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Abstract

Introductory Solid Mechanics has historically been taught using the traditional methods of 
blackboard instruction. In the Mechanical Engineering Department, we have undertaken 
an initiative to comprehensively transform the pedagogy of 2.001 (Mechanics and Materi-
als I), an undergraduate course in Solid Mechanics. This transformation represents a radi-
cal shift in the teaching paradigm, one which is best described as an active engagement 
model. Through discovery-based and cooperative learning, it is hoped that students will 
develop conceptual understanding of the course material, that students will become com-
fortable working in teams, that student retention of course material will improve, that stu-
dents will be able to engage in independent learning, and that student satisfaction will 
improve. There are several components to this new pedagogy: physical desktop experi-
ments, Web-enabled learning modules, a portable computing initiative, a new classroom, 
and a change in the lecture format. This thesis will describe all of these, but will focus on 
the development of the Web modules, the synthesis of these elements in developing the 
new pedagogy, and preliminary assessment of the project. The thesis is dually intended as 
a presentation of original research and as a working document for others who may wish to 
undertake a project of similar scope.
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Chapter 1

Introduction

1.1 Background
The rapid advancements in information technology in recent years enable the develop-

ment of new teaching methods in both distance-based and on-campus learning.  We in the

Department of Mechanical Engineering undertook a project to comprehensively transform

the pedagogical structure of an introductory Solid Mechanics course: 2.001 (Mechanics

and Materials I).

The new pedagogy is based on an active engagement model, one that emphasizes dis-

covery-based and cooperative learning. The four major desired outcomes of this new ped-

agogy are: 1. improved conceptual understanding of the course material, 2. an introduction

to teamwork, 3. improved student retention across courses in the curriculum, and 4. an

improved ability for students to engage in independent learning. While pursuing these

goals, it is important that we maintain or improve student satisfaction, both with the course

and the department. There are several components to this new pedagogy: physical desktop

experiments, Web-enabled learning modules, a portable computing initiative, a new class-

room, and a change in the lecture format.

This thesis will describe all of the components of the new pedagogy, focusing prima-

rily on the development of the Web modules, the synthesis of these elements in developing

the new pedagogy, and preliminary assessment of the project. This document is dually

intended as a presentation of original research and as a working document for others who
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may wish to undertake a project of similar scope. As such, practical details may be

included insomuch as they do not detract from the primary purpose of the thesis.

2.001 (formerly 2.01) has been an introductory Mechanical Engineering course for

over 50 years now [52]. This course provides an introduction to statics and the mechanics

of deformable solids [50]. The main emphasis is on the basic principles of equilibrium,

geometric compatibility, and material behavior. These principles are covered in a progres-

sive manner: systems of rigid bodies are first introduced; then one-dimensional linear

elastic deformable elements are presented; eventually, the class progresses to the analysis

of three-dimensional linear thermoelastic materials and structures. The current prerequi-

sites are 8.01 (Physics I) and 18.02 (Multivariable Calculus), and the corequisite is 18.03

(Differential Equations). With few exceptions, the course content has remained the same,

and the main methods of teaching this course have been the blackboard and the textbook.

Given the introductory nature of the course, and the fact that this course has been taught

with a reasonable amount of success over the department’s history, 2.001 represented a

good specimen on which to test the new pedagogy.

In terms of course history, Solid Mechanics has been taught using very few experimen-

tal techniques. The material has changed slightly over the time that it has been taught, but

the general topics have remained nearly unchanged through the history of the course [16].

Just after World War II, the Department of Mechanical Engineering was focused primarily

on applied mechanics. There were separate courses for Statics and Kinematics; and two

courses each on Dynamics and on Strength of Materials. Many junior- and senior-level

courses provided the opportunity for more thorough exploration of these topics. The

Mechanical Engineering faculty made a conscious decision at that time to consolidate
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Statics and Strength of Materials. The result was one course on Solid Mechanics and

another focusing on Mechanical Behavior of Materials; these are the present-day courses

2.001 and 2.002, respectively. In 1959, after five years of work by seven faculty members,

a book named Introduction to Solid Mechanics (commonly referred to as Crandall, Dahl,

and Lardner) was published [17]. Many engineering programs across the nation immedi-

ately adopted the use of this book [28]. This revolutionary text is still used in 2.001 today.

Though many of the more competitive engineering programs have adopted the concept of

consolidation of Statics and Strength of Materials, many engineering schools still offer

separate courses for each of the elements of Applied Mechanics. Testament to this is the

fact that Beer and Johnston’s texts (Statics and Dynamics) are still used so prevalently [6].

The course has primarily been taught using traditional lecture methods. Even before

this course was started in the 1950’s - when the Department of Mechanical Engineering

had the largest enrollment of any department at the Institute - all engineering students

were required to take classes in applied mechanics. This included civil engineers, electri-

cal engineers, and aeronautical engineers.1 This was also a time when many more faculty

were involved in teaching the course. Early on, as major engineering fields became more

specialized, electrical engineers were no longer required to have such strong footing in

Applied Mechanics. Civil engineers and aeronautical engineers still needed a basis in this

area, but - starting in the 1970’s - these departments took on the responsibility of teaching

these subjects to their own undergraduates. Today most students enrolled in 2.001 are

from the Department of Mechanical Engineering. As the course fulfills a requirement for

1.  A policy that there be no more than 30 students in a class once resulted in 22 sections for Solid 
Mechanics.
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Ocean Engineering, Nuclear Engineering, and Mechanical Engineering minors, there are

typically a few students from other departments.

In terms of other courses at MIT, 2.002 (Mechanics and Materials II), the follow-up

course to 2.001, has used some different forms of physical experimentation through its

history including “desktop experiments”, physical demonstrations, laboratory experimen-

tation, and design exercises. The first “desktop experiment kit” correlated to the text writ-

ten by the course instructors, Profs. Frank A. McClintock and Ali M. Argon; the text

indicated problems that could be verified through experimentation [53]. More involved

experiments were developed in the form of a shoebox of take-home experiments by

Boyce, et al. (1995). The more formal laboratory component of the course has been in

place since at least the 1970’s and has taken many forms. It has primarily been demonstra-

tion material, but in recent years has evolved to provide more hands-on involvement with

the various phenomena; this has proven to be successful in imparting learning. For

Mechanical Engineering fluid mechanics courses, Prof. Ascher H. Shapiro developed a set

of videos of fluids experiments [92]. The professional creation of these videos - sponsored

by the National Science Foundation (NSF) - made for an illustrative classroom aid. These

videos were at first shown in class, were later displayed outside of class time and made

optional, and finally were removed from the curriculum.

In terms of the Web, Prof. David Wallace experimented with Web-based lectures in

the graduate level course 2.744 (Product Design) [104]. The Mechanical Engineering

Hypermedia Project (MEHP) was another early attempt to bring Mechanical Engineering

courses online, culminating in MIT's first Fluid Mechanics Hypercourse CD-ROM [70].

This idea, however, was not permanently integrated into the undergraduate curriculum.2
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Aside from these few examples and upper-division lab classes, much of the Mechani-

cal Engineering curriculum was - and is - based on lectures and textbook problems.

Despite its root in “chalk and talk” lectures, the Massachusetts Institute of Technology

(MIT) has recently become much more active in using technology to develop engineering

education. These recent attempts collectively have the potential to create the most radical

shift in education at MIT since the Institute’s founding in 1861.

1.2 Motivations
A 1995 report from the Board of Engineering Education identified many problems with

undergraduate engineering education [20].  Though finding U.S. engineering programs to

be the strongest in the world, the report criticized teaching styles, and the focus and flexi-

bility of the typical undergraduate curriculum. Teaching styles were deemed to be highly

ineffective for the masses. A “boot camp” mentality left many students with a weak under-

standing of fundamental engineering principles. This was evidenced by a nationwide mea-

ger 65% retention rate in engineering programs. In terms of content, the curricula at

various universities often sacrificed the process of design for analysis methods. Many stu-

dents graduated from college without a solid understanding of engineering design princi-

ples, leaving them ill-prepared for the real world. The relatively slow change to external

stimuli, such as changes in industry and computing, left the Board to conclude that engi-

neering curricula were excessively rigid.

2. Almost all of the core undergraduate classes in the Department of Mechanical Engineering make
use the Web, but the Web is not linked directly to the classroom, nor is its use particularly innova-
tive; most of these classes use websites as a means of posting homework assignments, solutions,
labs, and announcements.
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In addition to these general criticisms of engineering education, problems specific to

MIT’s Department of Mechanical Engineering program have also been identified. The

original project proposal, drafted by six Mechanical Engineering faculty, stated that MIT’s

most important internal asset has always been the quality of its people [10]. Despite this,

the medium for transmission of knowledge from faculty to students has only changed mar-

ginally since the inception of the Institute. The need for MIT to utilize information tech-

nology tools in its educational process was motivated by several factors: competition from

new universities, tuition-free universities and Web-based learning.

New universities, such as Olin College and Rowan University, are currently develop-

ing engineering programs from the ground up. Olin College, in Needham, Massachusetts,

is the first new engineering college in the U.S. in nearly 40 years [105][69]. Rowan Uni-

versity, formerly Glassboro State College (NJ), is in the process of building up its young

school of engineering and is quickly improving its national academic reputation [3]. Such

programs are unhindered by the presence of existing curricula and infrastructure; the

advantages to this include the ability to easily leverage technology and form programs that

will appeal to today’s students.

Other top universities, such as Stanford and Duke, offer students reduced or waived

tuition based on academic performance [100][58]. The Cooper Union, in New York City,

has always operated as a tuition-free university and, though small, provides an excellent

engineering education [14]. MIT’s policy is to offer financial aid only based on need [65].

In order to compete with universities which offer such financial incentives to highly qual-

ified students, MIT must look for ways to distinguish its education: it must provide the

best possible education to this talented pool of individuals.
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The Internet age has also spawned websites specializing in education. Extending the

successful model of video-based distance learning, made famous by Stanford University

in the 1970’s, Web-based education offers students many benefits including an opportu-

nity to review material at their own pace, inexpensive tuition, and flexible scheduling [25].

Though this will likely not pose a threat to MIT or to other top universities in the near

future, MIT must be proactive in developing and advertising the advantages of a resi-

dence-based education. Key among these advantages is personal interaction with top fac-

ulty and gifted peers. Such personal interaction cannot be - at least at this point in our

electronic evolution - adequately reproduced through digital media.

Aside from these external factors, there are a great many internal forces driving educa-

tional change at MIT. MIT’s internal mission to provide a world-class education to the best

and brightest students in the world is key to its success in the future. Content development

occurs frequently in courses at MIT, but the means of delivering the content has changed

very little over the past 100 years. The advances in electronic communication in the last

part of the 20th century necessitate that MIT - if it is to remain a world-class teaching

institution - reevaluate its methods for information delivery.

1.3 Project Description
In October 1999, MIT and Microsoft announced an alliance to “conduct research and cre-

ate new technologies that [would] improve information technology-enabled teaching mod-

els and educational tools for university education” [62]. Initially, the project would focus

on "using information technology to enhance multimedia learning opportunities, design-

ing a program that optimizes student learning in distance learning environments, and
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developing an educational curriculum that uses information technology to enhance collab-

orative learning" [11]. The purpose of this five-year effort - named “iCampus” - was to

encourage cooperative research among students, researchers and faculty at MIT; and

members of Microsoft Research. In an effort to achieve the most global impact, MIT and

Microsoft agreed to produce material that would adhere to open standards, and to openly

disseminate results and source code. 

Within this framework, the Department of Mechanical Engineering presented a pro-

posal to reform its undergraduate curriculum [10]. Three basic instructional paradigms

were identified for development and evaluation over the course of this project: Scientific

Discovery, Socratic, and Just-in-Time. The goal of Scientific Discovery is to allow stu-

dents to learn through exploration. Through team-oriented student exploration, students

observe physical phenomena. Then, with the guidance of an instructor, the students con-

struct an analytical model of the phenomenon. The discrepancies between model and

experiment are then discussed and students understand the limitations of their model and

the reasons for these limitations. Such an approach is expected to create confidence in

engineering principles, and to build a sense of how to design experiments and interpret

results. This approach is the synonymous with the active engagement pedagogy men-

tioned earlier. The Socratic method is intended to allow students to engage in Web-based

independent learning. These Web sessions are followed by small recitation-style mentor-

ing sessions; this model is similar to the one used for 6.001 (Structure and Interpretation

of Computer Programs) and 6.034 (Artificial Intelligence) in the MIT Department of Elec-

trical Engineering and Computer Science (EECS). The Just-in-Time paradigm is mainly

intended for project-centered courses. Students learn about topics as necessitated by the
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project. Such learning simulates a real engineering environment. The team environment

and obvious objective give students a clear motivation to learn.

The traditional large-lecture format of Mechanics and Materials I, a first-year

Mechanical Engineering course, provided an opportunity to examine the potential effec-

tiveness of one of these paradigms: Scientific Discovery.  The other methods would be

tested on other classes at a later date.
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Chapter 2

Prior Work

2.1 Novel Approaches to Teaching Mechanics
Solid Mechanics is a course that is taught across many disciplines. Courses that cover a

substantial portion of 2.001 topics are taught within eight departments at MIT: Civil Engi-

neering, Materials Science, Architecture, Physics, Earth Atmospheric and Planetary Sci-

ences (EAPS), Ocean Engineering, Aeronautics and Astronautics, and Mechanical

Engineering [50]. Additionally, the course 2.001 is an explicit requirement for students

from Mechanical Engineering (including minors), Ocean Engineering, and Nuclear Engi-

neering (Nuclear Energy Option).

Many of the experiments on - and advances in - mechanics education at the undergrad-

uate level have focused on the use of computers in the curriculum. The work that has been

done in recent years in this domain is presented here.

SEVE (Structural Engineering Visual Encyclopedia) is an educational software pack-

age, designed specifically for civil engineering students [30][83]. Developed by Prof.

Robert Henry of the University of New Hampshire (UNH), it is distributed on CD-ROM.

The purpose of this software address the omission of reading and interpretation of engi-

neering construction drawings from most civil engineering curricula. The program pro-

vides access to common structural engineering terminology. The multimedia presentation

of this information - text-based explanations, sketches, photographs, solid models, and

animations - creates an engaging and interesting interface for students to learn (Figure

2.1).
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The primary focus of this program is on structural engineering concepts and engineer-

ing terminology through the use of real world examples and applications. Three-dimen-

sional models provide students with the ability to interact with and fully understand the

applications of concepts. It is important to note that this single program has found applica-

tions across the Civil Engineering curriculum at UNH. SEVE is used in six classes at

UNH: Introduction to Civil Engineering Applications, Classical Structural Analysis,

Reinforced Concrete Design, Timber Design, Matrix Structural Analysis, and Structural

Design in Steel. In 1998, SEVE received national recognition in the form of the Premiere

Award for Excellence in Engineering Education Courseware, sponsored by NEEDS

(National Engineering Education Delivery System) and John Wiley & Sons [68].

Figure 2.1: SEVE (Structural Engineering Visual Encyclopedia), developed by 
Robert Henry of the University of New Hampshire [30].
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MDSolids - Mechanics of Deformable Solids - another software package that won the

1998 Premiere Award is an example of successful mechanics courseware [56][73].3

Developed by Prof. Timothy Philpot at Murray State University (KY), MDSolids was

originally distributed as a downloadable executable (.exe) program. It discretized Mechan-

ics and Materials into 10 major sub-topics, and allowed students to explore each one (Fig-

ure 2.2). Within each topic, students had the opportunity to determine the best way to

solve problems of mechanics. For example, in the Beam Bending module, students had an

opportunity to receive instant feedback, in the form of shear and moment diagrams, on a

beam problem they constructed.

3.  http://www.mdsolids.com

Figure 2.2: MDSolids, an educational package developed by Timothy Philpot at 
Murray State University [74].
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The theory behind the approach of MDSolids was that students would be most inter-

ested in understanding the specific homework problems assigned by their professors, and

that they would use the software if it helped them with their immediate course needs. Spe-

cial attention was paid to creating an easy-to-use interface and a common visual language

among topics, to allow students ease of navigation. Since 1998, the program has been

adopted by several schools since its creation, including the University of Alberta and the

University of South Florida [54][55]. It is now included on CD-ROM from Wiley and

Sons with the purchase of Roy R. Craig Jr.’s Mechanics of Materials. The latest revision

of MDSolids (MDSolids 2.0) includes modules that incorporate three-dimensional render-

ings and animations. Adding to the appeal of this program is that it is available for $25 to

students as shareware, and it is free to universities and colleges who incorporate it as part

of their curriculum. The ease of use and low cost make this an attractive package for

instructor of Solid Mechanics courses.

StressAlyzer, a package developed by Prof. Paul Steif at Carnegie Mellon University,

is similar to MDSolids [97].4 StressAlyzer is intended as a teaching supplement to courses

in Mechanics of Materials; the package is segmented into 6 topics: axial loading, torsional

loading, shear force and bending moment diagrams, load and stress calculations, beam

deflections, and stress transformations.

This is not a comprehensive list of the topics covered in most Solid Mechanics classes,

but instead engages the most difficult topics encountered by students in such a course.

4. http://www.me.cmu.edu/stressalyzer/
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The basic format of StressAlyzer is that of a self-testing study guide (Figure 2.3). Con-

cepts are explained to students and they are periodically asked questions. The student

answers take the form of text input. They are provided with instant feedback including

reasons for incorrect answers as appropriate. The benefit of such a system is that it fully

engages the student and provides real-time feedback. Additionally the system allows stu-

dents to submit homework electronically and has a common interface across all modules.

One major drawback is that a specific pace is set for all students. Students who fully

understand concepts will still have to engage the simple questions in using StressAlyzer.

Also, notable is the recurrence of the two-dimensional engineering schematic, without real

examples or applications of concepts.

Figure 2.3: StressAlyzer, mechanics courseware authored by Paul Steif of Carn-
egie Mellon University [96].
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The Aerospace and Ocean Engineering (AOE) and Civil Engineering Departments at

Virginia Polytechnic Institute and State University (Virginia Tech) have developed a suite

of Java applets for use in engineering courses [39][84].5 “Java Applets for Engineering

Education”, a project headed up by Profs. William Devenport, Rakesh Kapania, Kamal

Rojiani, and Kusum Singh, aims to utilize the universality of Java applets while address-

ing the need for easily-accessible learning tools (Figure 2.4). Java, a language developed

by Sun Microsystems, can run across many platforms [40]. A Java applet is a “small appli-

cation” that can run from within a Web browser. The applet is restricted from accessing

the local computers file system so that users can download the applet without security

concerns. The major benefits of applets are the ability to run in Web browsers, the ability

to run on multiple platforms, and the fact that they have almost as much power as stand-

alone applications.

5.  http://www.engapplets.vt.edu
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The applets from Virginia Tech cover the following major engineering topics: Statics,

Dynamics, and Fluid Dynamics. The major analog to Mechanics are the applets created

for Statics: Mohr’s Circle, Beam Analysis, and Resultant Vectors. The Mohr’s Circle

applets show Mohr’s circles for different inputs in two and three dimensions. The Beam

Analysis applet takes several inputs and displays displacement, shear force, and moment

diagrams for the beam. This is the most extensive of the Statics applets. The Resultant

Vectors applet simply displays a resultant vector based on x and y force inputs. Much of

the focus appears to be on topics other than statics. A recurring concern is the potential

utility of some of these applets, since some cover trivial topics, and others are computa-

tionally intensive. It is also unclear how these applets are used in the engineering curricula

in various departments at Virginia Tech.

Figure 2.4: Beam bending applet from Java Applets for Engineering Education, 
a joint project of the Aerospace and Ocean Engineering and Civil Engineering 

Departments at Virginia Tech [39].
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A similar project in the MIT Department of Civil Engineering gave birth to several

applets for use in mechanics education [21].6 This project, headed up by Prof. Louis Buc-

ciarelli, developed a set of applets to be used for the Civil Engineering course 1.050 (Engi-

neering Mechanics for Structures). There were six applets in total, covering the following

topics: truss structures, frame structures, friction (sliding block), equilibrium (roller over a

bump), vectors, and steel sections (Figure 2.5). The greatest strength of these applets was

their range of application; two were design or analysis tools, two others were simulations,

and one was a game.

Dr. Emma Shepherdson, also from the MIT Department of Civil Engineering, investi-

gated active learning environments in her doctoral work [67][93].7 This yielded a Macro-

6.  http://web.mit.edu/1.050/www/
7.  http://moment.mit.edu

Figure 2.5: Friction applet from 1.050 (Engineering Mechanics for Structures), 
an MIT Civil Engineering course [21].
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media Shockwave-enabled, Web-based learning module on basic statics (Figure 2.6). The

students interacted with the module and were able to get different feedback for different

responses. The design of the module involved development of specific interactive exer-

cises to address specific key concepts. For example, students examining stability would be

presented with multiple choice questions regarding an earlier beam problem. As another

example, students who were studying mechanical assemblies would be presented with a

simulation combining previous concepts. They would actively break down an assembly

into its key components and check each element for independent stability, thus determin-

ing if the overall structure was stable and how many levels of redundancy existed.

The major strength of this approach was the interactivity which it offered the student.

The module could identify different misconceptions, acting as a somewhat intelligent

tutor. Potential drawbacks include the overhead time involved in developing such a tool,

Figure 2.6: Emma Shepherdson’s Web-based learning module on basic statics 
from the MIT Department of Civil and Environmental Engineering [67].
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the skill necessary to modify such a tool, and the dependence on proprietary technology

(Shockwave).

Faculty at Nanyang Technical University (NTU) in Singapore investigated the poten-

tial of a system entitled Intelligent Interactive Tutoring System [95]. The system was

developed for use in the engineering mechanics course taken by first-year students; this

course typically has an enrollment of 1,600 students. The authors opted for developing

their own software out of a determination that commercially-available software did not

fulfill the need for an intelligent system. The key objective in designing this system was to

develop an intelligent and interactive tutor, one that would provide appropriate guidance

as opposed to a “fancy electronic page-turner.” Soh and Gupta also point out that the sys-

tem was designed to be portable, user-friendly, and self-paced.

Figure 2.7: Intelligent Interactive Tutoring System from Nanyang Technological 
University (NTU), Singapore [36].
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The system was segmented into 8 major chapters, including equilibrium of rigid bod-

ies, truss analysis, and forces in beams (Figure 2.7).8 Each chapter included a Review,

Tutorial, Supplementary, Practice, and Frequently Asked Questions (FAQ) module. The

Review was intended to be a concise treatment of topics of the chapter. The Tutorial

guided students through problem solving step-by-step. The Supplementary problems were

more advanced problems that the students were expected to do on their own, though they

could seek assistance if needed. The Practice section contained more difficult, optional

problems. Since tutorial help was offered, Soh and Gupta expected that serious students

would be encouraged to attempt them. Finally, the FAQ section answered questions com-

monly asked by students of the topics in the chapter. The system was developed using

Authorware 4.0 (1997), a tool which enables the creation of executable courseware. The

program was scaled from an initial trial of 200 students to the entire 1600 student popula-

tion over the period of a year. The initial results were positive, with both students and

instructors responding favorably.

The intelligence of this system is a benefit, though the term “intelligence” may be mis-

leading. In this context, it implies that the authors have developed a pre-determined set of

responses to specific inputs. This is a feature available in some of the other courseware

presented here. The other design parameters mentioned - ease of use, portability, and self-

paced - may seem obvious, but not all systems implemented these parameters. These were

all important aspects of the development of the Web-based modules used in 2.001.

2.2 Development of Educational Technology at MIT
MIT is currently in the midst of a radical, large-scale overhaul of its educational system.

8.  http://cse.ntu.edu.sg/iits/
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In April 2001, MIT announced that it would make the materials from almost all of its

courses freely available on the World Wide Web for non-commercial use [64]. This initia-

tive, called MIT OpenCourseWare (OCW), is intended to lead other universities into a

new era of knowledge dissemination. The OCW initiative instantly received international

recognition and was lauded by many in the academic community [26][98][107]. This

announcement was typical of MIT’s new focus and perspective on higher education in the

Internet age.

The current educational change is fueled largely by the Microsoft-MIT iCampus Ini-

tiative and the Alex and Brit d'Arbeloff Fund for Excellence in MIT Education; these

groups are enabling departments across the Institute to engage in projects to enhance edu-

cation through the innovative use of information technology. While this is by no means a

comprehensive treatment of the current educational research at MIT, it does represent a

sampling of the projects which have been implemented to a significant degree. Many of

these projects have transcended the traditional barriers between departments and have

resulted in many inter-departmental, collaborative efforts. This environment of change

was critical in facilitating the execution of this project, and in providing a community and

resources for development of these new educational concepts for 2.001.
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Prof. Tomas Lozano-Perez, of the MIT Department of Electrical Engineering and

Computer Science (EECS) has been engaged in using the Web to enable teaching at the

undergraduate level [99]. 6.001 (Structure and Interpretation of Computer Programs) and

6.034 (Artificial Intelligence) were both taught using online homework assignments and

lectures beginning in 2000 [1][2]. The traditional lecture has been eliminated. Instead of

attending a physical lecture, students review online lectures at their own convenience

(Figure 2.8). Then, students meet in small, faculty-led tutorial sessions that, because of

their intimacy, allow students the ability to freely ask questions. This class-style follows

Figure 2.8: Sample homework problem given to students in 6.001 (Structure 
and Interpretation of Computer Programs) [1].
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the Socratic paradigm discussed in Chapter 1. Homework assignments are also completed

online (Figure 2.9).

Both courses make extensive use of Scheme, a dialect of Lisp developed at MIT [91].

Because of the use of a common programming language for the two classes, developing an

infrastructure for the homework assignments was a simplified process. Students were

often asked to submit fragments of code through the Web interface; this code was com-

piled and run against evaluation code. Given the deterministic nature of computer pro-

grams, the Scheme compiler performed much of the “intelligent” work, evaluating student

answers. Students were then presented with real-time information on their success. This

Figure 2.9: Slide from a Web-based lecture for 6.001. This is accompanied by an 
audio or text-based narration, depending on the student’s preference [1].
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system was beneficial in that it allowed students the freedom to review material at their

own pace, allowed students to interact with faculty in a more intimate setting, and pro-

vided real-time feedback on homework problems, allowing students to better understand

their own misconceptions. Based on the initial success of these two classes, in fall 2001,

this program was expanded to use in another undergraduate course, 6.004 (Computation

Structures).

The MIT Department of Physics, in conjunction with the MIT Center for Advanced

Educational Services (CAES), developed an online tutoring system for 8.01 (Introductory

Classical Mechanics) that was first used during fall 2000 [76]. The system, named PIVoT

(Physics Interactive Video Tutor), and based on the lectures of well-known Prof. Walter

Lewin, was used at 3 schools: MIT, Rensselaer Polytechnic Institute (RPI), and Wellesley

College (Figure 2.10).

Figure 2.10: PIVoT, the Physics Interactive Video Tutor, used by the MIT 
Department of Physics [76].



38

PIVoT provides a comprehensive online resource for physics students. The system

offers: digital video clips in which Prof. Lewin explains difficult concepts, demonstrations

of physics principles, step-by-step solutions to example problems, 35 of Prof. Lewin’s lec-

tures in streaming video, an online textbook, physics simulations, and practice problems.

An additional feature is a "Personal Tutor," an intelligent agent that provides individual-

ized help based on individual use of the site. Since this initiative started several terms ago,

there has been useful feedback regarding the effectiveness of PIVoT.9 Specifically, PIVoT

has been shown to be useful in developing conceptual understanding, primarily for stu-

dents with a previous physics background; for students with a weaker preparation in phys-

ics, PIVoT users did not show any appreciable gain in conceptual understanding. PIVoT

did not seem to affect exam or course grades - the assessors of the project speculate that

this may be because exams test both conceptual understanding and algorithmic problem-

solving capabilities.

9.  Evaluation methods took the form of an in-depth study at RPI and surveys at all three schools. 
At RPI, students were divided into two groups, one that used PIVoT and one that did not. Both 
groups were given conceptual diagnostic exams at the beginning and end of the semester in order to 
determine gains in conceptual understanding. RPI also collected data on grade performance, site 
usage, and student participation.
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Prof. John W. Belcher, also of the Department of Physics, is leading an effort called

Technology Enabled Active Learning, or TEAL [35]. The focus of this project is introduc-

tory physics classes, which typically have large enrollments and no laboratory component.

Since physics is by nature an experimental science, Belcher developed a new course,

called 8.02T (Electricity and Magnetism), that would enable students to participate in

hands-on experiments. Following the Studio Physics format of Prof. Jack Wilson at Rens-

selaer Polytechnic Institute in 1994, the TEAL format combines lecture, recitation, and

hands-on laboratory experiments into one classroom experience (Figure 2.12, Figure

2.13). In this sense, there are similarities between 8.02T and the new form of 2.001. Ani-

mations and simulations are incorporated into course materials to help students visualize

and understand difficult concepts [75].

Figure 2.11: An 8.02T (Electricity and Magnetism) lecture. Students work in 
teams on problems and experiments, using laptops to aid in visualization, data 

acquisition, and data analysis [35].
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A new classroom, designed for the different components of the TEAL format, was

built. This classroom consists of 11 round tables that seat 9 students each. A centrally-

located station allows the instructor to present material onto eight projection screens

located around the perimeter of the room. Numerous whiteboards allow for impromptu

discussions and presentations by both staff and students. On each table are three laptops,

provided for the students to work in teams of three on experiments and problems assigned

in class. Details of the room configuration are critical to the learning process, and much of

the room design was based on the work of others in this domain [7].10 Homework assign-

ments are submitted electronically using WebAssign, an external homework delivery sys-

tem [106].

10.  The design of the physical space was based primarily on the work of Prof. Robert J. Beichner, 
Director of the Physics Education R & D Group at North Carolina State University.

Figure 2.12: A simulation from 8.02T. Students use laptops to acquire and 
interpret data from a physical experiment [35].
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The TEAL format was first introduced in fall 2001, and it has been very successful

according to both students and faculty [13]. Students have had positive feedback about the

hands-on components and attendance has been much higher than in the past. Plans are in

place to expand the project next year, by including more students in the class. It is eventu-

ally hoped that all introductory physics classes will be taught using the TEAL format.

Another example of technology-enabled education at MIT is the Personal Response

System (PRS) used by the Department of Aeronautics and Astronautics (Aero/Astro) [22].

Students are supplied with a pocket-size wireless transmitter. This transmitter can then be

used in the classroom to communicate with the instructor. This system presupposes that all

questions asked of students can be cast in multiple-choice form. The PRS allows students

to use their transmitters to respond to the posed question; the signals are received by a por-

table receiver that is connected to a central display. The display can then be used to view

histograms of student responses. Students - in addition to being able to submit answers -

can attach a confidence level (high, medium, low) to the answer sent. The instructor has

the option of tracking specific students or leaving the system in anonymous mode, which

prevents the instructor from determining how specific students responded. In known

mode, the instructor can write a file containing student responses to disk for later review.

This system was first used in Unified Engineering, an Aero/Astro sophomore-level

course block that consists of 4 courses taken over 2 semesters [72]. The success in these

courses has led the Department of Aeronautics and Astronautics to adopt the system in

other classes as well. There are a great many advantages to this system over the traditional

methods of encouraging student participation during lecture. Such advantages are not

unique to the PRS; they are prevalent in similar methods of allowing anonymous student
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participation [22]. The instructor - especially during large lectures - may have a difficult

time determining whether he or she is proceeding too quickly or too slowly with the mate-

rial. By breaking up the lecture with mini-quizzes, the instructor can more precisely gauge

student perception. Since many students are often afraid to ask questions, this provides a

clear basis for what does and what does not need to be reviewed. These tools allow the lec-

turer to better manage class time and assess student needs in real-time.

A related system is the Classroom Communicator, developed by Eric Brittain, an MIT

doctoral candidate in the Department of Electrical Engineering and Computer Science

[22]. The system is based on the use of Web-enabled cell phones (Figure 2.13). Though

similar in concept to the PRS, the Classroom Communicator also allows students to ask

specific questions of the instructor during lecture. The obvious drawbacks are the cost of

Figure 2.13: The Classroom Communicator, a system that allows 
courses to utilize Web-enabled cell phones for student-instructor 

interaction [22].
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these phones (though they do not need to be in active service to work with the system) and

the cumbersome process of entering in questions on a numeric keypad. Another potential

disadvantage to these systems is that, if not used carefully, students may not be encour-

aged to speak up in class. Consequences of this are that students will not gain confidence

in defending their ideas or speaking in public.

The iLab project is based on the theory that students are better motivated and can learn

more effectively if they have the opportunity to conduct experiments [33][63]. The signif-

icant expense and space considerations associated with a course laboratory prevent many

engineering courses from having a lab component. iLab, led by Prof. Jesús A. del Alamo,

is creating remote Web-accessible laboratories that will provide a new framework for sci-

ence and engineering courses. Remote laboratories allow for much more efficient use of

laboratory equipment and give students the opportunity to conduct experiments from the

comfort of an Internet browser. They additionally provide the capability for conducting

sophisticated experiments located at various company sites, increasing the range of possi-

ble laboratory experiences.

The iLab concept was first implemented for a Microelectronics WebLab. Students

were able to acquire data in real-time on the latest CMOS (Complementary Metal Oxide

Semiconductor) hardware, which was located at Compaq's Alpha Development Group

center in Shrewsbury, MA. This WebLab was used in three courses: 6.012 (Microelec-

tronics Devices and Circuits), 6.720J/3.43J (Integrated Microelectronics Devices), and

SMA5104 (Fundamentals of Semiconductor Device Physics). Based on the success of the

Microelectronics WebLab, the iLab group developed an Instrumentalized Flagpole

WebLab which has been used in three Civil Engineering courses. Work is also in progress
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on WebLabs for Chemical Engineering (Heat Exchanger) and Aeronautics and Astronau-

tics (Mechanical Structures).

The Department of Architecture StudioMIT project seeks to create “a new approach to

educational technology approach - one that emphasizes creative learning communities”

[34]. Dean William J. Mitchell (School of Architecture and Planning), Prof. Susan Yee

(Department of Architecture), and Lili Cheng (Microsoft Research Social Computing

Group) have outlined a strategy that builds upon the familiar and successful studio

approach to education in architecture. The studio approach, a problem-oriented environ-

ment, offers students the full set of necessary resources, a support community, and the

ability to participate in collaboration, discussion, and criticism. StudioMIT is about care-

fully building upon this infrastructure, rather than seeking to replace it.

Figure 2.14: Web-based control console used in Microelectron-
ics WebLab [33].
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The main objective of StudioMIT is to create a Web-based community for students,

staff, and faculty of MIT's studio-centered professional degree programs; however, it

seeks to be much more than online delivery of content. The heart of the system is an open-

ended collection of continually updated, searchable databases. All members of the Web

community have individual workspaces which provide them with personalized access to

resources, and an ability to represent themselves to other members of the studio commu-

nity. The environment also provides an electronic means for collaboration and discussion,

as also occurs in the physical studio environment. During fall 2001, this project was in its

initial phase; StudioMIT was tested in a select set of pilot classes by students, faculty, and

teaching assistants. This project is facilitated by a portable computing initiative that has

provided students with laptop computers. These computers provide constant access to the

StudioMIT environment, which provides capabilities absent from the traditional studio

environment (Figure 2.15).

Figure 2.15: A StudioMIT student using her laptop at a design site
[34].
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These projects are representative of an environment that has not been seen at MIT

before. There is widespread support for the creative use of technology in education;

departments across MIT are beginning to investigate how educational technology and cur-

riculum reform may improve education. This atmosphere has been critical in fostering the

development and support of the 2.001 experiment.
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Chapter 3

Pedagogy

3.1 Teaching Paradigm
As was mentioned previously, 2.001 has traditionally been taught in the “chalk and talk”

pedagogy. Lectures and recitations, with little student-faculty interaction, even less stu-

dent peer-interaction, and no experimental component, comprised the class. The new

teaching paradigm, in stark contrast with the traditional lecture format, incorporates com-

ponents of faculty-facilitated learning, hands-on experiments, group discussion, Web-

enabled exploration (using laptop computers), and peer learning.

Prior to fall 2001, a 2.001 student would have the following weekly schedule:

• three 1-hour lectures
• one 2-hour faculty-led recitation section
• optional TA-led tutorial

Prior to fall 2000, this was no experimental component to the class. Beginning in fall

2000, though, students participated in hands-on desktop experiments during the 2-hour

recitation sections. This enabled faculty to interact with students on a more intimate level,

exposed students to elements of teamwork, and allowed for peer learning to take place.

Beginning in fall 2001, the course took on an entirely new format.

A 2.001 student’s schedule would now consist of:

• two 2-hour lectures
• one 1-hour faculty-led recitation section
• optional TA-led tutorial
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The shift to longer lectures was necessary because of the way that class time would be

utilized. The lecture would now consist of lecture, desktop exploration, laptop use, and

peer interaction. The recitation sections were designated as opportunities to review lecture

topics and to solve problems. By bringing both the desktop experiments and the use of the

laptops into the classroom, it was deemed necessary to lengthen the lectures. Most lectures

at MIT are 50 or 80 minutes; the overhead time associated with the physical experiments

and the use of the laptops required 2 hours [88].

This class timing will change again in spring 2002 to the following format:

• one 2 hour lecture
• one 1 1/2 hour lecture
• one 1 1/2 hour faculty-led recitation section
• optional TA-led tutorial

The major differences between fall 2001 and spring 2002 are that some of the desktop

experiments will be used in the recitation sections and that the “pure lecture” sessions will

be conducted during the shorter lecture period. The timing of the course is constantly

evolving as assessment provides information on how to better integrate the course ele-

ments.

The decision to use both physical experiments and computer-based simulations was a

conscious one. Students have extensive experience and comfort with computers, and

learning using computers.  We are striving to take advantage of this comfort level by

developing Web-based learning modules which they can actively engage.  These modules

have been created for each of the major course topics and serve multiple roles: an interac-

tive learning tool, a basis for class discussion, a study aid, an in-class faculty-student com-
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municator.  In this manner, these modules enhance student communication, retention, and

enthusiasm. The laptop computers allow them to engage the Web-based learning modules

both in class and at their own convenience.

Students need more physical interaction due to the reduction of such experiences in

life; such interaction enables students to develop a "feel" for phenomena.  Desktop experi-

ments that demonstrate particular phenomena represent the physical interaction of the new

course.  The experiments enable the students to physically explore a phenomenon prior to

seeing the underlying theory and equations.  These experiments serve to enhance deep

understanding of the material, independent curiosity, communication, and enthusiasm.

The integration of the laptops into the curriculum was a much more delicate procedure

than the desktop experiments [88]. There were three major considerations in performing

this integration: timing, flow, and activity. Timing has already been discussed - it was nec-

essary to increase lecture time to allow for the use of the laptops. It was imperative that the

use of the laptops fit seamlessly into the flow of the class; the use of the laptops could not

disrupt the organization of the course content. Finally, the use of the laptops had to be sig-

nificant; they could not be used simply for the sake of bringing computing into the class-

room, but instead would need to add to the educational experience. As such, the laptops

were used during only three lectures during fall 2001. These three lectures all utilized Java

simulations to enable student design or analysis of some physical system. The shift to

longer lectures did not alter the amount of student-faculty interaction; however, it did

make a change - when performing physical or electronic experiments - in the form of

interaction. The entire teaching staff was involved with these experiments and were able

to answer questions and explain concepts to individuals or small groups.
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The use of technology in education is not a new topic; it dates back at least as far as

S.L. Pressey’s early papers [23]. Pressey - of Ohio State University - exhibited a test scor-

ing and teaching device at the December 1924 meeting of the American Psychological

Association; this device, and the other “automated teaching” devices that would follow for

the next 30 years never made it into the mainstream of higher education [94]. The success-

ful use of technology in education is yet a young and undeveloped science. There is a lack

of prominent studies addressing the “intertwining of new technology and conceptual

learning”; most studies tend either to indicate that conceptual learning is not taking place,

or that new technology could help conceptual understanding [89]. Additionally, most of

the research that has been done in this area involves grades K-8.

The primary failure in implementing educational technology is an integration process

that ignores the pedagogical goals of educational reform; new technology approaches are

often propelled by high-tech interests, rather than educationalist concerns [81]. This type

of approach often misses the point - technology is only helpful if applied judiciously and

may not be the appropriate solution in all educational situations. MIT’s own President

Charles Vest states the importance of maintaining the focus on learning: “We should not

just use these technologies because they are there, or only because we see some potential

revenues associated with them” [103].

Dr. Diana Laurillard, of the Open University in the United Kingdom, is at the forefront

of research in how technology affects understanding [89]. She points out that simulations

can be especially useful for conceptual understanding; however, the design and implemen-

tation of the simulations is critical to their success [45]. Specifically, the quality of under-
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standing will be based on the level of a student’s interaction with the simulation and with

other students. In the active engagement pedagogy of 2.001, students are encouraged not

only to interact with the systems (desktop explorations and Web modules), but they are

also encouraged to work with one another; one expected result of this approach is an intu-

itive understanding of the concepts underlying the exercises.

Extensive research has shown that active engagement is an important aspect of student

cognition [48][80]. Prof. Eric Mazur, of the Harvard University Physics Department, has

had great success in implementing a student engagement procedure, whereby students

must respond to questions posed by the lecturer [51]. The MIT Aero/Astro PRS approach,

discussed in Chapter 2, follows the Mazur model. Students who are actively involved with

the course will develop a better understanding of the material. This is why active engage-

ment is such a major thrust of the new pedagogy.

Cooperative learning is equally established as a method for improving student under-

standing. Cooperative learning can be regarded as a specific form of collaborative learn-

ing; researchers have developed a taxonomy that categorizes cooperative learning as

collaboration among students [61]. Such cooperative learning is of great benefit because

the act of reciprocal teaching benefits students of varying strengths and weaknesses [77].

Students who assume the role of “tutor” are forced to develop a thorough understanding of

the concept, while the students who pose questions learn from the “tutors.” Research in

this area indicates that small groups (2-6) are the most effective, since little organization is

required, and since there are no issues of leadership or apprehension [37]. The applica-

tions of small group strategies are many, from formal engagements, such as experiments,

to informal scenarios, where the instructor asks students to work in pairs to discuss a cer-
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tain problem [49]. 2.001 makes use of both these strategies, integrating both student

engagement and cooperative learning into the course.

