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Abstract

Ceteris paribus preference statements concisely represent preferences over outcomes
or goals in a way natural to human thinking. Many decision making methods require
an efficient method for comparing the desirability of two arbitrary goals. We address
this need by presenting an algorithm for converting a set of qualitative ceteris paribus
preferences into a quantitative utility function. Our algorithm is complete for a finite
universe of binary features. Constructing the utility function can, in the worst case,
take time exponential in the number of features. Common forms of independence
conditions reduce the computational burden. We present heuristics using utility in-
dependence and constraint based search to achieve efficient utility functions.
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Chapter 1

Introduction

1.1 Motivation

Decision theory studies how to make good decisions. Choosing carefully among pos-
sible actions is most valuable in a situation where there are many possible actions,
and only one or a limited number of them can be executed. Initially decision the-
ory was used to help human beings make a difficult and important decision. This
application involves a “decision expert” interviewing a decision maker, and making
careful study of their desires toward outcomes and attitudes toward risk. See [KR76]
for an excellent discussion of this application and process. More recent applications
of decision theory involve programming computer, software, or robot agents to make
rational decisions based upon their given desires, goals, intentions, beliefs, etc. (for
example, see [BRST00],[BDH+01].

1.1.1 Investigating Alternative Decision Theories

Decision theory analyzes actions by their outcomes. A common formulation of de-
cision theory models these outcomes as being describable by some type of primi-
tive properties. These properties allow us to make statements describing “possible
worlds.” According to this model of outcomes, the possible worlds must vary in pre-
dictable ways, along dimensions definable a priori, such as the amount of money
a person has, the address of their home, the color of their suit, or the presence or
absence of a hospitalization-requiring illness. In addition, the relationship between
actions and the variables of outcomes must be known, at least probabilistically. For
example, an action “put on left shoe” leads to the world with the left shoe on, but
may have a small chance of altering other aspects of that world, such as causing an
injury leading to hospitalization.

Such a system allows a decision maker to reason about which actions lead to
which possible worlds. If we know which of the possible worlds is most desirable or
advantageous, we can choose actions according to which leads to the best outcome
or world. We use a preorder to rank outcomes of possible actions based on their
desirability. This is formalized this as a complete preorder, a reflexive and transitive
relation, over all possible outcomes. There can be many different rankings of the
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desirability of the same set of outcomes. Different decision makers may well rank
outcomes differently, according to their individual human tastes and preferences.

Outcomes can be assigned numeric utilities. We use “utility” to refer to a nu-
meric measure of the desirability of a particular outcome, such that if m1,m2 are
two outcomes, and u(m1) is the utility of the outcome, then if m1 is preferred to
m2 then u(m1) > u(m2). A utility for each outcome can be elicited from human
decision makers via methods described in [KR76]. Then probabilities of every out-
come occurring as a result of every event can be assessed, and the decision maker can
then choose the action with the highest “expected utility.” The expected utility of a
decision is the sum of the utilities of each possible outcome times the probability of
the outcome, or

∑n
i=1 piu(mi). Note that the terms “utility” and “expected utility”

are sometimes used with different meanings in the literature. We do not consider
probabilistic actions in this thesis, and therefore we do not deal with expected utility.

Such models have been successfully applied in several domains, in particular Bayes
Nets [Pea88] are widely used. However, such a treatment of utility is not without
its problems. Chief among these problems is that it can be difficult or impossible
to ascertain all the required preferences and probabilities. Decomposing outcomes
into constituent properties and expressing preferences and utility function over the
properties of outcomes can reduce this burden.

Decision theory formalisms that decompose outcomes into their component quali-
ties or features, and then reason about these features are called “Qualitative Decision
Theories” [DT99]. While there are several different languages and logics of qualitative
preference rankings [DSW91][MS99][BG96] (discussed in more detail later), they all
simply try to state which possible outcomes are preferred to which other outcomes
(in reference to the total preorder over the outcomes). For many domains, qualitative
rankings are more natural and appropriate than quantitative rankings [WD91]. For
example, when outcomes differ by qualitative attributes, when chocolate is preferred
to vanilla; or when quantitative scales are unimportant, when fast is better than slow,
but exact speeds are not important or entirely controllable. Note that the tradeoffs
between qualitative attributes can be quantitative: chocolate could be five times as
desirable as vanilla. Conversely, quantitative comparisons are useful when outcomes
differ in respect to some easily measurable quantity, such as the utility of money
being proportional to the log of the amount of money. Of course, quantitative com-
parisons also naturally lend themselves to computation. Qualitative representations
lend themselves to logical reasoning, graph algorithms, and sometimes no algorithm
of less than exponential complexity.

1.1.2 Ceteris Paribus Preferences

Doyle and Wellman [WD91] have observed that qualitative representations of pref-
erences are a succinct and reasonable approximation of at least one type of common
human preferences. Doyle, Shoham, and Wellman [DSW91] present a theoretical
formulation of human preferences of generalization in terms of ceteris paribus pref-
erences, i.e., all-else-equal preferences. Ceteris paribus relations express a preference
over sets of possible worlds. We consider all possible worlds (or outcomes) to be

12



Tutor p q r
Feature
Graduated false false true
A in Software Engineering true false false
A in Computer Systems true true false
Cambridge resident true true true
Will work Tuesdays false false true

...
...

...
...

Table 1.1: Properties of possible computer science tutors

describable by some (large) set of binary features F . Then each ceteris paribus rule
specifies some features of outcomes, and a preference over them, while ignoring the re-
maining features. The specified features are instantiated to either true or false, while
the ignored features are “fixed,” or held constant. A ceteris paribus rule might be “we
prefer programming tutors receiving an A in Software Engineering to tutors not re-
ceiving an A, other things being equal.” In this example, we can imagine a universe of
computer science tutors, each describable by some set of binary features F . Perhaps
F = {Graduated, SoftwareEngineering A, ComputerSystems A, Cambridge resident,
Willing to work on Tuesdays, . . .}. The preferences expressed above state that, for
a particular computer science tutor, they are more desirable if they received an A
in the Software Engineering course, all other features being equal. Specifically, this
makes the statement that a tutor p, of the form shown in table 1.1, is preferred to
another tutor q, also in table 1.1, assuming the elided features are identical. The
ceteris paribus preference makes no statement about the relationship between tutor p
and tutor r because they differ with regard to other features. With persons p and q,
they differ only on the feature we have expresses a preference over (grade in Software
Engineering), and all other features are equal. Concerning tutors p and r however,
the ceteris paribus statement asserts no preference, because all else is not equal (they
differ on Graduation Status, Computer Systems grade, and willingness to work on
Tuesdays).

1.1.3 Thesis Goal

Other researchers have developed logics of preference representation [DW94, MS99,
BG96]. Each of these representations has its strengths and weaknesses. An essential
dimension of analysis of these representations is the reasoning methods or computa-
tional methods the representation facilitates. Some of the representations do not yet
have explicit reasoning or computational methods, the work in this thesis will provide
an algorithm for reasoning in the preference representation of Doyle, Shoham, and
Wellman [DSW91, DW94].

Once we have any representation of specific preferences over possible outcomes,
this restricts the number of possible preorders consistent with the stated preferences.

13



In decision theory, we must decide which outcome is most desirable, or which of some
set of easily achievable outcomes is most desirable. Determining which of two out-
comes is more preferred is generally termed a “preference query.” A query is a search
for a justification among the given preferences over outcomes, and the characteristics
of this search are dependent on the characteristics of the computational structures
defined. Numerical utility functions offer the possibility of doing comparisons with
numerical calculations, rather than reasoning directly with the preferences. For ex-
ample, to decide a preference query, we can just compute the utility of two outcomes
and compare them to decide which outcome is most preferred. With qualitative rep-
resentations of utility, we must first perform substantial translations to be able to
answer queries.

We now give a formal account of the ceteris paribus formulation we will use, then
a statement of the thesis task using that formalism.

1.2 A Formal “All Else Equal” Logic

We employ a restricted logical language L, patterned after [DSW91] but using only
the standard logical operators ¬ (negation) and ∧ (conjunction) to construct finite
sentences over a set of atoms A.1 Each atom a ∈ A corresponds to a feature f ∈
F , a space of binary features describing possible worlds. We write f(a) for the
feature corresponding to atom a. By literals(A) we denote the atoms of A and their
negations; literals(A) = A∪ {¬a | a ∈ A}. A complete consistent set of literals m is
a model. That is, m is a model iff exactly one of a and ¬a are in m, for all a ∈ A.
We useM for the set of all models of L.

A model of L assigns truth values to all atoms of L, and therefore to all formula
in L and all features in F . We write fi(m) for the truth value assigned to feature fi

by model m. A model satisfies a sentence p of L if the truth values m assigns to the
atoms of p make p true. We write m |= p when m satisfies p. We define a proposition
expressed by a sentence p, by [p] = {m ∈M | m |= p}.

A preference order is a complete preorder (reflexive and transitive relation) % over
M. When m % m′, we say that m is weakly preferred to m′. If m % m′ and m′ 6% m,
we write m � m′ and say that m is strictly preferred to m′. If m % m′ and m′ % m,
then we say m is indifferent to m′, written m ∼ m′.

The support of a sentence p is the minimal set of atoms determining the truth of
p, denoted s(p). The support of p is the same as the set of atoms appearing in an
irredundant sum-of-products sentence logically equivalent to p. Two models m and
m′ are equivalent modulo p if they are the same outside the support of p. Formally,
m ≡ m′ mod p iff

m\(literals(s(p))) = m′\(literals(s(p)))

Model modification is defined as follows. A set of model modifications of m making p
true, written m[p], are those models satisfying p which assign the same truth values

1We disallow the operators ∨,→,↔ in L. Logical sentences using disjunction, implication, and
equivalence can be translated into (possibly larger) equivalent logical sentences in L.
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to atoms outside the support of p as m does. That is,

m[p] = {m′ ∈ [p] | m ≡ m′ mod p}.

A statement of desire is an expression of ceteris paribus preferences. Desires are
defined in terms of model modification. We write p D q when p is desired at least
as much as q. Formally, we interpret this as p D q if and only if for all m in M,
m′ ∈ m[p∧¬q] and m′′ ∈ m[¬p∧q], we have m′ % m′′. This is just a statement that p
is desired over q exactly when any model making p true and q false is weakly preferred
to any model making p false and q true, whenever the two models assign the same
truth values to all atoms not in the support of p or of q. If p is weakly preferred to q
and there is some pair of models m,m′, where m makes p true and q false, m′ makes
p false and q true, m, m′ assign the same truth values to atoms outside the support
of p and q, and m is strictly preferred to m′, we instead have a strict preference for
p over q, written p B q. That is p is strictly preferred ceteris paribus over q holds if,

∀m ∈M,
∀(m′,m′′),m′ ∈ m[p ∧ ¬q] ∧m′′ ∈ m[¬p ∧ q]→ m′ % m′′,
∃(m′,m′′),m′ ∈ m[p ∧ ¬q] ∧m′′ ∈ m[¬p ∧ q]→ m′ � m′′.

(1.1)

1.2.1 Preference Specification

Ceteris paribus preferences are specified by a set of preference rules using the language
L. A preference rule is any statement of the form p D q or p B q, where p and q are
statements in L.

If a preference rule c implies that m′ � m′′, for m′,m′′ ∈ M, then we write
m′ �c m′′. A set of preferences rules C is said to be consistent just in case for all
m′,m′′ ∈ M, it is not the case that m′ is strictly preferred to m′′ and m′′ is strictly
preferred to m′.

Given a set C of ceteris paribus preference rules, let [C] be the set of all weak pref-
erence orders over models such that the weak preference order satisfies the preference
specification C.

Conditional Ceteris Paribus Preferences

Conditional ceteris paribus preferences can be represented as well. A conditional
ceteris paribus preference is a preference of the form: if r then p D q, where p, q, and
r are a statements in L. This is taken to mean that pBq, a ceteris paribus preference,
holds just in case r holds. Such a preference is equivalent to the unconditional ceteris
paribus preference r ∧ p D r ∧ q whenever the support of r is disjoint from that of
p and q. Further, we suggest that when r has overlapping support with p or q, the
conditional preference if r then p D q is best expressed as:

∀(m′,m′′),∀m
m′ ∈ m[p ∧ ¬q] ∧m′′ ∈ m[¬p ∧ q],
∀(µ′, µ′′)
µ′ ∈ m′[r], µ′′ ∈ m′′[r],
µ′ % µ′′.

15



This representation has the intuitive meaning that r must be true for the preference
to have meaning, and that the preference regarding p and q must be satisfied as
much as possible, while allowing r to be true. Note that this definition of conditional
preference with overlapping support reduces to the definition of conditional preference
with disjoint support, in the case that support of r is actually disjoint from support
of p and of q. That is, if r, p, q have disjoint support, then

µ′ ∈ m′[r],m′ ∈ m[p ∧ ¬q]⇒ µ′ ∈ m[r ∧ p ∧ ¬q]

and similarly,

µ′′ ∈ m′′[r],m′′ ∈ m[¬p ∧ q]⇒ µ′′ ∈ m[r ∧ ¬p ∧ q].

Other researchers, for example [BBHP99], consider conditional ceteris paribus prefer-
ences an important extension of unconditional ceteris paribus preferences. Boutilier
et. al. do not, however, provide semantics for conditional preferences where the
condition and the preference are not logically independent.

Since there is this convenient correspondence between conditional ceteris paribus
preferences and our simplified ceteris paribus in L, the results established in the
remainder of the thesis apply to both types of ceteris paribus preferences.

1.2.2 Utility Functions

We have described the language L in the preceding section. A utility function u :
M → R, maps each model in M to a real number. Each utility function implies a
particular preorder over the models M. We denote the preorder implied by u with
p(u). Given a finite set C of ceteris paribus preferences in a language L over a set of
atoms A representing features in F , we define a utility function as follows.

A utility function is a function u that maps each model to a real number such
that u represents the preference set C.

We are now in a position to formally state our task.

Given a set of ceteris paribus preference statements C, find a utility function u
such that p(u) ∈ [C].

We will carry out this task by demonstrating several methods for constructing
ordinal utility functions, u; this involves demonstrating two things. First, we show
what the function u computes: how it takes a model and produces a number. Second,
we show and how to compute u given a finite set of ceteris paribus preferences C.
These methods are sound and complete. We then demonstrate heuristic means of
making the computation of u more efficient.

Before we discuss the function u, we define another representation of ceteris
paribus preferences, which we refer to as feature vector representation. We discuss
this in the following chapter.
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Chapter 2

Feature vector representation

We now define a new representation of ceteris paribus preferences. This representation
makes the preference statements more explicit; thus it will be simpler to conceive some
types of algorithms for computation using the feature vector representation.

Let C be a finite set of ceteris paribus preference statement in L. With F our
space of binary features, we note that F may be infinite. We define F (C) ⊆ F to
be the set of features corresponding to the atoms in the union of the support of each
rule in C. That is:

F (C) = {f(a) : a ∨ ¬a ∈
⋃

c∈C

s(c)}

Those features not specified in any rule in C are not relevant to compute the utility of
a model, since there is no preference information about them in the set C. Because we
require C finite, F (C) is also finite, we write |F (C)| = N , and F (C) = {f1, ..., fN}.

2.1 Definition

The “feature vector representation” is several related languages and definitions, pre-
sented in this section.

We define a family of languages L∗. Each V , we call a feature vector, enumerates
the domain of a particular language L∗(V). The feature vector is an ordered list of
features taken from the set F (C). We write V = 〈f1, f2, ..., fN〉, where fi ∈ F (C).
Thus, L∗(·) is a function that takes feature vectors and produces a language. We
write v(L∗(V)) for the feature vector of L∗(V), this defines v(L∗(V)) = V . We will
usually assume the feature vector of L∗(V) is the set of relevant features F (C) of the
set C of ceteris paribus rules. However, we will at times discuss different or even
overlapping languages L∗(V), such as L∗(〈f2, f3, f5〉) and L∗(〈f1, f3, f4〉). When the
feature vector is clear from the context, we will suppress the vector and just write L∗.

A statement in L∗(〈f1, f2, ..., fN〉) is an ordered vector of N elements drawn from
the alphabet Γ = {0, 1, ∗}. Thus, 〈∗, 1, ∗〉 ∈ L∗(〈f1, f2, f3〉), and 〈0, 0, 0, 1, ∗〉 ∈
L∗(〈f1, f2, f3, f4, f5〉). When discussing a particular statement p of L∗(V) we drop
the vector notation and concatenate the elements of p into one string, so that, e.g.,
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〈1, ∗, 0〉 becomes 1∗0. We write fi(p) for the value in Γ assigned to fi ∈ v(L∗(V)) for
a sentence p in L∗(V).

A model of L∗(〈fi1 , fi2 , ..., fiM 〉) is a concatenation of truth values, v1v2 . . . vM

where vi ∈ Γ′ = {0, 1}, for each of the M features, fi1 , fi2 , ..., fiM . When a model
uses the alphabet Γ′ to represent true and false, 0 indicates false and 1 indicates true.
The intuition is that each model of L∗(V) assigns truth values to the features V . If
m is a model of L∗(V ), we write fi(m) to denote the value in Γ′ assigned to fi by m,
for any feature fi ∈ F . For a given feature vector V , we denote the set of all models
of L∗(V) by M∗(V). As with the notation L∗(V), we will sometimes suppress the V
inM∗(V) when it is clear from context. We also use v(M∗(V)) = V .

There exists a correspondence between models in M and models in M∗(V). We
define the following translation on models:

We project models inM to models inM(V) by a mapping α :

Definition 2.1 (Model Projection) The translation α : M →M∗ is defined for
each m ∈M and f ∈ F (C) by α(m) = m′, m ∈M∗. For all fi ∈ v(M∗),

• f(α(m)) = 1 if f ∈ m

• f(α(m)) = 0 if ¬f ∈ m

This projection induces an equivalence relation onM, and we write [m] to mean
the set of models inM mapped to the same model inM(V) as m:

[m] = {m′ ∈M | α(m′) = α(m)} (2.1)

The translation α specifies that m and m′ must assign the same truth values to
features that appear in (L∗), but that on features not appearing therein, there is
no restriction. When the feature vector of L∗ is the set of features F , there is a
one-to-one correspondence of models in L∗ and L.

We introduce the concept of a model satisfying a statement s in L∗. A model m
satisfies s, written m |= s, if ∀fi ∈ s with fi 6= ‘∗′, m assigns the same truth value
to fi as s does. For example, m = 0011 satisfies ∗0∗1; m = 0011 also satisfies 00∗∗.
Note the similarity to the concept of satisfying defined over ceteris paribus formula
in section 1.2.

Since we may talk about models of languages parameterized by different vectors,
we need a way to discuss models mapping between languages. We define model
restriction. If m is a model of s ⊆ F (C), and s′ ⊆ s, a restriction of m to the features
s′, denoted m � s′, is the set of values m assigns to features in s′. We say that one
model satisfies another model, written m |= m′, when m′ is a model of s′, m is a
model of s, s′ ⊆ s, and m′ = m � s′.

A language for rules in the feature vector representation is required. We denote
this language with L∗

R(V). A statement in this language is composed of a pair of
statements (p, q) in L∗(V), separated by “�” or “%,” and subject to the following.
All statements are of the following two forms:

v′
1v

′
2 . . . v′

N � v′′
1v

′′
2 . . . v′′

N

v′
1v

′
2 . . . v′

N % v′′
1v

′′
2 . . . v′′

N
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where each of v′
1, v

′
2, . . . , v

′
N , v′′

1 , v
′′
2 , . . . , v

′′
N ∈ Γ. If v′

i = ∗, then we require v′′
i = ∗, and

vice versa. We generally write rules r like “p � q” and “p % q” where p, q ∈ L∗(V).
We say that a statement in L∗

R(V) is also a rule in L∗
R(V). Note that rules are of

the form p � q rather than p ≺ q. We refer to the left-hand side of the rule as
the statement in L∗ left of the “�” or “%” operator, and we write LHS(r). We
define right-hand side and RHS(r) analogously. Thus, if r = p � q, LHS(r) = p,
RHS(r) = q. An example of a rule in L∗

R(〈f1, f2, f3, f4〉) is: ∗∗01 � ∗∗10.
Let p be a statement in L∗(F (C)). We need a concept of a statement p’s support

features, similar to the support of a statement in L. The support features of a
statement p is the minimal set of features needed to determine if a model of L∗(F (C))
satisfies p. These are exactly those features in p that are assigned value either 0 or
1. This only excludes those features assigned value ‘*’. Given a statement p, we
write s(p) to denote the set of support features of p. Similarly, when r is a rule in
L∗

R, r’s support features, s(r), are exactly those features in s(LHS(r)). For example,
suppose p ∈ L∗(〈f1, f2, f3, f4, f5〉), and p = ∗10∗0, then s(p) = {f2, f3, f5}. Note that
s(LHS(r)) = s(RHS(r)), as a consequence of the definition of L∗

R.

We say that a pair of models (m1,m2) of L∗ satisfies a rule r if m1 satisfies
LHS(r), m2 satisfies RHS(r), and m1,m2 have the same value for those features
represented by ’*’ in r. Formally, with V = v(L∗), we have ∀fi ∈ V \s(r), m1 assigns
the same truth value to fi as m2. We write (m1,m2) |= r when (m1,m2) satisfies r.
For example, (100, 010) |= 10∗ � 01∗, but (101, 010) 6|= 10∗ � 01∗.

The meaning of a rule r in L∗
R is a preference order over M. For a strict rule r

using “�”, we have ∀(m1,m2) |= r, [m1] �r [m2]. For a weak rule r using “%”, we
have ∀(m1,m2) |= r, [m1] %r [m2]. Thus the rule ∗∗01 � ∗∗10 in L∗

R(〈f1, f2, f3, f4〉)
represents four specific preferences over models of L∗(〈f1, f2, f3, f4〉). These are:

0001 � 0010
0101 � 0110
1001 � 1010
1101 � 1110

Note that this says nothing at all about the preference relationship between, e.g.,
0101 and 1010.

