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Abstract

In this thesis, we propose a framework that uses multiple-domains and multi-modal
techniques to disambiguate a variety of natural human input modes. This system
is based on the input needs of pervasive computing users. The work extends the
Galaxy architecture developed by the Spoken Language Systems group at MIT. Just
as speech recognition disambiguates an input wave form by using a grammar to find
the best matching phrase, we use the same mechanism to disambiguate other input
forms, T9 in particular. A skeleton version of the framework was implemented to
show this framework is possible and to explore some of the issues that might arise.
The system currently works for both T9 and Speech modes. The framework also
includes potential for any other type of input for which a recognizer can be built such
as graffiti input.
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Chapter 1

Introduction

As ubiquitous computing becomes increasingly popular, natural input methods com-

patible with mobile devices become even more important. As devices become smaller,

an accurate input disambiguation and understanding system for a large variety of in-

put modes is ideal. In this paper, we describe a single-platform framework that

disambiguates input by introducing a multiple domain, multi-modal input system for

pervasive computing systems.

1.1 Oxygen

Project Oxygen [7] is an attempt to address the need for human-centric computing

and connectivity. It is an effort that we have been working on over the past year

and a half to create a system which connects all controllable devices seamlessly and

dynamically. It allows people to use and control them via a hand-held computer,

e.g. a Handy21. In time, Oxygen will allow people to overcome the need for desktop

computers; creating a web of connected electronic devices accessible from anywhere

via the Handy21. Users will not have to remember cryptic commands. They will

be able to speak normally in everyday language into their Handy21 and make other

simple commands by writing on their Handy21 screen. Their speech and script will

be processed and understood. Their commands will be executed no matter how they

choose to input them.
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While the idea of Oxygen is simple and futuristic, the design and development

of the system reveals the need for careful crafting and piecing together of different

components. These components include speech analysis and understanding, a secure

universal file system, an intentional naming system used to locate different devices

(INS), a communications oriented routing environment (CORE) to maintain connec-

tions between devices, and many other pieces. We have been working closely with

many other groups throughout the Laboratory of Computer Science (LCS) here at

MIT to begin to integrate some of the major projects to create one larger system.

Over the course of the year, the design of the input system, CORE, and the use of

other components has changed as we implement and try different approaches. The

driving force has always been ease of use and flexibility of the system.

1.2 Motivation

When humans communicate with each other, they have multiple sources of input

and are aware of a context in which to place input they receive. For example, if a

pedestrian is explaining directions to a driver in Cambridge, the pedestrian normally

uses a combination of speech and gestures to tell the driver where to go. Also, both

dialog participants know the context is driving directions and geographical landmarks

in Cambridge. Therefore, when the pedestrian uses a street name such as “Main

Street”, both participants are aware that the “Main Street” being referred to is the

one in Cambridge, not another “Main Street” in a different city such as Seattle. This

background information reduces the chance that the driver will misunderstand the

directions. Human-computer communication can also be improved with this context

and multiple-input-mode information.

Since speech is an example of natural communication, we use speech input as an

example in this section to motivate this thesis.
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1.2.1 The Problem: False-Positives

Speech is a comfortable communication method for humans. Unfortunately, even

with all of the speech technology we have today, speech recognition is not perfect.

There are many speaker-dependent, unrestricted-domain and speaker-independent,

restricted-domain speech recognition systems out there. However, it is very difficult

to build a speaker-independent, unrestricted-domain speech recognition system that

will recognize and understand everything a person might say. The combination of

variation involved in the human voice and the sheer magnitude of sentences and

phrases in any given language forms an enormous challenge for flexible speech input

[11]. That is why most speech input systems in use today tend to be more focused

and domain-dependent.

In order to implement our system for other input disambiguation, we decided to

extend the Galaxy system developed by the Spoken Language Systems (SLS) group

at MIT [22]. To use the Galaxy system, a user creates a context-based domain of

phrases and concepts that he wants the system to recognize using the SpeechBuilder

application [8]. Although SpeechBuilder is originally intended for speech, this do-

main is a language model on which to base all input. It is similar to the directions

context in the pedestrian-driver example above. Another example is the creation of

a domain for controlling the slides during a presentation. In this scenario, a user

would enter phrases and concepts for jumping between slides, playing animations,

starting/stopping, direction of control, et cetera.

The idea of a domain works well when the user has a manageable number of well-

defined commands. However, as the scope grows, the number of commands to be

recognized also increases. By induction, one can imagine an infinitely large domain

that is essentially the world of all possible phrases, a very difficult problem. Even

with sophisticated models for confidence scoring, recognition is not perfect[10]. As our

presentation manager domain began to include more than a few simple commands,

we started to experience many more false positives using speech input. Sometimes
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even simple things like “go to the previous slide” was mistaken for “go to the next

slide.”

1.2.2 Coming Up With a Solution

Check Input Before Execution

One simple solution to this problem of false positives is a check before executing a

command. For example, the system could return a list of three commands it thinks

the user might have said and have the user confirm one of these commands. There

are many instances in which a human-computer dialogue with these error checks

would be perfectly acceptable. An automated help system over the phone is a good

example. It is a one-on-one conversation between the user and the computer over the

phone in which the user can easily press a button to select a choice. However, we

are creating an oxygen system and our main focus is creating a system that is both

accurate and natural for a human to use. When a presenter gives a command, during

a presentation, it should be understood correctly and executed without the computer

coming back and asking questions.

We have established the need for a “smarter” system that is better equipped to

correctly understand input and execute a command without additional user input.

Our first idea for implementing this “smarter” system was slide-tracking.

Slide-Tracking

The main idea behind slide-tracking is to track a presenter’s progress along a slide.

Such information would help us to better understand what kinds of commands are

more likely to be requested next and thereby reduce the number of false-positives

experienced. For example, suppose a speaker is introducing background material

about the next slide. He might say “On the next slide..” not intending to change to

the next slide. With slide tracking, we could disable the “next slide” command until

some specified percentage of the slide has been covered. Other types of commands

may also be more probable at certain stages of a presentation than others.
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As we began to think about implementing slide-tracking, we came up with some

interesting issues. The main issue was the prevalence of figures and pictures in pre-

sentations. Sometimes, the best way to illustrate a point is to show a picture of it and

then talk about it. However, at first glance, it seems difficult to track progress along

a picture. Also, there is no guarantee that the presenter will choose to say the same

words written on the slide. Therefore, in order to get accurate progress reported from

a slide tracking mechanism, one must be very careful. Disabling or even decreasing

the probability of certain commands based on slide-tracking information alone could

be detrimental.

As we thought about the problem of false-positives in relation to ambiguous inputs

such as speech, we began to think of slide-tracking as one powerful input to a larger

system. The solution we present in this paper is multiple context domains with

multi-modal input.

1.3 Multiple Domains

As we discussed earlier, the number of false-positives increases as the domain size

increases. Following from this logic, if we can create a network of small domains

that together function as a larger domain, we should be able to keep the number of

false-positives to a minimum. Our claim is that this network of small domains can

be in the form of multiple domains all running in parallel with a “smart” selection

process to determine which domain the input was meant for. We discuss this idea

further in Chapter 3.

1.4 Multi-Modal Input

Another way to reduce the number of false-positives of one input mode such as speech

is to combine it with other modes of input. Since speech is not always the most con-

venient input mode, other modes of input are necessary for a human-centric pervasive

system. It turns out that our multiple domain structure lends itself to multiple mode
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extensions. In this paper we concentrate on introducing T9 input both for ease of use

and false-positive reduction. We develop a system in which speech is simply one of

the possible input modes, a system that can even be used predominantly for an input

mode such as graffiti. We discuss the multi-modal aspect of our input framework in

Chapter 4.

1.5 Running Example: The Presentation Manager

The input structure we develop in this paper has an infinite number of applications.

For the purpose of illustration, we will use the Presentation Manager as a running

example throughout this paper. In this section, we outline some of the specifics of

the Presentation Manager for background information.

