Mechanical Team, 4—Electrical Team, 5—R&D, 6—Marketing, 7—Process engineering, 8—Operation procedure

Figure 4-3: The ESC System Integration Design Matrix

- 117 -

Teams: 1—Supplier, 2—Software, 3—Mechanical Team, 4—Electrical Team, 5—R&D, 6—Marketing, 7—Process engineering, 8—Operation procedure

Figure 4-4: ESC DM with only the Decomposition of FR1

- 1
18

 -

Fi
gu

re
 4

-5
: E

SC
 F

un
ct

io
na

l R
eq

ui
re

m
en

t 1
 D

ec
om

po
sit

io
n

D
ia

gr
am

R
eq

ui
re

m
en

ts
 D

ec
om

po
si

tio
n

D
es

ig
n

Pa
ra

m
et

er

1
Support and
locate wafer

when the wafer
is transferred

into / out-of the
chuck

1.1
allow the

chuck
pedestal
to catch

the wafer

1.2
allow the

robot arm
to

transport
the wafer

1.1.1
allow the chuck pedestal to load and unload the wafer

1.1.2
align the centerline of the chuck pedestal with that of the wafer support

1.1.3
Capable of processing/supporting various substrates including: 100mm, 150 mm, and

200mm round substrates with standard flat and notch for SA, and 125mm and 150mm round
pucks for DS.

1.2.1
allow the robot arm space to load and unload the wafer

1.2.2
allow the robot arm to correctly locate the wafer

1.2.3
align with the robot arm motion path

1
Support and
locate wafer

when the wafer
is transferred

into / out-of the
chuck

1.1
allow the

chuck
pedestal
to catch

the wafer

1.2
allow the

robot arm
to

transport
the wafer

1.1.1
allow the chuck pedestal to load and unload the wafer

1.1.2
align the centerline of the chuck pedestal with that of the wafer support

1.1.3
Capable of processing/supporting various substrates including: 100mm, 150 mm, and

200mm round substrates with standard flat and notch for SA, and 125mm and 150mm round
pucks for DS.

1.2.1
allow the robot arm space to load and unload the wafer

1.2.2
allow the robot arm to correctly locate the wafer

1.2.3
align with the robot arm motion path

1
wafer transfer

plate assembly

1.1
center

cut of the
wafer

support

1.2
wafer

transfer
plate
radial
cutout

1.1.1
center cutout of the wafer trasfer plate

1.1.2
wafer transfer plate shaft bushings

1.1.3
wafer transfer plate center cutout lips

1.2.1
wafer transfer plate radial cutout geometry

1.2.2
standoff and wafer transfer plate pin (standard location)

1.2.3
wafer transfer plate height from the ground

1
wafer transfer

plate assembly

1.1
center

cut of the
wafer

support

1.2
wafer

transfer
plate
radial
cutout

1.1.1
center cutout of the wafer trasfer plate

1.1.2
wafer transfer plate shaft bushings

1.1.3
wafer transfer plate center cutout lips

1.2.1
wafer transfer plate radial cutout geometry

1.2.2
standoff and wafer transfer plate pin (standard location)

1.2.3
wafer transfer plate height from the ground

- 119 -

Figure 4-6: ESC DM with Only the Highest Level of Decoomposition

Team

- 120 -

Figure 4-7: Database to Record the Rationale behind Each Interactions in the DM

FR ID FR DP ID DP why source

2.2 clamp in three seconds 2.2
ESC chuck material and
dielectric constant

Dielectric constant of the chuck material contributes
mainly to how fast the chuck can clamp. Shawn Chen 6/27/00

2.3.2 reduce the clamping voltage 2.3.2
Chuck dielectric layer
thickness

Thinner dielectric layer can provide higher clamping
force with the same voltage TARAPDG0927991 page 3

2.3.2 reduce the clamping voltage 2.2
ESC chuck material and
dielectric constant

The material of choice will influence the thickness of
the dielectric layer. TARAPDG0927991 page 3

2.3
Provide clamping force greater than 30
torr 2.2

ESC chuck material and
dielectric constant

clamping force is a function of the
voltage/thickness*dielectric material constant Shawn Chen

- 121 -

4.3.2 The DSM Obtained from the DM Using the Matrix Transformation Method

After obtaining the DM, the method of converting DM into a DSM was used. First of all, the

DSM could be constructed for either one level of decomposition or the entire DM including

all levels. The method proposed in Chapter 3 works for either choice. The purpose of

obtaining a DSM was to analyze the system interactions, such as applying the DSM

partitioning algorithm to identify sequence and iterations in the system, and the partitioning

algorithms must be applied to a single level of the system. Otherwise, the coupling identified

is useless, because higher-level system elements are always coupled with its lower level

elements after decomposition. Therefore, a DSM was constructed for each level of the DM

decomposition. The most useful was the lowest level of the DM decomposition, because the

lowest level of DP’s represented the system elements engineers actually worked on

individually or as small groups.

The second decision to be made was the choice of the output variables during the matrix

transformation. In Chapter 3, it was demonstrated that although the choice of output

variables is not unique for systems involving iterations, the choice for elements that are not

involved in iterations is unique. The choice of elements inside the system couplings is not

unique, but does not affect the identification of the variables involved in the iteration blocks.

Therefore, the diagonal elements in the DM were chosen as the output variables for now.

Other choices of output variables and their implications will be discussed in the next section.

A DSM was then obtained by selecting the diagonal elements of each row as the output

variable set. The DSM was partitioned using the partition algorithm in Warfield (1973).

Two major iteration blocks were identified (Figure 4-8).

- 122 -

Figure 4-8: DSM of the Lowest Level Elements for ESC Integration

Heat Transfer
Package the ESC into
the Existing Process
Modules

Control Circuit
Design

- 123 -

4.3.3 Benefits of the DSM Obtained from DM

4.3.3.1 Prediction of System Interactions

The first benefit of the DSM in Figure 4-8 is that the it serves as a prediction of what was

going to happen in the ESC system integration work. Further reading the DP’s that are in the

DSM iterations, we can identify that the first iteration block involves two issues. The first

issue must be resolved is taking the heat away from the wafer and maintain the wafer at a

certain temperature during the process. The second issue involves the packaging of the ESC

into the existing modules. The second iteration is about the circuit design. Therefore, before

the integration phase started, the CVC engineers already were informed about the issues that

might occur during system integration. They could be much more prepared for their work

and reduce the amount of unnecessary rework.

4.3.3.2 A Requirement-driven Process

The second benefit that such a prediction DSM brings is a prescribed design process that is

based on the product requirements and the product design itself, rather than people’s

subjective decision on what information needs to be exchanged among design teams. For

instance, in order to fulfill the requirement of taking the heat away from the wafer during

processing and maintaining the wafer temperature at a certain level, the Backside Gas (BSG),

the chuck material, and the chuck cooling channel design form a heat transfer circuit (Figure

4-9). Given a certain goal of heat transfer rate, the above three elements can trade off against

one another to achieve the same goal and at the same time lower the cost of the design. For

instance, we can choose an expensive substance to use in the chuck cooling channels so that

the chuck material does not have to be expensive. Or we can design the BSG substance so

that the BSG conducts heat well. Then the requirements on the chuck cooling channel

substance will not need to be high. Expressed in a heat transfer equation, the relationship

among the three DP’s are:

(LBSG/kBSG + Lchuck/kchuck material + 1/hcooling fluid) * (Twafer – Tcooling channel substance)

 = dq/dt

- 124 -

Where

LBSG is the thickness of the Back-side Gas;

kBSG is the heat conduction coefficient of the Back-side Gas;

Lchuck is the thickness of the Chuck material;

kchuck material is the heat conduction coefficient of the chuck material;

hcooling fluid is the heat convection coefficient of the cooling fluid;

T is the temperature;

dq/dt is the heat transfer rate per unit area.

Clearly, the heat transfer equation shows the three DP’s are coupled in the design in order to

fulfill a common requirement.

Figure 4-9: Wafer Cooling Heat Transfer Circuit

The DSM in Figure 4-8 captures this coupling. The heat transfer problem existed in every

chuck CVC designed. Therefore, CVC engineers had prior experience about this design

problem. When the DSM in Figure 4-8 was presented, the CVC engineers pointed out that

they always only individually optimized the three elements in the heat transfer circuit, and

hoped that the cost and performance requirements would be met when the system came

together. The couplings among the three DP’s were not taken advantage of. CVC engineers

Wafer

Backside
Gas

Chuck Body

 dq/dt

 dq/dt

Cooling
Channels

Twafer

Tcooling fluid

1/hcooling fluid

Lchuck/kchuck material

LBSG/kBSG

- 125 -

might have always over designed the heat transfer circuit without knowing they could do

better. Figure 4-10 shows the comparison of the two approaches. From this example, we can

see the DSM obtained from DM took a product view, and showed the engineers ways to

improve the way they always did their design.

The DSM from the DM:

The DSM that shows how CVC engineers approached the design in the past:

BSG substance selection X X O O
BSG inlet flow rate X X
BSG outlet pump X X X
Chuck pedestal andn cooling plate size
BSG channel design X X X O
Cooling plate material O X O X
Chuck cooling water system design O X X X X

Note: highlighted rows indicate the three heat transfer elements involved in the heat transfer circuit in Figure

4-9. The row and column headings are the same in both DSM’s.
X: interaction exists between the row heading and the column headings.

O: interaction exists in only the DSM from DM, not the DSM based on CVC engineers’ approach to the design.

Figure 4-10 The Heat Transfer Design Problem

Another interesting observation is that the DSM obtained from the DM (the first DSM in

Figure 4-10), although contains more complicated system couplings, represents a more

scientific approach to the design of the system by reminding the engineers of system trade-

offs. The second DSM in Figure 4-10 although look simpler, is a less optimal approach to

BSG substance selection X X X X
BSG inlet flow rate X X
BSG outlet pump X X X
chuck pedestal and cooling plate size

BSG channel design X X X X
cooling plate material X X X X
chuck cooling water system design X X X X X

- 126 -

the system design. Therefore, more coupling in the DSM did not equal to a worse design

approach in this example.

4.3.3.3 Manage the Communication Across Organization Boundaries

One of the proven benefits of DSM [Dong (1999)] is that it can show how people in different

organizations should interact with one another in order to manage the design issues regarding

the system interfaces. In the DM and the DSM (Figure 4-4 and Figure 4-8) for the ESC

project, the teams that were responsible for each Design Parameters were indicated in the

matrices. Therefore, the DM and DSM could become maps to guide the communications

across organization boundaries. For CVC’s situation of geographically dispersed design

teams, DSM can be especially useful.

4.3.3.4 Summary of the Benefits

In summary, the DSM obtained from the DM provided the CVC engineers a prediction to the

system interactions. Applying the partitioning algorithm, we were able to identify the

iteration areas of the system before we start the actual integration work. This would be

helpful for managing the ESC system integration project. Second, the DSM constructed

from DM prescribed system interactions. Some of the prescribed interactions helped the

CVC engineers to see beyond how things were always done, and to find the underlying

structure of the design of the system. Third, the DSM with work assignments indicated is

especially helpful for CVC to overcome the challenges in managing the communication

across organization boundaries.

4.3.4 When to Stop the Decomposition in the DM and DSM Construction

Rechtin (1991) has once said “system is unbounded.” The system decomposition of the

requirements and the design parameters can go on forever using the tree structure. Too much

detail is not necessary for the purpose of planning. Where is the limit of decomposition for

the Design Matrix? The rules of thumb used in the CVC case study are as follows:

- 127 -

1. Select the level of system of interest. Within a system, the parameters that contribute

to the system-level interaction should be listed. The interaction within each system

component can be ignored. In this case study, the interactions within ESC that do not

concern ESC system interfaces were not considered.

2. The items that are usually assigned to one person should not be further decomposed

unless a critical detail about the system level interaction will be missed otherwise.

3. Too much detail never hurts to gain the insights. Details can always be eliminated if

after the DSM partitioning, they seem not to reveal additional insights to the nature of

the system level interaction. The trade-off with details is the time spent on the

analysis. The less detailed the DM and DSM are, the less time is needed for analysis.

Huge DSM involving all detailed system elements take a long time to partition and to

analyze.

In order to test whether the ESC chuck DM and DSM has taken proper level of details, two

checks were performed. The first check was that the author interviewed the engineers on the

project including Shawn Chen, Steve Buckner, Gary Denton, and Blake Reese. These

engineers not only reviewed the DSM, but also judged whether the level of detail was

appropriate. After reviewing, all of the above engineers agreed the DSM has captured the

appropriate level of details for the system interface for the design parameters that are in their

responsibility.

The second check performed was on the DSM itself. Since the design parameters in the DM

had a tree structure (Figure 4-5), DSM’s can be constructed for each level of the tree. The

deepest branch of the tree in this case study has six levels. Some branches have fewer levels

than six. The highest level in the tree is given an ID using an integer such as “1”. The

second level follows its super level by a dot and an integer, such as “1.1” and “1.2”. The

subsequent levels are denoted following the same rules (see Figure 4.5).

By only considering the interactions between the leaf elements on each branch of the

decomposition tree in the DM (see Figure 4-3), the DSM in Figure 4-8 can be constructed.

By only considering the interactions among the elements one level higher than the leaf

- 128 -

elements, the DSM in Figure 4-11 is constructed. Figure 4-12 is the DSM with nodes two

level up from the leaves, and so on (Figure 4-13, Figure 4-14, and Figure 4-15). Note for

branches with fewer levels than six, when the top level is reached, the top level elements

stayed in the subsequent DSM’s. For instance, FR and DP 7 have only three levels in the

tree. Therefore, starting at the DSM in Figure 4-12, the DP 7 stayed in each of the higher

level DSM’s (Figure 4-13 through Figure 4-15).

Comparing the partitioned DSM’s at various decomposition levels of the design parameter

tree, we can make the following observations:

• First, the details of the design parameters included in the leaf-level DSM (Figure 4-8)

are necessary. Compare the DSM for the leaf-level (Figure 4-8) to the DSM at the

fifth level (Figure 4-11) and fourth level (Figure 4-12), certain tasks in the super-

category of 2, 3, 5, and 7 can be done earlier without getting involved in the iterations

in the leaf-level DSM. Therefore, the details contained in the leaf level DSM help for

the planning and completing tasks in parallel.

• Second, compare the DSM’s that are two levels or more beyond the leaf-level (Figure

4-13, Figure 4-14, and Figure 4-15), they all have the same topology. Only one

iteration block is identified. It seems like everything interacts with everything else in

this project, which is not far from what people expect anyway without the aid of DSM

tools. Added details towards the leaf level show there are actually two iteration

blocks. The first one involves the packaging of the chuck into the PVD machine, and

the second one involves the circuit design for the voltage control. Therefore, the

additional details enable us to take advantage of the DSM and let the interactions

behind the design parameters to help us to plan out the design tasks.

The above observations hold true for the CVC ESC case study. For other cases, the decision

of when to stop the decomposition may be different. In any case, this decision is a

management judgment. The lessons learned from this case study can be used for future

cases.

- 129 -

Figure 4-11: DSM at the Fifth Level of Decomposition (one level higher than the leaf level)

DP ID DP 2.
4

2.
9

3.
1

3.
2.

3.
1.

3

4 7.
1

8 9 2.
6

1.
1

1.
2

2.
1

2.
2

2.
3

2.
5

2.
7

2.
8

2.
1

3.
2.

1

3.
2.

2

3.
2.

3.
1.

1

3.
2.

3.
1.

2

3.
2.

3.
2

3.
3

5 6 2.
11

7.
2

7.
3

7.
4

2.4 cleanness of the chuck and the wafer
2.9 three-piece chuck electrodes
3.1 process recipe design

3.2.3.1.3 BSG chamber bypass ISO valve
4 matching network

7.1 chuck shaft
8 wafer loading robot arm and its motion path
9 chuck body

2.6 clamping time X
1.1 center cutout of the wafer support X X X X
1.2 wafer transfer plate radial cutout X X X
2.1 circuit to reverse the polarity X X
2.2 ESC chuck material and dielectric constant X X
2.3 circuit to provide proper voltage X X X X X X X X
2.5 wafer clamping sensor X
2.7 chuck and wafer insultaor center ring and O0ring X X X X X X
2.8 wafer insulator (2) X X X X X

2.10 chuck pedestal and cooling plate size X
3.2.1 BSG channel design X X X X
3.2.2 BSG substance selection X X
3.2.3.1.1 BSG inlet flow control X X X X X X
3.2.3.1.2 BSG outlet flow control X X X X
3.2.3.2 BSG gas flow tubes X X X X

3.3 chuck cooling system X X X X X
5 seal off the vacuum X X X X
6 chuck adapter plate X X X X X

2.11 chuck pedestal height at rest X X
7.2 chuck bellows X X
7.3 electronics to move the shaft X
7.4 chuck motion control software X X

- 130 -

Figure 4-12: DSM at the Fourth Level of Decomposition (two levels higher than the leaf level)

Figure 4-13: DSM at the Third Level of Decomposition (three levels higher than the leaf level)

DP ID DP 3.
1

4 8 9 1 2 3.
2.

1

3.
2.

2

3.
2.

3

3.
3

5 6 7

3.1 process recipe design
4 matching network
8 wafer robot arm and its motion path
9 chuck body
1 wafer transfer plate assembly X X X
2 electrocstatic clamping device X X X X X X X X

3.2.1 BSG channel design X X X
3.2.2 BSG csubstance selection X X
3.2.3 BSG pressure X X X X X X

3.3 chuck cooling system X X X X X
5 seal off the vacuum X X X
6 chuck adapter plate X X X
7 chuck movement mechanism X X

DP ID DP 3.
1

4 8 9 1 2 3.
2.

1

3.
2.

2

3.
2.

3.
1

3.
2.

3.
2

3.
3

5 6 7

3.1 process recipe design
4 matching network
8 wafer robot arm and its motion path
9 chuck body
1 wafer transfer plate assembly X X X
2 electrocstatic clamping device X X X X X X X X

3.2.1 BSG channel design X X X
3.2.2 BSG csubstance selection X X
3.2.3.1 BSG net flowrate X X X X
3.2.3.2 BSG gas flow tubes X X X X

3.3 chuck cooling system X X X X X
5 seal off the vacuum X X X
6 chuck adapter plate X X X
7 chuck movement mechanism X X

- 131 -

Figure 4-14: DSM at the Second Level of Decomposition (four levels higher than the leaf level)

Figure 4-15: DSM at the First Level of Decomposition (the highest Level in the tree)

DP ID DP 3.
1

4 8 9 1 2 3.
2.

1

3.
2.

2

3.
2.

3

3.
3

5 6 7

3.1 process recipe design
4 matching network
8 wafer robot arm and its motion path
9 chuck body
1 wafer transfer plate assembly X X X
2 electrocstatic clamping device X X X X X X X X

3.2.1 BSG channel design X X X
3.2.2 BSG csubstance selection X X
3.2.3 BSG pressure X X X X X X

3.3 chuck cooling system X X X X X
5 seal off the vacuum X X X
6 chuck adapter plate X X X
7 chuck movement mechanism X X

DP ID DP 3.
1

4 8 9 1 2 3.
2

3.
3

5 6 7

3.1 process resipe design
4 matching network

8
wafer loading robot arm and its
motion path

9 chuck body

1 wafer transfer plate assembly X X X
2 electrostatic clamping device X X X X X X X X

3.2 EBSG X X X X
3.3 chuck body cooling system X X X X

5 seal off the vacuum X X X
6 chuck adapter plate X X X
7 chuck movement mechanism X X

- 132 -

4.3.5 The Validity of the DSM Obtained from Matrix Transformation Method

4.3.5.1 Reviews from the CVC Engineering Experts

In order to verify the correctness of the DSM constructed from DM, the DSM was presented

to 5 technical experts at CVC. These experts included one person from each of the

functional groups that were preparing the integration process of the ESC—the advanced

technology department, the mechanical engineering group, the electrical engineering group,

the software and controls group, and the systems engineering group. Each expert reviewed

the interactions in the DSM and agreed that most of the interactions captured were correct

and reasonable. Only very few modifications were proposed. However, these proposed

modifications were caused by the missing information during the construction of the DM, not

the technique of converting DM to DSM. In the end, all of the proposed modification on the

DSM could be correctly incorporated into the original DM. Therefore the case study

demonstrated that the matrix conversion method gives us a valid DSM.

A better validation of the prediction DSM would be to compare it with what actually

happened later in the ESC system integration project. However, as stated earlier, the

company CVC was going through a major merger process, and the personnel was changing

rapidly. By the end of this case study, most of the CVC employees on this project left the

company. A new project manager was assigned to continue this project. Many of the

initiatives in the company changed, and it became difficult to follow up with the ESC

integration project after the author left the company in August. Therefore, the DSM obtained

from the DM was not validated against what happened later on. Yet, in one occasion, the

new project manager told the author about a design problem that occurred during their ESC

integration work. The author went back to the prediction DSM and found the iteration was

predicted in the DSM.

Nevertheless, although the DSM was not verified in a strict sense, all CVC engineers who

were assigned to this project agreed with the DSM obtained from the DM. If the people on

the team had not left the company because of the merger, they would have used the DSM to

- 133 -

start planning their integration effort. For a matrix transformation technique that has never

tried out before, this case study gave an encouraging result.

4.3.5.2 DSM System Interaction Density

The DSM system interaction density is an idea started by my advisor Dr. D. E. Whitney at

MIT. Dr. Whitney measured all of the past DSM’s made by different researchers and

calculated the interaction density:

System Interaction Density = Total Number of Off-diagonal Marks / Total Number of Rows

He observed that all of the past DSM’s had an interaction density ratio of about 6, whether it

was a small product or a large product. Therefore, the interaction density ratio of 6 has been

a hypothesis to examine whether a DSM had captured enough information about system

interactions. In this case study, the interaction density ratio is also used to test whether the

DSM’s built from requirements and from expert experiences had the same ratio.

In this case study, the system interaction density ratio is:

System Interaction Density = 146 / 52 = 2.8

This value is much lower than the typical number 6. There may be many possible causes for

this low value. For instance, the product may be relatively simple. Or the system has been

optimized to reduce the system couplings through many generations of products. Although

the number 6 is a hypothesis, we may still speculate that the system interaction density ratio

is so low in this case study because the DSM was built at early stage of the design process,

and not so much was know yet about the system interactions. Therefore, the question about

the validity of the DSM built from DM is again raised here. Unfortunately, due to the CVC’s

condition, we were unable to well follow up with what happened actually later on. It would

have been very helpful to following up closely with what happened later on in the actual

system integration. Would the experts know more about the system interactions and so the

- 134 -

interaction density increased? We can only hope a future research project would be fortunate

enough to have a condition to answer this question.

4.3.6 The Choice of Output Variables

In Chapter 3, one of the unsolved questions for the matrix transformation method was how to

select the output variables in the DM before transferring the DM into a DSM. From

mathematical examples, we know the choice of output variables is unique for system

elements (DP’s in a DM) that are unrelated or in sequence. The choice of the output

variables is the diagonal elements. The choice of output variables is not unique for system

elements that are in a coupling.

The DSM in Figure 4-8 was obtained by choosing all diagonal elements (both in and out of

iteration blocks) as the output variables. The resulting DSM was meaningful and useful for

CVC engineers. Therefore, the diagonal elements must be a correct choice for output

variables. To test the result of choosing non-diagonal elements in the iteration blocks as

output variables, two different approaches were taken. The first approach—the Logical

Approach--was to create the DSM by choosing non-diagonal elements in the iteration blocks,

then see if the resulting DSM gives a logical design process. The second approach—the

Mathematical Approach--was to assign sensitivity values in the DM, and see whether

choosing non-diagonal elements make the system iteration diverge or converge faster. Both

approaches are described below.

4.3.6.1 The Logical Approach

Take an iteration block from the ESC DSM as an example. The FR’s and DP’s involved are:

FR2.3.2 = Reduce clamping voltage

FR2.3.3 = Provide on/off and magnitude control for the voltage

FR2.3.5 = Prevent the chamber RF power from affecting the electric network

- 135 -

Reducing the dielectric layer’s thickness in the chuck can reduce the voltage needed to clamp

wafers. An electric circuit can be designed to control the voltage magnitude that is applied to

the wafer. A DC choke circuit can be designed to prevent the RF power from affecting the

electric network. Therefore, the corresponding DP’s for the above three FR’s are:

DP2.3.2 = Chuck dielectric layer thickness

DP2.3.3 = Electric circuit for the voltage control

DP2.3.5 = DC choke circuit

In addition, the above three DP’s also have side effects on other FR’s. Part of the voltage

used to clamp the wafers can be dissipated in the circuit (DP2.3.3). Therefore, DP2.3.3 has

side effect on FR2.3.2. The chuck dielectric layer thickness determines how much voltage is

needed to clamp the wafer and hence influences the magnitude to be controlled in the circuit.

Therefore, DP 2.3.2 affects FR2.3.3. In addition, the DC choke circuit is designed to filter

out the RF power so that the magnitude control on the voltage can be stable. The DC choke

circuit design must know the voltage to be controlled. The voltage regulation circuit must

also know the capability of the choke circuit. Therefore, FR/DP 2.3.3 and FR/DP 2.3.5 affect

each other. Using the Axiomatic Design method to construct the Design Matrix, we get:

 DP2.3.2 DP2.3.3 DP2.3.5
FR2.3.2 X X

FR2.3.3 X X X
FR2.3.5 X X

This is a coupled design, and the choice of output variable is not unique. The first choice we

can try is to choose the diagonal elements as output variables:

 DP2.3.2 DP2.3.3 DP2.3.5
FR2.3.2 X X
FR2.3.3 X X X
FR2.3.5 X X

By choosing these output variables, we are saying:

- 136 -

DP2.3.2 = f (FR2.3.2, DP2.3.3)

DP2.3.3 = f (FR2.3.3, DP2.3.2, DP2.3.5)

DP2.3.5 = f (FR2.3.5, DP2.3.3)

In other words,

• Given the information about DP2.3.3 (Electric circuit for the voltage control), design

DP2.3.2 (Chuck dielectric layer thickness) to fulfill the requirement FR2.3.2 (Reduce

clamping voltage).

• Given the information about DP 2.3.2 (Chuck dielectric layer thickness) and DP2.3.5

(DC choke circuit), design DP2.3.3 (Electric circuit for the voltage control) to fulfill

the requirement FR2.3.3 (Provide on/off and magnitude control for the voltage).

• Given the information about DP2.3.3 (Electric circuit for the voltage control), design

DP2.3.5 (DC choke circuit) to fulfill the requirement FR2.3.5 (Prevent the chamber

RF power from affecting the electric network).

The above interpretation of the design process as a consequence of choosing the diagonal

elements as output variables makes perfect sense. Hence, the resulting DSM below

represents a design process that is perfectly executable.

 DP2.3.2 DP2.3.3 DP2.3.5
DP2.3.2 X X
DP2.3.3 X X X
DP2.3.5 X X

We may also choose non-diagonal elements as output variables in this DM. Below is one of

the possible choices:

 DP2.3.2 DP2.3.3 DP2.3.5
FR2.3.2 X X
FR2.3.3 X X X
FR2.3.5 X X

- 137 -

Therefore, we get:

DP2.3.2 = f (FR2.3.2, DP2.3.3)

DP2.3.5 = f (FR2.3.3, DP2.3.2, DP2.3.3)

DP2.3.3 = f (FR2.3.5, DP2.3.5)

In other words,

• Given the information about DP2.3.3 (Electric circuit for the voltage Control), design

DP2.3.2 (Chuck dielectric layer thickness) to fulfill the requirement FR2.3.2 (Reduce

clamping voltage).

• Given the information about DP2.3.2 (Chuck dielectric layer thickness), and DP2.3.3

(Electric Circuit for the Voltage Control), design DP2.3.5 (DC choke circuit) to fulfill

the requirement FR2.3.3 (Provide on/off and magnitude control for the voltage).

• Given the information about DP2.3.5 (DC choke circuit), design DP2.3.3 (Electric

circuit for the voltage Control) to fulfill the requirement FR2.3.5 (Prevent the

chamber RF power from affecting the electric network).

Among the above three bullet points, the first one sounds very reasonable, because the choice

of output variable in the first row is still the diagonal element. The second and third bullet

points do not sound correct. Following these design procedures, both DP2.3.3 and DP2.3.5

will be designed for their side effects rather than the main FR they are designed for at first

place. As a result, the DSM from this choice of output variables does not represent a logical

design process:

 DP2.3.2 DP2.3.3 DP2.3.5
DP2.3.2 X X
DP2.3.3 X X
DP2.3.5 X X X

In summary, choosing non-diagonal elements as the output variables leads to a non-

executable design process. It is like designing a component not for its main purpose, but

rather for its side effects. Choosing diagonal elements as the output variables gives us a

- 138 -

feasible design process through the resulting DSM. Therefore, from a logic point of view,

the diagonal elements are the correct choice for output variables in a DM.

4.3.6.2 The Mathematical Approach

In this approach, our goal is to see the effect of output variable choice on the convergence of

system iterations. First, we can assign sensitivity values to each entry in the Design Matrix.

These sensitivity values indicate one unit of change in the DP would cause so much

percentage of change in order to achieve the FR value.

We can again use the same example from the last section to demonstrate this point.

 DP2.3.2 DP2.3.3 DP2.3.5
FR2.3.2 0.75 0.5 0
FR2.3.3 0.5 0.75 0.2
FR2.3.5 0 0.2 0.9

Shawn Chen, the advanced research and development engineer for the ESC project, gave the

values in the above DM. The values in each row or column do not have to add up to one

because they are sensitivity values for each individual FR-DP relationship. These values can

be interpreted as:

∆FR2.3.2* = 0.75 * ∆DP2.3.2* + 0.5 * ∆DP2.3.3*

∆FR2.3.3* = 0.5* ∆DP2.3.2* + 0.75 * ∆DP2.3.3* + 0.2* ∆DP2.3.5*

∆FR2.3.5* = 0.2 * ∆DP2.3.3* + 0.9 * ∆DP2.3.5*Where ∆FR* and ∆DP* means a unit of

change from the nominal values of FR and DP.

Also note the diagonal elements in the DM should always have the highest value in a row,

because they should be the major contributors to the corresponding FR’s. This observation is

also a result of following the Axiomatic Design guidelines to construct the DM.

From the above DM, if we select the diagonal elements as the output variables, we get:

- 139 -

 DP2.3.2 DP2.3.3 DP2.3.5
FR2.3.2 0.75 0.5 0
FR2.3.3 0.5 0.75 0.2
FR2.3.5 0 0.2 0.9

Therefore,

∆DP2.3.2* = (1/0.75) * ∆FR2.3.2* - (0.5/0.75) * ∆DP2.3.3*

∆DP2.3.3* = (1/0.75) * ∆FR2.3.3* - (0.5/0.75) * ∆DP2.3.2* - (0.2/0.75) * ∆DP2.3.5*

∆DP2.3.5* = (1/0.9) * ∆FR2.3.5* - (0.2/0.9) * ∆DP2.3.3*

The corresponding DSM is then:

 DP2.3.2 DP2.3.3 DP2.3.5
DP2.3.2 0 0.5/0.75 0
DP2.3.3 0.5/0.75 0 0.2/0.75
DP2.3.5 0 0.2/0.9 0

According to Strang (1986), and Smith and Eppinger (1997), when the DSM interactions

contain the sensitivity values, the Eigen values of the DSM tell the convergence of the

iterations. When the absolute value of the largest Eigen values is less than 1, the iteration

converges.

The absolute value of the largest Eigen value for the above DSM is 0.71. Therefore,

choosing the diagonal elements as output variables makes the design iteration converge.

Use the same Design Matrix but choose a different set of output variables such as below.

This choice of output variables is the same as the second choice of output variables in the

logic proof section.

