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Abstract

This thesis presents the development of hardware, theory, and experimental methods
to enable a robotic manipulator arm to interact with soils and estimate soil properties
from interaction forces. Unlike the majority of robotic systems interacting with soil,
our objective is parameter estimation, not excavation. To this end, we design our
manipulator with a flat plate for easy modeling of interactions. By using a flat plate,
we take advantage of the wealth of research on the similar problem of earth pressure
on retaining walls.

There are a number of existing earth pressure models. These models typically
provide estimates of force which are in uncertain relation to the true force. A recent
technique, known as numerical limit analysis, provides upper and lower bounds on
the true force. Predictions from the numerical limit analysis technique are shown to
be in good agreement with other accepted models.

Experimental methods for plate insertion, soil-tool interface friction estimation,
and control of applied forces on the soil are presented. In addition, a novel graphical
technique for inverting the soil models is developed, which is an improvement over
standard nonlinear optimization. This graphical technique utilizes the uncertainties
associated with each set of force measurements to obtain all possible parameters which
could have produced the measured forces.

The system is tested on three cohesionless soils, two in a loose state and one in a
loose and dense state. The results are compared with friction angles obtained from
direct shear tests. The results highlight a number of key points. Common assumptions
are made in soil modeling. Most notably, the Mohr-Coulomb failure law and perfectly
plastic behavior. In the direct shear tests, a marked dependence of friction angle on
the normal stress at low stresses is found. This has ramifications for any study of
friction done at low stresses. In addition, gradual failures are often observed for
vertical tools and tools inclined away from the direction of motion. After accounting



for the change in friction angle at low stresses, the results show good agreement with
the direct shear values.
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Chapter 1

Introduction

Digging is done on an everyday basis with little understanding of the forces of interac-

tion. This is acceptable in terrestrial systems where torque and power considerations

do not play a role and where the only goal is simply to excavate a given region of soil.

For power constrained systems or for systems which have additional sensing goals, a

detailed analysis of interaction forces and a better understanding of the process can

lead to more robust, efficient, and precise control and sensing strategies.

1.1 Motivation

Many people are interested in automating the digging/excavation process. In addition

to earth-based digging applications, NASA has a need for well designed, small-scale,

autonomous digging robots for Mars (and Lunar) exploration. NASA is interested

in the collection of any geological information about the Martian surface. A sample

return mission is not planned until 2014 (at the earliest, 2011, on an accelerated

schedule). Therefore, any exploration of the soil must be conducted remotely.

Previous interactions with Martian soil have been conducted using a manipula-

19



20 CHAPTER 1. INTRODUCTION

tor arm (Viking missions [71]) and also by spinning the wheels of a rover vehicle

(Pathfinder/Sojourner mission [114]) to obtain measurements of physical soil proper-

ties. Specific results from these missions will be discussed in the next chapter.

Future landers and rovers are increasingly being equipped with manipulator arms

in order to place instruments, collect samples, conduct experiments, and for all-

purpose manipulation. An example of this type of system is the ill-fated Polar Lander

mission that was scheduled to land on Mars in December 1999. It was equipped with

a three meter manipulator arm which was to conduct multiple tasks, one of which was

to dig a half meter trench in the soil. Another example is the future 2003 dual-rover

mission, in which two identical rovers each will use an instrumented robotic arm to

conduct a variety of tasks, possibly including scraping, brushing, and close-proximity

imaging of rock samples. In addition, other interactions with soil mediums are being

examined, for geological purposes, excavation, sample collection, or for buried object

retrieval.

The FIDO Rover at the Jet Propulsion Laboratory shown in Figure 1-1 is rep-

resentative of what might be expected on future systems. The FIDO Rover is a

test-bed/prototype for the rovers to be sent in the 2003 mission. I have had the

privilege of working on this system for a brief time, during which I mounted a flat

plate to the end of the instrument arm on the front of the rover. Preliminary stroking

tests in simulated soil were conducted. While no precise directed studies were carried

out, it is clear that it would be possible to use this arm to interact with soil in this

manner.

With the existence of robotic arms on future rovers and landers (of greater dex-

terity and precision than the Viking missions [71]), it is logical to examine what

geological information could be obtained through controlled interaction using these

robotic arms. Thus, this motivates the study of robot-soil interactions presented in
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Photo courtesy of the Jet Propulsion Laboratory, California Institute of Technology.

Figure 1-1: The FIDO rover at the Jet Propulsion Laboratory is equipped with an
instrument arm, to which we temporarily mounted a flat plate in order to interact
with the soil to see how feasible the technology would be.

this thesis.

1.2 Background and Goals

From a survey of many papers on robotic excavation, there is surprisingly little study

of soil-tool interaction modeling for the prediction of interaction forces and estimation

of soil properties. Most researchers in this area have focused on obstacle avoidance,

reactive stroke path planning to avoid torque limiting, and planning of excavation

of specified volumes of soil. This work is typically done on large scale excavation

systems. The goal of these systems is improved excavation, not estimation, and thus

less focus has been given to the precise modeling of interactions and the feasibility of

parameter estimation.

On the other hand, in the Civil Engineering community, there is an abundance

of papers on the topic of active and passive earth pressure. Active earth pressure

theory examines the pressure developed on a fixed retaining wall from the weight

of a soil mass pushing against it. Passive earth pressure theory examines the forces
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required to move a wall pushing against a soil mass. Therefore, when using a flat plate

embedded in a soil mass, the force required to move the plate will be a combination

of the active and passive earth pressure components. By using a flat plate as the

means of interaction, the wealth of existing research in this field can be applied to

the analysis.

The research in robotic excavation could greatly benefit from a detailed study

and application of the Civil Engineering work. This thesis proposes to serve as a

bridge between the two communities, drawing from research in both robotics and

Civil Engineering.

The ultimate goal of this research is to provide all necessary techniques to enable

a robotic manipulator arm to accurately estimate soil properties through interactions

alone. There are four intermediate goals which are necessary to achieve the ultimate

goal: select suitable soil models for the prediction of interaction forces by examining

existing models and exploring novel methods ; verify the validity of the selected

models through experimentation ; develop new methods to invert these soil models

to estimate soil parameters from interaction data ; and enhance the control of a

manipulator arm for useful soil interactions.

1.3 Outline of Thesis

Chapter 2 discusses previous work on topics related to soil-tool interactions and dis-

cusses the proposed approach for this research. The results from the studies of Mar-

tian soils from the 1975 Viking Project and the 1997 Pathfinder/Sojourner Mission

are summarized. Various models for earth pressure in Civil Engineering are discussed.

A listing of prior work on robotic excavation is also presented.

Chapter 3 discusses the development of the manipulator arm used in this research.

It also discusses the associated software for control of the manipulator. A number
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of improvements were made to the manipulator design to increase its strength and

sensing capabilities. The system architecture for real-time control and data collection

is also described.

Chapter 4 discusses existing soil models for the prediction of draft force1 and also

details the first extensive application of a numerical limit analysis technique to this

prediction problem. In this chapter, it is shown that the numerical limit analysis

technique produces predictions which are in good agreement with other commonly

referenced models. In addition, the numerical limit analysis technique has the added

benefits of providing upper and lower bounds on the failure force and increased ver-

satility for modeling a variety of tool and soil configurations.

Chapter 5 presents the experimental procedure for data collection. The develop-

ment of a number of techniques are discussed. The manipulator end-effector plate

must be inserted into the soil with minimal disruption of the soil state. After inser-

tion, the plate must be pulled through the soil in a controlled manner. An iterative

method for the in situ determination of soil-interface friction is also developed.

Chapter 6 presents the experimental results from interactions with three different

cohesionless soils: two in a loose state and one in both loose and dense states. The

results are compared to measurements from direct shear tests. Discussions of the

results and sources of error are presented.

Chapter 7 discusses the development of a new parameter space model inversion

technique. The soil models are nonlinearly dependent on four parameters. In order

to determine parameter estimates from force data, a nonlinear optimization would

typically be done. Instead, this chapter presents the development of a graphical pa-

rameter estimation technique which uses both force measurements and associated

uncertainties to determine ranges of parameters which are consistent with the ob-

1“draft” force – the force to pull a tool, the force to pull the plate through the soil.
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served measurements.

Finally, Chapter 8 discusses ideas for the future and applications of this work.

Chapter 9 concludes with a summary of the recommendations and contributions of

this thesis.



Chapter 2

Previous Work

This chapter begins with a discussion of the previous work done in the exploration

of Martian soils. This is followed by a discussion of prior work in modeling of soil

behavior and manipulator interactions with soil. Finally, the proposed approach used

in this thesis for the development of our system is outlined.

2.1 Previous Exploration of Martian Soils

There have been two landmark missions to the Martian surface. The first mission had

two identical landers which touched down at two geographically distinct locations.

These were the Viking 1 and 2 landers, launched in 1975, which conducted surface

sampling experiments from 1976 to 1978. The second mission was the Pathfinder

lander, carrying the Sojourner rover, which landed on Mars in July of 1997 (fairly

close to the Viking 1 landing site). Among their many tasks, these missions conducted

studies of soil properties.

The Viking lander experiments [70, 71] were conducted with a surface sampler arm

[23], which scraped the soil to dig shallow trenches (0.04-0.06 m deep). Investigators

25
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examined the record of arm forces, visually estimated failure wedges, and examined

the slopes of the resulting trench walls. From this data, they extracted estimates of the

cohesion and internal friction angles1 using a model from McKyes and Ali [69]. The

soil encountered was classified into three types: drift, crusty to cloddy, and blocky.

Using a technique relating the geometry of the failure wedge to the internal friction

angle, they obtained the following estimates for friction angles: for drift material, 14◦

to 21◦, for crusty to cloddy material, 28◦ to 39◦, and for blocky material, 27◦ to 33◦.

Cohesion estimates were also determined: for the drift material, 1.4 to 3.0 kPa, for

the crusty to cloddy material, 0.5 to 5.8 kPa, and for the blocky material, 2.2 to 6.2

kPa.

From the Pathfinder/Sojourner mission, researchers have published data on the

observed angles of repose and the friction angles of Martian soil [114, 113]. The

angle of repose was measured using images from the lander camera and they reported

values between 30◦ and 38◦. Friction angles were obtained from simulated shear tests

conducted by driving one of the wheels on the rover up to 1.5 turns, while keeping

the other wheels stationary. The friction angles were found to be between 32◦ and

41◦. The shear tests were conducted at normal stresses typically below 4 kPa. Two

methods were used to estimate cohesion from the shear data. In the first, the angle of

friction was assumed to be equal to the angle of repose2, and for each measurement

of normal and shear stress, a cohesion estimate was computed, resulting in values

between 0.120 and 0.356 kPa. The second method uses a least squares fit to determine

friction angles and cohesion estimates. In this case, the cohesion estimates were found

1The internal friction angle is the angle of friction when soil is rubbing against soil. A friction
angle, φ, is related to a friction coefficient, µ, by the relation: µ = tanφ.

2As noted by Terzaghi [112], the angle of repose for soils with cohesion is not a constant value
and depends on the height of the slope. For cohesionless soils, he states that the angle of repose is
approximately a constant, and independent of the height of the slope and fairly independent of the
initial density of the soil. It is approximately equal to the angle of internal friction of the soil in its
loosest state.
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to have a wider range and were sometimes negative. Overall, they conclude that the

soil appears to show little or no cohesion.

A third mission to reach the Martian surface, which unfortunately did not land

successfully, was the recent Polar Lander, scheduled to land in December 1999. It

was equipped with a three meter long manipulator arm. This arm was designed to

dig a half-meter to meter deep trench. As can be noted from the other missions, the

greatest depth of soil probed has only been approximately 6 cm. Future missions will

hopefully be able to uncover material at greater depth.

For the interested reader, there are also additional references about Martian soil.

There is an article about considerations for cold temperature behavior of Martian

and Lunar soil from Chua and Johnson [20]. This reference also provides general

information about the Martian environment, summaries of the Viking and Pathfinder

missions, and other soil mechanics considerations applicable to Mars. A white paper

and large collection of references related to Mars soil from Haldemann [35] can be

found online. In addition to Martian data, we also have data on Lunar Soil Simulants

from Willman et al. [123, 124]. While lunar regolith is not expected to be identical

to Martian soil, it is still of interest for any future missions to the Moon. Willman et

al. compared experimental draft forces with those predicted using four different 3-D

models of soil failure [39, 32, 69, 78], including the same model used in the Viking

analysis, but found poor agreement.

2.2 Previous Work on Modeling and Manipulators

A significant body of work exists on the topic of robotic excavation. The work has

primarily focused on planning, development and coordination of systems, or simple

rule based control schemes to avoid stalling. This thesis is intended to fill a gap

in the existing body of research. Researchers have primarily focused on high level
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planning and have not taken a close look at improving techniques for accurately

predicting interaction forces, attempting to classify soils from interaction data, or

developing control systems to use estimated soil parameters to enhance performance.

The following survey of the existing body of work is divided into those related to the

modeling of soil behavior and the control of manipulators interacting with soil.

2.2.1 Soil-Tool Interaction Models

When using a flat plate as the end-effector, the problem of predicting the draft force

for the plate is equivalent to the classical case of the force on a retaining wall. The

solution of this problem is commonly known as active and passive earth pressure

theory. There are many papers on this topic. A few which are widely referenced or

unique are mentioned here.

Study of this problem in Civil Engineering dates back to Coulomb (1776) [21]. It

is also well known that there are limitations to the theory proposed by Coulomb. For

instance, for soil-tool interfaces which exhibit friction, the larger the friction angle,

the greater the prediction error. To account for such limitations, additional methods

have been developed which use a logarithmic spiral failure surface near the soil-tool

interface. These methods are discussed in soil mechanics texts like Terzaghi [112],

Lambe and Whitman [62], or Jumikis [50]. These models, which pre-assume a failure

surface and compute a force equilibrium based upon this failure surface, are commonly

referred to as limit equilibrium methods.

In addition to limit equilibrium methods, there are methods which consider energy

dissipation and stress equilibrium to determine upper and lower bounds on the failure

force. These techniques are commonly referred to as limit analysis techniques. They

are derived from the upper and lower bound theorems from Drucker [27]. Sokolovskii’s

slip line method [108] calculates a lower bound on the failure force from solving a set
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of stress equilibrium differential equations over discrete points in the soil mass using

a finite difference method3. Caquot and Kerisel [17] provide a set of tables from the

results of their calculations which are also based upon the solution of the governing

equations of equilibrium4. Chen and Liu [18] provide an upper bound solution which

assumes a failure mechanism composed of linear and logarithmic spiral components,

but the calculation of failure force is based upon energy calculations rather than force

balance, making this prediction a limit analysis upper bound, rather than a limit

equilibrium technique. There is also another technique, which takes advantage of

the ever increasing capability of computers, called numerical limit analysis. Sloan

[107] develops finite-element numerical methods for the computation of upper and

lower bound solutions. Together, we refer to upper and lower bound methods as

the numerical limit analysis technique. Sloan provides examples for cases of bearing

capacity of strip footings, active earth pressure, slope stability, and buried tunnel

stability. Extensive work has also been done on the bearing capacity of foundations

by Ukritchon [118, 117] using this technique.

There is also a final set of soil models which use finite element techniques to predict

deflection and failure forces. Yong and Hanna [126] develop a two dimensional finite

element model for soil cutting and verify their results using a 10 cm wide by 20 cm

long blade at a variety of blade inclinations. Kushwaha and Shen [58, 93] and Chi

and Kushwaha [19] develop 3-D finite element techniques using a stress-strain model

from Duncan and Chang [29]. It is also interesting to note that Kushwaha and Zhang

[60] have tried applying radial basis function neural networks to the modeling task.

3Sloan [107] notes that Sokolovskii makes some assumptions in his calculations which make the
results neither strict upper or strict lower bounds.

4Only sometimes viewed as a lower bound. Some references, such as Chen and Liu [18] refer to
it as being, at times, viewed as a lower bound. Other references, such as Duncan and Mokwa [30]
refer to it being based upon the logarithmic spiral theory, which would make it a limit equilibrium
technique.
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In addition to the papers which develop theoretical models, there have been papers

which study the agreement between theory and experimental data. Osman [75] tests

a variety of inclined and curved blades 4” deep and 24” wide and compares the results

with the predictions from the logarithmic spiral model. Rowe and Peaker [87] conduct

studies with 1.5’ deep and 6’ wide wall and make interesting observations regarding

progressive failure of loose and dense soils. James and Bransby [47] study the shape

of the failure surface resulting from the rotation of a wall about its bottom tip and

compare the results with the model from Sokolovskii [108]. And very recently, there

has been a study from Duncan and Mokwa [30], who apply a load to a reinforced

concrete anchor block of dimensions 3.5’ high, 6.3’ long, and 3’ thick and study

the load versus deflection curve and compare the measured failure force against the

Coulomb and logarithmic spiral models.

All of the methods discussed above, except for the 3-D finite element method from

Kushwaha et al., have been 2-D. There were a number of 3-D models in existence

which have already been mentioned briefly related to the testing of the Lunar Soil

Simulant. These models were from Godwin and Spoor [32], Hettiaratchi and Reece

[39], McKyes and Ali [69], and Perumpral, Grisso, and Desai [78]. These are typically

more complex and not necessarily more accurate. The use of a plate with a large

width to depth ratio can enable the use of the many 2-D models and avoid the

complications and added uncertainty of the 3-D models. However, such ratios cannot

always be obtained in practice, especially at larger depths, in which case the 3-D

models would be required.

2.2.2 Control of Manipulators for Interaction with Soil

There has been extensive prior work in the area of robotic excavation. The majority

of these systems incorporate some form of adaptation in the control scheme. The
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adaptation in these cases refers to the capability of altering the digging trajectory

to avoid stalling or to avoid obstacles, not explicit adaption to soil properties. Each

group of researchers in the area of robotic excavation are discussed briefly below.

Singh and others at CMU [68, 101, 102, 100] have done much work in the area

of planning excavation and constructing complete systems capable of autonomously

scooping and loading material. Originally they had used a linear failure surface model

based upon the model from Reece [83], but they also developed a neural network

learning scheme to predict resistive forces [16]. This group is probably the most

advanced in this field. Their manipulator executes digging strokes in pre-planned

trajectory motions after the high level planner tells them where to dig. Their primary

focus is to successfully remove a selected volume of material through strategically

planned strokes. They have implemented their system on a Caterpillar backhoe and

combined it with laser range finders to measure the soil surface and locate dump

trucks for autonomous truck loading [109].

Shi, Wang, and Lever [96, 95, 97, 122] used fuzzy logic rules derived from the

knowledge of a skilled operator to adjust digging trajectories incrementally to avoid

obstacles and stalling. They used force sensor measurements to trigger state changes

and obstacle navigation was limited to in-plane 2-D navigation, either under or over

objects. They also performed some basic study of neural network methods.

Bradley and Seward and a variety of colleagues [11, 10, 91, 92] have constructed

a 1/5th scale hydraulic backhoe arm and have studied digging in a planar trench.

Their system is not back-driveable, however, they implement a software-based force

feedback measurement system using induced errors in desired trajectory tracking.

They avoided the use of sensitive force sensors in an inherently rough environment.

Their obstacle avoidance scheme is basically a trial and error method constrained to

the plane of digging.
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Huang and Bernold and colleagues [7, 44, 45] have studied impedance based meth-

ods for digging control, obstacle detection via discrete contacts, and made initial

attempts at characterizing soil properties through digging resistance measurements.

They discuss methods for handling obstacles by recording coordinates of impact with

the obstacle, moving slightly and attempting to check for another impact. By repeat-

ing this procedure the spatial extent of the obstacle can be determined. Sampling of

multiple points happens discretely and is a somewhat lengthy process. If the manip-

ulator is back-driveable, a continuous method for obstacle mapping which we have

developed can also be attempted [42].

A few other sets of researchers in the field of excavator control can also be men-

tioned. Koivo and Vähä and colleagues [8, 52, 56, 119] have done work on modeling the

dynamics of excavators and for conducting simulations of excavator systems. Bullock

et al. [12] studied planning techniques to excavate a given geometrical region of soil

and conducted basic studies of varying digging depth based upon strain measurements

on their robotic arm. Bodur et al. [8] conducted simulations of a backhoe, where the

desired digging path is adjusted in increments when the force limit is reached so that

the trajectory is a bit higher at each step until the force limit is satisfied. Forces

in the simulations are based upon equations from Vähä’s study [119]. And finally,

one other interesting direction of research was from Ostoja-Starzewski et al. [76] who

examined the use of force-feedback in a master-slave configuration to allow operators

to have a better sense of the forces of interaction in excavation.

2.2.3 Specific Work on Parameter Estimation

As noted, most of the work on robot-soil interaction has been concerned with plan-

ning and obstacle negotiation. These have typically been large scale systems, where

researchers are not interested in precise interactions. In contrast, the goal of this
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research is estimation, not excavation.

There has been a small amount of work from robotics researchers examining the

topic of property estimation. Bernold [7] mentions how “measured forces can be used

to create characteristic patterns or fingerprints for various soil conditions.” Bernold’s

idea was to develop a means of classification of soils into similar categories rather

than direct parameter estimation. Some very initial experimental results were pro-

vided which support his hypothesis, showing that different soils will produce different

interaction forces. Further work on categorizing soil types from interaction data has

not resulted.

There is also the work from Luengo, Singh, and Cannon [68] on interaction force

estimation. Their system uses a large hydraulic backhoe with a bucket scooping up

soil. Estimation is done concurrently with excavation. They estimate parameters for

use in their selected soil model to obtain reasonable predictions of interaction forces.

The accuracy of the force predictions are assessed, but the accuracy of the parameter

estimates are not. As will be seen in this thesis, a wide variety of parameter values

can produce the same forces. Interaction forces alone cannot be used for parameter

estimation, additional information is required. Thus, while they obtain force estimates

to within roughly 10-60%, there is no guarantee on the accuracy of their parameter

estimates. However, since their goal is force prediction, not parameter estimation,

they need not be concerned with this fact.

2.3 Proposed Approach

As stated throughout, the ultimate goal of this work is to develop techniques to

accurately estimate soil properties through controlled interactions. For this purpose,

we need to know how these properties relate to quantities which can be measured.

For robotic manipulators, these quantities are typically force and displacement. If
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visual feedback is available, then we can also estimate the failure region.

In order to understand how the soil properties relate to the force and displacement,

a study of the various soil models for predicting failure force is required. Since there

are a variety of models in existence, and not all necessarily in agreement, a few models

are examined and compared in Chapter 4.

These soil models will require certain conditions on the loading. In order to

compare measured forces with these models, the manipulator must be controlled to

obey the loading requirements. The development of suitable manipulator control

techniques is presented in Chapter 5. Experimental interaction data is collected with

sample soils and presented in Chapter 6.

Finally, in order to use the interaction data to obtain soil property estimates,

the soil models must be inverted. A graphical technique for the inversion of the soil

models is developed in Chapter 7 and applied to the experimental interaction data.

Before the above techniques are presented, the details of the development of the

robotic manipulator arm used in this research are provided first in the following

chapter.



Chapter 3

Hardware and Control

This chapter discusses the evolution of the manipulator from its initial bare-bones

state to the final system for experimentation. The limitations of the manipulator

resulting from design choices and how those limitations exhibit themselves in data

collection are outlined. In addition to the manipulator itself, the development of the

supporting hardware for sensing, computation and control is presented. Finally, the

software architecture, manipulator control, and user interface are discussed. Material

covered in this chapter is not essential for understanding the later chapters and may

be bypassed for those more interested in soil modeling and interactions.

3.1 Manipulator Evolution

Very rarely is any piece of hardware perfected in its first incarnation, and our system

is no exception. Design is an iterative process, where insights are gained through

discovery of shortcomings. A significant amount of time was spent completing and

redesigning our manipulator to achieve the levels of performance necessary to conduct

the required experiments. In the process, a number of critical issues were uncovered

35
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which may be useful to future researchers.

The primary design of the manipulator used in this research was completed by

two other researchers, Katz [51] and Curtis [24]. Originally, the manipulator was

designed to be a platform for the study of nonlinear compliant transmissions. It was

to be equipped with a hybrid of two rotary and two linear compliant elements on

the four major joints. The study of the novel compliant elements themselves were

completed within the framework of one degree-of-freedom (DOF) test-beds.

These compliant elements were not integrated into the final manipulator for a

number of reasons. Due to time constraints, the other two researchers were not avail-

able to modify the designs of the elements to have the proper strength and sensing

range. It was discovered that the typical loads experienced in our experiments would

be greater than the strength and sensing range of the original designs. In addition,

the compliant elements were not fundamentally necessary for this research. Although

the compliant elements were originally envisioned as a means for obtaining force in-

formation, for the proof-of-concept nature of this research, an accurate force/torque

sensor was used instead. This allows us to separate any issues associated with obtain-

ing accurate force measurements through the compliant elements from issues directly

related to the primary goal of property estimation through controlled interactions.

In addition to the incorporation of the force/torque sensor, other modifications

were made to the manipulator design. In the next sections, the original design and

the subsequent modifications are briefly outlined.

3.1.1 Initial Design

The original design sought to develop an arm which could achieve approximately 5

lbf at the end-point comfortably, had a workspace of approximately 30-40 inches, and

had at least 4 DOF (6 DOF would have been ideal). The end-effector DOF(s) should
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Figure 3-1: The original manipulator design, un-cabled, before the modifications and
additions to make it fully functional. Rotary compliant elements were to be placed
in the base and shoulder and linear compliant elements were to be placed in-line with
the cabling in the open space above the horizontal base platform.

not be back-driveable to ensure that the end-effector motor(s) do not have to work

against the other arm motors during stroking. A planar design with a base azimuth

DOF was chosen as a starting point.

The resulting manipulator design is shown in Figure 3-1. The design has a few

notable features, including a differential in the elbow for increased torque capability

in the most critical joint for stroking, and a very compact end-effector design with a

worm gear transmission. The base and shoulder joint were intended to have rotary

compliant elements. The two motors located to the far left were to drive the differen-

tial located in the elbow. The large space between the rear motors and the shoulder

joint was to accommodate linear compliant elements which would be placed in-line

with the cabling. As noted previously, the compliant elements were not incorporated

in the final manipulator.
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3.1.2 Design Revisions

This section briefly discusses the primary revisions to the original design. These

highlight issues which may be of interest for future researchers designing manipulators.

Figure 3-2 provides a graphic summary of the modifications.

• Stronger Cables Larger cable diameters (0.054”, 240 lbf) than the ones origi-

nally selected (0.032”, 120 lbf) were required to carry loads up to the desired 5

lbf. This required a redesign of the routing to accommodate the larger diameter

cable.

• “Gear” Reduction A smaller capstan for the shoulder motor and larger elbow

pulleys were required in order to increase the force capability. These modifi-

cations effectively doubled the force capability of the arm and also reduced

the effect of the backlash in the motor gearheads. The new elbow pulleys also

had cable terminations so that two lengths of cable can be used instead of one

lengthy one which would be difficult to pre-tension to a reasonable level.

• Stiffer Links Reinforcement pieces were required to stiffen the open rectangular

channel used for the upper arm link and also to stiffen the long base platform.

Both of these would deflect under typical operating loads.

• Counterweights Counterweights made of Tungsten alloy (∼ 17.6 g/cc) were

added to statically balance the arm (elbow: ∼ 2 lbf @ 6.75”, shoulder: ∼ 10

lbf @ 7.25”). All motions executed by the arm are expected to be low velocity

maneuvers and so the increased inertia is of less concern than the force capability

of the arm. In most soil interactions, the weight of the arm would actually be

helpful (e.g. insertion and downward stroking). On the other hand, it would

complicate free-space motions, lifting, and data processing. Also, unintended

power shutdowns would result in the manipulator falling under its own weight.
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Figure 3-2: Summary of modifications from left to right, top to bottom: (row 1)
redesigned smaller capstan for shoulder, base reinforcement, elbow counterweight
and link 1 reinforcement, (row 2) shoulder counterweight, external encoders for elbow
motors, external encoder for shoulder joint, (row 3) enlargement of elbow differential
pulleys and forearm joint stop, and end effector design utilizing a worm gear.
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• Joint Stops Joint stops were added to each joint for calibration of the relative

(incremental) encoders. A homing procedure was implemented to locate these

stops at start up.

• External Encoders The motors which had been selected were Maxon RE035

DC motors with 72.38:1 three-stage planetary gearheads. Each stage of the

gearheads have a no-load backlash of < 0.7◦, which results in approximately

2◦ of backlash at the motor shaft. Due to the large backlash in the motor

gearheads, external encoders were essential on the major joints in order to have

accurate end-point sensing. The external encoders are 3600 counts-per-turn

(CPT). Prior to the addition of these encoders, the end-point sensing accuracy

was approximately 0.5”, after the addition, the accuracy is approximately 0.05”

(typical insertion depths are 1”). This is still much larger than desired, but to

achieve greater accuracy would require a substantial redesign.

• Sensor Co-location The end-effector was redesigned in order to place the

force/torque sensor directly behind the plate instead of at the end of the forearm

link before the end-effector motor. Figure 3-3 shows the design before and after

the modification. This allows direct measurement of the force on the plate. A

flat plate was chosen because of the resulting simplification in the soil interaction

models. This is consistent with the goal of property estimation rather than

excavation, which would be impractical with a manipulator of this size and

strength.

3.1.3 Limitations, Compensation, and Lessons

There are a number of limitations which still exist with the final manipulator used

in experimentation. These limitations are in strength, position sensing accuracy, and
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Figure 3-3: The previous end-effector design had the F/T sensor located between the
end-effector and the arm (in place of the cylindrical piece at the end of the forearm
shaft). The new end-effector places the F/T sensor directly behind the plate (wrapped
in latex for protection from sand particles).

arm flexibility.

At nominal arm extension, the arm can achieve 5 lbf at the end-point, but there

is no safety factor beyond that limit as originally hoped. With the stronger shoulder

cables, the shoulder motor becomes the limiting factor by a small margin1. This

strength limitation translates into limits on the width and depth of insertion of the

plate used in experimentation. Although greater strength would have been preferred,

in actuality, an arm of this size being capable of exerting 5 lbf is very reasonable.

Any rover-based manipulator arm would likely be in this range.

As mentioned previously, the resulting end-point sensing accuracy at nominal ex-

tension is approximately 0.05” and the backlash is approximately 0.5”. The backlash

1The motor can generate approximately 70 in lbf continuous torque at the shaft. The capstan is
0.75” in diameter, resulting in a force in the cable of 190 lbf. The new 0.054” cable has a strength
of 240 lbf.
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is less of a factor than the sensing accuracy since during digging the motors will

always be on one side of the deadzone. The sensing accuracy, on the other hand,

creates difficulties in obtaining accurate insertion depths (typically 1”) and smooth

end-point displacement data. The uncertainty in insertion depth can be compensated

for with external measurements during experimentation. The end-point displacement

will contain discontinuous jumps as a result of the resolution of the external encoders.

Although this is evident in the resulting data, the control compensates for the jumps

and settles fairly rapidly. The resulting force measurement is often unaffected by the

discontinuities. Thus, the resulting poor sensing accuracy can be overcome. Future

designs can easily avoid these problems by selecting motors with minimal backlash.

Another limitation, tied to both the strength and sensing accuracy, is the flexibility

in the arm. There exists a small amount flexibility in the actual arm links, but the

main source of flexibility lies in the cabling. Typically, one would pre-tension the

cables to at least half the expected load. Due to the space limitations and the long runs

of cable for the elbow joint, the design does not incorporate enough space to properly

pre-tension the cables. This results in a very evident stretch in the elbow transmission

which is not sensable with the external encoders. The stretch is typically up to 1-2

degrees at the elbow at nominal loads. In order to compensate for this stretch, the

apparent stiffness of the arm can be measured and approximately compensated for.

Appendix A documents the flexibility compensation.

In summary, there are a number of limitations that still remain in the system.

