
Extending the Java Language for the Prevention of

Data Races

by

Robert Honway Lee

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Masters of Engineering in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2002

c© Robert Honway Lee, MMII. All rights reserved.

The author hereby grants to MIT permission to reproduce and distribute
publicly paper and electronic copies of this thesis document in whole or in

part.

Author .
Department of Electrical Engineering and Computer Science

May 26, 2002

Certified by .
Martin Rinard

Associate Professor
Thesis Supervisor

Accepted by .
Arthur C. Smith

Chairman, Department Committee on Graduate Students

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/4384819?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Extending the Java Language for the Prevention of Data Races

by

Robert Honway Lee

Submitted to the Department of Electrical Engineering and Computer Science
on May 26, 2002, in partial fulfillment of the

requirements for the degree of
Masters of Engineering in Computer Science and Engineering

Abstract

This thesis presents a language extension for Java that ensures that type-checked programs
will be free of race conditions. By adding parameterization to class types, this mostly static
type-system allows programmers to write generic object code independent of the concurrency
protection mechanism to be used to guard it. This added flexibility makes this extension
more expressive and easier to use than other similar type systems. We will present the formal
type system as well as our experience with implementing a compiler for this extension.

Thesis Supervisor: Martin Rinard
Title: Associate Professor

3

4

Acknowledgments

I am grateful for the advice and guidance that I received from my advisor, Martin Rinard,

over the past years. I am also grateful to the other members of my research group; especially

to Chandra Boyapati for his guidance and ideas in developing this language. I would also

like to thank Allison Waingold and Jon Whitney for their support, feedback and ideas on

improving this project and realizing this thesis.

5

6

Contents

1 Introduction 15

2 Synchronization in Java 19

3 Core Language 23

3.1 Informal Semantics . 25

3.2 Parameterized Classes . 26

3.3 Instantiating Objects . 27

3.3.1 thisThread Owner . 28

3.3.2 self Owner . 28

3.3.3 unique Owner . 29

3.3.4 readonly Owner . 31

3.4 Parameterized Methods . 31

4 Extending the Type System for Java 35

4.1 Arrays . 35

4.2 Static Fields . 36

7

4.3 Runtime Type System . 37

4.4 Specification classes . 42

4.5 Exceptions . 43

4.6 Constructors . 44

4.7 Java Threads . 44

4.8 Interfaces . 45

5 The Formal Type System 49

5.1 Type checking references . 51

5.2 Type checking static references . 51

5.3 Type checking method calls . 52

5.4 Type checking synchronized blocks . 53

5.5 Type checking fork . 53

5.6 Type checking unique assignments . 54

5.7 Type checking unique and readonly in method calls 55

5.8 Type checking constructor calls . 56

6 Type Inference 57

6.1 Inference . 57

7 Compiler Structure 61

7.1 Parser . 62

7.2 Check and Generate Interfaces . 62

7.3 Type Inference and Body Checking . 63

8

7.4 Owner Descriptor Interface Transformation 65

7.5 Owner Descriptor Body Transformation . 65

8 Experience 67

9 Related Work 71

9.1 Extensions . 73

10 Conclusion 75

A Formal Type Rules 77

9

10

List of Figures

2-1 Examples of synchronization in Java . 19

3-1 An Ownership Relation . 24

3-2 Extensions to the Java grammar . 25

3-3 An example of a parameterized method . 32

3-4 Example Code for TStack, a Stack of T objects 33

4-1 Code for the $OD class which is used to wrap runtime owners. 38

4-2 Example translation of TStack class . 39

4-3 Example (a) TStack client code and (b) translation 41

4-4 Example specification file for java.util.Vector 43

4-5 Translation Function to standard Java . 46

4-6 Translation Function continued . 47

6-1 Incompletely typed code before and after inference 58

7-1 High-level compiler dataflow . 61

11

12

List of Tables

8.1 Programming Overhead . 68

13

14

Chapter 1

Introduction

The multi-threaded programming model is quickly becoming more prevalent. In this model

programmers can use multiple parallel flows of control which can share resources in order

to optimize around performance-limiting constructs like blocking I/O calls. However, multi-

threaded programming involving shared resources introduces a very severe class of bug:

data-races.

A data-race can be thought of as either non-deterministic execution of program code

which is intended to be deterministic, or non-atomic access to shared data intended to be

atomic [8]. Race condition errors are usually the hardest to detect and eliminate, often

times because they are difficult to reproduce. There are several tools that currently exist

to help programmers eliminate race-conditions. These tools use techniques such as dynamic

analysis [10], static analysis, and extended type systems.

Unwanted race conditions on critical sections of code can be prevented by explicit synchro-

nization. By imposing ordering constraints on the execution of code segments, programmers

15

can limit the possible runtime execution sequences. The abstract approach to imposing these

ordering constraints is to associate a lock with each piece of shared data that needs to be

protected. Each time the data is accessed, the accessing thread must first acquire the lock

that protects the data. Correspondingly, when the thread is finished with the data, it should

release the lock so that other threads may acquire it.

Synchronization (acquiring and releasing a lock) allows the programmer to control what

parts of code may and may not be run synchronously. By making the acquire and release

operations atomic (they occur in one logical step with no intervening steps) and having all

threads acquire a lock before accessing the shared data, programmers can protect a data

access against race considtions. However, synchronizing on concurrent accesses to shared

data is left up to programmer discipline which is often the souce of inadvertant programming

errors.

Thesis presents Parameterized Race Free Java (PRFJ), a language extension to Java,

and its implementation. The extended language incorporates synchronization locks into the

formal type system so that a program can be statically verified to be free of race-conditions

while still reducing the amount of unnecessary overhead.

Several previously proposed type systems exist that have similar goals of producing race-

free programs [3, 4, 5, 6]. However, these systems suffer from the fact that they are not

flexible enough to allow programmers to specify the object protection policy at the point

of object instantiation. The immediate result of this is that programmers are forced to

acquire redundant locks in order to satisfy the type-checker, or are required to unnecessarily

duplicate code.

16

Our new type system allows programmers to specify, at creation time, the protection

mechanism that is to be used to guard accesses to a particular object. By making this

protection policy a parameter of the object’s type, programmers are able to write object code

independent of the particular protection mechanism to be used, which they can postpone

assigning until object instantiation.

In designing this type system, there were several key challenges:

• Making the type system sound while avoiding unnecessary locking.

• Making the type system expressive enough to accommodate common programming

idioms.

• Making the language extension small enough to facilitate porting existing Java systems

into PRFJ.

• Supporting the whole Java language including the runtime type-system.

This thesis will present the core language in Chapter 3 and the accommodations for the

existing Java language in Chapter 4. Chapter 5 will present the formal type-system and

Chapters 6 and 7 will discuss the implementation of the type-inference algorithm and the

compiler.

17

18

Chapter 2

Synchronization in Java

public synchronized void useData()

{

// protected code

}

private Object sharedData;

. . .

public void useData()

{

synchronized(sharedData)

{

// protected code

}

//unprotected code

}
(a) (b)

Figure 2-1: (a) Method-level synchronization. (b) Finer granularity explicit synchronization

The language extension that this thesis is based on is an extension of the Java pro-

gramming language and makes use of Java constructs, therefore it is worthwhile to briefly

summarize the synchronization constructs provided by the existing language.

Java’s synchronization model is monitor-based [9]. In this model, each instance of an

object is associated with a monitor(mutex). In order to execute protected code, the thread

19

must first acquire the monitor associated with the object. Code can be synchronized on the

method level by adding the synchronized modifier to the method declarator (Figure 2-1a).

Threads must acquire the monitor associated with the enclosing object in order to execute

synchronized methods.

It is also possible to synchronize code on a finer granularity than methods. Blocks of

code can be synchronized by explicitly declaring an object to synchronize on. For example,

consider the code in Figure 2-1b. The section within the synchronized block in method

useData() is synchronized on the monitor for sharedData and not the monitor for this.

Furthermore, any code that is in the method but outside of the synchronized block is not

protected by synchronization. This might be desirable if, for example, there is a portion of

the method that does not need to be synchronized because it does not modify or access any

shared data. (Note that declaring a method to be synchronized is equivalent to synchronizing

it’s entire body on a reference to this).

The synchronization mechanism instructs the virtual machine (VM) to atomically per-

form a lock action on the monitor before entering a synchronized scope, and an unlock action

upon exiting the scope. By disciplined use of the synchronization mechanism, programmers

can assure that certain blocks of code may not be executed simultaneously. However, ac-

quiring monitor locks alone does not ensure that other threads of execution will not access

or modify object fields or invoke unsynchronized methods of the shared object.

Java also allows threads to communicate using condition variables. The basic notion of

a condition variable is that a thread blocks until some condition becomes true. In the case

of Java’s built-in condition variable, the thread will wait until the notified condition is set

20

to true by some other thread calling notify(). When the waiting thread calls wait(), it

releases the monitor and the thread is put into the object’s wait-set and no longer participates

in scheduling.

At this point, because the waiting thread has released the lock on the object’s monitor,

other threads are free to execute synchronized code. When a thread receives the notify or

notifyAll signal, the thread is removed from the wait-set and is re-enabled for scheduling.

It is important to note that although a thread releases the monitor when it makes the wait()

call, before it resumes execution after waking up, it must first re-acquire the lock.

Monitor synchronization allows programmers to restrict multiple threads from simulta-

neously executing code protected by the same monitor. Condition variables allow threads to

block execution until some condition holds on shared data. Together, these two constructs

give programmers and expressive, but undisciplined way to write multi-threaded programs.

21

22

Chapter 3

Core Language

The PRFJ type system builds on the type system presented by Boyapati and Rinard [1].

The key to the type system behind PRFJ is the idea of ownership types. Each object in the

PRFJ type system has an owner associated with it. An object’s owner can be itself, another

object, or one of the special owners which are defined in the language.

Object owners satisfy two important properties in this type system:

• An object’s owner does not change over its lifetime

• The ownership relationship forms a forest of rooted trees where the roots can have
self-loops.

The reason it is necessary for an object’s owner to remain the same over time is to avoid a

situation where two threads are competing for access to the object and lock different objects

which they believe to be the object’s owner. By ensuring that an object cannot change its

owner, we can statically ensure that threads will not mistakenly make an unsynchronized

access to an object.

23

In our system, objects are protected by the root of their ownership tree. Therefore, it

is necessary and sufficient for a thread to hold the lock to the root of the ownership tree to

ensure exclusive access to all members of the tree.

