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Abstract

Two fundamental issues in the design of wireless communication networks are the interfer-
ence among multiple users and the time-varying nature of the fading wireless channel. We
apply fundamental techniques in information theory and queueing theory to gain insights
into the structure of these problems.

In a terrestrial cellular or space network, multi-user interference arises naturally as
different users in the same cell or region attempt to transmit to the base station or satellite
at the same time and in the same frequency range. We first examine the impact of this
interference on the design of error correction codes for reliable data transmission. At the
physical layer of the wireless network, the phenomenon of multi-user interference is captured
by the multiaccess (many-to-one) channel model. The set of all data rates at which reliable
communication can take place over this channel is characterized via information theory by
the so-called multiaccess capacity region. A basic problem is developing coding schemes
of relatively low complexity to achieve all rates in this capacity region. By exploiting the
underlying geometrical structure of the capacity region, we develop a method of reducing
the multi-user coding problem to a set of single-user coding problems using the ideas of time-
sharing and successive decoding. Next, we investigate the effect of multi-user interference
on higher-layer quality-of-service issues such as packet delay. Under certain conditions of
symmetry, we find that the structure of the multiaccess capacity region can again be used
to obtain a “load-balancing” queue control strategy which minimizes average packet delay
for Poisson data sources.

Due to the mobility of users and constantly changing multipath environments, wireless
channels are inherently time-varying, or fading. Any sensible design of wireless networks
must take into account the nature of this fading and the ability of the system to track
channel variations. We consider a wireless system in which a single user sends time-sensitive
data over a slowly varying channel. Information regarding the state of the channel is fed
back with some delay to the transmitter, while the receiver decodes messages within some
fixed and finite amount of time. Under these conditions, we demonstrate a provably optimal
transmission strategy which maximizes the average data rate reliably sent across the wireless
channel. The strategy is based on the information-theoretic idea of “successive refinement,”
whereby the decoder decodes at different rates according to the observed channel state.

Thesis Supervisor: Robert G. Gallager
Title: Professor
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Chapter 1

Introduction

The past two decades have seen dramatic shifts in the development of communication tech-

nology, the most significant being the move from point-to-point circuit-switched networks

to multiplexed packet-switched networks, and that from analog to digital technology. In the

last few years, there has also been much excitement over the progress of wireless commu-

nications. In many ways, wireless is hardly a new technology. Marconi pioneered wireless

telegraphy more than one hundred years ago. Other wireless technologies such as satel-

lite networks and television broadcasting have existed for many decades. It does seem,

however, that the new generation of digital wireless voice and data services (GSM, IS-95,

Third Generation), combined with ready access to vast information sources such as the

World Wide Web, has captured the popular imagination. In developed telecommunication

markets, wireless promises liberation from the mess of electronic tethers, and embodies the

essence of a society “on the move.” In fledgling telecom markets, wireless offers a means of

bypassing the handicap of a poor wired infrastructure. The societal impact of wireless in

these developing areas can hardly be overstated.

1.1 Multi-user Interference and Fading

For the communications engineer, wireless poses a number of new technical challenges. The

two most fundamental issues are: interference among multiple users, and the time-varying

nature of the wireless channel. The phenomenon of multi-user interference arises from the

inherent structure of wireless networks. In a typical cellular telephone network, wireless

Local Area Network (LAN), or satellite network, a given geographical area is divided into

15



a number of coverage zones, called cells (or regions), each served by a base station (or a

satellite). Wireless subscribers (mobiles) communicate by connecting to their respective

assigned base stations, which are in turn connected to the wired network via a Mobile

Telephone Switching Office (MTSO).

The wireless link from a base station to a mobile is called the forward channel. A

base station communicates to many mobiles in its cell over the respective forward channels

by multiplexing the messages for the various receivers and sending a composite signal.

The receivers must then sift out their individual messages from the composite signal in

the presence of interference and background noise. In communication terminology, the

collection of forward channels in this one-to-many scenario is called a broadcast channel.

Correspondingly, the wireless link from a mobile to a base station is called the reverse

channel. Mobiles in a cell communicate to the base station by sending their respective

signals over the reverse channels. The base station, which receives the sum of the mobiles’

signals, must then decode each message in the presence of interference and background noise.

In communication terminology, the collection of reverse channels is called a multiaccess

channel. It is clear, then, that multi-user interference is a central characteristic of both the

broadcast and multiaccess channels. Any viable network must have some means of resolving

this interference.

In addition to contending with multi-user interference and background noise, a wireless

system must also deal with the time-varying nature of the wireless channel. In a typical

wireless environment, there may be a number of obstacles between the mobile and the base

station, possibly precluding line-of-sight communication. The transmitted signal usually

reaches the receiver via multiple paths caused by reflections from obstacles. Moreover,

the strength of each path may vary in time due to relative motion among the mobile, the

obstacles, and the base station. These changes in turn cause changes in the interference

pattern of the paths at the receiver, leading to the phenomenon of multipath fading.1 Fading

represents another fundamental source of randomness that any sensible design of a wireless

network must address.

1Multipath fading is sometimes called fast fading, in contrast to slow fading caused by a phenomenon
called shadowing, whereby partially absorbing material lying between the sending and receiving antennas
attenuate the electromagnetic wave of the transmitted signal.
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1.2 Purpose and Outline of Thesis

In this work, we give an analysis of the multi-user interference and fading issues using

techniques in information theory and queueing theory. Our aim is to gain insight into the

structure of these problems, with the hope that the insights may point the way to sensible

architectural designs for practical systems. In the first part of the dissertation (Chapters 2

and 3), we treat the problem of multi-user interference. In particular, we focus on the

multiaccess setting encountered on the reverse link of a cellular or satellite network. The

problem of communicating among many senders and a common receiver is in fact central to

the study of both wired and wireless networks. Mechanisms such as time-division, frequency-

division, and code-division, for instance, have been used in practical systems to deal with this

issue. Our aim, however, is to examine multiaccess communication at a more fundamental

level, both at the physical layer and Medium Access Control (MAC)/network layers of the

data network. At the physical layer, we adopt a noisy multiaccess channel model with

independent transmitters each receiving a constant stream of source bits and outputting

codewords for reception at a common receiver [CT91]. Given this, the natural questions are:

what is the set of all data rates at which reliable communication is possible, and how do

we design high-performance, low-complexity error correction codes which operate at those

rates?

The answers to the above questions fall naturally in the domain of information theory.

Indeed, the capacity limits for memoryless multiaccess channels have been known since the

1970’s, and are given by the so-called multiaccess capacity region. There has been, however,

relatively little work on the design of multi-user error correction codes [RU96]. By contrast,

research on the design of codes for the single-user channel has been ongoing for the last

fifty years. The development of single-user codes has been especially rapid in the last few

years, following the discovery of Turbo codes in 1993. Recently, for example, it has been

shown that powerful low-density parity-check codes can get to within 0.0045 dB of Shannon

capacity on the additive white Gaussian noise (AWGN) channel [CFRU01]. Given this, a

natural question is whether the multi-user coding problem can somehow be reduced to a

manageable set of single-user coding problems. In Chapter 2, we investigate how several key

ideas may be combined to make such a reduction possible, leading to a potentially useful

multiaccess communication technique.
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After examining the impact of multiaccess interference on the design of error correction

codes at the physical layer, we move to investigate the effect of multiaccess on higher-

layer quality-of-service (QOS) issues such as packet delay. Unfortunately, the conventional

information-theoretic model of multiaccess, which does a fine job of addressing physical-layer

concerns, proves to be inadequate in dealing with QOS issue. One major problem with the

information-theoretic model is the implicit assumption that there are steady streams of in-

formation bits arriving at all transmitters, so that all users of the channel are always active,

in the sense that they always have bits to send. In many actual multiaccess systems (such as

wireless data networks), on the other hand, messages arrive at the transmitters in a random

manner. By adhering to the conventional source-channel-destination model, information

theory ignores the random arrival of messages and thereby renders meaningful analysis of

delay impossible [EH98, Gal85]. In contrast to the information theoretic approach, multiac-

cess network theory (ALOHA, CSMA, etc.) and other notions such as effective bandwidth

give sophisticated analyses of network layer issues such as source burstiness,2 network delay,

and buffer overflow, but do not adequately address physical layer concerns such as channel

modeling, coding, and detection. For instance, the characterization of the multiaccess chan-

nel as a collision channel (even with notions of capture) is too simplified and pessimistic

from a physical layer viewpoint [EH98, Gal85]. Thus, while the above approaches offer

different perspectives on the multiaccess question, each addresses only a part of the overall

problem. What is needed, then, is a theory of multiaccess communications that treats issues

of noise, interference, randomness of arrivals, delay, and error probability in a more cohesive

framework.

In Chapter 3, we take an “inter-layer” approach and examine a problem where physical-

layer issues of rate and reliability are considered together with higher-layer issues of source

burstiness and delay. We consider a multiaccess model where multiple sources generate

packets of variable lengths according to Poisson processes. The packets are queued in the

users’ respective buffers until being sent by the corresponding transmitters. All packets are

then decoded at a common receiver, which receives the sum of the transmitted signals plus

noise. It is further assumed that optimal coding can somehow be performed at the physical

layer so that all rates in the multiaccess capacity region are achievable. The objective is then

2Here, we are referring to burstiness in bit arrivals, not in packet arrivals (which may be homogeneous,
as in the Poisson process)
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to design the rate allocation policy to minimize the overall delay in the system. We show

that under certain conditions of symmetry, this “inter-layer” multiaccess problem admits

an elegant solution.

In the second part of the dissertation (Chapter 4), we turn to the problem of time vari-

ations in wireless channels. We examine a number of important questions. First, fading

introduces a new source of randomness (in addition to background noise) to the coding

problem. Any sensible coding scheme must somehow average over both sources of random-

ness. This raises the important question of how large the decoding delay requirement is

relative to the time scale of the fading process. When the encoder/decoder pair has enough

time to average over the fading process, traditional information-theoretic notions of ergodic

capacity are relevant (in the sense that they provide meaningful benchmarks for perfor-

mance analysis). If not, alternative measures of performance must be formulated. A second

important question is how well can the system track the time variations in the channel. The

timeliness and accuracy of the information available to the transmitter and receiver regard-

ing the channel state directly impact system performance. Finally, there is the question of

what kind of traffic the wireless system is designed to support. Is it voice traffic, which often

requires a constant bit rate, or is it data traffic which can be transmitted at variable rates,

so long as the average rate over time meets user requirements? The answer to this ques-

tion affects the basic architecture of the coding scheme. In Chapter 4, we study a wireless

communication scenario in which all three issues mentioned above play significant roles in

determining the optimal communication strategy. We consider a wireless system in which a

single user sends time-sensitive data over a slowly varying channel. Information regarding

the state of the channel is fed back with some delay to the transmitter, while the receiver

decodes messages within some fixed and finite amount of time. Under these conditions,

we demonstrate an optimal transmission strategy which maximizes the average data rate

reliably sent across the wireless channel. The strategy is based on the information-theoretic

idea of “successive refinement,” whereby the decoder decodes at different rates according

to the observed channel state.
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Chapter 2

Time Sharing for Multiaccess

Channels

2.1 Introduction

We begin by investigating the effects of multi-user interference encountered on the reverse

links of cellular wireless networks, captured by the multiaccess channel model. Our fo-

cus in this chapter is on the impact of multiaccess interference on the design of error

correction codes at the physical layer of the data network. As such, we use the con-

ventional information-theoretic multiaccess model [CT91], where a number of indepen-

dent transmitters each receive a constant stream of source bits and send codewords for

reception at a common receiver and decoder. Conceptually, this many-to-one commu-

nication problem is a specific instance of the general unsolved network information the-

ory problem in which many senders and receivers communicate through a channel tran-

sition matrix describing the effects of interference and noise in the network. Fortunately,

results concerning communication limits on the multiaccess channel are relatively com-

plete [Ahl71, Lia72, Pol83, HH85, Gal85, CT91]. As mentioned in Chapter 1, our aim

is to develop high-performance, low complexity error correction codes which operate near

the communication limits. In particular, we would like to reduce the multiaccess coding

problem to a set of single-user coding problems, so as to make use of the recent exciting

developments in coding for single-user channels.

A pioneering effort in this direction is the work of Rimoldi and Urbanke [RU96] and

21



Grant et al. [GRUW01]. Using a technique called rate-splitting multiple-access (RSMA),

they have shown that any point in the asynchronous capacity region of an M -user multiple

access channel (MAC) can be achieved using at most 2M − 1 single-user codes, with no

user having more than two codes each. The RSMA approach involves splitting each user of

a multiaccess channel into at most two virtual users, each having a fraction of the rate and

power of the original user. Another approach, pioneered by Grant and Rasmussen [GR95],

uses the idea that rates in the capacity region can be achieved via time-sharing of a small

number of single-user codes. Indeed, it has been shown by Rimoldi [Rim99] that time-

sharing can yield the same 2M − 1 performance for asynchronous M -user MAC’s.

We expand on the ideas presented in [GR95, Rim97, Rim99] and provide an alternative

view on the time-sharing approach, emphasizing the underlying geometrical structure of

the problem. We show that geometrical properties combined with results on parallel chan-

nels [Gal68] yields a natural projective time-sharing mechanism which achieves any rate

tuple in the M -user MAC capacity region with at most 1
2M log2M +M single-user codes.

Although our approach is inspired by the work in [RU96, GR95, Rim97, Rim99], we will see

that geometrically, it differs significantly from previous constructions. We elaborate on this

difference in Section 2.5. While most of this section concentrates on the M -user discrete

memoryless multiple access channel (DMMAC) with finite input and output alphabets, our

analysis extends directly to the case of discrete-time memoryless MAC’s with continuous

alphabets and energy constraints. Indeed, when appropriate, we shall make comments

regarding the continuous cases, with emphasis on the additive Gaussian MAC in particular.

Consider the M -user DMMAC defined in terms of M finite input alphabets Xi, i ∈

{1, . . . ,M}, output alphabet Y, and a stochastic matrix P : X1 × . . . × XM → Y where

P (y | x1, . . . , xM ) is the probability that the channel output is y when the inputs are

x1, . . . , xM . For each i, i = 1, . . . ,M , let QXi(xi) be a probability assignment on the

input alphabet Xi. Define the achievable rate region R
(
P,
∏M
i=1QXi

)
corresponding to the

channel transition matrix P and product input distribution
∏M
i=1QXi as the set of rate

tuples R ∈ (R+)M such that

∑
i∈S

Ri ≤ I(XS ;Y | XSc), ∀S ⊆ {1, . . . ,M} (2.1)

where S is any non-empty subset of {1, . . . ,M}, XS ≡ (Xi)i∈S , XSc ≡ {1, . . . ,M}\S. The
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average mutual information quantity in (2.1) is defined as

I(XS ;Y | XSc) ≡∑
x1,... ,xM ,y

M∏
i=1

QXi(xi)P (y|x1, . . . , xM ) log
P (y|x1, . . . , xM )∑

xS

∏M
i∈S QXi(xi)P (y|x1, . . . , xM )

.

Now consider the union of rate regions over all product input distributions

C =
⋃

QX1
QX2

···QXM

R

(
P,

M∏
i=1

QXi

)

It is well known that the closure of C is the capacity region of the asynchronous M -user

DMMAC [HH85, Pol83], while the convex closure of C is the capacity region of the syn-

chronous M -user DMMAC [Ahl71, Lia72]. Reliable communication is possible for any rate

tuple in the interior of the capacity region, while it is impossible outside of the capacity

region.

For any rate tuple R ∈ C, there exists a product input distribution
∏M
i=1QXi such

that R ∈ R
(
P,
∏M
i=1QXi

)
. We assume for the rest of the analysis in the section that the

product input distribution is fixed, and focus on R
(
P,
∏M
i=1QXi

)
. The dominant face D

of R is the subset of rate tuples R ∈ R which gives equality in (2.1) for S = {1, . . . ,M}:

M∑
i=1

Ri = I(X1 . . . XM ;Y ) (2.2)

That is, D is the subset of rate tuples giving the maximal sum rate over all users. Due to the

special polymatroidal structure of R (more on this in Section 2.2), it can be shown [HW94,

TH98] that any point of R is dominated componentwise by a point in D. That is, for

any rate tuple R ∈ R, there exists a rate tuple Φ ∈ D such that Ri ≤ Φi, i = 1, . . . ,M .

Therefore, to examine the achievability of points in R, it is sufficient to restrict attention

to the achievability of points in D. The achievable region R and its dominant face D are

illustrated for the two-user case in Figure 2-1.

For points in D, equations (2.1) and (2.2) give a pair of upper and lower bounds on the
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Figure 2-1: Achievable region R of a two-user DMMAC for a fixed input probability distri-
bution.

combined rate over any non-empty subset S ⊆ {1, . . . ,M}. Thus, for any R ∈ D,

I(XS ;Y ) ≤
∑
i∈S

Ri ≤ I(XS ;Y | XSc), ∀S ⊆ {1, . . . ,M} (2.3)

Conversely, any R satisfying (2.3) clearly meets (2.1) and has maximal sum rate (take

S = {1, . . . ,M} in (2.3)). Hence, (2.3) is an equivalent condition for R ∈ D.

2.2 The Geometry of R and D

This section reviews some of the fundamental geometrical structure of the rate region R

and the dominant face D. Most of the properties are discussed in the pioneering work of

Grant et al. [GRUW01]. Due to the central role of geometry in our work, however, we feel

compelled to revisit the landscape. We believe a clear understanding of the geometry makes

the main results of this section seem natural.

A convex polyhedron is the intersection of a finite family of closed halfspaces of Rn. A

convex polytope is a bounded polyhedron. A hyperplane H is said to support a convex

polytope P if H∩P 6= ∅ and P is entirely contained in one of the two halfspaces determined

by H. A face of a convex polytope is the intersection of the convex polytope with a

supporting hyperplane. A face of a convex polytope is again a convex polytope.

Given a convex polytope P, the affine hull of P, aff(P), is the set of all affine combina-
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tions formed from all finite subsets of P:

aff(P) = {x ∈ Rn : x =
k∑
i=1

λixi, λi ∈ R,
k∑
i=1

λi = 1;xi ∈ P, i = 1, . . . , k}.

Equivalently, aff(P) is the smallest affine subspace containing P. The dimension of an affine

subspace is the dimension of the corresponding linear subspace. The convex polytope P is

said to have dimension d if aff(P) has dimension d. A face F of P is called a vertex or

extreme point if dim(F) = 0, an edge if dim(F) = 1, and a facet if dim(F) = d − 1. It

is a fundamental fact that every convex polytope as defined above is the convex hull of its

vertices.

With the above definitions, a geometric analysis of R and D defined in the previous

section follows. From (2.1), R is a convex polytope. A crucial observation is that R is a

very special type of convex polytope called a polymatroid [HW94, TH98]. Polymatroids have

the convenient property that they are convex polytopes in which a greedy algorithm gives

the optimal solution for a linear optimization problem with the polytope as the feasible

set [Edm70, GLS85, Wel76]. It turns out that the vertices of a polymatroid are easily

enumerated. Let ΠM be the permutation group of {1, . . . ,M}. For any π ∈ ΠM , let the

rate tuple Rπ = (Rπ1 , . . . , R
π
M ) be defined by

Rππ(i) =


0 for i = 1, . . . , k

I(Xπ(i);Y |Xπ(1), . . . , Xπ(i−1)) for i = k + 1, . . . ,M.

(2.4)

where 0 ≤ k ≤ M . Rate tuple Rπ is then a vertex of R. Moreover, all vertices of R

takes the form in (2.4) [Edm70, GLS85, Wel76]. For instance, for the two-user DMMAC

rate region in 2-1, there are five vertices: (I(X1;Y ), I(X2;Y |X1)), (I(X1;Y |X2), I(X2;Y )),

(0, I(X2;Y |X1)), (I(X1;Y |X2), 0), and (0, 0). For k = 0, there are M ! vertices of the

form in (2.4), corresponding to the M ! permutations in ΠM . These vertices have natural

interpretations as rate tuples achievable using successive decoding. The vertex Rπ (for

k = 0) is achieved with the decoding order π, where π(j) is the user which decodes in

the jth position of the decoding order. For the two-user case, for example, there are two

vertices of this form. The vertex (I(X1;Y ), I(X2;Y |X1)) is achieved by decoding user 1

first, followed by user 2. The vertex (I(X1;Y |X2), I(X2;Y )) is achieved by decoding user 2
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first, followed by user 1.

Returning to the dominant face D, it follows from (2.1) and (2.2) that D is the face

of R determined by the intersection of R and the supporting hyperplane H{1,... ,M}, where

H{1,... ,M} ≡
{
R ∈ RM :

∑M
i=1Ri = I(X1 . . . XM ;Y )

}
. Thus, D is a convex polytope and

can be represented as the convex hull of its vertices. Due to the polymatroidal structure of

R, however, the vertices of D are the same as the vertices of R for which k = 0 in (2.4).

Thus, D = conv{Rπ : k = 0, π ∈ ΠM}, where conv denotes the convex hull operation.

From equations (2.1) and (2.2), we see that the dimension of the dominant face convex

polytope is at most M−1. It is not difficult to find examples of DMMAC’s where dim(D) <

M − 1 (an easy example is an M -user DMMAC made up of M non-interfering binary

noiseless single-user channels, where D is a single point). Grant et al. derive the following

test condition for a collapse in the dimension of D.

Lemma 2.1 (See [GRUW01]) The following statements are equivalent:

(a) I(XS ;Y ) = I(XS ;Y |XSc) for some set S, ∅ ⊂ S ⊂ {1, . . . ,M}.

(b) dim(D) < M − 1.

The lemma is quite intuitive. Condition (a) amounts to saying that the successful

decoding of users in set Sc does not make it easier to decode users in set S. Thus, the

users in S and Sc may be decoded independently of each other at the receiver. As we see

later, this really implies that the M -user DMMAC can be decomposed into at least two

independent sub-DMMAC’s, one for users in S and another for users in Sc. The lemma

says that whenever such a situation occurs, D must lose dimension. We comment that this

cannot occur in any discrete-time memoryless additive Gaussian MAC where each user has

nonzero power.1 This follows from the fact that condition (a) in Lemma 2.1 is never satisfied

for the discrete time Gaussian channel: successful decoding of some users always reduces

the effective interference for the other users and makes them more easily decodable. In this

1A discrete-time memoryless M -user additive Gaussian MAC is defined by

Y =

M∑
i=1

Xi + Z (2.5)

whereXi, i = 1, . . . ,M , and Y each has as its alphabet the set of real numbers, and Z is a zero mean Gaussian
random variable with variance σ2, independent of each Xi, i = 1, . . . ,M . The inputs Xi, i = 1, . . . ,M , are
each constrained in their mean square values: E[X2

i ] ≤ Ei, i = 1, . . . ,M.
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case, there are M ! distinct vertices in D corresponding to distinct permutations in ΠM ,

and D is topologically equivalent to a classical polytope called the permutahedron [Zie95].

2.2.1 The Many Faces of D

Assume for the following that D is full-dimensional. That is, dim(D) = M−1, which implies

D is a facet of R. Consider the set FS = D ∩HS , where HS ≡
{
R :

∑
i∈S Ri = I(XS ;Y )

}
is the hyperplane associated with the constraint set S, ∅ ⊂ S ⊂ {1, . . .M}, 1 ≤ |S| =

k ≤ M − 1 and |Sc| = M − k. From (2.3), it follows that D is entirely contained in

one of the two halfspaces created by HS . Thus, HS is a supporting hyperplane of D and

FS is a face of D. Since each FS results from the intersection of D with a hyperplane

HS , dim(FS) ≤ dim(D) − 1. Here, once again, it is possible to find examples of channels

where dim(FS) < dim(D) − 1 for some set S, ∅ ⊂ S ⊂ {1, . . . ,M} (see [GRUW01]). And

once again, it can be shown (see Appendix A.1) that for the discrete-time Gaussian MAC,

dim(FS) = dim(D) − 1 = M − 2 (M ≥ 2) for any S, ∅ ⊂ S ⊂ {1, . . . ,M}, and hence each

FS is indeed a facet of D.

Figure 2-2 illustrates the dominant face D and its facets FS for a three-user MAC. We

have assumed dim(D) = 2 and dim(FS) = 1 for all ∅ ⊂ S ⊂ {1, 2, 3}. Here D is a hexagon

with 3! = 6 vertices, each corresponding to a successive decoding order on the users 1, 2,

3. For instance, (123) denotes the vertex corresponding to decoding user 1 first, then user

2, then user 3. In this case, the facets FS are edges connecting two vertices. For instance,

the facet F{1,2} connects vertices (213) and (123). Note that each facet (edge) connects two

vertices whose labels differ by an adjacent transposition of coordinates.

Now combining the definition of FS with (2.2) we have for R ∈ FS ⊂ D,

∑
i∈S

Ri = I(XS ;Y ),
∑
i∈Sc

Ri = I(XSc ;Y |XS). (2.6)

Hence, rate tuples in FS satisfy two equality constraints, one on the sum rate over subset S

and the other on the sum rate over subset Sc. As shown in [GRUW01], these two constraints

effectively define two new dominant faces of lower dimension, one corresponding to users in

S, the other corresponding to users in Sc.

Let QXS =
∏
i∈S QXi and QXSc =

∏
i∈Sc QXi be the joint probability measures over the

inputs XS and XSc , respectively. Define the DMMAC PS :
⊗

i∈S Xi → Y by the stochastic
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Figure 2-2: Dominant face and its facets for a 3-user MAC.

matrix PS where

PS(y | xS) =
∑
xSc

P (y | x1, . . . , xM )QXSc (xSc). (2.7)

Here, P is the transition probability matrix for the original M -user DMMAC. Thus, PS is

the channel with inputs indexed by S, averaged over all possible values of the other inputs

indexed by Sc. That is, it is the channel with inputs XS with XSc regarded as “noise.” Next,

define the DMMAC (with side information at the receiver) PSc|S :
⊗

i∈Sc Xi → Y×
⊗

i∈S Xi

by the matrix PSc|S where

PSc|S(y, xS | xSc) = QXS (xS)P (y | x1, . . . , xM ). (2.8)

This is the “genie-aided” channel where the inputs are indexed by Sc while XS is available

at the decoder as side information.2 Clearly, I(QXS ;PS) = I(XS ;Y ) and I(QXSc ;PSc|S) =

I(XSc ;Y,XS) = I(XSc ;Y |XS) (since the inputs are independent).

Let DPS and DPSc|S be the dominant faces associated with the channels PS and PSc|S

2If we were considering the Gaussian MAC, PSc|S is the channel which results from subtracting out the
known inputs XS from the received signal Y .
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respectively. Then by (2.3), we have

DPS = {RS ∈ (R+)k : I(XW ;Y ) ≤
∑
i∈W

Ri ≤ I(XW ;Y | XS\W ),∀W ⊆ S}, (2.9)

DPSc|S = {RSc ∈ (R+)M−k : I(XW ;Y |XS) ≤
∑
i∈W

Ri ≤ I(XW ;Y | XW c),∀W ⊆ Sc}

(2.10)

where k = |S|. We then have dim(DPS ) ≤ k − 1 and dim(DPSc|S ) ≤M − k − 1.

Combining the rate region bounds in (2.1) and the constraints for FS in (2.6), as well

as (2.9) and (2.10), it can be shown that R ∈ FS implies RS (R projected onto the S

coordinates) ∈ DPS and RSc (R projected onto the Sc coordinates) ∈ DPSc|S . Conversely,

RS ∈ DPS and RSc ∈ DPSc|S imply R = (RS ,RSc) ∈ FS . We then have the following

lemma first stated in [GRUW01]:

Lemma 2.2 ([GRUW01]) For any ∅ ⊂ S ⊂ {1, . . . ,M},

FS = DPS ×DPSc|S

where × denotes cartesian product.

PROOF. See Appendix A.2. 2

Lemma 2.2 leads to an important observation: rate tuples on a face FS of D can be

achieved by splitting the users into two groups S and Sc and then successively decoding the

groups. The users indexed by S may first be decoded regarding the remaining users in Sc

as noise. Users XSc may then be decoded with the estimates X̂S available at the decoder as

side information. In this way, the problem of achieving points on FS for an M -user channel

reduces to the lower-dimensional problems of achieving points on the dominant faces DPS
and DPSc|S of a k-user channel and an M−k-user channel, respectively. This group splitting

concept is a generalization of the familiar successive decoding idea, and is central to the

coding techniques to be developed in this section.

At this point, the reader may object that in decoding the second set of users XSc , having

the estimates X̂S available at the decoder as side information is not equivalent to having the

true inputs XS (genie-aided) as assumed in the channel model of (2.8). For the purposes of
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analyzing the overall probability of error (the probability of making a decoding error for any

of the users of the DMMAC), however, it has been shown in [RU96] that the genie-aided

model and the model representing the actual successive decoding process are equivalent.

That argument also applies to the group splitting process discussed here. We shall use such

genie-aided analysis throughout the section.

Finally, we elaborate on Lemma 2.1 using our new perspectives. It turns out [GRUW01]

that the dominant face D loses dimension if and only if it can be written as a Cartesian

product of lower dimensional dominant faces, so that the DMMAC decomposes into at least

two independent sub-DMMAC’s.

Lemma 2.3 (See [GRUW01]) For any ∅ ⊂ S ⊂ {1, . . . ,M}, the following are equivalent:

(a) I(XS ;Y ) = I(XS ;Y |XSc).

(b) D = DPS ×DPSc .

In this case, it can be shown using the Irrelevancy Lemma from [GRUW01] that DPSc|S =

DPS and thus D = FS = DPS ×DPSc . Thus, D collapses into one of its faces.

2.3 Achieving D Using Time-Sharing

It is well-known that time-sharing can be combined with successive decoding to achieve

the non-vertex rate tuples on the dominant face of the MAC capacity region [CT91]. Two

difficulties, however, have been cited to discredit this approach [RU96]. First, the number

of single-user codes needed is onerous. Conventional time-sharing requires M2 single-user

codes to achieve any point in the capacity region. Second, synchronization is needed for

conventional time-sharing, whereas a global time reference is difficult to obtain in practice

if there is absolutely no feedback from the receiver back to the transmitters.

The problem of synchronization is the easier of the two to overcome. First, the difficulty

in obtaining block synchronization in a discrete-time model may be overstated, since ap-

proximate block synchronization is attainable using only mild feedback in a multiple access

setting [Gal85]. Usually, it is sufficient for each transmitter to synchronize with the receiver

separately. The receiver can then appropriately delay each transmitter’s signal to achieve

global block synchronization. Thus, a global time reference may not be necessary for global
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block synchronization. Furthermore, we note that the idea of time-sharing also applies to

frequency. By projecting a continuous-time multiple access channel on the appropriate set

of orthonormal functions, frequency-sharing schemes in which different coding strategies are

adopted for different frequency bands can be analyzed in much the same way as time-sharing

schemes. Hence, theoretical analyses for time-sharing and frequency-sharing are the same,

both involving independent parallel channels. In practice, however, frequency-sharing may

be preferred since synchronization is not required.

As mentioned before, the complexity issue has been addressed successfully in [Rim99],

in which it is shown that time-sharing schemes can attain the 2M − 1 performance of rate-

splitting schemes [GRUW01, RU96]. Our independent analysis of this issue starts by noting

that one single-user code can be used over several time-sharing segments corresponding to

different decoding orders. In what follows, we show that the user faces a deterministically

varying channel (DVC) over those segments, and that the maximum achievable rate over

those segments is the average mutual information over the DVC. This in turn implies that

the number of single-user codes needed can be dramatically reduced while the achievability

of rate tuples on the dominant face is preserved. We begin with an analysis of the two-user

case.

2.3.1 The Two-User Channel

We start by re-examining the conventional time-sharing set-up as illustrated in Figure 2-

3. Here we consider a two-user DMMAC. We shall assume block synchronism for the

moment. Suppose a communication system attempts to achieve the rate pair Φ = (1 −

λ)Φ(1 2) + λΦ(2 1) ∈ D, where 0 < λ < 1. Here, Φ(1 2) = (I(X1;Y ), I(X2;Y |X1)) and

Φ(2 1) = (I(X1;Y |X2), I(X2;Y )) are the two vertices of D associated with the permutations

π1 = (1 2) and π2 = (2 1). A possible implementation of the time-sharing scheme for a fixed

overall block length N divides the interval T ≡ {1, . . . , N} into two disjoint subintervals

T (1 2) and T (2 1) which partition T , where |T (1 2)| = (1− λ)N and |T (2 1)| = λN (we ignore

the integer constraint for analytical convenience). To implement time-sharing, user one

employs code C11, with block length (1− λ)N , over T (1 2) and code C12, with block length

λN , over T (2 1). User two employs code C21, with block length (1 − λ)N , over T (1 2) and

code C22, with block length λN , over T (2 1). The decoding order G on the codes (an ordered

permutation on the set of indices of the codes) is arranged such that user 1 is decoded first
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T (1 2) T (2 1)

Figure 2-3: Time-sharing coding configuration for conventional time-sharing. The labels
above the sub-intervals are the indices of the codes used over the sub-interval. The size of
the sub-intervals are |T (1 2)| = (1−λ)N and |T (2 1)| = λN . The decoding order G = (11 21
22 12), and the user decoding orders are (1 2) and (2 1) over the respective intervals.

User 1

User 2

11 12
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Figure 2-4: Time-sharing coding configuration for the two-user DMMAC. The labels above
the sub-intervals are the indices of the codes used over the sub-interval. The size of the
sub-intervals are |T (1 2)| = (1 − λ)N and |T (2 1)| = λN . The decoding order G = (11 21
12), and the user decoding orders are (1 2) and (2 1) over the respective intervals.

over T (1 2) followed by user 2, and user 2 is decoded first over T (2 1) followed by user 1.

Choosing G = (11 21 22 12), for instance, would accomplish this.

One may now ask whether it is really necessary that both users employ two codes to

accomplish time-sharing between user decoding orders (1 2) over T (1 2) and (2 1) over T (2 1).

Suppose user 2 employs only one code C21 over the whole interval T . Let the decoding order

be G = (11 21 12). This set-up is illustrated in Figure 2-4. Since C11 is decoded first over

T (1 2), user 2 sees a “clean” channel over T (1 2), but sees user 1 as noise over T (2 1). Hence,

over T , user 2 faces a set of independent channels which vary with channel index n. What

is the highest rate that user 2 can achieve in this situation? Intuitively, one would guess

that the answer is (1 − λ)I(X2;Y |X1) + λI(X2;Y ).3 This is indeed correct, as we show

in the next section. It follows that any rate pair Φ = (1 − λ)Φ(1 2) + λΦ(2 1), 0 ≤ λ ≤ 1,

is achievable with the configuration in Figure 2-4. Thus, the number of single-user codes

needed have been reduced from four to three. To generalize the argument to more than two

3We are assuming here that the actual input X1, rather than just the estimate X̂1, is available at the
decoder for code C21 over the interval T (1 2). For the analysis of overall probability of error, this genie-aided
analysis is valid. See previous discussion in Section 2.2.1.
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users, we first need to give an analysis of so-called deterministically varying channels.

2.3.2 Deterministically Varying Channels

Definition 2.1 Let X ,Y and S = {1, . . . , V } be finite sets. A discrete memoryless deter-

ministically varying channel (DVC) is a set of discrete channels PNs = {Psn(y|x) : sn ∈

S, n = 1, . . . , N}, where s = (s1, . . . , sN ) ∈ SN and the indices sn are known parameters.

Psn(y|x) is the conditional probability that the channel output is y ∈ Y when the channel

input is x ∈ X and the channel index is sn ∈ S. The operation of a DVC on N -tuples

x = (x1, . . . , xN ) ∈ XN ,y = (y1, . . . , yN ) ∈ YN , s = (s1, . . . , sN ) ∈ SN , is given by

PNs (y|x) =
N∏
n=1

Psn(yn|xn). (2.11)

Definition 2.2 Let Q(x) be an arbitrary probability assignment on the channel input al-

phabet X . An (N,R,Q) random code ensemble is an ensemble of (N,R) block codes where

each codeword x is independently chosen according to the product distribution QN (x) =∏N
n=1Q(xn).

We now consider a sequence (in N) of DVC’s such that the fraction of constituent

discrete channels belonging to each channel type in S remains constant as N increases.

Definition 2.3 A sequence (in N) of DVC’s {PNs } is said to have fixed fraction if the

fraction of channels of type v ∈ S, θv = |{n : Psn = Pv}|/N , remains constant as N →∞,

where
∑V

v=1 θv = 1.

The following theorems can be established using the Parallel Channels Result of [Gal68,

pp. 149-150] and the classic coding theorems for discrete memoryless channels (DMC’s).

Theorem 2.1 Let {PNs } be a sequence (in N) of fixed-fraction DVC’s. Let R be any

positive number. Consider a sequence (in N) of (N,R,Q) random code ensembles. For every

positive integer N , let P e be the ensemble average probability of decoding error averaged over

all messages l, 1 ≤ l ≤ deNRe, using maximum likelihood (ML) decoding. Then,

P e ≤ exp [−NEr(R,Q)] (2.12)
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where

Er (R,Q) ≡ max
0≤ρ≤1

[
V∑
v=1

θvEv(ρ,Q)− ρR

]
, (2.13)

Ev(ρ,Q) ≡ − ln
∑
y

{∑
x

Q(x)Pv(y|x)1/(1+ρ)

}1+ρ

. (2.14)

and Pv denotes a discrete channel of type v ∈ S.

PROOF. See Appendix A.3. 2

Theorem 2.2 For any sequence of fixed-fraction DVC’s {PNs }, the random error exponent

Er (R,Q), as defined in (2.13) and (2.14), is a convex, decreasing, and positive function of

R for 0 ≤ R <
∑V

v=1 θvI(Q;Pv).

PROOF. See Appendix A.4. 2

It follows from the proof of Theorem 2.2 in Appendix A.4 that the random coding

exponent Er (R,Q) for the fixed-fraction DVC’s can be obtained parametrically through

ρ, 0 ≤ ρ ≤ 1, with Er (ρ,Q) and the rate R(ρ,Q) being given as the average of the respective

quantities Erv(ρ,Q) and Rv(ρ,Q) for each channel type v ∈ S:

Er(ρ,Q) =
V∑
v=1

θvErv(ρ,Q), R(ρ,Q) =
V∑
v=1

θvRv(ρ,Q).

