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Abstract

This thesis discusses the interaction of atmosphere and ocean in midlatitudes on
interannual and decadal timescales. We investigate the extent to which mutually-
coupled atmosphere-ocean feedback can explain the observed coupled variability on
these timescales, and look for preferred modes of atmospheric response to forcing by
sea-surface temperature anomalies.

First, we formulate and study a very simple analytical model of the mutual interac-
tion of the middle-latitude atmosphere and ocean. The model is found to support cou-
pled modes in which oceanic baroclinic Rossby waves of decadal period grow through
positive coupled feedback between the thermal forcing of the atmosphere induced by
associated SST anomalies and the resulting windstress forcing of the ocean. Growth
only occurs if the atmospheric response to thermal forcing is equivalent barotropic,
with a particular phase relationship with the underlying SST anomalies. The depen-
dence of the growth rate and structure of the modes on the nature of the assumed
physics of air-sea interaction is explored, and their possible relation to observed phe-
nomena discussed.

We then construct a numerical model with the same physics; this enables us to
consider the effects of nontrivial boundary conditions and background flows within
the model. We find that the finite fetch of a closed ocean basin reduces growth rate
and can lead to decay. However, the coupled mode described above remains the
least-damped, and is thus the pattern most easily energized by stochastic forcing.
Using a non-uniform atmospheric background flow focuses perturbation energy into
particular areas, so that the coupled mode’s expression in the atmosphere becomes
fixed in space, rather than propagating. This improves the mode’s resemblance to
observed patterns of variability, such as the North Atlantic Oscillation, which are
generally stationary patterns which fluctuate in intensity.

The atmospheric component of the coupled mode exists in a balance between
Rossby-wave propagation and vorticity advection. This is the same balance as the
“neutral vectors” described by Marshall and Molteni (1993). Neutral vectors are the
right singular vectors of the linearized atmospheric model’s tendency matrix that have
the smallest eigenvalues; they are also the patterns that exhibit the largest response to
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forcing perturbations in the linear model. We explain how the coupled mode arises as
the ocean excites atmospheric neutral vectors. Neutral vectors act as pattern-specific
amplifiers of ocean SST anomalies.

We then proceed to study the neutral vectors of a quasigeostrophic model with
realistic mean flow. We find a striking similarity between these patterns and the
dominant patterns of variability observed in both the full nonlinear model and in the
real world. We provide a mathematical explanation for this connection.

Investigation of the “optimal forcing patterns” - the left singular vectors - proves
to be less fruitful. The neutral modes have equivalent barotropic vertical structure,
but their optimal forcing patterns are baroclinic and seem to be associated with low-
level heating. But the horizontal patterns of the forcing patterns are not robust, and
are sensitive to the form of the inner product used in the SVD analysis. Additionally,
applying “optimal” forcing patterns as perturbations to the full nonlinear model does
not generate the response suggested by the linear model.

Thesis Supervisor: John Marshall
Title: Professor
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Chapter 1

Introduction

The existence of regionally-covarying “teleconnection” patterns in the atmosphere has

been known for most of the past century (Walker & Bliss, 1932); Wallace & Gutzler

(1981) provide an overview of the most prominent of these patterns. More recently,

there has been a growing body of literature that documents the variability of these

patterns on interannual and decadal timescales, and examines their covariance with

oceanic fields.

One of these teleconnection patterns, the North Atlantic Oscillation, was identified

by Walker & Bliss (1932), but has recently come to prominence through timeseries

analysis conducted by Hurrell (1995) and others. Hurrell’s NAO index is given by the

normalized difference between sea-level pressure in Iceland and the Azores. This index

captures the variability of the first EOF of monthly sea-level pressure changes over

the North Atlantic (Cayan 1992a,b) – a dipole pattern with centers over the subpolar

and the subtropical North Atlantic (see Figure 1-1). This pattern exhibits variability

on all timescales, but has some interesting interannual behavior. This atmospheric

pattern shows significant 1-year lag-correlations during the winter months, resulting

in a reddened spectrum; this lag-correlation disappears in the summer. In light of the

strong seasonal cycle, rapid fluctuation, and strong thermal damping of atmospheric

anomalies, it is rather surprising that these anomalies persist from winter to winter.

This has led many (see below) to propose a coupling between atmosphere and ocean to

provide a long-term “memory” for the NAO pattern – but arguments to the contrary
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(James & James 1989, discussed below) also exist.

Cayan (1992a,b), Deser & Blackmon (1993), and Sutton & Allen (1997) describe

patterns covariant between atmosphere and ocean. A “tripole” pattern of sea surface

temperature, with centers of action south of Greenland, west of the eastern U.S., and

in the tropics, is found to covary with the NAO. (See Figure 1-1). Kushnir (1994) also

discusses the structure of interannual atmospheric and SST variability in the Atlantic,

and shows structural differences between interannual and interdecadal variability.

Responses to the NAO may extend deeper than the ocean mixed layer. Dickson et

al. (1996), McCartney et al. (1997), and Curry & McCartney (1997) find coordinated

changes in Labrador Sea Water thickness in the North Atlantic which appear to be

connected with the state of the NAO.

Several authors have found evidence for enhanced interannual or decadal variabil-

ity, or spectral peaks, in observations of mid-latitude variability patterns. Deser &

Blackmon (1993) show an apparent enhancement of variability on timescales of about

12 years for an NAO-like atmospheric pattern and a covariant SST pattern. Hurrell’s

(1995) winter NAO index shows enhanced variability in the 6-10 year range. Latif et

al. find a coupled mode with an NAO-like atmospheric expression and strong decadal

variability in their ECHO-1 coupled model; the model shows a similar signal with

longer period in the Pacific. Sutton & Allen (1997) claim to see a repetitive cycle

of slow propagation of SST anomalies along the Gulf Stream. These SST anoma-

lies covary with a dipolar atmospheric pattern, and a regular period of 12-14 years.