- 140 -

 DP2.3.2 DP2.3.3 DP2.3.5
FR2.3.2 0.75 0.5 0
FR2.3.3 0.5 0.75 0.2
FR2.3.5 0 0.2 0.9

The resulting DSM is:

 DP2.3.2 DP2.3.3 DP2.3.5
DP2.3.2 0 0.5/0.75 0
DP2.3.3 0 0 0.9/0.2
DP2.3.5 0.5/0.2 0.75/0.2 0

The absolute value of the largest Eigen value for this DSM is 3.864. Therefore, the iteration

does not converge if we choose the non-diagonal elements as output variables.

Although the above example is only one special case, the same applies to all general cases in

design when sensitivity values are assigned. In summary, because the diagonal elements

always have higher sensitivity values for the corresponding FR, only choosing the diagonal

elements as the output variables can make the iteration converge.

4.3.6.3 Summary for Both Approaches

In the above two sections, we have seen that only by choosing the diagonal elements in the

Design Matrix, could we get a meaningful DSM to aid the design process planning. In

addition, only the diagonal elements make the design iterations in the DSM converge.

Both conclusions originate from how we built the Design Matrix. The Axiomatic Design

DM is built with the rule that the diagonal elements are the major design parameter for the

corresponding FR. Therefore, only by choosing the diagonal elements, could we get a

meaningful DSM to aid the planning of the design process.

- 141 -

4.3.6.4 Implication on the Conversion between DM and DSM

The observation on the choice of output variables has two important implications on the

conversion between DM and DSM:

1. The interactions seen in the DM are the same interactions that will be seen in the

DSM. In other words, except for the differences in the row headings, DM and its

DSM should have the same look.

2. When an interaction in the system between two DP’s is identified, that interaction

can be reflected directly in the DSM. Consequently, a mark at the same position

will appear in the DM. Therefore, the matrix transformation between DM and

DSM is a two-way process. This implication enables us to capture and document

the emergent properties in the system using DSM, and reflect the impact of

emergent properties quickly back to the desired functions in the DM. This

capability of the matrix transformation method remedies the DM’s incapability of

dealing with emergent properties of the systems.

4.3.7 Not All Design Requirements are Decomposed

Not all design requirements in the CVC case study are decomposed in the Design Matrix.

Several specifications cannot be decomposed down to specific subsystem(s) in the product.

Below are some examples of such requirements:

• The micro-contamination delta level is less than XX particles of size YYY and larger

for a ZZZ substrate surface.

• Has a life time longer than XX years based on YY shifts per day, ZZ days per week

operation at KK substrate per hour.

• Mean Time between Cleaning is greater than XX week based on YY days per week

and ZZ hours per day.

- 142 -

Note the values in these requirements are replaced by symbols for proprietary reasons. The

CVC quality-engineering department developed the above specifications. The Vice

President of Quality at CVC and other engineers on the ESC project agreed that these

specifications were usually not explicitly decomposed into the design.

These requirements fit into the concept of Constraints in Axiomatic Design theory.

Axiomatic Design Constraints are system level performance measures that cannot be

decomposed down to subsystem levels [Suh (2000), Tate (1999)]. Axiomatic Design

believes that if the people who decompose the systems keep these constraints in mind, the

effects of the constraints on the system interactions will show in Design Matrices. This is

easy said hard to do. Interviews with the CVC design engineers reveals that they really

cannot map those system level performance requirement into the Design Matrix. In their

design, CVC engineers approached these requirements by trial-and-error. They tried to reuse

components understood from the past design and hope their knowledge about past design

will help to predict what happens in the new design. How well the un-decomposed design

requirements are met is not understood until the prototype-testing phase. If the requirements

are not met, CVC engineers will redesign the product based on what goes wrong in the

testing.

Therefore, the Axiomatic Design DM can never take all of the inputs to a design.

Consequently, the interactions in the DM are not the complete set of system interactions.

Therefore, using the matrix transformation method to convert a DM into a DSM only gives

us part of all system interactions. This observation is a part of the answer for research

question Q1-c.

4.3.8 Managing System Level Knowledge at CVC

The existence of indecomposable requirements indicates that there exist system interactions

to be learned later on in the design process. Therefore, it is important to have a knowledge

management framework to capture the new learning and relate back to how requirements,

ultimately customer needs, are fulfilled. The effort of managing system level knowledge

- 143 -

started at the beginning of the design process by constructing DM and converting it into

DSM’s can be continued throughout the entire product lifecycle. In the end, we will capture

all the important learning about the system/product we design. Meanwhile, collecting the

knowledge learned about the reliability of individual components also enable the statistical

analysis of the system level performance measure. Through the accumulation of knowledge

about the design and the statistical analysis, the testing length and the iteration back to design

may be reduced in the future.

When this case study was carried out, CVC did not have a good history in documenting their

design knowledge. Preliminary design logbooks were kept for each project, yet the

information in the logbooks were ordered chronically. It was difficult to browse past design

books to find answer to current design problems. Therefore, CVC heavily relied on the

knowledge of the experts in the company.

Before the integration work of the ESC project started, the only documents were the system

design specification, the preliminary design drawings, and the ESC technical feasibility

report. In order to construct the DM and then transfer the DM into a DSM, many CVC

engineering experts were consulted. Among all the interactions captured by the final DSM at

the leaf level of the system decomposition (Figure 4-8), 2.9% of the interactions could be

identified from documents. The rest 97.1% of the system interactions resided in experts’

minds. Figure 4-16 below shows this situation.

Figure 4-16: How well CVC Documents System Level Knowledge in the ESC Project

Where is the System Interaction Knowledge in CVC
ESC Project

2.9

97.1

0.0

20.0

40.0

60.0

80.0

100.0

Pe
rc

en
t o

f K
no

w
le

dg
e

of
 S

ys
te

m

In
te

ra
ct

io
ns Percent from experts

percent from
documentation

- 144 -

Therefore, the best source of system level knowledge at CVC was the engineering experts.

Compare to Ford Motor Company (Figure 1-3), CVC is quite behind. A good knowledge

management system should help CVC to better keep the organization learning within the

company.

4.3.9 Results from Testing the Knowledge Management Framework

As mentioned earlier, Guru Prasanna—a MIT Master degree student—went to CVC to help

test the knowledge management framework proposed in Chapter 3. Guru reviewed two

project documents at CVC—the Metal Organic Chemical Vapor Deposition (MOCVD)

project and the ESC integration project. The MOCVD project was a finished project. All of

the design documents were already archived. The ESC project was an on-going project, and

the design document was incomplete. Yet, the ESC case study had the DSM built by the

author from the requirements, which captured some of the system interaction knowledge

undocumented by CVC. In addition, Guru also reviewed the design documents for Ford

throttle body design from the author’s master’s degree thesis. Ford throttle body design was

a completed project, but the DSM’s built for the author’s Master’s degree research capture

some of the system interactions knowledge undocumented by Ford [Dong (1999)]. The goals

for Guru’s study were:

• Test the knowledge types proposed by the knowledge management framework on already

completed project documents. Find out whether the knowledge types at least cover all of

the knowledge being documented on paper.

• Use the framework to find out what types of knowledge are better documented at CVC

and what are not. Discuss with the company means to improve in the area where

documentation is lack.

• Compare the CVC’s practice with that of Ford Motor Company.

Guru’s study is documented in his thesis [Prasana (2000)]. The details will not be repeated

here. The major findings from his thesis include:

- 145 -

• The categories of system level knowledge proposed in Chapter 3 were able to include all

of the knowledge documented in all three cases—Ford throttle body design, CVC

MOCVD project, and CVC ESC project. Therefore, these categories of system level

knowledge may be sufficient for other cases too.

• The system level knowledge management framework proposed in Figure 3-1 was able to

serve as a basis to measure what types of knowledge were well documented and what

were not. This learning was helpful to point out to CVC what kind of improvements they

need in the future for documentation. For instance, the “How” types of knowledge was

not well documented in the ESC project, but was found with abundance in the DSM

made for ESC project. Hence, DSM was recommended to CVC to document interaction

types of knowledge.

• The knowledge management framework also served as basis for comparison among

companies and projects. Guru compared Ford throttle body project with the CVC

MOCVD and ESC projects using each categories of knowledge. Different projects do

well in different categories. The framework provided more insights to the strengths and

weaknesses of each company.

Nevertheless, all the comparisons Guru’s thesis made were on the existing documents

companies had and the DSM from the author’s case studies. The testing on the knowledge

management framework is far from conclusive for the following reasons:

• From Figure 3-1 and Figure 4-16, we know neither company did very well in

documenting system level knowledge. Therefore, the design document only

tested the knowledge management framework against a small amount of design

knowledge.

• Although the DSM’s in both the Ford and CVC case studies captured a lot of the

system interaction information, we still lack the information on marketing report,

manufacturing processes, and service and field support. This framework has been

tested only in the FR and DP domains rather than in all four domains of the

framework (see Figure 3-1).

- 146 -

Therefore, a lot more work is needed to further test and improve the knowledge

management framework. However, the preliminary results from Prasanna (2000) are

encouraging for future researches in this direction.

4.4 Progress Made Regarding the Research Questions

In this case study, the following observations were made about the research questions:

Q1-b. How to predict system interactions early? How to predict system interactions for new

technology?

The CVC ESC case study tested the feasibility of the matrix transformation method in a real

engineering project. The matrix transformation method produced a meaningful DSM from a

DM. The CVC engineers accepted the partition results from the prediction DSM and

planned to use it for the actual ESC system integration project.

Three benefits were observed in this case study regarding obtaining the DSM from the DM.

First, the DSM was obtained before the ESC chuck integration project. The DSM analysis

provided the CVC engineers insights about the system interfaces and where system iterations

existed so that they could be prepared to address those system interface issues. Second, the

DSM obtained from the DM predicted system interactions based on the system requirements.

The DSM prescribed a design process that is different from what people think how things are

always done. It provided refreshing ideas on how to improve the design based on the

underlying structure of the system. Third, the DSM with team assignment associated with

the DP’s provided a way for CVC to manage the communication across the boundaries of

geographically very dispersed design teams.

In addition, the answer to the choice of output variables was found from this case study. The

selection of output variables must be the diagonal elements in the DM. Otherwise, the DSM

interactions in the iteration blocks do not make sense in the design situation and do not

converge. This answer is due to how Design Matrices are constructed based on the rules in

Axiomatic Design.

- 147 -

The implication of this finding is that the DM and its corresponding DSM should look the

same except for the headings of the rows. Therefore, when system emergent properties are

discovered later on in the design, the relevant system interactions can be captured by the

DSM and then reflected in the DM by putting a mark at the same location in the DM as that

in the DSM. Therefore, we can remedy the DM’s incapability of dealing with emergent

properties of the system.

Unfortunately, due to the organization change at CVC, most of the people who started this

ESC project left the company. The system interaction predictions made by the DSM was not

verified during the actual integration process. The goal of the next case study is to set up an

experiment where the prediction can actually be verified.

In summary, the results obtained from this case study about the matrix transformation

method are very encouraging. The next case study shall focus on the following three aspects:

1. Is this matrix transformation method transferable to another product and another

company?

2. How well does the prediction DSM matches with what the actual system interactions

are?

Q1-c. If we can predict system interactions, how complete is the prediction?

This case study revealed that some requirements could not be easily decomposed at early

phase of the design. These requirements measured system emergent properties. The system

interactions that contributed to these requirements could not be predicted at early phase of the

design. We must wait until prototyping and testing to understand the system tradeoffs that

are important to meeting these requirements. Therefore, the interactions predicted by DSM

transferred from the Design Matrix can never be the complete set of system interactions.

In addition, the system interaction density ratio of the resulting DSM was very low for the

DSM at the lowest level of the system hierarchy. Although a valid DSM must have about 6

- 148 -

marks per row is a still a hypothesis, a low interaction density ratio gives a warning on the

completeness of the interactions the DSM has captured.

However, the decision-making at early phase of the design process involves risks and

uncertainties anyway. We may not need a prediction that is complete. If the prediction can

reveal the essential information about the system, that may just be enough for project

planning. Unfortunately again, the merger with VEECO interrupted the ESC project. We

need another case study to find out whether this incomplete prediction is useful.

Q2-b. Is there a better way to capture, store, and represent system level knowledge?

The case study revealed that CVC lacks documentation for the system level knowledge. It

heavily relied on expert engineers to carry the learning from the beginning to the end of the

project and from projects to projects. The DM-to-DSM matrix transformation method

provided a way to start documenting the system level knowledge from early on in the design

process. When the ESC project was assigned to a new team after the merger, the DSM was

passed on as part of the design document to the new project team so that they could catch up

with what had been understood about system interactions. Therefore, the matrix

transformation method was a better way to capture, store, and represent system level

knowledge at CVC. However, this thesis cannot generalize this observation for all other

companies. More case studies in different industries are needed.

In addition, Guru Prasanna [(2000)] tested the system level knowledge management

framework using CVC’s documents on MOCVD project and the ESC project, and Ford

throttle design documents. Guru also reviewed the DSM’s built by the author for Ford

throttle body and CVC ESC project. Guru found the categories of system level knowledge

proposed by this framework captured the documented knowledge in all three projects. Guru

also found the framework was an effective way to identify what types of knowledge were

recorded better/worse in a company, so that the company could focus the improvement effort

on target. However, Guru’s research focused on documented design knowledge in

companies. His study did not look at all five domains of the design in the proposed

- 149 -

framework (see Figure 3-1). Therefore, we still cannot make conclusive statement about the

effectiveness of the framework in general.

In summary, the findings in this case study were very encouraging regarding this question,

but the data observed were incomplete to make any conclusive statement regarding this

question. However, the observations did not provide any negative examples either.

Q2-c. What are the best sources of information for predicting system interactions?

In this case, since CVC does not have much design documents, the best source for predicting

system interactions were the design requirements document, and the engineering experts who

knows how requirements were decomposed into subsystems. CVC may be a typical example

for small companies, but not all companies. Therefore, more observations are needed from

another case study.

Q2-d. How companies are doing with managing system level knowledge?

CVC does a poor job in managing system level knowledge. The percentage of system level

knowledge documented in the ESC project was only 2.9% (Figure 4-16), even compare to

Ford’s data (Figure 1-3). CVC heavily relied on engineering experts to understand and

manage the system level interactions. This observation again confirmed the need for a good

system level knowledge management framework, in order to keep the system level

knowledge in the organization.

Q2-e. How to encourage engineers to document system level knowledge?

The matrix transformation method enabled the CVC engineers to obtain a DSM from

documenting the requirements decomposition and trace-ability in a DM. The resulting DM

and DSM were excellent design documentation for future reference. Furthermore, the

prediction DSM can be used to help project planning immediately. The prediction DSM

reveals interactions that are driven by product requirements. The interactions revealed the

underlying structure of the system, rather than based on people’s subjective judgment.

- 150 -

The effect of documenting system level knowledge was not only long-term, but also

immediate using the matrix transformation technique. Therefore, the matrix transformation

technique provides incentives for engineers to document system level knowledge.

4.5 Summary

This chapter detailed the case study carried out at CVC. The project was the system

integration for the Electro-static Chuck (ESC). CVC’s objectives were:

• Use the matrix transformation method to obtain a DSM before the integration work was

carried out, so that mistakes could be prevented, and they could complete the project in

time.

• Discover how to better set up a communication channel among the various dispersed

divisions all over the nation.

The objectives for this thesis research in the CVC case study were:

• Test the framework for managing system level knowledge—Guru Prasanna and Qi

Dong(Q2-b)

• Discover the situation of documenting system level knowledge at CVC—Qi Dong (Q2-

c, d)

• Test the matrix transformation method—Qi (Q1-b, c, Q2-e)

The matrix transformation method introduced in Chapter 3 was applied. A DM was

generated capturing the requirements decomposition and how the design concept fulfilled the

requirements. This DM was transformed into a DSM predicting system interfaces involved

in the ESC integration. The CVC engineers agreed that the prediction DSM captured very

meaningful and useful system interactions, proving the matrix transformation method was

feasible for real engineering cases.

For CVC, this case study fulfilled their objectives:

- 151 -

• The prediction DSM made from DM was partitioned. The results of partitioning

identified the major system iteration area, and helped the project managers to plan their

integration effort better.

• As a geographically very dispersed company, the team assignments indicated in the DSM

helped to facilitate the communication across the organization boundaries.

• The current situation of system level knowledge management at CVC was studied. CVC

was very behind. The knowledge management framework proposed in Chapter 3 was

suggested to CVC to improve their current practice.

This case study helped us to understand the research questions better. We found partial

answers to some of the questions, and raised more questions for further research. Regarding

research questions Q1b:

• The matrix transformation method introduced in Chapter 3 was feasible in real

engineering projects. Therefore, it enabled us to predict system interactions before the

actual system integration of the ESC project started.

• The DSM analysis provided the CVC engineers insights about the system interfaces and

where system iterations existed. CVC engineers could be prepared to address those

system interface issues and avoid unnecessary rework.

• The prediction DSM prescribed a design process that is different from what people think

how things are always done. It provided refreshing ideas on how to improve the design

based on the underlying structure of the system.

• The DSM with team assignment associated with the DP’s provided a way for CVC to

manage the communication across the boundaries of geographically very dispersed

design teams.

• The case study showed us the diagonal elements in the DM are the correct choices of

output variables in the matrix transformation method.

• From the choice of output variables, we can conclude that the DM and its corresponding

DSM look the same except for the row headings. System emergent properties can be

- 152 -

captured by the DSM and then reflected in the DM. This remedies the DM’s lack of

capability in dealing with system emergent properties.

• The correctness of the prediction DSM was not verified by what actually happened later

in the ESC project due to the organization changes from CVC’s merger. Thus, the

following questions were posed:

o Is this matrix transformation method transferable to another product and

another company?

o How well does the prediction DSM matches with what the actual system

interactions are?

Regarding Question Q1-c, the CVC case study showed that not all requirements could be

decomposed using the Axiomatic Design’s Design Matrix. Therefore, the DSM converted

from DM does not provide a complete view of the system interactions. The system

interactions associated with emergent properties are to be learned later. This discovery

brings the question of how good is the prediction in the DSM transformed from DM.

Regarding Question Q2-b, it was found that the matrix transformation method is a good way

to let people start documenting the requirements decomposition and flow-down structure

from early on in the project. Guru tested the knowledge management framework proposed in

Chapter 3 on CVC’s documented design knowledge. No adverse examples were found, and

the knowledge categories worked for CVC’s design documents. Yet, the conclusion based

on one case study is not conclusive. More research cases are needed.

Regarding Question Q2-c, the requirements document and the experienced engineers were

the main sources of information for predicting system interactions. Regarding Question Q2-

d, CVC was not good at managing system level knowledge. Less than 3 percent of the

system level knowledge in the ESC project was documented. Regarding Q2-e, the matrix

transforming method not only is a way to document system level knowledge, but also

produce a prediction DSM. Analyzing the system structure using DSM techniques can

provide immediate insights on the system of the product and hence help the project planning.

- 153 -

Therefore, documentation is no longer a burden, but rather a tool to improve the current

design process.

In summary, the CVC case study provided many encouraging results and observations, which

were enough reason to continue the investigation on these research questions using another

case study in another industry.

- 154 -

- 155 -

5 Johnson and Johnson Case Study

5.1 The Research Setting

5.1.1 About Johnson and Johnson Ortho-Clinical Diagnostics (JNJ OCD)

Ortho-clinical Diagnostics (OCD) is a company within Johnson and Johnson (JNJ). It

produces high-value diagnostic products and services for the global health care community.

The major products of OCD includes:

Transfusion Medicine

• Blood Screening – development and commercialization of instrument systems and

reagents that screen blood for AIDS and Hepatitis, aimed at ensuring the safety of the

world's blood supply.

• Immunohematology – Ortho-Clinical Diagnostics is the worldwide leader in the

marketing and development of instrumentation and reagent systems that enable blood

typing, aimed at ensuring patient-donor compatibility in blood transfusions.

Clinical Laboratories

• Clinical Chemistry – patented dry-slide technology and systems for use in stat and

random access in-vitro diagnostic testing. The Company offers a broad menu

covering basic metabolites, classical chemistries, special chemistries, proteins,

toxicology and therapeutic drug monitoring tests.

• Immunodiagnostics – enhanced chemiluminescence technology and systems offering

immunoassay testing capabilities across menu categories of thyroid function,

reproductive endocrinology, cardiology, anemia, metabolism, oncology and

infectious diseases.

More information about OCD and its products is at the website:

http://www.orthoclinical.com.

- 156 -

5.1.2 Case Study Description

5.1.2.1 The Product and Process

This case study was conducted in the OASIS program at Johnson and Johnson Ortho-Clinical

Diagnostics (JNJ OCD). The OASIS program develops the OASIS analyzer, which is an

automated clinical chemistry system combining both the Thin Film technology and the Wet

Chemistry technology within the same unit. Figure 5-1 is a picture of the OASIS model in

the showroom. The OASIS program started in February 2000. The product is planned to be

ready for manufacturing in February 2003. The development of the analyzer involves

engineers and scientists in various technical disciplines, including Marketing, Mechanical

Engineering, Electrical engineering, Computer Science and Software Engineering, Clinical

Assay Chemistry, Quality Assurance, manufacturing, etc. At the peak of the development

process, the core group contains about 120 people.

Figure 5-1: OASIS Analyzer Model

- 157 -

The development of the OASIS analyzer is an architecture innovation (see Figure 2-7) for

JNJ OCD. OCD owned the thin film technology for many years. Many of their existing

chemistry analyzers use this technology. Wet chemistry technology is new for OCD but also

has existed in the market for quite a few years. OCD is purchasing the wet chemistry

technology from a vendor company. Therefore, the core technology is not new for OASIS.

Yet, integrating the two technologies into one analyzer is a new architecture problem for

OASIS. Therefore, the OASIS development is an architectural innovation.

The author has been involved with the OASIS program since summer 2000. During summer

2000, the OASIS program was going through the concept design and feasibility analysis

phase. At the same time, the company was trying to adapt to new systems design methods

such as Six-Sigma and Robust Design. A lot of uncertainties were involved in the program.

Although it would have been an excellent time to test the author’s matrix conversion method,

the author was unable to find solid support and sponsor for this research in the OASIS

program.

Beginning January 2001, the OASIS program moved into the detail design phase. Under the

effort of the systems engineering group, requirements were documented and kept up to date.

When the author returned to JNJ OCD in January 2001, OCD managers were finally able to

make a solid connection between this thesis research work and the OASIS program.

Although the program had moved into detailed design in year 2001, the systems integration

team lead by Mark Raymond would still like to learn what the system interfaces were and

how they could prevent serious problems and rework that might happen during system

integration and verification. The planned system integration phase would start in November

of 2001. Therefore, applying the author’s matrix conversion method in the summer of 2001

would help forecast the system interfaces and improve the OASIS system integration work.

Although the author missed the opportunity to use this method in the concept selection phase,

this method would still be able to help predicting system interfaces and have impact on a real

product program.

- 158 -

5.1.2.2 Case Study Scope

Systems can be viewed in different layers of hierarchy and different amount of details. The

scope of this case study was chosen under two conditions. First, the amount of information

should be enough to provide insights of the system, but not too much for a three-month-one-

person summer research project. Second, the research should try to mesh with the current

systems engineering effort in the OASIS program so that the results can be beneficial to JNJ

OCD, as well as can be compared to the reality.

This case study limits its scope to predicting only the interactions among the subsystems of

the OASIS analyzer. Interactions among the components within subsystems were not

captured. Figure 5-2 shows the subsystems in OASIS as well as their abbreviations. This

architecture is adopted from the OASIS architecture document written by Dee (2001a). As

stated earlier, this research missed the opportunity to have influence in the concept selection

phase. Therefore, this case study would have to stick with the chosen design concept and

predict the system interfaces within this particular architecture. If this method were applied

during the concept selection phase, the construction of the Design Matrix would have had

influence on the choice of the design concept.

Figure 5-3 shows where some of the major subsystems are in the analyzer. Due to the

limited detail of this schematic, some of the small metering systems are not shown. In

addition, the Delivery types of subsystems listed in Figure 5-2 are about the manufacturing

and supply chain design. They are not hardware designs and cannot be shown on this

schematic.

This choice of system scope was suitable for this case study because it fulfilled the two

requirements mentioned earlier. First, there were total 32 subsystems involved, which was a

manageable number to build a DM and a DSM for the research purpose. Second, the OASIS

systems engineering and systems integration group were only interested in the system level

interactions. These two groups were the direct sponsors of this research. Choosing to look at

the interactions among subsystems aligned with the goal of the systems engineering group at

OASIS.

- 159 -

Figure 5-2: OASIS Subsystems

Assay Application (ASAP)
Calibrator Delivery (CADL)

Control Fluids Delivery (CFDL)
Diluent Fluids Delivery (DFDL)
Miscellaneous Fluids Delivery (MFDL)

Reagent Delivery (RGDL)

Slide Delivery (SLDL)

Machine Diagnostics (MADI)

Application Services (APPS)

Machine Control (MACO)

User Interface (USIF)

Electrometer (ELME)

Electrical Referencing Fluid Metering (ERME)

Immuno-rate Wash Metering (IRME)

Reflectometer (REFL)

Slide Incubator (SLIN)

Slide Supply (SLSU)

Structure and Cabinetry (STRU)

Sample and Reagent Metering (SRME)

Cuvette Delivery (CUDL)

Cuvette Incubator (CUIN)

Photometer (PHMT)

Reagent Supply (RGSU)

Aliquot Buffer (ALBU)

Sample Integrity (SAIN)

Data Logging (SRDL)

Microtip Delivery (MTDL)

Microtip Loading (MTLD)

Power Distribution (POWR)

Sample Handling (SAHA)

Vitros Tip Delivery (VTDL)

Vitros Tip Loading (VTLD)

OASIS

- 160 -

Figure 5-3: Location of Major Subsystems

5.1.2.3 Case Study Objectives

5.1.2.3.1 Research Objectives

Learning from the unanswered research questions in CVC case study, the main objectives of

this case study are the following. The parentheses at the end of each objective indicate which

research question was related to which objective.

1. Use the OASIS Product Requirements Document (PRD), Subsystem Requirements

Document (SSRD), and other supporting documents to build a DSM capturing the

Machine Control (MACO)
Application Services (APPS)

Sample Handling
(SAHA)

Power
Distribution
(POWR)

Primary Sample
Metering (SRME)

Reagent Supply
 (RGSU)

Secondary Sample
Metering (SRME)

Frame and Cabinetry
(STRU)

Cuvette Incubator
(CUIN)

Aliquot Buffer
(ALBU)

Slide Incubator
(SLIN)

Photometer
(PHMT)

Microtip Loading
(MTLD)

Sample
Integrity
(SAIN)

Vitros Tips Loader
(VTLD)

Slide Supply
(SLSU)

- 161 -

interactions among the subsystems using the DM-DSM matrix conversion method. Find

out if the matrix conversion method is transferable to a different case study (Q1-b).

2. Investigate how closely the DSM derived from requirements predicts the reality by

comparing it with the DSM produced by expert engineers and scientists using the

traditional DSM building method (Q1-c).

3. Understand whether the matrix conversion method can be used for all types of

requirements or just Functional Requirements. Observe what types of requirements drive

the system interactions (Q1-c).

4. Observe the sources of information in identifying system interactions. How much system

interaction knowledge is captured in documents and how much is in people’s heads?

Benchmark the result with the same data from Ford and CVC (Q2-c, d).

5.1.2.3.2 JNJ OCD’s Objectives

The objectives of JNJ OCD in this case study include the follows:

1. Predict system interface problems that may happen during integration and

verification.

2. Aid the system integration manager’s work on planning and managing OASIS

subsystem interfaces.

5.1.2.4 Chapter Outline

This chapter is long. The following list shows the relationship between each section in the

rest of the chapter and the research objectives:

- 162 -

5.2 Data Gathering Process JNJ Case Research Objective 1, Research
Question Q1-b

5.3.1 How Realistic is the Prediction DSM
from Requirements

JNJ Case Research Objective 2, Research
Question Q1-b, c

5.3.2 The Requirements Decomposition
Process vs. Various Types of Requirements

JNJ Case Research Objective 3, Research
Question Q1-c

5.3.3The Sources of System Level
Knowledge

JNJ Case Research Objective 4, Research
Question Q2c, d

5.2 Data Gathering Process

This case study used six OCD system design documents to gather system interaction

information. Some of the design documents could be used to construct DM, while the others

could only be used to construct DSM. Figure 5-4 shows the use of each document. The

requirements documents should have been used to construct DM like in the CVC case study.

However, The dashed line linking requirements documents and DM indicates that the

requirement documents were actually used to directly construct DSM in this case. The

implication of doing so on the matrix transformation method will be explained in detail in the

subsections here.

Figure 5-4: The Use of Each OCD System Engineering Design Documents

DM DSM

Architecture Definition Document

Mechanical Interface Document

Function Flow Diagram

Hazard Analysis Document

Requirements Document

- 163 -

The reason to use not only requirement documents but also other system engineering

documents was to compare whether the matrix transformation method can capture all of the

system interactions documented in the existing JNJ OCD system engineering design

documents. During the data gathering process, the system interactions captured by each of

the documents in Figure 5-4 are marked out so that we can later on analyze the contribution

of each type of document on identifying system interactions.

5.2.1 Building a Design Matrix Based on the Architecture Definition Document

The Architecture Definition Document was written by the system engineer Mike Dee [Dee

(2001a)] in May 2001 before the detailed design phase started in the OASIS program. This

document records the final decision of the product architecture (Figure 5-2) and the

functionality of each subsystem in the analyzer.

According Axiomatic Design [Suh (2000)], the process of building a Design Matrix (DM) is

the process of design concept selection. However, as stated earlier, this research case study

missed the opportunity to construct a DM to influence the concept design of the OASIS

analyzer. The DM built in this step is a mapping between the major functional requirements

and the chosen design concept and architecture based on the OASIS Architecture Definition

Document. Yet, all rules in the Axiomatic Design about building a DM were followed.

After the initial DM was built, based on the author’s Matrix conversion method, a DSM

containing the interactions among the subsystems was generated from the DM.

Although the Architecture Definition Document enabled us to obtain a DM and a DSM, these

two matrices were fairly sparse with few off-diagonal marks. The reason was that the

Architecture Definition Document defined the major functions of each subsystem, but

contained little information about the interfaces between subsystems. The resulting DSM

from this document will be shown later in the results and discussion section (Figure 5-24).

- 164 -

5.2.2 Identify System Interactions Using Function Flow Diagram

During the concept development phase, the system engineers at OCD constructed function

flow diagrams to understand how functions are decomposed into and fulfilled by the

subsystems in the analyzers. The function flow diagrams that OCD engineers built are also

called Function Analysis System Technique (FAST) diagrams [VAI (1993), Wood and Otto

(2001)]. The function flow diagrams were constructed before the product requirements of

the OASIS analyzer were finalized, and were still continuously being build for subsystems

during the period of this case study (summer 2001).

The first part of the OCD function flow diagram was a list of subsystems and the major

functions they performed. The second part of the OCD function flow diagram is a flow

diagram linking various functions in the list. Figure 5-5 shows a simplified example of how

a DSM was built from the OASIS function flow diagram. The actual diagram was much

larger.

Once the additional off-diagonal marks are discovered in this step, these marks can be easily

reflected back to the DM at the same location in the matrix, based on the discussion on

output variable selections in Chapter 4 (4.3.6.4 Implication on the Conversion between DM

and DSM). The significance of constructing a DM before the DSM is to use the major

functional requirements to identify the major design parameters that should be in the DSM.

In the traditional DSM building process, the design experts come up with the system

elements (the titles of rows and columns), which is more subjective than using the DM

construction process to identify the system elements that are truly critical to the system

interaction and fulfilling the requirements. However, as shown in this step, sometimes the

DSM view is better at capturing off-diagonal marks in the matrices. Fortunately, the

discovery of the output variable selection rules allows us to easily switch between the two

views.

