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We address the energy-efficient broadcasting problem in ad hoc wireless networks. First 
we show that finding the minimum energy broadcast tree is NP-complete and develop an 
approximation algorithm, which computes sub-optimal solutions in polynomial time. We 
present a distributed algorithm that computes all N possible broadcast trees simultaneously 
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algorithms that address this problem. 
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Chapter 1 

Introduction 

Over the past decade, research interest in the area of ad hoc networks has increased dra

matically. An ad hoc network can be described as a network that is built in the absence 

of preexisting infrastructure. Common examples include networks for emergency response, 

sensor networks and various military applications. In emergency communication networks, 

the following scenario is a good example: communication infrastructure has been destroyed 

by a natural disaster, so each rescuer is given a radio that can broadcast messages wirelessly 

(at some limited range), and we would like to route messages between radios that cannot 

directly transmit to one another. Because the infrastructure for this communication network 

was not built before the radios are used, this is considered an ad hoc network. Ad hoc net

works are most useful in environments where the cost of constructing a fixed communication 

network is too high, and too time consuming compared to deploying an ad hoc network in its 

place. Consequently, research in this field focuses on constructing networks that can function 

with minimal resources (to lower per-node cost), without sacrificing usability. Examples of 
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ad hoc networking issues include energy usage, wireless interference avoidance, and routing 

robust to mobility. 

In this thesis, we are interested in the construction of energy-efficient one-to-all trees in 

ad hoc networks, as posed in [10]. Starting with a given source node s, the problem is to 

find a broadcast tree that allows s to send a message to all other nodes, using the minimum 

amount of energy. Although it is tempting to do so, we do not simultaneously deal with 

other issues such as channel contention and mobility - we believe that a well-formed solution 

to this problem can serve as an intuitive start to algorithms that also include other issues. 

We focus on a specific type of ad hoc network where all nodes are stationary (usually 

referred to as a "static" ad hoc network), and equipped with an omnidirectional transmitter. 

We assume that the transmission range of the transmitter can be adjusted from 0 up to a 

maximum range Rmax. Although previous energy-efficient routing research has focused on 

environments where the transmitter can either be turned off, or transmitting at its maximum 

range ([11]), we adopt the model of more recent ad hoc networking research where transmit

ters are permitted to choose any range in between 0 and Rmax ([13]-[17]). The transmitter 

is referred to as omnidirectional because it does not focus the message transmission in a 

particular direction. Therefore, when the omnidirectional transmitter sends a message at 

range r, all nodes within distance r can receive the message, regardless of their position. 

Naturally, when the node transmits a message at a higher range, it consumes more power. 

In analyzing the range-power tradeoff, we adopt a common communications model, where 

the power required to transmit the message is proportional to rCt (ex 2: 2 in all networks, and 

most typically is greater than 2). 

12 



2 4 
Figure 1-1. The Multicast Advantage 

Note that because each node can only transmit up to distance Rmax , it is possible that 

the source s cannot reach all nodes in the network directly. Therefore, some nodes will have 

the responsibility to forward messages on the behalf of s. We can then rephrase the one-to-all 

problem as one of assigning each node, ni, a range ri at which to forward received messages. 

The total cost of the broadcast tree can then be expressed as 2: rf. 

This is a very atypical cost function for a graph connectivity problem, in that cost is 

node weighted instead of edge weighted. Consider the example shown in Figure 1-1. In 

this situation, we denote the cost incurred when node s transmits at a distance just large 

enough to reach b as Power(s, b), and define Power(s, a) analogously. If s attempts to 

send a message to node b, this message will not be received by node a because a's distance 

to s is larger than b's distance to s (das > dbs ). However, s could optionally transmit at 

Power(s, a), in which case the message would be received by both a and b (because d bs < das). 

By transmitting to a, s can get a transmission to b for "free" because of each transmission's 

omnidirectionality. In [10], this was referred to as the "multicast advantage." In general, the 

power required for a node s to transmit a message to a set of nodes N is max Power(s, n). 
nEN 

A transmission at this power will be received by all nodes in N. 

The multicast advantage and node weighted cost function certainly differentiate this prob-
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lem from other network connectivity problems. In the first part of this thesis, we characterize 

the complexity of this problem, and show it is NP-complete. Consequently, it is inefficient 

to find the optimal solution to this problem, as it may take exponential time. Hence, it 

is important to investigate the possibility of an approximation algorithm - a polynomial 

time algorithm that does not necessarily find the optimal solution, but constructs solutions 

that are not much more costly than optimal. We first look at a previously published global 

approximation scheme ([10)), and explore improvements to it. We then investigate a dis

tributed approximation algorithm, and show its performance is comparable to a centralized 

approximation ([10)) in the average case. We conclude by introducing the multiple source 

broadcasting problem, and explore the extent to which multiple sources can be used to save 

energy. 

1.1 Problem Formulation 

The ad hoc wireless broadcasting problem can be stated as follows: We are given a set 

of nodes N and a function ¢J : N -+ Z x Z, which gives us a set of coordinates for each 

node on the two dimensional plane. Each of these nodes represents a static (non-mobile) 

wireless-enabled device that is capable of both transmitting and receiving messages from its 

neighbors. Additionally, we are given a range R f Z+, which represents the maximum distance 

any node can transmit a message, and a constant a > O. We construct the undirected graph 

G = (V, E) where V = Nand (i, j) f E ¢::::} dij ~ R. Assuming this graph is connected, 

the wireless broadcasting problem can be stated as follows: 

Given a source Sf N construct the minimum cost directed tree T (rooted at s) 
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that connects s to every node in N - {s} via a directed path such that dij :S 

R V(i,j) tT. Given that f(x) = max{d~j : (x,j) tT}, we define the cost of T 

as 2: f(n). 
nfN 

Hereafter, we refer to the decision version of this problem, where we are asked to deter-

mine whether there exists such a tree with cost less than l t Z+, as BCAST. 

1.2 Background 

1.2.1 Complexity 

In [18], it was shown that the graph version of the BCAST problem is NP-complete. In the 

graph version of BCAST, we are given a directed graph with an arbitrary, nonnegative cost 

on each edge. Given a source s, the graph version of the BCAST problem is to construct a 

subset of edges E' with minimum cost (where the cost is 2: f(n), and f(n) is the maximum 
nfN 

cost over all E' edges exiting node n) such that the subgraph induced by E' contains a path 

s to every node. We refer to the graph version of BCAST as GENBCAST. The proof 

of GENBCAST's NP-completeness can be done via a simple reduction from the set cover 

problem ([18]). 

Although the BCAST problem can be modeled as a GENBCAST problem, the NP-

completeness of GEN BCAST does not necessarily imply that BCAST is NP-complete. For 

this to be true, we would have to prove that the G EN BC AST problem remains NP-complete 

for graphs that have a geometrically restricted cost function. This cost function must reflect 

positions of each node in the 2D plane, where the the cost of an edge (i, j) corresponds 
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to the power used in transmitting from i's position to j's position in the plane. To prove 

the problem remains NP-complete for graphs that are thus geometrically constricted is not 

trivial - as an exercise, consider the difficulty of extending GENBCAST's reduction from 

set cover to work for this class of cost function. 

In considering the NP-completeness of BCAST, some insight can be drawn from other 

connectivity problems with similar cost functions. In [5], it was shown that the problem of 

constructing strongly connected subgraphs of minimum cost (with the same cost function 

as in GENBCAST) is NP-complete. That is, the problem of constructing a subset E' of 

directed edges, with minimum cost, such that there is a directed path from each node to every 

other node via edges in E' , was proven NP-complete. Notably, the proof in [5] did not show 

that this problem, with geometrically restricted cost functions, was NP-complete. Rather, 

they proved only that the strongly connected version of GENBCAST was NP-complete. 

Without further consideration, it is unclear whether or not the BC AST problem is NP

complete. On the one hand, one may argue that the geometric constraint makes the problem 

more tractable than the NP-complete G E N BC AST - this additional constraint can be used 

to eliminate many potential solutions. Quite possibly, this additional constraint might result 

in the existence of at most a polynomial number of feasible solutions (which would imply 

that BC AST can be solved in polynomial time). On the other hand, one might argue that 

this additional constraint has no effect on the problem's difficulty, or makes the problem 

more difficult than GENBCAST. Certainly, GENBCAST contains some similarities to 

the Steiner problem, in that "Steiner" points in a Steiner tree somewhat correspond to nodes 

of large transmission "radius"; both serve as points where the tree branches out to several 
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nodes at once. Notably, Steiner problems, when restricted to graphs in 2D, are still NP

complete ([7]). It is quite possible that GENBCAST behaves similarly when geometrically 

restricted. 

Some understanding of how this geometric constraint affects the complexity of this class 

of connectivity problems was addressed in [6]; it was shown that the strongly connected 

version of this problem, when restricted to cost functions that reflect node positions in the 

plane, still remains NP-complete. Naturally, the reduction in [6] is much more complicated 

than the one presented in [5]. Unlike the reduction in [5], the reduction in [6] has to map 

each instance of an NP-complete problem to a set of node positions in the plane, which adds 

considerable difficulty to the proof. 