It should be emphasized that many of these spectral peaks are uncomfortably near

the level of statistical insignificance, and the observations of mutually coupled in-

teraction on these timescales are a matter of debate (Bretherton & Battisti, 2000;

Czaja & Mashall, 2000a). In newer work, Czaja & Marshall (2000b) find a coupled

atmosphere-ocean pattern similar to but not identical to the NAO / SST tripole,

which shows significantly enhanced variability in the 10-20 year band.

While most of the work on interannual midlatitude variability has been done in the

northern hemisphere, interesting signals have been observed in the Southern Ocean.

White & Peterson (1996) and Jacobs & Mitchell (1996) have observed an“Antarctic

12
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Figure 1-1: The dominant mode of Atlantic atmosphere/ocean variability. Data
provided by A. Czaja. Top: Geopotential height anomaly (contour interval 5 gpm)
at 500 mbar. Negative values dashed. Bottom: Covariant SST anomaly pattern.
Contour interval 0.1 K, positive values shaded, negative values dashed.
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Circumpolar Wave” (ACW), a wavenumber-2 pattern seen in atmospheric pressure,

sea-surface height, and SST which propagates around Antarctica every 4-5 years.

However, data in this region are sparse, and the available timeseries are rather short.

While observations of interannual variability in the midlatitude atmosphere and

ocean are abundant, the underlying dynamical causes of this variability remain ob-

scure. We do not yet know whether the dynamics are coupled or uncoupled, nor do

we know the relative importance of the ocean and atmosphere on decadal time-scales.

Does variability arise through internal instabilities in one component only, which

communicates these changes to its passive partner, or does it arise through mutual

interactions of the two systems? Useful review of these issues is given by Palmer

(1996) and McCartney (1997). Frankignoul (1985) concisely reviews middle-latitude

atmosphere-ocean interactions.

Many researchers suggest the atmosphere generates the climate variations on its

own, and the ocean reacts passively to that stimulus. Some modeling studies (e.g.,

James & James, 1989) show that a model atmosphere is capable, in the presence of

fixed surface boundary conditions (fixed ocean), of exhibiting long term persistent

(climate) states, in clear contradiction to the usual assertion that the atmosphere

has no memory longer than about one month. Atmospheric general circulation mod-

els, forced with temporally non-varying SSTs, display fluctuations that resemble the

spatial structure of observed modes of variability such as the NAO (Barnett, 1985,

Marshall & Molteni, 1993) but do not capture the reddening of observed spectra.

The idea that much of observed climate variability can be explained as the integral

response of the slowly varying parts of the climate system to stochastic atmospheric

variability was first proposed by Hasselmann (1976) and Frankignoul & Hasselmann

(1977); see also Cayan (1992a,b), Battisti et al. (1995) and Hall & Manabe (1997).

Frankignoul et al. (1996) have shown that decadal time-scales in a dynamical ocean

can be generated through the response of oceanic baroclinic Rossby waves to stochas-

tic wind stress forcing. Griffies & Tziperman (1995) attribute decadal fluctuations

of the thermohaline circulation evident in coupled integrations to stochastic atmo-

spheric forcing. But the purely stochastic model, in which the ocean responds to
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stochastic atmospheric forcing without feedback, is inconsistent with the observed

reddening of atmospheric spectra (see, for example, Deser & Blackmon; 1993), and

with the observed lead-correlations between atmospheric and SST anomalies (Czaja

& Frankignoul, 1999).

One possible mechanism which could account for a reddened atmospheric spec-

trum is that the ocean ’imprints’ itself back on the atmosphere on longer time-scales.

The atmospheric response could itself drive the ocean, resulting in an “actively cou-

pled” mutual dynamic interaction between the fluids, or the feedback to the ocean

could be unimportant, resulting in a “passively coupled” response. Passive coupling

is a feature of the models studied by Saravanan & McWilliams (1997, 1998) and Weng

& Neelin (1996). Latif & Barnett (1996) provide an example of active coupling: their

model produces self-sustained decadal oscillations in the coupled atmosphere-ocean

system. Rodwell et al. (1999) find that a large fraction of the variance of the NAO

can be hindcast given knowledge of SST anomalies. This suggests a feedback of ocean

onto atmosphere (of either an ‘active’ or ‘passive’ nature), but the utility and impor-

tance of this result is a matter of debate. (Bretherton & Battisti 2000, Czaja &

Marshall, 2000a)

Several authors have published highly-simplified models which attempt to inves-

tigate coupled behavior from a theoretical point of view, isolating aspects of the

physics of atmosphere-ocean coupling and demonstrating physical processes which

can lead to coupled interaction. (Frankignoul et al. (1996), Cessi and Gallego (2000),

Latif et al. (1996), Goodman and Marshall (1999), Marshall, Johnson, and Goodman

(2000)) These studies invoke a variety of different and often incompatible mechanisms

of air-sea transfer mechanisms atmospheric dynamics, but they share the idea that

the propagation of oceanic baroclinic Rossby waves provide the “metronome” which

regulates interannual-decadal oscillations. Such waves have decadal periods similar

to the observed timescales of variability.

In the second chapter of this thesis, we present the work published in Goodman

and Marshall (1999). We construct an analytical model of active coupling and study

how a dynamical ocean in middle and high latitudes might actively couple to the
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atmosphere. We formulate and analyze a simple coupled atmosphere-ocean model

in which atmospheric planetary waves respond to SST. SST depends on ocean cir-

culation, which is in turn driven by the wind-stress, leading to full-circle coupled

interaction. Growing modes of decadal period are found; we study their form and

dependence on the coupling physics assumed.

