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Abstract

Local area networks (LANs) nowadays use optical fiber as the medium of communi-
cation. This fiber is used to connect a collection of electro-optic nodes which form
network clouds. A network cloud is a distribution network that connects several
external nodes to the backbone, and often takes the form of a star or tree. Opti-
cal stars and trees have expensive and inefficient recovery schemes, and as a result,
are not attractive options when designing networks. In order to solve this problem,
we introduce a virtual topology that makes use of the robustness that is inherently
present in a metropolitan area network (MAN) or wide area network (WAN) (long
haul network). The virtual topology uses a folded bus scheme and includes some of
the elements of the real topology (architecture). By optically bypassing some of the
router/switch nodes in the physical architecture, the virtual topology yields better
recovery performance and more efficient systems (with respect to cost related to band-
width and recoverability). We present a bus overlay which uses simple access nodes
and is robust to single failures. Our architecture allows the use of existing optical
backbone infrastructure. We consider a linear folded bus architecture and introduce a
T-shaped folded bus. Although buses are generally not able to recover from failures,
we propose a loopback approach. Our approach allows optical bypass of some routers
during normal operation, thus reducing the load on routers, but makes use of routers
in case of failures. We analyze the behavior of our linear and T-shaped systems un-
der average use and failure conditions. We show that certain simple characteristics of
the traffic matrix give meaningful performance characterization. We show that our
architecture provides solutions which limit loads on the router.

Thesis Supervisor: Muriel Médard
Title: Assistant Professor
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Chapter 1

Introduction

Most current high speed local area networks (LANs) use a fiber optical communica-

tions medium to connect the nodes. This fiber is used to connect a collection of nodes

which perform electro-optic processing. The LANs are connected to metropolitan area

networks (MANs) which themselves access the core of a long-haul network.

A LAN often takes the form of an aggregation of connections to a router. Routers

are then in turn aggregated until the point of access to the backbone. These aggre-

gations of nodes form distribution networks that often take the form of stars or trees.

These networks often lack efficient recoverability from failures. Either a large amount

of bandwidth is used to recover from failures, or a very complex recovery scheme is

used. Figure 1-1 shows such a system.

Nodes on LANs are traditionally connected through electro-optic routers (i.e.

routers that receive optical signals, but perform data processing in the electronic do-

main). Routers receive data in the form of individual IP (Internet Protocol) packets,

possibly encapsulated in MPLS (Multiprotocol Label Switching), or other formats of

high granularity, and transmit them on another fiber, or wavelength. The difference

between a router and a switch is that a switch connects a wavelength (or wavelengths)

on a fiber to a wavelength (or wavelengths) on another fiber. Hence, the entire stream

of data is connected (as opposed to individual packets or units of traffic as in the case

of routers).

Routers usually implement their routing patterns by using table lookups. Once
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Distribution Network

Router

Switch

Backbone

Lack of recoverability in feeder network

Robust optical backbone

Figure 1-1: Diagram of a router/switch combination fed by a distribution network in
the form of a tree.

a packet is received, the information in its header or associated label is read, and

looked up in a table stored in the router’s memory. The destination of the packet

is determined by reading the element adjacent to the address in the table. Another

function of routers is traffic grooming. Grooming corresponds to judicious assignment

of low-granularity traffic onto discrete streams. It includes multiplexing different

streams of traffic and effectively mixing different packets into one stream. This is

often done when traffic from two (or more) fibers is to be merged and placed onto

one.

Recovery is the ability of a network to resume proper operation during failure,

whereas robustness is the ability of the network to maintain proper service. We do

not consider the concept of time and protocols during failures, and, as a result, this

thesis will look at recovery issues during failures. There are very few LAN topologies

apart from rings that provide architectures with good recovery and robustness.

Optical star LANs are examples of architectures that require large amounts of

bandwidth to provide robustness. The protection scheme used in a star is referred

to as 1 + 1 protection, in which there is a dedicated fiber link for protection of every

working fiber link. A star LAN with protection usually involves two parallel stars

(working and protection) that are connected by a fiber link. This fiber link often

is the cause of bottleneck problems. Figure 1-2 shows this setup. In addition to

12



Hub 1

Hub 2

NodesNodes

Optical connection

Working Star Protection Star

Figure 1-2: Diagram of an optical star LAN with both working and protection stars
shown.

the bottleneck drawback, the architecture is not scaleable in that it is difficult to

extend. For instance, if three stars were to be connected, there would be even more

serious bottleneck issues with regards to the fibers interconnecting stars. Several

architectures utilizing star topologies have been proposed, and have been discussed

in depth ([2, 3, 4, 5, 9, 10, 11, 12, 14, 15, 17, 18, 20, 21, 22, 23, 24, 26, 27, 29, 34]).

The distribution networks (as shown in Figure 1-1) often suffer from a lack of

recoverability (as explained in the previous paragraph). Because of this lack of recov-

erability and scaleability in distribution networks (such as stars or trees), nodes that

are connected to LANs are susceptible to losing traffic in the event of a failure.

This thesis proposes the use of an overlay network to improve recoverability within

a LAN/MAN while keeping cost and complexity low. An overlay is a virtual topology

that is supported by a real (physical) topology. Certain nodes in the system are used,

whereas certain router/switch combinations are bypassed. When a router is optically

bypassed, the traffic on the fiber is not processed by the router. Figure 1-3 shows this

setup. Traffic going to this switch/router node can either be processed by the router,

or optically bypassed.