In addition to constructing this mapping to node positions in the plane, the proof in [6] 

underwent a lengthy case-by-case analysis to demonstrate that the number of nodes being 

generated by their reduction is polynomially related to the size of the input (if this were 

not the case, the reduction would not be polynomial). Although this is an easier method 

of proof given the considerable complexity of any placement algorithm, the reading of the 

case analysis in [6] made it more difficult to ascertain exactly how the reduction was being 

performed. This gave us an appreciation both for the complexity of the role of the geometric 

constraint in BCAST, and the need for simplicity in any geometric reduction. 

1.2.2 Algorithms 

Most previous research on energy efficient messaging in ad hoc networks has not focused 

directly on problems similar to BCAST. The differences seem to lie in the model of the 

17 



energy-limited wireless environment. 

For example, Das and Bhargavan adopted a model in which all nodes share a common 

maximum range, and a node can either not be transmitting at this maximum range, or not 

be transmitting at all (no range control). In [11], they look at the problem of finding a 

minimum sized subset of nodes that is a connected dominating set - this subset obeys that 

property that every node in the graph is either in this subset or in the range of a node in 

this subset, and that the graph induced by this subset is connected (this can be used as a 

"backbone" for unicast routing). Other research also adopted this model, but extended it 

to allow nodes to roam between several power modes, indicating their level of participation 

in network routing (see [12] for an example). 

Later papers have extended this model to one where each node is able to transmit at any 

range between a and the maximum range. As opposed to the above model, this environment 

allows minimization of energy consumption at a finer granularity. Additionally, a model 

assuming range control allows the network designer to make the decision of providing a 

maximum range high enough to ensure connectivity without having to worry simultaneously 

about the effects on energy efficiency (granularity effects). This model is also more reflective 

of current low-energy transmitter technology ([13]), and many other papers have shown this 

model is useful for purposes other than energy savings, such as collision avoidance ([14], [16]) 

and quality of service ([15], [17]). For these reasons, this is the model that we have adopted 

in our analysis. 

Work by Wieselthier, et. al. looked directly at the above broadcast problem ([10]), and 

proposed a centralized algorithm to construct energy efficient broadcast trees. They showed 
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that their algorithm, the Broadcast Incremental Protocol (BIP), performed well in practice 

compared to minimum spanning trees and shortest path trees. The BIP algorithm assumes 

the same model for power-range tradeoff that we assume in this thesis (power proportional 

to rO), so it is particularly relevant. Additionally, to our knowledge, BIP is the best known 

algorithm for this problem in the present literature ([18]). Consequently, we will use the 

performance of BIP as a measuring stick in judging our algorithms. As we will discuss 

below, BIP assumes that each node does not have a range limitation (Rmax = (0). This is 

an important distinction from our problem, in which we assume that all nodes have some 

predefined range limit. 

A year after BIP was introduced, [18] proved that the BIP algorithm has a constant 

approximation ratio of 12. That is, the power consumed by a broadcast tree generated by 

BIP is at most 12 times the power consumed by the minimum power tree. Although the 

value of the constant is not as important, the fact that this was a constant (i.e. not a 

function of the number of nodes) was significant. This differentiates the BCAST problem 

from other problems in wired networks that have similar characteristics, like the Directed 

Steiner Problem (in [8], it was proven that no polynomial time algorithm for this problem 

can achieve an approximation ratio better than O(lgn)). Furthermore, this gives hope that, 

although solving BC AST optimally is intractable, it can be approximated to within a small 

factor. 
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1.2.3 The need for a distributed algorithm 

Although BIP has already been shown to construct energy efficient trees in practice ([18]), 

it's centralized nature requires one node to collect the position information of every node 

in the graph, compute the BIP tree, and distribute the solution to all other nodes in the 

network. This can result in considerable time, message complexity, and power consumption. 

Additionally, this requires that the node performing the computation also has considerable 

resources (energy, processor, and memory). In the low cost, resource limited environment 

that is typical in ad hoc networks, this may not always be feasible. 

These reasons motivate a need for a localized, distributed algorithm that can compute 

broadcast trees without sacrificing performance. A localized algorithm is one in which nodes' 

decisions are based on network conditions within some limited distance. In this type of 

implementation, many nodes are simultaneously computing local parts of the tree, and use 

messages to coordinate activities with neighboring nodes. This results in considerably less 

computation time, message complexity, and power consumption as compared to a centralized 

algorithm. Such an algorithm would also use the collective resources of the network, avoiding 

the need to invest in costly high-resource nodes. For example, [19] presented a localized, 

distributed algorithm for the energy efficient unicast routing problem in networks with the 

same power-range tradeoff. 

As part of our work, we have developed a localized, distributed algorithm that computes 

broadcast trees. In the first portion of the proposed distributed algorithm, nodes calcu

late a clustering on the graph. Clustering has been used as a strategy in many other ad 

hoc networking problems, including unicast routing, collision avoidance, and power control. 
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Clustering algorithms form groups of nodes, where each group contains one elected "cluster

head" node, responsible for coordinating activities on the behalf of the rest of the group. For 

example, clusterhead routing has been proposed to solve the unicast routing problem ([21], 

[11]) - packets are routed along a clusterhead "backbone" until reaching the clusterhead of 

the destination node's cluster. Once there, the clusterhead sends the message directly to the 

destination node. 

In our distributed algorithm, we attempt to generate a clustering that uses minimum 

energy while still assigning each node to cluster. Once this clustering has been computed, 

clusterheads are connected together to form a broadcast tree via an extension of a well known 

distributed algorithm ([9]) for computing directed MSTs. 
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Chapter 2 

Complexity 

We attempt to prove the following theorem. 

Theorem 1. BCAST is NP-complete. 

2.1 Relevant Background Work 

Before presenting the theorems and algorithms (from other papers) that we used to prove 

BC AST's NP-completeness, we go over some preliminary definitions for the purposes of 

clarity. 

Node Cover: Given an undirected graph G = (V, E), a node cover is a set of nodes 

S ~ V such that for every edge (i, j) E E, i E S or j E S. 

Connected Node Cover: A connected node cover of a graph G = (V, E) is a node 

cover S such that the graph induced by S on G is connected. 
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Connected Dominating Set: A dominating set of a graph G = (V, E) is a subset S ~ V 

such that every node in V is either in S or is a neighbor of a member of S. A connected 

dominating set is a set S such that the subgraph induced by S is connected, and S 

is a dominating set. 

B 

~ 
D 

Figure 2-1. The set {B, D} is a node cover of this graph G. {A, D} is a connected node cover of G. G also 
has a connected dominating set {C}. 

Planar Graph: A planar graph G = (V, E) is a graph that can be drawn in the plane 

without any edges overlapping. In other words, there exists a function 7rl : V -t JR x JR 

such that if we draw a point at 7rl (v) for all v E V, and then draw a straight line segment 

from 7rl (i) to 7rl (j) in the plane for all (i, j) E E, no line segments will cross. The function 

7rl is referred to as a planar embedding of the planar graph G. 

y 

3 

2 -----4·c 

1 

'---I----I----I----x 

1 2 3 
Figure 2-2. G is also a planar graph. This demonstrates a planar embedding for the graph G. 

Planar Orthogonal Grid Drawing: Given a planar graph G = (V, E), a planar orthog-

onal grid drawing (POGD) of G is a drawing on a grid such that each vertex is 

mapped to a grid point via some function 7r2 : V -t Z X Z, and each edge is mapped 
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to a sequence of horizontal and vertical grid segments, such that no two edges ever 

cross. 

y 

18 
B 

12 

6 
D 

x 
6 12 18 

Figure 2-3. A POGD for the graph G. 

Unit Disk Graph: A graph G = (V, E) is considered a unit disk graph if there exists a 

mapping 1f3 : V -+ Q x Q to points on the two dimensional grid such that (i, j) E E 

1f3 (i) and 1f3 (j) are less than distance 1 apart. 

y 

1.5 

0.5 
ec 

L-.+-+-+--I-+--I--f-- X 

0.5 1 1.5 
Figure 2-4. An example showing G is also a unit disk graph. This is a demonstration of 11"3. 

Having defined the terms above, we are now in a position to present the results of other 

papers used in our proof: 

Theorem 2. - NP completeness of Planar Connected Node Cover Given a planar 

graph G = (V, E) of maximum degree less than or equal to 4, determining the existence 

of a connected node cover V* ~ V of G such that I V* I :S k, for some given k E Z+, zs 

NP-complete. Proved in [lj. Hereafter, we refer to this decision problem as PLANAR. 
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B 

A -~ .. - A 

B 

A C 
C 

Figure 2-5. Constructing the POGD in Step 1 of the reduction. 

Theorem 3. - Orthogonal Grid Drawings of Planar Graphs Given a planar graph 

G = (V, E) of maximum degree less than or equal to 4, an orthogonal grid drawing of this 

graph can be drawn in polynomial time, such that the size of the grid is polynomial in IVI. 

Proved in [3]. 