In Chapter 3, we elaborate the simple analytical model to study the behavior of the

coupled mode in a restricted domain, and with more complicated basic states. This

is achieved by developing a numerical model with the same physics as described in

the previous chapter. This work points strongly to the importance of nearly-resonant

atmospheric patterns, dubbed “neutral vectors” by Marshall & Molteni (1993), in

setting the structure of the coupled mode.

In the fourth chapter, we take a closer look at these neutral vectors. First, we

investigate the relationship between neutral vectors and the EOFs of a purely at-

mospheric model. Having established a connection between these patterns, we then

attempt to identify the forcing patterns which will most strongly excite the neutral

vectors. If the ocean SST projects strongly onto these optimal forcing patterns, a

strong atmospheric response is likely, and an actively coupled atmosphere-ocean in-

teraction is possible. One goal of this chapter is to answer the question, “what thermal

forcing pattern generates the NAO pattern?”
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Chapter 2

An analytical model of decadal

middle-latitude atmosphere-ocean

coupled modes

In this chapter, we discuss the analytical model of atmosphere-ocean interaction pub-

lished by John Marshall and myself in 19991. The goal of this chapter is to investigate

a mechanism by which atmosphere and ocean can interact in midlatitudes to produce

interannual variability. We analyze the model solutions, and compare the model’s

variability with observed patterns, especially the North Atlantic Oscillation.

In Section 2.1, the coupled model is formulated. In Section 2.2, the dispersion

relation and structure of the coupled modes is derived. In Section 2.3, we discuss

these solutions in the context of observations of observed phenomena such as the

Antarctic Circumpolar Wave and the North Atlantic Oscillation, and their parameter

1The contents of this chapter are c©copyright 1999 American Meteorological Society (AMS).
Permission to use figures, tables, and brief excerpts from this work in scientific and educational
works is hereby granted provided that the source is acknowledged. Any use of material in this
work that is determined to be “fair use” under Section 107 or that satisfies the conditions specified
in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require
the Society’s permission. Republication, systematic reproduction, posting in electronic form on
servers, or other uses of this material, except as exempted by the above statements, requires written
permission or license from the AMS. Additional details are provided in the AMS Copyright Policies,
available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to reproduce this
work here has been provided by the AMS. The AMS does not guarantee that the copy provided here
is an accurate copy of the published work.
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sensitivity. Conclusions are presented in Section 2.4.

2.1 Model Formulation

2.1.1 Overview

Our model comprises a quasi-geostrophic atmosphere overlying a quasi-geostrophic

ocean, characterized by their respective potential vorticities (QGPV) and streamfunc-

tion distributions and governed by prognostic QGPV equations on a beta-plane.

The atmosphere, imagined to be bounded above by a lid and below by the ocean,

is governed by the equation:

D

Dt
qa = fo

∂

∂z

(
Qa

∂
∂z
θa

)
− ε∇2ψas ATMOSPHERE (2.1)

Here D
Dt

is the Lagrangian derivative and qa is the quasi-geostrophic potential vorticity:

qa = ∇2ψa + βy + f 2
o

∂

∂z

(
1

N2
a

∂

∂z
ψa

)

expressed in terms of the atmospheric streamfunction ψa. fo is a reference value of

the Coriolis parameter f , the meridional gradient of f is β, N 2
a = 1

θa0

∂
∂z
θa is the atmo-

spheric Brunt-Väisälä buoyancy frequency, θa the atmospheric potential temperature

with θa0 a typical value, and Qa is the diabatic heating rate of the atmosphere defined

by:
D

Dt
θa = Qa (2.2)

In (2.1), ε∇2ψas represents frictional sinks of vorticity associated with Ekman layers

at the surface with ε−1 a frictional spin-down time.

We suppose that a radiative-convective equilibrium temperature, θ∗a, controls the

thermal forcing of the atmosphere thus:

Qa = −γa(θa − θ∗a) (2.3)
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Here γ−1
a is a time-scale set by the radiative-convective process; θ∗a is a radiative-

convective temperature profile to which θa relaxes, which is assumed to be a function

of sea-surface temperature thus:

θ∗a = θ∗a(SST) (2.4)

The form, (2.3) and (2.4), makes sense as a simple and physically plausible rep-

resentation of convective heating of the troposphere, permitting the heating field to

be a function of the state of both the atmosphere and the ocean. That heating will

initiate a dynamical response of the atmosphere and change the winds that blow over

the ocean.

The equations governing the ocean are:

D

Dt
qo = fo

∂

∂z

(
Qo

∂
∂z
θo

)
+

1

ρo
k̂ · ∇ × ∂

∂z
τ OCEAN (2.5)

where qo is the oceanic QGPV:

qo = ∇2ψo + βy + f 2
o

∂

∂z

(
1

N2
o

∂

∂z
ψo

)

ψo is an oceanic streamfunction, N 2
o is an oceanic Brunt-Väisälä frequency, Qo is the

diabatic heating of the interior of the ocean and τ is the mechanical stress supplied

by the surface wind. The stress at the ocean’s surface is a function of the velocity of

the wind at the surface:

τs = τs(ψs) (2.6)

The evolution of the oceanic mixed-layer temperature, which we assume is syn-

onymous with sea-surface temperature, is

(
∂

∂t
+ v · ∇

)
SST = Qo SEA SURFACE TEMPERATURE (2.7)

Here the horizontal velocity in the mixed layer is v, the sum of an Ekman and

geostrophic components (v = vek + vg), and Qo is the diabatic heating of the mixed
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layer induced by air-sea interaction and entrainment fluxes through the mixed-layer

base. There is no vertical advection in (2.7) because the mixed layer is assumed to

be vertically homogeneous.