There are several reasons as to why optically bypassing a router is beneficial to

13



Router

Switch

Router

Switch

Router

Switch

Optical

Electronic

Figure 1-3: Diagram of a router/switch combination in the overlay. The diagram on
the left represents traffic being processed by the router, whereas the diagram on the
right represents the router being optically bypassed.

the system design. Firstly, because each router in the system is fed by a distribution

network, often in the form of a tree (as shown in Figure 1-1), it is clear that the

utilization of the router needs to be minimized. Since routers have a finite, and

usually small, number of slots in which to insert blades, an expensive and difficult

upgrade, requiring a physical replacement of the bay at the router (known as a forklift

upgrade), is almost always necessary after the number of connections in the router

reaches a certain threshold value. This threshold will undoubtedly be reached as the

capacity of the optical switch to which the router is connected continues to rise at

rates greater than the rate at which the electronic capacity of the router can grow.

The necessary forklift upgrades are usually extremely expensive, and cause traffic

delays and loss. As a result, it is desirable to reduce the amount of traffic that is

actually processed by a given router. Secondly, since the same router can be, and

almost always is, used in several virtual topologies, it is imperative to reduce the

total traffic processed by a given router per virtual topology. This can be done by

optically-bypassing the traffic that does not need to be handled by the router.

Our implementation of the virtual topology is done through the use of a folded bus.

The folded bus is an overlay requiring a fiber (or fibers), with a wavelength, or group

of wavelengths, running through all the nodes (access ports and switches/routers) in

each direction. The idea here is that the nodes should be able to both “place” their

data onto the bus, as well as “collect” it. Figure 1-4 represents a 2N -node, 3-router

14
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Figure 1-4: Diagram representing a system with 2N nodes and 3 active routers.

Node 1 Node 2 Node 3 Node 4

Source

Sink

Sink

Source

Bus 1

Bus 2

Figure 1-5: Diagram representing a 4-node dual bus system.

system employing a folded bus.

Folded buses have been used in other systems in previous architectures. The

problem with bidirectional buses using optical fiber is that the use of bidirectional

taps greatly reduces the distance that data can be transmitted without the need

for regenerators/amplifiers. Hence, this problem is solved by the introduction of two

parallel unidirectional buses, each connected to unidirectional taps, and carrying data

in a single direction. Figure 1-5 shows a dual bus system.

Distributed Queue Dual Bus (DQDB) is an example of a folded bus system that

is used to interchange data among nodes. DQDB has been analyzed extensively

([1, 7, 8, 13, 16, 25, 31, 32]). It is a system that uses a distributed queueing algorithm

called queued-packet distributed-switch. It is implemented on two unidirectional folded

buses, each carrying data in opposite directions. The nodes in the system tap the

buses in order to place data on and collect data from the backbone. Each node has

a buffer in which a distributed queue is set up.

HLAN (Helical Local Area Network) is another example of a bus system. HLAN

may be constructed as a helical ring structure or a single folded bus and is used mainly

to maintain fair utilization of bandwidth among all users. HLAN is implemented using
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Router
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Figure 1-6: Diagram of a 3-router linear network with a folded bus, and 4 access
ports.

a single folded unidirectional bus (as opposed to the two buses used in DQDB). Each

node has three connections to the backbone. Two of the connections are bidirectional,

whereas one of them is unidirectional. The unidirectional connection is called the

RCV segment, and is the connection through which data is received. One of the

bidirectional connections is the Guaranteed Bandwidth (GBW) segment, while the

other bidirectional connection is the Bandwidth on Demand (BOD) segment.

ORMA (Optical Reservation Multiple Access) is another scheme that uses an

optical folded bus as its backbone. ORMA is a highspeed LAN/MAN protocol that

is fast and simple. Reservations are made by different users requiring bandwidth

through simple hardware circuits. Results have shown that performance of ORMA is

independent of the size and complexity of the network.

Besides HLAN, ORMA, and DQDB, other dual bus schemes have been studied

([6, 19, 28, 30, 33]).

A major drawback of these systems is the lack of recoverability. A virtual topol-

ogy utilizing switches and routers in the system ensures recoverability and topology

flexibility in the network. At the same time, these routers can access the backbone

themselves.

Figure 1-6 shows an example of a linear system with a folded bus as its backbone.

The middle router is optically bypassed, and data is flushed out of one end of the

folded bus. Folded buses have the advantage that no routing is needed to transmit

the data.

Access nodes are easily rented or leased by a user, and are desired because of their

16



simplicity and low cost in comparison to routers or optical switches.

The architecture presented here combines the advantages of folded buses, access

ports, optical bypass in switches, and robustness of routing during failures. Although

folded bus overlays have been limited to linear topologies, we introduce T-shaped

systems as well (introduced later). The main idea behind the virtual topology is

the flexibility introduced by using routers in combination with optical switches. The

overlay networks provide increased flexibility to the local area network. A problem

with using routers for recovery purposes, is that the load they support may exceed

normal limits. Although networks often operate for long periods of time without

failures, occasional failures do occur, and it is important to measure the performance

of a system in these cases. Hence, we evaluate a system’s recovery performance not

only in the time-average sense, but also under worst-case failure conditions.

Routers process traffic in the electronic domain, and their performance degrades

as the load supported increases towards a threshold value. As the amount of traffic

processed by a router increases, more and more “packets” or units of traffic are

dropped or lost. Hence, a good metric for performance is the load per router. The

load per router gives us an indication of the average congestion in the network, as

well as average local congestion around a router.

We compare the performance of various linear systems, as well as that of various T-

shaped systems, which we describe in the next section. Linear systems are comprised

of a set of colinear router/switch pairs and access nodes. The entire system lies on

a line and folded buses are adjacent to each other. T-shaped systems are a special

type of non-linear systems in which a central node may serve as a hub for up to three

folded buses.