- 165 -

Figure 5-5: Building a DSM from Function Flow Diagram

 SAHA SRME ALBU

SAHA X X

SRME X X X

ALBU X X

Sample Handler
(SAHA)

Sample and Reagent
Metering system (SRME)

Aliquot Buffer (ALBU)

Part 1: list all subsystem functions

Advance Sample
Track

Aspire Sample from
the Sample Container

Present normal
sample to metering

Seal Vitros Tip

Part 2: draw function flow diagram

Advance Sample
Track

Present normal
sample to metering

Aspire Sample from
the Sample Container

Patient
Sample

Vitros Tip

Part 3: Identify DSM Relationship

- 166 -

5.2.3 Identify System Interactions Using Mechanical Interface Document

The third document that helped to identify more off-diagonal marks in the DM and DSM was

the Mechanical Interfaces Document [Dee (2001b)]. This document records all of the spatial

relationship among subsystems. The system engineers in the OASIS program constructed this

document at the beginning of the detailed design phase. It is continuously revised as the

engineers learn more about the spatial configuration between subsystems. The interfaces

discovered in this documentation was recorded in the DSM and reflected back in the DM.

5.2.4 Identify Subsystem Interactions Driven by Product Requirements

Two types of requirement documents existed in the OASIS program. The OASIS Product

Requirement Document (PRD) [Dee (2001c)] provides the complete list of the product-level

requirements. PRD was written during the concept design phase by the system engineers

(see Appendix A for examples). At the next level of the system, subsystem engineers

responsible for each subsystem generated subsystem requirement documents (SSRD) at the

beginning of the detailed design phase of each subsystem. Early on in the OASIS program,

the PRD’s and SSRD’s were written separately by different groups of people without

communicating to each other. With the effort of the OASIS system engineering team,

engineers were educated about the importance of the requirement trace-ability. During the

period of May to June 2001, the engineers at OCD started to record the links between the

SSRD’s and PRD. These links were recorded in the OCD requirement management software

tool—RequisitPro.

The trace-ability links between the PRD and SSRD were important to this research, because

these links helped to identify which subsystem(s) would be responsible to fulfill a product

level requirement. If a product level requirement flows into more than one subsystem, then it

is possible for these subsystems to interact with each other. The reason is that these

subsystems may have to work together to fulfill the same requirement.

In this case study, a database was built to record which subsystem(s) each product level

requirement flows into, instead of building a Design Matrix. The reason for doing this is

- 167 -

explained in Section 5.2.4.1. Then the author took the product requirements that flowed into

multiple subsystems, and examined how the subsystems contributed to the product

requirement. When subsystems each contributed partially to the fulfillment of the product,

they were identified as having system level interactions. The interaction marks can then be

entered in the DSM and subsequently in DM. Figure 5-6 depicts this process using a simple

example.

1. Build the Database to Record PRD Decomposition

PRD # Subsystems flow into
3 REFL
3 SAIN
3 MACO
3 APPS
3 SRME

PRD3: The OASIS analyzer shall be able to perform XXX sample integrity indices on spinal fluid, serum, and
plasma samples within the performance levels stated in XXX document (XXX here replaces proprietary
information).

2. Build the Resulting DSM:

The subsystems listed in the above database have to work together to deliver the sample integrity function and
performance.

 REFL SAIN MACO APPS SRME
REFL X X X X
SAIN X X X X X
MACO X X X X X
APPS X X X X X
SRME X X X X

Note not all subsystems interact with each other although all of them contribute to PRD3. The knowledge of
which subsystems should interact with each other cannot be found in the requirements flow down record in Step
1 (RequisitPro in the JNJ OCD case). The marks in the DSM are filled in by asking whether a DP interact with
another DP to fulfill this particular requirement. For instance, Sample Integrity (SAIN) subsystem interacts
with Reflectometer (REFL) to fulfill PRD3. Therefore a mark exists between the two in the DSM. Sample and
Reagent Metering System (SRME) does not interact with Refelctometer (REFL) to fulfill PRD 3, therefore no
mark is put in the DSM between the two DP.

Figure 5-6: Requirements Decomposition Process

- 168 -

The resulting DSM in Figure 5-6 can be easily converted back to the DM with all the marks

remaining at the same place. The reason again was explained by the implications of the

choice of output variables (see 4.3.6.4 Implication on the Conversion between DM and

DSM).

However, by the end of June, not all SSRD’s were finished and not all subsystem engineers

were able to solidify the links between their SSRD and PRD. Due to the time constraint of

this case study, the cut-off time for collecting the information from the RequisitPro was set to

July 6th, 2001. Then the author consulted responsible system engineers for each subsystem to

identify the PRD-SSRD links not recorded in RequisitPro by July 6th. The RequisitPro

database may contain more documented links between requirements after July 6th.

5.2.4.1 Was the Matrix Transformation Method Used?

The procedure in Figure 5-6 does not follow the three steps of the matrix transformation

presented in Chapter 3. Did you skip the design matrix? The answer is that we could have

taken the three steps of matrix transformation, but we used a shortcut instead to directly

obtain a DSM from requirements. Detailed explanations are as follows.

First, we built a partial DM from the architecture definition already. Therefore, we started

with a DM. When the requirements document was used, each requirement could have two

possible effects on the design matrix. The first effect is that the requirement became an

additional FR in the DM. The second effect is that the requirement became a sub-FR of an

existing FR.

Take the PRD3 in Figure 5-6 as an example. Assume we started with a DM that looked like:

 DP1 DP2
FR1 X
FR2 X

The first possible scenario was that PRD3 became an additional FR.

(1)

- 169 -

 DP1 DP2 DP3
FR1 X
FR2 X
PRD3 X X

The matrix transformation method thus would give:

 DP1 DP2 DP3
DP1 X
DP2 X
DP3 X X

However, turning PRD3 into an additional FR requires an additional DP. In this case study,

it was assumed that all the system level DP’s (the major subsystems) were already fixed by

the JNJ system engineers. The architecture definition document produced the DM that

included all of the DP’s. Therefore, the PRD’s in this case study would not become FR’s in

the DM. This first possible scenario did not exist in this case study.

Then we are left with only one other possibility for the PRD’s—turning into sub-FR’s.

Assume the PRD3 can be broken down into sub-FR’s—FR1.1 and FR2.1. Since FR1.1 and

FR2.1 together fulfilled PRD3, DP1.1 and DP2.1 would interact with each other because they

had to fulfill the same requirement at system level—PRD3. Then:

 DP1 DP1.1 DP2 DP2.1
FR1 X X
FR1.1 X X
FR2 X X
FR2.1 X X

The resulting DSM is:

 DP1 DP1.1 DP2 DP2.1
DP1 X X
DP1.1 X X
DP2 X X
DP2.1 X X

- 170 -

Since we are only interested in the interactions among the subsystems in this case study, we

can collapse the DSM into:

 DP1 DP2
DP1 X X
DP2 X X

Compare matrix (1) and (2), we can conclude that if we know a PRD affects multiple DP’s,

those DP’s are most likely to have interactions with one another because they had to serve

the same high-level requirement. Since we are only interested in the interactions among the

subsystems not the sub-DP’s within each subsystem, we can directly fill in the interactions

among the subsystems in the DSM rather than going through the DM decomposition.

Therefore, the procedure in Figure 5-6 although did not follow the three steps of matrix

transformation, does not contradict with the research method. It is merely a short cut of the

matrix transformation method.

5.2.4.2 When is DM Necessary?

From Figure 5-6, it seems that we can build a DSM directly based on requirements without

building a DM as the first step. Can DSM replace DM? The answer is yes for this case

study, but not necessarily true for general cases. The reasons are discussed below.

The Design Matrix has two contributions when used in the matrix conversion method to

predict system interactions. First, DM can help to identify DP’s based on the functional

requirements. These DP’s then turn into the system elements (titles of rows and columns) in

the DSM. Second, the zigzagging method can be used in the construction of a DM to

identify lower system level DP’s and FR’s. Therefore, DSM’s for various levels of the

system hierarchy can be easily derived.

However, this study had its own special conditions. First, the system level DP’s—the

subsystems in the OASIS analyzer—were already identified and fixed. Hence the first use of

(2)

- 171 -

a DM was not necessary any more. Second, the goal of this case study was to identify the

interactions among the subsystems only. The interactions among the components of the

subsystems were not needed. Therefore, the DM’s system decomposition capability was not

used here. Consequently, after using the architecture definition to build an initial DM and

converting it into a DSM, it was no longer necessary to work with the DM any more.

In summary, DM must be used when either of the following conditions exists:

1. We need to identify the DP’s in the system.

2. We need to predict the system interfaces at multiple levels of the system hierarchy.

5.2.5 Identify Subsystem Interactions from Hazard Analysis and Mitigation

Document

The last piece of information to help identify subsystem interactions was the Hazard Analysis

and Mitigation document (HAMG). The HAMG document is created by expert engineers

based on their knowledge of the existing analyzers in the field. This document is constructed

before the OASIS concept development phase so that past lessons learned from the field can

be applied to the new analyzer design. Below is an example of the document:

HAMG Tag Text Traced to Subsystem Requirement
HAMG 1 Design: Control sealer temperature

below flash point of tip material
ALBU 8, 12

The problems learned from past analyzers are flown into the relevant subsystems in the

current analyzer design, and take the form of subsystem requirements.

When a HAMG item flew into more than one subsystem (the above example only flew into

one subsystem--ALBU), the relevant subsystems have potential to interaction. The author

then judges how interactions between subsystems exist due to the particular HAMG item,

and record the interactions in the DSM.

- 172 -

5.2.6 When to Use DM and When to Use DSM

The process of data gathering in this case study revealed that some design documents are

suitable to be used to gather the interactions in the DSM, while some others can be used to

construct the DM (Figure 5-4). Here is a summary of when to use DM and when to use DSM

based on the observations made from this case study.

Use DM, and construct the DSM following the matrix conversion method when any of the

following situations is true:

1. We need to identify the DP’s in the system.

2. We need to predict the system interfaces at multiple levels of the system hierarchy.

Use DSM when any of the following situations is true:

1. We know the key design parameters in the system already. This situation could very

much be true for a design that reuses existing components or subsystems. This

situation also applies when the design makes only incremental changes to the existing

product. Therefore, as shown in Figure 2-7, DSM is suitable for incremental design

changes.

2. We are only interested in the interactions at one level of the system hierarchy. The

knowledge about system decomposition is not necessary.

3. The available information concerns the interactions within a system rather than how

they relate to requirements.

4. The system interaction concerns the emergent properties learned later in the design

process.

Fortunately, from the discussion in chapter 4 regarding the selection of output variables

(4.3.6.4 Implication on the Conversion between DM and DSM), we know the DM and DSM

can be converted to and from each other. Therefore, whether we get the system interaction

information from a DM or a DSM does not really matter. We can always switch to the other

representation depending on the interest of discussion.

- 173 -

5.2.7 The DSM built by JNJ OCD Engineering Experts Using the Traditional DSM

Construction Method

Under the lead of the system integration manager Mark Raymond, the expert engineers in the

OASIS program built two DSM’s to capture the interactions among major subsystems in the

analyzer. These two DSM’s were built using the traditional DSM construction method.

Experts from various areas of the product development team sat together in meetings and

built the DSM’s through discussions. The first expert DSM was built in February 2001 and

the second one was built at the beginning of August 2001. The expert DSM’s contain three

major sources of interactions:

• Functional interactions

• Spatial interactions

• Reliability interactions

When the first DSM was built in February, the subsystem architecture (Figure 5-2) was not

finalized. Therefore the subsystem names were different in the February DSM. When the

August DSM was constructed, for the convenience of the engineering experts, the same

subsystem names as those in the February DSM were used.

Fortunately, the differences of the system elements between the experts’ DSM and the

official subsystems (Figure 5-2) are very small. The author converted the expert DSM’s

subsystems into ones using the current subsystem names. Table 5-1 lists the conversion

process.

- 174 -

In Experts’ DSM Convert to Current Subsystem Names
Aliquot Buffer Aliquot Buffer (ALBU)
Cardcage Structure (STRU)
Cabinetry Structure (STRU)
Circuit Boards Power (POWR)
Cuvette Cuvette Delivery (CUDL)
Cuvette Loader Cuvette Loader (CULD)
Electrometer Electrometer (ELME)
ERF Container Miscellaneous Fluids Delivery (MFDL)
ERF Metering ERF Metering (ERME)
Frame Structure (STRU)
Harnessing Power (POWR)
IWF Container Miscellaneous Fluids Delivery (MFDL)
IWF Metering Immuno-rate wash fluids metering (IRME)
Master Computer Machine Controller (MACO)
Microtips Microtip Delivery (MTDL)
Microtip Loader Microtip Loader (MTLD)
Photometer Photometer (PHMT)
Power Supply Power (POWR)
Primary Metering Sample and Reagent Metering (SRME)
Reagent Container Reagent Delivery (RGDL)
Reagent Supply Reagent Supply (RGSU)
Reflectometer Reflectometer (REFL)
Slides Slide Delivery (SLDL)
ERF Container Miscellaneous Fluids Delivery (MFDL)
Sample Handler Sample Handler (SAHA)
Sample Integrity Sample Integrity (SAIN)
Secondary Metering Sample and Reagent Metering (SRME)
Slide Incubator Slide Incubator (SLIN)
Slide Supply Slide Supply (SLSU)
Slide Transport Slide Incubator (SLIN)
Tip Sealer Aliquot Buffer (ALBU)
Vitros Tips Vitros Tip Delivery (VTDL)
Vitors Tip Loader Vitros Tip Loader (VTLD)
Measurement Channel Cuvette Incubator (CUIN)

Table 5-1: Converting the Experts’ System Elements to the Official Subsystem Names

The February DSM represents the experts’ prediction at early stage of the detailed design

process. August DSM represents the change in experts’ knowledge about the system.

5.3 Results and Discussion

This section presents the results of this case study in three parts. First, the DSM built from

the requirements is compared with the two experts’ DSM’s made in February and August

- 175 -

2001. How realistic it is to predict system interactions from requirements is discussed. The

second part of the discussion focuses on how requirement decomposition is carried out for

various types of requirements, and the strength and limitation of the author’s matrix

conversion method. Third, the DSM’s obtained from various design documents (Figure 5-4)

are presented and compared. The author will discuss the various sources of information for

identifying system interactions.

5.3.1 How Realistic is the Prediction DSM from Requirements

5.3.1.1 Compare the DSM Constructed Using All Design Documents and the DSM

Constructed from Only Requirements

A DSM can be constructed combining all the information regarding system interactions in

the documents listed in Figure 5-4. The resulting DSM is shown in Figure 5-7.

Figure 5-7: The DSM Constructed Using all Document Sources in Figure 5-4

AP
PS

M
AC

O

U
SI

F

SL
IN

IR
M

E

EL
M

E

ER
M

E

SA
H

A

SL
SU

R
EF

L

SR
M

E

ST
R

U

SA
IN

AL
BU

C
U

IN

M
TL

D

PH
M

T

R
G

SU

VT
LD

PO
W

R

AS
AP

C
AD

L

C
FD

L

C
U

D
L

D
FD

L

M
AD

I

M
FD

L

M
TD

L

R
G

D
L

SL
D

L

SR
D

L

VT
D

L

APPS X X X X X X X X X X X X X X X X X
MACO X X X X X X X X X X X X X X X X X X
USIF X X X
SLIN X X X X X X X X X
IRME X X X
ELME X X X
ERME X X X
SAHA X X X X
SLSU X X X X
REFL X X X X
SRME X X X X X X X X X X X
STRU X X X X X X X X X X X
SAIN X X X X X X
ALBU X X X X X X
CUIN X X X X X
MTLD X X X X
PHMT X X X
RGSU X X X X X
VTLD X X X X
POWR X X X X X X X X X X X X X X X X X
ASAP
CADL
CFDL
CUDL
DFDL
MADI
MFDL
MTDL
RGDL
SLDL
SRDL
VTDL

Software

Thin Film

Wet Chemistry

- 176 -

The DSM partition algorithm identifies the system in Figure 5-7 to be coupled from “APPS”

to “POWR”. The author manually arranged the system elements in the iteration block based

on the three major functions the OASIS analyzer had—the software, the thin film (dry)

chemistry, and the wet chemistry. As shown in Figure 5-7, the Software (APPS, MACO, and

USIF), the Structure (STRU), the Metering subsystem (SRME), the Power subsystem

(POWR), and the interaction between the Reflectometer (REFL) and Sample Integrity

(SAIN) tie the wet and the dry chemistry functions together.

The DSM in Figure 5-7 is constructed using information from all OASIS systems

engineering documents. However, this case study is interested in the effectiveness of

obtaining a DSM from requirements. Therefore, another DSM was built to include only the

interactions captured by the requirements document (PRD and SSRD) and the architecture

definition document. This DSM is shown in Figure 5-8.

Figure 5-8: DSM Constructed Based on Requirements and Architecture Definition

AP
PS

M
AC

O

U
SI

F

SL
IN

IR
M

E

EL
M

E

ER
M

E

SA
H

A

SL
SU

R
EF

L

SR
M

E

ST
R

U

SA
IN

AL
BU

C
U

IN

M
TL

D

PH
M

T

R
G

SU

VT
LD

PO
W

R

AS
AP

C
AD

L

C
FD

L

C
U

D
L

D
FD

L

M
AD

I

M
FD

L

M
TD

L

R
G

D
L

SL
D

L

SR
D

L

VT
D

L

APPS X X X X X X X X X X X X X X X X X
MACO X X X X X X X X X X X X X X X X X X
USIF X X X
SLIN X X X X X X X X
IRME X X X
ELME X X X
ERME X X X
SAHA X X X X
SLSU X X X
REFL X X X
SRME X X X X X X X X X X
STRU X X X X X X
SAIN X X X X X
ALBU X X X X X X
CUIN X X X X
MTLD X X X X
PHMT X X X
RGSU X X X X
VTLD X X X X
POWR X X X X X X X X X X X X X X X X X
ASAP
CADL
CFDL
CUDL
DFDL
MADI
MFDL
MTDL
RGDL
SLDL
SRDL
VTDL

Software

Thin Film

Wet Chemistry

- 177 -

Compare the DSM in Figure 5-7 to that in Figure 5-8, 14 marks (7 pairs of interactions) are

missing in Figure 5-8: DSM Constructed Based on Requirements and Architecture

Definition. They are:

REFL—SLIN SLIN—REFL

SRME—MTLD MTLD—SRME

STRU—CUIN CUIN—STRU

RGSU—STRU STRU—RGSU

SRME—STRU STRU—SRME

STRU—SAIN SAIN—STRU

SLSU—STRU STRU—SLSU

All of the above interactions are due to spatial relationship. Therefore, building a Design

Matrix from requirements does not easily capture the packaging and assembly issues in the

system interface. Fortunately, this problem can be resolved by employing another existing

technique--the Datum Flow Chain method—so that assembly interfaces can be predicted at

the early stage of the design process [Mantripragada and Whitney (1998)].

In Ulrich and Eppinger (2000 p. 195), spatial relationship is identified as one of the

incidental interactions in the system. Incidental interaction is the interaction that arises

because of the particular physical implementation of functional elements or because of the

geometric arrangement of the chunks in the system. Therefore, using requirements to build

DSM misses the incidental interactions in the system. Other system engineering documents

and techniques are needed in addition to requirements document.

5.3.1.2 The DSM Constructed by the Experts

5.3.1.2.1 The Experts’ DSM’s

The system engineers and design experts at JNJ OCD have built two DSM’s using the

traditional DSM construction method in the time frame of February and August 2001. The

- 178 -

resulting DSM’s are presented in Figure 5-9 and Figure 5-10. The marks captured by the

experts in both February and August are highlighted.

Compare the matrices in Figure 5-9 and Figure 5-10, 130 marks in either matrix match. The

DSM in February (Figure 5-9) has 20 additional marks unmatched by the August DSM

(Figure 5-10). Twelve out of the 20 unmatched marks are due to reliability, because when

the experts constructed the DSM in August, they did not include the interactions that may

have contributions to reliability, while in February they did. The other 8 marks missed by

the experts in August were because either the experts thought less of the importance of those

interactions in August, or they simply forgot to put marks in.

R: means the interaction is due to reliability issue, and was not predicted by August Expert
DSM.

X: means the interaction is due to other issues, and was not predicted by August Expert
DSM.

Figure 5-9: February Expert DSM

X This interaction is predicted by both the February and August Expert DSM.

AP
PS

M
AC

O

U
SI

F

SL
IN

IR
M

E

EL
M

E

ER
M

E

SA
H

A

SL
SU

R
EF

L

SR
M

E

ST
R

U

SA
IN

AL
BU

C
U

IN

M
TL

D

PH
M

T

R
G

SU

VT
LD

PO
W

R

C
U

D
L

M
TD

L

R
G

D
L

SL
D

L

VT
D

L

AS
AP

C
AD

L

C
FD

L

D
FD

L

M
AD

I

M
FD

L

SR
D

L

APPS
MACO X
USIF
SLIN X X X X X X X X
IRME X X X R X X
ELME X R R R X X
ERME X R X X R X X
SAHA X X X X
SLSU X X R X X X
REFL X X X X
SRME X X R X X X X X X X X X X X X
STRU R R X X X X X X X X X X
SAIN X X R X X
ALBU X X X X X X X
CUIN X X
MTLD X X X X X
PHMT X X X
RGSU X X X X X X
VTLD X R X X X
POWR X X X X X X X X X X X X X X X X
CUDL X X X X
MTDL X X X X X X X
RGDL X X X X
SLDL X X X X X X X
VTDL X X X X X X X X X X X
ASAP
CADL
CFDL
DFDL
MADI
MFDL
SRDL

- 179 -

The DSM in August (Figure 5-10) has 22 extra marks unmatched by the February DSM

(Figure 5-9). These marks were added mainly because the experts’ knowledge about the

design and the system has increased over the past six months. More interactions were

discovered as design moved on. In general cases, as more interactions in the system may be

discovered as time goes by, some of the previously identified interactions may no longer be

valid. However, in this case study, when the JNJ system engineers reviewed February DSM,

they still thought all of the interactions identified in February were valid in August, even if

they missed some of the interactions in the August DSM.

X: this interaction was only captured by August expert DSM.

Figure 5-10: August Expert DSM

Since both February and August DSM’s missed some of the system interactions, combining

both DSM’s can give us a quite complete view of the system interactions perceived by the

experts. The combined matrix is shown in Figure 5-11.

X This interaction is predicted by both the February and August Expert DSM.

AP
PS

M
AC

O

U
SI

F

SL
IN

IR
M

E

EL
M

E

ER
M

E

SA
H

A

SL
SU

R
EF

L

SR
M

E

ST
R

U

SA
IN

AL
BU

C
U

IN

M
TL

D

PH
M

T

R
G

SU

VT
LD

PO
W

R

C
U

D
L

M
TD

L

R
G

D
L

SL
D

L

VT
D

L

AS
AP

C
AD

L

C
FD

L

D
FD

L

M
AD

I

M
FD

L

SR
D

L

APPS
MACO X X
USIF
SLIN X X X X X X X X X X
IRME X X X X X
ELME X X X
ERME X X X X
SAHA X X X X
SLSU X X X X X
REFL X X X X
SRME X X X X X X X X X X X X
STRU X X X X X X X X X X X X
SAIN X X X X X
ALBU X X X X X X X
CUIN X X X X X X
MTLD X X X X
PHMT X X X X
RGSU X X X X X X
VTLD X X X X
POWR X X X X X X X X X X X X X X X X X
CUDL X X X X X
MTDL X X X X X X X X X X
RGDL X X X
SLDL X X X X X X X
VTDL X X X X X X X X X X X X X
ASAP
CADL
CFDL
DFDL
MADI
MFDL
SRDL

- 180 -

F--this mark appeared in February DSM

A—this mark appeared in August DSM

Figure 5-11: Combined Experts Prediction DSM from February and August

5.3.1.3 Compare the Requirement-driven DSM to the Experts’ DSM

To verify the effectiveness of the matrix conversion method, the DSM from the requirements

is compared with the experts’ DSM’s. One of the main objectives of this case study was to

investigate the effectiveness of building a DSM from requirements only. Therefore, the

DSM made from requirement documents only (Figure 5-8) is used to compare with the

experts’ DSM made from traditional DSM construction method (Figure 5-11). The result of

X This interaction is predicted by both the February and August Expert DSM.

AP
PS

M
AC

O

U
SI

F

SL
IN

IR
M

E

EL
M

E

ER
M

E

SA
H

A

SL
SU

R
EF

L

SR
M

E

ST
R

U

SA
IN

AL
BU

C
U

IN

M
TL

D

PH
M

T

R
G

SU

VT
LD

PO
W

R

C
U

D
L

M
TD

L

R
G

D
L

SL
D

L

VT
D

L

AS
AP

C
AD

L

C
FD

L

D
FD

L

M
AD

I

M
FD

L

SR
D

L

APPS
MACO A X
USIF
SLIN X X X X X X X F X F
IRME X X F F X F X
ELME X F F F X X
ERME X F X F F X X
SAHA X X X X
SLSU X X F X X X
REFL X X X X
SRME X F F F X X X A X X X X X F X X
STRU A F F X X X A X X X X X X X
SAIN X A X F X X
ALBU X X X X X X X
CUIN A X A A A A
MTLD X X F X X
PHMT X A X X
RGSU X X F X A X X
VTLD X F X X X
POWR X X X X X X X X X X X X A X X X X
CUDL X A X X X
MTDL A A X X X A X X X X
RGDL F X X X
SLDL X X X X X X X
VTDL A X X X X X A X X X X X X
ASAP
CADL
CFDL
DFDL
MADI
MFDL
SRDL

- 181 -

comparison is in Figure 5-12. The highlighted cells are the marks that were identified by

both expert DSM’s and the author’s prediction based on requirements.

- 182 -

F—marks in the February expert DSM

A—marks in the August expert DSM

q—marks in the author’s prediction DSM made from requirements document only

Figure 5-12: Compare the Experts’ DSM with The DSM from Requirements

AP
PS

M
AC

O

U
SI

F

SL
IN

IR
M

E

EL
M

E

ER
M

E

SA
H

A

SL
SU

R
EF

L

SR
M

E

ST
R

U

SA
IN

AL
BU

C
U

IN

M
TL

D

PH
M

T

R
G

SU

VT
LD

PO
W

R

C
U

D
L

M
TD

L

R
G

D
L

SL
D

L

VT
D

L

AS
AP

C
AD

L

C
FD

L

APPS q q q q q q q q q q q q q q q q q
MACO q q q q q q q q q q A,q q q q q q q q F,A
USIF q q q
SLIN q q F, A, q F, A, q F, A, q F, A, q F,A F, A, q q F,A A F,A A
IRME q q F, A, q F,A F F F,A A F,A
ELME q q F, A, q F F F F,A F,A
ERME q q F, A, q F F,A F F F,A F,A
SAHA q q F, A, q F, A, q F,A F,A
SLSU q q F, A, q F,A F F,A F,A F,A
REFL q q F,A F, A, q F,A F,A
SRME q q F, A, q F F F F, A, q F,A q F, A, q 8,q F, A, q F, A, q q F,A F,A F,A F F,A F,A
STRU A,q q F F F, A, q F,A F,A A F, A, q F,A F, A, q F,A F,A F, A, q F,A
SAIN q q F, A, q q A F, A, q F F,A F,A
ALBU q q F, A, q F, A, q F, A, q F, A, q F,A F,A F,A
CUIN q q A,q F,A A,q A A A
MTLD q q F, A, q F, A, q F F,A F,A
PHMT q q F,A A,q F,A F,A
RGSU q q q F, A, q F,A F F,A A F,A F,A
VTLD q q q F, A, q F F, A, q F,A F,A
POWR F,A q F, A, q F, A, q F, A, q F, A, q F, A, q F, A, q F, A, q F, A, q F, A, q F, A, q F, A, q 8,q F, A, q F, A, q F, A, q F, A, q
CUDL F,A A F,A F,A F,A
MTDL A A F,A F,A F,A A F,A F,A F,A F,A
RGDL F,A F,A F,A F,A
SLDL F,A F,A F,A F,A F,A F,A F,A
VTDL A F,A F,A F,A F,A F,A A F,A F,A F,A F,A F,A F,A
ASAP
CADL
CFDL
DFDL
MADI
MFDL
SRDL

- 183 -

There are total 247 interaction marks in the combined DSM in Figure 5-12. Only 53 of the

marks match (Figure 5-13). Why are there so many marks unmatched? Does this mean the

method of building a DSM from requirements is ineffective? The discussion is carried out

below.

Figure 5-13: Matching and Unmatched Marks in the Requirements DSM and the Expert DSM

5.3.1.3.1 Analysis of Unmatched Marks

The differences between the author’s DSM and the experts’ DSM are categorized into six

types as marked out in Figure 5-14 and Figure 5-15. The highlighted cells indicate the

interactions captured by both matrices. The next portion of this paper contains discussion of

each one of the six types of unmatched marks in Figure 12 and 13.

There are 54 marks overlapping
between te experts DSM and
requirements prediction DSM.

The author’s
requirements
prediction
DSM missed
118
interactions.

The experts
missed 75
interfaces
predicted by the
requirements.

- 184 -

1: Type 1 unmatched marks—interaction between hardware and software.
6: Type 6 unmatched marks—miscellaneous interactions missed by the experts.

Figure 5-14: The Requirement Prediction DSM

2: Type 2 unmatched marks—interaction between assay chemistry and hardware.
3: Type 3 unmatched marks—feedback marks from power subsystem.
4: Type 4 unmatched marks—interactions due to reliability.
5: Type 5 unmatched marks—interactions due to function or spatial relationships.

Figure 5-15: The Expert DSM Combining February and August Results

AP
PS

M
AC

O

U
SI

F

SL
IN

IR
M

E

EL
M

E

ER
M

E

SA
H

A

SL
SU

R
EF

L

SR
M

E

ST
R

U

SA
IN

AL
BU

C
U

IN

M
TL

D

PH
M

T

R
G

SU

VT
LD

PO
W

R

C
U

D
L

M
TD

L

R
G

D
L

SL
D

L

VT
D

L

AS
AP

C
AD

L

C
FD

L

D
FD

L

M
AD

I

M
FD

L

SR
D

L

APPS
MACO X 3
USIF
SLIN X X X X 5 X 3 2 2 2
IRME X 5 5 4 3 2 2
ELME X 4 4 4 3 2
ERME X 4 5 5 4 3 2
SAHA X X 3 2
SLSU X 5 4 5 5 3
REFL 5 X 3 2
SRME X 5 4 5 X 5 X X X X 3 2 2 2 2 2
STRU X 4 4 X 5 5 5 X 5 X 5 5 X 3
SAIN X 5 X 4 3 2
ALBU X X X X 3 2 2
CUIN X 5 X 3 2 2
MTLD X X 5 3 2
PHMT 5 X 3 2
RGSU X 5 5 3 2 2 2
VTLD X 4 X 3 2
POWR 5 X X X X X X X X X X X X X X X X
CUDL 2 2 2 2 2
MTDL 2 2 2 2 2 2 2 2 2 2
RGDL 2 2 2 2
SLDL 2 2 2 2 2 2 2
VTDL 2 2 2 2 2 2 2 2 2 2 2 2 2
ASAP
CADL
CFDL
DFDL
MADI
MFDL
SRDL

AP
PS

M
AC

O

U
SI

F

SL
IN

IR
M

E

EL
M

E

ER
M

E

SA
H

A

SL
SU

R
EF

L

SR
M

E

ST
R

U

SA
IN

AL
BU

C
U

IN

M
TL

D

PH
M

T

R
G

SU

VT
LD

PO
W

R

AS
AP

C
AD

L

C
FD

L

C
U

D
L

D
FD

L

M
AD

I

M
FD

L

M
TD

L

R
G

D
L

SL
D

L

SR
D

L

VT
D

L

VT
D

L

APPS 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
MACO 1 1 1 1 1 1 1 1 1 1 X 1 1 1 1 1 1 1
USIF 1 1 1
SLIN 1 1 X X X X X 6
IRME 1 1 X
ELME 1 1 X
ERME 1 1 X
SAHA 1 1 X X
SLSU 1 1 X
REFL 1 1 X
SRME 1 1 X X 6 X X X X 6
STRU X 6 X X X X
SAIN 1 1 X 6 X
ALBU 1 1 X X X X
CUIN 1 1 X X
MTLD 1 1 X X
PHMT 1 1 X
RGSU 1 1 1 X
VTLD 1 1 6 X X
POWR 1 X X X X X X X X X X X X X X X X
ASAP
CADL
CFDL
CUDL
DFDL
MADI
MFDL
MTDL
RGDL
SLDL
SRDL
VTDL
VTDL

- 185 -

Type 1 Unmatched Marks—Interaction Between Hardware and Software

This category of unmatched interactions in the DSM’s are marked by “1” in Figure 5-14.