In other words, the (Er(ρ,Q), R(ρ,Q)) curve for the fixed fraction DVC’s is formed by the

vector average of points of the same slope ρ, 0 ≤ ρ ≤ 1, from the (Erv(ρ,Q), Rv(ρ,Q)) curves

for the constituent channel types in S.

Theorems 2.1 and 2.2 show that for every fixed N , the probability of error averaged over

the (N,R,Q) code ensemble used over the DVC PNs is bounded with a positive exponent

as in (2.12) for all R <
∑V

v=1 θvI(Q;Pv). It follows that for each N and every R <∑V
v=1 θvI(Q;Pv), there exists at least one code in the (N,R,Q) code ensemble for which the

error probability is so bounded. In other words, over a sequence of fixed-fraction DVC’s,

it is always possible to pick a sequence of codes appropriately to obtain exponentially

decreasing error probabilities so long as the rate of the codes stays below the mixture of
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average mutual informations for the channel types in each DVC. The following definition

and theorem summarize the above results.

Definition 2.4 The rate Φ is said to be achievable over the sequence (in N) of DVC’s

{PNs } with the input distribution Q if for every δ > 0, and all R ≤ Φ − δ, there exists a

sequence of (N,R) block codes, each a member of the (N,R,Q) code ensemble, for which

the average probability of decoding error PNe tends to zero as N →∞.

Theorem 2.3 Over a sequence of fixed-fraction DVC’s {PNs }, all rates Φ ≤
∑V

v=1 θv ·

I(Q;Pv) are achievable with the input distribution Q.

The converse to Theorem 2.3 is very similar to the usual converse for DMC’s. Let

UK = (U1, . . . , UK), Ui ∈ U , i = 1, . . . ,K, be a sequence of K outputs of a discrete source

connected to a destination through a sequence of N channel uses of a DVC PNs . Let the

sequence ÛK = (Û1, . . . , ÛK) be the output of the decoder. The rate of the channel code

is R = K/N . Let PKe,i = Pr
(
Ûi(Y N ) 6= Ui

)
be the probability of error in the ith bit, and

let PKb = 1
K

∑K
i=1 P

K
e,i be the average error probability over the sequence of K bits, or the

bit error rate.

Theorem 2.4 Let Q be a fixed distribution on the input alphabet X and N be a fixed

positive integer. Then, over a fixed-fraction DVC PNs ,

R
(
1−H(PKb )− PKb ln(|U| − 1)

)
≤

V∑
v=1

θvI(Q;Pv)

where H(PKb ) ≡ −PKb logPKb − (1− PKb ) log(1− PKb ).

PROOF. See Appendix A.5. 2

The aim of this section has been to exactly characterize the set of achievable rates over a

sequence of fixed-fraction deterministically varying channels using a fixed input distribution.

The result is that the highest achievable rate is the appropriate mixture of the average

mutual informations between the input distribution and the respective channel transitions.

This justifies our assertion with regards to Figure 2-4 in Section 2.3.1 that user 2 can indeed

achieve (1−λ)I(X2;Y |X1) +λI(X2;Y ). To apply this result to DMMAC’s with more than

two users, we need to generalize the idea of time-sharing.

35



2.3.3 Time-Sharing Coding Configurations

Rimoldi [Rim97] has given a general formulation in which the ideas of time-sharing and

successive decoding are combined. In this set-up, each user of a DMMAC has a number of

single-user codes which it chooses to employ over subsets of time specified using a scheduling

sequence. The single-user codes are decoded successively according to a decoding order.

We will show that the scheduling sequence and the decoding order combine to determine,

for each user and over each coding sub-interval, a sequence of fixed-fraction DVC’s with a

corresponding achievable rate. The following definition closely resembles the one in [Rim97].

Definition 2.5 A time-sharing coding configuration T = (N,C, {tn}, G) for an M -user

DMMAC consists of the following:

(a) Each user i, 1 ≤ i ≤M , employs an overall block length N .

(b) Each user i has a set of Ji single-user codes {Cij : 1 ≤ j ≤ Ji}. Each code Cij is a

(Nγij , Rij) block code, where for each i,
∑Ji

j=1 γij = 1. Let C ≡ {Cij : 1 ≤ i ≤M, 1 ≤

j ≤ Ji}.

(c) A sequence of scheduling M -tuples, {tn}Nn=1, where tn = (t1n, . . . , tMn), determines

the code to be used by each user at each time. Specifically, tin ∈ {1, . . . , Ji} is the index

of the code used by user i at time n, Let Tij ≡ {n : tin = j}, 1 ≤ i ≤M, 1 ≤ j ≤ Ji, be

the subset of {1, . . . , N} on which user i uses the ijth code, where |Tij | = Nγij.

(d) The decoding order on the single-user codes is determined by G, an ordered permuta-

tion on E = {ij : 1 ≤ i ≤M, 1 ≤ j ≤ Ji}.

The coding process using the configuration T involves the following.

Encoding User i, 1 ≤ i ≤ M , forms Ji codewords wij , 1 ≤ j ≤ Ji, where the

codeword wij is produced by the encoder corresponding to the code Cij , and has block

length Nγij . At time n, 1 ≤ n ≤ N , the ith transmitter sends the next symbol of codeword

wij if tin = j. The ith scheduling sequence tin is known only to transmitter i, while the entire

scheduling M -tuple sequence {tn} is known to the common receiver of all transmitters.

Decoding The codewords generated by each code in C are decoded successively.

Decoding proceeds according to the order G as follows. If ij ∈ E is the first entry in G,

then the decoder for the code Cij observes channel outputs {Yn : tin = j}, and decodes the
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codeword wij regarding codewords from all other users as noise. The decoded codeword

ŵij is then available as side information to all other decoders corresponding to codes with

indices following ij in G. The decoding proceeds with the decoder for code Bkl if kl is the

next entry in G. This process continues until all codewords {wij , ij ∈ E} have been decoded.

At each step of the decoding process, all previously decoded codewords are available as side

information at the active decoder.

A time-sharing coding configuration imposes, at every time n, an order in which the

users are decoded. The user decoding order Un ∈ ΠM can be obtained by listing {itin, i =

1, . . . ,M} in the order given by G and then removing the second index. Specifically, Un(i)

is the user which decodes in the ith position at time n.

Example 2.1 (Two User Case) To illustrate the idea of time-sharing coding configurations,

we interpret the two-user case seen in Figure 2-4 in our new framework. Here, user 1 has

two single-user codes (J1 = 2) C11 and C12. User 2 has one code (J2 = 1) C21. We

have γ11 = 1 − λ, γ12 = λ, γ21 = 1. The scheduling sequences are such that t1n = 1 for

n ∈ {1, . . . , (1− λ)N} = T11, t1n = 2 for n ∈ {(1− λ)N + 1, . . . , N} = T12, and t2n = 1 for

all n ∈ {1, . . . , N}. Also, E = {11, 12, 21} and G = (11 21 12). The user decoding order is

Un = (1 2) for n ∈ T11 and Un = (2 1) for n ∈ T12. 2

For a fixed product distribution
∏M
i=1QXi on the product of input alphabets XN , the

user decoding orders imposed by a time-sharing configuration create, for each user i, 1 ≤

i ≤ M , a fixed-fraction DVC P
Nγij
s over the subset Tij , 1 ≤ j ≤ Ji. We can describe the

genie-aided version of PNγijs , say P̂
Nγij
s , as follows. Here, we assume that all the actual

inputs corresponding to users decoded before user i at time n ∈ Tij according to the order

Un are available to the decoder for code Cij . Once again, for consideration of overall

decoding error probability, this is sufficient. For a permutation π ∈ ΠM , let XB(π,i) =

{Xπ(1), . . . , Xπ(π−1(i)−1)} be the set of inputs decoded before Xi under π. Similarly, let

XA(π,i) = {Xπ(π−1(i)+1), . . . , Xπ(M)} be the set of inputs decoded after Xi under π. For

convenience, denote A(Un, i) by A and B(Un, i) by B. Also, let QXA ≡
∏
i∈AQXi and

QXB ≡
∏
i∈B QXi . Then the nth channel of the genie-aided DVC P̂

Nγij
s seen by user i, for
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n ∈ Tij is given by

P̂sn(y, xB|xi) =
∑
xA

QXA(xA)QXB (xB)P (y|xB, xi, xA) (2.15)

where P is the stochastic matrix associated with the original M -user DMMAC (cf. equa-

tions (2.7) and (2.8)). It is clear that I(QXi ; P̂sn) = I(Xi;XB, Y ) = I(Xi;Y |XB).

Achievable Rates

We now define the achievability of a rate tuple using time-sharing of single-user codes in

a manner consistent (via the union bound) with the usual definition of achievability for

multi-access channels [Gal85].

Definition 2.6 Over an M -user DMMAC, rate Φ = (Φ1, . . . ,ΦM ) ∈ R(P,
∏M
i=1QXi)

is said to be achievable using time-sharing of single-user codes with the product input

distribution
∏M
i=1QXi if for every δ > 0, and all rate tuples R ∈ R such that Ri ≤

Φi − δ, i = 1, . . . ,M , there exists a sequence (in N) of time-sharing coding configurations

{TN} = {(N,C, {tn}, G)} such that

(a) For every N , Ri =
∑Ji

j=1 γijRij , i = 1, . . . ,M , where γij is the fraction of time

(independent of N) that user i uses the code CNij .

(b) The average probabilities of decoding error PNe,ij for the sequence of (Nγij , Rij) codes

CNij , each a member of the (Nγij , Rij , QXi) code ensemble, tends to zero on the genie-

aided fixed-fraction DVC sequence {P̂Nγijs } as N → ∞, for every ij, 1 ≤ i ≤ M, 1 ≤

j ≤ Ji.

Definition 2.6 implies that a rate tuple Φ is achievable using time-sharing with product input

distribution
∏M
i=1QXi if and only if the rates Φij , where Φi =

∑Ji
j=1 γijΦij , are achievable

with input distribution QXi over the sequence (in N) of fixed fraction genie-aided DVC’s

{P̂Nγijs } corresponding to the configuration sequence {TN} = {(N,C, {tn}, G)}, for every

ij (see Definition 2.4).

Example 2.2 (Two User Case) For the two-user case in Figure 2-4, any rate pair Φ =

(1 − λ)Φ(1 2) + λΦ(2 1), 0 ≤ λ ≤ 1, is achievable using time-sharing of single-user codes.
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This is accomplished with the time-sharing coding configuration given in Example 2.1. Let

Φ1 = (1 − λ)Φ11 + λΦ12, and Φ21 = Φ2. Rate Φ11 is achievable over the DVC sequence

{P̂N(1−λ)
s }, where P̂sn(y|x1) =

∑
x2
QX2(x2)P (y|x1, x2), n ∈ {1, . . . , (1− λ)N}. Rate Φ2 is

achievable over {P̂Ns } where P̂sn(y, x1|x2) = QX1(x1)P (y|x1, x2) for n ∈ {1, . . . , (1− λ)N}

and P̂sn(y|x2) =
∑

x1
QX1(x1)P (y|x1, x2) for n ∈ {(1 − λ)N + 1, . . . , N}. Rate Φ12 is

achievable over {P̂Nλs }, P̂sn(y, x2|x1) = QX2(x2)P (y|x1, x2), n ∈ {(1−λ)N + 1, . . . , N}. 2

Notice that Definition 2.6 is consistent with the usual definition of achievability for

DMMAC’s. For each N , let PNe,ij , 1 ≤ i ≤ M, 1 ≤ j ≤ Ji, be the probability of decoding

error over a block length of Nγij for the ijth code of user i (a member of the (Nγij , Rij , QXi)

code ensemble) over the genie-aided DVC P̂
Nγij
s . Let PNe,i be the probability that user i is

decoded incorrectly on any part of the overall block length N over the set of genie-aided

channels P̂Nγijs , 1 ≤ j ≤ Ji. Finally, let PNe be the overall probability of decoding error,

that is, the probability that any user is decoded incorrectly, for block length N . Then by

the genie-aided argument [RU96] and by repeated use of the union bound,

PNe ≤
M∑
i=1

PNe,i ≤
M∑
i=1

Ji∑
j=1

PNe,ij . (2.16)

Hence if PNe,ij → 0 for every ij ∈ E as N →∞, then PNe → 0 as N →∞.

Probability of Error

Next, we use (2.16) to obtain a simple bound on the minimum achievable overall probability

of error for any time-sharing coding configuration with a fixed block length N , product

input distribution
∏M
i=1QXi , scheduling sequences {tn}, and decoding order G. Given these

assumptions, Theorem 2.1 says that for every ij, 1 ≤ i ≤ M, 1 ≤ j ≤ Ji, there exists an

(Nγij , Rij) code in the (Nγij , Rij , QXi) code ensemble for which the probability of decoding

error over the genie-aided DVC P̂
Nγij
s using ML decoding is upper bounded as

PNe,ij ≤ exp
[
−NγijErij (Rij , QXi)

]
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where

Erij (Rij , QXi) ≡ max
0≤ρ≤1

 Vij∑
v=1

θvEv(ρ,QXi)− ρRij

 , (2.17)

Ev(ρ,QXi) ≡ − ln
∑
y,xB

{∑
xi

QXi(xi)P̂v(y, xB|xi)
1

1+ρ

}1+ρ

, (2.18)

P̂v(y, xB|xi) =
∑
xA

QXA(xA)QXB (xB)P (y|xB, xi, xA). (2.19)

Here, we are using the same notation as in (2.15), with Un being replaced by Uv, the user

decoding order for the genie-aided channels P̂v(y, xB|xi) of type v ∈ S in the DVC P̂
Nγij
s .

The quantity θv is the fraction of genie-aided channels of type v, where
∑Vij

v=1 θv = 1, and Vij

is the total number of channel types in P̂Nγijs . Once again, the error exponent Erij (Rij , QXi)

can be obtained parametrically through ρ by averaging the respective error exponents and

rates of each type of channel encountered over the DVC P̂
Nγij
s . Now by (2.16),

PNe ≤
M∑
i=1

Ji∑
j=1

exp
[
−NγijErij (Rij , QXi)

]
. (2.20)

Hence, there exists an (N,C, {tn}, G) time-sharing coding configuration for which the overall

probability of decoding error is upper bounded as in (2.20).

Example 2.3 (Two User Gaussian MAC) We give an error probability analysis for a

discrete-time memoryless two-user additive Gaussian MAC as defined in (2.5). Let E1 and

E2 be the average energy constraints of the users and let σ2 be the background noise vari-

ance. We choose the Gaussian distribution N (0, Ei) for the code ensemble of user i, i = 1, 2.

Consider the coding configuration for conventional time-sharing in Figure 2-3. For fixed

block length N , let PNe,i, i = 1, 2, be the probability that user i is decoded incorrectly on any

part of the overall block length over the corresponding set of genie-aided channels. Then

by the genie-aided argument and the union bound,

PNe,1 ≤ exp[−N(1− λ)Er11(R11)] + exp[−NλEr12(R12)], (2.21)
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where

Er11(R11) = max
ρ∈[0,1]

ρ

2
ln
(

1 +
E1

(σ2 + E2)(1 + ρ)

)
,

Er12(R12) = max
ρ∈[0,1]

ρ

2
ln
(

1 +
E1

σ2(1 + ρ)

)
.

are given by the integral form of (2.17)-(2.19) [Gal85]. Similarly,

PNe,2 ≤ exp[−N(1− λ)Er21(R21)] + exp[−NλEr22(R22)], (2.22)

Er21(R21) = max
ρ∈[0,1]

ρ

2
ln
(

1 +
E2

σ2(1 + ρ)

)
,

Er22(R22) = max
ρ∈[0,1]

ρ

2
ln
(

1 +
E2

(σ2 + E1)(1 + ρ)

)
.

Notice that for large N , and R21 ↑ I(X2;Y |X1), R22 ↑ I(X2;Y ), PNe,2 is essentially de-

termined by the second exponential term in (2.22) (with the exponent λEr22(R22)) corre-

sponding to the more noisy λN channel uses. This is because PNe,2 is lower-bounded by the

probability of an error event on the last λN symbols, and moreover the upper bound with

the random error exponent is tight (that is, Er(R) agrees with the sphere packing exponent

Esp(R)) for rates near capacity [Gal68].

We now turn to the coding configuration in Figure 2-4. Here, it is clear that the bound

on PNe,1 is the same as in (2.21). The bound on PNe,2, however, is different. Here, user 2 sees

a genie-aided fixed-fraction DVC. Thus, its random error exponent is the parametric (via

ρ) convex combination of the error exponent for the clean and noisy channels. We have

PNe,2 ≤ exp[−NEr2(R2)],

where

Er2(R2) = max
ρ∈[0,1]

[
(1− λ)

ρ

2
ln
(

1 +
E2

σ2(1 + ρ)

)
+ λ

ρ

2
ln
(

1 +
E2

(σ2 + E1)(1 + ρ)

)]
.

Notice that Er2(R2) is clearly larger than λEr22(R22) at all positive rates. We conclude

that the coding configuration of Figure 2-4 not only uses fewer single-user codes than the

conventional time-sharing configuration of Figure 2-3, but also gives better error probability

performance for user 2. 2
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Solution for
Φf
Sc

Solution for
Φf
S Solution

for
Φπ

(1− λ)N λN� -� -

Figure 2-5: Illustration of the main idea of projective time-sharing for a fixed block length
N . The coding strategy for Φ ∈ D is derived from the strategy for a vertex Φπ and that for
a face point Φf ∈ FS by time-sharing, where the time sharing parameter here is 0 ≤ λ ≤ 1.
The coding strategy for Φf is in turn obtained from the coding strategy for Φf

S ∈ DPS and
that for Φf

Sc ∈ DPSc|S .

2.4 Projective Time-Sharing

We have now acquired all the essential tools needed to derive our main result. The notions

of deterministically varying channels and time-sharing coding configurations will now be

combined with the underlying geometry of the dominant face to devise a strategy which

achieves any rate tuple in D using no more than 1
2M log2M +M single-user codes.

Towards that end, we consider a specific class of time-sharing coding configurations

called projective time-sharing configurations. The main idea behind projective time-sharing

is that any rate tuple Φ ∈ D can be expressed, as we show, as the convex combination of any

vertex Φπ of D and a point Φf on some face FS (as defined in Section 2.2.1) of D. Hence,

the coding strategy for an arbitrary rate-tuple Φ can be derived from the strategy for Φπ

and that for Φf by time-sharing. Moreover, recall Lemma 2.2 from Section 2.2.1, which

says that any face Fs of D is the Cartesian product of two lower-dimensional dominant faces

DPS and DPSc|S of the DMMAC’s PS and PSc|S . This implies that the coding strategy for

achieving any rate tuple Φf on some face FS of D can be obtained from the coding strategy

for achieving the projection of Φf onto the S-coordinates Φf
S (belonging to DPS ) and that

for the projection of Φf onto the Sc-coordinates Φf
Sc (belonging to DPSc|S ). In this way, the
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problem of achieving rate tuples on the dominant face D of an M -user DMMAC reduces

naturally to the lower-dimensional problems of achieving points on the dominant faces DPS
and DPSc|S . This is illustrated in Figure 2-5. The idea of projective time-sharing is clarified

in the following definition.

Definition 2.7 Let D be the dominant face of a rate region R(P,
∏M
i=1QXi) for an M-user

DMMAC. Let Φ ∈ D be such that Φ = λΦπ + (1−λ)Φf , 0 ≤ λ ≤ 1, where Φπis a vertex of

D, π ∈ ΠM , and Φf is a point on some face of D. Φ is said to be achievable by projective

time-sharing of single-user codes with the product input distribution
∏M
i=1QXi if for any

δ > 0 and any R ∈ R such that Ri ≤ Φi − δ, i = 1, . . . ,M , there exists a sequence (in N)

of time-sharing coding configurations {(N,C, {tn}, G)} satisfying the following:

(a) For every N , there exist disjoint subsets T f and T π of {1, . . . , N} with |T f |/N =

1− λ, |T π|/N = λ, and T f ∪ T π = {1, . . . , N}.

(b) For every N , the scheduling M -tuple tn is such that tin = ji for some fixed ji ∈

{1, . . . , Ji},∀n ∈ T π, i = 1, . . . ,M , and the user decoding order over T π is π. That

is, UTπ = π.

(c) For every N , Ri =
∑Ji

j=1 γijRij , i = 1, . . . ,M , where γij is the fraction of time

(independent of N) that user i uses the code CNij .

(d) The average probabilities of decoding error PNe,ij for the sequence of (Nγij , Rij) codes

CNij , each a member of the (Nγij , Rij , QXi) code ensemble, tends to zero on the genie-

aided fixed-fraction DVC sequence {P̂Nγijs } as N → ∞, for every ij, 1 ≤ i ≤ M, 1 ≤

j ≤ Ji.

In essence, the definition says that Φ is achievable using projective time-sharing if there

exists a sequence of configurations which time-shares between a strategy for achieving Φf

over T f and a strategy for achieving Φπ over T π. Over T π, each user uses only one code

for a fixed N , and the user decoding order is π associated with the vertex Φπ. The last two

conditions follow directly from Definition 2.6.

Example 2.4 (Two User Case) For the two-user case in Figure 2-4, any rate pair Φ =

(1− λ)Φ(1 2) + λΦ(2 1), 0 ≤ λ ≤ 1, is achievable using projective time-sharing of single-user

codes. Here, Φ(2 1) is a vertex of D and Φ(1 2) is a face point (also a vertex) of D. Also,
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T f = T (1 2), T π = T (2 1). For each N , t1n = 2, t2n = 1,∀n ∈ T π and UTπ = (2 1). See

Examples 2.1 and 2.2 for details. 2

2.4.1 The Main Theorem

In this section, we show that any rate tuple Φ ∈ D can be achieved using projective time-

sharing with no more than 1
2M log2M + M codes. The main geometric idea of projection

onto lower-dimensional dominant faces plays a large role in the proof of the main theorem.

That idea, however, is not by itself sufficient to limit the number of required single-user

codes to O(M log2M). The latter requires additional somewhat subtle arguments to be

presented in the proof and the example following. We start with a lemma.

Lemma 2.4 Let the function h : Z+ → Z
+ be defined by h(1) = 1 and for M ≥ 2,

h(M) = max
1≤k≤M−1

h(k) + h(M − k) + min(k,M − k).

Then,

(a) h(M) = h(bM2 c) + h(dM2 e) + bM2 c.

(b) h(M) ≤ 1
2M log2M +M , with equality for M = 2r, r ∈ Z+.

PROOF. See Appendix A.6. 2

Theorem 2.5 Let D be the dominant face of the rate region R(P,
∏M
i=1QXi) for an M-

user DMMAC P (y|x1, . . . , xM ). Then any rate-tuple Φ ∈ D can be expressed as the convex

combination of an arbitrary vertex Φπ of D and a point Φf on some face FS of D, and is

achievable by projective time-sharing using no more than h(M) single-user codes with the

product input distribution
∏M
i=1QXi.

Before presenting the detailed proof, we illustrate the central concepts of the proof

construction with the following example.

Example 2.5 Consider a five-user DMMAC P (y|x1, . . . , x5). Let R(P,
∏5
i=1QXi) be the

rate region corresponding to the product input distribution
∏5
i=1QXi . Assume the dom-

inant face D of R has dimension 4. Let Φ ∈ D. We shall fix an overall block length N ,
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Figure 2-6: Projective time-sharing coding configuration for Example 2.5. The labels above
the sub-intervals are the indices of the codes used over the sub-interval. The overall block
length is N , where N2 = (1−λ)N,N1 = (1−α)N2. Also, |T f | = (1−λ)N = N2, |T π| = λN ,
|T fS | = N1 = (1 − α)N2, and |T πS | = αN2. The overall decoder order is G = (43 11 32
21 52 12 31 41 51 42). The user decoding order among users 1, 2, and 3 over T πS is πS =
(132). The user decoding order is π = (41325) over T π. The vertical dashed line separates
the sub-configuration for Φπ from that for Φf . The horizontal dashed line separates the
sub-configuration for Φf

S from that for Φf
Sc . We have assumed that ξ, α, β, λ ∈ (0, 1).

and specify the time-sharing coding configuration. We build the configuration in two major

steps. First, we successively reduce the dimension of the problem from M − 1 = 4 to 0 or 1

using the vertex selection, ray extension, and rate tuple projection (SEP) process. Then, we

appropriately supplement and merge the configurations for the lower-dimensional problems

to build the overall configuration.

Start by selecting an arbitrary vertex Φπ of D associated with a specific permutation π

of the set {1, 2, 3, 4, 5}, say π = (41325). Extend a ray
−−→
ΦπΦ from Φπ through Φ. Suppose

the ray exits D at some face FS , where ∅ ⊂ S ⊂ {1, . . . , 5}, 1 ≤ |S| = k < 5. Assume

without loss of generality that S = {1, 2, 3}, so that |S| = k = 3, Sc = {4, 5}, |Sc| = 2.

Note that |S| ≥ |Sc|. Let Φf =
−−→
ΦπΦ∩FS . Then, Φ = λΦπ+(1−λ)Φf for some 0 ≤ λ ≤ 1.

Notice that the initial choice of the vertex Φπ determines a split of the set {1, 2, 3, 4, 5} into

two subsets S = {1, 2, 3} and Sc = {4, 5}.

Now let Φf
S ∈ (R+)3 be the result of projecting the rate tuple Φf onto the S = {1, 2, 3}
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coordinates, and let Φf
Sc ∈ (R+)2 be the result of projecting Φf onto the Sc = {4, 5}

coordinates. Then, Φf
S ∈ DPS and Φf

Sc ∈ DPSc|S , where DPS (assume dim = 2) and DPSc|S
(assume dim = 1) are the dominant faces associated with the three-user and two-user

DMMAC’s PS and PSc|S , as defined in equations (2.7)-(2.8), respectively. This suggests

that Φf can be achieved by decoding users XS regarding the other users XSc as noise,

then decoding XSc with the decoded and reconstructed versions of XS available as side

information at the decoder.

To achieve Φf
S and Φf

Sc in the lower-dimensional dominant faces, repeat the SEP process

described above. For the one-dimensional DPSc|S , selecting either vertex leads to Φf
Sc = (1−

β)Φ(4 5) + βΦ(5 4), 0 ≤ β ≤ 1, where Φ(4 5) = (I(X4;Y |X1, X2, X3), I(X5|X1, X2, X3, X4))

and Φ(5 4) = (I(X4;Y |X1, X2, X3, X5), I(X5|X1, X2, X3)). For Φf
S in the two-dimensional

DPS , select the ray-initiating vertex to be ΦπS where πS = (132) is the restriction of the

permutation π = (41325) (corresponding to the initial vertex choice Φπ) to the subset

S = {1, 2, 3}. Note that πS is a sub-permutation of π. Now suppose the ray
−−−−→
ΦπSΦf

S

hits face FS1 of DPS at the point ΦfS , where S1 = {1, 2} ⊂ S and S\S1 = {3}. Then

Φf
S = αΦπS + (1− α)ΦfS for some 0 ≤ α ≤ 1. After projecting ΦfS onto S1 and S\S1, we

have ΦfS
S1

= (1 − ξ)Φ(1 2) + ξΦ(2 1), 0 ≤ ξ ≤ 1, where Φ(1 2) = (I(X1;Y ), I(X2;Y |X1)) and

Φ(2 1) = (I(X1;Y |X2), I(X2;Y )). Also, ΦfS
S\S1

= I(X3;Y |X1, X2).

We have so far reduced the problem of achieving a rate tuple in a four-dimensional

dominant face to separate but linked problems of achieving rate tuples in zero- and one-

dimensional dominant faces. The zero-dimensional problem is of course, trivial. The pro-

jective time-sharing solution to the one-dimensional problem is given in Section 2.3.1. We

now merge these zero-dimensional and one-dimensional solutions appropriately, keeping in

mind the decoding order on subsets of users implied by the manner in which we performed

the SEP process.

Section 2.3.1 gives a configuration requiring at most three single-user codes to achieve

ΦfS
S1

, S1 = {1, 2}. Figure 2-6 shows this sub-configuration incorporated in the overall coding

configuration. The decoding order on the codes of users 1 and 2 (in S1) is GS1 = (11 21

12). Since the point ΦfS lies in FS1 , it can be achieved by decoding the users XS1 before

user XS\S1
= X3. Hence, the decoding order for ΦfS is GfS = (11 21 12 31). This is shown

in Figure 2-6, where it is assumed that the block length used for ΦfS is N1. We proceed to

build a configuration with the rate tuple Φf
S = αΦπS + (1− α)ΦfS that is, a configuration
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with rate ΦfS for a fraction of 1−α of the overall block length and rate ΦπS for the other α

fraction. Accomplish this by first lengthening the block length N1 by a factor of α
1−α to get

N2 = 1
1−αN1 (assume α ∈ (0, 1)). Retain the configuration with rate ΦfS over the subset

T fS ≡ {1, . . . , N1}. The rate ΦπS is attainable over a subset T πS ≡ {N1 + 1, . . . , N2} if the

user decoding order over T πS is precisely πS = (132), a permutation on the set {1, 2, 3}. To

this end, require that code indices 11 and 21 be used by users 1 and 2, respectively. Add

a new single-user code, indexed 32, for user 3, and specify that it be used over T πS . Now

insert the new code 32 into decoding order GfS such that the user decoding order is (132)

over T πS . Choosing the decoding order GS = (11 32 21 12 31) for users in S accomplishes

this.

Notice that we were able to add just one more code to attain the required user decoding

order (permutation of the set {1, 2, 3}) over T πS . This is possible since we already had

available to us both permutations of the set {1, 2} (user decoding orders (1 2) and (2 1))

from the coding-configuration for rate pair ΦfS
S1

. Since we are able to insert the new code

(32) anywhere in GfS , any order on users 1, 2, 3 is attainable over T πS . In general, given a

split of {1, . . . ,M} into two subsets S and Sc (assume |S| ≥ |Sc|), an arbitrary permutation

π of users {1, . . . ,M} can be obtained by first constructing the sub-permutation πS (on the

elements in the larger subset S) of π, and then inserting code indices for the smaller subset

Sc into the appropriate slots in the order imposed by πS .

Continuing the construction of a configuration for Φ, we note that the familiar two-user

solution can again be used to achieve Φf
Sc (Sc = {4, 5}). This sub-configuration is shown in

Figure 2-6, incorporated into the overall coding configuration. The decoding among users

in Sc is GSc = (41 51 42). Now since Φf ∈ FS , the users XSc are decoded after XS . The

block length used by all users for rate Φf is assumed to be N2. The decoding order for Φf

is Gf = (11 32 21 12 31 41 51 42).

Finally, for the rate tuple Φ, we require a configuration with rate Φf for a fraction 1−λ

of the overall block length and rate Φπ for the other λ fraction of the block length. To

accomplish this, lengthen the block length N2 to N , where N2 = (1 − λ)N . Retain the

configuration with rate Φf over T f ≡ {1, . . . , N2}. The overall configuration has rate Φπ

over T π ≡ {N2 + 1, . . . , N} if the user decoding order over T π is π = (41325). As explained

above, this is achieved by first obtaining the sub-permutation (132) corresponding to the

larger subset S. We require that users 1, 2, and 3 employ the same code indices (11, 21,
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and 32) over T π as they do over T πS . Then, the user decoding order over T π among users

1,2,3 is precisely πS = (132). It is now necessary to allocate two new codes with indices 43

and 52, to be used by users 4 and 5 over T π. The indices of the new codes are inserted into

decoding order Gf such that the user decoding order over T π is π = (41325) as desired.

Choosing G = (43 11 32 21 52 12 31 41 51 42) accomplishes this. Notice that the total

number of codes used is 10 = h(5).

It is easily verified that the configuration established above meets requirements 1-2

of Definition 2.7. By increasing the overall block length N and applying the arguments

of Section 2.3.2, we see that any Φ ∈ D is achievable with a sequence of configurations

{(N,C, {tn}, G)} in the sense of Definition 2.7. 2

From the above example, we see that the reduction in the number of codes needed for

achieving Φ comes from the interaction of the reduction and merging processes. If, during

every stage of the SEP process, we split the larger of two subsets according to the sub-

permutations of the original permutation π, then, during the merging stages, it is necessary

to add only an extra min(|S|, |Sc|) = min(k,M − k) new codes per stage. Thus, the total

number of codes can never exceed h(M). Another property evident from the example is

that by assigning codes to channel subsets appropriately, it is always possible for any user

to use a fixed code over a continuous interval . For instance, the code 11 is used by user 1

over the interval {ξN1 + 1, . . . , N}.

We now turn to the detailed proof of Theorem 2.5.

PROOF. For M = 1, D = R = I(Q;P ), where I(Q;P ) is the average mutual information

between the input distribution Q on the alphabet X and the DMC P (y|x). Thus, the

theorem holds trivially. For M = 2, the proof is given by the analysis in Section 2.3.1 and in

Examples 2.1-2.4. That discussion shows that in the two user case, the time-sharing scheme

presented in Section 2.3.1 is just an instance of projective time-sharing. Furthermore, the

number of codes required is no more than h(2) = 3.

Now assume the theorem holds for any m-user DMMAC, for 1 ≤ m ≤ M . Consider

an M + 1-user DMMAC P (y|x1, . . . , xM+1). Let D be the dominant face of the rate re-

gion R(P,
∏M+1
i=1 QXi) corresponding to the product input distribution

∏M+1
i=1 QXi for this

DMMAC. We must now consider two cases.
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Case 1: dim(D) < M . By Lemmas 2.1 and 2.3, there exists some set S, ∅ ⊂ S ⊂

{1, . . . ,M + 1} such that D = FS = DPS × DPSc , where DPS and DPSc are the dominant

faces associated with independent DMMAC’s PS and PSc . That is, the M+1-user DMMAC

decomposes into at least two independent sub-DMMAC’s. Let Φ ∈ D be given. Since

D = FS , Φ = λΦπ + (1− λ)Φf with Φf ∈ FS holds trivially, with λ = 0.

Let 1 ≤ |S| = k ≤ M . Let ΦS ∈ DPS and ΦSc ∈ DPSc be the projections of Φ onto

the S-coordinates and Sc-coordinates, respectively. By the inductive assumption, ΦS and

ΦSc are achievable by projective time-sharing using no more than h(k) and h(M + 1 − k)

single-user codes, respectively. Therefore, Φ = (ΦS ,ΦSc) is achievable using no more than

h(k) + h(M + 1− k) < h(M + 1) single-user codes.

Case 2: dim(D) = M . Let Φ ∈ D be given. We build the configuration sequence

to achieve Φ by first reducing the dimension of the problem using a vertex selection, ray

extension, and rate tuple projection (SEP) process, and then appropriately supplementing

and merging the configurations for the lower-dimensional problems to form the overall

configuration.

Vertex Selection, Ray Extension, Rate Tuple Projection. Given any rate tuple Φ ∈ D,

pick an arbitrary vertex Φπ of D, associated with the permutation π ∈ ΠM+1 on the set

{1, . . . ,M + 1}, and extend a ray
−−→
ΦπΦ from Φπ through Φ. Since D is a convex polytope

bounded as in (2.3), the ray must exit at some face of D corresponding to FS of D, as defined

in Section 2.2, associated with a constraint set ∅ ⊂ S ⊂ {1, . . . ,M + 1}, 1 ≤ |S| = k ≤ M .

Let Φf =
−−→
ΦπΦ ∩ FS . Then,

Φ = λΦπ + (1− λ)Φf (2.23)

for some 0 ≤ λ ≤ 1. The vertex selection and ray extension process is illustrated for a

three-user case in Figure 2-7. Now let Φf
S ∈ (R+)k be the result of projecting Φf onto

the S coordinates, and let Φf
Sc ∈ (R+)M+1−k be the result of projecting Φf onto the Sc

coordinates. From Lemma 2.2, we have Φf
S ∈ DPS and Φf

Sc ∈ DPSc|S .

Let δ > 0 be given. Let R ∈ (R+)M+1 be any rate tuple in R(P,
∏M+1
i=1 QXi) such that

Ri ≤ Φi − δ,∀i = 1, . . . ,M + 1. Choose rate tuple Rπ ∈ (R+)M+1 with Rπi ≤ Φπ
i − δ,∀i =

1, . . . ,M + 1, and choose Rf ∈ (R+)M+1 with Rfi ≤ Φf
i − δ,∀i = 1, . . . ,M + 1, so that

R = λRπ+(1−λ)Rf . LetRf
S ∈ (R+)k be the result of projectingRf onto the S coordinates,
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Figure 2-7: Illustration of the vertex selection and ray extension process for a three-user
DMMAC. Here, the dominant face D is a hexagon (not necessarily regular). The vertices
are labeled by the permutations associated with them. The initial vertex corresponds to
the permutation (213). The ray exits D at the face F{1,3}.

and let Rf
Sc ∈ (R+)M+1−k be the result of projecting Rf onto the Sc coordinates.

Next, let πS and πSc be the restrictions of π to the coordinates in S and Sc, respectively.

For instance, (41325) is a permutation of the set {1, 2, 3, 4, 5}. If S = {1, 2, 3} and Sc =

{4, 5}, then πS = (132) and πSc = (45). We call πS and πSc sub-permutations of the

permutation π.4 The permutations πS and πSc correspond to vertex ΦπS of DPS and to

vertex ΦπSc of DPSc|S , respectively.