The thesis is organized as follows. Chapter 2 describes the system architectures

and topologies examined, namely the structure and operating schemes of linear and

T-shaped topologies. Chapter 3 presents the analysis of the performance of these

systems as well as several relations and bounds. Chapter 4 introduces ratios that

characterize the network traffic and present the simulation results for both the linear

and T-shaped systems. Chapter 5 presents concluding remarks and directions for
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Chapter 2

System Architecture

The access ports share resources such as a wavelength or a fiber. The nodes represent

entities that “access” the fiber both for placing data to be transmitted to another

node (distribution portion), and for collecting data transmitted from other nodes

(collection portion). This structure is called a folded bus. The upper portion of

the folded bus (shown in Figure 2-1), represents the distribution part, whereas the

lower portion represents the collection part. As a result, any traffic meant to be

transmitted from node i to node j is simply placed on the distribution portion at

node i, and collected by node j on the collection portion.

Traffic is defined in terms of an integer number of units, such as packets or cells.

For instance, if u units of traffic or data are to be transmitted from node i to node j in

a given interval of time, then the element in the ith row and jth column of the traffic

matrix will be u. We define the load on a router as the statistical mean of the number

of packets transmitted by it. Routers can handle less traffic than switches, but routers

may not need to process all incoming traffic. Routers in the system support traffic

emanating from or destined to nodes not included in the overlay (external traffic),
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Figure 2-1: Diagram of a 2-router folded bus overlay.
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and as a result, may have to carry a large burden. Thus, it is desirable that the

amount of load placed on them during recovery situations be minimized. The routers

of this overlay can and do support all the external traffic and a portion of the internal

traffic (during both failure and non-failure states). Figure 1-3 shows a typical system

in which the router associated with a switch is not bypassed, as well as a system in

which the router is bypassed. Once the decision has been made to make a router

active (i.e. not optically bypassed; processing the traffic) in a local area network

system, the decision of which traffic, and how much traffic it will handle also has to

be made. These are the main issues of the analysis in this thesis. Figure 2-1 shows a

system with the number of routers in the system set to NR = 2. It is important to

note here that NR represents the number of routers that are active in the system. A

router/switch combination may be physically present in the system, but if the switch

is configured to bypass the traffic optically, then the router doesn’t affect the traffic

flow (i.e. the optical bypass would act as an extension of the folded bus). In the

case of NR active routers, there could be up to NR − 1 folded buses (one between

every pair of successive routers). It is this value, NR, whose choice drastically affects

system performance in both the time-average scenario and the failure scenario.

The proposed architecture has a recovery scheme on the folded bus. Let us assume

that a failure occurs on link l (the link connecting nodes l − 1 and l). The system

recovers as follows:

• Node l − 1 “connects” the two terminals of the folded bus so that all the data

that was to be transferred across link l is now sent back, in the reverse direction,

across link l − 1. This assures that the router immediately to the left of link

l can access the data meant to be transferred across the link, and send it to

routers on the other side of the link, via external connections.

• Node l “connects” the two terminals of the folded bus so that all the data meant

to cross the link is now looped back, as in the previous case.

Figure 2-2 shows this loopback effect.
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Node lNode l-2

Node l-1 Node l+1

Node l+2
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Figure 2-2: Diagram representing the loopbacks performed on both sides of a folded
bus during a failure (e.g. a break in the fiber).

Using these loopbacks, the routers now become active participants in the recovery-

scheme, as all the data that was meant to cross the now-failed link will be sent through

at least 2 routers.

Varying the number of routers present in a system causes different changes in

system-performance. Firstly, in the no failure case, the routers have two purposes:

• To support traffic which does not have both a source and a destination on the

same folded bus.

• To support traffic being sent between two nodes not located on the same folded

bus.

Thus, when NR = 2, the only routers in the system are end-routers, and the

second responsibility above becomes irrelevant. However, when NR > 2, the routers

work to carry traffic from one folded-bus to another. In the failure case, the routers

have an additional responsibility:

• To provide new recovery paths and to support all re-routed traffic through these

new paths.

It is this third purpose that can increase load on the routers in the case of failure.

As the number of routers present in the system increases, the average amount of

traffic to be handled per router decreases. However, even when there is no link failure

in the system, these additional routers are transferring data from one folded bus to

another (something the NR = 2 system doesn’t suffer from), and as a result, the

amount of average load per router is increased. We explicitly address this trade-off.
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We may extend the concept of traditional linear architectures by introducing T-

shaped systems. These systems are formed with four routers, one of which is a central

router, with the other three each adjacent to it. N nodes separate each pair of routers.

Nodes 1 to N in these systems represent the nodes in the first region, nodes N + 1

to 2N represent the nodes in the second region, and nodes 3N to 3N + 1 represent

the nodes in the third region. Figure 2-3 shows this general system. Figures 2-4, 2-5

and 2-6 show this system in different forms.

We consider four main variations, which we discuss below.

System A represents the system with 3 folded buses. This means that the central

router is connected to every other router through a folded bus. Each folded bus is

devoted entirely to the nodes between central router and the corresponding adjacent

router. As a result, the central router is a junction where three folded buses meet. It

is clear then that any traffic meant to go from one node to another node in another

leg of the tree needs to be routed. This traffic “crosses over” the central router (in

the physical topology), and thus is called the cross-over traffic. In System A, router

2, the central router, will carry all of the cross-over traffic. Figure 2-4 shows System

A.

System B is another variation of the T-shaped system. In System B, there is

one folded bus going through all four routers. However, as evident in Figure 2-5,

this folded bus is not sufficient to transmit all the internal traffic. Specifically, all the
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Figure 2-5: Diagram representing the general T-shaped system with 1 folded bus.
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Figure 2-6: Diagram representing the general T-shaped system with an extended
folded bus.

traffic meant to go from nodes in the third region to nodes in the second region cannot

be transmitted through the single folded bus (unless the folded bus is extended, but

this case will be considered in a later system). Hence, the central router is devoted

solely to the transmission of data from region 3 to region 2 (but not vice-versa).

