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Abstract

The scattering of electromagnetic waves in medium with randomly distributed dis-
crete scatterers is studied. Analytical and numerical solutions to several problems
with implications for the active and passive remote sensing of the Earth environment
are obtained.

The quasi-magnetostatic (QMS) solution for a conducting and permeable spheroid
under arbitrary excitation is presented. The spheroid is surrounded by a weakly con-
ducting background medium. The magnetic field inside the spheroid satisfies the
vector wave equation, while the magnetic field outside can be expressed as the gra-
dient of the Laplace solution. We solve this problem exactly using the separation of
variables method in spheroidal coordinates by expanding the internal field in terms of
vector spheroidal wavefunctions. The exact formulation works well for low to moder-
ate frequencies; however, the solution breaks down at high frequency due to numerical
difficulty in computing the spheroidal wavefunctions. To circumvent this difficulty,
an approximate theory known as the small penetration-depth approximation (SPA)
is developed. The SPA relates the internal field in terms of the external field by
making use of the fact that at high frequency, the external field can only penetrate
slightly into a thin skin layer below the surface of the spheroid. For spheroids with
general permeability, the SPA works well at high frequency and complements the
exact formulation. However, for high permeability, the SPA is found to give accurate
broadband results. By neglecting mutual interactions, the QMS frequency response
from a collection of conducting and permeable spheroids is also studied.

In a dense medium, the failure to properly take into account of multiple scatter-
ing effects could lead to significant errors. This has been demonstrated in the past
from extensive theoretical, numerical, and experimental studies of electromagnetic
wave scattering by densely packed dielectric spheres. Here, electromagnetic wave
scattering by dense packed dielectric spheroids is studied both numerically through
Monte Carlo simulations and analytically through the quasi-crystalline approximation
(QCA) and QCA with coherent potential (QCA-CP). We assume that the spheroids
are electrically small so that single-particle scattering is simple.
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In the numerical simulations, the Metropolis shuffling method is used to generate
realizations of configurations for non-interpenetrable spheroids. The multiple scat-
tering problem is formulated with the volume integral equation and solved using the
method of moments with electrostatic basis functions. General expressions for the
self-interaction elements are obtained using the low-frequency expansion of the dyadic
Green’s function, and radiative correction terms are included. Results of scattering
coefficient, absorption coefficient, and scattering matrix for spheroids in random and
aligned orientation configurations are presented. It is shown that independent scat-
tering approximation can give grossly incorrect results when the fractional volume of
the spheroids is appreciable.

In the analytical approach, only spheroids in the aligned configuration are solved.
Low-frequency QCA and QCA-CP solutions are obtained for the average Green’s
function and the effective permittivity tensor. For QCA-CP, the low-frequency ex-
pansion of the uniaxial dyadic Green’s function is required. The real parts of the
effective permittivities from QCA and QCA-CP are compared with the Maxwell-
Garnett mixing formula. QCA gives identical result to the mixing formula, while
QCA-CP gives slightly higher values. The extinction coefficients from QCA and
QCA-CP are compared with results from Monte Carlo simulations. Both QCA and
QCA-CP agree well with simulations, although qualitative disagreement is evident at
higher fractional volumes.

QCA can also be used with Mie scattering to yield solution that is valid for par-
ticle sizes comparable to or larger than the wavelength. This formulation is used to
investigate thermal emission from sea foam, which is modeled here as a layer of ran-
domly distributed air bubbles coated with sea water. The extinction behavior of sea
foam is illustrated, and the extinction is shown to be dominated by absorption. Using
QCA-derived parameters, the radiative transfer equation is solved. The brightness
temperatures of the sea foam are presented as a function of observation angle and
frequency. Large-scale rough ocean effects are also considered using a simple geomet-
ric tilting model. The final result is found by averaging the brightness temperatures
over the Cox-Munk slope distribution. Thus a physical model of foam emission is
obtained that relates observed brightness temperatures to the microstructure of foam
as well as ocean surface wind vector.

Thesis Supervisor: Jin Au Kong
Title: Professor, Department of Electrical Engineering and Computer Science
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Chapter 1

Introduction

In this thesis, several problems related to the scattering of electromagnetic waves in

discrete random media are studied. These problems are motivated by applications in

the remote sensing of the Earth environment. However, the methodologies are theo-

retically and numerically oriented and aim to enrich our basic physical understanding

of wave interactions with matter.

A discrete random medium consists of scatterers of simple shapes and material

properties randomly distributed in a homogeneous background. The scattering char-

acteristics of such a medium is generally described in an ensemble averaging sense.

The discrete random medium provides a convenient model for a variety of geophysical,

biological, and artificial systems.

We can classify a discrete random medium according to its scattering properties

into two categories: sparse and dense. In a sparse medium, multiple scattering is

negligible. This could be so because (i) particle concentration is low such that the

mean separation of the scatterers is much larger than the wavelength, (ii) the material

contrast is low such that the scattering strength from each scatterer is weak, and/or

(iii) the scattered field falls off quickly in the background medium. Thus in a sparse

medium, the total response is simply the sum of the individual responses from each

scatterer in isolation. In contrast, in a dense medium, the scatterers are packed

19



20 Chapter 1. Introduction

closely together with significant scattering. Hence multiple scattering effects must be

properly included to get the correct results.

For a sparse medium, the challenge is to solve the single-particle scattering prob-

lem. Except for special cases such as spherical objects (Mie scattering) or small

ellipsoidal particles (Rayleigh scattering) [1, 2, 3, 4], this is not always easy to do [5].

For dense medium, one faces the additional task of combining the scattered fields

from all the particles in a self-consistent manner. One must also be able to come up

with reasonable ways to characterize the joint probability distribution of the particle

positions and other possible properties [6, 7, 8, 9].

In Chapter 2, I present the quasi-magnetostatic (QMS) field solution for conduct-

ing and permeable spheroids under arbitrary excitation. This problem is motivated

by the need to discriminate subsurface unexploded ordnance (UXO) using the newly

developed electromagnetic induction spectroscopy (EMIS) sensors. Much efforts will

be devoted in the single spheroid solution because (i) the exact formulation, which

is in terms of spheroidal wavefunction expansion, is fairly involved and (ii) mutual

interactions between the spheroids are negligible largely due to the non-conductive

nature of the background medium. Thus the QMS multiple spheroid problem can be

considered to be a sparse medium. Subsequent chapters deal with dense medium.

So far I have used the term “multiple scattering” somewhat loosely. It is important

to recognize in wave scattering and propagation through discrete random medium,

there exists two scattering length scales. The first involves multiple scattering of fields

and is known as coherent multiple scattering. Coherent multiple scattering is used

for the classification of sparse and dense media. The length scale of coherent multiple

scattering is characterized by the wavelength λ. The second involves multiple scat-

tering of intensities and is known as incoherent multiple scattering. The length scale

is characterized by the mean free path lmfp. Incoherent multiple scattering has been

treated thoroughly with the classical radiative transfer theory [4, 10, 11]. Coherent

multiple scattering is a subject of extensive current research activities [12, 13]. In
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the event where lmfp 	 λ, as is the case in most geophysical remote sensing prob-

lems, both the coherent and incoherent multiple scattering can be combined in an

elegant way in the so-called dense medium radiative transfer theory [9, 14]. This is

achieved by calculating radiative transfer parameters such as absorption coefficient

and scattering phase matrix using wave theory that incorporates coherent multiple

scattering. These “mesoscopic” radiative transfer parameters are then used in the ra-

diative transfer equation to solve the large-scale or “macroscopic” problem. Chapters

3–5 are studied in the context of dense medium radiative transfer theory.

In Chapters 3 and 4, the coherent multiple scattering of electromagnetic waves by

dielectric spheroids is studied. While the problem of multiple scattering by spheres

has been studied extensively, multiple scattering by nonspherical particles remain an

underexplored subject, despite its relevance in many remote sensing applications (for

example, sea ice and vegetation). The spheroids provide perhaps the simplest non-

spherical model with which to study multiple scattering. I assume that the spheroids

are small compared to the wavelength so that single scattering can be characterized

essentially by Rayleigh scattering. The problem of multiple scattering by spheroids

will be tackled from two directions, by using Monte Carlo simulations as well as ana-

lytical approximations that are based on wave theory. The Monte Carlo simulations

are computationally time-consuming but allow for rather general spheroid distribu-

tions. The analytical approximations are derived only for spheroids with aligned

orientation but give close-form solutions in the low-frequency limit. However, the ap-

proximations only take into account of pair correlation and might not give the correct

results at high fractional volume. Results obtained using numerical simulations and

analytical approximations are compared.

In Chapter 5, I study the problem of polarimetric thermal emission from sea foam.

It has been known since the late 1960s that sea foam has microwave emissivities close

to one, which represent twice the emission from the plain sea surface. Thus even

though only a small portion of the sea surface is covered with foam, their effects
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on the overall emissivity measurements of the ocean need to be properly accounted

for. The goal here is to develop a general electromagnetic model for foam emission

that could relate to the underlying physical parameters of the foam and that does not

place any strict limitation on particle size or frequency. To this end, we model the sea

foam as a layer of randomly distributed, densely packed air bubbles. Each air bubble

is taken to be spherical and coated with a thin outer layer of sea water. Coherent

multiple scattering is incorporated using the analytical theory of quasi-crystalline

approximation (QCA) with T-matrix formulation (known as the QCA-Mie theory).

This allows the bubble size comparable or larger than the wavelength to be treated.

Brightness temperatures from a foam-covered ocean surface are derived by solving

the dense medium radiative transfer equation.



Chapter 2

Quasi-Magnetostatic Solution for

Conducting and Permeable

Spheroids

2.1 Introduction

The detection and identification of buried unexploded ordnance (UXO) is impor-

tant from the prospective of humanitarian demining. Electromagnetic methods from

ground penetrating radar (GPR) to electromagnetic induction (EMI) devices are use-

ful in detecting these objects [15]. However, it is considerably more difficult to identify

or discriminate between the responses from objects with different shapes and material

properties. The uncertainty in target identification leads to a high false alarm rate

and renders the UXO removal process costly.

The development of advanced broadband induction devices has prompted re-

searchers to investigate the electromagnetic induction (EMI) frequency response from

subsurface metallic objects [16, 17]. These devices measure the in-phase and quadra-

ture magnetic field responses in a broad range of frequencies (∼ 30 Hz–20 kHz). By

operating in these low frequencies, the ground surface effects can conveniently be

23
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ignored. Measurements on typical ordnance have revealed significant differences in

frequency responses depending on their sizes and orientations. Since UXO are gener-

ally nonspherical, it is desirable, for the purpose of physical interpretations and data

analysis, to be able to compute theoretically the EMI response from nonspherical

objects. However, while the EMI response from a conducting and permeable sphere

is well-known [18, 19], the corresponding analytical and/or numerical solutions for

nonspherical objects did not exist until recently [20, 21, 22, 23].

One of the simplest nonspherical shapes that lends itself to theoretical analysis

is the prolate or oblate spheroid (ellipsoid of revolution). The spheroid also provides

a versatile model for nonspherical object that ranges from long needles to spheres

to flat discs. In this chapter, we obtain the quasi-magnetostatic (QMS) solution for

conducting and permeable spheroids under arbitrary excitation using the separation

of variables method. By “arbitrary,” we mean that the primary field can be oriented

in an arbitrary direction with respect to the symmetry axis of the spheroid and can be

spatially non-uniform in general. This extends our previous work [20], in which the

special case of axial excitation (i.e., the primary field is constant in magnitude and

oriented along the symmetry axis of the spheroid) was considered. By exploiting the

azimuthal symmetry of the problem, the axial-excitation problem can be formulated

using only the scalar spheroidal wavefunction. In the general formulation presented

here, the vector spheroidal wavefunctions must be used.

It should be noted that vector spheroidal wavefunctions expansion is a technique

that has been used extensively to study electromagnetic wave scattering by dielectric

spheroids [24, 25, 26, 27]. However, our problem differs from the usual scattering

problems in the following important ways. First, in the QMS regime, the displacement

current is negligible compared to the conduction current. This results in the dispersion

relation k2 = iωσµ, where σ is the conductivity and µ is the permeability of the

medium. Thus the physical nature of the present problem is more properly described

as diffusion instead of scattering. Second, the external field is taken to be static (in
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the sense that k = 0 — the external field still oscillates in time with e−iωt). While

this can be regarded formally as the limit of the wave problem as the wavenumber

k → 0, we prefer not to do so to bypass the anticipated analytical and numerical

difficulties in performing such a limit.

The rest of this chapter proceeds as follows. In Sec. 2.2, we present the exact for-

mulation based on vector spheroidal wavefunction expansion for a prolate spheroid.

In Sec. 2.3, numerical results are shown for the case of uniform primary field exci-

tation. Due to numerical difficulty in computing the spheroidal wavefunctions for

high frequencies, an alternate system of equations for the external field is derived

by introducing and making use of the small penetration-depth approximation (SPA).

This is described in Sec. 2.4. For general parameters, SPA is valid at high frequencies

and complements the exact solution. For high relative permeability, SPA is found

to give an accurate solution over all frequencies. In Sec. 2.5, we extend the SPA

to oblate spheroids. In Sec. 2.6, we investigate the EMI response due to a collec-

tion of spheroids by assuming that they comprise a sparse medium. The results are

summarized in Sec. 2.7.

2.2 Exact Formulation

A conducting and permeable prolate spheroid is placed in a weakly conducting homo-

geneous background and excited by a time-harmonic primary magnetic fieldHo(r)e
−iωt

(Fig. 2-1). The time dependence expression of e−iωt is suppressed below. In the quasi-

magnetostatic regime, we assume that the displacement current can be neglected in

comparison to the conduction current. The magnetic field inside the spheroid satisfies

the vector wave equation [28]

∇×∇×H1 − k2
1H1 = 0 (2.1)
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ξ = ξo

µ1 µ2

σ
1

a

b

z

η

σ2 ≈ 0

x

φ

y
Ho(r)e−iωt

Figure 2-1: A conducting and permeable prolate spheroid is excited by a time-
harmonic primary field Ho(r)e

−iωt. The prolate spheroidal coordinate system is spec-
ified by (η, ξ, φ) with −1 ≤ η ≤ 1, 1 ≤ ξ < ∞, and 0 ≤ φ < 2π. The surface of the
spheroid is given by ξ = ξo = b/

√
b2 − a2.

with k2
1 = iωσ1µ1. Thus the field inside the spheroid (ξ < ξo) can be expanded

using the (divergence-free) vector spheroidal wavefunctions of first kind [29], which

are regular at the origin:

H1 = Ho

∞∑
m=0

∞∑
n=m

1∑
p=0

[
A(M)

pmnM
r(1)

pmn(c1; η, ξ, φ) + A(N)
pmnN

r(1)

pmn(c1; η, ξ, φ)
]

(2.2)

where Ho is a constant and the dimensionless spheroidal frequency parameter c1 is

defined as

c1 = k1
d

2
(2.3)

with d = 2
√
b2 − a2 being the focal distance. The vector wavefunctions can be gen-

erated from the scalar wavefunction as follows:

M
r(1)

pmn =∇ψ(1)
pmn × r (2.4)

N
r(1)

pmn =
1

k1

∇×M r(1)

pmn (2.5)
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with

ψ(1)
pmn =Smn(c1, η)R

(1)
mn(c1, ξ)Tpm(φ) (2.6)

where Smn(c1, η) and R
(1)
mn(c1, ξ) are the spheroidal angle and radial functions, respec-

tively, while the azimuthal function Tpm(φ) is simply

Tpm(φ) =

{
cosmφ, p = 0

sinmφ, p = 1
(2.7)

Note that other choices for generating the vector wavefunctions are possible besides

(2.4) and (2.5), cf. [27, 29]. The r-vector wavefunctions used here represent a common

choice for scattering problems [25, 26].

To simplify notation, the superscripts (1) and r on the spheroidal wavefunctions

will henceforth be dropped. Unless otherwise indicated, we will also dispense with

the explicit dependence of the spheroidal wavefunctions on c1.

Outside the spheroid, the medium is poorly conducting and weakly magnetic.

Thus k2 → 0 in the quasi-static limit, and the magnetic field can be obtained from

its scalar potential, which satisfies the Laplace equation. We define a scalar potential

U2(r) such that the external magnetic field is H2 = −∇U2. The total external

magnetic field can be written as a sum of the primary and secondary fields, i.e.,

H2 = Ho +H
(s)

2 = −∇Uo −∇Us (2.8)

The primary field potential Uo(r) is expanded as

Uo(r) =
Hod

2

∞∑
m=0

∞∑
n=m

1∑
p=0

bpmnΦ
(1)
pmn(η, ξ, φ) (2.9)
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where

Φ(1)
pmn(η, ξ, φ) =Pm

n (η)Pm
n (ξ)Tpm(φ) (2.10)

is the spheroidal Laplace solution of first kind which is regular at the origin (ξ → 1).

The source coefficients bpmn are determined from the primary field. The functions

Pm
n (η) and Pm

n (ξ) are the associated Legendre functions of first kind. The associated

Legendre functions used here follow the convention of Abramowitz and Stegun [30]

(eqs. 8.6.6 and 8.6.7), which is slightly different from that of Flammer [29].

Similarly, the secondary magnetic field potential Us(r) can be expanded as

Us(r) =
Hod

2

∞∑
m=0

∞∑
n=m

1∑
p=0

BpmnΦpmn(η, ξ, φ) (2.11)

where

Φpmn(η, ξ, φ) =Pm
n (η)Qm

n (ξ)Tpm(φ) (2.12)

is the spheroidal Laplace solution of second kind which is regular at infinity (ξ →∞).

The function Qm
n (ξ) is the associated Legendre functions of first kind.

The boundary conditions are specified by the continuity of tangential components

of H and normal component of B at the surface of the spheroid ξ = ξo [28]:

H1η =H2η (2.13)

H1φ =H2φ (2.14)

µrH1ξ =H2ξ (2.15)

where µr = µ1/µ2 is the relative permeability of the spheroid with respect to its

surrounding.

The vector spheroidal wavefunctions in component forms are given in Appendix A.
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In matching the boundary conditions, first note that from (2.7),

dTpmn

dφ
= (−1)p̃mTp̃mn(φ) (2.16)

where p̃ = 0 for p = 1 and vice versa. Then matching the angular component Hη

according to (2.13) gives

∞∑
n=m

[
(−1)pmA

(M)
p̃mnM̃η;mn(η, ξo) +

1

c1
A(N)

pmnÑη;mn(η, ξo)

]
= −

∞∑
n=m

[bpmnP
m
n (ξo) +BpmnQ

m
n (ξo)]

dPm
n

dη
(2.17)

where we have made use of the orthogonality property of cosmφ and sinmφ to elimi-

nate the sum over the indices m and p. However, the sum over n must be retained be-

cause no such orthogonality condition exists between the angular functions Smn(c, η)

and Pm
n (η) = Smn(c = 0, η). In general, Smn(c, η) and Smn(c

′, η) are orthogonal only

when c = c′. This accounts for the complexity of the two-media spheroidal boundary

value problem.

Similarly, matching Hξ according to (2.15) gives

µr

∞∑
n=m

[
(−1)pmA

(M)
p̃mnM̃ξ;mn(η, ξo) +

1

c1
A(N)

pmnÑξ;mn(η, ξo)

]
= −

∞∑
n=m

[
bpmn

dPm
n

dξo
+Bpmn

dQm
n

dξo

]
Pm

n (η) (2.18)

Matching Hφ according to (2.14) gives the third set of equations

∞∑
n=m

[
(−1)p+1A

(M)
p̃mnM̃φ;mn(η, ξo) +

m

c1
A(N)

pmnÑφ;mn(η, ξo)

]
= −

∞∑
n=m

m [bpmnP
m
n (ξo) +BpmnQ

m
n (ξo)]P

m
n (η) (2.19)
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Equations (2.17), (2.18), and (2.19) are used to determine the field expansion

coefficients A
(M)
pmn, A

(N)
pmn, Bpmn. Further simplifications can be made by considering

the parity of the η dependence on the left- and right-hand sides of these equations.

Take (2.18), for example. Under the parity transformation η → −η, the nth term of

its right-hand side, due to the functional form of Pm
n (η), gives a factor of (−1)n−m.

On the other hand, M̃ξ;mn(η, ξo) and Ñξ;mn(η, ξo) gives (−1)n−m+1 and (−1)n−m, re-

spectively. These can be deduced from their expressions in Appendix A and the fact

that Smn(η) has the same parity property as Pm
n (η) [29]. These considerations imply

that excitations bpmn with n − m even and n − m odd are decoupled and can be

treated separately. If bpmn �= 0 for n − m even, then Bpmn′ , A
(N)
pmn′ , and A

(M)
pm(n′+1)

can be nonzero only for n′ = m,m + 2, . . .. This will be referred to as the case of

even excitation. If bpmn �= 0 for n−m odd, then Bpmn′ , A
(N)
pmn′ , and A

(M)
pm(n′−1) can be

nonzero only for n′ = m + 1,m + 3, . . .. This will be referred to as the case of odd

excitation.

Note that (2.17), (2.18), and (2.19) must hold for all η on the surface of the

spheroid. A common procedure to solve such equations is to expand the left-hand

sides, which are regular functions of η, in terms of an infinite series of Pm
n (η). This

can be accomplished by multiplying both sides of the equations by Pm
n′ (η), n

′ =

m,m+1, . . ., and integrating over η from −1 to 1. Applying this “testing” procedure

to (2.18) and (2.19) yields respectively,

µr

∞∑
n=m

[
(−1)pmA

(M)
p̃mnIξ(n

′, n) +
1

c1
A(N)

pmnJξ(n
′, n)

]
= −

[
bpmn′

dPm
n′

dξo
+Bpmn′

dQm
n′

dξo

]
(2.20)

and

∞∑
n=m

[
(−1)p+1A

(M)
p̃mnIφ(n

′, n) +
m

c1
A(N)

pmnJφ(n
′, n)

]
= −m [bpmn′P

m
n′ (ξo) +Bpmn′Q

m
n′(ξo)] (2.21)
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The integrals Iξ(n
′, n), Jξ(n

′, n), Iφ(n
′, n), Jφ(n

′, n) are matrices that couple different

angular modes as a result of the non-orthogonality of the angular wavefunctions.

They are defined in Appendix A.

For the angular component, the angular dependence of the right-hand side of (2.17)

is dPm
n /dη. Multiplying the right-hand side with Pm

n′ (η) and integrating would result

in a somewhat complicated expression on the right-hand side. We prefer therefore

to multiply both sides of (2.17) by the factor (1 − η2) before applying the testing

procedure. Since

(1− η2)
dPm

n

dη
= γ1m(n)Pm

n−1(η)− γ2m(n)Pm
n+1(η) (2.22)

with

γ1m(n) =
(n+ 1)(n+m)

2n+ 1
, γ2m(n) =

n(n−m+ 1)

2n+ 1
(2.23)

we get, from (2.17),

∞∑
n=m

[
(−1)pmA

(M)
p̃mnIη(n

′, n) +
1

c1
A(N)

pmnJη(n
′, n)

]
= −γ1m(n′ + 1)

[
bpm(n′+1)P

m
n′+1(ξo) +Bpm(n′+1)Q

m
n′+1(ξo)

]
+γ2m(n′ − 1)

[
bpm(n′−1)P

m
n′−1(ξo) +Bpm(n′−1)Q

m
n′−1(ξo)

]
(2.24)

The definitions for Iη(n
′, n) and Jη(n

′, n) can be found in Appendix A.