Reduction to Lower Dimensions. Assume that k = max(k,M + 1− k) (the other case is

treated in the same way). By the inductive assumption (since 1 ≤ |S| = k ≤M), Φf
S ∈ DPS

can be expressed as a convex combination of the vertex ΦπS of DPS (corresponding to the

sub-permutation πS of π) and a point ΦfS on some face of DPS :

Φf
S = αΦπS + (1− α)ΦfS (2.24)

4Formally, assume without loss of generality that S = {s1, s2, . . . , sk : s1 < s2 < . . . < sk} and Sc =
{sc1, sc2, . . . , scM+1−k : sc1 < sc2 < . . . < scM+1−k} are ordered sets. Let ΠS and ΠSc be the permutation groups
of the sets S and Sc, respectively. Given π ∈ ΠM+1, let j1 < j2 < . . . < jk be the indices for which π(ji) ∈
S, i = 1, . . . k. Similarly, let l1 < l2 < . . . < lM+1−k be the indices for which π(li) ∈ Sc, i = 1, . . .M + 1− k.
Then let πS ∈ ΠS be such that πS(s1) = π(j1), πS(s2) = π(j2), . . . , πS(sk) = π(jk), s1 < . . . < sk. Also,
let πSc ∈ ΠSc be such that πSc(s

c
1) = π(l1), πSc(s

c
2) = π(l2), . . . , πSc(s

c
M+1−k) = π(lM+1−k), sc1 < . . . <

scM+1−k.
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for some 0 ≤ α ≤ 1. Moreover, Φf
S is achievable using projective time-sharing with no

more than h(k) codes. Notice that the selection of ΦπS is not arbitrary, but corresponds to

the sub-permutation πS of the π for the initially chosen vertex Φπ. We shall explain later

why this selection is crucial to our overall argument. Now by the definition of projective

time-sharing, since Rfi ≤ Φf
i − δ, i ∈ S, there exists a sequence of coding configurations

{(Nf , CS , {tSn}, GS)} (CS = {Cij : ij ∈ ES , ES = {ij : i ∈ S, 1 ≤ j ≤ JSi }, where JSi is the

total number of codes used by ith user) with |CS | ≤ h(k) such that (cf. Definition 2.7)

(a) for every Nf , there exist disjoint subsets T fS and T πS with |T fS |/Nf = 1 − α,

|T πS |/Nf = α, and T fS ∪ T πS = {1, . . . , Nf},

(b) for every Nf , the scheduling k-tuple tSn is such that tSin = jπSi for some fixed jπSi ∈

{1, . . . , JSi }, ∀n ∈ T πS , i ∈ S, and the user decoding order over T πS is πS . That is,

UTπS = πS .

(c) for every Nf , Rfi =
∑JSi

j=1 γijR
f
ij , ij ∈ ES , where γij is the fraction of time that user i

uses the ijth code over block length Nf .

(d) The average probabilities of decoding error PNfe,ij for the sequence of (Nfγij , R
f
ij) codes

C
Nf
ij , each a member of the (Nfγij , R

f
ij , QXi) code ensemble, tends to zero on the

genie-aided fixed-fraction DVC sequence {P̂Nfγijs } as Nf →∞, for every ij ∈ ES .

Again by the inductive assumption, since |Sc| = M + 1 − k ≤ M,Φf
Sc ∈ DPSc|S can be

expressed as a convex combination of an arbitrary vertex ΦσSc (σSc ∈ ΠSc) of DPSc|S and a

point ΦfSc on a face of DPSc|S :

Φf
Sc = βΦσSc + (1− β)ΦfSc (2.25)

for some 0 ≤ β ≤ 1. Φf
Sc is achievable using projective time-sharing with no more than

h(M + 1− k) codes. Therefore, since Rfi ≤ Φf
i − δ, i ∈ Sc, there exists a sequence of coding

configurations {(Nf , CSc , {tS
c

n }, GSc)} (CSc = {Cij : ij ∈ ESc , ESc = {ij : i ∈ Sc, 1 ≤ j ≤

JS
c

i }, where JS
c

i is the number of codes used by ith user) with |CSc | ≤ h(M + 1− k) such

that (cf. Definition 2.7)

(a) for every Nf , there exist disjoint subsets T fSc and T σSc with |T fSc |/Nf = 1 −

β, |T σSc |/Nf = β, and T fSc ∪ T σSc = {1, . . . , Nf},
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(b) for every Nf , the scheduling k-tuple tS
c

n is such that tS
c

in = jσS
c

i for some fixed jσS
c

i ∈

{1, . . . , JSci },∀n ∈ T σSc , i ∈ Sc, and the user decoding order over T σSc is σSc . That

is, UTσSc = σSc .

(c) for every Nf , Rfi =
∑JS

c

i
j=1 γijR

f
ij , ij ∈ ESc , where γij is the fraction of time that user

i uses the ijth code over block length Nf .

(d) The average probabilities of decoding error PNfe,ij for the sequence of (Nfγij , R
f
ij) codes

C
Nf
ij , each a member of the (Nfγij , R

f
ij , QXi) code ensemble, tends to zero on the

genie-aided fixed-fraction DVC sequence {P̂Nfγijs } as Nf →∞, for every ij ∈ ESc .

We re-emphasize that while the choice of the original vertex Φπ constrains the choice ΦπS ,

it does not constrain the choice of ΦσSc . That is, σSc need not be a sub-permutation of π.

This is due to the assumption that k = |S| = max(k,M + 1 − k). As we show later, such

an arrangement leads to the reduction of complexity desired.

We have so far reduced the problem of achieving a rate tuple Φ in an M -dimensional

dominant face to separate but linked problems of achieving the rate tuples Φf
S and Φf

Sc in

lower-dimensional dominant faces. We now supplement and merge these lower-dimensional

solutions appropriately to form the solution for Φ. Refer to Figure 2-5 for an overall picture

of the process.

Supplementing and Merging Configurations. We first merge the two coding configuration

sequences {(Nf , CS , {tSn}, GS)} (with rate tuple Rf
S) and {(Nf , CSc , {tS

c

n }, GSc)} (with

rate tuple Rf
Sc) to create a sequence of configurations {(Nf , Cf , {tfn}, Gf )} with rate tuple

Rf = (Rf
S ,R

f
Sc). For every fixed block length Nf , construct the configuration (Nf , Cf , {tfn

}, Gf ) from (Nf , CS , {tSn}, BS) and (Nf , CSc , {tS
c

n }, GSc) as follows. The set of codes Cf

is the union of the two sets CS and CSc : Cf = CS ∪ CSc = {Cij : 1 ≤ i ≤M, 1 ≤ j ≤ Jfi },

where the total number of codes Jfi of user i equals JSi for i ∈ S and equals JS
c

i for i ∈ Sc.

The decoding order Gf on the indices Ef is formed by appending the decoding order GSc to

the end of the decoding order GS , i.e., Gf = (GS GSc). Thus, codewords for i ∈ S are first

successively decoded according to GS while treating all codeword sequences for i ∈ Sc as

noise. The Sc sequences are then successively decoded according to GSc , with the decoded

codewords for users i ∈ S available as side information at the active decoder. This is the

essence of “group splitting.” The scheduling M+1-tuple sequence {tfn} follows directly from
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the k-tuple sequence {tSn} and the M + 1 − k-tuple sequence {tScn } : tfn = (tSn , t
Sc
n ). The

above merging operation allows the configuration sequence {(Nf , Cf , {tfn}, Gf )} to have

rate Rf
S for the users in S, and Rf

Sc for the users in Sc. Hence, the sequence has rate

Rf = (Rf
S ,R

f
Sc).

Before constructing a new sequence of coding configurations with the desired rate tuple

R = λRπ + (1 − λ)Rf , it is necessary to consider two degenerate cases. For if λ = 0,

then R = Rf and the configuration sequence {(Nf , Cf , {tfn}, Gf )} achieving R has |Cf | =

|CS |+|CSc | ≤ h(k)+h(M+1−k) < h(M+1) single-user codes, by the inductive assumption

and Lemma 2.4. If λ = 1, the R = Rπ and the usual successive decoding argument can be

applied to show that a mere M + 1 codes are needed. We shall assume for the rest of proof

that 0 < λ < 1.

We build a new sequence of configurations {(N,C, {tn)}, G)} with rate R by “extend-

ing” the configurations {(Nf , Cf , {tfn}, Gf )} and introducing enough new codes so that the

resulting new configuration sequence satisfies all four conditions of Definition 2.7. For every

fixed Nf ; let Nπ = Nf ( λ
1−λ) and N = Nf + Nπ, so that Nf = (1 − λ)N and Nπ = λN .

Let T f and T π be distinct subsets of T ≡ {1, . . . , N} which form a partition of T , where

|T f | = Nf = (1−λ)N and |T π| = Nπ = λN . For instance, we can choose T f = {1, . . . , Nf},

and T π = {Nf + 1, . . . , N} so that T f and T π are “intervals.” Now “extend” the config-

uration (Nf , Cf , {tfn}, Gf ) to T π by defining the new scheduling M + 1-tuple {tn}Nn=1 as

follows. Let tin = tfin,∀n ∈ T f , i = 1, . . . ,M + 1. That is, over T f , the scheduling sequence

{tn} is the same as {tfn}. For n ∈ T π and i ∈ S, let tin = jπSi ∈ {1, . . . , J
f
i }. That is, users

in S use the same code over T π as they do over T πS in configuration (Nf , CS , {tSn}, GS)

and (Nf , Cf , {tfn}, Gf ). Hence, users in S have the same total number Ji of codes in the

new configuration sequence as in the old one (Ji = JSi , i ∈ S). For n ∈ T π and i ∈ Sc, let

tin = Ji, where Ji = Jfi + 1 index the new codes to be introduced for users in Sc. Thus,

users in Sc each uses one more code in the new configuration sequence as in the old one.

Inserting New Code Indices. Let E and Ef be the index sets for the codes in C and Cf ,

as in Definition 2.5. Incorporating the new code indices into Ef , we have E = Ef∪{iJi}i∈Sc ,

where Ji = Jfi + 1, i ∈ Sc. It remains to form the overall decoding order G (a permutation

on E) by appropriately inserting the new indices {iJi}i∈Sc into Gf . The new indices must

be inserted into Gf so that the resulting user decoding order over T π is the permutation
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π associated with the vertex Φπ chosen at the start of the proof. That is, we must insert

each iJi into the list Gf such that when the set {itin : n ∈ T π, i = 1, . . . ,M} is listed in the

order of the resulting G and the second indices are removed, the resulting list is precisely π.

To illustrate this procedure, let j1 < . . . < jk be the indices for which π(ji) ∈ S, i =

1, . . . , k (the ordered decoding positions of users in S), and l1 < . . . < lM+1−k be the indices

for which π(li) ∈ Sc, i = 1, . . . ,M + 1 − k (the ordered decoding positions of users in Sc).

Insert π(l1)Jπ(l1) into Gf such that it follows all π(ji)k for all ji < l1, where tπ(ji)n = k,∀n ∈

T π, and precedes π(ji)k for all ji > l1, tπ(ji)n = k,∀n ∈ T π. The placement of π(l2)Jπ(l2)

satisfies the same rules as those for π(l1)Jπ(l1) except for the additional requirement that it

must come after π(l1)Jπ(l1) in G. The other insertions are accomplished in the same way,

with π(lM+1−k)Jπ(lM+1−k) placed according to the requirements for π(l1)Jπ(l1), plus the

additional requirement that it must also follow π(l1)Jπ(l1), π(l2)Jπ(l2), . . . , π(lM−k)Jπ(lM−k)

in G.

For example, consider the five-user DMMAC in Example 2.5. Here, π = (41325) and

S = {1, 2, 3}, Sc = {4, 5}. Thus, j1 = 2, j2 = 3, j3 = 4, l1 = 1, l2 = 5. We have Gf = (11 32

21 12 31 41 51 42). Let t1n = 1, t2n = 1, t3n = 2 ∀n ∈ T π and let J4 = 3, J5 = 2. Following

the procedure above, we insert 43 into Gf such that it precedes 11, 32, and 21 in G. Next,

insert 52 such that it comes after 11, 32, 21, and after 43. Thus, the resulting G is (43 11

32 21 52 12 31 41 51 42).

The main point of the insertion procedure is that in general, given a split of {1, . . . ,M+

1} into two subsets S and Sc (assume k = |S| ≥ |Sc| = M+1−k), an arbitrary permutation

π of users {1, . . . ,M + 1} can be obtained by first constructing the sub-permutation πS (on

the elements in the larger subset S) of π, and then inserting code indices for the smaller

subset Sc into the appropriate slots in the order imposed by πS . The new decoding order

G which results from this insertion procedure guarantees that the user decoding order on

T π, UTπ , is precisely π ∈ ΠM . Note that the insertion procedure can produce many decoding

orders (on the codebooks) which meet the requirements presented above, and thus there

are many possible resulting configurations which give the desired user decoding order on

T π. Any of these valid configurations will suffice for our purposes.

Constructing New Codes. The first two of the four conditions in Definition 2.7 have

now been met. It is necessary now to construct a set of codes C for each N such that the
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sequence of codes {CNij } give an overall rate tuple of R and have exponentially decreasing

error probabilities for their respective genie-aided fixed-fraction DVC’s. To achieve this, we

first fix N , we add M + 1− k new codes (to be specified) CNiJi , i ∈ S
c, to the set Cf , one for

each user i ∈ Sc. The new codes will be used over T π. We also replace k of the codes in

Cf , one for each user i ∈ S, with new codes to be used over a subset of {1, . . . , N} which

includes T πS ∪ T π. Thus, for a fixed N , the number of codes needed over all increases by

M + 1− k = min(k,M + 1− k).

Let i ∈ Sc. Over T π, user i sees a genie-aided DMC with an average mutual information

of I(Xi;Y |XB(π,i)), where XB(π,i) is the set of inputs decoded before Xi under π. Now since

Rπi ≤ Φπ
i − δ, i ∈ Sc, there exists a sequence of (Nπ, R

π
i ) block codes CNiJi , each a member

of the (Nπ, R
π
i , QXi) code ensemble, such that the corresponding error probability sequence

(over the genie-aided DMC) PNe,iJi → 0 as N →∞, for each i ∈ Sc. Since the average rate

for user i ∈ Sc over T f is Rfi , its overall average rate over T ≡ T f ∪ T π becomes

Nf

N
·Rfi +

Nπ

N
·Rπi = (1− λ)Rfi + λRπi = Ri.

Now let i ∈ S. For notational simplicity, let j∗ ≡ jπSi index the code used by user i over

T πS . Let T fij∗ be the subset of {1, . . . , Nf} (including, but necessarily equal to T πS ) over

which tfin = j∗. Let PNfγij∗s be the genie-aided fixed-fraction DVC channel seen by Xi over

T fij∗. By the inductive assumption, {CNfij∗ } is a sequence of (Nfγij∗, R
f
ij∗) block codes, each

a member of the (Nfγij∗, R
f
ij∗, QXi) code ensemble, for which the error probabilities (over

the DVC sequence {PNfγij∗s } ) PNfe,ij∗ → 0 as Nf →∞. By Theorem 2.4, we must have

Rfij∗ ≤
Vij∗∑
v=1

θvI(Xi;Y |XB(Uv ,i)) (2.26)

where θv = |{n : PNfγij∗sn = Pv}|/Nfγij∗ is the fraction of channels in {PNfγij∗s } of type

v, 1 ≤ v ≤ V ∗ij , for every Nf . Let Tij∗ ≡ T fij∗ ∪ T π. For convenience, let Nf
ij ≡ Nfγij , and

Nij∗ = Nf
ij∗ + Nπ. Let PNij∗s be the genie-aided DVC seen by Xi over Tij∗. The average

mutual information over PNij∗s is

1
Nij∗

∑
n∈Tij∗

I(Xi;Y |XB(Un,i)) =
Nf
ij∗

Nij∗

Vij∗∑
v=1

θvI(Xi;Y |XB(Uv ,i)) +
Nπ

Nij∗
I(Xi;Y |XB(π,i))(2.27)
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Let Rij∗ ≡
Nf
ij∗

Nij∗
·Rfij∗+

Nπ
Nij∗
·Rπi . It follows from (2.26) and from the fact that Rπi ≤ Φπ

i −δ, i ∈

S that Rij∗ is strictly less than the RHS of (2.27). Moreover, this is true for every N , since

Nf
ij∗ and Nπ are both fixed fractions of N for given λ. Therefore, by Theorem 2.3, there

exists a sequence of (Nij∗, Rij∗) block codes {CNij∗}, each a member of the (Nij∗, Rij∗, QXi)

code ensemble, such that the corresponding error probabilities (over the genie-aided DVC

sequence {PNij∗s }) PNe,ij∗ → 0 as N →∞.

If user i ∈ S replaces the code CNfij∗ with the code CNij∗ in the set of codes C, and uses

CNij∗ over Tij∗ for each N , its average rate over the entire interval T is

∑
j 6=j∗

Nf
ij

N
Rfij +

Nij∗
N

Rij∗ =
∑
j 6=j∗

Nf
ij

N
Rfij +

Nij∗
N

(
Nf
ij∗

Nij∗
·Rfij∗ +

Nπ

Nij∗
·Rπi

)
(2.28)

=
∑
j 6=j∗

Nf
ij

N
Rfij +

Nf
ij∗
N
·Rfij∗ +

Nπ

N
·Rπi

=
Nf

N

Jfi∑
j=1

Nf
ij

Nf
Rfij +

Nπ

N
Rπi

= (1− λ)Rfi + λRπi (2.29)

= Ri.

Equation (2.28) follows from the definition of Rij∗. Equation (2.29) follows from Rfi =∑Jfi
j=1

Nf
ij

Nf
·Rfij , Nf = (1− λ)N and Nπ = λN .

For a fixed N , let the code set C ′f be the result of replacing the codes CNfij∗ in Bf

by the codes CNij∗. Let C ≡ C ′f ∪ {CNiJi : i ∈ Sc}. Then, it has been shown that the

sequence of configurations {(N,C, {tn}, G)} has rate tuple R and that the associated set of

code sequence have error probabilities exponentially decreasing in N over their respective

genie-aided fixed-fraction DVC’s. All four conditions in Definition 2.7 have now been met.

Total Number of Codes. For a fixed N , the number of single-user codes used to accom-

plish the above is

|C| = |CS |+ |CSc |+M + 1− k (2.30)

≤ h(k) + h(M + 1− k) + min(k,M + 1− k) (2.31)

≤ h(M + 1). (2.32)
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Equation (2.30) follows from Cf = CS ∪CSc and the fact that M +1−k new codes (one for

each user in Sc) were added to Cf to form C. Equation (2.31) follows from the inductive

assumption and the assumption that M + 1− k ≤ k. Equation (2.32) follows directly from

Lemma 2.4.

The above arguments assume |S| = k = max(k,M + 1 − k). The analysis is similar if

|Sc| = M + 1− k = max(k,M + 1− k). The main point of the proof is that the reduction

in the number of codes needed for achieving Φ comes from the interaction of the reduction

and merging processes. If, during every stage of the SEP process, we split the larger of two

subsets according to the sub-permutations of the original permutation π, then, during the

merging stages, it is necessary to add only an extra min(|S|, |Sc|) = min(k,M + 1− k) new

codes per stage. Thus, the total number of codes can never exceed h(M + 1). 2

2.4.2 Projective Time-Sharing and Group Splitting

We can interpret the projective time-sharing configuration in terms of a tree structure

where the set of users {1, . . . ,M} is split repeatedly at every tree node into two groups

until the sizes of the subsets decrease to one or two. The process of splitting the set of users

corresponds to the geometric process of projection described in the proof of Theorem 2.5.

At the root node, the set of users is {1, . . . ,M}. As in the proof of the theorem, the

initial choice of a vertex Φπ, corresponding to the permutation π on the set {1, . . . ,M},

determines the subsets S and Sc at the child nodes. If both subsets have size greater than

two, they are further split into four smaller subsets. One of these two splits is determined by

the sub-permutation of the original permutation π. In particular, if S is the larger subset of

{1, . . . ,M}, then it must be split according to the sub-permutation πS of π. The smaller set

Sc, however, can be split using an arbitrary permutation πSc ∈ ΠSc . This process continues

until the tree hits the base cases involving sets of one or two users. These base cases then

form the leaves of the tree. The tree structure corresponding to the group splitting process

is illustrated in Figure 2-8 for the five-user channel considered in Example 2.5.

Since the splits at half of the nodes (those corresponding to the larger subsets) are

determined by the sub-permutations of the original permutation π chosen at the root, we

can view π as the “seed” which partially determines a particular split of the set {1, . . . ,M}

and its corresponding tree. Geometrically, a particular tree corresponds to a particular
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(132)
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{3}

Figure 2-8: The tree structure for the group splitting process in the five-user case of Ex-
ample 2.5. The bracketed quantity at each splitting node denotes the permutation corre-
sponding to the vertex chosen at that split. Notice that the set {1, 2, 3} is split using (132),
a subpermutation of (41325).

series of projections of the desired rate tuple Φ onto lower dimensions until the projections

lie in some zero-dimensional or one-dimensional subset of the dominant face.

Given the splitting tree, the projective time-sharing configuration for achieving Φ can

be constructed backwards from the leaves of the tree. The time-sharing configurations for

achieving a rate tuple in a one-dimensional subset of D is well-known from Section 2.3.1.

The configuration for achieving the rate tuple corresponding to the node at the next higher

level can be found by “merging” the configurations for each of the leaves and adding an

additional min(|S1|, |S2|) (for two subsets S1 and S2 at the leaves) new codes, as described

in the proof of the theorem. This process is continued until an overall configuration is

obtained for the rate tuple Φ.

The relatively large number of possibilities (M ! for M users) for the initial choice of

vertices and the freedom in choosing vertices corresponding to the smaller subset from any

split implies that there are many possible splitting trees and different projective time-sharing

configurations. For instance, it is possible that with judicious choices for vertices at the root

and intermediate nodes, the number of actual single-user codes required to achieve a given

rate in D is much smaller than the upper bound 1
2M log2M + M given in Theorem 2.5.

In fact, if it were possible to generate a tree in which at every splitting node, the subset

corresponding to one of the two baby nodes is a singleton, then in the merging operation,

only one new code is added at each splitting node, leading to a total of at most 2M − 1

single-user codes. This performance is the same as that of [GRUW01, RU96, Rim99]. On

top of that, one can verify that in the configuration corresponding to such a tree, no single

user would employ more than two codes.
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2.5 Summary and Discussion

The projective time-sharing coding schemes presented here are naturally derived from the

underlying geometrical structure ofR and D as well as results on parallel channels. We have

addressed the two major concerns which undermine the use of time-sharing for achieving

rates in the capacity region of the M -user MAC. First, global block synchronization should

be achievable in the multiaccess setting using only mild feedback, and becomes altogether

unnecessary if the sharing schemes described are implemented in frequency rather than in

time. Second, the number of single-user codes needed is reduced from M2 to no more than
1
2M log2M +M .

We conclude with a few observations. First, Theorem 2.5 merely gives an upper bound

on the number of single-user codes needed to achieve a general point in D. With a judicious

choice of projective time-sharing configurations, the actual number of codes needed may

be much smaller than h(M). Improving the upper bound, however, seems to require a

much deeper understanding of the geometry of convex polytopes. Second, the geometry

of projective time-sharing is fundamentally different from that of rate splitting presented

in [RU96]. In particular, the convex polytope of concern here has dimension M − 1, while

the one for [RU96] has dimension 2M−2. Finally, we have seen that projective time-sharing

may spawn many possible distributions of codes among the users, depending on the relative

balance of the user splitting tree corresponding to the particular time-sharing scheme. This

suggests that projective time-sharing is a flexible and potentially viable option for multiple

access communications.
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Chapter 3

Multiaccess Queue Control: An

Inter-layer View

3.1 Introduction

In the previous chapter, we used information theoretic tools to analyze problems of multi-

access communication at the physical layer of the data network. We saw that this approach

adequately modeled the noise and interference aspects of problem, and yielded significant

insights with respect to coding for multiple users. As discussed in Chapter 1, however, in-

formation theoretic models do not allow for meaningful analysis of higher-layer QOS issues

such as packet delay. The primary problem is that information theory ignores the random

arrival of messages at the transmitter. While this approach may be reasonable for point-to-

point channels, it is very problematic for multiaccess situations. This is clearly explained

by Gallager [Gal85]:

For a point to point channel, one normally assumes an infinite reservoir of data

to be transmitted. The reason for this is that it is a minor practical detail to

inform the receiver when there is no data to send: furthermore, there is no other

use for the channel, so potential lack of data might as well be left out of the

model. For multiaccess channels, on the other hand, most transmitters have

nothing to send most of the time, and only a few are busy. The problem is

then to share the channel between the busy users, and this is often the central

technical problem in multiaccess communication.
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Thus, the issues of random message arrivals and multiaccess contention are inherently not

separable, and there is a clear need for an analytical approach that combines elements of

queueing theory and information theory for multiaccess.

It was Telatar and Gallager [TG95] who took the lead in this effort. Their paper

studies communication over continuous time bandlimited additive Gaussian multiaccess

channels (MAC’s) in which each transmitter has power P . Packets of varying length arrive

according to a Poisson process at a given transmitter. The transmitter encodes a given

packet into a time signal of infinite duration and transmits at power P until the service

demand of the packet (involving the number of total possible messages and the desired

error probability) is met by cumulative service units (given in terms of appropriate random

coding error exponents), at which time the decoder instructs the transmitter to stop sending

(via a feedback link). An infinite node assumption is used in the analysis, whereby each

arriving packet is transmitted by a different (virtual) transmitter, so that there are no

packet queues at the actual transmitters. It is also assumed that the decoder decodes each

packet regarding all other transmissions as noise. The multiaccess system is analyzed as

a reversible processor-sharing system where the total service rate depends on the state of

the system through the number of transmitted packets competing for service. This permits

the calculation of the steady-state number of packets in the system and the average packet

transmission duration.

While [TG95] analyzes the delay and throughput performance of a particular multiaccess

communication scheme, the study in [Tel95] seeks an optimal control policy to minimize the

average delay of packets, with the control space being the information theoretic multiaccess

capacity region. Again, a continuous-time Gaussian MAC is considered, where each trans-

mitter has power P . It is assumed that each user has a fixed pool of bits to send (assumed

to be present at time 0). By making an analogy between the additive Gaussian MAC and

a “multi-processor queue” (in which multiple processors with respective service rates are

used to accomplish multiple jobs with respective service requirements), Telatar [Tel95] shows

that the optimal policy assigns rates in a greedy manner, where at each stage the highest

possible rate is assigned to the packet with the smallest remaining service requirement (in

untransmitted bits). It is noted in [Tel95], however, that this Shortest-Remaining-Service-

Requirement-Highest-Rate (SRSR-HR) policy does not in general minimize the expected

time jobs spend in the system when packets are not all present at the beginning, but arrive
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one by one, according to a Poisson process for instance (although SRSR-HR is optimal in

the trivial case of one user [GM80]). Notice it is assumed here that the controller assigning

rates knows the actual remaining service requirement of each packet in the system.

We shall take the viewpoint in [Tel95] and seek to minimize the average delay of packets

with an appropriate rate allocation policy where the control space is given by multiaccess

information theory. Unlike [TG95], we allow for queueing of packets at the transmitters,

and unlike [Tel95], we do not assume that all packets are present at time 0 but that they

arrive one by one, according to Poisson processes.

We focus on the M -user additive Gaussian noise channel with noise density N0/2 and

two-sided bandwidth 2W .1 We assume that all transmitters must transmit at power P

whenever they are active.2 The M data sources generate packets according to independent

Poisson processes with a common rate λ. The lengths of the packets generated by all sources

are assumed to be i.i.d. according to some distribution function FZ(z) satisfying E[Z] <∞,

independent of the arrival processes. We are implicitly making the approximation here (for

analytical convenience) that the number of bits can be taken as a real number. Notice

that in case of long packets, this approximation is fairly reasonable. Next, assume that

each source i, i = 1, . . . ,M , has its own buffer (buffer i) into which its packets arrive. For

the purposes of analyzing packet delay, we assume that these buffers have infinite capacity.

Packets for the ith source are stored in the ith buffer until they are served by transmitter

i, whose transmission rate at time t ≥ 0 is ri(t), given in bits per second. It is required

that at any time t ≥ 0, the transmission rates assigned to queues 1 to M as a vector

r(t) ≡ (r1(t), . . . , rM (t)) must belong to the information theoretic Gaussian MAC capacity

region region C [CT91], where C is the set of r ∈ RM such that ri ≥ 0,∀i and

∑
i∈S

ri ≤W log
(

1 +
|S|P
N0W

)
, ∀S ⊆ {1, . . . ,M}. (3.1)

Thus, we assume in our model that the bursty bit streams of the users may be transmitted,

for each t ≥ 0, at any rate tuple from the multiaccess capacity region C.3

1There is the technical issue here that strictly band-limited signals cannot be time-limited. In practice,
of course, transmitted signals are approximately limited in both time and frequency. Since our main concern
in this work is with queueing delay and not with decoding delay, this is not a crucial problem.

2The general control problem of joint power and rate allocation as a function of queue state subject to
an average power constraint is much more complex, and we do not treat it here.

3We are implicitly assuming that the transmission rate can be changed instantaneously. Again, for long
packets, this is a reasonable assumption.
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Figure 3-1: Illustration of the multiaccess queue control problem. At any time t ≥ 0, the
allocated rate tuple r(t) must belong to the capacity region C.

For each i, i = 1, . . . ,M , we refer to the combination of buffer i and transmitter i as

queue i. Our goal is to allocate rates from the capacity region C to the transmitters as a

function of the joint state of the queues, so as to optimize two QOS criteria: average packet

delay and average bit delay.4 With this formulation, we turn the multiaccess communication

problem into a queue control problem where the control space is given by multiaccess

information theory. The problem setup is illustrated in Figure 3-1.

We study two versions of the delay minimization problem. The first version, analyzed in

Section 3.2, assumes that the arrival processes from all sources are independent Poisson with

a common parameter λ, and the lengths of packets from all sources have i.i.d. exponential

distributions with common parameter µ, independent of the arrival processes. Here, let

Xi(t) be the number of packets in queue i at time t. We refer to X(t) ≡ (X1(t), . . . , XM (t))

as the vector of queue lengths at time t, or alternatively as the joint queue state at time t

(since packets are exponentially distributed). Now consider a controller for which at each

time t ≥ 0, the input is X(t) and the output is a set of rate allocations ri(t), i = 1, . . . ,M ,

to transmitters 1 to M . We assume here that even though the controller knowsX(t), it does

4Here, we are analyzing queueing delay. Propagation delay, decoding delay, and other processing delays
are not considered.
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not know the actual lengths of the packets which have entered queues 1 to M by time t.5

We wish to design the controller to minimize a certain cost function in terms of X(t). More

specifically, let X = Z
M
+ be the space of X(t) and consider the space of admissible rate

allocation policies G ≡ {g : X 7→ C} where for g ∈ G and t ≥ 0, g(X(t)) = r(t). We would

like to find a policy g∗ ∈ G to minimize

lim
t→∞

E

[
M∑
i=1

Xi(t)

]
(3.2)

This is equivalent (by Little’s Law) to minimizing the average system delay of packets in

steady state. In Section 3.2, it is shown that a policy giving Longer Queues Higher Rates

(LQHR) minimizes a class of cost functions of which E
[∑M

i=1Xi(t)
]

is a specific example,

for all t ≥ 0. The idealizing assumptions made here lead to a simple and appealing proof

of optimality based on the concepts of majorization and stochastic coupling.

In the second version of the delay minimization problem, we continue to consider in-

dependent Poisson arrival processes with a common parameter λ. However, we now al-

low the lengths of the packets from all sources to be i.i.d. according to some distribution

function FZ(z) satisfying E[Z] < ∞, independent of the arrival processes. In this case,

X(t) ≡ (X1(t), . . . , XM (t)) no longer constitutes the queue state at time t. Instead, we fo-

cus on the notion of unfinished work. For each i, i = 1, . . . ,M , let Ui(t) denote the amount

of unfinished work (the total number of untransmitted bits) in queue i at time t. Then the

vector of unfinished work U(t) ≡ (U1(t), . . . , UM (t)) constitutes a joint queue state at time

t. Now consider a controller which at time t ≥ 0 takes as input U(t) and outputs rate al-

locations ri(t), i = 1, . . . ,M , to transmitters 1 to M , where r(t) = (r1(t), . . . , rM (t)) must

belong to the capacity region C. Here, we are implicitly assuming that the controller knows

the actual lengths of all packets arriving into the system.6 Let U = R
M
+ be the space of U(t)

and consider the space of admissible stationary rate allocation policies H ≡ {h : U 7→ C}

where for h ∈ H and t ≥ 0, h(U(t)) = r(t). We wish to find a policy h∗ ∈ H to minimize

lim
t→∞

E

[
M∑
i=1

Ui(t)

]
. (3.3)

5This may be caused by a communication bandwidth constraint between the controller and the respective
queues. Later, in Section 3.3, we look at the case where the packet lengths are known.

6This would require more communication bandwidth between the controller and the respective queues.
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Figure 3-2: The two-user Gaussian multiaccess capacity region C. The extreme point rA =
(φ2, φ1) corresponds to decoding user 1 first, and then user 2. The extreme point rB =
(φ1, φ2) corresponds to decoding user 2 first, and then user 1. The rate tuple rC = ((φ1 +
φ2)/2, (φ1 + φ2)/2).

This is equivalent (by Little’s Law) to minimizing the average system delay of bits in steady

state. In Section 3.3, we show using dynamic programming techniques that the LQHR

policy, suitably modified, minimizes (3.3) for the two-user case.

3.2 Average Delay of Exponential Packets

We first examine the version of the delay minimization problem where the arrival processes

are independent Poisson with parameter λ, and packets from all sources have i.i.d. expo-

nential distributions with common parameter µ. As outlined in the introduction, we wish

to find a policy g∗ ∈ G ≡ {g : X 7→ C} to minimize (3.2).

We begin our quest for the optimal queue control policy by examining the feasible

set C. Notice that (3.1) has the same form as (2.1). Thus by the discussion in Chapter 2,

the continuous-time Gaussian MAC capacity region is a polymatroid defined by 2M −

1 linear inequalities given in (3.1), as well as M non-negativity constraints. Figure 3-2

illustrates C for the two-user case. As in Chapter 2, it follows from the polymatroidal

property [HW94, TH98] that for any r ∈ C, there exists some r′ ∈ D ⊂ C such that
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ri ≤ r′i,∀i = 1, . . . ,M , where

D =

{
r ∈ C :

M∑
i=1

ri = W log
(

1 +
MP

N0W

)}
.

is the dominant face of C.7 From these observations, it should be clear that any policy

g∗ ∈ G minimizing (3.2) must allocate rates in D at all times. Thus, we can restrict our

attention to the set of policies GD ≡ {g : X 7→ D} in our optimization.8

At this point, we can start to appreciate the peculiarities of the queue control problem

at hand. Here, unlike traditional situations, it is not possible to define a clear notion of

work conservation. When all M queues are non-empty, allocating any rate in D causes

the total amount of unfinished work (total number of untransmitted bits) to decrease at

the maximum sum transmission rate W log
(

1 + MP
N0W

)
. When any queue becomes empty,

however, the upper bounds in (3.1) corresponding to subsets S other than {1, . . . ,M} imply

that the total unfinished work can no longer decrease at the maximum sum rate, even if the

control policy continues to operate on D. In some ways, the problem here bears resemblance

to that considered in [TE93] concerning dynamic server allocation to parallel queues with

randomly varying connectivity.

It should be clear that in order to minimize (3.2), we should attempt to maximize the

rate at which the overall unfinished work is processed at any given time. On the other hand,

we have seen that due to the nature of the region C, the rate at which the system processes

overall unfinished work decreases whenever some queue goes empty. This suggests that the

optimal policy should somehow minimize the probability that any queue becomes empty,

while simultaneously maximizing the rate at which work is done. One way of accomplishing

this is to adopt an “equalizing” or “load-balancing” approach to queue control. A load-

balancing policy tries to keep the queue lengths distributed as evenly as possible, thus

making it unlikely that any queue empties. In the following, we show that a control policy

following a Longer Queue Higher Rate (LQHR) strategy minimizes (within the set of policies

GD) a class of cost functions of which E
[∑M

i=1Xi(t)
]

is a specific example, for all t ≥ 0. The

7It can be shown using arguments from Chapter 2 that for the continuous-time Gaussian MAC, dim(D) =
M − 1, and dim(FS) = M − 2 (M ≥ 2), for any ∅ ⊂ S ⊂ {1, . . . ,M}.

8Notice that even though g ∈ GD allocates rates in GD at all times, the departure rates from the queues
need not lie in GD. This is due to the simple fact that there are no departures from an empty queue even
when the service rate is positive.
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LQHR policy implements the load-balancing strategy by assigning higher rates to longer

queues, which are less likely to empty out than shorter queues.

Consider the decreasing sequence of numbers9

φi = W log
(

1 +
P

(i− 1)P +N0W

)
i = 1, . . . ,M. (3.4)

It can be verified that the vector φ = (φ1, . . . , φM ) is an extreme point of the dominant face

D. In fact, {φP|P a permutation matrix} is the set of all extreme points of D. Moreover,

for each i = 1, . . . ,M ,

φi = max
Di

ri

where Di = {r ∈ D|rj = φj ,∀1 ≤ j < i}. That is, φi is the maximum rate in D that can be

feasibly allocated to transmitter i, given that φj has been allocated to transmitter j, for all

1 ≤ j < i. In other words, φi is the rate assigned to user i in the ith stage of a greedy rate

allocation procedure. This follows directly from the polymatroidal property of C. Finally,

from (3.1), observe that for any r ∈ D and any subset of k indices {i1, . . . , ik} ⊆ {1, . . . ,M},

where 1 ≤ k ≤M ,

k∑
j=1

rij ≤W log
(

1 +
kP

N0W

)
=

k∑
i=1

φi (3.5)

with equality for k = M .

Next, consider the stationary policy gLQHR which at any time t ≥ 0 and for each

i = 1, . . . ,M , assigns the rate φi to the transmitter for the ith largest component of

X(t) ≡ (X1(t), . . . , XM (t)), where X(t) is the queue length vector as a function of time

under policy gLQHR.10 Given the above discussion of the φi’s, it is clear that for any t ≥ 0,

gLQHR(X(t)) ∈ D and thus gLQHR ∈ GD. At each time t, gLQHR assigns rates from D in a

greedy way such that longer queues receive higher rates. Moreover, from (3.5), we see that

at any time t, the sum rate assigned to the k largest components of the queue length vector

under gLQHR is at least as large as the sum rate assigned to the k largest components of

9The same numbers were considered in [Tel95] where they correspond to the service rates of the processors
in decreasing order.

