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Abstract

This thesis will explore strategies for coherent manipulation of multi-photon packets.
Correlated multi-photon states can arise in nonlinear optical devices. A nonlinear
quantum interferometer which includes these states can have interesting and strikingly
different behavior from a conventional interferometer. The special quantum states
set up in these devices are degraded by loss. In this thesis, we will set up theory
for describing the interesting quantum behavior of these devices and the limitations
imposed by loss decoherence.

The underlying structure of interferometer states is shared by all two-mode systems—
including classical polarization states of a single-mode fiber. We are exploring bire-
fringent systems as a possible implementation of nonlinear quantum coupler ideas,
but also because of its practical importance in optical communications. Polarization
mode dispersion an important source of signal distortion in high-bitrate communica-
tions arising from unwanted birefringence in the fiber. We will describe theoretical
analysis of compensated PMD systems, as well as our theoretical and experimental
effeots to develop novel PMD compensators.
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Chapter 1

Introduction

In this thesis, we will explore some of the ways people think about light. Naturally,
physicists have thought a lot about this topic, and the current understanding is very
sophisticated: there are theories with every level of complexity, dealing both with the
complicated interactions with matter and of the fundamental issues behind a correct
field theory. We do not aim to cover new ground in this direction. Rather, we explore
some interesting perspectives that have recently arisen for describing quantum optics
problems: photon configuration-space theory and photon DeBroglie waves.

These perspectives give new insight and interpretations to specific quantum optics
models. In addition, Hagelstein’s recent work on photon configuration space provides
more complete answers to some of the most fundamental questions in quantum op-
tics. Here we are more interested in possible applications; a new class of devices that
manipulate light in a qualitatively non-classical way is suggested by these theoreti-
cal developments. In this thesis, we explore the possibility of implementing strange

quantum measurements in a variety of systems.
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Figure 1-1: Interference of light is most easily understood using classical wave op-
tics. In a standard Mach-Zehnder interferometer, we see interference fringes with the
photon wavelength .

1.1 Traditional quantum optics

Generally speaking, light can be understood as a classical wave. The simple and ele-
gant formulation given by Maxwell’s equations (along with various models of matter)
generally describes the world very well, and is our classical understanding of light. It
says that the light intensity seen by our eyes or by a detector is the power delivered

by the electromagnetic fields, which vary in time and space according to known rules.

Quantum rules are occasionally needed to complete our understanding. A simple,
classical interferometer is shown in Figure 1-1. The classical description of this in-
terferometer found in an optics textbook accurately describes most of the behavior
of a real device. However, a key concept of quantum uncertainties is part of the real
physics missing from that description. To understand the measurements in detail, one
might instead draw a picture like Fig. 1-2, and say that the uncertainties in the field
obey the rules of quantum mechanics. Just as a quantum mechanical particle cannot
have a well-defined trajectory—its position and momentum cannot be simultaneously
and precisely known—the quantum field does not have a well-defined amplitude.

But the picture, Fig. 1-2, does not represent the most general type of quantum
optical system. It shows the case of a quantum system which behaves qualitatively
like its classical counterpart. In general, the dynamics of a nonlinear optical system
can be richer and more complex than this semiclassical view suggests. To see this,

consider that a single-mode classical field has only one degree of freedom, the com-

22
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Figure 1-2: In a quantum interferometer, the fields are subject to fundamental quan-
tum uncertainty. The input quantum state determines the counting statistics, and
thus the uncertainty, but the qualitative behavior of the device is the same as the
classical case.

plex field amplitude a(t). A single-mode quantum field can exist in a superposition of
number states |n), so that the state is described by an infinite-dimensional complex
amplitude vector. Since the state space is much larger, one can in theory construct
quantum systems that have complicated Hamiltonians and highly nontrivial dynam-
ics. For example, one could construct a self-consistent mathematical model for an
interferometer which has wildly different behavior depending on the input photon
number. Although the traditional formalism for describing quantum optical states
permits such complex, non-classical dynamics, physicists almost universally study

semiclassical systems.

The reason is simple: in the real experiments that they have analyzed, a semi-
classical picture works very well; as in Fig. 1-2, quantum properties may have an
important effect on the measurement, but they do not qualitatively change the dy-
namics of the device. Ultimately, this is because optical nonlinearities are weak. In
the next chapter we will see that the dynamics of a linear optical system are essentially
classical. In real-world systems with small nonlinearities, more non-classical states
of a system are not accessible. The dynamics can generally be handled with some
semiclassical approximation, and deviations from the classical field remain small as
the system evolves, as with the case of squeezing. Squeezing experiments demonstrate
an important and potentially useful effect—they break the limits of shot noise in an

interferometer—but work within the semiclassical regime. Such a system necessarily
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involves a quantum analysis, but has qualitative behavior which is still essentially

classical.