Eqs. (2.20), (2.21), and (2.24) are the master equations with which the unknown

expansion coefficients can be solved. Using (2.20), we can solve for Bpmn′ in terms of

A
(M)
p̃mn and A

(N)
pmn:

Bpmn′ = −
[
dQm

n′

dξo

]−1 {
bpmn′

dPm
n′

dξo

+µr

∞∑
n=m

[
(−1)pmA

(M)
p̃mnIξ(n

′, n) +
1

c1
A(N)

pmnJξ(n
′, n)

]}
(2.25)
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Incidentally, Eq. (2.25) can be used to obtain the high-frequency limit for Bpmn′ . In

this limit, only surface currents exist; therefore, the internal field must vanish. Thus

setting A
(M)
pmn = A

(N)
pmn = 0 in (2.25) gives

Bpmn′ → −
[
dQm

n′

dξo

]−1
dPm

n′

dξo
bpmn′ as |c1| → ∞ (2.26)

which is only a function of ξo (or equivalently elongation ratio e = b/a) and the source

vector bpmn′ .

To obtain numerical results, the infinite system of equations must be truncated.

Let NT be the maximum order of coefficients considered, i.e., A
(M)
p̃m(n+1) = A

(N)
pmn =

Bpmn = 0 (even excitation) or A
(M)
p̃mn = A

(N)
pm(n+1) = Bpm(n+1) = 0 (odd excitation) for

n > NT . We choose NT such that NT −m is even. Then the total number for each

set of coefficients is LT = (NT −m)/2 + 1.

To cast the system of equations in matrix form, we let, for even excitation,

B=
[
Bpmm, Bpm(m+2), · · · , BpmNT

]t
(2.27)

b=
[
bpmm, bpm(m+2), · · · , bpmNT

]t
(2.28)

be column vectors with length LT and

A=

[
A

(N)
pmm

c1
,
A

(N)
pm(m+2)

c1
, · · · ,

A
(N)
pmNT

c1
,

(−1)pA
(M)
p̃m(m+1), (−1)pA

(M)
p̃m(m+3), · · · , (−1)pA

(M)
p̃m(NT+1)

]t

(2.29)

be a column vector with length 2LT . (The superscript t denotes matrix transpose.)

Similarly, for odd excitation,

B=
[
Bpm(m+1), Bpm(m+3), · · · , Bpm(NT+1)

]t
(2.30)

b=
[
bpm(m+1), bpm(m+3), · · · , bpm(NT+1)

]t
(2.31)
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A=

[
A

(N)
pm(m+1)

c1
,
A

(N)
pm(m+3)

c1
, · · · ,

A
(N)
pm(NT+1)

c1
,

(−1)pA
(M)
p̃mm, (−1)pA

(M)
p̃m(m+2), · · · , (−1)pA

(M)
p̃mNT

]t

(2.32)

Then (2.25), (2.24), and (2.21) can be rewritten in matrix notation as

Zη · A=W η · b (2.33)

Zφ · A=W φ · b (2.34)

B=W ξ · b− Zξ · A (2.35)

where Zβ and W β (β = η, ξ, φ) are LT × 2LT matrices and LT ×LT matrices, respec-

tively. Their expressions can be found in Appendix A. Equations (2.33) and (2.34)

provide 2LT linear equations for the 2LT unknowns in A. After A is solved, we use

(2.35) to solve B and obtain the external secondary field.

It should be remarked that for the special axisymmetric case of m = 0 (p = 0), it

follows from (2.21) that

A
(M)
10n = 0, for n = 0, 1, 2, . . . (2.36)

Thus we only need to solve for A
(N)
00n using (2.33). The size of the truncated system

of equations in this case is reduced to LT × LT (for either even or odd excitation).

2.2.1 Uniform Primary Field

In many practical applications, the primary field can be taken to be spatially uniform

in the region of interest. In this section, we present numerical results for uniform field

excitation. Without loss of generality, we let the primary field be in the x-z plane,

Ho(r) = Ho(ẑ cos ζ + x̂ sin ζ) (2.37)
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The corresponding scalar potential in spheroidal coordinates is

Uo =
Hod

2

[
−P1(η)P1(ξ) cos ζ + P 1

1 (η)P 1
1 (ξ) cosφ sin ζ

]
(2.38)

In this case, bpmn′ is nonzero only for n′ = 1 and p = 0 while m can be either 0 or 1.

The case of m = 0 corresponds to a primary field oriented along the z-axis (ζ = 0)

and is referred to as the axial excitation [20], while the case m = 1 corresponds to a

primary field oriented along the x-axis (ζ = 90◦) and is referred to as the transverse

excitation. The general case of arbitrary ζ can be obtained by the superposition of

these two solutions.

Note that axial excitation is odd (n′ − m is odd) while transverse excitation is

even (n′ − m is even). Thus B00n �= 0 and B01n �= 0 only for n = 1, 3, . . . under

axial excitation and transverse excitation, respectively. The secondary field has the

following potential

Us =
Hod

2

∞∑
r=0

[
B00(2r+1)P2r+1(η)Q2r+1(ξ) +B01(2r+1)P

1
2r+1(η)Q

1
2r+1(ξ) cosφ

]
(2.39)

2.2.2 Far-Field Response

In the far-field, ξ → ∞. In this case, the leading order behavior of Qm
n (ξ) is [30]

(eq. 8.1.3)

Qm
n (ξ)→ (−1)m

2nn!(n+m)!

(2n+ 1)!

1

ξn+1
(2.40)

Thus the leading order contribution to the secondary field comes from the r = 0

terms in (2.39). Moreover, as ξ → ∞, the spheroidal coordinate system reduces to

the spherical coordinate system: (d/2)ξ → r and η → cos θ. Equation (2.39) becomes

Us ≈ Ho

(
d

2

)3
1

r2

[
1

3
B001P1(cos θ)− 2

3
B011P

1
1 (sin θ) cosφ

]
= Ho

(
πd3

6

)
1

4πr3
[B001z + 2B011x] (2.41)
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This can be rewritten as

Us =
1

4πr3
r ·M (2.42)

so that we can identify the equivalent induced axial and transverse dipole moments

respectively as

Mz =Ho

(
πd3

6

)
B001 (2.43)

Mt =Ho

(
πd3

3

)
B011 (2.44)

When comparing results with different physical parameters, it is convenient to nor-

malize the axial and transverse dipole moments such that they approach one asymp-

totically at high frequency. The normalized dipole moments mz and mt is also known

as the magnetic polarizability [20]. It follows from Eqs. (2.26) and (2.38) that

mz =B001Nz (2.45)

mt =B011Nt (2.46)

where the normalization factors are:

Nz =

[
dP1

dξo

]−1
dQ1

dξo
=

1

2
ln
ξo + 1

ξo − 1
− ξo
ξ2o − 1

(2.47)

Nt =−
[
dP 1

1

dξo

]−1
dQ1

1

dξo
= −1

2
ln
ξo + 1

ξo − 1
+

ξ2o − 2

ξo(ξ2o − 1)
(2.48)

2.3 Numerical Results

To obtain the numerical results presented here, we find it sufficient to truncate the

system of equations at NT = 70 +m. The spheroidal wave functions are computed

by expanding Smn(c1, η) in an infinite series of associated Legendre functions and
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R
(1)
mn(c1, ξo) in an infinite series of spherical Bessel functions, where the expansion

coefficients depend on c1. More details on the computation of these functions can

be found elsewhere [20]. These expansions work well for low to moderate frequen-

cies c1 [29]. Due to numerical problems associated with calculating the spheroidal

wavefunctions at high frequencies, we find that we have to terminate the solution at

|c1| ≈ 30 (independent of other parameters). Since c1 = k1d/2 where d increases with

elongation, the termination occurs at a lower k1 for a more elongated spheroid.

To present broadband results, we shall plot the far-field response as a function of

the induction number

|k1|a =
√
ωµ1σ1 a (2.49)

Holding other parameters fixed, this is equivalent to plotting over the square root of

frequency ω.

Figs. 2-2(a) and 2-2(b) show the induced dipole moment as a function of the

the induction number for the case of axial and transverse excitations respectively.

The relative permeability is µr = 10. Both the real part (in-phase component) and

the imaginary part (quadrature component) of the dipole moment are shown. To

examine shape dependency, the elongation ratio e = b/a is varied from 1 (sphere)

to 10 (∼ needle). The behaviors of the induced dipole moment can be understood

qualitatively by recognizing the interplay of two physical processes. First, the nonzero

magnetic susceptibility of the spheroid causes the spheroid to be magnetized even at

zero frequency. Second, the time-varying magnetic field that penetrates the body

induces a volume current inside the spheroid. The induced current lags behind the

primary field and gives rise to an imaginary part in the induced dipole moment. At

very high frequency, the induced current is limited to the surface of the spheroid

and is 180◦ out of phase with the primary field (Lenz’s law). Thus the quadrature

response approaches zero at both the low and high induction numbers and is largest

at some intermediate induction number, while the real part changes its sign as the

induction number increases.
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Figure 2-2: Normalized induced magnetic dipole moment as a function of induction
number for µr = 10.
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It is important to note that the broadband responses for different elongations are

very different depending whether the excitation is axial or transverse. For the axial

case, the location of the minimum in the imaginary part clearly shifts to the left as

e increases. In contrast, for the transverse case, there is very little change in both

the real and imaginary parts as e varies. Thus, an elongated object oriented with its

major axis along the primary field will exhibit much more significant low-frequency

behaviors.

To investigate the dependence of the solutions on the relative permeability, we

show in Figs. 2-3(a) and 2-3(b) the axial and transverse induced dipole moments

respectively for the case of µr = 100. For a fixed induction number, the product of

ωµ1 is constant. Thus increasing µ1 has the equivalent effect of decreasing ω. As a

result, the curves for µr = 100 appear to shift to the right (higher induction number)

when compared to the corresponding solutions for µr = 10. This is most evident

when looking at the real part of the responses. On the other hand, it is important to

recognize that since the relative permeability also comes into the system equations

explicitly through the boundary condition (2.15), it could have an additional impact

on the solutions besides its effect through the induction number. Indeed, numerical

results for finite-length cylinders indicate that when the aspect ratio is large enough,

the maximum of the quadrature response under axial excitation actually shifts to

the left (lower induction number) when µr increases [31]. This, however, cannot be

confirmed here due to the early termination of the responses at high elongation ratios.

2.4 Small Penetration-depth Approximation

(SPA)

The formulation presented in Section 2.2 is formally exact and applicable for any

elongation and frequency within the quasi-magnetostatic assumptions. Nevertheless,

as we have seen in Section 2.3, numerical results for the solution require the evaluation
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Figure 2-3: Normalized induced magnetic dipole moment as a function of induction
number for µr = 100.
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of the radial and angular spheroidal wavefunctions, which are only readily computed

for small and moderate values of frequency parameter c1. It is therefore desirable

to establish an alternative formulation that avoids any reference to the spheroidal

wavefunctions and that would be applicable at least for high-frequencies.

We observe that at high frequency, the internal fields are only nonzero in a thin

layer beneath the surface. Thus the internal field must decay rapidly near the surface.

This implies that terms with the normal derivative ∂/∂ξ would be dominant near the

surface. Under this small penetration-depth approximation (SPA) condition, the

vector wave equation (2.1) implies that just below the surface,

k2
1H̃1η≈−

hη
hξhφ

∂

∂ξ

[
hφ
hηhξ

∂H̃1η

∂ξ

]
(2.50)

k2
1H̃1φ≈−

hφ
hηhξ

∂

∂ξ

[
hη
hξhφ

∂H̃1φ

∂ξ

]
(2.51)

where H̃α = hαHα for α = η, ξ, φ, with hα being the metric coefficients for the prolate

spheroidal coordinates [See Appendix A]. Thus the tangential components of the

magnetic field H̃η and H̃φ become decoupled near the surface. Simplifying (2.50) and

(2.51), we obtain

k2
1H̃1η≈−

1

h2
ξ

∂2H̃1η

∂ξ2
− hη
hξhφ

∂

∂ξ

[
hφ
hηhξ

]
∂H̃1η

∂ξ
(2.52)

k2
1H̃1φ≈−

1

h2
ξ

∂2H̃1φ

∂ξ2
(2.53)

Eq. (2.53) is satisfied at ξ = ξo by letting

H̃1φ(η, ξ, φ) = H̃1φ(η, ξo, φ) e
−ik1hξ(η,ξo)(ξ−ξo) (2.54)

where the sign in the exponential has been chosen so that the field decays inward

(ξ < ξo), given that Im{k1} > 0.
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To solve Eq. (2.52), we let

H̃1η(η, ξ, φ) = H̃1η(η, ξo, φ) e
−ik1hξ(η,ξo)f(η)(ξ−ξo) (2.55)

Then Eq. (2.52) at ξ = ξo gives

0 = f 2 +
iq

c1
f − 1 (2.56)

where

q=
d

2

hη(η, ξo)

hφ(η, ξo)

[
∂

∂ξ

hφ
hηhξ

]
ξ=ξo

=
2ξo

(ξ2o − η2)1/2(ξ2o − 1)1/2

[
1− ξ

2
o − 1

ξ2o − η2

]
(2.57)

Note that because of the first term in the above equation, q → ∞ as ξo → 1. Thus

the middle term in (2.56) should in general be retained even when |c1| 	 1 but finite.

From (2.56), the two possible solutions for f are

f = ±
√

1− q2

4c21
− iq

2c1
(2.58)

Thus

H̃1η(η, ξ, φ) = H̃1η(η, ξo, φ) exp

[
−ik1hξ(η, ξo)

(√
1− q2

4c21
− iq

2c1

)
(ξ − ξo)

]
(2.59)

where the plus sign for f has been chosen so that the field decays inward.

Using (2.1) together with the SPA condition, the normal component of the internal

field on the surface ξ = ξo can be found from the tangential components by

H̃1ξ =
1

ik1

hξ
hηhφ

[
hη
hφ

∂H̃1φ

∂φ
+
∂

∂η

(
hφ
hη
fH̃1η

)]
(2.60)
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Making use of the boundary conditions (2.13)–(2.15) at ξ = ξo, we obtain

1

µr
H̃2ξ =

1

ik1

hξ
hηhφ

[
hη
hφ

∂H̃2φ

∂φ
+
∂

∂η

(
hφ
hη
fH̃2η

)]
(2.61)

which refers only to the external fields. In (2.60) and (2.61), it is understood that

the metric coefficients are to be evaluated at ξ = ξo.

The field expansions for H̃2α can be obtained from Eqs. (2.11) and (2.9). Putting

these field expansions into (2.61), we obtain

ic1
µr

∞∑
n=m

Bpmn
dQm

n

dξo
Pm

n (η)− 1

ξ2o − 1

∞∑
n=m

BpmnQ
m
n (ξo)E

m
n (η; ξo, c1)

=−ic1
µr

∞∑
n=m

bpmn
dPm

n

dξo
Pm

n (η) +
1

ξ2o − 1

∞∑
n=m

bpmnP
m
n (ξo)E

m
n (η; ξo, c1) (2.62)

where

Em
n (η; ξo, c1) = −hη

hφ
m2Pm

n (η) +
∂

∂η

(
hφ
hη
f
dPm

n

dη

)
= −(ξ2o − η2)1/2

(ξ2o − 1)1/2

m2

1− η2
Pm

n (η) + (ξ2o − 1)1/2 ∂

∂η

(
(1− η2)f

(ξ2o − η2)1/2

dPm
n

dη

)
(2.63)

Now multiply both sides of Eq. (2.62) by Pm
n′ (η) and integrate over η. The final

system of equations for Bpmn is

ic1
µr
Bpmn′

dQm
n′

dξo
− 1

ξ2o − 1

∞∑
n=m

BpmnQ
m
n (ξo)Γ

m
n′n(ξo, c1)

=−ic1
µr
bpmn′

dPm
n′

dξo
+

1

ξ2o − 1

∞∑
n=m

bpmnP
m
n (ξo)Γ

m
n′n(ξo, c1) (2.64)

with

Γm
n′n(ξo, c1) =

2n′ + 1

2

(n′ −m)!

(n′ +m)!

∫ 1

−1

dη Pm
n′ (η)E

m
n (η; ξo, c1) (2.65)

At very high frequency, the terms with the c1 coefficient dominate, and we get the
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limit

Bpmn′ = −
[
dQm

n′

dξo

]−1
dPm

n′

dξo
bpmn′ (2.66)

which is identical to (2.26).

The SPA approach developed here is based on similar thin-skin physical arguments

employed in the high-frequency approximation used in [20] for axial excitation. The

latter approach assumes an expression for the azimuthal component of the electric

field much like Eq. (2.54) for the magnetic field. The resulting system of equations is

different for the two approaches. However, where these two approaches are valid, the

two solutions should be close to each other. The present approach also bears some

similarity to the numerical thin skin approximation (TSA) approach used in [21],

where the approximation ansatz is used for the normal component of the magnetic

field — as opposed to the tangential components that are found here.

Numerical results for Bpmn can easily be obtained by truncating the infinite sys-

tem of equations and evaluating the integrals in Γm
n′n(ξo, c1) in (2.65) using Gaussian

quadrature. Using (2.64), we compute the solutions corresponding to the uniform

primary excitation as in Sec. 2.3. The strength of this new system of equations is

that there is no numerical limitation in frequency and elongation. Figs. 2-4(a) and

2-4(b) show the normalized induced dipole moment as a function of induction number

under axial and transverse excitations, respectively. The relative permeability is 10.

The exact solutions are also displayed for comparison. It can be seen that, based on

the cases of e = 1 and 2, the results from SPA match well with those from the exact

solution above an induction number of approximately 10.

Figs. 2-5(a) and 2-5(b) show the corresponding results for µr = 100. In this case,

the SPA results are not only accurate at high induction numbers as expected, but

they provide a reasonable approximation at low induction numbers as well. This

suggests that for spheroids with large µr, the SPA of (2.64) is capable of providing

reasonably accurate, broadband EMI responses for a wide range of elongations. To

see this more clearly, we show in Fig. 2-6 for elongation ratio of e = 3 but with the
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Figure 2-4: Normalized induced magnetic dipole moment as a function of induction
number for µr = 10. Dashed line: SPA. Solid line: Exact solution.
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relative permeability of the spheroid varying from µr = 5 to µr = 500. For µr = 5,

there is considerable difference between the exact and SPA results at low induction

numbers. This is to be expected since SPA is developed to handle the higher frequency

regime. However, it can be seen that as µr increases, the exact and SPA results begin

to merge. For µr = 500, the SPA results give excellent agreement with the exact

results across the whole range of induction numbers.

2.5 SPA for Oblate Spheroids

In view of the relative simplicity of the SPA and its success for prolate spheroids

with large permeability, we now extend the SPA to the case of an oblate spheroid

(Fig. 2-7). A parallel development can be made using the oblate spheroidal coordi-

nates. However, a simple and quick way to achieve the same is to apply the following

transformation to the equations for prolate spheroids [29]:

{
ξo → iξo
c1 → −ic1 (or d→ −id)

(2.67)

Applying the transformation (2.67) to Eq. (2.64), we obtain

− c1
µr
Bpmn′

dQm
n′

dξ
(iξo)−

1

ξ2o + 1

∞∑
n=m

BpmnQ
m
n (iξo)Γ

m
n′n(iξo,−ic1)

=
c1
µr
bpmn′

dPm
n′

dξ
(iξo) +

1

ξ2o + 1

∞∑
n=m

bpmnP
m
n (iξo)Γ

m
n′n(iξo,−ic1) (2.68)

with

Γm
n′n(iξo,−ic1) =

2n′ + 1

2

(n′ −m)!

(n′ +m)!

∫ 1

−1

dηPm
n′ (η)E

m
n (η; iξo,−ic1) (2.69)
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Figure 2-5: Normalized induced magnetic dipole moment as a function of induction
number for µr = 100. Dashed line: SPA. Solid line: Exact solution.
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Figure 2-6: Normalized induced magnetic dipole moment as a function of induction
number for e = 3. Dashed line: SPA. Solid line: Exact solution.
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Figure 2-7: A conducting and permeable oblate spheroid. The oblate spheroidal
coordinate system is specified by (η, ξ, φ) with −1 ≤ η ≤ 1, 0 ≤ ξ < ∞, and
0 ≤ φ < 2π. The surface of the spheroid is given by ξ = ξo = b/

√
a2 − b2.

Applying the transformation (2.67) to the field expansions of (2.9) and (2.11) gives

respectively

Uo(r) =
Hod

2

∞∑
m=0

∞∑
n=m

1∑
p=0

(−ibpmn)Φ
(1)
pmn(η, iξ, φ) (2.70)

Us(r) =
Hod

2

∞∑
m=0

∞∑
n=m

1∑
p=0

(−iBpmn)Φpmn(η, iξ, φ) (2.71)

For the uniform primary field of (2.37), we have

Uo(r) =
Hod

2

[
iP1(η)P1(iξ)(cos ζ)− iP 1

1 (η)P 1
1 (iξ) cosφ(sin ζ)

]
(2.72)

in oblate spheroidal coordinates. The far-field response can be obtained by taking

the limit ξ →∞. The leading order contribution is

Us(r) =
Ho

4πr3

(
πd3

6

)
[iB001z + i2B011x] (2.73)



2.5. SPA for Oblate Spheroids 49

This gives the equivalent axial and transverse dipole moments of

Mz =Ho

(
πd3

6

)
iB001 (2.74)

Mt =Ho

(
πd3

3

)
iB011 (2.75)

To obtain the normalized dipole moments as in (2.45) and (2.46), we first solve (2.68)

in the high-frequency limit:

Bpmn → −
dPm

n

dξ
(iξo)

[
dQm

n

dξ
(iξo)

]−1

bpmn, as |c1| → ∞ (2.76)

Thus the normalization factors for the oblate case are

Nz =

[
dP1

dξ
(iξo)

]−1
dQ1

dξ
(iξo) = i

[
− cot−1 ξo +

ξo
ξ2o + 1

]
(2.77)

Nt =−
[
dP 1

1

dξ
(iξo)

]−1
dQ1

1

dξ
(iξo) = i

[
cot−1 ξo −

ξ2o + 2

ξo(ξ2o + 1)

]
(2.78)

In Figs. 2-8(a) and 2-8(b), we show the normalized induced dipole moment as a

function of the induction number for an oblate spheroid under axial and transverse

excitation, respectively. The relative permeability is 100 so that the SPA should give

fairly accurate broadband results. The flatness ratio a/b is varied from 1 (sphere) to

10 (∼ flat disc). It is interesting to note that as a/b increases, the peak of the axial

response shifts to a higher induction number, while the frequency characteristics of

the transverse response show very little change. This is consistent with the trend

observed for prolate spheroids (cf. Fig. 2-3). This suggests that the broadband EMI

response of a nonspherical object is quite sensitive to its characteristic dimension

along the primary field.
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Figure 2-8: Normalized induced magnetic dipole moment as a function of induction
number |k1|a for an oblate spheroid. Relative permeability is µr = 100. SPA results
only.
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2.6 EMI Response from a Collection of Spheroids

In locations where landmines and UXO are found, significant amount of clutter could

be present in the form of wires and shrapnel from exploded shells. It is also possible

that multiple UXO are found next to each other. In this section, we investigate the

EMI response from a collection of spheroids.

Consider the case where N spheroids are present with centers located at rj and

semiaxes aj and bj, with j = 1, 2, . . . , N . The orientation of the spheroid j is specified

by the Euler angles {αj, βj, γj} with respect to the laboratory frame ([4], pp. 81–83).

Its permeability and conductivity are µ1j and σ1j, respectively. Then the dimension-

less frequency parameter for spheroid j is c1j = k1jdj/2 with k2
1j = iωµ1jσ1j. The

focal length is dj = 2
√
bj − aj for a prolate spheroid or dj = 2

√
aj − bj for an oblate

spheroid.

Suppose that the primary field is uniform over the entire region where the spheroids

are present and is given by

Ho(r) = Hoẑ (2.79)

In the body (principal) coordinates of spheroid j, the primary field can be written as

Ho(r) = Ho [ẑbj cos βj + x̂bj sin βj cosαj + ŷbj sin βj sinαj] (2.80)

where x̂bj, ŷbj, and ẑbj are the unit vectors in the body coordinates of spheroid j.