John Dewey presented the first definitive argument for experiential learning in Ameri-

can education in 1938, stating that “education in order to accomplish its ends both for the

individual learner and for society must be based on experience” [18]. The modern model

of experiential learning most widely regarded is that presented by David Kolb [41][43].

Kolb presents four basic learning styles, each characterized by one of two perception types

and one of two processing types (Figure 3.1).

Brief descriptions of the four learning types identified by Kolb follow [42]:

Figure 3.1: Kolb’s learning styles: structural dimensions underlying the pro-
cess of experiential learning and the resulting basic knowledge forms. Each

adjacent perception/processing pair results in a different learning style, as indi-
cated by the quadrants above.
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• Diverging. The dominant learning styles of this group are Concrete Experience and 
Reflective Observation. They are best at viewing concrete situations from many different 
points of view. These people tend to specialize in the arts. In formal learning situations, 
they prefer group work, listen with an open mind, and prefer personal feedback.

• Assimilating. Abstract Conceptualization and Reflective Observation are the domi-
nant abilities of people belonging to this group. Members of this group tend to be best at 
understanding a wide range of information and putting it into a concise form. People with 
this style tend to place greater importance on the logical consistency of a theory than its 
practical applications. These people like to have time to think things through in formal 
learning scenarios.

• Converging. Abstract Conceptualization and Active Experimentation characterize 
the strengths of this style. These people are best at finding practical uses for ideas and the-
ories. In formal learning situations, members of this group prefer to experiment with new 
ideas and practical applications.

• Accommodating. The dominant learning styles of this group are Concrete Experi-
ence and Active Experimentation. People with this learning style tend to learn from hands-
on experience. They enjoy involving themselves in new and challenging experiences. In 
formal learning situations, they prefer group work, field work, and different approaches to 
completing a project.

In Experiential Learning, Kolb points out a correlation between undergraduate major

and learning style; students of particular learning styles tend towards specific careers [41].

Specifically, Kolb conducted a study at a “well-known technological university”, that he

generically refers to as “TECH”, in developing this theory (Figure 3.2). Interestingly,

TECH is actually MIT; Kolb conducted this study on graduating MIT seniors in 1973

while at the Sloan School of Management [44]. In his experiments, he focused on the

Department of Mechanical Engineering and found that most students belonged to the

accommodative style of learning (Figure 3.3). It was obvious though that the mechanical

engineers were generally very close to the border of the accommodator and converger

quadrants. Kolb attributed this to the “general abstract bias of the university as a whole”, a

description which many still consider to be accurate today.
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Figure 3.2: The learning style distribution of 342 graduating MIT seniors in
1973, by departmental major, based on the Learning Style Inventory [41].

Figure 3.3: Career and graduate-school plans of graduating Mechanical Engi-
neering MIT seniors in 1973, as a function of learning style [41].
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How does this information about the learning styles of mechanical engineers at MIT

relate to the active engagement pedagogy? Accommodative and convergent styles of

learning both rely on active experimentation as a procedure of informational transforma-

tion. The discovery-based learning aspect of the active engagement pedagogy caters to

these students by providing active experimentation as one means for learning. To imply,

however, that all mechanical engineers will either be accommodators or convergers belies

the actual situation. In fact, there are students who belong to each of the learning styles

(Figure 3.3). The cooperative learning aspect of the new pedagogy attempts to provide an

alternate resource for these students. While physical experimentation may not be the

strength of these students, physical intuition is an important aspect of good mechanical

engineers, so group learning allows students of different learning styles to benefit from the

strengths of their peers.

Another important topic to address is the nature of the students that attend college in

the present-day. Media and communication have changed the expectations that today’s

students have of higher education. Today’s students, whether they be classified as Genera-

tion X, Generation Y, the Games Generation, or otherwise, represent a population that

grew up watching MTV, playing video games, and instant-messaging [79][85]. This

group, more technology-savvy than any other segment of the population, feels a need to be

engaged and entertained. Having been bombarded with information their whole lives,

these “media connoisseurs” are less patient than most; if something does not keep them

interested, they simply move on to something else [82]. Not only do they expect to be

entertained, many expect college to accommodate individual learning styles [85]. It is yet

unclear whether this technological experience will produce students who learn differently

from their predecessors [57]. Though the details of this generation’s cognition can cer-
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tainly be debated, there is little doubt that the expectations of college students have

changed dramatically in recent years. This obviously necessitates a change in the way we

teach and indicates that the time is ripe for educational change.

This active engagement pedagogy is different from prior work in several key respects.

Most prior work in mechanics education has focused either on physical experiments or on

the use of computers in the curriculum, often in the form of some electronic tutor. The

2.001 active engagement pedagogy seeks to integrate both physical experimentation and

computer simulation into the curriculum; the realization is that computing is not a solution

in and of itself, but rather is a tool that should be used appropriately. Laptops have not

been used expressly for the purpose of reforming mechanics education. The 2.001 project

not only uses laptops, but fully leverages the capabilities of mobile, wireless computing.

Finally, the new pedagogical development is a holistic approach; rather than attempting to

create new experiments or courseware for the class, this project is redesigning all aspects

of the class in order to produce components that complement one another.

3.2 Interactive Media: Web Modules
A major component of the new teaching methodology is a set of interactive, Web-based

learning modules [32].11 These modules, which are described in more detail in Chapters 5

and 6, are intended to be accessed by the students both in-class and at-home. They provide

a means for independent exploration, as well as team-based experimentation and design.

The Web modules utilize Java applets, Active Server Pages, and SQL Server to present

dynamic and interactive content that cover the spectrum of topics in the course. Each Web

module is specific to a certain topic in Solid Mechanics, such as Beam Bending or Truss

11.  http://icampus1.mit.edu
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Structures.

These modules are intended as an integral part of 2.001; they are not intended as a

replacement for any portion of the course. The modules provide capabilities, such as self-

testing and computer-based analysis tools that no other portion of the course can provide.

This is a critical part of the new teaching paradigm, that we maintain physical experiments

to develop a “feel” for mechanical processes, and that we do not take away from student-

faculty interaction.

3.3 Laptop Initiative
Another critical component of the new pedagogy was ready access to the online materials

developed for this course, both inside and outside the classroom. To enable this access, it

was necessary to provide the students with laptop computers. Many other colleges and

universities are experimenting - or have experimented - with mobile and wireless comput-

ing in undergraduate education; examples include the University of Kentucky, Cornell

University, and the University of Akron [27][15][101].

MIT Information Systems (IS) itself embarked on an educational technology experi-

ment in fall 2001 [66]. In this experiment, called the Student Laptop Project, four aca-

demic departments at MIT used laptop computers in selected courses. In three of these

departments, students were issued a laptop for use during the term: Architecture Studi-

oMIT, course 1.00 (Introduction to Computers and Engineering Problem Solving, in Civil

Engineering), and 2.001. In the Physics TEAL project, the laptop is a part of the labora-

tory equipment and is used for the class 8.02T (Electricity and Magnetism).
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This experiment had two major outcomes: to determine the pedagogical and learning

benefits of wireless, mobile computing in education and to determine the support require-

ments and resources needed to sustain such an environment. These four educational

projects were selected expressly because they proposed to use laptops in a different man-

ner. As such, IS could best evaluate the educational benefits of the laptops.

The equipment for this experiment was acquired through a grant from the Hewlett-

Packard Corporation, and was supplemented by additional resources from MIT’s Council

on Educational Technology.

To understand the motivation for this project, it is necessary to chronicle the recent

history of computing at MIT. In May 1983, MIT established a five-year program to

explore new uses of computing in the MIT curriculum [5]. At the time, the MIT faculty

was concerned that the administration was not being proactive in integrating new compu-

tational technology into the undergraduate curriculum. This program, called Project Ath-

ena, was born from this concern. The goal of Project Athena was to investigate diverse

uses of computing and to develop a long-term plan for the integration of computing into

the curriculum. Project Athena and the Student Laptop Project, though they dealt with dif-

ferent computing technology, fundamentally had very similar objectives in their respec-

tive charters. In 1988, Project Athena was granted a three-year extension to the original

five-year program, and, on June 30, 1991, Project Athena finally came to an end. In 1991,

the Athena system was taken over by IS and was adopted as MIT's official academic com-

puting infrastructure; it was extended beyond the educational domain, into the research

and administrative activities of the Institute.
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Athena is a system of hundreds of end-user workstations distributed around campus

that provide round-the-clock capability to do work and communicate with others. The sys-

tem is comprised of a large number of networked machines including workstations, print-

ers, and servers. Each workstation is connected to MITnet, the campus-wide computer

network, allowing access to central resources.

Athena has been a very successful undertaking. In addition to representing the first

large-scale application of distributed computing into education, Project Athena developed

the X Windows System, commonly used on UNIX systems today, provided email and

newsgroup access to students prior to the popularization of the Internet, and spawned

Zephyr, the first instant messaging service [109]. In 1999, IS reported that 96% of under-

graduates, and 94% of graduate students, had Athena accounts [60]. They additionally

stated that, on a typical day, 6000 Athena users accessed their accounts. Athena is still an

integral part of the undergraduate experience at MIT; however, as the overwhelming

majority of students now own personal computers that they can readily connect to the

MITnet, Athena is not as essential as it was in the past.

The Student Laptop Project also provided students access to the MITnet, though stu-

dents were also able to access the network wirelessly. In July 2001, IS concluded the

installation of 209 wireless access points, covering over 200 locations in 39 buildings

[108]. Wireless access to MITnet is currently available in most classroom and library

spaces as well as many public spaces across campus. Additional access points are being

deployed in some areas currently undergoing renovation. The wireless access was impor-

tant to the 2.001 project as it enabled students to easily connect to the network in the class-

room and across campus.
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The many obvious similarities between Project Athena and the Student Laptop Project

suggest that the impact of the latter is one which - if successful - could likely have

resounding effects through the educational community. It is clear that Project Athena

made much greater leaps than can be expected of the Student Laptop Project; however, the

laptop project may yield a fundamentally new paradigm for educational computing, to be

adopted at other institutions.

3.4 Desktop Experiments
Farid Ganji, Pierce Hayward, Prof. Mary C. Boyce, Prof. L. Mahadevan, and Prof. Eman-

uel Sachs have all been involved in the creation of physical desktop experiments for 2.001

over the past two years. There are currently nine desktop experiments: Free Body Dia-

gram, Static Friction, Capstan Effect, Effective Spring Constants, Truss Structures, Biax-

ial Loading, Beam Strain, Beam Deflections, and Sandwich Beams (Appendix A) [87].
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These desktop experiments each correlate to a specific Web module or to a topic

within a Web module. For the Effective Spring Constants experiment, students use spring

scales and weights to determine system deflections and compare those results with their

experimental results (Figure 3.4). For the Beam Deflections experiment, students measure

beam deflections under different loading conditions to determine the relation among beam

thickness, beam length, and beam stiffness (Figure 3.5).

Figure 3.4: Effective Spring Constants desktop experiment.
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Some of the experiments have been used during the last three academic terms, and -

based on student and instructor feedback - the desktop experiments provide an excellent

means for learning new concepts.  Students have remained interested and engaged.  By

working in teams they have not only learned to work together, but they have also learned

to use each other as a part of the learning process (Figure 3.6).

Figure 3.5: Beam Deflections desktop experiment.
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These experiments have been designed to allow students to participate in the process of

Scientific Discovery.  Students observe physical phenomena through experimentation. 

They then analyze the mechanisms and make the connection between the real process and

theory.  These desktop experiments are a major component of the active engagement ped-

agogy, as they incorporate both cooperative and discovery-based learning.

3.5 New Classroom
A new classroom designed to align with the objectives of the new pedagogy was con-

structed during summer 2001. This project was jointly funded by a donation from MIT

alumnus Dr. B.J. Park, his wife Chunghi Park, and the Singapore-MIT Alliance (SMA).

This project was responsible for the complete renovation of two classrooms in the

Mechanical Engineering buildings: 3-270 and 3-370. This course, 2.001, is currently

Figure 3.6: Student team working together on Capstan desktop experiment
(spring 2001).
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taught in 3-370.

Dubbed the Park Room for Innovative Education, 3-370 is significantly different from

its previous state (Figure 3.7). The old classroom seated almost 100 students and was

comprised of rows of small chairs with built-in desks [87]. It had no audio-visual capabil-

ities, was acoustically poor, and offered uncomfortable, cramped seating (Figure 3.8). The

new classroom features, in contrast, a multitude of technological capabilities, and a com-

fortable, well-lit environment.

Figure 3.7: Students participating in a design exercise in the Park Room for
Innovative Education (3-370).
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The new design features modular tables which can be configured to form tiered rows

(lecture-style arrangement) or individual tables that seat students in groups of four (lab-

style arrangement); these tables were designed specifically for the active engagement ped-

agogy by Prof. Emanuel Sachs (Figure 3.9, Figure 3.10). The reduction in seating capacity

(60 students) allows students to sit comfortably, to more easily engage in cooperative

learning, and to be easily approached by instructors. The utility of this flexible design

manifests itself during classes that are used for both lecturing and desktop experiments.

Multiple network drops and power outlets are included at each table.  Students can access

the MITnet using ethernet or, alternatively, can access the MITnet Wireless Network via

the wireless access point installed in the rear of the classroom.

Figure 3.8: The seating style in the old classroom consisted of rows of wooden
chairs with built-in desks.
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Figure 3.9: Modular desks in 3-370. Shown in lecture-style configuration.

Figure 3.10: Modular desks in 3-370. Shown in lab-style configuration.
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A major technological feature of the classroom is a projection system that quickly tog-

gles between a video-based projector, DVD/VHS input, a computer console, and external

device (such as a personal laptop). The seamless integration and ease-of-use of these tech-

nologies has brought an end to the painful procedures of acquiring equipment for a spe-

cific class and subsequently struggling with the technology.
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Chapter 4

Equipment

4.1 Overview
This section is a partial deviation from the primary focus of the thesis, but is sufficiently

important to the reader to be included as a section of the body, rather than as an appendix.

Included herein, are details of the equipment used to develop, deliver, and maintain the

Web modules. Specifications are given for: the server; the software used to create, run,

and maintain the content; and the system requirements of the end-user.

4.2 Server-side Requirements
The site was hosted on MicronPC NetFRAME NF3400 Server. Relevant technical details

are given below:

• Dual 600MHz Intel Pentium III processors
• 512 MB 100MHz SDRAM-2 DIMMs
• 90 GB disk space (five 18 GB hard drives)
• 20/40 GB SCSI DDS 4 tape backup unit

The server ran Microsoft Internet Information Services (IIS) on a Windows 2000 plat-

form. IIS supported Active Server Pages (ASP), which enabled display of dynamic and

database-driven content. Microsoft SQL Server 2000 was utilized as the database back-

end; it replaced Microsoft Access, which was found during testing to be insufficient given

multiple user loading. Development tools varied, but several were selected to enable

multi-user modification of files. Navigation images and logos were created using Macro-

media Fireworks. Microsoft Visio was used for most other image creation, though Pro/

Engineer and Adobe Photoshop were used in applications where Visio was insufficient.

Adobe FrameMaker and WebWorks Publisher were used for creation of extensive text-
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book-style content, such as analytical derivations and case studies. Macromedia Dream-

weaver was used for HTML and ASP creation and modification; and for exchanging files

with the server. Different development environments were used for Java programming,

since these all supported the same file types.

These requirements are not all essential to a project such as this one, they are only

included as an inventory of the tools used. The minimum requirements are: a server con-

figured to generate dynamic content; a database; and an agreement on a set of programs

for site development.

4.3 User Requirements
Specific requirements were set for users to be able to access all course material available

on the website. In terms of hardware, a display resolution of 1024x768 or higher was

required. While many Web designers target 800x600 as the low-end of the resolution

scale, it was impractical (particularly with respect to simulations) to fit all necessary mate-

rial in that space. This was not a significant concern, however, since the students were all

provided with laptops at the higher resolution as a part of the portable computing initia-

tive. Internet access, through either MITnet or an Internet Service Provider (ISP), was also

required, though the possibility of distributing the material on a CD-ROM has also been

discussed. At present time, since so much of the site is database-dependent, distributing

the site as courseware on a CD-ROM is not a short-term reality. A sound card, and speaker

or headset was another requirement that would allow students to engage in the audio por-

tion of the online lectures. As will also be noted later, a text-based narration was also pro-

vided as an alternative to students. Finally, though much of the site was navigable using
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keyboard shortcuts, some portions, such as the simulations, necessitated mouse input.

In terms of software, there were only 2 requirements, a Web browser and the Java

Run-time Environment (JRE). Because of the site’s reliance on Cascading Style Sheets

(CSS) for formatting, Microsoft Internet Explorer or Netscape Communicator (both ver-

sion 4.0 or higher) were recommended. In order to run the simulations, a recent version of

the JRE was also required (in the form of the Java 1.3.0 plug-in). All applets on the site

checked for the existence of the software and downloaded newer files as necessary.

The laptops donated by Hewlett-Packard, and used by all students in 2.001 during fall

2001, met all of these specifications. The model (HP Omnibook 6000) specifications are

given below [47]:

• 256 MB RAM
• 10 GB disk space
• Lucent Wireless LAN cards (802.11b)
• 650 MHz Pentium III
• CD-RW drive
• Software: Netscape, Internet Explorer, MIT Utilities and TSM, Pro/Engineer

It should also be noted that students were able to access the MITnet Wireless Network

from most non-residential sectors of campus. Additionally, built-in Ethernet cards and

pre-configured DHCP (Dynamic Host Configuration Protocol) settings allowed access

from any MIT Ethernet port on campus, including residential rooms.
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Chapter 5

Systematic Design

5.1 Overview
The design, development, and synthesis of the Web modules and the new pedagogy has

been a systematic process.  Beginning in fall 2000, the intention was to stage the different

portions of development.  Discretizing the design process has long been recognized as

important in both software development and product design [19][71].  There was no rea-

son that the development of these Web modules or the redesign of the course pedagogy

should tend away from such a process.  Though not commonly discussed, the systematic

design of a course is important in designing a successful course, and being able to assess it

effectively [4]. An iterative process is the key to successful curriculum design because

“for each cycle to benefit from its predecessor, there must be a constructive link forward

and into the next development” [24]. The following phases were planned and executed: 1.

conceptual development; 2. initial development of the Web modules; 3. limited deploy-

ment of the modules; and 4. large-scale implementation. The final step, full integration,

will be performed over the course of the next two semesters. Assessment, both formative

and summative, is an ongoing process that runs in parallel to many of these development

stages.

5.2 Conceptual Development
At the onset of the project it was necessary to define the goals of the reform initiative.

Four main goals were identified. First, students should have a better conceptual under-

standing of the course material. Secondly, they should begin to understand the dynamics

of teamwork, and should become comfortable speaking in the language of engineers.

Thirdly, students should have greater retention, implying a deeper understanding of the
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course material. Finally, students should be able to engage in independent learning.  While

team projects and team learning are definitely important, students should also be self-suf-

ficient. While implementing these goals, it was also important to maintain, or to improve,

student satisfaction with the course and with the academic department.

Upon defining the goals of the project, it was imperative to determine what actions would

be needed to attain these goals.  Web modules covering the main topics of the course, and

designed to enhance conceptual understanding, would help students in developing a solid

understanding of mechanics.  Physical, desktop experiments would allow the students to

learn about teamwork.  These experiments would also serve to shape and strengthen their

physical understanding of the material.   Redesign of the 2.001 classroom would allow the

students to more easily interact with each other.  Supplying the students with laptops

would enable them to interact with one another and to use the Web modules. Further, by

integrating technology into the curriculum, and by adding “life” to the course material,

through experiments and simulations, it was hoped that student satisfaction would

improve.

Periodically reviewing these objectives and the plans for meeting these objectives during

the development process has kept the project on track.

5.3 Initial Development
The initial plan was to have five Web modules.  These Web modules would each consist

of five module components: an interactive simulation tool, analytical derivations, real

world examples, a dynamic quiz, and a reference section.  By creating a basic infrastruc-

ture for each module, development time of subsequent modules would be minimized.
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Upon the initial creation of the Bending module, faculty and other peers offered feedback.

Additionally, MIT Information Systems (IS) assessed our Web modules.  They presented

very useful feedback, especially in terms of site usability.  Poor user interfaces can actu-

ally be a hindrance to the learning process, so this was very important [46].  Later, in Jan-

uary 2001, IS helped organize focus groups to provide formative assessment of the Web

modules (Appendix B). These focus groups, comprised of former 2.001 students to iden-

tify issues with our site.  Elements of site content, appearance, and ease-of-use were iden-

tified as needing improvement [102].

This feedback was all used to refine the Bending Web module.  First, site navigation was

revamped, making it more intuitive, more graphically appealing, and more powerful.  The

user interface of the beam bending simulation was also modified, making it more intuitive.

Based on results of the focus groups, the need for students to have a focused task became

apparent; this led to the development of a design problem that would be used with the sim-

ulation.  From discussions with Prof. Tomas Lozano-Perez of the MIT Department of

Electrical Engineering and Computer Science (EECS), a sixth component - a system of

online lectures - was added to the modules, following the model of 6.001 (Structure and

Interpretation of Computer Programs) [1].  The quiz was also modified to include an in-

class quiz, using the Mazur model [51].

Implementation of these changes occurred before the spring 2001 class reviewed beam

bending.  The next step was to use this module during class to determine its effectiveness

and to determine if there existed any unforeseen issues in using the Web modules in class.
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5.4 Limited Deployment
During spring 2001, the Bending module was used during one lecture and during the three

recitation sections.  For this, it was necessary to conduct the classes in a classroom

equipped with computers and large enough to handle 50 students (this was prior to the ren-

ovation of room 3-370). During all classes, students worked in pairs, out of a desire to

encourage cooperative learning.  The plan for the lecture was to introduce students to the

website, allow them to explore the site, and use the site to review topics in beam bending.

During recitation, students were expected to – after a short presentation of the problem by

the faculty – work in teams, using the simulation to solve the design problem, the design

of a diving board.

This experience yielded several key lessons.  First, it is absolutely imperative with a tool

like this to have a clearly defined plan of what needs to be done.  Without a task, many of

the students wandered to other sites or simply lost interest; however, while doing the

design problem, the students all –without exception – were deeply engaged in designing

the diving board.  Technical difficulties with the server and with the server software also

became apparent.  The solutions (obtaining additional site licenses and upgrading from

Access to SQL Server) were easily obtained, but the problems would have remained uni-

dentified without this deployment. Overall the student – and faculty – feedback was very

positive.  The students were excited about the results of the in-class quiz being displayed

at the front of the classroom, because they could begin to understand not only the common

misconceptions that they had, but also those of their peers.  The anonymity of the quiz also

made it easier to participate in class.  Students responded very positively to both the simu-

lation and design problem.
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5.5 Large-scale Integration
All issues identified during the in-class use of the module were resolved. By the beginning

of fall 2001, ten Web modules were planned, each with seven components. The addition

of a case study, the seventh module component, would provide students the opportunity to

learn about mechanical design. The new classroom was used, all students were furnished

with laptops, and class time was reorganized per the new teaching paradigm. Three mod-

ules were deployed in their entirety: Equilibrium, Truss Structures, and Beam Bending.

Additionally, simulations from the Multiaxial Stress-Strain module were used. By deploy-

ing a subset of the modules, their effectiveness could fully be assessed.  Additionally, the

proposed shift from lecture-recitation to the more integrated format could be assessed. The

specific details of the assessment and the results can be found in Chapter 8.
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Chapter 6

Web Modules Overview

6.1 Site Organization
From the beginning of the project it was imperative that there be a logical structure to the

Web-based learning tools. This led to the discretization of the course material into distinct

topics; each topic would correspond to a specific Web module.

The reasons for this approach were twofold. First, this would provide a logical means

for the student to navigate the site. Second, it would provides a systematic means for

developing the course; the Web-based portions of the course could be developed and

assessed more easily in this manner. Moreover, the same structure for all the modules

would streamline the process of creating Web content. After the initial module (Bending)

was completed, there was a very direct sense of what work needed to be done in order to

create more modules. The infrastructure - in terms of module components, scripts, content

development procedures - were all already in place. The time spent in creating subsequent

modules was much less than in creating the initial one.

The only danger in segmenting the course into discrete topics was the possibility of

certain topics “slipping through the cracks.” This was especially of concern given the

inter-related nature of the course material in Solid Mechanics. This was acknowledged as

an open issue and a conscious effort was made to avoid this.

6.2 Modules
This course will consist of ten Web-based modules in total: Equilibrium, Friction, Axial

Force-Deformation, Truss Structures, Multiaxial Stress-Strain, Linear Thermo-Elasticity,
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Bending, Buckling, Torsion, Energy Methods, and Materials Selection.  Four of these

modules – Equilibrium, Friction, Truss Structures, and Bending – have been completed

and three were used in teaching the course in fall 2001. A brief description of each of these

sections follows:

• Equilibrium. This section introduces the basic concepts of mechanics and the concept 
of static equilibrium. Forces and moments are discussed and vectors are reviewed. Internal 
forces are also covered.

• Friction. Concepts of static and dynamic friction are reviewed with applications to 
mechanical systems. Static equilibrium remains a focus of this section. The Capstan effect 
is also introduced.

• Axial Force-Deformation. This is the first introduction to deformable bodies. Spe-
cific discussion includes the concepts of stress, strain, and elastic material behavior.

• Truss Structures. This section covers the analysis of idealized trusses, and focuses on 
planar structures. Truss design, internal forces, system displacements, matrix analysis, and 
the conceptual-level behavior of trusses are discussed.

• Multiaxial Stress-Strain. This section covers multiaxial stress and multiaxial strain. 
Transformation equations, Mohr’s circle, and pressurized cylinders are key topics.

• Linear Thermo-Elasticity. This section presents stress-strain-temperature relations in 
the elastic regime. In particular, it covers problems where the student is required to postu-
late boundary conditions, such as zero-strains or zero-stresses.

• Bending. Strain and stress distributions in beams, the moment-curvature relationship, 
beam deflections, the second moment of inertia, the singularity function, and the design of 
beam cross-sections are all discussed. The concept of superposition is also introduced.

• Buckling. Students are introduced to the concept of columnar buckling. Buckling 
analysis is used in the design of axial members subjected to compressive loads.

• Torsion. Stress, strain, and deformation in twisted shafts are covered. The advantages 
of hollow shafts over solid shafts are also discussed.

• Energy Methods. Energy methods (Castigliano’s theorem) are applied to a variety of 
problems. Specific emphasis is on the simplification of complex problems - such as 
trusses - through the use of energy methods.

• Materials Selection. This section builds on the fundamentals of this class and 
explores the process of materials selection in mechanical design. This topic provides an 
appropriate transition to the follow-up course, 2.002 (Mechanics and Materials II).

6.3 Module Components
Each module is made up of the same eight components: a simulation, a set of online

lectures, textbook style derivations and explanations, real world examples, dynamic quiz-
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zes, a design exercise, a reference section, and a case-study. These components are all

described in Chapter 7.
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Chapter 7

Web Module Components

7.1 Overview
As stated, this course will consist of ten Web-based modules in total: Equilibrium, Fric-

tion, Axial Force-Deformation, Truss Structures, Multiaxial Stress-Strain, Linear Thermo-

Elasticity, Bending, Buckling, Torsion, Energy Methods, and Materials Selection. Each

module is made up of the same eight components: a simulation, a set of online lectures,

textbook style derivations and explanations, real world examples, dynamic quizzes, a

design exercise, a reference section, and a case-study. The Truss Structures module will be

used as a thread for describing the module components (Figure 7.1). Other modules will

be mentioned as appropriate. The following sections describe the components of each of

the modules in detail [86][87]. The instructor interface to the course website will also be

discussed.
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Figure 7.1: Truss Structures Web module main page, providing access to all 
module components.
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7.2 Simulation
Properly designed simulations can be very useful in developing students’ conceptual

understanding of scientific topics [45] and this is the intent, in this case, of the Truss

Structures simulation, called Torsus (Appendix C).

This investigative tool allows students to construct and analyze planar truss structures

subject to various constraints (Figure 7.2). This tool is specifically intended to help stu-

dent develop a conceptual understanding of large structures. Prior to the use of this simu-

lation, students will have been asked to analyze simple trusses with 2-5 members. This

simulation supplants the tedium involved in analyzing more complex structures, and

allows the student to focus on a higher level understanding of the behavior of trusses.

The user graphically creates a truss structure, applies loads and boundary conditions,

and runs the computation engine of the program (Figure 7.3, Figure 7.4). The simulation

Figure 7.2: Torsus, Truss Structures simulation, program layout.
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uses matrix truss analysis to produce an analysis of the truss structure, so users can choose

to analyze statically indeterminate systems. The user is then able to view graphical repre-

sentations of the internal forces and system deformation (Figure 7.5, Figure 7.6). There is

additionally a text-based output of relevant information, such as internal forces, nodal dis-

placements, buckling analysis, and structural mass.

Figure 7.3: A truss construction in Torsus.
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Figure 7.4: Upon computation, members and nodes are assigned numeric values 
that correspond to the text-based output in Torsus.

Figure 7.5: Internal forces in the truss structure.
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While students are able to modify the material and cross-sectional area of the struc-

tural members, they are not able to specify different cross-sections or materials for mem-

bers individually. This was a conscious decision. In developing a simulation such as this,

the focus should be on the creation of a learning tool, not necessarily an engineering tool.

These two may or may not be the same, depending on the topic and the class, but in this

case they were not entirely the same. The key was finding a balance between confining

students to a variable set of parameters and allowing them enough freedom to partake in

meaningful exploration. Certainly it is desirable to give good students the chance to be

curious, but not at the expense of confusing the other students.

Figure 7.6: System displacements magnified by a factor of 100.



89

When students gain a better understanding of a specific topic, they are asked to use

this simulation as a tool in a tackling a design problem presented to them. For the Truss

Structures simulation, this involved the design of a pedestrian bridge.

The simulations are all currently based on Java technology, which was chosen for sev-

eral reasons [12].  First, Java applets can call from a powerful suite of features, enabling

an applet to be almost as powerful as a standalone application. Secondly, applets run in

Web browsers by nature, which makes their integration into the Web module quite easy.

Students can automatically have access to the latest version of the program by accessing

the course site. This is a proven concept: Java applets have already been used successfully

in mechanics education [84].  Consistency across platforms  is achieved by relying on the

1.30 version of the Java plug-in, a tool that, if necessary, downloads and installs the cor-

rect version of the Java Runtime environment.

Torsus was developed in the summer of 2001 and used during fall 2001, for portions

of 2 homework assignments, and for an in-class design exercise (Figure 7.7, Figure 7.8).

The open-ended quality of this simulation, and others such as the Beam Bending simula-

tion, allows future instructors to develop different design problems for the same tools.

Framing the in-class design exercise as a contest provided solid motivation for the stu-

dents. As they would in a game, students became fully engrossed with the design task.

Some students were even witnessed using instant messaging (IM) capabilities to discuss

the design problem with other teams, quite the opposite of the expected effect of exposure

to IM in the classroom.
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Figure 7.7: Students working together, using Torsus during an in-class design 
exercise (fall 2001).

Figure 7.8: A student presents his team’s best truss design to the class using his 
laptop, and the classroom’s built-in projection equipment (fall 2001).
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The computation engine of the program made extensive use of JAMA (Java Matrix), a

matrix manipulation package developed by NIST and MathWorks [38]. Students gener-

ally provided positive feedback about the simulation; however, there were three major

complaints. Students requested an undo function, were unable to copy the text-based data,

and wanted the ability to save truss structures. The first of these - the undo function - was

implemented directly into the applet using object serialization. The copy and save capabil-

ities would not be possible from within the confines of the standard Java applet; access to

the local computer’s resources (system clipboard and file system) was restricted by the

nature of the applet. Two choices existed for resolving these issues: using signed applets

or running Torsus as a standalone application. The latter was chosen and the new applica-

tion will be used during the 3-unit IAP12 course 2.973 (Mechanics and Design) [32]. The

code can run as both an applet and as an application, but the save/load/copy functionality

is specific to the application version (object serialization was again utilized, here to create

and load *.trs extension files).

The extensibility of this code also enabled the rapid creation of a simulation for the

Equilibrium module. The Equilibrium simulation used the same computation engine as

Torsus, and a similar GUI. It enabled students to create structures and to determine reac-

tion forces at the joints; though the engine was capable of analyzing statically indetermi-

nate structures, the program restricted students to analyzing determinate structures since

they had not yet been exposed to deformable bodies or geometric compatibility.

7.3 Online Lectures
Online lectures are primarily intended as a supplemental resource, allowing the students to

12.  Independent Activities Period (IAP) is a special 4-week term at MIT that runs from the first 
week of January until the end of the month. It was started in 1970.



92

review material at their own convenience. The Web-based lectures are important because

they afford students of different learning styles the same ability to learn the material [104].

Our general approach is based on the online lecture model of Lozano-Perez [1][2].  The

lectures are a narrated series of images (Figure 7.9); a custom tool13 allows the conversion

a Microsoft PowerPoint file to this Web-specific format [78].  Text of the narration is also

offered for students who are hearing-impaired or simply prefer to skip the audio portion.

The online lectures present the material covered in traditional class lectures.  This format

was chosen over a video recorded format for several reasons. First, video downloads tend

to be slow, and streaming video requires a separate, dedicated video server, which can be

expensive and difficult to maintain. Secondly, viewing the notes in this clear format is

more value-added than watching a video of an instructor writing on a chalkboard, and also

enables a certain level of interactivity with the lecture. Lastly, despite the initial time

investment, this format enables a quick and reliable system for updating lectures as time

progresses. Changing a portion of a video lecture for a future class is not only time-con-

suming; it may necessitate that the entire lecture be redone.

13.  http://www.mit.edu/~jsandhu/ppt.html
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In the future, the lectures will take the form of narrated Flash14 animations.  This will

enable the online lectures to leverage the full power of information technology, through

the inclusion of animations and movie clips. This will necessitate more time in creating

and maintaining lectures, but the integration of multimedia elements is expected to out-

weigh this increased commitment.

7.4 Textbook-Style Derivations and Explanations
The derivations section contains a much more detailed presentation of the material and

goes beyond what is covered in lecture (Appendix D). These pages serve to analytically

examine the principles and equations underlying a specific topic, similar to a textbook.

This system, however, has many advantages over a traditional textbook. First, the use of

hyperlinks allows us to create a set of core documents that contain only essential material.

Detailed derivations are generally provided through hyperlinks - as are the simulation, ref-

14.  Flash is a Macromedia format that plays in most Web browsers.

Figure 7.9: Narrated PowerPoint lecture on Matrix Structural Analysis.
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erence material, real world examples, and the case study - allowing the students to easily

navigate and quickly find relevant material. Given that engineering education builds

heavily on previously learned material, providing such navigation aid makes the learning

process considerably easier.  Additionally, the Web allows for the inclusion of many mul-

timedia objects, such as animations and movie clips that can illustrate points more clearly

than any description.

7.5 Real World Examples
The real world examples section seeks to strengthen a major weakness that is often

encountered in an engineering class: the inability of students to take a real problem, make

reasonable abstractions and simplifications, and solve the problem with the tools acquired.

The modeling required is an area where students tend to be lacking, because they are gen-

erally used to the schematics provided in textbook problems. We have therefore created an

ASP (Active Server Pages) utility that allows users to scroll through a library of photo-

graphs of real world examples (Appendix E).  Each of these photographs is tied to a

description of the situation (Figure 7.10). Students can then view a schematic drawing of

the real world system (Figure 7.11), along with a description of the schematic model and

the assumptions made in creating it. Students are challenged to determine a mechanical

model for solving a problem and can then review the model. In appropriate cases, links are

included to other portions of the site, such as the case study, where the examples are stud-

ies to completion.  The real world examples section gains importance when students are

later presented with a design problem.
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7.6 Dynamic Quizzes
The online quizzes are tools for assessment, both for the students and the faculty. The quiz

Figure 7.10:  Real world example showing building scaffolding.

Figure 7.11:  The same page also showing the schematic model of the scaffold-
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section actually consists of two quizzes, an in-class quiz and an at-home quiz.  The former

is administered during class, and the latter is one that the students can use on their own.

Both quizzes make use of ASP, which allows them to access a database and produce

dynamic content.  Following the student engagement model of Mazur [51], the in-class

quiz consists of short conceptual-type questions that the instructor poses to the class.  The

students use their computers to respond to the questions.  The instructor then displays a

screen showing the distribution of answers (Figure 7.12).  This allows the instructor to

identify common misconceptions and the student to gauge his or her understanding of the

material.  A tool has also been built that allows the instructor to ask a question “on-the-

fly.”  This tool enables the instructor to pose a general type of question (true/false, yes/no,

A/B/C/D) and to electronically receive responses from the students.

Figure 7.12: In-class quiz results (correct answer shown in green, incorrect 
answers in red).
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The at-home quiz randomly draws from a large set questions (Appendix F).  The ques-

tions are subdivided into 20% textbook-style problems, and 80% short, analytical and con-

ceptual questions.  The textbook-style questions are similar to those found in traditional

mechanics texts: students are provided with a drawing of a system and other crucial infor-

mation (e.g. loads and dimensions), and are asked to answer questions about the system.

The analytical questions probe knowledge that is based more strongly in the mathematics

of the topic (e.g. “What is the bending stiffness of a steel plate 1 m wide and 5 cm

thick?”).  The conceptual questions seek to test fundamental knowledge about a topic (e.g.

“Which of the following parameters affect the stiffness of a truss element?”).  Five ques-

tions are asked per instance of the quiz, giving students ample opportunity to test their

knowledge of a topic. Submitting the quiz calls another ASP page; this page displays the

correct and incorrect answers, giving instant and detailed explanations about the answers

to the questions that the student answered incorrectly.

7.7 Design Problem
A design problem that pertains to the module topic is presented to the students.  For most

of the students, this is their first exposure to design; this section acts both to introduce the

concepts of design and to create another learning opportunity for the current topic.  For

example, in Truss Structures, the problem asks students to design a pedestrian bridge

given specific weight and dimensional constraints (Appendix G).  They are expected to

make additional assumptions regarding the problem.  They are additionally expected to

use the Truss Structures simulation to aid in their design.  The fact that there is more than

one answer to the problem forces students to examine all aspects of mechanics and to

draw from their own experiences. By introducing design at such an early stage of the cur-

riculum, it is hoped that the students will be much more comfortable with - and proficient

in - design. It is also important to note that new design exercises may be created over time;
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the open-ended nature of the simulations allows for instructors to develop new design

exercises to meet their exact teaching desires.

7.8 Reference Section
The target audience for the reference section is the group of students who have already

gained proficiency in the topic. After completing a module, students may at some point in

the future need to revisit the subject. This reference section gives those students quick

access to key information that presupposes knowledge of the topic.  A typical reference

section contains a topic overview, material properties, and solutions to common problems. 

7.9 Case Study
The case study is an involved analysis of an actual engineering problem.  This section dif-

fers from the real world examples in that it introduces a problem from its conception and

leads the student through the entire design process.  Not only does this offer the student a

deeper understanding of the real-world applications of a topic, but it also allows the stu-

dent to experience the process of mechanical design.  The problem presented in the Truss

Structures module is a variation on the Michell truss (Appendix H) (Figure 7.13).  The

case studies are all presented in the same, systematic manner.  First, design requirements

are gathered based on the basic problem statement.  Upon determination of the design

parameters, a schematic model is developed.  This model is used to determine the underly-

ing mechanics of the problem.  Using this information, and the simulation, the design is

optimized.  This optimization process gives students a better understanding of the proce-

dures involved in mechanical design, and the use of the simulation allows students to

actively participate in the design process. Finally, students are presented with an example

of an actual design.  In the case of the Truss Structures module, the case study presents

solutions to the original Michell problems (Figure 7.14); these solutions are typically used
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to benchmark topological optimization programs.  This actual design enables students to

understand the motivations for design and to appreciate the design process.

Figure 7.13: Truss Structures case study: a variation on the Michell problem.
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Figure 7.14: Solution to one of Michell’s original problems from Truss Struc-
tures case study [59].
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7.10 Instructor Interface
The instructor is provided with an interface for facilitating the classroom experience.  The

main goal in creating this interface was to create a quick and intuitive means for the

instructor to perform necessary actions.  The instructor has access to a restricted portion of

the site.  From this section, the instructor can control access to the in-class quizzes, view

student feedback, and review at-home quiz questions by module.  For the in-class quizzes,

the instructor can activate or deactivate the quiz, reset the response database, display quiz

results, and store the quiz results to a file for later review (Figure 7.15).

Figure 7.15: Instructor interface for in-class quizzes.
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Chapter 8

Assessment

8.1 Assessment Procedures
Assessment is an important, and often neglected, part of the development of new pedago-

gies. Even when assessment is conducted, it is often of poor quality [9][31]. The ideal

method for assessing any pedagogical initiative is to teach half of the class with the new

methodology, teach the other half with the previous methodology, and then evaluate their

performance. David Wallace and others have successfully used this approach in the evalu-

ation of computer-based tools for Mechanical Engineering education [104][29]. This was

not a practical option for 2.001, however, because of external limitations. Specifically, as

the first course in the Mechanical Engineering major, 2.001 serves as an introduction to

the department, and has a significant impression on the students who take the course.

Teaching the class in such an experimental fashion might risk a negative impact on stu-

dent retention in the department. Additionally, the resources needed to teach such a large

class using two different methodologies - even for a portion of the course - were not real-

istically attainable.

The next best approach was to obtain data to allow inter-semester comparison of

results; the effectiveness of each paradigm could be measured on different groups of stu-

dents taught using different approaches. This assessment procedure had multiple compo-

nents: surveys, focus groups, student performance in terms of grades, in-class observation,

and server logs. The use of multiple indicators was needed to provide a more assertive

basis for drawing conclusions. Hsu indicates the lack of in-depth assessment for educa-

tional initiatives, and praises the strengths of an assessment methodology that combines
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“surveys with focus groups and classroom observations” [31]. These multiple indicators

were used for both formative and summative assessment of the project.

Formative assessment is the process of obtaining information to enhance teaching and

learning, while summative assessment is the process of gathering information for gauging

the relative success of a teaching methodology [8]. Formative assessment is an ongoing

process in which we continuously seek to improve the teaching paradigm. Summative

assessment is a process of evaluation which necessitates a continuous gathering of data.