The type of each object in this system is parameterized by the owner parameters which are

assigned to the object at creation time. In this manner, it is easy for the programmer to write

generic implementations of classes that are independent of the particular locking discipline

that is to be used to protect it. It is only at object creation time that the programmer needs

to specify the particular protection mechanism to be used.

thisThread

o1 o2

o3

Thread1 Objects Potentially Shared ObjectsThread2 Objects

thisThread

o4
o6

o7

o8

o5 o9

o10

Figure 3-1: An Ownership Relation

Figure 3-1 presents an example of object ownership. In the figure, there is an arrow from

object x to object y if object x owns object y. The figure shows that the thisThread owner

of Thread 1 transitively owns objects o1, o2, and o3, the thisThread owner of Thread 2 owns

object o4, object o5 transitively owns objects o5, o6, o7, and o8, and object o9 owns objects

o9 and o10. In other words, objects o1, o2, and o3 are thread-local to Thread 1, o4 is local to

Thread 2, and o5 . . . o10 can potentially be shared across threads.

24

ClassDeclaration ::= C lassModifieropt class Identifier〈Firstowner Formal*〉
Superopt Interfacesopt ClassBody

Super ::= extends ClassType
ClassType ::= TypeName
Interfaces ::= implements InterfaceTypeList

InterfaceTypeList ::= InterfaceType | InterfaceTypeList , InterfaceType
InterfaceType ::= TypeName

TypeName ::= Identifier〈Owner+〉 ([] 〈Owner+〉)?
MethodDeclaratorRest ::= MethodFormalParameters BracketsOpt (requires arguments)?

(throws QualifiedIdentifierList)? (MethodBody | ;)
Formal ::= Identifier |

FirstOwner ::= Formal | SpecialOwner
Owner ::= Identifier | Expression | SpecialOwner

SpecialOwner ::= self | thisThread | readonly | unique
MethodFormalParameters ::= MethodFormalParameter (, MethodFormalParameter)*
MethodFormalParameter ::= (final)? TypeName (UniquePointerInfo)? VariableDeclaratorId

UniquePointerInfo ::= !(e)?(w)?

Figure 3-2: Extensions to the Java grammar

3.1 Informal Semantics

The grammar for PRFJ is given by extending the grammar for the Java programming lan-

guage [9] and is shown in Figure 3-2.

The basic difference as a result of the extension is that reference types are now parameter-

ized with owner parameters. When an object is declared and created, the fully parameterized

type of the object is specified. Accordingly, that is the point at which a protection mecha-

nism is associated with the object. A protection mechanism defines the lock which protects

the object or that the object needs no lock because it is thread-local, immutable, or a unique

object.

The type checker then verifies that the object is only used in accordance with the pro-

tection mechanism that is specified for the object.

25

3.2 Parameterized Classes

Every class in this type system is parameterized by one or more formal parameters. These

parameters will be instantiated at object creation time with appropriate owner expressions

that describe how the data structure is protected. The first parameter in a class type has

a special meaning and is always considered the “owner” of this object. Any of the formal

parameters may be used within the body of the class to parameterize field or local variable

creation, as well as in method declarations.

The formal parameters in a class definition may be used to propagate the protection

mechanism to within the class body. An example of such a use is in a container class.

The container object would be declared with two owners, one describing the owner of the

container object, and one describing the owner of the elements in the container. An example

of this usage presented in the TStack example in Figure 3-4.

The semantics of parameterizing classes and instantiating objects are similar to much of

the previous work on adding parameterized types (also known as generic types) to Java [11].

The key difference is that the parameters in generic types are themselves type values, whereas

here, the parameters can actually be runtime objects.

If a formal parameter of a class is never used within the body of the class, it may be

replaced with a or omitted and a default formal parameter will be generated. Omitting class

formal owners has implications on the runtime system, which is described in Chapter 4.3.

26

3.3 Instantiating Objects

Objects in PRFJ are instantiated with actual parameters which describe the locking dis-

cipline to be used with that specific object. Owner parameters can be a final expression

of any reference type, formal parameters, or any of the special owners: self, thisThread,

readonly, unique. In order to maintain the property that the owner of an object never

changes over the life of that object, it is necessary to restrict expression owners to final

expressions (or this).

Recall that classes may declare more than one formal parameter. For example, the TStack

class in Figure 3-4 represents a stack of T objects. The TStack class declares two formal

parameters, thisOwner and TOwner. As we previously discussed, the first formal parameter,

thisOwner, represents the owner of this object (the TStack). The TOwner parameter is later

used to parameterize the instance field head and also the push() and pop() methods. In

this case, the TOwner is being used to as the owner of the TNode objects contained within

the stack.

By allowing programmers to parameterize fields, variables, and methods with formal

owner parameters, we are allowing them to propagate the ownership information into their

data structures. For example, in the code from Figure 3-4:

55 TStack<thisThread, thisThread> s1 = new TStack<thisThread, thisThread>();
56 TStack<thisThread, self> s2 = new TStack<thisThread, self>();
57 final TStack<self, self> s3 = new TStack<self, self>();
58 TStack<s3, self> s4 = new TStack<s3, self>();

The declaration of s1 says that s1 will be a TStack which is owned by the thisThread

owner; the stack constains T objects which are also owned by thisThread. The declaration

of s2 gives a TStack which is owned by the thisThread owner of T objects which are owned

27

by the self owner. The declaration of s3 is another permutation, this time of a TStack

which is owned by the self owner where the stack contains T objects which are also owned

by self. Finally, s4 is declared to be a TStack which is owned by s3 of T objects which are

owned by self. In order to fully understand this example, we need to examine the properties

of the special owners.

3.3.1 thisThread Owner

Each thread has its own thisThread owner. A thread also implicitly locks its thisThread

owner and cannot access another thread’s thisThread owner. In other terms, objects which

are owned by thisThread can be thought of as being thread-local. As such, the thread need

not acquire additional locks before accessing thisThread-owned objects. This is shown in

the TStack code:

55 TStack<thisThread, thisThread> s1 = new TStack<thisThread, thisThread>();
56 TStack<thisThread, self> s2 = new TStack<thisThread, self>();
...
59 s1.push(t1);
60 s2.push(t2);

Objects owned by thisThread may not migrate between threads.

3.3.2 self Owner

The self owner is used to indicate that an Object owns itself. In order to safely access an

object which is owned by self, it is necessary to lock the root owner of the object, which in

this case, is the object itself. The TStack code shows an example of this paradigm:

57 final TStack<self, self> s3 = new TStack<self, self>();
...
62 synchronized(s3) {
63 s3.push(t2);
64 }

28

Here, the call to s3.push() requires the root owner of s3 (which is s3 itself) be held.

The enclosing synchronized block acquires the lock and makes the method call safe.

3.3.3 unique Owner

The unique owner indicates that an Object reference is unique. That is, that there is at

most one reference to any unique object on the heap at a time. Knowing that a reference

is unique is useful because it means that the thread holding the reference can safely access

the object without synchronization because no other thread could simultaneously hold a

reference to the same object.

The idea of unique pointers is useful in supporting a common programming paradigm,

the producer-consumer model. In this model, one or more threads may create and initialize

objects and then pass the objects to other threads to be “consumed”.

In order to statically show that a pointer is unique, we make some restrictions. Non-

unique objects may not be assigned to unique references. Furthermore, a unique object may

only be assigned to another unique reference through a special form:

x = y--; //x = y; y = null;
m(y--); //m(y); y = null;

The special form for dereferencing a unique reference evaluates to the reference and then

immediately assigns it to point to null. As a result, the dereferenced pointer can safely be

assigned to another unique reference.

Special care must also be taken to ensure that unique pointers do not escape as a result

of method calls. A pointer escapes the method if, at the end of the method, there is a

new reference to the object. To allow programmers to pass unique pointers as arguments

29

to method calls, we require that the method being called declare that it will not cause the

argument to escape by assigning a new reference to point to it. It can do this by annotating

the argument declaration with !e to signify that the variable has a non-escaping type.

If a variable has a non-escaping type, then it means that the reference stored in the

variable will not escape to any object field or to another thread. A variable with a non-

escaping type can be assigned only to other variables with non-escaping types. Similarly,

it can passed as a method argument only if the type of the argument is specified to be

non-escaping in the method declaration.

The code below is an example of where a unique Message object is passed as an argument

to a display method that declares that the Message argument will not escape.

class Message<thisOwner> {...};

class Util<thisOwner, MsgOwner> {
void display(Message<MsgOwner>!e m) requires(m) {...}

}

...
Util<self, unique> u = new Util<self, unique>();
Message<unique> m = new Message<unique>();
u.display(m);

In addition to specifying that unique objects may only be passed to methods which declare

that references to the argument will not escape, there is an additional restriction on class

formal parameters. Not all classes can be instantiated with the unique owner. For example,

in the code for TStack in Figure 3-4, the TOwner parameter must not be instantiated with

unique because the code in the TNode class will escape the reference.

We can control this by imposing a constraint on the TStack class that TOwner must not

be unique.

class TStack<thisOwner, TOwner> where (TOwner!=unique)
{ ... }

30

3.3.4 readonly Owner

The readonly owner indicates that an Object is read-only. Read-only objects can only be

read from, and not written to. Because of this, it is safe for multiple threads to access them

without synchronization. One way to create a readonly object is to first create the object

with the unique owner. After it is initialized and written to, the m-- form can be used to

assign it to a readonly reference. For example, the code below shows how you would create

a readonly reference to a Message object.

Util<self, unique> u = new Util<self, unique>();
Message<unique> m = new Message<unique>();
// write to m
Message<readonly> rm = m--;
By using the m-- form, the assignment to rm guarantees that rm is still the only reference

to the Message object at this point in the code. Because the declared type of rm is read-only,

the static type system guarantees that the only additional references to the rm object created

will also be owned by the readonly owner.

Immutable classes may also declare themselves to be readonly by specifying the readonly

owner as their first formal parameter. For example, the specification file (see Chapter 4.4

for the java.lang.String class specifies that it is a readonly class. This means that all

instances of String are readonly and can safely be referenced without locking.

3.4 Parameterized Methods

In some cases, it is desirable to define a method which defines argument types and a return

type which are polymorphic over some set of owners. We introduce the ability to define

method-level formal owner parameters by simply parameterizing the types with fresh iden-

31

public static TStack<thisThread, any> makeStack(TNode<any> tNode) requires() {
TStack<thisThread, any> ts = new TStack<thisThread, any>();
ts.push(tNode);
return ts;

}

Figure 3-3: An example of a parameterized method

tifiers. This is useful for writing more generic code and allows the programmer to further

abstract away the protection mechanism from the actual code.

For example, suppose we want to define a factory method for TStack objects which takes

an initial TNode object as an argument. Figure 3-3 shows an example implementation.

Here, the any parameter defines a method-level formal owner which can be instantiated

with any actual owner. This allows for a more generic implementation of this factory method

rather than multiple implementations for each possible TNode owner.