There are total 69 marks of this type. The requirement prediction DSM has these marks, but

they are missing from the experts’ prediction matrix. Mark Raymond, the JNJ OCD systems

integration manager, pointed out that when the experts built the DSM, they did not consider

the interactions between the software and hardware. In fact the software engineers were not

invited to either DSM building exercises.

Mark Raymond’s comment reflects an organization gap at JNJ between software and

hardware. Historically, the two groups were separate organizations and had different work

cultures. The experts involved in building the DSM were from hardware and chemistry

groups. Therefore the DSM’s they built did not capture the interactions with software group.

In addition, the author observed that the software subsystems not only did not have

requirement trace-ability documented in the OASIS requirement management software—

RequisitPro, but also did not write subsystem requirements document in the way that is

consistent with the hardware subsystems. The author therefore had to interview the software

system experts to capture the decomposition of the product requirements related to software

subsystems.

The organization gap between software and hardware is a warning sign for managing

systems in the OASIS project. The DSM in Figure 5-14 shows that very complicated and

tight coupling exists between the hardware and software design. Yet, the software and

hardware teams were not using the same tools and terms in their design. The OASIS systems

engineering group should be cautious about the organizational gap in order to avoid delay

and rework in the integration and verification phase.

 Type 2 Unmatched Marks—Interaction Between Assay Chemistry and Hardware

The second category of the unmatched interactions are marked by “2” in Figure 5-15. There

are total 64 marks of this type. The author’s prediction DSM (Figure 5-14) does not have

these marks, while the experts’ prediction DSM (Figure 5-14) has them. These marks are

- 186 -

about the system interactions related to the design and delivery of Assay, thin films, cuvettes,

tips, etc. The author’s DSM prediction missed these interactions because the Delivery and

Assay subsystems did not write Subsystem design requirement document. Consequently, the

author was unable to trace the PRD to SSRD and derive the resulting system interactions.

There are three major reasons for which the delivery subsystems requirements document

were not written. First, historically, the hardware and Assay/Chemistry groups were two

separate organizations. Although the hardware group were educated about requirements

management and put in the effort to develop requirements document, the Assay/Chemistry

group was not as involved in the documentation process. Second, most of the delivery

subsystems reuse existing components (e.g. reagents, recipes, etc.). The existing components

have already been sold and used in the JNJ OCD analyzers for many years. The Assay

/Chemistry group did not want to spend the time to write up a requirements document for the

existing parts any more. Third, the new components in the delivery subsystems, such as

Cuvettes, were co-developed with outside vendors. The systems engineering team in OASIS

has not pushed the requirements management system to the vendors yet. Therefore, the

author’s DSM built from the requirement document missed these marks.

Yet, the DSM in Figure 5-15 shows tight coupling between the delivery subsystems and the

rest of the analyzer. Therefore, the system management and integration team should pay

close attention to this organization gap and avoid delays later in the program.

Type 3 Unmatched Marks—The Feedback from the Power Distribution Subsystem

The author’s prediction DSM does not have the feed back marks from the power distribution

subsystems (POWR), while the expert prediction DSM does (See Figure 5-15 mark “3”).

There are total 17 marks of this type. There are two reasons for which the author’s prediction

DSM missed these feedback marks.

The first reason is that the POWR subsystem engineer said there would be very little

feedback because the requirements on the power subsystem was easily met. Therefore, the

author’s matrix ignored the weak feedback interactions. The author’s DSM prediction

- 187 -

reflects a more recent and realistic situation of the system, while the expert prediction reflects

the theoretical and conservative situation. Neither view is better than the other one. When

used for planning, the author’s DSM provides an aggressive view of the system while the

experts’ view is more conservative. It is the manager’s judgment to decide which one he/she

prefers to work with.

The second reason is that according to the current architecture definition, the harnessing and

electric boards are considered to be low-level components and are not discussed in the PRD.

The author therefore did not capture the marks due to packaging of the electrical system,

while the experts considered harnessing and boards as a part of the POWR system, and hence

identified feedback marks to the hardware subsystems. The lesson learned here is that the

subsystem architecture should take into account of the harnessing and boards although they

may appear very low in the system hierarchy. Harnessing and boards can introduce

important system interactions that may relate to wiring errors, heat dissipation, assembly

problems, etc.

The conclusion hence is that it is better to include the feedback marks between the power

subsystems and the rest of the hardware subsystems. Yet the missing marks in Figure 5-15

are not due to the fault of the matrix conversion method, but rather the incomplete input

information.

Type 4 Unmatched Marks—The Interaction Introduced by Reliability

The DSM built from requirements (Figure 5-14) missed the interactions due to reliability that

were captured by the DSM built by the experts (Figure 5-15). This type of unmatched marks

are marked out by “4” in Figure 5-15, and they are:

ERME—>ELME ELME—>ERME

SLSU—>ELME ELME—>SLSU

SRME—>ELME ELME—>SRME

STRU—>IRME IRME—>STRU

STRU—>ERME ERME—>STRU

- 188 -

VTLD—>SAIN SAIN—>VTLD

There are total 12 reliability types of interactions the requirements failed to predict. These

marks are missing from the author’s prediction matrix because the reliability product

requirement is an emergent property of the system, which is difficult to predict before the

system is put together. Based on the conversation with the reliability engineer for the OASIS

program, the reliability requirement is usually allocated into each subsystem as a target.

Whether the target will be met, or how each subsystem trade off with one another cannot be

predicted until the prototype is put together and some tests are run. Some of the system

interaction may not be discovered until the product is in the field. Very little system

interaction related to reliability can be predicted at early stage of the design. Therefore,

starting from the requirements fails to capture the reliability type of interactions that

experienced experts know in their minds.

A remedy to the situation is to collect past war stories and try to avoid them in the next

design. The OASIS Hazard Analysis and Mitigation (HAMG) document was produced

exactly for this purpose. The HAMG document for the OASIS program contained 961

mitigation cases. However, only 161 were traced to subsystems in the current analyzer

design (as of mid July 2001). The cause of the rest was not traced yet. Among the 161, only

7 mitigations were traced into more than one subsystem. Among the 7, only 4 revealed

system interactions.

4 / 961 = 0.4%

Therefore, the HAMG contributed very little to the system interactions in the DSM.

Bartkowski (2000) suggests that the reliability problems arise from chains effects that links

several subsystems to each other are the most difficult to discover. To improve the effect of

the HAMG document, two possible remedies exist:

1. The JNJ OCD engineers could improve in flowing down the HAMG into the subsystems

so that past lessons learned could be reflected on the current design to avoid potential

- 189 -

pitfalls. Currently, only 161 out of the 961 mitigations were related to subsystem

designs.

2. As indicated by Ted Farrell, director of the OASIS systems engineering group, most of

the mitigation probably related to only one subsystem. This could be seen in the existing

data too. Among the 161 mitigations that were related to subsystems, only 7 related to

more than one subsystem. Therefore, the HAMG might not be a good source to discover

lessons-learned about the system interactions related to reliability after all. Then another

better way to record the product history is needed.

In conclusion, the interactions caused by reliability are hard to predict from the requirement

documents. Predicting reliability types of interactions is a weakness of the matrix conversion

method. The reason is that meeting the reliability requirements depends on emergent system

properties.

Type 5 Unmatched Interactions—Functional and Spatial Relationships

The rest of the unmatched marks in the expert prediction DSM (Figure 5-15) are due to one

of the two reasons—interaction due to functional reason (total 11 marks) or interaction due to

spatial relationship (total 14 marks). These marks are represented by “5” in Figure 5-15.

The causes for which these marks were not captured by the requirements-driven DSM

(Figure 5-14) are explained below.

• REFL-SLIN

This relationship exists because the reflectometer needs to align with the slide position to

read the light reflection. The slide incubator determines the position of the slides. Therefore,

reflectometer interacts with the slide incubator.

This interface is a function type of relationship. The OASIS Function Flow Diagram

captured this relationship. It is reflected on the DSM built from combined document sources

(Figure 5-7). However, this relationship was not reflected in the requirement decomposition

document. Hence this interaction was missing from Figure 5-14.

- 190 -

Since the interface is relevant to the success and quality of a function, this interface should

have been recorded in the requirement documents.

• SLSU-IRME

This is a functional relationship. When the immuno-rate wash fluids are metered to the

slides, the slide supply subsystem determines the location of the slides relative to the

immuno-rate metering system. This interface is critical to performing the function of

dispensing the immuno-rate washing fluid. However, the requirement documents do not

record this interface. Even the Mechanical Interface Document does not record this

interaction. This is an interaction that should have been documented.

• SLSU-ERME

This interaction is similar to that between the SLSU and IRME (above).

• STRU-SRME

This is a spatial relationship. The frame determines the location of the metering system. As

a spatial relationship, it is form-dependent, and hence is usually not incorporated into

requirement documents. Therefore, the prediction DSM derived from requirements does not

contain this interface. In this case study, however, the mechanical interface document

captured this interaction.

For all of the form-dependent spatial relationship, another method is needed in order to

predict them early in the design process. The technique of building a DSM based on

requirements cannot capture this type of relationship. An excellent substitute is the Datum

Flow Chain method, which is capable of predicting the relationships in an assembly

[Mantripragada and Whitney (1998)].

• SAIN-STRU

This is a spatial relationship with the same situation as the “STRU-SRME” interface.

- 191 -

• CUIN-STRU

This is a spatial relationship with the same situation as the “STRU-SRME” interface.

• RGSU-STRU

This is a spatial relationship with the same situation as the “STRU-SRME” interface.

• PHMT-STRU

This is a spatial relationship with the same situation as the “STRU-SRME” interface.

• SLSU-STRU

This is a spatial relationship with the same situation as the “STRU-SRME” interface.

• MTLD-RGSU

This interaction is due to spatial arrangement. Therefore, the same discussion as in the

“STRU-SRME” relationship applies. Furthermore, even the Mechanical Interface Document

did not capture this interface.

• SRME-IRME and SRME-ERME

No PRD has been decomposed into these subsystems together, but the SSRD has record of

one subsystem interacts with another. Therefore, the author’s matrix conversion method,

which traced the PRD decomposition, did not find these relationships. This reveals that there

is a problem about how the SSRD and PRD are written. When an interface is discovered at

subsystem level, the engineers should go back to the system level requirements to make sure

this interface is captured at system level. Otherwise, these interfaces can easily be missed

because the system engineers only pay attention to the system level interactions. Again,

missing information rather than the incompetence of the matrix conversion method caused

the failure.

 From the above discussion, we can conclude:

- 192 -

1. The functional types of missing marks reveal warnings of the completeness of the

requirement documents. These marks are missing not because of the capability of the

matrix conversion method, but because of incomplete requirements document. Among

the above interactions, 5 pairs (total 10) belong to this type. They are:

• REFL-SLIN

• SLSU-IRME

• SLSU-ERME

• SRME-IRME

• SRME-ERME

The JNJ engineers should revise the requirement documents to include these missing

interfaces.

2. The packaging types of missing marks cannot be captured in requirements flow down

structure, and hence cannot be easily predicted by the matrix conversion method.

Therefore, besides the requirements document, we shall also use methods such as Datum

Flow Chain or documents such as the OASIS Mechanical Interface Document to predict

these spatial relationships. Among the above missing marks, the following 7 pairs of

interfaces (total 14 interactions) are of this type:

• STRU-SRME

• STRU-SAIN

• STRU-CUIN

• STRU-RGSU

• STRU-PHMT

• STRU-SLSU

• RGSU-MTLD

All of these interfaces could have been captured if we were to use the OASIS

Mechanical Interface Document (Figure 5-7).

- 193 -

Type 6 Unmatched Marks—Miscellaneous Interactions Missed by the Experts

Figure 5-14 shows that the experts were unable to predict all of the interactions predicted by

the matrix conversion method either. These unmatched interactions are marked “6” in Figure

5-14. Therefore, the author’s matrix conversion method enabled us to capture more complete

set of interactions in a systematic manner.

5.3.1.3.2 Summary of the Data

The above discussion has shown:
Total amount of system interfaces 247

Matching marks between the experts DSM and the author's prediction 54

Unmatched marks between the experts DSM and the author's prediction 193

Type 1 software/hardware interactions 69

Type 2 hardware / assay delivery subsystem interactions 64

Type 3 power distribution subsystem feedback 17

Type 4 reliablity induced interactions 12

Type 5a function types of interactions 11

Type 5b spatial types of interactions 14

Type 6 experts missed 6

Figure 5-16 further summarizes the data.

- 194 -

Unmatched marks
193

Type 4 reliablity
induced interactions

12

Type 3 power
distribution

subsystem feedback
17

Type 2 hardware /
assay delivery

subsystem
interactions

64

Type 5 function types
of interactions

11

Type 5 spatial types
of interactions

14

Type 6 experts
missed

6

Type 1
software/hardware

interactions
69

Matching marks
between the experts

DSM and the
author's prediction

54

Figure 5-16: Percentage of Various Unmatched System Interaction Marks

The reasons for each type of missing marks are summarized below:

• Type 1 and 2 unmatched marks regarding software and assay delivery subsystems (total

69% of all unmatched marks) are due to the inconsistency of requirement documentation

in different parts of the organization, not the matrix conversion method. The method is

capable of capturing these two types of marks if the documentation is complete.

• Type 3 unmatched marks concerning the power subsystem (total 8.8% of all unmatched

marks) are really a subjective choice of the system engineers. It does not reflect of the

capability of the matrix conversion method.

• Type 4 unmatched marks concerning reliability (total 6.2% of all missing marks) reflect

the limitation of the matrix conversion method. The reliability interactions cannot be

predicted from requirements. We need other types of methods or documents to predict

interactions due to reliability.

- 195 -

• Type 5 unmatched marks concerning function and spatial relationship (12.9% of all

unmatched marks) can be avoided if the engineers update their requirement documents,

and if other methods for predicting spatial relationships, such as Datum Flow Chain, are

employed.

• Type 6 unmatched marks--miscellaneous missing marks by the experts (total 3.1% of all

unmatched marks) show that the matrix conversion method provides a systematic way to

capture the system interfaces that are sometimes even overlooked by design experts.

Table 5-2: Summary of Unmatched Marks

Table 5-2 shows many of the unmatched marks could have been prevented if we had known

better about the rules of constructing DSM from requirements. The rules we learned here

are:

1. JNJ engineers must involve the software engineers in the DSM building exercise. In

general, the DSM building exercise must involve all relevant teams.

Type of Unmatched
Mark

Number of
unmatched

marks Reason for Missing
Who Missed

them Remedy

Problem of
the matrix
conversion

method

(1) Hardware-software
interaction 69

The experts did not involve
software people in the DSM
exercises. JNJ engineers

involve software people in the
next DSM building exercise no

(2) Assay-hardware
interaction 64

No Assay design requirement
has been documented.

requirements
DSM

JNJ chemists produce assay
design requirements
documents. no

(3) Power subsystem
interaction 17

The power subsystem engineer
says there will be no need for
information feedback to other
subsystems.

requirements
DSM Does not count as a mistake. no

(4) Reliability
induced interaction 12

Reliablity requirement
decomposition is difficult to
use to predict system level
tradeoffs.

requirements
DSM

Use past design history on
relialbity issues (e.g. the
hazard analysis document at
JNJ) yes

(5-1) Function types of
interaction 11

Not reflected in reuqirements
decomposition structure.

requirements
DSM

better requirements writing and
management by JNJ engineers no

(5-2) Spatial types of
interaction 14

Spatial relationship is not
detailed by requirements.

requirements
DSM Use Datum Flow Chain yes

(6) experts missed
interaction 6

experts did not bring them up
during DSM building exercises. JNJ engineers

JNJ engineers can learn from
the requirements driven DSM. no

- 196 -

2. If requirements are used to predict system interactions, it is better to keep a complete set

of requirements document. Thus, JNJ chemists should write the requirements for the

assay, slides, and cuvetts.

3. The requirement traceability relationship should be updated constantly to reflect the

learning about system interactions.

If all of the above rules had been followed, only 26 marks would have been missing in the

DSM built from the requirements. The potential overlap between the DSM predicted from

requirements and the DSM built by the experts could be those shown in Figure 5-17. If

Datum Flow Chain method were employed, the overlapping would have been even greater.

Figure 5-17: Potential Overlapping between the Requirements and Expert DSM

From the above discussion, we can claim the matrix conversion method is capable of predict

most of the system interactions. Another note is that the above observation shows the

weakness of the Axiomatic Design’s Design Matrix. An uncoupled or decoupled design may

indeed be coupled due to reliability or spatial relationship, but appear uncoupled or

decoupled because the coupling due to reliability or packaging cannot be captured through

requirements.

There are 215 marks
overlapping between the
experts DSM and requirements
prediction DSM.

The author’s
requirements
prediction
DSM misses
26
interactions.

The experts miss
6 interfaces
predicted by the
requirements.

- 197 -

5.3.1.4 System Interaction Density

The DSM system interaction density concept is introduced in Chapter 4 (see 4.3.5.2). To

compare the marks per row ratio in both DSM’s, we shall compare only the parts of the

matrices where actual thoughts were put in. From the discussions in 5.3.1.3.1, the

interactions with the delivery subsystems were not considered in the author’s matrix

conversion method (Type 2 in Figure 5-15). The software and hardware interactions were not

considered in the experts’ prediction DSM (Type 1 in Figure 5-14). Therefore, in the

requirements prediction DSM (Figure 5-14), only the portion from “APPS” to “POWR” was

considered to calculate the interaction density ratio. In the experts’ prediction DSM (Figure

5-15), only the portion from “SLIN” to “SRDL” was taken into account. Therefore, we have:

The author’s prediction DSM Interaction Density = 129 / 20 = 6.45

The experts’ prediction DSM Interaction Density = 172 / 29 = 5.93

Both ratios are very close to 6. Therefore, probably enough thoughts were put into building

the DSM from requirements and the DSM built from experts.

However, we still need to note that the number of system elements (the subsystems in this

case) was kept constant in this case study. This constraint ruled out the flexibility of

adjusting the selection of system elements some other case studies had. Since the marks-per-

row density may be a reflection of the human cognitive limitation when dealing with

complex systems, constraining the amount of system elements in the DSM limits the

flexibility of human thinking. Therefore, the above observation about the interaction density

ratio provides only a reference for whether the DSM made from requirements was good

enough.

5.3.1.5 The Topology of System Interfaces

Only counting the number of overlapping marks in both DSM’s are not enough to compare

their similarity. Figure 5-18 demonstrates this point. Both DSM’s in Figure 5-18 have the

same amount of interactions, but the system iterations loops are different. In the system

- 198 -

represented by the DSM on the left side, A, B, C, and D for one iteration loop. In the system

represented by the DSM on the right side, only B, C, and D are involved in iteration. A is

not.

A B C D
A X X X
B X
C X
D X

A B C D
A
B X X
C X X
D X X

Figure 5-18: Two DSM’s with the Same Number of Elements but Different Topology

Therefore, system topology in our sense include the following three aspects:

1. Which element in the system is not involved in iteration?

2. Which elements are involved in iteration, and which iteration are they in?

3. What are the sequences of elements that are not involved in iterations?

The best way to identify the system topology is to partition the DSM.

The DSM from requirements document (Figure 5-14) and the experts’ prediction DSM

(Figure 5-15) are compared for their similarities in topology. The results of the partitioning

are listed below. Note the subsystems in the parenthesis are involved in an iteration loop.

Each level includes subsystems either involved in the same iteration loop or can be designed

in parallel. Subsystems in later levels require inputs from subsystems in earlier levels.

• The requirements driven DSM (Figure 5-14):

Level 1--(APPS, MACO, USIF, SLIN, IRME, ELME, ERME, SAHA, SLSU, REFL, SRME,

STRU, SAIN, ALBU, CUIN, MTLD, PHMT, RGSU, VTLD), CUDL, MTDL, RGDL,

SLDL, VTDL, ASAP, CADL, CFDL, DFDL, MADI, MFDL, SRDL.

Level 2—POWR

- 199 -

• The experts’ combined prediction DSM (Figure 5-15):

Level 1—APPS

Level 2—(MACO, SLIN, IRME, ELME, ERME, SAHA, SLSU, REFL, SRME, STRU,

SAIN, ALBU, CUIN, MTLD, PHMT, RGSU, VTLD, POWR, CUDL, MTDL, RGDL,

SLDL, VTDL), USIF, ASAP, CADL, CFDL, DFDL, MADI, MFDL, SRDL

The partitioning results of the above two DSM’s are very similar except for the following

elements:

1. The experts’ DSM did not consider the interactions between software and hardware.

Therefore, the APPS and USIF subsystems are grouped differently in the two DSM’s.

2. The author’s DSM did not consider the interactions introduced by the delivery

subsystems. Therefore, the delivery types of subsystem elements—CUDL, MTDL,

RGDL, SLDL, VTDL—were excluded from the major iteration loop in the requirements

driven DSM.

3. The author’s DSM omitted the feedback marks of the POWR subsystem to the rest of the

hardware. Therefore, the POWR subsystem is not included in the major iteration loop in

the requirements driven DSM.

All above three cases can be eliminated as explained in 5.3.1.3.1 Analysis of Unmatched

Marks. Therefore, the matrix conversion method matched the expert prediction DSM well

topologically.

5.3.1.6 The System Element Priority List

The DSM’s are built for helping systems engineering planning. The ultimate test for the

usefulness of the DSM built from requirements is to test whether it provides the same advice

for the planning of the system integration activities as the DSM built by the JNJ experts.

- 200 -

When the experts at JNJ OCD constructed the DSM, they assigned weighing factors to the

interactions. Therefore, JNJ engineers identified a priority list of the system elements

ranking from the most important to system interfaces to the least. Here are their top seven

subsystems:

1. POWR

2. SRME

3. SLIN

4. STRU

5. IRME

6. ALBU

7. SAIN

The author’s DSM from requirements using the matrix conversion method is binary. The

following rules were used to pick the elements in the system that deserve the most attention:

• The elements that cause the largest iteration loop are the most important. These

are the elements that interact with a lot of other elements both in the horizontal

direction and vertical direction in the DSM. For instance, the APPS subsystem is

a large-iteration-causing element (Figure 5-14).

• The elements that interface different iteration blocks are important.

Therefore, based on the DSM in Figure 5-14 (ignore the software part as the experts did), the

priority list is:

1. SRME

2. STRU

3. SLIN

4. ALBU

5. SAIN

6. REFL

- 201 -

7. POWR

The above two lists include mostly the same elements, with three exceptions explained as

follows:

• The author failed to predict the importance of the IRME subsystem because the

reliability types of interactions were not captured in the requirement flow down

process. The observation again demonstrates the limitation of relying on

requirements to predict system interfaces.

• The experts failed to predict the importance of the REFL subsystem. The cause

might be that the weighing factor value given to that subsystem is low. However, in

the author’s opinion, since REFL and SAIN belong to two separate subsystem design

groups, their interaction is worth close attention.

• The POWR subsystem is in the first place in the experts’ list but the last in the

author’s list. The reason is that the experts’ DSM captured the feeding back actions

of the POWR subsystem to the rest of the hardware, while the author took the POWR

subsystem engineer’s view not to include the weak feedback interactions.

Despite the differences, both priority lists warn the system engineers about the same things

regarding system integration issues. Therefore, the DSM from requirements is capable of

predicting the priority of the system elements.

5.3.1.7 What Makes Two DSM’s Similar?

All of the discussions in this section so far concern the similarity between two DSM’s. In

this case study, it was the similarity between the DSM built from the requirements and the

DSM built by the experts. We may summarize the measures used to compare the similarities

between two DSM’s. These measures may be useful for other DSM studies.

1. Having marks at the same location in the DSM

This is a very obvious comparison criterion. A large portion of this section was devoted to

comparison the overlapping and unmatched marks between the requirements DSM and the

- 202 -

expert DSM. Having the same marks at the same location in the DSM definitely make two

DSM’s similar or the same. However, not having the same marks at the same location does

not necessarily mean a DSM is incorrect or useless. The next few measures looks at the

comparison from other perspectives of the problem.

2. The System Topology

When the results of DSM partitioning reveal the same sequential, parallel, and iterative

relationships among elements in the DSM, the two DSM’s are similar. A DSM may miss a

few details, but if it reveals all of the important system level issues such as iterations, it is

still a valid and useful DSM.

3. The System Element Priority List

When two DSM’s warn about the same elements in the system, the two DSM’s are similar

from project management point of view.

4. The Convergence Rate of System Iterations

This measure was not used in this case study. According to Smith and Eppinger (1997), the

Eigen values of iterations can tell the convergence speed of iterations. Therefore, we may

assign sensitivity values to the interactions in an iteration block, and compare the

convergence values.

For the future research, it is worth investigating whether there are techniques in linear

algebra regarding the similarities of two matrices besides the Eigen value measure. Since a

DSM is equivalent to a digraph, the literatures on comparing the similarity of graphs will also

help on this topic.

5.3.1.8 Summary of the Effectiveness of Building a DSM from Requirements

This first objective for this thesis research was to find out if we could use the matrix

transformation method to obtain a DSM from requirements again for a different product from

CVC’s. The above discussion showed that a DSM was built using OASIS requirements.

- 203 -

The second objective was to see how realistic the requirements DSM’s predictions are.

Comparing the requirements DSM to the DSM JNJ engineers built based on their experience

in the detailed design phase, we made the following observations:

• Most of the unmatched marks between the requirements DSM and the expert DSM

are due to missing information, rather than the method.

• The resulting DSM from requirements has an interaction density ratio around 6.

• The topology of the resulting DSM is very similar to that of the expert DSM. They

both identified the same elements involved in the iterations.

• Both requirements DSM and expert DSM predicted very similar priority list.

Therefore, the DSM built from the requirements is close to what expert engineers learned

from experience, and is useful for the purpose of planning out system integration work.

In the process of comparing the requirements DSM with the expert DSM, we discovered the

weaknesses of the idea of building a DSM from requirements.

• We cannot predict spatial relationship from requirements. Other techniques such as

Datum Flow Chain must be used.

• We cannot predict emergent properties of the system, such as the system tradeoff’s

for meeting the reliability requirement.

However, as a planning tool, the DSM constructed at early stage of the design process does

not have to be complete or perfect. It was seen that the DSM constructed from the

requirements gave the same advice about system topology and element priority list as the

DSM constructed based on expert knowledge. In addition, the DSM from requirements

revealed organization communication gaps experts did not pay attention to. Therefore,

despite the limitations, the technique of building a DSM from requirements is still useful.

Furthermore, we learned from this case that to get a DSM from requirements, we might take

a shortcut without going through DM, if we are only interested in interactions at one level of

the system hierarchy. The DSM can then be transferred back to a DM, revealing the

requirements trace-ability.

- 204 -

5.3.2 The Requirements Decomposition Process vs. Various Types of Requirements

The matrix conversion method developed by the author was built upon the basis of

Axiomatic Design Matrix [Suh (2000)], and hence is inevitably influenced by the capability

of Axiomatic Design method. The most critical influence is the requirements decomposition.

The Axiomatic Design theory classifies all requirements into two types. The first type is the

Functional Requirement, which can be decomposed into lower level requirements using the

zigzagging method. If a requirement cannot be decomposed using the zigzagging method,

then the requirement is called a constraint in Axiomatic Design. Axiomatic Design does not

provide a systematic approach in dealing with constraints in the design process. Chapter 2

contains more detailed discussions on the limitations of Axiomatic Design.

Since one of the goals of this research is to understand how much of the system interaction

we can predict at early stage of the design process from design requirements, whether all

requirements can be addressed using the matrix conversion method is of high importance.

This section of the discussion is interested in understanding the following issues:

1. What types of product level requirement (PRD) were decomposed into subsystems? How

were they decomposed? Note when a requirement is decomposable, we mean that

requirement can generate subsystem level requirements using the Axiomatic Design

zigzagging method.

2. What types of PRD have not been decomposed? Why was it so difficult to decompose

them?

3. How do decomposed requirements influence the system interfaces? How well can we

predict the system interfaces from the decomposable requirements?

4. Compare the types of requirements from the OASIS Product Requirements Document

(PRD) to the existing requirements classification list (2.1.2.9.2 Based on the Subject of

the Requirements) and see what types of requirements are missing in PRD and why.

All above four questions are intended to help answer the research question Q2-c.

- 205 -

5.3.2.1 Requirements Decomposition

Decomposition of a requirement in this report means using the zigzagging method in

Axiomatic Design to flow a higher level requirement into lower level subsystems, and

consequently generate lower level subsystem requirements. Most product level requirements

in this case study were decomposed into subsystems. However, some requirements were not.

Rather than doing what Axiomatic Design did to classify the requirements into two classes—

the functional requirements and the constraints—based on whether they can be decomposed

using the zigzagging technique, this thesis intends to create a mapping between the

conventional way of classifying requirements and the decomposability of a requirement.

Summary of the requirement categories based on subjects from 2.1.2.9.2:

• Functional Requirements

• Performance Requirements

• Reliability

• Maintainability/serviceability

• Operational Environment

• Operability

• Safety

• Appearance

• Packaging

• Weight and Size

• Installation

• Upgrading, expandability/configurability

• Transportation (including storage, loading, logistics)

• Manufacturing and assembly

• Training

• Retirement, disposal

• Distribution

- 206 -

• Funding, resource, timing

• Cost

• Patents

• Policy and Procedure, Regulatory requirements, standards

• Reuse of components

• Design Constraints

The next part of the report discusses how various conventional types of requirements perform

during the decomposition process.

5.3.2.1.1 The Decomposable Requirements

The following types of product level requirements (PRD) of the OASIS program were

decomposed into subsystems:

1. Functional requirements—what the product shall do

2. Performance requirements—how well the product shall perform certain functions

3. Maintenance requirements—how the product should be designed for ease of maintenance

4. Packaging requirements—how parts of the products shall locate relative to one another

spatially

5. Design constraints—introduce a pre-selected design implementation to narrow the choice

of design concepts during synthesis. Reusing existing parts or subsystems is an example

of introducing a design constraint.

6. Disposal / environment—how the product shall be designed to be environmental friendly

after the life of the product is finished

7. Operational environment—the environment that the product has to be in during normal

operation

8. Expandability—the capability of the product to take additional optional function if the

customer choose so

9. Installation—the ease of installation

10. Reliability—the reliability of the product over its service life time

- 207 -

11. Size—the dimension of the product

A database was constructed to record how each product level requirement was decomposed

into existing subsystems. The following fields were also filled out in the database for each

product level requirement (PRD):

• During the decomposition, did this PRD introduce one or more DP’s in the Design

Matrix? Note that the scope of this research limits the DP in the Design Matrix generated

in this case study to be the subsystems of the OASIS product.

• How was this PRD decomposed into subsystems? In other words, what was the process

of taking this particular PRD and using the zigzagging process to generate subsystem

requirements?

• Did this PRD induce interaction between the DP’s (subsystems)?

• Did this PRD introduce one or more DP’s in the subsystems it was decomposed into?