While some summative assessment can be made regarding this initiative to date, it is

imperative to not prematurely make judgement, either positively or negatively, on its suc-

cess. Statistics at the early stages of curricular development can be suggestive, but should

not be used to make a definitive evaluation of new methods [4].

At this stage in the project - recall that this is a multiyear initiative - a simple, binary

judgement on the success of this initiative is not appropriate. Instead, it is better to provide

a detailed assessment of the successes and shortcomings of the project to date. This sec-

tion also provides the basis for future work, both in terms of further developing the peda-

gogy and continuing assessment.

8.2 Course Structure
During fall 2000 and spring 2001, desktop experiments were used in recitation, but the

course was primarily taught in the traditional manner. The new teaching format was tested

out during one week in spring 2001, when the Bending Web module was used in-class.

During fall 2001, the course was taught using a mixture of lecture, desktop experiments,

in-class Web-enabled exploration, and peer discussion, all using the new 2 hour lecture
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format. Approximately 1/2 of the sessions were of the pure lecture-style, though coopera-

tive learning and demonstrations were included in these lectures (Figure 8.1). Though this

mixture of new and old was due to resource limitation, it provided data that could be com-

pared to previous as well as future classes.

8.3 Exams
Part of this assessment procedure took the form of evaluating student performance on a

particular set of questions. Specifically, in spring 2001 and fall 2001, 25% of the final

examination was comprised of a set of short-answer conceptual questions. Though these

questions changed from one semester to the next, they were of similar difficulty, as deter-

mined by the teaching staff that developed the questions, and probed the same topics. This

procedure also provides capacity for future evaluation in a similar manner.

Figure 8.1: Breakdown of 2.001 lectures from fall 2001.
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There was no significant difference in the scores of the students who took the exam in

spring 2001 and fall 2001. During the spring term, students scored an average of 76.8% on

these questions, with a standard deviation of 14.9% (Figure 8.2). During the fall term, the

average was 76.6%, with a standard deviation of 11.5% (Figure 8.3). These data do not

provide any conclusion at this point, though they do provide for a future basis of compari-

son, when greater portions of the course will be taught using the active engagement peda-

gogy. Specifically, since the desktop experiments and one of the Web modules were used

in spring 2001, there may not be a noticeable difference in these scores until significant

progress has been made in implementing the new teaching methodology. At this stage,

these data only suggest that the new teaching methodologies do not have a negative

impact on conceptual understanding.

Figure 8.2: Distribution of scores on short-answer portion of spring 2001 final
examination.
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8.4 Surveys
Surveys have taken two basic forms in 2.001: Pi Tau Sigma evaluations and self-devel-

oped surveys. Pi Tau Sigma, a Mechanical Engineering honor society, has students admin-

ister standardized surveys for all classes in the department; these surveys are typically

administered twice during the semester, once in the middle and once at the end. In addi-

tion to these generalized comments, it was necessary to get feedback about the desktop

experiments, the laptop computers, the Web modules, and the new teaching initiative.

These surveys provided summative data, as well as comments for formative evaluation.

These project-administered surveys are listed in Table 8.1.

Figure 8.3: Distribution of scores on short-answer portion of fall 2001 final
examination.
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With respect to the desktop experiments, we asked students to rate their utility in help-

ing learn the material. From this we found that students had a more positive opinion of the

experiments in fall 2000 and spring 2001 than in fall 2001 (Table 8.2). This may have

been due to the integration of the experiments into the 2 hour lecture; prior to fall 2001,

the experiments were conducted during recitation. An important point to note, however, is

that these results from the fall 2001 survey contradict results from the same survey, which

indicate that most students wanted to do more experiments in lecture (Table 8.3). Only 7%

of students wanted the experiments to be a less essential part of the class. Students during

spring 2001 had a significantly different opinion on this issue, despite the experiments

being used in the same manner as the prior term.

Academic Term Survey Description

Fall 2000 End-of-term general survey

Spring 2001 Midterm general survey

Spring 2001 Bending Web module survey

Fall 2001 Midterm general survey

Fall 2001 Truss Web module survey

Fall 2001 End-of-term general survey

Table 8.1: Table of survey descriptions.

Fall 2000 Spring 2001 Fall 2001

Number of Responses 24 33 46

Average 3.56 3.18 2.90

Table 8.2: Response to a survey question that asked students to rate the desktop 
experiments in helping them learn the material (scale 1-5, 1 = poor, 3 = average, 5 = 

outstanding).
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Students in fall 2000 and spring 2001 suggested that the use of computers in addition

to these physical experiments would be helpful; one student stated “it'd be a good idea to

have a little computer work on some of the analysis” while another said the “an incorpora-

tion of higher technology, computers,” would be beneficial. Many students indicated that

the desktop experiments enabled them to better understand the course material: “[the

experiments] provided a lot of insight into what the theory and equations were trying to

convey.”

Another survey question asked students to rate their overall satisfaction with the class.

Notable was a decline in fall 2001 from previous terms; however, the satisfaction level at

the end of the term showed a slight improvement, perhaps due to the increased integration

of Web-based course materials (Table 8.4).

Standard Deviation 1.12 0.88 1.17

Fall 2000 Spring 2001 Fall 2001

Number of Responses 24 33 44

More 71% 21% 61%

Less 8% 42% 7%

Same 21% 36% 32%

Table 8.3: Response to a survey question that asked students whether the number of 
experiments should be increased, decreased, or kept the same.

Fall 2000 Spring 2001 Fall 2001

Table 8.2: Response to a survey question that asked students to rate the desktop 
experiments in helping them learn the material (scale 1-5, 1 = poor, 3 = average, 5 = 

outstanding).
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Students were also asked to rate the aspects of the class that best helped them learn.

Their responses - even after the preliminary implementation of the new teaching paradigm

- indicated a strong preference for homework, lecture, recitation instruction, and office

hours (Table 8.5). Two students indicated at the end of the term that the iCampus website

was the most helpful part of the class. These results are likely tied to the fact that students

are primarily graded on exams: student performance on these exams is most helped by

homework and activities that pertain specifically to homework, such as recitations and

office hours. The grading methodology is the motivating factor for student assessment of

what best helps them learn. Even though desktop experiments and the Web modules may

help them develop conceptual and high-level understanding, they do not provide a direct

connection to algorithmic problem-solving, so students may feel that these aspects of the

class are not helping them learn.

Fall 2000 Spring 2001
Fall 2001
(midterm)

Fall 2001
(end-of-term)

Number of Responses 24 33 41 35

Average 3.56 3.61 3.12 3.34

Standard Deviation 0.80 0.86 1.05 1.06

Table 8.4: Response to a survey question asking students to rate their overall 
satisfaction with the class (scale 1-5, 1 = poor, 3 = average, 5 = outstanding).

Spring 2001
Fall 2001

(midterm)
Fall 2001

(end-of-term)

Number of 
responses

54 46 35

Table 8.5: Response to a survey question asking students to indicate the aspect of the 
course that best helped them learn.
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Other questions probed the use and opinion of the iCampus website. Most students

indicated that the website was useful in helping them learn, a promising result (Figure 8.4,

Figure 8.5).

Lecture 20% 17% 17%

Recitation Instruc-
tion

26% 24% 29%

Desktop Experi-
ments

7% 2% 0%

Homework 28% 33% 26%

Office Hours 19% 11% 17%

Textbook N/A N/A 6%

iCampus Website N/A 0% 6%

Other 0% 13% 0%

Spring 2001
Fall 2001

(midterm)
Fall 2001

(end-of-term)

Table 8.5: Response to a survey question asking students to indicate the aspect of the 
course that best helped them learn.
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Figure 8.4: Distribution representing student response to a survey question ask-
ing them to rate the usefulness of the iCampus website: midterm, fall 2001 (scale 

1-5, 1 = poor, 3 = average, 5 = outstanding).

Figure 8.5: Distribution representing student response to a survey question ask-
ing them to rate the usefulness of the iCampus website: end-of-term, fall 2001

(scale 1-5, 1 = poor, 3 = average, 5 = outstanding).
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To gauge what aspects of the site were most useful, we asked students to rank the top 3

portions of the site in terms of usefulness. The choices were each of the core module com-

ponents: simulation, quiz, electronic textbook, real world examples, online lectures, case

study, and reference section. The implication of these results is that the students find the

simulation the most useful portion of the site by far (Table 8.6, Table 8.7). The electronic

textbook and online lectures are also considered important; to a lesser degree some stu-

dents find the quiz and real world examples helpful. The reference section and case study

do not appear to be highly valued by any substantial number of students. One issue that

this reveals is the need to motivate students to use these other parts of the site; through this

motivation, we will be better able to gauge the effect that these components have on stu-

dent learning.

Fall 2001
(Truss module)

Fall 2001
(end-of-term)

Simulation 54% 66%

Quiz 4% 0%

Electronic Textbook 17% 6%

Examples 17% 6%

Lecture 4% 16%

Case Study 0% 6%

Reference 4% 0%

Table 8.6: Response to a survey question asking students to rank the top 3 portions of 
the iCampus site in terms of usefulness. Results given are proportion of top (#1) 

ranking.
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During the fall 2000 survey, 100% of the respondents said they would use Web tutori-

als, and 83% said they would like lectures to be put into some online format. They indi-

cated a desire to see a variety of features on such a website, but the common themes were:

interactivity, animation, visual representation, and real applications. These comments

helped us revise and add to our Web modules for the following 2 terms.

A strong majority of the fall 2001 class thought that the iCampus site was a positive

addition to the class (Table 8.8). The indications from comments received from students

opposed to the idea generally centered around the problems arising from the fact that the

Web modules were not yet fully developed. 

Fall 2001
(Truss module)

Fall 2001
(end-of-term)

Simulation 31% 36%

Quiz 8% 12%

Electronic Textbook 20% 17%

Examples 22% 12%

Lecture 14% 11%

Case Study 2% 6%

Reference 5% 7%

Table 8.7: Response to a survey question asking students to rank the top 3 portions of 
the iCampus site in terms of usefulness. Results given are proportion of top 3 (#1-3) 

rankings.
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Negative student sentiments regarding the new teaching paradigm indicated issues

with the 2 hour lecture being too long, the iCampus site needing more content, and the site

needing to be publicized better. These were all a result of the partial development of the

Web modules. Over the next two terms, as the Web modules become fully developed and

integrated into the class, there will be few - if any - 2 hour lecture sessions and the iCam-

pus site will have sufficient content to satisfy the needs of the students. As for the issue of

publicizing the website, this was a lesson learned in the first implementation of the new

pedagogy and we plan to make the role of the website clear in future terms.

8.5 Focus Groups
We held two student focus group sessions with MIT Information Systems (IS) in order to

assess the new pedagogy.15 One was held during the middle of the fall 2001 term, and the

other was held at the end of the same term. IS was interested in determining how the stu-

dents used the laptops, while our interest was in finding out how students felt about the

new teaching format. Very little quantitative data was gathered from these focus groups;

the intent was to get a more qualitative sense of student feelings towards the course.

Fall 2001
(Truss module)

Fall 2001
(end-of-term)

Number of responses 24 35

Yes 96% 80%

No 4% 20%

Table 8.8: Student response to a survey question asking whether they thought the 
iCampus site was a positive addition to the course.

15.  We also held student focus groups with MIT IS during January 2000 for purposes of formative 
evaluation of the bending Web module during the development phase, as mentioned in Chapter 5.
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During the first set of focus groups, prior to use of the laptops, we gauged student

expectations. 21 of the 22 students who attended already had computers, and 3 of them

had other laptops, but this group generally responded positively to the laptop initiative,

indicating the mobile capability was expected to be useful, and the wireless access would

be key. They also acknowledged that very few of them were comfortable using Athena.

Many students did not think that the laptops would be appropriate for the course material

given their understanding of Solid Mechanics.

The second set of focus groups concentrated on student perception of the course, par-

ticularly what needed to be improved. Students expressed feelings that the 2 hour lectures

were too long, that more in-class labs were needed, that in-class laptop use needed to be

increased, that there needed to be more site content, and that the site needed to be better

integrated into the course. These concerns matched the student response on the surveys

and were primarily a result of the partial development and integration of the Web mod-

ules, as mentioned previously.

8.6 Server Logs
The logs recorded by the server used for hosting the new course website also provided

valuable information, specifically about the use of the Web modules. From this data - over

300,000 log entries- we were able to extract information that indicates how the students

used these modules. Access to the 2.001 site was restricted to students, teaching staff,

developers, and a handful of colleagues with an interest in engineering education. In ana-

lyzing the logs, we analyzed only student access to the site.
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First, we measured visits to the main site page; since this served as a portal to all other

parts of the site, it would be a very good indicator of how often students accessed the

site.16 The weekly data indicated that the peak traffic was during use of the Truss Module,

during weeks 7-9 (Figure 8.6). This usage can be explained by the heavy integration of

this module into the class; students used the site for homework, an in-class design exer-

cise, and an at-home team design project, as well as at their own convenience. Usage of

the equilibrium module (released in week 5) was minimal in contrast; further analysis

showed that the equilibrium module received only 62 hits over the course of the semester.

Though this was made available to the students prior to their first exam, it was not inte-

grated into any portion of the class. The second most active periods were during weeks 11

and 12, corresponding to the use of the Multiaxial Stress-Strain simulations and the Bend-

ing module, respectively. These were more closely tied to other portions of the class than

the Equilibrium module, but not so much as the Truss Structures module. Though students

did not appear to have used the Web modules for studying for exams during the semester,

a spike in usage prior to finals week suggests that some portion of the class did use it to

study for the final examination.

16.  By bookmarking they could circumvent this page, but this was not a common occurrence.
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Based on the heavy traffic sparked by the Truss Structures Web module, a closer

examination of the use of this module was undertaken. Specific analysis entailed the pro-

portion of traffic on each of the Truss module components (Figure 8.7). Over the course of

the term, we found that students spent the most time using the simulation. Derivations and

examples were also used substantially, while lectures saw less traffic. According to these

data, the quiz, reference, and case study were used sparingly. This generally matches with

our survey results. As the project is still in its early stages, this does not imply that we

should halt development of the lesser used components. We need to find a way to motivate

students to use these components; assessment resulting from such use in future terms will

provide more substantial data, which can in turn be used to make decisions regarding the

development of these components.

Figure 8.6: Weekly student visits to the main iCampus website page. Week 1
marks the first week of the fall 2001 academic term, and week 16 represents

final examination week.
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We also examined the use of each of these Truss module components over the course

of the semester (Figure 8.8). This analysis indicates that peak use of the module compo-

nents was during the week surrounding the in-class truss design exercise, as expected,

since the module was incorporated into homework, the in-class exercise, and an at-home

design project. All indications suggest that students did not use the module to study for

any of the exams.

Figure 8.7: Chart indicating student usage of each of the Truss Structures Web
module components.
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8.7 Future Assessment
Formative assessment will continue to tailor the project to the educational needs of stu-

dents and summative forms of assessment will allow the department to decide on the

impact, sustainability, and appropriateness of the new teaching paradigm. It is important

to realize that assessment is a significant and ongoing process; as this is a multiyear initia-

tive, assessment will require continued time and attention.

The assessment methods that are in place must be applied to future classes in order to

provide further comparative data. Short-answer exam questions, project-developed sur-

veys, Pi Tau Sigma evaluations, focus groups, instructor feedback, and server data must

all be used for this purpose, and should take similar form to the processes used during the

last 1 1/2 years. Additionally, a multiple-choice quiz covering the major topics in Solid

Figure 8.8: Chart indicating student usage of each of the Truss Structures Web
module components over the course of the fall 2001 academic term.
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Mechanics will be developed for 2.007, Design and Manufacturing I, a follow-up course

to 2.001; this quiz, which will be administered in-class, will give us a good sense of stu-

dent retention of learned material. This quiz will be given at the beginning of the 2.007

course each time it is offered in order to provide comparative data. Together with the other

indicators, this will provide a legitimate means for evaluating the effectiveness of the new

pedagogy.
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Chapter 9

Recommendations and Future Work

Assessment gives us the opportunity to examine the current state of this initiative. High-

level findings indicate that the new pedagogy works well when everything is in place, but

not otherwise. Classes which integrated desktop experiments and/or laptop exercises were

very successful, but full 2 hour lectures were not. Evidence for the potential of this peda-

gogy is given by the use of the Truss Structures Web module. Given the development time

needed to create the tools for the new paradigm, we currently find ourselves in a period of

transition. As a result, there will inevitably be issues with operating between two modes of

teaching, specifically with long lectures and little, in-class laptop use. The question is how

we address the issues identified and improve the effectiveness of the active engagement

pedagogy. Following are a set of the most important recommendations for implementation

of the active engagement pedagogy in 2.001, for the spring 2002 academic term and

beyond. These recommendations are based wholly on the formal project assessment pre-

sented in the previous chapter.

The site needs to be better publicized. Introducing the module components to the stu-

dents at the beginning of the term - as was done with the Truss Simulation - would expose

students to the wealth of information on the site.  Many students commented that were

unaware of the information available on the site until it was too late.  Also, at the begin-

ning of the academic term, it will be necessary to explain, in a straightforward manner, the

purpose of the website, desktop experiments, and laptops.
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Laptop use needs to be increased. This laptop use must be valuable to the learning

experience, though; this is why students used the laptops in-class primarily for simula-

tions. This use will obviously increase as we are continuously in a process of develop-

ment, but use of the laptops for simulations will only result in 5-6 in-class laptop lectures

during spring 2002. More laptop use in the classroom will allow us to leverage the power

of these tools (lack of in-class use was a direct complaint of many students). With the lap-

tops present in the classroom, we can begin to leverage the faculty-student "communica-

tion" tool, in the Mazur style.  The single biggest student complaint was the length of the

lectures where there was no experiment or laptop use; increased laptop use will help ame-

liorate this student concern. A proposed solution is having them use the laptops for desk-

top experiments.  They can record data, analyze results, and answer questions on their

laptops, since there is already a tool in place for electronic file submission.

Use of the Web modules in homework assignments was successful and must be con-

tinued. As with every other aspect of the pedagogy, the most important aspect of doing

this is ensuring that it helps students learn the material.  The team truss design project was

highly successful; students indicated, as did the course TA, that this was a good learning

experience based on what they had done and seen in class. Some students indicated that

this was the single best learning experience in the course.

Enough time must be allowed for in-class experiments. This has proved to be difficult

to gauge, but experiments that ran past the end of lecture frustrated students, interrupted

the flow of the class, and may have hindered learning.  Students complained that the focus

was on measurement and results rather than understanding. Having attempted to integrate



123

these experiments into the 2 hour lecture, we will have a much better sense of how long

students need to complete these experiments.

Finally, and most importantly, project assessment must continue. The procedures for

doing so have already been outlined, but the concept is repeated here because of its signif-

icance. Assessment will allow us to consistently gauge the effectiveness of the most cur-

rent procedures, and will allow us to modify the pedagogy accordingly in real-time.

Additionally, this assessment process will help us determine the overall effectiveness of

the new teaching paradigm, and to make a decision as to whether this teaching methodol-

ogy should be sustained in the long-term, and whether it should be applied to other courses

in the undergraduate curriculum.

Regarding future development of the Web modules, the work primarily entails content

creation. The key infrastructural work is complete and - with the exception of the creation

of simulations - minimal software expertise is required for the content development. Fur-

ther, instructor use of the site requires even less technical know-how; however, long-term

maintenance of the site does require an individual with broad technical knowledge. In a

sustained use of these Web modules, it will be necessary to have an individual dedicated

to the technical aspects of the site, perhaps an individual who also maintains modules for

other courses as well; the qualifications and time needed for this position cannot reason-

ably be expected to be fulfilled by the course teaching assistant. Another alternative to

investigate in the future is the migration of these Web modules to an IS-supported

machine; by doing so, many of the technical issues would no longer be the concern of the

Mechanical Engineering Department.
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Another important issue is whether to share the online portions of the course with

other universities. Aside from the pragmatic issues of doing so, and the details of what

form the sharing would take, this is essential to the constant growth and development of

the project. It is acknowledged that the goal of this initiative is not to create a static prod-

uct; the key is to develop a framework within which the course content can continually

evolve. Limiting the Web modules to the MIT realm will hinder this evolution by provid-

ing an artificial environment which may result in biased feedback. Sharing this work with

other schools will serve the dual purposes of providing useful feedback and helping MIT

and the Department of Mechanical Engineering obtain recognition for their progressive

efforts in engineering education.

This project has great potential to avoid the fate of past educational initiatives, which

have typically faded very quickly. The main difference between these past initiatives and

the current one is the complete redevelopment of the course structure. Rather than being

an appended “gimmick”, the new teaching paradigm is highly integrated into the course

material; the components of the new pedagogy define the class. Not only does this provide

for a good chance of long-term survival, but it also serves as a model for meaningful cur-

ricular reform.
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Appendix A 

Desktop Experiments
Following are the handouts used for the desktop experiments in 2.001 between fall 2000

and fall 2001. The development of these handouts - and the experiments - was primarily

the work of Farid Ganji, Pierce Hayward, Prof. Mary C. Boyce, Prof. L. Mahadevan, and

Prof. Emanuel Sachs. Images have been included as appropriate to fully illustrate the indi-

vidual experiments.

A.1 Equilibrium Desktop Exploration

Massachusetts Institute of Technology

Department of Mechanical Engineering

2.001 Mechanics and Materials I

Desktop Exploration

Forces, Moments, and Free-Body Diagrams

Objective

The purpose of this exercise is to review free body diagrams and the determination of

reaction forces and moments.

Apparatus

2-liter bottle of soda

"Handl-it" bottle handle
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Procedure

Snap the handle onto the bottle and answer the questions on the following pages.

Questions

1. Consider the bottle-handle assembly in the horizontal position shown below. On the

diagram, sketch the resultant forces that are applied to the assembly by your hand. Show

them in the proper direction. Assume that the resultant forces occur at points P and Q

labeled below, and that the line of action of the force at Q is as shown.

Q
P

45o

CG

W = -4.4 j lbf

W

x
y

4.5"

2"

4"

1"



127127127

Pick up the assembly and hold the bottle in the horizontal position. Check your diagram

based upon what you feel in your hand as you hold the bottle.

Check your diagram by making sure that you will be able to satisfy the equilibrium equa-

tions for the assembly. In other words, with the directions you have shown for the reaction

forces, will you be able to satisfy , , and  ?

Find the resultant forces at P and Q.

2. Below are incomplete free body diagrams of the handle and bottle in the horizontal

position.

Sketch the resultant forces and moments (if they exist) on the handle and bottle. Show

ΣFx 0= ΣFy 0= ΣMo 0=

W = -4.4 j lbf

x
y

CG

W

Q
P

6"
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them in the proper orientation.

Check your diagrams by looking at the bodies as you hold the assembly in the horizontal

position, and by making sure that you will be able to satisfy the equilibrium equations for

each free body.

Find the reaction forces and moments on the bottle due to the handle.

3. Now consider the bottle in a "pouring" position. Below are incomplete free body dia-

grams of the bottle and handle, inclined at 30 degrees from horizontal. Sketch the resultant

forces and moments (if they exist) on the handle and bottle. Show them in the proper ori-

entation.

Check your diagrams by looking at the assembly while holding it in the pouring position

W = -4.4 j lbf

x
y

W

6"

30o

Q P

CG
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and by making sure that you will be able to satisfy the equilibrium equations for each free

body.

Find the reaction forces and moments on the bottle due to the handle.

4. Compare your results from questions 2 & 3. What do you notice about the reaction

forces and moments in the two positions? In your own words, explain why this occurs.

5. If you have time, answer this question. Consider the assembly in the horizontal position

once more. Without doing any calculations, can you devise a means of locating the center

of gravity of the assembly in the plane shown below? Explain your method, using a free

body diagram to justify your approach.
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A.2 Friction Desktop Exploration

Massachusetts Institute of Technology

Department of Mechanical Engineering

2.001 Mechanics and Materials I

Desktop Exploration

Friction

Experimental Setup

Purpose: Explore the properties of dry or Coulomb friction. 

Assignment: Write a report based on your observations. The report should clearly address

all of the posed questions.

The experimental setup is shown below. It consists of a rectangular wooden block and an

inclined wooden plane of which the inclination angle can be changed manually in a con-

tinuous manner and measured.
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Two sides of the block with different areas are covered with felt pads. Their respective,

opposing sides are covered with brass sheets. The remaining two opposing sides are bare

wood and only have different surface finish.  The weight of the block may be referred to as

W . 

Preliminary Questions

P (a). What parameters do you expect the dry friction force between two solid bodies to

depend on? Write your answer in the form of  Ff = Ff (p1, p2, ... , pm). 

P (b). Does the dry friction force need relative motion between the bodies in contact?

Explain.

P (c). What quantities do you think affect the coefficient of friction,  f? 



132

Observation 1 (Limiting value concept, static coefficient of friction)

1 (a). Place the block on the horizontal surface at rest so that the larger felt side lies on the

surface. Draw a Free Body Diagram. What is the magnitude of the friction force at this

point (your answer should be in terms of W) ? 

1 (b). Incline the surface slowly to an angle  so that the block is still at rest. Draw a Free

Body Diagram. What is the magnitude of the friction force now (your answer should be in

terms of W) ? 

1 (c). Where at the interface, does the resultant surface normal reaction act? Explain.

1(d). Slowly increase the angle until the block is just about to slide down.  Record the

angle at which the block just begins to slide.  Repeat at least 5 times and record the read-

ings.   Draw a Free Body Diagram. Calculate the static coefficient of friction,  f.

Observation 2  (Material dependence)

 Repeat Observation 1(d), but this time put the large brass side in contact with the surface.

2 . What is the static coefficient of friction in this case? Compare with that of the felt. 

Observation 3  (Area dependence)

Repeat Observation 2, but put the smaller brass side in contact with the surface. 

3 . What is the static coefficient of friction in this case? Compare with that of Observation

2. 

α



133

A.3 Capstan Desktop Exploration

Massachusetts Institute of Technology

Department of Mechanical Engineering

2.001 Mechanics and Materials I

Desktop Exploration

The "Capstan Effect"

Experimental Setup

The experimental unit as shown in the figure below consists of three posts supported by a

wooden stand.  The middle post is a wooden rod of 1 inch diameter.  The other two posts

have a diameter of 5/8 inch; one is brass-covered and the other is bare wood. The stand

must be tightly fixed to the desk by c-clamps before conducting the experiment.
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A rope with a seat for a weight W at one end and a spring with spring constant (K in lb/in;

two springs are provided as described later); at its other end is also supplied.  Weights are

supplied in the form of steel washers.  The rope will be sequentially wrapped around each

post when conducting the experiments as described later below.  The spring acts as the

load cell: the spring extension  will be measured with the ruler (supplied) and the force

will be obtained as T = K . 

When conducting the experiments, care must be taken such that the rope turns do not

overlap each other.  Also each wrap should be adjacent (no space) to the prior wrap since

the axial wrapping pitch is the rope thickness.

The following data is also needed:

Whs = W(hook + seat) = 3.0 oz

Wwashers = 3oz (note that the weight of each washer is written on the washers)

Spring Stiffness:

Compliant Spring: K1 = .22 lb/in for use when 1 lb < T < 3.0 lb.

Stiff Spring: K2 = 4.5 lb/in for use when 5 lb < T < 30 lb.

Preliminary Question

What quantities do you expect to affect the pulling force?  Write your answer in the form

of T = f(q1, q2, q3,…).  

∆

∆
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Observations

1. Place a washer weight (Wwasher = 3 oz; Wtotal = Whs + Wwasher) on the rope.  Wrap the

rope with the weight one turn (  radians) around the larger diameter wooden post so

that the opposing end of the rope is pointing upward.  For ease of measurement, keep the

upper portion of the rope between the bar and the spring as short as possible (about 2 in).

Now, try to raise the weight by pulling the handle, hooked to the spring.  At the onset of

motion of the weight, measure and write down the spring stretch, , with the ruler pro-

vided.  (You will need to work with a partner on this).

Repeat the above measurement for 2, 3, 3.5 and more turns until you are almost unable to

get the rope to slip around the post.  Each time record your measurements.  

Calculate the spring force, T, for each  and tabulate the data, including the force

T = T0 = W corresponding to  = 0.

2. Repeat the steps of  observation 1 for the lower diameter wooden post.

3. Repeat the steps of  observation 1 for the brass-covered post.

4. Repeat the steps of observation 1 (use large diameter wood post), but now use a larger

weight.

Analyses

θ 2π=

∆

θ

θ
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I. Using your data from observation 1 (large diameter wood post), plot T vs. .  Is the rela-

tionship linear?  How would you describe the relationship?

II. Using your tabulated results for the wooden posts of different diameter, i.e. observa-

tions 1 and 2, plot T-versus-  for the two cases on one plot and compare.  What is your

conclusion? 

III. Using your data from observations 1 and 4, plot T vs.  for each case on the same plot.

Discuss.  

IV. Using your data from observations 2 and 3, plot T vs.  for the two cases on the same

plot.  Discuss. 

V. Using your data from observations 1, 2, 3 and 4 plot ln T vs.  (where ln is natural log-

arithm).   What do you observe?  What does this indicate about the relationship between T

and ?

θ

θ

θ

θ

θ

θ
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A.4 Spring Constants Desktop Exploration

Massachusetts Institute of Technology

Department of Mechanical Engineering

2.001 Mechanics and Materials I

Desktop Exploration

Force-Deformation: Spring Constants

Objective

Explore the relationship between force and deformation for various spring assemblies.

Experimental Setup

The experimental unit is shown in the Figure below. The unit consists of a fixture with

three hooks; various spring assemblies will be attached to these hooks and then loaded by

dead weights.
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Supplies

• Fixture, C-clamps, connector plate, weight adapter, clips
• Springs

• Spring 1:Calibrated Force Measuring Spring Scale (white)
• K1 = 590 N/m (= 3.36 lb/in)

• Spring 2:Calibrated Force Measuring Spring Scale (yellow)
• K2 = 977 N/m (= 5.58 lb/in)

• Weights:0.5 lb (= 2.23 N), 1.0 lb (= 4.45 N), 2.0 lb (= 8.9 N)
• Ruler
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Preliminary Question

What is the relationship between force and displacement of a linear spring system?

Hint for the experiment

In order to account for the fact, that all of the components used in this experiment are sub-

ject to gravity, and therefore cause displacements in the spring scales, even though no

weights are applied, it is recommended to do a “zero” before applying the weights. This

zeroing is achieved by turning the adjustment screw at the top of each spring scale until the

indicator rests at the zero line (before applying the weights!).

Observation 1

Verify the spring constant of the yellow spring scale by successively loading it with



140

weights and recording the resulting displacement. Is the yellow spring scale linear?

Observation 2

Repeat the experiment described in observation 1 with the white spring scale. Is the white

spring scale linear?

Observation 3

Springs in series. Put two white spring scales in series (one after another). Load it succes-

sively with weight and record the total change in length as well as the change in length of

Weight [lb] Displacement x Stiffness K3

0

0.5

1

2

3

Weight [lb] Displacement x Stiffness K4

0

0.5

1

2

3

∆

∆
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the individual springs. What is the spring constant K5 of the system and how does it com-

pare to a single spring scale? Draw a free body diagram, isolate the individual springs, and

set up a relation between the applied load and the system (= total) displacement.

Observation 4

Springs in parallel. Using the clips provided, attach two white spring scales to the outer

loops of the fixture and attach the connector plate at the bottom, again using the outer

loops. Attach the weight adapter to the center of the connector plate and increase succes-

sively the loading while recording the system displacement as well as the displacements of

the individual springs. What is the spring constant K6 of this system and how does is com-

pare to a single spring scale? Draw a free body diagram and set up a relation between the

applied load and the system (= total) displacement.

Weight [lb]
System 
length

Length x
Length 

x1
Length 

x2
Stiffness 

K5

0

0.5

1

2

3

Weight [lb]
System 
length

Length x
Length 

x1
Length 

x2
Stiffness 

K6

0

∆
∆ ∆

∆
∆ ∆



142

Observation 5 (optional, if there is enough time left)

Springs in parallel and series. Remove the weight adapter from the setup of observation 4

and replace it with a yellow spring scale. Attach the weight adapter to the bottom of the

yellow spring scale, apply the loading and record the changes in total length as well as the

change in length of the individual springs. What is the spring constant K7 of the system

and how does is compare to the individual spring scales? Draw a free body diagram and

set up a relation between the applied load and the system (= total) displacement.

0.5

1

2

3

Weight 
[lb]

System 
length

Length 
x

Length 
x1

Length 
x2

Length 
x3

Stiffness 
K7

0

0.5

1

2

3

Weight [lb]
System 
length

Length x
Length 

x1
Length 

x2
Stiffness 

K6
∆

∆ ∆

∆ ∆ ∆ ∆



143

A.5 Truss Analysis Desktop Exploration

Massachusetts Institute of Technology

Department of Mechanical Engineering

2.001 Mechanics and Materials I

Desktop Exploration

Truss Analysis

Experimental Setup

A truss structure has been constructed as shown in the figure below.  Coil springs consti-

tute the truss members.  The springs have the spring constants listed below.

• Kc = 8lb/in
• Kt = see attached plot
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Note the following:
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 = 28.19101434º

 = 22.89512844º

 = 48.63147834º

 = 18.47339322º

 = 65.68426083º

Step 1

Assume that the truss elements are actually single steel rods of diameter 5 mm (.2 inches).

The Young’s modulus of steel 200 GPa (30,000 ksi). 

• draw the free body diagrams.
• determine the force in each truss member.
• determine the axial deformation of each member.
• which members are in tension? compression?
• derive an expression for the displacement of pin B using compatibility

Comment

Notice that the deflection would be too small to measure in this setup. This is why springs

will now be used as an alternative in order to directly visualize the deformations in the

truss members and the deflection of the truss structure. You will see, however, that this

has additional consequences.

Step 2

Place weights of 1, 1.5, 2, 2.5 and 3 pounds in the cradle. In each loading situation:

• measure the vertical deflection;
• for the weights of 1lb, 2lb, and 3lb, measure the lengths of the members and the 
angles between them.

α

β

δ

ζ

θ
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• which members are in tension? compression?
• remove the weights; what happens to the structure?  is the structure elastic?
• now, plot the load versus deflection. Should it be a straight line? Is it a straight line? 
If not, why not?

Step 3

Now, let’s explore this a little further. 

Check if the geometric compatibility equations you derived in step 1 are satisfied for the

2lb configuration. Quantify the discrepancy between the vertical deflection calculation

assuming small displacements vs. that actually measured.

Step 4

Using Castigliano’s theorem, determine an expression for the vertical displacement of

point C.  Under what conditions does this hold?
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A.6 Biaxial Loading Desktop Exploration

Massachusetts Institute of Technology

Department of Mechanical Engineering

2.001 Mechanics and Materials I

Desktop Exploration

Biaxial Loading

This module qualitatively and quantitatively explores biaxial loading and deformation of

materials. 

Experimental Setup

In order to easily observe the strain in the material, we load a latex sheet in our experi-

ment. The sheet has been cut in the shape of a plus sign as shown in the picture below, and

can be loaded by hand. Loads can be easily locked in the wedge clamps.

The sheet has a rectangle and a diamond with 90-degree internal angles inscribed in the

middle. We load the sheet and observe the change in shape of these figures.
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Experimental equipment: biaxial stretching device, calipers, protractor.

Material: cruciform specimen of latex sheet with inscribed rectangle and diamond. 

Laboratory Tasks

1. Measure the dimensions of the rectangle and diamond in an unloaded state. In particu-

lar, measure the angles. They should all be 90 degrees.

2. Load the latex sheet a small amount in one direction. Lock in the load.

3. Measure the new dimensions of the rectangle.  In particular, measure the new internal
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angles of the rectangle and the diamond. Have they changed?

Questions

a) What are the axial strains as measured in the rectangle?

b) What is the Poisson’s Ratio for this material? 

c) Is there a shear strain in the rectangle? How much?

d) Is there a shear strain in the diamond? How much?

e) Using transformation equations (or Mohr's Circle), predict the diamond state of strain

from that of the rectangle.  How does your prediction for the diamond shear strain com-

pare to your measurement?

4. Now load the strip in the second direction while keeping the loading in first direction in

place. Use a small load.

5. Measure the new dimensions of the rectangle and the diamond.  In particular, measure

the new internal angles of the rectangle and the diamond. 

Questions

a) What are the axial strains as measured in the rectangle? 
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b) What is the shear strain in the rectangle?

c) What is the shear strain in the diamond?

d) Using transformation equations (or Mohr's Circle), predict the diamond state of strain

from that of the rectangle.  How does your prediction for the diamond shear strain com-

pare to your measurement?

6. Increase the load in the second direction until the diamond has once again 90-degree

angles  (although it is larger!).

Questions

Repeat the questions from step 5.
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A.7 Beam Strain Desktop Exploration

Massachusetts Institute of Technology

Department of Mechanical Engineering

2.001 Mechanics and Materials I

Desktop Exploration

Beam Bending: Strain Distribution

Objective

Explore strain distribution on beams subjected to bending.

Supplies

• 3-foot long 1"x1" polyurethane beam with rectangular grid
• measuring tape
• paper with various semi-circles
• clamps
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Observation 1 (Pure Bending)

1. Take the beam, measure the initial length between two specific grid marks (use a spac-

ing of about 6-10 inches).

2. Take the beam, bend it into the radius of curvature R1 = 24 inches.  Measure the length

between the grid marks chosen in step 1 at various positions through the beam (i.e. at top

surface, at center, at bottom).

3. Determine the strain distribution through the thickness of the beam.

4. Repeat steps 2 and 3 for R2 = 18 inches and R3 = 12 inches.

5. Determine an expression for the axial strain through the thickness ( ) as a function

of radius of curvature.

Observation 2 (Cantilevered Beam with End Displacement)

1. Take the beam, measure the initial distance between several pairs of grid marks along

the top surface of the length of the beam.

2. Clamp the beam in a cantilevered manner.  Subject the beam to an end displacement of

3 inches.

3. Measure the strain distribution in the beam (take measurements at several points along

the length and through the thickness).

4. Plot the bending moment diagram.

εxx y( )



153

A.8 Beam Deflection Desktop Exploration

Massachusetts Institute of Technology

Department of Mechanical Engineering

2.001 Mechanics and Materials I

Desktop Exploration

Beam Bending: Deflections

Experiment

A simply supported beam will be subjected to a central load, P (3-point bending).  The lat-

eral displacement, , at the center of the beam will be measured.  The beam stiffness will

be assessed in terms of the slope of the P-  curve.  You will explore the dependence of

stiffness on various parameters including length, thickness, and load.

δ

δ
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Supplies

• 3 20-inch long strips of spring steel t1 = .025 inch (=0.635mm), t2 = .05 inch (= 
1.27mm), t3 = .062 inch (= 1.575mm)
• Bending apparatus
• Weights
• Ruler

Observation 1  (Force-Displacement Behavior)

• Place the 20 inch long, .05 inch (1.27mm) thick, .5 inch (12.7mm) wide strip of 
spring steel on the rollers with the rollers placed 10 inches (254mm) apart.
• Place the hook at the center point of the beam.
• Place the 1lb (4.44N) weight on the hook, measure the deflection.
• Place the 1.5lb (6.66N) on the hook, measure the deflection.
• Plot P vs. , determine the stiffness for this loading condition.

*the platform weight is 3oz (0.12N).

 

Observation 2 (Dependence on length)

Using the .05 inch (1.27mm) thickness beam:

1) Place the rollers 10 inches (254mm) apart.

a) Place 1lb (4.44N) in center, measure the deflection.

2) Place the rollers 15 inches (381mm) apart.

a) Place 1lb (4.44N) in center, measure the deflection.

3) Determine the stiffness for these two cases.  How does stiffness scale with length?

Observation 3

For the case of L = 12 inches (304.8mm) (rollers placed 12 inches apart).  Measure the

δ
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stiffness (using 1.5lb (6.66N) weight) for spring steel with:

• t1 = .05 inches (1.27mm)
• t2 = .062 inches (1.575mm)

How does stiffness scale with thickness?
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Appendix B

MIT Information Systems Usability Report

Usability Report
MIT MechE I-Campus Project - Beam Bending Module

January 2001

The purpose of the project

This project's goal is to move away from the traditional large lecture format for first year

Mechanical Engineering subjects towards an active learning model via simulations and

modules. This methodology brings the laboratory into the classroom, using the "observe,

study, experiment" model. Each class would become a session involving laboratory, mini-

lecture, Web-based learning modules, and discussion. 

The module topics are: 

• Friction 
• Capstan 
• Truss 
• Torsion 
• Bending 

The goal of the usability testing of the project

Usability testing helps insure that the final product is easy to use and effectively helps the

users attain their goals which in this case would be the learning of mechanical engineering

principles and techniques. Planning for the usability testing began with initial meeting

between Jean Foster, a Usability Engineer with the MIT IS sponsored Usability Team and

the two of the project developers, Ebbe Bamberg and Jaspal Sandhu. Jean recommended

that testing be done on each module as work progressed. The first module ready for testing
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was the module on the Beam Bending topic. This report describes the tests, presents the

results and suggests way to improve the usability of the module. 

Description of the Tests

On November 7th the Usability Team conducted a heuristic review of the 2.001 Web site

with the developers present. We also asked Debby Levinson from the Web Communica-

tion Services (WCS) group to have her team and designers from the Publishing Bureau

review the site for it's graphical look. Debby delivered her report at the meeting on the 7th.

The developers took their own notes and came away with several problems to fix and

changes to make in the graphical design of the site. 

Jean Foster then developed a usability testing plan for the Beam Bending module (see

http://web.mit.edu/is/usability/MechE/) which would involve student test participants

using a thinking aloud protocol. In this test method a test participant is given test tasks or

problems and then and then is asked to think out loud while they are solving the tasks. In

this case the participants were presented with a sample assignment scenario to solve (see.

Attachment A) The participants are observed by one or more usability team members who

take notes on what they observe and the tests are video taped for later review.

The tests were conducted during IAP 2001 using students who had just completed course

2.001 the previous (Fall 2000) semester. It was important that the students had already

been through the classroom lectures on the beam-bending topic. Jaspal Sandhu recruited

the student testers and planned the test schedule. Seven students were recruited for 4 tests

with 3 of the tests scheduled for students to work in pairs. Two of the students did not
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show up but in both cases they were scheduled to test with another student and so we went

ahead and tested with one. Two pilot tests were conducted with test participants who were

not students.