Design revisions have been completed to compensate for these limitations so that

useful data can be obtained. In the control and experimentation, this work has

endeavored to remove any special characteristics of this particular manipulator so

that no special artifacts can be attributed to this system. Ideally, all the data is

independent of the specific system from which it has been obtained. Experiments
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Figure 3-4: Final hardware system showing the manipulator arm, workstation, power
rack, and sandbox.

conducted with another system under the same conditions are expected to produce

the same results.

3.2 Final Hardware System

Figure 3-4 shows the final manipulator, workstation, power rack, and sandbox. The

final manipulator is a five DOF arm whose evolution has just been discussed. The

first four DOF (base, shoulder, elbow, forearm twist) are all cable-driven. The wrist

uses spur gears which drive a final worm gear. The arm has a reach of approximately

36 inches fully extended. It can lift approximately 5 lbf at 80% extension (the typical



44 CHAPTER 3. HARDWARE AND CONTROL

operating extension).

The arm is equipped with a Mini-40 6-axis force/torque (F/T) sensor from ATI

Industrial Automation shown in Figure 3-5. The F/T sensor is 40 mm in diameter and

12.3 mm thick. It uses silicon strain gauges for greater signal strength and overload

protection compared to foil gauges. The calibrated sensing range is 100 N shear force,

300 N normal force, and 5 N-m torque with 16 bit resolution. The overload protection

has a maximum allowable shear of 1300 N, normal of 2900 N, and torque of 25 N-m.

It interfaces using an ISA card in the PC which can produce readings at rates up to

4 kHz.

This sensor was selected based upon the original manipulator design with the

sensor placed after the end-effector motor (Figure 3-3, left image). The driving con-

sideration was the torque sensing range. The calibrated sensing range is quoted for

loading along individual axes, combined loading situations have reduced limits. Loads

of up to 22 N (5 lbf) at 0.2 meters were expected, resulting in 4.4 N-m at the sensor

– near the limit for combined shear/torque loading. With the new placement of the

sensor directly behind the plate, the sensor has a larger range than necessary. Typical

interactions will only use less than 1/10th of the full sensing range (up to 20 N). The

calibration was tested over the typical loading range and found to be within 1% of

the actual force.

The manipulator arm is controlled by a 200 MHz Pentium Pro computer equipped

with an 8-axis ServoToGo I/O card running Real-Time Linux [5]. The I/O card pro-

vides 8 encoder input channels, 8 analog-to-digital (A/D), 8 digital-to-analog (D/A)

channels, and a number of digital input-output (I/O) channels. The D/A channels

are used to provide inputs to the amplifiers which power the motors and the A/D

channels are used to monitor the current and voltage output of the amplifiers. The

servo loop is programmed as an interrupt service routine (ISR) triggered via the
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Figure 3-5: The Mini-40 6-axis force/torque sensor is shown above, where we have
used small standard brass masses to test the Z-axis calibration.

interrupt generated by the I/O card which can be programmed for different rates.

Currently the system is run at 500 Hz. All computations are done by the Pentium

Pro processor.

The manipulator arm is powered using five Copley Controls Model 412 DC Brush

Servo Amplifiers which are powered by two 48V DC power supplies. These are all

mounted within a compact custom built rack (18” x 19” x 12”) shown in Figure 3-

4. The rack also contains basic logic circuitry for the enable lines, kill button, and

break-out wiring for the ribbon cables from the I/O card.

3.3 System Architecture

Much of the initial inspiration for the style of the architecture was drawn from that

of the Whole Arm Manipulator (WAM) system [72, 41]. The architecture allows for

multiple control laws, trajectories, and state sequences in a very modular fashion.

This modularity facilitates the addition of new components in a structured manner,
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Figure 3-6: The illustration above shows the system architecture for manipulator
control. On the left, the servo loop is run as a kernel level process which operates
in hard real-time with guaranteed bounds on latencies. On the right, the user-level
processes have lower priority, no guarantees on timing, and are run in the time left
over from the kernel-level processes.

allows for independent testing of individual components, and facilitates rapid con-

struction of new behaviors by combining existing behaviors. The complete system is

programmed in C.

Figure 3-6 shows an illustration of the system architecture. Using the Real-Time

Linux framework, the controller (servo loop) is run as a kernel-level process having

the highest priority on the system. The terms “servo loop” and “controller” will be

used interchangeably in the following discussions and refer to the kernel-level process

which controls the manipulator. The user interface and data storage routines are

run as user-level processes (along with the rest of the standard Linux kernel and
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programs). These user-level processes are run in the time left between periodic calls

of the kernel-level process.

The controller (kernel-level process) communicates to the user-level processes via

kernel print statements (for debugging messages), shared memory (for connecting to

the user interface), and first-in-first-out pipes (FIFOs) (for data storage). The user

interface is completely independent from the controller. This independence allows for

the implementation of different user interfaces which can be used interchangeably or

simultaneously, tailored for specific purposes.

This section presents general details about each of the components of the system

and manipulator control. A more detailed presentation of the specific control of the

manipulator for digging will be given in Chapter 5.

3.3.1 Manipulator Control

The components of the servo loop are shown in the left box of the Figure 3-6. The

components are called sequentially within the servo loop. The servo loop is run in

hard real-time with a guaranteed frequency of 500 Hz based upon interrupts generated

by the I/O card.

The servo loop can be divided into multiple conceptual units. The lowest level

handles the basic input and output routines, such as reading encoders, reading the

F/T sensor data, and computing the torque output. The next unit is the trajectory

generator which produces the sequence of desired positions to move the arm. There

are multiple possible trajectories, including Cartesian and joint space motions. The

next unit is the state machine. In the state machine, more complex logic can be

programmed to execute a sequence of states (each of which can be trajectories or

other state sequences) based upon various state transition conditions.

Underlying the trajectory generator and state machine, and tied to the low-level
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control, is the arm kinematics. Before discussing each of the units of the servo loop

in turn, the derivation of the arm kinematics is presented.

3.3.1.1 Kinematics

The full arm 5-DOF forward and inverse kinematics and Jacobian computation are

provided in Appendix B. Fortunately, the inverse kinematics can be computed di-

rectly, instead of resorting to an iterative approach. The kinematics routines convert

from the five joint values to Cartesian x, y, z coordinates and two orientation angles

n1 and n2 which represent the angle of the end-effector relative to vertical and the

plane formed from the first two links of the manipulator (the vertical plane rotated

through the base azimuth angle) respectively.

Figure 3-7 shows the coordinate frame for the arm and the orientation vectors.

The end-point of the arm is located at the center bottom tip of the plate. For the

orientation vectors, the rotation is first done about the Y axis by amount n1 and then

about the Z axis by amount n2. These orientation angles were chosen so that the

inverse kinematics could be computed directly using these angles.

These kinematics routines are fundamental to the control of the manipulator and

are used extensively in the post-processing conversion of data. The forward kinemat-

ics, Jacobian, and inverse Jacobian are computed during each pass through the servo

loop immediately following the low-level input routines and prior to the trajectory

generation routines. If the trajectory generator is operating in Cartesian mode, then

the inverse kinematics routines are called immediately after the trajectory generator

in order to convert the desired Cartesian position into a desired joint position to feed

to the low-level output routines. Finally, the low-level output routines use the Jaco-

bian matrices to compute the proper torque output if operating in a Cartesian based

control.
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Figure 3-7: An illustration showing the Cartesian axes for the arm kinematics. The
XYZ coordinates are relative to the base of the mounting plate, and N1 and N2 are
orientation vectors for the end-effector. The end-point of the arm is located at the
center of the bottom of the plate.
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3.3.1.2 Low-Level Control

The low-level control can be divided into input and output routines. The input

routines consist of reading the encoders, A/D channels, and F/T sensor data and

performing the appropriate conversions. Basic filtering is done on the encoder inputs

to smooth the signal. In addition, due to the differential in the elbow and the cou-

pling of the shoulder and elbow joints, a motor/joint transformation (Appendix B) is

applied to the encoder input to convert from motor space to joint space.

For the output, there are two basic types of low-level control. A number of other

controllers are implemented as variations on these two basic types, but are not used

frequently (such as velocity control). The two basic types are joint proportional-

integral-derivative (PID) control and Cartesian Stiffness Control (Salisbury [89]).

The joint PID control is made slightly more interesting than a standard joint

PID due to the presence of the motor encoders and the external encoders. Using

the external encoders alone, a high stiffness cannot be obtained due to the backlash.

Using the motor encoders alone, the sensing accuracy is unacceptable. Therefore,

a PID loop is closed around the motor encoders to obtain high stiffness, and the

external encoders are used with an integral gain for absolute positioning accuracy.

Due to the differential and the coupling, joint gain matrices are used instead of gain

vectors. The gain matrices are computed using diagonal joint gain matrices multiplied

by the joint/motor transformation matrix.

τmtr = Tmtr
jnt

[(
KPmtr q̃mtr + KDmtr

˙̃qmtr
)

+
(
KPextq̃ext + KIext

∫
q̃ext dt

)]
(3.1)

where q̃mtr = qdes − qmtr and q̃ext = qdes − qext.

Cartesian Stiffness Control is also implemented to allow specification of a desired

stiffness which is independent of arm configuration. This is the primary control which

is used during most of the experimentation, for reasons explained in Section 5.3.1. The
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position dependent Jacobian matrix is used to convert a Cartesian stiffness matrix

into a position dependent joint stiffness matrix. Since the arm is essentially planar

with a base rotation, a cylindrical stiffness is specified instead of a Cartesian stiffness.

A cylindrical stiffness matrix is obtained by rotating a Cartesian stiffness matrix by

the angle of rotation of the arm base joint.

τmtr = Tmtr
jnt

[
J(qext)

−1R(q0)−1 Kcrt R(q0)J(qext) q̃mtr + KDmtr
˙̃qmtr

]
(3.2)

The gain on the velocity term is the same as in the joint PID control. It is unnecessary

to convert this into a Cartesian frame since most of the motions will be of low velocity

and the primary force will be a result of position error rather than damping terms. An

integral term is not used in this control mode since its presence would alter the desired

stiffness. When using the stiffness control, the external encoders are used for accurate

position sensing and to drive the desired position in the trajectory generation, but

they do not directly enter into the control law. They are only indirectly used in the

final low-level control law through the desired position and the Jacobian matrices.

The gains of the above controllers were tuned empirically to obtain high stiffness

with smooth motions. More sophisticated adaptive control was not found to be

necessary for a number of reasons. The typical motions of the arm are fairly slow.

The arm is counterbalanced for gravity compensation. The arm has high inertia, high

gearing, low stiffness, and large backlash, making fast maneuvers problematic.

3.3.1.3 Trajectory Handler

There are multiple trajectories which are programmed to provide desired position

and velocity values for the arm every servo loop. These trajectories can be classified

as joint space or Cartesian space trajectories. Some examples of these trajectories

would be joint space moves, Cartesian space moves, insertion trajectories, and various
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digging stroke methods. More details about the insertion and digging trajectories will

be provided in Chapter 5.

Only a single trajectory is active at any given moment, but a listing of future

trajectories to be executed is continuously maintained. This trajectory list takes

the form of a circular ring of pointers to trajectory structures. As one trajectory

completes, the next trajectory on the ring is initialized and run. When a sequence of

trajectories is completed and the rest of the ring is empty, a joint or Cartesian hold

is executed according to the type of the last trajectory.

Each trajectory is self-contained in its own file and relevant variables are passed as

function arguments. Trajectories each have initialization and exit routines. They are

time based, so that they are called every servo loop and must produce desired position

coordinates for each time step. They are either finite duration, ending automatically

after completion, or infinite duration, requiring a command to end execution.

The tracking of the current active trajectory, maintenance of the circular ring of

future trajectories, and handling of trajectory transitions is all done by a trajectory

handler. The modularity of the individual trajectories and the implementation of

the trajectory handler allow for easy construction of complex sequential behaviors.

In order to have non-sequential and event-driven behaviors, a finite state machine

architecture was implemented which interfaces with the trajectory handler.

3.3.1.4 Finite State Machine

The finite state machine (FSM) allows for the programming of a set of states which

can be moved between in an arbitrary order, depending upon various transition con-

ditions. Typically, it is used to control the flow of a linear sequence of event-driven

behaviors. However, it is capable of implementing a more complex set of state de-

pendent transitions.
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In this system, a state machine “sequence” is a set of independent states, each of

which can execute a set of simple variable assignments, start or stop data storage,

or call a trajectory or even another sequence of states. There are specific entry and

exit functions which can be programmed for each state transition. In contrast to

a trajectory, where the driving variable is always the time, the state sequences are

time-independent and transitions are executed based upon programmed transition

conditions which must be satisfied.

An example of a state sequence is the homing routine used to initialize the arm

upon start up. For each joint, this sequence calls a joint-space “touch” trajectory

that moves a specific joint incrementally until contact with a joint stop is detected

via a large position tracking error. Once the joint stop is detected, the trajectory

ends. This triggers a state transition and the “touch” trajectory is called for the next

joint. When all stops have been contacted, the home position for the encoders is reset

in the low-level input routines.

Another similar example is the wall sensing routine used to detect the edges of a

sandbox. This routine calls a sequence of Cartesian “touch” trajectories which use the

force/torque sensor to detect wall contacts. Each contact triggers a state transition

which starts the next “touch” trajectory.

A widely used sequence, which is the primary means for data collection, is the

“insert-stroke-pullout” sequence. This sequence assumes the arm is located above the

soil at the desired point for stroking. The first step in the sequence uses a Cartesian

“touch” trajectory to locate the soil surface. Next, it inserts the plate to a specified

depth using an “insert” trajectory. Then a “stroke” trajectory is called. Finally, a

Cartesian “moveto” is used to pull the plate out of the sand. Data storage is also

optionally triggered at both the “insert” and “stroke” stages of the sequence.

A final example is the multiple-stroke sequence. This is an example of a “meta-
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sequence” – a state sequence that calls other state sequences. This meta-sequence

positions the arm in multiple locations above the soil using Cartesian “moveto” tra-

jectories and at each location it calls the “insert-stroke-pullout” state sequence. Using

this meta-sequence, a single command can be entered into the user interface that will

cause the arm to autonomously execute six strokes at various locations with associated

data collection to time stamped data files.

This combination of a trajectory handler and a state machine architecture greatly

simplifies the programming of the manipulator. It allows for easy reuse of trajectory

and state sequence components and provides a simple framework for constructing

complex sequences of behaviors.

3.3.2 User Interface

The final portion of the system architecture is the user interface. As mentioned

previously the user interface is completely independent of the servo loop. The servo

loop runs as a kernel-level interrupt service routine. There are only three methods

by which the servo loop can communicate with the rest of the operating system.

These three methods are via kernel print statements, shared memory, and FIFOs.

All three methods are used to define an interface through which user-level programs

can monitor and control the behavior of the servo loop and collect data.

The characteristics of each of the methods make them best suited for certain func-

tions. The kernel print statement method is used primarily for debugging purposes

since it is a one-way communication. While both the FIFO and shared memory

methods can be used for two-way communication, shared memory is much more ver-

satile. Therefore, the user interface communicates with the servo loop through the

shared memory method. FIFOs are good for communicating streams of data and are

therefore used as a means for data collection.
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When data storage is triggered in the servo loop (by a trajectory, state sequence, or

user command), a predefined structure composed of variables of interest are output

via a FIFO. Whenever the arm is in operation, a user-level process is run which

continuously checks for data in the FIFO. When data is found, it is decoded by the

user-level process and stored to time-stamped text files. A special character sequence

is output by the servo loop to signal the start of a new data file. Thus, data storage

is done automatically and is independent of the primary user interface.

The primary user interface operates via a command-line interface combined with

multiple graphical displays. Figure 3-8 shows the typical user interface comprised of

multiple text monitor windows and a graphical 3D monitor window. The monitor

windows can be individually enabled or disabled as needed. The command line in-

terface has various features such as command completion and scripting capabilities.

Inputted commands are communicated via shared memory to the kernel-level servo

loop to start trajectories or state sequences, enable storage, or set various parameter

values.

The text monitors are programmed using simple Xlib routines. When enabled,

each monitor forks off as a separate process that obtains the data to be displayed via

user-level shared memory. A distinction is made here between the shared memory

used to communicate between the kernel-level controller and the user-level processes

and the shared memory used to communicate between various user-level processes.

The user-level shared memory is a copy of the contents of the kernel-level shared

memory that is updated at a slower rate.

The graphical 3D monitor is a stand-alone program created using a combination

of C and Tcl/Tk using Togl (an OpenGL widget for Tcl/Tk). The graphical monitor

is typically run on a separate computer from the arm controller to off-load the com-

putationally intensive rendering. The monitor is composed of two processes which
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Figure 3-8: The user interface for manipulator control is comprised of multiple text
monitor windows, a graphical 3D monitor window, and a command-line interface.

communicate with each other via user-level shared memory; one renders the arm and

the other handles the network communications over TCP/IP to the arm control com-

puter. The rendering of the arm is generated by exporting assemblies from I-DEAS,

our CAD package, into VRML. Since the arm was designed using I-DEAS, the ren-

dering is identical to the actual manipulator (to very fine detail in fact, missing only

the bolts and cabling).

The format conversion from VRML to OpenGL was accomplished with various

tools to convert to 3D Studio (I have used AccuTrans 3D2 and AC3D3). The 3D

Studio files were then converted to C source code containing OpenGL display lists for

2Commercial program with limited time trial, available at http://www.micromouse.ca/, other
free alternatives may be available, such as AC3D or another program called 3Dto3D.

3A feature limited trial is available for both Windows and various UNIX operating systems at
http://www.comp.lancs.ac.uk/computing/users/andy/ac3d.html.
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each of the joint assemblies (using VIEW3DS4).

As mentioned previously, the independence of the user interface from the servo

loop control allows us to operate multiple user interface programs interchangeably or

simultaneously. In addition, because all communication between the user interface(s)

and the servo loop is through shared memory, I have also added a feature which

simulates the servo loop shared memory using stored data files. The user interface

can then serve as a stand-alone data file playback device.

3.4 Summary

This chapter has discussed the evolution of the manipulator used in this research and

the lessons learned in the process. Designing with low backlash, stiff transmissions,

adequate end-point sensing precision, and co-located sensors is recommended. This

chapter has also discussed the design of the system architecture for control of the

manipulator. An emphasis has been placed on the modularity of the system, which

has greatly increased the ease with which complex behaviors can be implemented.

4A free 3D Studio to OpenGL converter written by David Farrell, which has since disap-
peared from the internet, but can be found inside of another program called GnOpenGL3ds at
http://www.ifrance.com/yburgevin/.
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Chapter 4

Soil Modeling

This chapter examines the different methods for the prediction of the force required

to move a flat plate embedded in soil. In order for the plate to move, the soil must

be displaced. This typically occurs with a failure surface developing between the

moving soil directly in front of the plate and the stationary soil beyond. Therefore,

the expression, “failing” the soil, is often used. The force required for failure is also

sometimes referred to as the “draft” force – the force required to pull a tool.

This work is solely concerned with the force required to fail the soil, problems

with elasticity or more detailed stress-strain relationships for soil are not considered.

Instead, this work focuses on the strength of the soil, i.e. stress conditions which lead

to failure. Consideration is also limited to dry soil, since it is expected that Martian

soil will be dry and have little or no cohesion. The assumption of plane strain is also

made in all the methods considered since they are 2-D methods.

Note that this problem is identical to the classic problem of passive and active

earth pressure studied in Civil Engineering for hundreds of years, e.g. Coulomb (1776)

[21]. Therefore the classical methods from Civil Engineering, as well as the more

recent developments, will be examined. In this work, a number of methods have been

59
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selected which are representative of different methods popular today. These models

are two-dimensional and do not consider pre-failure stress or deformations in the soil

mass. The analyses consider soil as a continuum medium, in contrast to a few recent

developments that explicitly treat the particulate nature of soil.

In this chapter, a total of five different methods are considered. These include

two limit equilibrium methods, another method with predictions provided in tabular

format, and two limit analysis methods – one providing an upper bound and the other

providing both an upper and lower bound. The basics of the development of each of

the models is presented. The limitations and sensitivity of the models are discussed

and the resulting predictions are compared.

4.1 Background on Methods

The various methods which are presented here were chosen to reflect different ap-

proaches to the draft force prediction problem. These methods come in two vari-

eties; methods based upon limit equilibrium, and methods based upon limit analysis

(Drucker [26]). There are many other possible methods or tables which could also be

included in this comparison. The following collection is believed to be representative

of the various methods in use today and we believe they constitute a sufficient basis

for comparison.

The most basic limit equilibrium method was developed by Coulomb (1776) [21]

and assumes a planar failure surface. This model is known to be inadequate for

cases where friction develops at the soil-tool interface. The next method, from Ohde

(1938) [74], assumes a failure surface composed of a logarithmic spiral section plus a

planar section. In contrast to Coulomb’s Theory, this method accounts for soil-tool

friction. These methods are typically used as ground truths for verifying more recently

developed models – Coulomb’s Theory for its historical usage and the logarithmic



4.1. BACKGROUND ON METHODS 61

spiral due to its greater accuracy in predicting forces for frictional wall interfaces.

Another method that is commonly used as a basis for comparison is Caquot and

Kerisel’s earth pressure tables [17]. These tables are sometimes viewed as a lower

bound on the draft force. Some references state that the computation is based upon

the logarithmic spiral method and other references state that they are computed from

equations of equilibrium. These predictions are most easily found in tabular form. It

is clear from examination of the predictions from these tables, that they are neither

strict upper or lower bounds.

Finally, two methods are discussed for limit analysis, yielding three predictions,

two upper and one lower bound. The method proposed by Chen and Liu [18] is an

upper bound based on velocity characteristics. The second method, using a tech-

nique from Ukritchon, Whittle, and Sloan [118], is a numerical, finite-element-like,

approach which provides both upper and lower bounds. Examples of application of

this technique to a variety of typical soil problems is given by Sloan [104]. This thesis

extends the application of this numerical technique, providing the first extensive set

of predictions for the passive and active earth pressure problem.

The goal of this section is to introduce the numerical limit analysis technique

and show the added benefits from application of this technique. It will be shown

that the predictions from the numerical technique compare favorably with the other

accepted models which are presented. In addition, it will be shown that the numerical

technique provides additional capabilities which make it the most versatile of all the

methods.

In the following sections, each of the methods is discussed in more detail. Much

of the discussion is drawn from three primary sources. For a complete presentation

of the limit equilibrium techniques, see Terzaghi [112]. For a complete and rigorous

presentation on the application of limit analysis to soils, see Chen and Liu [18]. For
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a complete presentation of the numerical limit analysis technique, see Sloan [104].

4.1.1 Basic Assumptions and Notation for Models

A number of assumptions are made in the following models. As stated before, the

models are two-dimensional and assume plane strain behavior. The soil is assumed

to be isotropic and homogeneous. The properties are assumed to be constant during

loading. At failure, the behavior is assumed to be perfectly plastic. Lastly, the

shear strength of the soil is assumed to be given by the Mohr-Coulomb Failure Law,

presented next.

4.1.1.1 Mohr-Coulomb Failure Law

The Mohr-Coulomb failure law provides an expression for the shear strength of soil.

It is given by the following equation,

s = c+ σ tanφ (4.1)

where s is the shearing resistance of the soil, c is the cohesion, σ is the normal stress

applied on the shear surface (positive in compression), and φ is the angle of shearing

resistance1. There exists a similar equation for the shear along the soil-tool interface2.

The failure law can be visualized using a Mohr circle construction. It is noted

that the soils in this research are expected to be cohesionless. Therefore, c is zero,

and the shearing resistance given by s = σ tanφ. Figure 4-1 shows an illustration

of a state of stress at failure. In this construction, the shearing resistance given by

the Mohr-Coulomb failure law can be represented as a straight line inclined at an

1Readers may be more familiar with the concept of a coefficient of friction, µ, rather than a
friction angle, φ. The friction angle is related to the coefficient of friction by µ = tanφ. It represents
the angle of the resultant force relative to the vector normal to the shearing plane.

2The cohesion, c, is replaced with ca, and φ is replaced with δ. In this case, ca is the adhesion
and δ is referred to as the angle of wall friction.
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s =σ tan φ
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Figure 4-1: Illustration of the Mohr-Coulomb failure law for cohesionless soil.

angle of φ. Failure will occur when the circle of stress is tangent to the inclined line

representing the shearing resistance (as shown). A state of stress below the inclined

line will not fail.

4.1.1.2 Notation for Models

All of the models have the following common parameters.

α tool angle measured relative to horizontal
β soil surface angle measured relative to horizontal
H vertical insertion depth of tool

φ internal friction angle of soil against soil
δ interface friction angle between soil and tool
γ unit weight of the soil

The parameters can be separated into two groups. The upper three are geometric

parameters which can be controlled and the lower three parameters are inherent

properties of the soil. These parameters are illustrated in Figure 4-2.
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Figure 4-2: Illustration showing the various parameters of the soil models. The draft
force on the embedded plate is a combination of the the contributions from the active
and passive earth pressures.

4.1.1.3 Active and Passive Earth Pressure

The draft force for an embedded plate can be computed from two contributions, as

shown in Figure 4-2. Force is applied to the back of the plate by the soil wanting to

fall in to fill the area vacated as the plate moves forward. Force is also applied by the

plate onto the soil ahead of the plate in order to fail the soil. The pressure the soil

applies to the back of the plate is referred to as the active earth pressure. The pressure

required to fail the soil ahead of the plate is referred to as the passive earth pressure.

The net force on the plate at failure can then be expressed as F = FP − FA, the

resulting passive force minus the active force. Because the dependence upon density

and depth are well known, the forces are often expressed in terms of earth pressure

coefficients. These earth pressure coefficients are dimensionless numbers that depend
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upon the other geometric and soil parameters.

F = FP − FA =
1

2
γH2 (KP (α, β, φ, δ)−KA(α, β, φ, δ)) (4.2)

Thus, in the following discussions, both the active and passive earth pressure equa-

tions will be presented.

4.1.2 Limit Equilibrium Methods

The limit equilibrium models pre-assume a shape of the failure surface (linear, log-

arithmic spiral). Using this shape, they compute a force equilibrium and optimize

for the minimum force to fail the soil. Before discussing the two limit equilibrium

models, the concept of a Rankine state of stress, which is used by both models, is

presented.

4.1.2.1 Rankine State

Consider the state of stress shown in the Mohr circle diagram in Figure 4-1. A

relation for the stress required for failure can be determined for the special case when

the principal stresses are vertical and horizontal. This problem was solved for the

active and passive case by Rankine (1857) [82] (independent of Coulomb’s Theory,

which preceded it) and the solution is often termed the active and passive Rankine

states. This derivation can be found in most soil mechanics texts.

In the Mohr circle representation, assume that the vertical stress is kept constant

and the horizontal stress is varied until failure. Again, the case where the principal

stresses are vertical and horizontal is considered. The notation of σI simply denotes

the largest principal stress and σIII the smallest, which could be either vertical or

horizontal. For the active case, σIII would be decreased until failure, and for the

passive case, σI would be increased until failure.
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From this construction, using the properties of the Mohr circle, it can be deduced

that the plane along which failure will occur will be oriented at 1
2
(π/2 − φ) from

horizontal in the passive case, and 1
2
(π/2 + φ) from horizontal in the active case.

Also, a relation between the horizontal stress, σh, and vertical stress, σv, at failure

can be determined (from Lambe and Whitman [62]). Considering the triangle formed

by the origin, center of the circle of stress, and the point of tangency, then

sinφ =
(σI − σIII)/2
(σI + σIII)/2

=
σI/σIII − 1

σI/σIII + 1
(4.3)

σI
σIII

=
1 + sinφ

1− sinφ
= tan2

(
π

4
+
φ

2

)
= Nφ (4.4)

For the active case, σI = σv and σIII = σh, and so

σh
σv

= tan2

(
π

4
− φ

2

)
=

1

Nφ

(4.5)

and for the passive case, σI = σh and σIII = σv, giving

σh
σv

= tan2

(
π

4
+
φ

2

)
= Nφ (4.6)

As noted above, both of these relations can be expressed in terms of Nφ, which is

referred to as the flow value or flow factor. The flow value and the terminology of a

Rankine zone (or Rankine state) is used in the simplest case of Coulomb’s Theory,

as a part of the logarithmic spiral solution, and as a part of Chen and Liu’s upper

bound solution.

4.1.2.2 Coulomb’s Theory of Earth Pressure

Coulomb’s Theory (1776) [21] of passive earth pressure of ideal sand (Terzaghi [112],

p. 105) computes the horizontal force required to fail a soil mass and then projects

this force into the proper direction given values of α and δ. The method can be used
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for both positive and negative values of β and δ, though it is known to be increasingly

incorrect as δ deviates from zero.

If the simple case of a vertical wall, horizontal soil surface, and no wall friction is

considered, the soil will be in an active and passive Rankine state. The vertical stress

at depth z is given by the geostatic stress, σv = γz. The solution for the active and

passive force can then be computed as

FA =
∫ H

0
σhdz =

∫ H

0
γz

1

Nφ

dz =
1

2
γH2 1

Nφ

(4.7)

FP =
∫ H

0
σhdz =

∫ H

0
γzNφdz =

1

2
γH2Nφ (4.8)

In this simple case, it is found that KA = 1/Nφ and KP = Nφ. This solution is

also useful for the other models, for example, it will be used in the logarithmic spiral

model.

The solution shown above is extended to handle inclined tools and surfaces and

non-zero wall friction. Figure 4-3 shows an illustration of the planar failure surface

assumed by Coulomb’s Theory. The passive force FP can be computed from mini-

mizing the value of P1 given various locations for the point c1. Given the point c1

and the assumption of a planar failure surface, by enforcing the constraint of no net

moment in the soil (the line of action of all three forces shown must intersect at a

point) the value of P1 can be determined. Then, the optimal passive force is given by

FP = min |P1|.

The solution can be obtained graphically, as demonstrated above, or algebraically,

as Coulomb has done, resulting in the following equation for determining the minimum

draft force,

FP =
1

2
γH2 K ′P

sinα cos δ
(4.9)
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Figure 4-3: Coulomb’s Theory assumes a planar failure surface to greatly simplify
the problem. The above illustration is for the passive case. The active case is similar,
but with opposite signs for φ and δ, resulting in forces oriented on the other side of
the respective normals. The draft force is then given by FP = min |P1|.

where K ′P is given by

K ′P =
sin2(α− φ) cos δ

sinα sin(α + δ)
[
1−

√
sin(φ+δ) sin(φ+β)
sin(α+δ) sin(α+β)

]2 (4.10)

To place it in the common form stated previously, the sinα cos δ term in Equation

4.9 should be incorporated into the coefficient.

The active earth pressure derivation is similar and results in the following closed

form equation,

FA =
1

2
γH2 K ′A

sinαA cos δ
(4.11)

where K ′A is the coefficient of active earth pressure given by

K ′A =
sin2(αA + φ) cos δ

sinαA sin(αA − δ)
[
1 +

√
sin(φ+δ) sin(φ−βA)

sin(αA−δ) sin(αA+βA)

]2 (4.12)

Care must be taken to properly handle the sign and angle changes for the active case

from the passive case. For a plate inserted at angle α into a soil with a constant β
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inclination, the active equations should use αA = π − α and βA = −β. Also note,

in the graphical construction, the positive direction of δ and φ are reversed from the

passive case.

Before moving on, a few comments should be made regarding the validity of

this model. Although this model is commonly used as a basis for comparison, it is

primarily for its historical nature, rather than its wide applicability. There range of

applicability of this model is fairly well known, and care should be used not to apply

it to situations for which it is known to be a poor predictor. The underlying equation

of this model is Rankine’s equation. The addition of wall friction invalidates the

assumptions and changes the shape of the failure surface away from linear. Terzaghi

states that if the wall friction δ is smaller than φ/3, then the difference in the failure

surfaces is very small, and this model can be used.

4.1.2.3 Ohde’s Logarithmic Spiral Method

Ohde’s (1938) [74] method, as described in Terzaghi [112], improves upon Coulomb’s

theory by incorporating a more complex failure surface. It is known that for simple

cases the soil failure surface will either be planar, circular (for zero internal friction

angle), or logarithmic (for non-zero friction angle). The logarithmic spiral produces a

curve such that the normal to the curve is at a constant angle relative to the line from

the origin of the spiral. When this angle is zero, then the curve is a circle. Ohde’s

method uses this property and assumes a failure surface composed of a logarithmic

portion and a planar portion.