2.2 L∗ compared to L

These two languages of ceteris paribus preference have similar expressive power. Many
of the terms used in the definition of the feature vector representation have direct
analogs in the ceteris paribus representation of Doyle and Wellman. We now show a
translation from a ceteris paribus rule to an equivalent set of possibly many feature
vector representation rules. We then give the opposite translation.

In the following, we assume the set of relevant features F (C) is known. This can
be computed from a set of ceteris paribus rules (as discussed in Chapter 4), or it can
be given a priori.
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2.2.1 Forward Translation

A set of rules R of feature vector representation is compatible with a rule c = pc B qc

in the ceteris paribus representation just in case

m1 �c m2 ⇒ ∃r ∈ R | (m′
1,m

′
2) |= r (2.2)

where m1,m2 model L, m′
1,m

′
2 model L∗, such that m1 ∈ [m′

1] and m2 ∈ [m′
2]. We

will show that such an r can always be constructed. Similarly, a set R is compatible
with a rule c = pc D qc if

m1 %c m2 ⇒ ∃r ∈ R | (m′
1,m

′
2) |= r. (2.3)

That is, we define equivalence in the intuitive fashion, that each set of weak or
strict rules implies the same set of preferences over models as the ceteris paribus
rules. Before delving into the details of our construction, we define two important
translation functions.

Definition 2.2 (Characteristic Statement σ) Let M′ be the set of models of a
set of literals, literals(A′), where A′ ⊆ A. σ is a function: σ :M′ → L∗(F (C)). Let
m be a model of literals(A′). We set fi(σ(m)) as follows:

• fi(σ(m)) = 1 iff fi(m) = true

• fi(σ(m)) = 0 iff fi(m) = false

• fi(σ(m)) = ∗ iff fi 6∈ {f(a) | a ∈ A′}

An important property of σ is as follows. If a is a model of literals(A′), m a model
inM∗(F (C)), then m satisfies a implies that m satisfies σ(a). More formally,

m |= a→ m |= σ(a). (2.4)

This can be seen by considering each of the N elements of F (C) one at a time. Let
F ′ = {f(a) | a ∈ A′}. If fi ∈ F ′, then a assigns a truth value to fi, which is consistent
with fi(m) and fi(σ(a)). If fi 6∈ F ′, then a does not assign fi a truth value, nor does
σ(a) require a particular truth value for fi(m) for a model m to satisfy σ(a). Note
that if fi ∈ (F ′\F (C)), it is (again) not required to be of a particular truth value for
a model to satisfy σ(a).

Definition 2.3 (Characteristic Model µ) Let p be a statement in L∗(V), and let
M′ be the set of models of s(p) in L. Then µ is a function: µ(p,L∗(V)) : L∗(V)→M′.
To construct m′ = µ(p,L∗(V)), we set m′ = {}, the empty set of literals, then include
literals (from the set literals(A)) in m′ for each feature fi ∈ V as follows:

• ai ∈ m′ iff fi(p) = 1

• ¬ai ∈ m′ iff fi(p) = 0
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• ai 6∈ m′ ∧ ¬ai 6∈ m′ iff fi(p) = ∗

An important property of µ is as follows. Let A′ be a set of atoms such that A′ ⊆ A,
let a be a model of literals(A′), and m a model in M∗(F (C)). Then m satisfies a
implies that m satisfies µ(a,L∗(F (C))). More formally,

m |= a→ m |= µ(a,L∗(F (C))). (2.5)

This can be seen by considering each fi ∈ F (C) one at a time. Let F ′ = {f(a) | a ∈
A′}. If fi ∈ F ′, then a assigns a truth value to fi, which is consistent with fi(m)
and fi(µ(a,L∗(F (C)))). If fi 6∈ F ′, then a does not assign fi a truth value, nor does
µ(a,L∗(F (C))) require a particular truth value for fi(m) for a model m to satisfy
µ(a,L∗(F (C))). Note that if fi ∈ (F ′\F (C)), it is (again) not required to be of a
particular truth value for a model to satisfy µ(a,L∗(F (C))).

We translate a single ceteris paribus rule c into a set of feature vector representa-
tion rules R by the support of c. If c is of the form pc B qc, where pc, qc are sentences
in L, then it is models that satisfy pc∧¬qc which are preferred to models that satisfy
¬pc ∧ qc, other things being equal. For brevity, let sc = s(pc ∧ ¬qc) ∪ s(¬pc ∧ qc). We
let w be a set of truth values for the features in sc. Note that

µ(w,L∗(F (C))) = m | m |= w

for m a model of L∗(F (C)). Then let Wl be the set of all w as follows, where w is a
model of sc:

Wl = w | µ(w,L∗(F (C))) |= pc ∧ ¬qc.

Thus, we have each wi ∈ Wl is a different set of truth values for sc making pc∧¬qc

true. Similarly, we define Wr as the set of all w with

Wr = w | µ(w,L∗(F (C))) |= ¬pc ∧ qc.

Note that the set of features sc is the set of support features for each rule r ∈ R.
We construct a new set W ′

l from Wl by augmenting each member. Let W ′
l be a set

of statements in L∗(F (C)).
We define a set W ′

l by applying σ to Wl. That is,

W ′
l = σ(wl) | wl ∈Wl.

Similarly, we define W ′
r by

W ′
r = σ(wr) | wr ∈ Wr.

Note that the members of W ′
l and W ′

r are of length |F (C)|, while those of Wl and Wr

are of size |sc|.
We now construct a set of rules R composed of rules in L∗

R(F (C)). We define one
r ∈ R for all pairs (w′

l, w
′
r), w

′
l ∈W ′

l , w
′
r ∈ W ′

r as follows: r = w′
l � w′

r (or r = w′
l % w′

r

if c was a weak preference). This completes the translation.
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Consider a simple example. In the following, we assume F (C) = 〈f1,f2,f3,f4〉.
A ceteris paribus rule might be of the form a2 ∧ ¬a4 B a3, with each ai in the set
literals(A). This expresses the preference for models m:

m |= (a2 ∧ ¬a4) ∧ ¬a3

over models m′:
m′ |= ¬(a2 ∧ ¬a4) ∧ a3

other things being equal (see equation 1.1). Note sc = {a2, a3, a4}. We note Wl =
{{a2,¬a3,¬a4}}, and Wr = {{a2, a3, a4}, {¬a2, a3, a4}, {¬a2, a3,¬a4}}. We then
translate this into (three in this case) feature vector representation rules using σ:

∗100 � ∗111
∗100 � ∗011
∗100 � ∗010

The above exposition and construction gives us the necessary tools to state and
prove the following lemma.

Lemma 2.2.1 (Feature vector representation of ceteris paribus rules) For all
ceteris paribus rules c over the language L and the features F (C), there exists a set
of rules R in L∗

R(F (C)) such that ∃r ∈ R whenever m1 �c m2 with (m′
1,m

′
2) |= r

where m1,m2 are models of L, m′
1,m

′
2 are models of L∗, such that m1 ∈ [m′

1] and
m2 ∈ [m′

2].

Proof. Without loss of generality, we take c = pc � qc. The case of c = pc % qc is
the same. Using the definition of a ceteris paribus rule, we note that lemma 2.2.1 is
satisfied when

∀m ∈M,m′ ∈ m[pc ∧ ¬qc],m
′′ ∈ m[¬pc ∧ qc]→

∃r ∈ R,m′ |= LHS(r),m′′ |= RHS(r).
(2.6)

We show that if m,m′,m′′ are such that m′ ∈ m[pc ∧ ¬qc],m
′′ ∈ m[¬pc ∧ qc], then

our translation above constructs an r such that m′ |= LHS(r),m′′ |= RHS(r). Given
such m,m′,m′′, from the definition of m′ ∈ m[pc ∧ ¬qc], we have m′ |= pc ∧ ¬qc. Let
wa be a member of Wl such that wa = m′ � sc and wb be a member of Wr such that
wb = m′′ � sc. By definition of restriction, m′ |= wa, and m′′ |= wb.

Let w′
a be in W ′

l such that w′
a = σ(wa). Since m′ |= wa then by equation 2.4

m′ |= w′
l. We also have m′ |= w′

a. Since w′
a = LHS(r) for some r in R according

to the construction, we have m′ |= LHS(r) for some r . A similar argument shows
that m′′ |= RHS(r) for some (possibly different) r. Since ∀a ∈ W ′

l ,∀b ∈ W ′
r,∃r :

a = LHS(r), b = RHS(r), we choose r such that m′ |= LHS(r) = w′
a and m′′ |=

RHS(r) = w′
b. This completes the proof of Lemma 2.2.1. �

Thus, we have shown, for a given rule c = pc B qc in the ceteris paribus repre-
sentation, there exists a set of rules R in the feature vector representation such that
(m1,m2) |= r ∈ R iff there exists m such that m1 ∈ m[pc ∧ ¬qc],m2 ∈ m[¬pc ∧ qc].
Thus, the construction preserves the meaning of a rule in the ceteris paribus repre-
sentation.
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2.2.2 Reverse Translation

We give a translation from one rule in L∗
R(F (C)) to one rule in L. This is a construc-

tion for a rule r in L∗
R into a ceteris paribus rule c in L, such that if (m1,m2) |= r,

there exists c = pc � qc and m, such that m1 ∈ m[pc ∧ ¬qc] and m2 ∈ m[¬pc ∧ qc];
and similarly for rules using “%”. Suppose we have a general feature vector repre-
sentation rule r = LHS(r) � RHS(r). This means that models satisfying LHS(r)
are preferred to those satisfying RHS(r), all else equal. A ceteris paribus rule is a
comparison of formulae a B b where a, b are formulae in the language L. Thus, we
must look for some formulae a, b such that

a ∧ ¬b ≡ µ(LHS(r),L∗(F (C))) (2.7)

and
¬a ∧ b ≡ µ(RHS(r),L∗(F (C))).

In the following, m denotes a model in M∗(F (C)). Consider the sets of models
[LHS(r)] = {m′ | α(m′) |= LHS(r)}, and [RHS(r)] = {m′ | α(m′) |= RHS(r)}.
Note that [LHS(r)] and [RHS(r)] are disjoint. Disjointness follows from the support
features of LHS(r) equal to the support features of RHS(r), and that LHS(r) 6=
RHS(r). [LHS(r)] ⊆ [RHS(r)] follows from disjointness, where [RHS(r)] = {m′ |
α(m′) 6|= RHS(r)} is the complement of [RHS(r)]. Thus,

[LHS(r)] ∩ [RHS(r)] = [LHS(r)]

and
[RHS(r)] ∩ [LHS(r)] = [RHS(r)].

This suggests a solution to equation (2.7). We let a = µ(LHS(r),L∗(F (C))) so we
have [a] = [LHS(r)], and similarly, b = µ(RHS(r),L∗(F (C))), and [b] = [RHS(r)].
Then we have

[a ∧ ¬b] = [a] ∩ [b] = [a]

and
[¬a ∧ b] = [a] ∩ [b] = [b],

as required. Thus, our ceteris paribus rule c is a B b.

Lemma 2.2.2 (ceteris paribus rule expressed by L∗
R) Given a rule r in L∗

R(f),
for each pair of models (m1,m2) |= r, there exists a ceteris paribus rule c = pc B qc,
or c = pc D qc, with pc, qc in L, such that there exists an m such that m1 ∈ m[pc ∧
¬qc],m2 ∈ m[¬pc ∧ qc].

Proof of Lemma 2.2.2. The proof follows from the construction. We must show
that for each pair (m1,m2) |= r in L∗(F (C)), our construction creates a rule c =
pc B qc, with pc, qc in L, such that there exists m such that m1 ∈ m[pc ∧ ¬qc],
m2 ∈ m[¬pc ∧ qc]. The argument for c = pc D qc is similar.

Let m′
1,m

′
2 model L, and be such that α(m′

1) = m1, and α(m′
2) = m2. Then

(α(m′
1), α(m′

2)) |= r. We know that α(m′
1) |= LHS(r) and α(m′

2) |= RHS(r).
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This implies that m′
1 is in [LHS(r)] and m′

2 is in [RHS(r)]. Since we define a =
µ(LHS(r),L∗(F (C))), [a] = [LHS(r)] follows from the definition of µ. Similarly,
[b] = [RHS(r)], so we have m′

1 ∈ [a], m′
2 ∈ [b]. m′

1 ∈ [a ∧ ¬b] and m′
2 ∈ [¬a ∧ b]

follows from [a] = [a ∧ ¬b], [b] = [¬a ∧ b].
Now we show that m1,m2 are the same outside the support of [a∧¬b] and [¬a∧b],

respectively. Note that any two logically equivalent statements have the same support.
This is a consequence of how we define support. Thus, s(LHS(r)) = s(a) = s(a∧¬b),
and s(RHS(r)) = s(b) = s(¬a ∧ b). Note also, from the definition of the feature
vector representation, we have s(LHS(R)) = s(RHS(R)), as a consequence of the
requirement that the support features of LHS(r) be the same as the support features
of RHS(r). Thus s([a ∧ ¬b]) = s([¬a ∧ b]). We are given that (m1,m2) |= r, this
implies m1,m2 are the same outside the support of LHS(r), RHS(r). Thus, m1,m2

are the same outside support of [a ∧ ¬b]. This implies there exists m such that
m′

1 ∈ m[a ∧ ¬b], m′
2 ∈ m[¬a ∧ b], which completes the proof. We note that m = m′

1

or m = m′
2 satisfies the condition on m. �

2.2.3 Summary

We have shown translations from the feature vector representation to the ceteris
paribus representation, and a similar translation from the ceteris paribus representa-
tion to the feature vector representation. Combining Lemma 2.2.1 and Lemma 2.2.2
we can state the following theorem:

Theorem 2.1 (Expressive Equivalence) Any preference over models representable
in either the ceteris paribus representation or the feature vector representation can
expressed in the other representation.

Using this equivalence and the construction established in section 2.2.1, we define an
extension of the translation function σ (defined in definition 2.2) to sets of ceteris
paribus preference rules in L. This translation converts a set of ceteris paribus pref-
erence rules to a set of feature vector representation statements. That is, σ : C → C∗,
where C is a set of ceteris paribus rules, and C∗ is a set of rules in L∗

R(F (C)). This
translation is accomplished exactly as described in section 2.2.1.

Despite the demonstrated equivalence, the two preference representations are not
equal in every way. Clearly, the translation from the ceteris paribus representation
can result in the creation of more than one feature vector representation rule. This
leads us to believe that the language of the ceteris paribus representation is more
complicated than the other. This is naturally the case, since we can have complicated
logical sentences in the language L in our ceteris paribus rules. Thus, it can take many
more rules in L∗ to represent a rule in L. This gives us some further insight.

The length, in characters, of a ceteris paribus rule in the logical language L, is
arbitrary. The length of a rule in L∗

R(V) is always 2∗|V|. Generally, we are concerned
with the case of V = |F (C)|, the relevant feature set. We might also ask how quickly
we can tell if a model m of L∗(V) satisfies a statement r in L∗

R(V). This verification is
essentially a string parsing problem, where we check elements of m against elements
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of r. The determination of satisfaction takes time proportional to the length of the
formula.
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Chapter 3

Some simple ordinal utility
functions

In this chapter we illustrate simple utility functions, u : M∗(F (C)) → R consistent
with an input set of feature vector representation preferences C∗ where each rule
r ∈ C∗ is a statement in L∗

R(F (C)). It is possible to combine this with the transla-
tion defined in the previous chapter. We may take as input a set of ceteris paribus
preference rules C, and then let C∗ = σ(C). Similarly, one can use these functions to
define utility functions over models in L by composition with the model-projection
mapping α. Specifically, one finds the utility of a model m ∈ M by computing the
projection α(m) ∈M(V) and using one of the functions defined in the following.

We consider a model graph, G(C∗), a directed graph which will represent prefer-
ences expressed in C∗. Each node in the graph represents one of the possible models
over the features F (C). The graph G(C∗) always has exactly 2|F (C)| nodes. The graph
has two different kinds of directed edges. Each directed edge in G(C∗), es(m1,m2)
from source m1 to sink m2, exists if and only if (m1,m2) |= r for some strict preference
rule r ∈ C∗. Similarly, an edge ew(m1,m2) from source m1 to sink m2, exists if and
only if (m1,m2) |= r for some weak preference rule r ∈ C∗. Each edge, es and ew, is
an explicit representation of a preference for the source over the sink. It is possible
to consider each rule r and consider each pair of models (m1,m2) |= r, and create an
edge e for each such pair.

After this process is completed, we can determine if mi is preferred to mj according
to C∗ by looking for a path from mi to mj in G(C∗) and a path from mj to mi. If
both pathes exist, and are composed entirely of weak edges ew, then we can conclude
that mi ∼ mj. If only a path exists from mi to mj, or a path exists using at least one
strict edge, then we can conclude that mi � mj according to C∗. Similarly, if only a
path exists from mj to mi, or one using at least one strict edge, then we can conclude
that mj � mi according to C∗. If neither path exists, then a preference has not been
specified between mi and mj in C∗. Cycles in the model graph are consistent if all
the edges in the cycle are weak edges (ew). In this case, all the models in the cycle are
similarly preferred to each other, and should be assigned the same utility. If there are
cycles using strict edges (es), this would indicate that some model is preferred to itself
according to C∗, which we consider inconsistent. Thus, it is possible to construct the
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Utility Function Symbol Method
Minimizing GUF uM longest path from m
Descendent GUF uD number of descendants of m
Maximizing GUF uX longest path ending at m
Topological GUF uT rank of m in topological-sorted order

Table 3.1: Four Different Ordinal Graphical Utility Functions (GUFs)

graph, and then look for cycles, with the presence of strict-cycles indicating that the
input preferences are inconsistent.

3.1 Graphical Utility Functions

In this section we will define four different Graphical Utility Functions (GUFs). Each
GUF will use the same graph, a model graph G(C∗), but will define different measures
of utility using this graph. We will define GUFs that compute the utility of a model
m by checking the length of the longest path originating at m, counting the number
of descendants of m in G(C∗), or the number of ancestors, or the length of the longest
path originating elsewhere and ending at m, or the number of nodes following it in
the topological-sorted order of G(C∗). We present a summary of each GUF in table
3.1.

Definition 3.1 (Minimizing Graphical Utility Function) Given the input set
of ceteris paribus preferences C∗, and the corresponding model graph G(C∗), the
Minimizing Graphical Utility Function is the utility function uM where uM(m) is
equal to the number of unique nodes on the longest path, including cycles, originating
from m in G(C∗).

The intuition is that in a graph, the distance between nodes, measured in unique
nodes, can indicate their relative utilities. Note that if neither m1 � m2 or m2 � m1

in C∗, then we do not require u(m1) = u(m2). Only when m1 % m2 and m2 % m1 in
C∗, do require u(m1) = u(m2). This implies members of a cycle should receive the
same utility. However, in a graph with cycles the concept of longest path needs more
discussion. Clearly several infinite long pathes can be generated by looping forever
on different cycles. We mean the longest non-backtracking path wherein all nodes
on any cycle the path intersects are included on the path. It is important to include
each of the members of a cycle as counted once among the “unique nodes” on this
longest path, however, since this assures that a set of nodes on the same cycle will
receive the same utility. For example, suppose the rules C∗ are such that only the
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Figure 3-1: Model graph for preferences in equations 3.1

following relations are implied over models:

m1 % m2

m2 % m3

m3 � m4

m3 % m5

m5 % m2

m4 � m6.

(3.1)

It is clear that m2,m3,m5 form a cycle (see figure 3.1). The longest path from
m1 clearly goes through this cycle, in fact this path visits nodes m1,m2,m3,m4,m6.
However, since this path intersects the cycle {m2,m3,m5}, we add all nodes on the
cycle to the path, in this case only the node m5. Thus, the “longest path” we’re
interested in from m1 passes though all six nodes, and we have uM(m1) = 6. Similarly,
the other nodes receive utility as follows:

uM(m1) = 6
uM(m2) = 5
uM(m3) = 5
uM(m4) = 2
uM(m5) = 5
uM(m6) = 1.

Consider the relation between unrelated models provided by the minimizing graph-
ical utility function. Our different graphical utility functions define different relation-
ships for such models, in fact, the relationship is somewhat arbitrary. Consider the
following example. Suppose the rules in C∗ are such that only the following pairs of
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Figure 3-2: Model graph for preferences in equations 3.2

models satisfy any rule in C∗:

m1 � m2

m3 � m4

m4 � m5

m4 � m6

(3.2)

The relationships between several models (see figure 3.1), for example m1 and m3, is
unspecified. A utility function is free to order these two any way convenient, and the
utility function will still be consistent with the input preferences. The minimizing
graphical utility function gives the following values to the models:

uM(m1) = 2
uM(m2) = 1
uM(m3) = 3
uM(m4) = 2
uM(m5) = 1
uM(m6) = 1.

An interesting property of this utility function is that it is minimizing, that is, it
assigns minimal utility to models that are not explicitly preferred to other models
according to the preference set. Thus, suppose there exists an m7 in the above
domain, about which no preferences are specified. This model will receive minimal
utility (1) from the utility function.

Definition 3.2 (Descendent Graphical Utility Function) Given the input set
of ceteris paribus preferences C∗, and the corresponding model graph G(C∗), the
Descendent GUF is the utility function uD where uD(m) is equal to the total number
of unique nodes on any paths originating from m in G(C∗).

Definition 3.3 (Maximizing Graphical Utility Function) Given the input set
of ceteris paribus preferences C∗, and the corresponding model graph G(C∗), we let
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max(G(C∗)) be the length of the longest path in G(C∗). The maximizing GUF is the
utility function uX where uX(m) is equal to max(G(C∗)) minus the number of unique
nodes on the longest path originating at any node other than m and ending at m in
G(C∗).