One of the example scenarios the Oxygen Research Group (ORG) has been work-

ing on this past year is a Presentation Manager. The manager allows a person to

give a presentation via a Handy21, thereby controlling anything he might need. This

includes environment controls such as lights and speakers, computer controls such as

laptops and projectors, application controls such as Powerpoint and slide managers,

and anything else connected to an electronic device. With this presentation manager

in mind, we can begin to develop the input framework of this thesis.

1.6 Guide to this Thesis

This thesis will focus on the input side of oxygen systems, using the Presentation

Manager as an example. We will first discuss related research and background ma-

terial necessary for understanding the building blocks for our system architecture in

Chapter 2. We will then delve into the heart of this thesis in Chapter 3 and discuss

the multiple domain structure. Chapter 4 will continue the second part of this thesis

and introduce the implementation of other types of input to create a multi-modal

system, focusing on T9.

The contributions of this thesis include proposing an overall framework for a perva-
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sive computing input disambiguation system, exploring the ideas of multiple domain

input and multi-modal input, and extending existing architectures to begin imple-

menting this system. The basic functionality of this system has been implemented

and some preliminary results have been investigated. These results and their analysis

are discussed in Chapter 5.
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Chapter 2

Related Work and Background

There has been a great deal of research interest in the reduction of speech recognition

error through frameworks utilizing multiple modes of input. Most of these frameworks

are focused on a smaller context domain set just as we break down our context into

smaller domains. The majority of them were also predominantly concerned with the

mutual disambiguation aspect of multi-modal structures. In this section we discuss

work done in multiple domains and multi-modal systems applicable to this thesis. We

also introduce some of the building blocks necessary to create this system.

2.1 Multiple Domains

Splitting context into multiple domains is a common approach to improving recog-

nition accuracy. Hsin-min Wang and Berlin Chen researched the area of spoken

document retrieval[16]. They found that for their specialized task, recognition errors

were greatly reduced with a content-based language model. Although their study

was based on the Mandarin language that has a different set of language issues, the

findings on a constrained language model are still helpful for this research. They

found that whether the language model was constrained using actual transcriptions

of the spoken language or the baseline language model, the recognition accuracy still

improved.

Although speech recognition is improved through the breaking up of context into
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multiple domains, ease of use is still most important. It is essential that the user

does not have to concern himself with switching between domains. Reginia Braga’s

research involves retrieving domain information from multiple domains when a user

might not even be aware that he is looking for information from a different domain [4].

She suggests an architecture designed to access these domains and retrieve information

via the Internet and through Java modules. Although this thesis is more focused on

user-defined domains being run simultaneously using a consistent architecture and

processing algorithm for all inputs, the aspect of seamless switching and integration

of multiple domains is the same.

2.2 Multi-Modal Input

2.2.1 Choosing the Most Effective Input

It is a commonly perceived that using multi-modal input to reduce recognition er-

ror will actually increase the recognition error by compounding the errors from the

different types of input. However, this is not true. With multiple input choices, the

user will be able to choose the input mode that best suits the message being given

[18]. For example, consider a flight information system similar to the Mercury system

developed by SLS [23]. A user might choose to give the type of flight information

he wants via speech and specify the city codes via a pen or touch-pad based input.

This way, recognition error will be minimized since the speech input only needs to

match one of a few models and and there is less error involved with the pen-based

specific city code information. If the user had to speak the city code, the probability

of recognition error might have been higher, and inputting the whole phrase using

pen or touch-pad based input might have been too tedious.

Multi-modal input simplifies language complexity since input can be expressed in

its most natural form [18]. For example, one gesture can replace a whole phrase of

explanatory words. Pen based input can replace the need to repeat a misunderstood

word and can allow for corrections to be made more easily.
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Research done by Bernhard Suhm, Brad Myers, and Alex Waibel indicates that

multi-modal error correction is faster and more accurate than attempting error cor-

rection through a unimodal speech input architecture [25]. This could be due both

to the user choosing the most effective mode for correction and the correction ca-

pabilities of the speech interface used. In this thesis, we stress the importance of

different input modes being better suited for different tasks. We also hope to utilize

the different correction capabilities of different modes of input. For example, if a user

attempts to speak a word that is misunderstood, picking a word out of the top five

recognized choices might be more efficient than attempting to re-speak the word and

have it misunderstood again.

2.2.2 Mutual Disambiguation

Humans use complementary visual and audio inputs simultaneously to understand

human communication almost flawlessly. Simultaneously combining multiple modes

of input such as speech and lip reading or speech and gestures drastically reduces the

recognition error [3]. As Karen Mills and James Alty from Loughborough University

point out, part of this reduction in error is due to redundancy of information captured

through multiple input sources [15]. And, as Sharon Oviatt points out, part of this

reduction is due to eliminating conflicting interpretations [20]. The latter type of

error reduction might lead to unknown or ambiguous results, but these results might

still be more accurate.

Quickset

A multi-modal input myth proposed by Oviatt is that multi-modal inputs always

overlap temporally. She points out that in the case of speech and gesture inputs,

only about 25% of speech input had references to things that had to be disam-

biguated by temporally overlapping gestures [18]. In her research, Oviatt cites Quick-

set [6], a study done by the Oregon Graduate Institute, to examine overall results for

their multi-modal speech and pen-based architecture and for native versus non-native
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speakers. She mentions that the spoken language error rate was reduced overall by

an impressive 41% with the multi-modal architecture [17, 20]. Although this seems

higher than one might expect and could be due to the high number of non-native

speakers, it does suggest that multi-modal architectures are useful and can be de-

signed to help alleviate the frustration that speech recognition errors bring about.

The results were even more dramatic in other environments. Quickset research

on portable speech and pen-based multi-modal architectures in mobile environments

found that the spoken language errors were reduced by 19-35% through multi-modal

disambiguation [19]. Some of this error reduction was probably due to the noisi-

ness factor of the environment being eliminated through other silent modes of input.

This is an important phenomenon for our research as well. Since our input structure

is meant to be used through hand-held mobile devices, specifically the iPAQ, it is

comforting to know others have reduced the speech recognition errors in mobile en-

vironments through multi-modal frameworks. The mutual disambiguation statistical

techniques Quickset uses would be applicable to this research as well since Quickset

also makes use of n-best lists of processed output.

Quickset and this thesis have a similar goal: to decrease input recognition error.

The difference with our system lies in the extension of the Galaxy speech architecture,

to create a single platform to run multiple domains in addition to multiple input

modes.

The Use of Finite State Machines

Another study done at AT&T Labs by Michael Johnston and Srinivas Bangalore

focuses on the integration of speech and gesture mode information and its processing

[12]. They suggest altering the speech language model based on information obtained

from the gesture recognizer and describe a finite-state device to process both speech

and gesture inputs. They have come up with a specification for translating gestures

into gesture symbols that can be understood by a finite-state machine [1].

Their work is similar to our research in that we also use finite-state machine

processing, but for individual inputs. Their gesture symbol specification might prove
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useful in our implementation of disambiguating input, though that is ongoing work

at this time. They discuss the use a finite state machine to encompass the entire

structure. We will use finite-state machines for more isolated functions. This may

allow for added flexibility in utilizing other types of state information to select the

correct input.

2.3 A Simple Structure: One Domain

In order to develop a multiple-domain system, we must first understand how a single-

domain system works. In this section we describe the basic building block for our

overall structure, the Galaxy system.

A domain can be created using the SpeechBuilder tool as mentioned in Sec-

tion 1.2.1. In order to use the domain, it must be compiled and built in conjunction

with the Galaxy system built by SLS. The Galaxy system consists of a hub connecting

many different components as shown in Figure 2-1. This figure was taken from an

SLS group presentation.

Figure 2-1: Galaxy architecture

The two Galaxy components that we are most concerned with are the Speech

Recognizer and the Language Processing unit. When a user runs a domain and

issues a command, the command is captured by the Audio Server and saved as a

wave file. The wave file is sent from the Audio Server to the Speech Recognizer.
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Figure 2-2: Sample output from the Speech Recognizer and the Language Processing
unit of Galaxy.