Figure 4-4 shows an example of the failure surface assumed by Ohde’s method.

The method uses a graphical technique to obtain a solution for P1 given a value of l0,

the distance from point a to the origin of the logarithmic spiral, O1. An analytical

solution for this model was not found. Thus, in order to place this in a more useful
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Figure 4-4: Later steps determine the shape of the failure surface given the input
value of l0.

form, I have taken the graphical method and transformed the steps into sequences of

equations, whose derivation is outlined below. The theory and graphical construction

is directly from Terzaghi, the implementation in equation form described here is

original.

The first step in the solution of the problem requires the determination of the

orientation of the planes of failure in the soil, assuming Rankine’s theory is applicable.

The state of stress at a point in the soil, b, corresponding with the tip of the tool,

as shown in Figure 4-5, is known. Figure 4-6 shows the Mohr circle of stress for this

state. The angles α1 and α2 must be determined. In order to compute these angles,

the center of the circle and the coordinates of the pole, PP , must be determined.

The state of stress at the bottom tip of the tool (point b) on a plane oriented

parallel to the surface of the soil, inclined at angle β, is known. This point is denoted

x1 = (x1, y1) on the Mohr circle. It is assumed that the strength of the soil obeys

the Mohr-Coulomb failure law, s = σ tanφ (assuming no cohesion). This failure

envelope will intersect with the circle of stress at a point where the soil fails, at point
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Figure 4-5: Stress state on a plane ori-
ented at angle β at a depth of z for an
element in an infinite medium.
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Figure 4-6: The first step in Ohde’s
method requires us to compute the orien-
tations of the planes of failure using Mohr’s
circle of stress.

x2 = (x2, y2). The center of the circle must lie on the horizontal axis, so it can be

given coordinates (h, 0). The value of x2 can be obtained from the following quadratic

equation

x2
2 − 2x1x2 −

x2
1 + y2

1

1 + tan2 φ
= 0 (4.13)

and then y2 = x2 tanφ and h = x2(1+tan2 φ). Next the coordinates of PP = (xP , yP )

are found by solving another quadratic equation

x2
P −

2h

1 + tan2 β
+

h2 − r2

1 + tan2 β
= 0 (4.14)

and then yP = xP tan β. Since the coordinates of x2 and PP are known, the angles

α1 and α2 can be found.

The second step in the graphical method requires the determination of the pa-

rameters of the logarithmic spiral. The value of l0 is known, it is given to us as our
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Figure 4-7: The third step of the graphical solution for Ohde’s method requires us to
find the point k and angle θd1.

free variable in the optimization. The value of α1 was obtained in the first step, and

so the coordinates of O1 can be computed. From there, r0 and θ can be computed.

The equation for the logarithmic spiral gives us r1 from

r1 = r0e
θ tanφ (4.15)

Note that if φ = 0 then r1 = r0. From r1, the coordinates of d1 can be found.

In the third step, the point of application and direction of the force from the planar

wedge of soil formed by c1d1f1 is computed. Figure 4-7 provides an illustration for

this portion of the problem. It can be seen that θi = π− α1 − (π/4 + φ/2) and using

the law of sines, Hd1 can be found to be

Hd1 =
(l0 + r1) sinα1

sin θi
(4.16)

The point k is located 1/3 of the distance from d1 to f1. Note that θd1 = π/2 −

(α1 + π/4 + φ/2− β). From this, the length l3 can be found. The magnitude of the

force Pd1 is also needed. For the special case when d1f1 is vertical, as in the case of a
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horizontal surface (which is the situation for all of the testing in this research) then

the force would be the same as that discussed from Rankine’s theory.

Pd1 =
1

2
γH2

d1Nφ =
1

2
γH2

d1 tan2(π/4 + φ/2) (4.17)

For the case of a non-vertical section d1f1, the wedge c1d1f1 can be treated like the

failure wedge from Coulomb’s theory with the assumption of zero wall friction.

Next, the fourth step, the area and center of gravity for the region abd1f1 is

computed. This gives the location and magnitude of the weight vector W1, from

which the value of l2 can be found. Finally, if the moments are summed about point

O1, the moment of force F1 is zero since it passes through O1, and the following

relation is found for the candidate draft force P1

P1 =
1

l1
(W1l2 + Pd1l3) (4.18)

Optimize over l0 to find the minimum P1 and this will be the final draft force, FP . Note

that l0 can also be negative. In fact, as l0 approaches −∞ the curve bd1 approaches

a straight line, and the whole solution approaches that predicted from Coulomb’s

theory.

The logarithmic spiral passive model does not have a direct active counterpart.

For this model, the active force from one of the other models is used to determine

the complete passive minus active force for failure.

4.1.2.4 Caquot and Kerisel’s Earth Pressure Tables

The work from Caquot and Kerisel (1948) [17] are said to be “computed from the

integration of differential equations governing the conditions of limiting equilibrium”.

In this respect, it is likely similar to Sokolovskii’s slip line method [108] which also

solves the differential equations of limiting equilibrium. Although they are grouped
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with the limit equilibrium techniques, they are sometimes viewed as being lower

bounds. Sloan [104] states that as a result of assumptions made in their calculations,

the values cannot be considered as strict lower bounds. Regardless, while not repre-

senting strict upper or lower bounds, the predictions are believed to be trustworthy

and are often used as a basis for comparison. Their results are most easily found

in tabular format [17]. These values have been input and interpolation is used to

determine intermediate values.

For the passive case, the tables provide coefficients assuming a perfectly rough tool

interface. For surfaces with friction less than the soil internal friction, a reduction

factor, given via a second table, is multiplied with the rough coefficient to obtain a

corrected passive earth pressure coefficient. For the active case, the tables provide

coefficients for various ratios of β/φ and δ/φ. The force applied on the wall can then

be calculated from the coefficient simply by

F =
1

2
γH2b (4.19)

where b is the adjusted passive earth pressure coefficient or the active earth pressure

coefficient.

4.1.3 Limit Analysis Methods

Limit analysis techniques applied to soils was introduced by Drucker et al. (1952-

1953) [27, 28, 26]. A very cursory examination of the fundamentals of limit analysis

is presented below. For a very rigorous examination of all facets of the application of

limit analysis techniques to soils, including discussions of the assumptions, ramifica-

tions, and applicability, the reader is directed to Chen and Liu (1990) [18].
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4.1.3.1 Cursory Discussion of Limit Analysis Applied to Soils

Limit analysis techniques can be used to define upper and lower bounds on the true

failure force by applying the upper and lower bound theorems from Drucker. These

techniques are limited to rigid-perfectly plastic or elastic-perfectly plastic materials

(i.e. no plastic hardening/softening). In fact, all of the models discussed here make

the assumption of perfectly plastic behavior.

The upper bound theorem states that if a velocity field can be found which satisfies

the velocity boundary conditions and the strain and velocity compatibility conditions,

then the loads associated with this velocity field will be greater than those required for

failure. The loads are computed by equating the external rate of work to the internal

rate of energy dissipation. Such a velocity field is termed a kinematically admissible

velocity field. The velocity boundary conditions are self-explanatory. The strain and

velocity compatibility conditions are defined by a concept known as normality, or the

associated flow rule. Basically, this condition requires that the vector representing

the direction of the plastic strain rate be normal to the failure surface. This condition

is the basis for the computation of the internal energy dissipation for a given velocity

field. A discussion of the associated flow rule is beyond the scope of this work (see

Chen and Liu [18]).

The lower bound theorem states that if a stress field can be found that satisfies

the equilibrium equations, the stress boundary conditions, and no where violates the

yield criterion, then the loads associated with this stress distribution are lower than

those required for failure. Such a stress field is termed a statically admissible stress

field.

The upper bound computation is concerned only with velocity conditions and

energy dissipation. The lower bound computation is only concerned with equilibrium

and yield conditions. There is no requirement for a stress-strain relationship for the
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soil, only a yield criterion and the assumption of normality (which is an idealized

stress-strain relationship). In addition, the material is idealized as perfectly plastic,

i.e. infinite strains will occur at constant stress at failure.

There are issues related to the applicability of these theorems to soils, primarily

because soils are known to be frictional, non-associated flow materials. Chen and Liu

prove the following theorem for the upper bound case

Theorem V (Upper Bound) - Any set of loads which produces collapse for

the material with associated flow rule will produce collapse for the same

material with non-associated flow rules.

This theorem allows us to compute the upper bound solution as if the material obeyed

the associated flow rule, and the result will still be an upper bound on the collapse

load.

For the lower bound counterpart, the theorem is more involved and the result not

as clear. This theorem requires knowledge of the yield surface and the directions of the

plastic strain rate on this yield surface, which may not be normal to the yield surface.

From this knowledge, a new yield surface is constructed which would satisfy the

normality condition. If this new yield surface lies completely within the original yield

surface, then the lower bound theorem can be applied. If normality is obeyed, then

these yield surfaces are identical. Clearly, this result is not as compelling, nor assured,

as that from Theorem V. In actuality, the computations for considering candidate

stress fields for the lower bound case makes no use of the normality condition. While

there may be deeper dependencies on normality in the basis of the lower bound

theorem, the numerical lower bound computations used here are independent of the

normality condition.

One final assumption is made, related to the deformation of the soil prior to failure.

These limit analysis techniques assume that changes in geometry of a soil mass at the
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Figure 4-8: Chen’s method has three sections and uses velocity admissibility condi-
tions to determine the shape of the failure surface.

instant of collapse is small. As a result, the virtual work equation is applicable.

4.1.3.2 Chen and Liu’s Upper Bound

While the limit theorems provide the basis for the conclusions, creativity must be

exercised to create candidate velocity and stress fields. Chen and Liu derive equations

for an upper bound solution to the earth pressure problems assuming a three part

failure mechanism from James and Bransby (1970) [47]. The equations developed by

Chen and Liu are based on energy equilibrium rather than on force equilibrium as

employed in the limit equilibrium method.

The three zones of the failure mechanism are shown in Figure 4-8. The first zone,

Region I, is a triangular region and is assumed to be a Rankine zone which is not

influenced by the interface friction at the wall. This is similar to the logarithmic

spiral method. The second zone, Region II, is also triangular, and is governed by the

interface friction. The third zone, Region III, is a transition zone or mixed zone, and

takes the form of a logarithmic spiral.

Using equations based upon energy dissipation using the above mechanism, Chen
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and Liu derived the following coefficient of passive earth pressure as an upper bound

KP =
cos(ρf − φ) sin(α + vw)

sin2 α cosφ [sin(α + δ) cos(ρf + vw)−

cos δ(tan δ − tan vw) cos(α− ρf ) cos vw][
sin ρf cos(α− ρf ) +

cos(ρf − φ)

(b2 + 1) cosφ(
cos(α− ρf )

[
ebψf (b cosψf + sinψf )− b

]
+

sin(α− ρf )
[
ebψf (b sinψf − cosψf ) + 1

])
+

cos(ρf − φ) sin(α + β − ρf − ψf ) cos(α− ρf − ψf )ebψf
cos(α + β + φ− ρf − ψf )

]
(4.20)

where b = 3 tanφ and vw is a value which can vary from 0 to φ and relates to the

normality condition, the details of which are omitted for simplicity. For the purposes

of this research, vw = 0 is used.

In order to find the critical values of ρ and ψ, an optimization is conducted in

these two variables until the minimum KP is found. The corresponding critical values

are denoted by ρf and ψf . Once the critical KP is found, the draft force is computed

from FP = 1
2
γH2KP .

The equation for the active earth pressure follows the same lines. The active earth

pressure coefficient is the same as the passive coefficient with φ replaced with −φ, vw

with −vw, δ with −δ, and b with −b. Similar modifications to α and β need to be

made as stated in the section on Coulomb’s Theory, αA = π − α and βA = −β.

KA =
cos(ρf + φ) sin(αA − vw)

sin2 αA cosφ [sin(αA − δ) cos(ρf − vw)+

cos δ(tan δ − tan vw) cos(αA − ρf ) cos vw][
sin ρf cos(αA − ρf ) +

cos(ρf + φ)

(b2 + 1) cosφ(
cos(αA − ρf )

[
e−bψf (−b cosψf + sinψf ) + b

]
+
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sin(αA − ρf )
[
e−bψf (−b sinψf − cosψf ) + 1

])
+

cos(ρf + φ) sin(αA + βA − ρf − ψf ) cos(αA − ρf − ψf )e−bψf
cos(αA + βA − φ− ρf − ψf )

]
(4.21)

An optimization is done over ρ and ψ to find the critical KA. Then the active force

is given by FA = 1
2
γH2KA.

Chen and Liu conduct comparisons of this model with the zero-extension line

theory of Habibagahi and Ghahramani (1979) [34] and with the slip-line method of

Sokolovskii (1965) [108]. These all have similar three part failure zones. The solutions

were found to be in good agreement.

4.1.3.3 Numerical Limit Analysis

While limit analysis has been applied to soil problems over the last few decades; re-

cently, there has been work to develop numerical methods which use finite element

meshes to compute lower and upper bound solutions. This work was originally done

by Sloan [104, 106, 107] and further developed by Ukritchon, Whittle, and Sloan

[118]. One of the difficulties in applying limit analysis techniques has been the con-

struction of velocity and stress fields. This method eliminates the need for making

assumptions about failure mechanisms and stress fields. By using a numerical mesh

based approach, no assumptions of failure mechanism need be made.

This method has been applied to numerous other problems such as bearing capac-

ity of foundations, stability of slopes, and retaining walls with tie-backs [116, 117].

The prior work primarily focused on cohesive, non-frictional (c 6= 0, φ = 0) materi-

als, such as clays. The technique had not been extensively applied to passive earth

pressure problems until this work.

Using programs developed by Ukritchon, Whittle, and Sloan, upper and lower

bounds for the passive and active earth pressure coefficients can be computed. The
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programs combine constraints on all the nodes of the generated meshes to form a very

large linear programming problem (for our typical problem, the number of variables

is near 20,000 and the number of constraints can be over 200,000). Most constraints

are linear, except for the Mohr-Coulomb yield criterion. If plotted with the axes of

σx−σy and 2τxy, the yield criterion would plot as a circle of a radius dependent upon

c, σx, σy and φ. This circle is linearized using p segments. For our meshes, we have

used p = 36. The programs also allow for velocity discontinuities between triangles in

the upper bound case and stress discontinuities the lower bound case. The solution

of the resulting large linear programming problem is carried out through an active

set method (Sloan [105]).

The programs themselves are compiled from Fortran sources. I have written pro-

grams for mesh generation in Matlab. The meshing relies heavily upon Delaunay

triangulation for the elements near inclined tools and for the non-square lower bound

meshes. I provide a bit of detail regarding the upper and lower bound meshes below.

In order to use these methods, a set of nodes and a triangular mesh connecting

these nodes must be constructed. In addition, structural elements (such as our plate)

which interact with the mesh must be added. Properties of the soil medium and

properties of the structure (which is also allowed to fail, but it is typically set to very

high strengths) are input. The properties of the soil need not be homogeneous. For

the upper bound mesh, velocity boundary conditions and a displacement direction for

the structure are specified. Special properties for the nodes at the structure-soil in-

terface are specified to simulate different soil-tool friction values. For the lower bound

mesh, stress boundary conditions around the boundary and a direction of loading for

the structure must be specified. Special properties of the soil-tool interface are also

specified. For the lower bound meshes, extension elements are also incorporated to

allow the stress field to extend beyond the finite mesh.
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Sample upper and lower bound meshes are shown in Figure 4-9 for an inclined

tool. The dots around the boundary indicate fixed boundary conditions. The upper

surface of the mesh is allowed to move freely. The repeated square arrangement of four

triangles is the recommended form, though not required in the presence of the velocity

discontinuities between each of the element faces. The velocity discontinuities between

the soil elements and the structural elements are used to specify the interface friction

angle. For the lower bound mesh, two different mesh forms are used. One form is

identical to the square meshing in topology, and the second is the radial arrangement

shown with a concentration near the point of loading. There are extension elements

around the side and bottom boundaries to extend the stress field. The nodes at

the soil surface are constrained to have zero normal and shear stress. The structural

element in the lower bound mesh is hidden by the overlapping stress constraints which

are required to specify a given interface friction angle.

The passive and active cases independently can be solved independently and then

combined. To save computation time, the combined meshes incorporating both the

active and passive earth pressures on an embedded plate simultaneously are solved.

Figure 4-10 shows some of the resulting data from the numerical computations for

α = 80◦, φ = 40◦, and δ = 25◦. The upper plot shows the kinematically admissible

velocity field computed by the upper bound program. The shading is included to

highlight the regions where the velocity exceeds a certain value (shown here with

1e-5). Both the active and passive failure regions can be seen. The lower plot shows

one aspect of the resulting statically admissible stress field computed by the lower

bound program. The figure shows the orientations of the principal stresses relative to

vertical. Dark regions indicate orientations close to vertical, and the red (or lighter)

regions indicate orientations close to horizontal. Note that the orientations are near

horizontal for the passive region and near vertical for the active region. The programs
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Figure 4-9: Upper and lower bound meshes prior to computation.
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Figure 4-10: Sample upper and lower bound meshes after solution.
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return the loads which correspond to the velocity field and the stress field shown.

These upper and lower bound solutions are not guaranteed to form tight bounds

on the predicted force. Refining of meshes is often needed to obtain tighter bounds

on the solution. This is where the primary work is involved, selectively refining the

granularity and topology of the meshes to obtain tighter bounds on solutions. A

number of changes are made to the mesh to try to obtain tighter bounds. Note

that the mesh size is much finer near the plate in both cases. Tight upper bound

solutions are typically easier to obtain. The lower bound solutions are more difficult.

Both square and radial meshes were generated, and in some cases the square mesh

produces better results, while in other cases, the radial mesh produces better results.

The square and radial predictions are compared and the tightest bounds are used in

each case.

In this work, the failure force predictions are the only results used from the models.

There are additional results from these computations which may be of interest. The

shape of the failure surface may be estimated from the upper bound solution and

compared with experimentally observed results. The stress distribution across the

plate computed by the lower bound solution can also be examined.

4.1.4 Summary of Models

Table 4.1 presents a summary of all the methods discussed in this chapter. The

equations in the table take into account the αA and βA changes for the active cases,

so a single α and β value can be used throughout. In addition to this summary table,

a table of the resulting predictions for each of the models for the complete range of

parameters of interest can be found in Appendix C.
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4.2 Comparison of Models

In this section, the sensitivity of each of the models to small variations in parameters is

examined. Next, a comparison of the the failure surfaces used in each model is shown.

Then, the predictions of each of the methods for various geometrical configurations

of tool and soil are compared. Finally, a discussion of the benefits and disadvantages

of the novel numerical limit analysis techniques is presented.

4.2.1 Sensitivity to Parameters

The sensitivity of the various models to variations in the parameters is computed from

a baseline configuration. Each of the parameters is varied while keeping the other

parameters constant. The resulting percentage change in the draft force prediction is

then compared.

The parameters for each of the models, the base configuration value, and the

symbols used in the models are shown in Table 4.2. It is expected that this case

will be fairly representative of the soils to be encountered. The dependence of the

draft force on the soil density and the tool depth is well known and consistent across

all the models, hence the relative sensitivity to these two parameters need not be

examined. (The force is proportional to the density and proportional to the square

of the depth of the tool.) For the other four parameters, each are varied in turn,

while holding the other three parameters constant. The percentage change of the

resulting prediction is computed. The results are shown in Table 4.3. Results for

only horizontal surfaces have been computed for the upper bound (UB) solutions.

Similarly, only the horizontal tables have been input from Caquot and Kerisel. For

these cases, variations in the surface inclination are not computed.

In actuality, better resolution in the tool angle and surface angle can be achieved,

since these are geometric parameters which we control. The model sensitivity to these
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Symbol Description Base Value Variation
α Tool Angle 70◦ − 100◦ 1◦-5◦

β Surface Angle 0◦ 1◦-5◦

φ Internal Friction Angle 40◦ 1◦-5◦

δ External Friction Angle 25◦ 1◦-5◦

γ Soil Density 1.5 g/cc n/a
z Tool Depth 1′′ n/a

Table 4.2: Definition of symbols and base configuration values and variations used in
the sensitivity analysis are listed. No variations are done with the density and depth
since their dependence is well known and common to all models (∝ γ and ∝ z2).

parameters provides an idea of what effect inaccuracies in positioning and leveling

will have on the resulting measurement. The sensitivity to friction angle variations

provides a measure of how easy it will be to distinguish variations in actual soil

parameters.

It can be noted from the percentage variations that the models are most sensi-

tive to changes of equal magnitude in the internal friction angle. In addition, the

sensitivity increases as the tool angle increases. This indicates that higher angle

configurations may be more useful in distinguishing soil friction angle properties.

4.2.2 Failure Surfaces

Figure 4-11 shows the computed failure surfaces for three of the models for the passive

case, with φ = 40◦ and δ = 25◦. The Coulomb and logarithmic spiral failure forces

are actually computed from these failure surfaces while the Chen and Liu model is

not. The Chen and Liu model computes the failure force using energy equilibrium

using the failure mechanism shown, but a direct force balance is not computed. It

is interesting to note that while the Chen and Liu failure surface is greater in extent

than the logarithmic spiral model, the Chen and Liu force is less. Figure 4-12 shows

each of the failure surfaces plotted on top of one another. It is also interesting to note
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that the angle of the Rankine zone in both the logarithmic spiral and Chen and Liu

models agree, though they are computed by very different means.

4.2.3 Comparison of Predictions

This section compares the numerical UB and LB predictions with the other models

presented. For simplicity, consideration is limited to cases with a horizontal soil

surface. A range of tool angles of 70◦-100◦ relative to horizontal is considered. Plots

of the passive minus active earth pressure coefficients versus internal friction angles

are shown in Figures 4-13, 4-14, and 4-15. Plots of the coefficients versus interface

friction angle are shown in Figures 4-16, 4-17, and 4-18.

In each of the plots, the percentage difference between the upper and lower bounds

are shown. It can be observed that it is much more difficult to obtain tight bounds

for high friction angles. In the future, additional mesh refinement may be done to try

to obtain tighter lower bounds.

For a simple case of a 90◦ (vertical) tool and a smooth interface (Figure 4-13,

lower left plot), all of the other model predictions overlap, with the numerical up-

per and lower bounds bracketing the other predictions. This shows that for simple

configurations, all the models are in exact agreement.

In a few instances, there is a rather large variation between the methods. For

instance, for a tool at 70◦ with a smooth tool interface (Figure 4-13, upper left plot),

Caquot and Kerisel’s predictions are much lower than the other predictions. This

is an unexplained odd behavior. Since these coefficients were provided via a table,

rather than the equations used to derive the coefficients, comments cannot be made

regarding the source of the discrepancies. The other models are more closely grouped,

so it is believed that the Caquot and Kerisel predictions are in error in this case.

In all cases, the numerical UB predictions are either nearly identical to Chen and
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Figure 4-11: Comparison of the passive failure surfaces from three of the models for
80◦ and 100◦ tools with φ = 40◦ and δ = 25◦.
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Figure 4-14: Limit equilibrium and limit analysis results for tool angles of 70, 80, 90,
and 100 degrees with δ = 15◦.
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Figure 4-15: Limit equilibrium and limit analysis results for tool angles of 70, 80, 90,
and 100 degrees with δ = 25◦.
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Figure 4-16: Limit equilibrium and limit analysis results for tool angles of 70, 80, 90,
and 100 degrees with φ = 25◦.
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Figure 4-17: Limit equilibrium and limit analysis results for tool angles of 70, 80, 90,
and 100 degrees with φ = 35◦.
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Figure 4-18: Limit equilibrium and limit analysis results for tool angles of 70, 80, 90,
and 100 degrees with φ = 45◦.
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Liu’s upper bound predictions, or the numerical UB and LB predictions bound Chen

and Liu’s predictions. Chen and Liu have compared their model to two additional

methods which were not considered in this work, the slip-line and zero-extension line

models. They have shown good agreement with these models.

As expected, Coulomb’s model deviates from the other predictions at large inter-

face friction angles. This is a direct consequence of the linear failure surface assumed

by Coulomb’s Theory. The logarithmic spiral model also tends to have this trend,

but to a lesser degree. Overall, the logarithmic spiral either matches well or tends

to over-predict compared to the other models. There is an odd down-turn in the

Caquot and Kerisel predictions as δ approaches φ. Chen and Liu also show this trend

in their comparisons as well. The source of this effect is uncertain, but perhaps this re-

sults from approximations in their secondary table used to compensate for non-rough

interfaces.

In summary, apart from the case of a smooth interface, the numerical UB and

LB predictions compare well with Chen and Liu’s upper bound and with Caquot and

Kerisel’s predictions. Coulomb’s predictions deviate at larger interface frictions as

expected. The logarithmic spiral method is typically close to the numerical UB. The

limit equilibrium models are expected to be closer to the numerical UB predictions.

This is consistent with the fact that limit equilibrium models are considered rough

upper bounds. Large discrepancies, aside from those noted, are not observed.

4.2.4 Benefits of the Numerical Limit Analysis Technique

It has been shown that the results from the numerical limit analyses are in good

agreement with the currently accepted models for the prediction of earth pressures.

When introducing a new prediction model, good agreement with currently accepted

models or experimental phenomena should be shown and the models should provide
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additional features or capabilities not found in the existing models. Therefore, the

advantages and disadvantages of the numerical limit analysis technique are discussed

here.

The main advantages of the numerical limit analysis technique are the versatility

in the modeling and the provision of both upper and lower bounds. It does not assume

a pre-defined failure surface and thus is less constrained. In addition, this method

allows for the incorporation of variations in soil parameters across the mesh unlike

any of the other methods. Rigid boundary conditions simulating buried obstacles can

be included. Complex structural elements such as curved blades or piece-wise linear

blades can be constructed. Overall, this method provides the most versatile solution

for this problem. The predictions are in good agreement with currently accepted

models. And it provides a lower bound solution, in addition to the commonly available

upper bound solution.

For the disadvantages, there are a number of difficulties in implementing the

numerical limit analysis method. Meshing can be complex. For the upper bound case,

typically the square mesh produces very good results and a finer mesh will produce

better results. The path to obtaining tighter bounds is clear. For the lower bound,

there is no obvious path for altering the topology of a mesh to obtain tighter bounds.

Simply making the mesh finer produces only small incremental improvements. The

lower bound is much more sensitive to the arrangement of the mesh. Now, with finer

and more complex meshes, comes another caveat, computation time. With simpler

meshes, and computations would take on the order of minutes. The finer meshes

which were used in the final computation (with thousands of nodes), computation

times would be on the order of two hours on an AMD 1.2GHz for each mesh. For this

work, approximately 300 meshes were solved for the UB case and 600 meshes were

solved for the lower bound case (300 square, 300 radial). This equates to roughly 2.5
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months of solid computation.

A recent development from Sloan addresses the computation time issue. A new

solution technique using nonlinear programming has been developed, which results in

an order of magnitude improvement in computational efficiency. This development,

in combination with the ever increasing speed of computer processors, essentially

removes any concerns about the computation time. This should enable researchers

to obtain tighter bounds, explore more complex meshes, and solve a greater number

of cases, reducing the need for interpolation.

4.3 Conclusions

Four existing models have been presented in this chapter. These existing models have

been compared with the results from numerical limit analysis technique for computing

upper and lower bounds. The numerical technique has previously been applied to a

number of other problems, however, this is the first presentation of comprehensive

results specifically for the passive and active earth pressure problem. It has been

shown that there is good agreement with currently favored solutions to this problem,

and in addition, the numerical technique provides additional versatility for modeling

more complex problems and has the benefit of providing both upper and lower bounds

on expected forces.



Chapter 5

Experimental Methods

This chapter discusses the experimental procedure which was developed for collecting

failure force data in soils. The chapter begins with a discussion of a basic technique

for plate insertion with minimal disturbance of the nearby soil. Next, the control tech-

niques implemented to perform controlled stroking in the soil are outlined. Finally,

the processing of the resulting data to obtain meaningful failure force measurements

is shown.

5.1 Platform for Data Collection

The development of the manipulator for this research was discussed in Chapter 3.

In addition to the manipulator, a sandbox was constructed, with dimensions of ap-

proximately 23”x25”x10”. These dimensions were selected to be compatible with the

raining assembly developed in the Civil and Environmental Engineering Department

(Larson [63]) for the creation of uniform soil samples. Figure 5-1 shows the raining

assembly placed above the sandbox. The resulting rained sand has a depth of 5-6

inches. This is more than sufficient depth for our experiments (the typical depth of

99
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Figure 5-1: The raining assembly placed on top of sandbox for the deposition of
uniform soil samples. The sandbox and manipulator are both mounted on a rolling
cart for easy transport. The images to the right show the holes in the upper assembly
and the screens in the lower assembly.

insertion is one inch). The sandbox is placed on a cart to simplify positioning under-

neath the raining assembly. The manipulator arm is also affixed to the same cart to

prevent relative motion between the sandbox and manipulator.

The raining assembly is only used for one of the soils tested, Ticino sand. The

assembly was previously designed and validated using this sand. The other soils

have too fine of a grain size to be rained. Instead, these soils are manually re-mixed

between stroking experiments. This will introduce some variation in density between

the samples in the experiments. Care is taken to obtain approximately identical soil

conditions from stroke to stroke. The resulting variation in sample density can be
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Figure 5-2: Front and side view of the manipulator arm executing and completing a
digging sequence in the sandbox. The origin of the manipulator coordinate frame is
located directly below the shoulder joint at the level of the table surface. The soil
surface is typically located at z = -13” in the manipulator frame. Insertion forces are
primarily generated by the shoulder joint, and stroking forces are primarily generated
by the elbow joint.

estimated by repeated measurements to obtain a rough uncertainty value.

The configuration of the arm during a typical digging sequence is shown in Figure

5-2. The full forward reach of the manipulator is approximately 36” and the downward

reach is approximately -23” from the origin of the manipulator frame of reference

(center of the mounting base). The soil surface in the sandbox will then be at a

depth of -13” in the manipulator frame. As can be seen in the images, the typical

arm configuration during digging places the upper link of the manipulator below or

near horizontal. The majority of the stroking force is generated by the elbow joint

driven by two motors through the elbow differential. The majority of the insertion

force is generated by the shoulder joint. The insertion force reaches up to 5 lbf for

our depths and soils and the stroking force reaches up to 3 lbf. The next sections

describe the specific techniques for insertion and stroking.
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5.2 Plate Insertion

The first step that must be taken in order to collect data is to insert the plate into

the soil. This must be done carefully so that the state of the soil around the plate is

minimally disturbed. Initial tests inserting the plate into the sand show a large build

up of lateral forces on the plate and large deformation of the nearby soil. As a result,

some form of accommodation is necessary in order to account for small inaccuracies

in positioning and orientation of the manipulator and the resulting response by the

soil.

In order to address the lateral force build up issue, a simplified remote center-of-

compliance technique is implemented (Peshkin [79]). Figure 5-3 shows an illustration

of the end-effector plate being inserted into soil at a given inclination. Coordinate

frames are labeled and forces acting on the plate are illustrated.

Examining the planar forces on the plate during insertion, the following logic to

compensate for the forces and torques can be devised:

+TY ′ → +Z ′, ±X (+ for θplate > 0), −θ4

−TY ′ → −Z ′, ∓X (− for θplate > 0), +θ4

+FZ′ → +Z ′

−FZ′ → −Z ′

+TZ′ → not enough DOF

−TZ′ → not enough DOF

As noted, compensation can be done for forces in the Z ′ direction and torques about

the Y ′ axis. The manipulator does not have sufficient degrees of freedom to com-

pensate for possible torques about the Z ′ axis. These torques are expected to be

inconsequential.

The logic can be reduced further. Since the force in the vertical direction of the

plate is controlled to drive the insertion, both position and force in this direction
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Figure 5-3: Cartesian coordinate frame and F/T sensor coordinate frame and forces
acting on the end-effector plate during insertion. The desired insertion velocity is
adjusted in order to accommodate for the buildup of lateral forces.
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cannot both be specified. The only adjustments possible are in the direction perpen-

dicular to the plate, Z ′, and the wrist joint, θ4, which controls the plate orientation.