System C represents a variation of System B in which the central router is not

used to transmit any traffic. The single folded bus is extended from the first to the

third router, as shown in Figure 2-6. It is clear now that in the case of no failure,

System C utilizes no routers for internal traffic.

System D represents a hybrid of Systems B and C. In effect, the central router

is now used to transmit only a fraction of the total traffic meant to go from nodes in

region 3 to nodes in region 2. The rest of this traffic will be sent over the extended

folded bus. It is clear that in System D, less bandwidth is used on the “extension”

portion of the folded bus, yet more load is applied to the central router.

System A routes all cross-over traffic, whereas System B only routes part of the

cross-over traffic. All other traffic (non-cross-over and external) is routed the same

way in both systems. Hence, we see that the average load per router is at least as

high in System A as in System B. We may also see that Systems B, C, and D only

differ in the proportion of cross-over traffic from the lower leg to the right leg routed

through the central router (Note: This is related to the share-factor, to be defined
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later). Since added traffic on the folded bus does not increase the average load per

router, we see that the average load per router in System B is greater than that of

System D which, in turn, is greater than that of System C.

When considering the performance of these systems, we will assume that the

probability of link failure is uniform throughout the system (i.e. there is no bias

towards one link failing more than another).
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Chapter 3

Analysis

In this section, the load equations are outlined for two different linear systems (NR = 2

and NR = 3), as well as the T-shaped systems.

In the case of the linear systems, it is assumed that a (K + 1)x(K + 1) traffic

matrix (T ) is available, where K = N(NR − 1), the total number of nodes in the

system, and that there are N nodes per region. tij represents the traffic to be sent

from node i to node j. The (K + 1)st row and column represent the external traffic

(emanating from or destined to nodes outside the LAN).

Let Si represent the total amount of traffic to be processed by router i (measured

in units).

For NR = 2:

In the case of no failure, we have

S1 = S2 = 1
2

∑K

i=1(ti,K+1 + tK+1,i),

where the summation above represents all the traffic destined to, or arriving from the

external node. It is important to note that, in the case of low or zero external traffic,

the routers in this system have almost no load on them.

In the case of failure of link l:

S1 =
∑l−1

i=1(ti,K+1 + tK+1,i) +
∑l−1

i=1

∑K

j=l(tij + tji)

and
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S2 =
∑K

i=l(ti,K+1 + tK+1,i) +
∑l−1

i=1

∑K

j=l(tij + tji).

In the above equations, the first term represents traffic to be carried to and from the

external node to the partition of the region accessible by the router. In other words,

router 1 deals with the traffic meant for all the nodes to the left of link l, and router

2 deals with the traffic meant for all the nodes to the right of link l.

In addition to this traffic, the routers also have to process the traffic that is to

be transmitted from one node on the folded bus on one side of the failure to another

node on the folded bus on the other side of the failure. As discussed before, this

traffic gets looped back to the router closest to it.

For NR = 3:

In this scenario there are now 2 regions to deal with. In the case of no failure, we

have:

S1 =
∑N

i=1(ti,K+1 + tK+1,i),

S2 =
∑N

i=1

∑K

j=N+1(tij + tji) +
∑K

i=N+1(ti,K+1 + tK+1,i) and

S3 = 0.

In the above equations, S1 represents all the external traffic to the left-most region.

S2 represents all the external traffic to the right-most region plus the cross-over traffic

(i.e. traffic meant to be transmitted from one region to the other). As a result, the

right-most router has no traffic to process. It should be noted that this traffic can be

balanced better, but, owing to linearity, this clearly will not affect the average load

per router. In the case of a failure in link l:

For l ≤ N :

S1 =
∑l−1

i=1

∑K

j=l(tij + tji) +
∑l−1

i=1(ti,K+1 + tK+1,i),

S2 =
∑N

i=l

∑K

j=N+1(tij + tji) +
∑N

i=l(ti,K+1 + tK+1,i) and

S3 =
∑K

i=N+1

∑l−1
j=l(tij + tji) +

∑K

i=N+1(ti,K+1 + tK+1,i).

Likewise, for l ≥ N :

S1 =
∑N

i=1

∑K

j=l(tij + tji) +
∑N

i=1(ti,K+1 + tK+1,i),
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S2 =
∑N

i=1

∑l−1
j=N+1(tij + tji) +

∑l−1
i=N+1(ti,K+1 + tK+1,i) and

S3 =
∑K

i=l

∑l−1
j=1(tij + tji) +

∑K

i=l(ti,K+1 + tK+1,i).

In the above equations, we see that, in the case of failure, the load is redistributed.

The cross-over traffic used to be sent over 1 router (the middle one), but now is sent

through 2 routers (the two end-routers). At the same time, depending on where the

link failure occurs, different routers have to shoulder different proportions of the load.

In analyzing the T-shaped systems, we show here the equations pertinent to Sys-

tem A. Under non-failure conditions, the following equations hold:

S1 =
∑N

i=1(ti,3N+1 + t3N+1,i),

S2 =
∑N

i=1

∑3N
j=N+1(tij + tji) +

∑2N
i=N+1

∑3N
j=2N+1(tij + tji),

S3 =
∑2N

i=N+1(ti,3N+1 + t3N+1,i) and

S4 =
∑3N

i=2N+1(ti,3N+1 + t3N+1,i).

Note that the system is symmetric, so a failure in any one of the three regions will

yield the same equations (subject to a rotation).