If we assume that the interactions between the spheroids are negligible, the re-

sponses from the individual spheroids are additive [32]. From (2.42), the total far-field

response can be written as

Us(r) =
N∑
j=1

1

4π|r − rj|3
M

(j) · (r − rj) ≈
1

4πr3
M

(tot) · r (2.81)
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where

M
(tot)

=
N∑
j=1

M
(j)

=
N∑
j=1

[
M (j)

z cos βj ẑbj +M
(j)
t (sin βj cosαjx̂bj + sin βj sinαj ŷbj)

]
(2.82)

is the equivalent induced dipole moment from all the spheroids. Note that M
(j)
z and

M
(j)
t are respectively the axial and transverse responses from spheroid j in isolation.

They are independent of the Euler angles but do depend on the semiaxes aj and bj.

Suppose that the spheroids are uniformly distributed in αj and γj. Then the

orientation distribution function is

p(αj, βj, γj) = p(βj)
1

4π2
(2.83)

subject to the following normalization condition

∫ 2π

0

dαj

∫ π

0

dβj

∫ 2π

0

dγj p(αj, βj, γj) = 1 (2.84)

The orientation-averaged total dipole moment is

〈M (tot)〉 = ẑ
[
M (tot)

z 〈cos2 β〉+M (tot)
t 〈sin2 β〉

]
(2.85)

where

M (tot)
z =

N∑
j=1

M (j)
z (2.86)

M
(tot)
t =

N∑
j=1

M
(j)
t (2.87)

〈cos2 β〉 =

∫ π

0

dβ p(β) cos2 β (2.88)

〈sin2 β〉 = 1− 〈cos2 β〉 (2.89)
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If we consider further the simple case where the orientation distribution is uniform

in solid angle, we have p(β) = 1
2
sin β and 〈cos2 β〉 = 1/3 and 〈sin2 β〉 = 2/3 so that

〈M (tot)〉 = ẑ

[
1

3
M (tot)

z +
2

3
M

(tot)
t

]
(2.90)

Since the high-frequency limit is known, we can define a normalized total induced

dipole moment as

〈m(tot)
z 〉 =

[
N∑
j=1

d3j

(
1

Nzj

+
4

Ntj

)]−1 N∑
j=1

d3j

(
m

(j)
z

Nzj

+
4m

(j)
t

Ntj

)
(2.91)

where m
(j)
z and m

(j)
t represent the normalized responses from a single spheroid with

semiaxes a = aj and b = bj. Similarly, Nzj and Ntj are the normalization factors for

single spheroid responses with ξo replaced by ξoj.

Using the formulation developed, we provide numerical illustrations for the fol-

lowing two simple cases. We assume that the spheroids have identical conductivity

σ1 and permeability µ1 = 100. At this value of µr, the SPA is applicable over a broad

frequency band.

Case (a): The spheroids have identical sizes but are randomly oriented. In this case

the normalized dipole moment is

〈m(tot)
z 〉 =

[
1

Nz

+
4

Nt

]−1 (
mz

Nz

+
4mt

Nt

)
(2.92)

Fig. 2-9 and shows the normalized dipole moment as a function of induction number

from such a collection of prolate and oblate spheroids. For prolate spheroids, the

axial response dominates in magnitude. The orientation-averaged response therefore

resembles more the axial response from a single prolate spheroid. For oblate spheroids,

the transverse response dominates in magnitude, and the average response resembles

more the transverse response from a single oblate spheroid.

Case (b): One large object (the target) is surrounded by many randomly ori-
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Figure 2-9: Normalized induced magnetic dipole moment from a randomly oriented
distribution of prolate and oblate spheroids as a function of induction number |k1|a.
µr = 100; b/a = 1, 2, 4, 10 for prolate spheroid and a/b = 1, 2, 4, 10 for oblate spheroid
as labeled.
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Parameters Large spheroid Small spheroid
N 1 5000

a (cm) 10 0.2
b (cm) 20 2
µr 100 100

σ1 (S/m) 107 107

Table 2.1: Parameters used for the target and clutter example.

ented small elongated objects (the clutter). The large object is taken to be a pro-

late spheroid with e = 2. The small objects are also prolate spheroids but with

e = 10. The parameters are shown in Table 2.1. Note that with these parameters,

the small objects occupy a volume which is only 20% of the volume of the large

object. The background permeability is taken to be that of free space: µ2 = µo =

4π×10−7 henry/m. Let Ns be the number of small spheroids. Then the total response

is

M
(tot)

=M +Ns〈M
(s)〉 (2.93)

where M is the response from the large object while Ns〈M
(s)〉 is the orientation-

averaged response from the small objects. The latter quantity can be obtained from

(2.90). The orientation of the large object is chosen to be either axial or transverse

to the primary field. Fig. 2-10 shows the total induced dipole moment from such

a collection of spheroids as a function of frequency in Hertz. Note that the dipole

moments are not normalized in this case. For comparison, the responses from the large

spheroid and the small spheroids alone are also shown. The large elongation ratio of

the small spheroids produce a large real-part response that distorts the response from

the large spheroid. The total real-part response now crosses zero at a much higher

frequency (by about one order of magnitude). Similarly, the total imaginary part has

a maximum that shifts to higher frequency. Thus the presence of the small spheroids,

if not accounted for properly, could lead us to conclude that the target spheroid is

smaller and/or more elongated than it should be.
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Figure 2-10: Induced magnetic dipole moment from a large prolate spheroid embedded
in randomly oriented small prolate spheroids. The parameters for these results are
shown in Table 2.1. Also µ2 = µo (free-space permeability) and Ho = 1.
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2.7 Conclusions

We have obtained the quasi-magnetostatic solution for a conducting and permeable

prolate spheroid under arbitrary excitation using the separation of variables method

in prolate spheroidal coordinates. Since the surrounding medium is assumed to be

poorly conducting, we consider a “hybrid” problem where the full-wave expansion

of the internal field is matched with the static expansion of the external field. The

vector spheroidal wavefunctions provide a basis for the internal field expansion. We

derive a system of equations from which the unknown expansion coefficients can be

solved. Numerical results are presented for the case of uniform primary excitation. It

is shown that the frequency response of the induced dipole moment is notably different

depending on the orientation of the spheroid with respect to the primary field. It is

also sensitive to the permeability of the spheroid relative to the background.

Due to numerical problems associated with the computation of the spheroidal

wavefunctions at high frequencies, the exact solutions are available only up to a cer-

tain cutoff induction number, which decreases as the elongation ratio increases. Since

a broadband response is desired, we make use of the small penetration-depth approx-

imation for the internal magnetic field to derive a system of equations that refers only

to the external field. Thus the difficulties with the spheroidal wavefunctions do not

arise here. Moreover, even though the SPA was developed for high frequencies, it

appears to provide a good approximation at all frequencies for spheroids with large

relative permeability (µr � 100 — as characteristic of steel, for example).

The simplicity and validity of the SPA method motivates us to apply it to case

of the oblate spheroids. Using the SPA solutions, we also investigate the total re-

sponse from a collection of spheroids by neglecting the mutual interactions between

the spheroids. It is shown that when spheroids of multiple sizes are present, their

responses could overlap in such a way that makes it difficult to isolate their individual

responses or infer their individual parameters. Thus the relatively simple equations

derived under SPA could serve very well in the development of model-based inversion
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methods, where fast forward model calculations are a prerequisite. Should higher ac-

curacy or lower relative permeability be required, the simple and pragmatic method

of rational function approximation presented in [20] can be adopted to bridge the

“frequency gap” between the exact numerical results on the low induction-number

end and the SPA results on the high induction-number end.



Chapter 3

Monte Carlo Simulation of

Multiple Scattering by Dielectric

Spheroids

3.1 Introduction

The study of electromagnetic wave scattering by nonspherical particles is rich in ap-

plications in the biomedical, interstellar, and geophysical settings [5]. In geophysical

remote sensing, these include rain drops [24], leaves and branches in a forest [33], as

well as ice particles and brine pockets in sea ice [34, 35]. The nonspherical objects

might also be manmade, e.g., landmines and unexploded ordnance, a topic which is

addressed in Chapter 2. Following the strategy of Chapter 2, we consider scattering

by spheroid as the canonical nonspherical model. However, contrary to Chapter 2,

the focus in this chapter and Chapter 4 is to study coherent multiple scattering of

waves by a densely packed distribution of spheroidal particles. In the past, exten-

sive theoretical, numerical, and experimental studies of wave scattering by densely

packed dielectric spheres have demonstrated the significance of these multiple scat-

tering effects [36, 37, 38, 39, 40] and its relevance in microwave remote sensing of

59
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snow [41, 42].

For scattering by a single dielectric spheroid, several methodologies are in use.

For spheroids with shapes close to a sphere, the T-matrix approach, which is based

on spherical wave expansions and the extended boundary conditions, is perhaps the

most convenient [43]. For spheroids with size small compared to the incident wave-

length, Rayleigh scattering offers a simple and accurate approximation [3, 44]. The

spheroidal wavefunction expansion method, similar to the manner done in Chapter 2,

provides the most rigorous basis for analytical calculations [24, 25, 26, 27]. Numer-

ical techniques such as the discrete dipole approximation (DDA) are also useful for

spheroids with moderate sizes [45, 46] and have the added benefit of being applicable

to particles of arbitrary shapes.

The problem is more challenging when multiple scattering effects are to be in-

cluded. Multiple scattering calculations are often formulated in terms of the Foldy-

Lax multiple scattering equations [9]. In this formulation, the field that excites each

particle is expressed as a sum of the incident field and the scattered fields from all

other particles. A system of equations for the exciting field for each particle can then

be set up in a self-consistent manner and solved numerically. The key is to come up

with a way to relate the exciting field to the scattered field for each particle. For

spherical particles, this can be done quite effectively using the spherical wavefunction

expansion (or T-matrix coefficients) [37, 47]. For spheroids, the spheroidal wavefunc-

tion approach has been used [26]. Both of these wave expansion methods rely on

the translational addition theorems to relate the waves centered at one particle to

waves centered at another particle [48, 49]. For the case of spheroids, the formulation

is sufficiently complex that even though the multiple scattering formulation exists,

numerical investigations have been limited to only two spheroids. For multiple scat-

tering in dense random medium, an additional complication arises from the need to

obtain a physically realistic description of how spheroidal particles are distributed

relative to one another. An oversimplified choice could lead to meaningless results
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Figure 3-1: Scattering of electromagnetic waves by densely packed prolate spheroids
with identical volume v = 4πa2c/3 and permittivity εs.

when the particles are packed sufficiently close together [8].

In this chapter, we use Monte Carlo simulations to study electromagnetic wave

scattering by a collection of dielectric prolate spheroids (Fig. 3-1). The spheroids

are assumed to be small compared to the wavelength. The small-particle assumption

allows us to use a much simpler multiple scattering formulation in terms of volume

integral equation instead of the spheroidal wavefunctions. This assumption is valid

in many microwave remote sensing applications. The formulation presented can be

applied to multiple species of particles with different sizes, permittivities, and aspect

ratios. However, for the sake of simplicity, they are assumed here to be identical. In

Chapter 4, analytical approximations are used to study the same problem.

The rest of this chapter proceeds as follows. In Sec. 3.2, we describe the procedure

for generating random configurations of spheroids subjected to hard-core repulsion

using the Metropolis Monte Carlo method. In Sec. 3.3, we present the multiple

scattering formulation based on a volume integral equation for the electric field. The
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integral equation is solved numerically using the method of moment (MoM) with

electrostatic basis functions. The simulation results are shown in Sec. 3.4 in terms of

radiative transport quantities such as the scattering coefficient, absorption coefficient,

and scattering phase matrix. The simulation results are compared with results from

the independent scattering approximation. It is found that when the fractional volume

of the spheroids is appreciable, the multiple scattering results differ significantly from

independent scattering. The simulation results in Sec. 3.4 are obtained using only

dipole basis functions with matrix elements approximated using point interactions.

In Sec. 3.5, we evaluate the effects of nonuniform induced field by computing the

interaction integrals exactly. The conclusions of this chapter can be found in Sec. 3.6.

3.2 Generation of Physical Configurations of

Spheroids

Consider N prolate spheroids in a volume V . The spheroids are non-interacting

except for hard-core repulsion. The spheroids are randomly positioned inside V ;

however, as a result of the hard-core repulsion, the joint probability distribution of the

spheroids is non-trivial. We use the Monte Carlo method of Metropolis et al. [50] to

generate statistical realizations of particle positions for these spheroids. Monte Carlo

simulations of hard ellipsoids (of which the spheroids are special cases) were first

reported by Perram et al. [51]. In Sect. 3.2.1, the implementation of the Metropolis

method is described. In Sect. 3.2.2, we illustrate simulation results in terms of the pair

distribution function, which plays an important role in multiple scattering theories.

Monte Carlo simulation of nonspherical particles remains an active topic of research

for molecular physicists with interests in liquid crystals [52].
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3.2.1 Metropolis Shuffling Method

The Monte Carlo simulation is performed using the canonical ensemble (fixed V ,

N , and T ). A state j with energy Uj is present with probability proportional to

exp(−βUj), where β = 1/kBT . In their pioneering work, Metropolis et al. [50] proved

that the states can be sampled computationally with the following shuffling proce-

dure.

Given that the particles are in state j with energy Uj, make a random displacement

to a particle so that the particles are in state l with energy Ul. Consider the factor

r = exp(−β(Ul − Uj)) and choose a random number ν from [0,1]. If r ≥ ν, then the

new state l is accepted. Otherwise, we return the particles to state j. Note that if

Ul < Uj, r is always greater than 1 so that the state l is always accepted regardless of

the value of ν. Since the new state only depends on its previous state, this represents

a Markov process. For a sufficiently long chain of configurations generated in this

way, a state n will be approached with probability proportional to exp(−βUn).

The algorithm is particularly simple for particles with hard-core repulsion, where

the potential energy between a pair of particles is infinite if they overlap and zero

otherwise. Since a displacement would lead to either the overlap or non-overlap of

particles, the factor r is either 0 or 1 — leading to rejection or acceptance, respectively.

Thus it is not necessary to compare it with some selected random number ν. For

nonspherical particles, the displacement in general consists of both “translation” and

“rotation” in space.

Now specialize to the case of prolate spheroids in a cubic volume. Instead of using

the semiaxes a and c as inputs, we specify the fractional volume fv = Nv/V , where

v = 4π(a2c)/3 is the volume of each spheroid, and the elongation ratio e = c/a. The

configuration of each spheroid is completely determined by its center coordinates rcj

and orientation angles (αj, βj) (Fig. 3-2). The symmetry axis of spheroid j is given

by

ẑbj = sin βj cosαjx̂+ sin βj sinαj ŷ + cos βj ẑ (3.1)
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Figure 3-2: Coordinate and orientation specification of spheroid j.

The simulation proceeds as follows:

• Step 1 : Start with an initial configuration, e.g., by placing the particles in a

3-D grid with no overlap.

• Step 2 : Make a random displacement of one particle:

xcj → xcj + ∆(2a)ν1, ycj → ycj + ∆(2a)ν2, zcj → zcj + ∆(2a)ν3

and, for randomly oriented spheroids,

cos βj → cos βj + ∆βν4, αj → αj + ∆α(2π)ν5

where ∆ determines maximum translation allowed in each displacement while

∆α and ∆β dictate the maximum rotation. The numbers νk with k = 1, 2, . . . , 5

are randomly and uniformly chosen from the interval [−1, 1]. Note that cosβj

instead of βj is used in the rotation since the random orientation implies uniform

distribution in solid angle.
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During the attempted displacement, a particle could move outside the sim-

ulation volume. To conserve particle number as well as to minimize surface

boundary effects due to the finite simulation volume, periodic boundary con-

dition is employed. Thus if a particle moves outside the cube on one side, it

re-enters the cube from the opposite side.

• Step 3 : If the new position and orientation results in overlap, reject the move

and put particle back. Otherwise, accept the move. Each attempted displace-

ment, whether eventually accepted or not, represents a new configuration and

is called a Monte Carlo Step (MCS). The displacement constants (∆,∆α,∆β)

are chosen so that the acceptance rate is about 50%. The checking of overlap

is accomplished using the ellipsoidal contact function due to Perram et al. [53].

• Step 4 : Repeat Steps 2–3 for all N particles.

• Step 5 : Repeat Steps 2–4 M times to ensure that a sufficiently long Markov

chain has been computed. Thus after MN MCS, we record one realization.

• Step 5 : Repeat Steps 1–5 to obtain Nr realizations.

The positions and orientations of the particles for each realization generalized

in this way will be used as inputs in the scattering calculations. Before we discuss

scattering based on these particle configurations, it is interesting to make a brief

digression and examine the statistics of particle positions in the form of the pair

distribution function.

3.2.2 Pair Distribution Function

An important quantity which can be easily obtained from the Monte Carlo simulations

is the pair distribution function. The pair distribution function is proportional to the



66 Chapter 3. Monte Carlo Simulation of Multiple Scattering by Spheroids

two-particle joint probability distribution function [54, 55]:

g(r1, r2) =
N − 1

N
V 2p(r1, r2) =

N − 1

N
V p(r1|r2) (3.2)

where p(r1, r2) is the joint probability distribution function and p(r1|r2) is the con-

ditional probability. For N 	 1, the prefactor of (N − 1)/N can be dropped. Since

the system is translationally invariant, the pair distribution only depends on the sep-

aration vector r = r1 − r2. Note that when the separation is large, the positions of

particles 1 and 2 become uncorrelated. In this case p(r1, r2) → p(r1)p(r2) = 1/V 2

and g(r) → 1 as r → ∞. Moreover, for prolate spheroids governed by hard-core

repulsion, g(r) = 0 for r < 2a.

For spheroids with random orientations, the pair distribution function also de-

pends on the orientations of the two particles [56]. We define the orientation-averaged

pair distribution function

g(r) =

∫
dΩ1p(Ω1)

∫
dΩ2p(Ω2)g(r; Ω1,Ω2) (3.3)

where dΩj = sin βjdβjdαj and p(Ωj) = 1/(4π2). Averaging over the directions of the

separation vector gives the radial distribution function (RDF)

go(r) =
1

4π2

∫
dΩrg(r) (3.4)

To deduce the radial distribution function from the Monte Carlo simulations, we count

and tabulate the number of pair separations. The detailed procedure can be found

elsewhere (e.g., [9]) and will not be repeated here. In the following, we illustrate the

radial distribution functions obtained using Monte Carlo simulations. For the cases

of spheres and aligned spheroids, the analytical Percus-Yevick (PY) pair distribution

function can be computed (see Chapter 4) and will be shown for comparison.

In Fig. 3-3, we show the RDFs for the special case of hard spheres by setting the
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Figure 3-3: Radial distribution function go(r) for hard spheres. The Monte Carlo
(MC) simulation results agree very well with the analytical Percus-Yevick (PY) RDF.
Parameters for MC: N = 1000, Nr = 50, M = 1000. For fv = 0.1, ∆ = 1 giving an
acceptance rate of 52%; for fv = 0.3, ∆ = 0.2 giving an acceptance rate of 44%.
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elongation ratio e = 1. Results for two fractional volumes, fv = 0.1 and fv = 0.3, are

presented. For this special case, the RDF is equal to the pair distribution function.

As discussed above, for r < 2a, the radial distribution function is zero due to core ex-

clusion. At large separation, the pair of particles become uncorrelated and go(r)→ 1.

At the larger fractional volume, the radial distribution becomes more sharply peaked

at smaller separation and more oscillatory at larger separation. Note that the Monte

Carlo simulation results agree very well with those from the PY pair distribution

function. Both are quite different from the so-called “hole approximation,” where

go(r) = 0 for r < 2a and 1 otherwise.

In Fig. 3-4, the RDFs for hard spheroids in aligned configurations with e = 2

are shown for fv = 0.1 and 0.3. The main difference from the hard sphere case

is that the RDF becomes much smaller near r = 2a since overlap could occur for

separations between 2a and 4a. As in the hard sphere case, the PY RDF agrees

well with the simulated RDF. Fig. 3-5 shows the corresponding RDFs for randomly

oriented spheroids. For this case, no PY solution exists, and only the simulated data

are plotted. The RDFs appear to be intermediate between the sphere case and the

aligned spheroid case.

3.3 Multiple Scattering Formulation

In this section, we present the formulation used to solve the electromagnetic wave

scattering problem for each of the realization of particle configurations generated

using Metropolis shuffling. The size of the spheroid is assumed to be electrically small

(ka, kc � 1), in which case the internal electric field of each spheroid is sufficiently

well characterized by the electrostatic solutions. To incorporate these ideas, it is

convenient to formulate the multiple scattering problem using the volume integral

equation [9, 57]. This approach is quite similar to the discrete dipole approximation

(DDA) [45, 46], which divides a “continuous” dielectric object into regular array of
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Figure 3-4: Radial distribution function go(r) for hard prolate spheroids in aligned
configurations. The Monte Carlo (MC) simulation results agree very well with the
analytical Percus-Yevick (PY) RDF. Parameters for MC: N = 1000, Nr = 50, M =
1000. For fv = 0.1, ∆ = 1.2 with acceptance rate of 51%; for fv = 0.3, ∆ = 0.2 with
acceptance rate of 49%.
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Figure 3-5: Radial distribution function go(r) for randomly oriented hard prolate
spheroids. Parameters for MC: N = 1000, Nr = 50, M = 1000. For fv = 0.1,
∆ = 1.2, ∆α = ∆β = 1 with acceptance rate of 48%; for fv = 0.3, ∆ = 0.1,
∆α = ∆β = 0.05 with acceptance rate of 39%.
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small cells characterized by their dipole moments. In our case, the “cells” are the

entire spheroidal particles which are randomly distributed in space.

3.3.1 Volume Integral Equation for the Electric Field

Consider a “scatterer” with permittivity εs(r) and volume V in a homogeneous back-

ground medium with permittivity ε. An incident field Einc(r) impinges on the scat-

terer. The electric field satisfies the following integral equation [9]:

E(r) = Einc(r) + k2

∫
V

dr′ Go(r, r
′) · [εs(r′)− 1]E(r′) (3.5)

where k = ω
√
µε is the background wavenumber, εs(r) = εs(r)/ε is the relative

permittivity of the “scatterer,” and Go(r, r
′) is the dyadic Green’s function for the

background medium

Go(r, r
′) =

(
I +
∇∇
k2

)
eikR

4πR
(3.6)

with R = r − r′.

Suppose now that the “scatterer” consists of N identical spheroids with constant

relative permittivity εs. Then Eq. (3.5) becomes

E(r) = Einc(r) + k2 [εs − 1]
N∑
j=1

∫
v

drj Go(r, rj) · E(rj) (3.7)

where v is the volume of the spheroid. In Eq. (3.7), let r be inside spheroid l (l =

1, 2, . . . , N). This gives the volume integral equation with which the internal electric

fields of all spheroids are related.

E(rl) = Einc(rl) + k2 [εs − 1]
N∑
j=1

∫
v

drj Go(rl, rj) · E(rj) (3.8)
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3.3.2 Method of Moments

The volume integral equation (3.8) will be solved numerically using the method of

moments (MoM) [58]. First expand the internal field E(rj) in terms of a set of

orthonormal basis functions f jα:

E(rj) =

Nb∑
α=1

ajαf jα(rj) (3.9)

where ajα is the unknown expansion coefficients and Nb is the total number of basis

functions. Note that we use Latin indices are used for particles and Greek indices for

basis functions. The choice of the basis functions are discussed in Sec. 3.3.3.

The incident field can likewise be expanded.