The Speech Recognizer comes up with an n-best list of phrases. These phrases best

match the speech input based the words in the user-defined domain. This n-best

input interpretation list is then sent to the Language Processing unit. The language

processor selects one input based on information derived from the user-defined domain

and language models. Eventually, Galaxy packages up the results in the form of a

frame, and sends the frame to a user-defined back-end server. The server is responsible

for parsing the frame and executing the command. Figure 2-2 shows sample output

of the n-best list and the domain output from the Speech Recognizer and Language
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Figure 2-3: Basic structure for implementing one domain.

Processing unit. A stripped-down, simplified view of data flow from speech input to

domain output is illustrated in Figure 2-3.
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Chapter 3

Multiple Domains

Multiple domains is a common approach to the problem of running numerous jobs

simultaneously. SLS has also created a system in which you can switch between

different domains to obtain information on weather, flights, and directory information.

However, they are not running these domains for simultaneous use.

As mentioned in the previous chapter, our decision to create multiple context do-

mains stems from the need to reduce the number of false-positives as scope increases.

By limiting the size of each domain to a single layer of commands or smaller concepts

and running these domains simultaneously, we hope to improve the accuracy of each

domain and thus the accuracy of the overall system.

3.1 Breakdown Into Domains

Let us begin with an everyday example of multiple domains. Imagine Bob, the Pres-

ident of a firm, walking into a conference room to run a morning meeting with the

Vice-Presidents. The first thing Bob says is “Let’s start out with some coffee.” Tom,

the secretary, steps out of the room to get it. Next, Bob asks “What were the sales

figures for this year so far?” Immediately, Lisa, the VP of sales, responds with the

figures.

The key aspect of this interaction is that Bob did not have to say “Tom, please get

the coffee” or “Lisa, what are this year’s sales figures?” The person being addressed
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was implicit in the context of the question. Each person in the meeting has a different

specialty and understands different commands and questions. Similarly, by running

multiple domains simultaneously, each with a different context, the domain being

invoked should be implicit in the context of the command.

In the Presentation Manager scenario, each domain would represent a different

layer of commands that a user might give. Our current breakdown consists of three

different layers:

• Slide Layer Domain: This domain contains commands to navigate around a
slide and is intended for a user in the middle of presenting a slide. Example

commands include “play sound” and “show animation”.

• Presentation Layer Domain: This domain contains commands to navigate
through a presentation. Example commands include “skip to conclusion”, “next

slide”, and “go back”.

• Application Layer Domain: This domain contains commands to control
different applications and a computer in general. Example commands include

“start the oxygen presentation”, “switch to email”, “open Netscape”, and “kill

the browser”.

It is important to note that the layers and commands described above are only

suggestive. A powerful aspect of this system is that every domain concept and com-

mand description is completely user defined. A user can choose to map any word to

mean any other word and can choose to build a domain for any context, not just the

Presentation Manager ones we are describing here.

By running these three domains simultaneously, we can allow each domain to

listen to the commands being issued, decide whether it understands what was said,

and send its interpretation to an output server. The output server can then decide

what to do with the results. If speech recognition were perfect and the domains did

not have any overlapping commands, only one domain would return an answer. The

others would return “unknown”. However, the motivation for multiple domains is the
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inaccuracy of speech recognition as the number of commands increases. Although the

command will not match all the domains, it is likely to match more than one domain.

The server then selects which domain it thinks the user intended to invoke based on

scoring and state information. An example of such state information is slide tracking,

a potentially useful input to the selection process as discussed further in Section 3.2.2.

Another advantage to multiple domains is the modular design. Good software

engineering practices stress the importance of flexibility of code via modular designs.

Suppose a user is running the three domains described above, but then decides to end

his presentation and move his laptop to his office. When he moves to his office, he

would like to start the office control environment domain. This domain would define

commands to allow him to control the lights, the windows, the air conditioning,

and so on. However, he still has his laptop running and needs to be able to access

the Application Domain outlined above. He no longer needs the Slide Layer and

Presentation Layer domains since he is done with his presentation. With one large

Presentation Manager domain, it would not be possible to turn off a set of previously-

useful commands. However, with this modular approach of multiple domains, he can

easily kill the Slide and Presentation Layers and start up his Office Environment

domain.

Instead of creating many overlapping domains, a user will be able to create do-

mains based on a simple concept and choose any subset of these domains to run

simultaneously at any given time. Depending on the domains running, the command

“play sound” can mean different things. If the Slide Layer domain is running, “play

sound” could mean “play the next sound clip on the current slide.” If an office en-

vironment is running, “play sound” could mean “start up Winamp on my computer

and play my favorite song.” With one large domain, it would be much more difficult

to implement these different contextual meanings.

Let us now consider the implementation of multiple domains. In the previous

chapter, we laid the framework for a single domain. Now that we understand how a

single domain works and the need for multiple domains, we can extend the system.
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3.2 Extending the Structure: Multiple Domains

The structure for a single domain as discussed in Section 2.3, can be extended to

multiple domains relatively easily.

3.2.1 Architecture

There are two methods of extension that we considered. The first involves running all

domains simultaneously with a single Galaxy system. The second is a more modular

system with one Galaxy system for each domain.

One Galaxy

The SLS group has been developing different methods of facilitating multiple domains

within a single Galaxy architecture. One of these methods uses a single, domain-

independent recognizer [14]. However, this approach requires regularized language

models and results in slightly degraded recognition accuracy. Another multiple do-

main method they have been working on involves a two stage recognition model: a

domain-independent recognition engine and a domain tailored knowledge constraint

back-end [5].

With these setups, we could probably also achieve simultaneous domains with only

one Galaxy system. However, we are concerned with flexibility and fault isolation in

the system. For example, a user might want to completely switch modes from presen-

tation to office environment control. In this case, we would want the office domain to

start in parallel without disturbing the presentation manager related domains already

running. Although this might be possible with the setup SLS is developing, we would

prefer a more modular system.

Multiple Galaxy’s

The method of extension we have decided upon involves running multiple instances

of the Galaxy system in parallel, each running a single domain. In this way, we

can create a system in which instances of domains can be introduced and destroyed
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without affecting other domains already running. We hope this type of setup will

result in better reliability and allow for the sharing of computing responsibility among

many processors, not just one.

Figure 3-1: Overall system structure for facilitating multiple domains.

The structural details of multiple galaxy’s are very similar to those of the single

domain setup in Figure 2-3. By modifying the audio server or creating an additional

server, it is theoretically possible to broadcast the speech input wave files to multiple

Galaxy instances. Each Galaxy instance uses its own domain-dependent Speech Rec-

ognizer and Language Processing unit to process the wave file and come up with an

input interpretation for its domain. After each Galaxy system has come up with its

own interpretation, a Selector selects the domain for which we think the input was

intended to invoke. The Selector collects the interpretations from all the domains

and chooses which one it thinks the user intended. As mentioned in Section 1.2.1,

the original motivation for building this system was to reduce the number of false-

positives for a given input mode. The first step we are taking to achieve this goal

is to break up commands by context into smaller domains. The second step will be

the use of the Selector. We must be careful in the implementation of the Selector to

avoid introducing additional false-positives into the system. If the wrong domain’s
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output is chosen even if the speech was understood correctly, we will be back where

we began. Figure 3-1 shows the overall design of the system structure.

3.2.2 The Selector

Currently, we think the Selector should have at least two inputs. The first, and

hopefully most useful, will be the score attributed to the input interpretation by

each Galaxy system. When the Speech Recognizer comes up with the n-best list of

interpretations, each possibility on the list has attached to it a score of how well the

interpretation matched the input [21]. When the Language Processing unit outputs

the final interpretation, it also outputs a scored list. Unfortunately, these scores are

not currently definitive scores, they are ordinal in nature. The scores are therefore

useful for ranking possible interpretations for each input within a domain, but perhaps

not useful for comparing final interpretations from different domains. Fortunately,

though this feature is not currently available, it is currently possible to generate

other more confident scores using Galaxy. When these definitive scores do become

available for public domains, they will be a useful tool for the Selector.

Another input to the Selector could be slide tracking information. As mentioned

in Section 1.2.1, slide tracking alone is not enough to select between all commands.