Definition 3.4 (Topological Sort Graphical Utility Function) Given the input
set of strict ceteris paribus preferences C∗, and the corresponding model graph G(C∗),
let n = 2|F (C)| be the number of nodes in G(C∗). The topological sort GUF is the utility
function uT where uT (m) is equal to n minus the rank of m in the topological-sorted
order of G(C∗).

Each of the above utility functions is ordinal. Each function except the topolog-
ical sort GUF handles both weak and strict preferences. Our Maximizing Graphical
Utility Function must make use of the same technique for the path intersecting a
cycle that we use for the Minimizing Graphical Utility Function. The Descendent
function has no such difficulty with cycles, but note that a node must be one of its
own descendants.

Each function behaves differently toward models not mentioned by the preferences.
We have already discussed the “minimizing” property, where a utility function gives
very low or zero utility to models not mentioned by the preferences. These are
models that are neither preferred to other models or have other models preferred to
them. We therefore have no information about them, and are free to order them as
convenient, while preserving the ordinal property of the utility function. In contrast
to “minimizing,” we call the above functions “maximizing” when they assign high
utility to models about which we have no information.

Consider the example given in equations 3.2. Under the Descendent Graphical
Utility Function (definition 3.2), we get the following utilities for m1, ...,m7:

uD(m1) = 2
uD(m2) = 1
uD(m3) = 4
uD(m4) = 3
uD(m5) = 1
uD(m6) = 1
uD(m7) = 1.

We give slightly higher utility to m3,m4 than the under function 3.1, since the former
counts all descendants, while the latter counts only the longest path.

The maximizing graphical utility function, definition 3.3, gives the following val-
ues:

uX(m1) = 3
uX(m2) = 2
uX(m3) = 3
uX(m4) = 2
uX(m5) = 1
uX(m6) = 1
uX(m7) = 3.
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Which is remarkable chiefly because it assigns u(m7) = 3. This the speculative
characteristic of the function.

Topological sort gives different answers depending on how it is implemented. How-
ever, each model gets a unique utility value. That is, the topological utility function
is a one-to-one function from models to R. It could give the following values for the
example:

uT (m1) = 7
uT (m2) = 6
uT (m3) = 5
uT (m4) = 4
uT (m5) = 3
uT (m6) = 2
uT (m7) = 1.

This is a good example of how the utility of models can vary hugely under different
utility function, and still have both function be consistent.

Now that we have discussed some of the properties and behaviors of each of the
GUFs defined above, we prove their consistency.

Theorem 3.1 (Consistency of Minimizing GUF) Given the input set of ceteris
paribus preferences C∗, and the corresponding model graph G(C∗), the utility function
that assigns uM(m) equal to the number of unique nodes on the longest path originating
from m in G(C∗) is consistent with C∗.

Proof. Let uM(m) be equal to the number of nodes on the longest path originating
from m in G(C∗). For uM to be consistent with C∗, we require p(uM) ∈ [C∗]. Specif-
ically, this requires that uM(m1) ≥ uM(m2) whenever m1 %C∗ m2, and uM(m1) >
uM(m2) whenever m1 �C∗ m2. Choose a pair m1,m2 such that m1 �C∗ m2 according
to C∗. By construction of G(C∗), there exists an edge from m1 to m2 in G(C∗). Thus,
uM(m1) ≥ uM(m2) because the there exists a path from m1 that contains m2, and
therefore contains the longest path from m2, plus at least one node, namely the node
m1. If m1 %C∗ m2 then it is possible that there is both a path from m1 to m2 and a
path from m2 to m1. In this case, these two pathes define a cycle containing both m1

and m2. Since m1 and m2 lie on the same cycle, uM(m1) = uM(m2) since any longest
path accessible from one model is also the longest path from the other. �

Theorem 3.2 (Consistency of Descendent GUF) Given the input set of ceteris
paribus preferences C∗, and the corresponding model graph G(C∗), the utility function
that assigns uD(m) equal to the total number of unique nodes on any pathes originating
from m in G(C∗) is consistent with C∗.

Proof. Following the proof of theorem 3.1, if we know that m1 � m2 according
to C∗, then by construction of G(C∗), there exists an edge from m1 to m2 in G(C∗).
Since m2 is on a path from m1, m1 has at least one more descendent than m2, namely,
m1. Therefore uD(m1) > uD(m2). If it is a weak edge from m1 to m2, then there
might also be a path from m2 to m1, in which case, both models have the same set
of descendants, and uD(m1) = uD(m2). �
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Theorem 3.3 (Consistency of Maximizing GUF) Given the input set of ceteris
paribus preferences C∗, and the corresponding model graph G(C∗), we let max(G(C∗))
be the length of the longest path in G(C∗). The utility function that assignsuX(m)
equal to max(G(C∗)) minus the number of unique nodes on the longest path originat-
ing at any node other than m and ending at m in G(C∗) is consistent with C∗.

Proof. Omitted.

Theorem 3.4 (Consistency of Topological Sort GUF) Given the input set of
strict ceteris paribus preferences C∗, and the corresponding model graph G(C∗), let
n = 2|F (C)| be the number of nodes in G(C∗). The utility function that assigns uT (m)
equal to n minus the rank of m in the topological-sorted order of G(C∗) is consistent
with C∗.

Proof. Omitted.

3.2 Complexity

The utility functions outlined in the previous section, while conceptually simple, have
poor worst-cast complexity.

In order to construct G(C∗), we need to add edges to the graph; since adding
an edge is a constant time operation, counting the number of edges is the logical
measure of complexity for this task. At worst, there are edges between every node
in G(C∗), so constructing G(C∗) takes time quadratic in the number of nodes of
G(C∗). The number of nodes is exponential in the size of F (C). The input is only
of size |C∗| ∗ |F (C)|, so graph construction is exponential in the size of the problem
description. Thus, we anticipate a faster solution.

The computation of u(m), after G(C∗) is constructed, is linear in the number of
descendants (for the Descendent Graphical Utility Function) of m in G(C∗). The
number of descendants is bounded by the number of nodes of in the graph. The other
utility functions measure the number of ancestors, or the longest path from or to a
node. Clearly counting the number of ancestors is the same computational burden
as counting the number of descendants. Computing the longest path originating at a
node and ending elsewhere is also the same, since all descendants must be searched
so that a longest path maybe discovered. All of these functions are exponential in
the size of F (C).

There is a tradeoff to be made between the construction of G(C∗) and the evalua-
tion of u(m). The computation of u(m) can be reduced by significant preprocessing.
Clearly each value of u(m) could be cached at the node m in G(C∗), using, for ex-
ample, Dykstra’s all-paths algorithm. This is still exponential in |F (C)|, but a much
bigger exponent. Alternatively, a few values of u(m) can be cached for different m’s.
If we are using the Descendent Graphical Utility Function, then computation of u(m)
need only proceed until each branch of the search from node m reaches a node with
a cached utility value. If there are k separate branches of the search from m, u(mi)
for i = 1, ..., k is the cached utility value for a node mi that is the terminus of the ith
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branch from m, and a total of t nodes found in all of the branches before reaching
cached nodes, we assign

u(m) = 1 + t +
k
∑

i=1

u(mi).

If we keep a static set of nodes mi with cached utilities, this is a consistent utility
function. It is not exactly the same as the Descendent Graphical Utility Function,
since the descendants of two cached nodes might overlap. However, since the impor-
tant property is that an ancestor node has a higher utility than its descendants, this
function is still consistent. In order to relieve ourselves of exponential dependence on
|F (C)|, we need to cut the number of nodes searched before reaching cached nodes
to log(|G(C∗)|). Since all nodes in G(C∗) could be, for example, in one long path of
length |G(C∗)|, we need to cache |G(C∗)|/ log |G(C∗)| nodes. Thus, the preprocessing
work is still linear in |G(C∗)| and still exponential in |F (C)|.

On the other hand, G(C∗) can be computed on-demand, when the utility of a
model is required. We can do so in the following manner. We search for a path from
a model m0 by finding rules in r ∈ C∗ such that (m0,m1) |= r, where m1 is arbitrary.
An edge e(m0,m1) in G(C∗) exists if and only if there exists some (m0,m1) |= r for
any r ∈ C∗ (this follows from the proof of theorem 3.1). Thus, searching the list of
rules in C∗ for a pair (m0,m1) |= r for some r ∈ C∗ is equivalent to following an edge
e(m0,m1) in G(C∗). Then we recursively look for rules r such that (m1,m2) |= r,
and then (m2,m3), and so on, such that our search becomes a traversal of the graph
G(C∗). Each branch of the search terminates when (mk−1,mk) |= r for some rule
r ∈ C∗, but (mk,mk+1) 6|= s for all rules s in C. We know that there exists a path
from m0 with length k; if k is the length of the longest such path, we can then assign
u(m0) = k,

Since these methods are theoretically exponential, we might well ask if there is
a simple statement of preferences that result in an exponential number of edges in
G(C∗). The answer is yes, and it has a pleasing form. For |F (C)| = 4, we choose set
C∗ equal to :

∗∗∗1 � ∗∗∗0 (3.3)

∗∗10 � ∗∗01 (3.4)

∗100 � ∗011 (3.5)

1000 � 0111 (3.6)

This set orders all models lexicographically (the same ordering we give models if we
interpret them as binary representations of the integers from 0 to 15). Note that
|C∗| = |F (C)|, and the length of the longest path through G(C∗) is exactly 2|F (C)|

nodes. In fact, this is a complete linear ordering over the models on F (C), with no
ties. Thus, this gives one example of a small number of preference statements that
suffice to give the Descendent Graphical Utility Function and its peers exponential
time bounds in the size of the input.

Note that the suffix-fixing heuristics presented by [BBHP99] do not apply be-
cause our preference rules are of a quite different form, as seen in equations 3.3 to 3.6.
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Boutilier et. al.’s methodology admits logical conditions determining when a prefer-
ence holds, but the preference itself is limited to only one feature. Our preference
rules can reference more than one feature at a time. Thus a rule such as ∗∗10 � ∗∗01
is not possible.

In the following sections, we present a number of heuristics using the concept of
utility independence that reduce the complexity of evaluating u(m).
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Chapter 4

Utility Independence

Utility independence (UI) is the idea that the contribution to utility of some features
can be determined without knowledge of the values assigned to other features. More
precisely, if a set of features Si is utility independent of a disjoint set of features
Sj, then the utility given to Si, does not depend on the values the features of Sj

assume. We give some general background regarding utility independence here. In
the following subsections, we demonstrate how this expedites our calculation of utility
from ceteris paribus preferences. For these discussions, we assume that C∗ = σ(C),
for C a set of strict ceteris paribus preference rules. We use Si, 1 ≤ i ≤ k, for sets of
features Si ⊆ F (C), which are UI of other sets of features.

For a given set Si, define a partial utility function ûi :M∗(Si)→ R that assigns a
utility to all models m inM∗(F (C)) based on the restriction of m to Si. For a given
set Si, and given that we have a function ûi defined, we will call a subutility function
a function ui : M∗(F (C)) → R such that ∀m,ui(m) = ûi(m � Si). We will write
ui(·) for the subutility function for Si, when it is clear that the subscript i refers to
a particular set of features with the same subscript. We will also write uS(·) for the
subutility function for the features S when S is a set of features.

We use the logical connective “∧” between models m1 ∧ m2 as shorthand for
µ(m1,L

∗(F (C))) ∪ µ(m2,L
∗(F (C))). That is, m1 ∧m2 is a combined model of the

support features of m1 and m2. To talk about properties of the values assigned by m1

over the set S1 and the values assigned by m2 to S2, we would discuss m1 � S1∧m2 � S2.
A set of features Si is UI of a disjoint set of features Sj if and only if, for all

m1 � Sj, m2 � Si, m3 � Si, and m4 � Sj

((m2 � Si ∧m1 � Sj) � (m3 � Si ∧m1 � Sj))⇒
((m2 � Si ∧m4 � Sj) � (m3 � Si ∧m4 � Sj))

(4.1)

which is the general definition of utility independence [KR76]. 1

In general UI is not symmetric; if Si is UI of Sj that does not imply that Sj is UI
of Si. However, when a particular pair of feature sets are UI of each other, we say
they are mutually utility independent. If this is the case, and Si ∪ Sj = F (C), then

1Keeney and Raiffa actually term this preferential independence. Our terminology and notation
differ from this source.
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there exists a utility function u consistent with C∗, of the form:

u(m) = tiui(m) + tjuj(m)

where ti, tj > 0 are scaling constants [KR76]. This is known as an additive decompo-
sition. This theory generalizes to several sets of mutually UI features. If we have a
collection of disjoint sets S1, S2, . . . SQ ⊂ F (C), where each Si is UI of its complement,
Si, then there exists a utility function of the form

u(m) =

Q
∑

i=1

tiui(m). (4.2)

This result is proven in [Deb59]. This is the form of the utility function that we will
use throughout, and that we will attempt to construct.

4.1 Ceteris Paribus Preferences and UI Assump-

tions

As we have hinted before, and as we will see later, having a large number of utility-
independent feature sets of small cardinality greatly speeds the computation of a
utility function. The task is then to establish utility independence between sets of
features and their complements, wherever possible. One common method of determin-
ing if two sets of features are utility independent is to ask the user whose preferences
are being modelled. The burden is placed on the user of the preference system. In
the decision theory literature, there is a tradition of assuming that utility indepen-
dence of feature sets must be communicated along with a preference. Keeney and
Raiffa give substantial treatment to the best phrasing of such questions to human
decision makers [KR76]. Even recent work, for example, [BG96] require that utility
independence statements accompany each preference statement before they analyze
the preference.

Our approach is slightly different. We assume that each feature is utility inde-
pendent of all other features, then try to discover for which features this assumption
is invalid. When we compute which features are UI of which other features, for each
f ∈ F (C), we assume that f is UI of F (C)\f . We then look for evidence that demon-
strates two feature sets are not UI of each other. These evidences are rule pairs for
which implication (4.1) does not hold.

Two rules can demonstrate that implication (4.1) does not hold for two feature
sets. The intuitive idea is to find a pair of rules that demonstrate the preference for
some features depends on the value of other features. To use a very simple example,
consider two rules in L∗

R(〈f1,f2,f3〉); the rules 01∗ � 11∗ and 10∗ � 00∗. It is easy to
see that the preference expressed over f1 switches depending on the value of f2. I.e.,
{f1} is not UI of {f2}. Linguistically, such a preference can be interpreted as follows.
If f2 is 1, then I prefer f1 = 0 to f1 = 1. However, if instead f2 = 0, then I prefer
f1 = 1 to f1 = 0. Perhaps f1 indicates that I carry an umbrella, and f2 indicates that
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it is a sunny day. Then this statement represents the utility of the umbrella being
dependent on the current weather. In good weather, the umbrella is a burden; in
inclement weather, the umbrella is beneficial.

To establish utility dependence, we require the demonstration of models inM∗(F (C)):
m1, m2, m3, m4; for some feature sets Si, Sj and a pair of rules r1, r2 such that im-
plication (4.1) does not hold. The correspondence is analogous to implication (4.1):
we want all of the following conditions to hold

(m2 � Si ∧m1 � Sj) |= LHS(r1),
(m3 � Si ∧m1 � Sj) |= RHS(r1),
(m2 � Si ∧m4 � Sj) |= RHS(r2),
(m3 � Si ∧m4 � Sj) |= LHS(r2).

(4.3)

Although this may seem hopelessly abstract, it is easy to notice such m1, m2, m3,
m4, Si, Sj by looking at the support feature sets of each rule. Since Sj is a subset of
the support features of r1, and m1 restricted to Sj satisfies both LHS(r1) restricted
to Sj and RHS(r1) restricted to Sj, we can look for rules of this form. Lexically,
these rules are easy to recognize: some of the features specified in the rule have the
same value on the left- and right-hand sides of the rule. Then we look for another
rule, r2, with the same property: there is a set of features S ′

j that is a subset of the
support features of r2 and there is an m4 satisfies both LHS(r2) restricted to S ′

j and
RHS(r2) restricted to S ′

j, with the additional restriction that S ′
j is a subset of Sj.

Again, we are looking for a rule that specifies the same values for the same features
on the left- and right-hand sides, but these features must be a subset of those features
we found for r1. If the previous conditions hold, we have fixed m1,m4, and Sj used
in conditions (4.1) and (4.3).

We then check that r1, r2 are such that an Si can be found that is disjoint with
Sj and a subset of the support features of both r1 and r2, and an m2 can be found
that satisfies both LHS(r1) restricted to Si and RHS(r2) restricted to Si. Here we
are looking for a preference over models restricted to Si that switches with the values
assigned to Sj. Again, this is easy to check for, by doing lexical comparisons on the
left- and right-hand sides of the support feature sets of rules. If all the preceding
holds for some Si, Sj, then Si is utility dependent on Sj. We are assured of this since
the condition (4.1) is violated.

An example. Consider the rules in L∗
R(〈f1,f2,f3,f4,f5〉) as follows:

r1 = ∗0001 � ∗1101 (4.4)

r2 = ∗∗100 � ∗∗000 (4.5)

Thus we can choose Sj = f4, f5,m1 � Sj = 01. This satisfies our condition on m1,
that m1 |= LHS(r1) � Sj and m1 |= RHS(r1) � Sj. We choose Sj to be the features
of the intersection of µ(LHS(r1), L

∗(F (C))) and µ(RHS(r1), L
∗(F (C))). Then we

consider r2. We again consider the features of intersection of µ(LHS(r2), L
∗(F (C)))

and µ(RHS(r2), L
∗(F (C))), which is {f4, f5}. Since this happens to be the same as

Sj, we set S ′
j = Sj. Then m4 � S ′

j = 00, and we indeed have m1 � Sj 6= m4 � S ′
j. We

let Sj = Sj ∪ S ′
j.
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Next, to choose Si, check if there are features shared between µ(RHS(r1), L
∗(F (C)))

∩ µ(LHS(r2), L
∗(F (C))) and µ(RHS(r2), L

∗(F (C))) ∩ µ(LHS(r1), L
∗(F (C))).

Since Si must be disjoint from Sj, we exclude features in Sj from this check. We
see that f3 is shared in these two sets, thus we assign Si = f3. Then m2 � Si = 0,
m3 � Si = 1, and we verify that m2 � Si 6= m3 � Si. This process constitutes evidence
that Si, Sj, m1, m2, m3, m4 cannot satisfy implication 4.1, and therefore that Si, Sj

are not UI.

Theorem 4.1 (Independence Construction) The above method computes a par-
tition S of the features F (C) such that each set Si ∈ S is utility independent of the
features in F (C)\Si, and further that no partition S ′ exists with ∃Si, Sj ∈ S ′ such
that Si ∩ Sj = Sk ∈ S and S ′ has the same properties as S.

Proof. First note that it is clear that S is a partition because the algorithm starts
out with a partition and at each step S is updated by joining two of the sets together,
an operation which preserves the property of being a partition. Further, it is clear
that S is a set of MUI sets, because the algorithm only halts when no two features
can be found that are utility dependent.

Now we show that there does not exist another partition S ′ with Si, Sj ∈ S ′ such
that Si ∩ Sj = Sk ∈ S. First suppose S ′ is such a partition. Then there exists
Si, Sj ∈ S ′ such that Si ∪ Sj = Sk ∈ S, and Si ∩ Sj = ∅. Since the partition S is
the result of our method, and Sk ∈ S, we know that there were some rules in C that
caused Si and Sj to be joined into Sk. Without loss of generality, assume a ⊆ Si was
shown to be utility dependent on b ⊆ Sj. Thus, there is some pair of rules r1, r2, and
some models m1,m2,m3,m4 such that equations 4.3 are satisfied. That is, we have:

(m2 � a ∧m1 � b) |= LHS(r1),
(m3 � a ∧m1 � b) |= RHS(r1),
(m2 � a ∧m4 � b) |= RHS(r2),
(m3 � a ∧m4 � b) |= LHS(r2).

However, this is in direct conflict with the definition of utility independence, as given
in implication 4.1. Thus we have reached a contradiction, and conclude that our
supposition, that S ′ is such a partition, is false. �

4.2 Utility-Independent Feature Decomposition

We are interested in computing a partition S = {S1, S2, ..., SQ} of the features F (C)
such that each set Si is utility independent of its complement, F (C)\Si. That is, the
feature sets are all mutually utility independent. This partition allows us to use an
additive utility decomposition as described in equation 4.2.

Since our general method starts with each feature assumed to be utility inde-
pendent of all the others, and we then establish utility dependence among certain
features, we must mention some properties of utility dependence. Even though we
have stated that utility independence is not symmetric [KR76], mutual utility inde-
pendence is symmetric. If Si is utility dependent on Sj, but not Sj on Si, it is no
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longer the case that Si is utility independent of F (C)\Si. In fact, the feature set
of minimal cardinality containing Si and independent of its complement is the set
S ′

i = Si ∪ Sj. Thus, utility dependence, as we use it, is a symmetric property.
Similarly, mutual utility independence requires that utility dependence is transi-

tive. Consider the following example. If Si is utility dependent on Sj and Si is utility
dependent on Sk, then the set with minimal cardinality that is utility independent of
its complement and contains Si is the set S ′

i = Si ∪ Sj ∪ Sk.

4.3 A Method for Finding Partitions

By combining the methods discussed above, we can compute a partition of F (C) into
mutually independent feature sets. When our set of features is F (C), we calculate a
set of feature vector representation rules C∗, according to section 2.2.1. We outline
an algorithm below. The main idea is that sets of features Si, Sj ⊆ F (C), which are
not UI of each other can be detected by doing preprocessing on C∗. We simply check
each pair of rules to see if a preference for one feature changes with the value assigned
to another feature (by checking if the pair of rules satisfies the conditions laid out in
section 4.1). If this is the case, we note that these features are not UI of each other.