Allowing the use of parameterized methods does, however, cause some difficulty. For

example, what should happen if a null literal is passed in as an argument to the makeStack()

method in Figure 3-3? The type of a null-literal is a special case in that it defines no

formal owner parameters. The question then becomes, what is the any formal method-level

parameter bound to and what type does the ts object (and ultimately the method return

value) have? Chapters 6 and 4.3 will describe how problems such as these are resolved.

32

01 class TStack<thisOwner, TOwner> {

02 TNode<this, TOwner> head = null;

03

04 public void push(T<TOwner> value) requires (this) {

05

06 TNode<this, TOwner> newNode = new TNode<this, TOwner>();

07 newNode.init(value, head);

08

09 head = newNode;

10 }

11

12 public T<TOwner> pop() requires (this) {

13

14 if(head == null)

15 {

16 return null;

17 }

18

19 T<TOwner> value = head.value();

20 head = head.next();

21 return value;

22 }

23 }

24

25 class TNode<thisOwner, TOwner> {

26

27 T<TOwner> value;

28 TNode<thisOwner, TOwner> next;

29

30 public void init(T<TOwner> v, TNode<thisOwner, TOwner> n) requires(this) {

31 this.value = v;

32 this.next = n;

33 }

34

35 public T<TOwner> value() requires(this) {

36 return value;

37 }

38

39 public TNode<thisOwner, TOwner> next() requires(this) {

40 return next;

41 }

42 }

43

44 class T<thisOwner> {

45 int x = 0;

46 }

47

48 class TStackDriver<owner> {

49

50 public static void main(String<readonly>[]<readonly> args) requires(this) {

51

52 T<thisThread> t1 = new T<thisThread>();

53 T<self> t2 = new T<self>();

54

55 TStack<thisThread, thisThread> s1 = new TStack<thisThread, thisThread>();

56 TStack<thisThread, self> s2 = new TStack<thisThread, self>();

57 final TStack<self, self> s3 = new TStack<self, self>();

58 TStack<s3, self> s4 = new TStack<s3, self>();

59 s1.push(t1);

60 s2.push(t2);

61

62 synchronized(s3) {

63 s3.push(t2);

64 }

65 }

66 }

Figure 3-4: Example Code for TStack, a Stack of T objects

33

34

Chapter 4

Extending the Type System for Java

This chapter discusses some of the details of the Java programming language which the

initial type-system [1] was expanded to include.

4.1 Arrays

In order to support arrays, we introduce a special form for declaring array types. In Java,

arrays are first-class objects in their own right [9]. For example, arrays have a length

property as well as all of the methods that they inherit from java.lang.Object.

Array types declare some base element-type and also define the dimension of nesting.

In our type system, array objects essentially have 2 sets of owners parameters, one for the

owners of the base type, and one for the actual array object. The example below shows a

declaration of an array of TStack<thisThread, self> objects where the array is self-owned.

TStack<thisThread, self>[]<self> t = new TStack<thisThread, self>[10];

It is necessary to make the distinction between parameterizing the array object and

35

parameterizing the array elements. For example, if you have an one-dimensional array of

reference types, it is possible to race on the array itself (to have two threads competing to

read and update a given element) and also to race on the contents of an array element.

4.2 Static Fields

Supporting static fields in Java requires some special handling. Because it is possible to

globally reference static class fields, they must be treated as global variables. Thus, they

can be accessed from any program point (or more importantly, from any running thread).

We handle this by requiring that all accesses of static fields of a class A hold a lock on the

A.class object. By using the singleton class object [9] to control access to static fields, we

can protect these global accesses. For example, the following is a valid access of the static

field counter in class StaticCounter:

synchronized(StaticCounter.class) {

StaticCounter.counter++;

}

Although there are other ways of referencing the class Object for the StaticCounter

class, this is the only way that we support as it is the only semantic approach that is

resolved statically.

While this treatment of static fields may lead to extra synchronization, it is necessary

in order to maintain the soundness of the type-system. In general, heavy use of static

fields is not good as they are essentially global variables and thus limit the programmer’s

ability to reason locally. Chapter 8 on results discusses an alternative paradigm to lessen the

36

synchronization burden involved with static fields while maintaining a good programming

style.

4.3 Runtime Type System

Up until now, the type system described has been entirely static. However, Java’s type

system is not entirely static (namely runtime downcasting and the instanceof operator).

Unfortunately, the type-system so far is not adequate to handle these operations. For exam-

ple, consider the following code:

TStack<thisThread, self> ts = new TStack<thisThread, self>();
Object<thisThread> o = ts;
...
TStack<thisThread, thisThread> tt = (TStack<thisThread, thisThread>)o; // bad!!!

In the existing type system, we can verify that the declaration of ts and o are legal.

Furthermore, we can verify the assignment of ts to o and the implicit upcast that is involved

with that. However, on the downcast of o to type TStack<thisThread, thisThread>, we

can only verify that the first thisThread parameter is legal. This is because an object’s

owner can never change, so any downcast must preserve the same first owner. However, the

second parameter (and any subsequent parameters) are not statically verifiable.

At runtime, the JVM will be able to check that the o object is of type TStack (unparam-

eterized). However, the JVM has no way of telling dynamically if the object was created as

a TStack<thisThread, self> or TStack<thisThread, thisThread>.

In order to support the runtime features of Java’s type within the JVM specification, we

extended the compiler to propagate some owner information in the body of the objects at

runtime. The transformation we chose is similar to the type-passing approach to generics

37

as presented by Viroli et al [12]. Without modifying the semantics of the JVM or Java

bytecodes, this is a very lightweight approach while still maintaining a sound type-system.

public class $OD {

private Object owner;

public static $OD THISTHREAD = new $OD(‘‘thisThread’’);

public static $OD READONLY = new $OD(‘‘readonly’’);

public static $OD UNIQUE = new $OD(‘‘unique’’);

public static $OD SELF = new $OD(‘‘self’’);

public $OD(Object o) {

owner = o;

}

public boolean equals(Object o) {

return (this == o);

}

}

Figure 4-1: Code for the $OD class which is used to wrap runtime owners.

The basic approach is to determine which classes need to be instrumented to carry owner-

ship information around in runtime. Any class which specifies formal owner parameters must

carry the corresponding owner expressions in the body of each instance. The reason for this

is that if any of those formal parameters are used to instantiate other objects, the runtime

information must be propagated to those subsequently created objects. If a particular class

definition makes no use of a formal parameter, it may specify as the parameter name. This

indicates that there is no need to propagate that particular parameter at runtime.

One other place where it is necessary to instrument for runtime parameters is in methods

which declare method-level owners. Recall that methods may declare new “formal owner

parameters” in order to allow programmers to declare more polymorphic methods. So for

example, the makeStack() method in TStack declares a method-level parameter, any, and

uses it to parameterize a new object.

38

class TStack {
TNode head = null;

private $OD[] $_ods;
public TStack($OD[] ods) {
$_ods = ods;

}

public void push(T value) {

TNode newNode = new TNode(new $OD[]{new $OD(this), $_ods[1]});
//newNode: TNode<this, TOwner>

newNode.init(value, head);

head = newNode;
}

public T<TOwner> pop() {

if(head == null) {
return null;

}

T value = head.value(); //value : T<TOwner>
head = head.next();
return value;

}

public static TStack makeStack($OD[] ods, TNode tNode) requires() {
TStack ts = new TStack(new $OD[]{ods[0]});
ts.push(tNode);
return ts;

}
}

Figure 4-2: Example translation of TStack class

39

The owner descriptors which are passed into the parameterized objects are stored in an

instance field named $ ods. Within the class body, references to formal parameters will

resolve to the corresponding index into the $ ods array.

When instantiating an object of a class that requires ownership passing, the owner pa-

rameters of the parameterized class type encoded by owner descriptor ($OD) objects. In the

parameterized class type, the owner parameters are either final expressions, special owners,

or formal parameters (as shown in the extended grammar in Figure 3-2). If the owner pa-

rameter is a final expression, then a new owner descriptor object ($OD) is created. If the

parameter is a special owner, one of the singleton $OD objects is used. Lastly if the owner

parameter is a formal parameter, then the owner descriptor is a reference into the $OD array

that contains the $OD which was used to parameterize the current object.

To translate type casts and instanceof checks, the owner parameters in the object are

compared to the statically bound owners. So for example, to do a downcast to a param-

eterized type, not only must the runtime Java type of the object be cast-able to the Java

type in question, but the owner descriptors in the object’s $ ods field must also match the

statically bound owner descriptors. Similarly, when evaluating an instanceof expression,

not only does the Java type have to be compared, but the owner descriptors in the target

object need to be compared to the statically bound owner descriptors. Figure 4-3 shows a

more detailed translation of some TStack client code.

While the transformations shown in Figures 4-2 and 4-3 seem unwieldy, they are all per-

formed at the bytecode-level, so there are optimizations that our implementation makes that

cannot be shown. For example, in translating the downcast of obj to TStack<thisThread,

40

01 TStack<thisThread, self> t0 = new TStack<thisThread, self>();
02 TStack<thisThread, thisThread> t1 = new TStack<thisThread, thisThread>();
03 TStack<self, thisThread> t2 = new TStack<self, thisThread>();
04 Object<thisThread> obj0
05 obj0 = t2
06 obj0 = t0
07 t0 = (TStack<thisThread, self>)obj
08 t0 = (TStack<thisThread, thisThread>)obj
09 boolean b = (obj instanceof TStack<thisThread, self>)

(a)

01 TStack t0 = new TStack(new $OD[]{$OD.THISTHREAD, $OD.SELF});
02 TStack t1 = new TStack(new $OD[]{$OD.THISTHREAD, $OD.THISTHREAD});
03 TStack t2 = new TStack(new $OD[]{$OD.SELF, $OD.THISTHREAD}});
04 Object obj0
05 obj0 = t2
06 obj0 = t0
07 try {

if((obj instanceof TStack) &&
(obj.$_ods[0].equals($OD.THISTHREAD) &&
(obj.$_ods[1].equals($OD.SELF))

{ t0 = (TStack)obj; }
else
{ throw new Exception();}

} catch (Exception e) { throw new ClassCastException();}
08 try {

if((obj instanceof TStack) &&
(obj.$_ods[0].equals($OD.THISTHREAD) &&
(obj.$_ods[1].equals($OD.THISTHREAD))

{ t0 = (TStack)obj; }
else
{ throw new Exception();}

} catch (Exception e) { throw new ClassCastException();}
09 boolean b;

try {
b = ((obj instanceof TStack) &&

(obj.$_ods[0].equals($OD.THISTHREAD)) &&
(obj.$_ods[1].equals($OD.SELF))) &&

} catch (Exception e) { b = false;}

(b)

Figure 4-3: Example (a) TStack client code and (b) translation

41

self> in line 7 of Figure 4-3, the scope of the exception handler only encompasses the com-

putation of the predicate expression of the if statement. Furthermore, if the else clause

of the if statement is invoked, only the ClassCastException is thrown. The transforma-

tions shown were chosen because they are the most simply stated while being semantically

equivalent to the implementation.