However, it may be helpful in determining which domain the user intended to invoke

at a particular time. With this structure, slide tracking could have a influence in

the Selector without having the system depend on it heavily. Other state information

could also prove useful input to the Selector as the complexity of the system grows and

more ideas are incorporated. There has been some research done on expectations in

spoken dialog by Ronnie Smith and Howard Hipp [24]. They propose that the dialog

structure mirrors that of the task at hand. Therefore, if the Selector was trained on

certain type of tasks and could recognize dialog pertaining to those common tasks,

it could keep track of state information pertaining to the task and be able to expect

certain follow-up input commands. This information might also have to be encoded

into the back-end application that actually parses and executes the commands. With
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proper and careful input, the Selector can be a powerful step in decreasing the number

of false-positives experienced.
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Chapter 4

Multi-Modal Input

The most exciting aspect of the multiple domain system is the flexible and simple

structure. This simple structure is extendable to different types of input; the main

focus of this thesis.

4.1 The Need for Multiple Input Modes

As mentioned when we started out discussing this system in Section 1.1, the main

focus is on human-centric computing, making the system easy and natural to use.

Since speech is one of the most natural human-to-human communication methods,

we began our discussion with the facilitation of speech input. However, not only is

speech recognition not always accurate, but also speech is not always the preferred

method of communication with a computer. Speech is transient in nature. When

a user is speaking, he cannot see his command as he can with pen-based inputs.

Speech is not yet globally accepted as a natural input to a computer. People are

simply not used to it. Also, speech is not private [9]. The usefulness of speech input

really depends at the task at hand. Suppose a person wants to send a command to

an oxygen system during a lecture. Even though it is easier to make his command

via speech, it is not acceptable to speak during a lecture. Therefore, he must find an

alternative way of executing his command.

There are many natural modes of input. When humans communicate with each
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other, they often simultaneously use speech and spatial communication methods,

such as gestures, to illustrate a point [13]. These input modes complement each

other to help reduce the number of recognition errors. There are also other types of

communication modes, both human-human and human-computer. These include pen-

based modes such as graffiti and handwriting and touch-pad modes such as telephone

keypads and palm pilot based navigation. Eventually, all of these input modes would

be useful to the oxygen system we are developing since the user should be able to

input information in the most effective and comfortable mode. However, for this

framework, we chose to focus on the T9 mode.

4.2 Additional Input: T9

Until recently, the most common way to send a command to a computer was via

a keyboard. With the advent of mobile devices, people are getting accustomed to

entering data into their palm pilots via graffiti and character recognition systems.

When using a cell phone, the only way to enter text data is via the number keypad, a

technology known as T9. T9 is a text input method defined by the number-to-letter

mapping found on each key of a telephone pad. For example, the number “2” maps

to “a”, “b”, or “c”. Basically, T9 enables faster text input with a fewer number of

available input buttons.

Although T9 is somewhat less convenient than entering text data via a keyboard

in stationary situations, it is more convenient with small mobile devices. Therefore, it

is important that we be able to integrate this increasingly popular mode of input into

our oxygen system, allowing the user flexibility to choose his preferred input mode at

any given time.

For this thesis, we chose to implement T9 first to prove that it is possible to

utilize the Galaxy components for different inputs. From the T9 implementation, it

is obvious that graffiti and other input modes can easily be implemented.
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4.3 Facilitating Multiple Inputs

As we add this multiple-input feature to the system structure described in Section 3.2,

it is important that we remember the human-centric focus of this project. Switching

between multiple input modes should be seamless; a user should be able to use any

mode of input he desires without specifying the mode first. Also, given the same

input, regardless of input mode, the output should be the same. By using the same

framework for all input modes, the latter requirement is easier to meet.

4.3.1 Building on the Speech Implementation

First, we consider the implementation of a single domain with T9 input. It is very

similar to the structure of a single domain with speech input illustrated in Figure 2-3.

With speech input, the waveform is sent from the Audio Server to the Speech Rec-

ognizer for translation into an n-best list of guesses. These guesses are sent to the

Language Processing unit for final interpretation based on the language model of the

domain. Finally, the interpretation is sent to an output server for execution. The

only speech dependent parts of this process are the Audio Server and the Speech Rec-

ognizer. Therefore, by building a new server and recognizer for T9, we can introduce

this input mode using the same natural language processors developed by the speech

group and Selector output method described in Section 3.2.2. Figure 4-1 illustrates

a new Galaxy hub for T9 and graffiti input modes. We show graffiti here as well to

illustrate that the modifications to implement T9 are the same as for implementing

any other input mode.

For T9, the Audio Server must be replaced with a T9 server connected to the

Galaxy hub. The T9 numerical data sequence is then sent via the hub to the T9

Recognizer for processing. Similarly, for graffiti input, the Graffiti Server would be

connected to the Galaxy Hub to allow for graffiti input text to be sent to the Graffiti

Recognizer.

The T9 server implementation we have built, allows a user to enter text on an

iPAQ via buttons representing a telephone keypad. Figure 4-2 shows a picture of the
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Figure 4-1: Modifying the Galaxy Hub system for new input modes.

T9 GUI on the iPAQ. This GUI shows that T9 can be used for not only input via a

telephone interface, but also a virtual telephone keypad on an iPAQ. This T9 virtual

keypad is faster and easier to use than a full keyboard picture on the screen because

of the larger size of the buttons. Figure 4-2 shows the comparison between the two

interfaces. The T9 GUI sends the numerical sequence to the T9 Server, which is

connected to the Galaxy hub, to allow the numerical sequences to be sent to the T9

Recognizer.

4.3.2 The T9 Recognizer

Building the recognizers for each different input mode is probably the most involved

part of this project. Through discussions with the speech group about implement-

ing a T9 recognizer, it became clear that a generic programmable symbol recognizer

would be most useful to both groups. Therefore, they implemented this symbol

recognizer combining many of the tools that already existed within the Galaxy in-

frastructure. This symbol recognizer is programmable through building a series of

finite-state transducers.
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(a) T9 GUI (b) Virtual Keyboard

Figure 4-2: T9 GUI on the iPAQ compared with a regular virtual keyboard on the
iPAQ.

Programming the T9 Recognizer Through Finite State Transducers

Finite state transducers (FST’s) are essentially a web of nodes representing states

with directed transition arcs. These transition arcs have an associated input-output

mapping and an optional weight. FST’s can be used to implement probabilistic input

recognition techniques. Commonly used for speech recognition [2], the constraint

based path modeling capabilities of FST’s make them appealing for building other

types of recognizers as well. We describe how we make use of FST’s in this section.

The T9 Recognizer uses FST’s to map a series of inputs to outputs with associated

penalties and scores. We worked with the speech group to understand FST methods

to translate T9 number input to text input in ways similar to how they use them for

speech.

To create the T9 FST’s, we needed the words from the domain, the number to

letter mapping, and any other mappings we wanted to implement such as mistype

mappings. Once the FST’s were defined, we were able to use a series of FST com-

position and FST conversion tools already built by SLS for FST manipulation to
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create a single, complete T9 FST. The T9 FST first corrects for mistyped numbers,

insertions, and deletions by creating a mapping from numbers to different numbers,

numbers to blanks, and blanks to numbers with different associated penalties. It then

maps letters to words based on the domain lexicon.

Once the FST was done, we were able to run the T9 Recognizer. The recognizer

is able to convert numerical sequences into an n-best list of phrases that match best

given the possibility of mistypes and the domain-defined words.

Figure 4-3: Input structure architecture with multiple domains and multiple input
modes, highlighting T9.

Integrating the T9 Recognizer with the Galaxy System

Once the T9 Recognizer was built, we were able to integrate it with the Galaxy system

via a modified hubscript [22]. Normally, when a user compiles a domain in Speech-

Builder, SpeechBuilder generates a hubscript. This hubscript essentially programs

Galaxy with a path to route the input data for processing and output for distribu-

tion. In order to use the domain-defined language model and other pieces of Galaxy

in a manner consistent with speech, we had to modify the hubscript. This hubscript

takes the input in from the T9 Recognizer and sends it through the Language Pro-

cessor and all other Galaxy channels similarly to how speech is processed. It was
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important to keep both speech and T9 functionalities embedded in the hubscript.