The logic thus far can be written in equation form. Cylindrical notation is more

convenient, and so r′ is used in place of Z ′. The accommodation is accomplished by

using θ4 adjustments to correct for TY ′ and r′ adjustments to correct for FZ′ . The

following relation is obtained

d

dt

 r′

θ4

 =

 kF 0

0 kT


 FZ′

TY ′ − FX′d

 (5.1)

where kF and kT are accommodation gains.

The plate orientation should not be allowed to change arbitrarily (the goal is to

run controlled experiments with tool angles at fixed values). Therefore, θ4 should not

be modified during insertion. In future scenarios, where the tool angle need not be a

fixed value, the final plate angle may be allowed to vary to obtain better insertions. In

such cases, the θ4 portion of the accommodation relation may be enabled. However,

for the experiments presented here, the θ4 portion is left disabled. This then leaves

only the first half of Equation 5.1, or simply ṙ′ = kF FZ′ . Thus, for any lateral force

on the plate, the desired end-point location of the arm is adjusted to relieve that

lateral force by moving in a direction perpendicular to the insertion direction.

To complete the derivation, the equation must be converted into the cylindrical

world frame from the end-effector frame. The orientation of the plate in the world

frame is at an angle, θ′ = θ1 + θ2 + θ4 − π, where θ1, θ2, and θ4 are the shoulder,

elbow, and wrist angles respectively. The derivative is θ̇′ = θ̇1 + θ̇2 (with θ̇4 = 0). The

accommodation in the world frame is then

 ṙ

ż

 =

 cos θ′ −r′ sin θ′

− sin θ′ −r′ cos θ′


 ṙ′

θ̇′

 (5.2)



5.3. STROKE CONTROLLER DESIGN 105

The final desired insertion velocity for the manipulator end-point becomes

vdes = v0 +
[
ṙ cos θ0 ṙ sin θ0 ż 0 0

]T
(5.3)

where v0 is the unmodified insertion velocity and θ0 is the base joint angle used to

convert from the cylindrical to Cartesian frame.

Results for the force and torque measured at the plate for insertion with accommo-

dation and without accommodation show the effectiveness of this technique. Figure

5-4 and 5-5 show the results for both cases. The dashed horizontal lines, which rep-

resent the force and torque dead-zones, are at the same values in both plots. Note

that the force is slightly outside the dead-zone in the accommodation plots. This is

because no correction occurs until the force moves outside of the dead-zone. Thus

the force is expected to be slightly outside of this band, as is the case. Note that

without accommodation, the force builds up to approximately 1.5 lbf, and with ac-

commodation, the force remains around 0.05 lbf. The disturbance to the nearby soil

is observed to be much less for the insertion with accommodation.

5.3 Stroke Controller Design

As previously discussed in Chapter 3, the manipulator can be controlled using joint

proportional-integral-derivative (PID) control or Cartesian Stiffness control. First,

the performance of these two control methods are examined in the context of stroking.

Next, the development of a high-level position feedback control and force feedback

control are examined. The suitability of each of these approaches is considered.

5.3.1 Effective Cartesian Stiffness of Position Controllers

This section examines the effectiveness of two different position control schemes, joint

PID and Cartesian Stiffness, on the resulting stroke control. Assuming quasi-static
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Figure 5-4: Plate insertion with lateral force accommodation disabled. The dashed
horizontal lines represent the desired dead-zone for insertion.
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motions, so that effects of the derivative (velocity/damping) terms can be ignored,

the effective force output of the control methods to a given position error is examined.

Although a higher level closed-loop feedback control will be present on top of these

low-level controllers (so that eventually, the correct force output will be achieved), it

would be beneficial to have an open-loop force output which reasonably matches the

direction of the Cartesian error. A poorly performing low-level controller will require

greater correction from the high-level controller.

Given a Cartesian position error, the computed output force from each of the two

low-level controllers can be skewed from the direction of the position error. For the

joint PID, the output force vector is computed as

FPID = J−T τ = J−T KPID ∆q = J−T KPID J−1 ∆x (5.4)

For the Cartesian Stiffness control, the resulting force vector is computed as

FCRT = J−T τ (5.5)

= J−T JT KPX J ∆q (5.6)

= J−T JT RT KCRT R J J−1 ∆x (5.7)

The Jacobian is non-square because the wrist is turned off during stroking, resulting

in a 5x4 matrix. Rather than complicate the notation, where inverses have been

indicated in the above equations, pseudo-inverses are intended, but for cleanness, the

more convenient inverse notation has been used. Since the Jacobian is non-square,

the Jacobian multiplied by its pseudo-inverse may not be exactly the identity matrix,

therefore these terms are left in the equation and computation. The R matrices are

rotation matrices of the base joint angle, θ0, which are used to make the stiffness

matrix cylindrical instead of Cartesian.

Using Equations 5.4 and 5.7, the resulting skewing can be examined. The Carte-
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sian error, ∆x, is specified to be a unit vector first in the radial direction and second

in the vertical direction at various arm configurations. For each Cartesian error,

the resulting directions of the output forces are computed. The controllers will each

produce an open-loop force which may be skewed from the Cartesian error direction.

Figure 5-6 shows the results for three different arm configurations: radial exten-

sions of 8”, 12”, and 17” at a height of -12.5”. As can be seen, the joint PID control

results in widely skewed force vectors which are highly configuration dependent. This

does not make the PID control unusable, since the high-level controller will adjust

the desired position until the desired output force direction is achieved. However,

this configuration dependent skewing causes difficulties in the selection of correction

gains for the high-level feedback loop. This results in a poor solution requiring large

changes in desired position to obtain the desired force direction. Instead, the Carte-

sian Stiffness control does as it is expected to and compensates for arm configuration

changes and maintains good orientation of open-loop force vectors. For this reason,

the Cartesian Stiffness control is used as the low-level controller for stroking.

5.3.2 Position Feedback versus Force Feedback Control

As just discussed, both of the low-level controllers are position-based. In order to

maintain the modularity of the system architecture and reduce the overall complexity,

both high-level controllers are designed to provide position set-points for the low-level

controllers. This is not a restriction for the force feedback based control. It is always

possible for us to recast the force feedback law into a position feedback law to obtain

numerically identical output torques at the motors. Neglecting derivative terms, a

position-based control will compute torques based upon

τ = KP (qdes − q) (5.8)
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Figure 5-6: These figures show the resulting direction of the end-point force output
by the arm controller for a unit error in the radial and vertical directions. The joint
PID control results in a position dependent skewing of the end-point force, whereas
the Cartesian Stiffness Control maintains the output force direction close to the error
direction.
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A force based control will compute the output torque from the desired force using

τ = JT F (5.9)

With some mathematical manipulation, an equivalent desired position to obtain the

numerically identical torques can be computed as

qdes = K−1
P JT F + q (5.10)

This assumes the joint gain matrix is invertible. Typically joint gain matrices are

required to be positive definite for stability. This ensures that the gain matrix is

invertible. For this manipulator, the gain matrix is diagonal (before multiplying by

the joint-motor transformation matrices) with strictly positive elements, and therefore

invertible.

Therefore, in this implementation, both the position feedback and the force feed-

back control provide a desired set-point position to drive the low-level position control

schemes. How the desired set-point is computed distinguishes the two control meth-

ods, as will be shown next.

5.3.2.1 Goals of Control Schemes

Once the plate is inserted into the sand, forces must be built up on the plate until

failure occurs. How these forces are built up is critical to the quality and usefulness of

the resulting data. The numerical limit analysis models assume a perfectly horizontal

instantaneous motion for the plate. The limit equilibrium models are more general

and simply require knowledge of the interface friction angle between the soil and the

plate. In order to be consistent with all the models, the initial plate motion should

be perfectly horizontal with a steady interface friction angle.
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5.3.2.2 Position Feedback Control

The control during a stroke is accomplished by adjusting the desired position to lie

along a vector oriented at angle θadj as shown in Figure 5-7. The magnitude of

the difference between the desired position and the actual position of the arm end-

point is called the lead. The lead is increased steadily until failure occurs. As the

lead is increased, the orientation, θadj, is controlled using a proportional-integral (PI)

controller on the Z error of the plate.

θadj(t) = θdes + kpstroke (z(0)− z(t)) + kistroke

∫
(z(0)− z(t)) dt (5.11)

where θdes is the desired initial inclination angle. The integral term corrects for large

scale and steady state errors and brings the system into the correct region. The

proportional term then does the fine corrections to regulate the output.
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The angle of orientation is constrained to remain within reasonable bounds. These

bounds are only of importance during the first fraction of a second of the stroke in

order to keep the plate from lifting or sinking before any appreciable force is applied

on the soil. Typical bounds are [θplate − δsoil + 10◦, 60◦] from horizontal, where θplate

is the angle of the plate relative to vertical and δsoil is an estimate of the soil-tool

friction angle.

There are a number of problems with this position feedback approach. The first is

that it relies upon the position measurements from the external encoders, which are

at the limit of their resolution, providing poor feedback. Also, in order to compensate

for a Z error, motion must have already occurred to create the error. Taking into

account the low position sensing resolution of our manipulator, a large motion must

have occurred. In contrast, the goal of the control is to increase the force applied by

the plate with little or no vertical motion of the plate.

Vertical motion may not necessarily indicate relative motion between the soil and

the plate. The environment has some stiffness, and so, a vertical deflection may occur

without interface sliding. In order to sense such motion, much more precise sensing

accuracy is required. For the manipulator in this work, any detected vertical motion

will indicate that the configuration of plate and soil has changed. In the absence of

an accurate force measurement, the position scheme will only be viable if a high level

of position sensing is available.

Figure 5-8 shows the data from a stroke using position feedback. In the upper

plot, the discontinuous steps in the solid line are a result of the encoder resolution.

The gap between the actual and motor position is a result of compliance and backlash

in the shoulder joint. In the lower plot, the resulting variation in interface friction

angle is shown. The measured interface friction angle between the soil and plate, δf/t,

is not regulated and varies considerably up to the point of failure.
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Figure 5-8: Results from a stroke using position feedback. The upper plot shows the
desired and actual Z coordinates and the lower shows the angle of the measured force.

The uncontrolled force direction leads to an unreliable failure force measurement.

The failure force is highly dependent upon the angle of the applied force. If the angle

of force momentarily becomes smaller than the true interface friction at a given force

magnitude (which would not typically fail the soil at the proper interface friction

angle), then the soil will prematurely fail, resulting in a low reading. If the angle of

force is excessively large for a period of time while the force magnitude continues to

increase, then when the force angle reaches a more reasonable value, the force mag-

nitude is already great enough to fail the soil, resulting in a high reading. Therefore,

any readings taken with large variations in angle of force are unusable.
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5.3.2.3 Force Feedback Control

Given that position feedback control is not possible for our system, and the arm is

equipped with force sensing capability, a force feedback control law is developed to

solve the problem. Examining the forces in Figure 5-7, if the net vertical force on

the plate is zero, then no vertical motion should occur. This is the premise behind

the force control method. No explicit feedback of the Z error is used. Instead, it is

assumed that the interface friction between the plate and soil can be estimated, and

that this estimate can be used as a set-point for the force control. If the interface

friction estimate is correct, and the control can maintain the angle of force at the

estimated friction angle, then the plate should move horizontally. If the estimate is

incorrect, then there are no guarantees on the horizontal motion.

Assuming we have an accurate estimate of the true interface friction angle, a force

control law must be developed which can accurately track this desired angle. The

development of such a control law is described in this section.

The initial basis for the stroke control comes from a basic proportional force control

law. For a desired force output from the arm, Fdes, joint torques, τ , are output using

a proportional control law given by

τ = JT Fctrl = JT [Kpf (Fdes − Fenv) + Fdes] (5.12)

where Kpf is the force gain and Fenv is the measured end-point force. The develop-

ment begins with this equation and adds modifications to address issues which are

specific to this manipulator and problem. First, the arm is flexible and highly geared.

This will change the design of the controller in a subtle way. Second, while the above

system will regulate force, the goal in stroking is to control orientation, and to a lesser

extent magnitude. For the magnitude, it is sufficient to simply have it increase in a

steady monotonic fashion. The controller should be able to handle orientation and

magnitude separately.
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Figure 5-9: One-dimensional conceptual model of arm flexibility and backdrive fric-
tion for force control.

The issue of arm flexibility and gearing is considered first. Figure 5-9 shows a

simple one-dimensional model to help formulate a conceptual understanding of the

problem. The control force, Fout, is applied to a mass, M, resting on a frictional

ground to simulate backdrive friction. Attached to the mass is a spring representing

the arm flexibility, with stiffness karm. The other end of the spring is connected to

the arm mass, m, and the force/torque sensor, which in turn is connected to the

environment, with stiffness kenv. The point where the force is applied to the motor

mass is labeled as xmtr and the position of the arm measured by the external encoders

is labeled as xext.

The controller must regulate the force on the environment, as measured by the

force/torque sensor. Starting with a standard proportional force control law of a

mass-spring system (Craig [22]), a force fctrl is applied to the mass m given by

fctrl = m k−1
env kpf (fdes − fenv) + fdes (5.13)

where fenv is the force measurement from the force/torque sensor and fdes is the

desired force on the environment.
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Now, fctrl is the force to be applied to mass m. In order to apply this force, we

must specify an input to the low-level arm controller. The low-level control is the

Cartesian Stiffness previously presented. It computes an output force according to

Fout = Kpx (xdes − xmtr) (5.14)

where Kpx is the controller stiffness gain and xdes is the desired position of the motor.

Let us examine how to specify xdes in this control law.

Two different cases can be considered, depending on the arm stiffness. Most

manipulators tend to be very stiff, however, there is an increasing trend towards the

design of compliant manipulators (Pratt [80]).

If the manipulator stiffness is high, then karm can be ignored. The desired set-point

can be computed as

xdes = K−1
px fctrl + xmtr (5.15)

= K−1
px

(
m k−1

env kpf (fdes − fenv) + fdes
)

+ xmtr (5.16)

The xmtr terms will cancel in the low-level control, and the resulting output will be

exactly the desired control force.

If, on the other hand, the manipulator is flexible, the force applied to the mass m

can be controlled by adjusting the deflection of the spring karm. The desired motor

position to achieve the control force can be computed according to

karm (xdes − xext) = m k−1
env kpf (fdes − fenv) + fdes (5.17)

xdes = m k−1
arm k−1

env kpf (fdes − fenv) + k−1
arm fdes + xext (5.18)

In the above equation, m, kenv, and karm are unknown. The first terms can be grouped

with the force control gain kpf which is empirically tuned. This still leaves karm in

the second term.
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Through the use of the force/torque sensor, it should be possible to estimate karm

using the force/torque sensor measurement, fenv, and the motor-external displace-

ment. One item to note when approximating karm, the one dimensional model helps

us gain a conceptual understanding, but there is another component that occurs when

moving to two dimensions. In addition to the magnitude scaling, there is a possible

rotation resulting from the arm stiffness matrix. For this arm, this effect will be fairly

drastic. The external encoder for the shoulder is mounted directly at the joint, with

a large compliance between the motor and the joint. The elbow encoders, on the

other hand, are mounted to the output shafts of the motors, before the long cable

transmission. These will have a small detected compliance, and a large unmeasured

compliance in the cable transmission. The external encoders were a later addition

and were not originally intended to be used for force control through measured com-

pliance. As a result, between the motor and the external positions, a very flexible

shoulder and stiff elbow would be perceived (usually translating to a flexible vertical

axis and stiff radial). However, since the elbow is indeed flexible, this works to undo

the rotation that would be perceived in the motor-external deflection. For simplicity,

it is assumed that karm is diagonal. It is also assumed that the stiffness is constant

over the region we are stroking.

Using the desired position from Equation 5.18 in the low-level control law, the

following output force is obtained

Fout = Kpx (xdes − xmtr) (5.19)

= Kpx m k−1
arm k−1

env kpf (fdes − fenv) (5.20)

+Kpx k
−1
arm fdes +Kpx (xext − xmtr)

= Kpx m k−1
arm k−1

env kpf (fdes − fenv) (5.21)

+Kpx k
−1
arm fdes +Kpx k

−1
armkarm (xext − xmtr)
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= Kpx m k−1
arm k−1

env kpf (fdes − fenv) +Kpx k
−1
arm (fdes − fenv) (5.22)

It is interesting to note that if Kpx = α karm, then this results in an output force

given by

Fout = α
(
m k−1

env kpf + 1
)

(fdes − fenv) (5.23)

Effectively, this is simply just a single gain multiplying the force error and does

not require direct estimation of karm. This equation was originally derived from the

premise that the arm was flexible and the controller stiff. In the steady state case, this

control implies that to maintain a given force on the environment, no additional force

from the motor needs to be applied. The control adjusts the position of xmtr, not the

force. The motor positioning at xmtr would automatically contribute the additional

force, fenv = fdes, at steady-state, through the stored force in the spring, karm. In

order to keep the motor positioned at xmtr, there must be some force holding it there.

This is an idealization in the derivation (i.e. assuming that the system is a perfect

position source).

There is another factor which makes the idealization of the arm as a perfect

position source valid: the presence of backdrive friction. The backdrive friction for this

arm is large enough to require end-point forces approximately 0.25 lbf to backdrive

the shoulder motor and 0.6 lbf to backdrive the elbow motors in a typical digging

configuration. This is a significant fraction of the total forces experienced during

digging. This friction would act to maintain the arm position at xmtr.

Two alternatives have been discussed: a stiff manipulator acting as a force source,

and a compliant manipulator with backdrive friction acting as a position source.

These alternatives translate into two equations: to specify the desired position to the

low-level control as xdes = K−1
px fctrl +xmtr, or as xdes = K−1

px fctrl +xext. Both versions

of the control law are tested on our system for stroking. In each case, the gains
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were tuned independently. The performance is found to be poor when specifying the

desired position relative to the motor position. The controller performs very well

when specifying the desired relative to the external position. There is one minor

difficulty with this approach. The external encoders are known to have a low sensing

resolution. Since the control law uses the external position explicitly, it produces a

discontinuity in the desired position whose effect is noticeable in the data, but the

controller is sufficiently capable that the disturbance is quickly rejected. Clearly the

combination of Kpx > karm, low arm stiffness, and the presence of the backdrive

friction call for the use of xext in the desired position of the controller.

In summary, the force control law, up to this point, specifies the desired set-point

for the low-level Cartesian Stiffness control according to (reverting to vector notation)

xdes = K−1
px [Kpf (Fdes − Fenv) + Fdes] + xext (5.24)

In the absence of arm flexibility and backdrive friction, xext can be replaced with

xmtr.

The second issue with our force controller relates to the impact of the control

law on orientation and magnitude. Figure 5-10 gives an illustration of the controller

correction for a desired force Fdes and a measured force Fenv. The existing control

structure does not allow for separate gains on the orientation and magnitude. To

obtain fast orientation correction, a large gain must be used, but by doing so, the

magnitude varies greatly. In addition, the incorporation of an integral correction term

in a vector context may introduce unexpected orientation changes. Orientation cor-

rection is more critical than magnitude correction. So, the control is separated into

orientation and magnitude components. Following along the lines of the position con-

trol scheme previously discussed, two independent PI control laws are implemented:

Fctrl = Kpf (Fdes − Fenv) + Fdes (5.25)
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Figure 5-10: The direction and magnitude of the correction vectors of the standard
force control law and the orientation based control.

= (kpm (|Fdes| − |Fenv|) + |Fdes|)

 cos
(
kptθ̃ + kit

∫
θ̃dt+ θdes

)
sin

(
kptθ̃ + kit

∫
θ̃dt+ θdes

)
 (5.26)

where θ̃ = θdes − θenv, the desired inclination angle minus the force/torque sensor

measured inclination. Only the radial and vertical components are shown.

The magnitude is not of great concern, except that it should monotonically in-

crease, so the magnitude proportional control can be replaced with an open-loop

increasing lead given by (l0 + lratet), where l0 is the initial lead and lrate is the rate

of increase. The initial lead is often small, but is necessary so that the stroke begins

with a non-zero force applied to the soil. This provides some initial interface friction

to keep the plate from moving in the early stages of the stroke.

The rate of increase of the leading is an important variable in controlling the

duration of the stroke, allowing for sufficient time for the orientation controller to

operate. It also affects how drastic the final soil failure will be. If the force build up
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is fast enough at failure to overcome the increase in resistance due to the soil build

up, then the plate will continue its forward motion more rapidly.

After this lengthy development, the force feedback control is found to be the same

form as the position feedback control. The only difference is the error measure in the

PI control is the force inclination error instead of the Z position error. There are a

number of reasons why this method is a better approach than the previous Z error

method. By controlling the force angle directly, if the angle of the applied force is

maintained to be smaller than the true interface friction angle, then slip cannot occur.

Therefore, the plate is not moving relative to the soil. Unlike the previous method,

this approach does not require motion to occur in order to perform correction. While

the force builds up, the controller can safely regulate the friction angle. However, this

method will be susceptible to the same quality problem as the previous approach if

the applied angle of force cannot be controlled within suitable bounds prior to failure.

Through experimentation, the gains of the control loop are tuned so that good

tracking (within 1◦-3◦) of the desired interface friction angle for most of the duration

of the stroke can be achieved. In the resulting data, large variations in the friction

angle at early stages of the stroke can be ignored. This portion reflects the initial

convergence of the system at very low forces and care is made to ensure that this

variation is often in the downward direction (into the soil), where small forces will

have little or no effect on the greater resistance of the underlying soil.

Figure 5-11 shows sample data from a force control stroke. As mentioned before,

the force control relies upon a good estimate of the interface friction angle to be used

as a set-point. In this case, from the minimal Z motion, it is noted that a good

estimate of the interface friction angle has indeed been obtained. In the lower plot, it

can be seen that the force control tracks the desired set-point to within a few degrees.

It can also be noted that there is almost no perceptible Z motion.
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Figure 5-11: Results from a stroke using force control. The upper plot shows the
desired and actual Z coordinates and the lower shows the angle of the measured
force.

5.3.3 Safe Orientations and Magnitudes

Figure 5-12 gives an illustration of safe orientations and magnitudes of force which do

not cause relative motion between the plate and soil. The boundary can be computed

using the soil models to estimate the force required to fail the soil at various angles

of applied force. There is the added resistance to insertion when forces are applied

in the downward direction. The downward insertion force combined with the other

force predictions construct a boundary for safe angles and magnitudes. Note that

with a force magnitude of Fθadj=δsoil , an orientation angle greater than δsoil will not

cause motion. Thus if there are transients in the stroke control, for small magnitudes,

the orientation can safely vary significantly, with larger magnitudes, it is better to
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dependence of the failure force on interface friction angle. The predictions are shown
for up to δ = φ, using φ = 40◦ and γ=1.45 g/cc, with highlighted vectors at 0◦ and
±20◦.



124 CHAPTER 5. EXPERIMENTAL METHODS

err towards a greater downward orientation to avoid premature failure.

A more detailed study and experimental verification of the dependence of the

failure force on angle of applied load would be quite interesting. Such data could be

used to plan optimal digging trajectories through soil for a torque limited manipulator.

This topic is not explored in this work and is left as a possibility for future research.

5.4 Interface Friction Angle Estimation

The position and force feedback controller development assumed a desired inclination

for the applied force during stroking. This inclination is the interface friction angle,

δsoil. A method must be developed for estimation of the true soil-tool interface friction

angle for the test soils.

Considering the stroke control once again, forces are built up on the plate with

a given orientation until the force is sufficient to fail the soil. At this point, failure

will occur (hopefully in a drastic fashion) with a large horizontal motion of the plate.

When the force is large enough to initiate motion, the soil adjacent to the plate rises

relative to the plate, causing a force on the plate which is at the true friction angle

between the plate and soil. If the estimated friction angle used in the force controller

is different from the true value, an error in the measured force will be observed. The

force controller will not respond instantaneously to this error. Therefore, this provides

a mechanism to verify if the friction angle estimate used for a stroke is incorrect.

This approach is expected to work if the estimated value is lower than the true

friction angle. If, instead, the estimate is too large, then the plate drives into the soil.

During failure in this case, a larger downward force angle may be maintained (no

error will be observed) since the underlying soil will resist the force. A drop in the Z

coordinate of the plate may perhaps be observed, but this requires precise sensing. It

is likely that the deflection will not be noticeable unless there is a large error in the
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estimated friction angle.

Therefore, the experimental procedure for determining the interface friction angle

is to attempt multiple strokes in the soil starting with a known lower friction estimate

and building up until a rise in the angle of force is not seen in the data at failure. By

this method the true interface friction angle is bracketed through a few strokes.

Figure 5-14 shows the results from strokes in Ticino sand, using friction angle

estimates from 18◦ to 28◦. Failure occurs in the last fraction of a second of the stroke.

The earlier portion of the data is the force buildup stage. The 18◦ − 22◦ strokes

show lifting, while the 24◦ − 28◦ strokes do not. From this, it is inferred that the

true friction angle is near 23◦. As shown, the tracking of the estimated friction angle

is very good using the PI force controller. The jumps that occurs midway through

the strokes are an artifact of the shoulder encoder resolution. The disturbances are

rejected quickly and do not affect the final critical portion of the stroke.

In order to verify the accuracy of this approach, sand was glued to a flat plate.

The plate was rubbed over the arm end-effector plate and data on the maximum

interface friction angle was observed. This test is used only for ballpark verification,

since the glued sand surface may be irregular and may not accurately simulate the

configuration of soil adjacent to an inserted plate. The actual angle may be near or

greater than the peaks observed in these tests, rather than near the mean. This has

been conducted with each of the soils used. The agreement between this method and

the experimental iterative technique has proven to be good. Thus, it is concluded

that this approach to interface friction estimation produces valid estimates typically

within 1◦ − 2◦ of the true angle.

One final practical note about this approach: the delta estimation should only be

implemented with tool angles in the 80◦−90◦ range. If a 70◦ tool is used, for instance,

it is possible that tip effects (from the inclined width of the bottom of the plate) will
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Figure 5-14: Data plots for the friction angle from the F/T sensor at various desired
delta angles. The first three plots show lifting at the end, while the rest do not.
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Figure 5-15: Ticino sand was glued to a plate and rubbed on the end-effector plate
to validate the friction angle estimate. The plot on the right shows a portion of the
data showing peaks in the 23◦ − 25◦ range.

come into play, increasing the apparent interface friction angle. Using a 100◦ degree

tool is also problematic, primarily because these strokes are more difficult to conduct,

and the motion of the soil relative to the plate is not observed as readily.

5.5 Data Processing

Once a stroke is completed, the resulting data must be analyzed to determine failure

force. Force data from the F/T sensor (measuring forces directly on the plate) and

joint data from the arm (used to determine the Cartesian motion of the plate) are

collected for each stroke. These are combined into a force versus displacement plot,

which is the primary means to estimate failure force.

There are some difficulties in the data processing. These arise from two primary

sources. The first is the low position sensing resolution of the arm, due the large

backlash of the motors, combined with the unsensed flexibility in cable transmission

of the arm. The second difficulty is from the possibility of gradual failure of the soil.



128 CHAPTER 5. EXPERIMENTAL METHODS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

radial travel (in)

fo
rc

e 
m

ag
ni

tu
de

 (
lb

f)
Force vs. Displacement for Stroke

shoulder encoder resolution

elbow encoder resolution

failure estimate

external encoder position
with flex compensation   

Figure 5-16: A force versus displacement plot for a 90◦ tool in Ticino sand, shown
with and without flexion compensation, showing a gradual failure. The discontinuities
are from the limited external encoder resolution.

Figure 5-16 shows a force versus displacement plot for a sample stroke which illustrates

each of these difficulties. The figure also illustrates the elbow flexion compensation

discussed in Appendix A.

The encoder resolution limit, in actuality, does not create great difficulties in

experimentation. The discontinuities are easily detected in the resulting data plots

and can be ignored, since the resulting disturbances are quickly rejected. It should be

emphasized that this sensing limitation is a shortcoming of this particular manipulator

and does not affect the validity of the techniques used.

The gradual failure of the soil is another difficulty, which is not related to the
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Figure 5-17: A force versus displacement plot for a 70◦ tool in Ticino sand, shown
with and without flexion compensation, illustrating a more drastic definite failure.

manipulator. Ideally all strokes would exhibit drastic failures, with large scale mo-

tions. This would make the failure force clearly discernible in the resulting data plots.

Figure 5-17 shows an example of a drastic failure. The flex compensation in this plot

is slightly excessive, but the compensation is known to be an approximation and

not required or expected to be exact. The drastic failures are often characteristic of

strokes at lower tool angles.

For the larger tool angles, in which the forces are greater and the build up of soil

during motion is greater, the failure can often be gradual in nature and therefore

difficult to pick out a single point of definite failure. In these situations, a consistent

guideline in picking points of failure is used. Two lines are fit to the early portion
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and later portion of the force versus displacement curve. The breakpoint is located

from the intersection of these lines (as shown in Figure 5-16).

There are additional sources of information that can aid in the determination of

the onset of motion. These include a change in the Y coordinate of the point of

application of the force on the plate, a change in the measured friction angle of the

soil, or a change in the Z end-point coordinate. These were occasionally used as

supplemental sources in the data analysis; however, the primary and best source for

estimating the failure force is the force versus displacement plot.

5.6 Verification of Depth Dependence

As an additional verification of the methods outlined in this chapter, tests to verify

known dependencies of the force have been conducted. The draft force required

to fail soil should be linearly dependent on the density of the soil and quadratically

dependent upon the depth of the plate. The density of our samples cannot be precisely

controlled over a range of values; however, the depth of insertion can be controlled.

A study of the dependence of the failure force on the depth of insertion can be

conducted. This is especially of concern because of the shallow depths of insertion.

If this dependence cannot be verified, then scaling the results to larger depths of

insertion is questionable. Vice versa, the application of soil prediction models to

these small insertion depths would be questionable.

Depths from 0.5” to 1.0” at 0.1” intervals are used. Smaller insertion depths are

not useful and much deeper depths would be near the maximum strength capabilities

of the manipulator. Strokes at each of the depths are conducted three times. Figure

5-18 shows the combined median results for the three test sets. The upper plot shows

failure force versus depth of insertion and a quadratic least squares fit. The lower

plot shows the normalized force, F/H2, versus depth, H, which ideally would result
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Figure 5-18: Tests were conducted to measure failure force at various depths of in-
sertion. The upper plot shows force versus depth and a quadratic fit. The lower plot
shows the normalized force, F/H2, versus depth, H.

in a horizontal line.

Each of the individual test sets produced essentially the same results, with only

small variations. Each set showed the proper dependence within the error bounds

shown. The error bounds in the figure result from the estimated accuracy of the

insertion depth. The sensing accuracy of the manipulator end-point is approximately

0.05”, and thus the insertion depth may be off by plus or minus this amount. In the

stroking experiments, manual verification of the insertion depth is conducted. Small

adjustments to the commanded depth of insertion are made to obtain the correct

depth, or the resultant force values are scaled to the appropriate depth.
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This depth verification test has also been repeated multiple times in the other soils

used, with similar results. It can be concluded that the H2 dependence on the depth

holds true even at these small insertion depths. This serves as a partial validation

of the methods described, showing that this particular dependence can be observed

using this system. In the next chapter, further interaction results using the techniques

described in this chapter are presented.



Chapter 6

Experimental Results

This chapter presents results from interactions between the manipulator and various

sample soils. The chapter begins with a discussion of soil selection and data col-

lection procedures. Next, the data from interactions with each of the sample soils

is presented. The chapter concludes with a presentation of independent tests for

verification and a discussion of the sources of errors.

6.1 Selection of Soils

Three different soils were selected for testing. The goal in material selection was to

span a range of friction angles and densities. As a secondary consideration, a variety

of grain sizes was sought. An exhaustive collection of soils was not gathered, but

rather a few soils were selected to verify our system and methods. The selected soils

are all cohesionless sands. The three soils selected were Ticino sand, Nevada Fine

sand, and glass beads (to simulate a low friction soil).