Let us consider the case where the failure is between nodes l and l + 1 in region

1. We have:

S1 =
∑l

i=1(ti,3N+1 + t3N+1,i) +
∑l

i=1

∑3N
j=l+1(tij + tji),

S2 =
∑N

i=l+1

∑3N
j=N+1(tij+tji)+

∑2N
i=N+1

∑3N
j=2N+1(tij+tji)+

∑N

i=l+1(ti,3N+1+t3N+1,i),

S3 =
∑2N

i=N+1(ti,3N+1 + t3N+1,i) +
∑l

i=1

∑2N
j=N+1(tij + tji) and

S4 =
∑3N

i=2N+1(ti,3N+1 + t3N+1,i) +
∑l

i=1

∑3N
j=2N+1(tij + tji).

We may derive a break-even point between Systems A and B which represents the

failure probability (“break-even” probability) at which the two systems exhibit the

same average router load. Because System A routers are under non-zero load even

under no failure, we would expect that under very small values of pf , System B

would exhibit better performance (i.e. lower load in System B due to the central

router in System A). On the other hand, System A’s load is distributed among 3

routers, whereas that of System B is distributed among 2 routers. Hence, under
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certain conditions, the average load per router should be lower in System A than in

System B.

Let FC represent the amount of cross-over traffic in System A under failure condi-

tions, let F represent the amount of traffic that has its transmission path changed due

to a failure, let C represent the total cross-over traffic, under no failure conditions,

and let pf represent the total probability of failure in the system (i.e. the probability

that at least one link is down in the system). We have:

Aload =
1
3
(C(1− p) + pF + pFC) and

Bload =
1
2
pF .

For Aload > Bload,

pf <
C

1

2
F+C−FC

= p∗.

Here, p∗ represents the break-even point of pf .

For pf ≥ p∗, Aload ≤ Bload, whereas for pf ≤ p∗, Aload ≥ Bload.

Let us assume that tij = k ∀ i 6= j, and that System A has NR = 3.

We find that

p∗(N) = 3N2

13N3+12N2
−N

.

Hence, for N = 2 (i.e., 2 nodes per region),

p∗(2) = 2
25
,

whereas for N = 10,

p∗(10) = 10
473

.

As the number of nodes in the system increases, p∗ drops, and, as a result, System A

becomes more and more attractive (for a given pf ). We see that for any reasonable

value of N , the break-even probability is very high - orders of magnitude higher than

a typical failure probability.
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Chapter 4

Simulation Results

4.1 Simulation Rules

A (K + 1)x(K + 1) traffic matrix T is assumed to represent all the traffic that is

relevant to the system. The element tij represents the amount of traffic to be sent

from node i to node j. The (K + 1)st row and column represent all the traffic to be

sent to and received from any node outside of the system (i.e. the external traffic).

The diagonal elements of this matrix represent all the traffic to be sent from a node

to itself. We are going to assume that there is some type of internal processing at

these nodes, and that the folded buses are not used to process this traffic. Figure 4-1

shows this structure.

Each nonzero element of T is assumed to have a probability distribution. For the

purposes of the simulations in this thesis, all the distributions are assumed to be of

the form:

t = dxe − 1, where p(x) = λ e−λx for 0 ≤ x <∞.

As a result, the entries in the matrix are integers that have distributions that are

quasi-exponential. This distribution is chosen because of the need for a nonnega-

tive, integer, memoryless random variable. The traffic incident for a given node-pair

is often modelled to be a memoryless process. As a result, this quasi-exponential

distribution most closely matches the requirements.
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External Traffic

Zero diagonal elements

Traffic from node i to node j

Figure 4-1: General structure of the traffic matrix T .

The parameter λ is chosen to vary across the matrix. We assume that it is more

likely that two neighboring nodes send each other traffic than two nodes far from each

other, hence the parameter is chosen so that nodes closer together will have a higher

traffic rate than nodes farther apart. We therefore choose

λij = a | i− j |,

where a represents positive a scale factor. The external traffic is also chosen to be

exponentially distributed, but with a constant parameter λ across the nodes, that

varies only with the total number of nodes in the system (and a positive scale factor):

λij(K) = b
K
,

where b is another scale factor. tK+1,K+1 is chosen to be zero, for obvious reasons.

Hence, the overall traffic matrix T is a (K+1)x(K+1) matrix with zero diagonal

elements, and quasi-exponentially distributed non-diagonal elements. For all the ele-

ments in the upper-left K x K matrix, the parameter λij varies with i and j, whereas

for all the elements in the last row and column (excluding tK+1,K+1), λ is constant

with respect to matrix coordinates.
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4.2 Simulation Results of Linear Systems

During normal (non-failure) conditions, the system operates as follows:

• All nodes place the data they want to send onto the folded bus.

• All routers on the folded bus process data to be sent from one node in the LAN

to another.

• All routers on the folded bus process data to be sent from external nodes to

nodes in the LAN, and vice-versa.

Let us consider the case of a link failure. Let N now represent the number of nodes

between any two successive routers on the folded bus. We will say that all nodes lying

between the same pair of active routers represent a region. Hence, there are NR − 1

regions, of N nodes each, yielding a total of N(NR − 1) nodes in the system. A link

connects successive nodes, and nodes to neighboring routers. It is clear then, that

there are (N +1)(NR−1) links in the system. We will assume that the probability of

link failure is uniform throughout the system (i.e. there is no bias towards one link

failing more than another).

Let p be the probability that a link between two successive nodes not separated

by a router fails. Then, the probability that there is a failure between two nodes that

are separated by a router is 2p because this section is comprised of two links and the

links are dependent to the extent that only one link can fail at a time (multiple link

failures are not considered here).

If pf represents the probability of any link failure in the system, then

p =
pf

(N+1)(NR−1)
.

Thus, the value of p may be chosen such that the total probability of error equals pf .

When a link failure occurs, it is clear that no traffic can be sent across that link (at

least until it recovers).