10If the lengths of queue i and queue j are equal and i < j, let gLQHR assign the higher rate to queue i
and the lower rate to queue j.
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the queue length vector under any other policy g ∈ GD, for all k = 1, . . . ,M , with equality

for k = M . This property turns out to be the linchpin of our optimality argument below.

Let us now give a coding interpretation to the LQHR policy. Notice that in the coding

context, φi, 1 ≤ i ≤M , is simply the maximum rate that can be assigned to a user which is

decoded in the (M−i+1)th place in a successive decoding scheme. Thus, at any time t ≥ 0,

the LQHR policy in effect decodes all M users successively, with the ith largest component

of X(t) being decoded in the (M − i+ 1)th place. Since the order of decoding depends on

X(t), LQHR is implementing adaptive successive decoding. For instance, for M = 2, the

policy assigns the extreme point rA = (φ2, φ1) (see Figure 3-2) whenever X1(t) < X2(t) and

assigns extreme point rB = (φ1, φ2) whenever X1(t) ≥ X2(t). The LQHR policy therefore

always operates on the extreme points of the dominant face. At time t, it chooses the

extreme point based on the queue state X(t).

3.2.1 Stochastic Weak Majorization

We now proceed to prove the optimality of the LQHR policy in terms of (3.2). Central to

our argument is a notion of ordering on vectors in RM . First, a bit of notation. For any

x = (x1, . . . , xM ) ∈ RM , let

x[1] ≥ · · · ≥ x[M ]

denote the components of x in decreasing order.

Definition 3.1 For x,y ∈ RM ,

x ≺w y if
k∑
i=1

x[i] ≤
k∑
i=1

y[i], k = 1, . . . ,M. (3.6)

The vector x is said to be weakly majorized by y. If, in addition, equality obtains in (3.6)

for k = M , x is said to be majorized by y, written x ≺ y.

That is, x ≺w y if the sum of the k largest components of x is less than or equal to the

sum of the k largest components of y, for every k = 1, . . . ,M . Vector x is majorized by y

if, in addition, the sum of all M components is the same for both x and y. In this case,

x can be thought of as a more “evened-out” or “equalized” version of y. For a thorough

treatment of majorization, see [MO79].
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We shall prove that property (3.5) leads to the result that the queue length vector under

gLQHR is weakly majorized by the queue length vector under any policy g ∈ GD, but only

in a stochastic sense. Indeed, in view of the cost criterion in (3.2), the optimal policy need

not be better than all other policies in a sample path sense, but only in a stochastic sense.

This observation motivates the following definition.

Definition 3.2 Let X = (X1, . . . , XM ) and Y = (Y1, . . . , YM ) be random vectors taking

values in RM . X is said to be stochastically weak-majorized by Y , written X ≺stw Y , if

there exist random vectors X̃ and Ỹ taking values in RM such that

(a) X and X̃ are identically distributed.

(b) Y and Ỹ are identically distributed.

(c) X̃ ≺w Ỹ a.s.

Notice in Definition 3.2 that X(Y ) and X̃(Ỹ ) have the same marginal distributions, but

the joint distribution of (X̃, Ỹ ) is in general different from that of (X,Y ). This is the main

point of the stochastic coupling method, which we will use for the proof of Theorem 3.1

below.

3.2.2 LQHR Minimizes Average Packet Delay

The following key result relies on the notion of stochastic weak majorization.

Theorem 3.1 Let x0 be the vector of queue lengths in the system at time 0. Let X(t)

be the vector of queue lengths under gLQHR at time t ≥ 0. Let Y (t) be the corresponding

quantity under any policy g ∈ GD. Then

X(t) ≺stw Y (t) ∀t ≥ 0. (3.7)

PROOF. We use a technique similar to that in [Wal88]. Define rsum ≡ W log
(

1 + MP
N0W

)
.

Observe that the arrival times (over all queues) occur at jumps of a Poisson process with

rate Mλ. Now consider the set of potential service completion times. The potential service

completion times are simply the actual service completion times when the queue is saturated
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(there is always a packet in the queue to be served). For a queue that is not always full,

the potential service completion times are the times when departures would occur if there

were packets in the system at those times. It is not hard to see that the potential service

completion times occur at jumps of a Poisson process with rate µrsum under both g and

gLQHR, since the two policies both belong to GD.

Consider the set of sample paths where 0 < t1 < t2 < · · · < tn−1 < tn < · · · are the

values of the arrival times and potential service completion times. These are the times at

which the joint queue state can possibly change. Now the relation (3.7) holds at t = 0

since by assumption, X(0) = Y (0) = x0. Assume that (3.7) holds at some time t, where

tn−1 ≤ t < tn for some n ≥ 1. It then suffices to show that X(t+n ) ≺stw Y (t+n ).

Let X̃(t) = X(t) and define Ỹ (t) such that Ỹ (t) and Y (t) are identically distributed.

First, suppose tn is an arrival time. Since the arrival processes are independent Poisson

with the same rate λ, the probability that the arrival at tn occurs on the jth longest queue

of X(t), 1 ≤ j ≤ M , is 1/M . The same is true for Y (t). Let X̃(t+n ) = X(t+n ) and define

Ỹ (t+n ) by deciding that if the arrival occurs on the jth longest queue of X̃(t) = X(t), then

the same holds for Ỹ (t). We have changed the joint distribution but not the marginals,

so that the first two conditions in Definition 3.2 hold, with X̃ = X̃(t+n ) = X(t+n ) and

Ỹ = Ỹ (t+n ). So in the case of an arrival on the jth largest queue, 1 ≤ j ≤M ,

k∑
i=1

X̃[i](t
+
n ) =

(
k∑
i=1

X̃[i](t)

)
+ 1{k ≥ j}

≤

(
k∑
i=1

Ỹ[i](t)

)
+ 1{k ≥ j}

=
k∑
i=1

Ỹ[i](t
+
n ).

for every k = 1, . . . ,M , Thus, (3.7) holds at time t+n .

Next suppose tn is a potential service completion time. Let r ≡ (r1, . . . , rM ) ∈ D be

the rate vector assigned by policy g to the queues at time t. Let r(i) be the rate assigned

to the ith longest queue of Y (t), i = 1, . . . ,M (r(i) is not the same as r[i], which is the

ith largest component of (r1, . . . , rM )). Under policy gLQHR, the ith longest queue of X(t)
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receives rate φi. By (3.5),

j∑
i=1

r(i) ≤
j∑
i=1

φi j = 1, . . . ,M, with equality for j = M. (3.8)

That is, r ≺ φ. Now since the process of potential service completions is Poisson with

parameter µrsum under both g and gLQHR, the probability that the potential service com-

pletion at tn occurs among the j longest queues of Y (t) is
∑j

i=1 r(i)/rsum, for each j =

1, . . . ,M . The corresponding probability for X(t) is
∑j

i=1 φi/rsum. Therefore, from (3.8),

the probability that the potential service completion at tn occurs among the j longest

queues of Y (t) is less than or equal to the probability of the corresponding event for X(t),

for each j = 1, . . . ,M , with equality for j = M . Then, let X̃(t+n ) = X(t+n ) and define

Ỹ (t+n ) by deciding that if the potential service completion occurs among the j longest

queues of Ỹ (t), then the same is true for X̃(t), for each j = 1, . . . ,M . This can be done

precisely as follows. Let Q be a uniformly distributed random variable over [0, 1]. For each

j = 1, . . . ,M , let Q ∈
[∑j−1

i=1 φi/rsum,
∑j

i=1 φi/rsum

]
if and only if the potential service

completion at tn occurs in the jth longest queue of X̃(t). Now define Ỹ (t+n ) such that

the potential service completion at tn occurs in the jth longest queue of Ỹ (t) if and only

if Q ∈
[∑j−1

i=1 r(i)/rsum,
∑j

i=1 r(i)/rsum

]
. By (3.8), the above coupling implies that if the

potential service completion occurs in the jth longest queue of Ỹ (t), 1 ≤ j ≤ M , then the

potential service completion occurs in the lth largest queue of X̃(t), where 1 ≤ l ≤ j. We

now show that X̃(t+n ) ≺w Ỹ (t+n ). For any fixed pair (l, j), 1 ≤ l ≤ j ≤ M , there are a

number of cases.

Case 1: If Ỹ[j](t) = 0, then Ỹ[i](t+n ) = Ỹ[i](t),∀i, and for each k = 1, . . . ,M ,

k∑
i=1

X̃[i](t
+
n ) ≤

k∑
i=1

X̃[i](t) ≤
k∑
i=1

Ỹ[i](t) =
k∑
i=1

Ỹ[i](t
+
n ).

Case 2: If Ỹ[j](t) > 0, then
∑k

i=1 Ỹ[i](t+n ) =
(∑k

i=1 Ỹ[i](t)
)
− 1{k ≥ j}.

Case 2a: If X̃[l](t) = 0, then X̃[i](t+n ) = X̃[i](t),∀i, and X̃[i](t+n ) = X̃[i](t) = 0,∀i ≥ l. For

1 ≤ k < l ≤ j,

k∑
i=1

X̃[i](t
+
n ) =

k∑
i=1

X̃[i](t) ≤
k∑
i=1

Ỹ[i](t) =
k∑
i=1

Ỹ[i](t
+
n ).
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For l ≤ k ≤M ,

k∑
i=1

X̃[i](t
+
n ) =

k∑
i=1

X̃[i](t) =
l−1∑
i=1

X̃[i](t) ≤
l−1∑
i=1

Ỹ[i](t)

(a)
=

(
l−1∑
i=1

Ỹ[i](t)

)
− 1{l − 1 ≥ j}

=
l−1∑
i=1

Ỹ[i](t
+
n )

≤
k∑
i=1

Ỹ[i](t
+
n ).

where (a) follows from the fact that l ≤ j.

Case 2b: If X̃[l](t) > 0, then

k∑
i=1

X̃[i](t
+
n ) =

(
k∑
i=1

X̃[i](t)

)
− 1{k ≥ l}

≤

(
k∑
i=1

Ỹ[i](t)

)
− 1{k ≥ l}

(b)

≤

(
k∑
i=1

Ỹ[i](t)

)
− 1{k ≥ j}

=
k∑
i=1

Ỹ[i](t
+
n ).

where (b) follows from l ≤ j. We have thus shown X(t+n ) ≺stw Y (t+n ). 2

Theorem 3.1 is central to understanding the optimality of the LQHR policy. The essen-

tial idea is that a majorization order on the rates in D (r ≺ φ for r ∈ D) translates into

a stochastic weak majorization on the resulting queue vectors. Bringing out the theorem’s

full implications requires some discussion on the relations ≺w and ≺stw .

Definition 3.3 Let A ⊂ R
M . A function ϕ : A 7→ R is said to be ≺w-preserving if

x ≺w y ⇒ ϕ(x) ≤ ϕ(y) for x,y ∈ A.

The following lemma [MO79, p.483] draws the link between cost functions and stochastic

weak majorization.
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Lemma 3.1 Let X = (X1, . . . , XM ) and Y = (Y1, . . . , YM ) be random vectors taking

values in RM . Then X ≺stw Y if and only if E[ϕ(X)] ≤ E[ϕ(Y )] for all ≺w-preserving

functions ϕ : RM 7→ R for which the expectations exist.

PROOF. See [MO79].

We then immediately have a corollary to Theorem 3.1.

Corollary 3.1 Let x0 be the vector of queue lengths in the system at time 0. Let X(t)

be the vector of queue lengths under gLQHR at time t ≥ 0. Let Y (t) be the corresponding

quantity under any policy g ∈ GD. Then

E [ϕ(X(t))] ≤ E [ϕ(Y (t))] ∀t ≥ 0

for all ≺w-preserving functions ϕ : RM 7→ R for which the expectations exist.

Which are the ≺w-preserving functions? It turns out that a real-valued function ϕ

defined on A ⊂ RM is ≺w-preserving if and only if it is increasing and Schur-convex [MO79].

A real-valued function ϕ is increasing on A if for x,y ∈ A, xi ≤ yi,∀i ⇒ ϕ(x) ≤ ϕ(y). A

real-valued function ϕ is Schur-convex on A if x ≺ y ⇒ ϕ(x) ≤ ϕ(y). That is, Schur-convex

functions preserve majorization (as opposed to weak majorization).

The class of Schur-convex functions is well-studied [MO79]. Their characterization al-

lows us to give some main examples of ≺w-preserving functions:

• Φ1 ≡ {ϕ|ϕ : RM 7→ R is symmetric, convex and increasing}. A function ϕ is symmet-

ric on A ⊂ RM if ϕ(x) = ϕ(xP) for any x ∈ A and any M by M permutation matrix

P.

• Φ2 ≡ {ϕ|ϕ(x) =
∑M

i=1 ψ(xi) where ψ : R 7→ R is a convex, increasing function}. The

class Φ2 is clearly contained in Φ1.

More specific examples of ≺w-preserving functions include ϕ(x) = maxi=1,... ,M |xi|, ϕ(x) =

maxi1<i2<···<ik(|xi1 | + · · · + |xik |) for 1 ≤ k ≤ M , ϕ(x) =
∑M

i=1 |xi|r for r ≥ 1 or r ≤ 0,

and ϕ(x) = (
∑M

i=1 |xi|r)1/r for r ≥ 1. All this discussion shows that Corollary 3.1 is a

significantly stronger result than an optimality result purely in terms of (3.2).
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3.3 Average Bit Delay

The analysis in Section 3.2 has shown how the ideas of stochastic coupling and weak ma-

jorization can be combined to demonstrate the optimality of the LQHR policy in mini-

mizing average packet delay for the symmetric Poisson/exponential case. In this section,

we turn to the second version of the delay minimization problem. Here, we continue to

consider independent Poisson arrival processes with a common parameter λ. However, we

now allow the lengths of the packets from all sources to be i.i.d. according to some dis-

tribution function FZ(z) satisfying E[Z] < ∞, independent of the arrival processes. As

outlined in the introduction, our focus is on unfinished work and the goal is to find a pol-

icy h∗ ∈ H ≡ {h : U 7→ C} to minimize (3.3). A natural idea is to apply the stochastic

majorization techniques of the previous section to the present problem. Unfortunately, the

sample path coupling arguments do not quite work here. Instead, dynamic programming

techniques are used to prove that a modified version of the LQHR policy minimizes (3.3)

within H for the two-user case.

3.3.1 The Modified LQHR Policy

To describe the modified version of the LQHR policy hLQHR, we examine the generic form

of the vector of unfinished work U(t) = (U1(t), . . . , UM (t)) at time t. Now U(t) satisfies

U[1](t) = · · · = U[l1](t) > U[l1+1](t) = · · · = U[l2](t) > · · · > U[lA−1+1](t) = · · · = U[lA](t),

where lA = M . That is, at time t, there are in general a number of queues with the same

amount of unfinished work. It is easy to see that if the LQHR policy given in Section 3.2

is applied without modification to U(t), infinitely rapid oscillations in rate allocation can

arise (at least conceptually). This is because if one of two queues with equal unfinished

work at time t receives the higher rate at time t, it immediately becomes the smaller of the

two queues an infinitesimal amount of time after t, at which point the unmodified LQHR

would give the other queue the higher rate, leading to an infinitely rapid oscillation in

rate allocation. Since infinitely rapid oscillations are ill-defined both mathematically and

physically, we give the Modified LQHR policy hLQHR as follows. For 1 ≤ i ≤M , let A[i] be

the set of indices j such that U[j](t) = U[i](t). For instance, A[1] = {1, . . . , l1}. At time t,
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let hLQHR assign to U[i](t) the rate

φA[i]
=

∑
j∈A[i]

φj

|A[i]|
(3.9)

where φj is defined in (3.4). For instance, U[1](t) is assigned the rate φA[1]
=
∑l1

j=1 φj/l1

under hLQHR at time t. In other words, hLQHR gives equal queues equal rates subject to

the condition that longer queues receive higher rates.

The coding interpretation of the modified LQHR policy is slightly different from that of

the LQHR policy in Section 3.2. Given a vector U(t) of unfinished work at time t, instead

of successively decoding the users 1 to M , hLQHR successively decodes groups of users

{lA−1+1, . . . ,M}, {lA−2+1, . . . , lA−1}, . . . , {l1+1, . . . , l2}, {1, . . . , l1} in that order. Within

each group, hLQHR in effect implements a coding strategy which gives equal rates to all users

of that group. This may involve a rate-splitting scheme as in [GRUW01, RU96], or a time-

sharing scheme as in [GR95, Rim97, Rim99] and Chapter 2 of this thesis. Geometrically,

hLQHR does not always operate on the extreme points of D. In fact, whenever there are

queues with equal amounts of unfinished work, hLQHR operates at the “equal rate point” on

the projection of D onto the coordinates corresponding to the equal queues. For instance,

for M = 2, hLQHR assigns the extreme point rA = (φ2, φ1) (see Figure 3-2) whenever

U1(t) < U2(t) and assigns the extreme point rB = (φ1, φ2) whenever U1(t) > U2(t). When

U1(t) = U2(t), however, hLQHR assigns the equal rate point rC = ((φ1 +φ2)/2, (φ1 +φ2)/2).

To illustrate the workings of the modified LQHR policy, we examine the evolution of the

unfinished vector as a function of time under hLQHR for the two-user case. Since hLQHR

distinguishes between the two queues only in terms of their relative magnitudes, the queue

state at time t can be taken as (U[1](t), U[2](t)) instead of (U1(t), U2(t)). Let the initial

queue state a time 0 be (U[1](0), U[2](0)), and assume that no arrivals enter the system after

time 0. There are two basic cases.

Case 1: U[1](0)

φ1
≤ U[2](0)

φ2
. In this case, ∆ ≡ U[1](0) − U[2](0) is sufficiently small so

that hLQHR causes the two queues to become equal before they are depleted. The policy

hLQHR assigns rate φ1 to queue [1] and rate φ2 to queue [2] (where [1] and [2] are defined

by U[1](0) ≥ U[2](0)) from t = 0 to t = ∆
φ1−φ2

, at which point the queues become equal.

After the queues become equalized, hLQHR allocates (φ1 + φ2)/2 to each queue until the

queues are simultaneously depleted at t = S
φ1+φ2

, where S ≡ U1(0) + U2(0). Note that in
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Figure 3-3: Plot of U[1](t), U[2](t) and U[1](t) + U[2](t) for the case of U[1](0)

φ1
≤ U[2](0)

φ2
. Here,

S ≡ U[1](0) + U[2](0),∆ ≡ U[1](0)− U[2](0).

this case, hLQHR processes the total unfinished work at the maximum rate φ1 + φ2 for all

t ∈ [0, S
φ1+φ2

]. See Figure 3-3.

Case 2: U[1](0)

φ1
≥ U[2](0)

φ2
. In this case, ∆ is sufficiently large so that the queues cannot in

general be equalized before they are depleted under hLQHR. Here queue [1] always receives

rate φ1 and queue [2] always receives rate φ2. Queue [2] is depleted at t = U[2](0)

φ2
before

queue [1] is depleted at t = U[1](0)

φ1
. Notice that in this case, hLQHR processes total unfinished

work at the maximum rate φ1 +φ2 from t = 0 to t = U[2](0)

φ2
, then at rate φ1 from t = U[2](0)

φ2

to t = U[1](0)

φ1
. See Figure 3-4.

3.3.2 hLQHR Minimizes Average Bit Delay for M = 2

We now demonstrate the optimality of hLQHR in terms of (3.3) in the two-user case. Our

approach is to first show that hLQHR minimizes the expected integral of the total unfinished

work for the set of sample paths corresponding to a fixed sequence of arrival epochs of

the overall arrival process and lengths of arriving packets at those epochs. We will then

appropriately interpret this “sample path” result in a more stochastic setting.

Consider the set of sample paths for which 0 < t1 < t2 < · · · < tn−1 < tn < · · · are the

arrival epochs of the overall arrival process and z1, z2, . . . , zn−1, zn . . . are the lengths of the

packets arriving at the corresponding times. At each arrival epoch, tk, k = 1, 2, . . . , there
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Figure 3-4: Plot of U[1](t), U[2](t) and U[1](t) + U[2](t) for the case of U[1](0)

φ1
≥ U[2](0)

φ2
. Here,

S ≡ U[1](0) + U[2](0).

is uncertainty as to which queue the arriving packet of length zk enters (we will specify the

details of this uncertainty shortly). Let T > 0 be fixed and let N(T ) = max{k|tk < T}.

For simplicity, we write N for N(T ). For a fixed admissible rate allocation policy h ∈ H,

we are interested in studying the evolution of the queue state in terms of the unfinished

work in the system as a function of time, from t = 0 to t = T . For t ∈ [0, T ], we choose to

characterize the queue state at time t in terms of (U[1](t), U[2](t)) or equivalently, in terms of

(S(t),M(t)), where S(t) ≡ U1(t) +U2(t) is the sum and M(t) ≡ U[1](t) = max(U1(t), U2(t))

is the maximum queue size. For all t ∈ [0, T ], the pair (S(t),M(t)) takes values in the

set V ≡ {(s,m)|0 ≤ s < ∞, s/2 ≤ m ≤ s} ⊂ R2. Figure 3-5 plots a sample path of the

total unfinished work Sh(t) under some policy h ∈ H. For each k = 1, . . . , N , if we define

S−k ≡ S(t−k ) and M−k ≡M(t−k ), the queue state at t−k can be written as (S−k ,M
−
k ).

We now specify the uncertainty in the arrivals at tk, k = 1, . . . , N . Let Wk, k = 1, . . . , N ,

be a sequence of binary-valued random variables defined by

Wk =


+1 if the arrival at tk occurs on queue [1],

−1 if the arrival at tk occurs on queue [2],
(3.10)

where [1] and [2] are defined by M−k = U[1](t
−
k ) ≥ U[2](t

−
k ) = S−k −M

−
k . The probability
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Figure 3-5: Plot of total unfinished work Sh(t) as a function of time under the policy h.
The arrival instants are t1, t2, t3, t4. Sh(t) does not always decrease at the rate φ1 +φ2 since
some queues empty before others. We have assumed h ∈ H.

distribution of Wk (conditioned on the fixed sequence of arrival epochs and packet lengths)

is characterized by

pk ≡ Pr (Wk = +1) . (3.11)

For independent Poisson arrival processes with common rate λ and i.i.d. packet lengths,

{Wk} is a sequence of i.i.d. Bernoulli(1
2) random variables, with pk = 1

2 , k = 1, . . . , N . Now

given (S−k ,M
−
k ) and Wk, the queue state (S+

k ,M
+
k ), where S+

k ≡ S(t+k ) and M+
k ≡M(t+k ),

is determined by

S+
k = S−k + zk,

M+
k =


M−k + zk if Wk = +1,

max(M−k , S
−
k −M

−
k + zk) if Wk = −1.

For a fixed h ∈ H, the queue state (S−k+1,M
−
k+1) is determined by (S+

k ,M
+
k ), and therefore

by (S−k ,M
−
k ,Wk). We can therefore describe the evolution of the queue state at time

instants t−k , k = 1, . . . , N , (with tN+1 being defined as T ) by

(S−k+1,M
−
k+1) = fhk (S−k ,M

−
k ,Wk). (3.12)

79



For h ∈ H, let (Sh(t),Mh(t)) be the queue state under policy h at time t. Our main

objective is to find h∗ ∈ H to minimize the integral of the total unfinished work from 0 to

T , averaged over all realizations of the arrival variables

EW1,... ,WN

{∫ T

0
Sh(t)dt

}
. (3.13)

For each k = 1, . . . , N , we shall refer to the time interval [tk, tk+1) (where we define tN+1

to be T ) as the kth period. For a fixed policy h, the queue evolution (Sh(t),Mh(t)) for

t ∈ (tk, tk+1) is a function of (Sh(t+k ),Mh(t+k )), and therefore of (Sh(t−k ),Mh(t−k ),Wk),

which we abbreviate as (S−k ,M
−
k ,Wk). We let

chk(S−k ,M
−
k ,Wk) =

∫ tk+1

tk

Sh(t)dt

denote the integral of the total unfinished work, or cost, over the kth period under policy

h.

As a function of the initial unfinished work (S−1 ,M
−
1 ), the expected integral in (3.13)

can be expressed as

Jh(S−1 ,M
−
1 ) = EW1,... ,WN

{
N∑
k=1

chk(S−k ,M
−
k ,Wk)

}
. (3.14)

Our goal is to find h∗ ∈ H to minimize (3.14):

Jh∗(S−1 ,M
−
1 ) = min

h∈H
Jh(S−1 ,M

−
1 ). (3.15)

To solve the minimization problem in (3.15), we resort to a slightly more general setting.

Here, we allow the rate allocation policy to vary as a function of k, k = 1, . . . , N . That

is, we allow different policies to be adopted over different periods. Let π = (h1, . . . , hN )

be a sequence of admissible policies, where hk ∈ H is the policy used over the kth period,

k = 1, . . . , N . The corresponding total integral or cost for π given (S−1 ,M
−
1 ) is

Jπ(S−1 ,M
−
1 ) = EW1,... ,WN

{
N∑
k=1

chkk (S−k ,M
−
k ,Wk)

}
. (3.16)
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The optimization is now over all admissible policy sequences:

J∗(S−1 ,M
−
1 ) = min

π∈Π
Jπ(S−1 ,M

−
1 ). (3.17)

where Π ≡ {(h1, . . . , hN )|hk ∈ H, k = 1, . . . , N} is the set of all admissible policy sequences.

Clearly, Jh∗(S−1 ,M
−
1 ) ≥ J∗(S−1 ,M

−
1 ). We will show, however, that there exists h∗ ∈ H such

that Jh∗(S−1 ,M
−
1 ) = J∗(S−1 ,M

−
1 ), so that a fixed policy attains the minimum in (3.17). In

fact, we will show that the optimal h∗ is hLQHR.

To solve (3.17), we use a dynamic programming approach. That is, we first choose

a policy hN ∈ H to minimize the expected cost over the Nth period and then recurse

backwards, choosing policy hk to minimize the expected value of the current cost plus the

optimal cost-to-go at the kth stage, for k = 1, . . . , N − 1. Consider the following recursion.

Let

JN (S−N ,M
−
N ) = min

hN∈H
EWN

{
chNN (S−N ,M

−
N ,WN )

}
, (3.18)

and for k = 1, . . . , N − 1,

Jk(S−k ,M
−
k ) = min

hk∈H
EWk

{
chkk (S−k ,M

−
k ,Wk) + Jk+1

(
fhkk (S−k ,M

−
k ,Wk)

)}
. (3.19)

Equations (3.18) and (3.19) specify the dynamic programming algorithm. The following

lemma says that this algorithm gives the optimal solution to (3.17).

Lemma 3.2

J∗(S−1 ,M
−
1 ) = J1(S−1 ,M

−
1 ).

where J∗(S−1 ,M
−
1 ) is given by (3.17), and J1(S−1 ,M

−
1 ) is given by (3.18) and (3.19).

PROOF. The argument is similar in spirit to that in [Ber95]. We include it for completeness.

For k = 1, . . . , N , let J∗k (S−k ,M
−
k ) be the optimal cost for the N − k + 1-stage version of

the minimization problem in (3.16)-(3.17) which starts with (S−k ,M
−
k ) at time t−k and ends
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at time tN+1 = T . That is,

J∗k (S−k ,M
−
k ) = min

(hk,... ,hN )
EWk,... ,WN

{
N∑
i=k

chii (S−i ,M
−
i ,Wi)

}
.

For k = N ,

J∗N (S−N ,M
−
N ) = min

hN∈H
EWN

{
chNN (S−N ,M

−
N ,WN )

}
= JN (S−N ,M

−
N ).

Assume that for some k, 1 ≤ k ≤ N − 2, we have

J∗k+1(S−k+1,M
−
k+1) = Jk+1(S−k+1,M

−
k+1).

Then we have

J∗k (S−k ,M
−
k ) = min

(hk,... ,hN )
EWk,... ,WN

{
chkk (S−k ,M

−
k ,Wk) +

N∑
i=k+1

chii (S−i ,M
−
i ,Wi)

}

= min
hk∈H

EWk

{
chkk (S−k ,M

−
k ,Wk)

+ min
(hk+1,... ,hN )

[
EWk+1,... ,WN

{
N∑

i=k+1

chii (S−i ,M
−
i ,Wi)

}]}
= min

hk
EWk

{
chkk (S−k ,M

−
k ,Wk) + J∗k+1(S−k+1,M

−
k+1)

}
(a)
= min

hk
EWk

{
chkk (S−k ,M

−
k ,Wk) + Jk+1(S−k+1,M

−
k+1)

}
(b)
= min

hk∈H
EWk

{
chkk (S−k ,M

−
k ,Wk) + Jk+1(fhkk (S−k ,M

−
k ,Wk)

}
(c)
= Jk(S−k ,M

−
k ).

where (a) follows from the inductive assumption, (b) follows from (3.12) and (c) follows

from (3.19). 2

We now proceed to show that the sequence of policies (hLQHR, . . . , hLQHR) solves

the dynamic programming recursion in (3.18)-(3.19) whenever pk(s−k ,m
−
k ) ≥ 1

2 for all

(s−k ,m
−
k ) ∈ V. We first prove a key lemma which states that hLQHR simultaneously

minimizes S−k+1,M
−
k+1, and chkk as functions of S−k ,M

−
k , and Wk. Since S−k+1,M

−
k+1, and

chkk are functions of S+
k and M+

k , we will often write chkk (S−k ,M
−
k ,Wk) as c̃hkk (S+

k ,M
+
k ),
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S−k+1(S−k ,M
−
k ,Wk) as S̃−k+1(S+

k ,M
+
k ), and M−k+1(S−k ,M

−
k ,Wk) as M̃−k+1(S+

k ,M
+
k ).

Lemma 3.3 Let h ∈ H be given. For k = 1, . . . , N , let (S̃−k+1(S+
k ,M

+
k ),M̃−k+1(S+

k ,M
+
k ))

and (S̃−
′

k+1(S+
k ,M

+
k ), M̃−

′

k+1(S+
k ,M

+
k )) be the queue states at t−k+1 as functions of (S+

k ,M
+
k )

under hLQHR and h, respectively. Let c̃k(S+
k ,M

+
k ) and c̃′k(S

+
k ,M

+
k ) be the costs over the kth

period as functions of (S+
k ,M

+
k ) under hLQHR and h, respectively. Then for all (s+

k ,m
+
k ) ∈

V ≡ {(s,m)|0 ≤ s <∞, s/2 ≤ m ≤ s}, and for all k = 1, , . . . , N ,

S̃−k+1(s+
k ,m

+
k ) ≤ S̃−′k+1(s+

k ,m
+
k ), M̃−k+1(s+

k ,m
+
k ) ≤ M̃−′k+1(s+

k ,m
+
k ),

c̃k(s+
k ,m

+
k ) ≤ c̃′k(s+

k ,m
+
k ).

PROOF. Let (s+
k ,m

+
k ) be any element of V and suppose (S+

k ,M
+
k ) = (s+

k ,m
+
k ). Then

the unfinished work vector (uh1(t), uh2(t)) under any policy h ∈ H is determined (up to a

permutation on the queue indices) for t ∈ (tk, tk+1).

We first show that for any admissible policy h ∈ H, there exists some h′ ∈ HD ≡

{h : U 7→ D}, i.e. a policy operating strictly on the dominant face, such that uh
′

1 (t) ≤

uh1(t) and uh
′

2 (t) ≤ uh2(t) ∀t ∈ (tk, tk+1). Let rhi (u1, u2) be the rate allocated to queue i

under h for the state (u1, u2), i = 1, 2. By the definition of D, for all (u1, u2) and for

i = 1, 2, there exists r′i(u1, u2) such that rhi (u1, u2) ≤ r′i(u1, u2) (See discussion in Chapter 2).

Define h′ by h′(u1, u2) = (r′1(u1, u2), r′2(u1, u2)). Since h′ allocates higher rates than h to

both queues 1 and 2 in all states (u1, u2), we conclude that uh
′

1 (t) ≤ uh1(t) and uh
′

2 (t) ≤

uh2(t) ∀t ∈ (tk, tk+1). From this it follows that uh
′

1 (t−k+1) + uh
′

2 (t−k+1) ≤ uh1(t−k+1) + uh2(t−k+1),

max(uh
′

1 (t−k+1), uh
′

2 (t−k+1)) ≤ max(uh1(t−k+1), uh2(t−k+1)), and
∫ tk+1

tk
[uh
′

1 (t−k+1) + uh
′

2 (t−k+1)]dt ≤∫ tk+1

tk
[uh1(t−k+1) +uh2(t−k+1)]dt. Thus, we need only show that hLQHR performs no worse than

all h ∈ HD in proving the lemma.

Let h ∈ HD be given. The key observation is that queues start to empty out under

policy h no later than they do under hLQHR. For t ∈ (tk, tk+1), let (u[1](t), u[2](t)) and

(u′[1](t), u
′
[2](t)) be the evolution of unfinished work under hLQHR and h, respectively. Then,

u[1](t
+
k ) = u′[1](t

+
k ) = m+

k and u[2](t
+
k ) = u′[2](t

+
k ) = s+

k − m+
k . Let te ≡ sup{tk ≤ t ≤

tk+1|u[1](t) > 0, u[2](t) > 0} and t′e ≡ sup{tk ≤ t ≤ tk+1|u′[1](t) > 0, u′[2](t) > 0}. We show

that t′e ≤ te.

There are two basic cases to consider, corresponding to Figures 3-3 and 3-4. If u[1](t
+
k )

φ1
≥
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u[2](t
+
k )

φ2
, te = tk + min

(
τk,

u[2](t
+
k )

φ2

)
, where τk = tk+1 − tk. Now for any h ∈ HD, the rate

allocated to the larger queue can never exceed φ1 and the rate allocated to the smaller queue

can never be less than φ2. Then, since u[1](t
+
k )

φ1
≥ u[2](t

+
k )

φ2
, the smaller queue must empty out

before the larger queue does, for any h ∈ HD. Therefore, t′e = sup{tk ≤ t ≤ tk+1|u′[2](t) >

0} ≤ tk + min
(
τk,

u[2](t
+
k )

φ2

)
= te (once again, since the rate allocated to the smaller queue

can never be less than φ2).

If u[1](t
+
k )

φ1
≤ u[2](t

+
k )

φ2
, then te = tk + min

(
τk,

s+k
φ1+φ2

)
. If τk ≤

s+k
φ1+φ2

, then t′e ≤ tk+1 =

tk + τk = te. Otherwise, te = tk + s+k
φ1+φ2

. Suppose t′e > te. Then u′[1](t) > 0 and u′[2](t) > 0

for all t ∈ [tk, t′e). In particular, u′[1]

(
tk + s+k

φ1+φ2

)
> 0 and u′[2]

(
tk + s+k

φ1+φ2

)
> 0. Since

h ∈ HD, h reduces total unfinished work at a rate of φ1 + φ2 at all t, tk ≤ t ≤ tk + s+k
φ1+φ2

.

Then u′[1]

(
tk + s+k

φ1+φ2

)
+ u′[2]

(
tk + s+k

φ1+φ2

)
= s+

k − (φ1 + φ2)
(

s+k
φ1+φ2

)
= 0, which gives a

contradiction. Thus, t′e ≤ te.

We now show s̃−k+1 ≡ u[1](t
−
k+1) + u[2](t

−
k+1) ≤ u′[1](t

−
k+1) + u′[2](t

−
k+1) ≡ s̃−

′

k+1 and c̃k ≡∫ tk+1

tk
[u[1](t) + u[2](t)]dt ≤

∫ tk+1

tk
[u′[1](t) + u′[2](t)]dt ≡ c̃′k. Observe that hLQHR reduces the

total unfinished work at a rate of φ1 +φ2 from tk to te, and then at a rate of φ1 from te until

tk+1 or until the system empties. Policy h, on the other hand, reduces the total unfinished

work at a rate of φ1 + φ2 from tk to t′e, and then at a rate of φ1 from t′e until tk+1 or until

the system empties. Thus, from tk to t′e, hLQHR and h both reduce the total unfinished

work at the same maximum rate φ1 +φ2, implying u[1](t′e) +u[2](t′e) = u′[1](t
′
e) +u′[2](t

′
e) and∫ t′e

tk
[u[1](t)+u[2](t)]dt =

∫ t′e
tk

[u′[1](t)+u′[2](t)]dt. Since te ≥ t′e, hLQHR reduces total unfinished

work at a higher rate than h at all times from t′e to tk+1. This implies s̃−k+1 ≤ s̃−
′

k+1 and∫ tk+1

t′e
[u[1](t)+u[2](t)]dt ≤

∫ tk+1

t′e
[u′[1](t)+u′[2](t)]dt, with equality in both inequalities if te = t′e.

Therefore, we also have c̃k ≤ c̃′k, with equality if te = t′e.

Finally, we show m̃−k+1 ≡ u[1](t
−
k+1) ≤ u′[1](t

−
k+1) ≡ m̃−

′

k+1. We show this by demon-

strating that ∆−k+1 ≡ u[1](t
−
k+1) − u[2](t

−
k+1) ≤ u′[1](t

−
k+1) − u′[2](t

−
k+1) ≡ ∆−

′

k+1. Since

m̃−k+1 = (s̃−k+1 + ∆−k+1)/2, m̃−
′

k+1 = (s̃−
′

k+1 + ∆−
′

k+1)/2, and s̃−k+1 ≤ s̃−
′

k+1, the claim fol-

lows. Here, once again, there are two cases. First assume t′e < tk+1. Then, ∆−
′

k+1 = s̃−
′

k+1

and ∆−k+1 ≤ s̃−k+1 ≤ s̃−
′

k+1 = ∆−
′

k+1. Next, assume t′e = tk+1. Then, te = tk+1 also.