Note that:

1. (2.1) and (2.2) are the starting point of analytical studies of atmospheric plane-

tary waves dating back to Charney and Eliassen (1949) and Smagorinski (1953).

2. If v = 0, then (2.7) reduces to a ‘slab ocean’, which responds on timescales

of several months (primarily via surface heat exchange and entrainment), de-

pending on the depth of the ‘slab’ - see, eg. Hasselman (1977); Frankignoul

and Hasselman (1977). On decadal time-scales, however, advective processes

may be important and SST changes may be dominated by gyre dynamics and

subduction processes: see Hall and Manabe (1997).

3. If the wind-curl is assumed to be a stochastic process and Qo = 0 in (2.5), then

it reduces to the ocean model analyzed by Frankignoul et al. (1996) in their

study of the response of the ocean to stochastic atmospheric forcing.

Clearly, (2.1) through (2.7) are highly simplified representations of the respective

fluids and their interaction. But the philosophy of our approach is to build our intu-

ition about the coupled problem in stages, by first fitting together simple pieces, and

then increasing the complexity of the component parts and their coupling. Heating

of the atmosphere depends, through (2.3) and (2.4), on the state of the ocean which,

in turn, depends on its forcing from the atmosphere via (2.6). We shall now go on to

study whether the above system supports coupled modes. Their existence will depend

on the form assumed for (2.3), (2.4), (2.6) and (2.7) i.e. on the nature of the bound-

ary layers of the two fluids and the manner in which they are assumed to interact

with one-another and the ‘free’ atmosphere/ocean above/below. To make analytical

progress our representations will, of necessity, be simple, but they are motivated by

sound physical principles.
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Figure 2-1: Vertical structure of the coupled model defining the key variables of the
coupled ocean-atmosphere system

2.1.2 Atmosphere

We will adopt the simplest representation of the equation set described in Section 2.1.1

which captures the essential dynamics — a two-level quasi-geostrophic atmosphere,

sketched schematically in Figure 2-1. This model is extremely simple and limited

in scope (particularly in its ability to resolve the vertical structure of atmospheric

heating) but it has been comprehensively studied and allows us to obtain analytical

solutions.2 Furthermore it is supposed that the atmosphere responds rapidly to ther-

mal forcing associated with SST anomalies when compared to interannual-to-decadal

time-scales, and so on these time-scales the atmosphere is assumed to be in steady

state. We therefore neglect the local time-derivative terms in the prognostic equa-

tions for the atmosphere, thus slaving it to SST. No attempt is made to represent the

rectified affects of high-frequency components on the steady circulation (the interac-

tion of synoptic eddies with the planetary-wave pattern, for example). We recognize

that this is an important process in nature, but one which is difficult to address in a

simple model.

2Lindzen et al. (1968) have argued that spurious vertical trapping of waves by the “rigid lid” of
this model may lead to false resonances. However, Panetta et al. (1987) show that for supercritical
shear (as here), this model’s response to forcing is actually quite accurate.
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For simplicity we also set ε = 0 in (2.1), thus obtaining the following the two-level,

steady-state quasi-geostrophic equations for the atmosphere (using the nomenclature

of Shutts, 1987)

J(ψ2, q2) =
gHS

2fL2
a

; J(ψ1, q1) = − gHS

2fL2
a

(2.8)

where S is the diabatic forcing, given by S = Qa

θa0

, θa0 is a typical atmospheric tem-

perature, and

q1 = ∇2ψ1 −
1

L2
a

(ψ1 − ψ2) + βy q2 = ∇2ψ2 +
1

L2
a

(ψ1 − ψ2) + βy

are the QGPVs at each level with L2
a = N2

aH2

4f2 the square of the atmospheric baroclinic

Rossby radius.

Taking the sum and difference of ψ and q to form the barotropic and baroclinic

streamfunction and PV, and using the notation (̂:) = (:)2 + (:)1; (̃:) = (:)1 − (:)2,

equations for the barotropic and baroclinic PV can be written thus:

J(ψ̂, q̂) + J(ψ̃, q̃) = 0 (barotropic) (2.9)

J(ψ̃, q̂) + J(ψ̂, q̃) = −2gHS
fL2

a

(baroclinic) (2.10)

where

q̂ = q2 + q1 = ∇2ψ̂ + 2βy q̃ = q1 − q2 = ∇2ψ̃ − 2

L2
a

ψ̃

Planetary β appears only in the barotropic PV; the stretching term appears only in

the baroclinic PV.

It should be noted that diabatic heating only directly forces the baroclinic PV

equation. However, because the baroclinic fields drive the barotropic PV equation

through (2.9), the atmosphere does not respond purely baroclinically. Thermal forcing

can yield an ‘equivalent barotropic’ response (anomalies of constant sign throughout

the atmosphere) and need not always result in first-baroclinic mode behavior. This

turns out to be crucial to the existence of coupled modes in our simple model — see

Section 2.2.
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2.1.2.1 Linearized model

We linearize the atmospheric equations around the simplest realistic state: uniform

zonal winds of differing magnitudes at levels 1 and 2. Again, defining barotropic and

baroclinic components: Û = U1 + U2; Ũ = U1 − U2 we have:

ψ̂ = ψ̂′ − Ûy ψ̃ = ψ̃′ − Ũy

Substituting in to (2.9) and (2.10) and neglecting quadratic terms in the perturbation

quantities, we have (after dropping the primes to simplify notation)