Let us assume that a failure occurs on link l (the link connecting nodes l− 1 and

l). The system recovers as follows:
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• Node l − 1 “connects” the two terminals of the folded bus so that all the data

that was to be transferred across link l is now sent back, in the reverse direction,

across link l − 1. This assures that the router immediately to the left of link

l can access the data meant to be transferred across the link, and send it to

routers on the other side of the link, via external connections.

• Node l “connects” the two terminals of the folded bus so that all the data meant

to cross the link is now looped-back, as in the previous case.

Figure 2-2 shows this loopback effect.

Using these loopbacks, the routers now become active participants in the recovery-

scheme, as all the data that was meant to cross the now-failed link will be sent through

at least 2 routers.

The first simulation tests the relative performance of two basic linear systems -

the first of which is the NR = 3 system (i.e. two end-routers and a router in the

middle of the system), and the second of which is the NR = 2 system (i.e. two end-

routers). From now on, System A will represent the NR = 3 system, and System

B will represent the NR = 2 system. The average load on the routers will serve as

the measure of performance (i.e. the lower the average load on the routers, the more

efficient and desirable the system). The average load will be defined as the statistical

mean of the number of units (or packets) of traffic that is routed in a system per router.

Depending on the incident traffic, the systems will perform differently according to

this metric.

Since System A has more routers than System B, it may appear that the average

traffic handled per router is less in System A, than in System B (because the total

traffic is the same in both systems). However, the middle router in System A has

non-zero load even in the case of no failure. As a result, the traffic that is simply

transported down the folded bus from one node in the first region to another node in

the second region will be processed by the middle-router. This load is not present in

System B. Hence, we see a tradeoff arising between Systems A and B. As a result,

we need to measure how the relative performance of the systems varies with respect
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to a variable measuring the cross-over traffic. Let

R = Intra−region Traffic

Inter−region Traffic
.

R measures the ratio of non-cross-over traffic to cross-over traffic. One would expect

that, as this ratio increases, the performance of System A relative to that of System

B improves. It should be made clear that R represents a statistic that extracts

most of the pertinent information from the traffic matrix T . R can be viewed as a

simplification of considering the entire traffic matrix. Let

ρ = Aload

Bload
,

where Aload represents the average load per router in System A, and Bload represents

the average load per router in System B. We can use ρ as a measure of the relative

performance of the two systems, and see how it varies with R. The main results of

the simulation are outlined and described below.

• Because R does not capture all the information in the matrix, it does not fully

determine the value of ρ. In other words, the simulations may, and in fact do

produce multiple values of ρ for the same value of R. This is because different

matrices with the same value of R may have different distributions of traffic

across the matrix, resulting in different recovery mechanisms, and overall load

on the routers.

However, for a very special case of K = 4 and cross-over traffic restricted to 1

(2 nodes per region, and a total of 1 packet crossing over), the randomness is

lost because we have R = t12 + t21 + t34 + t43. In this case, two matrices with

the same value of R have the same traffic distribution across the matrix.

• In general, as R increases, ρ decreases. Altough R is a simplification of the

entire matrix T , it is still a good metric.

Regardless of the value of pf , the value of ρ (ratio of average load of System A

to that of System B) drops as R increases. Since the middle router in System

A is always processing cross-over traffic, as the relative amount of this traffic
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is decreased (with respect to the local traffic), the average load in System A

with respect to that of System B drops, as expected. Figure 4-2 shows the ρ

vs. R plot for a given system (whose details are outlined on the plot itself) with

pf = 10−3. In typical local area networks, normal values of pf are much smaller

than 10−3. This is because a typical optical network transmitting information

using the SONET (Synchronous Optical Network) standard only fails once or

twice every 2 or 3 years, and of those failures, only a very small percentage

cannot be corrected within the 50ms SONET recovery time. Although more

reasonable values of pf are orders of magnitude smaller, the qualitative results

are unaffected. It is interesting to note that the ρ reaches values on the order of

102 or 103. This can be explained as follows. Since the probability of link-failure

is so low, and the external traffic flow has a lower rate than the internal traffic

flow, System B’s end routers are rarely used. However, the middle-router in

System A is always being used to process cross-over traffic. Hence, System B is

only processing significant traffic 0.1% of the time, whereas System A is always

processing significant traffic. This accounts for the extremely high values of ρ.

As R increases, most of the traffic remains local (in the same region as it was

generated), and this deficiency of System A is not exploited as often.

• If the number of nodes, and external traffic rate are chosen properly, the graph

of ρ vs. R becomes decomposed into two curves, one representing the cases

with zero external traffic, and the other representing the cases with positive

external traffic. Figure 4-3 shows this effect. We see in Figure 4-3 that there

is a general monotonically decreasing characteristic for ρ > 105, as well as a

characteristic at the bottom of the graph around where ρ << 105. Since the

external traffic flows to each node are represented by I.I.D. random variables,

as the number of nodes are increased, the probability that there is no external

traffic decreases. Alternatively, for a fixed number of nodes, as the external traf-

fic rate increases, the probability of no external traffic decreases. The following

equation summarizes these statements.
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Figure 4-2: Graph representing the general monotonically-decreasing relationship be-
tween ρ and R.
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Figure 4-3: Graph representing the “splitting” of the data points into two categories.

Let pe represent the probability that there is no external traffic sent to or from

the system, and let pe1 represent the probability that there is no external traffic

sent to a given node in the system. Then,

pe = (pe1)
K ,

where K here is the total number of nodes in the LAN.

If the values of K and pe1 are chosen properly (pe1 can be adjusted by adjusting

the incoming traffic rate), situations can occur where different iterations within

the same simulation cause traffic matrices with both positive and zero total

external traffic.