For t ∈ (tk, tk+1), let ∆(t) = u[1](t) − u[2](t) and ∆′(t) = u′[1](t) − u′[2](t). Now ∆(t) =(
∆(t+k )− (φ1 − φ2)(t− tk)

)+, where (x)+ ≡ max(x, 0). Under any policy h ∈ HD, the

larger queue can receive a rate which is at most φ1 and the smaller queue can receive a
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rate which is at least φ2. Thus, the magnitude of the difference of the queues (as long as

it is positive) can decrease at a rate no larger than φ1 − φ2. Thus, ∆(t) ≤ ∆′(t) at all

t ∈ (tk, tk+1) for which ∆(t) > 0. And of course ∆(t) ≤ ∆′(t) when ∆(t) = 0. Thus,

∆(t) ≤ ∆′(t) ∀t ∈ (tk, tk+1). In particular, ∆−k+1 ≤ ∆−
′

k+1. 2

Next, we develop some properties of the functions S̃−k+1, M̃−k+1, and c̃k, k = 1, . . . , N ,

under hLQHR. First we examine the cost over the kth period c̃k(S+
k ,M

+
k ) as a function

of the queue state at (S+
k ,M

+
k ) at t+k . Define τk ≡ tk+1 − tk. There are two main cases,

corresponding to Figures 3-3 and 3-4.

Case 1: M+
k
φ1
≤ S+

k −M
+
k

φ2
(See Figure 3-3). The integral over the kth period for this case

is given by

c̃k(S+
k ,M

+
k ) =


S+
k τk −

1
2(φ1 + φ2)τ2

k for τk ≤
S+
k

φ1+φ2
,

S+
k

2

2(φ1+φ2) for τk ≥
S+
k

φ1+φ2
.

More compactly,

c̃k(S+
k ,M

+
k ) = S+

k τk −
1
2

(φ1 + φ2)τ2
k +

1
2

(φ1 + φ2)

[(
τk −

S+
k

φ1 + φ2

)+
]2

,

where (x)+ ≡ max(x, 0).

Case 2: M+
k
φ1
≥ S+

k −M
+
k

φ2
(See Figure 3-4). The integral in this case is

c̃k(S+
k ,M

+
k ) =


S+
k τk −

1
2(φ1 + φ2)τ2

k for τk ≤
S+
k −M

+
k

φ2
,

(S+
k −M

+
k )2

2φ2
+M+

k τk −
1
2τ

2
kφ1 for S+

k −M
+
k

φ2
≤ τk ≤

M+
k
φ1
,

(S+
k −M

+
k )2

2φ2
+ M+

k

2

2φ1
for τk ≥

M+
k
φ1
.

More compactly,

c̃k(S+
k ,M

+
k ) = S+

k τk −
1
2

(φ1 + φ2)τ2
k +

φ2

2

[(
τk −

S+
k −M

+
k

φ2

)+
]2

+
φ1

2

[(
τk −

M+
k

φ1

)+
]2

.

From the above expressions, it is easy to verify the following lemma. We shall say that
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a function c : R2 7→ R is increasing in (x, y) if c(x1, y1) ≤ c(x2, y2) whenever x1 ≤ x2 and

y1 ≤ y2.

Lemma 3.4 For each k = 1, . . . , N , let c̃k(S+
k ,M

+
k ) be the integral of the total unfinished

work (or cost) over the kth period under hLQHR as a function of the queue state (S+
k ,M

+
k )

at t+k . Then c̃k is increasing in (S+
k ,M

+
k ).

It is also possible to verify (by calculating first and second partial derivatives) that

c̃k is convex in the pair (S+
k ,M

+
k ). We shall prove this in Lemma 3.6, however, using a

more physically motivated argument. For now, we move on to examine S̃−k+1 and M̃−k+1 as

functions of (S+
k ,M

+
k ), k = 1, . . . , N , under hLQHR. Again, there are two main cases.

Case 1: M+
k
φ1
≤ S+

k −M
+
k

φ2
(See Figure 3-3). For τk ≤

2M+
k −S

+
k

φ1−φ2
, M̃−k+1 = M+

k − φ1τk and

S̃−k+1 = S+
k − (φ1 + φ2)τk. For 2M+

k −S
+
k

φ1−φ2
≤ τk ≤

S+
k

φ1+φ2
, M̃−k+1 = 1

2(S+
k − (φ1 + φ2)τk) and

S̃−k+1 = S+
k − (φ1 + φ2)τk. For τk ≥

S+
k

φ1+φ2
, M̃−k+1 = S̃−k+1 = 0. More compactly,

M̃−k+1 = max
(

1
2
(
S+
k − (φ1 + φ2)τk

)+
,M+

k − φ1τk

)
,

S̃−k+1 =
(
S+
k − (φ1 + φ2)τk

)+
.

Case 2: M+
k
φ1
≥ S+

k −M
+
k

φ2
(See Figure 3-4). For τk ≤

S+
k −M

+
k

φ2
, M̃−k+1 = M+

k − φ1τk and

S̃−k+1 = S+
k −(φ1+φ2)τk. For S+

k −M
+
k

φ2
≤ τk ≤

M+
k
φ1

, M̃−k+1 = S̃−k+1 = M+
k −φ1τk. For τk ≥

M+
k
φ1

,

M̃−k+1 = S̃−k+1 = 0. More compactly,

M̃−k+1 =
(
M+
k − φ1τk

)+
,

S̃−k+1 = max
((
M+
k − φ1τk

)+
, S+

k − (φ1 + φ2)τk
)
.

From the above expressions, the following lemma is immediate.

Lemma 3.5 For each k = 1, . . . , N , let (S̃−k+1(S+
k ,M

+
k ), M̃−k+1(S+

k ,M
+
k )) be the queue state

at t−k+1 under hLQHR as a function of the queue state (S+
k ,M

+
k ) at t+k . Then S̃−k+1 and M̃−k+1

are both increasing in (S+
k ,M

+
k ).

We now prove an important convexity result.
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(1− λ)(s+
k,1,m

+
k,1) + λ(s+

k,2,m
+
k,2)

-
(1− λ)(s+

k,1,m
+
k,1)

-

λ(s+
k,2,m

+
k,2)

LQHR processor with
λ × resources

LQHR processor with
1− λ × resources

Figure 3-6: Illustration of the hdivide policy.

Lemma 3.6 For k = 1, . . . , N , let c̃k(S+
k ,M

+
k ) be the integral of the total unfinished work

(or cost) over the kth period under hLQHR as a function of the queue state (S+
k ,M

+
k ) at t+k ,

and let (S̃−k+1(S+
k ,M

+
k ), M̃−k+1(S+

k ,M
+
k )) be queue state at t−k+1 under hLQHR as a function

of the queue state (S+
k ,M

+
k ) at t+k . Then, c̃k, S̃−k+1 and M̃−k+1 are all convex in (S+

k ,M
+
k ).

PROOF. Let (s+
k,1,m

+
k,1) and (s+

k,2,m
+
k,2) be any two elements of V. For any λ ∈ [0, 1],

consider the convex combination (1−λ)(s+
k,1,m

+
k,1)+λ(s+

k,2,m
+
k,2), which lies in V. Suppose

the queue state at t+k takes on this convex combination as its value. Now consider the

following rate allocation policy for the kth period. Divide the unfinished work vector at

t+k into two parts, on corresponding to (1 − λ)(s+
k,1,m

+
k,1) and the other corresponding to

λ(s+
k,2,m

+
k,2). Process the first part of the unfinished work using hLQHR, but with 1 − λ

times the resources available from C. That is, hLQHR is allowed to operate with rates

from the region {(r1, r2)|r1 ≤ (1 − λ)φ1, r2 ≤ (1 − λ)φ2, r1 + r2 ≤ (1 − λ)(φ1 + φ2)}. In

parallel, process the second part of the unfinished work using hLQHR, but with λ times the

resources available from C. That is, hLQHR is allowed to operate with rates from the region

{(r1, r2)|r1 ≤ λφ1, r2 ≤ λφ2, r1 + r2 ≤ λ(φ1 + φ2)}. Figure 3-6 illustrates the situation.

Refer to the above “divide and conquer” policy as hdivide. For t ∈ (tk, tk+1), let ri(t) ≡

(ri1(t), ri2(t)) be the rates assigned under hdivide to the ith part of the unfinished work, i =

1, 2. It is then clear that r1(t)+r2(t) ∈ C for all t ∈ (tk, tk+1). Thus, hdivide is an admissible

policy. Now let S̃−k+1((1 − λ)(s+
k,1,m

+
k,1) + λ(s+

k,2,m
+
k,2)) and S̃−

′

k+1((1 − λ)(s+
k,1,m

+
k,1) +

λ(s+
k,2,m

+
k,2)) be the sum of queue sizes at t−k+1 under hLQHR and hdivide, respectively, given

the queue state (1 − λ)(s+
k,1,m

+
k,1) + λ(s+

k,2,m
+
k,2) at t+k . Let M̃−k+1((1 − λ)(s+

k,1,m
+
k,1) +

λ(s+
k,2,m

+
k,2)) and M̃−

′

k+1((1− λ)(s+
k,1,m

+
k,1) + λ(s+

k,2,m
+
k,2)) be the maximum queue sizes at

t−k+1 under hLQHR and hdivide, respectively. Finally, let c̃k((1−λ)(s+
k,1,m

+
k,1)+λ(s+

k,2,m
+
k,2))
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and c̃′k((1 − λ)(s+
k,1,m

+
k,1) + λ(s+

k,2,m
+
k,2)) be the integral of the total unfinished work over

the kth period under hLQHR and hdivide, respectively. Then by Lemma 3.3,

S̃−k+1

(
(1− λ)(s+

k,1,m
+
k,1) + λ(s+

k,2,m
+
k,2)
)
≤ S̃−

′

k+1

(
(1− λ)(s+

k,1,m
+
k,1) + λ(s+

k,2,m
+
k,2)
)
,

M̃−k+1

(
(1− λ)(s+

k,1,m
+
k,1) + λ(s+

k,2,m
+
k,2)
)
≤ M̃−

′

k+1

(
(1− λ)(s+

k,1,m
+
k,1) + λ(s+

k,2,m
+
k,2)
)
,

c̃k((1− λ)
(
s+
k,1,m

+
k,1) + λ(s+

k,2,m
+
k,2)
)
≤ c̃′k

(
(1− λ)(s+

k,1,m
+
k,1) + λ(s+

k,2,m
+
k,2)
)
.

Now notice that under policy hdivide, subsystem 1 uses the LQHR policy with 1− λ times

the resources of C, and needs to process 1 − λ times the unfinished work corresponding to

the state (s+
k,1,m

+
k,1). Thus, the resulting unfinished work as a function of time is just a

(1−λ)-scaled version of the unfinished work function when hLQHR uses all the resources of C

to process the unfinished work corresponding to the state (s+
k,1,m

+
k,1). The same argument

applies to subsystem 2. Thus, we see that the RHS of the above three inequalities are

simply given by

S̃−
′

k+1

(
(1− λ)(s+

k,1,m
+
k,1) + λ(s+

k,2,m
+
k,2)
)

= (1− λ)S̃−k+1(s+
k,1,m

+
k,1) + λS̃−k+1(s+

k,2,m
+
k,2),

M̃−
′

k+1

(
(1− λ)(s+

k,1,m
+
k,1) + λ(s+

k,2,m
+
k,2)
)

= (1− λ)M̃−k+1(s+
k,1,m

+
k,1) + λM̃−k+1(s+

k,2,m
+
k,2),

c̃′k

(
(1− λ)(s+

k,1,m
+
k,1) + λ(s+

k,2,m
+
k,2)
)

= (1− λ)c̃k(s+
k,1,m

+
k,1) + λc̃k(s+

k,2,m
+
k,2).

This establishes the lemma. 2

To solve a dynamic programming recursion such as (3.18)-(3.19), it is usually help-

ful to have some special structure (such as monotonicity and convexity) in the cost-to-go

functions Jk(S−k ,M
−
k ). In Lemmas 3.4, 3.5, and 3.6, we have revealed some structural

properties of the functions S̃−k+1(S+
k ,M

+
k ), M̃−k+1(S+

k ,M
+
k ), and c̃k(S+

k ,M
+
k ) under hLQHR.

We will prove that these properties also hold for Jk(S−k ,M
−
k ), k = 1, . . . , N , whenever

pk ≡ Pr (Wk = +1) ≥ 1
2 for all k = 1, . . . , N . In doing so, we will need the following key

lemma.

Lemma 3.7 Let c : R2 7→ R be a real functions of two variables s and m. Suppose c is

increasing in (s,m) and convex in (s,m) over the region V ≡ {(s,m)|0 ≤ s < ∞, s/2 ≤
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m ≤ s}. Then, for any z > 0 and any 1
2 ≤ p ≤ 1, the function

fz(s,m) = pc(s+ z,m+ z) + (1− p)c(s+ z,max(m, s−m+ z))

is also increasing in (s,m) and convex in (s,m) over V.

PROOF. We first check convexity. Note that s+ z,m+ z,m and s−m+ z are all convex

in (s,m). Since max(x, y) is convex and increasing in (x, y), max(m, s −m + z) is convex

in (s,m). Since (s+ z,m+ z) and (s+ z,max(m, s−m+ z)) are both in V and since c is

increasing and convex in its arguments, fz is convex in (s,m).

Next, we check that fz is increasing in (s,m). For a fixed m, fz is increasing in s by

inspection. Now fix s. If m ≥ s−m+ z or m ≥ (s+ z)/2, fz is clearly increasing in m. For

m ≤ (s+ z)/2, we show

fz(s,m) = pc(s+ z,m+ z) + (1− p)c(s+ z, s−m+ z)

is increasing in m. For simplicity, write c(x) for c(s + z, x). Let m1 and m2 be any two

numbers satisfying s/2 ≤ m1 < m2 ≤ (s + z)/2. Note that since m1 ≥ s/2 by definition,

we have m2 + z > m1 + z ≥ s−m1 + z > s−m2 + z. Now since c is convex in its second

argument fixing the first, and since convex functions must have increasing slope,

c(m2 + z)− c(m1 + z)
m2 −m1

≥ c(s−m1 + z)− c(s−m+ z)
m2 −m1

.

Thus, p[c(m2 + z)− c(m1 + z)] ≥ (1− p)[c(s−m1 + z)− c(s−m2 + z)] for all 1
2 ≤ p ≤ 1.

That is, pc(s + z,m + z) + (1 − p)c(s + z, s −m + z) is increasing in m. Since fz(s,m) is

continuous at m = (s+ z)/2, the lemma follows. 2

Lemma 3.7 holds for all 1
2 ≤ p ≤ 1. As we shall see below, this implies that hLQHR is

optimal whenever (conditioned on the fixed sequence of arrival epochs and packet lengths)

each arrival occurs on the currently larger queue with probability greater than 1
2 . That

is, for each k = 1, . . . , N , pk ≡ Pr (Wk = +1) ≥ 1
2 . We are now ready to prove the main

theorem.
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Theorem 3.2 For each k = 1, . . . , N , hLQHR attains the minimum in the dynamic pro-

gramming recursion of (3.18)-(3.19), whenever pk ≡ Pr (Wk = +1) ≥ 1
2 for all k = 1, . . . , N .

PROOF. We use backwards induction on k. Let k = N . By Lemma 3.3, hLQHR minimizes

c̃hNN (s+
N ,m

+
N ) among all admissible policies, for all possible queue state values (s+

N ,m
+
N ) ∈ V

at time t+N . Thus, hLQHR minimizes chNN (s−N ,m
−
N , wN ) among all admissible policies, for all

(s−N ,m
−
N , wN ) ∈ V×{+1,−1} at time t−N . So hLQHR also minimizes EWN

{
chNN (s−N ,m

−
N ,WN )

}
for all (s−N ,m

−
N ) ∈ V. That is, JN (s−N ,m

−
N ) = EWN

{
c
hLQHR
N (s−N ,m

−
N ,WN )

}
for all (s−N ,m

−
N ) ∈

V.

Next, we show that JN is increasing and convex in (S−N ,M
−
N ). By Lemma 3.4 and 3.6,

c̃
hLQHR
N is increasing and convex in (S+

N ,M
+
N ). Now

JN (S−N ,M
−
N ) = pN · c

hLQHR
N (S−N ,M

−
N ,+1) + (1− pN ) · chLQHRN (S−N ,M

−
N ,−1)

= pN · c̃
hLQHR
N (S−N + zN ,M

−
N + zN )

+(1− pN ) · c̃hLQHRN (S−N + zN ,max(M−N , S
−
N −M

−
N + zN )).

Since 1
2 ≤ pN ≤ 1, JN is increasing and convex in (S−N ,M

−
N ) by Lemma 3.7.

Now assume for some k, 1 ≤ k ≤ N − 2, Jk+1(S−k+1,M
−
k+1) is increasing and convex

in (S−k+1,M
−
k+1). By Lemma 3.3, hLQHR minimizes EWk

{
chkk (s−k ,m

−
k ,Wk)

}
among all

admissible policies, for all (s−k ,m
−
k ) ∈ V. Also by Lemma 3.3, hLQHR minimizes S̃−k+1

and M̃−k+1 among all admissible policies, for all (s+
k ,m

+
k ) ∈ V. Thus, hLQHR minimizes

S−k+1 and M−k+1 among all admissible policies, for all (s−k ,m
−
k , wk) ∈ V × {+1,−1}, where

(S−k+1,M
−
k+1) = fhkk (S−k ,M

−
k ,Wk). Since Jk+1 is increasing in (S−k+1,M

−
k+1), we have for all

(s−k ,m
−
k , wk) ∈ V × {+1,−1},

Jk+1

(
f
hLQHR
k (s−k ,m

−
k , wk)

)
= min

hk∈H
Jk+1

(
fhkk (s−k ,m

−
k , wk)

)
.

Hence, for all (s−k ,m
−
k ) ∈ V, hLQHR minimizes EWk

{
Jk+1

(
fhkk (s−k ,m

−
k , wk)

)}
. We have

therefore shown that hLQHR attains the minimum in (3.19) at the kth step. That is, for all

(s−k ,m
−
k ) ∈ V,

Jk(s−k ,m
−
k ) = EWk

{
c
hLQHR
k (s−k ,m

−
k ,Wk) + Jk+1

(
f
hLQHR
k (s−k ,m

−
k ,Wk)

)}
.
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It remains to show that Jk is increasing and convex in (S−k ,M
−
k ). By repeating the

argument above for JN (replacing N by k), we can show that EWk

{
c
hLQHR
k (S−k ,M

−
k ,Wk)

}
is increasing and convex in (S−k ,M

−
k ). Now

EWk

{
Jk+1

(
f
hLQHR
k (S−k ,M

−
k ,Wk)

)}
= pk · Jk+1

(
f
hLQHR
k (S−k ,M

−
k ,+1)

)
+ (1− pk) · Jk+1

(
f
hLQHR
k (S−k ,M

−
k ,−1)

)
= pk · Jk+1

(
f̃
hLQHR
k (S−k + zk,M

−
k + zk)

)
+(1− pk) · Jk+1

(
f̃
hLQHR
k (S−k + zk,max(M−k , S

−
k −M

−
k + zk))

)
where f̃hLQHRk (S+

k ,M
+
k ) ≡ (S̃−k+1(S+

k ,M
+
k ), M̃−k+1(S+

k ,M
+
k )). By Lemmas 3.5 and 3.6, un-

der hLQHR, both S̃−k+1 and M̃−k+1 are increasing and convex functions of (S+
k ,M

+
k ). Since

Jk+1 is increasing and convex in its arguments, it can be verified that Jk+1 ◦ f̃
hLQHR
k is

increasing and convex in (S+
k ,M

+
k ). Now since 1

2 ≤ pk ≤ 1, we may apply Lemma 3.7 and

conclude that EWk

{
Jk+1

(
f
hLQHR
k (S−k ,M

−
k ,Wk)

)}
is increasing and convex in (S−k ,M

−
k ).

Thus, we have shown that Jk(S−k ,M
−
k ) is increasing and convex in (S−k ,M

−
k ). 2

By Lemma 3.2 and Theorem 3.2, we have the following corollary.

Corollary 3.2 Consider the set of sample paths for which 0 < t1 < t2 < · · · < tn−1 < tn <

· · · are the arrival epochs and z1, z2, . . . , zn−1, zn . . . are the lengths of the packets arriving

at the corresponding times. Let T > 0 be given and let N(T ) = max{k|tk < T}. Let pk, k =

1, . . . , N(T ), be as defined in (3.11). Then, whenever pk ≥ 1
2 for all k = 1, . . . , N(T ), then

JhLQHR(S−1 ,M
−
1 ) = Jh∗(S−1 ,M

−
1 ) = J∗(S−1 ,M

−
1 ) = J1(S−1 ,M

−
1 ).

where Jh∗(S−1 ,M
−
1 ), J∗(S−1 ,M

−
1 ), and J1(S−1 ,M

−
1 ) are given by (3.15), (3.17), and (3.18)-

(3.19), respectively. That is, hLQHR minimizes (3.13) among all h ∈ H.

So far, we have considered our problem within the finite time horizon [0, T ] and we have

fixed the arrival epochs and the lengths of the packets arriving at those epochs. The only

randomness we have allowed lies in the Wk’s. We would now like to place our problem

in a more stochastic setting. We continue to assume that sources 1 and 2 both generate

packets according to independent Poisson processes with a common parameter λ, and that

all packets of both sources are i.i.d. according to distribution FZ(z) satisfying E[Z] < ∞.
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For a fixed policy h ∈ H, let (Uh[1](t), U
h
[2](t)) or equivalently (Sh(t),Mh(t)) be the resulting

joint queue state at time t, t ≥ 0.

For any given sequence of arrival epochs 0 < t1 < t2 < · · · < tn−1 < tn < · · · , define Wk

and pk, k = 1, 2, . . . as in (3.10) and (3.11). Under our assumptions regarding the arrival

process and packet lengths, pk = 1
2 for all k = 1, 2, . . . . Then by Corollary 3.2, for any

T > 0, hLQHR minimizes

1
T

∫ T

0
EW1,... ,WN(T )

{
Sh(t)dt

}
. (3.20)

among all h ∈ H, for every realization of the arrival processes and packet lengths. Thus,

hLQHR minimizes (3.20) where Sh(t) is now regarded as a random function of the arrivals

and the packet lengths of the arrivals.

Now for fixed λ and fixed packet length distributions FZ(z), consider the set Hstable of

policies h ∈ H for which the multiaccess queueing system is stable, i.e. Sh(t) hits 0 with

probability 1 and the expected length of the busy period under h is finite. Then, we may

view the starting points of the busy periods of the system under h as a non-arithmetic (since

the arrival processes are non-arithmetic)11 renewal process, and EW1,... ,WN(T )

{
Sh(t)dt

}
as

a renewal reward function. In this case,

lim
T→∞

1
T

∫ T

0
EW1,... ,WN(T )

{
Sh(t)dt

}
and lim

t→∞
E

{
Sh(t)

}
(3.21)

both exist and are equal [Gal96]. The expectation in the second limit of (3.21) is with

respect to the joint arrival process and the packet lengths. Notice that whenever Hstable 6= ∅,

hLQHR ∈ Hstable. We then have the following corollary.

Corollary 3.3 Consider a two-user multiaccess queueing system where the arrival processes

are independent Poisson with parameter λ, and all packets of both sources are i.i.d. accord-

ing to distribution FZ(z) satisfying E[Z] < ∞. Then if Hstable 6= ∅, hLQHR minimizes

limt→∞ E
{
Sh(t)

}
.

We now note that the results in this section would continue to hold if the arrival processes

are not necessarily Poisson, but nevertheless satisfy the condition that pk ≥ 1
2 for all k =

11An inter-arrival distribution is said to arithmetic if arrivals occur only at integer multiples of some real
number d.

92



1, 2, . . . . For instance, consider a situation where the arrivals to the two queues are generated

by a single renewal process {A(t); t ≥ 0} and the packet lengths corresponding to the arrivals

are i.i.d. according to distribution FZ(z) satisfying E[Z] < ∞. For each arrival, a switch

uses the outcome of a fair coin flip to decide whether the arrival enters queue 1 or queue 2.

Then if the multiaccess queueing system is stable, hLQHR still minimizes limt→∞ E
{
Sh(t)

}
.

We can even go a step further and consider the situation where pk is allowed to depend

on the state (S−k ,M
−
k ). If for every realization of the overall arrival epochs and packet

lengths, and for all (s−k ,m
−
k ) ∈ V, pk(s−k ,m

−
k ) ≥ 1

2 , k = 1, 2, . . . , then the conclusion of this

section still holds. This rather strange situation roughly corresponds to a scenario where

the arrival processes “looks at” the queue state and somehow forces more arrivals to enter

queues which are already more backed up than other queues. In this case, it is intuitively

clear that hLQHR is the optimal policy. Since these scenarios do not seem very physically

motivated, however, we do not place great emphasis on them.

3.4 Summary and Discussion

The fundamental intuition underlying this work is that the optimal queue control strategy

in the given non-work-conserving setting should be based on “load-balancing” or “equal-

ization” of queue sizes. We have shown that for the symmetric case where transmission

powers, arrival rates and packet length distributions are the same for all users, versions

of the LQHR policy can implement load-balancing and minimize the steady-state average

packet delay and average bit delay. In general, however, LQHR may not be sufficient for

load-balancing and thus optimality. We now elaborate on this point.

First, the optimality of LQHR is quite dependent on the symmetry conditions. In Sec-

tion 3.2, we crucial use of symmetry in the stochastic majorization argument. In Section 3.3,

the symmetry assumptions are reflected in the probability distribution of the Wk’s. If the

Poisson processes had different arrival rates, or if the packets from different sources had

different distributions, then the conditional distribution of the Wk’s (given the fixed set of

arrival epochs and packet lengths) would not be Bernoulli(1
2). In many cases of asymmetry,

it is easy to see why LQHR would not be optimal. Consider, for example, the case of two

users where the arrival rate of the first user is much larger than the arrival rate of the second

user: λ1 � λ2. Assume that the packets are still i.i.d. and transmission powers are the same
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for both users. Assume that at time t, the length of the first queue is slightly smaller than

the length of the second queue. In an effort to keep the queues equalized on average, the

optimal controller may still allocate a higher rate to the first queue even though it has a

shorter length, in expectation of a large number of arrivals on queue 1 in the near future

due to a large λ1. Thus, while there is some reason to believe that the optimal policy for

the asymmetric case may still be based on thresholds, it seems that the thresholds will not

be given strictly in terms of the queue state.

Second, the optimality of LQHR seems to depend on a certain “homogeneity” in the

arrival processes. For the Poisson case, this homogeneity certainly holds, since given there

are N Poisson arrivals in some interval [0, T ], the arrival epochs of these N arrivals are

uniformly distributed over [0, T ]. If arrivals were not Poisson, the control policy may need

to observe not only the queue state, but also the pattern of arrivals in order to perform

load-balancing, even when the symmetry conditions hold. For instance, if packet arrivals

were “bursty,” then a single arrival on a queue may signal the imminent arrivals of many

more packets. The control policy would then need to equalize the queues by observing the

sequence of arrivals as well.

Next, we give an operational interpretation to the results obtained in this work. We

have assumed that the controller can assign rates at any time from anywhere in the capacity

region. Thus, the objective value in (3.2) and (3.3) associated with the optimal policies

gLQHR and hLQHR (for M = 2) provide lower bounds to the corresponding objective values

for all coding schemes which seek to meet any given level of decoding error probability.

This is because the multiaccess converse theorem puts a lower bound on error probability

(via Fano’s Inequality) of any coding scheme operating at rates outside the capacity region

C. This is the “converse” side of the story. On the “achievability” side, to implement

an approximation of the LQHR policy requires operating at rates arbitrarily close to the

dominant face D. We know from information theory that this requires codes (block or

convolutional) which operate over a large number of information bits at a time. This is

not a problem when the typical arriving information packet is very long or if the arrival

rate is sufficiently high that the probability of having a very small number of packets (or

bits) in queue is negligible. In this case, the transmitter always has enough information

bits to operate at the appropriate rate and block length. However, if the arrival rate is

relatively low and the packets are short, then one may need to pad the packet with dummy
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information bits in order to have the code operate at rates close to capacity limits.

Finally, we discuss two other issues concerning the relationship between our queue con-

trol policies and multiaccess coding at the physical layer. First, our assumption that the

controller can, at any time, allocate any rate from C implicitly assumes the existence of

codes which can change rate at very high speeds. Whether such codes can be designed in

practice is an open question. Fortunately, at least in the second version of our delay min-

imization problem (which is probably the more practically significant of the two problems

considered), the optimal queue control policy tends to operate one of three rate regimes

((φ1, φ2), (φ2, φ1), or ((φ1 + φ2)/2, (φ1 + φ2)/2)) for a significant amount of time before

switching to another regime, implying that the code rate does not need to change as rapidly

as one would think. Second, our identification of the LQHR policy as an adaptive succes-

sive decoding method seems to imply that the delays associated with the LQHR policies

are also encountered in successive decoding schemes. This need not, however, be the case

in practice. In our model, packets can exit the queue immediately after receiving enough

mutual information service rate. In a practical successive decoding scheme, however, pack-

ets belonging to a user at the bottom of a particular successive decoding order cannot be

decoded before the packets belonging to a user at the top of the decoding order are decoded,

even if enough service rate has been offered. This implies extra packet and bit delays in

practice. In any case, we can conclude that the delays associated with the LQHR policy in

our model can serve as a lower bound to those achievable in practice.

In this chapter, we have tried to take a more cohesive view of networks by combining

fundamental communication limits at the physical layer with QOS issues at the higher

layers in a multiaccess setting. In our analysis, the rate allocation policy which minimizes

average packet delay in the higher layers turn out to have significant interpretations as

coding schemes at the physical layer. We believe that this “inter-layer” view may reap

more dividends in many other communication contexts.
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Chapter 4

Broadcasting Over Fading

Channels

4.1 Introduction

In the previous two chapters, we focused on the problem of multiaccess interference among

users in a communication network. We examined the multiaccess problem in the context of

coding for the physical layer of the network, and with respect to quality-of-service issues such

as packet delay for higher layers of the network. We now turn to the second fundamental

issue in the design of wireless networks: the time-varying nature of the wireless channel.

As we discussed in Chapter 1, in analyzing communication over time-varying channels, it

is necessary to consider several key issues: the nature of the traffic carried by the system,

the time scale of the channel fading relative to the decoding delay requirement, and the

amount of information available to the transmitter and receiver regarding the state of the

channel. In this work, we are primarily interested in the performance of single-user wireless

systems carrying data traffic. Unlike wireless voice systems, data systems are allowed to

operate at variable rates, as long as the average rate over time meets user requirements.

As in voice systems, however, there is a finite decoding delay requirement placed on each

transmission. The delay requirement may or may not be long compared to the time scale

of the fading. As we show, this has implications for the appropriateness of various capacity

metrics. Finally, we are interested in studying systems the channel state may be measured

and made available to the receiver and transmitter. Out of practical considerations, we
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allow the channel state to be known immediately at the receiver, but only with a certain

delay at the transmitter. We show that this asymmetry of channel state information (CSI)

leads to an interesting transmission strategy.

We focus on a single transmitter/receiver pair1 communicating over a slowly varying

(symbol duration Ts � channel coherence time Tcoh) flat fading (signal bandwidth W �

channel coherence bandwidth Bcoh) additive white Gaussian noise (AWGN) channel where

the time varying channel gain stays constant over each block of T seconds, where T ≤ Tcoh.

Discretizing this continuous time channel over the kth block (k ∈ Z) by projecting on

roughly 2WT orthonormal basis functions [Gal68], we have the discrete-time channel model

Y k = HkXk +Zk (4.1)

where N = 2WT , Xk = (Xk1, . . . , XkN ) and Y k = (Yk1, . . . , YkN ) take values in RN and

represent the inputs and outputs of the channel over the kth block. Zk is a Gaussian random

vector with mean zero and covariance matrix σ2IN with the process {Zk} being i.i.d. Here,

IN is the N by N identity matrix. Assume H, the space of the channel state process {Hk},

is a finite subset of R and that minH > 0. Moreover, assume that {Hk} is stationary and

ergodic, and that the channel state for block k is independent of channel inputs up to block

k when conditioned on channel states for previous blocks. Specifically, let Hk−1
−∞ denote the

sequence (. . . ,Hk−n, . . . , Hk−2,Hk−1). Then for any hk ∈ H, hk−1
−∞ ∈ Hk−1

−∞ , xk−∞ ∈ Rk−∞,

Pr
(
Hk = hk|Hk−1

−∞ = hk−1
−∞,X

k
−∞ = xk−∞

)
= Pr

(
Hk = hk|Hk−1

−∞ = hk−1
−∞

)
.

This is a particular example of the block fading channel [CTB99, OSW94]. Even though

we present the block fading channel mainly in the time domain, it has equally useful rep-

resentations in frequency (as in a multi-carrier system) and in time-frequency (as in a slow

frequency hopping system) [CTB99].

Assume that during the kth block, the receiver has perfect knowledge of the channel

gains Hk
−∞ for all the blocks up to and including the current one.2 The transmitter, on

1The transmitter and receiver are each assumed to have only one antenna.
2A slowly-varying flat-fading channel is underspread in the sense that the product of the multipath

spread Tm and the doppler spread Bd is much less than one. Under such conditions, the channel is easily
measured [BPS98] when the signal-to-noise ratio (SNR) is large enough. Thus, our assumption on CSI is
reasonable when the SNR is sufficiently large.
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- Ŵ (Y k,H
k
−∞)

Feedback
Delay

6

�

6

Hk−d

Hk

Figure 4-1: Diagram of the block fading AWGN channel with delayed channel state feedback.
The decoder is allowed to decode at different rates according to the channel state. The
decoding delay constraint is KN symbols.

the other hand, has perfect knowledge only of the channel gains which are at least d blocks

previous to the current block, where d ≥ 1, via delayed noiseless feedback. That is, it knows

Hk−d
−∞ at the kth block. Next, suppose the system has a maximum allowable decoding

delay of ∆ seconds. We assume ∆ = KT where K is an integer. In terms of channel

symbols, the delay constraint is KN . A codeword of length KN symbols is referred to as

a frame [KH00]. Since a frame is encoded across K channel realizations, the parameter

K measures the amount of time diversity present in the system. For the multi-carrier and

frequency hopping examples, K measures frequency and time-frequency diversity. There, K

is given by the bandwidth constraint. Assume that after receiving a whole frame of symbols,

the decoder is forced to decode as much of the frame as possible, and declare “erasure” on

those parts of the frame that it is unable to decode.3

Note that if there is no decoding delay constraint ∆, that is, N ≤ ∞ and K can be

arbitrarily large, the (ergodic) capacity of the block fading channel is well-defined under an

average transmitted power constraint. The capacity with perfect CSI at the receiver and

no CSI at the transmitter is achievable by a “single-codebook, constant-power” scheme.

The capacity with perfect instantaneous CSI at both the transmitter and the receiver is

achievable via a “waterfilling” power control strategy (over the channel states) with either

a “single-codebook, variable-power” or a “variable-rate, variable-power” scheme [CTB99,

GV97]. Finally, the capacity in the case of ideal CSI available to the receiver with noiseless

delayed feedback to the transmitter has been found in [Vis99] assuming the process {Hk}

3The undecoded information is regarded as lost and is not retransmitted.
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is Markov.

The presence of a decoding delay constraint (finite ∆) forces K to be finite and fixed.

In this case, arbitrarily long code lengths are no longer possible and the ergodic capacity

may not be defined. It is here that the notions of capacity versus outage and delay-limited

capacity become important [Ber00, BPS98, CTB99, KH00, HT98] These concepts are

natural for applications such as real-time speech, where the system seeks to guarantee both

a constant rate and a maximum decoding delay per transmission.

This work takes a different perspective on delay-limited communications. The main

application of interest here is time-sensitive data transmission (e.g. stock quotes, weather

reports) where the system often has no need to guarantee a constant rate per transmission,

but must observe strict decoding delay constraints and ensure low error probability. In

such a setting, the system may allow the decoder to decode at different rates according

to the observed channel state so that the “reliably received rate” is a random variable. A

reasonable goal is then to maximize the expected reliably received rate [EG98] (where the

expectation is over the fading process {Hk}) over the block fading channel, subject to a

decoding delay constraint of KN channel symbols, and an average power constraint over

KN symbols:

1
KN

K∑
k=1

N∑
n=1

E[X2
kn] ≤ P (4.2)

and low error probability.

To make the expected rate problem statement more precise, one would like to resort to

an information theoretic setting and obtain a capacity-like quantity with a coding theorem

and a converse. It is possible to rigorously obtain converses via Fano’s inequality which

place upper bounds on achievable expected rates when arbitrarily small error probability is

required, for a given fixed and finite block length. Converses are, in fact, the main focus of

this section. Achievability, on the other hand, is more problematic since one cannot obtain

arbitrarily small probability of error with a finite block length. Indeed, for a fixed finite

N , the best bound on error probability is given by an exponential dependence on the error

exponent. Unfortunately, for rates very close to capacity, the exponent is near zero and the

required code length for a given error probability requirement may be very large [Gal68].

One way to deal with this difficulty is to study the expected capacity of a compound
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channel (with prior probabilities) corresponding to the block fading channel. Here, we

follow the approach of [Ber00]. Consider a compound channel consisting of a family of

channels {Γ(θ) : θ ∈ ΘK} indexed by the set ΘK ⊂ RK , where ΘK is the set of all length

K sequences of channel gains θ = {h1, h2, . . . , hK} which occur with positive probability

πθ under the (stationary) joint distribution of (H1,H2, . . . , HK). Let πθ be the a priori

probability associated with θ ∈ ΘK . Now let N ≥ 1 be fixed. Consider the memoryless

vector Gaussian channel

Ŷ n = HX̂n + Ẑn (4.3)

where n = 1, . . . , N , X̂n = (X1n, . . . , XKn) and Ŷ n = (Y1n, . . . , YKn) are vectors made

up of the nth components of the vectors Xk and Y k, k = 1, . . . ,K, respectively, in (4.1).