Einc(rj) =

Nb∑
α=1

b′jαf jα(rj) (3.10)

Putting (3.9) and (3.10) into (3.8) gives

Nb∑
β=1

alβf lβ(rl) =

Nb∑
β=1

b′lβf lβ(rl) +
N∑
j=1

Nb∑
α=1

ajαqjα(rl) (3.11)

where

qjα(rl) = k2 [εs − 1]

∫
v

drj Go(rl, rj) · f jα(rj) (3.12)

Note that when l = j (or self-patch in MoM parlance), the dyadic Green’s function

Go(rj, rl) has a source region singularity at rj = rl [59]. This requires special treat-

ment and will be addressed in Sec. 3.3.3. It will be shown that when l = j, we can

write

qjα(rj) = Cαf jα(rj) (3.13)

where Cα is a constant coefficient.
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Applying the Galerkin’s method to (3.11), we obtain

alβ = blβ +
1

(1− Clβ)

N∑
j �=l

Nb∑
α=1

Alβ;jαajα (3.14)

where

blβ =
1

(1− Clβ)
b′lβ (3.15)

and

Alβ;jα =

∫
v

drl f lβ(rl) · qjα(rl)

= k2 [εs − 1]

∫
v

drl

∫
v

drj f lβ(rl) ·Go(rl, rj) · f jα(rj) (3.16)

Eq. (3.14) can be cast in matrix form by consolidating the two indices {j, α} into one.

Then we have

Z · a = b (3.17)

where Z is often called the impedance matrix and is of size NNb ×NNb.

If we set all interaction terms to zero, i.e., Alβ;jα = 0, we obtain from Eq. (3.14)

alβ = blβ (3.18)

This corresponds to the independent scattering approximation.

3.3.3 Electrostatic Basis Functions

Since we are interested in scattering by small dielectric spheroids, the electrostatic

solution provides a good approximation to the internal field. Thus we choose the basis

functions from the electrostatic solution. The scalar potential for the electrostatic

field satisfies the Laplace solution, which is separable in spheroidal coordinates. (The

Laplace solution has also been used in Chapter 2 for the magnetic field.) The solution
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α n m p multipole
1 1 0 0 dipole
2 1 1 0 dipole
3 1 1 1 dipole
4 2 0 0 quadrupole
5 2 1 0 quadrupole
6 2 1 1 quadrupole
7 2 2 0 quadrupole
8 2 2 1 quadrupole

Table 3.1: Correspondence between the basis function index α and multipole indices
{n,m, p}.

which is regular at the origin is given as

Φα(r) = (−1)m+1Pm
n (η)Pm

n (ξ)Tpm(φ) (3.19)

where Pm
n (η) and Pm

n (ξ) are associated Legendre functions of first kind [30] and

Tpm(φ) =

{
cosmφ, p = 0

sinmφ, p = 1
(3.20)

The sign factor (−1)m+1 in (3.19) is chosen so that the sign of the dipole basis func-

tions will agree with the convention used in [57]. The triplet of indices {n,m, p} range

as follows: n ≥ 1, 0 ≤ m ≤ n, p = 0, 1. We shall use a single index α to denote the

triplet. The correspondence between the indices can be found in Table 3.1.

The electric field corresponding to a particular multipole is given by Eα = −∇Φα.

Consider a single spheroid with center at the origin and principal axes aligned with

the coordinate axes. The basis functions are

fα(r) = − 1√
Nα

∇Φα(r) (3.21)

with normalization constant Nα chosen such that

∫
v

dr fα · fβ = δαβ (3.22)
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The orthogonality between the different basis functions can be easily established.

With the use of the divergence theorem, the normalization constant is

Nα =

∫
s

dS Φα(n̂ · ∇Φα) (3.23)

where s denotes the surface of the spheroid (ξ = ξo). Substituting Φα from (3.19), we

arrive at

Nα =

[
1

νm

4π

2n+ 1

(n+m)!

(n−m)!

]
d

2
(ξ2o − 1)

dPm
n

dξo
Pm

n (ξo) (3.24)

where νm = 2− δm0 is known as the Neumann factor [60].

We now discuss the self-patch contributions and derive expressions for coefficients

Cα as defined in (3.13). We need to evaluate

qα(r) = k2 [εs − 1]

∫
v

dr′ Go(r, r
′) · fα(r′) (3.25)

with r ∈ v. This can be obtained in two ways. The first makes use of electrostatics [57]

while the second proceeds through a low-frequency expansion of the dyadic Green’s

function.

Electrostatics approach

For small particles, the quantity qα(r) can be shown [9] to correspond physically to

the electric field induced inside the particle as a result of the polarization:

P = (εs − ε)fα (3.26)

Let V1 and V0 be the scalar potential inside and outside the spheroid. They must

satisfy the following boundary conditions at ξ = ξo:

V1 = V0 (3.27)

ξ̂ · ∇V1 − ξ̂ · ∇V0 = ξ̂ · P
ε

(3.28)
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It is clear from the expression of P in Eq. (3.26) that V0 and V1 contain only multipole

α. Thus we let

V0 =
A0√
Nα

Pm
n (η)Qm

n (ξ)Tpm(φ) (3.29)

V1 =
A1√
Nα

Pm
n (η)Pm

n (ξ)Tpm(φ) (3.30)

Note that qα = −∇V1 = Cαfα, which implies that Cα = A1.

Upon matching the boundary conditions, the coefficients A0 and A1 are easily

solved. The latter is given by

A1 = (εs − 1)(−1)m+1 (n−m)!

(n+m)!
(ξ2o − 1)

dPm
n

dξo
Qm

n (ξo) (3.31)

where we have made use of the following Wronskian relation for Legendre func-

tions [30]:

W{Pm
n (z), Qm

n (z)} = (−1)m+1 (n+m)!

(n−m)!

1

z2 − 1
(3.32)

Dyadic Green’s function expansion

The electrostatics approach lends itself to simple interpretation of the self-patch term

but represents only the leading order contribution. The more general method for

deriving the self-patch term is to make use of the low-frequency expansion of the

dyadic Green’s function Go(r, r
′) [9, 61]. The dyadic Green’s function is given in

Eq. (3.6). The second term contains a non-integrable singularity which gives rise to

the leading order contribution to the self-patch term.

In the low-frequency limit, we can expand the exponential term exp(ikR) in

Go(r, r
′) in powers of kR. This leads to the following decomposition of the dyadic

Green’s function into a regular part and a singular part.

Go(r, r
′) = Gr(r, r

′) +
1

k2
Gs(r, r

′) (3.33)
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where

Gr(r, r
′) =

1

8πR

(
I + R̂R̂

)
+ i

2

3
kI +O(k2) (3.34)

Gs(r, r
′) =∇∇gs(r, r′) = ∇∇ 1

4π|r − r′| (3.35)

Note that the singular part Gs(r, r
′) has no k dependence and is present for electro-

statics problem as well. This fact leads to the electrostatics approach used earlier.

To obtain the self-patch coefficients, consider first

Sα =

∫
v

dr′ Gs(r, r
′) · fα(r′) =

1√
Nα

∇
∫
v

dr′ ∇′gs(r, r′) · ∇′Φα(r′)

=
1√
Nα

∇
∫
s

dS ′ gs(r, r
′)n̂′ · ∇′Φα(r′) (3.36)

The static Green’s function can be expanded in terms of the associated Legendre

functions. For ξ < ξ′,

gs(r, r
′) =

2

d

∞∑
m=0

∞∑
n=m

1∑
p=0

cnmP
m
n (η)Pm

n (η′)Qm
n (ξ)Pm

n (ξ′)Tpm(φ)Tpm(φ′) (3.37)

where

cnm =
2n+ 1

4π
νm(−1)m

[
(n−m)!

(n+m)!

]2

(3.38)

If we replace (−1)m with im in Eq. (3.38), we obtain Eq. (10.3.53) in Morse and

Feshbach [60]. The “discrepancy” is due to the different definition of the associ-

ated Legendre functions for ξ > 1 used here, which follows that of Abramowitz and

Stegun [30]. Using (3.37) in (3.36) gives

Sα = (−1)m+1 (n−m)!

(n+m)!
(ξ2o − 1)

dPm
n

dξo
Qm

n (ξo)fα (3.39)

We can obtain the next order corrections through the integration over the regular part

of the dyadic Green’s function given in (3.34). For small particles, it is important to



78 Chapter 3. Monte Carlo Simulation of Multiple Scattering by Spheroids

include at least the leading imaginary part, which is known as the radiative correction

term. The radiative correction term is crucial for energy conservation of the entire

system and must be included to satisfy the optical theorem [61, 62]. We let

Uα =

∫
v

dr′ ImGr(r, r
′) · fα(r′) =

∫
v

dr′
2

3
kfα(r′) (3.40)

It is interesting to note that Uα is a constant vector and independent of r. Hence it

can be expanded in terms of dipole (n = 1) terms only, which correspond to uniform

internal field (i.e., fα is constant). Thus

Uα =

{
2

3
kvfα for n = 1

0 otherwise

(3.41)

Incorporating the leading real and imaginary contributions, we obtain from Eq. (3.25)

that

qα = k2(εs − 1)

[
1

k2
Sα + Uα

]
(3.42)

Thus the self-patch coefficient is

Cα = (εs − 1)

[
(−1)m+1 (n−m)!

(n+m)!
(ξ2o − 1)

dPm
n

dξo
Qm

n (ξo) + i
2

3
k3vδn1

]
(3.43)

This is identical to (3.31) when the radiative correction term is neglected. Subsequent

calculations will be based on (3.43) with the radiative correction included.

3.3.4 Dipole Basis Functions and Point Interactions

In Appendix B, we provide explicit expressions for the first eight basis functions.

When the spheroid is small enough, the electric field is sufficiently well characterized

by just the electric dipoles. The three dipole basis functions for spheroid j are

f 1(rj) = ẑbj
1√
v

(3.44)
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f 2(rj) = x̂bj
1√
v

(3.45)

f 3(rj) = ŷbj
1√
v

(3.46)

Furthermore, the interaction integrals of (3.16) can be approximated using point

interactions, to viz.,

Alβ;jα≈ k2v2(εs − 1)f lβ ·Go(rcl, rcj) · f jα (3.47)

where rcj, rcl denote the center position vectors of spheroids j and l, respectively.

Likewise, the incident field component of (3.10) and (3.15) can be evaluated as:

blβ ≈
1

(1− Clβ)
f lβ · Einc(rcl) (3.48)

The dipole basis functions with point interactions will be used to compute the

numerical results shown in Sec. 3.4. In Sec. 3.5, we evaluate the accuracy of point

interactions by calculating the interaction integrals exactly.

3.4 Simulation Results

Let the incident field be a plane wave that propagates in the ŷ-direction with unit

amplitude.

Einc = êi e
iky (3.49)

The vertically polarized wave corresponds to êi = v̂i = ẑ while the horizontally

polarized wave corresponds to êi = ĥi = x̂. The numerical results are presented

for the cases of (i) perfectly aligned spheroids and (ii) randomly oriented spheroids.

For the aligned case, the symmetry axis of the spheroid is chosen to be the z-axis.

Thus vertically polarized incidence corresponds to axial excitation while horizontally

polarized incidence corresponds to transverse excitation.
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The matrix equation (3.17) is solved iteratively using the biconjugate gradient

stabilized method (Bi-CGSTAB) [63]. For all cases presented here, the solutions

converge quickly in less than 10 iterations with a relative error of less than 10−6.

3.4.1 Scattering Coefficient

After the matrix equation (3.17) is solved, the scattered field can be obtained from

(3.7) with r outside the spheroids. In the far field r →∞, we have

Es(r) =
eikr

r
F (k̂s, k̂i) (3.50)

with the scattering amplitude F given by:

F (k̂s, k̂i) =
k2v

4π
[εs − 1]

(
v̂sv̂s + ĥsĥs

)
·

N∑
j=1

3∑
α=1

ajαf jαe
−iks·rj (3.51)

Note that only the dipoles (α ≤ 3) contribute to the far-field radiation even when

higher-order multipole basis functions are included. The average, or coherent, scat-

tered field is

〈Esp〉 =
1

Nr

Nr∑
$=1

E($)
sp (3.52)

where p = v, h denotes the polarization of the scattered field. The incoherent scat-

tering cross section is

σ(incoh)
p =

r2

Nr

Nr∑
$=1

∣∣E($)
sp − 〈Esp〉

∣∣2 (3.53)

An important quantity to simulate is the scattering coefficient κs.

κs =
1

V

∫
4π

dΩs

(
σ(incoh)
v + σ

(incoh)
h

)
(3.54)

For lossless particles, κs = κe, where κe is the extinction coefficient.
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In Fig. 3-6, we show the convergence of the normalized scattering coefficient κs/k

with respect to the number of realizations used. For these results, N = 1000, fv = 0.2,

ka = 0.2, e = 2, and εs = 3.2. Note that the scattering coefficient starts at zero for

one realization because the incoherent field is zero. For the aligned case, the scattering

coefficient due to the vertically polarized wave is larger because the larger physical

dimension in the axial direction. For the randomly oriented case, we do not expect

any polarization dependence in the scattering coefficient. As convergence is reached,

the difference between the scattering coefficients of the two polarizations approaches

zero.

In Fig. 3-7, the normalized scattering coefficient is shown as a function of frac-

tional volume fv. The size parameter is ka = 0.2 with elongation ratio e = 2. The

independent scattering results are shown for comparison. For small fractional volume

(fv � 5%), the independent scattering approximation gives reasonable results com-

pared with the Monte Carlo simulations. However, as fv increases, multiple scattering

become more important. The interference of the scattered waves from the particles

tends to reduce the overall scattered field. As a result, the scattering coefficient is

much smaller than that predicted by independent scattering. Note that the scattering

coefficient first increases with fv, reaches a maximum with fv between 0.2 and 0.3,

and declines as fv increases further. The scattering coefficient for the randomly ori-

ented case falls in between the vertical and horizontal polarized results of the aligned

configuration.

We next illustrate in Fig. 3-8 the dependence of the κs on the elongation ratio.

The fractional volume is fixed at 0.2 and ka = 0.2. The monotonous increase as

a function of e for both the aligned and randomly oriented is expected since the

overall volume of the spheroids increases linearly with e for fixed a. The difference

between the simulated results and independent scattering results tends to increase as

e increases. However, their ratios are found not to vary significantly with e.
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(a) Aligned case.
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(b) Randomly oriented case.

Figure 3-6: Convergence of the normalized scattering coefficient κs/k with respect to
the number of realizations. N = 1000, ka = 0.2, e = 2, and εs = 3.2.
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(a) Aligned case.
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(b) Randomly oriented case.

Figure 3-7: Normalized scattering coefficient κs/k as a function of fractional volume
fv. ka = 0.2, e = 2, and εs = 3.2. N = 1000 and 50 realizations are used.
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(a) Aligned case.
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(b) Randomly oriented case.

Figure 3-8: Normalized scattering coefficient κs/k as a function of elongation ratio
e = b/a. ka = 0.2, fv = 0.2, and εs = 3.2. N = 1000 and 50 realizations are used.
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3.4.2 Scattering Phase Matrix

The incoherent scattering cross sections defined in (3.53) can be used to obtain the

scattering phase matrix. In the context of radiative transfer theory, the phase matrix

P is a 4×4 matrix that relates the incident intensity to the scattered intensity due to

a random medium with elemental volume V . It can be expressed as bistatic scattering

cross sections per unit volume [4, 9]:

P =
1

V


〈|Fvv|2〉 〈|Fvh|2〉 〈F∗vhFvv〉′ −〈F∗vhFvv〉′′

〈|Fhv|2〉 〈|Fhh|2〉 〈F∗hhFhv〉′ −〈FhvF∗hh〉′′

2〈FvvF∗hv〉′ 2〈FvhF∗hh〉′ 〈FvvF∗hh + FvhF∗hv〉′ −〈FvvF∗hh −FvhF∗hv〉′

2〈FvvF∗hv〉′′ 2〈FvhF∗hh〉′′ 〈FvvF∗hh + FvhF∗hv〉′′ 〈FvvF∗hh −FvhF∗hv〉′′


(3.55)

where the prime denotes the real part and double prime denotes the imaginary part.

The quantity Fαβ (α, β = h, v) denotes the incoherent scattering amplitude from all

particles in V with scattered field polarized in α̂-direction and incident field polarized

in β̂-direction. In the following, we provide numerically results for the elements Pvv =

〈|Fvv|2〉/V , Phv = 〈|Fhv|2〉/V , Phh = 〈|Fhh|2〉/V , and Pvh = 〈|Fvh|2〉/V pertaining

to coupling between first two Stokes parameter Iv and Ih. The incoherent scattering

amplitude is obtained from Eq. (3.51) by subtracting out the coherent component

〈Fαβ〉.

The phase matrix elements will be presented in the y-z plane (i.e., φs = 90◦ and

270◦). We define the scattering angle Φ such that

Φ =

{
θs for φs = 90◦

360◦ − θs for φs = 270◦
(3.56)

where 0 ≤ θs ≤ 180◦. Thus Φ varies from 0◦ to 360◦. Note that with the chosen

incident wavevector direction k̂i = ŷ, Φ = 90◦ corresponds to the forward propagation

direction and Φ = 270◦ corresponds to the backscattering direction. In Fig. 3-9,

the phase matrix elements for aligned spheroids are shown. The most important
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Figure 3-9: Phase matrix elements Pαβ as a function of scattering angles for aligned
spheroids. ka = 0.2, fv = 0.2, and εs = 3.2. N = 1000 and 50 realizations are used.
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feature from these curves is that for the co-polarized components (Pvv and Phh),

multiple scattering gives smaller values than independent scattering while the opposite

is true for the cross-polarized components (Phv and Pvh). In other words, multiple

scattering enhances depolarization. For independent scattering, expressions for the

phase matrix can be found in [64]. Independent scattering predicts that Pvv ∝ sin2 Φ

and Phh = constant while Phv = Pvh = 0 in the y-z plane. The multiple scattering

results show similar pattern except for two differences: (i) a broad “null” in the

forward direction of Φ = 90◦ for the co-polarized components as a result of coherent

wave subtraction and (ii) fluctuations that persist as a result of finite realization

sampling. It is worth mentioning that the fluctuations appear worse for the cross-

polarized components because their values are quite small. Similar conclusions can

be reached based on Fig. 3-10, which shows the corresponding results for randomly

oriented spheroids. In this case, independent scattering has nonzero Phv and Pvh, but

these are smaller than the multiple scattering values.

A direct consequence of these results is that any inference of geometric parameters

which is based on polarimetric scattering measurements must take into account of

multiple scattering effects when the scatterers are densely packed. Otherwise, one

might conclude wrongly that the particles are more elongated than they actually are.

3.4.3 Absorption Coefficient

For lossy particles, the total extinction coefficient is a sum of the scattering coefficient

and absorption coefficient. The absorption coefficient can be simulated by computing

κa =
1

V

N∑
j=1

kε′′s

∫
drj〈|E(rj)|2〉 (3.57)
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Figure 3-10: Phase matrix elements Pαβ as a function of scattering angles for randomly
oriented spheroids. ka = 0.2, fv = 0.2, and εs = 3.2. N = 1000 and 50 realizations
are used.
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where ε′′s = Im{εs} and the average internal field intensity is

〈|E(rj)|2〉 =
1

Nr

Nr∑
$=1

∣∣∣∣∣
Nb∑
α=1

a
($)
jαf jα(rj)

∣∣∣∣∣
2

(3.58)

Making use of the orthonormality condition of the basis functions [Eq. (3.22)], the

absorption coefficient can be expressed as:

κa =
1

Nr

Nr∑
$=1

[
N∑
j=1

Nb∑
α=1

1

V
kε′′s |a

($)
jα |2

]
(3.59)

In Fig. 3-11, we show the absorption coefficient as a function of fractional volume

fv. Parameters are the same as in Fig. 3-7 except that ε′′s �= 0. In contrast to

the scattering coefficient, the absorption coefficient increases monotonously with fv.

Moreover, multiple scattering enhances the absorption coefficient over independent

scattering.

3.5 Nonuniform Induced Fields

For spheroids close to each other, nonuniform internal fields are induced inside the

spheroids even though they are small compared to the wavelength. In this case, the

point dipole approximation of (3.47) might no longer be accurate. In this section, we

evaluate the accuracy of the point dipole approximation by calculating the interaction

integrals exactly for pairs of spheroids that are close to each other.

Consider spheroids labeled l and j with center coordinates rcl and rcj, respectively.

We wish to compute the interaction integral given by (3.16).

Alβ;jα = k2 [εs − 1]

∫
v

drl

∫
v

drj f lβ(rl) ·Go(rl, rj) · f jα(rj) (3.60)

A neighborhood distance rd is chosen such that when |rl − rj| ≥ rd, the point dipole

approximation of (3.47) is used. However, when |rl − rj| < rd, we compute Alβ;jα
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(a) Aligned case.
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(b) Randomly oriented case.

Figure 3-11: Normalized absorption coefficient κa/k as a function of fractional volume
fv. ka = 0.2, e = 2, and εs = 3.2 + i0.01. N = 1000 and 50 realizations are used.
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ka fv with without difference (%)
0.2 0.2 3.548 3.612 1.77
0.2 0.3 3.174 3.333 4.75
0.3 0.2 9.562 9.750 1.92
0.3 0.3 7.563 7.936 4.70

Table 3.2: Normalized scattering coefficient κs/k with and without numerical inte-
grations of matrix elements. Randomly oriented case.

ka fv with without difference (%)
0.2 0.2 3.157 3.336 5.38
0.2 0.3 3.175 3.508 9.50
0.3 0.2 8.924 9.354 4.60
0.3 0.3 8.079 8.862 8.84

Table 3.3: Normalized scattering coefficient κs/k with and without numerical inte-
grations of matrix elements. Aligned case with horizontal incident polarization.

exactly. The dipole basis functions of (3.44)–(3.46) are constant vectors and can be

moved outside the integrals. Thus

Alβ;jα = k2 [εs − 1] f lβ ·K lj · f jα (3.61)

where

K lj ≡
∫
v

drl

∫
v

drj Go(rl, rj) (3.62)

The sixfold integrations are performed numerically using Gauss-Legendre quadrature

with 125 basis points for each of the two volume integrals.

Tables 3.2 and 3.3 show the comparison between results obtained using the point

dipole interactions and using numerical integrations. The neighborhood distance is

chosen to be rd = 3a. Other parameters are: e = 2, N = 1000, and Nr = 50. The
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“difference” column in the tables is defined as

δκs =
κ

(wo)
s − κ(w)

s

κ
(wo)
s

(3.63)

where the subscripts (w) and (wo) denote cases with and without numerical integra-

tions, respectively. Note that the scattering coefficients are smaller with numerical

integrations for all the cases presented. Not surprisingly, numerical integrations affect

the randomly oriented case less because the induced fields due to different spheroids

are more randomized. The relative difference increases with fractional volume but

changes little with when particle size is increased from ka = 0.2 to ka = 0.3.

The results in Tables 3.2 and 3.3 suggest that the point dipole approximations

provide reasonably accurate scattering results. However, should accuracy of better

than 5% be required, numerical integrations ought to be employed in calculating

the matrix elements. It should be pointed out that this statement applies only to

the hard spheroid distributions. In cases where clustering effects are important (e.g.,

particles with surface adhesion), a significantly larger number of close neighbors could

be present. Thus the point dipole approximation might perform worse. In addition,

the quadrupole basis functions should also be included.

3.6 Conclusions

In this chapter, we solve Maxwell’s equations numerically for the multiple scattering

of electromagnetic waves by dielectric spheroids. Recognizing the importance of par-

ticle positions on the collective scattering response, we first describe the Metropolis

Monte Carlo method used to generate physically realistic configurations of hard pro-

late spheroids. Results of pair distribution functions show that the particle positions

are far from uncorrelated. The correlation of particle positions affect the coherent

addition of scattered waves from the spheroids. This fact is neglected in the indepen-

dent scattering approximation which is widely used in the classical radiative transfer
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theory.