This way, when audio can be streamed through the Frame Relay Server, another

Galaxy component, the same hubscript can be used for both types of input. With

this modified hubscript, we are able to understand T9 input using the same domain

information and language models as with speech. Since this hubscript is consistent

across different domains, any user can now create a domain, download it, copy over

the new hubscript, and run the domain using T9 input.

4.3.3 Extensibility

With this generic symbol recognizer and the T9 Recognizer as an example, it would

be simple to implement a Graffiti Recognizer. We would only have to create a series

of FST’s for mistypes with mappings and scoring based on graffiti intricacies. The

hubscript could be also modified to watch for input from the Graffiti Recognizer.

With training, the accuracy of detecting mistypes can also be increased.

By building the structure for understanding T9 input for a single domain, we can

run multiple domains using the same structure as shown in Figure 3-1. We would

simply need to broadcast the T9 input to all the T9 servers for each of the domain-

dependent Galaxy instances running. Figure 4-3 shows the combined structure for

running multiple domains for speech, graffiti, and T9 simultaneously.

With the introduction of multiple input modes, the implementation of the Selec-

tor becomes even more important. As mentioned in Section 2.2.2, one of the great

advantages to multi-modal input is the use of mutual disambiguation. By processing

the n-best lists from multiple simultaneous inputs together, mutual disambiguation

techniques can be used to improve recognition accuracy.

36



Chapter 5

Conclusion

In this paper, we have proposed a framework for disambiguating different modes of

input. The work of this thesis included the design of this framework, initial imple-

mentation of the system, and preliminary results on the input recognition accuracy

of the system. In this chapter we describe the results of this thesis and give some

suggestions for extensions and improvements.

5.1 Results

The result of this thesis is a single platform that can be used to disambiguate a large

variety of input modes. One such platform is Galaxy. In this section we first explain

the status of the current implementation of our system. Then, we explore statistics

of established, finely-tuned domains. Finally, we show preliminary findings from an

informal study run on our system and analyze the results.

5.1.1 Overview of Framework Implementation

The functionalities already in place include T9 recognition implemented to use the

Galaxy infrastructure and speech recognition capabilities. Just as with speech do-

mains, the T9 language models are created using the regular SpeechBuilder and

Galaxy structure. A user can now build a domain in SpeechBuilder, download the
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domain, copy over the modified hubscript, and run both a T9 input version of the

domain and a speech input version of the domain. The output of the T9 Recognizer

and the Speech Recognizer will be processed using the same exact Natural Language

Processing components and will be sent to the same back-end application. The input

source is transparent to an outsider seeing only the actions resulting from execution

of commands coming from the user.

The T9 Recognizer utilizes the generic symbol recognizer built by SLS. Any rec-

ognizer can be built in a symmetric fashion for any type of symbol based input. The

additional input we are especially interested in at the moment is graffiti.

Figure 5-1 shows an iPAQ accepting both T9 commands and speech commands.

Figure 5-2 shows the n-best results from both the T9 Recognizer and the Speech

Recognizer for a Presentation Layer subdomain input “next slide”. With both modes,

the output from the Recognizers is sent to the Natural Language processing unit and

so on through Galaxy and eventually the command “next slide” is sent on to the

back-end application which controls a presentation and skips to the next slide.

(a) Speech (b) T9

Figure 5-1: The T9 input GUI and the Speech input GUI running on the iPAQ. These
are screen shots from the same iPAQ running both modes simultaneously.

The n-best list shown in Figure 5-2 for the T9 input contains the list of valid words
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(a) T9 Recognizer

(b) Speech Recognizer

Figure 5-2: T9 Recognizer output and Speech Recognizer output illustrating n-best
lists generated for the input “next slide”.

that best matched the number sequence “6398#75433” that was entered. Similarly,

the n-best list for the Speech input contains the list of valid words that best matched

one instance of the spoken input “next slide”. It is the Natural Language Processing

unit that is responsible for picking a valid phrase from the n-best list. Notice that

the speech input was understood to be “please skip to the next slide two”.

In testing the system, there were many cases where the selected output was not

first on the n-best list. These cases are examples of the Recognizer suggesting valid

words that best fit the input, and the Language Processing Unit selecting what it

thought to be the best input that matched the language model of valid phrases. This
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case could turn out to be extremely useful when the Selector is implemented. It could

help to disambiguate partial input from multiple modes even though no one input is

complete.

5.1.2 Degradation Due to iPAQ Microphone

To establish a comparison for our speech accuracy, we must examine the accuracy of a

large domain built and maintained by SLS themselves. For this comparative purpose,

we chose to look at the Jupiter, a weather information system. Jupiter uses weather

and geographic databases to answer queries such as “What cities do you know about

in California?” and “What will the temperature be in Boston tomorrow?” SLS has

been using Jupiter for a few years and has made it publicly accessible via a toll-free

telephone number. As a result, they have logged over 10,000 calls which they have

used for training speech recognition and language models. Jupiter makes use of a

well-crafted domain designed by speech experts and has been finely tuned by training

data. They indicate average word accuracies of 90% and correct understanding rates

of 85% for queries made from novice users on commands in the domain. They also

indicate that these accuracies go up to 98% and 95% respectively for experienced

users.

Recognition Accuracy of Jupiter
Telephone 100%
iPAQ 70%

Table 5.1: Our informal results from speech input to SLS’s Jupiter weather system via
telephone and iPAQ for 10 commands. SLS’s more in-depth tests claim 98% accuracy
over the telephone.

For comparative purposes, we also did our own brief test using the Jupiter system

in the same environment as our own study. We used a list of ten suggested Jupiter

queries to present to Jupiter via both the telephone and the iPAQ. Table 5.1 shows

the result of our rough test by an experienced user.

As Table 5.1 indicates, we found the telephone speech interface recognition to be
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100% accurate using a small set of commands. Interestingly, when we switched over

to the iPAQ speech interface using the same exact domain and commands, the recog-

nition accuracy dropped to 70%. This indicates a strictly worse rate of recognition

accuracy on the iPAQ. This degradation in accuracy could be a result of many fac-

tors. First, the microphone on the iPAQ may not be tuned perfectly. We informally

fiddled with the audio mixer equalizer and line-in settings. However, the microphone

accuracy could potentially be improved by even more sophisticated configuration.

Also, SLS’s models have been trained for telephone-based dialogs through methods

such as the Jupiter system. Since the microphones on the iPAQ and telephone are

configured differently and the telephone is designed to get speech input at close range

while the iPAQ is designed for slightly farther input range, it is possible that this is a

contribution to the accuracy degradation. Since our tests use the iPAQ, this simple

test is a clear indication that we should not necessarily expect recognition rates higher

than that of 70%. After all, Jupiter has been tuned over many years and is designed

for use over the telephone while our uses user-defined, rough domains over the iPAQ.

One important point about the data obtained from the Jupiter system is that the

“correctness” of the output obtained is based on the output frame, not necessarily the

exact output phrase. This means that the output phrase could be slightly wrong, but

as long as the output frame was close enough, the correct command was executed.

We discuss this difference more in-depth in the following sections.

5.1.3 Preliminary Findings

In this section we describe the preliminary results that we obtained from running

a small informal study. It is important to note that the actual output that should

be processed by the back-end application built by the user is the output frame, not

necessarily the output phrase. When a user builds a domain in SpeechBuilder, the

actions and keys are specified. When input is processed, the values of the actions and

keys are set if an input word/phrase matches the specified values in the SpeechBuilder

domain. Therefore, the output can be parsed more robustly even when Galaxy rec-

ognized only a subset of the entire phrase inputted. We utilize the output frame in
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our back-end application for command execution. However, since we are testing the

recognition accuracy, for our results, we examine only the entire output phrase and

the n-best list. This is because it is possible for Galaxy to misunderstand a word but

still get the correct action/key frame output if two words are mapped to the same

value. We did not want misunderstood words that by chance mapped to the same

value to be counted as correctly understood words. Also, it is possible for Galaxy

to have the correct understanding of the words said but also have additional words

in the output phrase that could conflict. As we will mention later in the analysis,

had we chosen to use the output frame instead, these chance misunderstandings and

frame parsings would have improved our accuracy rates substantially.