The tests took place in the Usability Team's testing laboratory in building N42. The lab

consists of a test room (which also is used for integration testing) and an adjoining room

which contains two monitors, one connected to a video camera aimed at the test partici-

pant, and another which is hooked up to the workstation that the test participant is testing

on. This monitor displays the test participant's screen as she sees it so that the observers

can follow exactly what the participant is doing in the application.

The student test participants tested on a PC laptop in the Integration Lab. The laptop was

running Windows 2000. Some test participants used Netscape 4.76, and others used IE5.5.

One pilot tester used Netscape under Linux.

--------------------------------------------------------------------------------

Test results

Summary

The students were able to solve the problem in the test scenario. Most test participants

seemed to like the beam bending applet, several using the adjective "cool". Generally they

seemed to understand the layout of the 2.001 site with some exceptions which are noted in

the details below. 



160160160

Note: The recommendations below are only recommendations and are not necessarily the

only possible solution for the problems found. 

About the site in general:

One user said he liked the graphical bend in the word "bending". 

Several users commented on the length of time it took for the applets to load. "Oh, it's a

big applet or the network is slow". 

Finding 1: Confusion about top and bottom navigation bars

Observation: 

Several of the users had to scroll back and forth comparing the navigation bars at the top

and bottom before they were sure that they were duplicate information. 

Recommendation: 

Use the same image map navigation bar for the bottom of the page as for the top. 

Finding 2: Expectation of "where am I" component in Navigation bar

Observation: 

Participants expected that the pull-down section of the top navigation bar would reflect

where they are in the site. 

Recommendation: 

Highlight the word of the section that the user is in. E.g. if they are on the examples page

examples should somehow be highlighted in the list under bending 

Finding 3: Users were confused about usage of the terms simulation/applet

Observation: 

The participants were looking for the word applet (from the scenario) and didn't realize

that the simulation was the applet 
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Recommendation: 

Be consistent. Either use the term simulation applet or just applet or just simulation. 

Finding 4: There is no way to search for particular topics within the module.

Observation: 

Participants went from one section of the module to another looking for particular expla-

nations or topics. One participant said he wished there were a search feature. 

Recommendations: 

Add a search feature to each module and to the site on the home page. 

--------------------------------------------------------------------------------

2.001 Home Page

Finding 1: The word disclaimer is misleading.

Observation: 

At least one test participant started reading the disclaimer and stopped when he saw that it

was really a recommendation for screen resolution. He never continued to read the Java

version information. 

Recommendation: 

The Java version information should be labeled as a Warning and should come first. 

MAC users should be warned that there is no JRE 1.3 available (yet?) for MAC. 

The screen resolution recommendation should be labeled as Recommendation and should

come after the warning. 

--------------------------------------------------------------------------------
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Real Life Examples

Finding 1: Photos too large.

Observation: 

Users complained that the photos were too big. They had to scroll extensively. Users also

had to scroll to get to the links under the picture. 

Recommendation: 

Make the photos smaller. 

Move the links below the photos closer to the photos or place above the photos. 

 

Finding 2: Not all concepts were shown in the Examples?

Observation: 

One user commented that there was no example for the problem they were given. 

Recommendation: 

If this is accurate, more examples should be created. 

--------------------------------------------------------------------------------

Beam Bending Applet

Users seemed to feel that the applet saved them time. 

One student used equations link and was glad she didn't have to calculate it herself. 

Finding 1: Help menu problems

Observation: 
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Some users didn't notice the help menu. 

Recommendation: 

Make the Help menu more noticeable, larger, bolder? 

Observation: 

Users opened Help but didn't find what they were looking for. Some were looking for an

explanation of the icons. Some went for instructions for how to use the tool. 

Recommendation: 

Add more info to the Help. 

Chunk the information; use headings; embolden keywords; provide numbered steps about

how to use the tool. 

 

Finding 2: Users had trouble figuring out how to use a material that wasn't listed in

the materials pull-down menu 

Observation: 

Some users didn't notice the custom option in the materials pull-down menu when they

were searching for a material that wasn't listed. 

Recommendation: 

Put Custom first on the list and separate it slightly from the rest of the list. 

Finding 3: Confusion about simulation/applet wording

Observation: 

Some users were confused when told to use the applet but only saw a link for simulation. 

Recommendation: 

Be consistent in naming the tool. Simulation is more generic. Do they need to know it is
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an applet? 

Finding 4: Calculator needed to figure weight 

Observation: 

Several users expected a calculator to be included in the tool. 

Recommendation: 

Provide a calculator or instruct users to use a system calculator in the Help instructions. 

Finding 5: Users expected graph units would change when they changed the unit of

measurement for the beam 

Observation: 

Users commented that the graphs didn't recalculate properly when the unit of measure on

bottom left was changed from feet to inches. 

Recommendation: 

Don't know if this is possible to fix? 

Finding 6: Graph doesn't appear to update 

Observation: 

Several users thought that the tool was buggy when they made a change to either the mate-

rial, boundary conditions, or measurements and the graph seemed to stay the same. (In ret-

rospect it is possible that the graph numbers were changing but not the graphics, but users

didn't notice the numbers changing. 

Recommendation: 

Have the graph "flash" when updating. 

Finding 7: icon definitions weren't found 

Observation: 

Many users never noticed the rollover explanations of the icons. 
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Recommendation: 

Adjust the timing of the rollovers so that they show up immediately. 

Give the rollovers a bright color background (such as yellow or red) so they will be more

noticeable. 

Finding 8: Users didn't notice the unit change option immediately 

Observation: 

Most users didn't notice the unit change options until they had filled in the materials, mea-

surements, and loads sections. 

Recommendation: 

Move this option into the Dimension section. 

Finding 9: confusion about using the calculate button 

Observation 

Users did not always push the Calculate button when it was needed and seemed to be wait-

ing for updates to happen automatically. 

Recommendation: 

Label the button, e.g. "Press after changing load specifications". 

Finding 10: Users weren't sure how to use Loads section

Observation: 

Users seemed to be unsure of what to do in the Loads section. They kept getting "out of

bounds" error messages. Lots of guessing. 

Recommendation: 

Include specific instructions and description of how this works in Help. 

Finding 11: dimensions failed to recalculate when unit system was changed

Observation: 
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Users expected that when unit system was changed, for example from feet to inches, that

the dimensions would change automatically from 1 foot to 12 inches. 

Recommendation: 

Make the dimensions recalculate automatically when the unit system is changed. 

Finding 12: dimensions failed to recalculate when unit system was changed

Observation: 

Users expected that when unit system was changed, for example from feet to inches, that

the dimensions would change automatically from 1 foot to 12 inches. 

Recommendation: 

Make the dimensions recalculate automatically when the unit system is changed. 

Finding 13: Users weren't sure whether to single click or double click in the tool

Observation: 

Users sometimes double clicked 

Recommendation: 

Explain that single clicks are required. 

Finding 14: users looked for Young's modulus for the materials

Observation: 

Users looked for Young's modulus for the materials listed. 

Recommendation: 

Provide Young's modulus for materials. 

Finding 15: most users did not use comparison feature

Observation: 

Some users didn't try to use this feature and others tried but stopped when it didn't seem to
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be working. 

Recommendation: 

Put the word compare somewhere between beam 1 and beam 2. 

Finding 16: Controls for beam 2 weren't obvious

Observation: 

Some users didn't understand that F2 and Q2 corresponded to Beam 2. 

Recommendation: 

Color-code these labels. Make F1 and Q1 blue and F2 and Q2 red. 

Finding 17: Users expected the tool to include a way to calculate weight

Observation: 

Users commented that it would be nice if the was an easy way to calculate the weight

within the tool 

Recommendation: 

Include this feature. 

Finding 18: Users were unsure of the meaning of some of the terms

Observation: 

Some users didn't know what lbf stood for. 

Recommendation: 

Include a glossary as part of the reference materials. 

Finding 19: HEIGHT fill-in needs zero in front of DECIMAL

Observation: 

Once user repeatedly tried to enter a number < 1 in the height fill-in but it kept failing until

he put a zero in front of the decimal. Only saw this once. 
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Recommendation: 

Fix so it isn't necessary to put a zero in front of the decimal. 

Finding 20: BEAM 2 covered beam 1 in chart

Observation: 

Users sometimes couldn't tell if Beam 1 was still showing up in the graph because the

lines were completely covered by the red Beam 2 lines. 

Recommendation: 

Make Beam 1 lines a bit wider so they will show up behind the Beam 2 lines. 

--------------------------------------------------------------------------------

Miscellaneous

Finding 1: There was no references for standards 

Observation: 

Users were unsure of what would be a reasonable weight to use for load; width of bridge 

Recommendation: 

Include reference information for standards (if such exist). 

--------------------------------------------------------------------------------

Accessibility Problems

Add ALT attributes to navigation image map hotspots on all pages. See WAI Techniques

document: http://www.w3.org/TR/WCAG10-HTML-TECHS/#client-side-text-equivs 

Use Java Swing accessibility features for applets. E.g., allow for keyboard navigation in

applets. See the IBM Java checklist: http://www-3.ibm.com/able/javakeyboard.html 
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Examples: use ALT attributes or LONGDESC element to describe the pictures. 

--------------------------------------------------------------------------------

Possible Bugs

Custom dialog box didn't always refresh. 

When entering height in the dialog box, it kept failing until he put a zero in front of the

decimal point. There was no error message or explanation. 

Beam 2 graph didn't clear (in one test). 

Graph didn't recalculate when the boundary conditions were changed. 

Possible problem with Linux: "Scrolling over large graphics caused a different Web page

to display." (jlittell) 

Using IE 5.5 under Windows 98, I couldn't get the examples to load. The Javascript

seemed to hang. (jfoster) 

In the Examples sections, the schematic button seemed buggy. Users had to push the but-

ton twice for it to respond. 

IE 5.5 crashed once. 

Applet couldn't be used on a laptop with a screen resolution of 800 X 600. Calculate but-

ton was out of sight. 

  

--------------------------------------------------------------------------------

User comments

On first seeing the applet: "Wow, there's a lot of stuff here. I have no idea what to do. I'd

better read the instructions." 
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"I wish there was a way to express how to apply the load …to indicate Q1 on the load

graph." 

"It would be nice if they showed the same input (Young's modulus?) (so you would) know

if you were comparing the same units." 

"It would be nice to see X coordinate numbers to see where the bending moment is cross-

ing the zero in the Y direction." 

"I like the force line down from the force arrow." 

I assumed you were applying the same load to both." 

Inertia table: "It would be helpful if the words at the top of the table stayed in sight when

you scroll down". 

When user got an error "Surface load - left location cannot exceed right location" and

commented, " I'm not sure what that means." 

I wish the Q load diagram were clearer." 

"It would be handy to have conversion factors on the site." 

"Oh, you can try two different beams to compare. That's pretty cool!" 

"I don't like that it doesn't show the weight of the beam" 

"I wish it would calculate automatically when I hot enter." (Instead of having to push the

Calculate button.) 

In Help: " I don't want to read it but it doesn't look like there is much info there." 

"I would like there to be fewer words and more pictures (on the site)." 
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Appendix C

Torsus Technical Details

C.1 Revision History

Revision Date Notes

1.0 16 Aug 01 Core functionality: allows basic construction and analysis 
of planar truss structures.

1.0a 14 Oct 01 Calculates and prints mass of truss structure.

1.0b 18 Oct 01 Text-based modification of truss-structure allows more 
precise construction of structures.

1.0c 22 Oct 01 Member stresses are calculated and printed. Drawing area 
is larger. Scale is given in terms of grid blocks, more intu-
itive than pixels; changing the grid spacing (small, 
medium, large) updates the scale factor automatically. 
Mouse position indicator gives x and y distance from (0,0) 
in inches or meters (not pixels).  Modifying the structure 
using the dialog (right-clicking) is now in terms of inches 
or meters, as opposed to pixels.

1.0d 25 Oct 01 Major grid lines (every 5 grid blocks) are indicated by a 
darker color for ease in drawing. The origin (0,0) has been 
shifted (up and right) to allow user to reference it more 
effectively. The modify structure function allows user to 
right click on a node once to bring up the text-based dia-
log; the left click functionality remains the same. The out-
put in the message window has been reformatted such that 
it is easier to read.

1.0e 28 Oct 01 Buckling calculation (based on solid circular cross-sec-
tion) included in printed output.

1.0f 2 Nov 01 Unstable determinate structures identified by limiting val-
ues of matrix elements of inverse of global stiffness 
matrix; limitations also set on scale and area values. Maxi-
mum stress printed. MIT MechE iCampus logo included.
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1.0g 21 Nov 01 Ability to undo last change to structure (TrussStructure, 
Member, Node all implement Serializable; ObjectCloner 
class performs deep copy operation). Now catches unsta-
ble determinate structures by looking for non-invertible 
matrices (since JAMA package does not throw an excep-
tion when inverting non-invertible matrices, program 
determines if rank = dimension of matrix). Unnecessary 
code removed; code commented for purposes of javadoc.

1.1 07 Jan 02 Ability to run as application or applet from same code; to 
run application, simply double-click jar file (should work 
by default on Windows machines; if not, it may be neces-
sary to set the program associated with JAR extension 
manually). Length of truss members printed (for purposes 
of truss construction in 2.973). Application capabilities 
(do not work in applet version): quit, save truss (*.trs), 
load truss (*.trs), copy and paste (by highlighting Message 
Window), copy data function (under edit menu). Also (in 
both applet and application), program now allows choice 
of solid circular and custom moment of inertia for buck-
ling analysis.

1.1a 18 Jan 02 Minor changes to structure modification input, system 
output in terms of significant figures (more precise). 
Buckling analysis also computes minimum moment of 
inertia necessary to prevent buckling in individual mem-
bers.

Revision Date Notes
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C.2 Javadoc

torsusapplet  
Class DrawArea 

java.lang.Object 
  | 
  +--java.awt.Component 
        | 
        +--java.awt.Container 
              | 
              +--javax.swing.JComponent 
                    | 
                    +--javax.swing.JPanel 
                          | 
                          +--torsusapplet.DrawArea 

All Implemented Interfaces:  
javax.accessibility.Accessible, java.awt.image.ImageObserver, java.awt.MenuContainer, java.io.Serializable  

public class DrawArea  
extends javax.swing.JPanel 

DrawArea class handles the graphical construction and display of truss structures.  

See Also:  
Serialized Form 

  

  

  

  

 Class Tree Deprecated Index Help

 PREV CLASS   NEXT CLASS FRAMES    NO FRAMES

SUMMARY:  INNER | FIELD | CONSTR | METHOD DETAIL:  FIELD | CONSTR | METHOD

Inner classes inherited from class javax.swing.JPanel

javax.swing.JPanel.AccessibleJPanel

Inner classes inherited from class javax.swing.JComponent

javax.swing.JComponent.AccessibleJComponent

Inner classes inherited from class java.awt.Container

java.awt.Container.AccessibleAWTContainer

Inner classes inherited from class java.awt.Component

java.awt.Component.AccessibleAWTComponent

Field Summary
static int DRAW_HEIGHT  

          Integer value representing width of the DrawArea.

static int DRAW_WIDTH  

          Integer value representing width of the DrawArea.

static int X_ORIGIN_OFFSET  

          Integer value representing x offset.

static int Y_ORIGIN_OFFSET  

          Integer value representing y offset.
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Fields inherited from class javax.swing.JComponent

accessibleContext, listenerList, TOOL_TIP_TEXT_KEY, ui, UNDEFINED_CONDITION, 
WHEN_ANCESTOR_OF_FOCUSED_COMPONENT, WHEN_FOCUSED, WHEN_IN_FOCUSED_WINDOW

Fields inherited from class java.awt.Component

BOTTOM_ALIGNMENT, CENTER_ALIGNMENT, LEFT_ALIGNMENT, RIGHT_ALIGNMENT, TOP_ALIGNMENT

Fields inherited from interface java.awt.image.ImageObserver

ABORT, ALLBITS, ERROR, FRAMEBITS, HEIGHT, PROPERTIES, SOMEBITS, WIDTH

Constructor Summary

DrawArea(TorsusView v)  

          Constructor takes view as an argument to enable communication in both directions between classes.

Method Summary
 void addMember(Node m, Node n)  

          Calls the method of the same name on the local TrussStructure.

 void displayNodeMemberNumbers(boolean b)  

          If boolean b is true, the numbering scheme of the Nodes and Members is displayed.

 void drawLine(java.awt.Point a, java.awt.Point b)  

          Draws a line between Points a and b.

 void drawSnap(Node n, boolean b)  

          Depending on value of boolean b, this method will draw a "snap square" around Node n.

 void drawXLoad(Node n, java.awt.Graphics graphics)  

          Draws the arrow and force corresponding to the of x-component of the load at Node n.

 void drawYLoad(Node n, java.awt.Graphics graphics)  

          Draws the arrow and force corresponding to the of y-component of the load at Node n.

 TrussStructure getTrussStructure()  

          Returns most current copy of local TrussStructure.

 void highlightMember(Member m, boolean b)  

          Depending on value of boolean b, this method will highlight Member m.

 void highlightModifyNode(Node n, boolean b)  

          Depending on value of boolean b, this method will highlight Node n.

 void modifyStructure(Node n, java.awt.Point p)  

          Calls the method of the same name on the local TrussStructure.

 void paintComponent(java.awt.Graphics g)  

          This method overrides the paintComponent() method of JPanel.

 void paintDisplacedNodes(TrussStructure t)  

          Causes DrawArea to display only the displaced structure.

 void paintInternalForces(TrussStructure t)  

          Causes DrawArea to display only the internal forces of the structure.

 void paintStructureOnly()  

          Causes DrawArea to display only the structure (build mode).

 void refresh()  

          Calls repaint() on self.

 void removeMember(Node m, Node n)  

          Calls the method of the same name on the local TrussStructure.

 void resetScreen()  

          Resets local TrussStructure and reverts to build mode.

 void
resetTempLine()  
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          Erases any remnant of the "sticky" line used in graphical addition Members.

 void setBC(Node n, int mode)  

          Calls the method of the same name on the local TrussStructure.

 void setBGBlack()  

          Changes the color scheme of the DrawArea to correspond to a black background (~15 different items are assigned 
colors).

 void setBGWhite()  

          Changes the color scheme of the DrawArea to correspond to a white background (~15 different items are assigned 
colors).

 void setGrid(boolean b, int n)  

          If boolean b is true, grid is turned on at a spacing of n pixels.

 void setLoad(Node n, double fx, double fy)  

          Calls the method of the same name on the local TrussStructure.

 void setSnapDistance(int n)  

          Calls the method of the same name on the local TrussStructure.

 void setTrussStructure(TrussStructure t)  

          Sets the current TrussStructure according to argument.

 void undo()  

          Reverts local TrussStructure to form before last build operation.

Methods inherited from class javax.swing.JPanel

getAccessibleContext, getUIClassID, paramString, updateUI

Methods inherited from class javax.swing.JComponent

addAncestorListener, addNotify, addPropertyChangeListener, addPropertyChangeListener, 
addVetoableChangeListener, computeVisibleRect, contains, createToolTip, disable, enable, 
firePropertyChange, firePropertyChange, firePropertyChange, firePropertyChange, firePropertyChange, 
firePropertyChange, firePropertyChange, firePropertyChange, firePropertyChange, fireVetoableChange, 
getActionForKeyStroke, getActionMap, getAlignmentX, getAlignmentY, getAutoscrolls, getBorder, getBounds, 
getClientProperty, getComponentGraphics, getConditionForKeyStroke, getDebugGraphicsOptions, getGraphics, 
getHeight, getInputMap, getInputMap, getInputVerifier, getInsets, getInsets, getListeners, getLocation, 
getMaximumSize, getMinimumSize, getNextFocusableComponent, getPreferredSize, getRegisteredKeyStrokes, 
getRootPane, getSize, getToolTipLocation, getToolTipText, getToolTipText, getTopLevelAncestor, 
getVerifyInputWhenFocusTarget, getVisibleRect, getWidth, getX, getY, grabFocus, hasFocus, hide, 
isDoubleBuffered, isFocusCycleRoot, isFocusTraversable, isLightweightComponent, isManagingFocus, 
isMaximumSizeSet, isMinimumSizeSet, isOpaque, isOptimizedDrawingEnabled, isPaintingTile, 
isPreferredSizeSet, isRequestFocusEnabled, isValidateRoot, paint, paintBorder, paintChildren, 
paintImmediately, paintImmediately, print, printAll, printBorder, printChildren, printComponent, 
processComponentKeyEvent, processFocusEvent, processKeyBinding, processKeyEvent, processMouseMotionEvent, 
putClientProperty, registerKeyboardAction, registerKeyboardAction, removeAncestorListener, removeNotify, 
removePropertyChangeListener, removePropertyChangeListener, removeVetoableChangeListener, repaint, 
repaint, requestDefaultFocus, requestFocus, resetKeyboardActions, reshape, revalidate, 
scrollRectToVisible, setActionMap, setAlignmentX, setAlignmentY, setAutoscrolls, setBackground, 
setBorder, setDebugGraphicsOptions, setDoubleBuffered, setEnabled, setFont, setForeground, setInputMap, 
setInputVerifier, setMaximumSize, setMinimumSize, setNextFocusableComponent, setOpaque, setPreferredSize, 
setRequestFocusEnabled, setToolTipText, setUI, setVerifyInputWhenFocusTarget, setVisible, 
unregisterKeyboardAction, update

Methods inherited from class java.awt.Container

add, add, add, add, add, addContainerListener, addImpl, countComponents, deliverEvent, doLayout, 
findComponentAt, findComponentAt, getComponent, getComponentAt, getComponentAt, getComponentCount, 
getComponents, getLayout, insets, invalidate, isAncestorOf, layout, list, list, locate, minimumSize, 
paintComponents, preferredSize, printComponents, processContainerEvent, processEvent, remove, remove, 
removeAll, removeContainerListener, setLayout, validate, validateTree

Methods inherited from class java.awt.Component

action, add, addComponentListener, addFocusListener, addHierarchyBoundsListener, addHierarchyListener, 
addInputMethodListener, addKeyListener, addMouseListener, addMouseMotionListener, bounds, checkImage, 
checkImage, coalesceEvents, contains, createImage, createImage, disableEvents, dispatchEvent, enable, 
enableEvents, enableInputMethods, getBackground, getBounds, getColorModel, getComponentOrientation, 
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DRAW_WIDTH 

public static final int DRAW_WIDTH 

Integer value representing width of the DrawArea. Set to 570 pixels. 

DRAW_HEIGHT 

public static final int DRAW_HEIGHT 

Integer value representing width of the DrawArea. Set to 450 pixels. 

X_ORIGIN_OFFSET 

public static final int X_ORIGIN_OFFSET 

Integer value representing x offset. Used in determining origin on DrawArea with respect to coordinate (0,0) of DrawArea. 

Y_ORIGIN_OFFSET 

public static final int Y_ORIGIN_OFFSET 

Integer value representing y offset. Used in determining origin on DrawArea with respect to coordinate (0,0) of DrawArea. Note: this is 
in the standard, coordinate geometry meaning of y, not the Java coordinate system. 

DrawArea 

public DrawArea(TorsusView v) 

Constructor takes view as an argument to enable communication in both directions between classes. 

getCursor, getDropTarget, getFont, getFontMetrics, getForeground, getGraphicsConfiguration, 
getInputContext, getInputMethodRequests, getLocale, getLocation, getLocationOnScreen, getName, getParent, 
getPeer, getSize, getToolkit, getTreeLock, gotFocus, handleEvent, imageUpdate, inside, isDisplayable, 
isEnabled, isLightweight, isShowing, isValid, isVisible, keyDown, keyUp, list, list, list, location, 
lostFocus, mouseDown, mouseDrag, mouseEnter, mouseExit, mouseMove, mouseUp, move, nextFocus, paintAll, 
postEvent, prepareImage, prepareImage, processComponentEvent, processHierarchyBoundsEvent, 
processHierarchyEvent, processInputMethodEvent, processMouseEvent, remove, removeComponentListener, 
removeFocusListener, removeHierarchyBoundsListener, removeHierarchyListener, removeInputMethodListener, 
removeKeyListener, removeMouseListener, removeMouseMotionListener, repaint, repaint, repaint, resize, 
resize, setBounds, setBounds, setComponentOrientation, setCursor, setDropTarget, setLocale, setLocation, 
setLocation, setName, setSize, setSize, show, show, size, toString, transferFocus

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait

Field Detail

Constructor Detail
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paintComponent 

public void paintComponent(java.awt.Graphics g) 

This method overrides the paintComponent() method of JPanel. Based on the current settings, it will display the appropriate information
in the DrawArea.  
Overrides:  

paintComponent in class javax.swing.JComponent 

getTrussStructure 

public TrussStructure getTrussStructure() 

Returns most current copy of local TrussStructure. 

setTrussStructure 

public void setTrussStructure(TrussStructure t) 

Sets the current TrussStructure according to argument. Used to load a truss from a file. 

refresh 

public void refresh() 

Calls repaint() on self. 

paintStructureOnly 

public void paintStructureOnly() 

Causes DrawArea to display only the structure (build mode). 

paintDisplacedNodes 

public void paintDisplacedNodes(TrussStructure t) 

Causes DrawArea to display only the displaced structure. 

paintInternalForces 

public void paintInternalForces(TrussStructure t) 

Method Detail
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Causes DrawArea to display only the internal forces of the structure. 

drawLine 

public void drawLine(java.awt.Point a, 
                     java.awt.Point b) 

Draws a line between Points a and b. 

drawSnap 

public void drawSnap(Node n, 
                     boolean b) 

Depending on value of boolean b, this method will draw a "snap square" around Node n. Used in informing user that the mouse cursor 
is within snap distance of Node n. 

highlightMember 

public void highlightMember(Member m, 
                            boolean b) 

Depending on value of boolean b, this method will highlight Member m. Used in informing user that the mouse cursor is over Member 
m (for graphical removal of Members). 

highlightModifyNode 

public void highlightModifyNode(Node n, 
                                boolean b) 

Depending on value of boolean b, this method will highlight Node n. Used in informing user that the mouse cursor is over Node n (for 
graphical modification of Node position). 

modifyStructure 

public void modifyStructure(Node n, 
                            java.awt.Point p) 

Calls the method of the same name on the local TrussStructure. Also updates a different local TrussStructure which is used in undo 
operation. 

addMember 

public void addMember(Node m, 
                      Node n) 

Calls the method of the same name on the local TrussStructure. Also updates a different local TrussStructure which is used in undo 
operation. 
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removeMember 

public void removeMember(Node m, 
                         Node n) 

Calls the method of the same name on the local TrussStructure. Also updates a different local TrussStructure which is used in undo 
operation. 

resetScreen 

public void resetScreen() 

Resets local TrussStructure and reverts to build mode. Also updates a different local TrussStructure which is used in undo operation. 

resetTempLine 

public void resetTempLine() 

Erases any remnant of the "sticky" line used in graphical addition Members. 

setBC 

public void setBC(Node n, 
                  int mode) 

Calls the method of the same name on the local TrussStructure. Also updates a different local TrussStructure which is used in undo 
operation. 

setBGBlack 

public void setBGBlack() 

Changes the color scheme of the DrawArea to correspond to a black background (~15 different items are assigned colors). 

setBGWhite 

public void setBGWhite() 

Changes the color scheme of the DrawArea to correspond to a white background (~15 different items are assigned colors). This is the 
default configuration. 

setGrid 

public void setGrid(boolean b, 
                    int n) 
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If boolean b is true, grid is turned on at a spacing of n pixels. If boolean b is false, grid is turned off. 

setSnapDistance 

public void setSnapDistance(int n) 

Calls the method of the same name on the local TrussStructure. 

setLoad 

public void setLoad(Node n, 
                    double fx, 
                    double fy) 

Calls the method of the same name on the local TrussStructure. Also updates a different local TrussStructure which is used in undo 
operation. 

displayNodeMemberNumbers 

public void displayNodeMemberNumbers(boolean b) 

If boolean b is true, the numbering scheme of the Nodes and Members is displayed. If boolean b is false, the numbering scheme is not 
displayed. 

drawXLoad 

public void drawXLoad(Node n, 
                      java.awt.Graphics graphics) 

Draws the arrow and force corresponding to the of x-component of the load at Node n. 

drawYLoad 

public void drawYLoad(Node n, 
                      java.awt.Graphics graphics) 

Draws the arrow and force corresponding to the of y-component of the load at Node n. 

undo 

public void undo() 

Reverts local TrussStructure to form before last build operation. 

 Class Tree Deprecated Index Help

 PREV CLASS   NEXT CLASS FRAMES    NO FRAMES
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torsusapplet  
Class ExtensionFileFilter 

java.lang.Object 
  | 
  +--javax.swing.filechooser.FileFilter 
        | 
        +--torsusapplet.ExtensionFileFilter 

public class ExtensionFileFilter  
extends javax.swing.filechooser.FileFilter 

A FileFilter that lets you specify which file extensions will be displayed. Also includes a static getFileName method that users can call to pop 
up a JFileChooser for a set of file extensions.  

Adapted from Sun SwingSet demo. Taken from Core Web Programming from Prentice Hall and Sun Microsystems Press, 
http://www.corewebprogramming.com/. © 2001 Marty Hall and Larry Brown; may be freely used or adapted.  

  

  

 Class Tree Deprecated Index Help

 PREV CLASS   NEXT CLASS FRAMES    NO FRAMES

SUMMARY:  INNER | FIELD | CONSTR | METHOD DETAIL:  FIELD | CONSTR | METHOD

Field Summary
static int LOAD  

           

static int SAVE  

           

Constructor Summary

ExtensionFileFilter()  

           

ExtensionFileFilter(boolean allowDirectories)  

           

Method Summary
 boolean accept(java.io.File file)  

           

 void addExtension(java.lang.String extension, boolean caseInsensitive)  

           

 java.lang.String getDescription()  

           

static java.lang.String getFileName(java.lang.String initialDirectory, java.lang.String description, 

java.lang.String extension)  

           

static java.lang.String getFileName(java.lang.String initialDirectory, java.lang.String description, 

java.lang.String[] extensions)  

           

static java.lang.String getFileName(java.lang.String initialDirectory, java.lang.String description, 

java.lang.String[] extensions, int mode)  

          Pops up a JFileChooser that lists files with the specified extensions.
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LOAD 

public static final int LOAD 

SAVE 

public static final int SAVE 

ExtensionFileFilter 

public ExtensionFileFilter(boolean allowDirectories) 

ExtensionFileFilter 

public ExtensionFileFilter() 

getFileName 

public static java.lang.String getFileName(java.lang.String initialDirectory, 
                                           java.lang.String description, 
                                           java.lang.String extension) 

getFileName 

public static java.lang.String getFileName(java.lang.String initialDirectory, 
                                           java.lang.String description, 
                                           java.lang.String extension, 
                                           int mode) 

getFileName 

static java.lang.String getFileName(java.lang.String initialDirectory, java.lang.String description, 

java.lang.String extension, int mode)  

           

 void setDescription(java.lang.String description)  

           

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Field Detail

Constructor Detail

Method Detail
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public static java.lang.String getFileName(java.lang.String initialDirectory, 
                                           java.lang.String description, 
                                           java.lang.String[] extensions) 

getFileName 

public static java.lang.String getFileName(java.lang.String initialDirectory, 
                                           java.lang.String description, 
                                           java.lang.String[] extensions, 
                                           int mode) 

Pops up a JFileChooser that lists files with the specified extensions. If the mode is SAVE, then the dialog will have a Save button; 
otherwise, the dialog will have an Open button. Returns a String corresponding to the file's pathname, or null if Cancel was selected. 

addExtension 

public void addExtension(java.lang.String extension, 
                         boolean caseInsensitive) 

accept 

public boolean accept(java.io.File file) 

Overrides:  
accept in class javax.swing.filechooser.FileFilter 

setDescription 

public void setDescription(java.lang.String description) 

getDescription 

public java.lang.String getDescription() 

Overrides:  
getDescription in class javax.swing.filechooser.FileFilter 

 Class Tree Deprecated Index Help

 PREV CLASS   NEXT CLASS FRAMES    NO FRAMES

SUMMARY:  INNER | FIELD | CONSTR | METHOD DETAIL:  FIELD | CONSTR | METHOD
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torsusapplet  
Class MainFrame 

java.lang.Object 
  | 
  +--java.awt.Component 
        | 
        +--java.awt.Container 
              | 
              +--java.awt.Window 
                    | 
                    +--java.awt.Frame 
                          | 
                          +--torsusapplet.MainFrame 

All Implemented Interfaces:  
javax.accessibility.Accessible, java.applet.AppletContext, java.applet.AppletStub, java.awt.image.ImageObserver, 
java.awt.MenuContainer, java.lang.Runnable, java.io.Serializable  

public class MainFrame  
extends java.awt.Frame  
implements java.lang.Runnable, java.applet.AppletStub, java.applet.AppletContext 

See Also:  
Serialized Form 

  

  

  

  

  

  

 Class Tree Deprecated Index Help

 PREV CLASS   NEXT CLASS FRAMES    NO FRAMES

SUMMARY:  INNER | FIELD | CONSTR | METHOD DETAIL:  FIELD | CONSTR | METHOD

Inner classes inherited from class java.awt.Frame

java.awt.Frame.AccessibleAWTFrame

Inner classes inherited from class java.awt.Window

java.awt.Window.AccessibleAWTWindow

Inner classes inherited from class java.awt.Container

java.awt.Container.AccessibleAWTContainer

Inner classes inherited from class java.awt.Component

java.awt.Component.AccessibleAWTComponent

Fields inherited from class java.awt.Frame

CROSSHAIR_CURSOR, DEFAULT_CURSOR, E_RESIZE_CURSOR, HAND_CURSOR, ICONIFIED, MOVE_CURSOR, N_RESIZE_CURSOR, 
NE_RESIZE_CURSOR, NORMAL, NW_RESIZE_CURSOR, S_RESIZE_CURSOR, SE_RESIZE_CURSOR, SW_RESIZE_CURSOR, 
TEXT_CURSOR, W_RESIZE_CURSOR, WAIT_CURSOR

Fields inherited from class java.awt.Component

BOTTOM_ALIGNMENT, CENTER_ALIGNMENT, LEFT_ALIGNMENT, RIGHT_ALIGNMENT, TOP_ALIGNMENT

Fields inherited from interface java.awt.image.ImageObserver

ABORT, ALLBITS, ERROR, FRAMEBITS, HEIGHT, PROPERTIES, SOMEBITS, WIDTH
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Constructor Summary

MainFrame(java.applet.Applet applet, int width, int height)  

           

MainFrame(java.applet.Applet applet, java.lang.String[] args)  

           

MainFrame(java.applet.Applet applet, java.lang.String[] args, int width, int height)  

           

Method Summary
 void appletResize(int width, int height)  

           

 java.applet.Applet getApplet(java.lang.String name)  

           

 java.applet.AppletContext getAppletContext()  

           

 java.util.Enumeration getApplets()  

           

 java.applet.AudioClip getAudioClip(java.net.URL url)  

           

 java.net.URL getCodeBase()  

           

 java.net.URL getDocumentBase()  

           

 java.awt.Image getImage(java.net.URL url)  

           

 java.lang.String getParameter(java.lang.String name)  

           

 boolean handleEvent(java.awt.Event evt)  

           

 boolean isActive()  

           

 void run()  

           

 void showDocument(java.net.URL url)  

           

 void showDocument(java.net.URL url, java.lang.String target)  

           

 void showStatus(java.lang.String status)  

           

Methods inherited from class java.awt.Frame

addNotify, finalize, getAccessibleContext, getCursorType, getFrames, getIconImage, getMenuBar, getState, 
getTitle, isResizable, paramString, remove, removeNotify, setCursor, setIconImage, setMenuBar, 
setResizable, setState, setTitle

Methods inherited from class java.awt.Window

addWindowListener, applyResourceBundle, applyResourceBundle, dispose, getFocusOwner, 
getGraphicsConfiguration, getInputContext, getListeners, getLocale, getOwnedWindows, getOwner, 
getToolkit, getWarningString, hide, isShowing, pack, postEvent, processEvent, processWindowEvent, 
removeWindowListener, setCursor, show, toBack, toFront
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MainFrame 

public MainFrame(java.applet.Applet applet, 
                 java.lang.String[] args, 
                 int width, 
                 int height) 

MainFrame 

public MainFrame(java.applet.Applet applet, 
                 java.lang.String[] args) 

MainFrame 

public MainFrame(java.applet.Applet applet, 
                 int width, 
                 int height) 

Methods inherited from class java.awt.Container

add, add, add, add, add, addContainerListener, addImpl, countComponents, deliverEvent, doLayout, 
findComponentAt, findComponentAt, getAlignmentX, getAlignmentY, getComponent, getComponentAt, 
getComponentAt, getComponentCount, getComponents, getInsets, getLayout, getMaximumSize, getMinimumSize, 
getPreferredSize, insets, invalidate, isAncestorOf, layout, list, list, locate, minimumSize, paint, 
paintComponents, preferredSize, print, printComponents, processContainerEvent, remove, remove, removeAll, 
removeContainerListener, setFont, setLayout, update, validate, validateTree

Methods inherited from class java.awt.Component

action, add, addComponentListener, addFocusListener, addHierarchyBoundsListener, addHierarchyListener, 
addInputMethodListener, addKeyListener, addMouseListener, addMouseMotionListener, 
addPropertyChangeListener, addPropertyChangeListener, bounds, checkImage, checkImage, coalesceEvents, 
contains, contains, createImage, createImage, disable, disableEvents, dispatchEvent, enable, enable, 
enableEvents, enableInputMethods, firePropertyChange, getBackground, getBounds, getBounds, getColorModel, 
getComponentOrientation, getCursor, getDropTarget, getFont, getFontMetrics, getForeground, getGraphics, 
getHeight, getInputMethodRequests, getLocation, getLocation, getLocationOnScreen, getName, getParent, 
getPeer, getSize, getSize, getTreeLock, getWidth, getX, getY, gotFocus, hasFocus, imageUpdate, inside, 
isDisplayable, isDoubleBuffered, isEnabled, isFocusTraversable, isLightweight, isOpaque, isValid, 
isVisible, keyDown, keyUp, list, list, list, location, lostFocus, mouseDown, mouseDrag, mouseEnter, 
mouseExit, mouseMove, mouseUp, move, nextFocus, paintAll, prepareImage, prepareImage, printAll, 
processComponentEvent, processFocusEvent, processHierarchyBoundsEvent, processHierarchyEvent, 
processInputMethodEvent, processKeyEvent, processMouseEvent, processMouseMotionEvent, 
removeComponentListener, removeFocusListener, removeHierarchyBoundsListener, removeHierarchyListener, 
removeInputMethodListener, removeKeyListener, removeMouseListener, removeMouseMotionListener, 
removePropertyChangeListener, removePropertyChangeListener, repaint, repaint, repaint, repaint, 
requestFocus, reshape, resize, resize, setBackground, setBounds, setBounds, setComponentOrientation, 
setDropTarget, setEnabled, setForeground, setLocale, setLocation, setLocation, setName, setSize, setSize, 
setVisible, show, size, toString, transferFocus

Methods inherited from class java.lang.Object

clone, equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Methods inherited from interface java.awt.MenuContainer

getFont, postEvent

Constructor Detail
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handleEvent 

public boolean handleEvent(java.awt.Event evt) 

Overrides:  
handleEvent in class java.awt.Component 

run 

public void run() 

Specified by:  
run in interface java.lang.Runnable 

isActive 

public boolean isActive() 

Specified by:  
isActive in interface java.applet.AppletStub 

getDocumentBase 

public java.net.URL getDocumentBase() 

Specified by:  
getDocumentBase in interface java.applet.AppletStub 

getCodeBase 

public java.net.URL getCodeBase() 

Specified by:  
getCodeBase in interface java.applet.AppletStub 

getParameter 

public java.lang.String getParameter(java.lang.String name) 

Specified by:  
getParameter in interface java.applet.AppletStub 

appletResize 

Method Detail
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public void appletResize(int width, 
                         int height) 

Specified by:  
appletResize in interface java.applet.AppletStub 

getAppletContext 

public java.applet.AppletContext getAppletContext() 

Specified by:  
getAppletContext in interface java.applet.AppletStub 

getAudioClip 

public java.applet.AudioClip getAudioClip(java.net.URL url) 

Specified by:  
getAudioClip in interface java.applet.AppletContext 

getImage 

public java.awt.Image getImage(java.net.URL url) 

Specified by:  
getImage in interface java.applet.AppletContext 

getApplet 

public java.applet.Applet getApplet(java.lang.String name) 

Specified by:  
getApplet in interface java.applet.AppletContext 

getApplets 

public java.util.Enumeration getApplets() 

Specified by:  
getApplets in interface java.applet.AppletContext 

showDocument 

public void showDocument(java.net.URL url) 

Specified by:  
showDocument in interface java.applet.AppletContext 
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showDocument 

public void showDocument(java.net.URL url, 
                         java.lang.String target) 

Specified by:  
showDocument in interface java.applet.AppletContext 

showStatus 

public void showStatus(java.lang.String status) 

Specified by:  
showStatus in interface java.applet.AppletContext 

 Class Tree Deprecated Index Help

 PREV CLASS   NEXT CLASS FRAMES    NO FRAMES

SUMMARY:  INNER | FIELD | CONSTR | METHOD DETAIL:  FIELD | CONSTR | METHOD
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torsusapplet  
Class Member 

java.lang.Object 
  | 
  +--torsusapplet.Member 

All Implemented Interfaces:  
java.io.Serializable  

public class Member  
extends java.lang.Object  
implements java.io.Serializable 

Stores data about a Member in terms of two constituent Nodes, stiffness constant (AE/L), local stiffness matrix, internal force.  

See Also:  
Serialized Form 

  

 Class Tree Deprecated Index Help

 PREV CLASS   NEXT CLASS FRAMES    NO FRAMES

SUMMARY:  INNER | FIELD | CONSTR | METHOD DETAIL:  FIELD | CONSTR | METHOD

Constructor Summary

Member(Node m, Node n)  

          Constructor takes two Nodes as arguments.

Method Summary
 double getAngle()  

          Returns the angle of the member to the horizontal in radians.