In order to obtain a dense, high friction angle sample, a raining assembly was

used in combination with the Ticino sand. The other sands could not be rained

133
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Soil Density (g/cc) Particle Size (µm) Desired Friction Angle
Rained Ticino 1.60 (1.43-1.69) 350-700 50◦+
Ticino 1.43 (1.43-1.69) 350-700 40◦ − 50◦

Nevada Fine 1.44 (1.35-1.57) 1801-280 30◦ − 40◦

Glass Beads 1.46 (1.45-1.55) 90-150 20◦ − 30◦

1 30% particles by weight instead of 10%.

Table 6.1: Measured density of the test cases and the rough measured loose-dense
range in parentheses, 10-90% particle size ranges, and the desired friction angles of
the soils used in our experiments. The loose-dense ranges are approximate and were
acquired through simple pouring and raining preparations. The true ranges likely
extend outward in both directions.

because their particle size was too fine. Raining of these other sands would create a

large amount of airborne particles and would result in separation of the finer particles

from the test samples with repeated raining. In order to obtain a lower friction angle

sample, fine rounded glass impact beads were obtained to simulate sand. The Nevada

Fine sand was chosen with the expectation that it would provide an intermediate

friction angle sample.

In the following discussions, loose or unrained soil will be indicated to distinguish

it from the dense rained soil. No particular effort has been made to make the soil

especially loose. These soils were in a simply poured and shifted state, which typi-

cally placed them in the lower portion of their density ranges. Approximate density

measurements of the soils in the same state used in each stroking experiment were

done for verification. It is expected that there will be variation in these sands due to

the lack of special preparation, but the impact is believed to be minimal. In addition,

some variation in soil density should be expected in the real world, so it is of interest

to see the impact of such variation in testing. From our experience, repeated testing

of samples prepared in this way resulted in a maximum density variation of about

4%, with most being within 2% of the mean.
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Table 6.1 shows the range of densities, particle size distribution, and desired fric-

tion angles for the soils selected. The range of densities are approximate and were

determined with basic procedures. The loose case was prepared through depositing

the soil into a cylinder of known volume at low velocity using a funnel. The dense

case was prepared through gradual raining of the soil into the cylinder from a height

of approximately 6 inches. The true range of loose-dense is likely to extend outward

in both directions. The friction angles in the table are values that were anticipated for

each soil type. The Ticino sand was expected to provide samples in the 40◦ − 50◦+

range as quoted from Larson [63]. The glass beads, with a majority of fine round

particles, were known to have a much lower friction angle. The Nevada Fine sand

was expected to provide an intermediate value. Thus, a range of friction angles from

the twenties to the fifties would be spanned.

6.2 Organization of Data Collection

The stroking tests in the sample soils were conducted in sets of six strokes per batch,

except for the rained cases, in which only four strokes were completed per batch.

The soil was prepared to have a surface within one degree of horizontal, using a

digital level as verification. Care was taken in the rained cases to carefully level

the soil without disturbing or piling loose soil in regions where stroking was to be

conducted. As a result, only four strokes per rained batch, rather than the typical

six, were conducted. In the unrained cases, the soil was manually remixed to obtain

approximately constant conditions over multiple batches.

To verify that there is no dependence on arm configuration, multiple batches were

run with a staggered arrangement of tool angles. For the unrained soils, the strokes

were done with three strokes at one tool angle at radius near 17” and another three

strokes at another tool angle at radius near 12”. The 70◦ tool angle can only occur
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Radius 17” 12”
Set 1 90◦ 70◦

Set 2 80◦ 70◦

Set 3 100◦ 90◦

Set 4 100◦ 80◦

Set 5 90◦ 100◦

Set 6 80◦ 90◦

Set 7 80◦ 70◦

Set 8 100◦ 70◦

Table 6.2: Arrangement of tool angles for six-stroke batches (unrained).

Radius 17” 12”
Base Angle 15◦ −15◦ 20◦ −20◦

Set 1 100◦ 90◦ 80◦ 70◦

Set 2 100◦ 80◦ 90◦ 70◦

Set 3 90◦ 80◦ 100◦ 90◦

Table 6.3: Arrangement of tool angles for four-stroke batches (rained).

at the 12” radius due to the limited range of motion of the wrist joint. With this

limitation, in order to have every possible combination and an equal number of data

points for every tool angle, there are a total of eight possible combinations, as shown

in Table 6.2. At each radius, three strokes were completed (with base angles of {−25◦,

0◦, 25◦} at 17” and {−35◦, 0◦, 35◦} at 12”). Therefore, eight batches of three+three

strokes produce a total of 48 strokes per collection.

For the rained soil, a different staggered arrangement of tool angles was used.

Since there were four strokes per batch and there were four tool angles of interest,

strokes were conducted at each of the four tool angles in every batch. There were

three combinations of stroke arrangements, and repeating each batch four times, the

same 48 strokes per collection were obtained.

The radial variation and the angular variation ensured that the stress fields of the

strokes did not interact with each other. At depths of 1”, it was expected that a 5”
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gap was more than sufficient to leave the soil undisturbed for the subsequent strokes.

With the staggered arrangement of stroke configurations, it was found in our

experimentation that there was no significant or consistent variation in failure force

as a result of arm configuration. This is to be expected, yet this was achieved only as

a result of the staggered arrangement highlighting controller issues which had to be

addressed. A specific example was the skewing of forces by the joint PID control, and

the solution resulting from the analysis of the effective Cartesian stiffness described

in Section 5.3.1.

One final manipulator-dependent issue that was addressed was insertion accuracy.

As discussed, the arm sensing resolution is approximately 0.05”. An insertion error of

up to 0.05” for a 1” insertion would result in a maximum (1.052−1)∗100 ≈ 10% error

in failure force. Ideally, greater insertion depths would be used to reduce the impact

of this error. However, greater insertion depths would likely exceed the strength ca-

pabilities of the arm. To mitigate this effect, manual verification of insertion depth

was done during testing. Adjustments were made to the commanded insertion depth

or to the resulting force estimate based on external measurements of insertion depth.

It is expected that with another manipulator, greater precision can be obtained with-

out resorting to manual external measurement, or that other means of automated

verification can be utilized, such as using machine vision1.

6.3 Interface Friction Estimation

In order to conduct controlled strokes in each of the soils, the interface friction angle

must be known. For each of the soils, the iterative estimation technique for interface

1The NASA/JPL Mars rovers, which are equipped with instrument arms, are also equipped with
stereo cameras (used primarily for navigation), but which can easily be used for visual feedback of
insertion depth.
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Figure 6-1: A couple strokes were conducted in the rained Ticino as verification of
the interface friction angle. There is only a mild lift at 23◦, but none at 25◦. Each
vertical grid-line represents one second.

friction determination described in Section 5.4 was conducted. The results for the

Ticino sand were presented in Figure 5-14. The interface friction was not expected to

change as a result of raining. As verification, a few additional strokes in the rained

samples were conducted. As a reminder, in these data plots, no motion of the plate

is occurring for the majority of the time shown. The force exerted by the arm is

increasing gradually until failure, which occurs in the last fraction of a second of the

stroke. Each vertical grid-line represents one second. Figure 6-1 shows two cases at

23◦ and 25◦. The friction angle was previously estimated to be between 22◦ and 24◦.

The lower plot shows that 25◦ was clearly high. The lifting at 23◦ was mild, and

therefore, for consistency, 23◦ was used for the rained Ticino.

The stroke results for Nevada Fine sand is shown in Figure 6-2. The resulting

estimate is approximately 27◦ (additional iterations placed it in the 26◦− 28◦ range).

This result was also verified by creating another plate with the fine sand glued to the

face.

Finally, for the glass beads, the interface friction was estimated to be approxi-
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Figure 6-2: The friction angle estimation for the Nevada Fine sand produces an
estimate of approximately 27◦. Each vertical grid-line represents one second.

mately 19◦. Figure 6-3 shows four strokes in the glass beads. The lifting effect is

fairly mild at 17◦ − 18◦ and the small lifting observed in the 19◦ data at 1.5 seconds

from the end is an encoder disturbance.

6.4 Stroke Results

The failure force data collected for each of the soils is presented in this section in

the order that the soils were tested: unrained Ticino, Nevada Fine, rained Ticino,

and the glass beads. Comparisons of the resulting experimental data with the model

predictions are given in the section following the results from all the soils.
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Figure 6-3: The friction angle estimation for the glass beads produces an estimate of
approximately 19◦. Each vertical grid-line represents one second.

6.4.1 Unrained Ticino Sand

The first sample tested was the unrained Ticino sand. Multiple collections were

conducted in the unrained Ticino, working towards improving the data collection

method, primarily for tool angles of 90◦ and 100◦. The quality of some of the 90◦

and 100◦ strokes made it difficult to determine a failure force. The unusable strokes

resulted primarily from gradual failure, with large-scale arm flexion triggering the

end of the stroke prior to true failure (the stroke is ended when the arm has traveled

a given distance). In cases with larger tool angles, a larger wedge of soil must be

mobilized and more soil accumulates in front of the plate as it moves; thus, failure

requires greater forces and greater rate of increase in order to make the failure more
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discernible. A lesson learned from these experiments was to use more shallow insertion

depths for the 100◦ cases, so that lower forces are required for failure. The 100◦ cases

in these data sets were taken at depths of 0.5”, 0.85”, and 1”. The later strokes were

all conducted at a depth of 0.85”. A depth of 0.5” was deemed too shallow, creating

greater uncertainty.

The results for two collections of 48 strokes are shown in Table 6.4 and 6.5. The

data is shown graphically above each of the tables. The agreement for the 70◦ and

80◦ cases is fairly good. These failures are typically easily discernible, having drastic

failures similar to that shown in Figure 5-17. The 90◦ and 100◦ show larger variation.

Combined results for the two collections are shown in Table 6.6.

As noted previously, the interface friction was estimated to be 23◦. The density,

in the state in which these strokes were conducted, was measured and found to be

1.43 g/cc, with a coefficient of variation2 of approximately ±2% over multiple trials.

The mean and standard deviation of the force measurements have been used in

the data reduction. This implicitly assumes that the data is expected to fall in a

Gaussian normal distribution, so that the best prediction is the mean. This is a

simplification. A greater number of measurements would need to be compiled in

order to find the true distribution. The actual distribution is uncertain due to the

many contributing sources of error. These sources for error will be discussed in more

depth in the subsequent discussion section.

2The coefficient of variation is the standard deviation divided by the mean, expressed as a
percentage.
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mean   = 0.80 1.24 1.62 2.30
stddev = 0.08 0.10 0.18 0.29

Unrained Ticino – Set 1
Tool Angle 70◦ 80◦ 90◦ 100◦

Failure Force 0.76 1.30 1.52 2.38
0.72 1.22 1.55 xxx1

0.72 1.16 1.34 2.42
0.72 1.20 xxx1 1.94
0.76 1.22 xxx1 2.54
0.73 1.07 1.45 xxx1

0.90 1.21 xxx1 1.92
0.90 1.19 1.80 2.02
0.81 1.43 1.72 2.45
0.78 1.34 1.75 xxx1

0.91 1.19 xxx1 2.78
0.91 1.34 1.81 2.30

Mean 0.80 1.24 1.62 2.30
Standard Dev. 0.08 0.10 0.18 0.29
Coef. of Var. 10.1% 7.9% 11.0% 12.8%
Units are in lbf.

1Either incomplete stroke or indiscernible failure force.

Table 6.4: Failure force results for tests in the unrained Ticino sand – Set 1.
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mean   = 0.81 1.22 1.56 2.38
stddev = 0.07 0.08 0.14 0.25

Unrained Ticino – Set 2
Tool Angle 70◦ 80◦ 90◦ 100◦

Failure Force 0.71 1.33 xxx1 2.74
0.88 1.21 1.54 2.35
0.71 1.34 1.65 2.49
0.80 1.12 1.57 2.70
0.87 1.21 1.57 1.98
0.76 1.10 1.60 xxx1

0.80 1.28 1.35 2.49
0.83 1.32 1.60 2.17
0.76 1.13 1.25 2.21
0.92 1.25 1.58 2.25
0.77 1.15 1.73 xxx1

0.89 1.19 1.72 xxx1

Mean 0.81 1.22 1.56 2.38
Standard Dev. 0.07 0.08 0.14 0.25
Coef. of Var. 8.7% 6.9% 9.2% 10.5%
Units are in lbf.

1Either incomplete stroke or indiscernible failure force.

Table 6.5: Failure force results for tests in the unrained Ticino sand – Set 2.
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mean   = 0.81 1.23 1.58 2.34
stddev = 0.07 0.09 0.16 0.27

Tool Angle 70◦ 80◦ 90◦ 100◦

Mean 0.81 1.23 1.58 2.34
Standard Dev. 0.07 0.09 0.16 0.27
Coef. of Var. 9.2% 7.3% 9.9% 11.4%

Table 6.6: Combined results from the two sets in the unrained Ticino sand.
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6.4.2 Nevada Fine Sand

The next sample tested was the Nevada Fine sand. The same arrangement of strokes

completed in the Ticino sand were completed in the Nevada Fine sand. Data was

collected for two sets of 48 strokes. An interface friction value of 27◦ was used. The

density of the Nevada Fine sand was measured to be 1.44 g/cc with a variation of

approximately ±2%. The shallow insertion depths were used for the 100◦ case, and

the resulting force data scaled to 1” depth.

The agreement between the two sets is fairly good. There remained a few strokes

with indiscernible failures. The criteria for assessing the acceptability of the data was

fairly stringent. If an easily discernible failure estimate could not be determined, that

stroke was omitted. To fill in some of the incomplete strokes from the first set, the

second set was completed. The combined results from both sets are shown in Table

6.9.
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mean   = 0.89 1.37 1.88 2.89
stddev = 0.07 0.07 0.12 0.41

Nevada Fine – Set 1
Tool Angle 70◦ 80◦ 90◦ 100◦

Failure Force 0.76 xxx1 1.80 xxx1

0.93 1.42 1.80 xxx1

0.77 1.45 1.95 xxx1

0.95 1.26 xxx1 xxx1

0.82 1.40 xxx1 2.81
0.90 1.40 xxx1 2.31
0.90 1.48 1.85 3.59
0.96 1.37 2.10 3.20
0.93 1.35 1.80 2.66
0.90 1.42 xxx1 3.12
0.94 1.30 xxx1 2.89
0.90 1.27 xxx1 2.50

Mean 0.89 1.37 1.88 2.89
Standard Dev. 0.07 0.07 0.12 0.41
Coef. of Var. 7.6% 5.3% 6.4% 14.3%
Units are in lbf.

1Either incomplete stroke or indiscernible failure force.

Table 6.7: Failure force results for tests in the Nevada Fine sand – Set 1.
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mean   = 0.87 1.27 1.82 2.78
stddev = 0.06 0.08 0.07 0.23

Nevada Fine – Set 2
Tool Angle 70◦ 80◦ 90◦ 100◦

Failure Force 0.83 1.32 1.89 2.42
0.79 1.11 1.80 2.35
0.89 1.27 1.77 2.63
0.80 1.30 1.78 2.98
0.77 1.40 1.80 2.91
0.87 1.35 1.90 2.77
0.90 1.35 1.75 xxx1

0.87 1.27 1.78 2.74
0.97 1.19 1.95 2.91
0.92 1.26 xxx1 3.11
0.90 1.26 xxx1 2.91
0.88 1.20 xxx1 2.91

Mean 0.87 1.27 1.82 2.78
Standard Dev. 0.06 0.08 0.07 0.23
Coef. of Var. 6.7% 6.3% 3.8% 8.4%
Units are in lbf.

1Either incomplete stroke or indiscernible failure force.

Table 6.8: Failure force results for tests in the Nevada Fine sand – Set 2.
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mean   = 0.88 1.32 1.85 2.83
stddev = 0.06 0.09 0.09 0.32

Tool Angle 70◦ 80◦ 90◦ 100◦

Mean 0.88 1.32 1.85 2.83
Standard Dev. 0.06 0.09 0.09 0.32
Coef. of Var. 7.2% 6.9% 5.1% 11.2%

Table 6.9: Combined results from the two sets in the Nevada Fine sand.
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6.4.3 Rained Ticino Sand

Having established a viable procedure for data collection with the two unrained sam-

ples, the next sample tested was the more involved rained Ticino sand. The Ticino

sand was rained using the raining assembly shown in Figure 5-1. The density of the

rained sand was measured to be 1.60 g/cc with less than ±0.5% coefficient of varia-

tion. Thanks to experience gained through the multiple trials in the unrained Ticino

and Nevada Fine sand, only a single collection was necessary in the rained Ticino.

All the 100◦ strokes for this sample were conducted at an insertion depth of 0.85”.

Typically, during insertion in the loose samples, the adjacent soil is minimally

disturbed. However, for these dense rained samples, a small (but noticeable) motion

of the grains of sand up to 1.5” away from the plate can be observed. The large

grain size of this soil (up to 0.7 mm), especially relative to the width of the plate (2

mm), is likely to produce greater shifting of the grains, loosening the rained soil in

the neighborhood of the plate. This topic will be explored more in the subsequent

discussion section.

In the data for this sand, there appear to be a few apparent outliers, more so than

in the test batches from the other sands. If these outliers are removed, the following

results are obtained:

Tool Angle 70◦ 80◦ 90◦ 100◦

Mean 0.85 1.29 2.01 2.95
Standard Dev. 0.07 0.12 0.14 0.07
Coef. of Var. 7.9% 9.4% 6.8% 2.5%

The removal of these outliers does not significantly affect the mean, but decreases the

standard deviation significantly. The reduced standard deviations are comparable to

(or better than) those from the other soils. It was expected that there would be less

variation in the measurements if the primary cause was density variation in sample
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preparation. The rained samples should be more uniform than the manually re-mixed

samples. It would appear that either the plate insertion disturbs the repeatability of

sample preparation, or the variations result from other factors, such as inclination of

the soil surface or inaccuracies of the manipulator.
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mean   = 0.88 1.32 1.97 2.94
stddev = 0.10 0.17 0.19 0.21

Rained Ticino
Tool Angle 70◦ 80◦ 90◦ 100◦

Failure Force 0.87 1.12 1.90 xxx1

1.12 1.20 1.90 2.92
0.98 1.27 1.87 2.92
0.87 1.07 1.95 2.81
0.82 1.40 2.20 3.05
0.82 xxx1 xxx1 3.36
0.74 1.28 2.20 3.02
0.90 1.39 2.20 2.97
0.77 1.35 2.00 xxx1

0.90 1.38 1.57 2.50
0.89 1.68 2.00 2.91
0.82 1.40 1.90 2.97

Mean 0.88 1.32 1.97 2.94
Standard Dev. 0.10 0.17 0.19 0.21
Coef. of Var. 11.5% 12.5% 9.4% 7.2%
Units are in lbf.

1Either incomplete stroke or indiscernible failure force.

Table 6.10: Failure force results for tests in the rained Ticino sand.
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6.4.4 Glass Beads

Finally, in order to test a material with a much lower friction angle, fine glass impact

beads from Potters Industries Inc.3 were obtained. The specification from the supplier

states that the beads are composed of a minimum of 85% rounds. The density of the

beads, in the state stroked, was measured to be 1.46 g/cc with a coefficient of variation

of approximately ±1%.

A single collection was completed for this sample. The failure forces were all

less than one pound. The full one inch insertion depth for all tool angles was used.

Greater depths of insertion were also tested. However, for depths greater than 1.5”,

with lower tool angles, the spur gears of the end-effector contact the soil surface. So,

while the magnitude of forces do not preclude testing at greater depths, the end-

effector design limits the depth of insertion. Future designs should carefully consider

both the range of tool angles and depths of insertion which can be achieved with a

given end-effector design.

3These are Ballotini Impact Beads, Potters Spec. AE, US Sieve 100-170. More information can
be found at http://www.pottersbeads.com/.
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mean   = 0.39 0.49 0.64 0.81
stddev = 0.02 0.04 0.03 0.03

Glass Beads
Tool Angle 70◦ 80◦ 90◦ 100◦

Failure Force 0.39 0.51 0.65 0.84
0.38 0.49 0.68 0.80
0.37 0.54 0.63 0.83
0.36 0.50 0.62 0.75
0.41 0.45 0.69 0.80
0.34 0.42 0.58 0.80
0.39 0.45 0.64 0.82
0.39 0.42 0.62 0.84
0.40 0.52 0.60 0.78
0.41 0.52 0.65 0.85
0.39 0.50 0.65 0.80
0.42 0.50 0.63 0.83

Mean 0.39 0.49 0.64 0.81
Standard Dev. 0.02 0.04 0.03 0.03
Coef. of Var. 5.8% 8.3% 4.8% 3.6%
Units are in lbf.

Table 6.11: Failure force results for tests in the glass beads.
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6.5 Comparison with Model Predictions

At this point, mean and standard deviation values for each of the soils have been

collected. Density has been independently measured. The interface friction angles

have been determined using the iterative technique. The following plots show the

experimental mean and standard deviations superimposed on the model predictions

using the interface friction and density values (Figures 6-4, 6-5, 6-6, 6-7, 6-8, and

6-9). The only unknown parameter for the models is the internal friction angle.

This angle is varied in the models to obtain overlap between the experimental mean

measurements and the model predictions. For comparison, both the upper and lower

bound numerical predictions are matched in order to illustrate the effect of small

friction angle variations and provide upper and lower bounds on the friction angle

prediction (when fitting to the experimental means). It is noted that the change in

internal friction angle required to match the upper bound to the lower bound, keeping

the other parameters constant, is 1.4◦ − 2.4◦ (5%-6%). The upper to lower bound

range is typically larger than the magnitude of the standard deviation, which would

indicate that the upper/lower bound separation from the numerical limit analysis

technique is of a reasonable magnitude for this application.

An interesting effect is observed for the loose Ticino and the Nevada Fine sand.

The 70◦ and 80◦ cases typically match well with one friction angle (Figures 6-4 and

6-6), while the 90◦ and 100◦ cases match a lower friction angle (Figures 6-5 and 6-7)

. A change of 2.4◦ and 0.7◦ is observed for the two soils respectively. Two possible

explanations for this effect may be proposed. The first is the dependence of friction

angle on normal stress at low stress values. The stress for the 70◦ cases can typically

be half the stress of the 90◦ and 100◦ (which both have nearly the same stress when the

100◦ data is collected at ∼0.85” depths, as we have done). This effect is observed on

a smaller scale in the glass bead results, where the 70◦ result is a fraction of a degree
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Fit - UB Fit - LB
70◦, 80◦ 90◦, 100◦ 70◦, 80◦ 90◦, 100◦

Ticino 43.0◦ 40.6◦ 45.2◦ 43.0◦

Nevada Fine 41.7◦ 41.0◦ 44.1◦ 43.2◦

Rained Ticino 42.1◦ 44.6◦

Glass Beads 30.0◦1 31.4◦1

1The 70◦ data fits 30.6◦ upper - 31.9◦ lower, but the 80◦ data fits
29.5◦ upper - 31.2◦ lower. The table values fit the average of all.

Table 6.12: Results from the comparison of experimental data with numerical upper
and lower bound predictions. The table lists the matching internal friction angles for
the various mediums and tool angles.

higher than the other angles. The second possible explanation is the progressive

failure that typically occurs in these sands with higher tool angles. Both of these

effects will be discussed in more detail in the discussion section.

The results from the model comparisons shown in the following figures are com-

piled in Table 6.12. Contrary to the anticipated soil characteristics from the soil se-

lection, the Nevada Fine sand proved to be very similar in nature to the Ticino sand.

Another anomaly from the anticipated values is the low friction angle estimates from

the rained Ticino. The rained Ticino was too easily disturbed to maintain a 50◦+

friction angle as expected. For the dense rained Ticino sand, during insertion, there

was a noticeable shifting of the sand up to 1.5” away from the plate. This reduced the

density and tight packing of the sand. It is difficult to maintain a local arrangement

of particles in a very dense state, especially when experimenting on small scales with

such a large grain size. The experimental forces account for the change in density

(since the forces are elevated relative to the unrained case), but yet reflect no real

substantial change in friction angle.
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Figure 6-4: Comparison of model predictions and experimental results for the 70◦

and 80◦ strokes in unrained Ticino sand.
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Figure 6-5: Comparison of model predictions and experimental results for the 90◦

and 100◦ strokes in unrained Ticino sand.
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Figure 6-6: Comparison of model predictions and experimental results for the 70◦

and 80◦ strokes in Nevada Fine sand.
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Figure 6-7: Comparison of model predictions and experimental results for the 90◦

and 100◦ strokes in Nevada Fine sand.
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Figure 6-8: Comparison of model predictions and experimental results for strokes in
rained Ticino sand.
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Figure 6-9: Comparison of model predictions and experimental results for strokes in
the glass beads.
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Figure 6-10: The unmodified shear box is shown here. The upper half of the assembly
weights roughly three pounds. This weight must be supported by the soil-wall friction,
requiring a large vertical load to be applied.

6.6 Direct Shear Tests

In order to have a basis for comparison for the internal friction angle estimates,

standard direct shear tests have been conducted on the soils, with one critical mod-

ification. Figure 6-10 shows an illustration of a shear box apparatus. The standard

direct shear apparatus requires a normal load on the order of 10 psi to be applied to

the top of the soil sample so that the friction between the soil and the walls of the

upper half of the shear box assembly is sufficient to suspend the upper half of the

shear box above the shear plane (the upper half of the shear box weighs roughly three

pounds).

In order to compare results from the stroking experiments to the direct shear tests,

direct shear estimates should be obtained for pressures similar to those experienced

when using the manipulator arm. The pressure on the embedded plate is not constant,

but increases from the surface of the soil to the bottom tip of the plate. The normal

stress along the failure surface will also vary. As a first approximation, the measured

failure force can be divided by the area of the embedded portion of the plate (typically

5 in.2) to obtain a simplified pressure value. If a linear increase in pressure from zero
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to the maximum at the tip of the plate is assumed, then the pressure at the tip of the

plate will be twice that computed from this simplification. Half of the plate would

experience a higher pressure and half a lower pressure. It is clearly difficult to draw

a direct comparison between the normal stress applied in the direct shear test and

the varied stress experienced in the embedded plate tests. However, by simply using

the approximation of uniform stress over the inserted plate as an initial guideline for

comparison purposes only, some ballpark deductions can be made.

In the stroking configuration, the inserted plate area is 5 in.2 (except for the

shallow 100◦ cases) and the range of forces on the plate is 0.4-2.0 lbf. Assuming a

uniform distribution, a guideline stress range of 0.08-0.40 psi is obtained. This is

more than an order of magnitude lower than typically used in direct shear tests. A

pressure of this magnitude would not be sufficient to support the weight of the upper

half of the shear box. Therefore, a special attachment to the upper half of the shear

box was used to suspend it from above so that lower confining pressures could be

used. Figure 6-11 shows the modified shear box and test assembly. The upper half

was suspended by rubber bands from a horizontal rod placed above the assembly.

Using these modifications, the load on the soil sample was reduced to as low as 0.98

lbf over an area of 5.57 in.2, resulting in a pressure on the shear surface of 0.18 psi.

Using the modified assembly, tests were conducted at loads of 0.18, 0.36, 1.16, and

2.33 psi. For these low values, four tests were conducted at each load and three were

kept. Single tests were conducted at each of the larger stresses of 6.95, 10.91, and 18.82

psi to estimate the friction angle at more typical higher loads. The specific results

from each of these tests are compiled in Appendix D. The tests show a variation of

up to 2◦ in estimated friction angle. This agrees with Lambe and Whitman [62] who

state that the measurement of the peak friction angle from the standard direct shear

test can give rise to an error of as much as 2◦.
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Figure 6-11: Direct shear box and test assembly used for measuring the soil internal
friction angle. This system has been modified so that the mass of the upper half of
the shear box can be suspended from above. This allows us to test with much lower
normal loads.
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Direct Shear at Various Normal Pressures (psi)
0.18 0.36 1.16 2.33 6.95 10.91 18.82

Ticino 41.3◦ 39.3◦ 38.5◦ 35.3◦ 31.6◦ 31.6◦ 32.0◦

Nevada Fine 38.7◦ 36.1◦ 33.5◦ 32.3◦ 32.0◦ 31.2◦ 31.6◦

Rained Ticino 47.9◦ 43.8◦ 43.0◦ 41.7◦ 39.9◦ 40.9◦ 40.8◦

Glass Beads 29.9◦ 28.1◦ 26.4◦ 24.9◦ 25.2◦ 24.7◦ 24.2◦

Table 6.13: Average friction angles measured with the low-stress direct shear box
apparatus.

Table 6.13 shows the average results from the low-stress direct shear tests. Figure

6-12 plots all the measured angles up to 6.95 psi. The high stress values were all

found to be within 1◦ of each other. Thus, over the range of 7-19 psi, the assumption

of a constant friction angle in direct shear is reasonable. Comparing the measured

friction angles at high stresses to those at the lowest stress, increases of 5.2◦ to 9.7◦

are found. Limiting our attention to the lowest two test loads, one roughly one half

of the other, a variation of measured friction angles of 1.8◦ to 4.0◦ is found. Clearly,

the measured friction angle is much larger at lower stresses, a fact which has been

known for some time and demonstrated here experimentally.

6.6.1 Estimating Comparable Loading

In order to compare results from the direct shear tests to the stroke results, a method

must be devised to find comparable load values. Figure 6-13 shows an illustration of

the upper half of the Mohr circle diagrams for three different loading paths.

Let us consider the loading paths for direct shear and passive earth pressure

scenarios. The loading in direct shear maintains a constant vertical pressure. The

motor driving the two halves of the shear box increases the shear on the horizontal

plane between the two halves of the box until failure. Thus, the loading path is

shown (top-most Mohr circle diagram) as an arrow in the vertical direction at stress
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Figure 6-12: Low-stress direct shear results for the tested soils, showing clear increases
at lower stresses.

σv until failure. For comparison with the stroking data, comparable pressures must

be computed for the failure surface in the earth pressure scenario. Since the forces

are dominated by the passive earth pressure component, the computation focuses on

the passive case.

The soil models all incorporate the assumption of a Rankine zone in the failure

wedges away from the tool. This portion of the soil will not be affected by the interface

friction at the tool. Therefore, as a low estimate of the equivalent normal pressure

on the failure surface, the case for δ = 0 (no interface friction) is considered. The

vertical stress in the soil is simply the geostatic stress, γz. This remains constant

during loading, while the horizontal stress is increased until failure. Using σv and

the estimated friction angle, an equivalent low estimate of pressure can be computed,

denoted σL (shown in the middle Mohr circle diagram).
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Figure 6-13: The upper half of the Mohr circle diagrams are shown for three different
loading paths. The cases for direct shear and passive earth pressure with and without
interface friction are shown.
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For the region of the soil near the tool that does experience the interface friction, a

point adjacent to the plate is considered. A vertical plate is assumed in the following;

for a non-vertical plate, the derivation is the same, with the direction normal to the

plate being thought of as horizontal. Since the interface friction, δ, is known, the

orientation of the force on the plate is directed at an angle of δ from the normal of

the plate. Before the stroke begins, the initial horizontal stress in the soil at rest

is given by the coefficient of lateral earth pressure at rest, K0, times the vertical

stress, γz. As the plate is loaded, the horizontal stress is increased, and the interface

friction introduces shear on the vertical face of the element. The loading path is

drawn as a line inclined at angle δ in the bottom-most Mohr circle diagram. Using

the horizontal pressure and shear on the element at failure and the estimated friction

angle, an equivalent high estimate of pressure can be computed, denoted σU .

One final item is required for obtaining the estimated pressures. A value for z

must be selected. To use the full depth of the plate would result in high estimates

which would likely only be true very close to the tip of the plate. An approximate

average value is preferred. Using z = 1/2′′ or z = 2/3′′ would likely provide suitable

average values. Table 6.14 shows the results from computations at both depths using

the average estimated UB/LB friction angles. It should be noted that the lowest

direct shear measurement was taken at 0.18 psi. Therefore, except for two of the

cases, extrapolation of the direct shear data is required.