We would like to compute a set S of mutually utility-independent feature sets.
Since we must behave as if utility dependence is transitive, we will look for disjoint
sets. We initialize S to a set of singleton sets, where each set contains only one feature
from F (C). That is, we have S1 = {f1}, S2 = {f2}, ..., SN = {fN}. As we consider
rule pairs and decide that a feature in one set is utility dependent on another feature,
we join these two sets containing these features together. Computationally, this is an
all-pairs process on the preference rules C∗. For each pair of rules r1, r2, the overlap
of s(r1) and s(r2) must be computed. Then we check if this overlap admits models
of L∗(F (C)) such that implication 4.1 does not hold. The following pseudo-code
performs this check, for rules r1, r2:

1. ssame1 ← {fi | fi(s(LHS(r1))) = fi(s(RHS(r1))),∀fi ∈ s(r1)}
2. ssame2 ← {fi | fi(s(LHS(r2))) = fi(s(RHS(r2))),∀fi ∈ ssame1}
3. Su ← ssame1 ∩ ssame2

4. scross1 ← {fi | fi(s(LHS(r1))) = fi(s(RHS(r2))),∀fi ∈ s(r1)}
5. scross2 ← {fi | fi(s(RHS(r1))) = fi(s(LHS(r2))),∀fi ∈ s(r1)}
6. sintersect ← scross1 ∩ scross2

7. Sd ← {fi | fi(LHS(r1)) 6= fi(RHS(r1)),∀fi ∈ sintersect}

If Sd and Su are both non-empty, and we discover that features Sd must be
dependent on features Su. We update our sets Si ∈ S as follows. For each pair
f ′, f ′′ ∈ (Sd ∪ Su), find the set Si which contains f ′, and the set Sj which contains
f ′′. Then remove both of Si, Sj from the partition S and add a set S ′

i = Si ∪ Sj to S.
After performing such overlap calculations, we have computed a partition of F (C),

S, where each Si ∈ S is UI of its complement.
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Theorem 4.2 (Independence Algorithm) The above algorithm computes a set S
of feature sets Si such that each set Si is utility independent of the features in F (C)\Si.

Proof. We check each pair of rules using the above pseudo code. Performing this
on each pair of rules performs the same check described in section 4.1. Then by
theorem 4.1, the pseudo code produces a partition S such that each set Si ∈ S is
utility independent of the features in F (C)\Si. We show that this is the case.

The first variable, ssame1, holds the support features that are the are assigned the
same value on the LHS and RHS of r1. ssame2 performs the same calculation for r2. Su

is the intersection of these two. Thus, Su is a set of features that have the same value
on the LHS and RHS of r1, and on r2. Su is the same as the set Sj used in implication
4.1 and 4.3. The variable scross1 holds the support features which are assigned the
same value on the LHS of r1 and the RHS of r2. scross2 holds the support features
which are assigned the same value on the RHS of r1 and the LHS of r2. sintersect holds
the intersection of scross1 and scross2. Sd is the subset of sintersect that switches values
from one rule to the other. Thus Sd is the set of features over which r1 and r2 express
a preference over models that switches depending on the value of the features in Su.
�

Theorem 4.3 (Utility Decomposition) Using the partition S provided in section
4.3 permits a utility function of the form

u(m) =
∑

i:Si∈S

tiui(m) (4.6)

where ui is a subutility utility function for the features Si and ti is a constant param-
eter.

Proof. By theorem 4.2, the partition S is a partition of F (C) into feature sets
utility independent of their complements. A general result in utility theory guar-
antees that any partition of into utility-independent sets permits a additive utility
decomposition of the form given here [KR76]. �

42



Chapter 5

Utility Construction

We now describe how to compute one utility function consistent with the set of
input ceteris paribus preferences, C. We take the partition of F (C) : S1, S2, . . . , SQ

discussed in section 4.1, where each set of features Si is utility independent of its
complement. We have shown that there is an additive utility function that is a linear
combination of subutilities, each subutility a separate function of a particular Si. We
associate a scaling parameter ti > 0 with each Si such that the utility of a model is

u(m) =

Q
∑

i=1

tiui(m). (5.1)

We will argue that this is consistent with a set of preference rules C∗ where C∗ ∈ [C]
is a set of rules in L∗

R(F (C)). We have two tasks: to craft the subutility functions
ui, and to choose the scaling constants ti. We will accomplish these two tasks in
roughly the following way. We will show how a rule can be restricted to a set Si.
This is essentially a shortening of a rule to a particular set of features, in the same
manner as we have defined restriction of models to a set of features. By restricting
rules to the sets Si, we can use these shortened forms of the rules to make GUFs
for the partial utility functions ui. Rules that do not conflict in general can conflict
when restricted to different feature sets. These conflicts can be phrased as constraints
and resolved using a boolean constraint satisfaction solver (SAT). To assign values to
scaling parameters ti, we will define a set of linear inequalities which constrain the
variables ti. The linear inequalities can then be solved using standard methods for
solving linear programming problems. The solutions to the inequalities are the values
for the scaling parameters ti. Along the way we will show some helpful heuristics.

We first describe the subutility functions, and then their linear combination into
a full utility function.

5.1 Subutility Functions

Our task is to define subutility functions uSi
(m) = ûSi

(m � Si) that take as input the
values for the features F (C), and return an integer. We define such a function relative
to some rules r ∈ C∗. We say that a subutility function uSi

is ε-consistent with r ∈ C∗
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if uSi
(m1) ≥ ε + uSi

(m2) whenever (m1,m2) |= r and (m1 � Si) 6= (m2 � Si), where
ε > 0. In the following, we generally let ε = 1 and prove results for 1-consistency.
In general, it is not necessary to use ε =, but using 1 will make some calculations
simpler. We show that 1-consistency implies the consistency of u with r.

Theorem 5.1 (Subutilities) Given rules C∗ and a mutually utility-independent
partition S of F (C), if each ui is 1-consistent with r, then

u(m) =

Q
∑

i=1

tiui(m)

where ti > 0, is consistent with r.

Proof. By definition of consistency of u, u is consistent with r if u(m1) > u(m2)
whenever (m1,m2) |= r. Using equation 5.1, u(m1) > u(m2) is true when

Q
∑

i=1

tiui(m1) >

Q
∑

i=1

tiui(m2).

Rearranging the summations gives

Q
∑

i=1

ti(ui(m1)− ui(m2)) > 0.

For each utility-independent set Si, clearly either (m1 � Si) 6= (m2 � Si) or (m1 �

Si) = (m2 � Si), so we can split the summation into these two parts.

Q
∑

i:(m1�Si)=(m2�Si)

ti(ui(m1)− ui(m2)) +

Q
∑

i:(m1�Si)6=(m2�Si)

ti(ui(m1)− ui(m2)) > 0.

By definition of a subutility function ui, if (m1 � Si) = (m2 � Si) then ui(m1 � Si) =
ui(m2 � Si), so the first summation is a sum of zeros, giving:

Q
∑

i:(m1�Si)6=(m2�Si)

ti(ui(m1)− ui(m2)) > 0.

By definition of 1-consistency of ui with r, uSi
(m1)−uSi

(m2) ≥ 1 when (m1,m2) |= r
and (m1 � Si) 6= (m2 � Si). Since ti > 0, we have so

Q
∑

i:(m1�Si)6=(m2�Si)

ti(ui(m1)− ui(m2)) > 0.

Which establishes that
∑Q

i=1 ti(ui(m1) − ui(m2)) > 0, and therefore that u(m1) >
u(m2). This finishes the proof. �
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We show how to generate a 1-consistent subutility function by constructing a
restricted model graph, Gi(R) for a set of rules R in Lr(V). Gi(R) is a multi-graph
with directed edges, where each model m inM(Si) is a node in the graph; recall we
have defined M(V) to be the set of models of the features listed in V . Let m1,m2

be models in M(Si) with m1 6= m2. There exists one directed edge in the restricted
model graph Gi(R) from node m1 to node m2 for each distinct rule r ∈ R such that
(m′

1,m
′
2) |= r and (m′

1 � Si) = m1 and (m′
2 � Si) = m2. We label the edges with the

rule r that causes the edge. The interpretation of an edge e(m1,m2) in Gi(Si) is of a
strict preference for m1 over m2. The construction of this graph Gi(R) parallels the
construction of the general model graph G, as described in chapter 3.

Note that if a rule r ∈ R has Si\s(r) 6= ∅, then the rule makes more than one
edge in the model graph Gi(R). Specifically, a rule r makes

2|Si\s(r)|

edges.

With a restricted model graph Gi(R) defined, there is still the matter of defining
a utility function on this graph. It appears we could choose any of the Ordinal Utility
Functions described in chapter 3 to be the utility function for ûi, and preserve further
results in this chapter. For example, we could use the Minimizing Graphical Utility
Function for ûi. Recall that in this ordering, each node has utility equal to the length
of the longest path originating at the node. If we use the Minimizing GUF, then we
want ûi(m � Si) to return the length of the longest path starting at node (m � Si) in
graph Gi(R).

Lemma 5.1.1 (Cycle-Free Subutility) Given a set of rules R ⊆ C∗ and a set
of features Si ⊆ F (C) such that the restricted model graph Gi(R) is cycle-free, and
ûi(m � Si) is the minimizing graphical utility function over Gi(R), the subutility
function ui(m) = ûi(m � Si) for Si is 1-consistent with all r ∈ R.

Proof. We must show that ui(m1) ≥ 1 + ui(m2) whenever (m1,m2) |= r and m1 �

Si 6= m2 � Si. First let ûi be the minimizing graphical utility function (from chapter
3) defined over Gi(R). Then pick some r ∈ R and some pair (m1,m2) |= r where
(m1 � Si) 6= (m2 � Si). By definition of Gi(R), there exists an edge e(m1 � Si,m2 � Si)
thus, ûi(m1 � Si) ≥ 1 + ûi(m2 � Si) because the there exists a path from (m1 � Si)
that contains (m2 � Si), and therefore contains the longest path from (m2 � Si), plus
at least one node, namely the node (m1 � Si). So we have

ui(m1) = ûi(m1 � Si) ≥ 1 + ui(m2) = ûi(m2 � Si).

Since this holds for all (m1,m2) |= r and for all r ∈ R, this proves the lemma. �

We claim but do not prove that similar results hold when ûi is any of the other
three graphical utility functions defined in chapter 3.
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5.2 Conflicting Rules

Although we assume that the input preferences C∗ are all strict preferences, and have
no conflicting rules, it is possible that a restricted model graph Gi(C

∗) for Si ⊂ F (C)
has strict-edge cycles in it even though a model graph G(C∗) for F (C) does not.
Since we are creating subutility functions for use in an additive composition utility
function, we cannot use cycles. Using cycles would break many of the heuristics we
will define.

Consider a set of rules R ⊆ C∗, and a mutually utility-independent partition S of
the features F (C). The rules R conflict if there exists some feature set Si ∈ S such
that no subutility function ui for Si can be 1-consistent with all r ∈ R. When such a
feature set Si exists, we say that R conflict on Si or that R conflict on ui.

Lemma 5.2.1 (Conflict Cycles) Given a set of strict preference rules R ⊆ C∗ and
a mutually utility-independent partition S of F (C), the rules R conflict if and only if
the rules R imply a cycle in any restricted model graph Gi(R) of some set of features
Si ∈ S.

Proof. If the rules R imply a cycle in Gi(R), then there exists some cycle of nodes
mj in Gi(R). Call this cycle Y = (m1,m2, ...,mk,m1). By the definition of a model
graph, an edge e(mj,mj+1) exists if and only if mj �R mj+1. Thus, for a subutility
function ui to be 1-consistent with R, the following would have to hold:

ui(m1) > ui(m2) > ... > ui(mk) > ui(m1)

Which is not possible, because ui(m1) > ui(m1) is impossible. Thus, if R implies a
cycle in some Gi(R), then there is no subutility function ui consistent with R.

In the other direction, we show that if the rules R conflict on Si, then they imply a
cycle in Gi(R). We assume the opposite and work toward a contradiction. Suppose R
conflict on Si but they do not imply a cycle in Gi(R). By the definition of a restricted
model graph, Gi(R) is cycle-free. Then we define the subutility function ui to be the
minimizing graphical utility function based on the graph Gi(R). By lemma 5.1.1, ui

is 1-consistent with R. This is a contradiction, so we have shown that when R conflict
on Si they imply a cycle in Gi(R). This proves the lemma. �

Note that if the rules R imply a cycle in the (unrestricted) model graph G(R)
over all features, F (C), then the rules R represent contradictory preferences.

We define the restriction of a rule r to a set of features S, written r � S, similar
to restricting a model to a set. The restriction of a rule r to S is another rule in the
feature vector representation, but over fewer features:

r � S = RHS(r) � S � LHS(r) � S

Consider rules x, y in Lr(V), with V = (f1, f2, f3, f4), with x = ∗01∗ � ∗10∗, y =
∗∗01 � ∗∗10. If we examine the restriction to feature three: x � {f3} and y � {f3} ,
then we have x � {f3} = 1 � 0 and y � {f3} = 0 � 1. Thus, when restricted to f3 it
is inconsistent to assert both x and y. In these cases, we say that x, y conflict on f3.
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We call a set of rules Ri the relevant rule set for Si if Ri is the set of rules r ∈ C∗

such that s(r) ∩ Si 6= ∅. The rules Ri may or may not conflict on Si. If the rules Ri

do not conflict on Si, we say that Ri is conflict-free. If some subset of the rules Ri

do conflict on Si, we resolve conflicts by choosing a subset of rules Ri ⊆ Ri that is
conflict-free. We choose some of the conflicting rules of Ri and exclude them from the
set Ri. How to choose which rule to exclude from Ri is a central point of discussion
in the rest of the chapter. For now, just note that our choice of rules to remove
influences our choice of scaling parameters ti.

We define two properties of conflicting rule sets on Ri. Suppose there are sets of
conflicting rules Y1, Y2, ..., YK , where each is composed of rules r ∈ Ri, and a feature
set Si. A set of conflicting rules Yk is minimal if for any r ∈ Yk, Yk\r implies a subset
of the cycle implied by Yk on Si. The set of conflicting rule sets Y = {Y1, Y2, ..., YK}
is minimal and complete if each conflicting subset R′

i of Ri is represented by some
Yk ∈ Y such that for any r ∈ Yk, Yk\r implies a subset of the cycles implied by R′

i.

Theorem 5.2 (Conflict-free Rule Set) Given a relevant rule set Ri for Si, and a
minimal, complete set of conflicting rule sets Y for Ri, and

Ri = Ri\{r1, r2, ..., rK} (5.2)

where r1 ∈ Y1, r2 ∈ Y2, ..., rK ∈ YK, then Ri is conflict-free.

Proof. We will assume the opposite, and arrive at a contradiction. Suppose that
Ri is not conflict-free, then by lemma 5.2.1 Ri implies a cycle in Gi(Ri) of Si. Since
Ri ⊂ Ri, the same cycle is implied by Ri. By minimality and completeness of Y ,
there is some set of rules Yj ∈ Y such that Yj implies the cycles implied by Ri. By
minimality of Yj, if Ri implies the same cycle as Yj, then Ri must contain the rules
Yj. But, the rules Yj cannot be in Ri, because rj ∈ Yj and we have defined rj 6∈ Ri

in equation 5.2. Thus, we have arrived at a contradiction, and therefore shown that
Ri is conflict-free. �

Lemma 5.2.1 states that conflict sets in R are equivalent to cycles in the restricted
model graph Gi(R). Thus, we can find minimal sets of conflicting rules in R by using
a cycle detection algorithm on the graph Gi(R). We can annotate the edges in Gi(R)
with the rule r ∈ R that implies the edge. This way, it is simple to translate a cycle
to a set of rules. Since Gi(R) is a multi-graph, we know that if we find all cycles of
Gi(R), we have found a minimal and complete set of conflicting rules in R. Since one
set of rules R may cause more than one cycle in a given Gi(R), there may be multiple
identical conflicting sets of rules. Thus, when translating a set of cycles to a set of
sets of conflicting rules, we may end up pruning away duplicate cycles.

We can construct Ri satisfying equation 5.2 given minimal conflict sets Yk and
relevant rule sets Ri. Note that there are several possible values for Ri satisfying this
equation, since we can choose any r1, r2, ..., rK such that r1 ∈ Y1, r2 ∈ Y2, ..., rK ∈ YK .
Since rk can be a member of more than one rule conflict set Yk, it is possible that the
cardinality of Ri varies with different choices of rk. It is generally advantageous to
have Ri have as high a cardinality as possible, but not necessary.
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We can construct the restricted model graph Gi(Ri). This is a model graph Gi(Ri)
that is cycle-free. With no cycles, we can construct a subutility function for Si using
any of the graphical utility function given in chapter 3 over the restricted model graph
Gi(Ri).

Theorem 5.3 (Subutility 1-Consistency) Given a set of features Si ⊆ F (C) and
corresponding conflict-free relevant rule set Ri, the subutility function ui using a
graphical utility function from chapter 3 based on the restricted model graph Gi(Ri)
is 1-consistent with all rules r ∈ Ri

Proof. Since Ri is conflict-free, by lemma 5.2.1, Gi(Ri) is cycle-free. Then by
lemma 5.1.1, ui is 1-consistent with Ri. �

We call a subutility function satisfying theorem 5.3 a graphical subutility function
for Si. Note that ûi and ui may or may not be 1-consistent with r ∈ (Ri\Ri), and
in general we assume that these functions are not 1-consistent with such r. For
notational convenience, we say that a subutility function ui as described in theorem
5.3 agrees with rules r ∈ Ri, and that ui disagrees with rules r ∈ (Ri\Ri). 1-
Consistency is implied by agreement, but not the converse, because agreement is a
relation between a specific type of subutility function and a rule.

5.3 Consistency Condition

Recall that we have defined what it means for a utility function u to be consistent
with a set of strict preferences C∗ as p(u) ∈ [C∗]. This is equivalent to having
u(m1) > u(m2) whenever m1 �C∗ m2. This translates into the following condition on
the subutility functions ui. For each rule r ∈ C∗ and each pair of models (m1,m2) |= r,
we have the following:

Q
∑

i=1

tiui(m1) >

Q
∑

i=1

tiui(m2) (5.3)

that is, if we have a rule r implying that m1 � m2, then the utility given by u to m1

must be greater than that given to m2. For it to be otherwise would mean our utility
function u was not faithfully representing the set of preferences C. Let Ri be the
relevant rule set for Si. Examine one subutility function, ui, and pick some r 6∈ Ri.
By the definition of Lr(V), if (m1,m2) |= r, both m1,m2 assign the same truth values
to the features in Si. That is, (m1 � Si) = (m2 � Si). This implies ui(m1) = ui(m2).
So we can split the summations of equation (5.3), giving:

∑

i:r∈Ri

tiui(m1) +
∑

i:r 6∈Ri

tiui(m1) >
∑

i:r∈Ri

tiui(m2) +
∑

i:r 6∈Ri

tiui(m2) (5.4)

then simplify:
∑

i:r∈Ri

tiui(m1) >
∑

i:r∈Ri

tiui(m2). (5.5)

Given a partition S = {S1, ..., SQ} of F (C), corresponding relevant rule sets Ri

for each Si ∈ S, conflict-free rule sets Ri for each Ri, and subutility functions ui
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1-consistent with Ri, define Sa(r) and Sd(r) as follows. For a rule r, Sa(r) is the set
of indices i such that r ∈ Ri, and Sd(r) is the set of indices i such that r ∈ (Ri\Ri).

Theorem 5.4 (Rule Consistency) Given a mutually utility-independent partition
S = {S1, ..., SQ} of F (C), corresponding relevant rule sets Ri for each Si ∈ S, conflict-
free rule sets Ri for each Ri, and subutility functions ui 1-consistent with Ri, a additive
decomposition utility function u is consistent with a rule r if for all (m1,m2) |= r, we
have

∑

i∈Sa(r)

ti(ui(m1)− ui(m2)) >
∑

j∈Sd(r)

tj(uj(m2)− uj(m1)). (5.6)

Proof. If u is consistent with r then u(m1) > u(m2) whenever m1 �r m2. Inequal-
ity 5.6 is equivalent to:

∑

i∈Sa(r)∪Sd(r)

ti(ui(m1)− ui(m2)) > 0.

Note that the set of indices Sa(r) ∪ Sd(r) is the set of all indices i for which r ∈ Ri.
Thus, the above is equivalent to

∑

i:r∈Ri

ti(ui(m1)− ui(m2)) > 0

and we can split the summation so we have
∑

i:r∈Ri

tiui(m1) >
∑

i:r∈Ri

tiui(m2).

The above is the same as inequality 5.5, which is equivalent to inequality 5.4, which
in turn is equivalent to inequality 5.3, and since we define an additive decomposition
utility function u as:

u(m) =

Q
∑

i

tiui(m)

we can substitute this definition of u(m) for the summations in inequality 5.3 to
obtain:

u(m1) > u(m2)

which is what we have set out to prove. �

There are two important consequences of this theorem.

Corollary 5.3.1 (Total Agreement) A partial utility function ui for the features
Si must be 1-consistent with r on Si if s(r) ⊆ Si.

In this case we have exactly one index i such that r ∈ Ri. Thus, we have either
|Sa(r)| = 1 and |Sd(r)| = 0 or the opposite, |Sa(r)| = 0 and |Sd(r)| = 1. It is easy
to see in the second case that inequality 5.6 cannot be satisfied, since ti is a positive
quantity and for i ∈ Sd(r), ui(m2) − ui(m1) is also a positive quantity. Thus, if a
rule’s specified features overlap with only one subutility, then that subutility must be
consistent with the rule.
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Corollary 5.3.2 (Minimal Agreement) In an additive decomposition utility func-
tion u consistent with C∗, each rule r ∈ C∗ must be 1-consistent with some subutility
function ui.