When the external traffic is zero, the end-routers in System B have no load in

the case of no failure. As a result, the only load incurred on those routers is

during the time when a failure has occured. When pf is low, it is clear that

Bload will be correspondingly low. As a result, two separate curves are present,
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Figure 4-4: Graph showing the comparable performance between Systems A and B

in the failure case.

the lower of which represents those traffic matrices with positive external traffic,

and the higher of which represents those traffic matrices with zero total external

traffic.

• Conditioning on the failure-state (pf = 1, i.e. worst-case scenario), we see that

System A and System B have comparable performance. Figure 4-4 shows this

result.

This is because of the fact that there are two contending factors. Firstly, the

cross-over traffic causes System A’s performance to degrade with respect to that

of System B. However, because 3 routers are shouldering the load in System

A, as opposed to 2 routers in System B, we can expect the performances to be

comparable. Figure 4-5 shows the histogram of the proportion of iterations that

result in an average value of load within an interval (for both Systems A and

B). It is clear that the histograms for both systems are similar and represent
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data of the same order of magnitude.

When the amount of traffic crossing over is regulated (i.e. the cross-over traffic

is still random, but is now modelled as a bounded integer random variable with

a finite maximum) and bounded from above to a low value, the performance

of System A actually is better than that of System B. It is clear from Figure

4-5 that System A can possibly outperform System B. Since a large portion

of System A’s load is due to the cross-over traffic during non-failure states,

we see that if we limit this to a very low value, the performance of System A

dramatically improves, and eventually surpasses the performance of System B.

The second simulation produced two comparisons:

NR > 3 vs. 2 < NR2 < NR

and

NR > 2 vs. NR2 = 2.

The main results of this simulation were:

• In general, when pf << 1, the higher the value of NR, the poorer the perfor-

mance. As NR is decreased to 2, the performance improves. Figures 4-6 and

4-7 shows the ρ vs. R plots, and histograms.

• A ρ vs. R plot is bounded from below by NR2

NR1

. In other words, when comparing

the performance of the NR = 5 system to the NR = 3 system, the curve will be

lower-bounded by 3
5
, and will approach this limit as R → ∞. The reason for

this is as follows. Assuming no external traffic, as R → ∞, most of the traffic

becomes intra-region traffic, meaning the routers are not used in the case of no

failure. Hence, when a failure does occur, and each unit passes through exactly

2 routers (because of the recovery scheme), the average load in the system is

simply equal to the ratio of the total traffic to be sent through routers to the

number of routers, NR. We see that the ratio of average load values from system

to system approaches NR2

NR1

.
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Figure 4-5: Comparison of histograms of Systems A and B in the failure case. This
Figure shows that System A can actually outperform System B.
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Figure 4-6: Comparison of load-ratios for different cases of NR. System A represents
a 5-router linear system, System A2 represents a 3-router linear system, and System
B represents a basic 2-router linear system.
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Figure 4-7: Comparison of histograms for different cases of NR. System A represents
a 5-router linear system, System A2 represents a 3-router linear system, and System
B represents a basic 2-router linear system.
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4.3 Simulation Results of T-shaped Systems

As before, random traffic matrices were generated, and the systems were simulated

over a large number of iterations. In this case, since there are N nodes in each region,

and 3 regions in each system, the T -matrices are (3N + 1)x(3N + 1) matrices, with

diagonal entries being zero. Systems A, B, C, and D were all compared.

The ratios of the average load in each system were plotted against new values of R.

Let C represent the total cross-over traffic, and L represent all the traffic to be sent

from the lower leg (region 3) to the right leg (region 2) in the network. Specifically,

when comparing Systems A and B, R2 was selected to be

R2 = C
L
.

R2 now replaces R as the metric because the difference in the traffic routed through

the central router in Systems A and B is highly dependent on the ratio of the cross-

over traffic to the traffic meant to go from region 3 to region 2. This appears to be

a good choice because the dominant factors in determining the average load of the

system when pe << 1 are the traffic going from region 3 to region 2 (in System B),

and all the cross-over traffic (in System A).

When comparing Systems B and C, we notice that the only difference in load

among the routers when pe << 1 is the amount of traffic to be transferred from

region 3 to region 2. Hence, we choose the following value for R3:

R3 = C
L
− 1.

Again, the choice of this value can be attributed to the structures of the two systems.

Since System D is a slight variation of Systems B and C, we see that R3 can be used

to measure the relative performance of System D and either System B or System C,

and therefore replaces R as the best metric. Once again, all the plots of load-ratios

versus values of R are created, and the histograms of the amount of average load per

router of each system were created.

In comparing Systems A and B, we see that System A always performs worse than

System B. The reason for this is simple. A certain fraction f of all the cross-over
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Figure 4-8: Graph comparing the performance of Systems A and B (different T-
shaped systems).

traffic is not routed in System B, whereas all of the cross-over traffic is routed in

System A. Moreover, this fraction f is usually greater than 1
2
. Recovery of all other

traffic is performed the same way. It is interesting to note that, as R3 increases, the

two systems become more and more comparable in performance. This is because as

R3 increases, the ratio L
C

decreases, and more of the cross-over traffic is not in the

region included in L. Hence, the ratio of the average load per router in System A

to that of System B approaches 1 (the system performances become more and more

similar). As R2 decreases, System A’s performance suffers relatively to that of System

B. Figure 4-8 shows these results.

In comparing Systems B and C, we see that System C always performs better in

terms of average load per router. This can be explained by the fact that System C

utilizes more bandwidth in order to save router load. The traffic meant to go from

region 3 to region 2 is passed through the folded bus (in C), thus resulting in savings

on load. The obvious trade-off is that bandwidth on two links is needed for System C.
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Figure 4-9: Graph comparing the performance of Systems B and C (different T-
shaped systems).