Theorem 4. - Connected Domination in Unit Disk Graphs Finding a minimum sized 

connected dominating set of a unit disk graph is NP-complete. We refer to the decision ver-

sian of the connected dominating set problem (i. e. "does there exist a connected dominating 

set of size no more that k,?") as CDSUDG. We reproduce the reduction used in the proof 

of this theorem (from !4]) below. 

Proof of Theorem 4: We now describe the reduction used in Clark, et al. in [4] to 

prove Theorem 4. 

Given an instance of PLAN AR, with graph G = (V, E), maximum node cover size k € Z+, 

we convert it to an instance of the C DSU DG problem as follows. 

1. We first construct the POGD of G using the algorithm mentioned in Theorem 3 (this 

is done on an example graph in Figure 2-5). 

2. We then multiply the size of the grid by 6 so that each line segment of length one is 

mapped to a segment of length 6. This illustrated in Figure 2-6. 
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y y 

3 18 

2 --- 12 

6 

'---+--f---+-- x '---+--f---+-- x 
1 2 3 6 12 18 

Figure 2-6. Multiplying the grid size in Step 2 of the reduction. 

Y node region of A 

y ••••••• 
20 \ pL2(B) 

::~{ -:: !!'!: I 
6 C •• • • 

i 2(A) • • x P - ••••••• pi_2(C) 
12 18 

5 10 15 20 

Figure 2-7. Step 3 of the reduction. P is the set of nodes in the graph on the right. The end nodes in A's 
node region are at (6,11) and (6,13). 

3. Place a node at every grid point in the POGD, and denote this set of nodes as P (For 

example, if the line segment from (0,0) to (0,2) is in the orthogonal grid drawing, P contains 

nodes at positions (0,0), (0,1), and (0,2)). Note that each vertex v E V in the instance of 

PLAN AR maps to a node in PEP such that 7r2 (v) = P (where 7r2 is the function in the 

definition of a POG D). For each PEP such that 7r2 (v) = P for some v E V, we refer to p and 

all nodes in P that are within 1 grid length of p as the node region of v. Those nodes that 

are in the node region by virtue of being within 1 grid length of p are called the end nodes 

of that node region. The other node (the one that is mapped to from V via 7r2) is referred 

to as the center node of this node region. See Figure 2-7. 

4. We then construct the set PI as follows. Construct the subset pI C P, which contains 

all nodes in P that are not in node regions. Also, for future reference, we denote the set 

P" c P as the set of nodes in P that are not center nodes. P" is then constructed such 
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20 20 
B o B : .... ++ 0 ••••• ++ 

O. 000 • • O. O. 
15 • • 15 O. O. • • O. O. 

Ai • Ai O. • O. • O. 
10 • • 10 .0 O. • • .0 O. • • .0 .0 

: •••• +1= O. +1= ••••• c 00000 c 

5 W ~ 5 W ~ w 
Figure 2-8. Step 4 of the reduction. Black nodes are nodes in pI, and Pl nodes are white. Nodes denoted 
with a "+" are in node regions. 

that 1) each Pl node is placed at a grid point, 2) for each node in pI there is exactly one 

node in P" located one grid length away, 3) for each node in P" there is exactly one node in 

pI located one grid length away, and 4) no node in P" is within one grid length of any node 

in P - P'. This operation effectively creates a "layer" of nodes around the original POGD's 

edges, which is why we use the subscript l. 

To complete the reduction, we construct a unit disk graph so that every node in P U Pl 

corresponds to a node in the unit disk graph, and edge (i, j) exists in the unit disk graph 

iff i and j's corresponding nodes are within distance 1 of each other. This completes the 

reduction used in Theorem 4. 

Denote IVI as the total number of nodes in the original PLANAR instance, and lEI as 

the total number of edges. In the last step of the reduction in [4], the following lemma was 

proved: 

Lemma 1. There is a vertex cover of size no more than k in the original PLAN AR instance 

iff there is a connected dominating set in the corresponding unit disk graph of size no more 

than IVI-IEI-1 + k + IP"I· 
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2.2 Proof of NP-completeness 

We construct a reduction from PLANAR to BCAST inspired by the reduction used in 

Theorem 4 ([4]), showing that we can convert any instance of PLANAR into an appropriate 

instance of BC AST in polynomial time. We confirm the correctness of our transformation 

by showing that every positive instance of PLANAR maps to a positive instance of BCAST, 

and that every negative instance of PLANAR maps to a negative instance of BCAST. This 

demonstrates that BCAST is NP-hard. We go on to prove that it is NP-complete (thereby 

proving Theorem 1) by showing BCASTENP. 

The reduction In proving the NP-hardness of BCAST, we can extend the reduction in 

[4] and use some of the properties derived there to prove the correctness of our reduction. 

To extend the reduction in [4], we construct the BCAST instance from PLANAR in

stance as follows. First, we perform the reduction in [4] to an instance of CDSUDG. We 

then modify this reduction as follows: 

Choose an arbitrary magnified POGD edge segment such that one end of the segment corre

sponds to a center node position (note that the POGD is magnified six times, so it must be 6 

grid units long, and contain 6 nodes). Denote the first four nodes in P along this POGD seg

ment (starting from the center node) as nI, n2, n3 and n4. Hence, nI corresponds to a center 

node, and n2 to an end node. Adjust the PI nodes corresponding to n3 and n4 so that they 

are not within one grid length of each other. Note that this adjustment to the CDSUDG 

instance can be done for any Il, while still satisfying the other conditions required of nodes 

in Pl. Therefore, the CDSUDG instance is still valid after this adjustment has been made, 
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Figure 2-9. Step 4 of the reduction, with a box around the nodes nl through n4. Black nodes are nodes in 
pi, and Pt nodes are white. Nodes denoted with a "+" are in node regions. 

and all proofs concerning the CDSUDG instance ([4]) still hold for this modified reduction. 

We then extend the instance of CDSUDG to a corresponding BCAST instance as fol-

lows: 

1. The nodes of the BCAST instance are the same as those in the modified CDSUDG 

instance (note that this is valid because each node in the generated CDSUDG instance is 

located at integer coordinates). 

2. Set the source node of the BCAST instance, s, to be n3 from above. This is demon-

strated in Figure 2-9, where the source is chosen to be at (12, 8). 

3. The range of each BCAST node is set to 1 grid length. 

Note that even with the addition of these steps, the total time for the reduction is still 

polynomial. 

Proving NP-hardness from this reduction Assume that we have taken a PLAN AR 

instance and converted it to an instance of CDSUDG, and then extended the CDSUDG 

instance as noted above to construct an instance of BC AST. Then the following lemma 

holds: 

Lemma 2. There exists a BCAST tree of power no more than IVI - lEI - 1 + k + IP"I 
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iff there exists a connected node cover of size no more than k in the original instance of 

PLANAR. 

Proof: Note the following observations about the BCAST instance constructed: 

Observation 1: All neighbors of a node in the instance of CDSUDG are at distance 

exactly 1. Because the range of each node in the BCAST instance is 1, this implies that in 

any BC AST tree, a given node is either using 1 unit of power or 0 units of power. Therefore, 

we can consider a node in the BC AST instance as either being "on" or "off". 

Observation 2: The source node must be included in any connected dominating set in 

the generated instance of CDSUDG (because it is the sole node within one grid length of 

its corresponding Pl node). 

Observation 3: Any connected dominating set CDS for the instance of C DSU DG can 

be mapped to a valid tree in the matching BC AST problem. To do so, turn on only those 

nodes in the BCAST instance that are in CDS. This is a valid BCAST tree because it 

includes the source s as turned "on" (by Observation 2), and for a given node, n, in the 

BCAST instance there is a path from s to n via "on" nodes (by virtue of CDS being a 

connected dominating set). Additionally, the number of elements in CDS is equal to the 

power used in the BC AST instance (by Observation 1). Therefore, every solution to the 

generated CDSUDG instance maps to a corresponding BCAST solution. We can also prove 

the converse statement. To prove this, note that the "on" nodes in a BC AST solution must 

constitute a dominating set (otherwise, there is a node which cannot be reached by the 

source in the BCAST solution, implying it is invalid). Additionally, in any valid BCAST 

tree, there is a path from the source to every "on" node. This implies the set of "on" nodes 
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is also connected. Therefore, we can map a BCAST solution to a CDS in the matching 

CDSUDC problem by selecting the set of "on" nodes. Note that the power used in the 

BCAST solution is exactly equal to the cardinality of the CDS that it maps to. 

Observation 3 implies that there exists a connected dominating set of size no more than 

J in the CDSU DC instance iff the corresponding instance of BCAST contains a broadcast 

tree of power no more than J. This statement, taken together with Lemma 1, implies 

Lemma 2 .• 

Lemmas 1 and 2 imply that we can map every instance of PLANAR to an instance of 

BCAST in polynomial time, proving that BCAST is indeed NP-hard. Also, note that the 

coordinates of each BC AST node generated this way have size that is at most a polynomial 

function in the number of nodes (because in [3], the size of the POGD is polynomial in the 

number of nodes). This fact further implies that BCAST is strongly NP-hard (see [2] for a 

definition of strong NP-hardness). 