By assumption, u satisfies theorem 5.4, so u must satisfy inequality 5.6. If some rule
r is not 1-consistent with any subutility function ui, then we have |Sa(r)| = 0 and
|Sd(r)| ≥ 1, and inequality (5.6) will not be satisfied.

Using the above theorem and corollaries, a number of algorithms are possible to
produce a consistent utility function. We discuss these in the following section.

5.4 Choosing Scaling Parameters

Once we have a collection of utility-independent sets Si, we create subutility functions
as described in section 5.1. We can then choose scaling parameters ti based on
which rules disagree with each partial utility function ûi. There are several possible
strategies for choosing these parameters. We will first give the most simple scenario,
then the most general, and then present an optimization.

5.4.1 No Conflicting Rules

Given a set of rules C∗, a mutually utility-independent partition S of F (C), and
corresponding relevant rule sets Ri, the sets Ri may or may not have conflicting
rules. The simplest possible scenario is when there are no conflicting rules on any
sets Si ∈ S, and each ui is 1-consistent with each rule r ∈ Ri. If this is the case,
consistency of u becomes easy to achieve. Consider that inequality 5.6 becomes:

∑

i∈Sa(r)

ti(ui(m1)− ui(m2)) > 0

since the set of inconsistent subutility indices, Sd(r), is empty. By the definition
of consistency with r, for i ∈ Sa(r), ui(m1) − ui(m2) is always a positive quantity.
Thus, we are free to choose any positive values we wish for ti. For simplicity, choose
ti = 1, 1 ≤ i ≤ Q.

Consider the following example. Take the usual partition S of F (C) and additive
decomposition utility function u. Then choose a rule r and suppose that for all i
such that r ∈ Ri, ui is a subutility function for Si 1-consistent with r. We have:
ui(m1) > ui(m2) for each ui, and each pair (m1,m2) |= r. We are unconstrained in
our choices of ti, since tiui(m1) > tiui(m2) holds for any ti > 0.

This brief inquiry lets us state the following theorem.

Theorem 5.5 (Simple Scaling Parameters) Given a mutually utility-independent
decomposition S = {S1, S2, ..., SQ} and a set of feature vector rules C∗ in L∗, with
Ri the set of relevant rules for Si, and each ui is 1-consistent with each r ∈ Ri, then

u(m) =

Q
∑

i=1

ui(m) (5.7)
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is an ordinal utility function consistent with C∗.

Proof. Fix a rule r ∈ C∗. If each ui is 1-consistent with all rules in Ri, then if
r ∈ Ri, for all (m1,m2) |= r we have ui(m1)− ui(m2) > 0. So we have

∑

i:r∈Ri

(ui(m1)− ui(m2)) > 0

and since for r 6∈ Ri ui(m1) = ui(m2) for all (m1,m2) |= r, we have:

Q
∑

i=1

(ui(m1)− ui(m2)) > 0

or
Q
∑

i=1

ui(m1)−

Q
∑

i=1

ui(m2) > 0

Substituting u(m) for the definition in equation 5.7 we have

u(m1)− u(m2) > 0.

Since we chose r arbitrarily, this holds for any r ∈ C∗. Thus, u as defined in equation
5.7 is a utility function consistent with C∗. �

As a corollary, under the same conditions, each of the graphical utility functions
can be made consistent with C∗.

Corollary 5.4.1 (No Conflicting Rules) Given a mutually utility-independent de-
composition S = {S1, S2, ..., SQ} and a set of feature vector rules C∗ in L∗, with Ri

the set of relevant rules for Si and Ri conflict-free for all i, then

u(m) =

Q
∑

i=1

ui(m) (5.8)

where each ui is one of the graphical utility functions given in chapter 3 over the
restricted model graph Gi(Ri), is an ordinal utility function consistent with C∗.

Proof. By assumption, Ri is conflict-free, so the restricted model graph Gi(Ri) is
cycle-free. By theorem 5.3 each ui is 1-consistent with each r ∈ Ri. By theorem 5.5,
u is consistent with C∗. �

5.4.2 Simple Conflicting Rules

Given a mutually utility-independent partition S of F (C) and corresponding relevant
rule sets Ri ⊆ C∗ containing conflicting rules, the conflicts can interact in different
ways. In some cases, the conflicts are such that they admit an elegant solution. The
intuitive idea is as follows: if r disagrees with some set of subutility functions Sd(r),
then the weight (scaling parameters ti) assigned to those subutility functions must be
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less than the weight assigned to some subutility function ur that agrees with r. The
weight of that one agreement must be larger than the sum of all the disagreements.

The following example illustrates a configuration of relevant rule sets Ri that can
cause this to occur, and how to assign the scaling parameters ti. Given the usual
partition S, relevant rule sets Ri, conflict-free rule sets Ri, and subutility functions
ui 1-consistent with Ri, choose some r ∈ C∗. Suppose there is exactly one subutility
function 1-consistent with r, ur, and let Sd(r) be the set of indices of subutility
functions ui such that s(r)∩Si 6= ∅ and ui is not 1-consistent with r. We are interested
to find assignments to scaling parameters ti such that the additive decomposition
utility function u is consistent with r. To this end, we examine the values of ui(m1)−
ui(m2) when (m1,m2) |= r.

We have ur(m1) > ur(m2); and for all i ∈ Sd(r) we have ui(m1) < ui(m2) for all
pairs (m1,m2) |= r. Let max(ui) represent the maximum value returned by ui for
any models m. Clearly, max(ui) ≥ ui(m2) for all i ∈ Sd(r) and all (m1,m2) |= r.
Similarly, ui(m1) ≥ 0. Thus, we can bound the expression ui(m1)−ui(m2) as follows:

ui(m1)− ui(m2) ≥ −max(ui) (5.9)

Recall theorem 5.4 states that for u to be consistent with r, we must have:
∑

i∈Sa(r)

ti(ui(m1)− ui(m2)) >
∑

j∈Sd(r)

tj(uj(m2)− uj(m1)).

In this case, we have
∑

i∈Sa(r) ti(ui(m1) − ui(m2)) = tr(ur(m1) − ur(m2), and for

i ∈ Sd(r), ui(m2) − ui(m1) ≤ max(ui). Substituting this in the above condition
implies that u is consistent with r if

tr(ur(m1)− ur(m2)) >
∑

ui∈Sd

ti max(ui).

By assumption of r 1-consistent with ur, ur(m1)−ur(m2) ≥ 1, so u is consistent with
r if

tr >
∑

ui∈Sd

ti max(ui).

Note that this provides an explicit condition on the value of tr for u to be consistent
with r.

We can distill the intuition behind the above example into a technique appropriate
when there are few rules per utility-independent set, Si. Given the mutually utility-
independent partition S and rules C∗, we define an ordering of S called ~S. The
ordering ~S = (~S1, ~S2, ..., ~SQ) and each ~Si ∈ S has corresponding relevant rule set Ri.
~S is conflict-free if R1 is conflict free and for all i : 2 ≤ i ≤ Q,

Ri\

(

i−1
⋃

j=1

Rj

)

is conflict-free. That is, ~S is conflict free if the first set is conflict-free, and subsequent
sets are either conflict-free or conflict-free disregarding rules appearing in earlier sets.
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Lemma 5.4.1 (Conflict-free Ordering) Given rules r ∈ C∗, a mutually utility-

independent partition S of F (C), a conflict-free ordering ~S of S, relevant rule sets Ri

for ~Si ∈ ~S, each ui a subutility function 1-consistent with {Ri\ ∪
i−1
j=1 Rj}, Sa(r) the

set of indices of subutility functions ui 1-consistent with r, Sd(r) the set of indices of

subutility functions ui such that s(r)∩ ~Si 6= ∅ and ui is not 1-consistent with r, then,
for all r, there exists j ∈ Sa(r) such that j < k, for all k ∈ Sd(r).

Proof. Choose some rule r. r is in relevant rule sets Ri for i ∈ {Sa(r)∪Sd(r)}. Let

j be the first such rule set according to ~S, that is, for all k 6= j, k ∈ {Sa(r) ∪ Sd(r)}
implies j < k. We are given that uj is 1-consistent with {Rj\∪

j−1
l=1 Rl}, so by definition

of Sa(r), j ∈ Sa(r). Since j < k for all k ∈ {Sa(r) ∪ Sd(r)}, j < k for all k ∈ Sd(r).
This proves the lemma. �

Theorem 5.6 (Lexicographic Ordering) Given rules r ∈ C∗, a mutually utility-

independent partition S of F (C), a conflict-free ordering ~S of S, relevant rule sets Ri

for ~Si ∈ ~S, each ui a subutility function 1-consistent with {Ri\ ∪
i−1
j=1 Rj}, Sa(r) the

set of indices of subutility functions ui 1-consistent with r, Sd(r) the set of indices of

subutility functions ui such that s(r) ∩ ~Si 6= ∅ and ui is not 1-consistent with r, then

u(m) =

Q
∑

i

tiui(m) (5.10)

where tQ = 1 and for all i : 1 ≤ i < Q,

ti = 1 +

Q
∑

j=i+1

ti max(ui), (5.11)

u is a utility function consistent with C∗.

Proof. Pick some r ∈ C∗. We are given that r is 1-consistent with subutility func-
tions indicated by Sa(r) and inconsistent with subutility functions indicated Sd(r).
For any pair of models (m1,m2) |= r, we must show u(m1) > u(m2). We will do so
by showing that u(m1)− u(m2) > 0. From equation 5.10, we have

u(m1)− u(m2) =
∑Q

i=1 (tiui(m1))−
∑Q

i=1 (tiui(m2))

For i 6∈ {Sa(r) ∪ Sd(r)}, we have ui(m1) = ui(m2), for any models (m1,m2) |= r.
Thus, we can remove these terms from our summations, and we have:

u(m1)− u(m2) =
∑

i∈Sa(r)∪Sd(r) (tiui(m1))−
∑

i∈Sa(r)∪Sd(r) (tiui(m2))

since Sa(r) is disjoint from Sd(r), we can rearrange the terms in the summations:

u(m1)− u(m2) =
∑

i∈Sa(r) ti(ui(m1)− ui(m2)) +
∑

i∈Sd(r) ti(ui(m1)− ui(m2)).
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By lemma 5.4.1, there exists x in Sa(r), such that x < y for all y ∈ Sd(r). Since
ui(m1)− ui(m2) > 0 for all i in Sa(r), we can bound u(m1)− u(m2) by

u(m1)− u(m2) ≥
tx(ux(m1)− ux(m2)) +

∑

i∈Sd(r) ti(ui(m1)− ui(m2)).

Similarly, ui(m1) − ui(m2) ≥ −max(ui) for all i in Sd(r), thus the above can be
bounded by:

u(m1)− u(m2) ≥
tx(ux(m1)− ux(m2))−

∑

i∈Sd(r) ti max(ui).

Since ux is 1-consistent with r, ux(m1)− ux(m2) ≥ 1. Then it is true that

u(m1)− u(m2) ≥ tx −
∑

i∈Sd(r)

ti max(ui).

Since x < y for all y ∈ Sd(r), Sd(r) ⊆ {x + 1, x + 2, ..., Q}, it follows that

u(m1)− u(m2) ≥ tx −

Q
∑

i=x+1

ti max(ui).

Substituting the definition of tx from equation 5.11 we have:

u(m1)− u(m2) ≥ 1 +

Q
∑

i=x+1

ti max(ui)−

Q
∑

i=x+1

ti max(ui).

And simplifying provides that

u(m1)− u(m2) ≥ 1.

Since we chose r arbitrarily, this derivation holds for all r ∈ C∗. Thus, u as given in
equation 5.10 is consistent with C∗. This proves the lemma. �

It should be clear that we can look for a conflict-free ordering ~S in the following
manner. Given a partition S and corresponding rule sets Ri, we can check if any of
the Ri are conflict-free. If so, Si is the first set in the conflict-free ordering, ~S1. Let
the relevant rule set for ~S1 be R1. We can then check if any Ri\R1 are conflict-free.

If so, pick one such Si and let this be ~S2. We can then proceed iteratively finding
further ~Si, until either we have found a conflict-free ordering, or we have not. If we do
find a conflict-free ordering, we can then define graphical subutility functions based
on that ordering, and assign scaling parameters ti as given in equation 5.11. The
result is a utility function consistent with C∗ (by theorem 5.6).

If we cannot find a conflict-free ordering of the partition S, then we must use a
more complicated strategy for assigning scaling parameters ti. This is discussed in
the following section.
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5.4.3 Scaling Parameter Assignment by Constraint Satisfac-
tion

When we have a mutually utility-independent partition S of F (C) without a conflict-
free ordering, we can construct a constraint satisfaction problem from the set of
conflicts and use a general boolean SAT-solver to find a solution. The satisfiability
problem will be constructed so that it represents the rule conflicts on the UI fea-
ture sets, and a solution to the constraint problem will determine which subutility
functions agree and disagree with each rule. Constraint solvers are fast and quickly
handle many problems with tens of thousands of terms [SLM92]. Although all gen-
eral constraint satisfiability algorithms have worst-case exponential running time, we
only need solve one satisfiability problem, when the utility function is constructed.
The evaluation of the utility function on models of L∗ is independent of the utility
function construction cost.

Given rules C∗ and a mutually utility-independent partition S of F (C) with cor-
responding relevant rule sets Ri, we define a boolean satisfiability problem P (C∗, S)
in conjunctive normal form (CNF), a conjunction of disjunctions. Let Yik be a min-
imal set of conflicting rules on Ri, and let Yi = {Yi1, Yi2, ..., YiK} be a minimal and
complete set of conflicts for Si. Let Y be the set of all such Yik. And let

Rc =
⋃

i

⋃

k

Yik

the set of all rules involved in any conflict. The boolean variable zij in P (C∗, S)
represents a pair (i, r), where r ∈ C∗ and i is an index of Si ∈ S. The truth value
of zij is interpreted as stating whether or not subutility function ui agrees with rule
rj ∈ Rc. Let Xj = {l | Sl∩ s(rj) 6= ∅} denote the set of indices of UI sets that overlap
with rj.

Conjuncts in P (C∗, S) are of one of two forms: those representing the subutility
functions in a set Xj; and those representing conflicts between rules of a particular
cycle Yik.

Definition 5.1 (Rule-Set Clauses) Given rules C∗, a mutually utility-independent
partition S of F (C) with corresponding relevant rule sets Ri, Rc of all rules involved
in any conflict and Xj the set of indices of UI sets overlapping with rj ∈ Rc, then all
clauses of the form

∨

i∈Xj

zij (5.12)

are the Rule-Set Clauses of P (C∗, S).

The rule-set clauses of P (C∗, S) represent the possible subutility functions a rule
might agree with. Corollary 5.3.2 states each rule r ∈ C∗ must be 1-consistent
with some subutility function ui, accordingly in a solution to P (C∗, S), one of these
variables must be true.
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Definition 5.2 (Conflict Clauses) Given rules C∗, a mutually utility-independent
partition S of F (C) with corresponding relevant rule sets Ri, Yi = {Yi1, Yi2, ..., YiK} be
a minimal and complete set of conflicts for Si, Rc of all rules involved in any conflict
and Xj the set of indices of UI sets overlapping with rj ∈ Rc, then all clauses of the
form

∨

j:rj∈Yik

¬zij (5.13)

are the Conflict Clauses of P (C∗, S).

The conflict clauses of P (C∗, S) represent a particular conflicts set of rules on a
particular UI set Si. At least one of the rules in Yik must disagree with Si.

Combining rule-set clauses and conflict clauses, P (C∗, S) is the conjunction of all
such clauses. Thus

P (C∗, S) =





Q
∧

j=1





∨

i∈Xj

zij









∧





∧

Yik∈Y





∨

j:rj∈Yik

¬zij









Consider an example. Suppose we have sets S1, S2 with the following rule conflicts.
Further suppose that r1, r2 ∈ R1, R2, and that s(r1) = s(r2) = S1 ∪ S2. Suppose that
Y11 = {r1, r2} and Y21 = {r1, r2}, that is, r1, r2 conflict on both of S1, S2. There are
two rule-set clauses:

(z11 ∨ z21) ∧ (z12 ∨ z22)

and two conflict clauses:

(¬z11 ∨ ¬z12) ∧ (¬z22 ∨ ¬z21).

Combining these gives our value for P (C∗, S),

P (C∗, S) = (z11 ∨ z21) ∧ (z12 ∨ z22) ∧ (¬z11 ∨ ¬z12) ∧ (¬z22 ∨ ¬z21)

Once we have computed P (C∗, S), we can use a solver to arrive at a solution Θ.
This solution Θ is an assignment of true or false to each variable zij in P (C∗, S).
Note that there need not be a solution Θ.

Given a solution Θ to P (C∗, S), we need to translate that back into a construction
for the subutility functions over Si. Using the definition of the propositional variables
zij, we look at the truth values assigned to zij in Θ. This shows which subutility
functions disagree with which rules. Let Θf be the set of all zij assigned value false
in Θ. We define rule sets Ri ⊆ Ri for each relevant rule set Ri, as follows. For all
Si ∈ S,

Ri = Ri\{rj | zij ∈ Θf} (5.14)

Simply, we construct conflict-free relevant rule sets Ri ⊆ Ri, from the solution to
P (C∗, S), then we can construct ui 1-consistent with Ri.

We show that Ri constructed according to Θ are conflict-free.
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Lemma 5.4.2 (Conflict Clause Solution) Given a solution Θ to P (C∗, S), and
relevant rule sets Ri for each Si ∈ S, rule sets Ri ⊆ Ri,

Ri = Ri\{rj | zij ∈ Θf}

are conflict free.

Proof. We proceed with a proof by contradiction. Choose some Si. Assume Ri

has a conflict, YR ⊆ Ri. Since Y is a complete set of conflicts, YRi
∈ Y . Thus, there

exists a conflict clause ∨j:rj∈Y
Ri
¬zij in P (C∗, S), so one of these variables zij ∈ Θf .

Call this variable zix. By definition of Ri, when zix ∈ Θf , rule rx 6∈ Ri. This
contradicts rx ∈ Ri, so we have arrived at a contradiction and must conclude that Ri

is conflict-free. �

Theorem 5.7 (Correctness of SAT-Formulation) Given a mutually utility-independent
partition S of F (C), if P (C∗, S) has no solution then the preferences C∗ are not con-
sistent with a utility function u of the form u(m) =

∑

i tiui(m).

Proof. If there is no solution to P (C∗, S), it means that in all possible assign-
ments of truth values to variables, some clause is not satisfied. By definition of the
propositional variables in (PC∗, S), the truth assignments correspond directly to rule-
subutility function 1-consistency. The clauses in P (C∗, S) are of two forms: rule-set
clauses (definition 5.1), and conflict clauses (definition 5.2). By assumption, there
is no solution to P (C∗, S). Thus, in each possible assignment of truth values to the
variables in P (C∗, S), either there exists some rule-set clause that is not satisfied, or
there exists some conflict clause that is not satisfied. In terms of the interpretation
given to variables zij, if a rule-set clause is not satisfied then there is some rule rj

that is not 1-consistent with any subutility function ui for each Si. In the other
case, if a conflict clause is not satisfied, then there exists some cycle Yik where each
rj ∈ Yik is included in the set Ri (by definition of Ri, equation 5.14); and thus Ri is
not conflict-free.

Thus we must treat two cases. Suppose the first case holds: in any assignment of
truth values to variables zij in P (C∗, S), there is some rule rj that is not 1-consistent
with any subutility function ui. Thus, by corollary 5.3.2, a utility function u(m) =
∑

i tiui(m) is not consistent with rj. By definition of consistency, u is not consistent
with C∗. This holds for any additive decomposition utility function u based on the
mutually utility-independent partition S.

The second case is that in any assignment of truth values to the variables zij,
there is some conflict clause CRi

= ∨j:rj∈Yik
¬zij where all zij are true. We show that

this case is equivalent to the first case. By definition of P (C∗, S), for all rj ∈ CRi
,

there is a rule-set clause Cj = ∨i∈Xj
zij. If there were some zxj ∈ Cj for x 6= i, where

zxj = true, we could construct a solution to P (C∗, S) by making zij false and leaving
zxj true. But by assumption, there is no solution to P (C∗, S), so we must conclude
that for all zxj ∈ Cj with x 6= i, zxj = false. Therefore, we make zij false, and then
for all zxj ∈ Cj, zxj = false, so we now have an assignment of truth values of the first
case.
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This shows that if there is no solution to the SAT problem, P (C∗, S), then there
is no additive decomposition utility function, consistent with the stated preferences
C∗. �

However, we are not guaranteed that a solution to P (C∗, S) leads to a consistent
utility function. There is still the matter of setting the scaling parameters ti. In
doing so, we must be careful to satisfy inequality (5.6). Therefore, for each rule
r ∈ Ri\Ri, we keep a list of linear inequalities, I, that must be satisfied by choosing
the appropriate scaling parameters ti. We discuss this in the following section.

5.4.4 Linear Inequalities

The solution to a satisfiability problem P (C∗, S) determines how to construct conflict-
free rule sets Ri ⊆ Ri for each utility-independent feature set Si ∈ S. However, we
must then set the scaling parameters, ti, so that inequality 5.6 is satisfied. We can
do so by building a list of constraints on the values that the scaling parameters may
assume while still making inequality 5.6 true. These constraints are linear inequalities
relating the relative importance of the parameters ti.