A more formal description of the transformations needed to build the runtime type system

is given in Figure 4-5.

4.4 Specification classes

In order to allow the safe use of standard (or pre-compiled) Java classes, we introduce

parameterized specification files. The specification files simply re-define signatures of class,

method and field declarations using parameterized owner-types. By type-checking client

code against these specifications but compiling against the pre-compiled binaries, we can,

assuming the specifications are correct, still maintain a sound type system.

Furthermore, because the specification files are simply an interface specification, they

can be extracted from PRFJ source code and then used in a later partial compilation where

client code can be type-checked against the extracted specification files. This allows us to

maintain the ability to do separate compilation.

An example specification for java.util.Vector is shown in figure 4-4. The method

signatures given here have the same syntax and meaning as method signatures found in

normal class definitions, except in this case, they are only used to type-check against. The

specification files need to be generated by hand and there is currently no way to check the

42

public specification class Vector<vOwner, eOwner>
{

public boolean add(Object<eOwner> o) requires(this) {}
public void addElement(Object<eOwner> o) requires (this) {}
public int capacity() requires (this) {}
public void clear() requires (this) {}
public Object<eOwner> elementAt(int i) requires(this) {}
public java.util.Enumeration<thisThread, eOwner> elements() requires() {}
public boolean equals(Object<any> o) requires(this, o) {}
public boolean remove(Object<eOwner> obj) requires(this) {}
...

}

Figure 4-4: Example specification file for java.util.Vector

compiled binaries against the written specification.

4.5 Exceptions

Exceptions in Java are just like any other Object, except that they can be used with the throw

operator. Accordingly, we type-check exceptions as we would any other object in the system

except that we allow the throw and try-catch operators to operate on Exception objects

that are owned by any owner. The reason is that both operators happen synchronously

and neither operator can modify the Exception object. Therefore, throwing and catching

exceptions will not lead to data races.

By default, in this system, exceptions are owned by unique. This is because in most

programming idioms, exceptions are instantiated, initialized, thrown, caught and discarded.

Exceptions are also sometimes explicity caught and rethrown, but still with a unique refer-

ence. There is generally not a need to create multiple references to exception objects. This

heuristic simplifies the programmer’s task of annotating class types.

43

4.6 Constructors

Constructors in Java require special handling. Because constructors instantiate new objects,

the thread calling the constructor implicitly holds the lock on the new object being created.

A call to a constructor can be viewed as two operations, allocating the object and initializing

the object. In allocating the object, the calling thread has unique access. In order to ensure

that the calling thread has unique access in the initialization portion of the constructor call,

the body of the constructor must not escape the this pointer.

4.7 Java Threads

The original type-system for race-free concurrent Java presented a fork() construct for

spawning and running new threads. In Java, new threads are created by calling the start()

method on an object that subclasses java.lang.Thread. When a new thread is created and

run, the type-checker needs to ensure that objects protected by the thisThread owner in

the creating thread’s context are not referenced by the new thread.

The way this is handled is by creating a new context in which to evaluate the body

of the new thread. In that context, a fresh otherThread owner is substituted for the

thisThread owner of objects which originated from other threads. Thus, any types pro-

tected by thisThread in the new thread’s context will refer to the new thread, and there

is no way for code in the new thread’s context to reference the thread-local owner of the

creating thread.

44

4.8 Interfaces

Interfaces in Java simply define a specification of method signatures and field declarations

for which any implementing subtype must provide implementations [9]. Interface definitions,

like class definitions, may be parameterized with formal parameters which can be used in

the method signatures. On instantiation of an implementing subclass, the actual parameters

in the class type are substituted into the method signatures to type check method calls on

that object. For example, suppose you have an interface A and implementing subtype B:

interface A<owner1> {

void foo(Object<owner1> obj);

}

class B<bOwner> implements A<bOwner> {

void foo(Object<bOwner> obj) {

...

}

}
Consider the following snippet:

A<thisThread> b = new B();

b.foo(new Object<thisThread>());

To type-check the method call b.foo(), the parameter of the receiver object (thisThread)

is substituted for bOwner which is substituted for owner1 in the interface definition. Other

than an extra level of substitution, there is no other special handling required for Java

interfaces.

45

T [[ClassDecl]] = T [[class Identifier〈f1 . . . fn〉{fields methods constructors}]] =
class T [[Identifier]]{ public $OD[] ods; T [[fields]] T [[methods]] T [[constructors]]}
where DeclaresParameters(ClassDecl)

T [[ClassDecl]] = T [[class Identifier〈f1 . . . fn〉{fields methods constructors}]] =
class T [[Identifier]]{ T [[fields]] T [[methods]] T [[constructors]]}
where ¬DeclaresParameters(ClassDecl)

T [[Identifier]] = Identifier

T [[Field]] = T [[TypeName]] T [[Identifier]] T [[V ariableInitializer]]

T [[TypeName]] = T [[Identifier]]

T [[Constructor]] = T [[Identifier]] ($OD[]ods, T [[FormalParameters]]) { ods = ods; T [[MethodBody]] }
where DeclaresParameters(ClassOwner(Constructor))

T [[Constructor]] = T [[Identifier]] (T [[FormalParameters]]) { T [[MethodBody]] }
where ¬DeclaresParameters(ClassOwner(Constructor))

T [[Method]] = T [[TypeName]] T [[Identifier]] ($OD[]ods, T [[FormalParameters]]) { T [[MethodBody]]}
where DeclaresMethLevParams(Method)

T [[Method]] = T [[TypeName]] T [[Identifier]] (T [[FormalParameters]]) { T [[MethodBody]]}
where ¬DeclaresMethLevParams(Method)

T [[new ClassName〈o1 . . . on〉(Arguments);]] = new ClassName(T [[o1 . . . on]], T [[Arguments]]);
where DeclaresParameters(Declaration(ClassName))

T [[MethodCall]] = T [[Expression(Arguments)]] = T [[Expression]](T [[ListOfMethLevParams(m)]],
T [[Arguments]]) where Expression binds to m ∈Method && DeclaresMethLevelParams(m)

T [[Owner1 . . . Ownern]] = new $OD[n]{T [[Owner1]], . . . , T [[Ownern]]}

T [[Owner]] = ods[MethLevParamIndex(MethodOwner(Owner), Owner)]
where DeclaresMethLevParam(MethodOwner(Owner), Owner)

T [[Owner]] = ods[ParameterIndex(ClassOwner(MethodOwner(Owner)), Owner)]
where DeclaresParameter(ClassOwner(MethodOwner(Owner)), Owner)

DeclaresParameters : ClassDecl→ Boolean; Returns true iff ClassDecl declares class-level formal parameters
DeclaresParameter : ClassDecl→ Owner → Boolean; Returns true iff ClassDecl defines Owner as a class-level formal parameter
ParameterIndex : ClassDecl→ Owner → Integer; Returns the integer index of Owner in ClassDecl’s parameter list
ListOfMethLevParams : Method→ (listof Owner); Returns the list of method-level formal parameters that are declared
DeclaresMethLevParams : Method→ Boolean; Returns true iff Method declares method-level formal parameters
DeclaresMethLevParam : Method→ Owner → Boolean; Returns true iff Method defines Owner as a method-level parameter.
MethLevParamIndex : Method→ Owner → Integer; Returns the integer index of Owner in Method’s parameter list
ClassOwner : MemberDecl→ ClassDecl; Returns the ClassDecl which defines a given MemberDecl
MethodOwner : Expression→Method; Returns the Method which declares the Expression.
Declaration : ClassName→ ClassDecl; Returns the ClassDecl corresponding to a given ClassName

Figure 4-5: Translation Function to standard Java

46

T [[freshvar =(TypeName)Expression]] = try { if((T [[Expression]] instanceof T [[TypeName]]) &&
(T [[Expression]]. ods[0].equals(T [[o1]])) &&
(T [[Expression]]. ods[1].equals(T [[o2]])) &&
. . .
(T [[Expression]]. ods[n− 1].equals(T [[on]])))
{ freshVar = (T [[TypeName]])Expression; }

else { throw new Exception(); }
catch(Exception ex) { throw new ClassCastException(); }

T [[freshBool =(Expression instanceof TypeName)]] =
try {

freshBool = ((T [[Expression]] instanceof T [[TypeName]]) &&
(T [[Expression]]. ods[0].equals(T [[o1]])) &&
(T [[Expression]]. ods[1].equals(T [[o2]])) &&
. . .
(T [[Expression]]. ods[n− 1].equals(T [[on]]))) }

catch(Exception ex) { freshBool = false; }

T [[self]] = $OD.SELF
T [[readonly]] = $OD.READONLY
T [[thisThread]] = $OD.THISTHREAD
T [[unique]] = $OD.UNIQUE

Figure 4-6: Translation Function continued

47

48

Chapter 5

The Formal Type System

This chapter presents the type system described in Section 3.1 which was largely built on the

type system presented by Boyapati and Rinard [1]. The grammar for the type system was

shown in the beginning of Section 3.1. While the full type system appears in Appendix A,

this chapter will highlight and discuss some of the more interesting and pertinent rules.

We first define a number of predicates used in the type system informally. These predi-

cates are based on similar predicates from [17] and [6]. We refer the reader to those papers

for their precise formulation.

For a program P ,

• ClassOnce(P) - No class is declared twice in P

• WFClasses(P) - There are no cycles in the class hierarchy

• FieldsOnce(P) - No class contains two fields with the same name, either declared or
inherited

• MethodsOncePerClass(P) - No method name appears more than once per class

• OverridesOK(P) - Overriding methods have the same return type and parameter types
as the methods being overridden. The requires clause of the overriding method must
be the same or a subset of the requires clause of the methods being overridden

• RO(e) - The root owner of the final expression e

49

A typing environment E is a mapping of variables and fields to well-formed types and

formal owners and can be described as:

E ::= ∅ | E, [final]opt t x | E, ownerformal f

A lock set ls is the set of all locks which are statically determined to be held at a program

point. It can be described as:

ls ::= thisThread | ls, efinal | ls, RO(efinal)

The type system is defined using the following judgments. The typing rules for these

judgments can be found with the full set of typing rules in appendix A.