By formulating the problem in terms of volume integral equation for the electric

field and assuming that the spheroidal particles have sizes small compared to the

electromagnetic wavelength, a method of moment (MoM) solution is provided. In the

MoM solution, the unknown electric field inside each spheroid is expanded in terms of

electrostatic multipole basis functions. Using Galerkin’s method, a matrix equation

for the unknown expansion coefficients is constructed. Special care must be exercised

in calculating the diagonal elements due to the source-region singularity in the dyadic

Green’s function. We derive these so-called self-patch terms by using a low-frequency

expansion of the dyadic Green’s function. It is shown that the leading real part

comes from the singular part of the Green’s function, while the leading imaginary

part comes from the regular part. The leading imaginary part is much smaller than

the leading real part for small particles; however, they account for the radiative loss

as the wave is scattered away from the forward propagation direction. Thus it needs

to be included to preserve energy conservation.

The most important basis functions for small spheroids are the three electric

dipoles. Thus we include only the dipoles in the numerical calculations presented in

this chapter. Moreover, in order to compute the interaction matrix elements quickly,

we assume that the induced field is uniform within the spheroid and is equal to its

value at the center of the spheroid. Using this point dipole approximation, we solve

the multiple scattering equations for a large number of spheroids generated using the

Metropolis Monte Carlo method. The scattering results are averaged over many real-

izations and presented in terms of scattering coefficient, scattering phase matrix, and

absorption coefficient. These are important input physics parameters for equations

for describing radiative transport in a random medium. We compare the simulation

results with those obtained under the assumption of independent scattering. It is

found that for appreciable fractional volume (fv � 5%), the independent approx-

imation overestimates the scattering coefficient and underestimates the absorption



94 Chapter 3. Monte Carlo Simulation of Multiple Scattering by Spheroids

coefficient. The discrepancy also tends to increase as a function of elongation ratio.

Examination of the phase matrix elements shows that depolarization effects become

more significant as a result of multiple scattering. This has important implication for

any attempt to deduce particle shape based on depolarization measurements.

Instead of using the point dipole approximation, one could evaluate the interac-

tion matrix elements exactly by numerical integrations for pairs of spheroids that

are close to each other. As expected, the point dipole approximation is worse at

higher fractional volume and for spheroids in aligned orientation. However, overall, it

gives fairly accurate scattering coefficients and is superior in terms of computational

efficiency.

Throughout this chapter, we present results for spheroids that are randomly ori-

ented and spheroids that have aligned orientations. Other orientation distribution

can be considered by a simple modification of the shuffling procedure. This kind of

generality in scattering configurations represents one of the great strengths of Monte

Carlo simulations. In the next chapter, we solve the problem of multiple scattering

of spheroids using analytical approximations. However, the discussion will be limited

to spheroids in aligned configurations. The difficulty in tackling the more general

problem of arbitrary orientation distribution is that analytical expressions of the pair

distribution function, which is a crucial ingredient in multiple scattering theories, are

not readily available. Thus numerical simulations provide the best way to solve these

problems.



Chapter 4

Analytical Approximations in

Multiple Scattering by Aligned

Dielectric Spheroids

4.1 Introduction

In Chapter 3, we studied multiple scattering by dielectric spheroids numerically us-

ing Monte Carlo simulations. By packing many spheroids and averaging over many

realizations, we were able to simulate important radiative transport quantities such

as the extinction coefficient, absorption coefficient, and scattering phase matrix. The

simulation results show that for appreciable fractional volume, the commonly used

approximation of independent scattering is no longer valid. However, while Monte

Carlo simulations have proven to be extremely useful, they are computationally de-

manding and do not lead to simple relations between the various parameters. Thus

in this chapter, we study the problem using the multiple scattering theories of quasi-

crystalline approximation (QCA) and quasi-crystalline approximation with coherent

potential (QCA-CP) [7, 14]. These approximations have shown to be accurate for

scattering by dielectric spheres [37, 38] and will be extended here to the case of di-

95
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electric spheroids. Multiple scattering of nonspherical particles using QCA has been

considered in the past by Twersky with his multiple-scattered field formulation [65, 6]

and by Tsang [66] as well as Varadan et al. [67, 68] using the T-matrix (i.e., spher-

ical wave expansion) formulation. The work here differs in that a rigorous operator

formalism is used, which allows for the inclusion of the coherent potential.

One of the most important consequences of multiple scattering in discrete random

medium is that the scattering and absorption proprieties of the medium depend cru-

cially on the joint probability distribution of the particle positions. In particular, the

pair distribution function, which is proportional to the two-particle joint probability

distribution, is required in many multiple scattering theories. In the study of multiple

scattering by spheres, it has been recognized that unphysical prescription of the pair

distribution function (e.g., the hole approximation) could lead to disastrous results

when the fractional volume of the particles is appreciable [8].

The pair distribution function can be found analytically by solving the Percus-

Yevick (PY) integral equation, which is an approximation for the Ornstein-Zernike

equation [69]. For spherical particles interacting via the hard-sphere potential, a

closed-form solution can be obtained [70, 71, 72]. This is the celebrated Percus-Yevick

pair distribution function for hard spheres and provides a simple way to incorporate

physically realistic pair statistics into multiple scattering models. Unfortunately, for

more general interaction potentials and particle shapes, the PY pair distribution

function cannot be obtained without solving the integral equation. Monte Carlo sim-

ulations using the Metropolis shuffling method described in Chapter 3 or molecular

dynamics simulations are often the best way to compute the statistical mechanical

properties of the particles [56, 73]. As we have seen in Chapter 3, it is relatively

straightforward to calculate the pair distribution function based on Metropolis shuf-

fling. However, for scattering calculations, we actually need the structure factor,

which is related to the Fourier transform of the pair distribution function. Due to

the fluctuating nature of the pair distribution function, it can be difficult to obtain a
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very accurate structure factor from Monte Carlo methods.

A simple nonspherical system where the PY pair distribution function is available

in closed form consists of hard ellipsoids that have aligned orientation but random

positions. This is because the aligned ellipsoid problem can be easily mapped into the

sphere problem via a simple coordinate transformation [74]. Since spheroid represents

a special case of an ellipsoid, we have in our disposal an analytical pair distribution

function for multiple scattering by aligned spheroids. Thus in this chapter, we con-

sider only scattering by spheroids in aligned configuration.

The rest of this chapter proceeds as follows. In Sec. 4.2, we discuss briefly the

PY pair distribution function for aligned hard ellipsoids. In Sec. 4.3, we present

the multiple scattering formulation in operator notation. The method of conditional

averaging is applied to the multiple scattering equations which allow for the imposition

of QCA and QCA-CP. The QCA and QCA-CP equations can be readily solved in

closed-form in low-frequency (or small particle size) limit. In Sec. 4.4, we derive the

average Green’s function and effective medium characteristics from QCA and QCA-

CP in such a limit. In Sec. 4.5, we compare the effective permittivity obtained using

QCA and QCA-CP with the Maxwell-Garnett mixing formula. In Sec. 4.6, extensive

comparisons are made with the Monte Carlo simulation results obtained using the

methods of Chapter 3. Conclusions to this chapter can be found in Sec. 4.7.

4.2 Percus-Yevick Pair Distribution Function

The pair distribution function g(r) is proportional to the two-particle probability

distribution function and has been discussed in Sec. 3.2.2. Consider aligned ellip-

soids with interparticle potential u(r). The only dependence of the pair distribution

function is on the separation vector r between the centers of the two ellipsoids.
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It is common to define the total correlation function h(r) as

h(r) = g(r)− 1 (4.1)

The Ornstein-Zernike (OZ) equation defines the direct correlation function c(r) in

terms of the total correlation function h(r) [54]:

h(r) = c(r) + no

∫
dr′c(r′)h(r − r′) (4.2)

where no = N/V is the number density of the particles. In words, the OZ equation

states that the total correlation of two particles is the sum of the direct correlation

and the indirect correlation function, which is a convolution integral of the total and

direct correlation functions.

To introduce the Percus-Yevick (PY) approximation, let

g(r) = y(r) exp [−βu(r)] (4.3)

where β = 1/kBT . Thus h(r) is related to y(r) through Eqs. (4.1) and (4.3). The PY

approximation is [69]

h(r)− c(r) = y(r)− 1 (4.4)

and relates the direct correlation function to y(r). This allows us to turn the OZ

equation into an integral equation for y(r) only. For hard spheres, the PY integral

equation can be solved in closed form [70, 71, 72].

For hard ellipsoids, the interparticle potential is

u(r) =

{∞ for P < 1

0 for P > 1
(4.5)

where P 2 = rTA
2
r and A = diag[1/a, 1/b, 1/c] with a, b, c being the semiaxes of the
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ellipsoid. Let [74]

R = Ar, R
′
= Ar′ (4.6)

Then (4.2) transforms to

h(R) = c(R) +
3

4π
fv

∫
dR
′
c(R

′
)h(R−R′) (4.7)

where fv = no(4π/3)abc is the fractional volume occupied by the ellipsoids. More

importantly, under this transformation, the hard ellipsoid potential now becomes the

hard sphere potential:

u(R) =

{∞ for R < 1

0 for R > 1
(4.8)

Thus the pair distribution function g(R) = g(R) = h(R) + 1 is identical to that of a

hard sphere system with the same fractional volume (with radial distance normalized

by its diameter). Plots of the pair distribution function for hard spheroids can be

found in Chapter 3, where they are shown to agree very well with Monte Carlo

simulations.

In analytical scattering calculations, it is often not the pair distribution function

but its Fourier transform that appears directly in the final expressions. We define the

structure factor

S(p) = 1 + noH(p) (4.9)

where

H(p) =

∫
dre−ip·rh(r) (4.10)

is the Fourier transform of the total correlation function. From the PY solution for

hard spheres, the structure factor at p = 0 is given by

So ≡ S(0) =
(1− fv)4

(1 + 2fv)2
(4.11)

Anisotropy features in the structure factor of aligned hard ellipsoids only arise at
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Ēinc

v

εs

V

ε

c
a

r1

r2
rj

z

x

y

rN

Figure 4-1: Scattering of electromagnetic waves by densely packed aligned prolate
spheroids. The symmetry axis of the spheroid is chosen to be in the ẑ-direction.

nonzero frequencies [74].

4.3 Multiple Scattering Formulation

In this section, we discuss the formulation for the multiple scattering of waves by

aligned dielectric spheroids (Fig. 4-1). The operator notation of Tsang and Kong [7,

14], which has its root in quantum mechanical scattering formulation, will be adopted

here. Detailed derivation on the multiple scattering formulation presented in this

section can be found in [75, 14].

First consider a single spheroid with center at rj. The dielectric constants of the

scatterer and the background are εs and εo, respectively. The single-particle Green’s

function Gs satisfies the following integral equation

Gs(r, r
′) = Go(r, r

′) +

∫
dr′′Go(r, r

′)U(r′′ − rj)Gs(r
′′, r′) (4.12)
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where Go(r, r
′) is the background Green’s function, k2 = ω2εoµo, and k2

s = ω2εsµo.

The scattering potential U(r) is defined as

U(r − rj) =

{
k2
s − k2 for Pj < 1 (inside spheroid)

0 otherwise (outside spheroid)
(4.13)

where P 2
j = (r − rj)TA

2
(r − rj) and A = diag[1/a, 1/a, 1/c].

In operator notation, Eq. (4.12) can be written succinctly as

Gs =Go +GoU jGs (4.14)

where in coordinate representation, 〈r|U j|r′〉 = U(r − rj)δ(r − r′)I. It is convenient

to define the transition operator T j such that U j Gs = T j Go. Then it follows from

Eq. (4.14) that

Gs = Go +Go T j Go (4.15)

and

T j = U j + U j GoT j (4.16)

which can be solved formally as

T j = (I − U j Go)
−1U j (4.17)

Eq. (4.16) is known as the Lippmann-Schwinger equation. Once the transition oper-

ator is found using the Lippmann-Schwinger equation, the single-particle scattering

problem is considered to be solved.

We next consider the multiple scattering problem for N randomly positioned

spheroids with the same orientation. The N -particle Green’s function G satisfies

the equation
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G=Go +Go

N∑
j=1

U jG (4.18)

One can define the “exciting field” Green’s function Gl for particle l by excluding the

j = l term in the sum above. This gives

Gl = Go +Go

N∑
j=1,j �=l

U jG (4.19)

Note that Gl, unlike U l and T j, depends on the the configurations of all N particles.

Eq. (4.18) can then be written as

G=Gj +GoU jG (4.20)

Using (4.17) and (4.20), it can be inferred that U j G = T j Gj. Then (4.18) and (4.19)

give

G=Go +Go

N∑
j=1

T jGj (4.21)

Gj =Go +Go

N∑
l=1,l �=j

T lGl (4.22)

which are the Foldy-Lax multiple scattering equations in operator form. The multiple

scattering equations as given in (4.21) and (4.22) can be used to solve for Gj and

G given the the configurations of all N spheroids. This is the approach taken in

numerical simulations. In analytical treatments, we are interested in the average

properties from a statistical ensemble of such scatterers, and it would be best to

derive the equations for the average Green’s function directly.
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Let E(O) denote the ensemble average of O, Ej(O) denote the ensemble average

with particle j fixed, Ejl(O) denote the ensemble average with particles j and l fixed,

etc. Then, taking ensemble averaging of (4.21) and the ensemble average of (4.22)

with particle j fixed give

E(G) =Go +NGoE(T jEj(Gj)) (4.23)

Ej(Gj) =Go + (N − 1)GoEj(T jEjl(Gj)) (j �= l) (4.24)

Note that the second equation depends on the ensemble average of Gj with j and

l fixed. Thus these two equations alone are not sufficient to determine the average

Green’s function. In principle, we need to take the ensemble average of (4.22) with

two particles fixed, which would in turn depend on the ensemble average with three

particles fixed, and so on. Thus the conditional averaging procedure introduces a

hierarchy of equations which must all be included to yield a complete set of equa-

tions and unique solutions. To provide closure condition without resorting to higher

hierarchy of equations, various approximations can be introduced. The simplest one

is the Foldy’s approximation, which set the ensemble average with one particle fixed

to the ensemble average with no particle fixed:

Ej(Gj) = E(G) (4.25)

Using this in (4.23) gives an equation for E(G). Note that Eq. (4.24) is not needed

in the Foldy’s approximation. However, Foldy’s approximation does not take into

account of correlation of the particle configurations and is not valid at higher fractional

volumes. A better approximation, which is due to Lax [76], involves a higher order

closure condition. This is the quasi-crystalline approximation (QCA).
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4.3.1 Quasi-Crystalline Approximation (QCA)

To introduce QCA, first recast the Foldy-Lax equations in an alternate form by defin-

ing QjGo = T jGj. Then (4.21) and (4.22) become

G=Go +Go

N∑
j=1

QjGo (4.26)

Qj =T j + T jGo

N∑
l=1,l �=j

Ql (4.27)

Upon averaging:

E(G) =Go +NGoE(Ej(Qj))Go (4.28)

Ej(Qj) =T j + (N − 1)T jGoEj(Ejl(Ql)) (j �= l) (4.29)

QCA specifies that the conditional average holding two particles fixed is approxi-

mately equal to the conditional average holding one particle fixed. Thus

Ejl(Ql) ≈ El(Ql) (4.30)

Then (4.29) becomes

Ej(Qj) =T j + (N − 1)T jGoEj(El(Ql)) (4.31)

which provides an equation for Ej(Qj). An integral equation can be obtained in the

momentum representation.

After ensemble averaging with particle j fixed, Ej(Qj) depends only on the posi-

tion of the spheroid j. Moreover, the medium is statistically translationally invariant,

which implies that in the momentum representation,

〈p|Ej(Qj)|p′〉=Q(p, p′) e−i(p−p
′)·rj (4.32)
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〈p|T j|p′〉=T (p, p′) e−i(p−p
′)·rj (4.33)

where Q(p, p′) and T (p, p′) are independent of rj. Thus in the momentum represen-

tation, (4.31) becomes

Q(p, p′) =T (p, p′) + (N − 1)

∫
drl p(rl|rj)∫

dp′′

(2π)3
e−i(p

′′−p′)·(rl−rj)T (p, p′′)Go(p
′′)Q(p′′, p′) (4.34)

By relating the conditional probability to the pair distribution function [Eq. (3.2)]

p(rl|rj) =
1

V

N

N − 1
g(rl − rj) (4.35)

Eq. (4.34) can be written as

C(p, p′) = T (p, p′) +no

∫
dp′′

(2π)3
H(p′′ − p′)T (p, p′′)Go(p

′′)C(p′′, p′) (4.36)

where no = N/V is the number density of the spheroids, H(p) is defined in (4.10),

and

C(p, p′) ≡ Q(p, p′)
[
I + noGo(p

′)Q(p′, p′)
]−1

(4.37)

From (4.28), the average Green’s function in momentum representation is given by

G(p) =
[
G
−1

o (p)− noC(p, p)
]−1

(4.38)

Thus the average Green’s function differs from the background Green’s function by

the addition of the second term on the right hand side. The dispersion relation of the

effective medium corresponds to the poles of the average Green’s function. This can

be done by solving the following determinant equation:

det
[
G
−1

o (p)− noC(p, p)
]

= 0 (4.39)
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The term noC is sometimes referred to as the mass operator.

Note that for the homogeneous and isotropic background, the Green’s function

has the following form in the spectral domain [see Appendix C]:

G
−1

o (p) = (p2 − k2)I − p p (4.40)

4.3.2 Quasi-Crystalline Approximation with Coherent Po-

tential (QCA-CP)

The coherent potential (CP) concept can be introduced to renormalize the multiple

scattering solution obtained previously. The basic idea behind CP is that as multiple

scattering becomes more important, the coherent wave “sees” more of the average

medium than the background medium. The method was first used to study electron

in disordered metals [77] and later applied to systems with short-range correlations by

making use of QCA [78, 79]. QCA-CP was first applied to electromagnetic scattering

by Tsang and Kong [7].

We start with Eq. (4.18) for the N -particle Green’s function, which can be re-

expressed as [
G
−1

o −
N∑
j=1

U j

]
G = I (4.41)

The coherent potential operator w is introduced such that

Ĝ
−1

o =G
−1

o − now (4.42)

Û j =U j −
1

V
w (4.43)

Then Eq. (4.41) takes the form

[
Ĝ
−1

o −
N∑
j=1

Û j

]
G = I (4.44)
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which is the same as in (4.41) except that G
−1

o → Ĝ
−1

o and U j → Û j. Thus much

of the derivation shown in the previous section can be repeated with the modified

background Green’s function and modified scattering potential. The CP operator w

is chosen from the self-consistent condition that

E(G) = Ĝo (4.45)

If we now apply QCA to the modified multiple scattering equations, the average

Green’s function takes the form

G(p) =

[
G
−1

o (p)− noĈ(p, p)

]−1

(4.46)

where the mass term noĈ(p, p) now depends on the average Green’s function. It can

be shown that [75, 14]

Ĉ(p, p′) = t̂j(p, p
′) +no

∫
dp′′

(2π)3
H(p′′ − p′)t̂(p, p′′)G(p′′)Ĉ(p′′, p′) (4.47)

Single-particle scattering in the renormalized medium is characterized by the modified

transition operator t̂j, which obeys the modified Lippmann-Schwinger equation:

t̂j = U j + U jE(G)t̂j (4.48)

Eqs. (4.46)–(4.48) represent coupled nonlinear equations with which the average

Green’s function can be solved.

4.4 Low-Frequency Dispersion Relation

The derivation above shows that even with QCA and QCA-CP, an integral equation

for the mass term must be solved in order to find the average Green’s function. In
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general, this must be done numerically. However, in the low-frequency limit, it is

possible to obtain closed-form solutions for both QCA and QCA-CP.

The solution strategy proceeds as follows. For QCA, we first obtain the transition

operator for a single spheroid using the Lippmann-Schwinger equation of Eq. (4.16).

Then the mass term noC(p, p′) is solved using (4.36). The average Green’s function is

deduced from (4.38). For QCA-CP, we obtain the modified transition operator from

Eq. (4.48) and the mass term in terms of the average Green’s function from Eq. (4.47).

This results in a nonlinear algebraic equation for the average Green’s function.

4.4.1 QCA

To find the transition operator, consider a single spheroid with its center at the origin.

Consider a mixed representation of T [80]. Let

Tm(r, p) = 〈r|T |p〉 (4.49)

In the low-frequency limit, p → 0 so let Tm(r) = Tm(r, p = 0). Then taking the

mixed representation of (4.16) gives

Tm(r) = U(r)I + U(r)

∫
dr′Go(r, r

′)Tm(r′) (4.50)

The dyadic Green’s function can be written with its singularity at r = r′ extracted

based on an exclusion volume of spheroidal shape [59]. In the low-frequency limit,

keeping the leading real and imaginary parts gives [9]

Go(r, r
′) = − L

k2
δ(r − r′) +

ik

6π
I (4.51)

where

L = Lax̂x̂+ Lax̂x̂+ Lcẑẑ (4.52)
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The depolarization factors La and Lc for prolate spheroids are given in conventional

form as follows [44, 28]:

Lc =−(1− ẽ2)
ẽ2

[
1 +

1

2ẽ
ln

(
1− ẽ
1 + ẽ

)]
(4.53)

La =
1

2
(1− Lc) (4.54)

where

ẽ =

√
1− a

2

c2
(4.55)

is the eccentricity. (The notation ẽ is used to distinguish the eccentricity from the

elongation ratio e = c/a.) In fact, we have already derived the depolarization factors

in Chapter 3 under the disguise of self-patch coefficient for dipoles [cf. real parts of

Eqs. (B.21) and (B.22) without the factor (εs−1) and with the substitution ξo = 1/ẽ].

Putting Eq. (4.51) into (4.50) and letting

Tm(r) =

{
T o, r inside spheroid

0, r outside spheroid
(4.56)

where T o is a constant dyad, we obtain

T o =

[(
1

k2
s − k2

I +
1

k2
L

)
− ikv

6π
I

]−1

(4.57)

with

η =
1

3
(k2

s − k2)
[
k2I + (k2

s − k2)L
]−1

(4.58)

Then to leading order in real and imaginary parts,

T o = 3k2η

[
I +

ik3v

2π
η

]
(4.59)
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The momentum representation of the transition operator is given by

T (p, p′) =

∫
dre−ip·rTm(r, p′) ≈ vT o (4.60)

where the last relation follows in the low-frequency limit.

Using (4.60) in (4.36), we get

C(p, p′) = voT o + fvT o

∫
dp′′

(2π)3
H(p′′ − p′)Go(p

′′)C(p′′, p′) (4.61)

We solve for (4.61) by letting

C(p, p′) = Co (4.62)

where Co is independent of p, p′ in the low-frequency limit. Then (4.61) becomes

Co(p
′) =

[
I − fvT o

∫
dp′′

(2π)3
H(p′′)Go(p

′′)

]−1

vT o (4.63)

Using (4.51), it follows that

∫
dp′′

(2π)3
H(p′′)Go(p

′′) =
1

k2
L+

ik

6π
HoI (4.64)

where Ho = H(p = 0). Thus

Co =

{
I − fvT o

[
L

k2
+ I
ik

6π
Ho

]}−1

vT o (4.65)

Keeping only the leading order in the real and imaginary parts, we get

Co = 3k2vD η

{
1 + iD η

k3v

2π
So

}
(4.66)

where So = 1 + noHo is the static structure factor given in (4.11) and



4.4. Low-Frequency Dispersion Relation 111

D =
[
1− 3fvη L

]−1

(4.67)

From (4.38) and (4.40), the inverse average Green’s function is

G
−1

(p) = (p2 − k2)I − p p− noCo (4.68)

From Appendix C, we see that the Green’s function for the uniaxial medium has the

following spectral representation:

G
−1

ua (p) = p2I − p p− k2ε (4.69)

where

ε = εax̂x̂+ εaŷŷ + εcẑẑ (4.70)

is the relative permittivity tensor.