 Node getFirst()  

          Returns first node.

 double
[][]

getFullLocalStiffnessMatrix()  

          Returns a matrix (double [][]) representation of the 4x4 local stiffness matrix.

 int getID()  

          Returns ID number.

 double getInternalForce()  

          Calculates and returns internal force based on stiffness K and deformed length, which is calculated by obtaining the x and y 
displacements for each of the constituent Nodes.

 double getLength()  

          Returns the length of the Member in pixels.

 double
[][]

getLocalStiffnessMatrix()  

          Returns a matrix (double [][]) representation of the upper left (elements 11,12,21,22) of the local stiffness matrix.

 Node getSecond()  

          Returns second node.

 boolean isEqual(Member m)  

          Determines if two Members are comprised of the same two Nodes, using the isEqual() method of the Node class.

 void setFirst(Node n)  

          Sets first node.
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Member 

public Member(Node m, 
              Node n) 

Constructor takes two Nodes as arguments. ID must be set later as there is no constructor that takes the ID as an argument. 

getFirst 

public Node getFirst() 

Returns first node.  

getSecond 

public Node getSecond() 

Returns second node.  

setFirst 

public void setFirst(Node n) 

Sets first node.  

setSecond 

public void setSecond(Node n) 

Sets second node.  

 void setID(int n)  

          Sets ID number.

 void setInternalForce(double d)  

          Sets internal force.

 void setK(double d)  

          Sets element stiffness (AE/L).

 void setSecond(Node n)  

          Sets second node.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Constructor Detail

Method Detail
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getID 

public int getID() 

Returns ID number.  

setID 

public void setID(int n) 

Sets ID number.  

setK 

public void setK(double d) 

Sets element stiffness (AE/L).  

setInternalForce 

public void setInternalForce(double d) 

Sets internal force. Note that a negative force is assumed to be compressive, and that a positive force is assumed to be tensile.  

getInternalForce 

public double getInternalForce() 

Calculates and returns internal force based on stiffness K and deformed length, which is calculated by obtaining the x and y 
displacements for each of the constituent Nodes.  

getLocalStiffnessMatrix 

public double[][] getLocalStiffnessMatrix() 

Returns a matrix (double [][]) representation of the upper left (elements 11,12,21,22) of the local stiffness matrix. This information is 
sufficient to construct the entire 4x4 matrix for any element stiffness matrix.  

getFullLocalStiffnessMatrix 

public double[][] getFullLocalStiffnessMatrix() 

Returns a matrix (double [][]) representation of the 4x4 local stiffness matrix. It uses the getLocalStiffnessMatrix() method to construct 
the entire matrix.  



194

getAngle 

public double getAngle() 

Returns the angle of the member to the horizontal in radians.  

getLength 

public double getLength() 

Returns the length of the Member in pixels.  

isEqual 

public boolean isEqual(Member m) 

Determines if two Members are comprised of the same two Nodes, using the isEqual() method of the Node class. This is only a 
geometric check and does not identify differences in stiffness constants, stiffness matrices, or ID numbers. (Note: this is distinct from 
the equals() method, which yields different results.)  

 Class Tree Deprecated Index Help

 PREV CLASS   NEXT CLASS FRAMES    NO FRAMES

SUMMARY:  INNER | FIELD | CONSTR | METHOD DETAIL:  FIELD | CONSTR | METHOD
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torsusapplet  
Class Node 

java.lang.Object 
  | 
  +--torsusapplet.Node 

All Implemented Interfaces:  
java.io.Serializable  

public class Node  
extends java.lang.Object  
implements java.io.Serializable 

Node object stores the coordinates, boundary condition state, and loading condition of a particular node - or joint - in the truss structure.  

See Also:  
Serialized Form 

  

  

 Class Tree Deprecated Index Help

 PREV CLASS   NEXT CLASS FRAMES    NO FRAMES

SUMMARY:  INNER | FIELD | CONSTR | METHOD DETAIL:  FIELD | CONSTR | METHOD

Field Summary
static int FIX_X  

          Constraint in the x-direction.

static int FIX_XY  

          Constraints in the x- and y-directions.

static int FIX_Y  

          Constraint in the y-direction.

static int NO_BC  

          No boundary condition imposed.

Constructor Summary

Node(int x, int y)  

          Constructor takes x and y coordinates; ID number assigned to be 0.

Node(int x, int y, int id)  

          Constructor takes x and y coordinates, and an integer ID number.

Method Summary
 void addMember(Member m)  

          Add a Member to the Node's Vector of Members.

 double distanceToNode(Node n)  

          Calculates distance (in pixels) between two Nodes.

 int getBC()  

          Return an int representing the boundary condition of the Node.

 double getFx()  

          Return the force in the x-direction.

 double
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getFy()  

          Return the force in the y-direction.

 int getID()  

          Returns ID number.

 java.util.Vector getMembers()  

          Returns a Vector containing all Members associated with this Node (can be used to eliminate "floating nodes", 
Nodes that are not associated with any Members (since Member can be directly deleted by user input but Nodes cannot)

 int getNumberOfLoads()  

          Returns number of loads (0-2) that are not applied in constrained directions.

 java.awt.Point getPoint()  

          Returns Point representation of Node.

 int getX()  

          Returns x coordinate.

 double getXDispl()  

          Returns the displacement of the Node in the x-direction.

 int getXDOF()  

          Returns integer representing the x degree of freedom in global sense.

 int getY()  

          Returns y coordinate.

 double getYDispl()  

          Returns the displacement of the Node in the y-direction.

 int getYDOF()  

          Returns integer representing the y degree of freedom in global sense.

 boolean isEqual(Node n)  

          Determines if two Nodes have the same x and y coordinates.

 boolean nearNode(Node n, int e)  

          Determines if two nodes are within some distance (in pixels) epsilon of one another.

 void removeMember(Member m)  

          Remove a Member from the Node's Vector of Members.

 void setBC(int condition)  

          Set the boundary condition of this Node.

 void setFx(double force)  

          Set the force in the x-direction.

 void setFy(double force)  

          Set the force in the y-direction.

 void setID(int n)  

          Sets ID number.

 void setMembers(java.util.Vector v)  

          Set Vector of Members to be the argument.

 void setX(int n)  

          Sets x coordinate.

 void setXDispl(double d)  

          Sets the x displacement.

 void setXDOF(int n)  

          Sets the integer representing the x degree of freedom in global sense.

 void setY(int n)  

          Sets y coordinate

 void setYDispl(double d)  

          Sets the y displacement.

 void setYDOF(int n)  

          Sets the integer representing the y degree of freedom in global sense.
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NO_BC 

public static final int NO_BC 

No boundary condition imposed. 

FIX_X 

public static final int FIX_X 

Constraint in the x-direction. 

FIX_Y 

public static final int FIX_Y 

Constraint in the y-direction. 

FIX_XY 

public static final int FIX_XY 

Constraints in the x- and y-directions. 

Node 

public Node(int x, 
            int y, 
            int id) 

Constructor takes x and y coordinates, and an integer ID number. 

Node 

public Node(int x, 
            int y) 

Constructor takes x and y coordinates; ID number assigned to be 0. 

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Field Detail

Constructor Detail
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getX 

public int getX() 

Returns x coordinate.  

getY 

public int getY() 

Returns y coordinate.  

setX 

public void setX(int n) 

Sets x coordinate.  

setY 

public void setY(int n) 

Sets y coordinate  

getID 

public int getID() 

Returns ID number.  

setID 

public void setID(int n) 

Sets ID number.  

getXDOF 

public int getXDOF() 

Returns integer representing the x degree of freedom in global sense.  

Method Detail
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getYDOF 

public int getYDOF() 

Returns integer representing the y degree of freedom in global sense.  

getXDispl 

public double getXDispl() 

Returns the displacement of the Node in the x-direction.  

getYDispl 

public double getYDispl() 

Returns the displacement of the Node in the y-direction.  

getNumberOfLoads 

public int getNumberOfLoads() 

Returns number of loads (0-2) that are not applied in constrained directions.  

setXDOF 

public void setXDOF(int n) 

Sets the integer representing the x degree of freedom in global sense.  

setYDOF 

public void setYDOF(int n) 

Sets the integer representing the y degree of freedom in global sense.  

setXDispl 

public void setXDispl(double d) 

Sets the x displacement.  

setYDispl 
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public void setYDispl(double d) 

Sets the y displacement.  

getMembers 

public java.util.Vector getMembers() 

Returns a Vector containing all Members associated with this Node (can be used to eliminate "floating nodes", Nodes that are not 
associated with any Members (since Member can be directly deleted by user input but Nodes cannot)  

setMembers 

public void setMembers(java.util.Vector v) 

Set Vector of Members to be the argument.  

getPoint 

public java.awt.Point getPoint() 

Returns Point representation of Node.  

addMember 

public void addMember(Member m) 

Add a Member to the Node's Vector of Members.  

removeMember 

public void removeMember(Member m) 

Remove a Member from the Node's Vector of Members.  

getFx 

public double getFx() 

Return the force in the x-direction.  

getFy 

public double getFy() 
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Return the force in the y-direction.  

setFx 

public void setFx(double force) 

Set the force in the x-direction.  

setFy 

public void setFy(double force) 

Set the force in the y-direction.  

getBC 

public int getBC() 

Return an int representing the boundary condition of the Node.  

setBC 

public void setBC(int condition) 

Set the boundary condition of this Node.  

isEqual 

public boolean isEqual(Node n) 

Determines if two Nodes have the same x and y coordinates. (Note: this is distinct from the equals() method, which yields different 
results.)  

nearNode 

public boolean nearNode(Node n, 
                        int e) 

Determines if two nodes are within some distance (in pixels) epsilon of one another.  

distanceToNode 

public double distanceToNode(Node n) 
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Calculates distance (in pixels) between two Nodes.  

 Class Tree Deprecated Index Help

 PREV CLASS   NEXT CLASS FRAMES    NO FRAMES

SUMMARY:  INNER | FIELD | CONSTR | METHOD DETAIL:  FIELD | CONSTR | METHOD
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torsusapplet  
Class ObjectCloner 

java.lang.Object 
  | 
  +--torsusapplet.ObjectCloner 

public class ObjectCloner  
extends java.lang.Object 

Static method deepCopy is used for making a deep copy of an object. This class exists for no other reason than the use of this method. 
TrussStructure is copied using this method for purposes of undo procedure. This utilizes serialization, 
ObjectOutputStream,ByteArrayOutputStream, ByteArrayInputStream, and ObjectInputStream to circumvent problems involved with cloning 
and shallow copying. Note that a hand coded deep copy based on clone() - though it may be more cumbersome to code - will run much more 
quickly if creating copies of very complex data structures.  

  

   

deepCopy 

public static java.lang.Object deepCopy(java.lang.Object oldObj) 
                                 throws java.lang.Exception 

Returns a deep copy of an object. Note that - since this method returns an Object - it will be necessary to perform the proper casting. 

 Class Tree Deprecated Index Help

 PREV CLASS   NEXT CLASS FRAMES    NO FRAMES

SUMMARY:  INNER | FIELD | CONSTR | METHOD DETAIL:  FIELD | CONSTR | METHOD

Method Summary
static java.lang.Object deepCopy(java.lang.Object oldObj)  

          Returns a deep copy of an object.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Method Detail

 Class Tree Deprecated Index Help

 PREV CLASS   NEXT CLASS FRAMES    NO FRAMES

SUMMARY:  INNER | FIELD | CONSTR | METHOD DETAIL:  FIELD | CONSTR | METHOD
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torsusapplet  
Class OverconstrainedStructureException 

java.lang.Object 
  | 
  +--java.lang.Throwable 
        | 
        +--java.lang.Exception 
              | 
              +--torsusapplet.OverconstrainedStructureException 

All Implemented Interfaces:  
java.io.Serializable  

public class OverconstrainedStructureException  
extends java.lang.Exception 

This class extends the functionality of Exception and is used to allow the controller to determine sources of computation error in "model" of 
model-view-controller paradigm.  

See Also:  
Serialized Form 

  

  

   

OverconstrainedStructureException 

public OverconstrainedStructureException() 

 Class Tree Deprecated Index Help

 PREV CLASS   NEXT CLASS FRAMES    NO FRAMES

SUMMARY:  INNER | FIELD | CONSTR | METHOD DETAIL:  FIELD | CONSTR | METHOD

Constructor Summary

OverconstrainedStructureException()  

           

Methods inherited from class java.lang.Throwable

fillInStackTrace, getLocalizedMessage, getMessage, printStackTrace, printStackTrace, printStackTrace, 
toString

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait

Constructor Detail

 Class Tree Deprecated Index Help

 PREV CLASS   NEXT CLASS FRAMES    NO FRAMES

SUMMARY:  INNER | FIELD | CONSTR | METHOD DETAIL:  FIELD | CONSTR | METHOD
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torsusapplet  
Class TorsusController 

java.lang.Object 
  | 
  +--torsusapplet.TorsusController 

All Implemented Interfaces:  
java.awt.event.ActionListener, java.util.EventListener  

public class TorsusController  
extends java.lang.Object  
implements java.awt.event.ActionListener 

This class performs handles all communication between TorsusView and TorsusModel. It additionally is used to handle ActionEvents passed to
it from TorsusView. It is the "controller" in the model-view-controller paradigm.  

  

 Class Tree Deprecated Index Help

 PREV CLASS   NEXT CLASS FRAMES    NO FRAMES

SUMMARY:  INNER | FIELD | CONSTR | METHOD DETAIL:  FIELD | CONSTR | METHOD

Field Summary
static int FAR_SNAP_SPACING  

          Integer representing "large" snap spacing in pixels.

static int LARGE_GRID_SPACING  

          Integer representing "large" grid spacing in pixels.

static int MEDIUM_GRID_SPACING  

          Integer representing "medium" grid spacing in pixels.

static int MEDIUM_SNAP_SPACING  

          Integer representing "medium" snap spacing in pixels.

static int NEAR_SNAP_SPACING  

          Integer representing "small" snap spacing in pixels.

static int SMALL_GRID_SPACING  

          Integer representing "small" grid spacing in pixels.

Method Summary
 void actionPerformed(java.awt.event.ActionEvent e)  

          ActionEvent fired in TorsusView is passed to TorsusController.

 double formatNumber(double d, int n)  

          This method takes a double as an argument and formats it to n positions after the decimal point (accounts for 
scientific notation as well).

 java.lang.String getDensityValue(java.lang.String mtl, java.lang.String units)  

          Based on material name and unit type, this method returns a String representation of the numerical value of the 
material density, in appropriate units.

 java.lang.String getEValue(java.lang.String mtl, java.lang.String units)  

          Based on material name and unit type, this method returns a String representation of the numerical value of the 
material Young's modulus, in appropriate units.

 java.lang.String getUnitsType()  

          Queries local TorsusView object for current unit system and returns a String representation of this.

 void
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SMALL_GRID_SPACING 

public static final int SMALL_GRID_SPACING 

Integer representing "small" grid spacing in pixels. Set to 10. 

MEDIUM_GRID_SPACING 

public static final int MEDIUM_GRID_SPACING 

Integer representing "medium" grid spacing in pixels. Set to 20. 

LARGE_GRID_SPACING 

public static final int LARGE_GRID_SPACING 

Integer representing "large" grid spacing in pixels. Set to 40. 

NEAR_SNAP_SPACING 

public static final int NEAR_SNAP_SPACING 

Integer representing "small" snap spacing in pixels. Snap spacing is the distance at which one Node will graphically snap to another. 
This distance also determines the graphical tolerance for the user in modifying Node properties. Set to 10. 

paintDisplacedNodes(TrussStructure t)  

          Calls the method of the same name on the local TorsusView object.

 void paintInternalForces(TrussStructure t)  

          Calls the method of the same name on the local TorsusView object.

 void resetAddBCNode()  

          Resets the local copy of the Node which represents the latest boundary condition change (used by own 
actionPerformed() method).

 void resetAddLoadNode()  

          Resets the local copy of the Node which represents the latest load change (used by own actionPerformed() method).

 void setAddBCNode(Node n)  

          Sets the local copy of the Node which represents the latest boundary condition change (used by own 
actionPerformed() method).

 void setAddLoadNode(Node n)  

          Sets the local copy of the Node which represents the latest load change (used by own actionPerformed() method).

 void setEnabledViewRadioButtons(boolean b)  

          Calls the method of the same name on the local TorsusView object.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Field Detail
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MEDIUM_SNAP_SPACING 

public static final int MEDIUM_SNAP_SPACING 

Integer representing "medium" snap spacing in pixels. Snap spacing is the distance at which one Node will graphically snap to another. 
This distance also determines the graphical tolerance for the user in modifying Node properties. Set to 20. 

FAR_SNAP_SPACING 

public static final int FAR_SNAP_SPACING 

Integer representing "large" snap spacing in pixels. Snap spacing is the distance at which one Node will graphically snap to another. 
This distance also determines the graphical tolerance for the user in modifying Node properties. Set to 50. 

actionPerformed 

public void actionPerformed(java.awt.event.ActionEvent e) 

ActionEvent fired in TorsusView is passed to TorsusController. This method parses source of ActionEvent and delegates appropriate 
actions to TorsusModel and TorsusView.  
Specified by:  

actionPerformed in interface java.awt.event.ActionListener 

setAddBCNode 

public void setAddBCNode(Node n) 

Sets the local copy of the Node which represents the latest boundary condition change (used by own actionPerformed() method).  

resetAddBCNode 

public void resetAddBCNode() 

Resets the local copy of the Node which represents the latest boundary condition change (used by own actionPerformed() method).  

paintDisplacedNodes 

public void paintDisplacedNodes(TrussStructure t) 

Calls the method of the same name on the local TorsusView object.  

paintInternalForces 

public void paintInternalForces(TrussStructure t) 

Calls the method of the same name on the local TorsusView object.  

Method Detail
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setAddLoadNode 

public void setAddLoadNode(Node n) 

Sets the local copy of the Node which represents the latest load change (used by own actionPerformed() method).  

resetAddLoadNode 

public void resetAddLoadNode() 

Resets the local copy of the Node which represents the latest load change (used by own actionPerformed() method).  

setEnabledViewRadioButtons 

public void setEnabledViewRadioButtons(boolean b) 

Calls the method of the same name on the local TorsusView object.  

formatNumber 

public double formatNumber(double d, 
                           int n) 

This method takes a double as an argument and formats it to n positions after the decimal point (accounts for scientific notation as 
well).  

getUnitsType 

public java.lang.String getUnitsType() 

Queries local TorsusView object for current unit system and returns a String representation of this.  

getEValue 

public java.lang.String getEValue(java.lang.String mtl, 
                                  java.lang.String units) 

Based on material name and unit type, this method returns a String representation of the numerical value of the material Young's 
modulus, in appropriate units.  

getDensityValue 

public java.lang.String getDensityValue(java.lang.String mtl, 
                                        java.lang.String units) 
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Based on material name and unit type, this method returns a String representation of the numerical value of the material density, in 
appropriate units.  

 Class Tree Deprecated Index Help

 PREV CLASS   NEXT CLASS FRAMES    NO FRAMES

SUMMARY:  INNER | FIELD | CONSTR | METHOD DETAIL:  FIELD | CONSTR | METHOD
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torsusapplet  
Class TorsusMain 

java.lang.Object 
  | 
  +--java.awt.Component 
        | 
        +--java.awt.Container 
              | 
              +--java.awt.Panel 
                    | 
                    +--java.applet.Applet 
                          | 
                          +--javax.swing.JApplet 
                                | 
                                +--torsusapplet.TorsusMain 

All Implemented Interfaces:  
javax.accessibility.Accessible, java.awt.image.ImageObserver, java.awt.MenuContainer, javax.swing.RootPaneContainer, 
java.io.Serializable  

public class TorsusMain  
extends javax.swing.JApplet 

TorsusMain is the class launching the Torsus applet.  

See Also:  
Serialized Form 

  

  

  

  

  

  

 Class Tree Deprecated Index Help

 PREV CLASS   NEXT CLASS FRAMES    NO FRAMES

SUMMARY:  INNER | FIELD | CONSTR | METHOD DETAIL:  FIELD | CONSTR | METHOD

Inner classes inherited from class javax.swing.JApplet

javax.swing.JApplet.AccessibleJApplet

Inner classes inherited from class java.applet.Applet

java.applet.Applet.AccessibleApplet

Inner classes inherited from class java.awt.Panel

java.awt.Panel.AccessibleAWTPanel

Inner classes inherited from class java.awt.Container

java.awt.Container.AccessibleAWTContainer

Inner classes inherited from class java.awt.Component

java.awt.Component.AccessibleAWTComponent

Fields inherited from class javax.swing.JApplet

accessibleContext, rootPane, rootPaneCheckingEnabled

Fields inherited from class java.awt.Component
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BOTTOM_ALIGNMENT, CENTER_ALIGNMENT, LEFT_ALIGNMENT, RIGHT_ALIGNMENT, TOP_ALIGNMENT

Fields inherited from interface java.awt.image.ImageObserver

ABORT, ALLBITS, ERROR, FRAMEBITS, HEIGHT, PROPERTIES, SOMEBITS, WIDTH

Constructor Summary

TorsusMain()  

          Allows public static void main() to perform same operations as init().

Method Summary
 void init()  

          Initializes the applet by calling mainMethod().

static void main(java.lang.String[] args)  

          Program main method.

Methods inherited from class javax.swing.JApplet

addImpl, createRootPane, getAccessibleContext, getContentPane, getGlassPane, getJMenuBar, getLayeredPane, 
getRootPane, isRootPaneCheckingEnabled, paramString, processKeyEvent, remove, setContentPane, 
setGlassPane, setJMenuBar, setLayeredPane, setLayout, setRootPane, setRootPaneCheckingEnabled, update

Methods inherited from class java.applet.Applet

destroy, getAppletContext, getAppletInfo, getAudioClip, getAudioClip, getCodeBase, getDocumentBase, 
getImage, getImage, getLocale, getParameter, getParameterInfo, isActive, newAudioClip, play, play, 
resize, resize, setStub, showStatus, start, stop

Methods inherited from class java.awt.Panel

addNotify

Methods inherited from class java.awt.Container

add, add, add, add, add, addContainerListener, countComponents, deliverEvent, doLayout, findComponentAt, 
findComponentAt, getAlignmentX, getAlignmentY, getComponent, getComponentAt, getComponentAt, 
getComponentCount, getComponents, getInsets, getLayout, getListeners, getMaximumSize, getMinimumSize, 
getPreferredSize, insets, invalidate, isAncestorOf, layout, list, list, locate, minimumSize, paint, 
paintComponents, preferredSize, print, printComponents, processContainerEvent, processEvent, remove, 
removeAll, removeContainerListener, removeNotify, setFont, validate, validateTree

Methods inherited from class java.awt.Component

action, add, addComponentListener, addFocusListener, addHierarchyBoundsListener, addHierarchyListener, 
addInputMethodListener, addKeyListener, addMouseListener, addMouseMotionListener, 
addPropertyChangeListener, addPropertyChangeListener, bounds, checkImage, checkImage, coalesceEvents, 
contains, contains, createImage, createImage, disable, disableEvents, dispatchEvent, enable, enable, 
enableEvents, enableInputMethods, firePropertyChange, getBackground, getBounds, getBounds, getColorModel, 
getComponentOrientation, getCursor, getDropTarget, getFont, getFontMetrics, getForeground, getGraphics, 
getGraphicsConfiguration, getHeight, getInputContext, getInputMethodRequests, getLocation, getLocation, 
getLocationOnScreen, getName, getParent, getPeer, getSize, getSize, getToolkit, getTreeLock, getWidth, 
getX, getY, gotFocus, handleEvent, hasFocus, hide, imageUpdate, inside, isDisplayable, isDoubleBuffered, 
isEnabled, isFocusTraversable, isLightweight, isOpaque, isShowing, isValid, isVisible, keyDown, keyUp, 
list, list, list, location, lostFocus, mouseDown, mouseDrag, mouseEnter, mouseExit, mouseMove, mouseUp, 
move, nextFocus, paintAll, postEvent, prepareImage, prepareImage, printAll, processComponentEvent, 
processFocusEvent, processHierarchyBoundsEvent, processHierarchyEvent, processInputMethodEvent, 
processMouseEvent, processMouseMotionEvent, remove, removeComponentListener, removeFocusListener, 
removeHierarchyBoundsListener, removeHierarchyListener, removeInputMethodListener, removeKeyListener, 
removeMouseListener, removeMouseMotionListener, removePropertyChangeListener, 
removePropertyChangeListener, repaint, repaint, repaint, repaint, requestFocus, reshape, setBackground, 
setBounds, setBounds, setComponentOrientation, setCursor, setDropTarget, setEnabled, setForeground, 
setLocale, setLocation, setLocation, setName, setSize, setSize, setVisible, show, show, size, toString, 
transferFocus
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TorsusMain 

public TorsusMain() 

Allows public static void main() to perform same operations as init(). 

init 

public void init() 

Initializes the applet by calling mainMethod().  
Overrides:  

init in class java.applet.Applet 

main 

public static void main(java.lang.String[] args) 

Program main method. Allows program to be run as an application. 

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait

Constructor Detail

Method Detail

 Class Tree Deprecated Index Help

 PREV CLASS   NEXT CLASS FRAMES    NO FRAMES

SUMMARY:  INNER | FIELD | CONSTR | METHOD DETAIL:  FIELD | CONSTR | METHOD
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torsusapplet  
Class TorsusModel 

java.lang.Object 
  | 
  +--torsusapplet.TorsusModel 

public class TorsusModel  
extends java.lang.Object 

This class performs all computation related to the behavior of the TrussStructure under specified loading and boundary conditions. It is the 
"model" in the model-view-controller paradigm.  

  

  

 Class Tree Deprecated Index Help

 PREV CLASS   NEXT CLASS FRAMES    NO FRAMES

SUMMARY:  INNER | FIELD | CONSTR | METHOD DETAIL:  FIELD | CONSTR | METHOD

Constructor Summary

TorsusModel()  

          Initializes an empty TorsusModel object.

Method Summary
 double calculateTrussMass(java.util.Vector v, double a, double rho, double scale)  

          Computes the mass of the TrussStructure based on Vector of Members, member cross-sectional area, material 
density, and user-defined scale (units of the last three must be consistent for a correct output).

 void compute(double a, double e, double rho, double scale)  

          This method performs the heavy computation.

 double formatNumber(double d, int n)  

          This method takes a double as an argument and formats it to n positions after the decimal point (accounts for 
scientific notation as well).

 TrussStructure getTrussStructure()  

          Returns the local TrussStructure.

 void paintDisplacedNodes()  

          Calls the TrussController method of the same name.

 void paintInternalForces()  

          Calls the TrussController method of the same name.

 java.lang.String printOutput(java.lang.String momentOfInertiaType, double momentOfInertiaValue)  

          Generates an output of the computation to be used in the Message Window.

 TrussStructure resetIDNumbers(TrussStructure t)  

          Resets ID numbers for all Nodes and Members in local TrussStructure.

 void setController(TorsusController c)  

          Sets the controller to allow the Model to communicate with the controller.

 TrussStructure setIDNumbers(TrussStructure t)  

          Generates ID numbers for all Nodes and Members in local TrussStructure.

 void setTrussStructure(TrussStructure t)  

          Sets the local TrussStructure.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
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TorsusModel 

public TorsusModel() 

Initializes an empty TorsusModel object. 

setController 

public void setController(TorsusController c) 

Sets the controller to allow the Model to communicate with the controller. 

setTrussStructure 

public void setTrussStructure(TrussStructure t) 

Sets the local TrussStructure. 

getTrussStructure 

public TrussStructure getTrussStructure() 

Returns the local TrussStructure. 

compute 

public void compute(double a, 
                    double e, 
                    double rho, 
                    double scale) 
             throws java.lang.Exception 

This method performs the heavy computation. Utilizing matrix truss analysis (and the Jama, or Java Matrix, package published jointly 
by NIST and MathWorks) it computes the displacements of the Nodes of the TrussStructure. It throws Exceptions in the following 
cases: improper scale value (out of range or invalid number), improper area value, overconstrained structure, underloaded structure, and 
unstable structure. Note that a statically indeterminate structure is not a barrier to computation since we are using the displacement 
method of solving the system. 

paintDisplacedNodes 

public void paintDisplacedNodes() 

Calls the TrussController method of the same name. 

Constructor Detail

Method Detail
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paintInternalForces 

public void paintInternalForces() 

Calls the TrussController method of the same name. 

setIDNumbers 

public TrussStructure setIDNumbers(TrussStructure t) 

Generates ID numbers for all Nodes and Members in local TrussStructure. 

resetIDNumbers 

public TrussStructure resetIDNumbers(TrussStructure t) 

Resets ID numbers for all Nodes and Members in local TrussStructure. 

calculateTrussMass 

public double calculateTrussMass(java.util.Vector v, 
                                 double a, 
                                 double rho, 
                                 double scale) 

Computes the mass of the TrussStructure based on Vector of Members, member cross-sectional area, material density, and user-defined 
scale (units of the last three must be consistent for a correct output). 

printOutput 

public java.lang.String printOutput(java.lang.String momentOfInertiaType, 
                                    double momentOfInertiaValue) 

Generates an output of the computation to be used in the Message Window. Based on Node numbers and Member numbers - which are 
displayed graphically, this method displays member forces, member stresses, node displacements, members which are in danger of 
buckling (assuming solid, circular cross-sections), maximum magnitude of stress in structure, and structure mass. Takes a String 
representing moment of inertia type and a double representing value of moment of inertia for buckling analysis. 

formatNumber 

public double formatNumber(double d, 
                           int n) 

This method takes a double as an argument and formats it to n positions after the decimal point (accounts for scientific notation as 
well). 
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 Class Tree Deprecated Index Help

 PREV CLASS   NEXT CLASS FRAMES    NO FRAMES

SUMMARY:  INNER | FIELD | CONSTR | METHOD DETAIL:  FIELD | CONSTR | METHOD
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torsusapplet  
Class TorsusView 

java.lang.Object 
  | 
  +--java.awt.Component 
        | 
        +--java.awt.Container 
              | 
              +--java.awt.Panel 
                    | 
                    +--java.applet.Applet 
                          | 
                          +--javax.swing.JApplet 
                                | 
                                +--torsusapplet.TorsusView 

All Implemented Interfaces:  
javax.accessibility.Accessible, java.awt.event.ActionListener, java.awt.datatransfer.ClipboardOwner, java.util.EventListener, 
java.awt.image.ImageObserver, java.awt.event.KeyListener, java.awt.MenuContainer, java.awt.event.MouseListener, 
java.awt.event.MouseMotionListener, javax.swing.RootPaneContainer, java.io.Serializable  

public class TorsusView  
extends javax.swing.JApplet  
implements java.awt.event.ActionListener, java.awt.datatransfer.ClipboardOwner, java.awt.event.KeyListener, java.awt.event.MouseListener, 
java.awt.event.MouseMotionListener 

Responsible for displaying program GUI and delegating actions to TorsusController. Public static final int and public static final String values 
are declared for defining draw modes and for assigning values to specific actions. Note that this class (in addition to TorsusMain) extends 
JApplet. In the previous, application version of this program, TorsusView extended JFrame.  

See Also:  
Serialized Form 

  

  

  

  

  

 Class Tree Deprecated Index Help

 PREV CLASS   NEXT CLASS FRAMES    NO FRAMES

SUMMARY:  INNER | FIELD | CONSTR | METHOD DETAIL:  FIELD | CONSTR | METHOD

Inner classes inherited from class javax.swing.JApplet

javax.swing.JApplet.AccessibleJApplet

Inner classes inherited from class java.applet.Applet

java.applet.Applet.AccessibleApplet

Inner classes inherited from class java.awt.Panel

java.awt.Panel.AccessibleAWTPanel

Inner classes inherited from class java.awt.Container

java.awt.Container.AccessibleAWTContainer

Inner classes inherited from class java.awt.Component

java.awt.Component.AccessibleAWTComponent



218

Field Summary
static int BC_ADDER  

           

static int BC_REMOVER  

           

static int I_ABOUT_MENU_ITEM  

           

static int I_ADD_BC  

           

static int I_ADD_BC_CANCEL  

           

static int I_ADD_BC_X  

           

static int I_ADD_BC_XY  

           

static int I_ADD_BC_Y  

           

static int I_ADD_LOAD  

           

static int I_ADD_LOAD_CANCEL  

           

static int I_ADD_LOAD_OK  

           

static int I_ADD_MEMBER  

           

static int I_BLACK_BACKGROUND  

           

static int I_BUILD_MODE  

           

static int I_CALCULATE  

           

static int I_COPY_DATA  

           

static int I_DISP_MODE  

           

static int I_ENGLISH_UNITS  

           

static int I_FAR_SNAP  

           

static int I_FILE_LOAD  

           

static int I_FILE_SAVE  

           

static int I_FORCE_MODE  

           

static int I_INSTRUCTIONS_MENU_ITEM  

           

static int I_LARGE_GRID  

           

static int I_MAG_CHANGE  
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static int I_MATERIAL_CHANGE  

           

static int I_MEDIUM_GRID  

           

static int I_MEDIUM_SNAP  

           

static int I_MOD_NODE_TEXT_CANCEL  

           

static int I_MOD_NODE_TEXT_OK  

           

static int I_MOD_STRUCTURE  

           

static int I_MOMENT_CHANGE  

           

static int I_NEAR_SNAP  

           

static int I_NO_GRID  

           

static int I_OK_ABOUT_DIALOG  

           

static int I_QUIT  

           

static int I_REMOVE_BC  

           

static int I_REMOVE_LOAD  

           

static int I_REMOVE_MEMBER  

           

static int I_RESET  

           

static int I_RESET_DEFAULT_PREFS  

           

static int I_SI_UNITS  

           

static int I_SMALL_GRID  

           

static int I_STICKY_ADD_MEMBER_MODE  

           

static int I_UNDO  

           

static int I_WHITE_BACKGROUND  

           

static int LOAD_ADDER  

           

static int LOAD_REMOVER  

           

static int MEMBER_ADDER  

           

static int MEMBER_REMOVER  

           

static int MOD_STRUCTURE  
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static int NULL_MODE  

           

static java.lang.String S_ABOUT_MENU_ITEM  

           

static java.lang.String S_ADD_BC  

           

static java.lang.String S_ADD_BC_CANCEL  

           

static java.lang.String S_ADD_BC_X  

           

static java.lang.String S_ADD_BC_XY  

           

static java.lang.String S_ADD_BC_Y  

           

static java.lang.String S_ADD_LOAD  

           

static java.lang.String S_ADD_LOAD_CANCEL  

           

static java.lang.String S_ADD_LOAD_OK  

           

static java.lang.String S_ADD_MEMBER  

           

static java.lang.String S_BLACK_BACKGROUND  

           

static java.lang.String S_BUILD_MODE  

           

static java.lang.String S_CALCULATE  

           

static java.lang.String S_COPY_DATA  

           

static java.lang.String S_DISP_MODE  

           

static java.lang.String S_ENGLISH_UNITS  

           

static java.lang.String S_FAR_SNAP  

           

static java.lang.String S_FILE_LOAD  

           

static java.lang.String S_FILE_SAVE  

           

static java.lang.String S_FORCE_MODE  

           

static java.lang.String S_INSTRUCTIONS_MENU_ITEM  

           

static java.lang.String S_LARGE_GRID  

           

static java.lang.String S_MAG_CHANGE  

           

static java.lang.String S_MATERIAL_CHANGE  

           

static java.lang.String S_MEDIUM_GRID  
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static java.lang.String S_MEDIUM_SNAP  

           

static java.lang.String S_MOD_NODE_TEXT_CANCEL  

           

static java.lang.String S_MOD_NODE_TEXT_OK  

           

static java.lang.String S_MOD_STRUCTURE  

           

static java.lang.String S_MOMENT_CHANGE  

           

static java.lang.String S_NEAR_SNAP  

           

static java.lang.String S_NO_GRID  

           

static java.lang.String S_OK_ABOUT_DIALOG  

           

static java.lang.String S_QUIT  

           

static java.lang.String S_REMOVE_BC  

           

static java.lang.String S_REMOVE_LOAD  

           

static java.lang.String S_REMOVE_MEMBER  

           

static java.lang.String S_RESET  

           

static java.lang.String S_RESET_DEFAULT_PREFS  

           

static java.lang.String S_SI_UNITS  

           

static java.lang.String S_SMALL_GRID  

           

static java.lang.String S_STICKY_ADD_MEMBER_MODE  

           

static java.lang.String S_UNDO  

           

static java.lang.String S_WHITE_BACKGROUND  

           

Fields inherited from class javax.swing.JApplet

accessibleContext, rootPane, rootPaneCheckingEnabled

Fields inherited from class java.awt.Component

BOTTOM_ALIGNMENT, CENTER_ALIGNMENT, LEFT_ALIGNMENT, RIGHT_ALIGNMENT, TOP_ALIGNMENT

Fields inherited from interface java.awt.image.ImageObserver

ABORT, ALLBITS, ERROR, FRAMEBITS, HEIGHT, PROPERTIES, SOMEBITS, WIDTH

Constructor Summary

TorsusView(java.lang.String s, javax.swing.JApplet applet)  

          Sets the title to to the value of String s and uses the applet argument to set the URL target for the instructions page (in the help menu).
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Method Summary
 void actionPerformed(java.awt.event.ActionEvent e)  

          This method catches ActionEvents and delegates them to the actionPerformed() method of the local 
TorsusController.

 void closeAddBCDialog()  

          Closes the dialog corresponding to adding/modifying boundary conditions.

 void closeAddLoadDialog()  

          Closes the dialog corresponding to adding/modifying loads.

 void closeModStructureDialog()  

          Closes the dialog corresponding to modifying the structure.

 void copyData()  

          Copies message area contents to System clipboard.

 void displayNodeMemberNumbers(boolean b)  

          Calls method of same name on local copy of DrawArea.

 double formatNumber(double d, int n)  

          This method takes a double as an argument and formats it to n positions after the decimal point (accounts for 
scientific notation as well).

 double getAreaTextField()  

          Returns a double representation of the current user-defined area.

 TorsusController getController()  

          Returns the local TorsusController.

 double getEValueLabel()  

          Returns a double representation of the Young's modulus corresponding to current material.

 java.lang.String getFilePath()  

          Returns path of file corresponding to JFileChooser.

 double getFxLoadFromDialog()  

          Returns a double representation of the current user-defined force in the x-direction (from the dialog corresponding 
to adding/modifying loads).

 double getFyLoadFromDialog()  

          Returns a double representation of the current user-defined force in the y-direction (from the dialog corresponding 
to adding/modifying loads).

 int getGridMenuItemSpacing()  

          Returns an integer representation of the current grid spacing based on the state of the grid menu items and on the 
public static final spacing values defined as in TorsusController.

 int getMagFactor()  

          Returns a integer representation of the current magnification factor (for displaying the displaced structure).

 java.lang.String getMaterialType()  

          Returns a String representation of the current material type.

 java.lang.String getMessage()  

          Returns the contents of the Message Window.

 Node getModStructureNode()  

          Returns the Node currently selected to be modified.

 double getMomentInertiaTextField()  

          Returns a double representation of the current user-defined moment of inertia.

 java.lang.String getMomentInertiaType()  

          Returns a String representation of the current user-defined moment of inertia type.

 java.awt.Point getRealTimeMousePoint()  

          Returns Point, adjusted to normal coordinate geometry (not Java coordinates), representing mouse position on 
DrawArea in pixels.

 double getScaleTextField()  

          Returns a double representation of the current user-defined scale in pixels.