Barotropic PV equation:

Û
∂

∂x
(∇2ψ̂ + β̂y) + β̂

∂

∂x
ψ̂ + Ũ

∂

∂x
(∇2ψ̃ + β̃y) = 0 (2.11)

Baroclinic PV equation:

Ũ
∂

∂x
(∇2ψ̂ + β̂y) + β̃

∂

∂x
ψ̂ + Û

∂

∂x
(∇2ψ̃ − 2

L2
a

ψ̃ + β̃y) + β̂
∂

∂x
ψ̃ = −2gHS

fL2
a

(2.12)

where

β̂ = 2β (2.13)

enters as a beta-effect term in the barotropic PV 3 and

β̃ =
2

L2
a

Ũ (2.14)

plays the same role in the baroclinic PV. Note how two different mechanisms provide

the same effect: β̂ arises from changes in planetary vorticity; β̃ arises from vortex-

stretching when fluid moves against the sloping interface generated by the zonal mean

wind shear Ũ .

Following Shutts (1987), we specify a Newtonian relaxation of the temperature

perturbation (at level 1 1
2
) toward some equilibrium temperature anomaly δφ∗ (φ =

3The factor of 2 arises because we have defined the barotropic fields as vertical sums rather than
averages.
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ln θ; δφ = δθ
θa0

) on a radiative-convective equilibrium timescale 1/γa:

S = −γa(δφ− δφ∗) = −γa

(
2f

gH
ψ̃ − θ∗a

θa0

)
(2.15)

where we have expressed the temperature in the quasi-geostrophic model in terms

of the baroclinic streamfunction by using δφ = 2f
gH
ψ̃, employing the thermal wind

relation.

Inserting (2.15) into (2.12), we have

Ũ
∂

∂x
(∇2ψ̂+β̂y)+β̃

∂

∂x
ψ̂+Û

∂

∂x
(∇2ψ̃− 2

L2
a

ψ̃+β̃y)+β̂
∂

∂x
ψ̃ =

4γa

L2
a

(
ψ̃ − 1

ra
θ∗a

)
(2.16)

where

ra ≡ 2fθa0

gH

has units of (temperature/streamfunction), and converts atmospheric temperature to

baroclinic streamfunction through the thermal wind relation. Thus thermal forcing

of the atmosphere drives it toward an equilibration streamfunction ψ̃∗ = θ∗a/ra.

2.1.2.2 Thermally forced and equilibrated responses

The properties of the above system for a specified θ∗a are described in detail by Shutts

(1987) and Marshall and So (1990); see also Frankignoul (1985). Because of the form

chosen for the forcing function (2.15), the driving of the atmosphere by diabatic heat-

ing depends on the response of the atmosphere to that heating. In more conventional

forcing problems, S is prescribed as a fixed, and unchanging, function of space. Then

the thermal response of the atmosphere is always 90◦ out of phase with the heating

field (note the odd number of derivatives on the left side of (2.16), so that if S varies

sinusoidally the response will vary co-sinusoidally), either up-stream or downstream

depending on the strength of the wind relative to the free Rossby wave speed. Indeed

in Figure 2-2a, in which the zonal winds are chosen to be considerably stronger than

the free Rossby wave speed, we see lows at the surface, downstream of the warm-

ing and the vertical structure of the atmospheric response is baroclinic, with highs
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above lows and vice-versa. This is the classical picture of direct thermal forcing of

the atmosphere. However, Shutts (1987) shows that ‘equilibration’ can occur at the

scale of free, stationary Rossby waves if the forcing is assumed to be a function of the

atmosphere’s response as in (2.3). At equilibration the left and right sides of (2.16)

vanish independently. In this case (see Figure 2-2b), on a scale close to that at which

Rossby waves are stationary with respect to the ground, the response is ‘equivalent

barotropic’, with highs directly over warm θ∗a and lows over cold θ∗a. At this resonance

scale, the response of the atmosphere is not infinite, however. Rather the diabatic

heating rates become vanishingly small (equilibration occurs) as θa → θ∗a.

2.1.3 Ocean

We adopt quasi-geostrophic dynamics in a “1 1/2-layer” ocean, with a moving upper

layer and a very deep lower layer which remains at rest; there is a a rigid lid at the

surface (Pedlosky, 1987). Neglecting thermal PV sources (Qo = 0 in ( 2.5)), the

potential vorticity in the upper layer of ocean evolves according to (see Figure 2-1)

D

Dt
qo = ∇× τ

ρo0h

where

qo = ∇2ψo −
1

L2
o

ψo + βy

Here ψo is the oceanic streamfunction in the upper layer, L2
o ≡ gh∆ρ/ρo0

f2 is the square

of the oceanic baroclinic Rossby radius of deformation, with ρo0 a constant reference

value of density and ∆ρ the density difference between the two layers. Linearizing

about a state of rest we have:

∂

∂t

(
∇2ψo −

1

L2
o

ψo

)
+ β

∂

∂x
ψo =

1

ρo0

∇× τ

h

We are interested in motions with spatial extents (L) of thousands of km. The

Rossby radius in the ocean (Lo) is ∼50 km, so we may make the long-wave approx-

imation and neglect the relative vorticity contribution to the PV, giving our final
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Figure 2-2: Steady-state atmospheric response to thermal forcing (reproduced from
Shutts, 1987). Dashed curves: upper-level height anomaly, offset 150 gpm. Solid
curves: lower-level height anomaly. Dash-dotted curve: equilibration temperature
anomaly θ∗a, (amplitude 10◦ C). Shutts’ θ∗a profile is chosen to broadly represent land-
ocean differences in the wintertime northern hemisphere: θ∗a is higher over oceans
than land. a: Directly-forced response of atmospheric model to thermal forcing, with
(U1 = 10 m s−1, U2 = 5 m s−1). For the dominant wavenumber 3, µ = +1/3 from
(2.32) and ν