The Jupiter-based comparative statistics above most likely make use of the output

frame and other more sophisticated processing techniques that we did not use for

analyzing our output in this study. Therefore, it is not surprising that our results are

considerably worse than the comparative results. Still, the results that we obtained

are interesting initial findings.

The Setup

In order to get some preliminary results, we created a sample Presentation Manager

Scenario and ran a small informal study on four subjects. The scenario comprised of

the three subdomains outlined in Section 3.1 (the Slide Layer domain, the Presen-

tation Layer domain, and the Application Layer domain) and a composite domain

of all the commands from the three subdomains. For each subdomain, we included

the basic commands that a user might need to control a presentation on a laptop

appropriate for the particular subdomain. The domains are all runnable via speech

and T9.

We chose to run the experiment on the iPAQ since we are focusing on pervasive

computing controlled via an iPAQ. Both speech and T9 could also be controlled from

a desktop computer using the same commands and implementation.

To run the experiment we selected a set of eleven commands from each domain

that covered the basic functionality and word set. We had each subject input these
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commands via speech and T9 for both the corresponding subdomain and the full

domain, the domain that contains all the commands from each subdomain. We logged

the output phrase, the n-best list, and the time elapsed for each set of commands

inputted.

It is important to note the level of consistency of our data entry. For T9, our data

entry is very consistent. Each subject performed the T9 input process only once for

each subdomain. We then automatically inputted the same exact input string for the

full domain. That way, we could be sure to preserve any typos and test the accuracy

of the two domains consistently. However, with speech, we found it less accurate to

first record the spoken commands and play them back due to the duplication of noise

introduction. We therefore decided to have each subject speak the command twice,

once for the subdomain and once for the full domain. Even though this method is not

completely consistent since the subject may vary the way he speaks the command

slightly and introduce additional error in our results, we decided to go with this

method of testing.

As all of the setup descriptions indicate so far, this test is by no means a rigorous

test. It is simply a rough indication of the potential of our system and what areas we

need to concentrate on even more.

Raw Data

The tables in this section show the raw data from the log files we collected. For each

set of commands inputted, the tables indicate how many commands were parsed 100%

successfully (the output phrase matched the input command), how many commands

were listed in the n-best list successfully, and how many T9 input sequences contained

at least one typo or insertion/deletion.

Let us examine the first two rows of Table 5.2. The first row pertains to the

Slide Layer commands processed by a Galaxy instance running the Slide Layer sub-

domain and the second row pertains to the Slide Layer commands processed by a

Galaxy instance running the full domain containing all the commands. The second

and fourth columns, labelled “Right”, indicate how many commands were success-

43



Domain Speech Accuracy T9 Accuracy
Right n-best Right n-best typos

SL - Subdomain (11) 2 7 10 10 6
SL - Full domain (11) 2 4 10 10 6
PL - Subdomain (11) 2 5 10 11 6
PL - Full Domain (11) 0 1 7 8 6
AL - Subdomain (11) 4 7 10 10 7
AL - Full Domain (11) 1 4 10 10 7

Total Subdomain (33) 8 19 30 31 19
Total Full Domain (33) 3 9 27 28 19

Table 5.2: Subject 1 – Raw Data. This table shows the number of correct disam-
biguations for commands from the three layers: Slide, Presentation, and Application.
Each domain was run on Galaxy with both the subdomain and full domain language
models.

Domain Speech Accuracy T9 Accuracy
Right n-best Right n-best typos

SL - Subdomain (11) 5 7 11 11 1
SL - Full domain (11) 1 3 11 11 1
PL - Subdomain (11) 5 7 8 11 5
PL - Full Domain (11) 2 2 9 11 5
AL - Subdomain (11) 7 8 10 10 1
AL - Full Domain (11) 4 6 10 10 1

Total Subdomain (33) 12 22 29 32 7
Total Full Domain (33) 7 11 30 32 7

Table 5.3: Subject 2 – Raw Data.

fully disambiguated out of the eleven commands in the set. Similarly, the third and

fifth columns, labelled “n-best”, indicate for how many commands the correct disam-

biguation appeared in the n-best list out of the eleven commands in the set. The last

column indicates how many commands contained at least one mistype, insertion, or

deletion typo for the T9 version of the input.

The last two rows are a summation of the results for each subject. They indicate

the total number of correct disambiguations appearing in the output and n-best list

and the total number of typos that occurred for all thirty-three commands inputted

by the subject for the corresponding type of Galaxy instance.
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Domain Speech Accuracy T9 Accuracy
Right n-best Right n-best typos

SL - Subdomain (11) 3 6 10 10 3
SL - Full domain (11) 5 5 10 10 3
PL - Subdomain (11) 4 5 9 11 5
PL - Full Domain (11) 0 3 7 7 5
AL - Subdomain (11) 6 7 9 10 2
AL - Full Domain (11) 5 6 9 9 2

Total Subdomain (33) 13 18 28 31 10
Total Full Domain (33) 10 14 26 26 10

Table 5.4: Subject 3 – Raw Data.

Domain Speech Accuracy T9 Accuracy
Right n-best Right n-best typos

SL - Subdomain (11) 5 7 10 10 3
SL - Full domain (11) 3 4 10 10 3
PL - Subdomain (11) 5 6 9 10 1
PL - Full Domain (11) 1 2 8 10 1
AL - Subdomain (11) 6 6 10 10 1
AL - Full Domain (11) 4 6 10 10 1

Total Subdomain (33) 16 19 28 30 5
Total Full Domain (33) 8 12 26 30 5

Table 5.5: Subject 4 – Raw Data.

We have included these raw data tables to illustrate the variation between accuracy

and speaker that we found. This does not imply that this speech recognition system is

user-dependent, the accuracies could be different on another run-through. However,

it does indicate a variation in accuracy rate.

Analysis of Data

Now we look at the overall results of the study. Figure 5.6 shows the correct recog-

nition percentage rates over all four subjects for the set of 132 commands. These

findings are more clearly illustrated by the graph in Figure 5-3. Here we examine

the results on three bases: how they compare for a subdomain versus the full domain,

how useful the n-best list is, and how speech and T9 compare.
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Speech T9
Correct In n-best list Correct In n-best list

Subdomain (132) 37% 59% 87% 94%
Full domain (132) 21% 35% 83% 88%

Table 5.6: Average disambiguation rates for Speech and T9 inputs over all study
subjects.
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Figure 5-3: Graphical illustration of average disambiguation rates stated in Table
5.6. This graph clearly shows the disambiguation rates of Speech versus T9 and the
potential improvement by using n-best list information.

It is not surprising that the recognition rates we obtained for speech are much

higher for the subdomains than for the full domain. The full domain has roughly

three times the number of words to select from and is therefore more prone to mis-

understand more words given the natural error and variation in human speech. By

creating smaller domains, our results indicate we can improve recognition rates by

approximately 16% for speech and 4% for T9. It is important to remember that our

test domains are fairly small and these numbers could look extremely different for

46



Average Entry Time
Speech 7.4 seconds
T9 13.1 seconds

Table 5.7: Average entry time for each command over all study subjects. These times
include entry, processing, and output feedback.

larger, more complex domains. A well-tuned iPAQ could also change these results

significantly.

As expected, the rate of appearance of the correct disambiguation in the n-best list

was consistently higher than the rate of correct disambiguation in the output. This

implies that the n-best list can in fact be used in conjunction with other modes of input

to further disambiguate the input and select the intended command. It is a matter

of building a “smart” Selector to perform the mutual disambiguation. As mentioned

earlier, by correct disambiguation, we mean the parsed output exactly matched the

input. It is possible for the output frame to indicate the correct meaning and therefore

result in the correct command execution, but for the output to be slightly different

than the actual input. Our results include these situations as an error since the

phrases did not exactly match. Table 5.8 shows the speech recognition rates based

on the output frame. Notice they are strictly higher.