6.6.2 Comparisons

Once the low and high estimates of equivalent pressure are computed, the values

from the direct shear tests must be interpolated or extrapolated to obtain estimates

of friction angles for comparison. For the sets of data from the four low-stress cases,

an exponential curve can be fit. Figure 6-14 shows the direct shear data plotted on a
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UB/LB at z = 1/2′′ (psi) at z = 2/3′′ (psi)
avg. φ σL σU,70 σU,90 σL σU,70 σU,90

Ticino 42.9◦ 0.032 0.062 0.118 0.042 0.083 0.157
Nevada Fine 42.6◦ 0.032 0.072 0.148 0.043 0.096 0.197
Rained Ticino 43.4◦ 0.032 0.066 0.144 0.047 0.088 0.191
Glass Beads 30.7◦ 0.034 0.051 0.097 0.046 0.068 0.129

Table 6.14: Estimated equivalent pressures for passive loading, computed using the
average UB/LB φ estimates, are shown for each of the test cases. The low estimates
depend only on depth and estimated friction angle. The high estimates also depend
on failure force, so values for 70◦ and 90◦ tools are shown.

log-log scale, with a linear fit superimposed on the data. Figure 6-15 shows the direct

shear data and the resulting fits plotted with normal axes.

As noted, the majority of the equivalent pressures are found to be outside of

the range which could be measured in direct shear. Thus extrapolation, rather than

interpolation, is being done. Extrapolation is less trustworthy, and therefore the

resulting friction angle estimates must be taken with a grain of salt. Nevertheless,

the resulting values are likely in the correct ballpark4.

Another item of note, the average UB/LB estimated friction angles are used in the

calculations of equivalent pressure. These are estimates with associated uncertainties

which would impact the pressures computed by small amounts, however, the direct

shear friction angle curves are steep in this region. Nevertheless, some approximations

must be done in order to obtain values for comparison. The sources of variation

discussed in this paragraph should be kept in mind when examining the final results.

Table 6.15 shows the resulting friction angle estimates using the computed equiv-

alent pressures. The mean UB and LB friction angle fits are shown for comparison.

The agreement is good, except for the dense Ticino, which will be discussed in more

4Although the fit is shown to increase exponentially at low pressures, it is expected that the curve
will level off at some low value.
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Figure 6-14: A straight line is fit to the direct shear data when plotted on a log-log
scale.

Mean Mean z = 1/2′′ z = 2/3′′

φLB φUB φL φU,70 φU,90 φL φU,70 φU,90

Ticino 44.1◦ 41.8◦ 45.4◦ 43.7◦ 42.3◦ 44.7◦ 43.1◦ 41.6◦

Nevada Fine 43.7◦ 41.4◦ 43.3◦ 40.9◦ 38.9◦ 42.5◦ 40.1◦ 38.1◦

Rained Ticino 44.6◦ 42.1◦ 51.2◦ 49.3◦ 47.1◦ 50.3◦ 48.5◦ 46.4◦

Glass Beads 31.4◦ 30.0◦ 33.2◦ 32.3◦ 31.0◦ 32.6◦ 31.7◦ 30.4◦

Table 6.15: Friction angles obtained from the fits to the direct shear data using the
estimated equivalent pressures.
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Figure 6-15: The direct shear data in the low-stress range is fit using an exponential
curve.

detail in the following discussion section. A more complete comparison of the di-

rect shear and stroke results is given in the next chapter, where the model inversion

technique for parameter estimation is discussed.

6.7 Discussion

In this closing section, the difficulty in obtaining verification of the friction angles

estimated through our experiments with friction angles obtained by other means is

discussed first. A few anomalies in our data are discussed. Issues to note when

applying the estimated friction angles from this work to other loading scenarios are

also presented. Finally, the various sources of error in the measurements and the

conclusions reached from these experiments are presented.
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Figure 6-16: Schematic illustration of factors contributing to the measured shear
strength of cohesionless soils. Reproduced from Lee and Seed, 1967 [64].

6.7.1 On the Great Variety of Friction Angles

The linear approximation of shear strength, known as the Mohr-Coulomb failure

law, given as s = c + σ tanφ, is known to apply only over regions of normal stress,

σ. A single friction angle, φ, is not sufficient to capture the variations over a wide

range of stress, particularly at very low stress, for which the friction angle required

for this equation to match the observations varies considerably. In order for us to

compare the estimated friction angles to any other measured angles, there are a

number of considerations which must be made regarding the magnitude of stress,

loading conditions, and soil conditions. Therefore, the theories on the shear strengths

of soils must be examined.

Lee and Seed [64] quantify the measured shear strength of cohesionless soils as

the contribution of three components
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Measured shear strength = strength due to sliding friction

+ dilatancy effects

+ crushing and rearranging effects

Figure 6-16 is a reproduction of the schematic illustration from Lee and Seed. The

strength due to sliding friction is assumed to be constant over various confining pres-

sures. This friction angle is typically denoted φµ and represents the sliding friction

between individual particles. It depends on the composition of the particles and the

roughness (and as shown by Rowe, on the load per particle, though Lee and Seed

propose that this effect cancels in typical loading). At larger stresses, the relative

significance of the dilatancy and the crushing and rearranging are dependent upon

the type of sand, particle size, and initial void ratio. At low stresses, the crushing

and rearranging effects will be minimal and the primary increase in apparent friction

angle is a result of the dilatancy effects. The dilatancy effect is clearly seen in the

direct shear results in Appendix D. The samples were approximately the same height.

As expected, the magnitude of the dilation is more pronounced for the large grain

size sands (Ticino) and smallest for the finest material (glass beads) and it is more

pronounced for the dense sand (dense Ticino).

Given the dependence of friction angle on a number of factors, it would seem

best to conduct tests with identical loading conditions using another apparatus for

verification. Our use of direct shear tests required the computation of equivalent

friction angles that were rough and fraught with approximations. Future researchers

may prefer to conduct independent passive plane strain tests at similar stress levels.

No other plane strain apparatus was available for this work. Triaxial tests would be

of no benefit since they exhibit a wide variety of measured friction angles depending

upon loading path. In addition, no apparatus was available to conduct tests at such
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low confining pressures. Another possible solution would be to have a manipulator

which can exert greater forces at greater depths and span a range of stresses. Using

measurements over a range of stresses, work can be done to relate the observed trends

directly to the observed trends in direct shear or triaxial tests for verification and

construct a specialized dilatancy correction directly for earth pressure scenarios.

6.7.2 Low Forces and Dense Samples

For the loose Ticino and Nevada sands, lower forces than expected were found for the

90◦ and 100◦ tool angles. One possible cause for the variation is the change in the

dependence of the friction angle on normal stress. A change of almost 2◦ is seen to

result from the friction angles using the estimated equivalent pressures from the 70◦

to the 90◦ case. This effect is clearly possible, as seen in our direct shear tests, but it

may not be the only cause.

Another highly likely cause results from the gradual nature of failure more typical

in the 90◦ and 100◦ strokes in the higher friction angle soils. As noted by Rowe and

Peaker [87], the full mobilization of internal friction in the passive case does not occur

until after significant deformation has occurred (up to 16-26% of the insertion depth

for loose sands). They give the following example to illustrate this concept: if the

failure region in the soil is imagined to be composed of wedges on a frictional surface

with springs between the wedges, in order for the force from the wall to be fully

transmitted to all the blocks representing the full failure region, the springs must be

compressed in turn. In these cases, it is likely that our break-point computation used

to estimate the failure force will produce failure force estimates before the internal

friction has been fully mobilized, resulting in lower estimated friction angles.

Another anomaly in our data was the low friction angle estimates for the rained

Ticino. Another insight from Rowe and Peaker relates to this issue as well. In
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their experiments, the typical failure for dense sands exhibit a peak in the failure

force at horizontal displacements within the first 4-5% of the wall height. The data

then shows a measurable decrease. The failures for the dense soil tested here do not

exhibit this behavior. In the direct shear tests, a peak is also observed; however,

after dilation has occurred, the measured shear strength is reduced significantly from

the peak. Given the observed motions at the surface of the soil, it is likely that the

region affected by insertion extends over 1” away from the plate. Thus, the additional

strength attributed to dilation is gone after insertion, resulting in a condition in the

soil similar to the loose configuration. This would agree with our observations.

6.7.3 Application of Estimated Friction Angle

There is an extensive amount of literature examining the dependence of apparent

friction angle on loading path, relative density (void ratio) of the soil, magnitude

of confining pressure, magnitude of the dilatancy, and other factors. In light of

the amount of work compiled on computing friction angles that would fit within the

framework of the Mohr-Coulomb failure law, a friction angle cannot be stated without

specifying many accompanying factors to qualify it. One thing that can be said with

confidence as a result of this investigation is that the Mohr-Coulomb failure law is a

simplified approximation to the true behavior at low stress. A particulate model of

soil behavior, instead of the continuum model used here, may produce better results,

but would be very complex to implement, and is left for future researchers.

If the results from this work are to be applied for high stress scenarios, such

as bearing capacity (e.g. lander stability) or retaining wall stability (e.g. building

Martian or Lunar structures), then the relationship between the friction angles at

low stresses, which can be measured with our system, and the friction angles at high

stresses must be known. Currently, a shift of roughly 5◦− 9◦ from high stress friction
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angles to the low-stress friction angles in direct shear is observed. As it currently

stands, additional testing in either direct shear or triaxial tests would be required

to use the above equations to extrapolate the manipulator results to other loading

conditions. If the manipulator could span a greater range of forces, it is likely that an

independent correction equation can be developed to extrapolate the results to other

loading conditions.

Regardless of the means of compensation, it is clear that the dependence of friction

angle on the various factors (normal stress, loading path, etc.) must be kept in mind.

Otherwise, blind application of estimated friction angles from this work (at low stress,

passive plane strain loading) may lead to gross over-estimation of the failure forces

in other loading scenarios.

6.7.4 Sources of Error

In this section, the variance in the individual measurements are examined. There

are sources of error, sources of variability, and procedural sources. The sources of

error are manipulator dependent and result from imperfect control and sensing. The

sources of variability are soil dependent effects and result from soil variations from

stroke to stroke. The impact of each of these sources on the measured force are

interpreted based upon the sensitivity analysis presented in Table 4.3 using Chen and

Liu’s upper bound model as an example. Comparisons are done relative to a baseline

reference case: 40◦ friction angle, 25◦ interface friction angle, 1.5 g/cc density, and a

horizontal soil surface.

The manipulator dependent effects relate to the interface friction angle, tool angle,

and insertion depth. The arm can track the desired interface friction angle to within

1-2 degrees. A 1-2 degree error in tracking of the desired interface friction angle will

result in 3%-9% error in force from the baseline case. An error in the tool angle of one



6.7. DISCUSSION 177

degree will result in approximately 4% error in force. As previously mentioned, the

insertion depth accuracy using the external encoders alone would contribute up to

10% error, but with the manual verification of insertion depth, this is likely reduced to

within 5%. One final item, the independent tests on the force/torque sensor yielded

an uncertainty of 1% in the range of forces encountered. The combination of these

manipulator dependent effects could produce errors of 7-11%.

The soil dependent effects relate to the sample preparation and are independent

of the specific limitations of the manipulator. An error of one degree in soil surface

angle (to which each of the samples was prepared) can result in approximately 5%

error. A variation in density of the soil across strokes will result in an equal percent-

age variation in force. Repeated preparation of samples resulted in a maximum 4%

variation in density. Thus, the soil dependent variability alone could cause up to 6%

error.

Combining the sources of error and variability, errors of 10-13% are possible. This

agrees with the largest coefficients of variation which were observed for any set of

measurements.

Apart from the manipulator and soil dependent sources, there are also errors

introduced as a result of the procedure and assumptions. These are more difficult

to quantify. The procedure for the estimation of failure force for gradual failures

introduces a bias into the measurements. The magnitude of the bias may be in the 5-

10% range. This number is estimated from the slope of the failure portion of the force

versus displacement plot. Rowe and Peaker [87] have studied progressive failure for a

vertical wall and state that for loose soils, the internal friction is fully mobilized after

displacements of 16-26% of the height of the wall. Their experiments are different

from this work in that the interface friction is also not mobilized initially, whereas

we reach and track the interface friction angle early in the stroke. Using a 16-26%
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guideline, a rough estimate of the impact on the estimated failure force gives the

5-10% bias. The consideration of progressive failure applies only to roughly half of

the 90◦ and most of the 100◦ tool angle strokes. The lower tool angles have more

definite failures. Assumptions have also been made that the material is homogeneous

and that the properties do not vary during a stroke. These assumptions break down

in the presence of gradual failures, where compaction must occur prior to failure. In

addition, since the friction angle is known to vary depending upon normal stress, and

the normal stress varies along the failure surface, the friction angle cannot be a single

constant value for a given failure. Therefore, it is an approximation to assign a single

friction angle value to a given stroke. This is necessary until a more accurate model

is developed.

The above percentages reflect the maximum possible error. None of these sources

have a definite known bias, except the estimation technique used for gradual failures.

In the absence of further knowledge regarding the distribution of the other sources

of error, a simple Gaussian distribution is assumed5. Thus, the mean and standard

deviation measures were used in the data reduction. Corrections to the gradual failure

cases can be applied independently. To reduce the impact of these sources of error,

repeated tests were conducted at each tool angle to obtain an average over a collection

of measurements. The magnitude of the resulting standard deviations indicate that

these individual sources are not consistently additive.

The sources of error from the manipulator can be reduced with greater sensing

precision, reduced backlash in the motors, and greater force capabilities. The sources

of error from the procedure can be reduced after more experience has been gained

and the methods improved. The sources of variance in the soils are to be expected

in soils that will be encountered in the field and cannot be reduced. Variations in

5Initial examination of the collected data has been done. While the quantity is insufficient to
make a definite conclusion, the data often appears to be approaching a Gaussian distribution.
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measurements as a result of these sources of sample variability are a positive indication

that the manipulator is sensitive to such variations in the soil. Data which reflects

these variations are desirable.

6.8 Conclusions

This chapter has presented the results from measurements using the manipulator arm

to interact with three different soils. The measurements typically showed a standard

deviation of 10%. The maximum variance as a result of variations in soil conditions

alone, independent of the manipulator and procedure, was shown to be about 6%. The

results have shown that this system is sufficiently accurate for measuring interaction

forces in loose soils. For dense soils, disruption of the soil resulting from insertion

prohibits interactions with the soil in an undisturbed state. Greater insertion depths

may overcome this barrier.

The comparisons of the estimated friction angles with independently measured

direct shear values have shown good agreement. Additional testing on a greater

variety of soils is necessary to fully validate the system. Many of the issues raised

in the analysis of the resulting data do not undermine the method, but rather raise

additional questions about the details of modeling soil behavior at low stress and for

gradual failures.
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Chapter 7

Parameter Estimation

In the previous chapter, knowledge of the interface friction and density of the samples

was used to estimate the internal friction angle by manually matching the force versus

tool angle curve to those predicted from the models. In this chapter, a general

technique that automatically computes the valid regions of parameter space that could

have possibly generated the observed measurements within the measured uncertainties

is presented. This technique is applied to the experimental data from the previous

chapter to produce complete bounds on the corresponding parameter estimates.

7.1 Defining the Problem

From the experimental interactions with soil using the manipulator arm, it is possible

to collect a set of forces required to fail the soil in different configurations. The depth

of insertion and the angle of the tool can be directly controlled. Of these two, the

angle of the tool is more useful. The depth of insertion is not critical (aside from

affecting the uncertainty associated with the measurement) for tests in cohesionless

soils. The H2 dependence on insertion depth is well known, and so, all the force

181
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data is normalized by dividing by the square of the insertion depth. Therefore, the

primary control variable in the collection of data is the tool angle. The surface angle

of the soil can also be controlled, however, the process would be complicated (not to

mention unrealistic for tests on Mars) and approximate. In the interests of simplicity

and speed of data collection, a horizontal soil surface was used throughout these tests.

Thus, each set of manipulator strokes produces a set of forces required to fail the

soil for different tool angles, normalized to a unit depth of insertion. The problem

statement then becomes: find estimates of the physical soil properties given these

failure force measurements. This chapter examines if this problem is solvable, and if

so, what is involved in the solution of the problem.

The soil models under consideration all have the same set of variables. These

variables can be grouped into soil parameters and geometric parameters. The soil

parameters are internal friction (φ), interface friction (δ), density (γ), and cohesion

(c). The geometric parameters are tool angle (α), tool depth (H), surface angle (β),

and surcharge pressure (q). In our tests, the soils are cohesionless, c = 0, and there

is no surcharge, q = 0.

As described above, only the tool angle is varied for a set of measurements, and

the resulting resistance forces are collected. This produces sets of data pairs {αn, Fn}

where αn is the tool angle for the nth measurement and Fn is the force required to

move the embedded plate and fail the soil, normalized to unit depth. Using these

data pairs, the goal is then to invert the soil models to determine the estimates φ̂, δ̂,

and γ̂ which would account for these measurements.

7.2 Difficulties in Model Inversion

A standard method for determining estimates for parameters in a model that best

fit measured data would be to use a nonlinear optimization technique that searches
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the parameter space to find the solution with the minimum sum-squared error (SSE)

(or other error measure) between predictions and measurements. There are two is-

sues which may complicate the implementation of a standard nonlinear optimization

technique to this problem.

The first issue is a result of the nature of each of the soil models. Nearly all

the models require optimizations in one or two variables to obtain solutions, or,

they are tabular in nature. Both of these types of models, in actuality, present small

barriers to implementation in a standard optimization framework. Since each function

evaluation will itself require an optimization, this will increase the computation time.

However, this is not a significant barrier. Nonlinear optimization techniques have been

implemented in C (rather than Matlab) for speed, and typical runs require a fraction

of a minute. The tabulated models will require an interpolation scheme, however, the

models are locally smooth and interpolation schemes are easy to implement.

The second issue is the non-unique mapping of parameters to forces. In the soil

models, an infinite combination of parameters may produce the same force. In a

standard nonlinear optimization, this would likely result in many local minima, or

flat regions in the error surfaces. Consequently, solutions obtained from standard

optimization techniques may lie far from the actual solution. Figure 7-1 shows the

error surface and contour curves for an example case. Here, a set of measurements

with random noise of±5% has been used. The error surface is generated by computing

a table of the sum-squared error at discrete points in the parameter space. In the lower

portion of the figure, the contour curves for the computed SSE surface are plotted.

The minimum value from the computed SSE table (used to generate the surface), the

solution found from the nonlinear optimization, and the actual solution are marked.

In this case, the nonlinear optimization has done a good job in locating the minimum

of the error surface. However, neither computed solutions are close to the actual
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Figure 7-1: Example of the low sensitivity to parameter variation. Note the flat
region in the SSE surface shown in the upper plot. The resulting contour plots for
the SSE surface are shown in the lower plot with solutions marked.
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solution. This is a characteristic shortcoming of the nonlinear optimization method:

it yields only a single point solution and does not utilize the uncertainty information

in the measurements.

To address these difficulties, a novel parameter space intersection method is de-

veloped in this chapter. This method uses pre-computed tabulated model predictions

and determines regions in parameter space which are consistent with a given set of

measurements with associated uncertainties. The intersection of these regions for mul-

tiple measurements represents the collection of all possible parameters which could

have possibly generated the given set of measurements.

7.3 Parameter Space Intersection Method

The development of the new parameter space intersection method for model inversion

begins with an illustration of the tabulated data resulting from a typical soil model.

Figure 7-2 shows a cube of the prediction values for a 70◦ tool, where the axes are

the internal friction (φ), density (γ), and interface friction (δ). The shading of each

block represents the magnitude of the predicted failure force. Similar cubes can be

generated for other tool angles. The empty blocks in the upper left corner reflect

the fact that the interface friction angle cannot be greater than the internal friction

angle. Again, note that there are many different possible combinations of parameters

which produce the same force value (imagine a surface connecting all blocks with

the same shading – this surface would span a wide range in each of the axes). The

model prediction values can also be depicted in another more useful form. Consider

horizontal slices of the cube at constant δ values. If each of these slices are plotted

with failure force on the vertical axis, the figure on the right is obtained, which plots

F vs. φ and γ for constant δ.
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Figure 7-2: Sample force prediction data for a 70◦ tool shown in two formats, a colored
cube (left) and a collection of surfaces at discrete δ values (right).

7.3.1 Computing Contour Line Intersections

Let us assume that we have perfect measurement data. Figure 7-3 graphically illus-

trates the next steps in the development. A force measurement from the manipulator

arm can be depicted as a horizontal surface intersecting all the F vs. φ and γ surfaces

(1). This produces a set of contour curves, each curve associated with a different δ

value (2). If this process is repeated for a second measurement at another tool angle,

another set of contour curves is obtained, shown superimposed in (3). And again for

a third (4) and fourth (5) measurement. Examining the intersections between these

sets of contour curves, a trend can be observed. Each of the intersection points rep-

resents the agreement between two of the measurements. If multiple measurements

are consistent with each other, then the locus of the intersections between the sets of

contour curves will converge on the correct parameters (5). Ellipses are used to en-

close the points of intersection. If the measurements are noisy or mildly inconsistent,

then the ellipses will remain large (6). Appropriate parameter estimates may still
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Figure 7-3: Initial steps in the graphical method for computing contour curves for
each measurement and the resulting intersections. The development flows from (1)-
(5) assuming ideal data. (6) shows the results with noisy data.
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be deduced by finding the smallest ellipse; however, this method is approximate and

does not utilize the uncertainty information associated with the measurement data.

7.3.2 Computing Contour Band Intersections

To further develop this method in the presence of noisy measurements, let us consider

how to incorporate the uncertainty information available with each measurement.

Figure 7-4 graphically illustrates the next steps. An arbitrary random ±2% noise is

added to the measurement data in this example. For each measurement, two sets

of contour curves are computed, one for the upper limit (measurement+uncertainty)

and another for the lower limit (measurement-uncertainty). This produces a set of

contour bands (the regions between the two sets of contour curves). Repeating the

process for a second measurement, two sets of bands are obtained (1). The intersection

between these two sets of bands represents regions of the parameter space that are

consistent with both measurements. Next, adding a third measurement, another set of

bands is obtained, and the resulting computation of the intersecting regions produces

a smaller consistent space (2). Adding a fourth measurements again decreases the

final intersection regions (3). These final highlighted intersections denote regions of

parameter space which could have generated the observed measurements within the

given uncertainty bounds.

7.3.3 Utilizing Interface Friction Estimates

Now, from the stroking experiments, the interface friction can be independently de-

termined. This information can be utilized in the inversion method developed here.

In the contour band example, for a given measurement, the sets of bands represent

sets of intersections with the multiple constant δ surfaces. In the case where the

interface friction value is known, only the band corresponding to the known δ surface
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Figure 7-4: Next steps in the graphical method, utilizing measurements with un-
certainty information. (1)-(3) show the superimposed contour bands from multiple
measurements. (4) incorporates knowledge of δ to isolate one set of bands. (5) zooms
in on the final consistent region.
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need be plotted, as shown in (4). Zooming in on the resulting intersection region (5),

the resulting region of consistent parameters is seen to be greatly reduced.

7.3.4 Additional Notes

The parameter space intersection method produces the full range of parameters that

are consistent with the measurements and associated uncertainties. If a single esti-

mate of parameters is required, different techniques can be used to select such an

estimate. Once the final intersection region is obtained, in the simplest case, the

center of the region can be selected as the estimate and uncertainty bands in φ and

γ can be specified to encompass the whole consistent region. Another alternative is

to compute the SSE over the final consistent region (which is a small subset of the

whole parameter space) and select the minimum.

Obviously, the final intersection region should be as small as possible in order to

get very precise parameter estimates. There are two mechanisms by which additional

measurements can reduce the intersection region. Additional measurements at the

same tool angle can reduce the uncertainty in a given measurement, which in turn

thins each of the bands. Additional measurements at different tool angles are often

more effective, as they generate a new set of bands that can potentially significantly

reduce the final intersection region.

Note that the method outlined so far uses plots of φ versus γ. The same operations

have also been done using plots of γ versus δ or φ versus δ. The plots of φ versus γ

were used as a illustration so that knowledge of δ could be easily integrated. There is

no barrier to using the other plots as well. The true consistent region of parameters is

a 3-D volume in parameter space. These 2-D plots are projections of the 3-D volume.

They each simply provide another view of the data. Which one is used depends on

the goals of the parameter estimation. The variable that is not chosen as one of the
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axes will be represented in a discretized form (by the sets of bands), while the other

variables on the axes will be continuous.

7.4 Comparison with Nonlinear Optimization

Now that the parameter space intersection method has been presented, it is of interest

to see how it compares with a standard nonlinear optimization technique. Simulations

have shown that the solution resulting from the graphical parameter space intersec-

tion method produces consistent intersection regions which typically enclose the local

minima of the weighted sum-squared-error surface (Figure 7-5). The weighted sum-

squared error is defined as

WSSE(φ, γ, δ) =
∑
n

(
Fn − Fpred(αn, φ, γ, δ)

Fn

)2

(7.1)

This weighted form is used since it is expected that the errors would be larger in

magnitude for the larger measurements. It can be seen from the left hand plots that

there are multiple local minima. The nonlinear optimization, based upon the WSSE,

produces parameter estimates which fall into one of these minima and yield a single

point solution. From the error surfaces, it is clear that the actual solution in this

case is fairly distant from the minimum found using this error measure. On the other

hand, the graphical procedure does not rely upon the selection of error measure for its

construction. Some error measure may be utilized in the final stage to select a point

from within the consistent intersection region, but the region itself is based solely

on the measurements and the associated errors. As long as the given uncertainties

fully represent the associated measurement errors, the actual solution is guaranteed

to be found within the final intersection region. Instead of yielding a single point in

parameter space, which is in uncertain relation to the actual parameters, sets of all
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Figure 7-5: The left plots show the error surface computed at discrete points in
parameter space. The contour curves from these surfaces are overlaid onto the results
from our graphical method in the plots on the right. The graphical intersection
regions are found to typically overlap the minimum error regions.
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parameters which are consistent with the measurements are obtained, enclosing the

actual solution.

Time required for the two methods are comparable and are on the order of seconds.

The graphical method is currently coded within Matlab, and takes fractionally longer.

The nonlinear optimization is programmed in C using the downhill simplex method

as described in Numerical Recipes [81]. The graphical method relies heavily upon

Matlab functions for computing contours and polygon intersections and would be

difficult to port to C. If this is done, the graphical method should be able to run

an order of magnitude faster. Since we have no need for speed in these analyses, a

difference of a second or two is not significant.

A key insight can be drawn from the results shown in Figure 7-5. The resulting

region of consistent parameters shown in the plots on the right is extremely large.

Only ±5% uncertainty in the measurements was used in this example (typical real

measurements from the previous chapter had ±10% uncertainty), yet the range of

consistent parameters is so large as to be nearly useless. This indicates that pa-

rameter estimation cannot be done using failure force measurements alone. Another

independent source of information is required to reduce the problem. Application of

a standard nonlinear optimization technique would give no indication of this grave

difficulty. Fortunately, independent measurements of the interface friction, δ, are in-

deed available. These measurements will be shown to enable us to obtain reasonably

good parameter estimates.

7.5 Results from Experimentation

Using the mean and standard deviation values from the experimental results in the

previous chapter, parameter estimation has been accomplished using the estimated

interface friction values for each soil. The following figures show estimation results
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using the upper bound (UB) and lower bound (LB) numerical soil models. In order to

be absolutely thorough, the full range of uncertainty in the interface friction estimates

and the density measurements must be incorporated into the parameter estimation.

The iterative technique for the estimation of interface friction angle (Section 5.4)

produces estimates with an uncertainty of ±1◦. This information is used to limit the

graphical method to the construction of three sets of contour bands, at δ and δ± 1◦.

Although only three discrete sets of bands are drawn in the figures, δ is a continuous

variable, and the intermediate values would lie between the bands drawn. Thus, the

complete consistent region would include the small triangular regions between the

tips of the intersection polygons in the figures, corresponding to non-integer δ values.

It can be seen that even with the use of the interface friction estimates, the final

consistent region remains large. Thinning of the bands would not be helpful. Thus,

the other means of reducing the final consistent region would be to add additional

measurements at different tool angles. The current manipulator is limited to a lowest

tool angle of 70◦. In the subsequent discussion, it will be shown that additional

strokes at low tool angles would provide the necessary information to reduce the

final consistent region. However, in place of such information, we have used the

available independent density measurements which were obtained in the previous

chapter. The density measurements over repeated sample preparations was found

to have a maximum variation of up to 4%. Therefore, a horizontal band of width

±4% of the density measurement is drawn in each figure (dash-dot lines). The final

consistent region of parameter space would be the intersection of the contour bands

(the light-shaded region) with the horizontal band resulting from the independent

density measurement ± the density uncertainty.

Table 7.1 provides a listing of the full density and friction angle ranges predicted

from the graphical method using the UB and LB models without the independent
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Figure 7-6: Parameter estimation for unrained Ticino results with a 23◦ interface
friction angle using the UB (top) and LB (bottom) models.
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Intersection Regions of Consistent Parameters :: Numerical LB (± 7.2% 6.9% 5.1% 11.2%)

density = 1.44 g/cc ± 4%

F=(0.94,0.82) lbf: α= 70.0°,z=1.0",w=5.0"
F=(1.41,1.23) lbf: α= 80.0°,z=1.0",w=5.0"
F=(1.94,1.76) lbf: α= 90.0°,z=1.0",w=5.0"
F=(3.15,2.51) lbf: α=100.0°,z=1.0",w=5.0"

Figure 7-7: Parameter estimation for Nevada Fine sand results with a 27◦ interface
friction angle using the UB (top) and LB (bottom) models.
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Intersection Regions of Consistent Parameters :: Numerical UB (± 7.9% 9.4% 6.8% 2.5%)

density = 1.6 g/cc ± 4%

F=(0.92,0.78) lbf: α= 70.0°,z=1.0",w=5.0"
F=(1.41,1.17) lbf: α= 80.0°,z=1.0",w=5.0"
F=(2.15,1.87) lbf: α= 90.0°,z=1.0",w=5.0"
F=(3.02,2.88) lbf: α=100.0°,z=1.0",w=5.0"
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Intersection Regions of Consistent Parameters :: Numerical LB (± 7.9% 9.4% 6.8% 2.5%)

density = 1.6 g/cc ± 4%

F=(0.92,0.78) lbf: α= 70.0°,z=1.0",w=5.0"
F=(1.41,1.17) lbf: α= 80.0°,z=1.0",w=5.0"
F=(2.15,1.87) lbf: α= 90.0°,z=1.0",w=5.0"
F=(3.02,2.88) lbf: α=100.0°,z=1.0",w=5.0"

Figure 7-8: Parameter estimation for dense Ticino results with a 23◦ interface friction
angle using the UB (top) and LB (bottom) models.
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Intersection Regions of Consistent Parameters :: Numerical UB (± 5.8% 8.3% 4.8% 3.6%)

density = 1.46 g/cc ± 4%

F=(0.41,0.37) lbf: α= 70.0°,z=1.0",w=5.0"
F=(0.53,0.45) lbf: α= 80.0°,z=1.0",w=5.0"
F=(0.67,0.61) lbf: α= 90.0°,z=1.0",w=5.0"
F=(0.84,0.78) lbf: α=100.0°,z=1.0",w=5.0"
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Intersection Regions of Consistent Parameters :: Numerical LB (± 5.8% 8.3% 4.8% 3.6%)

density = 1.46 g/cc ± 4%

F=(0.41,0.37) lbf: α= 70.0°,z=1.0",w=5.0"
F=(0.53,0.45) lbf: α= 80.0°,z=1.0",w=5.0"
F=(0.67,0.61) lbf: α= 90.0°,z=1.0",w=5.0"
F=(0.84,0.78) lbf: α=100.0°,z=1.0",w=5.0"

Figure 7-9: Parameter estimation for glass bead results with a 19◦ interface friction
angle using the UB (top) and LB (bottom) models.
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Density (g/cc), γ Internal Friction, φ
UB LB UB LB

Ticino 1.33-2.10+ 1.30-2.10+ 36◦ − 43◦ 38◦ − 46◦

Nevada Fine 1.20-2.10+ 1.20-2.10+ 36◦ − 44◦ 38◦ − 46◦

Rained Ticino 1.20-1.90 1.15-1.81 41◦ − 45◦ 43◦ − 48◦

Glass Beads 1.25-1.88 1.20-1.90 26◦ − 32◦ 27◦ − 34◦

Table 7.1: Full range of possible density and friction angle values for the experimental
data using the UB and LB models. These values represent the complete range spanned
by the intersection of the contour bands. They do not use the independently measured
density values (the horizontal dashed lines) to narrow down the estimated friction
angle ranges.

density measurements. In practice, these direct densities measurements would not be

available. It can be seen that the range of estimates are fairly large if the density

measurements are not used. It is clear that strokes at low tool angles would be

necessary to reduce the final consistent region. Alternatively, independent sensing

means might also be developed to estimate density (either from determining the

composition from spectroscopy and estimating the void ratio, or using a vision system

to estimate volume and the manipulator to weigh samples).