We show BCAST is strongly NP-complete, by demonstrating that BCASTENP. We 

show this by demonstrating that there is a polynomial time verifier for BCAST. Given a 

BCAST tree rooted at source s, with range R, and total power allotment l, we can compute 

whether this is a valid tree (no node transmitting beyond R distance, and all nodes reached 

via a directed path from s), and also compute its total cost, in polynomial time. This is all 

that we must do to verify that a given BC AST tree is a valid solution for a specific instance 

of BCAST. This completes the proof of Theorem 1. • 
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Chapter 3 

Constructing Broadcast Trees 

3.1 The Broadcast Incremental Protocol (BIP) 

In light of the NP-completeness of BeAST, the fact that BIP achieves a constant approxi

mation ratio is remarkable. It is even more impressive given the algorithm's simplicity. BIP 

([10]) performs much like Prim's algorithm for constructing MST's ([20]). BIP grows a tree 

from the source, and augments the tree with the node that can be added with the least 

additional cost. It continues to add one node at a time until all nodes have been added to 

the tree. Once the tree is complete, a very simple "sweep" procedure traverses the tree and 

lowers power in cases of overlap, while still ensuring there is a path from the source to every 

node. 

Throughout its execution, BIP maintains a set of nodes T that denote the tree made so 

far. Additionally, it maintains a power level Pi for each node in T (initially, T = {s} and 

Ps is set to 0). At each step, BIP attempts to increase the power of a node tET to reach a 
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node n E N - T. Specifically, BIP increases the power of the node t that requires the least 

additional power to reach a node in N - T (the additional power for t to reach node n is 

Power(t, n) - Pt). Once the node pair (n, t) that requires the least additional power has been 

identified, n is added to T with Pn = 0, and Pt is increased to Power(t, n). This process 

continues until T = N. 

Consider the following example, where we assume the power to transmit at distance d is 

exactly d2 : 

4 02 
sO 

2 10 
30 

2 4 
Figure 3-1. BIP example - the starting configuration. 

Initially, T = {s} and Ps = 0, so the additional costs to add nodes 1, 2, and 3 from s are 

2, 5, and 5 respectively. For this reason, node 1 is added to T and Ps is set to 2 (as shown 

in Figure 3-2) . 

4 8°2 sO T = {s, I} 

2 1 Ps=2,PtO 

30 

2 4 
Figure 3-2. BIP example - Node 1 is added to T. 

In the next iteration, the additional costs to add nodes 2 and 3 from s are 5 - Ps = 3, 
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and 5 - Ps = 3 respectively. Similarly, the additional cost to add nodes 2 and 3 from node 1 

are 5 and 1 respectively. The minimum of these four values is the additional cost to add 3 

via a power increase at node 1. Therefore, this power increase is chosen (see Figure 3-3). 

4 

T = {s, 1,3} 

2 Ps= 2, Pt 1, P3= ° 

2 4 
Figure 3-3. BIP example - Node 3 is added to T. 

At this point, the additional cost to add node 2 from nodes s, 1, and 3 are 3, are 5-ps = 3, 

5 - PI = 4 and 10 - P3 = 10 respectively. Therefore node 2 is added by increasing the power 

of node s to 5, and the final tree is as represented in Figure 3-4. 

4 

2 

2 

2 

4 

T = {s, 1, 2, 3} 

Ps= 5, Pt 1 

P2=O, P:f 0 

Figure 3-4. BIP example - Node 2 is added to T to and the BIP computation is complete. 

Note that the tree we have made is a valid BeAST tree - there is a path from s to all 

nodes in the graph. Additionally, note that we never specified the range Rmax - BIP assumes 

that nodes do not have a range limitation. That is, each node can always transmit to any 

other node as long as it uses enough power. As we look at improving BIP, we will focus on 

algorithms where we assume the BIP environment (no range limitation). However, when de-
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veloping a distributed algorithm for the purposes of feasibility in real-world implementation, 

we will include the range restriction, as this is more representative of real-world transmitter 

limitations. 

In our example, notice that the cost of the BIP tree can be improved, by observing that 

the node 1 need not be transmitting. This is because node s is already able to reach node 

3 and node 1. Therefore we can turn off node 1 and still have a path to node 3 from s. 

This "overlap" situation commonly occurs in trees constructed via BIP. Consequently, the 

authors of BIP introduced a "sweep" algorithm ([10)). After BIP has constructed a tree, 

the sweep algorithm looks for situations similar to the one in our example, and reduces the 

power of certain nodes in the tree without making the tree invalid. In particular, sweep looks 

for the following general condition: Let hi be the minimum number of hops needed to receive 

a message from s at node i in the given tree, and refer to the condition Pi ~ Power(i,j) 

as i covering j. Then, if there are nodes i, j and k such that 1) hi > hj, 2) i covers k and 

3) k is the farthest node from j such that j covers k, then reduce the power of j so it no 

longer covers k. In other words, if there is an upstream node i and a downstream node j 

both covering the same node, then sweep checks to see if j's power can be reduced (note that 

the upstream/downstream requirements ensure that s will still have a path to this "doubly 

covered" node after the power decrease). This algorithm significantly improves the average 

cost of trees generated by BIP. 
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3.1.1 Improving BIP: Hybrid Algorithms 

As said previously, BIP is an astonishingly simple greedy algorithm. Especially given the NP

completeness of the BeAST problem, it is surprising that BIP does not have to exhaustively 

tryout a series of choices at each step to determine which will be most beneficial at later 

iterations. Even without such behavior it still performs well. Consider what would happen 

if we performed a limited exhaustive search in the earlier stages of the algorithm, and then 

allowed BIP to continue with greedy choices after some point. This is the sort of algorithm 

we had in mind when constructing a BIP hybrid. 

In this algorithm, which we call BIPHybrid1, an initial power assignment and partial 

tree T is constructed, which is then "completed" by running BIP. To construct a tree, we 

assign the source a power level. Once this power level has been chosen, Ps is set to this 

power, and T is set to include the source and all nodes reached by the source at this power 

(all non-source nodes that are in T are set to have zero power initially). Then, BIP is run 

with this starting T and power assignment. Once the BIP algorithm terminates, we have 

constructed a tree. In BIPHybrid1, this procedure is repeated for all N -1 possible power 

levels that the source may be set to. Then the minimum power tree (among the N - 1 trees 

thus generated) is returned. 

We also looked at an extension of BIPHybrid1 , which we refer to as BIPHybrid2 • In 

this algorithm, a similar procedure is performed, except the initial tree T is made by setting 

the power of the source, and then setting the power of a node that is reachable from the 

source. Then BIP is run to "complete" this initial tree. This procedure is then repeated 

to for all possible initial trees (in which two nodes are on). The lowest energy tree is then 
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returned. Note that this means that the cost of the BI P H ybrid2 tree is never more than 

the cost of the B I P H ybrid1 tree (for the same problem instance). 

By looking at these two algorithms, we can get a sense of how far BIP is from the optimal 

solution. If we notice that the cost savings (compared to BIP) grows very quickly going from 

BI P H ybrid1 to BI P H ybrid2 , we have reason to believe that BIP constructs trees with cost 

much higher than the optimal solution. Likewise, if the cost savings does not grow quickly, 

we have a rough "sense" that BIP performs close to optimal on average. We simulated the 

performance of BIP, BI P Hybrid1 and BI P Hybrid2 for various size networks confined to a 

lxl grid. After each algorithm was run, the BIP "sweep" algorithm was run on the tree. 

As we can see from Figure 3-5, BI P H ybrid1 is a 5% improvement on BIP, and this does 

not change as a function of instance size. This indicates that the power of the source's trans

mission can have a significant impact on power efficiency. Note that BI P H ybrid2 doesn't add 

much additional improvement - it averages to about another 2% savings over BIPHybrid l . 

Unfortunately, due to the computational resources required, we couldn't measure the per

formance of B I P H ybrid2 for larger instances. However, the lack of additional savings going 

from B I P H ybrid1 to B I P H ybrid2 seems to indicate that BIP does not significantly deviate 

from optimal in the average case. 

3.2 Computing Broadcast Trees Distributively 

In this section, we describe a localized, distributed algorithm that computes broadcast trees. 

In the first portion of the proposed distributed algorithm, nodes calculate a clustering on 

the graph. Then, the clusters are joined together using a well known distributed algorithm 
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Figure 3-5. Performance of BIPHybrid1 and BIPHybrid2 as compared to BIP. 

for computing directed minimum spanning trees. 

350 

At the beginning of the algorithm we assume each node has the following information: 

1. Each node i knows the distance to every node in i's neighborhood. A node's neigh-

borhood is defined as the set of nodes that are within distance R (the maximum 

distance that a node can transmit a message). Nodes that are in i's neighborhood are 

referred to as neighbors of i. 

2. Each node i also knows the distance of each neighbor to every node in the neighbor's 
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neighborhood. We refer to the set of i's neighbors, and i's neighbors' neighbors as i's 

two-hop neighborhood. 

As an example, this information could be gathered by determining pairwise node delay 

via timestamps. Notice that each node only requires localized information about some small 

portion of the network (the two hop neighborhood). This is a key difference from previous 

algorithms like BIP, which require each node to have global network information. Also, note 

that this is only meaningful in networks with limited range - if each node had unlimited range, 

having two-hop neighborhood information would be equivalent to having global information. 