Comparison of (4.68) and (4.69) implies that the effective medium is uniaxial with

relative permittivity tensor given by

ε
(eff)

= I +
1

k2
noCo (4.71)

=
{
I + 3fvDη

}
+ i

(
Dη

)2 3fvk
3v

2π
So (4.72)

Let ε
(eff)

= ε
(eff)′

+ iε
(eff)′′

where

ε(eff)′
µ = 1 +

fv(εs − 1)

1 + (1− fv)(εs − 1)Lµ

(4.73)

ε(eff)′′
µ =

k3v

6π
So

fv(εs − 1)2

[1 + (1− fv)(εs − 1)Lµ]2
(4.74)

with µ = a, c. Note that in the low-frequency limit, ε
(eff)′′
µ � ε

(eff)′
µ but generally

nonzero. Thus even when the background and spheroid permittivity are purely real,

the scattering loss gives rise to an imaginary part in the effective permittivity that is
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proportional to the structure factor So.

Since the effective medium is uniaxial, the characteristic waves correspond to the

familiar ordinary and extraordinary waves of the uniaxial crystal, with dispersion

relations given respectively by [Appendix C]

1

εa
K2 = k2 (4.75)

1

εc
(K2

x +K2
y ) +

1

εa
K2

z = k2 (4.76)

where K is the effective wavevector.

4.4.2 QCA–CP

The modified transition operator satisfies the equation

t̂ = U + U E(G) t̂ (4.77)

with E(G) being the average Green’s function, which is unknown. Based on the

QCA result as well as physical intuition, it is reasonable to assume a priori that the

average Green’s function corresponds to that of an uniaxial medium with spectral

representation given in the form of Eq. (4.69). Let

G
−1

(p) = p2I − p p− k2ε
(eff)

(4.78)

where ε
(eff)

= εax̂x̂+ εaŷŷ + εcẑẑ is still to be determined.

Much of the subsequent derivation parallels that of QCA. One notable difference

is that we need the low-frequency expansion of the uniaxial Green’s function in spatial

domain. This is done in Appendix C. We have

G(r, r′) = −K
−2
Nδ(r − r′) +

i

6π
KM (4.79)
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where

K = k2

√
ε
(eff)

(4.80)

Expressions for the tensors N and M are given in Appendix C. They depend on the

ratio of the axial and transverse components of the effective permittivity:

α =
εc
εa

(4.81)

In comparison with the low-frequency expansion of the isotropic Green’s function

in Eq. (4.51), the uniaxial Green’s function gives rise to depolarization factors that

correspond to a less elongated spheroid (when α > 1). Moreover, the radiative

correction factor, i.e., the imaginary part in (4.79), is now anisotropic.

Analogous to (4.60), the modified transition operator in the low-frequency limit

is

t̂(p, p′) = vt̂o (4.82)

with

t̂o =

[(
1

k2
s − k2

I +K
−2
N

)
− iv

6π
KM

]−1

(4.83)

Keeping leading real and imaginary parts, we have

t̂o = 3K
2
η̂

[
I +

iv

2π
K

3
η̂

]
(4.84)

where

η̂µ =
1

3
(k2

s − k2)
[
K

2
+ (k2

s − k2)N
]−1

(4.85)

Solving Eq. (4.47) gives

Ĉo =

{
I − fv t̂o

[
K
−2
N +KM

i

6π
Ho

]}−1

vt̂o (4.86)
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Keeping the leading real and imaginary parts, we get

Ĉo = 3vK
2
D̂ η̂

{
I + iD̂ η̂ M K

3 v

2π
So

}
(4.87)

where

D̂ =
[
I − 3fv η̂ N

]−1

(4.88)

Then Eq. (4.46) implies a relative effective permittivity tensor of

ε
(eff)

= I +
1

k2
noĈo

=

{
I + 3fvε

(eff)
D̂ η̂

}
+ i

3fvk
3v

2π
(ε

(eff)
)

5
2

(
D̂ η̂

)2

M So (4.89)

Let ε
(eff)

= ε
(eff)′

+ iε
(eff)′′

. Then

ε(eff)′
µ = 1 +

ε
(eff)
µ fv(εs − 1)

ε
(eff)
µ + (1− fv)(εs − 1)Nµ

(4.90)

ε(eff)′′
µ =

k3v

6π
SoMµ(ε

(eff)
µ )

5
2

fv(εs − 1)2

[ε
(eff)
µ + (1− fv)(εs − 1)Nµ]2

(4.91)

where µ = a, c. Eqs. (4.90) and (4.91) provide a set of coupled nonlinear equations

with which to solve for the unknowns ε
(eff)
a and ε

(eff)
c . Since ε

(eff)′
µ 	 ε(eff)′′

µ , we can set

ε
(eff)
µ = ε

(eff)′
µ on the right-hand side of (4.90) and (4.91):

ε(eff)′
µ = 1 +

ε
(eff)′
µ fv(εs − 1)

ε
(eff)′
µ + (1− fv)(εs − 1)Nµ

(4.92)

ε(eff)′′
µ =

k3v

6π
SoMµ(ε

(eff)′
µ )

5
2

fv(εs − 1)2

[ε
(eff)′
µ + (1− fv)(εs − 1)Nµ]2

(4.93)

Then (4.92) is used to solve for ε
(eff)′
µ . Once this is found, its value is used in (4.93)

to compute ε
(eff)′′
µ .
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4.5 Comparison with Mixing Formula

In composite material modeling and homogenization study, various expressions exist

that allows one to calculate the effective permittivity of a medium consisting of many

small dielectric particles [81]. The aligned spheroids provide a way to construct a

macroscopically uniaxial medium from small isotropic particles [82]. One of the most

widely used expressions in calculating the effective permittivity of a dielectric mixture

is the Maxwell-Garnett formula, which is derived using electrostatics. As such, the

effective permittivity only depends on the shape and permittivity of the small particles

and the fractional volume, but not on frequency. However, we have already found

that the effective permittivity has a frequency-dependent imaginary part which is

due to scattering loss even when the constituent particles are not absorptive. Even

without the scattering loss, the effective permittivity obtained using mixing formula

and multiple scattering theories might still differ. In this section, we compare the

multiple scattering results of QCA and QCA-CP with the Maxwell-Garnett mixing

formula for spheroids. We shall not consider the scattering loss term (i.e., only ε
(eff)′

is used for comparison).

For aligned prolate spheroids, the Maxwell-Garnett mixing formula gives an effec-

tive permittivity of [83]

ε(eff)(MG)
µ = 1 +

fv(εs − 1)

1 + (1− fv)(εs − 1)Lµ

(4.94)

where µ = a, c. This is identical to Eq. (4.73) for the low-frequency QCA result.

The QCA-CP result as shown in (4.92), however, differs from QCA and hence the

Maxwell-Garnett formula.

Consider lossless spheroids with εs = 3.2. Fig. 4-2 shows the effective permittivity

as a function of fractional volume for spheroids with e = 2. The relative effective

permittivity increases from 1 (the background value) when fv = 0 to 3.2 (the spheroid

value) when fv = 1. The QCA-CP curves are quite similar to QCA except that, as
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a result of the background renormalization, they have slightly larger values for both

the axial (εa) and transverse (εc) components. Moreover, under the CP treatment,

the depolarization tensor correspond to that of a slightly flattened spheroid. Thus

the axial component is depressed relative to the transverse component for QCA-

CP. Hence we see that the difference between QCA-CP and QCA is larger for the

transverse component.

Fig. 4-3 shows the effective permittivity as a function of elongation for spheroids

with fv = 0.2. Again, the QCA and QCA-CP results are quite similar, with QCA-CP

yielding larger values. As the spheroids become more elongated, the axial permittivity

increases while the transverse permittivity decreases. One notable feature is that

the gap between results from the two methods narrows as e increases for the axial

component due to the flattening effect of QCA-CP. On the other hand, the gap for

the transverse component stays constant.

The effective permittivity can be calculated from Monte Carlo simulations by

comparing the simulated coherent field with the scattered field of a homogeneous

medium of the same shape [84]. It is interesting to note that results from Monte Carlo

simulations agree quite well with the Maxwell-Garnett mixing formula (or QCA) in

the case of randomly oriented spheroids. In multiple scattering simulation of dielectric

spheres, it has also been observed that the simulated effective permittivity agrees

better with QCA than QCA-CP [42].

4.6 Comparison with Monte Carlo Simulations

The analytical theories of QCA and QCA-CP involve approximations whose validity

can be difficult to assess. Numerical simulations such as those presented in the Chap-

ter 3 provide extremely useful tools for checking such theories. In this section, we

compare the extinction coefficients obtained using the analytical results of QCA and

QCA-CP with Monte Carlo simulations. The extinction coefficient κe from Monte



4.6. Comparison with Monte Carlo Simulations 117

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

Fractional volume

E
ffe

ct
iv

e 
pe

rm
itt

iv
ity

QCA-CP
QCA   

(a) Axial.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

Fractional volume

E
ffe

ct
iv

e 
pe

rm
itt

iv
ity

QCA-CP
QCA   

(b) Transverse.

Figure 4-2: Effective permittivity as a function of fractional volume fv. Comparison
between QCA and QCA-CP. e = 2 and εs = 3.2.



118 Chapter 4. Analytical Approximations in Multiple Scattering by Spheroids

1 1.5 2 2.5 3 3.5 4
1.2

1.25

1.3

1.35

1.4

1.45

1.5

Elongation

E
ffe

ct
iv

e 
pe

rm
itt

iv
ity

QCA-CP
QCA   

axial

transverse

Figure 4-3: Effective permittivity as a function of elongation ratio e = b/a. Compar-
ison between QCA and QCA-CP. fv = 0.2 and εs = 3.2.

Carlo simulations is calculated using the methods described in Chapter 3 with dipole

basis functions and point interactions. For lossless particles, κe = κs. For lossy par-

ticles, κe = κs + κa. The analytical extinction coefficient is computed as κe = 2K ′′,

where K = K ′+ iK ′′ is the effective propagation constant. Suppose that the coherent

wave propagates in a direction perpendicular to the ẑ-axis. Then vertical polarization

corresponds to axial excitation and horizontal polarization corresponds to transverse

excitation. In this case Kv/k =

√
ε
(eff)
c and Kh/k =

√
ε
(eff)
a .

In Fig 4-4, we show the normalized extinction coefficient κe/k as a function of

fractional volume obtained using Monte Carlo simulation, QCA, and QCA-CP. The

particle size is such that ka = 0.2 with elongation e = 2. Results from indepen-

dent scattering approximation are also shown for reference. It can be seen that for

fv � 0.2, the QCA-CP gives excellent agreement with Monte Carlo simulations. At

higher fractional volume, both QCA and QCA-CP show a much stronger decrease

with the fractional volume than the simulation results. It is possible that higher or-

der particle correlation effects, which are neglected in QCA and QCA-CP, becomes

more important at such high fractional volumes. Nevertheless, even though some dis-



4.6. Comparison with Monte Carlo Simulations 119

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

-3

Fractional volume

N
or

m
al

iz
ed

 e
xt

in
ct

io
n 

co
ef

fic
ie

nt

MC    
QCA-CP
QCA   
ind   

(a) Vertical polarization.
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(b) Horizontal polarization.

Figure 4-4: Normalized extinction coefficient κe/k as a function of fractional volume
fv. Comparison between different methods. ka = 0.2, e = 2, and εs = 3.2.



120 Chapter 4. Analytical Approximations in Multiple Scattering by Spheroids

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

-4

Fractional volume

N
or

m
al

iz
ed

 e
xt

in
ct

io
n 

co
ef

fic
ie

nt

MC    
QCA-CP
QCA   
ind   

(a) Vertical polarization.
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(b) Horizontal polarization.

Figure 4-5: Normalized extinction coefficient κe/k as a function of fractional volume
fv. Comparison between different methods. ka = 0.1, e = 2, and εs = 3.2.
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crepancy exists, QCA and QCA-CP still outperform independent scattering, which

grossly overestimates the scattering coefficient. In Fig. 4-5, the results for smaller

particles with ka = 0.1 are presented. In this case, QCA seems to give better agree-

ment with Monte Carlo simulations at lower fractional volumes while QCA-CP is

better at higher fractional volumes.

Fig. 4-6 shows the normalized extinction coefficient as a function of fractional

volume for lossy spheroids with size parameter ka = 0.2. For lossy particles, the ex-

tinction coefficient increases monotonously with fv. Again, QCA-CP gives very good

results compared with Monte Carlo simulations. Next we examine the dependence

of the extinction coefficient on the elongation ratio for ka = 0.2. Fig. 4-7 shows that

overall, QCA-CP agrees quite well with Monte Carlo simulations, especially at smaller

elongations. The Monte Carlo simulation results show a slightly steeper increase with

elongation.

4.7 Conclusions

In this chapter, we study multiple scattering of dielectric spheroids using approxima-

tions that are based on analytic wave theory. The spheroids have aligned orientation

but are uniformly distributed in space, subject only to the condition of no overlaps.

The Percus-Yevick pair distribution is available in closed form for such a system. The

Foldy-Lax multiple scattering equations are obtained and the procedure of conditional

averaging is applied. To obtain simple analytical expressions, the hierarchy of aver-

aged equations is truncated at second order by making use of the quasi-crystalline

approximation (QCA) and the quasi-crystalline approximation with coherent poten-

tial (QCA-CP).

The QCA and QCA-CP equations can be solved in the low-frequency limit. We

present expressions for the transition operator and the mass operator in such a limit.

The average Green’s function, which is uniaxial, follows directly. For QCA-CP, a low-
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(a) Vertical polarization.
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(b) Horizontal polarization.

Figure 4-6: Normalized extinction coefficient κe/k as a function of fractional volume
fv for lossy particles. Comparison between different methods. ka = 0.2, e = 2, and
εs = 3.2 + i0.01.
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(b) Horizontal polarization.

Figure 4-7: Normalized extinction coefficient κe/k as a function of elongation ratio
e = b/a. Comparison between different methods. ka = 0.2, e = 2, and εs = 3.2.
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frequency expansion of the uniaxial dyadic Green’s function is required. Interesting

differences from the low-frequency expansion of the isotropic Green’s function include:

(i) the depolarization factors are present with a modified eccentricity and (ii) The

radiative loss term becomes anisotropic.

Using the low-frequency solutions of QCA and QCA-CP, we compare the effective

permittivity with the Maxwell-Garnett mixing formula. We find that by neglecting

the radiative loss term, QCA gives an identical expression to the mixing formula.

However, QCA-CP gives a slightly larger value due to the renormalization of the

background medium. The difference between QCA and QCA-CP is larger in the

transverse component than the axial component due to the flattening effect of the

uniaxial Green’s function in the case of QCA-CP.

We also compare the extinction coefficients obtained using QCA and QCA-CP

with those of Monte Carlo simulations computed using the methods discussed in

Chapter 3. It is found that both methods perform quite well, especially for smaller

fractional volumes. At larger fractional volumes, higher order statistics of particle

positions, which are not taken into account in QCA and QCA-CP, might become

more important.



Chapter 5

Dense Medium Model of

Polarimetric Thermal Emission

from Sea Foam

5.1 Introduction

It has long been known that the presence of sea foam greatly enhances the microwave

emissivity from the ocean surface [85, 86, 87, 88]. However, little theoretical progress

has been made on the accurate modeling and understanding of sea foam emission since

the 1970s. Important early contributions include the work by Droppleman [89], who

modeled the foam as a homogeneous effective medium with mixture of air and water

and found that the emissivity approached one for high air fraction. Rosenkranz and

Staelin [90] constructed a more elaborate model where the foam layer is approximated

by thin parallel layers of water separated by air. Even though these models could

explain the high emissivity from sea foam, they were rather idealized and did not

relate to the underlying physical parameters of the foam. On the other hand, recent

studies of thermal emission from the ocean surface have focused on incorporating

rough surface effects [91, 92]. To take into account of emission from foam, one usually
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Figure 5-1: Thermal emission from a layer of air bubbles with thin water shells
overlying the flat ocean surface.

has to resort to an empirical formula [93].

In this chapter, we model the foam as a layer of randomly distributed air bubbles

overlying a flat ocean surface (Fig. 5-1). The bubbles are assumed to be spherical and

covered with an outer layer of sea water. The permittivity of the lower half-space and

the water shell is taken to be εs, while the permittivity inside and outside the shell is εo.

The shell thickness (δ) of the bubble is small compared to its outer radius (a) so that

a high void fraction is implicit in this model. Let fv be the fractional volume of the

bubbles. The fractional volume occupied by the water shells is then fw ≈ fv(3δ/a)�
1. It should be noted that such a foam model has been considered previously [94], but

Rayleigh scattering and the independent scattering approximation were used. Thus

its validity is limited to small bubbles that are sparsely distributed. Since sea foam

bubbles are likely to come in a variety of sizes as well as densities depending on wind

speeds and the stages of development, we prefer to consider the general situation

where the bubbles can be closely packed with sizes comparable to the wavelength.

To this end, we employ the quasi-crystalline approximation (QCA) to incorporate

coherent multiple scattering effects among the bubbles. The brightness temperature

is obtained by numerically solving the dense medium radiative transfer (DMRT)

equation. The QCA-based DMRT approach was first developed by Tsang et al. [14,
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95] and applied to the remote sensing of snow.

In Sec. 5.2, we summarize the T-matrix formulation of QCA. The method is

applied to densely packed, coated spheres of moderate size. We examine the dispersion

relation for bubble scatterers and compare with low-frequency QCA approximations.

In Sec. 5.3, the absorption coefficient and scattering coefficient are obtained from the

QCA solution. These parameters are used as inputs for radiative transfer calculations

and applied to the passive remote sensing of sea foam.

The flat ocean surface considered in most of this chapter is a convenient assump-

tion. However, one might question how well this approximation works in practice

since the actual wind-driven ocean surface can be far from flat. In Sec. 5.4, we take

into account of the large-scale roughness in the ocean surface by using a geometric

tilting model where emission from a tilted foam layer is related to emission from

a flat foam layer through simple angle and polarization transformations. The Cox-

Munk slope distribution is used to obtain the average brightness temperatures from

foam-covered rough ocean surface.

Since our focus is on sea foam emission, atmospheric effects, though important in

passive remote sensing of the ocean, are neglected in the present study.

5.2 T-matrix Formulation of the Quasi-Crystalline

Approximation (QCA)

In Chapter 4, we discuss the quasi-crystalline approximation for multiple scattering

in the operator formalism. Low-frequency solutions for dielectric spheroids in aligned

orientation are derived. However, in many applications, the particle size is not small

compared with the wavelength so that low-frequency formulae will not be applicable.

To deploy QCA for moderate size particles, it is most convenient to formulate the

multiple scattering problem in a slightly different way by using the Foldy-Lax multiple

scattering equations with the T-matrix coefficients [9]. For spherical scatterers, the
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Figure 5-2: An incident wave impinges on a half-space of densely distributed spherical
scatterers.

T-matrix coefficients give the Mie scattering solution, in which case this formulation

is known as QCA-Mie theory. The QCA-Mie theory has been applied to dielectric

spheres [41, 96] and coated spheres [80]. The latter is appropriate for the bubbles.

We summarize the results below. Derivation as well as detailed expressions can be

found in the literature [14, 95].

5.2.1 Generalized Lorentz-Lorenz Law and Ewald-Oseen The-

orem

Consider a plane wave incident on a half-space of spherical scatterers (Fig. 5-2). The

spherical scatterers can be inhomogeneous, e.g., with multilayered structure. Let

Einc(r) = êi e
iki·r (5.1)

where

ki = k(sin θi cosφix̂+ sin θi sinφiŷ − cos θiẑ) (5.2)
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A coherent transmitted field 〈Et〉 propagates downward with effective wavevector

K = K(sin θt cosφtx̂+ sin θt sinφtŷ − cos θtẑ) (5.3)

where φt = φi and K sin θt = k sin θi. The effective wavenumber K is to be deter-

mined.

As a result of multiple scattering, the final exciting field on each scatterer is dif-

ferent from the incident field. The Foldy-Lax multiple scattering equations relate

the exciting fields from all the scatterers. In the T-matrix formulation, the exciting

fields are expanded in terms of vector spherical wavefunctions. Applying QCA to

the Foldy-Lax equations gives rise to two sets of equations for the unknown excit-

ing field coefficients Y
(M)
n and Y

(N)
n , where n is the spherical wave multipole index

(n = 1 denotes dipoles, n = 2 denotes quadrupoles, etc.) and (M), (N) specify the

two polarization states of the vector spherical waves. The two sets of equations are

generalized versions of the Lorentz-Lorenz law and Ewald-Oseen theorem derived for

point dipoles [97].

The generalized Lorentz-Lorenz law is

Y (M)
n = 4πno

∞∑
ν=1

∞∑
p=1

Sp(K)
{
−T (M)

ν Y (M)
ν Ac(ν, n, p)

+T (N)
ν Y (N)

ν Ax(ν, n, p)
}

(5.4)

Y (N)
n = 4πno

∞∑
ν=1

∞∑
p=1

Sp(K)
{
T (M)
ν Y (M)

ν Ax(ν, n, p)

−T (N)
ν Y (N)

ν Ac(ν, n, p)
}

(5.5)

where no is the number density of the scatterers and

Ac(ν, n, p) =
(2ν + 1)

ν(ν + 1)

n(n+ 1)

(2n+ 1)
iν−n−pa(1, ν| − 1, n|p)a(ν, n, p) (5.6)

Ax(ν, n, p) =
(2ν + 1)

ν(ν + 1)

n(n+ 1)

(2n+ 1)
iν−n−pa(1, ν| − 1, n|p, p− 1)b(ν, n, p) (5.7)
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Expressions for the coefficients a( ) and b( ) as well as Sp(K) are given in [14].

The generalized Lorentz-Lorenz law gives a homogeneous system of equations

for Y
(M)
n and Y

(N)
n . Non-trivial solutions only exist when the determinant of the

matrix is zero. This imposes a condition on K that determines the dispersion relation

and characteristic waves in the effective medium. Two main ingredients are needed

in Eqs. (5.4) and (5.5). The first is the T-matrix coefficients T
(M)
ν and T

(N)
ν that

characterize scattering by a single spherical scatterer. The second is the function

Sp(K), which depends on the pair distribution function g(r) and hence the correlation

of scatterer positions. However, the generalized Lorentz-Lorenz law is independent of

the incident angles or polarization.

The excitation amplitude for the characteristic waves can be obtained using the

generalized Ewald-Oseen theorem, which is given as:

−(Kz − kiz)kizk
2π

=−ino
∞∑
ν=1

T (M)
ν Y (M)

ν B(M)
ν (θi, θt)

+ino

∞∑
ν=1

T (N)
ν Y (N)

ν B(N)
ν (θi, θt) (5.8)

where

B(M)
ν (θi, θt) =

2ν + 1

ν(ν + 1)

P 1
ν (cos(θi − θt))
| sin(θi − θt)|

(5.9)

B(N)
ν (θi, θt) =

2ν + 1

ν(ν + 1)

{
cos(θi − θt)
| sin(θi − θt)|

P 1
ν (cos(θi − θt))

+ν(ν + 1)Pν(cos(θi − θt))
}

(5.10)

with Pν and P 1
ν being the Legendre functions.

5.2.2 Dispersion Relation for Bubbles

The dispersion relation for the dense medium of spherical scatterers is determined by

the generalized Lorentz-Lorenz law. In this section, we solve Eqs. (5.4) and (5.5) for
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the bubble scatterers that are used to model the foam. We assume that the scatterers

are non-interpenetrable but otherwise non-interacting so that the Percus-Yevick pair-

distribution function for hard spheres can be used [9]. The multipoles are truncated

at Nmax = 4.

The bubble scatterer is a special case of a two-layered dielectric sphere. The T-

matrix elements for a two-layered dielectric sphere are well-known [4]. Let a be the

outer radius, ka be the wavenumber of the outer layer, b be the inner radius, and kb

be the wavenumber of the inner layer. Then

T (M)
n =

[ρjn(ρ)]
′[jn(ζ) +Bnyn(ζ)]− {[ζjn(ζ)]′ +Bn[ζyn(ζ)]

′}jn(ρ)
[ρhn(ρ)]′[jn(ζ) +Bnyn(ζ)]− {[ζjn(ζ)]′+Bn[ζyn(ζ)]′}hn(ρ)

(5.11)

T (N)
n = − [ρjn(ρ)]

′ζ2[jn(ζ) + Anyn(ζ)]− {[ζjn(ζ)]′ + An[ζyn(ζ)]
′}ρ2jn(ρ)

[ρhn(ρ)]′ζ2[jn(ζ) + Anyn(ζ)]− {[ζjn(ζ)]′ + An[ζyn(ζ)]′}ρ2hn(ρ)
(5.12)

where

ρ= ka, ζ = kaa, ξ = kab, η = kbb (5.13)

The functions jn and yn are the spherical Bessel and Neumann functions, respectively.