What type of DP did the requirement introduce in the relevant subsystems? Note

according to Axiomatic Design, a DP could be physical components or design features

such as dimension or material.

Table 5-3 records the answer to each of these questions for each of the above types of

requirements. The purpose of this exercise is to identify how different types of requirements

might act differently in the decomposition process. Note that the answers in Table 5-3 are

only based on this particular case study. They may not be universal to all cases.

- 208 -

Requirements
Types

Does the
requirement
introduce
one or more
new
subsystems?

How is this
requirement
decomposed into
subsystems?

Does this
requirement
induce
interactions
between the
subsystems?

What kind of
DP does this
requirement
introduce in
subsystems?

Functional Sometimes Allocate to each
related subsystems

Sometimes yes
sometimes no

Physical
component

Performance No • Direct allocation
• Models and

simulation to
allocate

• Budgeting

Sometimes yes
sometimes no

Physical
component and
design feature

Maintenance No Allocate to each
related subsystems

Yes Physical
component

Packaging No Allocate to each
related subsystems

Yes Design feature

Constraints No Allocate to each
related subsystems

No Physical
Component,
Design feature,
or nothing

Disposal No Allocate to each
related subsystems

No None

Operational
Environment

No Allocate to each
related subsystems

Yes Physical
Component

Expandability No Allocate to each
related subsystems

No Design feature

Installation No Allocate to each
related subsystems

Unclear Unclear

Reliability No Budget to each
subsystem

Hard to predict Hard to predict

Size and
Weight

No Budget to each
subsystem

Hard to predict Hard to predict

Allocation—decompose the requirements to relevant subsystems. The decomposition can be qualitative, such
as assigning high-level functions to lower level subsystems. The decomposition can also be quantitative, such
as using models to identify the performance requirement values for the subsystems. This definition includes
both the Allocation and Flowdown definition in Grady (1993 p. 104).

Budgeting—decomposing the requirements by assigning target values to subsystems. The assignment of the
values does not have to be based on strong scientific reasoning. These target values can be changed and traded
later on if they are not achieved. One example is the reliability requirement budgeting process.

Note the answers in this table are only based on this particular case study at JNJ.

Table 5-3: How Various Types of Requirements were Decomposed

- 209 -

The rest of this section details the reasons behind the answer in each of the cells in

Table 5-3. Note that many OASIS product level requirements are referenced below. The

reader can find the original values in the requirements in Appendix A have been changed to

protect the proprietary data.

Functional Requirements

• Does the requirement introduce one or more subsystems?

The functional requirements may or may not introduce new subsystems in the system level

DM. The subsystems in the DM are defined according to the architecture definition. Some

of the functional requirements are very close to the architecture definitions, and therefore can

be seen as introducing that particular subsystem in the DM (e.g. PRD 139). Some of the

functional requirements mention particular subsystems, and hence can be seen only as more

detailed requirements for that particular subsystem (e.g. PRD 6). Some of the functional

requirements need several subsystems to accomplish. In this case, the functional requirement

is allocated into related subsystems and become subsystem requirements rather than

introducing new subsystems at the system level (e.g. PRD 6).

In the OASIS program, the functional requirements in PRD were generated after the

architecture of the product was already chosen. Therefore, the functional requirements in the

PRD are less likely to introduce new subsystems, but more likely to flow into existing

subsystems. This may not be the case for other products.

• How is this requirement decomposed into subsystems?

Functional requirements are allocated into related subsystems. The allocation process is

usually to qualitatively assign certain requirements to relevant subsystems. Functional

requirements may be allocated to a single subsystem or multiple subsystems.

- 210 -

• Does this requirement induce interactions between the subsystems?

If the functional requirement flows into only one subsystem, of course no system level

interaction is introduced (e.g. PRD 77). If the functional requirement flows into multiple

subsystems, it is still possible that no system level interaction is introduced because the

system level completion of the function may be the mere sum of the completion of its sub-

functions in related subsystems (e.g. PRD 120). The last case is that the functional

requirements flow into multiple subsystems and these subsystems have to interact with each

other in order to fulfill the requirement (e.g. PRD 6). The last case is the most common,

because this is the reason for systems to exist—the whole is more than the mere sum due to

the interactions among the parts of the system.

• What kind of DP does this requirement introduce in the relevant subsystems?

The functional requirements are always decomposed into lower level functional requirements

in the subsystems. Therefore, the new DP’s introduced in the relevant subsystems are

physical components that can fulfill certain functions.

Performance Requirements

• Does the requirement introduce one or more subsystems?

The performance requirements do not introduce any new subsystems. The reason is that the

performance requirements are about how well certain functions are performed by the

product. Therefore, the performance requirements are always associated with existing

subsystems instead of creating new subsystems to fulfill the requirement.

• How is this requirement decomposed into subsystems?

The performance requirement decomposition takes three possible routes:

1. The requirement can be directly flown into subsystems (e.g. PRD 21). Then it becomes

the performance requirement only those particular subsystems have to meet.

2. The requirement is allocated to subsystems using model simulation and maybe robust

design studies to identify the subsystems critical to this particular performance (e.g. PRD

16). Then the requirement is flown into these relevant subsystems.

- 211 -

3. The requirement is budgeted among relevant subsystems. The budgeting process sets

design goals for the subsystems on the particular performance, but whether the goal is

realistic is not guaranteed (e.g. PRD 51).

• Does this requirement induce interactions between the subsystems?

The performance requirement may or may not add interactions among the subsystems. When

the requirement is only decomposed to one subsystem, obviously no interaction is added (e.g.

PRD 134). When the requirement is flown into multiple subsystems in parallel, i.e. the

requirement is not decomposed, so no system interactions are introduced (e.g. PRD 21).

Nevertheless, many performance requirements are decomposed into multiple subsystems that

introduce system level interactions (e.g. PRD 16).

• What kind of DP does this requirement introduce in the relevant subsystems?

According to Axiomatic Design, DP can be physical components in the system or design

features such as dimension and material selection. The performance requirements are

capable of generating both types of DP’s.

Sometimes, the system level performance requirement introduces functional requirement at

the subsystem level. An example is PRD 95. In this case, the performance requirement

introduces physical component in the subsystem level. In other cases, the performance

requirement only decomposes into performance requirements in the subsystems. Then the

DP’s generated from this particular system level performance requirements are design

features. An example is PRD4.

Maintenance Requirements

• Does this PRD introduce one or more new subsystems?

Maintenance requirements for this product do not introduce new subsystems because they are

about how to maintain the existing subsystems (PRD 256). However, it is easy to imagine

cases where new subsystems are introduced just for the purpose of maintenance, such as a

access door or a diagnostic sensor.

- 212 -

• How is this PRD decomposed into subsystems?

The decomposition of the maintenance requirement is very similar to that of the functional

requirements. The requirement is allocated into the subsystems that are being maintained,

and the subsystems that support the maintenance activities.

• Does this PRD induce interaction between the subsystems?

In this case study, the maintenance requirements always added system level interactions

among the subsystems. Since the decomposition of the maintenance requirements are very

similar to that of the functional requirements, it is possible in general that there will be cases

where the maintenance requirements do not introduce system level interactions.

• What kind of DP does this requirement introduce in the relevant subsystems?

In this case study, the maintenance requirements always introduced physical components in

the subsystems just as the functional requirements do.

Packaging Requirements

• Does this PRD introduce one or more new subsystems?

The packaging requirements do not introduce new subsystems, because only when

subsystems exist, could one talk about their spatial relationship (PRD 187).

• How is this PRD decomposed into subsystems?

The packaging requirements are allocated into the existing relevant subsystems. When there

is detailed tolerance information about an assembly, the packaging information may be

budgeted to relevant subsystems. However, in this case study, no such example was found in

the product level requirements document.

• Does this PRD induce interaction between the subsystems?

If the packaging requirements are at the product level, it always causes interactions among

the subsystems.

- 213 -

• What kind of DP does this requirement introduce in the relevant subsystems?

In this case study, the packaging requirements do not add physical components in the

subsystems. However, the packaging requirements may cause one or more design features in

the subsystems to be critical. Potentially, the packaging requirements could cause special

physical components to be designed in the subsystems.

Constraints

The constraints are defined here as the product requirements that restrict the choices of

design implementations.

• Does this PRD introduce one or more new subsystems?

The design constraints do not introduce new subsystems because these PRD’s restrict the

choice design concept during synthesis. In this case study, the design choices can be

restricted in three ways:

1. Fixed external interfaces (e.g. PRD 43, 44)

2. Reuse existing/known/tested parts or technology (e.g. PRD 34)

3. Specify what to do in a design (e.g. PRD 54)

• How is this PRD decomposed into subsystems?

The constraints are allocated directly to relevant subsystems. They will not show up as FR’s

in the DM, but rather become the rationale behind the choices of a design concept and the

corresponding DP’s.

• Does this PRD induce interaction between the subsystems?

The constraints in this case study do not directly add system level interactions because they

specify the implementation choices on particular components or subsystems. However, a

certain choice on the DP set by the constraint may cause the interactions between other DP’s

in the system. In Table 5-3, only the direct effect of the constraints was listed.

- 214 -

• What kind of DP does this requirement introduce in the relevant subsystems?

The constraints do not necessarily introduce DP’s in the subsystems. For example, PRD 43

adds design features in the subsystem. PRD 44 adds physical components in the subsystem.

On the other hand, PRD123 specifies the values for DP’s without adding anything new.

Disposal Requirements

In the OASIS PRD, the disposal requirements are about the packaging materials rather than

the analyzer. Therefore, these requirements are only flown down into the directly related

subsystems without introducing subsystem interactions. The author thinks that in general,

this type of requirements can be similar to the case of maintenance requirements.

Operational Environment

• Does this PRD introduce one or more new subsystems?

In this case study, the operational environment requirements do not introduce new

subsystems. The reason is that the environment requirements are something that every

designed subsystem has to be able to withstand. In the OASIS analyzer, no subsystems are

designed solely for the operating environment. In general cases, it is possible that special

subsystems are designed just for the environment such as that in the spacecraft.

• How is this PRD decomposed into subsystems?

The operational environment requirements are flown into any subsystems that are relevant.

• Does this PRD induce interaction between the subsystems?

Most of the time, this type of requirements does not introduce system level interaction. The

decomposition is equal and parallel in each subsystem (e.g. PRD 46). However, when an

operational environment has to be taken by several subsystems with tradeoffs, system level

interactions exist too (e.g. PRD 49).

• What kind of DP does this requirement introduce in the relevant subsystems?

- 215 -

This type of requirements may introduce new physical components and DP’s in the

subsystem for the purpose of ensuring the product to work in the specified environment

(PRD49).

Expandability

The expandability requirement is like the functional requirement for the future of the product.

• Does this PRD introduce one or more new subsystems?

The expandability requirement does not introduce new subsystems in this case study. It is

about the design of the existing subsystems. However, like the functional requirements, it

could potentially introduce new subsystems.

• How is this PRD decomposed into subsystems?

The expandability requirement is directly allocated into relevant subsystems.

• Does this PRD induce interaction between the subsystems?

The expandability requirement in this case study does not introduce interactions among

subsystems. However, like the functional requirements, it could potentially introduce system

interactions if more than one subsystem is involved in achieving an expandability

requirement.

• What kind of DP does this requirement introduce in the relevant subsystems?

In this case study, the expandability requirements cause certain design features to be

important, but do not introduce new physical elements (PRD 146).

Installation

• Does this PRD introduce one or more new subsystems?

In this case study, there is only one installation requirement (PRD 287). It did not introduce

any new subsystem. However, the ease of installation could potentially require special

subsystems and therefore introduce new subsystems in the product.

- 216 -

• How is this PRD decomposed into subsystems?

It is allocated to relevant subsystems.

• Does this PRD induce interaction between the subsystems?

The installation requirement in this PRD is very high level, and it is unclear how this

requirement may affect the subsystem interfaces. The system interactions will be discovered

by the service experts through examining the prototype. An expert engineer may be able to

suggest some of the possible system interactions up front before detailed design, but the

suggestion may not be completely correct and accurate, and highly depend on whether there

is a knowledgeable expert on the team. Therefore, the answer to this question in this case

study is unclear.

• What kind of DP does this requirement introduce in the relevant subsystems?

This particular installation requirement does not add any new DP in the subsystem. But it

could in general if we start to consider alignment pin, etc.

Reliability

The reliability requirements (PRD 58) are decomposed into each subsystem as a target

requirement. The decomposition process is called budgeting where targets for each relevant

subsystem are set and traded off. Whether the target can be achieved and whether there are

design tradeoffs among the subsystems are not known until the prototype and testing starts.

The decomposition of this type of requirements is more like setting goals rather than

requirements.

Size and Weight

The weight and size requirements (e.g. PRD48) for this product are of minor importance,

unlike that for aircrafts. The contribution of each subsystem is monitored, but not really

traded off. How well these requirements are met is unknown until the details of the design

are determined.

- 217 -

5.3.2.1.2 Requirements that are Difficult to Decompose

As shown in Figure 5-30, 8% of the product level requirements are not decomposed. These

requirements are examined and the reasons for which they are not decomposed are discussed

below.

Standards

The standards in the OASIS PRD are very general (e.g. PRD 280). To understand the impact

of the standards on the design, once must first obtain a good understanding of the standards,

and then examine whether the form that the design takes meets the standards. The common

practice at JNJ OCD is to have experts on the standards to come to design review and check

whether the design meets standards. Therefore, decomposing the standards before a detailed

design is a difficult task.

Performance

Certain performance requirements are written at very high level, and hence are difficult to

relate to specific subsystems (e.g. PRD 1). These performance requirements can only be

validated after the entire system is put together.

Shipping

There is only one shipping requirement (e.g. PRD57) and it is at a very high level. It is very

difficult to see the immediate impact of this requirement on the design until the design is

detailed into specific forms.

Safety

Safety requirements seem to touch everything, and cannot be decomposed until the design

comes into form. It is another requirement like the standards that are checked by the experts

in the design reviews (e.g. PRD 269).

- 218 -

Summary on the Reasons for Requirements to be Hard to Decompose

Requirements can be difficult to decompose for the following two reasons:

• The requirement is written at very high level, and cannot easily be related to subsystems,

such as some of the performance requirements and the standards.

• The requirements cannot be decomposed until the details of the form that a design is

taking are determined. Such requirements include the shipping and the safety

requirements.

5.3.2.1.3 Missing Classes of Requirements

Compare the requirements types in the OASIS Product Requirements Document to the

standard list of the requirements types (see 2.1.2.9.2), the following types of requirements are

missing from the OASIS Product Requirements Document:

• Cost

• Appearance

• Distribution

• Design for Manufacturing, Assembly, and Serviceability (DFMAS)

• Operability

• Training

• Budget and Timing

• Patents

• Component Reuse

The cost, appearance, and distribution requirements are in the marketing report. They are not

in the Product Requirements Document because the Product Requirements Document is

considered to be an engineering requirements document.

The DFMAS, the operability, and training requirements are in the design guideline

document, which is a separate document from the requirements document. Since DFMAS

- 219 -

and operability are difficult to measure with hard scales, they are listed as design guidelines

rather than requirements, because requirements in JNJ are to be inspected by the FDA.

The budget and timing requirements are management issues and hence are not included in the

design requirements document. The managers are expected to plan and keep track of the

team’s performance in the design process.

The requirement of not violating patent law and to reuse component is implicit. They are

effective during design concept selection.

Hence, the inputs to a design are more than just the verifiable engineering requirements.

When we use the matrix conversion method to predict system interactions, we must be sure

not to overlook any other document sources.

5.3.2.1.4 Summary on Requirements Decomposition

The goals of studying the various types of requirements and how they flow down into

subsystems are:

1. Requirement decomposition is important because it provides trace-ability of the design

goal through the system hierarchy. This study is interested in understanding how each

type of requirements shall be dealt with during decomposition. Can all requirements be

decomposed? Whether the decomposition of requirements guarantee the success of the

system integration.

2. Axiomatic Design claims that if the Functional Requirements can be decomposed into the

system in a de-coupled or uncoupled manner, then the design is at the optimal. It further

claims that all systems can find this optimal design. This research intends to find out

whether all requirements for a system can be decomposed in the Axiomatic Design’s

manner. Whether the decomposition can correctly predict the system interactions, and

- 220 -

hence claim an ideal design based on the axiomatic Design standards is really an ideal

design.

From the analysis so far, we can make the comparison in Table 5-4. The following

observations can be easily made:

• If a requirement can be decomposed like the functional requirement, it can be used to

predict system interactions without knowing very much design details.

• If a requirement cannot be easily decomposed into the hierarchy of the system, then it

cannot be used to predict system interactions using the matrix conversion method.

• Many requirements cannot be decomposed as the functional requirements in the

Axiomatic Design method, but they can be decomposed in other ways and help to predict

system interactions.

• On the other hand, although some requirements such as reliability can be decomposed

using budgeting method, they cannot predict system interactions very well.

There exist many types of requirements that cannot be easily decomposed, and cannot predict

system interactions at early stage of the design.

- 221 -

 Can predict system
interactions

Cannot predict system
interactions

Can be decomposed in the
same way as the FR’s in
the Axiomatic Design

Functional
Maintainability
Operational Environment
Expandability
Appearance

None

Can be decomposed but
not in the same way as
decomposing the FR’s in
the Axiomatic Design

Performance (Modeling)
Packaging (DFC, DSM)
Design Constraints (DSM)

Reliability (budgeting)
Size (budgeting)
Weight (budgeting)
Cost (budgeting)

Difficult to decompose None Installation
Standards
Safety
DFMAS
Component Reuse
Operability
Shipping

No strong evidence in this
case study

Disposal
Distribution
Training
Budget and Timing
Patents

Table 5-4: Requirements Decomposition Summary

Therefore, the answers to the above two questions are:

1. Although we hope to be able to decompose every requirement to ensure the design intent

is met, some requirements cannot be easily decomposed. Therefore, unanticipated

problems will always exist during prototyping, integration, and testing. This is a proof

for the emergent properties of the system in product design. Understanding which

requirements are decomposed and which ones are not is the key to the success of system

integration.

- 222 -

2. The requirement decomposition method in axiomatic design only covers part of the

requirements for products. If we were to use Axiomatic Design’s Design Matrix (DM) to

predict system interactions, based on Table 5-4, only interactions caused by the

“Functional”, “Maintainability”, “Operational Environment”, “Expandability”, and

“Appearance” requirements can be captured. That’s total 108 interactions out of possible

247 interactions (see Figure 5-17). Therefore, we cannot judge whether a system is

uncoupled or decoupled only based on the decomposable requirements and the DM.

There are more causes of system interactions.

From the above discussion, it is clear that the matrix conversion method the author has

cannot predict all of the system interactions that will happen. Some interactions will always

be missing. However, this limitation in the method may not be so bad if the prediction can

give the correct overall picture. Earlier in this report, it has been shown that the matrix

conversion method gave a close approximation of what the experts can predict. After all, we

are looking for a prediction to aid planning, and not all details of a system are necessary.

5.3.2.2 Which Types of Requirement Drive System Interfaces

In this section, we are interested in seeing which type of requirement provides the best

approximation to the prediction of system interactions. The motivation for this objective is

to find out how far from the truth Axiomatic Design theory is by using only Functional

Requirements to judge the coupling in the system.

The interactions captured by the requirements-only DSM (Figure 5-8) and the rationales

behind each interaction are examined. The types of requirements that cause each system

interactions are recorded. A partial DSM is built for each requirement types and compared

with the comprehensive DSM.

In Table 5-4, we can see that not all of the requirements decomposed introduce interactions

among the subsystems. Only 5 types of requirements introduced system level interactions in

the OASIS analyzer. Figure 5-19 shows the percentage of system interactions they

- 223 -

introduced in the final DSM. Table 5-5 shows the amount of interactions these requirements

predicted among all interactions derived from requirements.

Figure 5-19: Contribution to System Interactions from Various Types of Requirements

 Amount of Interactions Percent of Total
Interactions

Functional Requirements 101 80.8%
Performance Requirements 50 40%
Operational Environment 2 1.6%
Maintainability 59 47.2%
Packaging 2 1.6%
Total Interactions from
Requirements

125 ------

Note the values and percentage in this table do not add up to 100% because multiple types of requirements

could identify the same interaction mark in the DSM.

Table 5-5: Contribution of Each Type of Requirements to the System Interactions

80.8%

40.0%

1.6%

47.2%

1.6%
0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

Fu
nc

tio
n

Pe
rfo

rm
an

ce

O
pe

ra
tio

na
l

En
vi

ro
nm

en
t

M
ai

nt
ai

na
bi

lit
y

Pa
ck

ag
in

g%
 o

f s
ys

te
m

 in
te

ra
ct

io
ns

 c
au

se
d

by
 re

qu
ire

m
en

ts

- 224 -

In this case study, functional, performance, and maintenance requirements contribute the

most to the system interactions predicted. This list also matches with the result in Table 5-4,

where the above types of requirements are listed as decomposable and capable of predicting

system interactions. At this point, we still cannot say any of the four above types of

information do a good job at predicting the system interactions. How well the system

interactions are predicted is measured not only by the quantity of the DSM marks covered,

but also by how well the system topology (see Section 5.3.1.5) is predicted. The following 5

figures are intended to compare the system topology predicted by the top four drivers of the

system interactions.

Figure 5-20 shows the final DSM using all types of requirements. This figure is the same as

Figure 5-8. Figure 5-21, Figure 5-22, and Figure 5-23 show the partial DSM if we only took

inputs from functional, maintainability, and performance requirements.

- 225 -

Figure 5-20: The Final DSM Derived from All Types of Requirements

Figure 5-21: The DSM Due to Functional Requirements

AP
PS

M
AC

O

U
SI

F

SL
IN

IR
M

E

EL
M

E

ER
M

E

SA
H

A

SL
SU

R
EF

L

SR
M

E

ST
R

U

SA
IN

AL
BU

C
U

IN

M
TL

D

PH
M

T

R
G

SU

VT
LD

PO
W

R

AS
AP

C
AD

L

C
FD

L

C
U

D
L

D
FD

L

M
AD

I

M
FD

L

M
TD

L

R
G

D
L

SL
D

L

SR
D

L

VT
D

L

2 12 30 25 11 9 10 22 26 19 28 29 23 1 7 16 17 21 32 18 3 4 5 6 8 13 14 15 20 24 27 31
APPS 2 X X X X X X X X X X X X X X X X X
MACO 12 X X X X X X X X X X X X X X X X X X
USIF 30 X X X
SLIN 25 X X X X X X X X
IRME 11 X X X
ELME 9 X X X
ERME 10 X X X
SAHA 22 X X X X
SLSU 26 X X X
REFL 19 X X X
SRME 28 X X X X X X X X X X
STRU 29 X X X X X X
SAIN 23 X X X X X
ALBU 1 X X X X X X
CUIN 7 X X X X
MTLD 16 X X X X
PHMT 17 X X X
RGSU 21 X X X X
VTLD 32 X X X X
POWR 18 X X X X X X X X X X X X X X X X X
ASAP 3
CADL 4
CFDL 5
CUDL 6
DFDL 8
MADI 13
MFDL 14
MTDL 15
RGDL 20
SLDL 24
SRDL 27
VTDL 31

Software

Thin Film

Wet Chemistry

AP
PS

M
AC

O

U
SI

F

SL
IN

IR
M

E

EL
M

E

ER
M

E

SA
H

A

SL
SU

R
EF

L

SR
M

E

ST
R

U

SA
IN

AL
BU

C
U

IN

M
TL

D

PH
M

T

R
G

SU

VT
LD

PO
W

R

AS
AP

C
AD

L

C
FD

L

C
U

D
L

D
FD

L

M
AD

I

M
FD

L

M
TD

L

R
G

D
L

SL
D

L

SR
D

L

VT
D

L

APPS X X X X X X X X X X X X X X X
MACO X X X X X X X X X X X X X X X X
USIF X X X
SLIN X X X X X X X X X
IRME X X X
ELME X X X
ERME X X
SAHA X X X X
SLSU X X X
REFL X X X X
SRME X X X X X X X X X X
STRU X X
SAIN X X X X
ALBU X X X X X
CUIN X X X X
MTLD X X X
PHMT X X X
RGSU X X X X
VTLD X X X
POWR
ASAP
CADL
CFDL
CUDL
DFDL
MADI
MFDL
MTDL
RGDL
SLDL
SRDL
VTDL

Software

Wet Chemistry

Thin Film

- 226 -

Figure 5-22: DSM Due to Maintainability Requirements

Figure 5-23: DSM Due to Performance Requirements

AP
PS

M
AC

O

U
SI

F

SL
IN

IR
M

E

SA
H

A

SL
SU

R
EF

L

SR
M

E

SA
IN

AL
BU

C
U

IN

M
TL

D

PH
M

T

R
G

SU

VT
LD

AS
AP

C
AD

L

C
FD

L

C
U

D
L

D
FD

L

M
AD

I

M
FD

L

M
TD

L

PO
W

R

R
G

D
L

SL
D

L

SR
D

L

ST
R

U

VT
D

L

EL
M

E

ER
M

E

APPS X X X X X X X X X X X X X X
MACO X X X X X X X X X X X X X X X
USIF X
SLIN X X
IRME X X
SAHA X X
SLSU X X
REFL X X
SRME X X
SAIN X X
ALBU X X
CUIN X X
MTLD X X
PHMT X X
RGSU X X
VTLD X X
ASAP
CADL
CFDL
CUDL
DFDL
MADI
MFDL
MTDL
POWR
RGDL
SLDL
SRDL
STRU
VTDL
ELME 1 1
ERME 1

AP
PS

M
AC

O

U
SI

F

SA
H

A

SL
IN

SL
SU

SR
M

E

R
EF

L

AL
BU

C
U

IN

SA
IN

VT
LD

EL
M

E

IR
M

E

M
TL

D

PH
M

T

R
G

SU

ER
M

E

PO
W

R

R
G

D
L

AS
AP

C
AD

L

C
FD

L

C
U

D
L

D
FD

L

SL
D

L

SR
D

L

ST
R

U

VT
D

L

M
AD

I

M
FD

L

M
TD

L

APPS X X X
MACO X X X X X X X X X X
USIF X X
SAHA X X
SLIN X X
SLSU X X
SRME X X X
REFL X
ALBU X X X
CUIN X X
SAIN X X
VTLD X
ELME
IRME
MTLD
PHMT
RGSU
ERME X
POWR X X X X X X X X X X X X X X X X
RGDL
ASAP
CADL
CFDL
CUDL
DFDL
SLDL
SRDL
STRU
VTDL
MADI
MFDL
MTDL

Software

Wet Chemistry

Thin Film

- 227 -

Functional Requirements

Compare Figure 5-20 and Figure 5-21, the two DSM has the same topology after

partitioning, although there are fewer marks in the DSM due to functional inputs. Therefore,

we can conclude the functional requirements provide good prediction to the system

interactions.

Maintainability Requirements

Compare Figure 5-20 and Figure 5-22, we can see that the maintainability requirements,

although provide a good percentage of marks in the DSM, only provide a small part of the

total picture of the system. Only the prediction between the hardware subsystems, and the

computer software and controls are predicted. There should also be a lot of interactions

among the hardware subsystems where maintenance and service issues are important. Yet

these interactions were not reflected in the DSM in Figure 5-22 at all. The reasons are as

follows.

First, maintainability issues among hardware subsystems cannot easily be predicted until the

design of the subsystems is complete and the system is integrated. This type of

maintainability interaction is the same as the serviceability requirements in its capability of

predicting system interactions (see Table 5-4). Second, the maintainability requirements

between the software and the hardware are similar to additional functions the two subsystems

have to provide together. Therefore, the interactions between the hardware and software are

easily captured early on.

Therefore, the maintainability requirements can be decomposed when the requirement can be

translated into certain functions the system has to provide. Consequently, the decomposition

process can provide prediction of the system interactions. Yet, a lot of the interaction due to

maintainability cannot be seen at early stage of the design as additional functions. These

interactions cannot be predicted easily.

Just as a note, placing the maintainability requirements in the same location as the functional

requirements in Table 5-4 is okay because even for the functional requirements, we cannot

- 228 -

predict everything. The unpredictable part about the maintainability can be seen as in the

Design for Serviceability (DFS) in Table 5-4.

Performance Requirements

Compare Figure 5-20 and Figure 5-23, the DSM in Figure 5-23 captures only a small part of

the entire picture. Therefore, performance requirements, although introduced a lot of the

interactions in the DSM, do not provide good prediction of the system.

Summary of Prediction Capability

From the above analysis, it is clear that in this case study, the functional requirements

provide most of the interactions in the final requirements DSM. The topology of the DSM

built from functional requirements also match closely with the requirements DSM. From

Table 5-4, we can see functional requirements and maintenance requirements are among

those that can be decomposed using Axiomatic Design’s DM. Therefore, Axiomatic

Design’s Design Matrix, although cannot capture all of the system interactions, still provides

a fairly good method to capture most of the system interactions that can be predicted.

5.3.2.3 Summary on Requirements Decomposition

The third objective of this case study was to find out whether all requirements could be used

to predict system interactions or not. The first part of this section showed that not all

requirements could be decomposed. Among the requirements that could be decomposed, not

all requirements could be decomposed in the way Axiomatic Design’s Design Matrix was

constructed. In addition, not all requirements that can be decomposed could be used to

predict system interactions. Therefore, the Axiomatic Design’s view on determining system

interactions based on Design Matrix’ coupling is naïve.

Yet, the second part of this section showed among all the requirements that was decomposed

in this case study, the two requirements that could be decomposed using the Axiomatic

Design Matrix contributed the most to the prediction of system interactions, which was a

fairly good match with the expert’s DSM (see 5.3.1). Therefore, the Design Matrix, although

- 229 -

does not provide a complete view of the system, is still very useful in helping planning for

system integration at early phase of the design process.

In addition, Table 5-4 further showed the matrix transformation method explained in Chapter

3 was not the only way to get system interactions from requirements. Some requirements

cannot be decomposed using the Axiomatic Design’s DM, but their influence on system

interactions can still be reflected in a DSM. Since the DSM and the DM have the same look

except for the row headings (proof see 3.2.4 The Choice of Output Variables), the influence

of these requirements could be reflected back in the DM without having to decompose them

using the zigzagging method.

5.3.3 The Sources of System Level Knowledge

In the above discussion, the comparison between the DSM derived from the requirements

and the DSM made by JNJ OCD experts was made. Nonetheless, this case study used more

than just the requirements document to construct the prediction DSM. Total five types of

system engineering documents were used:

1. Architecture Definition document

2. Function Flow Diagram

3. Mechanical Interface Diagram

4. Requirements document

5. Hazard Analysis

This section is interested in understanding how each types of information source contributes

to our understanding of the system interfaces.

5.3.3.1 Which Document Tells the Most about System Interactions

Figure 5-24 through Figure 5-28 show the system interfaces in the DSM identified by each

individual sources of information.