In networks with limited range however, the two-hop neighborhood may constitute a small 

fraction of the graph. Of course, this also holds for networks in which the range of nodes is 

limited for reasons other than inherent transmitter limitations (like avoiding interference). 

In our initial development of a distributed algorithm, we assume that the network is 

synchronized via a global clock, no messages are lost, and that there is no interference. We 

then extend the algorithm to work without the benefit of a global clock in networks where 

interference and packet loss is possible. 

3.2.1 The formation of cl listers 

In the first phase of the algorithm, a clustering is constructed on the nodes using the afore

mentioned distance information. Once this phase is complete, each node will be assigned to 

at least one cluster, and each cluster will have one "cluster head" node. We define the cost of 

a particular cluster as the power required for the clusterhead node to transmit to all other 

nodes in the cluster (in one transmission). In addition, we consider the cost of a particular 
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clustering to be the sum of the costs of its clusters. Given this cost function, we attempt to 

develop a minimum cost clustering. 

Before describing our distributed clustering algorithm, we first describe a centralized 

clustering scheme. A simple centralized algorithm can be described as follows: Throughout 

the execution of the algorithm, each node i's range is referred to as ri, and each node is 

either unmarked or marked, reflecting its membership in a cluster. The algorithm begins 

with ri = 0 for all i, and all nodes unmarked, and proceeds as follows: 

1. For each node i, compute the function ai(r). If i was to increase its range to r, this 

function represents the average cost induced per unmarked node within distance r of 

i. More precisely, 

a.(r) = P(r)-P(r;) 
t Ui(ri,r) 

where P(x) = power to transmit at range x 

Ui(XI, X2) = number of unmarked nodes in between distances Xl and X2 of i 

ri = node i's present transmission range 

2. For each node i, compute the range at which ai(r) is minimized. This is the most cost 

efficient range increase (in a greedy sense) for node i. Denote this range as rmini, and 

the value of a at this range as amini. 

3. Find the node j that has the smallest value of amin - this is the node that (globally) 

has the most cost efficient range increase. Increase r j to rminj, and mark nodes j and 
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all nodes within distance rminj of j. 

4. Repeat steps 1-3 until all nodes are marked. 

Once the above algorithm terminates, the final ri values specify a clustering (because 

nodes are only marked if they belong to a cluster). Each node with nonzero ri is considered 

a clusterhead, and all nodes within distance ri of i are considered members of i's cluster 

(note that, in our algorithm, a particular node may be a member of more than one cluster). 

Because we greedily choose the range increase that minimizes the average additional cost 

induced per node marked, we are hopeful that the clustering produced is cost-efficient. 

Interestingly, the greedy behavior of the above algorithm can be implemented distribu

tively, with one important difference. In a distributed implementation it is very costly (in 

message complexity) to compute a global minimum - therefore, the distributed algorithm 

(described below) attempts to find local minima instead. Although this may result in less 

power efficient clusterings, such inefficiencies are inherent to many localized algorithms. 

3.2.2 Synchronous Distributed Clustering Algorithm 

As in the global algorithm, each node i maintains a range value ri initially set to 0, and is 

initially unmarked. Additionally, we ensure that each node i maintains up-to-date values of: 

1) rj for all neighbors j, and 2) MARKED status of all nodes in the two-hop neighborhood. 

The algorithm we propose operates in stages. During each stage, local minima are computed, 

and the ranges of some nodes are consequently increased. Information about the range 

increases are then propagated. Once this has been completed, each node has updated its 

state information to reflect the last stage's changes, and the next stage begins. 
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Note that because we are assuming that all nodes are synchronized, we describe the 

algorithm in stages and substages where each stage and substage begin on predefined clock 

boundaries. In each stage, each node executes the following substages: 

Substage 1. If i is unmarked, node i computes, for each neighbor j, the minimum value 

of CYj(r) for r 2: distance(i,j). That is, i finds the most cost efficient range increase 

for j, looking only at those ranges that would allow i to be a member of j's cluster. 

Denote the value of the range and CY found through this computation as rminj-ti and 

aminj-ti, respectively. 

Each node i then finds the neighbor node k with minimum value of amink-ti, and sends 

k a PREFERRED message containing range value rmink-ti. This message is sent at 

maximum power. 

If i is marked already, it does not participate in this substage. 

In addition each node i (marked or unmarked) executes the following steps: 

Substage 2. At this substage, i has received all PREFERRED messages from its unmarked 

neighbors. If i receives a PREFERRED message with range value r' from all unmarked 

nodes within distance r' (indicating that i is a local minima), i increases ri to the value 

r'o Upon increase, it transmits a RANGEJ:NCREASE message at maximum power, 

telling all neighbor nodes that i has increased its range to r'o If i is not already a 

member of a cluster, it also broadcasts a MARKED_STATUS message to its two-hop 

neighborhood, indicating that i has been marked (by virtue of becoming a clusterhead). 

Substage 3. If i receives a RANGEJ:NCREASE message from a neighbor j such that 
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the distance from i to j is less than the new value of rj, i is a member of j's clus

ter. Consequently, if i is not already a member of another cluster, it broadcasts 

MARKED_STATUS message to its two-hop neighborhood, indicating that i has been 

newly marked. Additionally, at this substage, i may receive a MARKED_STATUS 

message from a neighbor that has just become a clusterhead (in the previous sub

stage). It forwards this message at maximum power (to ensure that it goes to all nodes 

two hops away from the clusterhead). 

Substage 4. At this substage, each node i may receive a MARKED_STATUS message from 

a newly marked neighbor j. It retransmits this message at maximum power, to ensure 

that it reaches j's two hop neighborhood. At the next substage, all messages will have 

reached their intended receivers. Therefore, in the next substage, each node i will have 

up to date information on rj for all neighbors j, and the MARKED status of every 

node in the two hop neighborhood. After this substage, a new stage begins. 

The algorithm terminates once all nodes have been marked (and hence no PREFERRED 

messages are being generated). Because nodes only mark themselves when they have become 

a member of a cluster, this also means that, upon termination, the final values of ri produce 

a clustering. Note the following properties of this algorithm: 

A. The algorithm terminates in a linear number of stages. Consider any stage of 

the algorithm where not all nodes have been marked. We show that at least one new 

node will be marked in this stage. Let amini be the minimum value of O!i for node i. 

There must exist some node j for which aminj is minimum over all nodes. Because this 

is the global minimum, in the next stage, all unmarked nodes within distance rminj 
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of j will send j a PREFERRED message with range value rminj (if not, aminj would 

not have been the global minimum). Therefore, in the next stage, j will increase its 

range, and some set of previously unmarked nodes will be newly marked. This further 

implies that in every stage, at least one node is marked, completing the proof. 

B. The algorithm uses O(N2) messages. In each stage, there is at most 1 PRE

FERRED message and 1 RANGEJ:NCREASE message per unmarked node, result

ing in O(N) messages per node per stage, and O(N2) messages total. Addition

ally, each node transmits a MARKED_STATUS message when it has been marked 

(this occurs once per node throughout the algorithm). Because each node has two

hop neighborhood information, it can compute a spanning tree upon which to for

ward this MARKED_STATUS message. Therefore, it takes at most O(N) messages 

to forward the MARKED_STATUS message to the two-hop neighborhood. Hence, 

we have at most O(N2) total MARKED_STATUS messages, and O(N2) total PRE

FERRED /RANG EJ:NCREASE messages. 

3.2.3 Implementation Considerations 

Although this synchronous algorithm works fine when there is a global clock and we assume 

no messages are lost or reordered, this is not at all a reasonable expectation of real-world 

environments. In the real world, keeping global clocks up to date requires considerable 

message complexity and node coordination. Additionally, messages can be lost in wireless 

communication, requiring retransmissions that cause arbitrary message delays. 

To extend our clustering algorithm to work without a global clock in the presence of 
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arbitrary message delays (but not message loss) we can note the following. In the absence 

of a global clock, the sole difference from the synchronous case is that different nodes might 

simultaneously be at different stages of the algorithm (one node might be in stage 4, substage 

2, while another is at stage 7, substage 1). Because nodes are "out of sync", this could lead 

to node decisions being made with incomplete or conflicting state information, resulting in 

a different tree (different from the synchronous algorithm). We can remedy this situation by 

using the receipt of a message as a virtual clock signal, implemented with the following rule: 

Each node n is not allowed to enter a particular substage until all messages that 

could conceivably be destined for n (and sent off by other nodes as the result of a 

previous substage) have been received. 

This ensures: 1) each node doesn't make a decision until all state information from 

previous stages has been received, and 2) no node can be more than one stage ahead of its 

neighbors. 

Note that in a network where all messages are guaranteed to arrive at their destination 

within 8 seconds, this rule would be equivalent to requiring each node to wait 8 seconds 

before proceeding to the next substage. In such a network, this behavior would ensure the 

algorithm constructs the same tree as in the synchronous case, solely because the message 

schedules are identical (and consequently, nodes are not out of sync). Furthermore, note that 

the implementation of this rule in any network (with any message delivery guarantee), would 

result in an identical message schedule, and consequently result in the same tree produced 

by the synchronous algorithm. 