The vector Ẑn is a K-dimensional Gaussian random vector with zero mean and covariance

matrix σ2IK . The random matrix H ≡ diag(H1, . . . , HK). It is clear that for each N ≥ 1,

there is a one-to-one map which takes an instance of the block-fading channel in (4.1) under

a particular realization of the fading process (H1, . . . , HK) = (h1, . . . , hK) = θ to a corre-

sponding instance Γ(θ) of the vector Gaussian channel in (4.3). With this correspondence,

we can prove a coding theorem for the sequence of block fading channels in (4.1) indexed

by the block length N = 1, 2, . . . by proving a corresponding coding theorem for the com-

pound channel {Γ(θ) : θ ∈ ΘK}. Thus, by permitting N to get arbitrarily large, one can

find the expected capacity of the block fading channel by finding the expected capacity of

the underlying compound channel with prior probabilities.

The above process, however, presents a physical problem. For taking N = 2WT ar-

bitrarily large in the block fading channel implies having arbitrarily large coherence times

(for a fixed bandwidth W ). Since the coherence time of the actual channel is fixed, the

process of taking N to infinity is physically meaningless. On the other hand, for a typical

practical system, N is fairly large. For instance, N = 114 in GSM systems [CKH98] and

N = 320 in the IS-54 standard [OSW94]. Thus we shall assume that N is large enough for

reliable communication but still small compared to the coherence time in channel symbols,

and expect the theoretical performance limits obtained from the compound channel model

by letting N →∞ to give a reasonable indication of what is achievable in practical systems.

In the course of the section, we point out strategies to approach expected capacity in this
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sense. We will also analyze the minimal achievable error probability performance of these

capacity-approaching strategies for each finite N .

An intuitive and reasonable approach to the problem of maximizing expected rates over

the block fading channel with delayed channel state feedback is the broadcast strategy

first proposed by Cover [BC74, Cov72]. In this approach, states in a fading channel are

associated with corresponding receivers in a broadcast channel, and the idea of superposition

coding is used to “successfully refine” decoded information according to channel state.4 The

broadcast approach has recently been applied to the case of a flat fading Gaussian channel

with no dynamics (N → ∞ and K = 1) [BPS98, Sha97]. In that work, an attempt was

made to combine the concepts of broadcast and outage probability and thereby generalize

the notion of capacity versus outage. The approach in [Sha97] is to use superposition coding

where the power allocation among the subcodes is determined by maximizing the expected

capacity conditioned on the channel gain being larger than some threshold level. In this

way, expected capacity is traded off against a notion of outage [Sha97].

We adopt the broadcast viewpoint and present a precise analysis of the broadcast strat-

egy as applied to the block fading channel. Our work differs from [Sha97] in that we are

interested only in maximizing expected rates. Moreover, we shall utilize tools and known

results from the literature of degraded broadcast channels to deal with the case where the

block fading channel does experience some dynamics (K > 1). To adopt notation more con-

sistent with the traditional literature in broadcast channels, we use the following equivalent

model (in the sense that the maximum achievable expected rate of the two channels are the

same) of the block fading AWGN channel in (4.1). The equivalent channel is obtained by

simply dividing both sides of (4.1) by Hk, yielding

Y ′k = Xk +Z ′k (4.4)

where Xk,Y
′
k = Y k/Hk are the inputs and outputs of the channel over the kth block,

Z ′k = Zk/Hk is a Gaussian random vector with mean zero and covariance matrix SkI.

Here the noise variance process {Sk} is assumed to be stationary and ergodic, and the Z ′k’s

are independent. All assumptions regarding CSI and feedback carry over directly from the

4Note that a system designer can dovetail this approach to channel coding with the corresponding “suc-
cessive refinement” source coding technique, where the rate-distortion trade-off is determined by the channel
realization [BPS98, Rim94].
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fading states Hk in (4.1) to the noise variances Sk in (4.4). We refer to the channel in (4.4)

as the block Gaussian channel. For simplicity, we will drop the primes in (4.4) for the

analysis in the rest of the section.

In Section 4.2, we state results for the case of K = 1 (decoding delay constraint of

one N -block), which show that a broadcast strategy based on channel history (available

via delayed feedback) maximizes the expected rate for the case where the noise variance

changes according to a stationary and ergodic process from one N -block to the next. This

is a natural generalization of Bergman’s results for degraded broadcast channels [Ber74]

(which is applicable to the case where the noise variance process is i.i.d.). In proving this

result, we demonstrate a useful technique, first introduced by El Gamal [Gam80], which

turns out to also yield the main result for the case of K = 2. In addition, we give an

analysis of the error probability performance of successive decoders used in superposition

codes implementing the broadcast strategy. Finally, we assess the performance of a practical

broadcast strategy utilizing only a finite segment of the fed-back channel history.

In Section 4.3, we turn to our main result and show that when K = 2 (decoding

delay constraint of two N -blocks), the broadcast strategy with superposition coding again

maximizes the expected rate for the case where the noise variance changes according to a

two-state i.i.d. process. This is somewhat surprising since the underlying parallel Gaussian

broadcast channels in this case are not degraded in the same direction. Our result requires

new analysis of two-parallel Gaussian broadcast channels investigated by El Gamal [Gam80]

and Poltyrev [Pol77], and is not a direct extension of Bergmans’s results [Ber74]. Finally,

we demonstrate that a technique developed in [Tse99] can be used to obtain the optimal

power splitting parameters for the superposition coding strategy in the two-block case.

4.2 Decoding Delay of One Block (K = 1)

Cover first advocated the use of a broadcast strategy for communication over composite

channels [BC74, Cov72]. Under the broadcast strategy the transmitter regards the block

Gaussian channel as a degraded broadcast channel (DBC) with common information where

each noise variance level is associated with a receiver in the DBC. The transmission strategy

is easily illustrated for the two-state i.i.d. case with noise variances η1 > η2. The transmitter

sends only common information (coarse bits) to the receiver with high noise variance η1 and
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additional independent information (fine bits) to the good receiver with low noise variance

η2. The (actual) receiver observes the state of the channel for the current block. If the

noise variance is high, it decodes only the coarse bits and marks the packet of fine bits as

“erased.” If the noise variance is low, it decodes both the coarse and fine bits. This strategy

can be implemented using superposition coding.

4.2.1 A Converse Theorem for Stationary Channels

For the case of K = 1, the above strategy is clearly achievable, but is it the best possible

given the channel model? In the i.i.d. case, the answer is in fact implied by the converse to

the DBC given by Bergmans [Ber74]. The maximum expected rate per block is attained by

a broadcast strategy which associates noise variance levels in the block Gaussian channel

with corresponding receivers in a degraded broadcast channel. The optimal power splitting

parameters of the superposition code are chosen according to the probabilities of the current

channel state assuming the various possible values. In what follows, we consider a more

general situation where the noise power of the block Gaussian channel varies according to a

stationary and ergodic process {Sk, k ∈ N}. We find that within a class of coding systems

where the decoded rate depends on the channel state, the broadcast strategy again attains

the maximum expected rate. The optimizing power splitting parameters of the superpo-

sition code are now chosen, quite intuitively, according to the conditional probabilities of

the current channel state given all previous channel states available via feedback to the

transmitter.

Consider a block Gaussian channel with noiseless state feedback delayed by d blocks. Let

the noise variance process {Sk} have finite state space S = {η1, . . . , ηL}, η1 > · · · > ηL > 0.

An (N,R1, . . . , RL) code for the kth block of this channel consists of the following.

(a) Index sets W1, . . . ,WL, where Wl = {1, . . . ,Ml},Ml ≡ deNRle, 1 ≤ l ≤ L.

(b) An encoding function that maps L sets of messages to channel input words of length

N given the channel states up to block k − d

f :W1 × · · · ×WL × Sk−d−∞ 7→ R
N , f(W1, . . . ,WL, s

k−d
−∞) = Xk ≡ (Xk1, . . . , XkN ).

(c) A set of decoding functions g1, . . . , gL, where gl is the decoding function when Sk = ηl.
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The function gl, 1 ≤ l ≤ L, maps a received sequence of N channel outputs over the

kth block and channel states up to block k − 1 to the first l sets of messages

gl : RN × Sk−1
−∞ 7→ W1 × · · ·Wl, gl(Y k, s

k−1
−∞) = (Ŵ1, . . . , Ŵl)

where Y k ≡ (Yk1, . . . , YkN ).

For each l = 1, . . . , L, define the probability of decoding error in state l averaged over

all messages

Pel =
1

M1 · · ·ML

∑
(w1,... ,wL)∈W1×···×WL

∫
Y ck

pY |X,S

(
yk|f(sk−d−∞ , w1, . . . , wL), ηl

)
dyk (4.5)

where Y c
k ≡ {yk : gl(yk, s

k−1
−∞) 6= (w1, . . . , wl)} and

pY |X,S(y|x, η) =
N∏
n=1

1√
2πη

exp
{
−(yn − xn)2

2η

}
.

For any k ∈ Z, we shall require an (N,R1, . . . , RL) code for the kth block of this channel

to satisfy the following average power constraint.5

1
N

N∑
n=1

E

[
X2
kn|Sk−d−∞ = sk−d−∞

]
≤ P (4.6)

for any sample history sk−d−∞ ∈ Sk−d−∞ , where the expectation is with respect to the probability

measure on the codewords. Note that (4.6) is somewhat stringent in the sense that we do

not allow the encoder/transmitter to vary the average energy for Xk based on the observed

history sk−d−∞ . A more relaxed power constraint would allow for a power allocation function

Pk : Sk−d−∞ 7→ R
+ where Pk(sk−d−∞) is the average energy for Xk given observed channel

history sk−d−∞ . In this case, Pk(sk−d−∞) replaces P in the RHS of (4.6). Any admissible power

function Pk, of course, must still satisfy the constraint ESk−d−∞ [Pk(Sk−d−∞ )] ≤ P .6 Finding the

5In practical systems, one uses amplifiers with a certain degree of backoff known as the peak-to-average
ratio. Excessive excursions in the peak signal lead to deterioration of the amplifier which is unable to dissipate
the heat produced quickly enough. This seems to justify the use of a per-codeword power constraint of the
type 1

N

∑N
n=1 x

2
kn ≤ P for every codeword xk = (xk1, . . . , xkN ). It turns out the expected capacity is the

same under the expected constraint in (4.6) or under a per-codeword constraint.
6This is the distinction made in [CTB99] between long-term and short-term power constraints.
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maximum expected rate with this general power constraint seems to be a difficult problem;

we do not treat it here.

We state the following converse concerning the maximum expected rate per block of an

(N,R1, . . . , RL) code. For convenience, define C(x) ≡ 1
2 ln(1 + x).

Theorem 4.1 Consider a block Gaussian channel with an average transmit power con-

straint P according to (4.6) and noise power varying according to a stationary process {Sk,

k ∈ Z} with state space S = {η1, . . . , ηL}, η1 > η2 > . . . > ηL. Suppose the decoding delay

constraint is one block of N symbols and noiseless channel state feedback to the transmitter

is delayed by d blocks. For any (N,R1, . . . , RL) code, if Pel is required to be arbitrarily small

for every l = 1, . . . , L, the expected rate per block must satisfy

E[R] ≤ ESk−d−∞

[
L∑
l=1

Ql

(
Sk−d−∞

)
C

(
α∗l (S

k−d
−∞ )P∑

j>l α
∗
j (S

k−d
−∞ )P + ηl

)]
(4.7)

where Ql
(
sk−d−∞

)
≡
∑L

j=l Pr
(
Sk = ηj |Sk−d−∞ = sk−d−∞

)
, and α∗(sk−d−∞) ≡

(
α∗1

(
sk−d−∞

)
, . . . ,

α∗L

(
sk−d−∞

))
maximizes

L∑
l=1

Ql

(
sk−d−∞

)
C

(
αlP∑

j>l αjP + ηl

)
(4.8)

subject to αl ≥ 0,
∑L

l=1 αl = 1.

It is important to note that Theorem 4.1 and other converses to follow apply for any

block length N and are not asymptotic results as N → ∞. Also, notice that the converse

applies for any stationary block Gaussian channel, and does not require ergodicity. When

we consider coding schemes to approach the upper bounds stated in Theorem 4.1, however,

we shall need ergodicity.

A number of auxiliary results are needed to prove the theorem. First, we show that that

the quantity Pr
(
Sk = η|Sk−d−∞

)
in Theorem 4.1 is almost surely well-defined. To this end,

we state the following lemma due to Khinchin.

Lemma 4.1 (Khinchin) Let {Sk, k ∈ Z} be a stationary process over a finite alphabet

S. Define Pd,n(η) ≡ Pr
(
S0 = η|S−d, · · · , S−(d+n)

)
, where η ∈ S. Then the sequence

{Pd,n(η), n ≥ 1} is a martingale.
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PROOF. A proof in [Kin57] shows {P1,n(η), n ≥ 1} is a martingale. For a simpler proof, let

(Ω,F , P ) be our probability triple. Let Fn ≡ σ(S−d, . . . , S−d−n) be the σ-algebra gener-

ated by random variables S−d, . . . , S−d−n. Then {Fn : n ≥ 1} is a filtration. Now for every

X ∈ L1(Ω,F , P ), {E[X|Fn], n ≥ 1} is a martingale [Wil91]. Letting X = 1{S0=η} completes

the proof. 2

Since {Pd,n(η), n ≥ 1} is a bounded martingale, it converges almost everywhere to a

random variable by Doob’s theorem (see for instance [Wil91]). Thus, P (Sk = η|Sk−d−∞ ) in

Theorem 4.1 is well-defined, almost surely. In fact, since we have a sequence of probabilities,

{Pd,n(η), n ≥ 1} is a martingale bounded in L2, and we may further deduce that the sequence

converges in L2 [Wil91].

Lemma 4.2 For η ∈ S, Pd,∞(η) ≡ limn→∞ Pd,n(η) exists almost surely and Pd,n(η) →

Pd,∞(η) in L2. That is, limn→∞ E
[
(Pd,∞(η)− Pd,n(η))2

]
= 0.

Next, we need a lemma due to Bergmans [Ber74] which is sometimes referred to as the

conditional entropy power inequality. Define g(η) ≡ 1
2 ln 2πeη as in [Ber74].

Lemma 4.3 (Bergmans) Consider the ensemble (X,Y ,W ), where X is a continuous ran-

dom vector in RN and W is a set of conditioning random variables. Let Y = X+Z where

Z is a N -vector of i.i.d. Gaussian random variables with variance η. If H(X|W ) ≥ Nv,

then

H(Y |W ) ≥ Ng(g−1(v) + η).

If H(Y |W ) ≤ Nv with v > g(η), then

H(X|W ) ≤ Ng(g−1(v)− η).

PROOF. The proof follows from the usual form of the entropy power inequality [CT91] and

application of Jensen’s inequality to the function g(g−1(v) + η), which is increasing and

convex in v, and the function g(g−1(v)− η), which is increasing and concave in v. 2
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The following proof of Theorem 4.1 uses Fano’s inequality and the conditional entropy

power inequality given in Lemma 4.3. The argument illustrates a technique, first used by

El Gamal [Gam80], which “pegs” certain conditional entropies via scalar parameters and

links upper bounds on various rates using the entropy power inequality. We shall see that

the same technique yields the desired results in the two-block case to be discussed later.

PROOF of Theorem 4.1. Let k ∈ Z. Suppose an (N,R1, . . . , RL) code for the kth of

the time-varying Gaussian channel satisfies the power constraint in (4.6). Let Xk ≡

(Xk1, . . . , XkN ) = f(W1, . . . ,WL, S
k−d
−∞ ) be the codeword input into the channel and let

Y k = (Yk1, . . . , YkN ) be the output of the channel over N uses. We shall obtain upper

bounds on rates Rl, l = 1, . . . , L, which are “linked” via the parameters {αl}:

NR1 = H(W1)

= H(W1|Sk−1
−∞ = sk−1

−∞, Sk = η1) (4.9)

= H(W1|Y k, S
k−1
−∞ = sk−1

−∞, Sk = η1) + I(W1;Y k|Sk−1
−∞ = sk−1

−∞, Sk = η1)

≤ h(Pe1) + Pe1 ln(M1 − 1) +H(Y k|Sk−1
−∞ = sk−1

−∞, Sk = η1)

−H(Y k|Sk−1
−∞ = sk−1

−∞, Sk = η1,W1) (4.10)

= ε1(Pe1) +H(Y k|Sk−d−∞ = sk−d−∞ , Sk = η1)

−H(Y k|Sk−d−∞ = sk−d−∞ , Sk = η1,W1) (4.11)

The quantity H(W1|Sk−∞) is defined to be the almost-sure limit limn→∞H(W1|Skk−n). Sim-

ilarly, H(Y k|Sk−∞) is the almost-sure limit limn→∞H(Y k|Skk−n). The existence of these

limits follows from Lemma 4.2 and a dominated convergence argument. In this proof, it is

understood that quantities involving conditioning on the infinite past are all evaluated on

a set of sample paths with probability one. The measure-zero set of sample paths on which

these quantities do not exist will not affect the end result, as we will be taking expecta-

tions. With the above caveat, equation (4.9) follows from the fact that the messages are

independent of the channel states. Fano’s inequality gives (4.10). Since the transmitter has

access only to the side information Sk−d−∞ = sk−d−∞ ,

pY k|Sk−1
−∞ ,Sk,W1

(yk|sk−1
−∞, η1, w1) = pY k|Sk−d−∞ ,Sk,W1

(yk|sk−d−∞ , η1, w1),

pY k|Sk−1
−∞ ,Sk

(yk|sk−1
−∞, η1) = pY k|Sk−d−∞ ,Sk

(yk|sk−d−∞ , η1).
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Thus, (4.11) follows, with ε1(Pe1) ≡ h(Pe1) + Pe1 ln(M1 − 1).

Next, observe that

H(Y k|Sk−d−∞ = sk−d−∞ , Sk = η1) ≤
N∑
n=1

H(Ykn|Sk−d−∞ = sk−d−∞ , Sk = η1)

=
N∑
n=1

H(Xkn + Zkn|Sk−d−∞ = sk−d−∞ , Sk = η1)

≤
N∑
n=1

g
(
E

[
X2
kn|Sk−d−∞ = sk−d−∞

]
+ η1

)
(4.12)

≤ Ng

(
1
N

N∑
n=1

E

[
X2
kn|Sk−d−∞ = sk−d−∞

]
+ η1

)
(4.13)

≤ Ng(P + η1). (4.14)

Inequality (4.12) follows from

E

[
(Xkn + Zkn)2|Sk−d−∞ = sk−d−∞ , Sk = η1

]
= E

[
X2
kn|Sk−d−∞ = sk−d−∞

]
+ E

[
Z2
kn|Sk = η1

]
which holds by independence. Inequality (4.13) is a consequence of the concavity of g.

Finally, the power constraint (4.6) enforces (4.14).

Now note that sinceNg(η1) = H(Y k|Sk−d−∞ = sk−d−∞ , Sk = η1,W1, . . . ,WL) ≤ H(Y k|Sk−d−∞ =

Sk−d−∞ , Sk = η1,W1) ≤ H(Y k|Sk−d−∞ = Sk−d−∞ , Sk = η1) ≤ Ng(P + η1), there exists γ1 ∈ [0, 1]

such that

H(Y k|Sk−d−∞ = Sk−d−∞ , Sk = η1,W1) = Ng(γ1P + η1)

where γ1 ≡ 1− γ1. Combining this with (4.11) and (4.14), we have

R1 ≤ C
(

γ1P

γ1P + η1

)
+
ε1(Pe1)
N

where ε1(Pe1)→ 0 as Pe1 → 0.

Now suppose that for i = 1, . . . , l − 1,

H(Y k|Sk−d−∞ = sk−d−∞ , Sk = ηi,W1, . . . ,Wi) = Ng(γiP + ηi) (4.15)
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have been so defined such that 0 ≡ γ0 ≤ γ1 ≤ · · · ≤ γi−1 ≤ 1, and

Ri ≤ C
(

(γi − γi−1)P
γiP + ηi

)
+
εi(Pei)
N

where εi(Pei)→ 0 as Pei → 0. Then,

NRl = H(Wl) = H(Wl|Sk−1
−∞ = sk−1

−∞, Sk = ηl)

= H(Wl|Y k, S
k−1
−∞ = sk−1

−∞, Sk = ηl) + I(Wl;Y k|Sk−1
−∞ = sk−1

−∞, Sk = ηl)

≤ H(W1, . . . ,Wl|Y k, S
k−1
−∞ = sk−1

−∞, Sk = ηl)

+I(Wl;Y k|Sk−1
−∞ = sk−1

−∞, Sk = ηl,W1, . . . ,Wl−1)

≤ H(W1, . . . ,Wl|Y k, S
k−1
−∞ = Sk−1

−∞ , Sk = ηl)

+H(Y k|Sk−1
−∞ = sk−1

−∞, Sk = ηl,W1, . . . ,Wl−1)

−H(Y k|Sk−1
−∞ = sk−1

−∞, Sk = ηl,W1, . . . ,Wl).

≤ εl(Pel) +H(Y k|Sk−d−∞ = sk−d−∞ , Sk = ηl,W1, . . . ,Wl−1)

−H(Y k|Sk−d−∞ = sk−d−∞ , Sk = ηl,W1, . . . ,Wl). (4.16)

where εl(Pel)→ 0 as Pel → 0 in (4.16).

By (4.15) and Lemma 4.3, H(Y k|Sk−d−∞ = sk−d−∞ , Sk = ηl,W1, . . . ,Wl−1) ≤ Ng(γl−1P +

ηl). Then, since Ng(ηl) = H(Y k|Sk−d−∞ = sk−d−∞ , Sk = ηl,W1, . . . ,WL) ≤ H(Y k|Sk−d−∞ =

sk−d−∞ , Sk = ηl,W1, . . . ,Wl) ≤ H(Y k|Sk−d−∞ = sk−d−∞ , Sk = ηl,W1, . . . ,Wl−1) ≤ Ng(γl−1P +

nl), there exists γl ∈ [γl−1, 1] such that

H(Y k|Sk−d−∞ = sk−d−∞ , Sk = ηl,W1, . . . ,Wl) = Ng(γlP + ηl).

It follows that

Rl ≤ C
(

(γl − γl−1)P
γlP + ηl

)
+
εl(Pel)
N

.

Finally, for l = L, we have

NRL ≤ εL(PeL) +H(Y k|Sk−d−∞ = sk−d−∞ , Sk = ηL,W1, . . . ,WL−1)

−H(Y k|Sk−d−∞ = sk−d−∞ , Sk = ηL,W1, . . . ,WL)
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≤ εL(PeL) +Ng(γL−1P + ηL)−Ng(ηL)

where εL(PeL)→ 0 as PeL → 0. Thus, we have

RL ≤ C
(

(1− γL−1)P
ηL

)
+
εL(PeL)
N

.

Setting αl ≡ γl − γl−1, l = 1, . . . , L, with γL ≡ 1, we find that for l = 1, . . . , L,

Rl ≤ C

(
αlP

(
∑

j>l αj)P + ηl

)
+
εl(Pel)
N

where αl ≥ 0, l = 1, . . . , L and
∑L

l=1 αl = 1. Note that the α parameters are in fact

functions of the sample history sk−d−∞ .

If we now require Pel to be arbitrarily small for every l = 1, . . . , L and every sample

history sk−d−∞ , the expected rate per block must satisfy

E[R] ≤ ESk−d−∞

[
L∑
l=1

Ql

(
Sk−d−∞

)
C

(
αl(Sk−d−∞ )P∑

j>l αj(S
k−d
−∞ )P + ηl

)]

where Ql
(
sk−d−∞

)
≡
∑L

j=l Pr
(
Sk = ηj |Sk−d−∞ = sk−d−∞

)
. From this, the theorem follows. 2

A widely-used model for time-varying channels is the finite-state Markov channel (FSMC) [GV97,

Vis99]. In this model, it is assumed that for any η ∈ S, sk−1
−∞ ∈ Sk−1

−∞ , xk−∞ ∈ Rk−∞,

Pr
(
Sk = η|Sk−1

−∞ = sk−1
−∞,X

k
−∞ = xk−∞

)
= Pr

(
Sk = η|Sk−1

−∞ = sk−1
−∞

)
= Pr (Sk = η|Sk−1 = sk−1) .

It is easy to show from this that for any d ≥ 1,

Pr
(
Sk = η|Sk−d−∞ = sk−d−∞ ,X

k
−∞ = xk−∞

)
= Pr

(
Sk = η|Sk−d−∞ = sk−d−∞

)
= Pr (Sk = η|Sk−d = sk−d) .

The following corollary is a specialization of Theorem 4.1.
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Corollary 4.1 Consider a block Gaussian channel with an average transmit power con-

straint P according to (4.6) and noise power varying according to an irreducible, aperiodic,

homogeneous FSMC {Sk, k ∈ Z} with state space S = {η1, . . . , ηL}, η1 > η2 > . . . > ηL. Let

π = (π(η1), . . . , π(ηL)) be the (unique) steady-state probability distribution and let A be the

one-step state transition probability matrix of the Markov chain. Suppose the decoding delay

constraint is N symbols and noiseless channel state feedback to the transmitter is delayed

by d blocks. For any (N,R1, . . . , RL) code, if Pel is required to be arbitrarily small for every

l = 1, . . . , L, the expected rate per block must satisfy

E[R] ≤
L∑
i=1

π(ηi)

 L∑
l=1

 L∑
j=l

Ad(ηj , ηi)

C

(
α∗l (ηi)P∑

j>l α
∗
j (ηi)P + ηl

)
where Ad(ηj , ηi) is the (j, i)th element the d-step transition probability matrix Ad and α∗(ηi) =

(α∗1(ηi), . . . , α∗L(ηi)) maximizes

L∑
l=1

 L∑
j=l

Ad(ηj , ηi)

C

(
αl(ηi)P∑

j>l αj(ηi)P + ηl

)

subject to αl ≥ 0,
∑L

l=1 αl = 1.

We shall discuss methods to solve the maximization of (4.8) in Section 4.2.4. But first,

we need to gain some understanding for coding schemes which approach the upper bound

on expected rate per block in (4.7).

4.2.2 Achievability Using Superposition Codes

We assume for the following that the fading process {Sk, k ∈ Z} is both stationary and

ergodic. The main implication of Theorem 4.1 is that the upper bound on expected rate per

block whenK = 1 can be approached by a broadcast strategy implemented via superposition

coding with successive decoding, where the optimal power splitting parameters are chosen

according to the conditional probabilities of the current channel state given all previous

channel states available via feedback. Indeed, under the broadcast strategy, it is possible

to attain expected rates arbitrarily close to the upper bound in (4.7) if we allow the block

length N to be arbitrarily large. This is equivalent to saying that the expected capacity of the

corresponding compound channel (recall the correspondence established in the introduction)
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is the RHS of (4.7).

The broadcast strategy is briefly outlined as follows. Suppose at block k, the receiver

observes Sk−1
−∞ = sk−1

−∞, Sk = ηl (1 ≤ l ≤ L) and the transmitter observes Sk−d−∞ = sk−d−∞ . Let

α∗(sk−d−∞) =
(
α∗1(sk−d−∞), . . . , α∗L(sk−d−∞)

)
maximize (4.8) subject to αi ≥ 0,

∑L
i=1 αi = 1. For

convenience, we drop the argument and refer to α∗(sk−d−∞) simply as α∗. For a given block

length N , construct an (N,R1, . . . , RL) superposition code with L codebooks where the ith

codebook (1 ≤ i ≤ L) has average power α∗iP and rate

Ri < C

(
α∗iP

(
∑

j>i α
∗
j )P + ηi

)
. (4.17)

The ith codebook may be generated by selecting its deNRie codewords by choosing each

codeword independently as an i.i.d. sequence of Gaussian random variables with zero mean

and variance α∗iP . In this way, the codewords of other codebooks appear as Gaussian noise

to a given codebook.

Let fi be the encoding function of the ith codebook. To send the message (W1, . . . ,WL),

the transmitter sends the codeword f(W1, . . . ,WL) = f1(W1) + · · · + fL(WL). Having

observed Sk = ηl, the receiver uses a successive decoding strategy to generate message

estimates (Ŵ1, . . . , Ŵl) by first decoding f1(W1) regarding f2(W2) + · · ·+ fL(WL) as noise,

then subtracting f1(Ŵ1) from the received signal and decoding f2(W2) regarding f3(W3) +

· · ·+ fL(WL) as noise, and so on.

It is important to comment that since the superposition coding strategy (the selection

of α∗ in particular) depends on the entire past history of the channel, the encoder-decoder

pair may potentially use a countably infinite number of different codebooks in the general

case of Theorem 4.1 (although clearly only L codebooks are needed in the FSMC case of

Corollary 4.1). This is obviously infeasible in practice. In Section 4.2.5, we study the effect

on expected capacity of choosing α∗ based on only a finite segment of the past, subject to

certain assumptions about the channel state process.

4.2.3 Error Probability Performance of Successive Decoders

The minimum achievable error probability performance of the superposition coding process

discussed above can be upper-bounded for any fixed N as follows. We first condition on the

event Sk−1
−∞ = sk−1

−∞, Sk = ηl. Let an (N,R1, . . . , RL) superposition code be constructed as
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in the previous section. Assume the message tuple (W1, . . . ,WL) is uniformly chosen over

its alphabet W1 × · · · × WL. We shall analyze the probability that the successive decoder

decodes (W1, . . . ,Wl) incorrectly under these conditions.

Let the decoding order be 1, . . . , l. Refer to the decoder responsible for generating the

estimate Ŵi in the ith stage (1 ≤ i ≤ l) of the decoding process as the ith decoder. For

each i = 1, . . . , l, let Ei be the event that the ith decoder makes an error in decoding when

provided with message estimates Ŵ1, . . . , Ŵi−1. Let E′i be the event that the ith decoder

makes an error in decoding when provided with the true messages W1, . . . ,Wi−1.

Let Pel(sk−1
−∞) be the probability of decoding error in state l averaged all messages,

conditioned on the event Sk−1
−∞ = sk−1

−∞, so that Pel = ESk−1
−∞

[Pel(Sk−1
−∞ )] in (4.5). Then

Pel(sk−1
−∞) = Pr

(⋃l
i=1Ei

)
. A crucial observation is that, in addition, Pr

(⋃l
i=1Ei

)
=

Pr
(⋃l

i=1E
′
i

)
. This “genie-aided” argument, shown in [RU96], allows us to analyze the

error probability performance of the superposition code in terms of the error performances

of a number of single-user codes.

Following the usual random coding approach to studying error probabilities, we now

construct an ensemble of (N,R1, . . . , RL) superposition codes as follows. Let α∗ be given

as in the previous section. For each i = 1, . . . , L, let

qi(x) =
1√

2πα∗iP
exp

{
−x2

2α∗iP

}

be the Gaussian density with zero mean and variance α∗iP . Let the joint density q(x1, . . . , xL)

satisfy q(x1, . . . , xL) =
∏L
i=1 qi(xi). Let Ri, i = 1, . . . , L, be given as in (4.17). For each

i = 1, . . . , L, generate Mi = deNRie codewords by choosing each codeword xim, 1 ≤ m ≤Mi,

independently according to the product distribution qi(xi) =
∏N
n=1 qi(x

i
n), where xi =

(xi1, . . . , x
i
N ).

For each code in the ensemble, assume the ith decoder employs maximum likelihood

(ML) decoding, for each i = 1, . . . , l. Note that the ML decoder minimizes error probabil-

ity since we assume the messages are equally likely. Furthermore, for the ML decoder,

gl(yk, s
k−1
−∞) = gl(yk, s

k−d
−∞) since the likelihood function depends only on sk−d−∞ . Thus,

Pel(sk−1
−∞) = Pel(sk−d−∞). Let Pel(sk−d−∞) be Pel(sk−d−∞) averaged over the ensemble. Then

Pel(sk−d−∞) = Pr
(
∪li=1E

′
i

)
≤ Σl

i=1Pr (E′i) = Σl
i=1Pr (E′i) (4.18)
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where Pr (E′i) is Pr (E′i) averaged over the ensemble.

It follows from the ensemble construction that given W1, . . . ,Wi−1, the ith decoder must

estimate Wi facing i.i.d. Gaussian noise of zero mean and variance (
∑

j>i α
∗
j )P + ηl. Hence,

we have can apply Gallager’s bound [Gal85]:

Pr (E′i) ≤ exp[−NEri(Ri)] (4.19)

where

Eri(Ri) = max
0≤ρi≤1

[
ρi · C

(
Ai

1 + ρi

)
− ρiRi

]
, Ai =

α∗iP

(
∑

j>i α
∗
j )P + ηl

.

The function Eri(Ri) behaves as follows. For

Ri ≥ C
(
Ai
2

)
− Ai

4(2 +Ai)
≡ Rcr,i,

Eri(Ri) and Ri are parametrically related in terms of ρi for 0 ≤ ρi ≤ 1.

Ri = C

(
Ai

1 + ρi

)
− Aiρi

2(1 + ρi)(1 + ρi +Ai)
,

Eri(Ri) =
ρ2
iAi

2(1 + ρi)(1 + ρi +Ai)
.

For Ri < Rcr,i,

Eri(Ri) = C

(
Ai
2

)
−Ri.

We note that by (4.17), Ri < C(Ai) for all 1 ≤ i ≤ l, and thus Eri(Ri) > 0 for all 1 ≤ i ≤ l.

Then, combining (4.18) and (4.19), we have

Pel(sk−d−∞) ≤
l∑

i=1

exp[−NEri(Ri)]

≤ l · exp[−NEr(R1, . . . , Rl)]

where

Er(R1, . . . , Rl) ≡ min
i=1,... ,l

Eri(Ri) > 0.
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To reflect the dependence of the error exponents on the observed channel history, let

Er,sk−d−∞
(R1, . . . , Rl) be the minimum exponent for the exponential bound on Pel(sk−d−∞).

Then, the ensemble probability of error averaged over the channel states and the channel

history is bounded as

ESk−d−∞

[
L∑
l=1

Pr
(
Sk = ηl|Sk−d−∞

)
Pel(Sk−d−∞ )

]

≤ ESk−d−∞

[
L∑
l=1

Pr
(
Sk = ηl|Sk−d−∞

)
l · exp

{
−NEr,Sk−d−∞ (R1, . . . , Rl)

}]
. (4.20)

Finally, we note that since the ensemble probability error is bounded as in (4.20), there

must exist at least one (N,R1, . . . , RL) superposition code in the ensemble for which the

error probability averaged over the channel states and the channel history is upper bounded

by the RHS of (4.20).

4.2.4 Optimization of Expected Rate

We now return to the optimization problem in (4.8). An equivalent formulation is the

following. For given probability coefficients Q = (Q1, . . . , QL), 1 = Q1 ≥ Q2 ≥ · · · ≥ QL ≥

0, noise variances η1 > · · · > ηL, and total transmission power P , consider the problem

maximize QTR (4.21)

subject to Rl ≤
1
2

ln

(
1 +

αlP∑
j>l αjP + ηl

)
, l = 1, . . . , L, (4.22)

αl ≥ 0,∀l = 1, . . . , L,
L∑
l=1

αl = 1. (4.23)

Note that the constraints in (4.22) and (4.23) define the capacity region of a Gaussian

broadcast channel. It follows that the feasible set R of rates R = (R1, . . . , RL) is convex

(it contains rates achieved using time-sharing). Since the objective function is linear in R,

any maxima are attained on the boundary ∂R of R, where the ∂R is found by setting all

inequalities in (4.22) to equalities. We can therefore recast the maximization directly in
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terms of the power parameters:

maximize
L∑
l=1

Ql
2

ln

∑
j≥l

αjP + ηl

− ln

∑
j>l

αjP + ηl

 (4.24)

subject to αl ≥ 0,∀l = 1, . . . , L,
L∑
l=1

αl = 1.

Write the objective function as f(α). Then the Kuhn-Tucker necessary conditions for a

global maximum α∗ in (4.24) are

∂f(α∗)
∂αj


= λ∗, for α∗j > 0

≤ λ∗, for α∗j = 0.
(4.25)

for j = 1, . . . , L, where λ∗ is a scalar (whose existence is assured since the constraints are

linear) and

∂f(α)
∂αj

=
∑
l<j

Ql
2

[
P∑

i≥l αiP + ηl
− P∑

i>l αiP + ηl

]
+

QjP

2
(∑

i≥j αiP + ηj

) .

To further spell out the conditions in (4.25), let B(α∗) = {l|α∗l = 0}. For convenience,

write B for B(α∗) and let b = |B|. Note that B can be any proper subset of {1, . . . , L} and

0 ≤ b < L. If |Bc| = L− b = 1, then α∗j = 1 for some j and αk = 0,∀k 6= j. Otherwise, for

each j ∈ Bc such that j < maxBc, let k = minBc ∩ {j + 1, . . . , L}. Since both α∗j and α∗k

are positive, the first part of (4.25) says that ∂f(α∗)/∂αj = ∂f(α∗)/∂αk. It can be verified

that this translates into the following condition:

Qj

2
(∑

l>j α
∗
l P + ηj

) =
Qk

2
(∑

l>j α
∗
l P + ηk

) . (4.26)

Necessary conditions for these L−b−1 equations to hold areQj 6= Qk andQk/ηk > Qj/ηj for

each pair of j and k in (4.26). For the second part of (4.25), let j ∈ B. If Bc∩{j+1, . . . , L} 6=

∅, let k = minBc∩{j+1, . . . , L}. Otherwise, let k = maxBc∩{1, . . . , j−1}. Since α∗j = 0
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and α∗k > 0, we must have ∂f(α∗)/∂αj ≤ ∂f(α∗)/∂αk. This leads to the condition

Qj

2
(∑

l>j α
∗
l P + ηj

) ≤ Qk

2
(∑

l>j α
∗
l P + ηk

) . (4.27)

There are b inequalities of this type.

The Kuhn-Tucker conditions (4.26)-(4.27) have revealed the significance of the decreas-

ing and convex functions Ql
2(z+ηl)

, l = 1, . . . , L. It turns out that for given parameters, these

functions completely determine the optimal solution to the maximization in (4.21). This is

shown in [Tse99] within the more general setting of parallel Gaussian broadcast channels.

As described in Theorem 3.2 of [Tse99], the unique optimal solution to (4.21) can be ex-

plicitly obtained via a greedy procedure. We state a version of the theorem appropriate for

our context.