From this study, it is clear that the recognition rates were much higher for T9 than

for speech. This is because the disambiguation necessary for T9 is much less than that

for speech since the expected range of error is smaller. There are no errors introduced

by accent, noise, or language differences. T9 disambiguation involves disambiguating

some typos and the innate error involved with having 3-4 letters associated with

each number. Even though the same input took on average 13.1 seconds to enter,

process, and retrieve results via T9 as compared to 7.4 seconds via speech as shown

in Table 5.7, the recognition accuracy seems to be astoundingly better. This by

no means implies that T9 should be a replacement for speech. However, it does

indicate T9 could be a useful tool for disambiguating error-prone speech input in

certain situations. It is important to note that the average input time for speech was
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closer to 3.7 seconds since the 7.4 seconds recorded in the table includes the playback

of the disambiguated output. This playback option is implementation specific and

is not necessary for execution of the command. The T9 entry time does not include

synthesized speech output playback.

These results are informal estimates. The next section helps to put them into

perspective in the overall accuracy picture.

Putting the Results into Perspective

Some of the errors experienced in our study could be due to new user errors. Most of

the subjects for this study had not had experience using the iPAQ. Although we gave

them a brief explanation and allowed a practice run to become more comfortable with

both the speech and T9 input methods, the results could have been biased by first

time users. This is an indication that the user interface can be improved depending

on the target audience.

Many more tests need to be run in order to come up with rigorous results. The

speech recognition numbers here are surprisingly low. However, when you consider

the comparative results from SLS’s Jupiter weather system in Table 5.1 and the

rough comparative results for the correct output frame in Table 5.8 versus the exact

output parsing, it is clear that the low speech recognition rates are partly a function

of test definitions.

Let us start from the top and work our way down. First, we start with the well-

tuned Jupiter domain used over the telephone. Our rough test found the recognition

to be perfect. When we estimated the accuracy over the iPAQ, the commands run

with the same domain dropped down from a 100% to a 70% accuracy rate. These

accuracy rates were measured using the output frame. When we took the same data

from our study and examined the output frame with our domains, we found a 52%

accuracy rate for speech subdomains. This accuracy rate dropped to 37% for the

subdomain with the constraint of a correct output disambiguation. Similarly, we

found a 31% accuracy rate for speech full domains using the output frame as opposed
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to the 21% accuracy rate for the correct output phrase constraint. These output

frame rates are described in Table 5.8.

Output Frame Accuracy for Speech
Subdomain 52%
Full Domain 31%

Table 5.8: Average accuracy rates of the output frame over all study subjects for a
total of 132 commands.

These output frame rates are the right rates to compare to the comparative results

in Table 5.1 since they use the output frame results also. The output frame results

are also a good transition to understand the correct output phrase results from our

study in Table 5.6. It indicates that our recognition accuracy of 37% for subdomains

is not bad considering we are using the iPAQ and a domain built by speech novices.

It is quite an improvement over the 21% accuracy using the full domain. And an

even larger improvement can be made using the n-best list results in combination

with multi-modal inputs such as T9.

5.2 Challenges and Future Work

It should be clear from this paper that the Galaxy system is trained to perform very

accurate speech recognition and its architecture theoretically allows for utilizing in-

dividual components. That is why we chose to use it. However, there are always

challenges to using ongoing and constantly improving research. Galaxy is an old sys-

tem that has been developed over many years. It was originally meant only for speech.

In order to use it without audio required some configuring, constant communication

with and querying of SLS members, and lots of help from Galaxy experts.

As this research has been evolving over the past year, so has Galaxy. The increased

functionality introduced by a new Frame Relay Server component allowed for an easier

back-end connection and also an easier method of piecing together components with

the Hub. As Galaxy and other input technologies continue to evolve, so do the

possibilities for the topic of multi-modal input associated with this project.
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This thesis thus far has developed a framework for multiple domains and disam-

biguating multi-modal input by extending the Galaxy architecture and focusing on

the needs of pervasive oxygen systems. While we have built some of the groundwork

for this framework and proved that it is possible, there is still much work left to be

done before we will be using the system illustrated in Figure 4-3. The longer aim of

the overall project is to build this entire structure for all useful inputs including pen-

based inputs such as graffiti, touch-pad inputs, and spatial inputs such as gestures. In

order to complete this structure, the broadcast functionality has to be implemented

for parallel multi-domain processing and an intelligent Selector must be built to take

advantage of multiple input information.

The results seem to indicate that the n-best list might be of use for disambiguating

commands. However, this paper has not explored the specifications of what n should

equal. Our study was run using very simple domains and tested only eleven commands

for each domain. For our results, n = 10 made for a useful n-best list. Other larger

studies might indicate different results for the usefulness of different length n-best

lists. This is a topic that should be explored. Too large an n might result in many

false-positives but too few might result in losing important information. The optimum

value of n is an interesting extension.

Another major extension to this system is the implementation of a conversational

command listener. Currently, in order to give commands via speech, a user must press

a button to indicate the start of a command. A truly “smart” system would listen

to all spoken dialog, distribute the parsing of sets of spoken words to many different

processors, and have the capability of distinguishing a command from conversational

words.

In this thesis, the framework and the steps for the system’s basic functionality

have been determined. In order for this project to become truly complete and usable,

the process must be automated. Hopefully, having read this thesis, you will want to

continue it.
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Appendix A

Documentation

This documentation is a quick guide to understand the system, use the system, and

extend the system. Although it is tailored to the Galaxy configuration installed

on money.lcs.mit.edu , it can be helpful in understanding the overall framework

implementation as well.

This Galaxy configuration includes use of the Frame Relay Server component built

by SLS in addition to the ones shown in Figure 2-1. The system uses the current

version of Galaxy located at /usr/sls/current , version 3.2.2.

A.1 Galaxy Basics

We used SpeechBuilder 2.1 located at http://speech.lcs.mit.edu to build our

language model domains off of which Galaxy is configured. To create a language

model, you must specify a set of actions (commands) and keys (concepts). Using this

system, the language models built using SpeechBuilder can be used for any mode of

input implemented. Currently, these modes include Speech and T9.

When you build your domain in SpeechBuilder, you must specify a URL to which

Galaxy will post the output. The callback application can be in the form of a CGI

script that accepts the output frame for parsing or a Java application that can accept

an entire frame. The frame includes the output frame, the n-best list, and other useful

information. In order to use the Java application callback option, you must use the
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Frame Relay Server component and specify the URL as relay:<app_name> . The

<app_name> for the sample callback application written by the SLS group is test.

The source code is located at

/usr/sls/current/oxygen/java/src/echo/Echo.java .

The frame can be further parsed using the API written by Scott Cyphers at

http://www.sls.lcs.mit.edu/cyphers/fr . The Frame Relay Server is also back-

wards compatible and can send output to CGI scripts, though the Java application

is much more convenient.

Once you specify all the components of a domain, compile it and get the domain

tarball. The following Speech and T9 subsections give instructions for how to run the

domain from there.

A.2 Creating a Domain and Running It

This section first describes how to set up the system for Speech and T9. It then goes

into the step by step process of how to run the system using Speech and T9 input

modes.

A.2.1 Setting Up the Domain For Speech

1. Make the domain in SpeechBuilder. Download it. Untar it in your Speech-

Builder directory.

2. Copy the menu file in your

/home/username/SpeechBuilder/DOMAIN.domainname directory over to the

/usr/lib/menus/ directory on your iPAQ by ssh’ing into your iPAQ. You can

name this file anything you want. As long as it is in the specified menu directory,

it will be added to the menu on the iPAQ after you run update-menus and

reboot the iPAQ.

The menu command should be of the form

galaudio /dev/sound/dsp money.lcs.mit.edu <username> <portnum>
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(You can also run this command on your local machine with the galaudio binary

file.)

3. Update the audio mixer on the iPAQ to one where you can tweak the sensitivity

of the equalizer and line-in. We ended up setting the line-in at the middle of

the gradient and the equalizer to three-fourths to the top. You can play around

with the settings.

A.2.2 Running the Domain Using Speech

1. Galaxy Servers

Run the Galaxy components on money (or whatever machine happens to be

hosting Galaxy and your domains). Do this by typing the command

./oxclass.cmd yes from your

/home/username/SpeechBuilder/DOMAIN.domainname/ directory. The yes

indicates that you would like a separate window to pop up for each different

Galaxy server running, namely the HUB, Local Audio, NL, Speech Recognizer,

and Frame Relay Server (if you specified relay:<appname> as your domain

URL).