Judgment Meaning

P ` defn defn is a well-formed class definition
P ;E ` wf E is a well-formed typing environment
P ;E ` meth meth is a well-formed method
P ;E ` f ield f ield is a well-formed field
P ;E ` t t is a well-formed type
P ;E ` t1 v t2 t1 is a subtype of t2
P ;E ` f ield ∈ cn〈f1..n〉 class cn with formal parameters f1..n

declares/inherits f ield
P ;E ` meth ∈ cn〈f1..n〉 class cn with formal parameters f1..n

declares/inherits meth
P ;E `final e : t e is a final expression with type t
P ;E `owner o o can be an owner
P ;E ` RootOwner(e) = r r is the root owner of the final

expression e
P ;E ` e : t expression e has type t, provided we

have all the necessary locks
P ;E; ls ` e : t expression e has type t

P ;E ` e : t1|t2 expression e has type either t1 or t2,
provided we have all the necessary
locks

P ;E; ls ` e : t1|t2 expression e has type either t1 or t2

50

5.1 Type checking references

[EXP REF]

P; E; ls ` e : cn〈o1..n〉
P; E ` ([final]opt t fd) ∈ cn〈f1..n〉

P; E ` RootOwner(e) = r r ∈ ls
P; E; ls ` e.fd : t[e/this][o1/f1]..[on/fn]

To type-check an object-field reference expression e.fd, the type-rule ensures that e is

a well-formed expression of some class type cn〈o1..n〉. The rule also requires that the class

cn〈o1..n〉 declares a non-static field fd of some type t.

In order for the field access to be thread-safe, the rule must ensure that the thread

performing the field access holds the lock on the root owner of the expression e. Otherwise,

some intervening thread might change the value of e.fd prior to the access.

5.2 Type checking static references

[EXP STATIC REF]

P; E ` cn〈f1..n〉
P; E ` (static t fd) ∈ cn〈f ′1..m〉

P; E ` cn.class ∈ ls
P; E; ls ` cn.fd : t

[FINAL CLASS OBJECT]

P; E ` cn〈f1..n〉
P; E `final cn.class : java.lang.Class

The type-rule for static field references is similar to the one that proves non-static field

references. First, the rule must prove that there is some well-formed class cn〈f1..n〉 and

that cn declares a static field t fd. In Chapter 4.2, we discussed how this type system

protects static field accesses with the corresponding java.lang.Class object. The type-

rule summarizes this by requiring that cn.class be held in the lockset ls.

51

5.3 Type checking method calls

[EXP INVOKE]

P; E; ls ` e : cn〈o1..n〉
P; E ` (t mn(tj yj

j∈1..k) requires(e′1..m)...)∈cn〈f1..n〉
P; E; ls ` ej : tj [e/this][o1/f1]..[on/fn] = cn′〈oj1..n 〉

oj1 6= unique, readonly
P; E ` RootOwner(e′i[e/this][o1/f1]..[on/fn]) = r′i

r′i ∈ ls
P; E; ls ` e.mn(e1..k): t[e/this][o1/f1]..[on/fn]

[EXP STATIC INVOKE]

P; E `static (t mn(tj yj
j∈1..k) requires(e′1..m)...)∈cn〈f1..n〉

P; E; ls ` ej : tj = cn′〈oj1..n 〉
oj1 6= unique, readonly

P; E ` RootOwner(ei) = ri
ri ∈ ls

P; E; ls ` cn.mn(e1..k): t

The type rules to type-check method invocations are shown above. In order to check a

non-static method invocation, we have to check that the receiver expression is of the correct

type. Next, we must check that the calling thread holds all of the root owner locks that are

listed in the requires clause of the method declaration. We must also check to see that the

number of arguments and the argument types match the declaration. The argument and

return types that are declared by the method must be renamed when checking the callsite.

The owner parameters of the receiver are substituted for the formal class parameters and

the receiver expression is substituted for this.

To type check static declarations, the rule is similar except that there is no receiver

object. Accordingly, the rule checks that the class declares a static method and that the

number of arguments and the types of the arguments and return value match the calling

context. The rule also requires the calling thread to hold the locks on the root owners of the

expressions in the requires clause of the method.

52

5.4 Type checking synchronized blocks

[EXP SYNC]

P; E `final e1 : t1
P; E; ls, e1 ` e2 : t2

P; E; ls ` synchronized e1 { e2 } : t2

The synchronized keyword is used to acquire a single lock for the scope of the associated

block. Here, the type rule says that the object being synchronized on must be a final field

or variable of a reference type. The synchronized block is then well-typed if, by adding

the synchronized final expression e1 to the lockset ls, we can type-check the body of the

synchronized block.

The reference that is being synchronized on must be final because if it changes, then at

some points in the body of the synchronized block the root owner locks may not be held

anymore. There are additional rules that establish that the this reference and class-expression

such as cn.class are final expressions and so they may be synchronized on.

5.5 Type checking fork

[EXP FORK]

P; E; ls ` e : cn〈o1..n〉
P; E; ls ` cn〈o1..n〉 v java.lang.Thread

P; E[otherThread/thisThread]; thisThread ` (void run() requires(this) . . .)∈cn〈f1..n〉
P; E; ls ` e.start():void

The type rule for starting a new thread is shown above. In Java, a new thread starts

executing when the start() method is called on a subclass of java.lang.Thread. The rule

checks that the receiver of the invocation is a well-defined subclass of Thread. However,

the environment may contain some types which have the thisThread owner. Because the

53

thisThread owner in those types refers to the initial thread, those owners must be renamed

in order to type-check the body of the new thread. This is shown by renaming thisThread to

otherThread in the environment E and using that to type-check the body of the new thread.

5.6 Type checking unique assignments

[EXP UNIQUE ASSIGN]

P; E; ls ` e : cn〈o1..n〉
P; E ` (t fd) ∈ cn〈f1..n〉

P; E ` RootOwner(e) = r r ∈ ls
P; E; ls ` e′ : t[e/this][o1/f1]..[on/fn]

P; E; ls ` t = cn’〈o′1..n〉 o′1 = unique
P; E; ls ` e.fd = e′-- : t[e/this][o1/f1]..[on/fn]

[ROOTOWNER UNIQUE/READONLY]

P; E ` e : Object〈unique〉 | Object〈readonly〉
P; E ` RootOwner(e) = ∅

Objects that are owned by the unique owner may not be assigned to fields and variables

directly. The type-rule shown above shows how a unique object can be safely stored. This

rule is similar to the normal, non-unique, assignment expression rule which can be found

in Appendix A. First, the left-hand-side and right-hand-side types are computed with the

proper name substitutions (e for this and the actual owner parameters for the formal class

parameters). As with the rule for a field reference, we must check to see that the root owner

of the receiver expression is in the lockset ls.

The rule also checks to see that the object being assigned is owned by unique. The rule

then proves that the expression e′-- can be assigned to the field e.fd. Remember that this

is equivalent to assigning the field reference and atomically setting the old reference, e--, to

null.

54

5.7 Type checking unique and readonly in method calls

[EXP INVOKE UNIQUE/READONLY]

P; E; ls ` e : cn〈o1..n〉
P; E ` (t mn(tj yj

j∈1..k) requires(e′1..m)...)∈cn〈f1..n〉
P; E; ls ` ej : tj [e/this][o1/f1]..[on/fn] = cn′〈oj1..n 〉

(oj1 = unique) && (ej 6= e′j--) ⇒ yj !e

oj1 = readonly ⇒ yj !w
P; E ` RootOwner(e′i[e/this][o1/f1]..[on/fn]) = r′i

r′i ∈ ls
P; E; ls ` e.mn(e1..k): t[e/this][o1/f1]..[on/fn]

[EXP STATIC INVOKE UNIQUE/READONLY]

P; E `static (t mn(tj yj
j∈1..k) requires(e′1..m)...)∈cn〈f1..n〉

P; E; ls ` ej : tj = cn′〈oj1..n 〉
(oj1 = unique) && (ej 6= e′j--) ⇒ yj !e

oj1 = readonly ⇒ yj !w
P; E ` RootOwner(ei) = ri

ri ∈ ls
P; E; ls ` cn.mn(e1..k): t

As mentioned in Chapter 3.3.3, arguments to method calls which are owner by the unique

owner must be treated with care. This is to prevent the accidental escape of a reference to

a unique object. The way that we ensure this is by checking that arguments in method

invocations that are owned by the unique owner are passed to the method safely. Safely

passing the argument means that either the argument is “dereferenced” with the e-- form,

or that the corresponding method parameter is annotated with the !e modifier. Recall that

the !e modifier requires that the method be checked to ensure that it will not escape that

parameter.

Similarly, readonly method arguments are checked to see that the corresponding method

parameters are annotated with the !w modifier signifying that the argument will not be

written to.

55

5.8 Type checking constructor calls

[EXP NEW]

P; E ` cn〈f1..n〉
P; E ` (cn(tj yj j∈1..k) requires (e′1..p)) ∈ cn〈f1..n〉

P; E; ls ` ej : tj [o1/f1]..[on/fn] = cn′〈oj1..n〉
oj1 6= this

(oj1 = unique) && (ej 6= e′j--) ⇒ yj !e
oj1 = readonly ⇒ yj !w

P; E ` RootOwner(e′i[o1/f1]..[on/fn]) = r′i r′i ∈ ls
P; E; ls ` new cn〈o1..n〉(e1..m) : cn〈o1..n〉

Type checking a constructor call is similar to checking a method invocation. First, the

rule checks to see that there is a well-typed constructor declared by the class in question.

Then the arguments are type-checked replacing the actual owner parameters supplied to the

constructor call. In this case, none of the argument types can declare that they are owned

by this as the this reference will not be valid until after the constructor executes. The rule

also checks to see that the proper locks are held on the expressions in the requires clause.

56

Chapter 6

Type Inference

To convert a pure Java program into race-free Java, the programmer must annotate the types

of fields and variables in the program with the correct owner parameters. In a large system,

this requires changing many files and understanding the implicit protection mechanisms that

are used in the original source.

In order to ease the burden of adding the extra type-annotations on the programmer, the

compiler supports local-variable type-inference. Programmers need only fully parameterize

the types that appear in method or constructor signatures as well as field declarations. From

that, it is possible to infer the parameterized types of local variables.

6.1 Inference

The inference algorithm first starts by assigning default owners to all unparameterized types.