Theorem 4.2 (Tse) Consider the optimization problem in (4.21). Define for l = 1, . . . , L

the marginal utility functions

ul(z) ≡
Ql

2(z + ηl)
u∗(z) ≡ max

l
ul(z)

and sets

Al ≡ {z ∈ [0, P ] : ul(z) = u∗(z)}.

Then the optimal solution to (4.21) is

∫ P

0
u∗(z)dz

attained at the unique point

R∗l =
∫
Al

1
2(z + ηl)

dz =
∫ ∑

j≥l α
∗
jP∑

j>l α
∗
jP

1
2(z + ηl)

dz = C

(
α∗l P∑

j>l α
∗
jP + ηl

)
(4.28)
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where

Al =

∑
j>l

α∗jP,
∑
j≥l

α∗jP

 ,
α∗l P = |Al|

for l = 1, . . . , L.

PROOF. See [Tse99]. The uniqueness of the optimal solution follows from the fact that

ηi 6= ηj for i 6= j. For this implies that ui and uj , i 6= j, can intersect at most once. So

except for a finite set of intersection points, each z ∈ [0, P ] has a unique l, 1 ≤ l ≤ L,

such that z ∈ Al. Thus, the solution is unique. The argument does not require assuming

Qi 6= Qj for i 6= j as in [Tse99]. If Qi = Qj for i < j so that ηi > ηj , ui never intersects uj .

In particular, ui(z) < uj(z) for all z > 0 and Ai = ∅. 2

The interpretation of functions ul(z) as marginal utility functions is intimately connected

to the idea of superposition coding with successive decoding. Following the association

between states in a block Gaussian channel and users in a degraded broadcast channel, we

refer to a single-user code within the superposition code as a “virtual user.” As pointed out

in [Tse99], functions ul(z) are marginal utility functions in the sense that ul(z)δP can be

interpreted as the marginal increase QlδRl in the objective QTR due to an amount δP of

power given to virtual user l at interference level z + ηl. The value z can be interpreted as

the amount of interference caused by virtual users with better channels (larger indices) plus

the power already allocated to virtual user l. Theorem 4.2 says that the optimal solution is

found in a greedy manner whereby at each power level z, the transmitter allocates power

to the virtual user with the largest marginal utility function. In the following example, we

demonstrate the greedy optimization procedure, and show how the Kuhn-Tucker necessary

conditions (4.26)-(4.27) directly follow.

Figure 4-2 illustrates the optimization procedure for a four-state channel. Marginal

utilities ul(z) ≡ Ql/2(z+ηl), l = 1, 2, 3, 4, corresponding to the four virtual users are plotted

as functions of the interference level z. Here, we have the ordering Q4/η4 > Q3/η3 >

Q2/η2 > Q1/η1. The figure shows that any two utility functions ui and uj , i 6= j, can

intersect at most once and that sets Al’s are contiguous intervals. Moreover, the intervals
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Figure 4-2: Optimization procedure for a four-state channel. At each power level z, the
transmitter allocates power to the virtual user with the largest marginal utility function
u(z).

Al’s (which can be empty) are ordered on the positive reals in increasing ηl’s (decreasing

indices). These properties are found to hold in general [Tse99].

Theorem 4.2 dictates that the transmitter allocates power to the virtual user with the

highest marginal utility at each interference level z. Thus, we have A4 = [0, α∗4P ],A3 =

[α∗4P, (α
∗
3 + α∗4)P ],A2 = [(α∗3 + α∗4)P, P ],A1 = ∅, and P ∗l = |Al|, l = 1, 2, 3, 4. The optimal

rate R∗l for virtual user l is given by (4.28). Note that virtual user 1 is given zero power

and thus zero rate, since its utility function never dominates in the interval [0, P ]. The

rates R∗l are achieved using superposition coding with successive decoding, where the order

of decoding is 2, 3, 4. That is, virtual user 2 decodes its message regarding virtual users 3

and 4 as noise. Virtual user 3 decodes virtual user 2’s message, subtracts it off, and then

decodes its own message regarding virtual user 4 as noise. Finally, virtual user 4 decodes

both 2 and 3, subtracts them off, and then decodes its own message facing only background

noise.

The simple structure of Figure 4-2 also readily gives the Kuhn-Tucker necessary condi-
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tions discussed above. We have from the graph

Q2

2 ((α∗3 + α∗4)P + η2)
=

Q3

2 ((α∗3 + α∗4) + η3)
(4.29)

Q3

2 (α∗4P + η3)
=

Q4

2 (α∗4P + η4)
(4.30)

Q1

2(P + η1)
≤ Q2

2(P + η2)
. (4.31)

But (4.29)-(4.31) are precisely the conditions (4.26)-(4.27) for this problem.

4.2.5 A Coding Strategy using Finite History of the Fading Process

A difficulty with Theorem 4.1 is that the bound is stated in terms of probabilities conditioned

on the infinite past. As we showed, these probabilities are almost surely well defined. In

practice, however, it is impossible to use such quantities for the purposes of encoding and

decoding signals. As we now show, the bound given in Theorem 4.1 can be approached

by using probabilities conditioned on the finite past. We shall continue to assume that

{Sk, k ∈ Z} is both stationary and ergodic.

The first key observation, already suggested by Lemma 4.1 and 4.2, is that the proba-

bility of seeing a noise level ηl in the kth block conditioned on channel history n steps into

the past is a good estimate of the probability of ηl conditioned on the infinite past, as n

gets large. Indeed, by Lemma 4.2, {Pd,n(η), n ≥ 1} converges in L2. Thus by Chebychev’s

inequality, for a given noise (fading) level ηl, fixed k and given ε, δ > 0,∃N0 such that

∀ n ≥ N0,

Pr
(∣∣∣Pr

(
Sk = ηl|Sk−d−∞

)
− Pr

(
Sk = ηl|Sk−dk−d−n

)∣∣∣ ≥ ε) < δ.

Since there are only a finite number of fading levels, we may conclude:

Lemma 4.4 Given ε, δ > 0 and fixed k, ∃N0 such that ∀n ≥ N0

Pr

(
L∑
l=1

∣∣∣Ql(Sk−d−∞ )−Ql(Sk−dk−d−n)
∣∣∣ ≥ ε) < δ

where the Ql’s are defined as in Theorem 4.1.

Now recall the maximization problem in (4.8), or equivalently, in (4.21). Consider a given
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sk−d−∞ for which the conditional probability vector Q(sk−d−∞) =
(
Q1(sk−d−∞), . . . , QL(sk−d−∞)

)
,

where 1 = Q1(sk−d−∞) ≥ Q2(sk−d−∞) ≥ · · · ≥ QL(sk−d−∞) ≥ 0, is well-defined. If we now replace

conditional probabilities based on the infinite past with approximations based on finite

history (replacing Q(sk−d−∞) with Q(sk−dk−d−n) for some n), the objective function in (4.8)

or (4.21) is changed slightly. Such a slight change in the objective should result in a

corresponding small change in the optimum. This amounts to saying that the optimal value

of (4.8) or (4.21) is a continuous function of Q.

Continuous Dependence of the Optimum on Q

For a given conditional probability vector Q, let R∗l (Q) be the optimal rate allocation for

the lth single-user code, l = 1, . . . , L, according to Theorem 4.2. We show that R∗ ≡

(R∗1, . . . , R
∗
L) is a continuous function of Q. To prove this fact, it is convenient to express

the intervals Al in Theorem 4.2 in another form.

Lemma 4.5 For l = 1, . . . , L, the intervals Al in Theorem 4.2 are given by

Al = [max{0, {r(k, l) : k > l}}.min{P, {r(k, l) : k < l}}].

where

r(k, l) ≡


root of equation uk(z) = ul(z) if Qk 6= Ql,

+∞ if Qk = Ql.

for k, l ∈ {1, . . . , L}.

PROOF. Note first that, for k 6= l, a solution to the equation Qk
z+ηk

= Ql
z+ηl

exists and

is unique whenever Qk 6= Ql. Thus, r(k, l) is well-defined. Since the functions ul(z) are

strictly decreasing, we can observe the following. For k > l, if Qk 6= Ql, then z < r(k, l)

if and only if ul(z) < uk(z) while z > r(k, l) if and only if ul(z) > uk(z). For k > l and

Qk = Ql, uk(z) > ul(z) ∀z.

Let z ∈ [max{0, {r(k, l) : k > l}},min{P, {r(k, l) : k < l}}]. Since the set is nonempty,

r(k, l) ≤ P,∀k > l. Since z ≥ r(k, l),∀k > l, ul(z) ≥ uk(z),∀k > l. Also, z ≤ r(k, l),∀k < l,

implying ul(z) ≥ uk(z),∀k < l. Therefore z ∈ Al.
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Suppose z ∈ Al, then ul(z) ≥ uk(z),∀k 6= l. Note that for k > l, we cannot have

Qk = Qj , since that would imply ul(x) < uk(x),∀x. Therefore, we must have z ≥

r(k, l),∀k > l. On the other hand, for all k < l, we also must have z ≤ r(k, l). Thus,

z ∈ [0, P ] ∩ [max{r(k, l) : k > l},min{r(k, l) : k < l}]. 2

From Lemma 4.5, the continuous dependence of the optimum on Q follows easily.

Lemma 4.6 There exists a continuous function ψ : Q 7→ R, where Q ≡ {Q ≡ (Q1, . . . , QL) :

1 = Q1 ≥ Q2 ≥ · · · ≥ QL ≥ 0} and R is the feasible region defined by (4.22)-(4.23), such

that ψ(Q) = R∗ is the optimal rate vector corresponding to Q in the maximization (4.8)

or (4.21).

PROOF. The existence of a function from Q to R follows directly from Theorem 4.2. To

prove continuity, we show that for each pair (k, l), k 6= l, r(k, l) is a continuous function of

Q. Assume k > l. When Qk 6= Ql (Qk < Ql), the root r(k, l) = (Qkηl − Qlηk)/(Ql − Qk)

is clearly continuous in Q. As Qk ↑ Ql, Ql/ηl < Qk/ηk or Qkηl − Qlηk > 0, and

limQk↑Ql(Qkηl − Qlηk)/(Ql − Qk) = +∞. Thus, r(k, l) is a continuous function of Q. A

similar argument applies for the case of k < l. It then follows that max{0, {r(k, l) : k > l}}

and min{P, {r(k, l) : k < l}} are continuous functions of Q. This implies by Lemma 4.5 and

Theorem 4.2 that the optimal power allocations α∗l P and optimal rates R∗l are continuous

functions of Q. 2

The Coding Theorem

We now use our previous results and the assumption of ergodicity to obtain a coding theo-

rem. Let N be the number of channel symbols corresponding to a channel block (over which

the gain is constant). For convenience, consider the system at time 0. We construct a code

using history of the process from −d to −d−NH , where d is given and fixed and NH will

be set subsequently. Since there are L fading levels there can be at most LNH sequences

s−d−d−NH of length NH . For each such sequence, calculate the conditional probabilities and

thus Q(s−d−d−NH ). Now obtain the optimal choice of power parameters {α∗l (Q(s−d−d−NH ))}Ll=1

corresponding to Q(s−d−d−NH ) as in Theorem 4.2. Let {R∗l (Q(s−d−d−NH ))}Ll=1 be the resulting

optimal rates under the power allocation {α∗l (Q(s−d−d−NH ))P}Ll=1 according to (4.28). For
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each l = 1, . . . , L, we may then design the lth single-user code within the superposition

code to have rate

Rl(Q(s−d−d−NH )) = R∗l (Q(s−d−d−NH ))− νl(Pel, N)

where νl is a function (via the error exponent) of some given target error probability Pel

(averaged over messages) of the lth single-user code and block length N .

Given a sequence s−d−∞, the capacity bound in Theorem 4.1 is defined almost surely.

Define the event

Aδ(n) ≡

{
s−d−∞ : lim

n→∞
Ql(s−d−d−n) = Ql(s−d−∞) (exists),

∑
l

|Ql(s−d−∞)−Ql(s−d−d−n)| < δ

}
.

For all s−d−∞ ∈ Aδ(n),

∑
l

R∗l (Q(s−d−∞))Ql(s−d−∞) ≤
∑
l

(
R∗l (Q(s−d−d−n) + ε(δ)

)
Ql(s−d−∞) (4.32)

≤
∑
l

(
Rl(Q(s−d−d−n)) + νl + ε(δ)

)
Ql(s−d−∞) (4.33)

≤
∑
l

(
Rl(Q(s−d−d−n)) + νl

)
Ql(s−d−∞) +Mε(δ) (4.34)

where (4.32) follows from Lemma 4.6 and (4.33) follows from our codebook construction.

The last inequality (4.34) holds since
∑

lQl ≤
∑

l 1 ≤M .

We now take expectations over the sequences s−d−∞:

E

[∑
l

R∗l (Q(S−d−∞))Ql(S−d−∞)

]

= E

[∑
l

R∗l (Q(S−d−∞))Ql(S−d−∞)|S−d−∞ ∈ Aδ(n)

]
Pr
(
S−d−∞ ∈ Aδ(n)

)
+ E

[∑
l

R∗l (Q(S−d−∞))Ql(S−d−∞)|S−d−∞ /∈ Aδ(n)

]
Pr
(
S−d−∞ /∈ Aδ(n)

)
≤ E

[∑
l

(
Rl(Q(S−d−d−n)) + νl

)
Ql(S−d−∞)

]
Pr
(
S−d−∞ ∈ Aδ(n)

)
+ Mε(δ) +DPr

(
S−d−∞ /∈ Aδ(n)

)
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where D is an upper bound on E
[∑

lR
∗
l (Q(S−d−∞))Ql(S−d−∞)|S−d−∞ /∈ Aδ(n)

]
. Then,

E

[∑
l

R∗l (Q(S−d−∞))Ql(S−d−∞)

]
≤ E

[∑
l

(
Rl(Q(S−d−d−n))) + νl

)
Ql(S−d−∞)

]
+Mε(δ) +DPr

(
S−d−∞ 6∈ Aδ(n)

)
.

Note that D can be defined independently of Aδ(n). For a given ε > 0, we may choose δ so

that Mε(δ) ≤ ε/2. Also choose NH large enough so that

DPr
(
S−d−∞ /∈ Aδ(NH)

)
≤ ε

2

since for s−d−∞ such that limn→∞Ql(s−d−d−n) = Ql(s−d−∞),

Pr

(∑
l

|Ql(S−d−∞)−Ql(S−d−d−n)| ≥ δ

)
→ 0 as n→∞

from Lemma 4.4. Then,

E

[∑
l

R∗l (Q(S−d−∞))Ql(S−d−∞)

]
≤ E

[∑
l

Rl(Q(S−d−d−NH ))Ql(S−d−∞)

]
+ ν + ε, (4.35)

where ν = E

[∑
lQl(S

−d
−∞)νl

]
. We have thus shown that the expected rate at time 0 in our

coding scheme based on the finite history S−d−d−NH is within ε+ν of the upper bound stated

in Theorem 4.1. By construction, the probability of error averaged over the messages for

the lth single-user code is less than or equal to Pel, l = 1, . . . , L.

We are now ready to use the ergodicity of the channel state process. Consider the

following mapping,

f : Ω 7→ R
+, f(s) =

L∑
l=1

Rl(Q(s−d−d−NH ))1l,0(s)

where s ≡ s+∞
−∞ ∈ Ω is a given sample path of channel states, 1l,0(s) is the indicator of the

event that the noise variance at time 0 is less than or equal to ηl (index of noise variance

is greater than or equal to l), and f(s) is the information rate obtained with our coding

scheme at the receiver at time 0 for the sample path s. Since f is integrable, we have by
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the ergodic theorem [Bil95],

lim
n→∞

1
n

n−1∑
k=1

f(T ks) = E

[∑
l

Rl(Q(S−d−d−NH ))Ql(S−d−∞)

]
a.s.

≥ E

[∑
l

R∗l (Q(S−d−∞))Ql(S−d−∞)

]
− ν − ε

where T ks denotes the sequence s shifted in time by k positions. We have thus obtained

the following theorem.

Theorem 4.3 Consider a block Gaussian channel with an average transmit power con-

straint P according to (4.6) and noise power varying according to a stationary ergodic pro-

cess {Sk, k ∈ Z} with state space S = {η1, . . . , ηL}, η1 > η2 > . . . > ηL. Suppose the

decoding delay constraint is N symbols and noiseless channel state feedback to the transmit-

ter is delayed by d blocks.

Let ε > 0, and desired average (over messages) error probabilities Pel, l = 1, . . . , L, be

given. Then there exists NH ∈ Z+ such that for each finite sequence s−d−d−NH , a corre-

sponding set of codebooks C1, · · · , CL exist so that for almost every realization of the block

Gaussian channel the limiting time average reliably received rate is within ε+ ν of the LHS

of (4.35), where ν = E

[∑
lQl(S

−d
−∞)νl

]
.

Theorem 4.3 says that we can approach the performance limit promised by Theorem 4.1

with codebooks designed according to a sufficiently long finite segment of the channel his-

tory. Given ε > 0 and the desired error probabilities, however, the theorem does not specify

the required NH . For this, we would essentially need convergence rates for the conditional

probabilities in Lemma 4.2. This, in turn, would require more specific assumptions on the

fading process itself.

4.3 Decoding Delay of Two Blocks (K = 2)

In view of the results obtained for the one-block case, it is interesting to examine what

happens whenK is gradually increased. Does the broadcast strategy continue to be optimal?

In the following, we examine the case of a two-state i.i.d. block Gaussian channel with a

decoding delay constraint of two N -blocks (K = 2). By that we mean that at the end of 2N

symbols the decoder must decode as much of the frame as possible, and declare “erasure”
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on those parts of the frame that it is unable to decode. In addition, since the state process is

i.i.d., delayed state feedback does not aid the encoder-decoder pair in exploiting the channel

state.

A moment of reflection will show that the generalization of Theorem 4.1 to the two-

block case is far from obvious. In the two-state i.i.d. case, suppose the noise variance

S = η1 (High noise) w.p. q and S = η2 (Low noise) w.p. 1 − q, where η1 > η2.
7 Over

the course of two blocks, four types of channels are possible: Low-Low (LL), Low-High

(LH), High-Low (HL), and High-High (HH). Notice that unlike the one-block case, these

channels are not in general degraded with respect to each other, and thus a direct extension

of the DBC results is not possible. Instead, one needs some general results concerning

optimal encoding strategies over parallel Gaussian broadcast channels. Here the results

are incomplete. Hughes-Hartog [HH75] derived the capacity region of parallel Gaussian

broadcast channels in which all channels are degraded in the same direction, but only an

achievable region for the general case. El Gamal [Gam80] derived the capacity region for

the two-receiver two-parallel Gaussian broadcast channel (BC) in the general case, allowing

for the presence of common information. In our setting, El Gamal’s analysis would deal

with only the Low-High (LH) and High-Low (HL) channels. It has been shown that with

only independent information, El Gamal’s capacity region coincides with Hughes-Hartog’s

achievable region in the two-by-two case. Results concerning the capacity of the general

parallel Gaussian BC with only independent information are reported in [Tse99] and [LG99].

4.3.1 Converse Theorem for a Two-state I.I.D. Channel

As in the one-block case, we make the correspondence between the four channel states in the

i.i.d. two-block Gaussian channel and the four receivers in the two-parallel Gaussian BC.

We are thus interested in achievable rates for a four-receiver (HH, HL, LH, LL) two-parallel

Gaussian BC, seen in Figure 4-3.

Fortunately, we do not require the entire capacity region, but merely want an upper

bound on a linear combination of rates for the four receivers (corresponding to the possible

channel states). Notice that the HL, LH, and HH channels are all degraded versions of the

LL channel, and the HH channel is also degraded with respect to the HL and LH channels.

7A physical scenario for the i.i.d. case may be a GSM slow frequency hopping system where the inter-
leaving depth is two blocks, the carrier separations are greater than Bcoh, and Ts � Tcoh [CKH98].
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Figure 4-3: A two-parallel Gaussian broadcast channel with four receivers Low-Low (LL),
Low-High (LH), High-Low (HL) and High-High (HH). The noise variables V11, V12, V21, V22

are assumed to be mutually independent.

The HL and LH channels, however, are not degraded with respect to each other, and so we

need to allow for common information between those two receivers. In the following, we

first obtain upper bounds on the rates for each of the four receivers. These upper bounds

translate directly to upper bounds on rates for the four channel states in the two-block

Gaussian channel. We then show that the optimized bound on the expected rate over

the channel states is in fact obtained by a broadcast strategy which sends independent

information for the HH and LL states and only common information for the HL and LH

states.

Consider the four-receiver two-parallel Gaussian broadcast channel (GBC) in Figure 4-3.

This consists of two Gaussian broadcast channels described by

Yi = Xi + Vi1, Zi = Yi + Vi2, i = 1, 2.

where Vi1 ∼ N (0, η2) and Vi2 ∼ N (0, η1 − η2) for i = 1, 2. The two broadcast channels are

assumed to be independent in the sense that V11, V12, V21, V22 are mutually independent. The

LL receiver of the two-parallel GBC observes outputs (Y1, Y2). The LH and HL receivers

observe (Y1, Z2) and (Z1, Y2), respectively, and the HH receiver observes (Z1, Z2). For each

i = 1, 2, let xi = (xi1, . . . , xiN ) be a sequence of N inputs into the ith component channel

of the two-parallel GBC and let yi = (yi1, . . . , yiN ) and zi = (zi1, . . . , ziN ) be output

sequences from the ith component channel. Suppose the two-parallel GBC is memoryless
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in that the Xi’s, Y i’s and Zi’s have joint conditional probability density

pN (y1,y2,z1,z2|x1,x2) =
2∏
i=1

N∏
n=1

pY |X(yin|xin)pZ|Y (zin|yin)

where

pY |X(y|x) =
1√

2πη2
exp

{
−(y − x)2

2η2

}
, pZ|Y (z|y) =

1√
2π(η1 − η2)

exp
{
−(z − y)2

2(η1 − η2)

}
.

Consider the four-receiver two-parallel Gaussian broadcast channel in Figure 4-3. A (2N,RLL,

R0, RLH , RHL, RHH) code for this channel consists of the following.

(a) Index sets WLL = {1, . . . ,MLL}, W0 = {1, . . . ,M0}, WLH = {1, . . . ,MLH}, WHL =

{1, . . . ,MHL}, WHH = {1, . . . ,MHH}, where MLL = deNRLLe, M0 = deNR0e,

MLH = deNRLHe, MHL = deNRHLe, MHH = deNRHHe.

(b) Encoder f :WLL×W0×WLH×WHL×WHH 7→ R
2N , f(WLL,W0,WLH ,WHL,WHH)

= (X1,X2), where Xi = (Xi1, . . . , XiN ), i = 1, 2.

(c) Decoding functions

gLL : R
2N 7→ WLL ×W0 ×WLH ×WHL ×WHH ,

gLL(Y 1,Y 2) = (ŴLL, Ŵ0, ŴLH , ŴHL, ŴHH),

gLH : R
2N 7→ W0 ×WLH ×WHH , gLH(Y 1,Z2) = (Ŵ0, ŴLH , ŴHH),

gHL : R
2N 7→ W0 ×WHL ×WHH , gHL(Z1,Y 2) = (Ŵ0, ŴHL, ŴHH),

gHH : R
2N 7→ WHH , gHH(Z1,Z2) = ŴHH , (4.36)

where channel outputs Y i = (Yi1, . . . , YiN ), Zi = (Zi1, . . . , ZiN ), i=1,2.

Note that RLH and RHL denote the rates of independent information for the LH and HL

receivers and R0 denote the rate of common information between the LH and HL receivers.

RLL and RHH are the independent information rates for the LL and HH receivers.

Assuming (WLL,W0,WLH ,WHL,WHH) is uniformly drawn over WLL ×W0 ×WLH ×
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WHL ×WHH , we define error probabilities

Pe1 = Pr (gLL(Y 1,Y 2) 6= (WLL,W0,WLH ,WHL,WHH)) ,

Pe2 = Pr (gLH(Y 1,Z2) 6= (W0,WLH)) ,

Pe3 = Pr (gHL(Z1,Y 2) 6= (W0,WHL)) ,

Pe4 = Pr (gHH(Z1,Z2) 6= WHH) .

Specifically,

Pe1 =
1

MLLM0MLHMHLMHH
·∑

(wLL,w0,wLH ,wHL,wHH)

∫
Y c
pY 1,Y 2|X1,X2

(y1,y2|f(wLL, w0, wLH , wHL, wHH))dy1dy2

where Y c = {(y1,y2) : gLL(y1,y2) 6= (wLL, w0, wLH , wHL, wHH)} and

pY 1,Y 2|X1,X2
(y1,y2|f(wLL, w0, wLH , wHL, wHH)) =

2∏
i=1

N∏
n=1

pY |X(yin|xin).

The quantities Pe2, Pe3, Pe4 are similarly specified.

Lemma 4.7 Consider the four-receiver two-parallel Gaussian broadcast channel with an

average transmit power constraint P over 2N channel symbols according to (4.2) (for K =

2). Let η1 > η2 be the variances for the High and Low channels and let q > 0 be the

probability of encountering a High channel. Then for any (2N,RLL, R0, RLH , RHL, RHH)

code and any β ∈ [0, 1], there exist θi ∈ [0, 1], γi ∈ [θi, 1], i = 1, 2, such that

RLL ≤ 1
2

[
C

(
2βPγ1

η2

)
+ C

(
2βPγ2

η2

)]
+
ε1(Pe1)
N

(4.37)

R0 +RLH ≤ 1
2

[
C

(
2βP (γ1 − θ1)
2βPγ1 + η2

)
+ C

(
2βP (γ2 − θ2)
2βPγ2 + η1

)]
+
ε2(Pe2)
N

(4.38)

R0 +RHL ≤ 1
2

[
C

(
2βP (γ1 − θ1)
2βPγ1 + η1

)
+ C

(
2βP (γ2 − θ2)
2βPγ2 + η2

)]
+
ε3(Pe3)
N

(4.39)

RHH ≤ 1
2

[
C

(
2βPθ1

2βPθ1 + η1

)
+ C

(
2βPθ2

2βPθ2 + η1

)]
+
ε4(Pe4)
N

(4.40)

where εi(Pei)→ 0 as Pei → 0, i = 1, 2, 3, 4 and θ denotes 1− θ.

PROOF. The proof uses essentially the same techniques seen in the proof of Theorem 4.1.
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Conditional entropies are “pegged” via the parameters θi and γi, i = 1, 2. This leads to

parameterized upper bounds on the quantities RLL, R0 +RLH , R0 +RHL, and RHH .

Suppose a (2N,RLL, R0, RLH , RHL, RHH) code satisfies the overall power constraint

1
2N

N∑
n=1

E

[
X2

1n +X2
2n

]
≤ P (4.41)

where X1 = (X11, . . . , X1N ) are the channel input symbols for the first N -block and X2 =

(X21, . . . , X2N ) are the symbols for the second N -block. The parameter β is defined via

the power constraint on the symbols for the second N -block,

βP ≡ 1
2N

N∑
n=1

E

[
X2

2n

]
.

Hence it follows from (4.41) that

βP ≥ 1
2N

N∑
n=1

E

[
X2

1n

]
.

Suppose messages WLL ∈ WLL, W0 ∈ W0, WLH ∈ WLH , WHL ∈ WHL and WHH ∈ WHH

are to be sent. For given β ∈ [0, 1], we may define θi ∈ [0, 1], γi ∈ [0, 1], i = 1, 2, as follows:

Ng(2βPθ1 + η1) ≡ H(Z1|WHH), (4.42)

Ng(2βPθ2 + η1) ≡ H(Z2|Z1,WHH),

Ng(2βPγ1 + η2) ≡ H(Y 1|W0,WLH ,WHL,WHH),

Ng(2βPγ2 + η2) ≡ H(Y 2|Y 1,W0,WLH ,WHL,WHH).

We have Ng(η1) ≤ H(Z1|WHH) ≤ H(Z1) ≤ Ng(2βP + η1). Thus, there exists θ1 ∈ [0, 1]

such that H(Z1|WHH) = Ng(2βPθ1 + η1). The other definitions in (4.42) are similarly

justified. We will also show below that in fact, θi ≤ γi, i = 1, 2.

We have

2NRLL = H(WLL)

= I(WLL;Y 1,Y 2) +H(WLL|Y 1,Y 2)

≤ I(WLL;Y 1,Y 2|W0,WLH ,WHL,WHH) +H(WLL,W0,WLH ,WHL,WHH |Y 1,Y 2)
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≤ I(WLL;Y 1,Y 2|W0,WLH ,WHL,WHH)

+h(Pe1) + Pe1 ln(MLLM0MLHMHLMHH − 1) (4.43)

= H(Y 1,Y 2|W0,WLH ,WHL,WHH) + ε1(Pe1) (4.44)

−H(Y 1,Y 2|W0,WLL,WLH ,WHL,WHH)

= H(Y 1|W0,WLH ,WHL,WHH) +H(Y 2|Y 1,W0,WLH ,WHL,WHH)

−H(Y 1,Y 2|W0,WLL,WLH ,WHL,WHH) + ε1(Pe1)

= Ng(2βPγ1 + η2) +Ng(2βPγ2 + η2)− 2Ng(η2) + ε1(Pe1). (4.45)

Fano’s inequality gives (4.43). In (4.44), ε1(Pe1) ≡ h(Pe1)+Pe1 ln(MLLM0MLHMHLMHH−

1). Equation (4.45) follows from the definitions in (4.42). We therefore have (4.37). Notice

that as the error probability requirement Pe1 → 0, ε1(Pe1) → 0 for every N. This converse

result is not asymptotic in the block length.

For R0 +RLH ,

2N(R0 +RLH) ≤ I(W0,WLH ;Y 1,Z2|WHH) + ε2(Pe2)

= I(W0,WLH ;Y 1|WHH) + I(W0,WLH ;Z2|Y 1,WHH) + ε2(Pe2)

= H(Y 1|WHH)−H(Y 1|W0,WLH ,WHH) +H(Z2|Y 1,WHH)

−H(Z2|W0,WLH ,WHH ,Y 1) + ε2(Pe2)

where ε2(Pe2) → 0 as Pe2 → 0. By equation (4.42) and Lemma 4.3, H(Y 1|WHH) ≤

Ng(2βPθ1+η2) and H(Z2|W0,WLH ,WHH ,Y 1) ≥ Ng(2βPγ2+η1). By the data processing

inequality, I(Y 1;Z2|WHH) ≥ I(Z1;Z2|WHH), so H(Z2|Y 1,WHH) ≤ H(Z2|Z1,WHH) ≡

Ng(2βPθ2 + η1). Finally, since conditioning reduces entropy, we have

2N(R0 +RLH) ≤ Ng(2βPθ1 + η2)−Ng(2βPγ1 + η2) +Ng(2βPθ2 + η1)

−Ng(2βPγ2 + η1) + ε2(Pe2).

Since Ng(2βPθ1 + η2) ≥ H(Y 1|WHH) ≥ H(Y 1|W0,WLH ,WHH) ≥ Ng(2βPγ1 + η2), we

must have θ1 ≤ γ1. Also, Ng(2βPθ2+η1) ≥ H(Z2|Y 1,WHH) ≥ H(Z2|W0,WLH ,WHH ,Y 1)

≥ Ng(2βPγ2 + η1) implies θ2 ≤ γ2. Thus (4.38) holds.
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Similarly,

2N(R0 +RHL) ≤ I(W0,WHL;Z1,Y 2|WHH) + ε3(Pe3)

= I(W0,WHL;Y 2|WHH ,Z1) + I(W0,WHL;Z1|WHH) + ε3(Pe3)

= H(Y 2|WHH ,Z1)−H(Y 2|W0,WHL,WHH ,Z1)

+H(Z1|WHH)−H(Z1|W0,WHL,WHH) + ε3(Pe3)

where ε3(Pe3)→ 0 as Pe3 → 0. By (4.42), Lemma 4.3, and the fact that conditioning reduces

entropy, H(Y 2|WHH ,Z1) ≤ Ng(2βPθ2 + η2), H(Z1|W0,WHL,WHH) ≥ Ng(2βPγ1 + η1).

Now since I(Z1;Y 2|W0,WHL,WHL,WHH) ≤ I(Y 2;Y 1|W0,WHL,WHL,WHH),

H(Y 2|W0,WHL,WHH ,Z1) ≥ H(Y 2|W0,WLH ,WHL,WHH ,Y 1) ≡ Ng(2βPγ2+η2). Hence,

2N(R0 +RHL) ≤ Ng(2βPθ2 + η2)−Ng(2βPγ2 + η2) +Ng(2βPθ1 + η1)

−Ng(2βPγ1 + η1) + ε3(Pe3),

from which (4.39) follows. As before, θi ≤ γi, i = 1, 2.

Finally,

2NRHH ≤ I(WHH ;Z1,Z2) + ε4(Pe4)

≤ H(Z1) +H(Z2)−H(Z1|WHH)−H(Z2|Z1,WHH) + ε4(Pe4)

≤ Ng(2βP + η1)−Ng(2βP + η1)−Ng(2βPθ1 + η1)

−Ng(2βPθ2 + η1) + ε4(Pe4)

where ε4(Pe4)→ 0 as Pe4 → 0. The last inequality follows directly from (4.42) and the fact

that H(Z1) ≤ Ng(2βP + η1) and H(Z2) ≤ Ng(2βP + η1). This results in (4.40). 2

Although we have stated the converse in terms of the error probability of the entire

frame, Fano’s inequality can just as easily be used to obtain a converse in terms of the bit

error probability [Gal68]. The point is, however, that it is often the frame error probability

that is important in most practical systems [KH00].

As suggested before, we now make the correspondence between the four channel states
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in the i.i.d. two-block Gaussian channel and the four receivers in the two-parallel Gaussian

broadcast channel. Thus, RLH and RHL denote the rates of independent information for

the LH and HL states and R0 is the rate of common information between the LH and HL

states. Let RLL and RHH denote the independent information rates for the LL and HH

states. We have the following corollary.

Corollary 4.2 Consider a two-state i.i.d. block Gaussian channel with an average transmit

power constraint P over 2N channel symbols according to (4.2) (K = 2) and a decoding delay

constraint of two N -blocks. Let η1 > η2 be the variances for the High and Low channels.

For any (2N,RLL, R0, RLH , RHL, RHH) code, if Pel is required to be arbitrarily small for

every l = 1, 2, 3, 4, then for any β ∈ [0, 1], there exist θi ∈ [0, 1], γi ∈ [θi, 1], i = 1, 2, such

that the expected rate satisfies

R∗ = E[R] = RHH + (1− q2)
[

1
2

(R0 +RLH) +
1
2

(R0 +RHL)
]

+ (1− q)2RLL

≤ 1
2

[
C

(
2βPθ1

2βPθ1 + η1

)
+ C

(
2βPθ2

2βPθ2 + η1

)]
+

1
4

(1− q2)
[
C

(
2βP (γ1 − θ1)
2βPγ1 + η2

)
+ C

(
2βP (γ2 − θ2)
2βPγ2 + η1

)
+ C

(
2βP (γ1 − θ1)
2βPγ1 + η1

)
+ C

(
2βP (γ2 − θ2)
2βPγ2 + η2

)]
+

1
2

(1− q)2

[
C

(
2βPγ1

η2

)
+ C

(
2βPγ2

η2

)]
.

(4.46)

The next lemma shows that for every coding scheme which achieves a given expected

rate R∗ with power split (β, β) over the two blocks of N symbols, there is a second scheme

which achieves the same expected rate but uses uniform power, i.e. β = 1/2. From this

it follows that schemes which approach the optimal expected rate can be taken to have

uniform power.

Lemma 4.8 Consider a coding scheme meeting an average power constraint of P over 2N

channel symbols according to (4.2) (K = 2) which allocates a fraction β (β) of the power

to the symbols for the first (second) block of N symbols. Suppose the scheme achieves an

expected rate R∗ over a two-state i.i.d. two-block Gaussian channel with block length N .

Then there is another coding scheme meeting an average power constraint of P over 4N
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channel symbols which achieves the same expected rate over the corresponding two-block

Gaussian channel with block length 2N , but uses uniform power: β = β = 1
2 .

PROOF. Consider a two-state i.i.d. two-block Gaussian channel with block length N .

For a given β ∈ [0, 1], suppose we have a (2N,RLL, R0, RLH , RHL, RHH) code C with

encoding function f : WLL × W0 × WLH × WHL × WHH 7→ R
2N where f(WLL,W0,

WLH ,WHL,WHH) = (X1,X2) such that

βP =
1

2N

N∑
n=1

E

[
X2

1n

]
, βP =

1
2N

N∑
n=1

E

[
X2

2n

]
. (4.47)

Transmission of the codewords is depicted in part (a) of Figure 4-4, where X1 is sent over

N uses of the upper channel in Figure 4-3 and X2 over N uses of the lower channel.

(c) “Supercode” C′′
2N 2N

X1 X ′2 X2 X ′1

β β β β

(a) Initial Code C (b) Exchanged Code C′
2N 2N

X1 X2 X ′2 X ′1

β β β β

Figure 4-4: Construction of code with uniform power allocation by code exchange.

Let the decoding functions gLL, gLH , gHL and gHH be as in (4.36). We shall construct

a new coding scheme C′ with code length 2N and rates (R′LL, R
′
0, R

′
LH , R

′
HL, R

′
HH) by

“exchanging” the power allocation over the first N symbols and that over the second N

symbols, as well as the rates of the HL state with that of the LH state. Define the new
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encoding function f ′ :WLL ×W0 ×WHL ×WLH ×WHH 7→ R
2N by

f ′(W ′LL,W
′
0,W

′
LH ,W

′
HL,W

′
HH) = φ

(
f(W ′LL,W

′
0,W

′
HL,W

′
LH ,W

′
HH)

)
= φ(X ′1,X

′
2)

= (X ′2,X
′
1)

where the function φ exchanges the first N components of its argument with the second

N components. Note carefully that the component W ′LH is selected from WHL and is thus

transmitted at the rate R′LH = RHL while W ′HL is transmitted at the rate R′HL = RLH .