2. Callback Application

Run your Java callback application. You should see the acknowledgement of

your application’s name in the Frame Relay Server window.

We run our Java app by first running:

source /home/depot/Speech/path

to include the frame parsing Java classes necessary in our path. And then run:

xterm -title "MyEcho.java" -e java MyEcho localhost

<remote_port num> test &

to actually run the Java app. Note that the <remote_port num> is the port

number that the frame relay server is listening on found in
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/home/username/SpeechBuilder/DOMAIN.domainname/sb.sas

under the Frame Relay Server specifications.

3. Speech Interface

Finally, run the menu item on your iPAQ. The ###call_answered### mes-

sage should be sent to your Java app and your welcome message specified by

your Java app should be spoken to you. Now you can speak any commands that

you specified in your SpeechBuilder domain. Your Java app should parse these

commands based on the output frame or n-best list data and execute whatever

commands you choose.

Your domain should now be running. If galaudio hangs on the iPAQ (you say

something and it just tells you to wait but does not respond), try changing the

menu command to

galaudio /dev/sound/dsp money <username> <portnum> push

It could be that the environment is noisy and the sound input needs to be forced

in when you finish your phrase.

A.2.3 Setting Up the Domain For T9

1. Make the domain in SpeechBuilder. Download it. Untar it in your Speech-

Builder directory.

2. Copy over the modified versions of

speechbuilder.pgm and speechbuilder-common.pgm

to /home/username/SpeechBuilder/DOMAIN.domainname/

from /home/sagarwal/pgms/new/ .

3. Copy over <domainame>.wlex over to the T9_rec directory currently found

at /home/sagarwal/T9_rec . The T9_rec directory must contain:

fst_build_T9_recognizer.cmd, lexicon.pl, t9.mistypes,

t9.map.baseforms, t9.baseforms .
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4. Run the perl program lexicon.pl in the T9_rec directory on

<domainname>.wlex by setting the input file name in lexicon.pl to

<domainname>.wlex and running perl lexicon.pl .

5. Remove the header lines from the t9.baseforms file so that it only contains

actual words from the domain.

6. Make sure your path contains: /usr/sls/current/sls/bin . This path con-

tains the FST composition tools built by SLS.

7. Run ./fst_build_T9_recognizer.cmd to build the final FST, t9.fst .

8. Now you must run the system.

A.2.4 Running the System with T9

In order to run T9, there are a lot of pieces that all need to be running simultaneously.

The order that these processes are started in is also very important. The following

steps details how we have been running the system.

1. T9 Symbol Recognizer

The first step is to run the T9 Symbol Recognizer. This recognizer will listen

on the port that Galaxy normally expects the Speech Recognizer. Just as

described in the body of this thesis, the T9 Recognizer simply replaces the

Speech Recognizer.

To run the T9 Recognizer, first set the path correctly run the command:

xterm -title "T9 Symbol Recognizer"

-e /home/sls/Galaxy-3-2-1/galaxy/bin/symbol_rec

-port 7325 -fst /home/sagarwal/T9_rec/t9.fst &

This will start up the T9 Recognizer in a new window. You can tell it to run

whichever FST you choose. The command here runs our T9 FST.
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2. Galaxy Servers

To start the Galaxy Servers with T9 is no different than any Galaxy do-

main created with the SpeechBuilder application and compiled in conjunction

with Galaxy run with Speech. To start the Galaxy Servers, first go to your

/home/username/SpeechBuilder/DOMAIN.<domainname> directory that you

downloaded from SpeechBuilder and unpackaged. Then, run the command:

xterm -title "Galaxy components" -e ./oxclass.cmd yes &

The yes indicates that you would like a separate window to pop up for each

different Galaxy server running. Don’t worry if the Speech Recognizer dies. It

has been replaced by the T9 Symbol Recognizer so the Speech Recognizer can

no longer connect to the Galaxy Hub.

3. Back-End Application

Running the Java application that parses the output frame is the same as with

Speech. We run our Java app by first running:

source /home/depot/Speech/path

to include the frame parsing Java classes necessary. And then running:

xterm -title "MyEcho.java" -e java MyEcho localhost

<remote_port num> test &

to actually run the Java app. Note that the <remote_port num> is the port

number that the frame relay server is listening on found in

/home/username/SpeechBuilder/DOMAIN.domainname/sb.sas

as described earlier.

4. T9 Server: Interface between T9 GUI and T9 Input Server

The T9 Server is a simple Java Server that we wrote to accept the input from

the T9 GUI and send it to the T9 Input Server. The T9 Server tells the T9
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Input Server to wait until it receives data from the user. Run the following

commands to start the T9 Server.

cd /home/sagarwal/T9Server

xterm -title "T9 Server" -e java T9Server &

5. Callback Server

The Callback Server is more of a proof of concept component and is not a nec-

essary step. We programmed our MyEcho.java application to send commands

to the Callback Server to prove that multiple domains can be running at the

same time with different input modes and the commands can all be sent to the

same repository. This repository is the Callback Server, the segway into the

Selector. Run the following if you want to run the Callback Server.

cd /home/sagarwal/CallbackServer

xterm -title "Callback Server" -e java CallbackServer &

6. T9 Input Server for Symbol Recognizer

The T9 Input Server is the replacement for the regular Galaxy Audio Server. A

generic server was written by the speech group to allow text entry into Galaxy.

By modifying it to query the T9 Server for T9 numerical input, we are able to

send T9 input to Galaxy. Run the T9 Input Server with the following command:

xterm -title "MyLintest"

-e java MyLintest localhost <remote port num> mylintest

<username> &

The original Input Server can be found at

/usr/sls/current/oxygen/lintest/java/src/lintest/Lintest.java
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A.3 Extending the System

As you can see from running the system, the basic implementation is there. There

are also many opportunities for small and large additions to extend the system. We

discuss a couple of the smaller ones in this section.

A.3.1 Optimizing the FST’s

A small, yet powerful, addition is optimizing the mistype and insertion/deletion penal-

ties embedded in the FST for the T9 Recognizer. We came up with mistype penalties

based on proximity of numbers on the keypad. The insertion/deletion penalties are

currently arbitrary and rather large. Playing with these penalty values could greatly

improve the performance and usability of the T9 input mode.

The penalties are implemented via the

/home/sagarwal/T9_rec/t9.mistypes.fst file.

The format for an FST file is as follows.

FSTBasic MinPlus

I 0

F 0

T 0 0 9 2 5.0

T 0 0 9 3 5.0

T 0 0 9 4 5.0

T 0 0 9 5 4.0

T 0 0 9 6 2.5

T 0 0 9 7 5.0

T 0 0 9 8 2.5

T 0 0 9 9 0.0

T 0 0 9 , 50.0

T 0 0 , 9 50.0

...

<continues similarly for other input numbers>
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The first line is a standard header for an FST file. The second line indicates that

the initial state is 0. The third line indicates that the final state is 0. As mentioned

in the body of this paper, an FST is a directed graph of nodes representing states

and directed arcs representing transitions from state to state. Each line beginning

with a T represents a Transition arc. Let us take the fourth line as an example. In

English, it reads: Transition arc from state 0 to state 0, if the input is 9 the output

is 2 with a penalty of 5.0. Since the most likely output for an input of 9 is 9, the

transition: T 0 0 9 9 has the lowest penalty associated. The , represents a null

input and therefore can be used for representing insertions and deletions in an FST.

A.3.2 Implement Graffiti

A major contribution of this thesis has been to introduce the capability of additional

input modes using the same platform and processing techniques. In order to take

advantage of that, new input modes must be introduced. We suggest graffiti as the

next input mode.

To implement graffiti, an interface must be made that runs on the iPAQ, converts

graffiti to letters, and sends the sequence of converted letters to a server (the T9

Server can simply be extended ) for disambiguation. The other piece that must be

completed is the Graffiti FST to account for misunderstood letters and misspellings

with associated penalties. These two pieces alone are enough to implement graffiti.

It can then be run using the same steps as T9.
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