 TrussStructure
getTrussStructure()  
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          Returns the TrussStructure belonging to the DrawArea.

 java.lang.String getUnitsType()  

          Returns a String representation of the current unit system.

 double getXModStructureDialog()  

          Returns a double representation of the current user-defined x coordinate from the dialog corresponding to 
modifying the structure.

 double getYModStructureDialog()  

          Returns a double representation of the current user-defined y coordinate from the dialog corresponding to 
modifying the structure.

 void keyPressed(java.awt.event.KeyEvent e)  

          Empty method.

 void keyReleased(java.awt.event.KeyEvent e)  

          Handles the key released events.

 void keyTyped(java.awt.event.KeyEvent e)  

          Empty method.

 void launchInstructions()  

          Launches the instructions page in a separate browser window.

 void lostOwnership(java.awt.datatransfer.Clipboard clip, java.awt.datatransfer.Transferable tr)  

          This method does nothing in this implementation.

 void mouseClicked(java.awt.event.MouseEvent e)  

          Empty method.

 void mouseDragged(java.awt.event.MouseEvent e)  

          Handles user mouse dragging.

 void mouseEntered(java.awt.event.MouseEvent e)  

          Empty method.

 void mouseExited(java.awt.event.MouseEvent e)  

          Empty method.

 void mouseMoved(java.awt.event.MouseEvent e)  

          Handles user mouse motion.

 void mousePressed(java.awt.event.MouseEvent e)  

          Handles mousePressed MouseEvents.

 void mouseReleased(java.awt.event.MouseEvent e)  

          Handles mouseReleased MouseEvents.

 void paintDisplacedNodes(TrussStructure t)  

          Calls the method of the same name on the local DrawArea object.

 void paintInternalForces(TrussStructure t)  

          Calls the method of the same name on the local DrawArea object.

 void paintStructureOnly()  

          Calls the method of the same name on the local DrawArea object.

 void refresh()  

          Calls the method of the same name on the local DrawArea object.

 void repositionNodeModStructure(java.awt.Point p)  

          Calls modifyStructure() method on local DrawArea object based on previously selected Node.

 void resetAddLoadDialog()  

          Resets the values in the dialog corresponding to adding/modifying loads.

 void resetClassNodeVariables()  

          This method resets all (private) class Node variables.

 void resetDefaultPrefs()  

          Resets the default preferences: sticky mode off, medium grid spacing, medium snap distance, white background.

 void resetMessage()  

          Sets the Messgae Window TextArea text to "Messages appear here.".

 void

resetModStructureDialog()  
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          Resets the values in the dialog corresponding to modifying the structure.

 void resetModStructureNode()  

          Resets the private class variable representing the Node to be modified in the "modify structure" procedure.

 void resetScreen()  

          Calls the resetSceen() method on the local DrawArea object and resets the GUI components accordingly.

 void setAddLoadDialogUnitsLabel(java.lang.String s)  

          Sets the units label on the dialog corresponding to the addition of loads to String s.

 void setAreaTextField(java.lang.String s)  

          Sets the area text field to String s.

 void setAreaUnitsLabel(java.lang.String s)  

          Sets the units label associated with the area text field to be the String s.

 void setBC(Node n, int mode)  

          Calls the method of the same name on the local DrawArea object and updates the GUI accordingly.

 void setBGBlack()  

          Calls the method of the same name on the local DrawArea object and updates the GUI accordingly.

 void setBGWhite()  

          Calls the method of the same name on the local DrawArea object and updates the GUI accordingly.

 void setController(TorsusController c)  

          Sets the local TorsusController to the argument.

 void setDrawMode(int mode)  

          Sets the current draw mode.

 void setEnabledBuildButtons(boolean b)  

          Enables (or disables) buttons used in construction of structure.

 void setEnabledUndoMenuItem(boolean b)  

          Enables (or disables) the menu item corresponding to the undo operation.

 void setEnabledViewRadioButtons(boolean b)  

          Enables (or disables) radio buttons corresponding to display of internal forces, and of displacements.

 void setEUnitsLabel(java.lang.String s)  

          Sets the units label associated with the material drop-down to be the String s.

 void setEValueLabel(java.lang.String s)  

          Sets the E label associated with the material drop-down to be the String s.

 void setFarSnapMenuItem()  

          Sets the selection states for snap distance menu items to indicate that the current snap distance is "far".

 void setFxLoadFromDialog(java.lang.String s)  

          Sets the force in the x-direction in the dialog corresponding to adding/modifying loads.

 void setFyLoadFromDialog(java.lang.String s)  

          Sets the force in the y-direction in the dialog corresponding to adding/modifying loads.

 void setGrid(boolean b, int n)  

          Calls method of same name on local copy of DrawArea.

 void setLargeGridMenuItem()  

          Sets the selection states for grid menu items to indicate that the current grid spacing is "large".

 void setLoad(Node n, double fx, double fy)  

          Calls the method of the same name on the local DrawArea object and updates the GUI accordingly.

 void setMediumGridMenuItem()  

          Sets the selection states for grid menu items to indicate that the current grid spacing is "medium".

 void setMediumSnapMenuItem()  

          Sets the selection states for snap distance menu items to indicate that the current snap distance is "medium".

 void setMessage(java.lang.String s)  

          Sets the Message Window TextArea text to be String s.

 void setModStructureDialogUnits(java.lang.String s)  

          Sets the units label on the dialog corresponding to structure modification to String s.

 void
setMomentInertiaTextField(java.lang.String s)  
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          Sets the moment of inertia text field to String s.

 void setMomentInertiaUnitsLabel(java.lang.String s)  

          Sets the units label associated with the moment of inertia text field to be the String s.

 void setNearSnapMenuItem()  

          Sets the selection states for snap distance menu items to indicate that the current snap distance is "near".

 void setNoGridMenuItem()  

          Sets the selection states for grid menu items to indicate that the grid is off.

 void setRealTimeMouseLabel(double x, double y)  

          Sets the JLabel corresponding to the current mouse position according to the input, which is assumed to be in 
pixels.

 void setScaleTextField(double d)  

          Converts d from pixels to gridBlocks (based on the grid spacing), converts this double to a String, and displays the 
String in the scale text field.

 void setScaleUnitsLabel(java.lang.String s)  

          Sets the units label associated with the scale text field to be the String s.

 void setSmallGridMenuItem()  

          Sets the selection states for grid menu items to indicate that the current grid spacing is "small".

 void setSnapDistance(int n)  

          Calls the method of the same name on the local DrawArea object.

 void setStickyMode()  

          This method sets the sticky mode based on the menu item state.

 void setStickyMode(boolean b)  

          This method takes a boolean b as an argument sets the the sticky mode according to b and updates the menu item 
accordingly.

 void setTrussStructure(TrussStructure t)  

          Sets the TrussStructure belonging to the DrawArea according to the argument.

 void setURL(java.net.URL u)  

          Sets the local URL to be u (used for setting the target for the instructions page in the help menu).

 void setXModStructureDialog(java.lang.String s)  

          Sets x coordinate in the dialog corresponding to modifying the structure to String s.

 void setYModStructureDialog(java.lang.String s)  

          Sets y coordinate in the dialog corresponding to modifying the structure to String s.

 void showAboutDialog(boolean b)  

          Shows (or hides) the dialog corresponding to program "about" information.

 int showOpenDialog()  

          Launches the JFileChooser corresponding to "open" function.

 int showSaveDialog()  

          Launches the JFileChooser corresponding to "save" function.

 void undo()  

          Calls the undo() method on the local DrawArea object and performs all necessary operations on UI objects.

 void updateMomentInertiaTextField()  

          Updates the enabled state and the contents of the textfield corresponding to the custom moment of inertia.

Methods inherited from class javax.swing.JApplet

addImpl, createRootPane, getAccessibleContext, getContentPane, getGlassPane, getJMenuBar, getLayeredPane, 
getRootPane, isRootPaneCheckingEnabled, paramString, processKeyEvent, remove, setContentPane, 
setGlassPane, setJMenuBar, setLayeredPane, setLayout, setRootPane, setRootPaneCheckingEnabled, update

Methods inherited from class java.applet.Applet

destroy, getAppletContext, getAppletInfo, getAudioClip, getAudioClip, getCodeBase, getDocumentBase, 
getImage, getImage, getLocale, getParameter, getParameterInfo, init, isActive, newAudioClip, play, play, 
resize, resize, setStub, showStatus, start, stop
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NULL_MODE 

public static final int NULL_MODE 

MEMBER_ADDER 

public static final int MEMBER_ADDER 

MEMBER_REMOVER 

public static final int MEMBER_REMOVER 

BC_ADDER 

public static final int BC_ADDER 

Methods inherited from class java.awt.Panel

addNotify

Methods inherited from class java.awt.Container

add, add, add, add, add, addContainerListener, countComponents, deliverEvent, doLayout, findComponentAt, 
findComponentAt, getAlignmentX, getAlignmentY, getComponent, getComponentAt, getComponentAt, 
getComponentCount, getComponents, getInsets, getLayout, getListeners, getMaximumSize, getMinimumSize, 
getPreferredSize, insets, invalidate, isAncestorOf, layout, list, list, locate, minimumSize, paint, 
paintComponents, preferredSize, print, printComponents, processContainerEvent, processEvent, remove, 
removeAll, removeContainerListener, removeNotify, setFont, validate, validateTree

Methods inherited from class java.awt.Component

action, add, addComponentListener, addFocusListener, addHierarchyBoundsListener, addHierarchyListener, 
addInputMethodListener, addKeyListener, addMouseListener, addMouseMotionListener, 
addPropertyChangeListener, addPropertyChangeListener, bounds, checkImage, checkImage, coalesceEvents, 
contains, contains, createImage, createImage, disable, disableEvents, dispatchEvent, enable, enable, 
enableEvents, enableInputMethods, firePropertyChange, getBackground, getBounds, getBounds, getColorModel, 
getComponentOrientation, getCursor, getDropTarget, getFont, getFontMetrics, getForeground, getGraphics, 
getGraphicsConfiguration, getHeight, getInputContext, getInputMethodRequests, getLocation, getLocation, 
getLocationOnScreen, getName, getParent, getPeer, getSize, getSize, getToolkit, getTreeLock, getWidth, 
getX, getY, gotFocus, handleEvent, hasFocus, hide, imageUpdate, inside, isDisplayable, isDoubleBuffered, 
isEnabled, isFocusTraversable, isLightweight, isOpaque, isShowing, isValid, isVisible, keyDown, keyUp, 
list, list, list, location, lostFocus, mouseDown, mouseDrag, mouseEnter, mouseExit, mouseMove, mouseUp, 
move, nextFocus, paintAll, postEvent, prepareImage, prepareImage, printAll, processComponentEvent, 
processFocusEvent, processHierarchyBoundsEvent, processHierarchyEvent, processInputMethodEvent, 
processMouseEvent, processMouseMotionEvent, remove, removeComponentListener, removeFocusListener, 
removeHierarchyBoundsListener, removeHierarchyListener, removeInputMethodListener, removeKeyListener, 
removeMouseListener, removeMouseMotionListener, removePropertyChangeListener, 
removePropertyChangeListener, repaint, repaint, repaint, repaint, requestFocus, reshape, setBackground, 
setBounds, setBounds, setComponentOrientation, setCursor, setDropTarget, setEnabled, setForeground, 
setLocale, setLocation, setLocation, setName, setSize, setSize, setVisible, show, show, size, toString, 
transferFocus

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait

Field Detail
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BC_REMOVER 

public static final int BC_REMOVER 

LOAD_ADDER 

public static final int LOAD_ADDER 

LOAD_REMOVER 

public static final int LOAD_REMOVER 

MOD_STRUCTURE 

public static final int MOD_STRUCTURE 

S_ADD_MEMBER 

public static final java.lang.String S_ADD_MEMBER 

I_ADD_MEMBER 

public static final int I_ADD_MEMBER 

S_REMOVE_MEMBER 

public static final java.lang.String S_REMOVE_MEMBER 

I_REMOVE_MEMBER 

public static final int I_REMOVE_MEMBER 

S_ADD_LOAD 

public static final java.lang.String S_ADD_LOAD 

I_ADD_LOAD
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public static final int I_ADD_LOAD 

S_REMOVE_LOAD 

public static final java.lang.String S_REMOVE_LOAD 

I_REMOVE_LOAD 

public static final int I_REMOVE_LOAD 

S_ADD_BC 

public static final java.lang.String S_ADD_BC 

I_ADD_BC 

public static final int I_ADD_BC 

S_REMOVE_BC 

public static final java.lang.String S_REMOVE_BC 

I_REMOVE_BC 

public static final int I_REMOVE_BC 

S_RESET 

public static final java.lang.String S_RESET 

I_RESET 

public static final int I_RESET 

S_QUIT 

public static final java.lang.String S_QUIT 
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I_QUIT 

public static final int I_QUIT 

S_MOD_STRUCTURE 

public static final java.lang.String S_MOD_STRUCTURE 

I_MOD_STRUCTURE 

public static final int I_MOD_STRUCTURE 

S_ADD_BC_X 

public static final java.lang.String S_ADD_BC_X 

I_ADD_BC_X 

public static final int I_ADD_BC_X 

S_ADD_BC_Y 

public static final java.lang.String S_ADD_BC_Y 

I_ADD_BC_Y 

public static final int I_ADD_BC_Y 

S_ADD_BC_XY 

public static final java.lang.String S_ADD_BC_XY 

I_ADD_BC_XY 

public static final int I_ADD_BC_XY 

S_ADD_BC_CANCEL 

public static final java.lang.String S_ADD_BC_CANCEL 
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I_ADD_BC_CANCEL 

public static final int I_ADD_BC_CANCEL 

S_ADD_LOAD_OK 

public static final java.lang.String S_ADD_LOAD_OK 

I_ADD_LOAD_OK 

public static final int I_ADD_LOAD_OK 

S_ADD_LOAD_CANCEL 

public static final java.lang.String S_ADD_LOAD_CANCEL 

I_ADD_LOAD_CANCEL 

public static final int I_ADD_LOAD_CANCEL 

S_SI_UNITS 

public static final java.lang.String S_SI_UNITS 

I_SI_UNITS 

public static final int I_SI_UNITS 

S_ENGLISH_UNITS 

public static final java.lang.String S_ENGLISH_UNITS 

I_ENGLISH_UNITS 

public static final int I_ENGLISH_UNITS 

S_MATERIAL_CHANGE 
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public static final java.lang.String S_MATERIAL_CHANGE 

I_MATERIAL_CHANGE 

public static final int I_MATERIAL_CHANGE 

S_BUILD_MODE 

public static final java.lang.String S_BUILD_MODE 

I_BUILD_MODE 

public static final int I_BUILD_MODE 

S_FORCE_MODE 

public static final java.lang.String S_FORCE_MODE 

I_FORCE_MODE 

public static final int I_FORCE_MODE 

S_DISP_MODE 

public static final java.lang.String S_DISP_MODE 

I_DISP_MODE 

public static final int I_DISP_MODE 

S_CALCULATE 

public static final java.lang.String S_CALCULATE 

I_CALCULATE 

public static final int I_CALCULATE 



232

S_MAG_CHANGE 

public static final java.lang.String S_MAG_CHANGE 

I_MAG_CHANGE 

public static final int I_MAG_CHANGE 

S_NO_GRID 

public static final java.lang.String S_NO_GRID 

I_NO_GRID 

public static final int I_NO_GRID 

S_SMALL_GRID 

public static final java.lang.String S_SMALL_GRID 

I_SMALL_GRID 

public static final int I_SMALL_GRID 

S_MEDIUM_GRID 

public static final java.lang.String S_MEDIUM_GRID 

I_MEDIUM_GRID 

public static final int I_MEDIUM_GRID 

S_LARGE_GRID 

public static final java.lang.String S_LARGE_GRID 

I_LARGE_GRID 

public static final int I_LARGE_GRID 
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S_NEAR_SNAP 

public static final java.lang.String S_NEAR_SNAP 

I_NEAR_SNAP 

public static final int I_NEAR_SNAP 

S_MEDIUM_SNAP 

public static final java.lang.String S_MEDIUM_SNAP 

I_MEDIUM_SNAP 

public static final int I_MEDIUM_SNAP 

S_FAR_SNAP 

public static final java.lang.String S_FAR_SNAP 

I_FAR_SNAP 

public static final int I_FAR_SNAP 

S_STICKY_ADD_MEMBER_MODE 

public static final java.lang.String S_STICKY_ADD_MEMBER_MODE 

I_STICKY_ADD_MEMBER_MODE 

public static final int I_STICKY_ADD_MEMBER_MODE 

S_ABOUT_MENU_ITEM 

public static final java.lang.String S_ABOUT_MENU_ITEM 

I_ABOUT_MENU_ITEM 



234

public static final int I_ABOUT_MENU_ITEM 

S_OK_ABOUT_DIALOG 

public static final java.lang.String S_OK_ABOUT_DIALOG 

I_OK_ABOUT_DIALOG 

public static final int I_OK_ABOUT_DIALOG 

S_INSTRUCTIONS_MENU_ITEM 

public static final java.lang.String S_INSTRUCTIONS_MENU_ITEM 

I_INSTRUCTIONS_MENU_ITEM 

public static final int I_INSTRUCTIONS_MENU_ITEM 

S_RESET_DEFAULT_PREFS 

public static final java.lang.String S_RESET_DEFAULT_PREFS 

I_RESET_DEFAULT_PREFS 

public static final int I_RESET_DEFAULT_PREFS 

S_WHITE_BACKGROUND 

public static final java.lang.String S_WHITE_BACKGROUND 

I_WHITE_BACKGROUND 

public static final int I_WHITE_BACKGROUND 

S_BLACK_BACKGROUND 

public static final java.lang.String S_BLACK_BACKGROUND 
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I_BLACK_BACKGROUND 

public static final int I_BLACK_BACKGROUND 

S_MOD_NODE_TEXT_OK 

public static final java.lang.String S_MOD_NODE_TEXT_OK 

I_MOD_NODE_TEXT_OK 

public static final int I_MOD_NODE_TEXT_OK 

S_MOD_NODE_TEXT_CANCEL 

public static final java.lang.String S_MOD_NODE_TEXT_CANCEL 

I_MOD_NODE_TEXT_CANCEL 

public static final int I_MOD_NODE_TEXT_CANCEL 

S_UNDO 

public static final java.lang.String S_UNDO 

I_UNDO 

public static final int I_UNDO 

S_FILE_SAVE 

public static final java.lang.String S_FILE_SAVE 

I_FILE_SAVE 

public static final int I_FILE_SAVE 

S_FILE_LOAD 

public static final java.lang.String S_FILE_LOAD 
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I_FILE_LOAD 

public static final int I_FILE_LOAD 

S_MOMENT_CHANGE 

public static final java.lang.String S_MOMENT_CHANGE 

I_MOMENT_CHANGE 

public static final int I_MOMENT_CHANGE 

S_COPY_DATA 

public static final java.lang.String S_COPY_DATA 

I_COPY_DATA 

public static final int I_COPY_DATA 

TorsusView 

public TorsusView(java.lang.String s, 
                  javax.swing.JApplet applet) 

Sets the title to to the value of String s and uses the applet argument to set the URL target for the instructions page (in the help menu). 

setController 

public void setController(TorsusController c) 

Sets the local TorsusController to the argument.  

getController 

public TorsusController getController() 

Returns the local TorsusController.  

Constructor Detail

Method Detail
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getTrussStructure 

public TrussStructure getTrussStructure() 

Returns the TrussStructure belonging to the DrawArea.  

setTrussStructure 

public void setTrussStructure(TrussStructure t) 

Sets the TrussStructure belonging to the DrawArea according to the argument.  

actionPerformed 

public void actionPerformed(java.awt.event.ActionEvent e) 

This method catches ActionEvents and delegates them to the actionPerformed() method of the local TorsusController.  
Specified by:  

actionPerformed in interface java.awt.event.ActionListener 

mouseMoved 

public void mouseMoved(java.awt.event.MouseEvent e) 

Handles user mouse motion.  
Specified by:  

mouseMoved in interface java.awt.event.MouseMotionListener 

mouseDragged 

public void mouseDragged(java.awt.event.MouseEvent e) 

Handles user mouse dragging.  
Specified by:  

mouseDragged in interface java.awt.event.MouseMotionListener 

getRealTimeMousePoint 

public java.awt.Point getRealTimeMousePoint() 

Returns Point, adjusted to normal coordinate geometry (not Java coordinates), representing mouse position on DrawArea in pixels.  

setRealTimeMouseLabel 

public void setRealTimeMouseLabel(double x, 
                                  double y) 
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Sets the JLabel corresponding to the current mouse position according to the input, which is assumed to be in pixels. This method 
handles all scale conversion for purposes of current mouse position display.  

setEnabledViewRadioButtons 

public void setEnabledViewRadioButtons(boolean b) 

Enables (or disables) radio buttons corresponding to display of internal forces, and of displacements.  

setEnabledBuildButtons 

public void setEnabledBuildButtons(boolean b) 

Enables (or disables) buttons used in construction of structure. It is necessary to disable these buttons when in one of the view modes 
other than build mode.  

setAddLoadDialogUnitsLabel 

public void setAddLoadDialogUnitsLabel(java.lang.String s) 

Sets the units label on the dialog corresponding to the addition of loads to String s.  

setModStructureDialogUnits 

public void setModStructureDialogUnits(java.lang.String s) 

Sets the units label on the dialog corresponding to structure modification to String s.  

formatNumber 

public double formatNumber(double d, 
                           int n) 

This method takes a double as an argument and formats it to n positions after the decimal point (accounts for scientific notation as 
well).  

setGrid 

public void setGrid(boolean b, 
                    int n) 

Calls method of same name on local copy of DrawArea.  

displayNodeMemberNumber 
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public void displayNodeMemberNumbers(boolean b) 

Calls method of same name on local copy of DrawArea.  

setStickyMode 

public void setStickyMode() 

This method sets the sticky mode based on the menu item state.  

setStickyMode 

public void setStickyMode(boolean b) 

This method takes a boolean b as an argument sets the the sticky mode according to b and updates the menu item accordingly.  

setURL 

public void setURL(java.net.URL u) 

Sets the local URL to be u (used for setting the target for the instructions page in the help menu).  

getMessage 

public java.lang.String getMessage() 

Returns the contents of the Message Window.  

setMessage 

public void setMessage(java.lang.String s) 

Sets the Message Window TextArea text to be String s.  

undo 

public void undo() 

Calls the undo() method on the local DrawArea object and performs all necessary operations on UI objects.  

updateMomentInertiaTextField 

public void updateMomentInertiaTextField() 
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Updates the enabled state and the contents of the textfield corresponding to the custom moment of inertia.  

setEnabledUndoMenuItem 

public void setEnabledUndoMenuItem(boolean b) 

Enables (or disables) the menu item corresponding to the undo operation.  

resetMessage 

public void resetMessage() 

Sets the Messgae Window TextArea text to "Messages appear here.".  

resetDefaultPrefs 

public void resetDefaultPrefs() 

Resets the default preferences: sticky mode off, medium grid spacing, medium snap distance, white background.  

closeAddBCDialog 

public void closeAddBCDialog() 

Closes the dialog corresponding to adding/modifying boundary conditions.  

closeAddLoadDialog 

public void closeAddLoadDialog() 

Closes the dialog corresponding to adding/modifying loads.  

closeModStructureDialog 

public void closeModStructureDialog() 

Closes the dialog corresponding to modifying the structure.  

copyData 

public void copyData() 

Copies message area contents to System clipboard. 
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resetAddLoadDialog 

public void resetAddLoadDialog() 

Resets the values in the dialog corresponding to adding/modifying loads.  

resetModStructureDialog 

public void resetModStructureDialog() 

Resets the values in the dialog corresponding to modifying the structure.  

resetModStructureNode 

public void resetModStructureNode() 

Resets the private class variable representing the Node to be modified in the "modify structure" procedure.  

showAboutDialog 

public void showAboutDialog(boolean b) 

Shows (or hides) the dialog corresponding to program "about" information.  

showSaveDialog 

public int showSaveDialog() 

Launches the JFileChooser corresponding to "save" function. Returns according to showSaveDialog() function in JFileChooser class  

showOpenDialog 

public int showOpenDialog() 

Launches the JFileChooser corresponding to "open" function. Returns according to showSaveDialog() function in JFileChooser class  

getFilePath 

public java.lang.String getFilePath() 

Returns path of file corresponding to JFileChooser.  
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launchInstructions 

public void launchInstructions() 

Launches the instructions page in a separate browser window.  

lostOwnership 

public void lostOwnership(java.awt.datatransfer.Clipboard clip, 
                          java.awt.datatransfer.Transferable tr) 

This method does nothing in this implementation. It is included as a requirement for implementing the ClipboardOwner interface.  
Specified by:  

lostOwnership in interface java.awt.datatransfer.ClipboardOwner 

setBC 

public void setBC(Node n, 
                  int mode) 

Calls the method of the same name on the local DrawArea object and updates the GUI accordingly.  

setBGWhite 

public void setBGWhite() 

Calls the method of the same name on the local DrawArea object and updates the GUI accordingly.  

setBGBlack 

public void setBGBlack() 

Calls the method of the same name on the local DrawArea object and updates the GUI accordingly.  

getEValueLabel 

public double getEValueLabel() 
                      throws java.lang.NumberFormatException 

Returns a double representation of the Young's modulus corresponding to current material.  

getScaleTextField 

public double getScaleTextField() 
                         throws java.lang.NumberFormatException 

Returns a double representation of the current user-defined scale in pixels. The user specifies the scale in grid blocks, so this method 
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performs all necessary conversion. Note that all modifications to allow the user to specify grid blocks (as opposed to pixels) have been 
made within the getScaleTextField and setScaleTextField methods of this class.  

getMomentInertiaTextField 

public double getMomentInertiaTextField() 
                                 throws java.lang.NumberFormatException 

Returns a double representation of the current user-defined moment of inertia.  

getMomentInertiaType 

public java.lang.String getMomentInertiaType() 

Returns a String representation of the current user-defined moment of inertia type.  

setMomentInertiaTextField 

public void setMomentInertiaTextField(java.lang.String s) 

Sets the moment of inertia text field to String s.  

getAreaTextField 

public double getAreaTextField() 
                        throws java.lang.NumberFormatException 

Returns a double representation of the current user-defined area.  

setAreaTextField 

public void setAreaTextField(java.lang.String s) 

Sets the area text field to String s.  

getFxLoadFromDialog 

public double getFxLoadFromDialog() 
                           throws java.lang.NumberFormatException 

Returns a double representation of the current user-defined force in the x-direction (from the dialog corresponding to adding/modifying 
loads).  

getFyLoadFromDialo 
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public double getFyLoadFromDialog() 
                           throws java.lang.NumberFormatException 

Returns a double representation of the current user-defined force in the y-direction (from the dialog corresponding to adding/modifying 
loads).  

repositionNodeModStructure 

public void repositionNodeModStructure(java.awt.Point p) 

Calls modifyStructure() method on local DrawArea object based on previously selected Node. Makes appropriate adjustments to the 
GUI.  

getModStructureNode 

public Node getModStructureNode() 

Returns the Node currently selected to be modified.  

getXModStructureDialog 

public double getXModStructureDialog() 
                              throws java.lang.NumberFormatException 

Returns a double representation of the current user-defined x coordinate from the dialog corresponding to modifying the structure.  

getYModStructureDialog 

public double getYModStructureDialog() 
                              throws java.lang.NumberFormatException 

Returns a double representation of the current user-defined y coordinate from the dialog corresponding to modifying the structure.  

setFxLoadFromDialog 

public void setFxLoadFromDialog(java.lang.String s) 

Sets the force in the x-direction in the dialog corresponding to adding/modifying loads.  

setFyLoadFromDialog 

public void setFyLoadFromDialog(java.lang.String s) 

Sets the force in the y-direction in the dialog corresponding to adding/modifying loads.  
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setXModStructureDialog 

public void setXModStructureDialog(java.lang.String s) 

Sets x coordinate in the dialog corresponding to modifying the structure to String s.  

setYModStructureDialog 

public void setYModStructureDialog(java.lang.String s) 

Sets y coordinate in the dialog corresponding to modifying the structure to String s.  

setLoad 

public void setLoad(Node n, 
                    double fx, 
                    double fy) 

Calls the method of the same name on the local DrawArea object and updates the GUI accordingly.  

setEValueLabel 

public void setEValueLabel(java.lang.String s) 

Sets the E label associated with the material drop-down to be the String s.  

setScaleTextField 

public void setScaleTextField(double d) 

Converts d from pixels to gridBlocks (based on the grid spacing), converts this double to a String, and displays the String in the scale 
text field. Note that all modifications to allow the user to specify grid blocks (as opposed to pixels) have been made within the 
getScaleTextField and setScaleTextField methods of this class.  

setEUnitsLabel 

public void setEUnitsLabel(java.lang.String s) 

Sets the units label associated with the material drop-down to be the String s.  

setScaleUnitsLabel 

public void setScaleUnitsLabel(java.lang.String s) 

Sets the units label associated with the scale text field to be the String s.  
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setAreaUnitsLabel 

public void setAreaUnitsLabel(java.lang.String s) 

Sets the units label associated with the area text field to be the String s.  

setMomentInertiaUnitsLabel 

public void setMomentInertiaUnitsLabel(java.lang.String s) 

Sets the units label associated with the moment of inertia text field to be the String s.  

setSnapDistance 

public void setSnapDistance(int n) 

Calls the method of the same name on the local DrawArea object.  

setNoGridMenuItem 

public void setNoGridMenuItem() 

Sets the selection states for grid menu items to indicate that the grid is off.  

setSmallGridMenuItem 

public void setSmallGridMenuItem() 

Sets the selection states for grid menu items to indicate that the current grid spacing is "small".  

setMediumGridMenuItem 

public void setMediumGridMenuItem() 

Sets the selection states for grid menu items to indicate that the current grid spacing is "medium".  

setLargeGridMenuItem 

public void setLargeGridMenuItem() 

Sets the selection states for grid menu items to indicate that the current grid spacing is "large".  

getGridMenuItemSpacin 
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public int getGridMenuItemSpacing() 

Returns an integer representation of the current grid spacing based on the state of the grid menu items and on the public static final 
spacing values defined as in TorsusController.  

setNearSnapMenuItem 

public void setNearSnapMenuItem() 

Sets the selection states for snap distance menu items to indicate that the current snap distance is "near".  

setMediumSnapMenuItem 

public void setMediumSnapMenuItem() 

Sets the selection states for snap distance menu items to indicate that the current snap distance is "medium".  

setFarSnapMenuItem 

public void setFarSnapMenuItem() 

Sets the selection states for snap distance menu items to indicate that the current snap distance is "far".  

getMagFactor 

public int getMagFactor() 
                 throws java.lang.NumberFormatException 

Returns a integer representation of the current magnification factor (for displaying the displaced structure).  

getMaterialType 

public java.lang.String getMaterialType() 

Returns a String representation of the current material type.  

getUnitsType 

public java.lang.String getUnitsType() 

Returns a String representation of the current unit system.  

resetScreen 
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public void resetScreen() 

Calls the resetSceen() method on the local DrawArea object and resets the GUI components accordingly.  

refresh 

public void refresh() 

Calls the method of the same name on the local DrawArea object.  

paintStructureOnly 

public void paintStructureOnly() 

Calls the method of the same name on the local DrawArea object.  

paintDisplacedNodes 

public void paintDisplacedNodes(TrussStructure t) 

Calls the method of the same name on the local DrawArea object.  

paintInternalForces 

public void paintInternalForces(TrussStructure t) 

Calls the method of the same name on the local DrawArea object.  

setDrawMode 

public void setDrawMode(int mode) 

Sets the current draw mode.  

mousePressed 

public void mousePressed(java.awt.event.MouseEvent e) 

Handles mousePressed MouseEvents.  
Specified by:  

mousePressed in interface java.awt.event.MouseListener 

mouseReleased 
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public void mouseReleased(java.awt.event.MouseEvent e) 

Handles mouseReleased MouseEvents.  
Specified by:  

mouseReleased in interface java.awt.event.MouseListener 

mouseEntered 

public void mouseEntered(java.awt.event.MouseEvent e) 

Empty method. Included since this class implements the MouseListener interface.  
Specified by:  

mouseEntered in interface java.awt.event.MouseListener 

mouseExited 

public void mouseExited(java.awt.event.MouseEvent e) 

Empty method. Included since this class implements the MouseListener interface.  
Specified by:  

mouseExited in interface java.awt.event.MouseListener 

mouseClicked 

public void mouseClicked(java.awt.event.MouseEvent e) 

Empty method. Included since this class implements the MouseListener interface.  
Specified by:  

mouseClicked in interface java.awt.event.MouseListener 

resetClassNodeVariables 

public void resetClassNodeVariables() 

This method resets all (private) class Node variables. It is used because operations can be aborted part-way through the procedure.  

keyTyped 

public void keyTyped(java.awt.event.KeyEvent e) 

Empty method. Included since this class implements the KeyListener interface.  
Specified by:  

keyTyped in interface java.awt.event.KeyListener 

keyPressed 

public void keyPressed(java.awt.event.KeyEvent e) 
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Empty method. Included since this class implements the KeyListener interface.  
Specified by:  

keyPressed in interface java.awt.event.KeyListener 

keyReleased 

public void keyReleased(java.awt.event.KeyEvent e) 

Handles the key released events.  
Specified by:  

keyReleased in interface java.awt.event.KeyListener 

 Class Tree Deprecated Index Help

 PREV CLASS   NEXT CLASS FRAMES    NO FRAMES

SUMMARY:  INNER | FIELD | CONSTR | METHOD DETAIL:  FIELD | CONSTR | METHOD
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torsusapplet  
Class TrussStructure 

java.lang.Object 
  | 
  +--torsusapplet.TrussStructure 

All Implemented Interfaces:  
java.io.Serializable  

public class TrussStructure  
extends java.lang.Object  
implements java.io.Serializable 

Class that stores all information about a particular structure in terms of Nodes and Vectors (stores a Vector each).  

See Also:  
Serialized Form 

  

 Class Tree Deprecated Index Help

 PREV CLASS   NEXT CLASS FRAMES    NO FRAMES

SUMMARY:  INNER | FIELD | CONSTR | METHOD DETAIL:  FIELD | CONSTR | METHOD

Constructor Summary

TrussStructure()  

          Initializes Vector of Nodes and Members to be new, empty Vectors.

TrussStructure(java.util.Vector nodes, java.util.Vector members)  

          Initializes Vector of Nodes and Members to arguments passed to constructor.

Method Summary
 void addMember(Member m)  

          Adds a member to the Vector of Members, if it does not already exist.

 void changeLoad(int force_x, int force_y, int nodeID)  

          Updates the loads corresponding to a Node based on ID number.

 boolean existsMember(Member m)  

          Determines whether Member already belongs to TrussStructure.

 double getArea()  

          Returns the cross-sectional area of the structure.

 java.util.Vector getMembers()  

          Returns internal Vector of Members.

 java.util.Vector getNodes()  

          Returns internal Vector of Nodes.

 double getScale()  

          Returns scale (user-defined).

 int getSnapDistance()  

          Returns snap distance, which is the distance (in pixels) at which one Node will graphically snap to another.

 double getTrussMass()  

          Returns the mass of the structure.

 double

getYoungsMod()  
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TrussStructure 

public TrussStructure() 

Initializes Vector of Nodes and Members to be new, empty Vectors. 

TrussStructure 

public TrussStructure(java.util.Vector nodes, 
                      java.util.Vector members) 

          Returns Young's modulus (E).

 boolean interval(double x, double a, double b)  

          Determines whether x falls in the interval [x,y] where x = min(a,b) and y = max(a,b).

 void modifyStructure(Node n, java.awt.Point p)  

          Changes the position of Node n to Point p.

 Member nearMember(java.awt.Point p, int e)  

          Determines whether a Point p is within a distance e (epsilon) of any of the Members (used primarily for the 
graphical removal of Members).

 Node nearNode(java.awt.Point p, int e)  

          Determines whether a Point p is within a distance e (epsilon) of any of the Nodes (for graphical change of boundary 
conditions and loads).

 double pointDistance(java.awt.Point a, java.awt.Point b)  

          Measures the distance between any two Points a and b.

 void removeMember(Member m)  

          Removes a member from the Vector of Members.

 void setArea(double d)  

          Sets the cross-sectional area of the structure.

 void setBC(Node n, int bc_type)  

          Updates the boundary conditions corresponding to a Node belonging to the structure.

 void setLoad(Node n, double fx, double fy)  

          Updates the loads corresponding to a Node based on Node class isEqual() method.

 void setMembers(java.util.Vector v)  

          Sets internal Vector of Members.

 void setNodes(java.util.Vector v)  

          Sets internal Vector of Nodes.

 void setScale(double d)  

          Sets scale (user-defined).

 void setSnapDistance(int n)  

          Sets snap distance, which is the distance (in pixels) at which one Node will graphically snap to another.

 void setTrussMass(double d)  

          Set the mass of the structure.

 void setYoungsMod(double d)  

          Sets Young's modulus (E).

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Constructor Detail
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Initializes Vector of Nodes and Members to arguments passed to constructor. 

addMember 

public void addMember(Member m) 

Adds a member to the Vector of Members, if it does not already exist. Updates the Vector of Nodes accordingly. Note that this method 
does not allow the user to create multiple Members between Nodes in this implementation of this method.  

removeMember 

public void removeMember(Member m) 

Removes a member from the Vector of Members. Updates the Vector of Nodes accordingly. This method also handles the removal of 
"floating nodes", Nodes which - upon removal of a Member - no longer belong to any Member.  

changeLoad 

public void changeLoad(int force_x, 
                       int force_y, 
                       int nodeID) 

Updates the loads corresponding to a Node based on ID number.  

setBC 

public void setBC(Node n, 
                  int bc_type) 

Updates the boundary conditions corresponding to a Node belonging to the structure.  

setLoad 

public void setLoad(Node n, 
                    double fx, 
                    double fy) 

Updates the loads corresponding to a Node based on Node class isEqual() method.  

getNodes 

public java.util.Vector getNodes() 

Returns internal Vector of Nodes.  

Method Detail
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setNodes 

public void setNodes(java.util.Vector v) 

Sets internal Vector of Nodes.  

setMembers 

public void setMembers(java.util.Vector v) 

Sets internal Vector of Members.  

getMembers 

public java.util.Vector getMembers() 

Returns internal Vector of Members.  

existsMember 

public boolean existsMember(Member m) 

Determines whether Member already belongs to TrussStructure.  

nearMember 

public Member nearMember(java.awt.Point p, 
                         int e) 

Determines whether a Point p is within a distance e (epsilon) of any of the Members (used primarily for the graphical removal of 
Members). If such a Member exists, it is returned by the method. Otherwise, the method returns null.  

pointDistance 

public double pointDistance(java.awt.Point a, 
                            java.awt.Point b) 

Measures the distance between any two Points a and b. Called by the nearMember() method.  

interval 

public boolean interval(double x, 
                        double a, 
                        double b) 

Determines whether x falls in the interval [x,y] where x = min(a,b) and y = max(a,b). This method is called by the nearMember() 
method for Member removal. A buffer of 5 pixels is hardcoded in this method to allow for ease of Member removal from user 
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perspective.  

modifyStructure 

public void modifyStructure(Node n, 
                            java.awt.Point p) 

Changes the position of Node n to Point p. Makes all appropriate adjustments to the Members associated with this Node.  

nearNode 

public Node nearNode(java.awt.Point p, 
                     int e) 

Determines whether a Point p is within a distance e (epsilon) of any of the Nodes (for graphical change of boundary conditions and 
loads). If such a Node exists, the method returns the nearest Node within distance e (NOT the first Node determined to be within 
distance e) of Point p. If not, the method returns null.  

getTrussMass 

public double getTrussMass() 

Returns the mass of the structure.  

setTrussMass 

public void setTrussMass(double d) 

Set the mass of the structure.  

getArea 

public double getArea() 

Returns the cross-sectional area of the structure. The program only allows users to specify one cross-sectional area per structure.  

setArea 

public void setArea(double d) 

Sets the cross-sectional area of the structure. The program only allows users to specify one cross-sectional area per structure.  

getYoungsMod 

public double getYoungsMod() 
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Returns Young's modulus (E).  

setYoungsMod 

public void setYoungsMod(double d) 

Sets Young's modulus (E).  

getScale 

public double getScale() 

Returns scale (user-defined).  

setScale 

public void setScale(double d) 

Sets scale (user-defined).  

getSnapDistance 

public int getSnapDistance() 

Returns snap distance, which is the distance (in pixels) at which one Node will graphically snap to another. This snapDistance also 
determines the graphical tolerance for the user in modifying Node properties.  

setSnapDistance 

public void setSnapDistance(int n) 

Sets snap distance, which is the distance (in pixels) at which one Node will graphically snap to another. This snapDistance also 
determines the graphical tolerance for the user in modifying Node properties.  

 Class Tree Deprecated Index Help

 PREV CLASS   NEXT CLASS FRAMES    NO FRAMES

SUMMARY:  INNER | FIELD | CONSTR | METHOD DETAIL:  FIELD | CONSTR | METHOD
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torsusapplet  
Class UnstableStructureException 

java.lang.Object 
  | 
  +--java.lang.Throwable 
        | 
        +--java.lang.Exception 
              | 
              +--torsusapplet.UnstableStructureException 

All Implemented Interfaces:  
java.io.Serializable  

public class UnstableStructureException  
extends java.lang.Exception 

This class extends the functionality of Exception and is used to allow the controller to determine sources of computation error in "model" of 
model-view-controller paradigm.  

See Also:  
Serialized Form 

  

  

   

UnstableStructureException 

public UnstableStructureException() 

 Class Tree Deprecated Index Help

 PREV CLASS   NEXT CLASS FRAMES    NO FRAMES

SUMMARY:  INNER | FIELD | CONSTR | METHOD DETAIL:  FIELD | CONSTR | METHOD

Constructor Summary

UnstableStructureException()  

           

Methods inherited from class java.lang.Throwable

fillInStackTrace, getLocalizedMessage, getMessage, printStackTrace, printStackTrace, printStackTrace, 
toString

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait

Constructor Detail

 Class Tree Deprecated Index Help

 PREV CLASS   NEXT CLASS FRAMES    NO FRAMES

SUMMARY:  INNER | FIELD | CONSTR | METHOD DETAIL:  FIELD | CONSTR | METHOD
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Appendix D

Textbook-Style Derivations: Truss Structures

Module 5

TRUSS STRUCTURES

5.1  Introduction

A truss is a structure constructed of slender members, joined at the ends of these members by

"frictionless" pins, and loaded only at the joints.  Truss structures carry loads via axial forces (ten-

sile and compressive) in the members; the members do not resist shear or moment loading.  Each

truss member is a two-force member (refer to Two-Force Members for more details).  Truss struc-

tures provide for good stiffness and strength over large expanses at a minimum weight. Trusses,

for example, are used in the construction of large crane arms (Figure 5.1), where building a solid

arm would be impractical because of its weight.
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Other common examples of trusses are in roof supports, aircraft wings, radio towers, and bridges.

Some common roof and bridge truss designs are shown in Figure 5.2 and Figure 5.3.

Figure 5.1   Construction cranes near Haymarket in Boston make use of truss
structures.



261

Figure 5.2   Common roof truss designs. [Taken from Laursen, Harold I.
Structural Analysis. McGraw Hill, New York: 1978.]
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Although the members of a truss structure do not resist shear forces and bending moments, the

structure itself is designed to carry these loads in a manner analogous to a beam.  For example,

when a bridge truss structure is subject to a distributed load (for example, cars on a bridge, as

shown in Figure 5.4), the moment at any section of a truss is carried by compressive loads of the

top members and tensile loading of the bottom members; the shear loading is carried by the cross-

members.  A detailed example of this will be given later (How a Truss Structure Carries Shear and

Moment Loads).

Figure 5.3   Common bridge truss designs. [Taken from Laursen, Harold I.
Structural Analysis. McGraw Hill, New York: 1978.]
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Though the origin of truss structures is unclear, they appear to have been used as early as 2500

B.C. for primitive lake dwellings (Brittanica.com).  The Chinese are also known to have con-

structed wooden truss bridges during this period (Palmes).  Timber trusses appeared extensively

in Greek architecture and were used mainly for roofing purposes.  Famous Italian architect

Andrea Palladio, in I quattro libri dell'architettura (1570; Four Books on Architecture), presented

written plans for timber trusses, stating that the diagonal members “support the whole work.”;

however, a solid theoretical understanding of the behavior of trusses was not developed until the

19th century.  During the Industrial Revolution, builders introduced iron trusses, and eventually,

iron was replaced by steel.  Today trusses are made from a variety of materials, including plastics

and composites.

Figure 5.4   A truss bridge in Glenn County, CA. [Taken from Truss Bridges
of Northern California: http://community-2.webtv.net/DAROSAMAR-
CIELII/TrussBridgesOf, October  2001.]
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5.2  Plane Truss: Definitions and Assumptions

The trusses presented in this module are plane trusses, structures where the forces and deforma-

tions only occur in one plane.  The methods used, however, can be generalized to the three-dimen-

sional case.

We make several assumptions in analyzing a plane truss structure.

• First, the members are only connected to one another at their ends.

• Second, the connection points must be frictionless.  This prevents moments from
being applied at the joints, and helps ensure the condition of only axial-loading of
members.

• Third, the applied loads all occur at the joints.

Note that these three conditions enforce each truss member to act as a two-force member.  As a

result, truss members will only experience axial loading.