The rates R′0 = R0, R′LL = RLL and R′HH = RHH remain the same. Correspondingly,

the decoding functions g′LL : R2N 7→ WLL × W0 × WLH × WHL × WHH , g′LH : R2N 7→

W0×WHL×WHH , g′HL : R2N 7→ W0×WLH×WHH , and gHH : R2N 7→ WHH are defined by

g′LL(Y ′1,Y
′
2) = gLL(Y ′2,Y

′
1), g′LH(Y ′1,Z

′
2) = gHL(Z ′2,Y

′
1), g′HL(Z ′1,Y

′
2) = gLH(Y ′2,Z

′
1),

and g′HH(Z ′1,Z
′
2) = gHH(Z ′2,Z

′
1). Since the HL and LH states are equally likely, the new

code C′ achieves the same expected rate R∗ = RHH + (1 − q2)[1
2(R0 + RLH) + 1

2(R0 +

RHL)] + (1− q)2RLL as the old code C over the block Gaussian channel with block length

N . Meanwhile, the power allocation has been switched by the new code:

βP =
1

2N

N∑
n=1

E

[
X ′2n

2
]
, βP =

1
2N

N∑
n=1

E

[
X ′1n

2
]
. (4.48)

As shown in part (b) of Figure 4-4, X ′2 is transmitted over N uses of the upper channel of

Figure 4-3 using a fraction β of the power and X ′1 over N uses of the lower channel using

a fraction β of the power.

We now combine the codes C and C′ to create a “supercode” C′′ with a block length of

4N as follows. Define the encoding function f ′′ :WLL×W0×WLH×WHL×WHH×WLL×

W0 ×WHL ×WLH ×WHH 7→ R
4N by

f ′′(WLL,W0,WLH ,WHL,WHH ,W
′
LL,W

′
0,W

′
LH ,W

′
HL,W

′
HH) = (X1,X

′
2,X2,X

′
1)

where f(WLL,W0,WLH ,WHL,WHH) = (X1,X2) and f ′(W ′LL,W
′
0,W

′
LH ,W

′
HL,W

′
HH) =

(X ′2,X
′
1). As shown in part (c) of Figure 4-4, (X1,X

′
2) is transmitted over 2N uses of

the upper channel of Figure 4-3 and (X2,X
′
1) over 2N uses of the lower channel. Here,
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(X1,X2) satisfies (4.47) and (X1,X2) satisfies (4.48) and so the new code clearly meets

an average power constraint of P over 4N symbols.

The decoding functions g′′LL : R4N 7→ WLL×W0×WLH ×WHL×WHH ×WLL×W0×

WLH ×WHL ×WHH , g′′HH : R4N 7→ WHH ×WHH , g′′LH : R4N 7→ W0 ×WLH ×WHH ×

W0×WHL×WHH and g′′HL : R4N 7→ W0×WHL×WHH ×W0×WLH ×WHH are given by

g′′LL(Y 1,Y
′
2,Y 2,Y

′
1) = (gLL(Y 1,Y 2), g′LL(Y ′2,Y

′
1)),

g′′HH(Z1,Z
′
2,Z2,Z

′
1) = (gHH(Z1,Z2), g′HH(Z ′2,Z

′
1)),

g′′LH(Y 1,Y
′
2,Z2,Z

′
1) = (gLH(Y 1,Z2), g′LH(Y ′2,Z

′
1)),

g′′HL(Z1,Z
′
2,Y 2,Y

′
1) = (gHL(Z1,Y 2), g′HL(Z ′2,Y

′
1)).

If we now consider the i.i.d. block Gaussian channel with block length 2N (that is, each

“high” and “low” state applies over 2N channel uses), we easily see that the rates of C′′

satisfy R′′LL = RLL, R′′HH = RHH , R′′0 = R0, R′′LH = R′′HL = 1
2(RLH + RHL) so that the

expected rate over the 4N -symbol block Gaussian channel is again R∗. Moreover, by con-

struction, the fraction of power allocated to each half of the block Gaussian channel is 1
2 .

Part (b) of Figure 4-4 illustrates the transmission of codewords from the new code over the

block Gaussian channel. 2

Given any coding scheme (with some power allocation) achieving expected rate R∗

over a two-state i.i.d. two-block Gaussian channel with block length N , Lemma 4.8 gives

a code with uniform power allocation and twice the code length which achieves the same

expected rate over a corresponding two-block Gaussian channel with block length 2N . Since

Corollary 4.2 applies to two-state i.i.d block Gaussian channels with any block length, we

see that the expected rate of any code over the block Gaussian channel is bounded above

by (4.46) for β = 1
2 . Thus, in optimizing the upper bounds, we need only consider coding

schemes which use uniform power allocation.

Lemma 4.9 For β = β = 1
2 , the upper bound in (4.46) holds with θ1 = θ2 and γ1 = γ2.

PROOF. For β = 1
2 , there exist θi, γi, i = 1, 2 such that (4.37)-(4.40) hold. Now fixing the

values of the bounds in (4.37) and (4.40), we vary the parameters θi and γi to maximize

the sum of the bounds in (4.38)-(4.39). Removing the logarithms in (4.46), we suppose
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(equivalently) that the bound is achieved with

(Pγ1 + η2)(Pγ2 + η2) = A

(Pθ1 + η1)(Pθ2 + η1) = B,

using β = 1/2. The first constraint corresponds to fixing the bound for RLL and the

second to fixing the bound for RHH . Subject to these constraints we wish to maximize the

constraint on the sum rate R0 + 1/2 (RHL +RLH) or equivalently,

(Pθ1 + η1)(Pθ2 + η1)(Pθ1 + η2)(Pθ2 + η2)
(Pγ1 + η2)(Pγ2 + η2)(Pγ1 + η1)(Pγ2 + η1)

which reduces immediately to maximizing

(Pθ1 + η2)(Pθ2 + η2)
(Pγ1 + η1)(Pγ2 + η1)

.

This latter maximization is easily seen to be two separate maximizations. Set

x := Pθ1 + η1

y := Pθ2 + η1

and we wish then to maximize xy − (η1 − η2)(x+ y) + (η1 − η2)2 subject to xy = B. This

occurs when x = y or θ1 = θ2. A similar argument applies to the denominator. Thus the

optimization has a solution with θ1 = θ2 and γ1 = γ2. Hence, (4.46) holds with β = 1
2 and

θ1 = θ2, γ1 = γ2. 2

The previous lemmas lead immediately to the following theorem.

Theorem 4.4 Consider the two-state i.i.d block Gaussian channel with an average transmit

power constraint P as in (4.2) (K = 2) and decoding delay constraint of two N -blocks. Let

η1 > η2 be the variances for the High and Low channels and let q > 0 be the probability

of encountering a High channel. For any (2N,RLL, R0, RLH , RHL, RHH) code, if Pel is
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required to be arbitrarily small for every l = 1, 2, 3, 4, then the expected rate satisfies

E[R] ≤ C
(

α∗1P

η1 + α∗1P

)
+

1
2

(1− q2)
[
C

(
α∗2P

η1 + α∗3P

)
+ C

(
α∗2P

η2 + α∗3P

)]
+ (1− q)2C

(
α∗3P

η2

) (4.49)

where α∗ = (α∗1, α
∗
2, α
∗
3) maximizes

C

(
α1P

η1 + α1P

)
+

1
2

(1− q2)
[
C

(
α2P

η1 + α3P

)
+ C

(
α2P

η2 + α3P

)]
+ (1− q)2C

(
α3P

η2

)
(4.50)

subject to αl ≥ 0, l = 1, 2, 3 and
∑
αl = 1.

We now observe that a broadcast strategy attains the upper bound in (4.49). Such a

strategy would allocate equal power P across the 2N uses of the two-block Gaussian channel.

A fraction α∗1P of the power would be used to send independent information to the HH state

(also common to the HL, LH, and LL states); a fraction α∗2P is used to send information

common to the HL and LH states (as well as LL). Finally, a fraction α∗3P is used to send

independent information to the LL state. The receiver decodes as much information as it

can depending on the channel, using successive decoding. The broadcast strategy, then,

remains optimal in terms of expected rate for the two-state i.i.d. block Gaussian channel

with a decoding delay constraint of two N -blocks.

4.3.2 Optimization of Expected Rate

Since the two-block channel considered above retains the broadcast structure, we would

expect that the technique used in Theorem 4.2 can be used to solve the maximization
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problem in (4.50). For convenience, we write the optimization as

maximize R1 + (1− q2)R2 + (1− q)2R3 (4.51)

subject to R1 ≤ C
(

α1P

(α2 + α3)P + η1

)
,

R2 ≤
1
2
C

(
α2P

α3P + η1

)
+

1
2
C

(
α2P

α3P + η2

)
,

R3 ≤ C
(
α3P

η2

)
,

αl ≥ 0, l = 1, 2, 3;
3∑
l=1

αl = 1.

Theorem 4.5 Consider the optimization problem in (4.51). Define the marginal utility

functions

u1(z) ≡ 1
2(z + η1)

,

u2(z) ≡ 1
4

(1− q2)
[

1
z + η1

+
1

z + η2

]
,

u3(z) ≡ (1− q2)
1

2(z + η2)
,

u∗(z) ≡ max
l=1,2,3

ul(z),

and sets

Al ≡ {z ∈ [0, P ] : ul(z) = u∗(z)}.

Then the optimal solution to (4.51) is

∫ P

0
u∗(z)dz

attained at the unique point

R∗1 =
∫
A1

1
2(z + η1)

dz, (4.52)

R∗2 =
∫
A2

1
4

[
1

z + η1
+

1
z + η2

]
dz, (4.53)

R∗3 =
∫
A3

1
2(z + η2)

dz, (4.54)
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where

Al =

∑
j>l

α∗jP,
∑
j≥l

α∗jP

 ,
α∗l P = |Al|

for l = 1, 2, 3.

PROOF. The proof is similar in spirit to that for Theorem 3.2 of [Tse99]. We provide the

argument for completeness. First, note that since the objective function is linear in R,

any maxima are attained on the boundary on the feasible region. Let the optimal solution

to (4.51) be achieved at

R∗1 = C

(
α∗1P

(α∗2 + α∗3)P + η1

)
,

R∗2 =
1
2
C

(
α∗2P

α∗3P + η1

)
+

1
2
C

(
α∗2P

α∗3P + η2

)
,

R∗3 = C

(
α∗3P

η2

)
,

where α∗l ≥ 0, l = 1, 2, 3,
∑3

l=1 α
∗
l = 1. Then the optimal value J∗ satisfies

J∗ = R∗1 + (1− q2)R∗2 + (1− q)2R∗3

=
1
2

[ln(P + η1)− ln((α∗2 + α∗3)P + η1)]

+(1− q2)
1
4

[ln((α∗2 + α∗3)P + η1)− ln(α∗3P + η1)]

+(1− q2)
1
4

[ln((α∗2 + α∗3)P + η2)− ln(α∗3P + η2)]

+(1− q)2 1
2

[ln(α∗3P + η2)− ln(η2)]

=
∫ P

(α∗2+α∗3)P

1
2(z + η1)

dz +
∫ (α∗2+α∗3)P

α∗3P

1
4

(1− q2)
[

1
z + η1

+
1

z + η2

]
dz

+
∫ α∗3P

0
(1− q)2 1

2(z + η2)
dz

=
3∑
l=1

∫ ∑
j≥l α

∗
jP∑

j>l α
∗
jP

ul(z)dz

≤
∫ P

0
u∗(z)dz. (4.55)
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We now produce a power allocation to achieve this upper bound. Define Al, l = 1, 2, 3,

as in the statement of the theorem. Note that the Al’s form a partition of [0, P ]. Now each

ul(z) is strictly decreasing as a function of z for all z ≥ 0. It is not hard to see that for

q > 0, the equation ui(z) = uj(z), i 6= j, has a unique finite solution. This implies that sets

Al are single intervals.

Next we show that the Al’s are ordered on the real line from left to right as A3,A3,A1.

The equation u1(z) = u2(z) has a unique positive solution z > 0 if and only if u2(0) > u1(0).

In this case, u2(z) > u1(z),∀z < z and u2(z) < u1(z),∀z > z. Thus A2 lies to the left of A1.

The equation u1(z) = u2(z) has a unique negative solution z < 0 if and only if u2(0) < u1(0).

In this case, u2(z) < u1(z),∀z ≥ 0, so that A2 = ∅. The above argument may be repeated

for the pair u2(z), u3(z) to show that A3 lies to the left of A2.

Given the above ordering, we may choose α∗l ≥ 0, l = 1, 2, 3,
∑3

l=1 α
∗
l = 1 such that

A1 = [0, α∗3P ], A2 = [α∗3P, (α
∗
2 + α∗3)P ], A3 = [(α∗2 + α∗3)P, P ].

where α∗l P = |Al|, l = 1, 2, 3. Let R∗l , l = 1, 2, 3, be as in (4.52)-(4.54). Then

R∗1 + (1− q2)R∗2 + (1− q)2R∗3 =
∫
A1

1
2(z + η1)

dz +
∫
A2

1
4

(1− q2)
[

1
z + η1

+
1

z + η2

]
dz

+
∫
A3

(1− q)2 1
2(z + η2)

dz

=
3∑
l=1

∫
Al
ul(z)dz

=
∫ P

0
u∗(z)dz.

So we attain the upper bound in (4.55). As mentioned before, superposition coding com-

bined with successive decoding can be used to achieve the expected rate R∗1+(1−q2)R∗2+(1−

q)2R∗3. Finally, the uniqueness of our solution follows from the fact that for all z ≥ 0 (except

for a finite set of intersection points), there exists a unique l, 1 ≤ l ≤ 3, such that z ∈ Al. 2

Let us associate states in the two-block Gaussian channel (HH, {LH,HL},LL) with “vir-

tual users” in a superposition code. Just as in the one-block case, the optimal solution

to (4.51) is found in a greedy manner where at each interference level z, the transmitter

allocates power to the virtual user with the largest marginal utility function.
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Figure 4-5: Optimization procedure for a two-block Gaussian channel.

Figure 4-5 demonstrates the optimization procedure of Theorem 4.5. Marginal utilities

ul(z), l = 1, 2, 3, are plotted as functions of interference level z. Here, we have 1
4(1−q2)( 1

η1
+

1
η2

) > 1
2η1

> (1−q)2

2η2
. The intervals are A3 = ∅, A2 = [0, α∗2P ], A1 = [α∗2P, P ]. The optimal

rates R∗l are given by (4.52)-(4.54). Virtual user 3 (LL state) receives zero power and

therefore zero rate, since u3(z) never dominates in [0, P ]. Rates R∗1, R
∗
2 are achieved by

superposition coding with successive decoding, in the order 1,2.

4.4 Summary and Discussion

In this work, we showed how a certain set of assumptions regarding the fading process, chan-

nel state information, and the nature of the traffic carried, leads to an optimal transmission

strategy over a single-user wireless channel. In particular, we considered transmission of

time-sensitive data over a slowly-varying flat-fading additive white Gaussian channels with

finite decoding delay constraints and delayed channel state feedback to the transmitter.

This formulation led to a view of delay-limited communications emphasizing the expected

rate reliably decoded at the receiver. Using Fano’s inequality and the entropy power in-

equality, we have shown that the broadcast strategy maximizes the expected rate when

the decoding delay constraint is one N -block and in certain cases when the decoding delay
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constraint is two N -blocks. It is clearly desirable to extend our results to the general case

of L noise levels and K delay blocks. This requires a more advanced understanding of the

underlying general non-degraded parallel Gaussian broadcast channels. Finally, a deeper

understanding of delayed feedback in the context of delay-limited communications is needed

to fully assess the interaction between the delay parameter d and the coding depth KN .

144



Chapter 5

Conclusions

We close with a few comments on the central role of successive decoding in our work, the

“inter-layer” view of multi-user communications, and performance measures for communi-

cation over fading channels.

A common theme that runs through all parts of our study is the concept of successive

decoding. In Chapter 2, successive decoding was combined with time-sharing to produce

a low-complexity coding scheme for multiaccess channels. In Chapter 3, the optimal mul-

tiaccess queue control strategy turns out to be a form of adaptive successive decoding,

where the decoding order at any particular time depends on the queue state. Finally, in

Chapter 4, successive decoding plays a central role in the broadcast or successive refine-

ment transmission strategy. Given its clear importance of a communication technique for

multi-user and fading channels, it seems that more extensive studies on the subject, both

theoretical and experimental, are warranted. In Chapters 2 and 4, we presented some simple

bounds on overall error probability of successive decoders using a genie-aided argument. It

is desirable to investigate whether these bounds are tight, and exactly how much is lost in

error probability performance when successive decoding is used in place of more complex

joint decoding. Further studies are also needed on how successive decoding schemes are

to be implemented in practice. Recall that in analyzing the overall probability of error,

we assumed that at each stage of the successive decoding algorithm, a genie provided the

correct estimate of the codeword at the previous level to the current decoder. In practice,

however, there is always a positive probability that the estimate at the previous level is

incorrect, no matter how powerful the error correcting code used. Thus, it seems that some
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sort of iteration is needed among the various levels of successive decoding. Exactly how a

low-complexity iterative scheme should be designed is an open problem. Finally, there is

the question of how successive decoding can be used over fading channels, particularly when

the channel is not known with perfect precision at the receiver. Here, it is necessary for the

decoder to simultaneously decode the codeword and estimate the channel. At every stage

of successive decoding, one would like to subtract the true value of the channel times the

correct codeword. However, in practice, one can only subtract an estimate of the channel

times an estimate of the codeword. It is easy to see how these two sources of error can

lead to a catastrophic propagation of errors in successive decoding. This problem can be

particularly acute in multiaccess fading settings where there are many different channels to

estimate. The problem may be less severe in single-user cases as considered in Chapter 4,

since there is only one channel to estimate. Although there have been some fine studies of

successive decoding on fading channels (for instance [Gal94]), this remains an open area.

In this dissertation, we attempted to give an “inter-layer” analysis of multiaccess which

treats issues of noise, interference, randomness of arrivals, delay, and error probability in

a more cohesive framework. Our analysis combined elements of multiaccess information

theory, which adequately models the noise and interference aspects of the problem but

ignores the random arrival of messages, and queueing theory, which focuses on issues of

source burstiness and delay but ignores physical-layer modeling. Our approach was to

assume optimal coding at the physical layer so that all rates in the multiaccess capacity

region are achievable, and then seeking the optimal rate allocation policy to minimize

the overall packet delay (or bit delay) in the system. One can interpret our result as a

“converse,” in the sense that the average packet (bit) delay associated with our optimal

policy gives a lower bound to the corresponding packet (bit) delays of all coding schemes

which seek to meet any given level of decoding error probability. There are undoubtedly

many other approaches that one can take within this “inter-layer” framework. Our primary

aim is to show that such problems can and should be analyzed. Our belief is that as multi-

user communication systems become increasingly complex, the need for joint network design

over many layers will become more acute, and therefore the pursuit of a more comprehensive

theory of networks is of paramount importance. Such a theory should have the same kind

of explanatory and predictive power possessed by information theory for classical point-to-

point channels. While this is surely a very long-term goal, there is no inherent reason why
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more concrete steps cannot be taken towards that end. Our “inter-layer” analysis, then,

can be seen as a small step in this process.

In the latter part of the thesis, we examined single-user communications over wireless

fading channels. We showed that the appropriate performance metric and the optimal trans-

mission strategy depend on the interplay of fading parameters, decoding delay constraint,

the ability of the transmitter and receiver to track channel variations, and the nature of the

traffic carried by the system. While measures such as capacity vs. outage and delay-limited

capacity are appropriate for delay-constrained constant-rate voice traffic, the expected re-

liably received rate seems to be a more fitting measure for delay-constrained variable-rate

data traffic (such as those to be carried by Third Generation wireless networks). Under our

particular assumptions of delayed channel state feedback to the transmitter, a broadcast or

successive refinement strategy was shown to maximize the expected reliably received rate

when the decoding delay is relatively short compared to the time scale of the channel fading

process. An interesting question is whether some version of the broadcast strategy remains

optimal when the decoding delay is gradually increased. The answer to this will depend on

a deeper understanding of parallel broadcast channel models, and is left to future work.
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Appendix A

Proofs for Multiaccess

Time-sharing

A.1 All faces FS in an M-user (M ≥ 2) Gaussian MAC have

dimension M − 2

The proof will be by induction on the number of users M,M ≥ 2. We use the notation

C(P, σ2) ≡ 1
2 log(1 + P

σ2 ). We start with M = 2. Let S = {1}, the hyperplane H{1} =

{(R1, R2) : R1 = C(P1, P2 + σ2)}, then F{1} = H{1} ∩ D = (C(P1, P2 + σ2), C(P2, σ
2)).

Thus, dim(F{1}) = 0. Similarly, dim(F{2}) = 0.

Now assume that for any M -user Gaussian MAC, M ≥ 2, dim(FS) = M − 2 for all

∅ ⊂ S ⊂ {1, . . . ,M}. For the M + 1-user Gaussian MAC, let ∅ ⊂ S1 ⊂ {1, . . . ,M + 1}.

By its definition, FS1 is the intersection of D and the hyperplane HS1 = {(R1, . . . , RM+1) :∑
i∈S1

Ri = C(
∑

i∈S1
Pi, σ

2 +
∑

j∈Sc1
Pj). Clearly, dim(FS1) ≤M − 1.

Let k ∈ {1, . . . ,M + 1}\S1. Fix Rk = C(Pk, σ2). If S1 = {1, . . . ,M + 1}\{k}, then

FS1 projected onto the S1 coordinates is the dominant face of an M -user Gaussian MAC

with users Xi, i ∈ S1, and noise variance Pk + σ2. From Lemma 2.1, dim(FS1) = M − 1.

If S2 ≡ {1, . . . ,M + 1}\({k} ∪ S1) 6= ∅, let F1 be the set of rate tuples (R1, . . . , RM+1)

in FS1 such that Rk = C(Pk, σ2),
∑

i∈S1
Ri = C

(∑
i∈S1

Pi,
∑

j∈Sc1
Pj + σ2

)
,
∑

i∈S2
Ri =

C
(∑

i∈S2
Pi, Pk + σ2

)
. It is easy to see that the projection of F1 onto the {1, . . . ,M+1}\{k}

coordinates is a face F ′S1
, ∅ ⊂ S1 ⊂ {1, . . . ,M + 1}\{k}, of an M -user Gaussian MAC with

users Xi, i ∈ {1, . . . ,M +1}\{k}, and noise variance Pk+σ2. By the inductive assumption,
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dim(F1) = M − 2. Now choose the rate tuple Φ such that Φk = C(Pk, σ2 +
∑

j∈S2
Pj),∑

i∈S1
Φi = C

(∑
i∈S1

Pi,
∑

j∈Sc1
Pj + σ2

)
,
∑

i∈S2
Φi = C

(∑
i∈S2

Pi, σ
2
)
. Notice that Φ ∈

FS1 , but since
∑

i∈S2
Φi 6= C(

∑
i∈S2

Pi, Pk + σ2), Φ does not lie in the affine hull of F1.

Since FS1 is convex, the convex hull conv(F1,Φ) ⊆ FS1 . Hence, dim(FS1) ≥M − 1. Thus,

dim(FS1) = M − 1. 2

A.2 Proof of Lemma 2.2

Let ∅ ⊂ S ⊂ {1, . . . ,M}. We first prove R ∈ FS ⇒ RS ∈ DPS and RSc ∈ DPSc|S .

Since R ∈ FS ,
∑

i∈S Ri = I(XS ;Y ). Let V ⊆ S. Then, S\V ⊆ S. Since R ∈ FS ⊂ D,∑
i∈V Ri ≥ I(XV ;Y ) and

∑
i∈S\V Ri ≥ I(XS\V ;Y ). Then,

∑
i∈V

Ri =
∑
i∈S

Ri −
∑
i∈S\V

Ri ≤ I(XS ;Y )− I(XS\V ;Y ) = I(XV ;Y |XS\V ).

Thus, RS ∈ DPS . Now, R ∈ FS also implies
∑

i∈Sc Ri = I(XSc ;Y |XS). Let V ⊆ Sc.

R ∈ D ⇒
∑

i∈V Ri ≤ I(XV ;Y |XV c). Also,
∑

i∈Sc\V Ri ≤ I(XSc\V ;Y |XS , XV ). Then,

∑
i∈V

Ri =
∑
i∈Sc

Ri −
∑

i∈Sc\V

Ri

≥ I(XS ;Y |XS)− I(XSc\V ;Y |XS , XV )

= I(XV ;Y |XS).

Thus, RSc ∈ DPSc|S .

Next, we show RS ∈ DPS ,RSc ∈ DPSc|S ⇒ (RS ,RSc) ∈ FS ⊂ D. Let V ⊆ {1, . . . ,M}.

Then, V = V1 ∪ V2, where V1 = V ∩ S, V2 = V ∩ Sc. Note that V c = (S\V1) ∪ (Sc\V2). By

definition of DPS and DPSc|S via (2.9)-(2.10),

∑
i∈V1

Ri ≤ I(XV1 ;Y |XS\V1
) ≤ I(XV1 ;Y |XS\V1

, XSc\V2
),

∑
i∈V2

Ri ≤ I(XV2 ;Y |XV c2
) = I(XV2 ;Y |XS\V1

, XSc\V2
, XV1).
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Therefore, by the chain rule,

∑
i∈V

Ri =
∑
i∈V1

Ri +
∑
i∈V2

Ri ≤ I(XV ;Y |XS\V1
, XSc\V2

) = I(XV ;Y |XV c).

Now we have
∑

i∈V1
Ri ≥ I(XV1 ;Y ) and

∑
i∈V2

Ri ≥ I(XV2 ;Y |XS) ≥ I(XV2 ;Y |XV1).

So
∑

i∈V Ri ≥ I(XV ;Y ) by the chain rule. Thus, we have R = (RS ,RSc) ∈ D. But

RS ∈ DPS ⇒
∑

i∈S Ri = I(XS ;Y ) and RSc ∈ DPSc|S ⇒
∑

i∈Sc Ri = I(XSc ;Y |XS). There-

fore, R = (RS ,RSc) ∈ FS ⊂ D. 2

A.3 Proof of Theorem 2.1

For ρ ∈ [0, 1], define

En(ρ,Q) ≡ − ln
∑
y

{∑
x

Q(x)Psn(y|x)1/(1+ρ)

}1+ρ

; n = 1, . . . , N (A.1)

Eo(ρ,Q,N) ≡ 1
N

N∑
n=1

En(ρ,Q), (A.2)

Er (R,Q,N) ≡ max
0≤ρ≤1

[Eo(ρ,Q,N)− ρR] . (A.3)

Let N be any positive integer and R be any positive number. Let PNs be a (dis-

crete memoryless) deterministically-varying channel. Consider an (N,R,Q) random code

ensemble. Let P e,l be the ensemble average probability of decoding error for message

l, 1 ≤ l ≤ deNRe = L, using maximum likelihood (ML) decoding. Let P e be the average

error probability of the ensemble over all messages under ML decoding. We first show

P e,l ≤ exp [−NEr (R,Q,N)] ; 1 ≤ l ≤ L

P e ≡
L∑
l=1

Pr (l)P e,l ≤ exp [−NEr (R,Q,N)] . (A.4)

This argument is a consequence of the Parallel Channels Result of [Gal68, pp. 149-150].

Regard the DVC PNs = {Psn(y|x) : sn ∈ S, n = 1, . . . , N} as a composite vector channel

made up of N independent parallel discrete channels. The composite channel takes as input

N -tuples x = (x1, . . . , xN ) ∈ XN and produces as its output N -tuples y = (y1, . . . , yN ) ∈
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YN . The channel transition probability is given by (2.11). Construct an (N,R,Q) random

code ensemble, and regard each codeword x = (x1, . . . , xN ) of a code in the (N,R,Q)

ensemble as an N -tuple input letter of an (N ′, R′) code into the vector channel, where the

new block length N ′ = 1, and the new rate R′ = NR. This gives an ensemble of (N ′, R′)

codes for the vector channel. The error exponent for this new code ensemble, for ρ ∈ [0, 1],

is

E′o(ρ,Q,N) ≡ − ln
∑
y

{∑
x

QN (x)PNs (y|x)1/(1+ρ)

}1+ρ

= − ln
∑
y1

· · ·
∑
yN

{∑
x1

· · ·
∑
xN

N∏
n=1

Q(xn)
N∏
n=1

Psn(yn|xn)1/(1+ρ)

}1+ρ

=
N∑
n=1

En(ρ,Q)

where En(ρ,Q) is given by (A.1). Applying Theorem 5.6.2 of [Gal68] to the composite

channel with the ensemble of (N ′, R′) codes, we have for each l, 1 ≤ l ≤ deNRe = L,

P e,l ≤ exp
{
−
[
E′o (ρ,Q,N)− ρR′

]}
= exp

{
−

[
N∑
n=1

En(ρ,Q)− ρR′
]}

= exp

{
−N

[
1
N

N∑
n=1

En(ρ,Q)− ρR

]}
. (A.5)

Since (A.5) holds for each message in the (N,R,Q) code ensemble, the average error prob-

ability of the ensemble over all messages satisfies

P e =
L∑
l=1

Pr (l)P e,l ≤ exp {−N [Eo(ρ,Q,N)− ρR]} .

Since maximizing the exponent over ρ ∈ [0, 1] can only improve the bound, we have estab-

lished (A.4). The theorem now follows immediately from (A.4) and Definition 2.1. 2
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A.4 Proof of Theorem 2.2

Let N be any positive integer. We first show that for any (discrete memoryless) determin-

istically varying channel PNs , Er (R,Q,N), as defined in Equations (A.2) and (A.3), is a

convex, decreasing, and positive function of R for 0 ≤ R < 1
N

∑N
n=1 I(Q;Psn). For this, it is

again convenient to consider N uses of the DVC as a single use of a composite channel made

up of N independent parallel discrete channels Psn , n = 1, . . . , N . Construct an ensemble

of (N ′, R′) codes as before, with N ′ = 1. Notice that R′ =
∑N

n=1Rn, where Rn is the rate

over the nth channel Psn . Thus, the rate of the corresponding ensemble of (N,R) code over

the DVC is R = 1
N

∑N
n=1Rn.

Since the composite channel is discrete, we may apply the proof of Theorem 5.6.4

in [Gal68] to optimize Eo(ρ,Q,N) − ρR over 0 ≤ ρ ≤ 1. It can be verified that the re-

sulting Er (R,Q,N) behaves as follows. For

∂Eo (ρ,Q,N)
∂ρ

∣∣∣∣
ρ=1

=
1
N

N∑
n=1

∂En(ρ,Q)
∂ρ

∣∣∣∣
ρ=1

≤ R ≤ ∂Eo (ρ,Q,N)
∂ρ

∣∣∣∣
ρ=0

=
1
N

N∑
n=1

∂En(ρ,Q)
∂ρ

∣∣∣∣
ρ=0

=
1
N

N∑
n=1

I(Q;Psn),

Er (R,Q,N) and R are given parametrically in terms of ρ:

R =
∂Eo (ρ,Q,N)

∂ρ
=

1
N

N∑
n=1

∂En(ρ,Q)
∂ρ

; 0 ≤ ρ ≤ 1

Er (R,Q,N) = Eo (ρ,Q,N)− ρ∂Eo (ρ,Q,N)
∂ρ

=
1
N

N∑
n=1

(
En(ρ,Q)− ρ∂En(ρ,Q)

∂ρ

)
.

The point ∂Eo(ρ,Q,N)
∂ρ

∣∣∣∣
ρ=1

is the critical rate Rcr for the given Q,N . For R < Rcr,

Er (R,Q,N) = Eo (1, Q,N)−R =
1
N

N∑
n=1

(En(1, Q)−Rn) .

For R > 1
N

∑N
n=1 I(Q;Psn), Er (R,Q,N) = 0. The parameter ρ is the magnitude of the

slope of the Er (R,Q,N) versus R curve. Finally, as a function of R, Er (R,Q,N) is convex,

decreasing and positive for all R < 1
N

∑N
n=1 I(Q;Psn). The theorem now follows immedi-

ately from Definition 2.1. 2
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A.5 Proof of Theorem 2.4

Assume that the UK bits are Bernoulli(1
2) due to prior source coding. Then

NR = K

= H(UK)

= H(UK |ÛK(Y N )) + I(UK ; ÛK(Y N ))

≤ H(UK |ÛK(Y N )) + I(XN ;Y N )

≤ KPKb ln(|U| − 1) +KH(PKb ) + I(XN ;Y N )

= NR · PKb ln(|U| − 1) +NR ·H(PKb ) +
N∑
n=1

I(Q;Psn) (A.6)

The first inequality follows from the data processing inequality. The second inequality is a

consequence of Fano’s inequality for sequences (Theorem 4.3.2 in [Gal68]). Rewriting (A.6)

and applying the definition for fixed fraction DVC’s gives the theorem. 2

A.6 Proof of Lemma 2.4

1): The proof will be by induction on the argument m of the function h(m). The claim

trivially holds for m = 1, 2. Assume that the statement holds for all m ≤ M . We shall

prove for it m = M + 1. Assume without loss of generality that k ≤ M + 1 − k. Let

g(k,M) = h(k) + h(M + 1− k) + min(k,M + 1− k).

g(k,M) = h(k) + h(M + 1− k) + k

= h

(⌊
k

2

⌋)
+ h

(⌈
k

2

⌉)
+
⌊
k

2

⌋
+ h

(⌊
M + 1− k

2

⌋)
+h
(⌈

M + 1− k
2

⌉)
+
⌊
M + 1− k

2

⌋
+ k (A.7)

where equation (A.7) follow from the induction hypothesis. Assuming M is odd and k

even, we have bk2c = dk2e = k
2 , d

M+1−k
2 e = bM+1−k

2 c = M+1−k
2 . Continuing with the chain
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of equalities, we have

g(k,M) = h

(
k

2

)
+ h

(
k

2

)
+
k

2

+h
(
M + 1− k

2

)
+ h

(
M + 1− k

2

)
+
M + 1− k

2
+ k

= h

(
k

2

)
+ h

(
M + 1− k

2

)
+
k

2

+h
(
k

2

)
+ h

(
M + 1− k

2

)
+
k

2
+
M + 1

2

≤ h

(
M + 1

2

)
+ h

(
M + 1

2

)
+
M + 1

2
(A.8)

= h

(⌈
M + 1

2

⌉)
+ h

(⌊
M + 1

2

⌋)
+
⌊
M + 1

2

⌋
(A.9)

The inequality in equation (A.8) follows from the induction hypothesis (for m = M+1
2 ).

Equation (A.9) is the result of our assumption on M and k. Thus, h(k) + h(M + 1 −

k) + min(k,M + 1 − k) is bounded above by h(dM+1
2 e) + h(bM+1

2 c) + bM+1
2 c. The other

cases (M odd and k odd, M even and k odd, M even and k even) are treated in a similar

way, and (A.9) holds for each case. Also, in each case, k = bM+1
2 c achieves the bound in

(A.9). Hence, we have h(M + 1) ≡ max1≤k≤M h(k) + h(M + 1− k) + min(k,M + 1− k) =

h(dM+1
2 e) + h(bM+1

2 c) + bM+1
2 c.

2): Again, the argument is by induction on m. The claim is obviously true for m = 1, 2.

Now assume h(m) ≤ 1
2m log2m+m for all even m < M . If M is even,

h(M) = 2h
(
M

2

)
+
M

2

≤ 2
(

1
2
M

2
log2

M

2
+
M

2

)
+
M

2

=
M

2
(log2M − 1) +M +

M

2

=
1
2
M log2M +M,

where the first equality follows from part 1 of the lemma and the first inequality results

155



from the inductive assumption. If M is odd,

h(M) = h

(
M + 1

2

)
+ h

(
M − 1

2

)
+
M − 1

2
(A.10)

≤ 1
2

(
M + 1

2

)
log2

(
M + 1

2

)
+
M + 1

2

+
1
2

(
M − 1

2

)
log2

(
M − 1

2

)
+M − 1. (A.11)

Equation (A.10) follows from part 1 of the lemma and (A.11) results from the inductive

assumption. Subtracting the RHS of (A.11) from 1
2M log2M + M = 1

2

(
M+1

2

)
log2M +

1
2

(
M−1

2

)
log2M +M , we have

1
2

(
M + 1

2

)
log2

(
M + 1

2M

)
+

1
2

(
M − 1

2

)
log2

(
M − 1

2M

)
+
M − 1

2

=
1
2

(
M − 1

2

)
log2

(
M + 1

2M

)
+

1
2

log2

(
M + 1

2M

)
+

1
2

(
M − 1

2

)
log2

(
M − 1

2M

)
+
M − 1

2

=
1
2

(
M − 1

2

)[
log2

(
M + 1
M

)
+ log2

(
M − 1
M

)]
+

1
2

log2

(
M + 1

2M

)
=

M − 1
4

log2

(
1 +

1
M

)
+
M − 1

4
log2

(
1− 1

M

)
+

1
2

log2

(
1 +

1
M

)
− 1

2

≤ 1
ln 2

[(
M − 1

4

)(
−1
M2

)
+

1
2

(
1
M
− 1

2M2
+

1
3M3

)]
− 1

2
(A.12)

=
1

ln 2

[
1

4M
+

1
6M3

]
− 1

2
(A.13)

where (A.12) follows from the inequality ln(1 + x) ≤ x− x2

2 + x3

3 for |x| < 1. Now the RHS

of (A.13) is negative for M = 2 and is strictly decreasing as a function of M . We have

therefore shown h(M) ≤ 1
2M log2M +M for all M ≥ 1.

Now for M = 2r, r ∈ Z+, we have by part 1 of the lemma,

h(M) = h(2r) = 2h(2r−1) + 2r−1

= 2[2h(2r−2) + 2r−2] + 2r−1

= 22 · h(2r−2) + 2 · 2r−1.
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Continuing to iterate downwards,

h(2r) = 2kh(2r−k) + k · 2r−1, k = 1, . . . , r − 1

= 2r−1h(2) + (r − 1)2r−1

= 3 · 2r−1 + (r − 1)2r−1

= (r + 2)
M

2

= (log2M + 2)
M

2

=
1
2
M log2M +M.

2
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