For example, when the algorithm runs on the code in Figure 6-1, it generates the following

assignments:

57

00 class A<owner1, owner2>

01 {

02 Object<owner2> foo(Object<owner2> obj)

03 {

04 Object o = obj;

05 Vector v = new Vector();

06 v.addElement(o);

07 return v.remove(0);

08 }

09

10 void bar()

11 {

12 A a = new A();

13 o = a.foo();

14 }

15 }

00 class A<owner1, owner2>

01 {

02 Object<owner2> foo(Object<owner2> obj)

03 {

04 Object<owner2> o = obj;

05 Vector<?o2, owner2> v =

new Vector<?o2, owner2>();

06 v.addElement(o);

07 return v.remove(0);

08 }

09

10 void bar()

11 {

12 A<?o4, self> a = new A<?o4, self>();

13 o = a.foo();

14 }

15 }

Figure 6-1: Incompletely typed code before and after inference

04 Object<?o1> o = obj;

05 Vector<?o2, ?o3> v = new Vector<?o2, ?o3>();

11 A<?o4, ?o5> a = new A<?o4, ?o5>();

Each type is augmented with the number of default owners as its type declaration de-

clares. For example, in line 11, the class A defines two owner parameters, so the type of

the local variable a is assigned two fresh default owners, ?o4 and ?o5. The default owners

represent type-variables in the parameterized class types.

The next step is to collect all of the constraints between the default owner assignments.

For example, the assignment of local variable o to method parameter obj in line 4 adds the

constraint that ?o1 = owner2. The full set of constraints generated are:

04 ?o1 = owner2;

06 ?o3 = ?o1;

07 ?o3 = owner2;

13 ?o5 = self;

Once the constraints are collected, they are unified using the standard Union-find al-

gorithm in psuedo-linear time [14]. If there are conflicts in unifying constraints, then this

results in a type-error. This is because there is no possible assignment of owner parameters

that would make the conflicting expressions type check together.

58

While multiple conflicting constraints on the same default owner are not allowed, it is

permissible (and expected) that multiple consistent constraints may be found for a given

default owner. For example, in the above code, ?o3 is equal to ?o1 and to owner2. This is

allowed, because the constraint from line 4 is consistent with these constraints.

When there are not enough constraints to fully determine default owners, these default

owners are replaced with the thisThread special owner. This is because if there are no

constraints relating the default owner in question, then it is safe to assign it to be the

thread-local owner.

59

60

Chapter 7

Compiler Structure

The race-free Java compiler that we have implemented is structured as shown in Figure 7-1.

This chapter will give a high-level overview of each stage of the compilation process and how

it was implemented. The compiler is built using the Kopi Java compiler framework [13].

Parse & insert
default formal

parameters

//
Check and
Generate
Interfaces

// Type
Inference

-- Check
Class/Method

Bodies
mm

BC
GF
��

$OD interface
annotation

// $OD call site
annotation

// Bytecode generation

Figure 7-1: High-level compiler dataflow

61

7.1 Parser

The Kopi parser was modified to handle the new extended grammar which was presented

in Figure 3-2. This stage only enforces that source files conform the grammar and performs

no checks for semantic correctness. The parser stage is also responsible for inserting default

formal parameters for class declarations and method signatures that are missing parameters.

7.2 Check and Generate Interfaces

This stage of the compiler generates interfaces for class and interface definitions and for field

and method signatures. At this stage, interfaces of different modules are checked against one

another to make sure that they are semantically correct. For example, at this stage, class

definitions are verified to check that they correctly declare superclasses and interfaces with

the formal parameters. Method and field declarations are also checked against a variety of

semantic rules. In addition to performing standard Java checks such as checking overriding

and overloading, methods and fields are also checked to see that they make correct use of

the new parameterized types.

The interfaces exported by this stage of compilation contain a variety of “substitution

tables” which define what formal parameters were declared and how they should be sub-

stituted for in the code within the corresponding body. For example, consider the class

definition below.

class A<owner1, owner2> extends B<owner1, owner2, owner2>

implements C<owner1, owner2>, D<owner1, self>

{...}

62

class B<bo1, bo2, bo3> {...}

interface C<co1, co2> {...}

interface D<do1, do2> {...}

The class declaration interface exported for class A would define an exported interface

which would contain a tables to map superclass/interface contexts to substitutions: in the

context of superclass B, the actual parameter value of owner1 should be substituted for

the formal parameter bo1 and owner2 for bo2 and bo3. Similarly, in the contexts of the the

interfaces C and D, the exported interface defines substitutions for the appropriate parameter

values.

For method definitions, this stage of the compiler also determines which, if any, of the

formal parameters declared in the class-types of its arguments are method-level parameters.

This can only be done after the interface for the enclosing class definition is solidified. The

set of method-level formal parameters is reflected in the method’s exported interface because

there is further type-checking that must be conducted at each of the method’s call-sites.

7.3 Type Inference and Body Checking

After generating interfaces, the next stage in compilation is to infer the types of unannotated

local variables and to type-check all of the class and method bodies. The type-inference pro-

cess is by nature somewhat intermingled with the type-checking process. The basic process

is that when an unannotated type is encountered, it is assigned some fresh parameters. The

corresponding expression can then be used in the remainder of the type-checking process.

63

The problem is that given an expression, in order to retrieve the type of that expression

and discover that it is unannotated, you must first attempt to type-check it. The first pass of

the type-checker will yield the unannotated type but not perform any real semantic checking.

A second, later pass, will enforce the semantic rules once the proper type of the expression

has been inferred. For example, consider the following code using the TStack class given in

figure 3-4.

TNode<thisThread> myNode = new TNode<thisThread>();

TStack<thisThread> localTStack = new TStack<thisThread>();

TStack myStack = new TStack();

myStack.push(myNode);

...

localTStack = myStack;

The expression to be type-checked is the method call to push() on the myStack object. In

the first pass, myStack is not completely typed. Therefore, the only useful information that

is yielded in the first pass is that the myStack object has a type TStack<?x1, thisThread>.

It is not until later, when the assignment expression localTStack = myStack; is type-

checked that the local-inference constraints for myStack are solved and it is given its full

type of TStack<thisThread, thisThread>. Now, in the second pass, the compiler can

check all of the applicable semantic rules, such as verifying that the necessary locks are held,

which would not have been possible in the first pass.

64

7.4 Owner Descriptor Interface Transformation

During this stage, the compiler modifies all of the class and method interfaces that must

be updated to support owner-passing as described in Section 4.3 and in Figure 4-5. For

classes that declare formal parameters which must be passed in at runtime, an additional

instance field $ ods of type $OD[] is inserted into the class definition. Furthermore, all

constructors must be modified to add an additional $OD[] parameter and code to store the

array parameter into the corresponding field.

Similarly methods which define method-level formal parameters must have an additional

$OD[] parameter. Additional code to store this parameter is not necessary for method-level

parameters because the owner descriptors only need to stay in scope for the extent of the

method body.

7.5 Owner Descriptor Body Transformation

After the class and method interfaces have been modified to incorporate owner descriptors,

there are several transformations that must be made to the body code. First of all, method

and constructor call sites that are bound to methods or constructors that have had their

signatures altered must also be modified to pass the new $OD[] parameter. The parameter

to be passed is synthesized at call-site based on the source parameterizations. For example,

suppose that we have the following constructor call to class A which requires owner passing:

new A<owner1, owner2, self>();

Statically, it is known where parameters owner1 and owner2 are declared. Suppose

65

that owner1 is the first class-level formal parameter and owner2 is the second method-

level parameter. The owner descriptor array to be passed into the A constructor call then

consists of three expressions, one for each of the parameters. The first expression would

be this.$ ods[0] to reference the first class-level formal parameter. The next expression

would be ods[1] where ods corresponds to the method-level parameter in the call-site’s

scope. The last expression for the self parameter is a static field reference into the $OD

class.

The intermediate representation (IR) is modified to insert a new expression which corre-

sponds to the new array. The contents of the array are statically bound to either references

into the current object’s $ ods field (if it has one), the current method’s $OD[] parameter

(if it has one), or one of the singleton $OD objects for special owners. The compile-time type

of the expression being transformed determines which $OD expressions comprise the owner

descriptor array expression.

Dynamic downcast and instanceof expressions also undergo a transformation at this

stage. The expressions are modified to not only check that the Java-type specified in the

expression is a supertype of the runtime Java-type of the object, but also that the runtime

owner descriptors match the owner parameters in the static parameterized type.

66

Chapter 8

Experience

We used the compiler for the extended language to type check existing Java benchmarks

which we translated into PRFJ. We also ported several single and multi-threaded Java

benchmarks into our race-free extension.

In implementing these various benchmarks, we found that the PRFJ language extension

is expressive enough to accommodate the commonly used protection mechanisms. Various

language features such as type-inference, parameterized methods, and specification files sig-

nificantly ease the burden on the programmer by reducing the number type annotations,

allowing polymorphic methods, and allowing separate compilation. Table 8.1 shows the

programming overhead in converting several of the benchmarks.

The tsp and elevator benchmarks were taken from benchmarks described in [18]. The

mst, bh, bisort, power, em3d, and voroni programs were taken from the Java version of

the Olden benchmarks.

We found that many of the necessary modifications could be categorized into several types

67

Benchmark Description LOC Lines Changed
tsp “Traveling salesman problem” solver 826 32
elevator Elevator simulator 569 35
chat Chat client/server program 542 53
mst “Minimum Spanning Tree” solver 401 19
bh Barnes-Hut benchmark 1301 103
bisort Bitonic Sort benchmark 381 21
power Parallel power pricing prog. 775 36
em3d Emulation of 3d electromagnetic waves 454 27
voroni Computes Voroni diagram for set of points 1003 73

Table 8.1: Programming Overhead

of changes. Because our inference algorithm only guarantees discovery of local variables, field

declarations of reference (and array) types must still be fully parameterized. Also, reference

and array types that appear in method signatures need to be fully specified.

Another major source of changes to the original Java source code is to handle static

fields. Recall that because static variables can be referenced globally in the Java namespace,

they must be locked on every access. In many cases, the static fields in question are merely

there to act as a global constant-holder. In such cases, read only type-safe enumerations [16]

could be used along with the final keyword to eliminate much of the unnecessary locking

and code changes that results from using static members. In fact, in the bh benchmark, 36

of lines of code that needed to be changed were to synchronize on static fields.

Our experience shows that there is still an overhead in instrumenting existing Java code.

The type system was designed to make the programmer’s synchronization discipline explicit

and enforcable. This makes it easy for programmers to write new race-free code because

the only overhead that they incur is formalizing the locking discipline. On the other hand

in order to, translate Java code into PRFJ, the programmer must first infer what locking

discipline was used in the original code, and then formalize it. It is not always straightforward

68

to discover the locking conventions because the issues are so subtle (this is the same reason

that data-races are a problem to begin with.)

One example of the subtlety in determining these conventions is read only objects. In

some cases, such as in the elevator benchmark, access to certain data structures are unsyn-

chronized because the original programmer wrote the data-structure code to be immutable.

In order to correctly translate this code into PRFJ, we must first examine the code for the

data-structure to determine that it is in fact immutable before we can translate it.