Our list I of inequalities should assure that each pair (m1,m2) that satisfies r ∈ C∗

is consistent with the total utility function. By inequality 5.6, given rules C ∗, a
mutually utility-independent partition S of F (C) with corresponding relevant rule
sets Ri, and conflict-free Ri ⊆ Ri, let Sa(r) be the set of indices for which r ∈ Ri,
and let Sd(r) be the set of indices for which r ∈ (Ri\Ri), for each (m1,m2) |= r:

∑

i∈Sa(r)

tiui(m1) +
∑

i∈Sd(r)

tiui(m1) >
∑

i∈Sa(r)

tiui(m2) +
∑

i∈Sd(r)

tiui(m2) (5.15)

That is, the utility function u must assign higher utility to m1 than to m2. We can
simplify these inequalities as follows:

∑

i∈{Sa(r)∪Sd(r)}

ti(ui(m1)− ui(m2)) > 0 (5.16)

Note that the inequality need not contain terms for i 6∈ {Sd(r) ∪ Sa(r)}, since, by
definition of (m1,m2) |= r, we have (m1 � Si) = (m2 � Si) and ui(m1) − ui(m2) = 0.
Furthermore, note that many of the linear inequalities are redundant. A simple intu-
ition tells us the important inequalities are the boundary conditions: the constraints
that induce maximum or minimum values for the parameters ti. Consider the set of
model pairs (m1,m2) such that (m1,m2) |= r. Some pairs provide the minimum and
maximum values for ui(m1)−ui(m2) for some i ∈ {Sa(r)∪Sd(r)}. Call minmax(r, i)
the set of maximum and minimum values of ui(m1)−ui(m2) for model pairs satisfying
r. This set has at most two elements and at least one. LetM(r) be the set of model
pairs as follows:

M(r) :
(m1,m2) |= r,
ui(m1)− ui(m2) ∈ minmax(r, i)∀i ∈ {Sa(r) ∪ Sd(r)}
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Each model pair in the setM(r) causes ui(m1)−ui(m2) to achieve either its minimum
or its maximum value on every subutility function either agreeing or disagreeing
with r. For concreteness, stipulate that each (m1,m2) ∈ M(r) has fj(m1) = 0 and
fj(m2) = 0 for j 6∈ {Sa(r) ∪ Sd(r)}. We can now define the irredundant system of
linear inequalities as an inequality of the form given in equation 5.16 for each rule r
and each model pair (m1,m2) ∈M(r).

Definition 5.3 (Inequalities) Given rules C∗, a mutually utility-independent par-
tition S of F (C) with corresponding relevant rule sets Ri, conflict-free Ri ⊆ Ri,
Ri ∈ R, where Sa(r) is the set of indices for which r ∈ Ri, Sd(r) is the set of indices
for which r ∈ (Ri\Ri), and each subutility function ui is 1-consistent with all r ∈ Ri,
then I(C∗, S, R) is the set of linear inequalities

∑

i∈{Sa(r)∪Sd(r)}

ti(ui(m1)− ui(m2)) > 0

for all r in some (Ri\Ri) and for all model pairs in M(r).

By definition of the scaling parameters ti of an additive decomposition utility
function u, ti > 0 for all 1 ≥ i ≥ Q. Thus, a solution to I(C∗, S, R) is an assignment
of positive numbers to each ti.

Lemma 5.4.3 (Sufficiency of I(C∗, S, R)) Given I(C∗, S, R) and a solution to it,
for all r in some (Ri\Ri) and for all model pairs (m1,m2) |= r,

∑

i∈{Sa(r)∪Sd(r)}

ti(ui(m1)− ui(m2)) > 0

Proof. Let xi be the maximum value of ui(m1)− ui(m2) and yi be the minimum
value of ui(m1)− ui(m2), then the following inequalities are members of I(C∗, S, R):

xiti +
∑Q

j=1,j 6=i tjxj > 0

xiti +
∑Q

j=1,j 6=i tjyj > 0

yiti +
∑Q

j=1,j 6=i tjxj > 0

yiti +
∑Q

j=1,j 6=i tjyj > 0.

Since we have a solution to I(C∗, S, R), we have an assignment of values to t1, ..., tQ
such that the above hold. Clearly the following hold for any (ui(m1)− ui(m2)) : x ≥
z ≥ y:

(ui(m1)− ui(m2))ti +
∑Q

j=1,j 6=i tjxj > 0

(ui(m1)− ui(m2))ti +
∑Q

j=1,j 6=i tjyj > 0.

Since this holds for any choice of i : 1 ≥ i ≥ Q, this proves the lemma. �

Theorem 5.8 (Inequalities) If the system of linear inequalities, I(C∗, S, R), has a
solution, this solution corresponds to a utility function u consistent with C ∗.
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Proof. Each subutility function, ui, 1 ≤ i ≤ Q, is fixed. By lemma 5.4.3, for a
given rule r in some (Ri\Ri), we are assured that if (m1,m2) |= r then

∑

i tiui(m1) >
∑

i tiui(m2), for all i ∈ {Sa(r) ∪ Sd(r)}. Since Sa(r) and Sd(r) are disjoint, we can
rearrange the summations and obtain:

∑

i∈Sa(r)

ti(ui(m1)− ui(m2)) >
∑

j∈Sd(r)

tj(uj(m2)− uj(m1)).

Then by theorem 5.4, u is consistent with r.
If r is not in any (Ri\Ri), then for all i such that r ∈ Ri, ui is 1-consistent with

r. For j such that r 6∈ Rj, (m1,m2) |= r implies that (m1 � Sj) = (m2 � Sj), so all
uj are 1-consistent with r. Since all subutility functions are 1-consistent with r, we
have:

Q
∑

i

ti(ui(m1)− ui(m2)) > 0

and u is consistent with r. Thus, u is consistent with all r in some (Ri\Ri), and all
r not in some (Ri\Ri), so u is consistent with all r ∈ C∗. This proves the lemma. �

We can solve the system of linear inequalities I(C∗, S, R) using any linear inequal-
ity solver. We note that it is possible to phrase this as a linear programming problem,
and use any of a number of popular linear programming techniques to find scaling
parameters ti. If we rewrite the inequalities in the form

Q
∑

i=1

ti(ui(m1)− ui(m2)) ≥ ε (5.17)

where ε is small and positive, then we can solve this system of inequalities by opti-
mizing the following linear program. The task of the linear program is to minimize a
new variable, t0, subject to the following constraints:

t0 +

Q
∑

i=1

ti(ui(m1)− ui(m2)) ≥ ε

for each (m1,m2) as described above, and the constraint that t0 ≥ 0 [Chv83]. We
must be careful that ε is sufficiently smaller than 1, or we may not find solutions
that we could otherwise discover. Given ε small enough, this linear program has
the property that it always has a solution, by making t0 very large. However, only
when the optimal value of t0 is 0, is there a solution to the original system of linear
inequalities.

We can bound the total number of linear inequalities in I(C∗, S, R) as follows.
Given that r ∈ (Ri\Ri) for some i, it contributes at most

2|Sa(r)∪Sd(r)| (5.18)

inequalities to the set of inequalities. This is a simple combinatoric argument. r
contributes exactly one inequality for each combination of minimum and maximum
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value on each set Si. For each set a rule can have both a minimum and a maximum
(they may not be distinct). This suffices to give us the bound stated in condition
5.18.

We have mentioned that I(C∗, S, R) might have no solution. we discuss this
situation in the following section.

5.5 Assurance of Linearity

In this section we discuss how to deal with nonlinear tradeoffs between satisfaction
of one feature set and satisfaction of another feature set.

The basic problem is as follows. A basic result from utility theory [KR76] states
mutual utility independence implies the existence of a utility function defined as an
additive combination of subutility functions (given in equation 4.2). However, this
result assumes that the subutility functions are non-linear. And, in fact, closely tuned
to one another in such a manner that the term “independent” is almost ironic. Our
subutility functions are actually linear (shown below). Thus, there are certain types of
preferences, representable with ceteris paribus preference statements, that our utility
decomposition cannot represent.

We call this problem the non-linear tradeoff ratio problem, because we view it as
a problem of taking two linear functions, ui and uj, and specifying a tradeoff ratio
between them. A tradeoff ratio is the amount of satisfaction of Si a decision maker
is willing to sacrifice in order to gain an improvement of one unit of satisfaction of
Sj. It may be that a decision maker will always sacrifice three units of Si to gain one
unit of Sj; this implies a utility function of the form

u(m) = 3 ∗ ui(m) + uj(m).

On the other hand, it may be the case that the amount of Si a decision maker will
sacrifice for one unit of Sj depends on the amount of Si. For example, in economics
it is common to model the utility of money as proportional to the logarithm of the
amount of the money. It is intuitive to think that the more money a person has
(satisfaction of Si), the more they are willing to spend $100 on a meal (satisfaction
of Sj).

It is perhaps remarkable that qualitative ceteris paribus preference statements
can concisely imply particular non-linear tradeoffs between subutility functions. We
give here a simple example of such preferences. Suppose set Si = {f1, f2} and set
Sj = {f3} are utility independent. The following preferences

010 � 000
100 � 010
001 � 000

imply that 10 � 01 � 00 on Si, and on Sj we have 1 � 0. To establish a trade-off
ratio between features Si and features Sj, we can state

010 � 001 (5.19)
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implying that satisfaction of Si is more important than satisfaction of Sj (it pairs a
desirable value of Si with an undesirable value of Sj and states this is preferred to
the opposite.) However, it is possible to present several other preferences that specify
different satisfaction ratios, for different levels of satisfaction of Si and Sj. Consider

011 � 100 (5.20)

where we pair a desirable value for Si with an undesirable value for Sj and compare
it to a desirable value for Sj combined with an undesirable value for Si. This specifies
that increasing Sj from 0 to 1 is more important than increasing Si from 01 to 10.
Asserting the preferences in both equation 5.19 and equation 5.20 at the same time
is consistent, but it is not representable by our utility functions. This is because we
have a linear combination of linear subutility functions.

The graphical subutility functions are linear in the following sense. For the
minimizing graphical utility functions using strict preferences, for each integer n ∈
{1, 2, . . . max(ui)}, there exists some model m such that ui(m) = n. The other
graphical utility functions have similar problems (briefly, that if m1 � m2 the size
of (ui(m1) − ui(m2)) is arbitrary.) There is no way of specifying, for example, that
some model is “much more preferred” to another model, or that some model is “ten
times as desirable” as another model. This is a natural shortcoming based on our
formalism of qualitative ceteris paribus preference statements.

This problem of non-linear tradeoff ratios between feature sets Si, Sj, can be fixed
by defining Sk = Si ∪ Sj as a new utility-independent set in, and removing Si and Sj

from, the partition of UI sets S. A simple way to determine when this is necessary is
to check each preference to see if it:

• specifies values over at least two UI feature sets Si, Sj, and

• specifies (m′
1 ∧m′′

2) � (m′′
1 ∧m′

2) where ui(m
′
1) < ui(m

′′
1) and uj(m

′
2) < uj(m

′′
2).

This involves calculating several subutility values ui for each preference statement.
This is no more costly computationally than other aspects of our algorithm. Cal-
culating ui is potentially O(2|Si|), and we might have to calculate this O(2|Si\s(r)|)
times for each rule r. The standard assumption is our algorithm is efficient if |Si|
is of a reasonable size. When |Si| is of size log N , where N is the total number of
features, then this step is on the order O(|C∗| ∗ N 2), where |C∗| is the number of
input preferences.

Thus, without severely impacting performance of utility construction, we can
check rules to determine when non-linearity occurs. By joining UI sets, the compu-
tation of u(m) becomes less efficient, but is able to represent more complicated pref-
erences. Concurrently with our discovery of this problem, Boutilier et. al., [BBB01]
encounters exactly the same problem and proposes the same solution. We leave it
to future work to find more efficient ways of solving the non-linear tradeoff ratio
problem.

62



5.6 Complexity

The running time of the SAT algorithm and the Linear Inequality solver steps can
be prohibitive. We consider here the time taken for both steps, for some different
preference structures. We will discuss the following cases: when each feature fi ∈
F (C) is UI of every other feature, when non are UI of any other feature, when each
UI feature set is of size equal to the log of the number of features in F (C). There
are two different complexity questions to ask. One is the time and space required to
construct u. The other is the time and space required to evaluate u(m) on a particular
model m.

In the following, we assume that F (C) = N and that the number of utility-
independent sets in the partition S is k. The time required for the SAT solver depends
on both the number of clauses and the number of boolean variables appearing in the
SAT problem. The number of boolean variables is bounded by |C∗| ∗ k, and the
number of clauses depends on the number of conflicts among rules, which we do not
have a good bound upon. For a rule r the number of conflicts can be estimated by
|s(r)| ∗ N

k
. The SAT clauses are of two forms. The first is to ensure that every rule

agrees with some UI set. Thus, these clauses have one variable per UI set Si such
that s(r) ∩ Si 6= ∅. We upper-bound the quantity |{Si | s(r) ∩ Si 6= ∅}| by k. The
second is to ensure at least one rule of a conflict is ignored. These clauses have a
number of boolean variables equal to the number of rules involved in the conflict.
The number of rules in each conflict is bounded by |C∗| and by 2|Si|, since there can
only be 2|Si| different rules per utility-independent set. In pathological cases, the
number of conflicts could be as high as |C∗|!, if every rule conflicts with every other
set of rules. However, it is difficult to imagine such scenarios. Particularly, we assume
the preferences C∗ are consistent, and will therefore have a low number of conflicts.
Clearly, we have no good bound on the number of conflicts. However, since there is
no known polynomial-time algorithm for the satisfiability of our CNF formula, the
SAT portion of the algorithm will have worst-case exponential time cost unless we can
bound the number of conflicts and rules by O(log(|F (C)|)). Simple counterexamples
exist that have O(|F (C)|) conflicts. Thus, the efficiency of our algorithm depends
on heuristic methods to both 1) reduce the number of conflicts and 2) quickly solve
SAT problems. We have mentioned earlier the use of partial lexicographic orderings
to set some of the scaling parameters ti, and the use of fast randomized SAT-solvers
to quickly solve our constraint problem.

We have already shown that the number of linear inequalities contributed by a rule
is less than 2|Sa(r)∪Sd(r)|. More precisely, for each rule, there is one inequality for each
combination of the maximum and minimum of ui(m1) − ui(m2) for each subutility
function. For the special case where i is such that |Si s(r)| = 0 i contributes exactly
one term, since the minimum and maximum are the same. Thus each rule contributes

∏

i∈Sa(r)∪Sd(r)

{

2 if |si\s(r)| ≥ 1
1 if |si\s(r)| = 0

}

First we consider two extreme cases. Suppose that every feature is found to be util-
ity dependent upon every other feature, so that the partition S is S1 = {f1, f2, ..., fN},
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and k = 1. Then there can be no conflicts, since every rule must agree with u1. Thus,
there are no SAT clauses and no linear inequalities needed. However, the evaluation
time of u(m) is the time taken to traverse a model graph of all N features. We argued
in chapter 3 that this is always worst-case exponential in N .

On the other hand, suppose that every feature is found to be utility independent
of every other feature, and we have k = N . The number of inequalities per rule is
exactly one, we have the total number of inequalities equal to |C∗|. The evaluation
time of u(m) is order N , since we evaluate N graphs of size 2.

Now suppose we have a more balanced utility decomposition. Suppose each utility-
independent set is of size log N . Then k = N/(log N). The number of inequalities
per rule is less than 2|Sa(r)∪Sd(r)|, and since |Sa(r) ∪ Sd(r)| ≤ N/ log N , this is less
than 2N/ log N . Thus the total number of inequalities is less than |C∗| ∗ 2N/ log N . The
evaluation of u(m) requires traversing k graphs each of size 2log N . Thus evaluating
u(m) is order N 2/(log N).

If the size of the utility-independent sets gets larger than log N , then we will not
have polynomial time evaluation of u(m), In addition, the number of possible linear
inequalities goes up exponentially with the number of utility-independent sets each
rule overlaps with.

Thus, given a favorable MUI decomposition and few numbers of conflicts, we can
create a utility function in time O(maxr(2

|Sa(r)∪Sd(r)|) + |C∗|2 + maxi 2
|Si|). The first

term is for the number of inequalities, the second term is for the utility independence
computation, and the third term is for actually constructing the subutility functions
ui. We can then evaluate u(m) in time O(maxi 2

|Si|).

5.7 Extending with Weak Preferences

The techniques outlined above work when the input set of preferences are entirely
strict, and we can assume that no two models must have the same utility in a con-
sistent utility function. The graphical utility function can include cycles, but using
GUFs with cycles as subutility functions within the presented framework can create
complications.

The use of strict preferences in the feature vector language is motivated by the
desires to avoid degenerate preferences and to use our heuristics, such as a lexico-
graphic ordering. If all preferences are weak, then there is a (class of) trivial utility
functions consistent with the weak preferences in which every model receives the same
utility. In the linear inequality step, it is the desire to avoid the trivial solution ti = 0,
1 ≤ i ≤ Q, that requires us to use linear inequalities of the form:

∑

i∈{Sa(r)∪Sd(r)}

tiui(m1)−
∑

i∈{Sa(r)∪Sd(r)}

tiui(m2) ≥ ε (5.21)

rather than of the form:

∑

i∈{Sa(r)∪Sd(r)}

tiui(m1)−
∑

i∈{Sa(r)∪Sd(r)}

tiui(m2) ≥ 0 (5.22)
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However, we could alter this to allow specific weak preference rules to generate
linear inequalities of the form in equation 5.22. If there is a mix of weak and strict
preferences generating a mix of inequalities of the forms in equations 5.21 and 5.22,
then the system of linear inequalities is unlikely, in general, to have the trivial solution
ti = 0 for all ti.

Allowing weak preferences makes us unable to use the lexicographic ordering sys-
tem presented in section 5.4.2 on UI sets that overlap a weak preference rule. That
is, if we have a weak preference rule r, we cannot use the lexicographic ordering on
any set Si if Si ∩ s(r) 6= ∅.

5.8 Summary

In this chapter we have presented a number of methods of assigning scaling parame-
ters to the utility function u(m) =

∑

i tiui(m) and choosing which subutility functions
should be 1-consistent with which rules. Some methods are faster than others. How-
ever, the methods presented here are not complete - they may fail to produce a utility
function from ceteris paribus preferences C∗. When the methods fail, it is always pos-
sible to join partition elements Si, Sj ∈ S together to perform constraint satisfaction
and linear programming on a smaller problem. Work in progress addresses optimal
choice of which feature sets to join together.

We note that the combination of a lexicographic ordering over a subset of the
features is a strong heuristic. It is possible to arrange as many as possible of the
features into a lexicographic ordering, then use the SAT-conflict resolution system
and linear inequalities to assign the remaining utility-independent sets and scaling
parameters. However, this method remains to be analyzed. We should not assume this
method is entirely correct, it places unnecessary constraints on the linear inequalities,
and make finding a correct solution tricky.
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Chapter 6

A Complete Algorithm

In the preceding, we have described several parts of an algorithm for computing with
qualitative ceteris paribus preference statements. This has given us enough tools to
accomplish the goal of the thesis, to find a utility function u such that p(u) ∈ [C]
for a set of ceteris paribus preferences C. In the following, we reiterate how these
techniques can be woven together into a complete algorithm.

Our algorithm has several steps. Firstly, the algorithm takes as input a set C of
ceteris paribus preference statements in the language L, presented in section 1.2, and
a type of graphical utility function g (from chapter 3). These statements are logical
statements over a space of features F . The algorithm outputs a utility function u
consistent with C. The steps of the algorithm are as follows:

1. Compute the set of relevant features F (C), that is the support of C.

2. Compute C∗ = σ(C). Translation σ(C) is defined in section 2.2.1 and converts
a set of preferences C in language L to a C∗ of preferences in the language
L∗(F (C)).

3. Compute a partition S = {S1, S2, ..., SQ} of F (C) into mutually utility-independent
feature sets, by the pairwise comparison of rules in C∗, as discussed in section
4.3.

4. Construct relevant rule sets Ri for each Si. Ri is defined to be the set of rules
r ∈ C∗ such that s(r) ∩ Si 6= ∅.

5. Construct the restricted model graph Gi(Ri) for each set of rules Ri.

6. Compute a minimal and complete set Yi of cycles Yik for each graph Gi(Ri)
such that each cycle Yik is a set of rules from Ri.

7. Construct the satisfiability problem P (C∗, S) from all cycles Yik.

8. Find a solution Θ to P (C∗, S).

9. Choose conflict-free rule sets Ri ⊆ Ri sets using solution Θ of P (C∗, S), as given
in equation 5.2.
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10. Construct cycle-free restricted model graphs G′
i(Ri)

11. Define each subutility function ui to be the graphical subutility function of type
g based on G′

i(Ri).

12. Use definition 5.3 to construct I(C∗, S, R), a system of linear inequalities relat-
ing the parameters ti.

13. Solve I(C∗, S, R) for each ti using linear programming.

(a) If I(C∗, S, R) has a solution, pick a solution, and use the solution’s values
for ui and ti to construct and output a utility function u(m) =

∑

i tiui(m).

(b) If I(C∗, S, R) has no solution, construct u to be the graphical utility func-
tion of type g based on G(C∗), and output u.

This algorithm is correct and complete, further it is possible to prove as much by
reference to the previous theorems presented in the thesis. We present this here.

Theorem 6.1 (Completeness) Given a set of ceteris paribus preferences C, the
above algorithm produces a utility function u such that p(u) ∈ [C].