Γ
= 2.7, from (2.33) and (2.34): the response is baroclinic and strongly

phase-shifted. b: Equilibrated response, with (U1 = 20 m s−1, U2 = 7 m s−1). For
wavenumber 3, µ = −3, ν

Γ
= .5. Response is barotropic with ridges over warm θ∗a and

troughs over cold θ∗a; the phase shift is small.
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equation for the dynamic ocean:

− 1

L2
o

∂

∂t
ψo + β

∂

∂x
ψo =

1

ρo0
∇× τ

h
(2.17)

2.1.4 Coupling mechanisms

2.1.4.1 Windstress

With our simplified representations of atmosphere and ocean defined, we now specify

the mutual forcing between them. The model ocean’s circulation is forced by the stress

generated by the surface wind field. We suppose that the wind-stress perturbation is

proportional to the surface wind velocity perturbation, and set

1

ρo0
∇× τ

h
= α∇2ψs (2.18)

Here ψs = ψ2 + 1/2(ψ2 − ψ1) = (1/2)ψ̂ − ψ̃ is the atmospheric streamfunction ex-

trapolated to the surface. The numerical values of the constant of proportionality, α,

which depends on the air-sea drag coefficient, will be considered in Section 2.3.2.

2.1.4.2 Thermal Forcing

As in (2.4), we suppose that the atmosphere equilibrates to a temperature set by the

sea surface. For simplicity, we set the equilibration temperature anomaly equal to

SST′:

θ∗a = SST′ (2.19)

How shall we determine the sea-surface temperature? Following Frankignoul

(1985), we begin with the following equation for the evolution of mixed-layer temper-

ature anomalies (assumed synonymous with SST):

hmix
∂

∂t
SST′ = − λo

ρCp

(SST′ − θ′a) − hmix
~u′ · ∇SST − we(SST′ − θsub) (2.20)

where hmix is the mixed-layer depth, SST’ is the sea surface temperature anomaly,
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θ′a is the surface air temperature, λo is the linearized coefficient of combined latent,

sensible, and longwave heat flux, u′ is the anomaly in current in the mixed layer,

∇SST is the mean SST gradient, we is the entrainment velocity at the base of the

mixed layer, and θsub is the temperature of the thermal anomaly being entrained.

If the θ′a induced by the SST anomaly does not exceed the SST anomaly itself (a

reasonable assumption on interannual and longer timescales) then the terms in our

SST equation have the following magnitudes:

σ ∼ λo

Co

+ U
∇SST

SST′ +
we

hmix

where σ is the frequency at which SST is changing, Co = ρcphmix is the heat capacity

of the mixed layer of depth hmix, and U is a measure of the strength of the current

anomaly.

On interannual/decadal timescales σ ∼ 2π
10 yr

∼ 2 · 10−8s−1. Estimates of the

atmospheric heat flux feedback, λo, are given in Frankignoul et al. (1997) and Barsugli

& Battisti (1997) and suggest a value of λo ∼ 20 W m−2K−1. The heat capacity of

a mixed layer of depth 100 m is Co ∼ 4 · 108 J m−2K−1 and so λo/Co ∼ 5 · 10−8 s−1,

of the same order as σ. In the advection term, a circulation anomaly associated with

a 1◦ SST anomaly might be 2 cm/s, so given a 10◦ /3000 km mean meridional SST

gradient, the advection term is ∼ 7 ·10−8 s−1. Finally, consider the entrainment term.

During the summer we is close to zero, but we is large during the rapid deepening

of the mixed layer in the winter. If the mixed-layer deepens to 200m during the

six winter months (its thickness h averaging 100m over this period) then we/hmix ∼
1

100
200
.5 yr

= 1.3 ·10−7 s−1. The observed annual mean is roughly 7 ·10−8 s−1 over most of

the mid-latitude oceans, being zero during summer restratification and large during

winter (Frankignoul, 1985).4

Our scaling suggests that each of the terms in the SST equation plays a non-

negligible role on decadal timescales; other dynamics may be more relevant on shorter

4Note that we represents the downward velocity of the entraining base of the mixed layer through
the underlying ocean: it is not related to the large-scale upwelling of fluid associated with the
thermohaline overturning.
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timescales. Thus, retaining all terms and defining the air-sea flux timescale γo =

λo/Co and the entrainment timescale γe = we/hmix, our SST equation can be written:

∂

∂t
SST′ = −γo(SST′ − θ′a) − ~u′ · ∇SST − γe(SST′ − θ′sub) (2.21)

We see that the mixed-layer temperature anomaly in our model is driven towards

that of the atmosphere by surface fluxes, is driven towards that of the sub-surface

thermal anomaly by the entrainment process, and is warmed and cooled by the ad-

vection of mean meridional SST gradient by ocean currents generated by a perturbed

thermocline (see Figure 2-3). The longevity of the properties of the subsurface ocean

is communicated to the SST by the entrainment and advection processes, providing

memory from one year to the next.

Before going on it should be mentioned that the idea of entrainment-forcing of

SST anomalies resembles that which is often employed in studies of equatorial coupled

dynamics in which SST depends on the temperature of upwelled fluid — see Cane

et al. (1990); Neelin et al. (1994). However, in the present context, there are

some differences of interpretation. Here we interpret the relaxation term in (2.21)

as representing the coupling of SST anomalies to deep thermal anomalies which are

re-exposed to the surface every winter.