To extend our algorithm to cases where messages are arbitrarily delayed, we develop an 
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algorithm that obeys this rule. We can do this as follows. Assume that every node has up 

to date information from the previous stage (values of ri for each neighbor, and MARKED 

status of each node in the two hop neighborhood). Then, each node does the following: 

1. In the beginning of the stage, each unmarked node sends a PREFFERED message 

as in the synchronous algorithm. Marked nodes do not perform any operation. Each 

node is then not allowed to continue until it has received all PREFERRED messages 

from its unmarked neighbors. 

2. Once this has occurred, if this node is going to increase its range, it sends off a 

RANGEJ:NCREASE message as in the synchronous algorithm. If it will not increase 

its range, the node sends a message to indicate this. As before, this node is not al

lowed to continue to the next step until a message is received from every neighbor node 

pertaining to the neighbor's range decision. 

3. Once this node is allowed to continue, it sends off a MARKED_STATUS message 

only if it was unmarked in the last stage. This message will indicate if this node was 

marked in this stage. The node then suspends its operation until it has received a 

MARKEDJ3TATUS message from every unmarked neighbor. 

4. Once its operation is allowed to continue, this node composes and sends a STA

TUS_SUMMARY message, which lists all nodes that have been marked in this stage 

(this ensures that a MARKED_STATUS update from a node travels two hops). Note 

that if we immediately forwarded the MARKEDJ3TATUS message without compos

ing a summary, this could potentially mean that each node sends off 0 (n) messages in 
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this step (increasing the overall message complexity to O(n3 )). However, if we com

pose a summary, this is reduced to 1 message sent per node, and an overall message 

complexity of O(n2 ). 

5. This node is then not allowed to enter the next stage until a STATUS_SUMMARY 

message has been received from all neighbors (note that once this is done, the node 

has received all messages destined for it in this stage, and therefore has up to date 

information and is prepared for the next stage). 

This algorithm ensures that no two neighbor nodes are out of sync by more than one substage, 

regardless of message delay. Note that the algorithm obeys the above rule, and therefore 

constructs the same tree as the synchronous algorithm. 

Since the above algorithm tolerates messages delivered with arbitrary delay, it can further 

be extended to tolerate networks where messages can be lost through the use of a link-layer 

retransmission protocol (ARQ). Such a protocol guarantees the eventual delivery of packets, 

although the delivery time of the packet may vary based on the need for retransmission. 

However, since the above algorithm can tolerate packets that are arbitrarily delayed, we are 

assured that it will terminate successfully. 

3.2.4 An alternate clustering algorithm 

Although the above algorithm can tolerate interference and message loss, it may do so at the 

cost of many ARQ retransmits. This is especially of concern since most messages are being 

sent within each node's two hop neighborhood, increasing the likelihood for message interfer

ence and subsequent message loss. In addition to wasting energy resources via retransmits, 
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frequent message loss/interference would also increase the time required to compute a clus

tering. For these reasons, we investigated the possibility of an algorithm that makes decisions 

based on potentially incomplete or out-of-date local information (without having to wait for 

messages to be retransmitted). Although this algorithm doesn't compute the same clustering 

as the synchronous clustering algorithm above, it computes a clustering much faster in the 

average case. Each node has the following behavior: 

1. Regardless of its status, node i continually broadcasts a STATE message containing 

its marked status, the marked status of every neighbor, and its current range ri, every 

8 seconds. If i is unmarked, this message also contains i's PREFERRED neighbor 

information. 

2. If i ever receives a PREFERRED message with range value r' from all unmarked nodes 

within distance r' (this is a local minima), i increases ri to the value r', and updates 

its STATE message accordingly. 

3. If i notes that a neighbor has been marked, or that a neighbor has increased its range 

so that i has been marked, i updates its STATE message (this is a way to propagate 

news of a marked node two hops). 

4. Once every node in i's two hop neighborhood is marked, i is no longer needed to forward 

changes in marked state, and is not a candidate to increase its range. Therefore, it 

stops sending STATE messages. 

Note that once all nodes have stopped sending STATE messages, every node is marked. 

Additionally, in step 2, each node doesn't worry about receiving messages that may corre-

49 



spond to different stages - instead, it makes a "dirty", quick decision based on the entire 

history of received messages. Therefore, it is very likely that the clustering made by this 

algorithm will be different than that of the algorithm presented in section 3.2.2. 

This algorithm is guaranteed to terminate even in the presence of losses (as long as 

each message has a nonzero probability of being transmitted successfully). We can sketch 

a proof of this statement as follows. Note that, just as in the proof of convergence for the 

algorithm in section 3.2.2, whenever all nodes are not marked, there must always exist a 

range increase that has the globally minimum average cost. Therefore, if no node in the 

network is prepared to increase its range, it can only be because STATUS updates have not 

propagated because of message losses. However, these updates are repeated periodically, 

so eventually the updated status will propagate, nodes will update their status, and the 

global minimum will be realized (i.e. nodes that had not sent a PREFERRED message 

corresponding to the global minimum range increase will eventually receive status updates, 

which lead them to send this PREFERRED message). Hence, some node will eventually 

increase its range, and at least one node will be marked. This means that eventually, all 

nodes must be marked and the algorithm will terminate. 

3.2.5 A Clustering Sweep Procedure 

Note that in the clustering produced by any clustering algorithm, it is quite possible that a 

node is simultaneously a member of more than one cluster. That is, clusters may overlap. As 

in the BIP procedure, there is a similar opportunity to implement a "sweep" -like algorithm 

([10]). This "sweep" goes through the clustering in a distributed manner, and finds nodes 
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whose range can be reduced, while still making sure every node is still a member of at least 

one cluster. The ranges of these nodes are then reduced to produce a lower power clustering. 

We implemented a very simple cluster sweep procedure which performs this operation. For 

simplicity purposes, we present the algorithm in a network where packets are not lost, but 

may arrive out of order (in which case, a link-level ARQ protocol can be used to deal with 

losses as mentioned above). 

Before the running of the "sweep" algorithm, each clusterhead node (node with non-zero 

clustering range assignment) computes a list of clusterhead "neighbors". Clusterheads are 

considered neighbors if one node is in both of their clusters. This can be accomplished by 

initially requiring each node to broadcast (at full range) a list of the clusters that it is a 

member of. Any two neighboring clusterhead nodes will receive a message from their shared 

node, and each will be aware that the other clusterhead is a neighbor. 

Throughout the execution of the algorithm, each node i maintains a status of marked or 

unmarked (indicating whether or not this node has reached its final range assignment), and 

a current range referred to as rio If we refer to Ci as the number of clusters of which i is a 

member (where a clusterhead is counted as a member of its own cluster), each clusterhead 

node i also maintains up to date values of Cj for all members j of i's cluster. The algorithm 

works very similarly to the algorithm in section 3.2.2 - in each stage, local extrema are 

computed (in this case we are comparing the local maxima - the clusterhead node that 

can save the most power), ranges are lowered, and status changes are propagated before 

proceeding to the next stage. During the algorithm, ranges are only lowered (this will be 

important in proving convergence). At each stage of the algorithm, each clusterhead node 
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goes through the following steps: 

1. Each clusterhead i determines the node in its cluster that is furthest away from it but 

not further that rio Refer to this node as j. If Cj = 1, i is the only cluster head covering 

j. Therefore, i's range cannot be lowered further (because ranges are only lowered, no 

other clusterhead will be able to cover j). In this case, i marks itself, and propagates 

a MARKED_STATUS message to each clusterhead neighbor. 

If Cj > 1, i may pot€ntially be able to lower its power while still allowing j to be a 

member of a cluster. To determine how much power can be saved, i looks at its fellow 

cluster members in order of decreasing distance from i, and proceeds until reaching a 

node k, where Ck = 1. Note that node i cannot reduce its range any lower than di -+k , 

the distance from ito k. Node i sends a POWER_SAVED message to each unmarked 

clusterhead neighbor indicating the power saved is rf - df-+k' 

2. Before entering this step, each clusterhead node i waits until it has received a POWER_SAVED 

or MARKED-BTATUS message from every unmarked clusterhead neighbor. Once it 

has done so, if i's POWER_SAVED value is the maximum among its clusterhead 

neighbors (a local maxima), i reduces its range value to di -+k • Node i then sends a 

RANGE_UPDATE message to each unmarked clusterhead neighbor, indicating its new 

range value (it does this even if its range value has not changed). Note that if a node 

ever decreases its range it is also marked (it has reduced its range as much as possible), 

so this message contains two pieces of information in the event of a range decrease. 

3. Each clusterhead node i waits until receiving a RANGE_UPDATE message from every 
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unmarked clusterhead neighbor before entering this step. Because it has two hop 

distance information, i can then compute updated values of Cj for all members j of 

i's cluster (note that if a neighboring clusterhead node decreases its power, it may be 

possible that Cj values change). Once it has done this, node i now has up to date 

information about what occurred in this stage, and is ready to proceed to the next 

stage. 