Proof. Theorem 2.1 shows that C∗ = σ(C) represents the same preference as
C. Therefore, any utility function u such that p(u) ∈ [C∗] satisfies p(u) ∈ [C]. By
theorem 4.2, the partition S is a partition of F (C) into mutually utility-independent
feature subsets. Lemma 5.2.1 implies that a minimal and complete set of conflicts
Yi for rule set Ri can be computed by performing cycle-detection on the restricted
model graph Gi(Ri). By definitions 5.1 and 5.2, S,R, Y , are enough to construct a
satisfiability problem P (C∗, S). By lemma 5.4.2, the solution Θ to P (C∗, S) allows
choosing of Ri conflict-free. By Lemma 5.2.1, each restricted model graph Gi(Ri) is
cycle-free. It is then possible to build and solve a set of linear inequalities I(C∗, S, R),
as given in definition 5.3. If I(C∗, S, R) has a solution, then this solution provides
values for each ti. By theorem 5.8 u(m) =

∑

i tiui(m) is a utility function consistent
with C∗. If I(C∗, S, R) has no solution, then the algorithm outputs u the graphical
utility function of type g based on G(C∗). By theorems 3.1, 3.2, 3.3 and 3.4, this is
a utility function consistent with C∗. �
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Chapter 7

A Detailed Example

We illustrate the above methodology with an example. Suppose a system administra-
tor sets preferences about the relative performance and security of different processes
on a digital animation company’s computers. The system administrator identifies the
following processes running on the company’s computers:

1. login

2. mail

3. web server

4. animation

5. database

6. backup

7. SETI at home

The computers do the normal tasks of authenticating the users of the system, serving
electronic mail, displaying a promotional website about the company’s work, actually
doing the animation computations, keeping a database of business records, backup
of the files and data, and, when the machines aren’t otherwise busy, the company
aids astronomers in the search for extraterrestrial life (seti). For the purpose of this
illustration we assume each of these processes can be optimized either for security or
performance but not for both. The system administrator then specifies the following
preferences over the processes, shown in figure 7-1. In addition, there are two situ-
ations that effect the preferences over process performance and security. These are
an upcoming payday, which requires massive database accesses to compute payrolls,
and the threat of a mail-worm virus, which requires massive mail security to prevent
damage to the company’s system. The preferences among different processes and
involving these two conditions are given in figure 7-2.

Since we assume that a given computer process can be optimized either for security
or for performance, we can combine each process into a single logical feature. We
define the features {f1, f2, ..., f9} as follows:
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Service Service-specific preferences

login login security � login performance
mail mail security � mail performance
web web performance � web security
animation animation performance � animation security
backup backup performance � backup security
seti seti performance � seti security

Figure 7-1: Pure service preferences

Cross-service preferences

login security � web security
web performance � seti performance

animation performance � seti performance
animation performance � mail performance

backup performance � seti performance
payday ∧ db security � payday ∧ db performance

payday ∧ db performance � payday ∧ animation performance
¬ payday ∧ animation performance � ¬ payday ∧ db performance

worm ∧ mail security � worm ∧ login security
¬ worm ∧ login security � ¬ worm ∧ mail security

Figure 7-2: Mixed service preferences

70



Preference logical preference

login security � login performance ¬f1 � f1

mail security � mail performance ¬f2 � f2

web performance � web security f3 � ¬f3

a performance � a security f4 � ¬f4

payday ∧ db security � payday ∧ db performance f8 ∧ ¬f5 � f8 ∧ f5

backup performance � backup security f6 � ¬f6

seti performance � seti security f7 � ¬f7

login security � web security ¬f1 � ¬f3

web performance � seti performance f3 � f7

a performance � seti performance f4 � f7

a performance � mail performance f4 � f2

backup performance � seti performance f6 � f7

payday ∧ db perf � payday ∧ a perf f8 ∧ f4 � f8 ∧ f5

¬ payday ∧ a perf � ¬ payday ∧ db perf ¬f8 ∧ f5 � ¬f8 ∧ f4

worm ∧ mail security � worm ∧ login security f9 ∧ ¬f2 � f9 ∧ ¬f1

¬ worm ∧ login security � ¬ worm ∧ mail security ¬f9 ∧ ¬f1 � ¬f9 ∧ ¬f2

Figure 7-3: Ceteris paribus preferences

f1 = true iff login performance iff ¬ login security
f2 = true iff mail performance iff ¬ mail security
f3 = true iff web performance iff ¬ web security
f4 = true iff animation performance iff ¬ animation security
f5 = true iff database performance iff ¬ database security
f6 = true iff backup performance iff ¬ backup security
f7 = true iff seti performance iff ¬ seti security
f8 = true iff payday iff ¬ payday
f9 = true iff mail worm iff ¬ mail worm

We take the preferences expressed in figures 7-1 and 7-2 and translate them into
ceteris paribus preferences in the formalism of section 1.2, and present the result in
figure 7-3.

Then we convert the ceteris paribus preferences in figure 7-3 into preferences in
Lr(V), where V = (f1, f2, ..., f9). The preferences converted to Lr(V) are presented in
figure 7-4.

The next step is to compute a partition of F (C) into mutually utility-independent
features. We check each pair of rules in C∗. Rules #13 and #14 establish dependence
between features f4, f5, and f8. Similarly, rules #15 and #16 establish the dependence
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Rule Ceteris paribus preference, C Lr(V) preference, C∗

r1 ¬f1 � f1 0******** � 1********
r2 ¬f2 � f2 *0******* � *1*******
r3 f3 � ¬f3 **1****** � **0******
r4 f4 � ¬f4 ***1***** � ***0*****
r5 f8 ∧ ¬f5 � f8 ∧ f5 ****0**1* � ****1**1*
r6 f6 � ¬f6 *****1*** � *****0***
r7 f7 � ¬f7 ******1** � ******0**
r8 ¬f1 � ¬f3 0*1****** � 1*0******
r9 f3 � f7 **1***0** � **0***1**
r10 f4 � f7 ***1**0** � ***0**1**
r11 f4 � f2 *0*1***** � *1*0*****
r12 f6 � f7 *****10** � *****01**
r13 f8 ∧ f4 � f8 ∧ f5 ***10**1* � ***01**1*
r14 ¬f8 ∧ f5 � ¬f8 ∧ f4 ***01**0* � ***10**0*
r15 f9 ∧ ¬f2 � f9 ∧ ¬f1 10******1 � 01******1
r16 ¬f9 ∧ ¬f1 � ¬f9 ∧ ¬f2 01******0 � 10******0

Figure 7-4: Ceteris paribus preference rule definitions for rules r1, ..., r16, preferences
shown in Lr and Lr(V)

of f1, f2, and f9. So we have our partition S of F (C) as follows:

S = {S1, S2, S3, S4, S5}
S1 = {f1, f2, f9}
S2 = {f3}
S3 = {f4, f5, f8}
S4 = {f6}
S5 = {f7}

(7.1)

The corresponding relevant rule-sets Ri for each Si are given below, where each rule
rj is defined in figure 7-4:

R1 = {r1, r2, r8, r11, r15, r16}
R2 = {r3, r8, r9}
R3 = {r4, r5, r10, r11, r13, r14}
R4 = {r6, r12}
R5 = {r7, r9, r10, r12}

(7.2)

Now we construct restricted model graphs Gi(Ri) for each set Si ∈ S. We present
the graph G1(R1) in figure 7-5. The nodes in the graph represent models, accordingly
are labelled with the letter “M”, and subscripted with the decimal integer represen-
tation of their binary truth assignments to the features in S1, with low-order bits
corresponding to higher numbered features. For example, “M3” represents the model
011 over features {f1, f2, f9}, where f1 = false, f2 = true, and f9 = true. The restricted
rules for S1 are as follows:
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M2

M4

M0

M6

r4 r10

r4 r10

r14

M1

M3

M5

M7

r4 r10

r4 r10

r5

r5

r13

Figure 7-5: Restricted model graph G1(R1) for the set S1 = {f1, f2, f9}, R1 is defined
in equation 7.2. Edges between models are labelled with the rule(s) that cause the
edge.

Rule Restriction to S1 = {f1, f2, f9}

r1 0** � 1**
r2 *0* � *1*
r8 0** � 1**
r11 *0* � *1*
r15 101 � 011
r16 010 � 100

The restricted model graph G2(R2) is shown in figure 7-6. The restricted rules for
S2 are shown below:

Rule Restriction to S2 = {f3}

r3 1 � 0
r8 1 � 0
r9 1 � 0

It is merely a coincidence that two of these rules are redundant.

The restricted model graph G3(R3) is shown in figure 7-7, and the rules restricted
to S3 = {f4, f5, f8} are shown below:
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M1

M0

Figure 7-6: Restricted model graph G2(R2) for the set S2 = {f3}, R2 is defined in
equation 7.2. This graph is, coincidentally, identical to G4(R4) for the set S4 = {f6}.

Rule Restriction to S3 = {f4, f5, f8}

r4 1** � 0**
r5 *01 � *11
r10 1** � 0**
r11 *1* � *0*
r12 101 � 011
r13 010 � 100

The restricted model graph Gr(R4) is identical to the graph G2(R2). However,
the rules of R4 restricted to S4 = {f6} are somewhat different, and shown here:

Rule Restriction to S4 = {f6}

r6 1 � 0
r12 1 � 0

The restricted model graph G5(R5) is shown in figure 7-8. The rules R5 restricted
to S5 = {f7} are shown below:

Rule Restriction to S5 = {f7}

r7 1 � 0
r9 0 � 1
r10 0 � 1
r12 0 � 1

From the model graphs G1(R1), ..., G5(R5), we compile sets of rules that cause cy-
cles in each restricted model graph. These conflicts between rules will be resolved via a
satisfiability problem P (C∗, S). As is evident from the figures, G1(R1), G2(R2), G4(R4)
have no cycles. However, G3(R3) has two cycles. We annotate the edges of G3(R3)
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M1
M2

M3

M4

M0

M5

M7

M6

r4 r10
r4 r10

r4 r10

r4 r10

r5

r5

r11

r11
r11

r11

r13r14

Figure 7-7: Restricted model graph G3(R3) for the set S3 = {f4, f5, f8}, R3 is defined
in equation 7.2. Edges between models are labelled with the rule(s) that cause the
edge.

M1

M0

r9 r10 r12
r7

Figure 7-8: Restricted model graph G5(R5) for the set S5 = {f7}, R5 is defined in
equation 7.2. Edges between models are labelled with the rule(s) that cause the edge.
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with the rule or rules that imply the edge, so that we can easily determine from the
graph which rules cause cycles. Therefore, set S3 has the following conflict:

Y3,1 = {r5, r11} (7.3)

Note that the two cycles are redundant. The rules r5 and r11 cause two separate
cycles, but this translates into only one set of conflicting rules. On the set S5 we have
cycles:

Y5,1 = {r7, r9}
Y5,2 = {r7, r10}
Y5,3 = {r7, r12}

(7.4)

The rule r7 conflicts with each of the other rules in R5.

We now build a satisfiability problem, P (C∗, S), to resolve the cycles found in
the restricted model graphs. We use the boolean variable zij to represent the rule rj

restricted to set Si. We first generate conflict clauses for each cycle. These are as
follows:

Cycle CNF-clause

Y3,1 ¬z3,5 ∨ ¬z3,11

Y5,1 ¬z5,7 ∨ ¬z5,9

Y5,2 ¬z5,7 ∨ ¬z5,10

Y5,3 ¬z5,7 ∨ ¬z5,12

We then generate rule-set clauses for each rule r involved in any conflict. These are
as follows:

Rule CNF-clause

r5 z3,5

r7 z5,7

r9 z2,9 ∨ z5,9

r10 z3,10 ∨ z5,10

r11 z1,11 ∨ z3,11

r12 z3,12 ∨ z4,12 ∨ z5,12

Each clause must be satisfied, or we know that there is no additive decomposition
utility function consistent with the input preferences. We use any SAT-solver to find
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a solution for P (C∗, S). One such solution is as follows:

z3,5 = true
z3,11 = false
z5,7 = true
z5,9 = false
z5,10 = false
z5,12 = false
z2,9 = true
z5,9 = true
z3,10 = true
z1,11 = true
z3,12 = true
z4,12 = true

We then construct the rule-sets Ri ⊆ Ri according to equation 5.14:

R1 = {r1, r2, r8, r11, r15, r16}
R2 = {r3, r8, r9}
R3 = {r4, r5, r10, r13, r14}
R4 = {r6, r12}
R5 = {r7}.

(7.5)

Note that R1 = R1, R2 = R2, and R4 = R4. We compute restricted model graphs
G3(R3) and G5(R5), shown in figures 7-9 and 7-10, respectively. We need not compute
graphs G1(R1), G2(R2), or G4(R4), since they are the same as the corresponding
graphs Gi(Ri).

We define a graphical subutility function ui for each set Si based on the restricted
model graphs Gi(Ri). For each subutility function, we use the descendent graphical
utility function. We present these subutility functions in the following tables.

Model of S1 u1(m � S1)

000 1
001 2
010 3
011 1
100 2
101 4
110 4
111 2

Model of S2 u2(m � S2)

0 1
1 2
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M2

M4

M0

M5

M7
M6

r4 r10

r4 r10

r4 r10

r4 r10r11 r11

r11

r11

r13r14

M3

Figure 7-9: Restricted model graph G3(R3) for the set S3 = {f4.f5, f8}, R3 is defined
in equation 7.5. Edges between models are labelled with the rule(s) that cause the
edge.

M1

r7

M0

Figure 7-10: Restricted model graph G5(R5) for the set S5 = {f7}, R5 is defined in
equation 7.5. Edges between models are labelled with the rule(s) that cause the edge.

78



Model of S3 u3(m � S3)

000 1
001 1
010 3
011 2
100 2
101 3
110 4
111 4

Model of S4 u4(m � S4)

0 1
1 2

Model of S5 u5(m � S5)

0 1
1 2

With the subutility functions ui defined above, we define the system of linear
inequalities I(C∗, S, R). We need to add linear inequalities for any rule that disagrees
with any subutility function. In our example, these are rules r9, r10, r11, and r12. Since
we solve this with a linear program, for each rule, we add linear inequalities of the
form given in equation 5.17.

Since r9 has preferences over S2 and S5, we need to add linear inequalities for all
model pairs (m1,m2) in M(r9), or, all combinations of the minimum and maximum
values of u2(m1)− u2(m2) and u5(m1)− u5(m2) for model pairs satisfying r9. Below,
we enumerate the members of sets minmax(r9, 2), minmax(r9, 5), and M(r9). The
members ofM(r9) are written using the notation ((m′

1,m
′′
1), (m

′
2,m

′′
2)), where m′

1 and
m′

2 are models of S2, and m′′
1 and m′′

2 are models of S5.

Set Members

minmax(r9, 2) {1}
minmax(r9, 5) {−1}
M(r9) {((1, 0), (0, 1))}

Rule r10 intersects with sets S3 and S5. Below are the members of sets minmax(r10, 3),
minmax(r10, 5), andM(r10). The members ofM(r10) are written using the notation
((m′

1,m
′′
1), (m

′
2,m

′′
2)), where m′

1 and m′
2 are models of S3, and m′′

1 and m′′
2 are models

of S5.

Set Members

minmax(r10, 3) {1, 2}
minmax(r10, 5) {−1}

M(r10)
{((100, 0), (000, 1)),
((101, 0), (001, 1))}
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Rule u1 u2 u3 u4 u5

r9 +t2 −t5 ≥ 1
r10 +t3 −t5 ≥ 1
r10 +2t3 −t5 ≥ 1
r11 +t1 +2t3 ≥ 1
r11 +t1 −2t3 ≥ 1
r11 +2t1 +2t3 ≥ 1
r11 +2t1 −2t3 ≥ 1
r12 +t4 −t5 ≥ 1

Figure 7-11: Linear inequalities in I(C∗, S, R), for setting scaling parameters t1, ..., t5.
These are computed from rules that disagree with subutility functions ui. We list the
rule that contributes each of the linear inequalities

Below is a table for sets involving r11. We show the members of sets minmax(r11, 1),
minmax(r11, 3), andM(r11). The members ofM(r11) are written using the notation
((m′

1,m
′′
1), (m

′
2,m

′′
2)), where m′

1 and m′
2 are models of S1, and m′′

1 and m′′
2 are models

of S3.

Set Members

minmax(r11, 1) {1, 2}
minmax(r11, 3) {−2, 2}

M(r11)

{((000, 010), (010, 000)),
((000, 111), (010, 101)),
((001, 010), (011, 000)),
((001, 111), (011, 101))}

Finally we show members of sets minmax(r12, 4), minmax(r12, 5), and M(r12).
The members of M(r12) are written using the notation ((m′

1,m
′′
1), (m

′
2,m

′′
2)), where

m′
1 and m′

2 are models of S4, and m′′
1 and m′′

2 are models of S5.

Set Members

minmax(r12, 4) {1}
minmax(r12, 5) {−1}
M(r12) {((1, 0), (0, 1))}

From the above four tables, we generate a list of linear inequalities I(C∗, S, R), and
solve for the scaling parameters t1, ..., t5. The inequalities in I(C∗, S, R) are shown in
figure 7.
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We also require that each ti > 0. We use linear programming to solve I(C∗, S, R).
One solution is

t1 = 5
t2 = 2
t3 = 2
t4 = 2
t5 = 1

We can, finally, write an additive decomposition utility function for the set of
preferences given in figure 7-3. The function is:

u(m) = 5u1(m) + 2u2(m) + 2u3(m) + 2u4(m) + u5(m)

where the ui are the graphical subutility functions defined in previously. The complex-
ity of evaluating u(m) for a model is now time O(|S|), if we implement the subutility
functions as constant-time lookup hash tables of values for each model. Thus, we have
to store hash tables of size dominated by the largest utility-independent feature set,
S1 or S3. In this case, |S1| = 3, so we require space O(23). However, this represents
a large improvement in performance over a simple graph method (as presented in
chapter 3), where the running time (or space) required is O(29).

We can then use the utility function to compute utilities of some models. For
example, we compute the utilities of the model receiving lowest utility (000000000),
and the model receiving highest utility (101111111). These can be computed by
finding the minimums and maximums, respectively, of the subutility functions.

Model of F (C) u1 u2 u3 u4 u5 u(m)

000000000 +5 ∗ 1 +2 ∗ 1 +2 ∗ 1 +2 ∗ 1 +1 ∗ 1 = 12
101111111 +5 ∗ 4 +2 ∗ 2 +2 ∗ 4 +2 ∗ 2 +1 ∗ 2 = 38

We note that the highest utility corresponds to a situation where the processes for
logic, web server, animation, database, backup, and SETI at Home, are all optimized
for performance. The mail process is optimized for security. Also, both payday occurs
and an email worm attack is threatened. Naturally, it is not always payday and it is
not always the case that the company is preparing for an email worm attack. Suppose
that it is not payday and there is no attack, then the model with highest utility is
111111100, which corresponds to the configuration where each process is optimized
for performance.
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Chapter 8

Implementation

We implemented the general form of the algorithm laid out in this thesis. The imple-
mentation is done in C# and available from www.mit.edu/˜mmcgeach. The imple-
mentation has an interface allowing atoms, models, rules, and preference operators
to be defined. The internal representations of models are strings or sometimes bit
vectors packed into integers when its know the models will be less than 32 bits long
(as is appropriate for a model restricted to a subutility function - if the subutility
functions have more than 32 features, the algorithms are entirely intractable anyway).
We translated java code for solving SATs in CNF and for solving linear programming
problems. We note that much translation between Java and C# can be done auto-
matically. Our SAT solver was a translation into C# of a translation into Java by
Daniel Jackson1, of the original WalkSat algorithm written by Henry Kautz and Bart
Selman in C. Similarly, we translated a Linear Programming package called JLA-
PACK2, which is a Java translation of the popular C library CLAPACK, which is
itself a translation of the popular Fortran LAPACK.

8.1 Application Programming Interface

We describe here an interface to the preference algorithms implemented. We call
this the “iPreferenceLibrary”, an interface to the preference library. There are five
important interfaces in the preference library: IAtom, IModel, IOperator, IRelation,
and IRelationSet. IAtom is for defining the atoms of the feature space, those atoms
over which a preference is expressed. IModel allows models to be defined, where a
model is a collection of boolean truth assignments to Atoms. There is currently one
type of IOperator, the “strictly preferred to” operator. A Relation is composed of an
Operator and two Models, where the LHS-Model is the left operand of the Operator,
and the RHS-Model is the right operand of the Operator. A Relation is a preference
or a preference rule. IRelationSet allows creations of a collection of relations. Once a
IRelationSet is defined, a utility function can be constructed on that set, and utilities

1http://sdg.lcs.mit.edu/ dnj/walksat/
2Siddhartha Chatterjee, The Harpoon Project,

http://www.cs.unc.edu/Research/HARPOON/jlapack/
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of models over the set of atoms used therein can be computed.
Each interface has a corresponding implementation class. These are CPAtom,

CPModel, CPOperator, CPRelation, and CPRelationSet, respectively. We describe
the API for the interaction of these in the following.

8.1.1 CPAtom Class

A CPAtom inherits from IAtom. The IAtom declaration is as follows.

public interface IAtom

{

string Name { get; }

object Id { get;}

}

The Id of an IAtom must be unique. This is used in determining if one atom is the
same as another atom. A CPAtom is defined by its name, and the Id of a CPAtom
is the hashcode of the atom’s name. CPAtom overrides both Equals(Object o) and
GetHashCode() to refer to the Id of the atom.

8.1.2 CPModel Class

A CPModel is a collection of CPAtoms paired with truth values. The interpretation
is that a model is a collection of features (atoms), and the features are either true
or false. Features not included in the model are assumed to be “don’t care”, in the
ceteris paribus sense, frequently represented with ‘∗’ in earlier sections of this paper.

A CPModel inherits from IModel. IModel is defined as follows

public interface IModel

{

void Add(IAtom atom, bool assignment);

void Remove(IAtom atom);

bool Contains(IAtom atom);

bool ValueOf(IAtom atom);

int Count();

IEnumerator GetEnumerator();

}

Methods

void Add(IAtom atom, bool assignment);

Adds atom to the model with truth value assignment. If atom was already a member
of the model, it overwrites the previous truth value of that atom.

public void Remove(IAtom atom);
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Removes atom from the model, if it exists.

public bool Contains(IAtom atom);

Checks if the atom is contained in the model. If so, returns true, otherwise false.
Atoms are compared using Object.Equals().

public bool ValueOf(IAtom atom);

Returns the truth value assigned to atom when atom was added into the model. It
is an error to call this on an atom that is not in the model.

public int Count();

Returns the number of different atoms in the model.

public IEnumerator GetEnumerator;

Returns an enumeration of all the atoms contained in the model.