In the analyses presented here, structural weight is neglected.  Though weight is generally insig-

nificant for smaller structures, a larger structure can be impacted by the weight of its constituent

members.

Here we introduce the "degree of freedom" (d.o.f.).  The number of degrees of freedom of a joint

is defined as the number of independent motions possible and thus the number of independent

equations necessary to define its position at any given time.  For the two-dimensional case, a

"free" joint can translate in the x- and y- directions and has two degrees of freedom.  Similarly, a

joint constrained in the x-direction has one degree of freedom, which is translation in the y-direc-

tion; a joint constrained in the y-direction has one degree of freedom, translation in the x-direc-

tion; and a fixed joint has zero degrees of freedom.

Truss structures must be stable.  An unstable truss structure is one which can experience rigid

body motion (i.e. - motion without the deformation of individual members).  In other words, the

structure (or part of the structure) can be moved without resistance from the structural elements.

Such a “structure” is undesirable for obvious reasons.  Figure 5.5 shows an unstable truss.  It is

shown in two unique states;  note that the members remain of the same length in both states.  
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A triangular truss (or a truss structure constructed of triangular elements) is stable.  For that rea-

son, it is a very common repeating entity in truss construction.  An example of the use of triangu-

lar elements in truss construction is illustrated in the photograph of a billboard support structure

(Figure 5.6) and was also evident in the roof and bridge designs of Figure 5.2 and Figure 5.3.

Figure 5.5   An unstable structure is shown in two unique states.  Note that no
member in either state has deformed.

Figure 5.6   This billboard on Commonwealth Ave. utilizes triangular
truss elements.
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Next, we introduce the topic of static determinacy.

A statically determinate system is one where the equations of static equilibrium are sufficient to

solve for the system forces.  Conversely, a statically indeterminate system is one where the equa-

tions of static equilibrium are insufficient to solve for the system forces.  In other words, if the

number of unknown forces exceeds the number of independent equilibrium equations, the struc-

ture is statically indeterminate.  It is necessary to incorporate elements of the system deflections in

order to determine the forces in the case of statical indeterminacy.

To determine the instability of a system and to determine whether the system is statically determi-

nate, one can carefully compare aspects of the structure geometry to its constraints (Strang).

Let us define the following quantities

• N is the total number of joints in the system

• r is the number of reactions in the system

• m is the number of members in the system

• n = 2N - r

If m < n, the system is unstable.  If m is greater than or equal to n, there is no guarantee that the

system is stable.  If m = n, we know that the system is statically determinate.  If m > n, the system

is statically indeterminate.  These rules are described in the table below.

TABLE 5.1   Stability and static determinacy of different structures.  [Taken from Strang, Gilbert. Introduction to 
Applied Mathematics. Wellesley-Cambridge Press, Wellesley, MA: 1986.]

Condition Stability
Static 

Determinacy

m < n unstable n/a

m = n unknown statically 
determinate

m > n unknown statically 
indeterminate
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There are sound reasons for why this procedure works.  Let us consider the quantity m + r.  This

quantity represents the total number of unknown forces in the system: r is the total number of

reaction forces and m represents the total number of unknown member forces.  We can compare

this number of unknown forces to the number of independent equilibrium equations in order to

determine whether or not the system is statically determinate.  The number of independent equi-

librium equations is exactly equal to 2 times the number of joints, or 2N.  This is because there are

2 equilibrium equations at each joint ( , ).  If m + r is equal to 2N, the system will

be statically determinate.

We have

m + r = 2N (A.1)

which simplifies to

m = 2N - r = n (A.2)

In other words, if m = n, the system is statically determinate.  Similarly, we expect that if the num-

ber of independent equilibrium equations is less than the number of unknown forces in the struc-

ture (m > n), we have insufficient knowledge to solve for the system forces.  This implies a case

of a statically indeterminate structure.  Finally, if the number of independent equilibrium equa-

tions is greater than the number of unknown forces (m < n), we have a problem which may not

have a solution; the result is an unstable structure.

Let us look at a few examples to demonstrate this procedure.

ΣFx 0= ΣFy 0=
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In the example shown in Figure 5.7, we obtain the following values:

Since m < n, this system is unstable.  This system is completely free to displace in the x-direction.

TABLE 5.2   Values of quantities for determining static determinacy, example from Figure 5.7.

Quantity Value

N (number of joints) 3

r (number of reactions) 3

m (number of members) 2

n (=2N-r) 3

Figure 5.7   A 2 member truss subjected to a load P in
the x-direction.

PC

A B
x

y
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In the example shown in Figure 5.8, we obtain the following values:

TABLE 5.3   Values of quantities for determining static determinacy, example from Figure 5.8.

Quantity Value

N (number of joints) 3

r (number of reactions) 4

m (number of members) 2

n (=2N-r) 2

Figure 5.8   Another 2 member truss subjected to a load
P in the x-direction.

PC

A B
x

y
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Since m = n, this system is statically determinate.

In the example shown in Figure 5.9, we obtain the following values:

Since m = n, this system is also statically determinate.

In conclusion, it is essential to note, that though many idealizations are made in truss analysis, real

structures behave closely to the theoretical models.  This knowledge allows us to proceed in ana-

lyzing truss structures with great confidence, provided that we can correctly identify them.

TABLE 5.4   Values of quantities for determining static determinacy, example from Figure 5.9.

Quantity Value

N (number of joints) 3

r (number of reactions) 3

m (number of members) 3

n (=2N-r) 3

Figure 5.9   A 3 member truss subjected to a load P in
the x-direction.

PC

A B
x

y
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5.3  Internal Forces

The procedure for solving for internal forces in truss systems is a basic one; however, the proce-

dure presented in this section will only solve for forces for statically determinate systems.  The

entire procedure is based on the concept of force balances.  Simply put, by balancing forces at the

joints, the forces acting at all joints and in all members in the system can be found.  Some texts

refer to this method as the “Method of Joints”.  A simple example of finding internal forces fol-

lows (Figure 5.10).  The structure shown is comprised of two members, identical in material and

geometry.

To determine the forces acting in the members, we analyze joint C (Figure 5.11).

Figure 5.10   This symmetric, 2-member truss is subjected to a down-
ward load of magnitude W.

60o

W

A B

C



272

Balancing forces in the x and y directions yields the forces acting in members AC and BC.

(5.1)

(5.2)

(5.3)

(5.4)

(5.5)

We find that

(5.6)

This implies that the forces in members FAC and FBC are tensile.  The previous figure

(Figure 5.11) displays the forces with which the joint acts upon the members.  The resulting force

Figure 5.11   Balancing the forces at
Joint C yields the forces in elements AC
and BC.

W

Joint C

FAC FBC

60o

ΣFx 0=

FAC 60°cos– FBC 60°cos+ 0=

FAC FBC=

ΣFY 0=

FAC 30°cos FBC 30°cos+ W=

FAC FBC
W

3
-------= =
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within the member will be equal in magnitude and opposite in direction.  The direction in which

the forces are drawn implies a tensile force in the two members see (Figure 5.12).

Now, let’s examine a more complex example.  The structure shown below is constructed of alu-

minum members with identical cross sections, but varying lengths (Figure 5.13).  The structure is

subjected to an end load W.

Figure 5.12   The forces acting on Joint C and the members AC and BC are shown above.

W

Joint C

A

C

B

C

FAC

FAC

FAC

FBC

FBC

FBC
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We apply the same procedure to determine the internal forces in the six elements.  We balance

forces beginning at the joints, beginning with joint C (Figure 5.14).

Figure 5.13   This 6-member planar truss is subjected to a downward load of magnitude W at
Joint C.

W

A B C

ED

L L

L

Figure 5.14   Balancing the forces at
Joint C yields the forces in elements
BC and CE.

W

FBC

FCE

Joint C
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Balancing forces in the x and y directions yields the forces acting in members BC and CE.

(5.7)

(5.8)

(5.9)

(5.10)

We find that

(5.11)

(5.12)

Next we examine joint E (Figure 5.15).

Balancing forces in the x and y directions yields the forces acting in members DE and BE.

(5.13)

(5.14)

ΣFx 0=

FBC– FCE 45°cos– 0=

ΣFy 0=

FCE 45°cos W+ 0=

FCE 2W–=

FBC W=

Figure 5.15   Balancing the forces at
Joint E yields the forces in elements
DE and BE.

FDE

FCE

FBE

Joint E

ΣFx 0=

FDE– FCE 45°cos+ 0=
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(5.15)

(5.16)

We know that  from (5.11), so

(5.17)

(5.18)

Finally, we analyze joint B (Figure 5.16).

Balancing forces in the x and y directions yields the forces acting in members AB and BD.

(5.19)

(5.20)

(5.21)

(5.22)

We find that

(5.23)

ΣFy 0=

FBE FCE 45°cos+ 0=

FCE 2W–=

FDE W–=

FBE W=

Figure 5.16   Balancing the forces at
Joint B yields the forces in elements
AB and BD.

Joint B

FAB

FBD FBE

FBC

ΣFx 0=

FAB FBD– 45°cos+– FBC+ 0=

ΣFy 0=

FBD 45°cos– FBE– 0=

FAB 2W–=
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(5.24)

The resulting internal forces are displayed in the figure below (Figure 5.17).  Compressive forces

are displayed in red while tensile forces are displayed in blue.

Note also that once we have solved for the forces in the elements of the truss, we can determine

the deformation of the structure.  In the next section, we will build on our knowledge to this point.

5.4  Finding Displacements

We know from our study of axial force-deformation that the axial deformation of an axially-

loaded bar is given by

(5.25)

where P represents the axial load, L represents the undeformed length of the bar, E represents the

Young’s modulus, and A represents the undeformed cross-sectional area of the bar.  Recall that

the stress in an axially-loaded bar is given by , that the strain in the bar is given by ,

FBD 2W–=

Figure 5.17   The internal forces are displayed above.  Compressive forces are displayed in red
(negative); tensile forces are displayed in blue (positive).

W

A B C

ED
- W

W

W2W

- 2 W
- 2 W

δ PL
EA
--------=

σ P
A
----= ε δ

L
---=
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and that these are related by , where E, the Young’s modulus is a property of the material

(refer to Material Properties Reference).  In general, <<1 (typically < 0.2%), so we can assume

 to be small relative to L.  A schematic indicating these quantities is given in Figure 5.18.

Note that in the previous section we did not introduce specific materials or cross-sectional areas;

this is because the internal forces of a truss are independent of material and area (within the elastic

regime of the material).

σ Eε=

ε

δ

Figure 5.18   A schematic indicating the behavior of an axially-loaded
bar.  Note that the displacements are exaggerated for purposes of illustra-
tion.

L

A

P

δ / 2

δ / 2
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Individual truss members are only subjected to axial forces.  For the statically determinate struc-

ture, we have solved for all forces in all members (issues regarding solutions to statically indeter-

minate structures will be discussed later).  The length, Young’s modulus, and cross-sectional

areas are also known.  Therefore, we can use the force-deformation of Equation (5.25) to deter-

mine the axial deformation of each member.  The final step in determining the deformed shape of

the structure is to use a condition known as compatibility.  Compatibility requires that the struc-

ture deforms such that it remains together - or compatible - during loading and deformation.

Regardless of what sort of deformation occurs, several things must remain true.  Joints will only

displace in active degrees of freedom.  This means that fixed joints will remain fixed.  It also

means that joints constrained in the x-direction will only translate in the y-direction (if at all).

Similarly, joints constrained in the y-direction will only translate in the x-direction.  Finally mem-

bers that were pinned together prior to deformation will remain pinned after deformation.  They

will not become disconnected.  Using this knowledge, the problem of determining the displace-

ment of the truss system, such that it remains compatible with the deformation of all members,

reduces to a problem of geometry.  Using an example from the previous section, we will deter-

mine the truss deformation.
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Let us assume that the length L of each of the aluminum members is 0.5m, that the cross-sectional

area A of each member is 500 mm2, and that the load W has a magnitude of 10,000 N.  We know

from the previous section (5.6) that the force in each of the members is .  We find that the

deflection of each of the members is

(5.26)

We know several characteristics of the deformed structure:

• members AC and BC are each pinned to ground at joints A and B

Figure 5.19   This symmetric, aluminum, 2-member truss is subjected to
a downward load of magnitude 10,000 N.  The members are of length
0.5 m and area 500 sq. mm.

60o

W

A B

C

W

3
-------

δAC δBC δ PL
EA
--------

W

3
-------

 
  0.5( )

70 10
9×( ) 500 10

6–×( )
------------------------------------------------------------- 8.25 10

9–×( )W 8.25 10
5–× m= = = = = =
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• each member will elongate by 

• members AC and BC are pinned to each other at joint C 

Compiling this information yields a picture as shown in Figure 5.20.  The undeformed structure is

represented in green.  Each red arc represents the line traced by rotating the elongated element

about its upper fixed joint.  Note that the deformations have been grossly exaggerated for the pur-

poses of illustration.  The point where the elements meet is shown in black.  At this point, all con-

ditions of compatibility are met.  The members are still pinned at joints A and B.  The members

are each elongated by .  The members are still pinned together at joint C.  Although joint C has 2

degrees of freedom (x and y translation), it will only displace in the vertical degree of freedom

due to the symmetry of the material, geometry, and loading of the problem.

[Note that if AAC and ABC were different, this would not be true.  In the case where AAC < ABC,

for example, the member displacements would be given by

 (5.27)

As a result, the displacement of C would not be strictly vertical.]

δ

δ

δAC
PL

EA1
----------- δBC

PL
EA2
-----------=>=
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Using knowledge of the geometry, we can find the vertical deflection of joint C.

We know from (5.26) that

(5.28)

Since the undeformed length of each of the members is the same, and the deflection of each of the

members is the same, we can represent the deformed structure with an isosceles triangle, as

shown.

Figure 5.20   Exaggerated deformations are shown for purposes of
illustration.  The green elements represent the undeformed struc-
ture.  The red elements represent the range of motion of the
deformed elements (with out the constraint of compatibility).  The
black elements represent the forced compatibility constraint.  This
is the deformation mode of the structure - the joint deflects verti-
cally.

C

A B

δAC δBC 8.25x10
5–
m= =
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We can split the triangle in half by drawing a vertical line from the bottom vertex to the midpoint

of the edge with length L.

This will enable us to use the Pythagorean theorem to find the height, h, of the triangle.

Figure 5.21   This isosceles triangle represents the
deformed shape of the aluminum 2-member truss.

L

L + L +

Figure 5.22   This right triangle provides
enough information to find the height of
the isosceles triangle.  This is enough
information to find the vertical displace-
ment of the joint.

L/2

L +
h
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(5.29)

We know that L = 0.5 m and that .  This gives us

(5.30)

The height, u, of the undeformed structure, was

(5.31)

The difference between these yields the vertical deformation, d, of Joint C:

(5.32)

This is the general procedure we will use in determining the deformation of a system:

• use equilibrium to find internal forces

• use force-deformation to find member deformations

• apply compatibility and use geometric relations to determine system deformation

Now let’s look at a more complex example.  Let’s examine the same structure, subjected to a hor-

izontal load W, as shown.   Note that the material and geometry in this case are still symmetric,

but the loading is not.

h( )2 L
2
---

 
 

2
+ L δ+( )2

=

δ 8.25x10
5–
m=

h 0.4331080m=

u 0.4330127m=

d 9.53x10
5–
m=
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Isolating joint C allows us to apply the equations of equilibrium to the problem (Figure 5.24).

Balancing forces in the x and y directions yields the forces acting in members AC and BC.

Figure 5.23   This is the same structure as in the previous example;
however, it is now subjected to a horizontal load of magnitude W.

W

A B

C

60o

Figure 5.24   A free-body diagram of joint C.

W
Joint C

FAC FBC

60o
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(5.33)

(5.34)

(5.35)

(5.36)

(5.37)

From (5.34) and (5.37), we find

(5.38)

We find, in other words, that member AC is subjected to a tensile load of magnitude W and that

member BC is subjected to a compressive load of magnitude W.  We again identify a few charac-

teristics of the deformed structure:

• the members will still be pinned at joints A and B in the deformed state

• member AC will elongate by

 (5.39)

• member BC will shorten by

(5.40)

• the members will still be pinned together at joint C

Using this information, we can again construct a diagram that will help us determine the displace-

ment of joint C (Figure 5.25).  The result of this diagram is a triangle with known side lengths.

The problem of determining the position of C is a geometric one, resolved using the law of

cosines.

ΣFx 0=

FAC 60°cos×– FBC 60°cos W+ + 0=

ΣFy 0=

FAC 30°cos× FBC 30°cos+ 0=

FAC FBC–=

FAC FBC– W= =

δAC
PL
EA
-------- 10 000,( ) 0.5( )

70 10
9×( ) 500 10

6–×( )
------------------------------------------------------------- 1.43 10

4–× m= = =

δBC 1.43 10 4–× m=
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Given the diagram as shown in Figure 5.26, we first find the angle 

Figure 5.25   Exaggerated deformations are shown for purposes of
illustration.  The result of this deformation is a triangle where the
lengths of the sides are given by the distance between the 2 sup-
ports, and the 2 deformed member lengths.

A B

C

θ

Figure 5.26   Idealized deformation of truss structure.

LAC

0.5 m

LBC

A B

C

θ
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Using the law of cosines, we have

(5.41)

(5.42)

Simplifying, we find

(5.43)

We now construct a right triangle as shown in Figure 5.27.

Using basic trigonometric relations, we find

(5.44)

(5.45)

We know that the values of b and h were - in the undeformed state - 0.25 m and 0.4330127019 m,

respectively (this is given by the geometry of the isosceles triangle representing the undeformed

truss structure).

LBC
2

LAC
2

0.5( )2
2 LAC( ) 0.5( ) θcos–+=

0.5 1.43 10
4–×–( )

2
0.5 1.43 10

4–×+( )
2

0.5( )2
2 0.5 1.43 10

4–×+( ) 0.5( ) θcos–+=

θ 59.97162°=

Figure 5.27   Idealized deformation of truss structure.

LAC

A

C

b

h

θ

b LAC θcos 0.250286m= =

h LAC θsin 0.43301262m= =
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This implies that joint C displaces an amount   in the x-direction and

 in the y-direction.

The method for finding system displacements is – as is finding internal forces – a systematic one.

The procedure is to use the forces to determine the deformed member lengths, determine charac-

teristics of the deformed structure, and solve the problem.  Note that relying on the law of cosines

can quickly lead to increased complexity, especially when dealing with multi-member truss struc-

tures.  An alternative approach - matrix truss analysis - provides us with a methodology for deter-

mining system displacements, that is decidedly simpler for multi-member truss structures. 

5.5  Matrix Truss Analysis

Matrix truss analysis is a matrix-based approach for solving truss system unknowns.  This can

necessitate seemingly inordinate amounts of work for simple problems that we could solve using

the methods presented earlier; however, matrix truss analysis can be very useful for more com-

plex problems, and we can use computers to aid in our computation.  Matrix truss analysis will

take full advantage of the fact that deformations and displacements are small.  Matrix truss analy-

sis also enables us to solve for statically indeterminate problems directly.

Recall the force-deformation behavior of a uniaxially-loaded bar:

(5.46)

The quantity  represents the axial stiffness of the member (in both tension and compression). 

We can define a stiffness matrix for the member in a more general framework by considering its

possible degrees of freedom.  We will refer to this as the local stiffness matrix (it will later be dif-

ferentiated from the global stiffness matrix).

Let us first consider a bar oriented along the x-axis, as shown in Figure 5.28.

dx 2.86 10× 4–
m=

dy 7.80 10
8–
m×=

F AE
L

--------δ=

AE
L

--------
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This bar has two degrees of freedom, the x translation of each of its two nodes, i and j.  Now, let

us set  and require that , as shown in Figure 5.29.

From (5.46), we find

(5.47)

(5.48)

Now, let us set  and require that , as shown in Figure 5.30.

i j
Fi

ui uj

Fj

Figure 5.28   This member has two d.o.f., one x translation at each node.

uj 0= ui 0≠

i j
Fi

ui uj = 0

Fj = -Fi

Figure 5.29   Member subjected to a positive displacement at node i while fixing the displace-
ment of node j to be zero.

Fi
AE
L

--------ui=

Fj
AE
L

--------ui–=

ui 0= uj 0≠
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From (5.46), we find

(5.49)

(5.50)

Combining (5.47), (5.48), (5.49), and (5.50) into matrix form, we have

(5.51)

or, more generally

(5.52)

where

(5.53)

and

(5.54)

i j
Fi = -Fj

ui = 0 uj

Fj

Figure 5.30   Member subjected to a positive displacement at node j while fixing the displacement of
node i to be zero.
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--------uj=
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AE
L

--------– uj=
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Fj

AE
L

-------- AE
L

--------–

AE
L

--------–
AE
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--------

ui

uj

=

F{ } k[ ] u{ }=

F{ }
Fi

Fj

=

u{ }
ui

uj

=
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are vectors and where

(5.55)

is the stiffness matrix.  We can write this more generally as

(5.56)

Physically, the matrix element kmn is the force in the m d.o.f. due to a unit displacement in the n

d.o.f. when all other d.o.f. are constrained to be zero.  Specifically, for the example shown in

Figure 5.28, we have

(5.57)

or, more specifically

(5.58)

This is the same as

(5.59)

or, in terms of the linear equations,

(5.60)

(5.61)

If we consider the specific case where u1 = 0 and u2 = u*, we have

k[ ]

AE
L

-------- AE
L

--------–

AE
L

--------–
AE
L

--------

=

Fm kmnun

n 1=

numberDOF

∑=

F{ } k[ ] u{ }=

Fi

Fj

k11 k12

k21 k22

ui

uj

AE
L

-------- AE
L

--------–

AE
L

--------–
AE
L

--------

ui

uj

= =

Fi kijuj

i 1=

2

∑=

F1 k11u1 k12u2+=

F2 k21u1 k22u2+=
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F1 = k12u* = (- )u* (5.62)

F2 = k22u* = ( )u* (5.63)

If we instead consider the case where u1= u2 = u*, we have

F1 = k11u* + k12u* = ( - )u* = 0 (5.64)

F2 = k12u* + k22u* = (- + )u* = 0 (5.65)

Note that F1 and F2 are both equal to zero in this case because the bar undergoes rigid body dis-

placement and no deformation.

Now, let us consider the example of a general planar (two-dimensional) truss element, inclined at

some arbitrary angle  (Figure 5.31).  This truss element has four degrees of freedom, two

degrees of freedom (x and y translation) at each joint.

AE
L

--------

AE
L

--------

AE
L

-------- AE
L

--------

AE
L

-------- AE
L

--------

θ

Figure 5.31   This general plane truss member has 4 d.o.f., 2 (x and y translations) at each node.  It
is inclined at an arbitrary angle .θ

Joint A

Joint B

u1, d.o.f. #1 (x translation)

u2, d.o.f. #2 (y
translation)

0

u4, d.o.f. #4 (y
translation)

u3, d.o.f. #3 (x translation)

x

y
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We will show that forces at the joints corresponding to each degree of freedom can be related to

the degrees of freedom (u1, u2, u3, u4 as depicted in Figure 5.31) as follows:

(5.66)

where

(5.67)

is the stiffness matrix of the member.

Physically, a matrix element  is defined as the force along degree of freedom i due to a virtual

unit displacement along degree of freedom j.  Consider the case of .  This represents the force

along degree of freedom 1 due to a unit displacement along degree of freedom 1 when all other

degrees of freedom are constrained.  As an example, in matrix form, we have for a unit displace-

ment in degree of freedom #1:

(5.68)

(5.69)

F1

F2

F3

F4

kq

u1

u2

u3

u4

=

kq[ ]

k11 k12 k13 k14

k21 k22 k23 k24

k31 k32 k33 k34

k41 k42 k43 k44

=

kij

k11

F1

F2

F3

F4

k11 k12 k13 k14

k21 k22 k23 k24

k31 k32 k33 k34

k41 k42 k43 k44

1
0
0
0

=

F1

F2

F3

F4

k11

k21

k31

k41

=
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The forces required in the member to achieve this unit displacement in the 1-direction are F1 =

k11, F2 = k21, F3 = k31, F4 = k41.  In general, kij is the force in the i d.o.f. given a unit displacement

in the j d.o.f. when all other d.o.f. are set to zero.  A unit displacement along degree of freedom 1

will lead to a compression of the member as shown (Figure 5.32).

Under this loading, the compression, , of the member is given by  if we assume the defor-

mation and displacements are small (refer to Assumption of Small Displacements).  To induce a

displacement of this magnitude, we return to our definition of the deformation of an axially-

loaded member:

(5.70)

Figure 5.32   General member AB is subjected to a unit displacement in d.o.f. #1.
This results in a compressive force of magnitude P within the member.  The x and
y components of P are F1 and F2, respectively.

Joint A

Joint B

Unit displacement in
d.o.f. #1

location of Joint A after
unit displacement
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δ
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--------=
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We know that P is the force that must be applied along the axis of the member to induce a defor-

mation .  This yields

(5.71)

The component of this axial force that acts in degree of freedom 1 is given from geometry by

(5.72)

Combining (5.71) and (5.72) gives us that

(5.73)

If we find the y component of force P, we will find the value of F2, which is .

(5.74)

For degrees of freedom 3 and 4 (in the case of a unit displacement in the x-direction), we find: 

(5.75)

(5.76)

since the forces ar Joint B must be equal and opposite to those at Joint A.

Next, to find k12, we virtually apply a unit displacement in degree of freedom #2, as shown in

Figure 5.33.

δ

P AE
L

-------- θ( )cos=

F1 P θ( )cos=

F1 k11
AE
L

-------- θ( ) θ( )coscos
AE
L

-------- θ( )cos( )2
= = =

k21

F2 k21
AE
L

-------- θ( ) θ( )sincos= =

F3 k31 F1– AE
L

--------– θ( )cos( )2
= = =

F4 k41 F2– AE
L

--------– θ( ) θ( )sincos= = =
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P is again the force that must be applied along the axis of the member to induce a deflection .  It

now has a value of

(5.77)

The component of this axial force that acts in degree of freedom 1 is given from geometry by

(5.78)

Combining (5.77) and (5.78) gives us

(5.79)

Figure 5.33   General member AB is subjected to a unit displacement in d.o.f. #2. This
results in a compressive force of magnitude P within the member.  The x and y components
of P are F1 and F2, respectively.

Joint A

Joint B

Unit displacement in
d.o.f. #2

location of Joint A after
unit displacement

F1

F2 P δ

δ

P
AE
L

-------- θ( )sin=

F1 P θ( )cos=

F1 k12
AE
L

-------- θ( )sin θ( )cos= =



298

We use a similar procedure to find the other terms in the local stiffness matrix.  We note that, sim-

ilar to the case of k12 and k21, that  for every value of i and j.  This implies, by the defini-

tion of a symmetric matrix, that the local stiffness matrix is symmetric.  The diagonal components

are also all positive.  This makes sense because we expect that a positive force in a particular

degree of freedom will induce a positive displacement in the same degree of freedom; likewise, a

negative force in a degree of freedom will induced a negative displacement in the same degree of

freedom.

We obtain the following local stiffness matrix

(5.80)

where  and .

Another important observation to make is that only three different terms are calculated in deter-

mining the local stiffness matrix: CC, CS, and SS.  This knowledge will save us time now and

computing power later.

The next step is to obtain the local stiffness matrices of all the members of the structure.  Upon

completion of this step, we assemble the previously mentioned global stiffness matrix.  This

matrix combines the effects of the stiffnesses of each of the local elements and enforces structural

compatibility.  In order to construct this global stiffness matrix, we identify global d.o.f. and

match local d.o.f. to global ones.  Upon doing so, we add the stiffness components from the local

stiffness matrices to the appropriate corresponding element in the global stiffness matrix.  Now,

we will look at a specific example to illustrate the procedure for constructing the global stiffness

matrix.

Consider the three-member truss shown in Figure 5.34.

kij kji=

kq[ ] AE
L

--------

CC CS CC– CS–

CS SS CS– SS–

CC– CS– CC CS
CS– SS– CS SS

=

C θ( )cos= S θ( )sin=
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For this problem, assume that the areas and materials of the three members are identical.  In other

words,  and .  We first compute the stiffness matrix for each

element i.

For, element 1, as shown in Figure 5.35, , so we obtain

P

1
3

2

α

Figure 5.34   Consider this three-member truss subjected to an end
load of magnitude P.

A1 A2 A3 A= = = E1 E2 E3 E= = =

1

4

3

1

2

θ=900

Figure 5.35   Local degrees of freedom for Member 1.

θ 90°=
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(5.81)

For, element 1, as shown in Figure 5.35, , so we obtain

(5.82)

k1

0 0 0 0

0
AE
L1
-------- 0 AE

L1
--------–

0 0 0 0

0 AE
L1
--------– 0

AE
L1
--------

=

2

θ=00

1

2 4

3

Figure 5.36   Local degrees of freedom for Member 2.

θ 0°=

k2

AE
L2
-------- 0 AE

L2
--------– 0

AE
L2
--------– 0 AE

L2
-------- 0

0 0 0 0
0 0 0 0

=

Figure 5.37   Local degrees of freedom for Member 3.

3
θ=α

4

3

1

2
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For, element 1, as shown in Figure 5.35, , so we obtain

(5.83)

where  and .

We now identify common degrees of freedom between elements; this enforces the compatibility

of the structure.  We identify global degrees of freedom and match local degrees of freedom to

global ones.  Figure 5.38 and Figure 5.39 indicate the relation of global and local degrees of free-

dom as we have constructed them.

θ α=

k3
AE
L3
--------

CC CS CC– CS–

CS SS CS– SS–

CC– CS– CC CS
CS– SS– CS SS

=

C θ( )cos= S θ( )sin=

Figure 5.38   Global degrees of freedom for the three-member truss
problem.

1

2

5

6

4

3
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We now construct a table that indicates the relation among global and local degrees of freedom

(Table 5.5).

TABLE 5.5   List of which global d.o.f. are associated with which local d.o.f.

Global degree of freedom (d.o.f.) Corresponding local d.o.f.

#1
Member 2, #3
Member 3, #1

#2
Member 2, #4
Member 3, #2

#3
Member 1, #1
Member 2, #1

#4
Member 1, #2
Member 2, #2

#5
Member 1, #3
Member 3, #3

#6
Member 1, #4
Member 3, #4

Figure 5.39   Local degrees of freedom for the three-member truss problem.

3

4

3

1

2

1

4

3

1

2

4

3

2
1

2



303

We now assemble the global stiffness matrix KG, where each element Kij has a contribution from

the members that share those degrees of freedom.  We find that

(5.84)

(5.85)

Upon creating this global stiffness matrix, we can relate the system forces to the system displace-

ments in the following manner:

(5.86)

where {F} represents the force vector (representing x and y forces at each of the joints), [KG] is

the global stiffness matrix, and {u} is the displacement vector (representing x and y displacements

at each of the joints).

{F} will be of the following form

 (5.87)

KG[ ]

K11 K12 K13 K14 K15 K16

K21 K22 K23 K24 K25 K26

K31 K32 K33 K34 K35 K36

K41 K42 K43 K44 K45 K46

K51 K52 K53 K54 K55 K56

K61 K62 K63 K64 K65 K66

G

=

KG[ ]

k11
3( )

k33
2( )

+ k34
2( )

k12
3( )

+ k31
2( )

k32
2( )

k13
3( )

k14
3( )

k21
3( )

k43
2( )

+ k22
3( )

k44
2( )

+ k41
2( )

k42
2( )

k23
3( )

k24
3( )

k13
2( )

k14
2( )

k11
1( )

k11
2( )

+ k12
2( )

k12
1( )

+ k13
1( )

k14
1( )

k23
2( )

k24
2( )

k21
2( )

k21
1( )

+ k22
1( )

k22
2( )

+ k23
1( )

k24
1( )

k31
3( )

k32
3( )

k31
1( )

k32
1( )

k33
1( )

k33
3( )

+ k34
1( )

k34
3( )

+

k41
3( )

k42
3( )

k41
1( )

k42
1( )

k43
1( )

k43
3( )

+ k44
1( )

k44
3( )

+

=

F{ } KG[ ] u{ }=

F{ }

F1

F2

F3

…
Fi

=
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and {u} will be of the form

(5.88)

We must apply the problem boundary conditions by assigning known values to these two vectors.

We know that the displacement of any fixed degree of freedom will be 0.  We also know that -

unless an external force is applied - the force in the direction of any unconstrained degree of free-

dom will be 0.  In the case where an external load is applied in the direction of an unconstrained

degree of freedom, that force will be equal to the applied load.  It is important to note that if a

force is applied in the direction of a fixed degree of freedom, it will not affect the structure.  Note

that we can solve for both forces and displacements using this method.

To illustrate this entire process of matrix structural analysis, we will look at a simple example that

we have already examined using other methods.

u{ }

u1

u2

u3

…
ui

=
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We will again consider the members to be of aluminum construction, of length 0.5 m, the cross-

sectional areas of the members to be 500 sq. mm., and the load W to have magnitude 10,000 N.

We will first define our local d.o.f.

Figure 5.40   We revisit this example that we solved earlier.  Now
we will use a different approach: matrix structural analysis.

W

A B

C

60o
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Next we will define our global d.o.f.

d.o.f. #2

d.o.f. #1

d.o.f. #4

d.o.f. #3A

C

d.o.f. #4

d.o.f. #3B

d.o.f. #2

d.o.f. #1
C

Member AC Member BC

Figure 5.41   Local d.o.f. definitions for members AC and BC.

Figure 5.42   Global d.o.f. definition for symmetric two-member truss.  This
assignment is arbitrary and will not affect our results as long as we are con-
sistent.

d.o.f. #6

d.o.f. #5

d.o.f. #4

d.o.f. #3

d.o.f. #2

d.o.f. #1A B

C
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Now we will construct the local stiffness matrices for each of the elements.  We begin with mem-

ber AC.  The angle  at which this member is positioned from the horizontal is .  The length,

area, and Young’s modulus are also known.  Using (5.80) we have:

(5.89)

   (5.90)

  (5.91)

  (5.92)

Now we construct the local stiffness matrix for BC.  The angle  at which this member is posi-

tioned from the horizontal is .  Again using we (5.80) have:

(5.93)

  (5.94)

  (5.95)

  (5.96)

Having created the local stiffness matrices, it is time to assemble the global stiffness matrix.  We

begin by creating a list of which local d.o.f. correspond to which global d.o.f. (Table 5.6).

θ 120°

kAC
AE
L

--------

CC CS CC– CS–

CS SS CS– SS–

CC– CS– CC CS
CS– SS– CS SS

=

CC 120°( )cos( )2 1
4
---= =

CS 120°( ) 120°( )sincos 3
4

-------–= =

SS 120°( )sin( )2 3
4
---= =

θ

60°

kBC
AE
L

--------

CC CS CC– CS–

CS SS CS– SS–

CC– CS– CC CS
CS– SS– CS SS

=

CC 60°( )cos( )2 1
4
---= =

CS 60°( ) 60°( )sincos 3
4

-------= =

SS 60°( )sin( )2 3
4
---= =
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Now we assemble the global matrix by adding local stiffness matrix components to the appropri-

ate global components.

(5.97)

Note that the local stiffness matrix of member AC does not contribute to the global stiffness

matrix in global degrees of freedom 5 or 6.  This is because member AC has no effect on (nor is it

affected by) these d.o.f.; it is not connected to the joint where these d.o.f. act.

Now, in order to solve for the forces and displacements, we solve the following equation

 (5.98)

where [KG] is given by

TABLE 5.6   List of which global d.o.f. are associated with which local d.o.f.

Global degree of freedom (d.o.f.) Corresponding local d.o.f.

#1 Member AC, #3

#2 Member AC #4

#3
Member AC, #1;
Member BC, #1

#4
Member AC, #2;
Member BC, #2

#5 Member BC #3

#6 Member BC #4

KG[ ]

K11 K12 K13 K14 K15 K16

K21 K22 K23 K24 K25 K26

K31 K32 K33 K34 K35 K36

K41 K42 K43 K44 K45 K46

K51 K52 K53 K54 K55 K56

K61 K62 K63 K64 K65 K66

G
k33 k34 k31 k32 0 0

k43 k44 k41 k42 0 0

k13 k14 k11 k12 0 0

k23 k24 k21 k22 0 0

0 0 0 0 0 0
0 0 0 0 0 0

AC
0 0 0 0 0 0
0 0 0 0 0 0
0 0 k11 k12 k13 k14

0 0 k21 k22 k23 k24

0 0 k31 k32 k33 k34

0 0 k41 k42 k43 k44

BC

+= =

F{ } KG[ ] u{ }=
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(5.99)

In order to solve (5.98), we must also account for boundary conditions.  We know that the dis-

placements at the fixed joints will be 0; we also know that the loads at joint C will be 0 in the ver-

tical direction (d.o.f. #4) and 10,000 N in the horizontal direction (d.o.f. #4).  This information is

given below (Table 5.7).

This information provides us means to solve this problem.

[Note that this stiffness matrix is based only on the geometry of the truss structure; it is not based

on the loading conditions.  This KG could thus be used to solve the problem shown Figure 5.19

(where the applied load is in the y-direction), as well as this problem.]

TABLE 5.7   Boundary conditions and known forces.

Known Quantities Value

F3 10,000 N

F4 0 N

u1 0 m

u2 0 m

u5 0 m

u6 0 m

KG[ ] AE
L

--------

1
4
--- 3

4
-------– 1

4
---–

3
4

------- 0 0

3
4

-------–
3
4
--- 3

4
------- 3

4
---– 0 0

1
4
---–

3
4

------- 1
2
--- 0 1

4
---– 3

4
-------–

3
4

------- 3
4
---– 0

3
2
--- 3

4
-------– 3

4
---–

0 0 1
4
---– 3

4
-------–

1
4
--- 3

4
-------

0 0 3
4

-------– 3
4
---–

3
4

------- 3
4
---

=
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So we have

(5.100)

which simplifies to

(5.101)

Note that we can leave the  term outside of the matrix, since A, E and L are the same for all

members in the structure.  Solving this equation will yield the reaction forces and the displace-

ments.  Since u3 and u4 are the only desired unknowns, (5.101) reduces to a simple pair of linear

equations:

(5.102)

F1

F2

F3

F4

F5

F6

AE
L

--------

1
4
--- 3

4
-------– 1

4
---–

3
4

------- 0 0

3
4

-------–
3
4
--- 3

4
------- 3

4
---– 0 0

1
4
---–

3
4

------- 1
2
--- 0 1

4
---– 3

4
-------–

3
4

------- 3
4
---– 0

3
2
--- 3

4
-------– 3

4
---–

0 0 1
4
---– 3

4
-------–

1
4
--- 3

4
-------

0 0 3
4

-------– 3
4
---–

3
4

------- 3
4
---

u1

u2

u3

u4

u5

u5

=

F1

F2

10 000,
0
F5

F6

AE
L

--------

1
4
--- 3

4
-------– 1

4
---–

3
4

------- 0 0

3
4

-------–
3
4
--- 3

4
------- 3

4
---– 0 0

1
4
---–

3
4

------- 1
2
--- 0 1

4
---– 3

4
-------–

3
4

------- 3
4
---– 0

3
2
--- 3

4
-------– 3

4
---–

0 0 1
4
---– 3

4
-------–

1
4
--- 3

4
-------

0 0 3
4

-------– 3
4
---–

3
4

------- 3
4
---

0
0
u3

u4

0
0

=

AE
L

--------

10 000,
0

AE
L

--------

1
2
--- 0

0
3
2
---

u3

u4

=
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If we need to find the other 4 unknowns (F1, F2, F5, F6), we can plug the values for u3 and u4 back

into equation (5.101).  Then, multiplying [KG] by {u} will yield the complete force vector; this

will provide us with information about the reaction forces at the two pinned supports.

Specifically we find that  and  which matches up with our earlier

non-matrix solution (Figure 5.23).  Note that u3 is much smaller than the member length (u3 << L,

or 0.000286 m << 0.5 m).  It is important to realize that - in solving (5.101) - we did not need to

solve for the member forces.  In matrix truss analysis, most of the work is performed in initially

setting up the stiffness matrix.  After that, parameters can easily be varied in analyzing different

solutions.  In this manner matrix truss analysis provides a systematic and successful methodology

for complex truss analysis.

The Truss Structures Simulation uses matrix truss analysis as the basis for its computation; as

such, it enables the calculation of solutions to complex truss problems (go to Truss Structures

Simulation).

5.6  How a Truss Structure Carries Shear and Moment Loads

Now that we have developed the means to analyze truss structures, we can examine the bridge

truss presented in Figure 5.43 in order to understand how a truss structure carries shear and

moment loads.

u3 2.86 10× 4–
m= u4 0.0m=
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We first determine that it is a statically determinate structure, as illustrated in Table 5.8.

Since the structure is comprised solely of triangular sub-elements, we can conclude that the struc-

ture is also stable. Using the Truss Structures simulation, we obtain the load distribution within

the structure: Figure 5.44 illustrates the distribution of compressive and tensile loads. 

TABLE 5.8   Values of quantities for determining static determinacy for 29-member bridge truss example.

Quantity Value

N (number of joints) 16

r (number of reactions) 3

m (number of members) 29

n (=2N-r) 29

Figure 5.43   A 29-member bridge truss, subjected to distributed loading acting at the joints.  This truss  is an
example of a Howe truss design.  The left edge is pinned and the right edge is simply supported.

WW WWWWW

L

L L L L L L L L
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As can be seen, the top and angled members bear the compressive loads; the bottom and vertical

members bear the tensile loads.  This is analogous to the behavior of a beam - pinned on one edge

and simply supported on the other edge - subjected to a distributed load.  Such a beam, as shown

in Figure 5.45, will have a stress distribution through the height of the beam, such that compres-

sive stresses will act in the upper half of the beam and tensile stresses will act in the lower half of

the beam.

Figure 5.44   Loads in the 29-member bridge truss.  Tensile loads are shown in blue and compressive loads
are shown in red.

WWWWWWW

L

q = 7W/L

Figure 5.45   A beam, pinned on the left edge and simply supported on the right, subjected to
a distributed load q.
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To better understand how truss structures can act in this manner, we will determine the forces and

moments acting within the beam.

Drawing a free-body diagram (FBD), as shown in Figure 5.46, yields the system reaction forces:

(5.103)

(5.104)

Taking a cut of the beam at some location x allows us to determine the shear and moment acting

within beam.  This is illustrated in Figure 5.47.