- 230 -

Figure 5-24: System Interactions Obtained from Architecture Definition

Figure 5-25: System Interactions Obtained from Function Flow Diagram

AP
PS

M
AC

O

U
SI

F

SL
IN

IR
M

E

EL
M

E

ER
M

E

SA
H

A

SL
SU

R
EF

L

SR
M

E

ST
R

U

SA
IN

AL
BU

C
U

IN

M
TL

D

PH
M

T

R
G

SU

VT
LD

PO
W

R

AS
AP

C
AD

L

C
FD

L

C
U

D
L

D
FD

L

M
AD

I

M
FD

L

M
TD

L

R
G

D
L

SL
D

L

SR
D

L

VT
D

L

APPS x
MACO x x x
USIF
SLIN x x x x
IRME x
ELME x
ERME x
SAHA x
SLSU x
REFL x
SRME x x
STRU x
SAIN x
ALBU x x x
CUIN x x
MTLD
PHMT x x
RGSU
VTLD x
POWR
ASAP
CADL
CFDL
CUDL
DFDL
MADI
MFDL
MTDL
RGDL
SLDL
SRDL
VTDL

AP
PS

M
AC

O

U
SI

F

SL
IN

IR
M

E

EL
M

E

ER
M

E

SA
H

A

SL
SU

R
EF

L

SR
M

E

ST
R

U

SA
IN

AL
BU

C
U

IN

M
TL

D

PH
M

T

R
G

SU

VT
LD

PO
W

R

AS
AP

C
AD

L

C
FD

L

C
U

D
L

D
FD

L

M
AD

I

M
FD

L

M
TD

L

R
G

D
L

SL
D

L

SR
D

L

VT
D

L

APPS
MACO x x
USIF x
SLIN x x x
IRME
ELME
ERME
SAHA x
SLSU x
REFL x
SRME x x x x x
STRU
SAIN
ALBU x
CUIN x x
MTLD x
PHMT x
RGSU x
VTLD
POWR
ASAP
CADL
CFDL
CUDL
DFDL
MADI
MFDL
MTDL
RGDL
SLDL
SRDL
VTDL

- 231 -

Figure 5-26: System Interaction Obtained from Mechanical Interface Document

Figure 5-27: System Interactions Obtained from Requirements Document (Same as Figure 5-14)

AP
PS

M
AC

O

U
SI

F

SL
IN

IR
M

E

EL
M

E

ER
M

E

SA
H

A

SL
SU

R
EF

L

SR
M

E

ST
R

U

SA
IN

AL
BU

C
U

IN

M
TL

D

PH
M

T

R
G

SU

VT
LD

PO
W

R

AS
AP

C
AD

L

C
FD

L

C
U

D
L

D
FD

L

M
AD

I

M
FD

L

M
TD

L

R
G

D
L

SL
D

L

SR
D

L

VT
D

L

APPS
MACO
USIF
SLIN X X X X X X
IRME X
ELME X
ERME X
SAHA X
SLSU X
REFL X
SRME X X X X X X
STRU X X X X X X X X X
SAIN X X
ALBU X X X
CUIN X X X
MTLD
PHMT X
RGSU X X
VTLD X X
POWR X X
ASAP
CADL
CFDL
CUDL
DFDL
MADI
MFDL
MTDL
RGDL
SLDL
SRDL
VTDL ,

AP
PS

M
AC

O

U
SI

F

SL
IN

IR
M

E

EL
M

E

ER
M

E

SA
H

A

SL
SU

R
EF

L

SR
M

E

ST
R

U

SA
IN

AL
BU

C
U

IN

M
TL

D

PH
M

T

R
G

SU

VT
LD

PO
W

R

AS
AP

C
AD

L

C
FD

L

C
U

D
L

D
FD

L

M
AD

I

M
FD

L

M
TD

L

R
G

D
L

SL
D

L

SR
D

L

VT
D

L

APPS X X X X X X X X X X X X X X X X X
MACO X X X X X X X X X X X X X X X X X X
USIF X X X
SLIN X X X X X X X X X
IRME X X X
ELME X X X
ERME X X X
SAHA X X X X X
SLSU X X X X
REFL X X X X
SRME X X X X X X X X X X X
STRU X X X X X X X X X X X
SAIN X X X X X X
ALBU X X X X X X
CUIN X X X X X
MTLD X X X X
PHMT X X X
RGSU X X X X X
VTLD X X X X
POWR X X X X X X X X X X X X X X X X X
ASAP
CADL
CFDL
CUDL
DFDL
MADI
MFDL
MTDL
RGDL
SLDL
SRDL
VTDL

- 232 -

Figure 5-28: System Interactions Obtained from Hazard Analysis Document

To measure the capability of capturing system interactions each of the above 5 information

sources has, the amount of interactions each information sources captures is measured. In

addition, the interaction density is measured for each information source. Again as a

reminder:

Interaction Density Ratio = Number of Non-diagonal Marks in the DSM / Number of Rows

In order to compute the Interaction Density to reflect the reality, the following subsystems

are not considered: CUDL, MTDL, RGDL, SLDL, VTDL, ASAP, CADL, CFDL, DFDL,

MADI, MFDL, SRDL. The reasons are:

1. Most of these subsystems (ending with DL and ASAP) are not part of the analyzer.

This DSM study wants to concentrate on the subsystem interactions within the

analyzer.

AP
PS

M
AC

O

U
SI

F

SL
IN

IR
M

E

EL
M

E

ER
M

E

SA
H

A

SL
SU

R
EF

L

SR
M

E

ST
R

U

SA
IN

AL
BU

C
U

IN

M
TL

D

PH
M

T

R
G

SU

VT
LD

PO
W

R

AS
AP

C
AD

L

C
FD

L

C
U

D
L

D
FD

L

M
AD

I

M
FD

L

M
TD

L

R
G

D
L

SL
D

L

SR
D

L

VT
D

L

APPS
MACO
USIF
SLIN X X
IRME X
ELME
ERME
SAHA
SLSU
REFL X
SRME X
STRU
SAIN
ALBU X
CUIN
MTLD
PHMT
RGSU
VTLD
POWR
ASAP
CADL
CFDL
CUDL
DFDL
MADI
MFDL
MTDL
RGDL
SLDL
SRDL
VTDL

- 233 -

2. These subsystems do not have SSRD written for them yet. Therefore, tracing the

PRD decomposition not done. Many of these subsystems also do not have a person

fully responsible for them. When building the DM and DSM in step 1-5, the author

ignored these subsystems.

3. These subsystems do not have any non-diagonal interaction marks in the DSM’s in

Figure 5-24 to Figure 5-29. Therefore, counting them in the Interaction Density is

not fair.

Therefore, the denominator used to compute the ratio is 20 rather than 32. Table 5-6 contains

the comparison of the five information sources for identifying system interactions. Note the

sum of the number of interactions introduced by each document source is greater than the

total number of interactions in the final DSM, because some of the interactions can be

identified by multiple information sources.

DSM Source of Information Number of
Interactions

Average Marks
per Row

Figure 5-24 Architecture Definition 25 1.25
Figure 5-25 Functional Flow Diagram 20 1
Figure 5-26 Mechanical Interface Document 41 2.05
Figure 5-27 Product Requirements and

Subsystem Requirements
127 6.35

Figure 5-28 Hazard Analysis 6 0.3
 Total 141 7.05

Table 5-6: Contribution of Each Information Source in Identifying Subsystem Interactions

The percentages of contribution of each information source in identifying the system

interfaces are shown in Figure 5-29. The percentage values are calculated using the

following formula:

Percent Contribution = Number of Interactions Introduced / Total Interactions Identified by

all Documents

For example:

- 234 -

Percent Contribution of Architecture Definition document = 25 / 141 = 17.7%

Again, note the same system interaction can be identified by multiple information sources.

Therefore, the percentage values in do not add up to 100%.

Figure 5-29: Percent Contribution to Identifying Subsystem Interactions from Each Document Source

From Figure 5-29, we can see the requirement documents (PRD and SSRD) predict the

majority of the system interactions, while other traditional types of system engineering

documents capture less system interface knowledge.

Since some of the interactions are identified by multiple documents, Table 5-7 shows the

intersections of the contribution of each document. Note type 4 documents in Table 5-7—the

requirements document—identified 85 interactions that other documents were unable to

capture. In other words, the requirements document contributed additional 60% more

interactions that other traditional types of system engineering documents were unable to

17.7% 14.2%

29.1%

90.1%

4.3%

0.0%

10.0%

20.0%

30.0%

40.0%
50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

Ar
ch

ite
ct

ur
e

D
ef

in
itio

n

Fu
nc

tio
na

l
Fl

ow
 D

ia
gr

am

M
ec

ha
ni

ca
l

In
te

rfa
ce

D
oc

um
en

t

R
eq

ui
re

m
en

ts
D

oc
um

en
t

H
az

ar
d

An
al

ys
isPe

rc
en

t C
on

tr
ib

ut
io

n
to

 Id
en

tif
yi

ng
 S

ys
te

m

In
te

ra
ct

io
ns

- 235 -

capture. Meanwhile, the requirements document (type 4 information source in Table 5-7)

also captured 42 system interactions, which at least one other document also predicted. Only

14 out of the total 141 interactions in Table 5-7 cannot be predicted by requirements

document, all of which are related to spatial relationships and can be predicted by

information source type 3—the Mechanical Interface Document. Therefore, we can

conclude that with good and complete requirements document enables us to predict and

capture most of the majority of the system level knowledge using the matrix conversion

method. In addition, the above comparison also suggests that the benefit of documenting and

managing requirements can be much greater if the matrix conversion method is employed to

predict system interactions.

Interaction Identified by Information Source(s) Number of Interactions
3 10
4 85
1,3 2
1,4 2
2,4 4
3,4 10
1,2,4 4
1,2,3,4 8
1,3,4 4
2,3,4 6
1,3,4,5 2
1,2,3,4,5 2
2,3,5 2
Total 141
1—Architecture Definition Document 2—Function Flow Diagram
3—Mechanical Interface Document 4—Requirements Document
5—Hazard Analysis

Table 5-7: Number of Interactions Identified by Single or Multiple Information Sources

5.3.3.2 How well the System Level Knowledge is Documented

The second important question to ask is that whether the system interface knowledge resides

in experts’ heads or in documents. In the previous research work at Ford and CVC, most of

the system interface knowledge resides in people’s heads (see Figure 1-3 and Figure 4-16).

- 236 -

This case study is interested in discovering whether the same situation about system level

knowledge exists in JNJ OCD the OASIS product program.

There are two types of records need to be counted:

1. When product level requirements were decomposed into subsystem requirements,

how much of the decomposition knowledge is recorded in the document (ReqisitPro

software in JNJ OCD) and how much still resides in human’s mind?

2. Combining all the information sources for identifying interactions, how many

interactions can be identified from reading documents and how many rely on experts’

knowledge?

5.3.3.2.1 PRD Decomposition Knowledge Documentation

Ideally for OASIS program, all of the subsystem requirements should be traced back to the

product level requirements, and the requirements trace-ability should be documented in the

RequisitPro software. However, by the end of July, not all of the product level requirements

decomposition was recorded in the RequisitPro. Some subsystems were still working on

their requirements and understanding the relationship between the product level requirements

and the subsystem requirements. Therefore, from time to time, the author had to consult the

the expert system engineers to capture how certain product level requirements were to be

decomposed into which subsystem(s).

In this case study, an EXCEL database was built to record the decomposition of each product

level requirement and the information source of the decomposition. This database was used

to count how many of the information source was from human and how many was from

documents. Some of the PRD decompositions were combined knowledge of both human and

documents, with each telling a part of the story. In such cases, the decomposition was

counted still as relying on human knowledge, because without human knowledge, the

- 237 -

decomposition would not have been complete. However, the estimate is conservative

because the contribution of the knowledge in the document is overlooked.

Total Number of PRD: 290

PRD not decomposed: 23 (reasons are explained later in this report)

PRD that I was told to be obsolete: 10

PRD actually decomposed: 257

PRD decomposed based solely on documents: 26

PRD decomposed based on people’s knowledge: 231

Percent of decomposition relying on documents: 26/280 = 9%

Percent of decomposition relying on human knowledge: 231/280 = 83%

Percent of requirements not decomposed: 23/280 = 8%

Figure 5-30 summarizes this situation.

Figure 5-30: Information Sources for PRD Decomposition

Where is the Knowledge for Requirements
Decomposition

9%

8%

83%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Requirements

Reuqirements are not yet
decomposed

Requirements
decomposition relies on
expert knowledge

Requirements
decomposition is
documented

- 238 -

Figure 5-30 shows that by the end of July, only a small percent of the product requirements

decomposition was recorded in the requirements documentation tool used at OCD—the

RequisitPro. Therefore, the OASIS program engineers need to do a better job in

documenting the trace-ability of requirements. The documentation tool (RequisitPro) is

available for use. It is just a matter of taking the time to do it. Once the trace-ability of the

requirements is recorded in RequisitPro, JNJ OCD can have a much higher percentage in

documented system interaction knowledge (Figure 5-31).

Figure 5-31: Potential Improvement on Documented Requirements Decomposition

5.3.3.2.2 Where is the System Interaction Knowledge

In order to find out how much knowledge regarding system interactions is documented, we

may take into account all of the available system engineering design documents. Therefore,

besides the requirements documents, the architecture definition document, the function flow

diagram, the mechanical interface document, and the hazard and mitigation document are all

considered. The DSM built from all systems engineering documents is shown in Figure 5-7.

This DSM has 12 additional marks compared with the DSM built from requirements.

However, the expert DSM (Figure 5-11) captures all of the 12 additional marks in Figure 5-7.

Therefore, although here we consider the DSM built using all documents rather than

Potential for Documented Knowledge Regarding
Requirements Decomposition

92%

8%

0%

20%

40%

60%

80%

100%

Reqiurements

Requirements not yet
decomposed

Requirements
decomposition is done
and documented

- 239 -

requirements only, the total number of system interactions identified by both the experts and

the documents are still 247.

When the DSM was built using systems engineering documents, an EXCEL database was

constructed to record the rationale behind each interactions captured in the DSM. The

sources of the interactions were also recorded. An interaction could have multiple

information sources, all of which are recorded. To determine which interaction was found in

documents and which were from human knowledge, the rules of counting are as follows:

1. If there is a non-requirements document (such as the architecture definition, the

Mechanical Interface document, etc) used as the source of the interaction, the

interaction is counted as residing in documents.

2. If there is a product level requirement that did not depend on human inputs to

decompose into subsystems, the DSM interaction using this PRD as an input is

counted as depending only on documents.

The results of counting are:

Total number of interactions in the final DSM: 247

Interactions captured by documents only: 39

Interactions relied on human knowledge: 208

Percent of Interaction from Human: 208/247 =84 %

Percent of Interaction from Documents: 39/141 = 16%

If the OASIS engineers were to document all of the knowledge about requirements

decomposition, then:

Total number of interactions captured = 247

- 240 -

Number of interactions captured by documentation if the requirements decomposition were

properly documented = 141 (all marks in Figure 6 will be from documents)

Percentage of system interaction knowledge documented as a result = 141/247 = 57%

The number 141 is calculated as follows based on the values in Figure 5-16:

• Type 1 (hardware software interactions) and Type 6 (miscellaneous interactions

experts missed) will be documented in the requirements. That’s total 69+6 = 75

additional documented interactions.

• There are 54 matching marks between the requirements DSM and the expert DSM.

Since all interactions in the requirements DSM are assumed to be documented, there

are additional 54 marks being documented.

• The requirements DSM missed 12 interaction marks comparing to the DSM built

using all systems engineering documents (Figure 5-7). These twelve marks will be

accounted for as well.

• Therefore, 75+54+12 = 141.

The comparison between documenting requirements decomposition and not documenting is

shown in Figure 5-32. We can gain 41% in documented system level knowledge by

documenting requirements decomposition knowledge properly.

- 241 -

Figure 5-32: The Improvement on Documenting System Level Knowledge after Documenting

Requirements Decomposition

Note even after proper documentation of the requirements decomposition, still 43% of the

system level interaction depends on the experts. These 43% (247-141=106) of the

undocumented system interactions includes:

1. Interaction between Assay Chemistry and the hardware design—64. The reason is

the assay group did not write requirements document.

2. Feedback interactions from the power subsystem—17. This was a subjective decision

by the power subsystem engineer.

3. Reliability types of interactions—12.

4. Function and spatial types of interactions undocumented—13.

Some of these interactions, such as 1, 2, and 4, can be documented, so that the percentage of

documented interactions can rise higher in another case. Yet the documented system

interaction will only approach 100% at the end of the design process because the interactions

introduced by system emergent properties cannot be captured early on.

16%

57%

84%

43%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Now After Documenting all
Requirements
Decomposition

%
 o

f a
ll

sy
st

em
 in

te
ra

ct
io

ns
People
Document

- 242 -

The conclusions to draw from the above discussions are:

1. The JNJ OCD OASIS program engineer should improve their documentation on the

requirements decomposition, because it contains most of the system interaction

knowledge.

2. It is possible to use requirements to capture and document the majority of the system

interaction information.

5.3.3.3 Summary on the Documentation of System Level Knowledge

Objective 4 of this case study asks whether there is a document source that’s better for

capturing system level knowledge. From the above observations, we can conclude that the

requirement documents and the requirement decomposition documents are excellent sources

of system interface information. The rest of the existing system engineering documents at

JNJ OCD did not capture as much information about system interfaces as the requirements

documents.

Objective 4 also asks how well JNJ OCD does in documenting system level knowledge. The

finding is that OCD engineers need to put in additional work for documenting the

requirements decomposition in order to take the advantage of using requirements documents

to predict system interactions. Currently, only 9% of the knowledge about requirements

decomposition is documented. In addition, taking into account all of the system engineering

design documents, only 16% of the system level knowledge is documented. That is a lower

percentage than Ford throttle body case study even with the help of using requirements to

predict system interactions (Ford case study did not have this method). After documenting

the requirements decomposition knowledge, the documented system level knowledge can

rise to 57%, which is a significant improvement. Therefore, again, the observation shows

JNJ engineers should improve their work in documenting the requirements decomposition

relationships.

- 243 -

5.4 Progress Made Regarding the Research Questions

The research questions this case study tries to answer include Q1-b and c, and Q2-c and d.

The objectives of this case study were set to answer these research questions. The findings

are summarized here.

Q1-b. How to predict system interactions early? How to predict system interactions for new

technology?

This case study again tested the idea of building a DSM from requirements. A DSM was

built from the OASIS requirement documents. It was compared to the DSM’s built by the

engineering experts following the traditional DSM building process. Total 247 marks did not

match between the two matrices. Among the 247 unmatched marks, 167 unmatched marks

could have been avoided.

• 75 marks could have been captured by the requirements DSM if

o The JNJ OCD engineers produce complete set of requirements document,

including the Assay Chemistry design requirements.

o Requirements flow-down information is correctly documented and

updated.

• 75 marks could have been captured by the expert DSM if

o The JNJ OCD engineers invited all of the necessary people to the DSM

building exercise, including the software engineers.

o JNJ OCD engineers had learned some of the insights about the system

interactions contained in the requirements document.

• 17 marks could have been avoided if the experts and the power subsystem

engineers were equally conservative or aggressive about the feedback from the

power subsystem to the rest of the hardware design.

Yet, among the 247 unmatched marks, 26 unmatched marks could not have been avoided,

which reveal the limitation of the idea of constructing a DSM from requirements only. These

26 marks missed by the requirements DSM are:

• 14 marks were due to spatial types of interactions.

• 12 marks were due to reliability types of interactions.

- 244 -

The spatial types of interactions cannot be predicted based on requirements. Method such as

Datum Flow Chain can help to capture these interactions from early on. System interactions

concerning reliability requirements are just very difficult to predict early on, like any

requirements concerning emergent properties of the system. Therefore, using the

requirements to predict system interaction will always leave out some of the interactions

concerning system emergent properties, which is the limitation of the matrix conversion

method.

In addition, the comparison between the requirements DSM and the expert DSM also showed

the following similarities:

• Both DSM’s identified very similar iteration loops in the system.

• Both DSM’s identified very similar elements in the system that may be the most

critical to successful system integration.

• Both DSM’s had system interaction ratio very close to 6, indicating they probably

contained enough information about the system.

Therefore, we can conclude that the JNJ OCD case study again showed that we could obtain

a valid and useful DSM from requirements without expert knowledge regarding the detailed

design. The matrix transformation method is transferable to a product different from the

CVC case study.

Furthermore, a shortcut was discovered to bypass the construction of a DM and obtain a

DSM directly from requirements. It only works when dealing with system elements in the

same hierarchy. Yet, combining this shortcut with the findings regarding how requirements

are decomposed (Table 5-4), we obtained a more flexible method than the matrix

transformation method. There are three ways to predict and capture system interactions.

1. When the requirement is decomposable using the Axiomatic Design matrix, we may

construct a DM and use the matrix transformation method to get a DSM, so that we could

predict the system interactions.

Requirement DM DSM

- 245 -

2. When the requirement is decomposable but not using the Axiomatic Design matrix

method, we may use the shortcut method used in this case study to directly predict the

effect of the requirement on the system interactions. Once the interaction is recorded in

the DSM, it can then be reflected back to DM.

Requirement DM DSM

3. When the requirement concerns system emergent properties, we may have to wait until

we discover the system interactions that affect the requirement. Then we could put the

interaction in the DSM, and reflect it back to DM to show the effects of emergent

properties on the decomposable requirements.

Requirement DM DSM Emergent properties

The next phase of the research is probably to test out whether these three paths are enough to

cover all of the situations in predicting and documenting system interactions.

Q1-c. If we can predict system interactions, how complete is the prediction?

The discussion in Q1-b regarding the comparison between the requirement DSM and the

expert DSM already revealed that the prediction of system interactions from requirements is

not complete. The spatial types of interactions cannot be derived from requirements. Datum

Flow Chain method is needed to capture them at early phase of the design. The reliability

types of requirements represent the requirements concerning the emergent properties of the

system, whose influence on the system interactions can never be completely predicted at

early phase of the design process.

- 246 -

Table 5-4 further summarized the contribution to predicting system interactions from various

types of requirements in the OASIS product design. Only part of the requirements could be

decomposed and used to predict system interactions. The influences of the indecomposable

requirements on the elements of the systems are not known until detailed design, prototyping,

or even later in the product lifecycle. Therefore, it is important to document system level

knowledge throughout the product lifecycle so that what learned in the past regarding certain

system emergent properties may be used early on in the next design.

Table 5-4 also tells that only some of the requirements can be decomposed using the

Axiomatic Design’s design matrix. Many other requirements must be decomposed

differently or even cannot be decomposed. Therefore, the Design Matrix in Axiomatic

Design does not give a complete view of the system interactions. Using the Design Matrix to

determine whether a system is designed to ideal (Axiom 1) is not appropriate.

Nevertheless, if we look at the other side of the problem, although the prediction of system

interactions from requirements is not complete, it is still useful for planning purpose. In this

case study, the two requirements that could be decomposed using the Axiomatic Design

Matrix contributed the most to the prediction of system interactions, which was a fairly good

match with the expert’s DSM (see 5.3.1). Therefore, the Design Matrix, although does not

provide a complete view of the system, is still very useful in helping planning for system

integration at early phase of the design process.

Q2-c. What are the best sources of information for predicting system interactions?

Table 5-7 and Figure 5-29 show that the requirements documents in this case study are the

best sources for predicting system interactions. Other traditional system engineering

documents may not be constructed as early as requirements documents, and did not

contribute as highly to the capturing of system interactions. Therefore, the method of

capturing system interactions from requirements enabled us to better predict, capture, and

document system interactions.

- 247 -

Q2-d. How companies are doing with managing system level knowledge?

JNJ OCD is not doing such a great job in documenting system level knowledge. The

knowledge regarding requirements decomposition, being so important to capturing system

level interactions (Figure 5-29), is poorly documented (Figure 5-30). Considering all of the

available system engineering documentation for OASIS program, only 16% of the

knowledge regarding system interactions could be found in documents. If all requirements

decomposition knowledge were to be documented, we can get 41% increase in documented

system level knowledge. Further increase could be achieved by completing the requirements

for assay chemistry. Therefore, JNJ OCD can improve its situation very quickly.

JNJ OCD is the third example to show that many industries do not have good practice or

method to document the very important system level knowledge. A framework such as the

one proposed in Chapter 3 is very much needed. Using the method to derive system

interactions from requirements, other companies may also be able to quickly improve the

amount of documented knowledge regarding system interactions.

5.5 Summary

This case study was carried out at Johnson and Johnson Otho-clinical Diagnostics, in the

OASIS program. The research objectives of this case study included:

1. Find out if the matrix conversion method is transferable to a different case study to build

a DSM from requirements.

2. Investigate how closely the DSM derived from requirements predicts the reality by

comparing it with the DSM produced by expert engineers and scientists using the

traditional DSM building method.

3. Understand whether the matrix conversion method can be used for all types of

requirements or just Functional Requirements. Observe what types of requirements drive

the system interactions.

4. Observe the sources of information in identifying system interactions. How much system

interaction knowledge is captured in documents and how much is in people’s heads?

- 248 -

JNJ engineers’ objectives were:

• Predict system interface problems that may happen during integration and

verification.

• Aid the system integration manager’s work on planning and managing OASIS

subsystem interfaces.

This case study took 5 OASIS systems engineering documents to build DSM’s—the

architecture definition document, the requirements document, the function flow diagram, the

mechanical interface document, and the hazard mitigation document. The DSM built from

the requirements are missing some of the spatial relationships captured by some of the other

4 documents. The observations made regarding each objective are summarized as follows:

1. Regarding objective 1, a DSM was made from requirements. In the answer to the second

objective, we learned that the DSM derived from the requirements matched well with the

DSM constructed by the expert engineers in the OASIS program. The unmatched marks

were not due to the method, but rather the incomplete documentation of the requirements.

In addition, a short cut to construct a DSM from requirements without going through DM

was discovered. This discovery enabled us to do the following:

• Save time when we only need to know the interaction at one level of the system

hierarchy.

• Allow requirements that cannot be decomposed using the DM to show their effects on

system interactions directly in a DSM.

2. The DSM built from requirements matched many marks in the DSM predicted by the

experts.

• Most of the unmatched marks between the requirements DSM and the expert

DSM are due to missing information, rather than the method.

• The resulting DSM from requirements has an interaction density ratio around 6.

• The topology of the resulting DSM is very similar to that of the expert DSM.

They both identified the same elements involved in the iterations.

- 249 -

• Both requirements DSM and expert DSM predicted very similar priority list.

Therefore, the method of obtaining a DSM from requirements is valid.

3. Not all requirements can be decomposed using the Axiomatic Design method. Therefore,

the Axiomatic Design’s Design Matrix cannot predict all system interactions. The

Axiomatic Design “ideal” engineering design may not be so ideal when all factors that

contribute to system interactions are truly taken into account.

However, predicting system interaction is still an attractive idea because good prediction,

even if incomplete, can aid us in decision making at early stage of the design process.

The functional requirements used in this case study, including the functional

requirements, the function flow diagrams, and the architecture diagram can very well

predict most of the system interactions and the system topology. Therefore, the

Axiomatic Design’s Design Matrix is not so bad after all. A DM may not be able to

determine whether a design is ideal or not, but it can aid to predict system interactions for

the purpose of managing iterations and interfaces.

4. JNJ OCD did not well document their system level knowledge. The requirements

decomposition knowledge was poorly documented despite the availability of

requirements management software. Among all existing systems engineering documents,

only 16 percent of the system interaction knowledge was documented.

Compare to the traditional types of system engineering documents, the requirements

document can provide the most information about system interactions if the matrix

conversion method is used. Using the requirements document, JNJ OCD can get a 41%

boost in the documented system interaction knowledge.

The objectives of the JNJ engineers were achieved by this case study too. The DSM built

from the requirements provided very similar system element priority list as the experts’ DSM

for focusing the system engineering effort. Therefore, this research work confirmed that JNJ

system engineers were working on the correct direction.

- 250 -

However, the DSM built from the requirements predicted 75 additional interactions that were

not captured by the experts. The comparison between the requirements DSM and the

experts’ DSM revealed the danger of the organizational gap between the hardware and the

software groups. The requirements DSM helped the JNJ engineers to do a better job in

dealing with system interactions for system integration purpose.

In addition, this case study showed the JNJ OCD engineers needed to improve their

requirements documentation and system level knowledge documentation. These are all

valuable lessons for JNJ OCD to achieve their corporate goals.

- 251 -

6 Status of Research Questions

6.1 The Initial Research Questions

The initial research questions were given in Chapter 1. The motivations and details of each

question are reviewed and summarized here.

6.1.1 Obtaining System Interactions at Early Stage of the Design Process

The first set of research questions concerns predicting system interactions in the product at

early stage of the design process. System interactions were defined as the interactions among

the variables in the product, not the design tasks for project management, and not the

interactions among the people. The high level assumption made here for studying the

product system interactions rather than the task or human interactions is that the product

system interactions should drive the interactions among the design tasks and the human

communication.

Obtaining system interactions at early stage of the design process is important because of the

following reasons:

1. To avoid costly late design changes in the product.

2. To aid the project management work and facilitate the communication among the

people involved in the design of the system.

3. To aid the concept and architecture selection based on the complexity of system

interactions.

It was also recognized that the prediction of system interactions at early stage of the design

process might never be complete due to the existence of the emergent properties of the

systems. Therefore, the detailed research questions under this topic are:

- 252 -

Q1-a: What methods have been used in the past to capture system level interactions? What

are the strengths and weaknesses of existing methods? Is DSM a good way to predict

system level interactions?

Q1-b: How to predict system interactions early? How to predict system interactions for new

technology?

Q1-c: If we can predict system interactions, how complete is the prediction?

6.1.2 Managing System Level Knowledge in the Organization

The second set of the research questions deal with managing the system level knowledge in

an organization. The system level knowledge exists in an organization where each individual

is only responsible for a piece of the system. The system level knowledge is the knowledge

about the rest of system outside of the component that an engineer is responsible for. System

level knowledge includes the knowledge about what other elements exist in the system, what

the interactions are among the elements, and who or where to find information about other

parts of the system.

System level knowledge management is important because of the following reasons:

1. Past research experiences had shown the system level knowledge is poorly

documented in companies.

2. Relying on expert’s tacit knowledge to deal with system level knowledge limits

companies’ ability of compete in the market.

3. Good system level knowledge management can aid the knowledge-based engineering

effort.

4. A knowledge management framework is needed to identify what system level

knowledge should be documented and in what format, so that the browsing and reuse

of documentation can be much more efficient.

Therefore, the research questions under this topic include:

Q2-a: What has been done in managing system level knowledge?

Q2-b: Is there a better way to capture, store, and represent system level knowledge?

- 253 -

Q2-c: What are the best sources of information for predicting system interactions?

Q2-d: How companies are doing with managing system level knowledge?

Q2-e: How to encourage engineers to document system level knowledge? Make

recommendation to the management.

6.2 Progress Made and Future Research Questions

In order to investigate the above research questions, literature searches were conducted and

research methods were proposed. Two case studies were carried out at CVC and Johnson

and Johnson Ortho-clinical Diagnostics (JNJ OCD) in order to apply the research methods to

find out more about the research questions. The details of the research investigations are in

Chapter 2 to 5. Table 6-1 shows which section(s) in each previous chapter has discussion on

which research questions. This section summarizes the findings so far on each research

questions.

Research Question Chapter 2 Chapter 3 Chapter 4 Chapter 5
Q1-a 2.1 and 2.2
Q1-b 3.2 4.2.1, 4.2.2,

4.3.1, 4.3.2,
4.3.3, 4.3.4,
4.3.5, 4.3.6

5.2, 5.3.1

Q1-c 4.3.7 5.3.1, 5.3.2
Q2-a 2.3
Q2-b 0 4.2.3, 4.3.9
Q2-c 0 4.4 5.3.3.1
Q2-d 0 4.3.8 5.3.3.2
Q2-e 4.3.3 5.2.6

Table 6-1: Research Questions Discussed in Each Previous Chapter

6.2.1 Obtaining System Interactions at Early Stage of the Design Process

The findings regarding research questions Q1-a through Q1-c are discussed here.

- 254 -

6.2.1.1 Existing Methods Dealing with System Interactions (Q1-a)

Q1-a: What methods have been used in the past to capture system level interactions? What

are the strengths and weaknesses of existing methods? Is DSM a good way to predict

system level interactions?

Many existing systems engineering methods that deals with system interactions are reviewed

in Chapter 2. Table 2-3 summarized the strengths and limitations of each method. Since the

only place in this thesis that addresses this question is Chapter 2, the answer to this research

question at the end of Chapter 2 (see section 2.4) does not need to be repeated again. In

short, the review of literature suggests find a way to combine the DSM, DM, and

requirements classifications so that we could predict and analyze system interactions at early

stage of the design process.