Once all clusterhead nodes are marked, there is no more potential for ranges to be 

decreased, and the algorithm terminates. Note that the ri values at the end ofthis algorithm 

denote a clustering - because we start out with a clustering, for every node i, Ci 2': 1 at the 

start of the algorithm. Additionally, throughout the algorithm, we make sure that Ci never 

falls below 1, meaning that every node must be in a cluster once the algorithm is completed. 

Note the following interesting properties of this algorithm. 

A. This algorithm converges in O(n) stages. Assume that in the present stage, not 

all clusterhead nodes have been marked. Then there must exist some clusterhead node 

such that its POWER_SAVED value is the maximum POWER_SAVED value among 

all nodes in the graph. This node must mark itself in this stage (once it receives 

the POWER_SAVED values of its clusterhead neighbors). Therefore, at least one 

clusterhead node must be marked per stage, and the proof is complete. 

B. Each stage requires O(n2 ) messages. Note that each clusterhead node can trans

mit to a neighboring clusterhead node in at most two hops. We could naively implement 

this by sending a message from the clusterhead (at maximum power), which is imme-
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diately forwarded by all who receive the message (at maximum power). This would 

require O(n) messages per clusterhead per stage, and O(n2 ) messages per stage total. 

c. We can improve this to O(n) messages per stage. This can be done by splitting 

each individual step where a clusterhead sends a message to its clusterhead neighbors 

into two separate steps. In the first step, each clusterhead node transmits the message 

at maximum power. All nodes (including those that are not clusterheads) are required 

to wait for the receipt of this message from each of its neighboring clusterheads before 

going to the next step. Once a node can enter the next step, it sends a summary 

message (summarizing all the messages it received in the last step) at maximum power. 

Each of the two steps consumes O(n) messages, implying each of steps 1-3 above can 

be done with O(n) messages total per stage. 

D. The algorithm requires a total of O(n2 ) messages. A and C together imply 

that the algorithm takes O(n2) messages. Additionally, the preliminary step (where 

clusterhead neighbors are determined), requires O(n) total messages because each node 

transmits one message. 

E. We can adjust the algorithm to allow cluster head nodes to turn off entirely. 

We adjust step 1 to check for the situation where a clusterhead can turn off entirely -

in the case that k is the closest node to cluster head node i, i can be turned off if Ck 2: 2 

and Ci 2: 2. If i can be turned off, its POWER_SAVED is rf. The behavior of steps 2 

and 3 remain the same. 

Note that in the above algorithm, each clusterhead node either reduces its power by a 
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large amount or doesn't change its power at all. This is directly a consequence of step 1, 

where we find the node k farthest from the cluster such that Ck = 1. If instead, in each 

stage, a clusterhead node decreases its power by a small increment (reduce power to reach 

only the second farthest covered node) until no node can reduce power any further, this may 

result in an improved cluster sweep (at the expense of more computation). Instead of the 

"all or none" behavior, this variant would allow the power decrease to be spread out among 

clusterhead nodes. We investigated this possibility, and found that this additional flexibility 

gave no distinguishable improvement. For this reason, we rely solely on the more efficient 

"all or none" clusterhead sweep algorithm. 

3.2.6 Joining Clusters Together 

After a clustering has been made, we use a well known distributed algorithm for constructing 

directed minimum spanning trees [9] to join the clusters together. Specifically, we do the 

following: 

1. Construct the directed graph G' = (V', E') were V' = V, and the cost of each edge 

(i',j') is equal to max(O, P(distance(i',j')) - P(ri)) where ri < R, and P(x) denotes 

the power to transmit at a range x. This represents the incremental power required to 

establish a link from i' to j' after the clustering has been performed. 

2. Once the cost of each edge has been computed, we run the algorithm for computing 

a directed minimum spanning tree on G' for source s. By definition of the directed 

spanning tree, we will have constructed a broadcast tree rooted at s. 
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Our distributed algorithm first computes a clustering, sweeps the clustering, and then 

runs the DMST algorithm to join the clusters together. Note that the algorithm in [9] 

computes the DMST rooted at every node with O(n2 ) message complexity. Therefore, our 

algorithm computes the broadcast tree rooted at every node simultaneously. 

3.3 Simulation Results 

To gauge the performance of our algorithm against BIP, we simulated the performance of 

BIP, our distributed algorithm, and several other candidate algorithms in networks restricted 

to the 1 by 1 unit square. In simulating these algorithms at a particular network size, we 

first constructed a set of 100 instances, each having the same number of nodes. For each 

instance, nodes were randomly placed with uniformly probability in the unit square, and one 

node was randomly chosen to be the source. Each algorithm was then run on each of the 

100 instances. After a tree was computed from any algorithm, the sweep procedure from 

[10] was run on the tree before comparison. 

OptPartition One of the candidate algorithms we looked at is called OptPartition. In 

this algorithm, the 1 by 1 square is recursively partitioned using the procedure SqPart. 

Given a square, SqPart does nothing if the square has at most 10 nodes. Otherwise, SqPart 

splits the square into 4 smaller, equal-sized squares, and attempts to partition each of them 

recursively. This algorithm can be used to generate a partitioning of the unit square such 

that each partition contains no more than 10 nodes. 

An exhaustive search algorithm is then run to find the optimal tree within each partition 
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(looking at every node as a possible source). This means that if a partition contains 5 nodes, 

5 optimal trees are computed, and each tree contains only the 5 nodes in the partition. We 

refer to the optimal tree rooted at node n and covering the nodes in the n's partition as 

Opt(n). OptPartition then runs an algorithm very similar to BIP, except instead of adding 

one node at a time, it adds one partition at a time. 

Initially a tree T = {s} and Ps = O. We add all nodes in s's partition to T. Additionally, 

each Pi is set to correspond to i's power in Opt(s). Nodes are continually added to T as 

follows: 

1. The additional cost to reach a node n in N - T from a node t in T is set to be 

Power(t, n) - Pt + Power[Opt(n)), where Power[Opt(n)) is the cost of Opt(n). 

2. The node of least additional cost is chosen. The value of Pt is set to Power(t, n). The 

value of Pi for all nodes in the n's partition are set to their values in Opt(n). All nodes 

in n's partition are added to T. 

3. If N = T, the algorithm stops. Otherwise, steps 1 and 2 are repeated. 

DistClusterBIPJoin In this algorithm, the algorithm from section 3.2.2 is used to gen

erate a clustering. Then BIP is run, except when a node t is first added to T, and it has a 

power clt assigned to it from the clustering algorithm, Pt is set to clt instead of o. Intuitively, 

in DistClusterBIP Join, the clustering algorithm develops a clustered framework which BIP 

"joins" together during its execution. 
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BLAIP This algorithm is referred to as the Broadcast Least Average Incremental Protocol, 

and is a variant of BIP. Instead of adding just one node to T at a time, where the additional 

cost is minimum, BLAIP adds several nodes to T at each step. At each iteration, the power 

of one node in T is increased to cover several nodes, where the average additional cost of 

adding the nodes is minimized. For this purpose, the average additional cost of adding a set 

of nodes G ~ N - T from a node t is computed as maxg'G{~'~ir(t,g)}-Pt. This is an attempt 

to preserve the greedy behavior of BIP, but assert an altered greedy choice that reflects the 

"multicast advantage." 

The results of our simulation (shown in Figure 3-6) display how our distributed algorithm 

(referred to as DistCI uster D MST Join in the figure) compared relative to the cost of the BIP 

tree, as averaged over the 100 instances. This graph also includes the performance of the 

candidate algorithms described above. 

As the graph above indicates, most of the algorithms presented perform similarly to BIP. 

Notably, OptPartition performs 10% better than BIP for instances of size 10. At size 10, 

OptPartition is computing the globally optimal tree, and so it is natural to assume that its 

cost will be less than BIP. The magnitude of BIP's deviation from optimal agrees roughly 

with the results presented in [10]. Of the algorithms above, only DistClusterDMST Join is 

fully distributed in nature. The performance of DistClusterDMSTJoin seems to oscillate at 

about 18%, and does not significantly change as a function of instance size. Because we 

have analyzed the performance of the algorithm for network sizes spanning two orders of 

magnitude, we believe that this indicates our distributed algorithm will remain at about 

18% worse than BIP in performance for networks of more than 300 nodes. 
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Additionally, note that DistClusterBIP Join seems to behave, on average, almost exactly 

halfway in between DistClusterDMSTJoin and BIP. Because DistClusterBIPJoin starts with 

the same basic clustering as DistClusterDMST Join, this indicates that BIP "joins" together 

the clusters at lower additional cost than the DMST algorithm. This, taken with the poor 

performance of OptPartition, suggests that the dominating factor in energy-efficient tree 

construction is not the cost of a locally confined subtrees, but the cost of joining clusters/trees 

together. 