Table 7.2 provides a listing of the friction angle ranges from the graphical method

utilizing the externally measured density values. The ranges using the Chen and

Caquot and Kerisel models are shown for comparison. The Chen model does not

predict a valid set of friction angles for the Ticino sand data at the specified density

and interface friction. These measurements exhibited the most drastic change from

low tool angles to higher tool angles. It was conjectured that this effect was a result

of the stress-dependence of the friction angle combined with the progressive failure

of the soil. The parameter estimate results in this case indicate that, at least for this

particular model, no single friction angle could have generated the measurements with

the associated uncertainties. The other models have valid intersections, but they are
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UB LB Chen Caquot
Ticino 41.4◦ − 44.4◦ 43.0◦ − 46.8◦ no int. 40.8◦ − 42.9◦

Nevada Fine 40.9◦ − 44.0◦ 42.7◦ − 46.1◦ 39.9◦ − 42.2◦ 39.7◦ − 42.8◦

Rained Ticino 41.4◦ − 43.8◦ 43.6◦ − 46.1◦ 40.8◦ − 43.2◦ 41.2◦ − 43.6◦

Glass Beads 28.0◦ − 30.8◦ 29.3◦ − 32.5◦ 26.5◦ − 29.8◦ 28.0◦ − 30.7◦

Table 7.2: Table of parameter estimation results from experimental data utilizing the
measured densities with ±4% uncertainty. The Chen and Caquot and Kerisel models
are included for comparison.

very near to the tips of the consistent region. This highlights another benefit of the

graphical parameter estimation technique, it can be used to assess the consistency of

the measured data.

7.5.1 Accounting for High Tool Angle Effects

The above parameter estimation was run on unmodified measurement data. However,

it is known that the 90◦ and 100◦ tool angle measurements for the loose Ticino and for

the Nevada Fine sand were affected by a combination of the progressive failure effect

and the lower friction angles exhibited at higher stresses. While exact correction for

the progressive failure is not possible, using the guideline of a motion of 20% of the

tool height for full mobilization of friction gives a very rough correction of 10%. In

order to present more complete parameter estimation results, the technique has been

computed for the loose Ticino and Nevada Fine cases using adjusted measurements

for the high tool angles.

Figures 7-10 and 7-11 show the UB and LB results for the adjusted cases. The

correction acts to widen and marginally increase the estimated friction angles. For

the unrained Ticino, the ranges become UB: 41.1◦ − 44.4◦ and LB: 43.0◦ − 46.8◦.

For the Nevada Fine, the ranges become UB: 40.9◦ − 44.0◦ and LB: 42.7◦ − 46.1◦.
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Intersection Regions of Consistent Parameters :: Numerical UB (± 9.2% 7.3% 9.9% 11.4%)

density = 1.43 g/cc ± 4%

F=(0.88,0.74) lbf: α= 70.0°,z=1.0",w=5.0"
F=(1.32,1.14) lbf: α= 80.0°,z=1.0",w=5.0"
F=(1.91,1.57) lbf: α= 90.0°,z=1.0",w=5.0"
F=(2.87,2.28) lbf: α=100.0°,z=1.0",w=5.0"
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Intersection Regions of Consistent Parameters :: Numerical LB (± 9.2% 7.3% 9.9% 11.4%)

density = 1.43 g/cc ± 4%

F=(0.88,0.74) lbf: α= 70.0°,z=1.0",w=5.0"
F=(1.32,1.14) lbf: α= 80.0°,z=1.0",w=5.0"
F=(1.91,1.57) lbf: α= 90.0°,z=1.0",w=5.0"
F=(2.87,2.28) lbf: α=100.0°,z=1.0",w=5.0"

Figure 7-10: Parameter estimation for adjusted unrained Ticino measurements using
the UB (top) and LB (bottom) models.
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Intersection Regions of Consistent Parameters :: Numerical UB (± 7.2% 6.9% 5.1% 11.2%)

density = 1.44 g/cc ± 4%

F=(0.94,0.82) lbf: α= 70.0°,z=1.0",w=5.0"
F=(1.41,1.23) lbf: α= 80.0°,z=1.0",w=5.0"
F=(2.14,1.93) lbf: α= 90.0°,z=1.0",w=5.0"
F=(3.46,2.76) lbf: α=100.0°,z=1.0",w=5.0"
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Intersection Regions of Consistent Parameters :: Numerical LB (± 7.2% 6.9% 5.1% 11.2%)

density = 1.44 g/cc ± 4%

F=(0.94,0.82) lbf: α= 70.0°,z=1.0",w=5.0"
F=(1.41,1.23) lbf: α= 80.0°,z=1.0",w=5.0"
F=(2.14,1.93) lbf: α= 90.0°,z=1.0",w=5.0"
F=(3.46,2.76) lbf: α=100.0°,z=1.0",w=5.0"

Figure 7-11: Parameter estimation for adjusted Nevada Fine measurements using the
UB (top) and LB (bottom) models.
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z = 1/2” z = 2/3”
UB LB σU,90 − σL σU,90 − σL

Ticino 41.1◦ − 44.4◦ 43.0◦ − 46.8◦ 42.3◦ − 45.4◦ 41.6◦ − 44.7◦

Nevada Fine 40.9◦ − 44.0◦ 42.7◦ − 46.1◦ 38.9◦ − 43.3◦ 38.1◦ − 42.5◦

Rained Ticino 41.4◦ − 43.8◦ 43.6◦ − 46.1◦ 47.1◦ − 51.2◦ 46.4◦ − 50.3◦

Glass Beads 28.0◦ − 30.8◦ 29.3◦ − 32.5◦ 31.0◦ − 33.2◦ 30.4◦ − 32.6◦

Table 7.3: Table of UB/LB parameter estimation and direct shear results. The
extreme bounds of the UB/LB predictions vary from ±2.25◦ to ±2.85◦. The UB/LB
bounds are found to overlap the direct shear ranges, except for the rained Ticino case.

It is interesting that although the bands are thickened, the UB/LB friction angle

estimation ranges (using the measured density) are essentially unaffected.

7.5.2 Comparison with Direct Shear Results

Table 7.3 and Figure 7-12 compare the UB/LB friction angle estimation bounds with

the direct shear friction angles computed in Section 6.6.2. The extreme bounds of the

UB/LB predictions vary from ±2.25◦ to ±2.85◦. The direct shear bounds, computed

from equivalent pressures at depths of z=1/2” and z=2/3”, are found to overlap the

UB/LB bounds, except in the case of the dense rained Ticino. This discrepancy has

been discussed in detail at the end of the previous chapter.

For the other soils, the agreement is good. The separation between the center of

the UB/LB ranges and the center of the direct shear bounds vary from 0.1◦-2.4◦ (using

z = 1/2”), or 0.8◦-3.2◦ (using z = 2/3”). The Nevada Fine sand shows the largest

discrepancy. The cause may be related to the very fine particle size of this soil, which

can allow the sand to compact more easily during stroking, effectively increasing the

measured friction angle. While the glass beads have an even finer particle size, the

particles are predominantly round, and the effect of the compaction would be less

significant.
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Figure 7-12: Graphical comparison of the full UB/LB friction angle estimates and the
equivalent direct shear friction angles, computed from equivalent pressure ranges at
z = 1/2” (upper) and z = 2/3” (lower). The blocks represent UB and LB parameter
ranges and the brackets represent the [σU,90, σL] direct shear ranges.
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Overall, it is concluded that the parameter estimation technique has produced

estimates of the internal friction angle with an average uncertainty of ±2.5◦ for these

soils. The estimated values are in agreement with the direct shear results to within

approximately 3◦.

7.6 Discussion

An intuitive graphical parameter space intersection method for model inversion has

been developed in this section that has been shown to produce more rich informa-

tion than a standard nonlinear optimization method. It accomplishes this by using

knowledge of the available uncertainty in the measurements to segment the parameter

space into consistent and inconsistent regions. If a single “best” parameter estimate

is required, as might be provided by a standard nonlinear optimization technique,

then, we can compute an error measure over a smaller set of candidates (the con-

sistent region of parameter space) and obtain comparable solutions to an exhaustive

search. While a nonlinear optimization would only provide a single point solution,

the intersection method essentially converts uncertainty bounds in the measurement

data to uncertainty bounds in the parameter estimates.

In addition, the intersection method has allowed us to gain key insights about

the estimation problem. It has been shown that good parameter estimates cannot

be obtained using failure force measurements alone. For measurements with an un-

certainty of only ±5%, it was shown that the consistent region of parameter space

remained quite large. It was concluded that additional independent measurements

were required to reduce the estimation problem. These independent measurements

were provided by the interface friction estimation technique discussed in Section 5.4.

The intersection method also allowed us to clearly visualize the impact of addi-

tional measurements on the resulting consistent set of parameter estimates. This can



206 CHAPTER 7. PARAMETER ESTIMATION

30 32 34 36 38 40 42 44 46 48 50

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

phi (degrees)

ga
m

m
a 

(g
/c

c)
Intersection Regions of Consistent Parameters Including 40° Tool Angle

F=(0.94,0.82) lbf: α= 70.0°,z=1.0",w=5.0"
F=(1.41,1.23) lbf: α= 80.0°,z=1.0",w=5.0"
F=(1.94,1.76) lbf: α= 90.0°,z=1.0",w=5.0"
F=(3.15,2.51) lbf: α=100.0°,z=1.0",w=5.0"
F=(0.26,0.24) lbf: α= 40.0°,z=1.0",w=5.0"

Figure 7-13: The above plot shows the results of the addition of a stroke at a 40◦ tool
angle on the final parameter region, showing better density discrimination.

be used to guide future interactions. For instance, it has been shown that higher

tool angles provide better friction angle discrimination and lower tool angles provide

better density estimation. In this chapter, since the manipulator end-effector was not

able to reach lower than a 70◦ tool angle, we have used independent density measure-

ments to complete the parameter estimation. However, it can be shown that strokes

at 40◦ tool angles can be used in place of the density measurements, so that it would

indeed be possible to obtain complete parameter estimation results using data col-

lected by the manipulator alone. Figure 7-13 shows an example where we have added

an additional simulated stroke at 40◦ to a typical collection of contour bands from

70◦− 100◦ strokes. The resulting consistent parameter region spans roughly ±1.3◦ in

φ and ±1.1 g/cc in γ.

Finally, assuming that the measurement uncertainty information and the under-
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lying soil model are correct, then the actual solution is guaranteed to lie within the

final consistent intersection region. If no valid region is produced, then this is an

indication that we must reevaluate the choice of soil model or the accuracy of the

measurements and/or assumptions.
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Chapter 8

Ideas for Future Work

This chapter begins with a discussion of ideas for the future that are immediate

extensions of this work. Afterwards, more distant applications and possibilities are

discussed. Finally, possible applications of this work to the exploration of Mars are

presented.

8.1 Related Unexplored Areas

The system in this work is a first generation system, however, it shows great promise

for future generations. A number of enhancements to the hardware and techniques

will provide greater reliability and utility for studying a variety of the interesting

issues raised in the course of this work.

The manipulator design can be improved to have greater freedom in tool angle

orientation for greater discrimination of soil density (e.g. using a 40◦ tool angle)

as discovered by the parameter estimation technique. It should also be possible to

achieve greater strength and insertion depths so that a wider range of applied stress

can be tested in order to map dependencies of friction angle on the applied stress. The

209
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addition of comprehensive sensing of the arm compliance would enable the modeling

of the progressive failure effect and enable the closer examination of the mobilization

of friction along the failure surface.

A number of items related to soil modeling provide additional interesting avenues

of research. All testing done here assumes horizontal cohesionless soil, but the models

can support both inclined surfaces and cohesion. In addition, no use of the shape

of the failure surface predicted from models has been made. This could be tested

experimentally and then used as an added measurement for model inversion and would

prove useful for soil simulation. Application of the numerical limit analysis techniques

can be extended to non-flat tools, such as curved bulldozer blades or piece-wise linear

surfaces (buckets). In addition, the models can be extended to account for increased

forces due to buried obstacles, which could be used for non-contact buried obstacle

detection.

Closer examination of the stress level dependence of the friction angle should be

studied. Multiple strokes can be conducted at a greater variety of depths, providing

data at a variety of stress levels. Thus the stress dependence over a wider range can

be studied. Our depth verification tests in this work could not span a wide range of

depths, however, the data typically showed higher forces at the lower insertion depths.

This was attributed to insertion depth uncertainty, but this could also indicate higher

friction angles at very low confining stresses.

Another topic which may be of interest to future researchers would be to verify

the force versus inclination angle “friction-cone” predictions as in Figure 5-13. The

exact nature of the safe force magnitudes below the case of a perfectly rough interface

(δ = φ) could be explored. The resulting detailed force versus inclination curve could

then be used to plan optimal digging trajectories. For instance, if the arm motors

have an optimal operating force, the desired path of the end-effector can be planned
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to dig with as large an inclination as possible using the optimal operating force value.

One final idea would be to combine our system with a terrain mapping mechanism

(e.g. laser range scanning or stereo vision). This would enable the examination of

the extent of the failure region and the resulting accumulation of soil ahead of the

plate after failure. This information could be used to validate the extent of the failure

wedges predicted from the soil models. It could also be used to aid in the construction

of a realistic virtual physically-based simulation of soil behavior.

8.2 Virtual Reality Simulation

One of the initial goals of this research was the development of a virtual reality

simulation populated with the soil models from this work, using the soil properties

determined by the manipulator. After the development of the graphical 3-D rendering

of the manipulator, which was used primarily for debugging during system develop-

ment, the idea of enhancing the system to become a full virtual reality system with

haptic feedback came to mind. Due to time constraints, this topic was not explored.

There are a number of components which would need to be developed in order

to create such a system. An accurate physically-based simulation of soil settling

and deformation behavior would be required. A more complete manipulator model

with dynamics and collision detection would need to be developed. And models for

soil-manipulator interaction forces would need to be integrated with the control of a

force-feedback device. A few references related to this type of work are [4, 15, 25, 40,

76, 125].

Currently, there appears to be very little research in the area of physically-based

soil simulations. There is work in computer graphics to visually simulate soil deforma-

tion [110], but these are not intended to be physically accurate. Looking specifically at

physical soil simulation, only papers from Li and Moshell [66, 67] are found. They de-
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Figure 8-1: Results from a 2-D simulation of constant volume dynamic soil settling.
The smooth solid line represents an initial state of the soil. The circles represent
the evolving state of the soil surface. The jagged line near the bottom represents
the activity, where larger magnitudes represent larger masses of soil moving at this
location.

Figure 8-2: OpenGL model of the manipulator arm and soil surface. The model is
capable of receiving manipulator position information over the network and displaying
this information in real-time.
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velop a real-time physically-based model of soil being operated upon (digging, cutting,

piling) and settling under gravity. They present two- and three-dimensional models.

The three-dimensional (3-D) version is essentially a lattice of two-dimensional (2-

D) versions arranged to cover a 3-D area. Figure 8-1 shows an example of the 2-D

dynamic soil settling behavior. The solid line is an initial soil profile. The circles

represent the soil surface after settling under the influence of gravity. How this work

scales with increased number of nodes needs to be examined. A new 3-D model,

which is more advanced than a combination of multiple 2-D models, should also be

developed. We have only briefly played with the idea of using gradient fields instead

of a lattice of 2-D models.

Assuming that a suitable real-time model for soil settling is available, a complete

dynamic model for the manipulator arm is required. A basic model of our manip-

ulator has been constructed, which accounts for the geometry of the arm, but not

the dynamics (such as mass, inertia, friction, etc). Figure 8-2 shows a rendering of

the arm resting on a block over a flat ground. Development of a graphical model is

fairly simple; the difficulty lies in adding the dynamics, collision detection, and force

interaction with the environment.

Once the dynamics of the arm and the capability to interact with the soil is

implemented, a haptic device can be coupled to the simulation to provide real-time

force feedback. This would enable users to interact with the soil, experiencing realistic

forces generated from soil models, using soil parameter estimates determined by the

manipulator for the specific soil of interest.

8.3 Applications of Work to Mars Exploration

Soil parameter estimates alone are interesting in the context of geological discovery.

However, in addition, the estimates from this research can be used for making predic-
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tions for various interactions with soil, taking care to use appropriate friction angles

for each loading condition. Most of these interactions are the standard applications

of physical soil properties for stability calculations.

For instance, for a rover moving up an inclined slope, calculations can be done

to see if the slope is stable or near failure. Calculations can be done to discover the

maximum inclination slope that would be able to maintain the weight of the rover.

Similar calculations can be done for the stability of a lander on an inclined slope.

Measurements of stratification of the soil can be made if deeper depths of soil can

be uncovered. For instance, with a lander-based manipulator conducting the gross

excavation, a rover-based manipulator can conduct finer estimation as new layers are

uncovered. Using this dual arm approach, the lander-based manipulator can be highly

geared, with minimal precise sensing capabilities, and the rover-based manipulator

can be designed for precise sensing without requiring large force capability.

One final possible application is the study of geographic variation of soil prop-

erties. Sampling of soil properties can be conducted at many different locations. If

there are significant physical property variations, independent of composition, per-

haps deductions can be made about the historical cause of such variations.
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Conclusion

This thesis documented work to develop methods to enable a robot manipulator to

estimate soil properties from interactions. In the course of this work, various topics

were examined.

In the area of soil modeling, this thesis presented the application of numerical

limit analysis to the modeling of earth pressure. The predictions from this technique

were shown to be in good agreement with currently accepted models. In addition, this

technique provides greater versatility than the existing models. It provides both upper

and lower bounds and can easily accommodate a variety of loading and boundary

conditions. No assumptions on the failure surface are made, allowing for arbitrary

elements to be added to the meshes. For instance, different tool shapes, such as curved

blades of bulldozers or the piecewise linear buckets of excavators can be modeled.

Also, buried obstacles can easily be incorporated into the meshes. The benefits of

this aspect of this work is not limited to robot interactions with soil. This portion

also has the potential to benefit all researchers working on earth pressure problems

by demonstrating and verifying a widely applicable modeling technique.

The design of a robotic manipulator arm for interactions with soil was docu-
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mented. A flat plate was used to more accurately model interactions and to enable

the application of the wealth of research in the area of earth pressure theory. From

the experience gained in this work, a few design recommendations can be made for

future researchers. Use a flat plate if possible, with a large width to depth ratio, near

5:1 or greater. The end-effector design should be carefully thought out to assure a

suitable range of motion for plate orientation and it should not be backdriveable. For

the other joints, design them to be backdriveable if you intend to use motors to ob-

tain force measurements. Have end-point position sensing accuracy to less than one

percent of typical insertion depths, or use external feedback to verify insertion depths.

If there is compliance, make sure it is fully sensable, so that the actual displacement

of the soil is easily separable from the measured displacement. This will enable study

of the progressive failure of soils. If good force sensing is available, control the angle

of the applied force on the plate during stroking. If not tracked well, it can result

in widely varied measurements. The control of the angle of force has been shown to

enable the in situ estimation of soil-tool interface friction. This was shown to be key

in the property estimation technique.

This work also represents the first set of experimental results of its kind. The

experimental results in this work have highlighted a few issues in soil modeling which

must be considered by any researcher working on a similar problem. Common as-

sumptions are made in soil modeling about the behavior of soils. Most notably, the

assumption of the Mohr-Coulomb failure law and the perfectly plastic behavior of

soils. The results of this work were in wide disagreement with direct shear tests

conducted at high normal stresses (> 7 psi). Upon closer examination, a study of

friction angle dependence on stress at low stresses was conducted, showing a signifi-

cant change in measured friction angle (up to 10◦ from a normal stress of 7 psi down to

0.2 psi). This has ramifications for any study of friction angles and cohesion done at
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low stresses. If these elevated values are applied to stability calculations under higher

stresses, drastic over-estimation of the shear strength of the soil will result. The soil

models have also assumed perfectly plastic failure of soils. For a large fraction of the

failures at vertical tools and tools inclined away from the direction of motion, the

failure was gradual. It is clear that progressive failure occurred. This complicated

the estimation of failure force for these strokes. Unfortunately, a detailed study of

this effect was not possible using the manipulator in this thesis and must be left for

future researchers.

Finally, this thesis has presented a parameter space intersection technique for

model inversion that operates on tabulated model predictions. This method uti-

lized the associated uncertainties of the measurements to produce a set of parameters

which were consistent with the observations. The main conclusion from the graphical

technique was that independent measurements of one or more of the variables were

required for doing parameter estimation. The problem was shown to be very difficult

since a large region of parameter space was found to be consistent with measurements

with only ±5% error. To narrow down the set of consistent parameters, independent

measurements must be utilized. Fortunately, the development of manipulator stroke

control techniques provided a method for estimating the soil-tool interface friction

independently. This reduced the region of consistent parameters considerably; how-

ever, precise parameter estimates of both density and internal friction were still not

quite achievable. A final conclusion from the graphical technique has shown that

strokes at lower tool angles can discriminate densities better (and narrow down in-

ternal friction angle estimates at the same time). Higher tool angles are typically

better for discriminating internal friction angle. Since higher tool angles are prone

to gradual failure which introduces additional complications, and lower tool angles

have more drastic, easily discernible failures, future researchers should use a range of
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tool angles from 40◦ − 80◦. This would provide better density discrimination, good

friction angle discrimination, and definite failure force estimates. Strokes at lower

tool angles, combined with the independent interface friction estimation technique,

provide a basis for enabling precise estimation of density and internal friction using

interaction force measurements.

In conclusion, this thesis has presented the development of a complete system

for studying robot-soil interactions. The ultimate goal of this work was to enable

a manipulator arm to estimate soil properties in situ. This thesis has successfully

shown that it is indeed possible to estimate physical properties of cohesionless soils

using the manipulator alone. This thesis has documented the hardware, software,

soil modeling, and estimation techniques involved in reaching this goal. Experimen-

tal results in multiple soils have been conducted to validate the methods described.

Finally, recommendations have been made for future researchers, to enable them to

develop systems that build upon this work. This hopefully will lead to systems which

can estimate soil properties with greater precision and further explore the interesting

issues raised by this work.



Appendix A

Arm Flexibility Compensation

A.1 Nature of the Problem

Although we have mounted external encoders to account for the backlash in the motor

gearheads, there is still some imprecision in the measurement of the end-point of the

manipulator resulting primarily from cable stretch and to a small extent link flexion

and motor gearhead compliance. The external encoder on the shoulder is mounted

directly to the shoulder joint, so that measurement is independent of cable stretch.

On the other hand, the elbow joint has external encoders mounted to motor output

shafts since we could not mount them on the elbow due to the differential. In addition,

there are very long runs of cable with minimal distance for pre-tensioning those cables

properly. Therefore, we will experience a significant flexion in the elbow joint from

the cable stretch during high loads.
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Figure A-1: External encoders for the shoulder and elbow motors. The shoulder
encoder is mounted directly on the joint, whereas the elbow encoders are at the
motor output shafts.

Figure A-2: In order to estimate arm flexion, the end of the arm is immobilized while
the motors drive the arm into the obstruction.
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A.2 Flexion Estimation

In order to estimate the arm flexion, we immobilized the end of the manipulator

and drove the motors to a specified position within the obstruction. We know that

the actual manipulator end-point has not changed significantly but the manipulator

end-point derived from the external encoder measurements will reflect some motion.

We repeat this at different locations and we can back out the approximate stiffness

of each of the joints.

So we can relate the measured force, Fmeas, and the measured apparent displace-

ment, ∆xmeas

Fmeas = J−TKstiffJ
−1∆xmeas (A.1)

and convert this into torque and joint displacements, replacing the stiffness matrix

with individual matrix elements, and using τ = JTF and ∆x ≈ J∆θ

τmeas =

 k1 k2

k3 k4

∆θmeas (A.2)

A.3 Flexion Compensation

We compensate for the flexion in the elbow joint only since the shoulder joint is much

more stiff in comparison. We do the compensation by estimating the amount of stretch

in the cable for a given torque at the elbow. The torque at the elbow is computed

using the force from the F/T sensor and orientation of the wrist to compute the

tangential force and distance from the elbow joint. As mentioned before, we make a

very simple assumption of a linear stiffness. Therefore we can compute the adjustment

to the elbow measurement by simply dividing the estimated torque at the elbow by

the estimated elbow stiffness.
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θ4

δ

θ4−δ

r

F

Figure A-3: To compensate for the elbow flexion, we compute the tangential end-point
force to find the torque at the elbow.
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θ2offset =
|F|r cos(θ4 − δ)

kelbow
(A.3)

where |F| is the magnitude and δ is the angle of the force as measured by the F/T

sensor. The point of application of the force on the plate, at distance r from the

elbow joint, is computed from the F/T sensor data. The stiffness value kelbow is k4

from equation A.2. The shoulder is known to be stiff with sensing located directly

on the joint axis. In our tests, we found that the contribution to θ2offset from the

shoulder torque was minimal, and thus, we use kelbow = k4.

In practice, we have found that this compensation can overpredict and underpre-

dict depending upon the arm configuration. We have made assumptions that the

stiffness of the elbow is configuration independent and also linear. Both of these

assumptions are probably inaccurate to some degree. But nevertheless, the resulting

compensation, which can be up to 1-2 degrees during a stroke, places us closer to the

true elbow joint value than if we ignored the flexibility.
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Appendix B

Arm Kinematics

This section documents the derivation of the full 5-DOF forward kinematics, Jacobian,

inverse kinematics, and joint to motor transformations for the manipulator arm. The

joint angles are labeled from θ0 to θ4 and corresponding link lengths are l0 to l4.

B.1 Forward Kinematics

Let the end point of the base 3-DOF of the arm be labeled XA. This is the point just

before the end-effector links. The coordinates of point XA are then given by

XA =


(l1 sin θ1 + l2 sin(θ1 + θ2) cos θ0

(l1 sin θ1 + l2 sin(θ1 + θ2) sin θ0

l0 + l1 cos θ1 + l2 cos(θ1 + θ2)

 (B.1)
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The last 2-DOF (forearm and end-effector wrist) results in a unit vector along the

following orientation

ue =



(sin θ4 cos θ3 cos(θ1 + θ2) + cos θ4 sin(θ1 + θ2)) cos θ0−

(sin θ4 sin θ3) sin θ0

(sin θ4 cos θ3 cos(θ1 + θ2) + cos θ4 sin(θ1 + θ2)) sin θ0+

(sin θ4 sin θ3) cos θ0

− sin θ4 cos θ3 sin(θ1 + θ2) + cos θ4 sin(θ1 + θ2)


(B.2)

The Cartesian position of the end-point can then be computed from

XE = XA + l4ue (B.3)

Two additional orientation variables are available for specifying the Cartesian ori-

entation. These variables need to be sufficient to determine ue without knowledge

of the joint angles for the inverse kinematics to solvable. Figure B-1 shows a dia-

gram of the end-effector orientation vector and associated joint angles. The following

trigonometric relations can be defined.

cos θ3 = c
d cos θ4 = e

re cos θp = e
a cos θ′t = a

re

sin θ3 = b
d sin θ4 = d

re sin θp = c
a sin θ′t = b

re

tan θ3 = b
c tan θ4 = d

e tan θp = c
e tan θ′t = b

a

(B.4)

Combining a select few of the above equations leads to the following two relations

tan θp = tan θ4 cos θ3 (B.5)

sin θ′t = sin θ4 sin θ3 (B.6)

This gives us a means for specifying the last two orientation variables which are

sufficient for solving the inverse kinematics problem.

n1 = θ1 + θ2 + tan−1(tan θ4 cos θ3) (B.7)

n2 = sin−1(sin θ4 sin θ3) (B.8)
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Figure B-1: Geometry for determination of transformation of end-effector orientation
vector angles.

This gives the 5-DOF Cartesian position vector, the first three are x, y, z and the last

two components, n1 and n2, represent the angle of the end-effector with respect to

vertical and the angle “out-of-plane” relative to θ0. In typical operation, n2 is usually

zero, otherwise, the lower edge of the end-effector plate would be inclined relative to

horizontal in the world frame.

B.2 Jacobian

We obtain the Jacobian matrix by computing

J =



∂x
∂θ0

∂x
∂θ1

∂x
∂θ2

∂x
∂θ3

∂x
∂θ4

∂y
∂θ0

∂y
∂θ1

∂y
∂θ2

∂y
∂θ3

∂y
∂θ4

∂z
∂θ0

∂z
∂θ1

∂z
∂θ2

∂z
∂θ3

∂z
∂θ4

∂n1
∂θ0

∂n1
∂θ1

∂n1
∂θ2

∂n1
∂θ3

∂n1
∂θ4

∂n2
∂θ0

∂n2
∂θ1

∂n2
∂θ2

∂n2
∂θ3

∂n2
∂θ4


(B.9)
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The first row of partial derivatives of x are

∂x

∂θ0

= − (l1s1 + l2s12) s0 + l4 (− (s4c3c12 + c4s12) s0 − (s4s3) c0) (B.10)

∂x

∂θ1

= (l1c1 + l2c12) c0 + l4 (− (s4c3s12 − c4c12) c0) (B.11)

∂x

∂θ2

= (l2c12) c0 + l4 (− (s4c3s12 − c4c12) c0) (B.12)

∂x

∂θ3

= l4 (− (s4s3c12) c0 − (s4c3) s0) (B.13)

∂x

∂θ4

= l4 ((c4c3c12 − s4s12) c0 − (c4s3) s0) (B.14)

where s0 = sin θ0, c0 = cos θ0, and s12 = sin(θ1 + θ2) and so on. The second row of

partial derivatives of y are

∂y

∂θ0

= (l1s1 + l2s12) c0 + l4 ((s4c3c12 + c4s12) c0 − (s4s3) s0) (B.15)

∂y

∂θ1

= (l1c1 + l2c12) s0 + l4 (− (s4c3s12 − c4c12) s0) (B.16)

∂y

∂θ2

= (l2c12) s0 + l4 (− (s4c3s12 − c4c12) s0) (B.17)

∂y

∂θ3

= l4 (− (s4s3c12) s0 + (s4c3) c0) (B.18)

∂y

∂θ4

= l4 ((c4c3c12 − s4s12) s0 + (c4s3) c0) (B.19)

The third row of partial derivatives of z are

∂z

∂θ0

= 0 (B.20)

∂z

∂θ1

= − (l1s1 + l2s12) + l4 (−s4c3c12 − c4s12) (B.21)

∂z

∂θ2

= − (l2s12) + l4 (−s4c3c12 − c4s12) (B.22)

∂z

∂θ3

= l4 (s4s3s12) (B.23)
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∂z

∂θ4

= l4 (−c4c3s12 − s4c12) (B.24)

The fourth row of partial derivatives of n1 are

∂n1

∂θ0

= 0 (B.25)

∂n1

∂θ1

= 1 (B.26)

∂n1

∂θ2

= 1 (B.27)

∂n1

∂θ3

=
−s3

1 + t24c
2
3

or zero if c4 = 0 (B.28)

∂n1

∂θ4

=
1

c2
4 + s2

4c
2
3

or zero if c3 = 0 or one if c4 = 0 (B.29)

where t4 = tan θ4. The last row of partial derivatives of n2 are

∂n2

∂θ0

= 0 (B.30)

∂n2

∂θ1

= 0 (B.31)

∂n2

∂θ2

= 0 (B.32)

∂n2

∂θ3

=
c3√

1− s2
4s

2
3

(B.33)

∂n2

∂θ4

=
c4√

1− s2
4s

2
3

or zero if s3 = 0 (B.34)

B.3 Inverse Kinematics

First, we need to determine ue in the world frame so that we can find XA from XE.