6.2.1.2 A New Method to Predict System Interactions (Q1-b)

Q1-b: How to predict system interactions early? How to predict system interactions for new

technology?

The answer to this research question contains four parts. First, a matrix transformation

method was proposed to predict system interactions for product design facing the architecture

or radical innovation. This thesis research work revised and matured the matrix

transformation method through trials on actual engineering projects. Second, the usefulness

of this method in industry settings is examined, which includes whether the method is needed

by industry projects, whether it can be executed in real industry settings, and whether its

results are beneficial to the companies.. Third, how valid the results of the matrix

transformation method were reviewed. Fourth, from the case study experiences, a larger and

more flexible framework is discovered to predict and capture system level knowledge

throughout the product lifecycle.

- 255 -

6.2.1.2.1 The Matrix Transformation Method

The literature search revealed that a method relating DM and DSM would enable us to

overcome the DSM’s inability to be constructed at early phase of the design process, or be

applied on a new product. Therefore, a method to transform an Axiomatic Design’s Design

Matrix (DM) into a Design Structure Matrix (DSM) was introduced in Chapter 3. The

method includes three steps:

1. Construct a Design Matrix (DM) following the same rules in Axiomatic Design.

2. Choose the output variables in each row. The selection of output variables is unique for

each row and column. In other words, there could only be one output variable selected in

each row and column of the DM.

3. Permute the DM by row so that all the output variables are moved to the diagonal

position. The resulting matrix is a DSM for the Design Parameters. The column

headings remain the same as the DM, the row headings are the same as the column

headings.

To refresh the readers’ memory, the same example in Chapter 3 is copied below to

demonstrate the three steps of matrix transformation method.

Step 1: Construct a DM:

 DP1 DP2 DP3
FR1 X O X
FR2 X X O

FR3 O X X

Step 2: Choose output variables:

 DP1 DP2 DP3
FR1 X O X
FR2 X X O
FR3 O X X

- 256 -

Step 3: Permute the DM by row to move the output variables to the diagonal location.

Rewrite the headings of the rows to follow those of the columns. Then we have a DSM for

the DP’s.

 DP1 DP2 DP3

DP1 X X O

DP2 O X X

DP3 X O X

The selection of the output variable in the above Step 2 matrix is not unique. Figure 3-3

demonstrates that different choices of output variables may give different resulting DSM’s.

During the CVC case study, it was discovered that when DM and DSM are used in

engineering design situations, the only valid output variable selection is the diagonal

elements in the DM. Only by selecting diagonal elements, could we have a DSM that

represents logical design process, and has converging iterations. The proof is in section

4.3.6. The valid choice of output variables originates from the Axiomatic Design’s rules on

how to construct a DM. The most influential Design Parameter to the requirement is placed

on the diagonal position. Therefore, the diagonal elements have the most influence to the

realization of the requirements. More details are in section 4.3.6.4.

The implication of the choice of the output variables is that DSM and DM can be

transformed back and forth easily. This implication contributes largely to the more complete

framework for predicting and capturing system interactions, which will be discussed later in

the third part of this section.

The CVC case study also experimented with the question of when to stop the decomposition

in the system. The general guidelines learned from the CVC case study are:

• When the Design Parameters in the DM are assigned to a single person or very small

groups of people whose interactions can be easily managed.

- 257 -

• When further decomposition of the system does not provide any more insights about

the elements involved in system iterations any more.

These observations are made based on CVC case study. They may or may not be true for

other cases, but could be used as general guidelines.

The JNJ OCD case study discovered that it is possible to make a DSM directly from

requirements if we are only interested in one level of the system hierarchy (see 5.2.4). This

shortcut did not invalidate the matrix transformation method. It is just a special case of the

matrix transformation method when system decomposition is not of interest.

Several general rules were learned from the JNJ OCD case study to obtain complete and

meaning for results from the matrix transformation method. They are as follows:

• A complete set of requirements needs to be produced. In the JNJ OCD case, when

the assay chemistry group did not produce the requirements for their subsystems, the

system interactions between assay and hardware were not captured by the matrix

transformation method.

• Use Datum Flow Chain method [Mantripragada and Whitney (1998)] to capture the

system interaction related to the packaging of the assembly.

• Update the requirements decomposition structure to reflect the latest learning

regarding system interactions.

In short, the matrix transformation method became more mature in these two case studies.

The correct choice of the output variables was discovered to be the diagonal elements. The

matrix transformation method was discovered not only to be able to convert a DM into a

DSM, but also the other way around. Thus we can take different views of the product easily.

A short cut of obtaining a DSM for only one level of the system hierarchy directly from

requirements was discovered. Several general guidelines for when to stop the decomposition

in the system and for constructing a good DM and DSM were established, which will benefit

future applications of this method.

- 258 -

6.2.1.2.2 Usefulness in Industry

The matrix transformation method fits the practical needs of engineering companies. In the

CVC case study, the project was to integrate a new chuck into the existing cluster machines.

If Axiomatic Design were applied, probably the entire cluster machine has to be redesigned

so that the system interactions could become decoupled or uncoupled. However, pressed by

project deadline, CVC engineers had no time to redesign the whole machine. They need a

method to help them to integrate the chuck into the existing machines quickly. Therefore,

compared to Axiomatic Design, the matrix transformation method provides more practical

help. There exist countless cases in many companies where the change in design is only

partial and the project time pressure is high. The matrix transformation method provides

realistic help to these engineering projects.

Being the first of its kind, the matrix transformation method was shown to be executable in

real engineering projects. In the CVC project, the three steps of matrix transformation were

followed. A Design Matrix (DM) was built with several levels of system decomposition. A

Design Structure Matrix (DSM) was obtained from the DM. In the JNJ OCD case study, the

three steps of matrix transformation were not strictly followed because only one level of the

system hierarchy was of interest. A shortcut of building DSM from requirements was

discovered, which does not invalidate the matrix transformation method. Following the

shortcut, a DSM was easily constructed from requirements again. Therefore, both case

studies have shown that the matrix transformation method to obtain system interaction

information from requirements without very much experience with the product was feasible

in real engineering projects.

Both case studies showed that the resulting DSM from the matrix transformation method

provided valuable learning for the engineers on the projects. In the CVC case study, the

DSM built from the DM provided the following benefits:

- 259 -

• It predicted the iteration loops that would happen during the integration process

before the actual integration started. The engineers and managers thus were able to

prepare for the iteration loops early on.

• It identified necessary system interactions based on the nature of the design. These

iterations would have been overlooked by the engineers on the team if they were to

follow the same way that things had always been done.

• It provided a basis for the information flow between design organizations that were

located geographically far apart.

The benefits from the JNJ case study included:

• The DSM built from the requirements pointed out that the engineers had overlooked

the complex system interactions between the hardware and software due to the

existence of the organization gap. The DSM provided a warning on the situation, and

a way to facilitate the communication.

• The requirements DSM also captured system interactions that expert engineers did

not realize even when they are already in the detailed design phase.

• The requirements DSM produced a priority list for the elements that were important

to system integration. This priority list matched closely with the one that the system

engineers produced. Therefore, the matrix method gave JNJ engineers confirmation

on the direction of their work.

In summary, both CVC and JNJ case studies have shown that the matrix transformation

method is needed in the industry. The method is executable in real engineering projects, and

the results of the method provided large benefits to both projects. The engineers in both

companies took the resulting DSM’s from these case studies seriously as references to aid

their systems engineering efforts. Therefore, the matrix transformation method is very useful

in industry settings.

- 260 -

6.2.1.2.3 Verifying the Effectiveness of the Method

In a strict sense, the matrix transformation method should be validated with the following

steps:

1. During the concept development phase of a design project, apply the matrix

transformation method and produce a prediction on the system interactions.

2. Keep tracking of the actual system interactions in a DSM format as the design progresses

into detailed design and through the entire lifecycle of the product.

3. Compare the DSM produced at various stage of the design process with the DSM

produced at the beginning, and see how complete the prediction is.

However, many factors in the two case studies prevented the above steps to be carried out.

In the CVC case study, although the DM and DSM were built at early phase of the design

project, the sudden restructuring of the company after merger stalled the case study project.

The change in the project personnel and the author’s school semester timing made it difficult

to follow up with the actual development of the project. In the JNJ OCD case study, the

school semester timing also made timing a bit off. The author had to join the project during

the detailed design phase. Fortunately, with the requirements documents, it was still possible

for the author to apply the method without being influenced by the system engineers’

experience. Therefore, although the DSM from the requirements was built during the

detailed design, it was still a valid prediction matrix. Being in the detailed design phase, it

was possible to ask the JNJ engineers to construct their own DSM and compare with the

prediction DSM. This comparison provided one point in time about how well the

requirements DSM can capture the system interactions. Yet, following up with what actually

happened later on in the integration phase of the project was impossible due to the distance

and school semester.

Therefore, the verification of the DSM prediction method in both cases did not follow the

strictest procedure. Yet, this research did the best it could to find out whether the DSM from

the matrix transformation method was valid. In the CVC case study, the system engineers

from various departments who were assigned to the project reviewed the DSM produced

from requirements. They agreed the DSM captured what they expected to be future system

- 261 -

interactions. Therefore, the engineers accepted the DSM for future project planning. In the

JNJ OCD case, the DSM made from requirements was compared with the DSM expert

engineers built based on their knowledge. Although the requirements DSM missed a lot of

the interactions in the expert DSM, the expert DSM equally missed a large amount of

interactions in the requirements DSM. Detailed analysis found that the unmatched marks

between the two DSM’s were mainly due to missing information or improper requirements

documentation. Only a small amount of unmatched marks were due to the method (see Table

5-2). Therefore, if the experts constructed the DSM’s correctly, and if the requirements

documents were complete, the two DSM’s would have been very similar (Figure 5-17). In

addition, the requirements DSM and experts DSM identified the same system iterations and

the same system interaction priority list. Therefore, the effects of the DSM build from the

requirements were not so different from the expert DSM.

Despite the fact that the method was not validated strictly, both case studies had shown very

positive signs about the usefulness and validity of the prediction DSM’s built based on

requirements. Being the first of its kind, the positive results from the case studies are enough

to encourage us to continuously improve the method and use it to improve real engineering

projects. We should also design future research projects focusing on discovering how much

of the system interactions could be predicted at early phase of the design process. More

discussions will be in the later section on future research questions.

6.2.1.2.4 A More Complete Framework for Predicting and Capturing System Interactions

In light of the choice of the output variables, Design Matrix (DM) and Design Structure

Matrix (DSM) can be transformed from each other in both ways. Therefore, a more

complete framework for not only predicting but also continuously capturing system

interactions can be proposed. The need for such a framework can be found in the next

section regarding the completeness of the prediction DSM. The framework is first stated in

Chapter 5 (5.4) and is summarized in Figure 6-1:

- 262 -

Figure 6-1: A More Complete Framework for Predicting and Capturing System Interactions

1. When the requirement is decomposable using the Axiomatic Design matrix, we may

construct a DM and use the matrix transformation method to get a DSM, so that we

could predict the system interactions.

Requirement DM DSM

2. When the requirement is decomposable but not using the Axiomatic Design matrix

method, we may use the shortcut method used in this case study to directly predict the

effect of the requirement on the system interactions. Once the interaction is recorded

in the DSM, it can then be reflected back to DM.

Requirement DM DSM

3. When the requirement concerns system emergent properties, we may have to wait

until we discover the system interactions that affect the requirement. Then we could

put the interaction in the DSM, and reflect it back to DM to show the effect of the

emergent properties on the decomposible requirements.

Requirement DM DSM Emergent properties

Requirements DM DSM Emergent Properties

- 263 -

In short, this new framework of predicting and capturing system interactions contains both

the reductionism and holistic views of system interactions. It enables us to predict what we

can and still capture the learning throughout the product lifecycle.

6.2.1.3 The Limitations of the Method (Q1-c)

Q1-c: If we can predict system interactions, how complete is the prediction?

A complete prediction DSM would be one that captures all of the system interactions that

happen throughout the product lifecycle. As explained in the above section regarding the

validity of the method (section 6.2.1.2.3), neither case study was able to verify the prediction

DSM by following up with what happened later on the development process. However, two

observations in the case studies indicate that the prediction DSM was not complete.

The first observation is on the system interaction density (for the definition, see 4.3.5.2). The

JNJ OCD case study had a DSM interaction density at around 6, which falls into the normal

range based on past case studies. The CVC case study, however, has a system interaction

density of only 2.8, which is much lower than the normal value 6. Although it is still a

hypothesis that a well-constructed DSM should have system interaction density at around 6,

having so few marks in the CVC DSM may be an indication that many of the system

interactions were not captured or known. Unfortunately, it was difficult to follow up with the

CVC project to verify this point.

The second observation of incomplete prediction of system interactions was made in the JNJ

OCD case study. From Table 5-2, the DSM made from requirements was unable to capture

the reliability and spatial arrangement related system interactions that were in the DSM built

from experts. In addition, the DSM built from all design documents (Figure 5-7) also

captured interactions related to spatial relationships that the requirements DSM (Figure 5-8)

did not have. Table 5-4 further demonstrates that not all requirements can be decomposed

and used to predict system interactions. Therefore, many of the system interactions that

contribute to the requirements cannot be found until later in the design process.

- 264 -

The observations made from the case studies regarding the incompleteness of the predictions

should not have come as a surprise. Systems have emergent properties. The system

interactions associated with the emergent properties may not be predicted early in the design

process. Therefore, the prediction on system interactions is always incomplete.

However, even when the DSM’s built from the requirements were incomplete, they were still

very useful in providing insights to aid the system engineering efforts in both case study

companies (see summary in 6.2.1.2.2). Later on in the future research direction section, a

framework is proposed to aid the product development practitioners to judge which matrix

method should be used and how much trust one can have in the prediction DSM.

6.2.1.4 Future Research Directions for Predicting System Interactions

6.2.1.4.1 Which Matrix Methods to Use for Which Type of Product Design

The first new hypothesis is that we can determine which matrix method is the most suitable

to use based on the type of product innovation we are facing. Figure 6-2 shows the

hypothesis based on Henderson and Clark (1990)’s framework of product innovations. Each

quadrant in the graph is explained as follows:

• When the design project is an incremental innovation, both the core technology and

the system interfaces do not change. Therefore, the existing expert knowledge on the

system and the components can be reused and a DSM can be built at early phase of

the project, without having to construct a DM first. If the engineers are interested in

how requirements relate to the system interactions, they may transfer the DSM into a

DM for that purpose. The example in CVC case study had shown that the DSM

transformed from a DM reveals system interactions that experts overlooked (see

section 4.3.3.2). Therefore, the construction of the DM may also help to find out

whether all the system interactions identified by experts were correct from product

design point of view.

- 265 -

Since the past expert knowledge on the system and component design is equally

applicable to the incremental innovation design project, the DSM constructed at early

phase of the design process can already be quite complete. Therefore, the DSM can

be fully trusted to make decisions on product architecture, design process

improvement, and project planning and management.

An example of such innovation is the Ford mechanical throttle body described in the

author’s master degree thesis [Dong (1999)]. The mechanical throttle body has been

designed for many years and the design is mature. New projects may change the cam

curve or spring design parameters, but does not make any significant changes.

Therefore, a DSM can be made for the design of this mature product. The DSM can

be used to improve the efficiency of the design team and design process.

 Core Concept
 Reinforced Overturned

U
nc

ha
ng

ed

Incremental Innovation
(DM DSM)

The completeness of the DSM is high.

Example: Ford Mechanical Throttle

Body

Modular Innovation
(DM DSM)

The completeness of the DSM is

medium

Example: Ford Electronic Throttle
Body,

CVC ESC integration

Li
nk

ag
e

 b
et

w
ee

n
C

or
e

C
on

ce
pt

s a
nd

 C
om

po
ne

nt
s

C
ha

ng
ed

Architecture Innovation
(DM DSM)

The completeness of the DSM is

medium

Example: JNJ OASIS analyzer

Radical Innovation
(DM--DSM)

The completeness of the DSM is low.

Example: Use air conditioner to cool a

room rather than using a fan

Figure 6-2: Which Matrix to Use for Which Type of Product Innovation

- 266 -

• In modular innovation, the core concept of the module has been changed, but the

system interfaces between the module and the rest of the system are not changed. In

this case, although the interfaces between the module and the bigger system remain

the same, the design of the module changed. Therefore, when designing the new

module, we do not have previous knowledge of the interactions inside the module.

We need to build a DM in order to get a DSM that predicts the interactions within the

module, and shows how system interfaces of affects the module design.

The CVC Electro-static chuck system integration project studied in this thesis is an

example of modular innovation. Ford’s new electric throttle body, which will replace

the mechanical throttle body, is also an example of modular integration.

In modular innovation, the DSM cannot be built from experts’ past experiences, but

must be built from DM. Therefore, the limitation of the matrix transformation affects

the completeness of the DSM that predicts the system interactions. In the CVC case

study, despite the incompleteness of the DSM, the engineers still very much

appreciated the new insights the DSM provided at early phase of the project. Future

research should follow up with one of these modular design projects from beginning

to end in order to track how complete the prediction DSM is.

• In architecture innovation, the core concepts of the modules in the system remain the

same, but the interface between the modules changed. In this case, the past

knowledge regarding the system interfaces is no longer valid. Therefore, we cannot

rely on the experts to build a DSM. Instead, we must go through the DM and the

matrix transformation method in order to obtain a DSM that predicts system

interactions.

The JNJ OCD OASIS product studied in this thesis is an example of architecture

innovation. The thin film and the wet chemistry modules are already built in existing

- 267 -

products. Yet to integrate them into one analyzer will have to introduce new system

interfaces.

Again, due to the limitation of the matrix transformation method, the DSM built from

the DM cannot predict all of the system interactions. However, because the experts

already understand the technology, there might be a better chance to capture many of

the interactions between the modules by working through DM. In the JNJ case study

in this thesis, the system interaction density ratio was at the normal level (around 6),

which may be an indication that the prediction DSM from the requirements has

captured a lot of the important interactions. However, in order to verify this point, we

should again follow through a design project that involves architecture innovation to

see the change in the amount of the system interactions learned from the early phase

of the design until the end of the product lifecycle.

• The last type of innovation is the radical innovation. Both the core concept and the

relationship among the components in the system change. Therefore, the only way to

predict system interaction is to use the matrix transformation method. There has not

been a case of radical innovation among the author’s past case studies. But we can

certainly borrow the example in Henderson and Clark’s paper (1990). If a ceiling fan

company decided to start designing and manufacturing air conditioners, the new

product design is a radical innovation for the ceiling fan company.

In the radical innovation, because very little is known about the technology and the

system, the DSM constructed from the DM is expected to have low system interaction

density ratio and not to capture a lot of the system interactions. The usefulness of the

DSM for system planning and management is questionable, but the managers

probably don’t have anything better than the prediction DSM to help their thinking

either. In this type of innovation, when the DSM is built at early phase of the design

process, the engineers and managers must keep in mind that more and more system

interactions will be learned as the design carries on. They should update the DSM

frequently to reflect the new learning, so that the system interfaces can be analyzed

- 268 -

based on the new situation, and the project management plan can be revised to better

direct the design work. Of course, we again need a case study to follow through this

type of product development process and record the maturity of the DSM.

On the other hand, when a product design is a radical innovation, it is the best time

for the company to take advantage of the Axiomatic Design’s philosophy on selecting

the concept with the least system interactions. Radical innovation provides the best

opportunity for product improvements, while process improvements is done the best

for incremental innovations.

We may also associate this hypothesis between the relationship of the product innovation and

the applicability of the matrix design methods with the maturity of the technology. At the

left side of the S-curve, the technology is new, and the competitive advantage is mainly on

the product design. At the right side of the curve, the competitive advantage is in the

efficiency of the product development process. The ability of predicting the system

interactions increases as we go from left to right, and the importance of having a DSM early

on in the design process also increases, because DSM can provide system analysis to

improve process efficiency.

Figure 6-3 Which Matrix to Use at Which Phase of the Technology “S” Curve

Time

Radical Innovation
DM--DSM

Architecture Innovation
DM!DSM

Modular Innovation
DM!DSM

Incremental Innovation
DSM!Process
Improvement

- 269 -

In summary, we have proposed a hypothesis to associate the product innovation and the

applicability of the matrix design methods. The goal of this hypothesis is to put the matrix

transformation method into a framework to aid the practical decisions of the product

development engineers and managers. This hypothesis should be tested with carefully

selected case studies to meet the condition of each quadrant. The case studies should follow

through the product design from concept development until at least the end of the

manufacturing of the product, or even better until the end of the product life. Compare the

new learning about system interactions with those predicted at early stage of the design

process, and then judge the completeness of the prediction in each quadrant in Figure 6-2.

6.2.1.4.2 What Makes Two DSM’s Similar

In the JNJ OCD case study, the requirement DSM was compared to the DSM built by the

experts using traditional DSM construction techniques. The two DSM’s looked different, but

gave very similar information about the system. Therefore, the measurements of the

similarity of the DSM should include not only all of the marks at the same location, but also

others such as the topology of the system, the suggestion on the important system elements,

etc. For more details on the measures used in the JNJ case study, please see section 5.3.1.7.

In future research, it is worth studying how to compare the two DSM’s and what the metrics

should be to judge whether two DSM’s are similar. Future research can look into this

question from more case studies in other companies. The math literatures on matrix

manipulations should also be reviewed.

6.2.1.4.3 Use the Product Interactions to Lead the Process and Organization Design

A hypothesis this thesis took on was that the product interactions should drive the

interactions among the design tasks and the interactions among the people in the organization

(see section 1.2.3.1.1). Therefore, this thesis focused on predicting the interactions among

the design variables in the product. Although in both case studies, the people interactions

were studied by associating the design parameters with the responsible people or teams, the

interactions among people due to the task assignments were not captured. Future research

should look into how we might relate the interactions among the product elements with the

- 270 -

interactions among the tasks. If this association can be made in a systematic manner, then we

can even predict the interactions among the tasks and the people from requirements.

6.2.2 Managing System Level Knowledge in An Organization

6.2.2.1 Existing Practices in Managing System Level Knowledge (Q2-a)

Q2-a: What has been done in managing system level knowledge?

The existing knowledge management work was surveyed. The discussions regarding this

question only exist in Chapter 2. Therefore, the summary regarding this research question at

the end of Chapter 2 is still valid, and will not be repeated here. The readers may turn to

section 2.4 for the summary.

6.2.2.2 System Level Knowledge Management Framework (Q2-b)

Q2-b: Is there a better way to capture, store, and represent system level knowledge?

A framework for managing system level knowledge is proposed in Chapter 3 (Figure 3-1). A

list the types of system level knowledge is also listed in section 3.1.2. They are What, How,

When, Where, Who, Which, Why, and Rules. Guru Prasanna (2000) tested the framework

using the following examples:

• Ford’s design documents for throttle body

• Ford’s throttle body design DSM’s [Dong (1999)]

• CVC MOCVD project design documents

• CVC ESC project design documents

• CVC ESC design DSM (see Figure 4-8)

Prasanna found the categories for system level knowledge was complete for the documents

listed above. In addition, it was also found that the knowledge management framework

could serve as a basis for finding out what types of knowledge a company is lack of, and help

the company to improve its knowledge management effort.

- 271 -

Yet, Prasanna only tested documented design knowledge in the above examples, which falls

in the FR and DP domains in Figure 3-1. The classifications of knowledge should be also

tested in other domains such as marketing, manufacturing, product testing, and field service.

In addition, more case studies for different types of products are also needed. The usefulness

of the framework was also not tested by Prasanna’s thesis. Therefore, although the results

from Prasanna’s thesis are encouraging, we still need to do more testing of the knowledge

management framework.

6.2.2.3 The Best Source of System Interaction Knowledge (Q2-c)

Q2-c: What are the best sources of information for predicting system interactions?

The goal of this question was to find out whether the existing design documents in

companies are capable of capturing system level knowledge. Both the CVC case study and

the JNJ OCD case study showed that the requirements documents were the best source

among all documents for information to predict system interactions. In the CVC case study,

the requirements document successfully predicted system interactions using the matrix

transformation method. Since the CVC engineers did not produce other documents to

capture system interaction information, there was no comparison with other system

engineering techniques in the CVC case study. On the other hand, the CVC case study

showed that requirements documents are the most common document produced in an

engineering project. The matrix transformation method enabled us to obtain system

interaction information using the most basic information in engineering projects without

adding documentation effort.

JNJ OCD engineers produced other system engineering documentation to capture the system

interactions, including function flow diagram, mechanical interface documents, etc.

However, the discussions in section 5.3.3.1 showed that requirements document captured

most of the system interactions contained within the rest of the documentation combined.

Therefore, again requirements documents were the best source of information for predicting

system interactions. Furthermore, we learned from the JNJ case study that in order for a

- 272 -

requirements document to be a good source of system interaction knowledge, the

requirements document must include the following pieces:

• The flow-down of higher system level requirements to lower level subsystem level

requirements is traceable and documented.

• The requirements on all subsystems and components in the design are documented.

• Requirements are updated as additional system interactions are learned.

The observations from two case studies are not conclusive, but are very encouraging. We

can rely on well-written requirements document and the matrix transformation method to

predict most of the system interactions, while other existing system engineering

documentation techniques only capture a small amount of the total system interactions.

However, based on the discussion on questions Q1-c, the matrix transformation cannot

predict all of the system interactions. We must use other techniques to predict spatial types

of interfaces. Datum Flow Chain is very suitable for this use. We must also be aware of the

emergent properties of the systems and how they affect the fulfillment of the both the

decomposable and indecomposable requirements.

6.2.2.4 Current Industry Status in Documenting System Level Knowledge (Q2-d)

Q2-d: How companies are doing with managing system level knowledge?

Despite the fact that the existing requirements document can predict most of the system

interactions, both CVC and JNJ OCD case studies showed the system interactions knowledge

was poorly documented in both companies (Figure 4-16 and Figure 5-32). Even the

knowledge regarding requirements decomposition, which should be a part of the

requirements document, was not properly documented (Figure 5-30). These observations

further confirmed the need to improve the current practice in managing system level

knowledge in companies.

6.2.2.5 Deployment of the Knowledge Management System (Q2-e)

Q2-e: How to encourage engineers to document system level knowledge?

- 273 -

Any knowledge management system requirements documentation work in order to capture

the knowledge. As mentioned in section 3.1.1, it is important for the knowledge

management system to deliver not only long-term benefits to the organization, but also short-

term benefits to the engineers who spend time to document. The knowledge management

framework proposed in Chapter 3 can provide immediate benefit on documentation when the

matrix transformation method is applied. The diagram in Figure 6-1 shows that requirements

documentation can be converted into critical knowledge regarding system interactions and

project management. Lessons learned later in the project concerning system emergent

properties can also be captured in DSM to update the action plan. Therefore, this knowledge

management framework proposed in Chapter 3 shall be able to deliver both the long-term

and short-term benefits to the organization.

6.2.2.6 Future Research Directions for Managing System Level Knowledge

The following topics are future research directions extended from the investigation regarding

this set of research question:

• Other documents that concern the interactions among Process Variables (see Figure

3-1) shall also be investigated.

• Since system level knowledge includes not only the How1 and What, the

documentation that concern the When, Which, Why2, and Rules shall also be

investigated.

• The rules of designing a system are explicit knowledge distilled from tacit

knowledge. A large amount of design knowledge exists in tacit form. Knowledge

management effort in an organization shall find ways to convert the tacit knowledge

into explicit knowledge so that it can be easily reused by junior members of the team

or programmed into knowledge based engineering applications.

• Since the knowledge management framework is able to follow the design process and

produce not only short term but also long term benefits for the organization, we may

implement the framework and the matrix transformation method in a software

application. The software can be written in JAVA, ASP, and JAVA Script to be used

- 274 -

over web pages. The software can thus be independent of computer platforms, and

have a good user interface design.

6.3 Summary

This chapter summarizes the progressed made in answering each research questions (see

section 6.1). A matrix transformation method was proposed to bridge the Axiomatic

Design’s Design Matrix (DM) and Design Structure Matrix (DSM). This matrix conversion

method takes the advantage of both DM and DSM, and produces a framework for

continuously managing system level knowledge and benefit the organization in the short-

term and long-term. From the understanding on these research questions, future research

directions were also identified.

- 275 -

7 Conclusions and Future Work

7.1 Summary on the Research Questions

This thesis research started with two main topics, which include total eight research

questions. This section summarizes the findings in this research regarding each of the

research questions. For more details, please review the discussions in Chapter 6.

7.1.1 Obtaining System Interactions at Early Stage of the Design Process

The research questions under this topic are:

Q1-a: What methods have been used in the past to capture system level interactions? What

are the strengths and weaknesses of existing methods? Is DSM a good way to predict

system level interactions?

Q1-b: How to predict system interactions early? How to predict system interactions for new

technology?

Q1-c: If we can predict system interactions, how complete is the prediction?

Literature search revealed that DSM is a good system analysis tool. It can help process

improvement and manage organization communication. However, DSM is difficult to

construct at early phase of the design process when system analysis is needed to make better-

informed decisions about system design. DM can be built at early phase of the design

process, but does not have the capability of system analysis. Therefore, in order to predict

system interactions at early phase of the design process, and take advantage of DSM’s

system analysis and process improvement capabilities, a matrix transformation method was

developed in this thesis to obtain a DSM from a DM.

The three steps of the matrix transformation are:

1. Build a DM.

- 276 -

2. Choose the diagonal elements as the output variables of the DM.

3. Rewrite the row headings into the same as the column headings. Then a DSM for

interactions between the DP’s is constructed.

The choice of the output variables implies that DM and DSM can be transformed from each

other. Therefore, a more complete framework for predicting and managing system

interactions is proposed in Figure 6-1. When little knowledge exists about the system

interactions, we may construct a DM from requirements and obtain a DSM using the matrix

transformation method. When we are only interested in the system interactions in one level

of the system hierarchy, we may bypass the construction of DM and built a DSM from

requirements directly. When emergent properties of the system are learned later in the

product lifecycle, the contributing system interactions can be documented in the DSM and

used to improve the design of the product and the management of the design process. The

revised DSM can be converted back into a DM and show the effect of the emergent

properties on the decomposable requirements.

The matrix transformation method was tested in two real engineering cases at CVC and

Johnson and Johnson Ortho-clinical Diagnostics. In both case studies, the DSM’s produced

were useful in providing insights for the projects that even the experienced design engineers

in the companies overlooked. Therefore, the matrix transformation method was feasible and

useful in real engineering projects. It brought together the advantage of both the Axiomatic

Design and Design Structure Matrix, so that we could predict the system interactions early in

the design process and manage the inevitable design iterations.

However, the limitation of the matrix transformation method, like any prediction method,

lacks the capability to predict the system interactions related to system emergent properties.

The case in JNJ OCD further showed that not all requirements could be decomposed and

hence the Axiomatic Design’s DM could only show an incomplete picture of the system

interactions.

- 277 -

Unfortunately, how incomplete the prediction DSM’s really were was not investigated in this

thesis research due to the difficulties in following up company projects during school

semesters. However, the usefulness and the contribution of the prediction DSM’s in both

case studies were very positive signs for the practicality of this method.

7.1.2 Managing System Level Knowledge in An Organization

The research questions under this topic include:

Q2-a: What has been done in managing system level knowledge?

Q2-b: Is there a better way to capture, store, and represent system level knowledge?

Q2-c: What are the best sources of information for predicting system interactions?

Q2-d: How are companies doing with managing system level knowledge?

Q2-e: How to encourage engineers to document system level knowledge? Make

recommendation to the management.

Literature search showed little has been done on understanding what system level knowledge

is and how to manage it (Figure 2-15). The current industry practice surveyed in the author’s

thesis researches (Ford throttle body design, CVC ESC project, JNJ OCD OASIS project)

revealed that companies do a poor job in capturing and managing system level knowledge.

Companies put themselves at risk of competitiveness by relying on human experts’ tacit

knowledge to deal with system interactions.