We also analyzed the performance of our algorithm in networks with limited range. To 

do this, we used the same network instances as used above. For each instance, we measured 

the performance of our algorithm and BIP for several values of Rmax. If for a specific range 

and instance, some node was unreachable from the source (i.e. Rmax was too small), no 

algorithm was run on that instance. The results of our simulation for instances with 100 and 

200 nodes can be seen in Figures 3-7 and 3-8. Note that all graphs were fully connected at 

ranges 0.3 and 0.2 for instances of size 100 and 200, respectively. 

In Figures 3-7 and 3-8, we have presented the cost of both algorithms at limited range, 

represented as relative deviation from the cost of the BIP tree (when each node has infi

nite range). Therefore, we see that the BIP algorithm converges to zero deviation as range 

increases. Additionally, these graphs show that, as range increases, the deviation of the dis

tributed algorithm converges to its value as shown in Figure 3-6 (for example, at 100 nodes, 

the deviation at infinite range is 18%; therefore the graph of Figure 3-7 should show the 

distributed algorithm converging to 18%). Note also that both algorithms do not oscillate 

significantly as a function of range (especially for ranges above the minimum range required 
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for connectivity). This indicates that a small range can be chosen (which ensures connectiv

ity), without sacrificing the quality of the solution produced by our distributed algorithm. 

Additionally, at smaller ranges, the distributed algorithm will perform better in terms of 

time complexity, message complexity, and energy consumed, since the size of each two hop 

neighborhood is smaller. 

3.4 Multiple Source Broadcast 

In our analysis so far, we have assumed there is only one source from which one message 

is sent to all other nodes in the network. However, in many networks, it may be useful to 

have several sources send the same message to every node in the network. For example, in 

a sensor network, certain special "supervisor" sensors may have satellite links to a central 

communication center. If a control command is to be issued from the communication center, 

destined to reach all sensors, it can be sent to all supervisor nodes via satellite, and then 

forwarded to the entire sensor network. In such a scenario, significant energy could be saved 

by broadcasting the message from many supervisor nodes instead of just one. We investigate 

this possibility, and constructed variants of our distributed algorithm and BIP to work in 

this case. 

The multiple source problem can be formally presented as follows. We are given a set of 

nodes N and a function ¢ : N -+ Z x Z, which gives us a set of coordinates for each node on 

the two dimensional plane. Additionally, we are given a range R € Z+, which represents the 

maximum distance any node can transmit a message, and a constant a > O. We construct 

the undirected graph G = (V, E) where V = Nand (i, j) € E {:=::> dij ~ R. Assuming this 
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graph is connected, the problem can be stated formally as: 

Given a set of sources S ~ N construct the minimum cost directed forest F 

(where each tree in this forest is rooted at some 8 E S) such that, Vn E N - S, 

38 E S such that there is a directed path from 8 to n in F, and dij :::; R V(i, j) E T. 

Given that f(x) = max{ d~j : (x, j) E F}, we define the cost of F as L: f(n). 
n~N 

Note that because this is a generalization of BeAST, the decision version ofthis problem 

is also NP-complete. 

Multiple Source BIP To modify BIP to work for multiple sources, we can note the 

following: the proof of BIP's correctness relies on the fact that at each iteration, the tree 

being constructed, T, contains a path from the single source 8 to every node in T. Each 

time a node is added to T this property is maintained. Therefore, the tree at the end of the 

algorithm contains a path from the source to every node (and for this reason is a valid tree). 

Analogously, in the multiple source problem, we can maintain a forest F such that there is 

a path to every node in the forest from at least one source node. When adding a node from 

N - F to F we can use the same criteria as in the original BIP (least additional power). If 

we continue to add nodes in this way, the forest constructed at the end of the algorithm will 

ensure a path to every node from some source node. This algorithm can be described more 

completely as follows: 

Throughout its execution, maintain a set of nodes F that denote the forest made so far. 

Additionally, maintain a power Pi for each node in F (initially, F = Sand Ps is set to 0 for 

each node 8 E S). At each step, increase the power of a node f E F to reach a node in n E N - F. 
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Specifically, increase the power of the node f that requires the least additional power to reach 

a node in N - F (the additional power for f to reach node n is Power(j, n) - PI). Once a 

node n has been chosen to be added by some node f, n is added to F with Pn = 0, and PI 

is increased to Power(j, n). This process continues until F = N. 

We consider the above algorithm as an extension of BIP to the multiple source problem. 

Distributed Algorithm with Multiple Sources To understand how we might extend 

the distributed algorithm, we must generalize each step that it takes. This would include 

the clustering algorithm, the clustering sweep, and the DMST algorithm used to join clus

ters together. Note that the distributed clustering algorithm presented above generates a 

clustering that is source independent. That is, the clustering developed is not affected by 

the choice of source node. Therefore, this algorithm can still be used in the multiple source 

case. A similar argument can be applied to the clustering sweep. 

Peculiarly, note also that if we did not modify the DMST algorithm we would still con

struct a valid tree. However, this tree would only utilize one source, and may consequently 

miss an opportunity for cost savings. To fix this, we first look at how to remedy the multi

ple source problem in another type of graph, where all edge weights are non-negative (with 

no geometric restriction), and the cost of a forest is the sum of the edge weights. In this 

environment, add a directed edge to the original graph between each pair of sources in S 

with cost 0 (if the edge already exists, we modify its cost to be 0). Note that if we now 

compute the minimum cost, single source directed spanning tree rooted at any node s in S, 

the resulting tree will specify the minimum cost forest. 

In the multiple source BeAST environment, where the cost function and geometric 
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restrictions are different, we.employ a similar idea. We modify the use ofthe DMST algorithm 

as follows. Note that originally the cost of each directed edge (i', j') in our graph G' is set to 

max(O, P(distance(i', j')) - P(ri)), where ri is the range assigned from the clustering sweep 

algorithm, and P(x) denotes the power to transmit at a range x. We add a directed edge to 

G' between each pair of sources in S with cost o. We then run the DMST algorithm of [9] on 

this modified graph. Note that although the DMST algorithm calculates the broadcast tree 

rooted at every node, our modified algorithm is based on a DMST algorithm that computes 

a forest with only source nodes as roots. 

Performance . We simulated the efficiency of the modified BIP algorithm and our dis

tributed algorithm on graphs with multiple sources to gauge their performance. The results 

of our simulation are shown in Figures 3-9 and 3-10. As done previously, for simulation at 

a particular network size, we first constructed a set of 100 instances, each having the same 

number of nodes. For each instance, nodes were randomly placed with uniformly probability 

in the unit square, and a random set of sources was chosen. Each algorithm was then run 

on each of the 100 instances. After a tree was computed from any algorithm, the sweep 

procedure from [10] was run on the tree before comparison. The results were then averaged 

over the 100 instances. 

Figure 3-9 demonstrates that the power of the BIP tree seems to decrease about 4% for 

every additional 2% of the graph that is assigned to source nodes. Additionally, the cost 

savings begins to diminish as the percentage of source nodes increases. The behavior of our 

distributed algorithm, shown in 3-10, seems to be very similar. In this case, 5% cost is saved 

per additional 2% sources, which diminishes as the percentage of source nodes is increased. 
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From both figures, it seems that the most additional savings (with 10% source nodes) is 

about 20% for BIP and 25% for our distributed algorithm. This seems to indicate that the 

use of additional sources is only marginally useful for the purposes of minimizing energy 

consumption. 
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Chapter 4 

Conclusion 

In this thesis, we have shown that the problem of forming minimum energy broadcast trees 

is NP-complete. Additionally, we have developed a distributed, scalable algorithm that 

computes sub-optimal broadcast trees using O(N2) message complexity. This algorithm 

computes all N possible broadcast trees (one for each of N possible source nodes), and only 

consumes 18% more power on average than trees produced by the centralized BIP algorithm. 

We have also introduced the multiple source broadcasting problem, and demonstrated that 

multiple sources can be used to achieve marginal cost savings. 

We believe that there is significant future work to be done in this area. For one, the NP

completeness result, although reflecting the real-world limitation of transmitters, assumes 

that each node has a limited range. It would be interesting to know how relaxing this 

restriction effects the complexity of this problem. On the approximation side, the bound 

in [18] doesn't tell us how BIP performs in the average case. Once this is known, one can 

determine whether better approximations are needed, and if distributed algorithms, like the 
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one presented in this thesis, need to be improved. Additionally, the BIP algorithm, and our 

distrbuted algorithm, do not take advantage of any geometric properties of trees in the plane; 

it is quite possible that a geometrically inspired algorithm could outperform both of these 

algorithms significantly, while simultaneously providing a tighter bound on performance. 

In our analysis, we did not attempt to specifically ensure that the distributed algorithm 

consumed very little energy through its execution. Some work still needs to be done to 

construct and bound the energy-efficiency of routing algorithms - without this analysis, 

one cannot tradeoff energy use to compute routes versus the energy saved by using these 

routes. Additionally, more work has to be done in range controlled and mobile environments 

to determine how algorithms with more than one goal (energy, contention, QoS) can be 

implemented in a localized, distributed fashion. Lastly, although using multiple sources has 

not proven to be effective in saving energy, it may improve other aspects of the broadcast 

tree (like delay, state storage, etc). Some exploration of these possibilities may provide an 

incentive to use multiple sources for the purposes of broadcast traffic. 
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