We now assume that θ′sub evolves via adiabatic undulation of isopycnal surfaces

underlying the mixed layer: where the isopycnals are perturbed upward, cold water is

brought toward the surface, lowering θ′sub (and thus SST), and vice-versa (see Figure

2-3):

∂

∂t
θ′sub + w

∂

∂z
θo = 0

where w is the vertical velocity and ∂
∂z
θo is a measure of the stratification of the

upper ocean. Setting w = ∂η
∂t

and integrating both sides with respect to time, the

deep thermal anomaly is

θ′sub = −η ∂
∂z
θo = η

N2
o

εg
=

1

gε

f

h
ψo
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Figure 2-3: Schematic diagram showing the deepening of a mixed layer into sub-
surface thermal anomalies associated with an undulating thermocline. Note the re-
sulting SST anomalies.
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where η is a measure of the vertical excursion of isotherms, N 2
o = − g

ρo0

∂
∂z
ρ is the

Brunt-Väisälä frequency and ε ≡ − 1
ρo0

∂ρ

∂θ
is the ratio of density change to temperature

change. (If there are no salinity variations, ε is the coefficient of thermal expansion

of water.) In the above η has been related to the baroclinic streamfunction via the

thermal wind relation: η = f
hN2

o

ψo.

Since v′ = ∂
∂x
ψo in (2.21) and noting that θ′a = raψ̃, we can now write the evo-

lution equation for SST in terms of the oceanic streamfunction and the atmospheric

baroclinic streamfunction:

∂

∂t
SST′ = −γo(SST′ − raψ̃) + aro

∂

∂x
ψo − γe(SST′ − roψo) (2.22)

where

ro ≡
f

gεh
a ≡ − 1

ro

∂

∂y
SST = −gεh

f

∂

∂y
SST

The parameter ro is a scaling constant between an oceanic streamfunction anomaly

and the temperature associated with it via thermal wind, analogous to ra. The

parameter a, which is generally positive, measures the strength of horizontal advection

in the SST equation: for an SST anomaly of lateral scale L, advection dominates over

entrainment when a/L� γe.

2.1.5 Coupled equations

finally we may now write a set of four coupled equations for the dynamic ocean, SST,

and barotropic and baroclinic atmospheric components in closed form, by inserting

the forcing relations (2.18, 2.15, and 2.19) into equations (2.17), (2.22), (2.11), and

(2.16) to yield:

Dynamic Ocean:

− 1

L2
o

∂

∂t
ψo + β

∂

∂x
ψo = α∇2(1/2ψ̂ − ψ̃) (2.23)

SST:
∂

∂t
SST = −γo(SST − raψ̃) + aro

∂

∂x
ψo − γe(SST − roψo) (2.24)
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Barotropic Atmosphere:

Û
∂

∂x
∇2ψ̂ + β̂

∂

∂x
ψ̂ + Ũ

∂

∂x
∇2ψ̃ = 0 (2.25)

Baroclinic Atmosphere:

Ũ
∂

∂x
∇2ψ̂ + β̃

∂

∂x
ψ̂ + Û

∂

∂x
(∇2ψ̃ − 2

L2
a

ψ̃) + β̂
∂

∂x
ψ̃ =

4

L2
a

γa(ψ̃ − 1

ra
SST′) (2.26)

where β̂ and β̃ are defined in (2.13) and (2.14).

Before going on to study the properties of this coupled system it should be men-

tioned that the above model has some similarities with the early study of White &

Barnett (1972), a paper which we found of great interest. However, they use a much

simpler SST equation, and look for coupled growing modes on monthly time-scales

and identify waves with periods near the barotropic ocean Rossby wave period. Their

ocean model cannot capture the slow baroclinic evolution of the ocean. Moreover the

atmosphere assumed by White and Barnett neglects mean zonal winds, is linearized

about a state of rest and its thermal forcing is represented in an unusual way which

is unclear to us. In the present model we shall see that the ability of the atmosphere

to equilibrate to thermal forcing is vital to the presence of coupled modes, an aspect

which is absent in the study of White and Barnett (1972). Our coupled system also

has some aspects in common with that of Pedlosky (1975); however, Pedlosky focused

on the effect of air-sea interaction on baroclinic instability, and thus retained time

derivatives in the atmospheric dynamics. Finally, if the terms associated with ocean

dynamics are neglected on the right side of (2.24), then (2.24-2.26) reduce to a set

studied by Frankignoul (1985).

2.2 Dispersion relations and form of coupled modes

We now proceed to solve the coupled set of equations set out in Section 2.1, show that

they support coupled modes and derive their dispersion relation. We then go on to

discuss the physical mechanism behind the coupled behavior in the light of observed

32



phenomena.

2.2.1 Plane wave solutions

The coupled equations are linear and isotropic, and contain only even derivatives in

y, so we look for plane wave solutions of the form:

ψ̂ = ψ̂′ei(kx−σt) sin ly ψ̃ = ψ̃′ei(kx−σt) sin ly

ψo = ψ′
oe

i(kx−σt) sin ly SST = SST′ei(kx−σt) sin ly

These waves have the same spatial scale and frequency in both ocean and atmo-

sphere; they move together in lock-step, with only amplitude differences and phase

offsets. Inserting these wavelike forms, canceling a common factor of ei(kx+ly−σt) and

dropping the primes for notational convenience, (2.23) through (2.26) can be written:

i

L2
o

σψo + βikψo = −ακ2(
1

2
ψ̂ − ψ̃) (2.27)

− iσSST = −γo(SST − raψ̃) + ikaroψo − γe(SST − roψo) (2.28)