As expected, as R3 increases, the systems become more and more comparable. This

is because most of the cross-over traffic is not included in L, and so neither system

carries much internal traffic in the case of no failure. Figure 4-9 shows these results.

Finally, in comparing Systems B and D, a share-factor (α) needs to be selected.

This value represents the proportion of the traffic included in L that is to be routed

through the central router (in System D), and, together with R3 provides for a good

metric in comparing Systems B and D. For example, if α = 3
4
, then 75% of the traffic

to be sent from the lower leg (region 3) to the right leg (region 2) is processed by the

central router. The remaining 25% of the traffic will be will be sent down the folded

bus. Hence, the traffic is being “shared” by the bus and the central router.

Figure 4-10 shows the results for α = 1
2
. As expected, System B’s performance is

worse than System D’s performance (this is because System D is a hybrid of System

B and System C), and the ratio of the average load is bounded from above by 1
α
. As

R3 → 0, almost all the traffic is included in L, and so the share-factor comes through
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Figure 4-10: Graph comparing the performance of Systems B and D (different T-
shaped systems).

in the average load. On the other hand, as R3 gets large, the system performances

become closer to each other, as expected.

In conclusion, we must note that the simulation results showed that the following

inequalities always hold, independently of the traffic matrix, as predicted.

Aload ≥ Bload ≥ Dload ≥ Cload.

It should be noted that Systems C and D use extra bandwidth, the amount of

which depends on the traffic matrix. The ratio of the extra bandwidth needed in

System C to that needed in System D is

r = 1
1−α

, for 0 ≤ α < 1.
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The main results of this section are:

In the linear systems:

• Due to the fact that the value of R for a given matrix does not capture all the

information in that matrix, the value of ρ is not a deterministic function of R.

Hence, ρ vs. R plots generally have more than one point per value of R.

• In general, as R increases, ρ decreases. This is because of the fact that, as R

increases, more and more of the total traffic is intra-region traffic.

• If the number of nodes and failure probability is chosen properly, the ρ vs. R

graph decomposes into two graphs.

• In the failure state, the two systems (Systems A and B) have comparable per-

formance.

• In general, when pf << 1, the higher the value of NR in a given system, the

poorer the performance of the system (with respect to average load per router).

• A general ρ vs. R plot is bounded from below by NR2

NR1

.

In the T-shaped systems:

• ρ vs. R plots behave the same way, in general, as for the linear systems.

• The following inequalities always hold: Aload ≥ Bload ≥ Dload ≥ Cload.
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Chapter 5

Conclusion

In this thesis, it was shown that a simple ratio R, extracted from the elements of the

traffic matrix, characterizes the performance of the routers within the system with

respect to certain metrics (i.e. average load per router, bandwidth needed,...etc.).

In particular, two systems were examined: the linear system, and the T-shaped

system.

Analysis and simulations done on the linear system showed that under time av-

erage scenarios (very low probabilities of link failure), the performance of a system

with more routers improves with respect to the performance of a system with fewer

routers as the traffic becomes more and more local (i.e. more and more of the traffic

has source and destination nodes that lie on the same folded bus). In other words,

as R increases, the performance of the system with many routers gradually improves

with respect to the performance of the system with fewer routers. Another interest-

ing result that was obtained is that in the failure-state, two systems with a different

number of routers perform comparably. The reason for this is that, although there

are more routers in one system, forcing more traffic to be processed per router, the

load is distributed among more routers, hence reducing the average load per router.

Finally, when comparing the performance of two systems (System A and System B)

with different numbers of routers (NR1 and NR2), it was determined that the curve

of the ratio of the average load in System A to that of System B is bounded from

below by NR2

NR1

.
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The analysis and simulations performed on the four different T-shaped systems

showed that the results from linear systems could be extended to T-shaped systems,

when considering the ratio R. In addition to this, the average load per router in all

four systems satisfied inequalities that indicated that a network designer can reduce

router usage by increasing appropriately placed bandwidth (wavelengths or fibers in

the system). Alternatively, one can decrease the amount of bandwidth needed in the

system by increasing the usage of certain routers.

A direction for further research is the performance of these different systems

using different traffic models. The elements of the traffic matrix are independent,

identically-distributed (I.I.D.) exponential random variables with different parame-

ters. Interesting paths to follow would be testing the system under uniform, and

Pareto (or other heavy-tailed) traffic. Using uniform traffic would be similar to mod-

elling a system in which all node-pairs have the same amount of demand to be ex-

changed. Analysis and simulations using heavy-tailed traffic would help us understand

how the system performs under more realistic traffic in which the probability of a very

large deviation is small, but not negligible.

Another avenue to follow would be to consider non-linear bus architectures beyond

the T-shaped systems. Examining combinations of linear and T-shaped systems may

yield results about general mesh networks. It would be interesting to see if the results

pertaining to the simpler linear and T-shaped systems can be extended to account

for cascading.

A more interesting result would be measuring the dropoff in performance of a

particular system with respect to changing the distribution of the input traffic. For

instance, how would the average load of a system change under exponential traffic

with a smaller parameter? Given, the performance of a system under a certain traffic

model, how would the performance degrade with respect to another distribution? This

question is particularly important when considering the fact that virtual topologies

lie on top of pre-existing physical architectures. Hence, not all virtual topologies

are possible (i.e. they are contrained to a subset of topologies due to the nature

of the physical topology), and as a result, the “best case” topology needs to be
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used. This “best case” topology is generally not optimized to the proper traffic

distribution, but rather, to another distribution with nonzero distance from the proper

distribution. The “distance” between the distributions of traffic (i.e. determined using

the Kullback-Liebler distance or some other metric) can be measured, and in a sense,

the relationship between the amount a system degrades from one traffic distribution

to another, and the distance between the two distributions can be developed.
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