Figure 5.46   Free-body diagram of the beam  - pinned on one edge and simply supported
on the other edge - subjected to a distributed load q. 

P = 7W

RAy RBy

RAx

Resultant load acting at
distance L/2 from each edge

RAx 0=

RAy RBy
7W
2

---------= =
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Applying the equations of equilibrium, we find

(5.105)

(5.106)

(5.107)

(5.108)

(5.109)

(5.110)

We can perform the same type of analysis on the 29-member truss bridge.  We will first draw a

free-body diagram of the entire system, using this to determine reaction forces, as shown in

Figure 5.48.

Figure 5.47   "Cut" of the beam - pinned on one edge and simply supported on the other
edge - subjected to a distributed load q.

Vy Mz

cut location

RAy = 7W/2
x

q = 7W/L

ΣFy 0=

7w
2

--------
7W
L

---------x– Vy+ 0=

Vy
7W
L

---------x 7w
2

--------–=

ΣMcut 0=

7w
2

--------x
7Wx

L
------------ x

2
---

 
 – Mz+ 0=

Mz
7Wx

2

2L
---------------–

7w
2

--------x–=
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We find that

(5.111)

(5.112)

Taking a "cut" of the system, as shown in Figure 5.49, we can find the net shear and moment that

are acting through the structure at that position.

Figure 5.48   Free-body diagram of the 29-member truss bridge. 

WW WWWWW

L

L L L L L L L L

RAy RBy

RAx

RAx 0=

Ay RBy
7W
2

---------= =
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Summing forces and moments, we find that

(5.113)

(5.114)

By analyzing the forces at work at the cut location, as in Figure 5.50, we can understand how the

forces in the members act to bear these shear and moment loads.

Figure 5.49   "Cut" of the 29-member truss bridge. 

WW

L

L L

RAy = 7W/2

x

Vy Mz

Vy
3W
2

---------–=

Mz
7W
2

--------- 2L( ) WL– 6WL= =
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Applying the equations of equilibrium, we find

(5.115)

(5.116)

(5.117)

(5.118)

(5.119)

(5.120)

(5.121)

Figure 5.50   "Cut" of the 29-member truss bridge.  Member forces are
given at the cut location. 

WW

L
L L

RAy = 7W/2

C

D
T

point a

point b

ΣFy 0=

7w
2

-------- W– W– D 45°sin– 0=

D 3W 2
2

-----------------=

ΣFx 0=

C– D 45°cos T+ + 0=

ΣMb 0=

CL 6WL=
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(5.122)

Combining (5.117), (5.119), and (5.122), we find

(5.123)

Returning to Figure 5.50, we see that the vertical component of force D, , must bear the

shear loading.  This is because C and T do not have components in the vertical direction.

(5.124)

which matches exactly with the result found in (5.113).

We also see that the top, bottom, and diagonal members bear the moment loading.  Taking the

moment about any point along the section cut will yield the net section moment:

(5.125)

(5.126)

These results match up exactly with our results from (5.114).

In this manner, truss structures - whose members cannot individually resist shear or moment load-

ing - can  bear shear and bending loads as entire systems.
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Supplementary Information

A.1  Two-Force Members

A two-force member has only two points at which forces are applied. Take the general body dis-

played in Figure A.1.
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Summing forces in the x- and y- directions, we have

(A.3)

(A.4)

(A.5)

(A.6)

Summing moments about point A,

(A.7)

(A.8)

(A.9)

(A.10)

Thus, moment equilibrium shows that the line of action of FB must pass through A as shown in

Figure A.2. 

Figure A.1   General body subjected to loading at two points, A and B.

FAy

FBy

FBx

FAx

Lx

Ly

ΣFx 0=

FAx FBx–=

ΣFy 0=

FAy FBy–=

ΣMA 0=

FBxLy FByLx+ 0=

FBx

Lx

Ly
-----FBy–=

FBy

Ly

Lx
-----FBx–=
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This yields the definition of a two-force member: a member that is acted on by two forces FA and

FB, that are colinear, and equal and opposite in direction. 

A.2  Assumption of Small Displacements

In determining the relation between a unit displacement in one degree of freedom and the force

resulting from such a displacement in another degree of freedom, we made an assumption that 

was small in relation to L (Figure A.3).

Figure A.2   General body as a two-force member.

FA

Lx

Ly

FB

δ
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The approximation was in the calculation of , which we stated was equal to .  The differ-

ence between the actual  and the assumed value of  is illustrated in Figure A.4.

Figure A.3   General member AB is subjected to a unit displacement in d.o.f. #1.
this results in a compressive force of magnitude P within the member.  The x and
y components of P are F1 and F2, respectively.

Joint A

Joint B

u
1
, displacement in d.o.f.

#1

location of Joint A after
unit displacement

F1

F2 P

δ

δ u1 θcos

δ δ
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As can be seen, , the assumed value of , is an upper bound on , the actual value

of .  Joint A traces an arc - not a straight line - when member AB is rotated about Joint B.  For

small angles, however, we can approximate this arc by a straight line, as indicated.  Examining

the value of the assumed and actual displacements given different values of u1 will allows us to

determine the extent of validity of this approximation  We have

(A.11)

and, from geometry

(A.12)

Figure A.4    is actually an approximation of the value of .u1 θcos δ

Joint A

Joint B

u1, displacement in d.o.f.
#1 location of Joint A after

unit displacement

F1

F2 P

δactual

δassumed

Lnewactual

Lnewactual

δassumed δ δactual

δ

δassumed u1 θcos=

Lnewactual u1 θsin( )2
L u1 θcos–( )2

+=
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which gives 

(A.13)

We will arbitrarily set  so that we can easily compare the relation of  to .

The results, as shown in Table A.1, indicate that our approximation is valid for small displace-

ments.

TABLE A.1   Assumed and actual values of  for different displacements u1.

u1

Percentage 
difference

0.005L 0.00353L 0.00353L 0.18%

0.01L 0.00707L 0.00705L 0.36%

0.025L 0.0177L 0.0175L 0.91%

0.05L 0.0354L 0.0347L 1.87%

0.1L 0.0707L 0.0680L 3.95%

δactual L Lnewactual– L u1 θsin( )2 L u1 θcos–( )2
+–= =

θ 45°= δassumed δactual

δ

δassumed δactual
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Appendix E

Real World Examples: Truss Structures
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Appendix F

Online Quiz: Truss Structures

F.1 Book-style questions
1. The three-member planar truss shown is constructed of 10mmx10mm square aluminum
bars.

a . The internal force acting in member AD is
i. 293 N
ii. 424 N
iii. 707 N
iv. 1414 N

b . The internal force acting in member BD is
i. 424 N
ii. 586 N
iii. 1000 N
iv. 1414 N

c . The internal force acting in member CD is
i. 293 N
ii. 424 N
iii. 707 N
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iv. 1414 N

2. The three-member planar truss shown is constructed of steel tubing. Each tube has a
cross sectional area of 0.5 sq. in.

a . The internal force acting in member AD is
i. 2200 lb
ii. 4100 lb
iii. 8400 lb
iv. 9800 lb

b . The internal force acting in member BD is
i. 2600 lb
ii. 4400 lb
iii. 8200 lb
iv. 14000 lb

c . The internal force acting in member CD is
i. less than that in AD and more than that in BD
ii. more than that in AD and less than that in BD
iii. equal to that in AD and more than that in BD
iv. equal to that in AD and less than that in BD

3. The following planar truss is constructed of solid steel rods, each 1/2” in diameter.
Member BC can be assumed to be perfectly horizontal.
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a . The internal force acting in member AC is
i. 442 N
ii. 884 N
iii. 1768 N
iv. 3536 N

b . The internal force acting in member BC is
i. 625 N
ii. 875 N
iii. 1250 N
iv. 1875 N

c . Member BC is in
i. tension
ii. compression
iii. the state of tension/compression cannot be determined with the given information

4. Suppose that the following planar truss is constructed of solid steel rods, each 1/2” in
diameter. Member BC can be assumed to be perfectly horizontal.
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a . The internal force acting in member AC is
i. 50 lb
ii. 71 lb
iii. 100 lb
iv. 141 lb

b . What is the horizontal deflection of node C?
i. 0.0000024”
ii. 0.000042”
iii. 0.00028”
iv. 0.0036”

c . Now suppose that the deflection found in b is the maximum deflection allowed. How
would changing the material to a HDPE (high density polyethylene) affect the weight of
the structure?
i. the HDPE structure would be lighter
ii. the HDPE structure would be heavier
iii. both structures would weigh about the same (within 5%)

5. Consider the following planar truss. The elements are constructed of aluminum tubing,
with an OD of 2” and an ID of 1.8”.
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a . The internal force acting in member AD is
i. 0.6 W
ii. 0.8 W
iii. W
iv. 1.67 W

b . What is the horizontal deflection of node B?
i. 0.0000018 m
ii. 0.0000024 m
iii. 0.0000036 m
iv. none of the above

c . Which of the following is true about the structure?
i. it is statically indeterminate
ii. it has zero-force members
iii. it cannot be solved using matrix truss analysis

6. Consider the following planar truss subjected to a load W. The length between the sup-
ports is fixed at L. The angle theta can be varied between 30 and 150 degrees. The goal is
to minimize the maximum member force in the structure.
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a . What angle theta produces the minimum force in AC?
i. 30 degrees
ii. 45 degrees
iii. 90 degrees
iv. 120 degrees
v. 150 degrees

b . What angle theta produces the minimum force in BC?
i. 30 degrees
ii. 45 degrees
iii. 90 degrees
iv. 120 degrees
v. 150 degrees

c . Now suppose the goal is to make the lightest structure. Assume that the maximum
allowable stress (compression or tension) is S. What angle theta produces the lightest
structure?
i. 30 degrees
ii. 45 degrees
iii. 90 degrees
iv. 120 degrees
v. 150 degrees

7. Consider the following planar truss subjected to a load W. The length between the sup-
ports is fixed at L. The angle theta can be varied between 30 and 150 degrees. The goal is
to minimize the maximum member force in the structure.
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a . What angle theta produces the minimum force in AC?
i. 30 degrees
ii. 45 degrees
iii. 90 degrees
iv. 120 degrees
v. 150 degrees

b . What angle theta produces the minimum force in BC?
i. 30 degrees
ii. 45 degrees
iii. 90 degrees
iv. 120 degrees
v. 150 degrees

c . Now suppose the goal is to make the lightest structure. Assume that the maximum
allowable stress (compression or tension) is S. What angle theta produces the lightest
structure?
i. 30 degrees
ii. 45 degrees
iii. 90 degrees
iv. 120 degrees
v. 150 degrees

F.2 Conceptual Questions
1. Which of the following is NOT an assumption made in treating a system as a truss
structure?

i. Forces must balance
ii. Joints are frictionless
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iii. Members are made of the same material
iv. Members are slender
v. All of these assumptions are made

2. Why is diamond an impractical material for a truss structure?

i. It is expensive
ii. It cannot readily be formed into truss members
iii. It would be too heavy
iv. a. and b.
v. a., b., and c.

3. Is the following a stable truss (consider any applied loads to occur in the plane of the
truss)?

i. Yes
ii. No

4. Is the following a stable truss (consider any applied loads to occur in the plane of the
truss)?
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i. Yes
ii. No

5. Is the following a stable truss (consider any applied loads to occur in the plane of the
truss)?

i. Yes
ii. No

6. If subjected to a specified tensile load, which of the following will deform LEAST?

i. A 48" long steel pipe with OD = 2", ID = 1.75"
ii. A solid 24" long aluminum cylindrical bar with radius of 1/2"
iii. A solid 36" long steel bar with a square 2"x2" cross-section
iv. A solid 40" long aluminum bar with a rectangular 8"x1/4" cross-section

7. True or false, certain trusses have members that do not behave as two-force members.

i. True
ii. False
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8. True or false, a truss joint can be fixed so that members attached at that joint cannot
rotate.

i. True
ii. False

9. The following structure has

i. One member in tension and one in compression
ii. Two members in tension
iii. Two members in compression
iv. none of the above

10. The following structure has

i. One member in compression
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ii. Two members in compression
iii. Three members in compression

11. The axial load-deformation behavior of an individual truss element is based on its

i. Material
ii. Length
iii. Cross-sectional shape
iv. All of the above
v. a. and b. only

12. The stiffness of an individual truss element is given by

i. E/AL
ii. EA/L
iii. L/EA
iv. LE/A

13. Truss systems where the internal forces can be found using only the method of joints

i. are statically indeterminate
ii. are statically determinate
iii. cannot be solved using matrix truss analysis
iv. a. and c.
v. b. and c.

14. True or false, truss matrix analysis can be used to solve statically indeterminate sys-
tems.

i. True
ii. False

15. If subjected to a specified tensile load, which of the following will deflect MOST?

i. A solid 2.0 m long steel rod with a radius of 0.5 cm
ii. A solid 2.0 m long steel bar with a square 2 cm x 2 cm cross-section
iii. A solid 2.0 m long aluminum bar with a square 2 cm x 2 cm cross-section
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iv. A solid 2.0 m long aluminum rod with a radius of 2 cm

16. In the planar case, an individual truss member can have as many as ___ degrees of
freedom.

i. 1
ii. 2
iii. 3
iv. 4

17. Which of the following is true about the stiffness matrix for an individual member of a
truss?

i. It is symmetric
ii. The values of the matrix elements depend on the orientation of the member
iii. The values of the matrix elements are independent of material
iv. a. and b.
v. a., b., and c.

18. Which of the following is true about a truss member with 0 degrees of freedom?

i. It will translate
ii. It will rotate
iii. It will not deform
iv. a. and c.
v. b. and c.

19. A singular global stiffness matrix implies

i. The structure is overconstrained
ii. The structure is underconstrained
iii. Rigid deformation modes are not possible
iv. None of the above

20. Consider the following planar truss subjected to two loads. The length of elements AC
and BC are the same. Is member AC in tension or compression?
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i. tension
ii. compression
iii. cannot tell given this information

21. Consider the following planar truss subjected to two loads. The length of elements AC
and BC are the same. Is member BC in tension or compression?

i. tension
ii. compression
iii. cannot tell given this information
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Appendix G

Design Exercise: Truss Support Structure
2.001: Mechanics of Materials I

Fall 2001
Department of Mechanical Engineering

Cambridge, MA 02139

Design Project: Truss Support Structure

October 29, 2001

SYNOPSIS

The goal of this project is to design a truss bridge to span a moat surrounding a castle.  The

design goal is to provide the lowest weight structure that meets the design requirements.

DESIGN

Your job is to – in teams of 2 students – design a lightweight, two-dimensional truss struc-

ture that will meet the following design requirements. A schematic outlining the design

constraints is shown in the figure below.

.

A government agency in Germany is planning to reconstruct a pedestrian bridge across a

support
mounting
surface

W = 10.0 m

H
=

1
.5

m

location of truss
support structure
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castle’s moat.  They have contacted you to provide the most lightweight design.  The pro-

posed method for supporting this walkway is by means of a truss structure running the

length of the bridge on both sides (therefore, you may assume the bridge loading is equally

shared by the truss structure on each side and just model one truss structure as a two-

dimensional truss).  The distance across this moat is 10.0 m, and the mounting points for

supports are given in the figure above.  The structure must fit within the 1.5 m x 10.0 m

rectangle illustrated in the figure.

The agency has told you that they expect there to be – at a maximum – 200 people on the

bridge at a time.  The mass of the concrete walkway (supported by the truss structure) is

9600 kg (4.0 m wide, 12 cm thick, density of concrete = 2000 kg/m3).  The concrete walk-

way must be pinned to the truss structure at a minimum of four locations.

In modeling the boundary conditions you should expect there to be pinned joints on one

side of the bridge, and expansion joints (constrained in the y-direction, free to slide in the

x-direction) on the opposite side.

There are design constraints relating to the stiffness of the structure and to the strength of

the structure:

a) Stiffness constraint: The vertical deflection of the bridge cannot exceed 0.025 m (2.5

cm) at any of the top joints (those connected to the walkway).

b) Strength constraint: You must ensure that the structure does not fail under the loading

conditions.  Failure is defined in this case as a situation where the stress in any  truss

member exceeds  65% of the yield stress of the material.1
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c) Buckling constraint: You must also ensure that the structural members do not undergo

buckling.  Buckling – assuming solid circular cross-sections – is defined as a situation

where the compressive stress in a column exceeds:

where E is the Young’s modulus, L is the member length, and R is the radius of the cir-

cular cross-section.2

Approved materials for this project are shown in the table below, along with relevant

material properties. You should make reasonable assumptions about the problem in for-

mulating your design. You may (and should) use the Truss Structures simulation in deter-

mining your recommended design.

1.  Recall, stress in an axially loaded member is defined as the axial load divided by the cross-sec-
tional area.  Yield stress is a material-specific property; when the axial stress level reaches the yield 
stress, the material will begin to deform in an inelastic fashion.
2.  The quantity L/R is called the slenderness ratio.  Note that the critical buckling stress decreases 
with the square of the length.  The derivation of buckling conditions will be covered later in the 
course, but you should still consider this in your design.

Material
Young’s Modulus 

(GPa)
Density (kg/m3) Yield Stress (MPa)

Aluminum 70 2700 270-480

Cast Iron 100 7000 120-300

Magnesium Alloy 45 1800 150-230

Steel 200 7850 280-1600

Titanium 110 4500 400

σbuckle
π2( )E

16
L
R
---

 
 

2
------------------=
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DELIVERABLES

Each team of students must submit a handwritten design report.  Each team should

develop two functional designs, which have distinct geometries.  Essential elements of

this report include:

I. Assumptions (what are the loading conditions? how was the system modeled?)

II. Recommendations

a. Design details (cross-sectional area, material, truss geometry, mass, etc.)

b. Conformity to specifications

i. Maximum deflection

ii. Maximum stress

III. Discussion

a. Advantages and disadvantages of each design 

b. How does each truss bear shear and moment loading?
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Appendix H

Case Study: Truss Structures

Module 5

CASE STUDY: MICHELL TRUSS

v.1  Background

In 1904, Anthony George Maldon Michell, a mechanical and hydraulic engineer from Melbourne,

Australia, published in Philosophical Magazine an article entitled The Limits of Economy of

Material in Frame-Structures (Michell, Niedenfuhr).  In this article, Michell introduced - and pre-

sented analytical solutions to - a set of problems of minimizing the weight of structures subject to

specific loading conditions.  The structures that resulted from his analysis are today called Michell

structures.  The most commonly referenced of these structures describes a force applied at a point

A, a specified distance from another point B, acting orthogonally to the line  AB (Figure v.1).
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If the force and moment at B are distributed over a small circle, there is a closed-form analytical

solution, as shown in Figure v.2.

Figure v.1   Formulation of the common Michell structure problem.  A 
force F is applied at point A, a specified distance from another point B, 
acting orthogonally to the line AB.

BA

circle over which
force and moment

are distributed

F, applied load
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Michell also presented solutions for several other problems, in the context of economy of mate-

rial, including the centrally loaded, simply supported beam, and the structure needed to resist

equal and opposite couples along a straight line (Figure v.3).

Figure v.2   "A single force F applied at A, and acting at right angles to 
the line AB, is balanced by an equal and opposite force and a couple, of 
moment F x AB, applied at B." [This figure is taken from Michell, 
A.G.M. Limits of Economy of Material in Frame-Structures.  Philo-
sophical Magazine 6 (8), 589-597 (1904).]
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Michell’s solutions to these problems have been used to benchmark the performance of design

optimization programs.  They have also provided the basis for the study of structural optimiza-

tion.  Rozvany (1972) and others used Michell’s findings to explore analytical solutions to other

structural optimality problems (Cox 1963, Hemp 1975, Dewhurst 2001).  More recently, struc-

tural optimization has advanced further on modern computation.  Recent research has examined

several possibilities such as the idea of a “soft variation of material density between the limit

states ’empty’ and ’solid’" (Mlejnek, 2000).  Instead of treating the structure as a problem of

assigning regions to be filled with material or to be empty, Bendsoe presented the idea of replac-

ing these empty regions with less dense material.  This more pragmatic approach has found appli-

cations in the actual design of least-weight linear-elastic structures and the creation of advanced

materials.  Other research has investigated the possibility of incorporating non-structural con-

straints (such as aesthetic constraints or the need to be compatible with other parts of a structure)

into design optimization programs (Kim, 1998).  We will examine a variation on the problems

presented by Michell in 1904 and ascertain the effectiveness of various truss structures in provid-

ing reasonable solutions to the problem.

Figure v.3   "Equal and opposite couples applied at points A, B on the 
straight line AB." [This figure is taken from Michell, A.G.M. Limits of 
Economy of Material in Frame-Structures.  Philosophical Magazine 6 
(8), 589-597 (1904).]
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v.2  Problem Statement

This variation on the Michell structure problem centers around the creation of  a truss structure

that is attached to a wall within a confined area.  Referring to Figure v.4, the structure is subjected

to a load, P, a specified distance away from the wall and must meet a minimum level of structural

stiffness.  The structural stiffness is defined as , where P is the applied load, and  is the

vertical displacement at the point of load application. The entire structure must fit within a bound-

ing rectangle.  The goal in creating these structures is to minimize the overall weight while meet-

ing the required stiffness.  The problem is illustrated below (Figure v.4).

Though dimensions are not particularly critical to the concept of the problem, we will consider

specific dimensions to provide a concrete problem for discussion.  The structure constraints are as

follows:

• The overall length of the structure, L, is fixed.  Here we fix L = 3.0 m.

• The overall height of the structure is fixed.  Here we fix H = 1.0 m.

• The structure is required to have a vertical deflection, , at point C less than 0.02 m
(  < 0.02 m) when subjected to a vertical load P = 100 kN.  Therefore, the required
structural stiffness k =  > 5000 kN/m. 

k P
δ
----= δ

Figure v.4   General Michell truss problem illustration.

A

B

C

P
δ

bounding
rectangle

L

H

δ
δ

P
δ
----
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  The figure below shows the problem constraints (Figure v.5).

The task before us is to define the structure that will meet the design requirements while minimiz-

ing weight.  The difficulty is in the number of parameters that may be varied: material, geometry,

and boundary conditions.  With no prior knowledge of the problem, we might reasonably expect

our solution to have only 2 members, or to have thousands.  Below, we first choose a material and

then move on to design of the truss geometry.

v.3  Material Selection

Material selection is a critical choice in designing a structure.  For the given problem, we will

consider all truss members to be made from the same material.  Material affects both the stiffness

characteristics of the truss, as well as the weight.  There are numerous materials that could be

Figure v.5   Michell truss problem with specific parameters. The concept of this problem is 
not dependent on specific dimensions and loads, but a concrete construction will give us a 
more solid basis for discussion. 

A

B

C

L = 3.0 m

H = 1.0 m

P = 100 kN

δ

k = P/δ > 5000 kN/m
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selected.  For the current problem, we would like to select a material that will meet the stiffness

requirement and also provide a lightweight structure.

If we examine the case of an individual member, we see that the member axial stiffness is given

by

   (v.1)

where A is the member cross-sectional area, E is the Young’s modulus of the member material,

and L is the member length.

We wish to meet a given member stiffness (call it k*) while minimizing the bar mass.  The mass

of the bar is given by

(v.2)

where  is the material density.

We combine equations (v.1) and (v.2); A is common to both equations, so we can use these equa-

tions to eliminate it.  The result is an equation relating m, k*, and the material properties:

m = k* (v.3)

Since we wish to minimize m for a particular stiffness k*, and since L is a constant for an individ-

ual bar, we need to minimize the quantity , or, alternatively, maximize the quantity .  We will

do so by selecting the material that maximizes the quantity .

A material selection chart is shown in Figure v.6.  This is a plot of E vs.  on a log-log scale.  Ide-

ally, a material with a high E and a low  (i.e. near the upper left corner of the plot) is desired, but

does not exist.

In order to understand how to read the chart, we first take the quantity  to be a constant.

k P
δ
---- AE

L
--------= =

m ρ V× ρ A( ) L( )= =

ρ

L
2 ρ

E
----

 
 

ρ
E
---- E

ρ
----

E
ρ
----

ρ

ρ

E
ρ
----
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(v.4)

Taking the logarithm of both sides,

(v.5)

or

(v.6)

We can rewrite this as,

(v.7)

Note that this is an equation of a line, of the form

y = mx + b (v.8)

since we are plotting logE as the y-coordinate, and log  as the x-coordinate (m = 1 in this case).

This implies that lines of slope 1 will represent materials with identical values of .  The greater

the y-intercept of a particular line (logC), the greater value of  it will represent.

E
ρ
---- C=

E
ρ
----log Clog=

Elog plog– Clog=

Elog plog Clog+=

ρ
E
ρ
----

E
ρ
----
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As is clear from the Figure v.6, we wish to select materials that are closest to the top left corner of

the plot.  Using this method, diamond and ceramics appear to be good candidates; however, we

must recall that we are designing a truss structure.  Diamond is expensive, and it cannot be formed

into truss members (slender members that can be pinned at the ends).  We can reasonably expect

many of our truss members to undergo tensile loading; while ceramics display desirable stiffness

characteristics, they fail under low tensile loads; even though we are not considering strength in

out selection criteria now, we should stay away from low tensile strength materials.  Considering

Figure v.6   This material selection chart plots Young’s modulus (E) vs. 
density ( ) on a log-log scale. The ideal material for our purpose is a 
material near the upper left of the plot, as indicated in blue.  Lines repre-
senting constant E/  are shown in red.  [This chart is taken from 
Ashby, M.F. Materials Selection in Mechanical Design. Butterworth-
Heineman, Oxford: 1992.]

ρ

ρ
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the final application of our material, and the usability of the material we might select steel, alumi-

num alloys, CFRP (Carbon-Fiber Reinforced Polymer), or wood (parallel to the grain).  Properties

of these materials are given in Table v.1.

For the problem at hand we will choose an aluminum alloy as our material.  We will then attempt

to minimize the overall mass of the truss through the geometric design of the truss, which shall

meet the required truss stiffness k = 5000 kN/m.

v.4  Design of Truss Geometry: Two-Member Truss

As a first attempt at a minimum weight truss design, we will begin with a simple, symmetric two-

member truss (Figure v.7).  We expect that the best orientation of the members for a symmetric

two-member truss is with the ends fixed at points A and B, so we will examine this case first.

TABLE v.1   Typical properties of materials with high values of E/ .  PVC, which has a much lower value of E/ ,
is given as a reference point.

Material E (GPa)  (kg/m3) (E/ )x10-9 N-m/kg

Steel 190-210 7850 0.0242-0.0268

Aluminum (6061-T6) 70 2700 0.0259

CFRP 50 1500 0.0333

Douglas fir (parallel to 
grain)

13 550 0.0236

PVC (high impact) 2.4 1380 0.00174

ρ ρ

ρ ρ
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We will analyze this truss using matrix analysis.  Though this may seem tedious at this point, it

will soon become clear that this method will simplify the process of analysis.  First, it is necessary

to identify local and global degrees of freedom.  In constructing the global stiffness matrix, we

will only consider active, or unconstrained degrees of freedom (Figure v.8).

Figure v.7   Two-member truss configuration with ends pinned at points A and B.

A

B

C

L = 3.0 m

H = 1.0 m
P = 100kN

φ
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We construct a table indicating the relation of global degrees of freedom to local degrees of free-

dom (Table v.2).

TABLE v.2   Relation of global d.o.f. to local d.o.f. for the symmetric two-member truss.

Global degree of freedom (d.o.f.) Corresponding local d.o.f.

#1
Member AC, #1
Member BC, #1

#2
Member AC, #2
Member BC, #2

Figure v.8   Global and local degree of freedom (d.o.f.) 
assignments for two-member symmetric truss (active d.o.f. 
only).

A

B

C
1

2

GLOBAL D.O.F.

1

2

A

C

B

C
1

2

LOCAL D.O.F.
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We use this information to construct the global stiffness matrix.

(v.9)

(v.10)

where the quantities CAC, SAC, CBC, and SBC are found from the angle that the member makes

with the x-axis: 

(v.11)

(v.12)

(v.13)

(v.14)

L is given from geometry by

(v.15)

E is known to be 70 GPa, since all truss members will be made from aluminum.  For now, we will

assume the area of all members to be the same.

The resulting global stiffness matrix is:

(v.16)

KG[ ]
K11 K12

K21 K22

G
K11 K12

K21 K22

AC
K11 K12

K21 K22

BC

+= =

KG[ ] AE
L

--------
 
 

AC

CACCAC CACSAC

CACSAC SACSAC

AC
AE
L

--------
 
 

BC

CBCCBC CBCSBC

CBCSBC SBCSBC

BC

+=

CAC 180° φ
2
---–

 
 cos=

SAC 180° φ
2
---– 

 sin=

CBC
φ
2
---

 
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SBC
φ
2
---

 
 sin=

L 3.0
φ
2
---

 
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-------------------=
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--------
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2
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2
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+
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2
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We then use this in combination with our loading conditions to construct a relation among the

applied loads and the displacements at joint C.

We know that , so we have

(v.17)

For the case where the truss is pinned at points A and B (Figure v.7), we have

(v.18)

Given the problem constraints, we know that u2 (the vertical deflection at point C), must be no

greater than 0.02 m.  From equation (v.18), we find that the member area must be 40.19 cm2.

Note that we did not account for truss weight in our analysis.  The mass of this truss design is only

66.0 kg, which is much smaller in magnitude than the end load.  This justifies neglecting weight

in the analysis.  Should we encounter trusses that are heavier than this one, weight may become a

contributor to the system displacement; however, since we are searching for the optimal (lightest)

truss, trusses heavier than this one would not be considered.  Therefore, we can safely neglect

weight in our future analyses.  Currently, this two-member symmetric truss is our optimal design.

Now, we will remain with the symmetric two-member truss design and examine the effect of

varying the angle  on the result, as shown in Figure v.9.
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We assume the area to be the same for all members, and vary  between 0o and its maximum

value of 18.92o.  Using (v.17), a spreadsheet program is used to organize the procedure of calcu-

lation.  Selected results are given in Table v.3.  A chart graphically indicating the results is given

in Figure v.9.

TABLE v.3   Two-member symmetric Michell trusses, varying 
configurations.

Angle

Spacing, D,
between 2
supports

(m)

Area of
truss

member

(cm2)

Truss mass
(kg)

18.92o 1.0 40.19 66.0

15o 0.79 63.43 103.6

10o 0.52 141.6 230.2

5o 0.26 563.7 914.0

2o 0.10 3518.2 5700.3

A

B

C

L = 3.0 m

H = 1.0 m
P = 100kN

φD

Figure v.9   Two-member truss with variable angle .φ

φ

φ
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An obvious pattern emerges: the mass decreases as the spacing increases. This leads us to con-

clude that the best orientation for a symmetric two-member truss is with the pins at the outer

edges of the confined space along the wall (at points A and B).

We can also vary the area of the two members in an attempt to make the structure lighter.  Since

we have already determined the optimal loading situation to be the one where the members are

pinned at the extreme edges of the confined space, we will vary the areas of the 2 members in this

case in an attempt to lighten the structure.  We will arbitrarily pick a cross-sectional area for the

top member, determine the minimum required area for the bottom member in order to meet the

stiffness requirement, and calculate the mass of the structure.

We will use the following general form of equation (v.17) in order to do so.

Figure v.10   Chart plotting angle between members vs. truss mass for a 2-member 
symmetric truss designs (19 points).  18.92o is the maximum spacing allowed given the 
problem constraints.
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(v.19)

A spreadsheet program is again used to simplify the process of computation.  We will vary the

area of the upper member between 40 cm2 (the value for the optimal symmetric two-member

truss) and 80 cm2 (the value at which the top member by itself will weigh 66 kg).  The following

results are obtained

Again, we see that the symmetric two-member truss is the optimal design.  Varying the area actu-

ally has negative effects on the overall mass in this case.

In examining two-member trusses, we have only looked at members of the same length.  Now, we

will examine the two-member case where the members are of different lengths, as shown in

Figure v.11.

TABLE v.4   Two-member Michell truss, members 
with different cross-sectional areas

Area of
upper

member

(cm2)

Area of
lower

member

(cm2)

Truss mass
(kg)

80.0 26.9 87.8

75.0 27.5 84.2

70.0 28.2 80.6

65.0 29.1 77.3

60.0 30.2 74.1

55.0 31.7 71.2

50.0 33.6 68.7

45.0 36.4 66.8

40.0 40.4 66.0

0
100 000,
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AACC
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2
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2
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SAC ABCC
BC

S
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2

+
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We set up the matrix relation for this structure by considering only the active degrees of freedom.

(v.20)

If we assume the member area to be the same for the top and bottom members, we find the mini-

mum member area to be 157.5 cm2.  The resulting truss mass is 256.9 kg.  This is not an improve-

ment over the symmetric two-member design.

We can now consider the effect of different cross-sectional areas on this design.  Using equation

Figure v.20 and the spreadsheet program, we fix the cross-sectional area of one of the members

and interpolate to find the area of the other member that will allow the design to meet the stiffness

requirement.  The results are given in Table v.5.

Figure v.11   An asymmetric two-member truss design.
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As was the case with the symmetric two-member design, we see that the ideal assignment of

member areas is to set both areas to be the same.

To simplify our future analyses, we will fix the cross-sectional area and vary only other parame-

ters.  As we proceed with cases of multi-member trusses, we will create trusses with the following

characteristics:

• all members will be identical in cross-section and material

• the structure will be symmetric about C

• the structure will be pinned at least at points A and B

These assumptions should help narrow the search for a more optimal solution than the symmetric

two-member truss.

v.5  Design of Truss Geometry: Multi-member Trusses

Now we will examine several designs of multi-member truss structures that meet the require-

ments set above (see Problem Statement).  All designs will be evaluated using the Truss Struc-

tures simulation tool.

Before we begin, we will first analyze the solution of the two-member symmetric truss using the

simulation.  We perform the following steps:

TABLE v.5   Effect of differing cross-sectional areas on truss mass for case of two-member asymmetric design.

Area of member AC (cm2) Area of member CD (cm2) Truss Mass (kg)

100.0 393.2 400.6

120.0 233.7 287.8

140.0 181.1 261.7

157.5 157.5 256.9

180.0 139.4 260.7

200.0 129.0 268.7

220.0 121.6 279.1

240.0 116.0 291.0
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• choose SI units and set the scale to 100 pixels / m

• choose aluminum as a material

• set the cross-sectional area to be 1000 mm2, or 10 cm2

• draw the two members

• apply boundary conditions (fixed) at points A and B

• apply the loading conditions at point C (Fy = -100000)

Next, after we calculate, we determine that the vertical displacement of joint C is 0.0804 m, which

is greater than allowed by the stiffness requirement.  We then perform an iterative process of

adjusting the member area until the vertical deflection of joint C is as close as possible (but no

greater than) 0.02 m, as set by our stiffness requirement.  The final solution, with a cross-sectional

area of 4018 mm2 (40.18 cm2), is shown in Figure v.12 and Figure v.13.  Note that this matches

almost exactly with the solution found in the previous section (equation (v.18)).  From the simula-

tion, we find the mass to be 66.0 kg, as before.

Figure v.12   Two-member symmetric truss construction in Truss 
Structures simulation: internal forces shown.
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Now we will begin the analysis of multi-member truss structures.  A three-member design is pro-

posed in Figure v.14.

Figure v.13   Two-member symmetric truss construction in Truss 
Structures simulation: displacements shown.

A

B

C

L = 3.0 m

H = 1.0 m
P = 100kN

Figure v.14   A three-member truss proposed as a problem solution.
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We do not expect this design to be any more effective than the two-member design, since the

addition of the central member will be ineffective in bearing a load perpendicular to its main axis.

We examine this design using the simulation and verify this result: the central member effectively

acts as a zero-force member (the force in this member is much smaller than the forces in the other

members).  The three-member design necessitates a cross-sectional area of 40.18 cm2, which

results in an overall truss mass of  98.5 kg.  The results are shown in Figure v.15 and Figure v.16.

Figure v.15   Three-member symmetric truss construction in Truss 
Structures simulation: internal forces shown.
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A second multi-member truss design is shown below; this one is comprised of 5 members

(Figure v.17).

Figure v.16   Three-member symmetric truss construction in Truss 
Structures simulation: displacements shown.

Figure v.17   A five-member truss proposed as a problem solution.
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The truss is symmetric about the horizontal line running through point C.  The central node, D, is

taken to lie a distance 1.5 m from the wall.

We expect the upper- and lowermost members to carry most of the load; we do not expect the

addition of the central members to help structurally.  Using the Truss Structures simulation to ver-

ify that our intuitions are correct, we find that this does not provide a better solution than the two-

member truss.  The results for the five-member truss are shown below (Figure v.18 and

Figure v.19).

Figure v.18   Five member truss construction in Truss Structures simu-
lation: internal forces shown.
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Each member requires a cross-sectional area of 40.17 cm2 to meet the specified structural stiff-

ness (k = 5000 kN/m), which results in an overall mass of 116.5 kg. This mass is greater than the

mass of the symmetric two-member truss.  Therefore, we will continue our search for a more opti-

mal solution.

v.6  Design of Truss Geometry: More Complex Multi-Member 
Trusses

Before we continue, we will apply some reasoning to our design.  We know that truss members

best resist loads that have a major component acting along the member axis.  This implies that a

desirable orientation of the truss members connected to the end load is as close as possible to the

vertical orientation. Using this assumption, and based on our constraints of symmetry and homo-

geneity of material, we will proceed.

Figure v.19   Five member truss construction in Truss Structures simu-
lation: displacements shown.
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Next, we will consider an seven-member truss, as shown below (Figure v.20).

Using the simulation, we find that the minimum cross-section necessary to meet the stiffness

bound is given by 30.57 cm2 (Figure v.21, Figure v.22).  The result is an overall mass of 85.2 kg.

We note that the vertical member is not supporting any substantial load; in other words, it is

essentially acting as a zero-force member.  We will now analyze the same design, without the

inclusion of the vertical member.

Figure v.20   Seven-member truss construction in Truss Structures simulation.
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Figure v.21   Seven-member truss construction in Truss Structures sim-
ulation: internal forces shown.

Figure v.22   Seven-member truss construction in Truss Structures sim-
ulation: displacements shown.
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The modified design has six members, as shown in Figure v.23.

Using the simulation, we find that the minimum cross-section necessary to meet the stiffness

bound is again - as in the case of the eight-member design - 30.57 cm2 (Figure v.24 and

Figure v.25).  The result is an overall mass of 77.0 kg.  Since this is greater than our current opti-

mal value of 66.0 kg, this configuration will not be of interest.

Figure v.23   Six-member truss design.
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Figure v.24   Six-member truss construction in Truss Structures simula-
tion: internal forces shown.

Figure v.25   Six-member truss construction in Truss Structures simula-
tion: displacements shown.
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Next, we will consider a similar configuration, which has eight members.  This design differs

from the previous design in that the only supports along the wall are located at points A and B, as

shown below (Figure v.26).

We again examine this structure using the simulation. We find that the minimum area required to

meet our stiffness bound is 18.58 cm2.  This results in a truss mass of 49.00 kg.  The simulation

results are shown below (Figure v.27, Figure v.28).

Figure v.26   Eight-member truss design.
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Figure v.27   Eight-member truss construction in Truss Structures 
simulation: internal forces shown.

Figure v.28   Eight-member truss construction in Truss Structures simula-
tion: displacements shown.
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Next we will examine a variation on our previous design.  Specifically, we will attempt to create a

structure using the same geometric design that will allow us to position the members joined at the

externally applied load P in a more vertical orientation.  A fourteen-member truss given this

design is shown below (Figure v.29).

This design, which was evaluated using the simulation, requires a cross-sectional area of 16.16

cm2.  The result of this is a truss that weighs 51.89 kg.

Figure v.29   A fourteen-member truss design.
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Figure v.30   Fourteen-member truss construction in Truss Structures simu-
lation: internal forces shown.

Figure v.31   Fourteen-member truss construction in Truss Structures simu-
lation: displacements shown.
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Based on this information, we expect that our second 6 member truss (Figure v.26) is the best

basic design.  We will now tweak the parameters to see if we can further optimize this result.

As shown the figure shown below, we will attempt to vary the lengths of the members (by chang-

ing the value of d) and determine the structure for this application.

Again, using the simulation, we track the value of d against the minimum cross-sectional member

area necessary to meet our compliance requirement.  Note that the cross-sectional area and the

geometry affect the overall truss mass, since - as d varies - the overall length of the members also

changes.  The results are given in table format below.

Figure v.32   Methodology for optimizing the best eight-member truss solution.
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TABLE v.6   Value of d vs. minimum cross-sectional area and truss mass.

value of d (m)
cross-sectional area 

(mm2) truss mass (kg)

0.2 3565 78.24

0.4 3144 70.03

0.6 2785 63.43

0.8 2488 58.26

1.0 2240 54.14

1.2 2054 51.36

1.4 1912 49.53

1.5 1858 49.00

1.6 1815 48.74

1.8 1759 49.00

2.0 1741 50.34

2.2 1758 52.78

2.4 1806 56.38

2.6 1883 61.27

2.8 1985 67.66
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It is clear, when the results are displayed graphically, that there is an optimal minimum mass

obtained between d = 1.5 and d = 1.8.

The exact value is not critical since the range of masses in this domain is less than 500 g.  We will

thus propose our best solution is of a geometry where d = 1.6 m, as shown below.

Figure v.33   Chart plotting truss mass vs. different values of d for the 
8-member truss.
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Figure v.34   Our optimal design for this version of the Michell truss problem.
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v.7  Conclusions

This problem is an excellent example of the iterative process of design.  We examined several

designs, used our findings to limit our design parameters, examined several different designs that

met our revised design parameters, selected the best candidate, and fine-tuned it.  The proposed

solution is not intended to be the best possible solution, but it is meant to be a very good one.  The

applications of such a problem should be evident.

Trusses are used in applications where it is necessary to create a structure that can span a large

area, at a minimum to weight and, in most cases, cost.  Scaffolding is an excellent example of an

application where low cost, low weight, and quick assembly are essential components of a good

design.  A loading arm used by NASA is an example of a design where low weight is the most

critical design parameter.  Material cost is less of a barrier since the weight can adversely affect

other costs, such as fuel.

A major key to design is understanding the application of the design, and abstracting design

requirements from this application.  A solid understanding the design process can prove to be an

invaluable asset in mechanical engineering.
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