We measured a negligible runtime performance slowdown with the benchmarks that we

ran. Most of the code did not make much use of polymorphism and so the extent of the

additions to the code to propagate runtime types was simply a matter of passing an extra

parameter in places and an extra constructor call (to create the owner descriptors) in others.

The similar type-passing work in supporting generic types for Java [12] showed a minimal

load-time performance hit by statically assigning the type descriptors to constructor call-

sites and creating all possible type descriptors used in a class. Because the descriptors in

the generics work represent types themselves (as opposed to owner expressions), they are

able to reuse many of the descriptors. For example, each instantiation of Vector<String>

would use the same String type descriptor which would be created once in the static class

initializer. However, in our system, this load-time optimization would not work as well

because the values being passed at runtime represent Objects, not types. Without being

able to achieve the same reuse, this approach would suffer a large startup overhead from

creating unnecessary descriptors.

Although the runtime cost of type-passing is low, it is possible to further improve upon

69

this. Up until this point, programs in our system benefit from separate compilation. That is,

it is possible to compile modules of a program separately in the presence of the appropriate

interface declarations. With a whole program analysis, we could easily determine whether

or not a particular type will be the subject of a runtime type operation, and consequently,

whether type-passing is necessary.

70

Chapter 9

Related Work

There has been much research work in detecting and/or preventing data races in programs.

Several approaches such as the Extended Static Checker for Java (ESC/Java) and War-

lock use programmer annotations to statically detect potential race conditions. While these

tools are useful, they are not sound approaches. Particularly, they cannot certify that a

program is free of race conditions and may report races that are not truly data races.

There have also been several dynamic approaches to data-race detection. The Eraser [10]

system is the most notable of these approaches. Eraser used binary rewriting to examine code

on the fly and to detect breakdowns in protection mechanisms. Running a multi-threaded

program with Eraser entails a runtime overhead. Furthermore, Eraser is known to report

both false positive and false negative results.

A newer dynamic approach to detecting data-races from IBM Research [15] boasts huge

runtime savings as a result of aggressive dynamic and static optimizations. More importantly,

their system guarantees that every possible race condition that is encountered is reported.

71

This is an important result, because this means that the exact timing behavior does not

need to occur in order for it to be detected.

There has been some recent work in static type systems for multi-threaded OO programs.

The most similar work is Race Free Java. In Race Free Java [6], types are annotated with

parameters which specify locks that are used to guard data members. Like our system,

these parameterizations can be used to specify that a single lock should guard an entire

data structure. The Race Free Java system also supports thread-local classes, but does not

support unique or read-only objects. With Race Free Java, programmers are able to specify

a finer granularity of locking policy than in our system.

However, Race Free Java does not allow the programmer to write code independently

of the protection mechanism that is to be used to guard it. In our system, the program-

mer can write generic code for a data structure once, and specify at object-creation time

what protection mechanism should be used on a per-object basis. So, for example, different

Queue objects that are thread-local, self-synchronized, part of a larger data-structure, con-

tain thread-local elements, contain self-synchronized elements, etc. can all be instantiated

from the same implementation.

Another static approach to preventing data races is the Guava [3] type system. In

the Guava approach, the type-system consists of three orthogonal hierarchies, Monitors,

Objects, and Values. Monitors are instances that are shared between threads and must be

synchronized on similar to the root objects of ownership trees in our system. Objects in

Guava are similar to thread-local objects or field objects owned by the containing object in

our system. Values are similar to unique objects in our system. The main difference between

72

our system and Guava is that like Race Free Java, Guava does not allow the programmer to

write generic object code and defer specifying the protection mechanism until object-creation.

9.1 Extensions

We recently extended our race-free Java system to also statically prevent deadlocks. This

section will give a brief overview of the deadlock preventing extension. The full detail of this

extension is beyond the scope of this thesis but can be found in [2].

A deadlock is a condition in a multi-threaded programs when two or more threads in

the program “halt” because they are each waiting to acquire locks which the other threads

hold. The canonical example of this is the dining philosopher’s problem. In this problem,

a group of philosophers are seated at a circular table with one chopstick between them all.

The premise is that a philosopher can pick up one chopstick at a time but requires both

chopsticks in order to eat a bite. After taking a bite, he then returns both chopsticks to

where he found them.

The classic problem is that if each philosopher reaches to his right and picks up a chop-

stick, then reaches to his left, the entire meal will halt, because each philosopher will find

themselves with one chopstick trying to find another. The analogy is directly applicable to

concurrent programs in which multiple locks are acquired to process some transaction and

then released.

The solution to the dining problem is to number the chopsticks and instruct each dinner

attendee to pick up the chopsticks in descending order. Similarly, the deadlock extension

requires that there be an ordering among locks and that the order in which locks are acquired

73

is enforced.

In the extension, programmers specify a partial ordering relationship between locks. Once

there is an ordering relationship between various locks, the type-checker statically verifies

that these locks are only acquired in decreasing order of strength. More specifically, in order

to acquire a lock, the new lock must be strictly weaker than all of the locks currently held.

The reason that the type-system only requires a partial order and not a total order is that

only locks that will simultaneously be held need to have an ordering because they will not

cause a deadlock.

In order to type-check method calls, each method must declare in its signature a list of

locks that the method could potentially acquire. From the call-site, the type-checker verifies

that the weakest locks in the lockset are stronger than the least upper bound of the list

of locks that is declared to be locked by the method. What this ensures is that no matter

what lock is acquired in the new method, it will be weaker than any lock that is held at the

call-site.

74

Chapter 10

Conclusion

Reliable thread-safe concurrent programming has always been difficult to achieve. Multi-

threaded programs are difficult enough for humans to reason about, much less program

consistently. The type-system behind Parameterized Race-Free Java offers a sound and ex-

pressive way to develop safe multi-threaded programs. By formalizing the implicit protection

mechanisms that programmers have in mind while writing concurrent code, we are able to

use the type-checker to catch these programmer errors before they become bugs, as well as

allow better documentation of locking disciplines.

By implementing the type-system and compiler, we were able to demonstrate that con-

verting programs from Java into the extended language is a tractable and manageable task.

Furthermore, with the assistance of type-inference, the overhead in writing programs in this

language is further lessened. This language extension gives programmers a powerful tool to

prevent race-conditions and is expressive enough to allow the programmer to write generic

code independently of locking discipline while still producing sound, data-race free code.

75

76

Appendix A

Formal Type Rules

` P : t

[PROG]

ClassOnce(P) WFClasses(P) FieldsOnce(P)
MethodsOncePerClass(P) OverridesOK(P)

P = defn1..n local1..l e
P ` defni P; local1..l; thisThread ` e : t

` P : t

P ` defn

[CLASS]

if (f1 6= self | thisThread) then g1 = ownerformal f1

∀i=2..n gi = ownerformal fi E = g1..n, final cn〈f1..n〉 this
P;E ` c P;E ` fieldi P;E ` methi

P ` class cn〈f1..n〉 extends c { field1..j meth1..k }

P ;E `owner o

[OWNER THISTHREAD]

P; E ` wf
P; E `owner thisThread

[OWNER OTHERTHREAD]

P; E ` wf
P; E `owner otherThread

[OWNER SELF]

P; E ` wf
P; E `owner self

[OWNER UNIQUE]

P; E ` wf
P; E `owner unique

[OWNER READONLY]

P; E ` wf
P; E `owner readonly

[OWNER FINAL]

P; E `final e : t
P; E `owner e

[OWNER FORMAL]

P; E ` wf
E = E1, ownerformal f, E2

P;E `owner f

P ;E `final e

[FINAL VAR]

P; E ` wf
E = E1, final t x, E2

P; E `final x : t

[FINAL REF]

P; E ` (final t fd) ∈ cn〈f1..n〉
P; E `final e : cn〈o1..n〉

P; E `final e.fd : t[o1/f1]..[on/fn]

[FINAL THIS]

P; E ` this : cn〈o1..n〉
P; E `final this : cn〈o1..n〉

[FINAL CLASS OBJECT]

P; E ` cn〈f1..n〉
P; E `final cn.class : java.lang.Class

P ;E `static e

[STATIC REF]

P; E ` cn0〈o1..n〉 P; E ` cn1〈f1..n〉
P; E ` (static cn0〈o1..n〉 fd) ∈ cn1〈f1..m〉

(o1..n ∩ f1..m) − (self + thisThread + readonly + unique) = ∅
P; E `static cn1.fd : cn0〈o1..n〉

77

P ;E ` wf

[ENV ∅]

P; ∅ ` wf

[ENV OWNER]

P; E ` wf f /∈ Dom(E)
P; E, ownerformal f ` wf

[ENV X]

P; E ` t x /∈ Dom(E)
P; E, [final]opt t x ` wf

P ;E ` t

[TYPE INT]

P; E ` wf
P; E ` int

[TYPE OBJECT]

P;E `owner o
P; E ` Object〈o〉

[TYPE SELF-SYNCHRONIZED CLASS]

P ` class cn〈self f2..n〉 ...
P;E `owner o2..n

P;E ` cn〈self o2..n〉

[TYPE READONLY CLASS]

P ` class cn〈readonly f2..n〉 ...
P;E `owner o2..n

P;E ` cn〈readonly o2..n〉

[TYPE THREAD-LOCAL CLASS]

P ` class cn〈thisThread f2..n〉 ...
P;E `owner o2..n

P;E ` cn〈thisThread o2..n〉

[TYPE C]

f1 6= self | thisThread
P ` class cn〈f1..n〉 ...

P;E `owner o1..n

P;E ` cn〈o1..n〉

P ;E ` t1 v t2

[SUBTYPE REFL]

P; E ` t
P; E ` t v t

[SUBTYPE TRANS]

P; E ` t1 v t2 P; E ` t2 v t3
P; E ` t1 v t3

[SUBTYPE CLASS]

P;E ` cn1〈o1..n〉
P ` class cn1〈f1..n〉 extends cn2〈f1 o∗〉 ...