The notation [xF (x)]′ denotes differentiation of xF (x) with respect to x, and

An =− [ξjn(ξ)]
′η2jn(η)− [ηjn(η)]

′ξ2jn(ξ)

[ξyn(ξ)]′η2jn(η)− [ηjn(η)]′ξ2yn(ξ)
(5.14)

Bn =− [ξjn(ξ)]
′jn(η)− [ηjn(η)]

′jn(ξ)

[ξyn(ξ)]′jn(η)− [ηjn(η)]′yn(ξ)
(5.15)

For the special case of coated bubbles (Fig. 5-1), b = a − δ, ka = ks and kb = k.

Equipped with the general QCA-Mie solution which is applicable for large particles,

it is interesting to compare it with the low-frequency QCA result. The low-frequency

approximation gives the following relation for the effective wavenumber K [80]

K2 = k2 +
3k2fvη

1− fvη

{
1 + i

2k3a3y

3(1− fvη)
So

}
(5.16)
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Figure 5-3: Dispersion characteristics for bubbles with εs = 20+ i0.2 and δ/a = 0.03.
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Figure 5-4: Relative permittivity of sea water at temperature 285 K and salinity
content equal to 10 parts per thousand.

where

η =
(εs − 1)(2εs + 1)(1− q3)

(εs + 2)(2εs + 1)− 2q3(εs − 1)2
(5.17)

with q = 1− (δ/a).

Let Kr and Ki be the real and imaginary parts of K, respectively. The dispersion

characteristics will be presented in terms of the normalized phase velocity vp = k/Kr

and loss tangent L = 2Ki/Kr [96]. Fig. 5-3 shows the dispersion characteristics for

scatterers with small loss (εs = 20 + i0.2). The thickness of the shell is δ = 0.03a.

The low frequency results agree with the QCA-Mie solution for ka � 0.5 and indeed

provides reasonably good approximations up to ka ≈ 1. However, as ka increases,

the QCA-Mie solution displays oscillations due to resonant scattering, which is not

captured in the low-frequency approximation. Comparing the results for fv = 0.2 and

fv = 0.4, we observe that the increased multiple scattering at the higher fractional

volume causes vp to be smaller for fv = 0.4.



134 Chapter 5. Dense Medium Model of Sea Foam Emission

The small-loss case does not correspond to sea foam bubble at microwave fre-

quencies. Fig. 5-4 shows the relative permittivity of sea water [98]. Both the real

and imaginary parts of the sea water permittivity are quite large. Fig. 5-5 shows the

dispersion characteristics for scatterers with high loss, which is more representative

of sea foam at microwave frequencies. In this case, the scattering resonance features

disappear as a result of the strong absorption by the scatterers. It is also notable

that vp increases with ka, especially when ka > 1. This is a direct consequence of the

large imaginary part in the scatterer permittivity.

5.3 Thermal Emission from Sea Foam

In this section, the brightness temperatures from a layer of sea foam overlying the

ocean surface are computed (Fig. 5-1) using the radiative transfer (RT) equation. We

first describe how to calculate the RT input parameters from the QCA-Mie solution.

The extinction behavior of the sea foam is studied. The RT equation is then solved

with these inputs and the appropriate boundary conditions at the upper and lower

interfaces of the foam layer. It is important to note that the RT equation used

here differs from the conventional RT equation in that the RT input parameters

incorporates coherent multiple scattering effects. In contrast, the conventional RT

equation assumes independent scattering and is not valid when the scatterers are

densely packed. To distinguish it from the conventional approach, the RT theory

used here is often referred to as the dense medium radiative transfer (DMRT) theory.

5.3.1 Extinction Behavior

Radiative transfer equations use the scattering coefficient, absorption coefficient, and

scattering phase matrix, to characterize the transport of specific intensity in a random

medium. These quantities can be calculated directly from the QCA solution.

After K and Y
(M,N)
n are solved using the generalized Lorentz-Lorenz law and
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Figure 5-5: Dispersion characteristics for bubbles with εs = 20 + i20 and δ/a = 0.03.
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Ewald-Oseen theorem [Eqs. (5.4)–(5.8)], the absorption coefficient κa is computed as

κa =
2π

k2|1−Rv|2
Nmax∑
n=1

(2n+ 1)
{
|Y (M)

n |2
[
−ReT (M)

n − |T (M)
n |2

]
+ |Y (N)

n |2
[
−ReT (N)

n − |T (N)
n |2

]}
(5.18)

where Nmax is the maximum order of multipoles used and Rv is the TM Fresnel

reflection coefficient for the effective layer at normal incidence.

The scattering phase matrix Pαβ, which is defined as the bistatic scattering cross

section per unit volume, can be obtained from the average excitation coefficients with

the distorted Born approximation. Explicit expressions for the phase matrix can be

found elsewhere [14, 95]. Since the scattering medium is azimuthally symmetric, we

integrate over the azimuthal angle to obtain the phase functions

pαβ(θ, θ
′) =

∫ 2π

0

dφPαβ(θ, φ; θ
′, φ′ = 0) (5.19)

where α, β = v, h.

The scattering coefficient can be obtained by integrating the phase function over

all scattered angles:

κs =

∫ π

0

dθ sin θ [pαα(θ, θ′) + pβα(θ, θ′)] (5.20)

where α = v, β = h or vice versa. Like the absorption coefficient κa, the scattering

coefficient is independent of polarization and incident angle θ′. Thus the extinction

coefficient κe = κs + κa is also independent of incident angle and polarization.

We now examine the extinction behavior of sea foam as a function of frequency.

The permittivity for the sea water shell is shown in Fig. 5-4. In Fig. 5-6, the foam

bubble size is taken to be a = 1 mm with fractional thickness δ/a = 0.03. The

fractional volume is 0.2. In Fig. 5-6(a), the normalized extinction coefficient is shown.
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Figure 5-6: Extinction behavior of sea foam for a = 1 mm, δ/a = 0.03, and fractional
volume of 0.2.
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It can be seen that the scattering coefficient is quite small, and absorption contributes

to nearly all the extinction in the foam. This fact is quantified in Fig. 5-6(b), where

the albedo ω̃ = κs/κe is displayed and shown to be less than 4%. We also show

the albedo calculated using independent scattering. Since independent scattering

overestimates the scattering coefficient and underestimates the absorption coefficient,

it predicts a much larger albedo.

Fig. 5-7 shows the extinction behavior for a larger bubble with a = 2 mm. Other

parameters are same as in Fig. 5-6. In this case, even though the absorption still

dominates, scattering effects are not negligible. The albedo has increased from under

4% in the case of a = 1 mm to about 15% at 37 GHz.

Besides the extinction coefficient, which is related to the imaginary part of the

effective wavenumber K, the RT equation also requires the real part of K, which

comes in through the boundary conditions (see Sec. 5.3.2). Thus for later reference,

we show in Fig. 5-8 the solution for Kr/k as a function of frequency for bubble radius

of a = 1 mm and a = 2 mm. Other parameters are the same as in Figs. 5-6 and 5-7.

Note that Kr/k decreases with f , which is consistent with the fact that vp increases

with ka for lossy particles, as discussed earlier (cf. Fig. 5-5).

5.3.2 Solutions of Dense Medium Radiative Transfer Equa-

tion

The QCA-based quantities of (5.18)–(5.20) are used as inputs to the DMRT equation:

cos θ
dIv(z, θ)

dz
=−κeIv(z, θ) + κaCT +∫ π

0

dθ′ sin θ′[pvv(θ, θ
′)Iv(z, θ

′) + pvh(θ, θ
′)Ih(z, θ

′)] (5.21)

cos θ
dIh(z, θ)

dz
=−κeIh(z, θ) + κaCT +∫ π

0

dθ′ sin θ′[phh(θ, θ
′)Ih(z, θ

′) + phv(θ, θ
′)Iv(z, θ

′)] (5.22)
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Figure 5-7: Extinction behavior of sea foam for a = 2 mm, δ/a = 0.03, and fractional
volume of 0.2.
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In the above equations, C = kB/λ
2
1 with kB being the Boltzmann constant and

λ1 = 2π/Kr.

The boundary conditions at the two interfaces z = 0 and z = −d are obtained

by treating the foam layer as an effective medium with wavenumber equal to Kr, the

real part of the effective wavenumber. Let r10,α and r12,α (α = v, h) be the Fresnel

reflectivity for the interfaces z = 0 and z = −d, respectively. Then the upgoing and

downgoing intensities at the interfaces are related as follows:

Iα(z = 0, π − θ) = r10,α(θ)Iα(z = 0, θ) (5.23)

Iα(z = −d, θ) = r12,α(θ)Iα(z = −d, π − θ) + (1− r12,α(θ))CT (5.24)

After the specific intensity is solved, the brightness temperature at observation angle

θo is obtained by

Tα(θo) =
1

Co

(1− r10,α(θ))Iα(z = 0, θ) (5.25)

where Co = kB/λ
2
o with λo being the free-space wavelength. The angles θo and θ are
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related through Snell’s law: k sin θo = Kr sin θ. Instead of the brightness temperature,

one can also use the emissivity eα = Tα/T .

The RT equation is an integro-differential equation and is difficult to solve an-

alytically. However, when the albedo is small, the integral that contains the phase

functions can be ignored or treated perturbatively. As we have seen in Sec. 5.3.1, for

sea foam that consists of small bubbles or is being observed at the lower frequencies,

the albedo is indeed quite small. In this case, one can derive the following simple

closed-form expression for the brightness temperature:

Tα(θo) = T
(1− r01,α)(1− r12,αe−2κad sec θ)

1− r01,αr12,αe−2κad sec θ
(5.26)

For general albedo, the RT integro-differential equation can be solved numerically

using the quadrature method (also known as the discrete ordinate eigenanalysis ap-

proach) [4, 10]. In the quadrature method, the angles of propagation are discretized

into a finite number of values θj, j = 1, . . . , Nq, using Gauss-Legendre quadrature

rule. The z dependence is handled by setting Iα(z, θj) = Iαje
λz. A set of homoge-

neous equations for Iαj can be derived and used to determine the eigenvalues λ and

the associated eigenvectors. The arbitrary constants in the eigenvectors are fixed with

the boundary conditions (5.23) and (5.24).

5.3.3 Numerical Results of Brightness Temperature

In this section, we present numerical results for the brightness temperatures from a

layer of foam overlying the flat ocean surface. The results presented here are based on

the following parameters: physical temperature T = 285 K, fractional shell thickness

δ/a = 0.03, and fractional volume fv = 0.2.

In Figs. 5-9(a) and 5-9(b), we show the brightness temperatures (Tv and Th) as

a function of observation angle at frequencies 19 GHz and 37 GHz, respectively. For

these results, the radius of the bubble is a = 1 mm, and the thickness of the foam
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layer is d = 1 cm. As shown in Fig. 5-6, the albedo for this choice of parameters

is very small, and we can use Eq. (5.26) to compute the brightness temperatures.

The radiative transfer parameters, which can be obtained from Fig. 5-4, Fig. 5-6,

and Fig. 5-8, are listed in Table 5.1 for easy reference. Also shown for comparison

in Fig. 5-9 are the brightness temperatures for the plain ocean surface (i.e., without

the foam coverage). Compared with the emission from plain ocean surface, the foam

emission (i) has much larger emissivities and (ii) has smaller polarization differences.

The main reason for these characteristics is that the foam, due to its porous nature,

reflects microwave radiation weakly and hence absorbs (and emits) much more than

the plain ocean surface.

Fig. 5-10 shows the brightness temperature at normal observation angle as a func-

tion of frequency. The vertical and horizontal polarizations have the same value due

to azimuthal symmetry. For the foam, we illustrate with four sets of parameters

corresponding to different combinations of bubble radius (a = 1 mm and a = 2 mm)

and layer thickness (d = 5 mm and d = 1 cm). The four curves show very sim-

ilar frequency dependence, with thicker layer giving larger brightness temperature.

The brightness temperature increases monotonously with frequency and appears to

saturate at higher frequencies. Also shown for comparison are the brightness temper-

atures from the plain ocean surface and from Stogryn’s empirical formula for foam

emission [93]. Curiously, the plain ocean and the empirical formula for foam both

display a linear dependence on frequency. This is not the case from the foam emission

model.

f (GHz) Kr/k κa/k εs
19 1.149 0.190 30.43 + i77.04
37 1.087 0.200 13.85 + i25.08

Table 5.1: Radiative transfer parameters at 19 and 37 GHz for a = 1 mm and
fv = 0.2.



5.3. Thermal Emission from Sea Foam 143

0 10 20 30 40 50 60 70 80 90
0

50

100

150

200

250

300

Observation angle (deg)

B
rig

ht
ne

ss
 te

m
pe

ra
tu

re
 (

K
)

Foam+Ocean
Plain Ocean     

V

H

V

H

(a) f = 19 GHz.

0 10 20 30 40 50 60 70 80 90
0

50

100

150

200

250

300

Observation angle (deg)

B
rig

ht
ne

ss
 te

m
pe

ra
tu

re
 (

K
)

Foam+Ocean
Plain Ocean     

V

H

V

H

(b) f = 37 GHz.

Figure 5-9: Brightness temperatures as a function of observation angle.
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Figure 5-10: Brightness temperature at nadir as a function of frequency.

5.4 Effects of Large-Scale Ocean Waves

So far, the foam emission has been calculated by assuming that the underlying ocean

surface is flat. However, the actual wind-driven ocean surface contains multiscale

roughness that can affect the scattering and emission processes significantly. In this

section, we take into account the rough ocean surface partially by incorporating the

geometric tilting effects of the large-scale ocean waves. By large-scale roughness, we

refer to the case where the the ocean surface height varies only by a small amount

over the distance of the electromagnetic wavelength. This means that locally, we

can approximate the rough surface with a tangent plane at that location (Fig. 5-11).

Now, since the tangent plane is a flat, the problem has already been solved in the

local coordinates with respect to the tangent plane. Thus the only remaining task is

to transform the solution in local coordinates to the global (radiometer) coordinates.

The geometric tilting approach is the basic idea behind the widely used two-scale

model for rough surface scattering and emission [92, 99].
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ẑ

ẑl = n̂
k̂oradiometer

tangent plane

x̂

ocean

foam layer
P

Figure 5-11: Foam layer on large-scale rough ocean surface. Locally (say point P),
the foam layer can be considered to be flat on the tangent plane with local zenith
direction ẑl equal to the surface normal n̂.

Single tilted facet

Let us first consider a single facet with slopes sx and sy. Let n̂ be the the unit vector

normal to the surface. The transformation from local to global coordinates consists of

two parts. The first is to relate global observation angles to local angles. The second

is to relate the global polarization vectors to local polarization vectors.

We set up the local coordinate system (x̂l, ŷl, ẑl) with ẑl = n̂ and x̂l in the x̂-ẑ

plane. Then

ẑl = n̂ =
−sxx̂− syŷ + ẑ√

1 + s2x + s2y
(5.27)

x̂l =
ŷ × ẑl
|ŷ × ẑl|

(5.28)

ŷl = ẑl × x̂l (5.29)

Let k̂o be the emission or observation direction. One can write

k̂o = sin θo cosφox̂+ sin θo sinφoŷ + cos θoẑ (5.30)

= sin θl cosφlx̂l + sin θl sinφlŷl + cos θlẑl (5.31)
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where θo and φo denote the angles in the global coordinate system while θl and φl

denote the angles in the local coordinates. Using (5.27)–(5.29) in (5.31) and matching

the components with (5.30) allow us to relate the angles in the two coordinate systems.

The polarization vectors are defined as

ĥ=
ẑ × k̂o
|ẑ × k̂o|

(5.32)

v̂= ĥo × k̂o (5.33)

for the global coordinates. For local coordinates, the polarization vectors ĥl and v̂l are

defined similarly with ẑ → ẑl and k̂o → k̂l. Thus the electric field is E = Evv̂+Ehĥ =

Evlv̂l + Ehlĥl. Let cosα = ĥ · ĥl and sinα = v̂ · ĥl. Then[
Ev

Eh

]
=

[
cosα sinα

− sinα cosα

] [
Evl

Ehl

]
(5.34)

Using (5.34), the Stokes vector transform as follows:

I(k̂o; sx, sy) =


Tv

Th

U

V

 =


cos2 α sin2 α cosα sinα 0

sin2 α cos2 α − cosα sinα 0

− sin 2α sin 2α cos 2α 0

0 0 0 1




Tvl

Thl

Ul

Vl

 (5.35)

For foam-covered ocean, Ul = Vl = 0. It is interesting to note that even though

Ul = 0, the third Stokes parameter can become nonzero in the tilted system when

Tvl �= Thl. On the other hand, it is impossible to produce a nonzero fourth Stokes

parameter V upon a coordinate transformation. This is because V is related to circu-

larly polarized waves [4], which cannot be obtained from coordinate transformation

of linearly polarized waves.

Averaging over slope distribution

When facets of different slopes are present with probability distribution p(sx, sy), the
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final observed Stokes vector is an average of contributions from all possible slopes.

Io(k̂o) =

∫
dsy

∫
dsxΛ(k̂o; sx, sy)p(sx, sy)I(k̂o; sx, sy) (5.36)

The extra factor Λ accounts for shadowing and area projection effects. The latter is

needed because a facet presented face on towards the observation direction is more

likely to be observed than a facet being presented edge-on. It is straightforward to

show that [99]

Λ(k̂o; sx, sy) =

{
1− L if L < 1

0 otherwise
(5.37)

where L = tan θo(sx cosφo + sy sinφo).

For p(sx, sy), we use the Cox-Munk slope distribution [100] for a wind-driven

ocean surface, which is determined empirically from optical measurements of the

Sun’s reflection off the sea surface. We use x̂ to denote the wind vector direction and

ŷ to denote the crosswind direction. Let σx and σy be the rms slopes. Then the slope

probability distribution is given as

p(sx, sy) =
1

2πσxσy
exp

[
−1

2
(s̃2x + s̃2y)

]
×

[
1− 1

2
c21(s̃

2
y − 1)s̃x −

1

6
c03(s̃

2
x − 3)s̃x +

1

24
c40(s̃

4
y − 6s̃2y + 3)

+
1

4
c22(s̃

2
y − 1)(s̃2x − 1) +

1

24
c04(s̃

4
x − 6s̃2x + 3) + · · ·

]
(5.38)

where s̃x = sx/σx and s̃y = sy/σy. The rms slopes are related to the wind speed

through the formulae σ2
x = 0.00316w and σ2

y = 0.003 + 0.00192w, where w is wind

speed (in m/s) at a height of 12.7 m above the mean surface. The c coefficients are:

c21 = 0.01−0.0086w, c03 = 0.04−0.033w, c40 = 0.40, c22 = 0.12, c04 = 0.23. The Cox-

Munk distribution is anisotropic. Moreover, it is asymmetric in the upwind-downwind

direction, i.e., p(sx, sy) �= p(−sx, sy). The amount of asymmetry is indicated by the

skewness coefficients c21 and c03, which depend on wind speed.
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Figure 5-12: Brightness temperatures as a function of polar angle at f = 19 GHz.

In the following, we illustrate the brightness temperatures from a foam-covered

rough ocean surface at f = 19 GHz. We choose the parameters to be the same as in

Fig. 5-9(a). A wind speed of w = 15 m/s is used, and the integrations over slopes

are truncated at 5σx for sx and 5σy for sy. As a result of the tilting, the angular

dependence of the brightness temperatures is modified. Fig. 5-12 shows the variation

of Tv and Th as a function of the polar angle θo at azimuthal angle φo = 180◦. The flat

surface results of Fig. 5-9(a) are also plotted for comparison. One interesting effect

of the tilting is that both Tv and Th drops more rapidly away from nadir. This kind

of behavior agrees qualitatively with early foam emission measurements (see [93] and

references therein).

The two-dimensional anisotropic rough surface also introduces azimuthal varia-

tions in the observed sea foam emission. Fig. 5-13 shows how Tv, Th, and U vary

with azimuthal angle φ = 180◦ − φo. (Note that φ corresponds to the radiometer

looking direction and is used instead of φo to conform with customary usage in the

literature [92].) The polar angle is fixed at θo = 30◦. The left-panel in Fig. 5-13 corre-
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Figure 5-13: Brightness temperatures as a function of azimuthal angle at f = 19 GHz.
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sponds to the foam-covered ocean, while the right-panel corresponds to plain ocean.

The amplitudes of the azimuthal variations are small but measurable. Note that be-

cause of the upwind-downwind asymmetry in the Cox-Munk slope distribution, the

brightness temperatures at φ = 0◦ and φ = 180◦ are not the same.

The plain ocean has U emission that is five times that of the foam-covered ocean.

This is because the larger polarization difference of local emission (Tvl − Thl) in the

plain ocean surface case. Despite the difference in amplitudes, the azimuthal depen-

dences of the U term for both cases are remarkably similar. The use of polarimetric

brightness temperatures from satellite observations in deducing ocean wind vector in-

formation is an active area of research. The ability to predict the azimuthal variation

of the brightness temperatures is important especially in inferring wind direction.

5.5 Conclusions

In this chapter, an electromagnetic model for the polarimetric emission of sea foam is

presented where the foam is made up of air bubbles with thin outer layers of sea water.

Because of uncertainties in bubble sizes and distributions, we seek a volume scattering

formulation which has no strict limitations on particle size and concentration. Thus

we use the quasi-crystalline approximation (QCA) based dense medium radiative

transfer (DMRT) theory.

In this theory, QCA is first used to solve for the radiative transport parameters.

By using a T-matrix formulation of QCA, exact Mie scattering is incorporated in the

multiple scattering equations. Thus the solution is not limited to low-frequency or

small particle size. We study the dispersion characteristics of densely packed bubble

scatterers and compare the QCA-Mie solution with the low-frequency approximation.

In particular, we contrast the dispersion characteristics of scatterers that are slightly

lossy and ones that are very lossy. The latter is more typical of the foam bubbles,

which contain sea water that has a large imaginary part in its permittivity. The lossy
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nature of the bubbles suppresses scattering resonance features present in the low-loss

case.

The QCA solution allows us to investigate the extinction behavior of sea foam over

a broad range of frequencies. Since bubbles are very lossy, the extinction characteris-

tics are dominated by absorption. However, for larger bubbles and higher frequencies,

scattering attenuation could also become an important factor. The absorption coef-

ficient, scattering coefficient, and scattering phase matrix obtained using QCA are

then used as inputs in the radiative transfer (RT) equation. A general exact numeri-

cal solution based on the quadrature method has been implemented. However, when

the albedo is small, we can neglect the scattering phase matrix and derive a simple

expression for the observed brightness temperatures. We demonstrate the high emis-

sivities of the sea foam compared with plain ocean surface and study their angular

and frequency dependences.

Finally, we also consider the effects of foam on a rough ocean surface using a tilting

model based on the tangent-plane approximation. In this model, the polarimetric

emission from the foam on a tilted facet can be obtained from the foam on a flat

surface through coordinate transformation. In actual ocean surface, a distribution of

sea slopes exists, and we must average the contributions from facets with different

slopes. We use the Cox-Munk slope distribution to perform the averaging. The Cox-

Munk slope distribution also allows us to relate the observed brightness temperature

to the wind speed. The roughness of the underlying sea surface introduces interesting

angular dependences, both in terms of polar angle and azimuthal angle. This has

implications in the application of passive remote sensing of ocean for deducing wind

speed and direction.
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Chapter 6

Summary

In this thesis, we study several problems that deal with electromagnetic wave scatter-

ing in discrete random medium. The kind of scatterers we consider include conducting

and permeable spheroids (Chapter 2), dielectric spheroids (Chapters 3 and 4), and

layered dielectric spheres (Chapter 5). The methods used include separation of vari-

ables, method of moments, and analytical multiple scattering wave theory. While

the overall thesis is theoretically oriented, the work done can be applied directly

in applications that include discrimination of buried unexploded ordnance (UXO)

(Chapter 2), scattering and emission from sea ice and vegetation (Chapters 3 and 4),

and thermal emission from a foam-covered ocean surface (Chapter 5).