8.1.3 CPOperator Class

A CPOperator inherits from IOperator. The IOperator declaration is as follows.

public interface IOperator

{

string Name {get;}

}

Operators are largely left for future use. As it is, the only operator is a “strict
preference” operator, declared in CPOperator:

public static readonly CPOperator StrictPref =

new CPOperator("StrictPref");

8.1.4 CPRelation Class

A CPRelation inherits from IRelation. The IRelation declaration is as follows.

public interface IRelation

{

IModel LHSModel {get; set;}

IModel RHSModel {get; set;}

IOperator Operator {get; set;}

}
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A CPRelation is a ceteris paribus preference statement. The CPRelation is composed
of two CPModels and one CPOperator. The semantics of the preference is “LHSModel
IOperator RHSModel.” Since, at this time, there is only one IOperator, the “strict
preference” operator, the CPRelation implies that the LHSModel CPModel is strictly
preferred to the RHSModel CPModel.

The CPRelation constructor and the LHSModel and RHSModel set method will
throw exceptions if the LHSModel and RHSModel do not contain the same atoms.
This is the same restriction we defined earlier on rules r in Lr(V): if fi(LHS(r)) = ∗
then fi(RHS(r)) = ∗ and vice versa.

8.1.5 CPRelationSet Class

A CPRelationSet inherits from IRelationSet. The IRelationSet declaration is as fol-
lows.

public interface IRelationSet

{

void Add(IRelation rel);

void Remove(IRelation rel);

bool Contains(IRelation rel);

bool ContainsAtom(IAtom atom);

IModel Concretify(IModel model);

IEnumerator GetEnumerator();

void InitEngine();

double GetUtility(IModel model);

IEnumerator GetTopN(int n);

}

A CPRelationSet is a set of CPRelations. As a set of CPRelations, the CPRelationSet
supports the usual set operations: add, remove, and contains. The CPRelationSet
also has functions for actually invoking the Ceteris Paribus Preference Engine and
computing the utility of models in relation to the constituent CPRelations. The
CPRelations contained within the CPRelationSet need not have all the same Atoms
within.

void Add(IRelation rel);

Adds the given CPRelation to the CPRelationSet. If the relation is already in the
CPRelationSet, nothing is changed.

void Remove(IRelation rel);

Removes the CPRelation from the CPRelationSet. If the relation is not in the
CPRelationSet, nothing is changed.

bool Contains(IRelation rel);
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Returns true if the given CPRelation is already in the CPRelationSet. For two
CPRelations to be equal, they must be the same object (i.e. two pointers point-
ing at the same object).

bool ContainsAtom(IAtom atom);

This returns false if InitEngine has not yet been called on the CPRelationSet. This
function returns true if the input atom is a member of any CPModel in any CPRela-
tion in the CPRelationSet.

IModel Concretify(IModel model);

This returns the input CPModel if InitEngine has not yet been called on the CPRela-
tionSet. The CPRelationSet maintains a list of all atoms used in all of the constituent
CPRelations. Concretify returns a CPModel that is an extension of the input CP-
Model in the following way. For any atom in the CPRelationSet but not in the
CPModel, the new model now has a value of “false” for that atom. The returned
CPModel is otherwise the same as the input CPModel.

IEnumerator GetEnumerator();

Returns an enumeration of all the CPRelations contained in the CPRelationSet.

void InitEngine();

Builds a ceteris paribus utility function from the preferences entailed by the CPRela-
tions in the CPRelationSet. Other functions of CPRelationSet can then be used. If
changes to the CPRelations in the CPRelationSet after calling InitEngine(), and need
to be incorporated into the utility function, then InitEngine should be called again.
This function can be computationally expensive.

double GetUtility(IModel model);

Throws an exception if called before InitEngine has been called. Otherwise returns
the utility of the input CPModel according to the utility function entailed by the
CPRelations in the CPRelationSet.

IEnumerator GetTopN(int n);

Throws an exception if called before InitEngine has been called. Otherwise returns
an enumeration of N CPModels that receive the top N utility values according to
the utility function entailed by the CPRelations in the CPRelationSet.
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8.1.6 Simple Example

The Following is a simple example of how to use the API presented in the preceding
sections.

CPAtom a1 = new CPAtom("male");

CPAtom a2 = new CPAtom("tall");

CPAtom a3 = new CPAtom("dark");

CPAtom a4 = new CPAtom("handsome");

CPModel m1 = new CPModel();

m1.Add(a1, true);

m1.Add(a2, true);

m1.Add(a4, true);

CPModel m2 = new CPModel();

m2.Add(a1, false);

m2.Add(a2, false);

m2.Add(a4, false);

CPRelation r1 = new CPRelation(m1,m2);

CPAtom a5 = new CPAtom("rich");

CPModel m3 = new CPModel();

m3.Add(a5, true);

m3.Add(a1, false);

m3.Add(a2, true);

CPModel m4 = new CPModel();

m4.Add(a5, false);

m4.Add(a1, false);

CPRelation r2 = new CPRelation(m3,m4);

CPRelationSet cprs = new CPRelationSet();

cprs.Add(r1);

cprs.Add(r2);

cprs.InitEngine();

cprs.GetTopN(5);
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Chapter 9

Related Work

Our work has some general characteristics that set it apart from other work in the field
of Artificial Intelligence dealing with utility theory. In general, the literature usually
assumes that some human-centric method is used to assess a human decision maker’s
preferences and utilities over a feature space (such as described in [KR76]). Our work
produces such a function from preference statements. Further, our work contains a
method for automatically computing utility independence, which is generally assumed
or gathered directly from the decision maker in the literature. And finally, no other
work actually computes a numeric utility function from purely qualitative preferences.
On the other hand, our work does not treat probabilistic actions, which complicates
things immensely. Researchers who are concerned to treat probability frequently
spend most of their effort on such issues.

Many researchers have defined related logics of desire [vdTW98, MS99, Sho97],
several of them even define logics of ceteris paribus statements [TP94a, TP94b, BG96,
BG95, BBHP99]. We mention these in the following sections.

9.1 Related Systems

Leendert van der Torre and Emil Weydert [vdTW98], have an interpretation of goals
which is generally different from the ceteris paribus system mentioned here. They
define a conditional goal as a → b meaning if a obtains, then try to achieve b.
This puts them in close similarity to Bacchus and Grove’s conditional ceteris paribus
utilities [BG96], rather than the work of Doyle and Wellman [DW94]. The system
of van der Torre and Weydert is concerned to elevate goals to the semantic level
of desires, and as such propose a system wherein they assign each goal an a priori
utility. They can then add the utilities of the goals together, when one or more goals
are accomplished simultaneously. They allow goals to have negative impact if they are
not satisfied. The idea of giving goals semantics in terms of desires is natural, [WD91]
gives an interpretation of goals in terms of the same ceteris paribus representation
used in this thesis.

La Mura and Shoham use a very different representation, called expected util-
ity networks [MS99, Sho97], wherein they reason about utilities the way researchers
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have previously reasoned about probabilities. They discusses additive utility decom-
position, wherein a subutility is called a “factor” which is a constant utility amount
contributed to a situation if the situation makes the factor true. With a utility decom-
position in hand, they define “Bayes Nets for utilities,” called u-nets [Sho97] or eu-nets
[MS99] for “expected utility” nets, and show some powerful reasoning methods us-
ing these nets. These reasoning methods work similar to Bayesian network methods,
where an expected utility can be computed from the topology of the network and the
probability and utility functions present at each node. This work differs in two impor-
tant aspects from the work proposed in this thesis. Firstly, they use a vastly different
representation, necessitating different computation structures. Secondly, they take
the utility factors as primitives, known a priori, rather than constructing these from
some more basic preference information.

9.2 Ceteris Paribus Reasoning Systems

Tan and Pearl use conditional ceteris paribus comparatives [TP94a, TP94b]. While
these do use a ceteris paribus interpretation of preferences, they condition the state-
ment on some set of worlds. Thus the ceteris paribus rule only holds if some other
logical condition (or set of worlds) is also true. They assume each desire is quan-
tified, α � β by ε, such that the utility of α exceeds that of β by at least ε. This
quantification aside, their unconditional ceteris paribus semantics are equivalent to
those used here. They are concerned in [TP94a] to deal with the specificity of the
rules, and allow a more specific rule to override a more general rule. They do not deal
with the computation of preference queries: which outcomes are preferred to which
other outcomes. Thus this work does not address computation, nor the construction
of subutilities, which are the main two aims of this thesis.

Bacchus and Grove have presented a slightly different conception of ceteris paribus
preference specification [BG96], and algorithms for computing with it[BG95]. Similar
to La Mura and Shoham [MS99], their computation paradigm is an adaptation of
Bayesian Networks to utility. Their use of conditional additive utility independence
of sets of different features to define graphical representations is similar to our use of
unconditional additive utility independence. However, their graph represents depen-
dencies between features, they then compute aa simplified form of the utility function
from the cliques of the graph. Our work uses the preferences themselves to compute
utility independence, and the preferences to define the form of the utility function.

Bacchus and Grove present their preference representation in [BG96], where they
contrast their own approach with that of Doyle, Shoham, and Wellman [DSW91].
Bacchus and Grove use a conditional expected utility measure, the expected utility
divided by the total probability of occurrence, where if the sum of expected utility of
states satisfying φ is greater than those satisfying ¬φ then there is a preference for φ
over ¬φ. Their representation requires a priori knowledge of all the utilities and all
the probabilities of states satisfying φ and ¬φ.

The main differences between Bacchus and Grove’s work and our own are as
follows. Firstly, there are no qualitative preferences. Secondly, they do not discuss
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how to get utility independence, they assume it is given. Thirdly, they don’t talk
about how to construct the subutilities. Fourthly, their work is complicated by their
use of conditional additive independence (independence may fail sometimes) and use
of Bayes nets for probability computation. However, it is still similar in the sense
that they try to compute utility functions with ceteris paribus preferences.

Boutilier [BBHP99, BBGP97], also proposes a system of conditional ceteris paribus
preference statements. They use the conditions on the ceteris paribus statements to
define a graph structure, called a Ceteris Paribus Network. Each node is a feature,
and is annotated with a table describing the user’s (human decision maker’s) quali-
tative preferences given every combination of parent values.

Boutilier’s work allows complicated conditions on a ceteris paribus preference,
but the preference itself must be restricted to a single utility-independent attribute.
Our method allows both complicated conditions (section 1.2.1) and complicated pref-
erences spanning several utility-independent feature sets. Again, our work address
constructing the individual subutility functions, while other work does not. Boutilier’s
nodes in the cp-net are annotated with tables of utilities exponential in the size of
the number of features involved. This is equivalent to our (worst-case) exponential
time requirement to evaluate a subutility function for a UI feature set. The nodes in
the cp-net must then be traversed to compute a dominance query. Boutilier proves
some (weak) search methods for this traversal, and argues for some strong heuristics.
In many cases, their heuristics suffice to assure the search is backtrack free. However,
the number of nodes in the graph may be exponential in the size of the feature space.
When the heuristics apply, the search is generally linear in the number of features.
Thus, the complexity of comparing two models is similar to the complexity of com-
puting the utility of a model in our system, if we compile each subutility function
into an (exponential-size) look-up table.

Boutilier et. al.’s recent work allows combining their cp-net with a quantitative
utility net and then computing the utility of a model with the new structure [BBB01].
Therein they give substantial treatment of how to elicit preferences from human deci-
sion makers, and how to massage these preferences to conform to the “ucp-net” rep-
resentation. Interestingly, they obtain a series of constraints on the trade-off weights
between utility-independent feature sets, then use linear programming to solve for
the trade-off parameters.
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Chapter 10

Future Work

Future work extending this thesis can be divided into two groups. The first is work
using the current ceteris paribus representation and formalism. The second is work
that alters or augments the representation presented in some way.

There are a few avenues of future research that we mentioned briefly in the main
body of this thesis. We can attempt to synthesize the treatment of weak prefer-
ences in chapter 3 with the way we build subutility functions. It may be possible to
just pretend all weak preferences are actually strict preferences, and use constraint
satisfaction to choose one or the other weak preference when we have two asserting
m % m′ and m′ % m. Or we can allow these to both be satisfied by allowing a cycle
in ui from m to m′. If we allow a cycle from m to m′, that is, m ∼ m′, we must define
this ui to be disagreeing with any strict preference that assert either that m � m′ or
that m′ � m.

We might explore the possible uses of partial conflict-free ordering of mutually
utility-independent feature sets. It seems unlikely in general that entire conflict-free
orderings will be found, but more likely that partial conflict-free orderings would
arise. It may be straightforward to assign a partial lexicographic ordering to a partial
conflict-free ordering, then order the remaining sets using constraint satisfaction. This
approach is likely to complicate the definitions and use of linear inequalities.

Non-linear scaling could be addressed in a more intricate manner. Composing non-
linear functions with the subutility functions could remedy the issue. Or, conditioning
the value of the scaling parameter by the value of the subutility function would achieve
the same result. In either case, the important task will be determining the exact form
of the nonlinearity required.

We plan to extend the representation of qualitative preferences given herein in
several ways. Firstly, we might give a treatment of non-binary discrete valued fea-
tures. For this, the work of Wellman on Qualitative Probabilistic Networks [Wel90]
might be appropriate. The natural extension of that is to treat continuous-valued
features. From a purely speculative standpoint, treating continuous valued variables
could require a richer (and less qualitative) preference specification language. One
extension could be a representation similar to partial differential equations. The de-
cision maker might specify a partial relation between two features, such as “A is
10-times as desirable as B.” This has a natural representation in terms of partial

93



differential equations.
Alternatively, our representation could be fractured into several representations of

various decision theoretic concepts. Our feature vector language mixes together repre-
sentations of utility independence, tradeoff ratios between mutually utility-independent
feature sets, and preferences within a feature set. Clearly some of the power of the
representation presented herein comes from this combination, but it may be possible
to achieve faster reasoning methods by splitting the representations. However, this
direction would bring our work much closer to the work of Bacchus and Grove and
Boutilier et. al. as described in section 9.2
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Chapter 11

Conclusions

Although much work remains to be done in the area of reasoning with ceteris paribus
preferences, the work demonstrated herein has provided some answers. We have
shown a translation between the logical representation of ceteris paribus preferences
and a new, feature-vector representation of ceteris paribus preferences. The feature-
vector representation makes it simple to construct a model graph representing a par-
ticular set of preferences. This graph makes the definition of numeric utility functions
simple, although of worst-case exponential complexity. We have then shown how
mutual utility independence between features can be inferred from the structure of
preference statements in the feature-vector representation. Finally we demonstrated
some heuristic methods that can be used in the presence of utility independence to
achieve better performance on computing the numeric utility of a model, according
to a fixed set of preferences.

The work herein has provided several reasoning methods using the ceteris paribus
representation of [DSW91], for which there previously were no explicit methods devel-
oped in detail. There have been other representations of preferences, some of which
have well-developed reasoning methods. Future applications involving the automatic
specification of preferences, and computation with them, may now choose to use the
representation method of Doyle, Shoham, and Wellman and the reasoning methods
presented in this thesis.

95



96



Appendix A

Notation Index

In Order of Appearance

Chapter 1

L : Restricted logical language over the set of atoms A.
F : Set of binary features describing possible worlds or outcomes of interest.
A : Set of atoms. Each corresponds to a feature in the universe of discourse.
f(a) : The feature in F corresponding to atom a in A.
literals(A) : Set of atoms A and their negations.
M : Set of all models of L.
m,m′,mi : Any or a particular model ofM or another set of models.
fi(m) : The value assigned to feature fi in F by model m.
p, q : Any or a particular sentence in a logical language, such as L.
m |= p : m satisfies p, or, the assignment of truth values to atoms by m makes formula
p true.
[p] : Proposition p, the set of models making p true.
% : Weak preference.
� : Strict preference.
s(p) : Minimal set of atoms determining the truth of p.
m ≡ m′ mod p : Equivalence modulo p, models m,m′ are the same outside s(p).
m[p] : Model modifications of m making p true, the set of models satisfying p that
are all the same outside s(p). p D q : p is desired ceteris paribus at least as much as
q.
p B q : p is strictly desired ceteris paribus over q.
c : A ceteris paribus preference rule of the form pBq or pDq where p, q are statements
in L.
F(C) : x.
C : A set of preference rules.
[C] : Set of all weak preference orders consistent with C.
u : A utility function that maps each model of L to a real number.
p(u) : Preorder over models implied by the utility function u.
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Chapter 2

F (C) : Set of features corresponding to atoms in the union of supports of c ∈ C.
N : N = |F (C)|.
L∗ : Family of languages used in the feature vector representation.
V : Feature Vector, an ordered subset of F (C).
Γ : The alphabet {0, 1, ∗}.
L∗(V) : Particular language of ordered |V|-tuples taken from Γ.
v(L∗(V)) : The feature vector of L∗(V), or V .
Γ′ : The alphabet {0, 1}.
fi(p) : The value in Γ assigned by the statement p to the ith feature of F .
fi(m) : The truth value assigned by the model m to the ith feature of F .
M∗(V ) : Set of all models of L∗(V).
v(M∗(V)) : V .
α : FunctionM∗(F (C))→M.
[m] : equivalence class of m ∈M∗(F (C)), = {m′ | m′ = α(m)}.
m |= s : s ∈ L∗, m assigns the same truth values as s, except where s assigns a ‘∗’.
m � s : Restriction of m to set of features s, the truth values m assigns to the features
of s.
m |= m′ : m′ assigns truth values to a set of features that is a subset of the features
m assigns values. And these values are the same.
L∗

R(V) : language of rules in the feature vector language. Each of the form p � q,
p, q ∈ L∗(V).
LHS(r) : If r = p � q, LHS(r) = p.
RHS(r) : If r = p � q, LHS(r) = q.
s(p) : Support features of a statement p, those not marked with a ’*’.
s(r) : Support features of a rule r, those not marked with a ’*’.
(m1,m2) |= r : m1 |= LHS(r), m2 |= RHS(r), and the two models are the same
outside s(r).
σ(m) : function taking a truth assignment for a partial set of literals and extending
to a model of L∗(F (C)) by padding with ‘*’.
µ(k,L∗(F (C))) : A characteristic model of k in M∗(F (C)), any model m such that
m |= k.
[LHS(r)] : subset of models of L defined by {m′ | m′ = α(m) � F (C),m |= LHS(r)}.
σ(C) : σ : C → C∗, translation taking a set of ceteris paribus rules and converting
them to rules in L∗

R(F (C)).

Chapter 3

C∗ : An input set of preferences, each in L∗
R(F (C)).

G(C∗) : Model Graph.
es(m1,m2) : Directed edge in G(C∗), indicating that there is a strict preference for
m1 over m2.
ew(m1,m2) : Directed edge in G(C∗), indicating that there is a weak preference for
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m1 over m2.
uM : Minimizing GUF, longest path from m.
uD : Descendant GUF, number of unique descendants under m.
uX : Maximizing GUF, longest path ending at m.
uT : Topological GUF, rank of m in topological-sorted order.

Chapter 4

Si : A subset of F (C).
ûi : A partial utility function m � Si → R.
ui : A subutility function: m→ R such that ui(m) = ûi(m � Si) .
uS : Subutility function for the feature set S.
m1∧m2 : shorthand for combination of models, µ(m1,L(V)(F (C)))∪µ(m2,L(V)(F (C))).
Si : complement of features Si, that is F (C)\Si.
S : partition of F (C) into mutually utility-independent feature sets {S1, S2, ..., SQ}.

Chapter 5

ti : Scaling parameter.
uSi

consistent with r : if uSi
(m1) ≥ 1 + uSi

(m2) whenever (m1,m2) |= r and
(m1 � Si) 6= (m2 � Si) Gi(R) : Restricted model graph. Restrict features to Si.
Conflicting Rules R: R conflict if there is no subutility function consistent with all
r ∈ R.
r � Si : Rule restricted to a feature set. RHS(r) � Si succ LHS(r) � Si.
Ri : Set of rules from C∗, where each has s(r) ∩ Si 6= ∅.
Conflict-Free R: No subset of rules R conflict.
R is a minimal conflict set: Set of rules R conflict but no subset of R conflict.
Complete set of conflict sets: Contains all sets of conflicting rules over some feature
space.
Ri : Subset of rules from Ri such that Ri is conflict-free.
Graphical Subutility Function : subutility function based on Gi(Ri) and consistent
with rules Ri.
ui agrees with r : ui is a graphical subutility function based on Gi(Ri) and r ∈ Ri.
ui disagrees with r : ui is a graphical subutility function based on Gi(Ri) and
r ∈ (Ri\Ri).
Sa(r) : Set of indices i such that r ∈ Ri.
Sd(r) : Set of indices i such that r ∈ (Ri\Ri).
max(ui) : The maximum value returned by ui for any model m.
~S : Ordering of the utility-independent feature sets S.
~S conflict-free : If R1 is conflict free and so is Ri\(∪

i−1
j=1Rj) for all i > 1.

P (C∗, S) : Boolean CNF-form problem based on rules C∗ and decomposition S.
Yik : Minimal set of conflicting rules on Si.
Yi : Minimal and complete set of Yik for Si.
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Y : Set of all Yi.
Rc : Set of rules appearing in any sets in Y . zij : Boolean variable where i is an index
of Si ∈ S, and rj ∈ Rc.
Θ : Solution to P (C∗, S).
Θf : Set of variables zij assigned value false by solution Θ.
minmax(r, i) : Set of minimum and maximum values of (ui(m1) − ui(m2)) for all
(m1,m2) |= r.
M(r) : Set of model pairs (m1,m2) where for all i, (ui(m1)−ui(m2)) ∈ minmax(r, i)
R : set of all Ri.
I(C∗, S, R) : set of linear inequalities based on C∗, S, R.
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