1.1.1 A new look: photon configuration space

Light is made up of particles called photons. These particles are immediately apparent
in the traditional quantum optics literature; in particular, everywhere in these theo-
ries, the particles are being created and destroyed by photon operators. Well-known
manipulations of photon operators—the methods of second quantization—allow us to
analyze and solve optical models. But while we see the photons everywhere, they do
not seem to act like the familiar particles of Sophomore physics. The photons that we
meet in the literature sometimes have momenta, but almost never have position vari-
ables, or anything remotely resembling a trajectory (however uncertain) that would
let us visualize it as a normal particle. When we ask why this is, the literature tells
us that photons are fundamentally different from particles with mass, and that we
must avoid thinking about certain photon qualities, like position, for reasons which
are complicated and theoretical.

This thesis is in part motivated by the notion that photons can and should be
thought of more like “regular” particles. To prove that they can, Hagelstein recently
answered the question: “Why don’t people ever talk about photon wavefunctions?”
The answer is a bit involved [31]. The basic idea is as follows:

To form a correct description of an optical system using a photon wavefunction,
you would want to prove that the description is equivalent to the more fundamental
quantum electrodynamics description. In the middle of this proof, one discovers a
number of problems, and one might understandably declare that photon wavefunc-
tions are too problematic, and thus meaningless.

What Hagelstein pointed out is that these daunting technical issues bear a very
close resemblance to the issues that come up when one derives an electron-wavefunction
model from QED! That is, there are issues, but they are not nearly as different for
photons and electrons as people generally believe. Hagelstein has carried out the

solution of the technical problems, and outlined various properties of a photon wave-
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function. The notion of a wavefunction can thus be carefully defined and reconciled
with known properties of photons—for example, one should not infer that since a
photon has a wavefunction the problems with defining a photon position operator go
away. A photon still does not have a well-defined position operator (as is well known),

but a wavefunction can be defined to include this property.

The second assertion is that people should use more particle-like descriptions of
optical systems. Several reasons come to mind: One is the great success of particle
and wavefunction-based methods in atomic and nuclear physics. If these methods
were so useful in other areas, why arbitrarily exclude them from quantum optics?
At least in some cases, second-quantized descriptions using creation and annihilation
operators are much more complicated than the equivalent “first-quantized” (that is,
wavefunction or coordinate-based). Much of our basic intuition comes from the simple
first-quantized problems we studied before we knew about creation and annihilation.
Could we not discover a much more basic intuitive understanding of some systems,

then, by thinking more in terms of particles?

The name for this particle-oriented type of theory is “photon configuration space.”
While the term itself may be off-putting, I emphasize that it refers to the kind
of simple theory generally used as an introduction to quantum mechanics, where
particles have position and momentum coordinates, etc. Finally, we stress that a
configuration space model is generally derived from, and exactly equivalent to some
second-quantized counterpart. Configuration-space theory does not describe different
physics, but it describes a system in a different way. Naturally, the hope is to uncover

aspects of the physics which were obscured in the second-quantized description.

This brings us to the obvious question: Does the configuration space perspective
offer anything new and useful? Much of the research done towards this thesis has been
motivated by this question. In the next chapter, Chapter 2, we present background
for the problems of optical propagation and interference. Chapter 3 gives a detailed
example of configuration space applied to soliton propagation in fiber. It presents
simple thought experiments for manipulating quantum solitons and obtaining new

and potentially useful effects. In Chapter 4, we identify severe difficulties of such
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an approach due to loss decoherence. In the process, we identify an interesting new
interpretation of soliton noise in the presence of loss and gain. This is an example of
how a configuration-space theory can gives us useful intuition to apply towards other
problems. We then move on to the topic of DeBroglie-wave interference. We describe

this briefly below.

1.1.2 Photonic DeBroglie waves

The first published photon configuration space theory for quantum-optics applications
was probably [51]. In that article, Lai and Haus describe a soliton state in terms of a
wavefunction W(zy,...,z,) for the positions x; of n photons along the length of the
fiber. In this formulation, the Kerr nonlinearity appears as an attraction between the
photons: a pairwise, delta-function potential, V' = Vj >, d(x; — x%). Under this
attractive force, the photons can be trapped into a bound state not unlike that of an
atom or nucleus.

A bound, many-photon object has the potential to be very interesting. Naturally,
in a many-photon soliton, one can observe relatively uninteresting, semiclassical be-
havior. If each photon approximately sees a classical “mea