In Chapter 2, the quasi-magnetostatic solution for a conducting and permeable

spheroid under arbitrary excitation is obtained using both an exact formulation and

an approximation theory. The exact formulation relies on vector spheroidal wavefunc-

tion expansion of the internal field. The non-orthogonality of the angular spheroidal

wavefunctions for different wavenumbers does not allow us to match the expansion

coefficients term-by-term. As a result, a linear system of equations must be solved

for the expansion coefficients. Despite some lack of elegance in the formulation, this

method performs very well for low to moderate frequencies. However, it breaks down

numerically at a frequency parameter of |c1| ≈ 30. Since c1 is proportional to the focal

153
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length of the spheroid, the breakdown of the solution occurs at a lower frequency for

a more elongated spheroid. This is somewhat discouraging because we are interested

in a broadband response. To obtain accurate results at high frequency, an approxi-

mate theory is developed that avoids any reference to the spheroidal wavefunction.

By taking advantage of the fact that the external field could manage to penetrate

slightly into the spheroid at high frequency, we obtain expressions of the internal field

just inside the surface as a function of the external field. A set of linear equations is

obtained for the external field which presents no numerical difficulty with respect to

frequency or elongation. We call this approximate theory the small penetration-depth

approximation (SPA). Even though the SPA is initially developed to be used for high

frequency, it is found to give accurate broadband results for spheroids with large per-

meability. The simplicity of the SPA coupled with its accuracy makes it an attractive

forward model for model-based inversion schemes. By neglecting mutual interactions,

the frequency responses from a collection of spheroids with different sizes, elongations,

and orientations are also investigated. The results demonstrate that the frequency

responses from spheroids of different species could overlap, making discrimination

difficult.

In Chapter 3, multiple scattering of electromagnetic waves by densely packed

dielectric spheroids is studied using numerical simulations. Recognizing the impor-

tance of particle positions on the collective scattering response, we first describe the

Metropolis Monte Carlo method used to generate physically realistic configurations of

hard prolate spheroids. Results of pair distribution functions show that the particle

positions are far from uncorrelated. The correlation of particle positions affect the

coherent addition of scattered waves from the spheroids. This fact is neglected in the

independent scattering approximation which is widely used in the classical radiative

transfer theory. By formulating the problem in terms of volume integral equation for

the electric field and assuming that the spheroidal particles have sizes small compared

to the electromagnetic wavelength, a method of moment (MoM) solution is provided.
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In the MoM solution, the unknown electric field inside each spheroid is expanded

in terms of electrostatic multipole basis functions. Reasonably good results can be

obtained by keeping only the three dipole basis functions and assuming point inter-

actions between two spheroids. Numerical results are presented in terms of scattering

coefficient, scattering phase matrix, and absorption coefficient. These are important

input physics for equations for describing radiative transport in a random medium.

It is found that for appreciable fractional volume, the independent approximation

overestimates the scattering coefficient and underestimates the absorption coefficient.

The discrepancy also tends to increase as a function of elongation ratio. Results for

the phase matrix elements show that depolarization effects become more significant

as a result of multiple scattering.

In Chapter 4, the multiple scattering of densely packed dielectric prolate spheroids

is studied using analytical wave theory. Unlike the Monte Carlo simulations, only

spheroids with aligned orientation are considered here. The main constraint is the

lack of an analytical pair distribution function for spheroids with general orientation

distribution. The low-frequency solutions of QCA and QCA-CP are derived, giving

the average Green’s function and dispersion relation. For QCA-CP, a low-frequency

expansion of the uniaxial Green’s function is required. The leading real part of the

uniaxial Green’s function yields a polarization tensor that corresponds to a slightly

less elongated spheroid, while the leading imaginary part gives rise to anisotropic

radiative loss. The effective permittivities obtained using QCA and QCA-CP are

compared with the Maxwell-Garnett mixing formula. We find that by neglecting the

radiative loss term, QCA gives an identical expression to the mixing formula while

QCA-CP gives a slightly larger value. We also compare the extinction coefficients

obtained using QCA and QCA-CP with those of Monte Carlo simulations computed

using the methods discussed in Chapter 3. Both methods are found to perform quite

well, especially for smaller fractional volumes. At higher fractional volumes, higher

order statistics of particle positions, which are not taken into account in QCA and
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QCA-CP, might become important.

In Chapter 5, an electromagnetic model for the polarimetric emission of sea foam

is presented where the foam is made up of air bubbles coated with a thin layer of

sea water. The QCA-based dense medium radiative transfer (DMRT) theory is used.

By using a T-matrix formulation of QCA, exact Mie scattering is incorporated in the

multiple scattering equations. Thus the solution is not limited to low frequency or

small particle size. The QCA-Mie formulation allows us to investigate the extinction

behavior of sea foam over a broad range of frequencies. Since bubbles are very lossy,

the extinction characteristics are dominated by absorption. However, for larger bub-

bles and higher frequencies, scattering attenuation could also become an important

factor. The absorption coefficient, scattering coefficient, and scattering phase matrix

obtained using QCA are then used as inputs in the radiative transfer (RT) equation.

We demonstrate the high emissivities of the sea foam compared with plain ocean

surface and study their angular and frequency dependences. Finally, we also consider

the effects of foam on large-scale ocean surface using a tilting model based on the

tangent-plane approximation. In this model, the polarimetric emission from the foam

on a tilted facet can be obtained from the foam on a flat surface through coordinate

transformation. We then use the Cox-Munk slope distribution to perform the aver-

aging of Stokes vector over all slopes. The resulting brightness temperatures show

interesting dependences in polar angle and azimuthal angle. Thus the foam emission

model presented here is capable of relating the observed brightness temperatures to

the microstructure of foam as well as to ocean wind speed and direction.



Appendix A

Computational Elements in Vector

Spheroidal Wavefunction

Expansions

A.1 Vector Spheroidal Wavefunctions

For computational purposes, it is convenient to express the vector spheroidal wave-

functions of (2.4) and (2.5) in partially separable forms. Explicit expressions of M

and N in component forms can be found in Flammer’s monograph on spheroidal

wavefunctions [29]. They can be manipulated to yield

Mβ;pmn =
d

2hβ

dTpmn

dφ
M̃β;mn(η, ξ) (A.1)

Mφ;pmn =
d

2hφ
Tpmn(φ)M̃φ;mn(η, ξ) (A.2)

Nβ;pmn =
1

c

d

2hβ
Tpmn(φ)Ñβ;mn(η, ξ) (A.3)

Nφ;pmn =
1

c

d

2hφ

dTpmn

dφ
Ñφ;mn(η, ξ) (A.4)
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where β = η, ξ and hβ, hφ are the metric coefficients for the prolate spheroidal coor-

dinates:

hη =
d

2

√
ξ2 − η2

1− η2
, hξ =

d

2

√
ξ2 − η2

ξ2 − 1
, hφ =

d

2

√
(1− η2)(ξ2 − 1) (A.5)

The modified vector wavefunctions in (A.1)–(A.4) can be written as:

M̃β;mn(η, ξ) =F
(M)(1)
β;mn (ξ)G

(M)(1)
β;mn (η) (A.6)

M̃φ;mn(η, ξ) =
1

(ξ2 − η2)

2∑
t=1

F
(M)(t)
φ;mn (ξ)G

(M)(t)
φ;mn (η) (A.7)

Ñβ;mn(η, ξ) =
1

(ξ2 − η2)2

5∑
t=1

F
(N)(t)
β;mn (ξ)G

(N)(t)
β;mn (η) (A.8)

Ñφ;mn(η, ξ) =
1

(ξ2 − η2)

2∑
t=1

F
(N)(t)
φ;mn (ξ)G

(N)(t)
φ;mn (η) (A.9)

The functions F
(t)
mn(ξ) andG

(t)
mn(η) represent the separable parts of the vector spheroidal

wavefunctions. They are listed below.

For the M wavefunctions:

F (M)(1)
η;mn (ξ) =−ξRmn(ξ) (A.10)

G(M)(1)
η;mn (η) =

1

(1− η2)
Smn(η) (A.11)

F
(M)(1)
ξ;mn (ξ) =

1

(ξ2 − 1)
Rmn(ξ) (A.12)

G
(M)(1)
ξ;mn (η) = ηSmn(η) (A.13)

F
(M)(1)
φ;mn (ξ) = (ξ2 − 1)ξRmn(ξ) (A.14)

G
(M)(1)
φ;mn (η) = (1− η2)

dSmn

dη
(A.15)

F
(M)(2)
φ;mn (ξ) =−(ξ2 − 1)

dRmn

dξ
(A.16)

G
(M)(2)
φ;mn (η) = (1− η2)ηSmn(η) (A.17)
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For the N wavefunctions:

F (N)(1)
η;mn (ξ) = 2ξ(ξ2 − 1)

dRmn

dξ
− (ξ2 − 1)(λmn − c2ξ2)Rmn(ξ) +m2Rmn(ξ)(A.18)

G(N)(1)
η;mn (η) = ηSmn(η) (A.19)

F (N)(2)
η;mn (ξ) =−(λmn − c2ξ2)Rmn(ξ) (A.20)

G(N)(2)
η;mn (η) = (1− η2)ηSmn(η) (A.21)

F (N)(3)
η;mn (ξ) =m2(ξ2 − 1)Rmn(ξ) (A.22)

G(N)(3)
η;mn (η) =

1

(1− η2)
ηSmn(η) (A.23)

F (N)(4)
η;mn (ξ) = (ξ2 − 1)2

[
ξ
dRmn

dξ
+Rmn(ξ)

]
(A.24)

G(N)(4)
η;mn (η) =

dSmn

dη
(A.25)

F (N)(5)
η;mn (ξ) = ξ(ξ2 − 1)

dRmn

dξ
+ (3ξ2 − 1)Rmn(ξ) (A.26)

G(N)(5)
η;mn (η) = (1− η2)

dSmn

dη
(A.27)

F
(N)(1)
ξ;mn (ξ) = (ξ2 − 1)

[
−2
dRmn

dξ
+

(
λmn − c2 +

m2

ξ2 − 1

)
ξRmn(ξ)

]
(A.28)

G
(N)(1)
ξ;mn (η) =Smn(η) (A.29)

F
(N)(2)
ξ;mn (ξ) = 3(ξ2 − 1)

dRmn

dξ
+

[
(ξ2 − 2)c2 + λmn +

m2

ξ2 − 1

]
ξRmn(ξ) (A.30)

G
(N)(2)
ξ;mn (η) = (1− η2)Smn(η) (A.31)

F
(N)(3)
ξ;mn (ξ) =

dRmn

dξ
+ c2ξRmn(ξ) (A.32)

G
(N)(3)
ξ;mn (η) = (1− η2)2Smn(η) (A.33)

F
(N)(4)
ξ;mn (ξ) = (ξ2 − 1)

dRmn

dξ
− 2ξRmn(ξ) (A.34)

G
(N)(4)
ξ;mn (η) = (1− η2)η

dSmn

dη
(A.35)

F
(N)(5)
ξ;mn (ξ) =

dRmn

dξ
(A.36)

G
(N)(5)
ξ;mn (η) = (1− η2)2η

dSmn

dη
(A.37)
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F
(N)(1)
φ;mn (ξ) = (ξ2 − 1)

[
ξ
dRmn

dξ
+Rmn(ξ)

]
(A.38)

G
(N)(1)
φ;mn (η) =Smn(η) (A.39)

F
(N)(2)
φ;mn (ξ) =Rmn(ξ) (A.40)

G
(N)(2)
φ;mn (η) = (1− η2)

[
Smn(η) + η

dSmn

dη

]
(A.41)

A.2 Coupling Matrices and System Matrices

The definitions for the coupling matrices are given below:

Iξ(n
′, n) =

2n′ + 1

2

(n′ −m)!

(n′ +m)!

∫ 1

−1

dηPm
n′ (η)M̃ξ;mn(η, ξo) (A.42)

Iη(n
′, n) =

2n′ + 1

2

(n′ −m)!

(n′ +m)!

∫ 1

−1

dηPm
n′ (η)(1− η2)M̃η;mn(η, ξo) (A.43)

Iφ(n
′, n) =

2n′ + 1

2

(n′ −m)!

(n′ +m)!

∫ 1

−1

dηPm
n′ (η)M̃φ;mn(η, ξo) (A.44)

Jξ(n
′, n) =

2n′ + 1

2

(n′ −m)!

(n′ +m)!

∫ 1

−1

dηPm
n′ (η)Ñξ;mn(η, ξo) (A.45)

Jη(n
′, n) =

2n′ + 1

2

(n′ −m)!

(n′ +m)!

∫ 1

−1

dηPm
n′ (η)(1− η2)Ñη;mn(η, ξo) (A.46)

Jφ(n
′, n) =

2n′ + 1

2

(n′ −m)!

(n′ +m)!

∫ 1

−1

dηPm
n′ (η)Ñφ;mn(η, ξo) (A.47)

The explicit expressions of M̃β;mn(η, ξo) and Ñβ;mn(η, ξo) for β = η, ξ, φ are given in

Appendix I. Once they are determined, the integrals can be easily evaluated numeri-

cally by Gaussian quadrature.

The system matrices Zβ and W β are given as follows. We distinguish the cases of
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even and odd excitations by defining

ri =

{
2i+m− 2 for even excitation

2i+m− 1 for odd excitation
(A.48)

The matrices Zβ are of size LT × 2LT . For i, j = 1, ..., LT ,

Zξ(i, j) =µr

[
dQm

ri

dξo

]−1

Jξ(ri, rj) (A.49)

Zξ(i, j + LT ) =µr

[
dQm

ri

dξo

]−1

mIξ(ri, rj ± 1) (A.50)

Zη(i, j) = Jη(ri + 1, rj)− γ1m(ri + 2)Qm
ri+2(ξo)Zξ(i+ 1, j)

+γ2m(ri)Q
m
ri

(ξo)Zξ(i− 1, j) (A.51)

Zη(i, j + LT ) =mIη(ri + 1, rj ± 1)− γ1m(ri + 2)Qm
ri+2(ξo)Zξ(i+ 1, j + LT )

+γ2m(ri)Q
m
ri

(ξo)Zξ(i− 1, j + LT ) (A.52)

Zφ(i, j) =mJφ(ri, rj)−mQm
ri

(ξo)Zξ(i, j) (A.53)

Zφ(i, j + LT ) =−Iφ(ri, rj ± 1)−mQm
ri

(ξo)Zξ(i, j + LT ) (A.54)

In (A.50), (A.52), and (A.54), the upper sign is for even excitation and the lower sign

is for odd excitation.

The matrices W β are of size LT × LT . For i, j = 1, ..., LT ,

Wξ(i, j) =−
[
dQm

ri

dξo

]−1 dPm
ri

dξo
δij (A.55)

Wη(i, j) =−γ1m(ri)
[
Pm

ri
(ξo)δ(i+1)j +Qm

ri
(ξo)Wξ(i+ 1, j)

]
+γ2m(ri + 2)

[
Pm

ri+2(ξo)δ(i−1)j +Qm
ri+2(ξo)Wξ(i− 1, j)

]
(A.56)

Wφ(i, j) =−m
[
Pm

ri
(ξo)δij +Qm

ri
(ξo)Wξ(i, j)

]
(A.57)

where δij is the Kronecker delta.
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Appendix B

Electric Dipole and Quadrupole

Basis Functions

The explicit expressions for the dipole and quadrupole basis functions fα with α =

1, 2, . . . , 8, along with the self-patch coefficients Cα, are given in this appendix. The

coordinates used here are with respect to the body axes of the spheroid. Note that

for a prolate spheroid with semiaxes a and c, the focal distance is d = 2
√
c2 − a2, and

the surface of the spheroid is specified by ξ = ξo with ξo = c/
√
c2 − a2. The volume

of the spheroid is v = (4π/3)a2c.

From Eq. (3.19), the Laplace solutions are

Φ1 =−ηξ = −
(

2

d

)
z (B.1)

Φ2 =−(1− η2)1/2(ξ2 − 1)1/2 cosφ = −
(

2

d

)
x (B.2)

Φ3 =−(1− η2)1/2(ξ2 − 1)1/2 sinφ = −
(

2

d

)
y (B.3)

Φ4 =
1

4
(3η2 − 1)(3ξ2 − 1) = −

(
2

d

)2
3

2

[
z2 − 1

2
(x2 + y2)

]
+

1

2
(B.4)

Φ5 =−9ηξ(1− η2)1/2(ξ2 − 1)1/2 cosφ = −9

(
2

d

)2

zx (B.5)
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Φ6 =−9ηξ(1− η2)1/2(ξ2 − 1)1/2 sinφ = −9

(
2

d

)2

zy (B.6)

Φ7 =−9(1− η2)(ξ2 − 1) cos 2φ = −9

(
2

d

)2

(x2 − y2) (B.7)

Φ8 =−9(1− η2)(ξ2 − 1) sin 2φ = −18

(
2

d

)2

xy (B.8)

The normalization factors of (3.24) give

N1 =N2 = N3 =

(
2

d

)2

v (B.9)

N4 =

(
2

d

)4
9

10
v(a2 + 2c2) (B.10)

N5 =N6 =

(
2

d

)4
81

5
v(a2 + c2) (B.11)

N7 =N8 =

(
2

d

)4

(18)2 2

5
va2 (B.12)

Thus the normalized basis functions are, in Cartesian coordinates,

f 1 =
1√
v
ẑ (B.13)

f 2 =
1√
v
x̂ (B.14)

f 3 =
1√
v
ŷ (B.15)

f 4 =

√
5

2v(a2 + 2c2)
(2zẑ − xx̂− yŷ) (B.16)

f 5 =

√
5

v(a2 + c2)
(xẑ + zx̂) (B.17)

f 6 =

√
5

v(a2 + c2)
(yẑ + zŷ) (B.18)

f 7 =

√
5

2va2
(xx̂− yŷ) (B.19)

f 8 =

√
5

2va2
(yx̂+ xŷ) (B.20)
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From (3.43), the self-patch coefficients can be obtained. They are given by

C1 =−(εs − 1)
(
ξ2o − 1

) [
ξo
2

ln

(
ξo + 1

ξo − 1

)
− 1

]
+ i(εs − 1)

2

3
k3v (B.21)

C2 =C3 =
1

2
(εs − 1)ξo

[
ξ2o − 1

2
ln

(
ξo + 1

ξo − 1

)
− ξo

]
+ i(εs − 1)

2

3
k3v (B.22)

C4 =−(εs − 1)
3ξo
2

(
ξ2o − 1

) [
1

2

(
3ξ2o − 1

)
ln

(
ξo + 1

ξo − 1

)
− 3ξo

]
(B.23)

C5 =C6 = (εs − 1)
(ξ2o − 1)

2

(
2ξ2o − 1

) [
3ξo
2

ln

(
ξo + 1

ξo − 1

)
− 3ξ2o − 2

ξ2o − 1

]
(B.24)

C7 =C8 = −(εs − 1)

(
ξ2o − 1

4

)
ξo

[
3

2

(
ξ2o − 1

)
ln

(
ξo + 1

ξo − 1

)
− 3ξ3o − 5ξo

ξ2o − 1

]
(B.25)
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Appendix C

Dyadic Green’s Function for

Uniaxial Medium

In this appendix, we derive the low-frequency limit of the dyadic Green’s function

for an uniaxial medium. Consider a homogeneous uniaxial medium with permittivity

tensor given by

ε = ε


εa 0 0

0 εa 0

0 0 εc

 (C.1)

The relative permittivity is ε = ε/ε. The dyadic Green’s function satisfies the vector

wave equation

∇×∇×G(r, r′)− k2 ε G(r, r′) = Iδ(r − r′) (C.2)

where k = ω
√
εµ. In the spectral domain, the dyadic Green’s function can be written

as

G(r, r′) =

∫
dp

(2π)3
eip·(r−r

′) G(p) (C.3)

Putting (C.3) into (C.2), we obtain

G
−1

(p) = p2(I − p̂ p̂)− k2ε (C.4)
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For the special case of isotropic medium, ε = I. Then

G
−1

o (p) = (p2 − k2)I − p p (C.5)

In component form,

G
−1

(p) =


p2 − p2x − k2εa −pxpy −pxpz
−pypx p2 − p2y − k2εa −pypz
−pzpx −pzpy p2 − p2z − k2εc

 (C.6)

The dispersion relation for the characteristic waves can be found by setting

detG
−1

(p) = 0 (C.7)

which yields

1

εa
p2 = k2 (C.8)

1

εc
(p2x + p2y) +

1

εa
p2z = k2 (C.9)

Eqs. (C.8) and (C.9) give the dispersion relations that correspond to the familiar

ordinary and extraordinary waves of an uniaxial crystal [101].

The Fourier integral in (C.3) can be performed to give a closed form expression

for the coordinate representation of the dyadic Green’s function [102, 103].

G(r, r′) =
1

4π
√
εa

[(
A+

1

k2
∇∇

)
eikRe

Re

+ F 1(R) + F 2(R)

]
(C.10)

where

F 1(R) =

[
εa
eikRo

Ro

− εc
eikRe

Re

]
(R× ẑ)(R× ẑ)
|R× ẑ|2

(C.11)

F 2(R) =
eikRo − eikRe
ik|R× ẑ|2

[
I − ẑẑ − 2

(R× ẑ)(R× ẑ)
|R× ẑ|2

]
(C.12)
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Ro =
√
εaR (C.13)

Re =
[
R

t · A ·R
]1/2

(C.14)

and

A =


εc 0 0

0 εc 0

0 0 εa

 (C.15)

Similar to the isotropic Green’s function, the uniaxial Green’s function contains a

non-integrable source singularity at r = r′ as a result of the term

1

4π
√
εa
∇∇e

ikRe

Re

(C.16)

In the low-frequency limit, this gives rise to the leading real part of the Green’s

function. Let

ge(Re) =
1

4πRe

(C.17)

K = k2
√
ε (C.18)

B=
√
εa


1 0 0

0 1 0

0 0 α

 (C.19)

where

α =
εc
εa

(C.20)

The leading order real part of the dyadic Green’s function is then given by

ReG(r, r′)→ −K
−2
Nδ(r − r′) (C.21)

where

N = −B
∫
dSn̂∇ge(Re) (C.22)
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with the integration taken over the surface of the exclusion volume [59]. For an exclu-

sion volume of a prolate spheroid, it is straightforward to show that N corresponds

to the depolarization tensor L of the isotropic Green’s function [Eqs. (4.52)–(4.54)],

but it is now computed with a modified eccentricity of

˜̃e =

√
1− αa

2

c2
(C.23)

More explicitly, let N = Nax̂x̂+Nax̂x̂+Ncẑẑ. Then

Nc =−(1− ˜̃e2)
˜̃e2

[
1 +

1

2˜̃e
ln

(
1− ˜̃e

1 + ˜̃e

)]
(C.24)

Na =
1

2
(1− Lc) (C.25)

The leading imaginary part of the dyadic Green’s function gives rise to the radia-

tive correction. By Taylor expansion of (C.10) for small k, we get

ImG(r, r′)→ i

6π
KM (C.26)

where

M =


3
4

+ α
4

0 0

0 3
4

+ α
4

0

0 0 1√
α

 (C.27)

In contrast to the low-frequency expansion of the isotropic Green’s function, the

radiative correction in an uniaxial medium is anisotropic.
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