P; E ` cn1〈o1..n〉 v cn2〈f1 o∗〉 [o1/f1]..[on/fn]

P ;E ` field

[FIELD INIT]

P; E; thisThread ` e : t
P; E ` [final]opt t fd = e

P ;E ` field ∈ c

[FIELD DECLARED]

P ` class cn〈f1..n〉... { ... field ... }
P; E ` field ∈ cn〈f1..n〉

[FIELD INHERITED]

P ` class cn〈f1..n〉... { ... field ... }
P ` class cn’〈g1..m〉 extends cn〈o1..n〉...
P; E ` field[o1/f1]..[on/fn] ∈ cn’〈g1..m〉

P ;E ` method

[METHOD]

gi = final argi P; E, g1..n `final ei : ti
P; E, g1..n ` RootOwner(ei) = ri

P; E, g1..n, local1..l; thisThread, r1..m ` e : t
P; E ` t mn(arg1..n) requires (e1..m){local1..l e}

[STATIC METHOD]

gi = final argi P; E, g1..n `final ei : ti
P; E, g1..n ` RootOwner(ei) = ri

P; E, g1..n, local1..l; thisThread, r1..m ` e : t
∀ei : ei 6= this

P; E `static t mn(arg1..n) requires (e1..m){local1..l e}

P ;E ` constructor

[CONSTRUCTOR]

gi = final argi P; E, g1..n `final ei : ti
P; E, g1..n ` RootOwner(ei) = ri

P; E, g1..n, local1..l; thisThread, r1..m, RO(this) ` e : t
P; E ` cn(arg1..n) requires (e1..m){local1..l e}

P ;E ` meth ∈ c

[METHOD DECLARED]

P ` class cn〈f1..n〉... { ... meth ... }
P; E ` meth ∈ cn〈f1..n〉

[METHOD INHERITED]

P ` class cn〈f1..n〉... { ... meth ... }
P ` class cn’〈g1..m〉 extends cn〈o1..n〉...

P; E ` meth[o1/f1]..[on/fn] ∈ cn’〈g1..m〉

P ;E ` RootOwner(e) = r

[ROOTOWNER THISTHREAD]

P; E ` e : cn〈thisThread o∗〉 | Object〈thisThread〉
P; E ` RootOwner(e) = thisThread

[ROOTOWNER OTHERTHREAD]

P; E ` e : cn〈otherThread o∗〉 | Object〈otherThread〉
P; E ` RootOwner(e) = otherThread

78

[ROOTOWNER SELF]

P; E ` e : cn〈self o∗〉 | Object〈self〉
P; E ` RootOwner(e) = e

[ROOTOWNER UNIQUE/READONLY]

P; E ` e : Object〈unique〉 | Object〈readonly〉
P; E ` RootOwner(e) = ∅

[ROOTOWNER FINAL TRANSITIVE]

P; E ` e : cn〈o1..n〉 | Object〈o1〉
P; E `final o1 : c1

P; E ` RootOwner(o1) = r
P; E ` RootOwner(e) = r

[ROOTOWNER FORMAL]

P; E ` e : cn〈o1..n〉 | Object〈o1〉
E = E1, ownerformal o1, E2

P; E ` RootOwner(e) = RO(e)

P ;E ` e : t

[EXP TYPE]

∃ls P; E; ls ` e : t
P; E ` e : t

P ;E; ls ` e : t

[EXP SUB]

P; E; ls ` e : t′ P; E; ls ` t′ v t
P; E; ls ` e : t

[EXP NEW]

P; E ` cn〈f1..n〉
P; E ` (cn(tj yj

j∈1..k) requires (e′1..p)) ∈ cn〈f1..n〉
P; E; ls ` ej : tj [o1/f1]..[on/fn] = cn′〈oj1..n 〉

oj1 6= this
(oj1 = unique) && (ej 6= e′j--) ⇒ yj !e

oj1 = readonly ⇒ yj !w
P; E ` RootOwner(e′i[o1/f1]..[on/fn]) = r′i r′i ∈ ls

P; E; ls ` new cn〈o1..n〉(e1..m) : cn〈o1..n〉

[EXP SEQ]

P; E; ls ` e1 : t1 P; E; ls ` e2 : t2
P; E; ls ` e1; e2 : t2

[EXP VAR]

P; E ` wf E = E1, [final]opt t x, E2

P; E; ls ` x : t

[EXP VAR INIT]

P; E; ls ` e : t
P; E; ls ` [final]opt t x = e

[EXP VAR ASSIGN]

E = E1, t x, E2 P; E; ls ` e : t
P; E; ls ` t = cn〈o1..n〉
o1 6= unique, readonly

P; E; ls ` x = e : t

[EXP UNIQUE VAR ASSIGN]

E = E1, t x, E2 P; E; ls ` e : t
P; E; ls ` t = cn〈o1..n〉 o1 = unique

P; E; ls ` x = e--: t

[EXP SYNC]

P; E `final e1 : t1
P; E; ls, e1 ` e2 : t2

P; E; ls ` synchronized e1 { e2 } : t2

[EXP FORK]

P; E; ls ` e : cn〈o1..n〉
P; E; ls ` cn〈o1..n〉 v java.lang.Thread

P; g[otherThread/thisThread]; thisThread ` (void run() requires(this) . . .)∈cn〈f1..n〉
P; E; ls ` e.start():void

[EXP INVOKE]

P; E; ls ` e : cn〈o1..n〉
P; E ` (t mn(tj yj

j∈1..k) requires(e′1..m)...)∈cn〈f1..n〉
P; E; ls ` ej : tj [e/this][o1/f1]..[on/fn] = cn′〈oj1..n 〉

oj1 6= unique, readonly
P; E ` RootOwner(e′i[e/this][o1/f1]..[on/fn]) = r′i

r′i ∈ ls
P; E; ls ` e.mn(e1..k): t[e/this][o1/f1]..[on/fn]

[EXP STATIC INVOKE]

P; E `static (t mn(tj yj
j∈1..k) requires(e′1..m)...)∈cn〈f1..n〉

P; E; ls ` ej : tj = cn′〈oj1..n 〉
oj1 6= unique, readonly

P; E ` RootOwner(ei) = ri
ri ∈ ls

P; E; ls ` cn.mn(e1..k): t

[EXP INVOKE UNIQUE/READONLY]

P; E; ls ` e : cn〈o1..n〉
P; E ` (t mn(tj yj

j∈1..k) requires(e′1..m)...)∈cn〈f1..n〉
P; E; ls ` ej : tj [e/this][o1/f1]..[on/fn] = cn′〈oj1..n 〉

(oj1 = unique) && (ej 6= e′j--) ⇒ yj !e

oj1 = readonly ⇒ yj !w
P; E ` RootOwner(e′i[e/this][o1/f1]..[on/fn]) = r′i

r′i ∈ ls
P; E; ls ` e.mn(e1..k): t[e/this][o1/f1]..[on/fn]

[EXP STATIC INVOKE UNIQUE/READONLY]

P; E `static (t mn(tj yj
j∈1..k) requires(e′1..m)...)∈cn〈f1..n〉

P; E; ls ` ej : tj = cn′〈oj1..n 〉
(oj1 = unique) && (ej 6= e′j--) ⇒ yj !e

oj1 = readonly ⇒ yj !w
P; E ` RootOwner(ei) = ri

ri ∈ ls
P; E; ls ` cn.mn(e1..k): t

79

[EXP REF]

P; E; ls ` e : cn〈o1..n〉
P; E ` ([final]opt t fd) ∈ cn〈f1..n〉
P; E ` RootOwner(e) = r r ∈ ls

P; E; ls ` e.fd : t[e/this][o1/f1]..[on/fn]

[EXP STATIC REF]

P; E ` cn〈f1..n〉
P; E ` (static t fd) ∈ cn〈f ′1..m〉

P; E ` cn.class ∈ ls
P; E; ls ` cn.fd : t

[EXP ASSIGN]

P; E; ls ` e : cn〈o1..n〉
P; E ` (t fd) ∈ cn〈f1..n〉

P; E ` RootOwner(e) = r r ∈ ls
P; E; ls ` e′ : t[e/this][o1/f1]..[on/fn]

P; E; ls ` t = cn’〈o′1..n〉 o′1 6= unique, readonly
P; E; ls ` e.fd = e′ : t[e/this][o1/f1]..[on/fn]

[EXP UNIQUE ASSIGN]

P; E; ls ` e : cn〈o1..n〉
P; E ` (t fd) ∈ cn〈f1..n〉

P; E ` RootOwner(e) = r r ∈ ls
P; E; ls ` e′ : t[e/this][o1/f1]..[on/fn]

P; E; ls ` t = cn’〈o′1..n〉 o′1 = unique
P; E; ls ` e.fd = e′-- : t[e/this][o1/f1]..[on/fn]

80

Bibliography

[1] C. Boyapati, M. Rinard A Parameterized Type System for Race-Free Java Programs
Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA)
2001

[2] C. Boyapati, R. Lee, M. Rinard A Type System for Preventing Data Races and Dead-
locks in Java Programs Object-Oriented Programming, Systems, Languages, and Ap-
plications (OOPSLA) 2002

[3] D.F. Bacon, R.E. Strom, and A. Tarafdar. Guava: A dialect of Java without data
races. Object-Oriented Programming, Systems, Languages, and Applications (OOP-
SLA) 2000

[4] C. Flanagan and M. Abadi. Types for safe locking. In European Symposium on Pro-
gramming (ESOP), March 1999

[5] C. Flanagan and M. Abadi. Object types against races. In Conference on Concurrent
Theory (CONCUR), August 1999

[6] C. Flanagan and S.N. Freund. Type-based race-detection for Java. In Programming
Language Design and Implementation (PLDI), June 2000

[7] J. Aldrich, C. Chambers, E.G. Sirer, S. Eggers Static Analyses for Eliminating Unnec-
essary Synchronization from Java Programs

[8] R. Netzer, B. Miller What are Race Conditions? Some issues and Formalizations ACM
Letters on Programming Languages and Systems, Vol. 1, No. 1, March 1992

[9] J. Gosling, B. Joy, G. Steele The Java Language Specification Addison-Wesley, 1996

[10] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, T. Anderson Eraser: A dynamic data
race detector for multi-threaded programs Symposium on Operating Systems Principles
(SOSP), October 1997

[11] G. Bracha, M. Odersky, D. Stoutamire, P. Wadler GJ: Extending the Java programming
language with type parameters, 1998

[12] M. Viroli, A. Natali. Parametric Polymorphism in Java: an approach to translation
based on reflective features. In Conference on Object-Oriented Programming, Systems,
Languages and Applications (OOPSLA) 2000.

81

[13] The Kopi Project Available online at http://dms.at/kopi/

[14] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. The MIT
Press, 1991.

[15] JD. Choi, K. Lee, A. Loginov, R. O’Callahan, V. Sarkar, M. Sridharan. Efficient and
Precise Datarace Detection for Multithreaded Object-Oriented Programs Programming
Language Design and Implementation (PLDI) 2002

[16] J. Bloch. Effective Java Programming Language Guide. Addison-Wesley, 2001

[17] M. Flatt, S. Krishnamurthi, M. Felleisen. Classes and mixins. In Principles of Pro-
gramming Languages (POPL), January 1998

[18] C.v. Praun, T. Gross. Object Race Detection. In Object-Oriented Programming, Sys-
tems, Languages, and Applications (OOPSLA) 2001.

82