In order to do this, we first need to compute the base joint angle θ0. This follows a

couple steps, first we find u′e, the end-point vector in the base-rotated frame.
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Figure B-2: The orientation of the end effector can be found from n1 = θ1 + θ2 + θp
and n2 = θ′t.

u′e =


cn2sn1

sn2

cn2cn1

 (B.35)

where cn1 = cosn1 and sn1 = sinn1, etc.. Next, we need the length and angle to the

end-point XA, and the length of the end-point vector in the xy plane.

rXA =
√
x2 + y2 θXA = tan−1 y

x
(B.36)

r′e = l4
√
c2
n2
s2
n1

+ s2
n2

(B.37)

Finally, we project n2 into the xy plane and use the law of sines to ultimately find

the base angle θ0.

θ′n2
= tan−1

∣∣∣∣∣ tn2

sn1

∣∣∣∣∣ (B.38)

θoff = sin−1

(
r′e
rXA

sin θ′n2

)
(B.39)



B.3. INVERSE KINEMATICS 231

XA

XA

y

x rθ

θoff

e

r

θ

θ0

t

Figure B-3: Given the values for rXA , θXA , and re, the value of θoff can be found
using the law of sines.

then we have θ0 = θXA + θoff . From this, we compute the end-point vector in the

world frame as

ue =


cn2sn1c0 − sn2s0

cn2sn1s0 + sn2c0

cn2cn1

 (B.40)

Thus we can find the coordinates of XA in the world frame.

The problem then reduces to a simple 3-DOF manipulator with a given end-point

position. Let us label the coordinates of XA as xA, yA, and zA and let rA =
√
x2
A + y2

A

and uA =
√
r2
A + z2

A. The solution for the joint angles is then

θ2 = cos−1

(
u2
A − l21 − l22

2l1l2

)
(B.41)

θ1 =
π

2
− tan−1

(
zA
rA

)
− sin−1

(
l2 sin θ2

uA

)
(B.42)

θ0 = tan−1
(
yA
xA

)
(B.43)
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Now that we know the first three joint values, we can compute the last two ori-

entation joint values from θp = n1 − θ1 − θ2 and θ′t = n2.

θ3 = tan−1

(
sin θ′t

cos θ′t sin θp

)
(B.44)

θ4 = tan−1


√

sin2 θ′t + cos2 θ′t sin2 θp

cos θ′t cos θp

 (B.45)

Additional range and sign checks need to be done. If θp < 0 then θ4 = −θ4 and if

θp < 0 and θ3 > 0 then θ3 = θ3 − π otherwise θ3 = θ3 − π.

B.4 Arm Transformations

Transformation matrices must be used to convert from joint space to motor space

and vice versa. These matrices account for joint signs, the elbow differential, and

the coupling between the elbow and shoulder joint as a result of the routing of the

elbow coupling through the shoulder pulleys. The transformation from joint to motor

values is

Tjnt
mtr =



s0 0 0 0 0

0 s1 0 0 0

0 −s2rc s2
1
2
rds3 0

0 s2rc −s2 −1
2
rds3 0

0 0 0 0 s4


(B.46)
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and the inverse transformation from motor to joint values is

Tmtr
jnt =



s0 0 0 0 0

0 s1 0 0 0

0 s2rc
1
2
s2 −1

2
s3 0

0 0 −s2
rd −s3

rd 0

0 0 0 0 s4


(B.47)

The s0 through s4 are either +1 or -1 and represent the joint sign for each, rc is

the coupling ratio between the elbow and shoulder, and rd is the gear ratio of the

differential. For the final arm configuration, rc = 0.58 and rd = 2.0.
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Appendix C

Model Prediction Tables

In this Appendix, we provide a listing of the predictions from the various models we

have used. They are tabulated for the discrete values at which the numerical UB/LB

solutions were computed. All predictions are computed directly, with the exception

of the model from Caquot and Kerisel, which was interpolated from their tabulated

values. A reminder of the notation used here:

α tool angle
φ internal friction angle
δ interface friction angle

Tabulated values are passive - active earth pressure coefficients,

KP −KA =
2

γL2
(FP − FA) (C.1)

The logarithmic spiral model does not have an explicit active earth pressure coun-

terparts, therefore we have used the active from Caquot and Kerisel since it is likely

closest in form. The choice of active model is somewhat minor. The contribution of

the active portion is can reach up to around 15%, typically much lower.
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Table C.1: Earth Pressure Coefficient Predictions for α = 70◦

φ δ Coulomb Log Spiral Chen UB Caquot Num. UB Num. LB
25◦ 0◦ 1.504 1.552 1.502 1.333 1.677 1.450

5◦ 1.697 1.702 1.693 1.600 1.842 1.652
10◦ 1.908 1.891 1.900 1.870 2.021 1.854
15◦ 2.147 2.137 2.132 2.162 2.217 2.075
20◦ 2.425 2.456 2.377 2.428 2.460 2.292
25◦ 2.759 2.876 2.624 2.557 2.692 2.520

30◦ 0◦ 1.821 1.895 1.820 1.568 2.027 1.760
5◦ 2.055 2.077 2.054 1.912 2.225 2.009

10◦ 2.321 2.311 2.316 2.262 2.441 2.258
15◦ 2.633 2.619 2.623 2.645 2.703 2.552
20◦ 3.007 3.038 2.970 3.066 3.048 2.868
25◦ 3.469 3.593 3.346 3.427 3.431 3.191
30◦ 4.055 4.231 3.737 3.610 3.792 3.544

35◦ 0◦ 2.171 2.283 2.172 1.796 2.404 2.101
5◦ 2.462 2.509 2.463 2.229 2.636 2.414

10◦ 2.804 2.804 2.801 2.691 2.911 2.727
15◦ 3.214 3.200 3.208 3.210 3.275 3.117
20◦ 3.722 3.749 3.692 3.784 3.772 3.558
25◦ 4.368 4.505 4.245 4.418 4.363 4.021
30◦ 5.214 5.393 4.863 4.979 4.945 4.569

40◦ 0◦ 2.571 2.737 2.573 2.012 2.799 2.485
5◦ 2.939 3.024 2.943 2.570 3.086 2.885

10◦ 3.383 3.403 3.384 3.187 3.466 3.285
15◦ 3.933 3.920 3.928 3.890 3.985 3.816
20◦ 4.633 4.658 4.607 4.685 4.726 4.425
25◦ 5.552 5.705 5.419 5.618 5.615 5.106
30◦ 6.802 6.977 6.372 6.644 6.519 5.861

45◦ 0◦ 3.041 3.285 3.044 2.227 3.222 2.930
5◦ 3.514 3.654 3.520 2.929 3.615 3.449

10◦ 4.101 4.151 4.105 3.761 4.152 3.969
15◦ 4.850 4.842 4.847 4.739 4.920 4.690
20◦ 5.834 5.858 5.812 5.905 6.051 5.548
25◦ 7.175 7.351 7.019 7.270 7.339 6.552
30◦ 9.083 9.238 8.505 8.896 8.763 7.712

50◦ 0◦ 3.608 3.972 3.612 2.413 3.728 3.447
5◦ 4.228 4.457 4.237 3.281 4.274 4.139

10◦ 5.019 5.120 5.027 4.415 5.063 4.830
15◦ 6.060 6.066 6.060 5.789 6.268 5.820
20◦ 7.482 7.506 7.464 7.501 7.923 7.056
25◦ 9.509 9.719 9.308 9.574 9.857 8.564
30◦ 12.563 12.640 11.698 12.153 12.146 10.388
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Table C.2: Earth Pressure Coefficient Predictions for α = 75◦

φ δ Coulomb Log Spiral Chen UB Caquot Num. UB Num. LB
25◦ 0◦ 1.626 1.661 1.626 1.502 1.818 1.587

5◦ 1.857 1.852 1.853 1.803 2.015 1.828
10◦ 2.113 2.099 2.106 2.107 2.234 2.069
15◦ 2.410 2.427 2.383 2.436 2.496 2.327
20◦ 2.763 2.853 2.676 2.736 2.782 2.590
25◦ 3.195 3.334 2.971 2.881 3.053 2.851

30◦ 0◦ 2.000 2.054 2.000 1.800 2.222 1.959
5◦ 2.285 2.291 2.283 2.195 2.460 2.264

10◦ 2.616 2.602 2.611 2.597 2.749 2.569
15◦ 3.011 3.024 2.990 3.037 3.121 2.920
20◦ 3.496 3.596 3.411 3.522 3.549 3.298
25◦ 4.110 4.254 3.871 3.937 3.994 3.700
30◦ 4.912 4.989 4.350 4.147 4.431 4.118

35◦ 0◦ 2.424 2.507 2.426 2.125 2.652 2.382
5◦ 2.786 2.807 2.786 2.637 2.960 2.775

10◦ 3.218 3.207 3.214 3.184 3.358 3.167
15◦ 3.751 3.763 3.734 3.798 3.894 3.648
20◦ 4.427 4.537 4.339 4.479 4.522 4.179
25◦ 5.312 5.462 5.032 5.228 5.213 4.777
30◦ 6.512 6.525 5.806 5.893 5.947 5.460

40◦ 0◦ 2.921 3.046 2.924 2.458 3.136 2.875
5◦ 3.387 3.431 3.390 3.139 3.551 3.390

10◦ 3.964 3.957 3.961 3.894 4.132 3.906
15◦ 4.696 4.707 4.681 4.753 4.914 4.576
20◦ 5.656 5.781 5.555 5.726 5.839 5.340
25◦ 6.961 7.109 6.602 6.866 6.900 6.211
30◦ 8.816 8.695 7.833 8.121 8.079 7.244

45◦ 0◦ 3.519 3.707 3.524 2.815 3.706 3.469
5◦ 4.133 4.213 4.138 3.703 4.307 4.159

10◦ 4.915 4.919 4.914 4.755 5.187 4.849
15◦ 5.943 5.955 5.930 5.992 6.306 5.792
20◦ 7.343 7.493 7.220 7.466 7.714 6.908
25◦ 9.337 9.465 8.833 9.193 9.348 8.223
30◦ 12.337 11.920 10.824 11.251 11.286 9.750

50◦ 0◦ 4.261 4.547 4.268 3.202 4.437 4.197
5◦ 5.087 5.226 5.096 4.355 5.352 5.144

10◦ 6.174 6.195 6.176 5.859 6.646 6.092
15◦ 7.658 7.670 7.647 7.684 8.326 7.432
20◦ 9.774 9.958 9.608 9.956 10.470 9.115
25◦ 12.966 13.022 12.185 12.709 13.094 11.182
30◦ 18.149 17.016 15.532 16.134 16.417 13.785
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Table C.3: Earth Pressure Coefficient Predictions for α = 80◦

φ δ Coulomb Log Spiral Chen UB Caquot Num. UB Num. LB
25◦ 0◦ 1.757 1.778 1.757 1.673 1.937 1.707

5◦ 2.031 2.022 2.028 2.007 2.166 1.986
10◦ 2.343 2.347 2.332 2.345 2.425 2.265
15◦ 2.711 2.780 2.658 2.711 2.754 2.559
20◦ 3.160 3.272 3.004 3.044 3.082 2.867
25◦ 3.725 3.812 3.355 3.204 3.391 3.158

30◦ 0◦ 2.197 2.229 2.198 2.061 2.393 2.141
5◦ 2.544 2.538 2.542 2.512 2.671 2.500

10◦ 2.955 2.957 2.945 2.971 3.035 2.860
15◦ 3.457 3.531 3.403 3.474 3.520 3.268
20◦ 4.091 4.212 3.914 4.028 4.030 3.706
25◦ 4.918 4.976 4.472 4.503 4.535 4.187
30◦ 6.035 5.825 5.054 4.743 5.047 4.668

35◦ 0◦ 2.709 2.758 2.711 2.498 2.874 2.644
5◦ 3.159 3.157 3.157 3.100 3.257 3.117

10◦ 3.710 3.712 3.702 3.743 3.783 3.590
15◦ 4.407 4.491 4.347 4.465 4.497 4.160
20◦ 5.318 5.442 5.099 5.266 5.259 4.781
25◦ 6.554 6.555 5.962 6.147 6.045 5.515
30◦ 8.305 7.827 6.926 6.929 6.933 6.332

40◦ 0◦ 3.325 3.401 3.329 2.988 3.446 3.247
5◦ 3.920 3.927 3.920 3.816 3.994 3.880

10◦ 4.675 4.677 4.668 4.734 4.784 4.513
15◦ 5.662 5.763 5.590 5.777 5.839 5.322
20◦ 7.005 7.128 6.710 6.959 6.949 6.242
25◦ 8.913 8.788 8.055 8.345 8.178 7.305
30◦ 11.781 10.757 9.636 9.870 9.635 8.624

45◦ 0◦ 4.088 4.204 4.094 3.573 4.165 3.993
5◦ 4.894 4.912 4.895 4.700 4.983 4.857

10◦ 5.950 5.953 5.944 6.035 6.222 5.722
15◦ 7.390 7.514 7.296 7.605 7.705 6.890
20◦ 9.440 9.546 9.008 9.477 9.391 8.269
25◦ 12.527 12.114 11.158 11.669 11.372 9.900
30◦ 17.535 15.294 13.812 14.281 13.840 11.800

50◦ 0◦ 5.064 5.246 5.073 4.252 5.130 4.939
5◦ 6.182 6.223 6.185 5.783 6.432 6.149

10◦ 7.706 7.709 7.701 7.781 8.257 7.359
15◦ 9.882 10.040 9.748 10.204 10.425 9.058
20◦ 13.166 13.205 12.470 13.222 13.065 11.201
25◦ 18.504 17.392 16.061 16.878 16.396 13.841
30◦ 28.137 22.826 20.732 21.426 20.790 17.250
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Table C.4: Earth Pressure Coefficient Predictions for α = 85◦

φ δ Coulomb Log Spiral Chen UB Caquot Num. UB Num. LB
25◦ 0◦ 1.900 1.906 1.900 1.861 2.078 1.805

5◦ 2.226 2.222 2.223 2.231 2.361 2.151
10◦ 2.606 2.650 2.577 2.606 2.700 2.497
15◦ 3.066 3.155 2.961 3.011 3.080 2.847
20◦ 3.641 3.712 3.368 3.380 3.457 3.206
25◦ 4.387 4.317 3.782 3.558 3.818 3.547

30◦ 0◦ 2.416 2.427 2.417 2.349 2.605 2.289
5◦ 2.840 2.837 2.837 2.862 2.987 2.747

10◦ 3.354 3.405 3.322 3.384 3.477 3.205
15◦ 3.999 4.093 3.872 3.956 4.040 3.707
20◦ 4.838 4.887 4.487 4.586 4.627 4.243
25◦ 5.972 5.773 5.161 5.125 5.241 4.819
30◦ 7.573 6.753 5.864 5.397 5.840 5.389

35◦ 0◦ 3.036 3.053 3.037 2.930 3.215 2.863
5◦ 3.599 3.596 3.597 3.633 3.775 3.477

10◦ 4.308 4.370 4.270 4.386 4.486 4.091
15◦ 5.232 5.332 5.065 5.231 5.309 4.817
20◦ 6.485 6.477 5.996 6.168 6.208 5.612
25◦ 8.259 7.812 7.066 7.200 7.202 6.525
30◦ 10.920 9.332 8.261 8.115 8.270 7.520

40◦ 0◦ 3.803 3.829 3.805 3.613 3.994 3.563
5◦ 4.569 4.567 4.567 4.613 4.828 4.400

10◦ 5.571 5.650 5.522 5.721 5.856 5.237
15◦ 6.932 7.033 6.695 6.982 7.086 6.300
20◦ 8.865 8.738 8.126 8.410 8.468 7.509
25◦ 11.771 10.801 9.846 10.084 10.095 8.920
30◦ 16.476 13.241 11.868 11.927 11.955 10.581

45◦ 0◦ 4.783 4.824 4.786 4.503 5.076 4.443
5◦ 5.854 5.852 5.853 5.922 6.287 5.609

10◦ 7.312 7.414 7.243 7.603 7.828 6.774
15◦ 9.388 9.476 9.026 9.580 9.678 8.360
20◦ 12.517 12.118 11.296 11.937 11.897 10.232
25◦ 17.596 15.445 14.150 14.698 14.640 12.498
30◦ 26.750 19.550 17.674 17.986 18.056 15.202

50◦ 0◦ 6.082 6.150 6.087 5.637 6.613 5.577
5◦ 7.625 7.624 7.624 7.664 8.403 7.251

10◦ 9.828 9.963 9.724 10.310 10.739 8.924
15◦ 13.155 13.182 12.546 13.520 13.653 11.348
20◦ 18.568 17.498 16.320 17.518 17.409 14.351
25◦ 28.351 23.194 21.314 22.360 22.372 18.160
30◦ 49.094 30.564 27.807 28.384 28.038 23.015
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Table C.5: Earth Pressure Coefficient Predictions for α = 90◦

φ δ Coulomb Log Spiral Chen UB Caquot Num. UB Num. LB
25◦ 0◦ 2.058 2.058 2.058 2.056 2.190 1.876

5◦ 2.447 2.472 2.434 2.464 2.525 2.286
10◦ 2.913 2.977 2.846 2.875 2.941 2.696
15◦ 3.492 3.549 3.294 3.321 3.367 3.099
20◦ 4.239 4.177 3.771 3.727 3.790 3.504
25◦ 5.244 4.857 4.258 3.923 4.197 3.892

30◦ 0◦ 2.667 2.667 2.667 2.665 2.782 2.405
5◦ 3.186 3.219 3.170 3.245 3.265 2.957

10◦ 3.835 3.906 3.748 3.835 3.878 3.509
15◦ 4.675 4.709 4.405 4.481 4.512 4.100
20◦ 5.808 5.631 5.144 5.193 5.169 4.729
25◦ 7.408 6.658 5.953 5.804 5.886 5.394
30◦ 9.798 7.793 6.800 6.112 6.565 6.047

35◦ 0◦ 3.419 3.419 3.419 3.421 3.516 3.042
5◦ 4.131 4.175 4.109 4.241 4.249 3.793

10◦ 5.056 5.135 4.933 5.118 5.141 4.543
15◦ 6.307 6.292 5.912 6.102 6.062 5.419
20◦ 8.079 7.665 7.059 7.193 7.088 6.379
25◦ 10.735 9.261 8.380 8.395 8.281 7.463
30◦ 15.027 11.077 9.855 9.462 9.517 8.625

40◦ 0◦ 4.381 4.382 4.381 4.368 4.495 3.832
5◦ 5.383 5.443 5.352 5.574 5.612 4.866

10◦ 6.742 6.825 6.557 6.911 6.867 5.900
15◦ 8.671 8.548 8.047 8.432 8.260 7.210
20◦ 11.572 10.667 9.869 10.154 9.901 8.696
25◦ 16.273 13.223 12.061 12.174 11.911 10.444
30◦ 24.731 16.241 14.636 14.397 14.159 12.432

45◦ 0◦ 5.657 5.656 5.657 5.657 5.934 4.837
5◦ 7.112 7.193 7.064 7.438 7.532 6.294

10◦ 9.183 9.256 8.886 9.546 9.360 7.751
15◦ 12.306 11.931 11.235 12.026 11.559 9.744
20◦ 17.379 15.350 14.237 14.983 14.293 12.095
25◦ 26.536 19.646 18.017 18.447 17.777 14.980
30◦ 45.925 24.933 22.678 22.572 22.119 18.469

50◦ 0◦ 7.416 7.416 7.416 7.446 8.038 6.148
5◦ 9.613 9.726 9.535 10.121 10.303 8.272

10◦ 12.933 12.951 12.410 13.613 13.129 10.397
15◦ 18.340 17.329 16.303 17.849 16.766 13.529
20◦ 28.124 23.196 21.532 23.125 21.613 17.371
25◦ 48.899 30.923 28.458 29.515 28.180 22.326
30◦ 107.223 40.891 37.456 37.465 35.068 28.596
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Table C.6: Earth Pressure Coefficient Predictions for α = 95◦

φ δ Coulomb Log Spiral Chen UB Caquot Num. UB Num. LB
25◦ 0◦ 2.237 2.249 2.233 2.271 2.423 2.023

5◦ 2.704 2.749 2.665 2.718 2.826 2.495
10◦ 3.280 3.320 3.142 3.170 3.281 2.968
15◦ 4.019 3.966 3.663 3.659 3.758 3.431
20◦ 5.010 4.672 4.219 4.105 4.240 3.900
25◦ 6.401 5.436 4.790 4.319 4.703 4.360

30◦ 0◦ 2.958 2.978 2.952 3.020 3.174 2.636
5◦ 3.602 3.655 3.546 3.673 3.752 3.292

10◦ 4.432 4.455 4.231 4.339 4.428 3.949
15◦ 5.548 5.387 5.016 5.067 5.159 4.643
20◦ 7.123 6.455 5.899 5.871 5.946 5.388
25◦ 9.475 7.643 6.868 6.559 6.790 6.173
30◦ 13.262 8.956 7.881 6.906 7.626 6.949

35◦ 0◦ 3.880 3.910 3.870 4.004 4.152 3.398
5◦ 4.793 4.855 4.707 4.959 5.009 4.322

10◦ 6.025 6.007 5.713 5.981 6.012 5.246
15◦ 7.768 7.393 6.913 7.129 7.133 6.298
20◦ 10.381 9.035 8.325 8.400 8.410 7.466
25◦ 14.605 10.940 9.950 9.802 9.891 8.783
30◦ 22.186 13.107 11.763 11.046 11.445 10.184

40◦ 0◦ 5.103 5.146 5.086 5.278 5.481 4.379
5◦ 6.440 6.507 6.301 6.732 6.770 5.698

10◦ 8.337 8.224 7.821 8.343 8.273 7.017
15◦ 11.190 10.362 9.709 10.177 10.066 8.642
20◦ 15.817 12.986 12.023 12.252 12.205 10.508
25◦ 24.150 16.146 14.808 14.687 14.821 12.700
30◦ 41.763 19.873 18.076 17.368 17.775 14.585

45◦ 0◦ 6.794 6.857 6.763 7.123 7.411 5.678
5◦ 8.830 8.891 8.592 9.360 9.349 7.610

10◦ 11.900 11.556 10.978 12.009 11.701 9.541
15◦ 16.892 15.012 14.072 15.125 14.704 12.117
20◦ 25.911 19.425 18.035 18.841 18.513 15.195
25◦ 45.039 24.956 23.025 23.192 23.346 18.949
30◦ 98.658 31.752 29.171 28.376 29.233 23.223

50◦ 0◦ 9.243 9.336 9.188 9.855 10.315 7.467
5◦ 12.506 12.519 12.068 13.391 13.318 10.395

10◦ 17.826 16.890 16.012 18.006 17.240 13.323
15◦ 27.462 22.832 21.385 23.603 22.638 17.554
20◦ 47.956 30.790 28.618 30.576 30.191 22.846
25◦ 105.584 41.246 38.200 39.021 40.433 29.061
30◦ 411.594 54.700 50.633 49.528 53.257 36.024
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Table C.7: Earth Pressure Coefficient Predictions for α = 100◦

φ δ Coulomb Log Spiral Chen UB Caquot Num. UB Num. LB
25◦ 0◦ 2.443 2.474 2.425 2.501 2.612 2.133

5◦ 3.010 3.038 2.919 2.988 3.076 2.660
10◦ 3.731 3.681 3.469 3.481 3.560 3.186
15◦ 4.695 4.406 4.072 4.015 4.079 3.700
20◦ 6.045 5.199 4.720 4.503 4.611 4.225
25◦ 8.052 6.059 5.385 4.737 5.121 4.747

30◦ 0◦ 3.305 3.345 3.273 3.417 3.507 2.819
5◦ 4.115 4.130 3.972 4.153 4.167 3.567

10◦ 5.200 5.057 4.783 4.901 4.894 4.314
15◦ 6.726 6.135 5.716 5.721 5.708 5.098
20◦ 9.006 7.369 6.769 6.625 6.608 5.944
25◦ 12.678 8.742 7.924 7.400 7.563 6.833
30◦ 19.247 10.264 9.133 7.792 8.539 7.718

35◦ 0◦ 4.450 4.499 4.394 4.660 4.706 3.692
5◦ 5.646 5.629 5.409 5.766 5.670 4.770

10◦ 7.336 7.005 6.636 6.950 6.765 5.848
15◦ 9.868 8.660 8.104 8.279 8.064 7.054
20◦ 13.962 10.617 9.834 9.753 9.564 8.406
25◦ 21.317 12.887 11.827 11.378 11.302 9.929
30◦ 36.826 15.470 14.048 12.821 13.139 11.539

40◦ 0◦ 6.035 6.091 5.936 6.399 6.353 4.841
5◦ 7.873 7.773 7.459 8.155 7.789 6.417

10◦ 10.637 9.897 9.375 10.101 9.510 7.993
15◦ 15.120 12.542 11.762 12.316 11.664 9.898
20◦ 23.203 15.783 14.694 14.824 14.254 12.104
25◦ 40.313 19.680 18.222 17.765 17.415 14.692
30◦ 88.186 24.275 22.356 21.004 21.010 16.451

45◦ 0◦ 8.338 8.388 8.156 8.970 8.729 6.407
5◦ 11.311 11.003 10.537 11.780 10.967 8.769

10◦ 16.148 14.440 13.664 15.108 13.793 11.131
15◦ 24.896 18.896 17.734 19.023 17.529 14.233
20◦ 43.475 24.578 22.954 23.691 22.322 17.969
25◦ 95.645 31.685 29.525 29.158 28.389 22.508
30◦ 372.252 40.405 37.605 35.671 35.685 27.478

50◦ 0◦ 11.887 11.897 11.530 13.068 12.366 8.632
5◦ 17.040 16.191 15.459 17.747 16.038 12.295

10◦ 26.386 22.112 20.880 23.857 20.962 15.957
15◦ 46.291 30.170 28.291 31.266 27.986 21.190
20◦ 102.360 40.946 38.281 40.496 38.047 27.805
25◦ 400.660 55.068 51.506 51.675 51.698 35.147
30◦ 68.639 65.584 70.082 42.676



Appendix D

Direct Shear Results

In this Appendix, we include the results from our low stress direct shear tests and a

few tests at higher, more typical loads. For each soil we have tested at 0.4473, 0.921,

2.921, and 5.891 kg using the low stress assembly and at 17.545, 27.545, and 47.545

kg at high stress. The area over which these loads are applied is 35.6 cm2 (5.5 in2).

The load cell has a sensing range of 0-500 lbs and a small bias which was removed.

At low readings, there is some noise present in the measurements. For the low stress

cases, a windowed average over three data points is used to filter out the noise. The

displacement is generated via a motor, maintaining a constant strain rate of 0.0021

cm/sec.

There is some friction inherent in the system. Typically, the small contribution

to measured shear force is negligible when using large loads. For the low stress

measurements, this friction becomes more significant. The system is run without any

soil in the shear box in both the forward and reverse direction to obtain a friction

hysteresis loop. Figure D-1 shows the measured force versus displacement. Half of

the magnitude of this loop is subtracted from the subsequent experimental data. This

typically results in a reduction of the estimated friction angle of roughly half to a full
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Figure D-1: Direct shear results with no sand, showing the friction hysteresis loop of
the test assembly. Half the magnitude is subtracted from subsequent tests.

degree in the lowest stress case.

In the following figures, the estimated friction angle and the dilation of the soil are

plotted against the horizontal displacement. The peak angle for each test is used as

the measured friction angle. Four tests are conducted for each of the low stress cases

and the closest three are kept and plotted. For the higher loads, only a single run is

done for each. The average densities and standard deviations in g/cc for the samples

tested were: loose Ticino - 1.450, 0.026, Nevada Fine - 1.456, 0.022, dense Ticino -

1.521, 0.012, and glass beads - 1.451, 0.013. The dense Ticino was prepared using

simple tamping, since no other means was readily available. For denser samples, we

would expect the measured friction angles to be higher.
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Figure D-2: Direct shear results for three trials of loose Ticino with 0.4473 kg load.
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Figure D-3: Direct shear results for three trials of loose Ticino with 0.921 kg load.
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Figure D-4: Direct shear results for three trials of loose Ticino with 2.921 kg load.
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Figure D-5: Direct shear results for three trials of loose Ticino with 5.891 kg load.
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0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

41.33
39.32

38.49

35.3

31.56

31.6

normal stress (psi)

sh
ea

r 
st

re
ng

th
 (

ps
i)

Summary: Loose Ticino Shear Results

Figure D-7: Compiled friction angle measurements for loose Ticino sand.
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Figure D-8: Direct shear results for three trials of loose Nevada with 0.4473 kg load.
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Figure D-9: Direct shear results for three trials of loose Nevada with 0.921 kg load.
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Figure D-10: Direct shear results for three trials of loose Nevada with 2.921 kg load.
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Figure D-11: Direct shear results for three trials of loose Nevada with 5.891 kg load.
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Figure D-12: Direct shear results for three trials of loose Nevada with high loads.
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Figure D-13: Compiled friction angle measurements for loose Nevada Fine sand.
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Figure D-14: Direct shear results for three trials of dense Ticino with 0.4473 kg load.
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Figure D-15: Direct shear results for three trials of dense Ticino with 0.921 kg load.
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Figure D-16: Direct shear results for three trials of dense Ticino with 2.921 kg load.
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Figure D-17: Direct shear results for three trials of dense Ticino with 5.891 kg load.
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Figure D-18: Direct shear results for three trials of dense Ticino sand at high loads.
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Figure D-19: Compiled friction angle measurements for dense Ticino sand.
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Figure D-20: Direct shear results for three trials of dense Ticino with 0.4473 kg load.
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Figure D-21: Direct shear results for three trials of dense Ticino with 0.921 kg load.
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Figure D-22: Direct shear results for three trials of dense Ticino with 2.921 kg load.
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Figure D-23: Direct shear results for three trials of dense Ticino with 5.891 kg load.
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Figure D-24: Direct shear results for three trials of loose glass beads at high loads.
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Figure D-25: Compiled friction angle measurements for loose glass beads.
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[121] P. K. Vähä, M. J. Skibniewski, and A. J. Koivo. Kinematics and trajectory
planning for robotic excavation. In Preparing for Construction in the 21st
Century, Construction Congress ’91, pp. 787–793, Cambridge, MA, Apr. 13-16
1991.

[122] F.-Y. Wang and P. J. A. Lever. On-line trajectory planning for autonomous
robotic excavation based on force/torque sensor measurements. In Proc. of the
1994 IEEE Intl. Conf. on Multisensor Fusion and Integration for Intelligent
Systems (MFI ’94), pp. 371–378, Las Vegas, NV, Oct. 2-5 1994.

[123] B. M. Willman and W. W. Boles. Soil-tool interaction theories as they apply to
lunar soil simulant. Journal of Aerospace Engineering, 8(2):88–99, Apr. 1995.

[124] B. M. Willman, W. W. Boles, D. S. McKay, and C. C. Allen. Properties of
lunar soil simulant JSC-1. Journal of Aerospace Engineering, 8(2):88–99, Apr.
1995.

[125] W. P. Wohlford, B. D. Bode, and F. D. Griswold. New capability for remotely
controlled excavation. In Proc. of 1990 Winter Meeting of the American Nuclear
Society, pp. 628–9, Nov. 1990.

[126] R. N. Yong and A. W. Hanna. Finite element analysis of plane soil cutting.
Journal of Terramechanics, 14(3):103–125, 1977.

[127] A. N. Zelenin, V. I. Balovnev, and I. P. Kerov. Machines for Moving the Earth.
A. A. Balkema, Rotterdam, 1986.