This thesis proposed a framework for managing system level knowledge. As a part of the

framework, a classification of system level knowledge is also recommended. Guru

Prasanna’s (2000) research showed that the knowledge classification was suitable for the

design documents and the DSM’s in Ford throttle body, CVC ESC, and CVC MOCVD

projects. The knowledge classification can also serve as metrics to compare companies’

practices and identify where improvements are needed.

- 278 -

In the JNJ CVC case study, we observed that using the matrix transformation method, the

requirements documents become the best source for predicting system interactions, among all

of the existing system engineering techniques. The matrix transformation framework is

constructed to enable the documentation of the system level knowledge throughout the

design process. The documentation of the requirements and system interactions can not only

benefit the learning in the organization in the long-term, but also aid the planning of the

project immediately. Therefore, there should be more incentives for documenting system

level knowledge.

7.2 Contributions to Product Development Research and Practice

This thesis research contributes to both the academic research on product development and

the current product development practices. The matrix transformation method bridges the

Axiomatic Design and Design Structure Matrix researches, which is the contribution of this

thesis to the academia. Being able to obtain a DSM from requirements added benefits to

requirements management, which is already a challenging but important practice in the

industries [Hooks and Farry (2001)]. The knowledge management framework can be applied

to industries to improve their current status of the documentation of system level knowledge.

7.2.1 A Matrix Transformation Method to Bridge the Axiomatic Design, Design

Structure Matrix, and Robust Design

The matrix transformation method developed in this thesis research bridges three existing

design methods—Axiomatic Design, Design Structure Matrix (DSM), and Robust Design.

This section first reviews the strengths and weaknesses of Axiomatic Design and DSM.

Then how the matrix transformation method enables the above two design methods to

complement each other is explained. Last, the role of robust design is introduced.

Axiomatic Design is the most advanced design theory for the design and development of

large complex systems. The comparison among the representative design theories (Table

2-4) shows that Axiomatic Design is better than QFD by using the zigzagging design process

to relate functional requirements to the physical design parameter. Axiomatic Design is

- 279 -

better than the classical European design theories by stressing the collaboration and

relationship among the various departments in the organization. However, Axiomatic Design

lacks the capability to deal with emergent properties of the system. This capability

Axiomatic Design lacks is exactly the strength of Design Structure Matrix method. Table

2-3 and Table 3-1 have already summarized the comparison between the two methods.

These two comparison tables also show that Axiomatic Design’s Design Matrix (DM) can be

constructed early in a design process or for a new product design, while DSM cannot.

The matrix transformation method enabled us to take advantage of both Axiomatic Design’s

DM and DSM. We can obtain a DSM from a DM. We can also transfer the interactions in

the DSM back into DM, so as to show the impact of system interactions on the functional

requirements. When we are in a position to change the design concept, we may use the

requirements and DM to select the least complex system. When the ideal design in

Axiomatic Design sense cannot be practically implemented, DSM and the system analysis

tools associated with it can be used to plan for inevitable iterations in the system before the

detailed design is carried out. As the design proceeds, more emergent system properties may

be observed. The system interactions contributing to the emergent properties of the system

can be documented in the DSM. DSM system analysis tools can be used to update the

actions that should be taken for project management. The impact of these newly discovered

system interactions on the functional requirements could be observed by reflecting the DSM

marks back into DM.

Furthermore, the third design method that is to be introduced here—robust design [Taguchi

(1993)]—can work with the matrix transformation method to make DM and DSM converge

towards the same direction. The goal of DM and DSM are not so different as they may seem

in Table 2-3. DM and DSM address the two sides of the same problem—managing system

interactions. DM recognizes that if we can choose an uncoupled or decoupled engineering

design, we may avoid system iterations altogether. DSM takes the existence of system

iterations as a given fact and tries to minimize the impact of system iterations on design

process by eliminating unnecessary iterations. Axiomatic Design’s idea of avoiding system

iterations altogether may be impractical for many existing product companies. Yet, the

- 280 -

matrix transformation method and the robust design method enable us to get closer to

Axiomatic Design’s goal. When inevitable iterations are identified using DSM partitioning

techniques, the partitioned DSM can be converted back into the DM format. The

requirements and the DP’s that are involved in an iteration block are suitable for robust

design study. Robust design method may be able to reduce or eliminate the effect of the off-

diagonal marks for certain functional requirements, and therefore make the system less

coupled. The end result is a product design that is the most uncoupled that the reality of the

company allows. The rest of the coupling can be dealt with through project planning and

management.

In summary, the matrix transformation method made it possible to combine the strengths of

Axiomatic Design, Design Structure Matrix, and Robust Design. All three above methods

have a rich body of research. Therefore, the matrix transformation method developed in this

thesis enables these design methods to have even more comprehensive and bigger impact on

the product development, especially for large complex systems.

7.2.2 A Requirements-driven Design Process

A requirements-driven design process is a process in which the tasks involved are scheduled

for and directly support the achievement of design requirements. The matrix transformation

method enables us to have a DSM built based on the requirements. The effect of DSM

system analysis is to improve the design process. Re-sequencing the system elements so that

they can be designed in sequence, parallel, or iteratively, eliminates the unnecessary rework

in the design process. Associating the system elements in the DSM with responsible people

or team enables us to have a more efficient cross-organizational communication. Hence the

design process can move on more smoothly. Therefore, the design process developed based

on the analysis of the DSM constructed from requirements is a requirements-driven design

process.

The benefit of a requirements-driven design process is already seen in the CVC case study

(see section 4.3.3.2). The DSM built from requirements identified system interactions that

- 281 -

were overlooked by the engineers if they were to follow how things were always done in the

past. The requirements driven design process enables us to focus on the goal of the design

activity—meet the requirements of the product, rather than follow the same path other people

have taken.

The requirements-driven design process also encourages the documentation of requirements,

because it enables us to improve the design process. Hooks has written a very interesting

article on why requirements management is challenging in American Corporations [Hooks

and Farry (2001), p.15]. Among many of the causes, one of the cause is that individual

engineer does not understand why it is important to document requirements. Thus, a

significant portion of Hooks and Farry (2001) was spent on talking about the impact of good

requirements document on the project’s success. The transformation between the DM and

DSM introduced in this thesis research may finally enable the engineers to reap short-term

benefits from documenting requirements, and hence do a better job at requirements

management.

Therefore, the matrix transformation method added the benefit of design process planning

and improvement to the existing list of the benefits of requirements management. This

benefit of design process planning and improvement is a short-term benefit that can be felt

and used by the engineers and managers in the project. Therefore, the engineers and

managers will be even more motivated to do a good job in requirements management.

7.2.3 Managing System Level Knowledge

Very little research, except for a few DSM theses [Dong (1999), Glynn and Pelland (2000),

and Bartowski (2000)], has been done on managing system level knowledge. This thesis

research proposed a framework for managing system level knowledge. The contributions of

this framework may be summarized as follows:

• This thesis proposed a way to classify system level knowledge in order to aid the

capturing and representation of system level knowledge. Guru Prasanna’s thesis

- 282 -

(2001) showed that the classification of the system level knowledge captured the

documented design knowledge for Ford throttle body, CVC ESC, and MOCVD

projects.

• The framework proposed in this thesis work for managing system level knowledge is

associated with the most advanced design theory—Axiomatic Design. Therefore, the

knowledge management effort can be carried out in parallel to the design process. In

addition, the matrix transformation method enables the engineers to not only

document the knowledge, but also use the DSM analysis tools to aid the design

process planning. Therefore, this proposed knowledge management framework is

both a documentation tool, and a process improvement method. In addition, using the

Design Matrix in Axiomatic Design also enables us to combine DSM and robust

design to design a better product. This proposed system level knowledge

management tool is no longer a stand-alone documentation method.

7.2.4 Summary of Contributions

In summary, this thesis research has impact on both the existing product development

research and practice. The matrix transformation method links three significant pieces of

product design and development methods—the Axiomatic Design, the Design Structure

Matrix, and the Robust Design. It enables us to take the strengths and overcome the

weaknesses of each method. In addition, the matrix transformation method brings further

benefits to requirements management effort. It enables the engineers to obtain immediate

benefit on process and product improvements from documenting requirements. Therefore,

the engineers can be more motivated in documenting requirements. Furthermore, the system

level knowledge management framework is a part of the product development process, and is

shown to be able to capture the documented design knowledge in several existing

engineering projects. The matrix transformation method again enables the engineers to

benefit immediately from documenting system level knowledge. Hence the engineers should

be more motivated in documenting system level knowledge.

- 283 -

7.3 Future Research Directions

The learning from this thesis research has opened the door to more possible research

directions. Below is a summary.

1. Test the framework in Figure 6-2 using different product development projects.

Verify the hypothesis on when to use DM and when to use DSM. More details are in

section 6.2.1.4.1.

2. Follow a product development project from the beginning to the end to see how the

captured system interaction marks in the DSM change over the lifecycle of the

product. Further verify the completeness and effectiveness of the DSM obtained at

early phase of the design process through matrix transformation method.

3. The question of what makes two DSMs similar may be investigated. For more

details, see Section 6.2.1.4.2.

4. This thesis took a product view of the system interactions. Future research may try to

apply the matrix transformation technique build DSM’s concerning project tasks, and

the interactions among the people based on tasks’ interactions. More discussions are

in section 6.2.1.4.3.

5. Use the matrix transformation method to predict the interactions for the Process

Variables (PV’s) based on Design Parameters (DP’s) (see Figure 2-13). The

prediction of the interactions between the PV’s should be able to aid the design and

selection of the manufacturing process.

6. Use Datum Flow Chain (DFC) method to study the spatial relationship between

components at early phase of the design process. The results of DFC studies can help

to predict the spatial relationship that the requirements cannot predict using the matrix

transformation method proposed in this thesis.

- 284 -

7. Extension of the knowledge management framework to software application. The

latest web enabling technologies such as Java, Javascript, ASP, etc. should be used to

create a computer platform independent environment.

- 285 -

References
Alexander, C. (1968). Notes on the Synthesis of Form, Harvard University Press,

Cambridge, MA.

Allen, T. J. (1964). “The Use of Information Channels in Research and Development
Proposal Preparation,” Working Paper, MIT Sloan School of Management, No. 97-64.

Allen, T. J. (1977). Managing the Flow of Technology, Cambridge: MIT Press.

Allen, T. J. (1986). “Organizational Structure, Information Technology and R&D
Productivity.” IEEE Transactions on Engineering Management, EM-33, 4, pp212-
217.

Allen, T. J. (1997). “Architecture and Communication Among Product Development

Engineers,” Sloan Working Paper #3983. Sloan School of Management: MIT.

Allen, T. J. and O. Hauptman (1987). “The Influence of Communication Technologies on

Organization Structure: A Conceptual Structure for Future Research.”
Communication Research, 14(5): 575-587.

Allen, T. J. and O. Hauptman (1990). “The Substitution of Communication Technology for

Organizational Structure in Research and Development,” In Fulk, J. and Steinfield, C.
W. (Eds.), Organizations and Communication Technology:275-294. Newbury Park
CA: Sage.

Allen, T. J., D. M. Lee, and M. L. Tushman (1980). “R&D Performance as a Function of

Internal Communication, Project Management, and the Nature of the Work,” IEEE
Transactions on Engineering Management, Vol. EM-27, no. 1, pp2-12, February.

Bartkowski, G. D. (2000). Accounting for system level interaction in knowledge
management initiatives. MIT thesis for SDM program.

Bertalanffy, L. (1968). General System Theory, Foundations, Development, Applications.
George Braziller Inc., New York, NY.

Blanchard, B. S. (1998). System Engineering Management. 2nd Edition. John Wiley and
Sons, Inc. New York.

Boothroyd, G., P. Dewhurst, and W. Knight (1994). Product Design for Manufacture and
Assembly. Marcel Dekker, Inc. New York, NY.

- 286 -

Borse, P., H. Akkermans, and J. Top (1996). “Engineering Ontologies.” International
Journal of Human-computer Studies, Special Issue on Using Explicit Ontologies in
KBS Development. March.

Browning, T. R. (1998), Modeling and Analyzing Cost, Schedule, and Performance in

Complex System Product Development, Ph.D. Thesis (TMP), Massachusetts Institute
of Technology, Cambridge, MA, 1998.

Browning, T. R. (1998b), "Use of Dependency Structure Matrices for Product Development

Cycle Time Reduction", Proceedings of the Fifth ISPE International Conference on
Concurrent Engineering: Research and Applications, Tokyo, Japan, July 15-17, pp.
89-96.

Browning, T. R. and S. D. Eppinger (1998), "A Model for Development Project Cost and

Schedule Planning," M.I.T. Sloan School of Management, Cambridge, MA, Working
Paper no. 4050, November.

Buede, D. M. (2000). The Engineering Design of Systems, Models and Methods. John

Wiley and Sons, Inc. New York.

Carrascosa, M., S. D. Eppinger, and D. E. Whitney (1998), "Using the Design Structure
Matrix to Estimate Product Development Time", Proceedings of the ASME Design
Engineering Technical Conferences (Design Automation Conference), Atlanta, GA,
Sept. 13-16.

Chestnut, H. (1965). Systems Engineering Tools. John Wiley and Sons, Inc. New York.

Cho, S. (2001). An Integrated Method for Managing Complex Engineering Projects Using
the Design Structure Matrix and Advanced Simulation, MIT MS Thesis, Mechanical
Engineering.

Cho, S. and S. D. Eppinger (2001). “Product Development Process Modeling Using
Advanced Simulation.” Proceedings of the 13th International Conference on Design
Theory and Methodology (DTM 2001), September 9-12, 2001 Pittsburgh,
Pennsylvania.

Clausing, D. (1994). Total Quality Deployment, A Step-by-Step Guide to World-Class
Concurrent Engineering. ASME Press, New York.

Cohen, L. (1995). Quality Function Deployment. How to Make QFD Work for You.
Addison-Wesley Publishing Company, Reading, Massachusetts.

Compton, W. David (1989). Where No Man Has Gone Before: A History of Apollo Lunar
Exploration Missions. NASA SP 4212, p. 386-393. Washington D.C.

- 287 -

Dee, M., editor (2001a). OASIS Architecture and Requirements Management. Johnson and
Johnso Ortho Clinical Diagnostics document OAS-SYS-ROB002, May 15.

Dee, Michael, editor (2001b). OASIS Mechanical Interface Control Document (Draft).
Johnson and Johnson Ortho Clinical Diagnostics document OAS-SYS-ROB218, May
14.

Dee, Michael, editor (2001c). OASIS System Product Requirements. Johnson and Johnson
Ortho Clinical Diagnostics document OAS-SYS-ROB001, March 29.

Dong, Q. (1999). Representing Information Flow and Knowledge Management in Product
Design Using Design Structure Matrix. MIT Mechanical Engineering Master of
Science degree thesis.

Eppinger, S. D., D. E. Whitney, R. Smith, and D. Gebala (1994). “A Model-based Method
for Organizing Tasks in Product Development.” Research in Engineering Design,
Vol. 16, 1-13.

Eppinger, S. D., D. E. Whitney, R. P. Smith, and D. Gebala (1990), "Organizing the Tasks in
Complex Design Projects," ASME Conference on Design Theory and Methodology,
Chicago, IL, September, pp. 39-46.

Fine, C. (1998). Clockspeed : Winning Industry Control in the Age of Temporary Advantage.
Perseus Books, Reading, Massachusetts.

Finger, S. and J. R. Dixon (1989). “A Review of Research in Mechanical Engineering

Design Parts 1 & 2.” Research in Engineering Design, 1.

Gershenson, J. A., D. V Khadilkar, and L. A Stauffer. “Organization and Managing
Customer Requirements During the Product Definition Phase of Design.” DE-vol.
68, Design Theory and Methodology--DTM'94, ASME 1994.

Getner, D. Bolt Beranek and Newman Inc. (1983). “Structure-Mapping: A Theoretical
Framework for Analogy.” Cognitive Science, 7, pp.155-170.

Gick, M. L. and K. J. Holyoak (1980). “Analogical Problem Solving.” Cognitive
Psychology, 12, pp. 306-355.

Glynn, S. V and T. G. Pelland (2000), Information Flow & Knowledge Capture: Lessons for
Distributed Integrated Product Teams. MIT Thesis for SDM program.

Gonzalez-Zugasti, Javier P., Kevin Otto, John D. Baker. (1998) “A method for Architecting
Product Platforms with an Application to Interplanetary Mission Design.”
Proceedings of 1998 ASME Design Automation Conferences, September 13-16,
1998, Atlanta, GA.

- 288 -

Gonzalez-Zugasti, J. P., K. Otto, and J. D. Baker (1999) “Assessing Value for Product
Family Design and Selection.” Proceedings of the 25th Design Automation
Conference, 1999 ASME Design Engineering Technical Conferences, September 12-
15, 1999, Las Vegas, Nevada.

Grady, J. O. (1993). System Requirements Analysis, McGraw-Hill, Inc., New York.

Griffin, A. and J. R. Hauser (1992). “Patterns of Communication Among Marketing,

Engineering, and Manufacturing –A Comparison between Two New Product Teams.”
Management Science. 38: (3) 360-373, March.

Guindon, R. (1990) Microelectronics and Computer Technology Corporation. “Designing

the Design Process: Exploiting Opportunistic Thoughts.” Human-Computer
Interaction, 1990, Volume 5, pp 305-344.

Hall, A. D. (1962). A Methodology for Systems Engineering. D. Van Norstand Company,
Inc. Princeton, New Jersey.

Henderson, R. M. and K. B. Clark (1990). “Architectural Innovation: The Reconfiguration
of Existing Product Technologies and the Failure of Established Firms.”
Administrative Science Quarterly, 35: p 9-30.

Hooks, I. and K. A. Farry (2001). Customer-centered Products. Creating Successful
Products Through Requirements Management. AMACOM, Boston, MA.

Hubka V. (1980). Translated and edited by W. E. Eder. Principles of Engineering Design.
Butterworth Scientific, Boston.

Hughes, A. C., and P. H. Thomas (2000). Systems, Experts, and Computers. The MIT Press,
Cambridge, Massachusetts.

Hughes, T. P. (1998). Rescuing Prometheus. Vintage Books, a division of Random House,
Inc. New York, NY.

Hutton, J. B. and G. Klein (1999). “Expert Decision Making.” INCOSE Systems
Engineering, January.

Kaufmann, W. J., and R. A. Freedman (2000). Universe, 5th Edition, W. H. Freeman

Company.

Koch, C., and G. Laurent (1999). “Complexity and the Nervous System,” Science, Vol 284,
April.

Kuffner, T. A., and D. Ullman (1991). “The Information Requests of Mechanical Design
Engineers.” Design Studies, Vol. 12 No. 1, January. Butterworth-Heinemann ltd.

- 289 -

Mantripragada, R., and D. E. Whitney (1998). “The Datum Flow Chain,” Research in
Engineering Design. Vol 10, No. 1.

Martin, J. N. (1997). Systems Engineering Guidebook: A Process for Developing Systems

and Products. CRC Press, New York.

Miller, G. A. (1956), “The Magic Number Seven, Plus or Minus Two: Some Limits on Our
Capacity for Processing Information.” The Psychological Review, Vol. 63, pp81-97.

Mindell, D. A. (2000). “Opening Black’s Box, Rethinking Feedback’s Myth of Origin.”

Technology and Culture, Vol. 41, July.

Moder, J. J., E. W. Davis, and C. R. Phillips (1995). Project Management with CPM, PERT
and Precedence Diagramming. 3rd edition. Blitz Publishing Company.

NASA Apollo Mission—Apollo 13, November 13, 2001.
http://Science.ksc.nasa.gov/history/apollo/apollo-13/apollo-13.html

Noy, N. F. and C. D. Hafner (1997). “The State of the Art in Ontology Design: A survey and
Comparative Review.” American Association for Artificial Intelligence, 0738-4602-
1997. http://www.aaai.org.

Otto, K., and K. Wood (2000). Product Design: Techniques in Reverse Engineering and
New Product Development. Prentice Hall, Upper Saddle River, NJ.

Pahl, G. and W. Beitz (1995). Translated by K. Wallace, L. Blessing, and F. Bauert. Edited
by K. Wallace. Engineering Design, A Systematic Approach. 2nd Edition. Springer-
Verlag, New York.

Parker, G. G. and E. G. Anderson Jr. (2000) “From Buyer to Integrator: The Transformation
of the Supply-chain Manager in the Vertically Disintegrating Firm.” Submitted to a
Special Issue of the Journal of Production and Operations Management on Case-
Based Research in Operations Management, January 19.

Parrish, J. K., and L. Edelstein-Keshet (1999). “Complexity, Patter, and Evolutionary Trade-
offs in Animal Aggregation,” Science, Vol 284, April 1999.

Patil, S. (2000). Mapping the product development process to IT solutions through use
models. MIT thesis for SDM degree.

Rechtin, E. (1991). Systems Architecting. Prentice Hall, New York, NY.

Ritchie, S. W. (1999). Rescuing Endagngered Knowledge: A System Approach. MIT Thesis
for SDM degree.

- 290 -

Sage, A. P., and J. E. Armstrong Jr. (2000). Introduction to Systems Engineering. John
Wiley and Sons, Inc. New York.

Sage, A. P., and W. Rouse (1999). Handbook for Systems Engineering and Management.
John Wiley and Sons, Inc., New York.

Senge, P. M. (1994). The Fifth Discipline: The Art and Practice of the Learning
Organization. Doubleday and Company Inc.

Senin, N., D. R. Wallace, and N. Borland (2000). “Distributed Object-based Modeling in
Design Simulation Marketplace.” Address correspondence to drwallac@mit.edu.

Service, R. F. (1999). “Exploring the Systems of Life,” Science, Vol 284, April.

Sferro, P. R. (1999). Kamrani, K, editor. Direct Engineering: Toward Intelligent

Manufacturing. Kluwer Acdemic, Boston, MA.

Simon, H. A. (1957). Administrative Behavior: A Study of Decision-making Process in
Administrative Organizations, 2nd ed., MacMillian, New York, NY.

Simon, H. A. (1981). The Science of the Artificial. Second Edition. MIT Press, Cambridge,
MA.

Simpson, T. (1998). A Concept Exploration Method for Product Family Design. Doctoral
Thesis, Georgia Institute of Technology, September 1998.

Smith, R. P., and S. Eppinger (1997). “Identifying Controlling Features of Engineering
Design Iteration.” Management Science, vol. 43, pp. 276-293, 1997a.

Sosa, M. E. (2000). The Effects of Product Architecture on Technical Communication in
Product Development. MIT Ph.D. Thesis, Mechanical Engineering Department.

Sterman, J. D. (1989). “Modeling Managerial Behavior: Misperceptions of Feedback in a
Dynamics Decision Making Experiment.” Management Science, 35(3), p321-339.

Sterman, J. D. (2000). Business Dynamics—Systems Thinking and Modeling for a Complex
World. Irwin McGraw-Hill, Boston, MA.

Steward, D. V., (1962). “On an Approach to Techniques for the Analysis of the Structure of
Large Systems of Equations,” SIAM Review, Vol. 4, No. 4, October.

Steward, D. V. (1965). “Partitioning and Tearing Systems of Equations”, SIAM Numerical
Analysis, ser. B, vol. 2, no. 2, pp. 345-365.

- 291 -

Steward, D. V. (1981). Systems Analysis and Management, Structure, Strategy, and Design.
Petrocelli Books, Inc.

Stevens, R., P. Brook, K. Jackson, and S. Arnold (1998). Systems Engineering: Coping with
Complexity. Prentice Hall Europe, New York.

Strang, G. (1986). Introduction to Applied Mathematics. Wellesley-Cambridge Press,
Wellesley, MA.

Systems Biology Internet sites, November 6, 2001:
http://www.systemsbiology.org/workwhat.html
http://www.icsb2001.org/what_is.html

Suh, N. P. (1990). “The Principles of Design.” Oxford University Press, New York.

Suh, N. P. (1999). “A Theory of Complexity, Periodicity and the Design Axioms.”

Research in Engineering Design, Vol. 11, p.116-131.

Suh, N. P. (2000). Axiomatic Design: Advances and Applications. Oxford University Press.

Taguchi, G. (1993). Taguchi on Robust Technology Development: Bringing Quality
Engineering Upstream. ASME Press, New York.

Tate, D. and M. Nordland (1995). “Synergies between American and European Approaches

to Design.” Proceedings of the First World Conference on Integrated Design and
Process Technology, Society of Design and Process Science, 1995.

Tate, D. (1999). A Roadmap for Decomposition: Activities, Theories, and Tools for System
Design. MIT PhD thesis for Mechanical Engineering Department.

Thebeau, R. E. (2001). Knowledge Management of System Interfaces and Interactions for
Product Development. MIT SDM thesis.

Thome, B. (1993). Systems Engineering: Principles and Practices of Computer-based
Systems Engineering. John Wiley and Sons, Inc. New York.

Tong, C. and D. Sriram, editors (1992). Artificial Intelligence in Engineering Design,
Volume I, II, and III. Academic Press, Inc., Boston.

Ullman, D. G. (1995). “Engineering Decision Problems and Support Systems.”Artificial
Intelligence for Engineering Design, Analysis and Manufacturing. Vol 9. pp427-438.

Ullman, D. G., Stauffer, and Dietterich (1983). “Toward Expert CAD.” Computers in
Mechanical Engineering, Nov-Dec. pp56-70.

- 292 -

Ullman D. G, D. Herling, and B. D’Ambrosio (1997). “What to do Next: Using Problem
Status to Determine the Course of Action.” Research in Engineering Design, Vol. 9,
pp. 214-227.

Ulrich, K. T., and S. D. Eppinger (2000). Product Design and Development. Irwin
McGraw-Hill, Boston, MA.

Ulschold M. and M. Gruninger (1996). “Ontologies: Principles, Methods, and Applications.”
Knowledge Engineering Review. Vol. 11, No. 2, June.

Warfield, J. N. (1973). “Binary Matrices in System Modeling.” IEEE Transactions on

Systems, Man, and Cybernetics, vol. 3, pp. 441-449.

Warfield, J. N. (1976). Societal Systems: Planning, Policy, and Complexity. John Wiley and
Sons.

Warfield, J. N. (1995). “Spreadthink: Explaining Ineffective Groups.” Sytems Research,
Vol. 12, No. 1, pp 5-14.

Warfield, J. N. (1999). “Twenty Laws of Complexity.” Systems Research and Behavioral
Science, 16, pp 3-40.

Walton, M. (1997). Car: A Drama of the American Workplace, Norton, New York.

Weist, J. D. and F. Levy (1990). Management Guide to PERT-CPM. 2nd Edition. Prentice
Hall.

Weng, G., U. S. Bhalla, R. Lyengar (1999). “Complexity in Biological Signaling Systems,”
Science, Vol 284, April.

Werner, B. T. (1999), “Complexity in Natural Landform Patterns,” Science, Vol 284, April.

Westman, H. R. (2001). Systems Engineering Principles and Practice. Artech House,
Boston, MA.

Whitney, D. E. (1993). “Nippondenso Co. Ltd: A Case Study of Strategic Product Design.”
Research in Engineering Design, Vol 5. Pp.1-20.

Whitney, D. E., Q. Dong, J. Judson, C. Mascoli (1999). “Introducing Knowledge-based
Engineering into an Interconnected Product Development Process.” Proceedings of
the 1999 ASME Design Engineering Technical Conference, September, Las Vegas,
Nevada. DETC99-DTM8741.

Wilson, E. B. (1952), An Introduction to Scientific Research, McGraw-Hill Book Company,
Inc. New York.

- 293 -

Wisnosky, D. E., A. W. Batteau (1990), “IDEF in Principle and Practice.” GATEWAY,
May/June, pp. 8-11.

Wood, K. L. and K. N. Otto (2001), Product Design, Techniques in Reverse Engineering and

New Product Development. Prentice Hall, Upper Saddle River, NJ.

Zimmer, C. (1999), “Life After Chaos”, Science, Vol 284, April.

- 294 -

Appendix A: OASIS Product Requirements

Note that not all OASIS product requirements are listed here. Only the requirements used as

examples in this thesis are copied in this Appendix.

PRD1 The Oasis system shall perform Wet Assays to the following standards:

TDM Assays per 17-SP-72-002
Protein Assays per 17-SP-72-003
H.D. Lipoprotein Cholesterol and L.D. Lipoprotein Cholesterol Assays

per 17-SP-72-004
%HbA1c Assay per 17-SP-72-005

PRD4 Sample integrity testing should require no increase in the volume of aspirated

sample.

PRD6 The Operator shall be able to disable sample integrity checking for any

particular sample.

PRD16 The Oasis system should be designed to maximize its sustained throughput

rate against the US and European Core Lab Test Distributions as defined in
OASIS Timing and Throughput Model; OAS-SYS-DA1004, with the
following design goals for non-diluted samples:

Test Distribution Design Goal (Average Tests/Hour)
X1 Lab XXX
X2 Lab XXX

PRD21 The system should be capable of performing all assays within specifications

within both of the following intervals:

X minutes from a cold startup at an ambient lab temperature of 20°C (68°F)
X minutes from a cold startup at an ambient lab temperature of 15°C (59°F).

PRD34 The multiple levels of severity used on all Vitros products shall be utilized. In

order of increasing severity, they are:
Level 1
Level 2
Level 3
Level 4
Level 5

- 295 -

PRD43 There shall be only one location where the Oasis system performs sample

metering from a sample on an LAS automation track.

PRD44 The design should allow the standard OASIS system to be changed in the field

to an OASIS AT configuration.

PRD46 The packaged system and components shall withstand the following non-

operational environment without degrading performance.

Cold: -X C at Y RH.
Heat: X C at Y RH.
Humidity: Y RH at X°C.
Altitude: M to N m.

PRD48 The analyzer should have a total weight of less than X kg.

PRD49 The system shall utilize power sources with any combination of standard

voltages from X to Y Vac and frequencies from M to N Hz, using regionally
standard power cords.

PRD51 A system should require no more than X amperes at steady state.

PRD54 At least one UPS shall be available for all regions where the Oasis analyzer is

sold.

PRD57 As packaged for shipping, the Oasis system shall perform normally after being

subjected to shipping environments as specified in Performance Testing
Protocol, Packaging and Shipping Containers, Test Standard 1001, dated
9/19/97

PRD58 Oasis system should be designed to meet the reliability targets defined in

document OAS-SYS-ROB201, Oasis Subsystem Reliability Allocation.

PRD77 Access to system functions shall be based on security levels: General

Operator, Key Operator, Field Engineer, and Remote Diagnostics.

PRD95 The system shall be able to read X% of all correctly oriented bar code labels

on sample containers to a Y% confidence level.

PRD120 The system shall provide internal storage for support fluids having their own

packaging systems (e.g. IR wash fluid, ERF fluid, Surfactant wash fluid).

PRD123 Reagents shall be available in 60 ml wedges and 20 ml bottles, capable of

being packaged as two bottles, or one bottle and one wedge.

- 296 -

PRD134 The system shall have on-board capacity for at least X cartridges supporting
both A-type and B-type slide cartridges.

PRD139 The system shall have the capacity to store the following consumables:

X Vitros tips
X Micro Volume tips
X Reaction cuvettes

PRD146 Protocols and other information required for processing assays shall be

independent of system software versions or releases.

PRD187 All waste containers shall be accessible from the front of the system.

PRD256 The operator and/or field service person shall be able to exercise individual

subsystem mechanisms through their full set of basic movements (e.g.
extending a blade, rotating a metering probe, # of repetitions, etc.).

PRD269 The system shall be certifiable for the European operator safety standard: Low

Voltage Directive 73/23/EEC; EN61010-1.

PRD280 The system shall be certifiable for the electromagnetic standard: EN 61000-4-

4 (Electrical Fast Transient).

PRD287 Installation time for a standard Oasis system (not including system

configuration and verification in the customer’s lab environment with the
customer’s assays) should require less than A hours for a single body system,
or less than B hours for a split body system.