− Û ikκ2ψ̂ + β̂ikψ̂ − Ũ ikκ2ψ̃ = 0 (2.29)

− Ũ ikκ2ψ̂ + β̃ikψ̂ − Û ikκ2
aψ̃ + β̂ikψ̃ =

4

L2
a

γa(ψ̃ − 1

ra

SST) (2.30)

where

κ2 = k2 + l2

is the the total squared wavenumber, and

κ2
a = κ2 +

2

L2
a
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2.2.1.1 The atmosphere

Because of the simplicity of our atmospheric model, we may solve (2.29) to find the

barotropic response ψ̂ in terms of the baroclinic flow ψ̃ thus:

ψ̂ = −µψ̃ (2.31)

where:

µ ≡ Ũ

Û − β̂/κ2
(2.32)

The relative strength of the barotropic and baroclinic modes is controlled by µ,

a measure of the ratio of vertical wind shear to the barotropic Rossby wave speed,

Doppler-shifted by the barotropic mean wind. On scales close to that of stationary

barotropic Rossby waves, |µ| is large and atmospheric perturbations are ‘equivalent

barotropic’. When |µ| is small, perturbations change sign between levels 1 and 2.

As described in detail in Section 2.2.1.2, the vertical structure of the atmospheric

response to thermal forcing plays a key role in the coupled mode.

Turning now to the baroclinic response of the atmosphere, let us first imagine that

the SST (and hence, in view of (2.19), δφ∗) is fixed in space and time and consider

the response of the atmosphere to a fixed SST anomaly. Equation (2.31) may be used

to eliminate ψ̂ from (2.30) to yield, after dividing by iκ2:

(
Ũkµ− β̃k

κ2
µ− Ûk

κ2
a

κ2
+
β̂k

κ2
+

4iγa

κ2L2
a

)
ψ̃ =

4iγa

κ2L2
a

1

ra

SST

Let us identify the terms in the above. The Newtonian relaxation process can

be viewed as a balance between constant external forcing and linear damping: the

terminal velocity of a falling object is a useful analog. The damping (radiative heat

loss) is the imaginary term on the left, the forcing (heating from the surface) is the

term on the right. The (inverse) thermal damping time scale of a PV anomaly of

scale κ2 is clearly:
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Γ ≡ 4γa

κ2L2
a

(2.33)

This should be compared with an advective-propagation time-scale over the same

distance (stemming from the left side of 2.30) given by:

ν ≡ −Ũkµ+
β̃k

κ2
µ+ Ûk

κ2
a

κ2
− β̂k

κ2
(2.34)

This is a measure of the frequency of free Rossby waves in the atmosphere, Doppler-

shifted by the mean zonal wind. It can be interpreted as a timescale for a free

atmospheric Rossby wave to travel across the heating anomaly. In terms of ν and Γ

the baroclinic response can be expressed succinctly thus:

(
1 + i

ν

Γ

)
ψ̃ =

1

ra

SST (2.35)

yielding information about the phase and amplitude of the atmospheric response

relative to the forcing. It says that warm SST must heat the atmosphere generating

atmospheric pressure anomalies which increase with height (ψ̃ > 0) with a phase

shift < 90◦. Evidently, if the thermal equilibration timescale is much faster than the

advective-propagation time-scale on the scale k of the thermal anomaly, then Γ � |ν|,
so ψ̃ is large and is in phase with SST. Applying our formulae to Shutts’ experiment

(Figure 2-2), the equilibrated response, plotted in Figure 2-2b, has ν
Γ

= 0.5; µ = −3

for the dominant wavenumber 3 response. However, if the advective-propagation

times-scales are short compared to the time-scale of the radiative ‘spring’ pulling θ

back to θ∗, then |ν| � Γ so the atmospheric response is weaker and out of phase with

ψo. This is the ‘forced’ response shown in Figure 2-2a) in which ν
Γ

= 2.7; µ = +1
3
.

It is interesting to note that even though we have sought the stationary forced

atmospheric response, ψ̃, its form is sensitive to ν because of (2.35) and hence to the

properties of the traveling free waves of the system.
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2.2.1.2 The coupled mode

We now consider the dynamic response of the ocean: SST is no longer fixed but

evolves according to (2.28), driven by the ocean equation (2.27).

We may write (2.35) as

(SST − raψ̃) = (ν/Γ)
i + ν/Γ

1 + (ν/Γ)2
SST ≡ mSST (2.36)

where m is complex. Note that when the atmosphere is in the “equilibrated mode”

(ν/Γ → 0), the air-sea temperature difference (and thus the surface heat flux) is zero.

Now we may use (2.36) to eliminate (SST − raψ̃) from (2.28), solving it for SST

in terms of ψo:

SST =

(
ika+ γe

−iσ + γe +mγo

)
roψo (2.37)

Next, we eliminate SST by inserting (2.37) into (2.35):

(
1 + i

ν

Γ

)
ψ̃ =

(
ika+ γe

−iσ + γe +mγo

)
rψo (2.38)

where we have defined

r ≡ ro

ra
=

H

2εθa0h
(2.39)

The scaling term r sets the scale between oceanic and atmospheric streamfunction

through their mutual connection to temperature.

From (2.38), the forcing of the atmospheric streamfunction by the oceanic stream-

function is mediated by the processes which set SST in the model. The parameter

γe is a measure of the strength of the entrainment process, the parameter ak (which

has units of 1/time) is a measure of the strength of advection of SST gradients, and

mγo measures the influence of air-sea flux on SST. In the entrainment process, low

streamfunction implies a raised thermocline, which means the mixed layer is entrain-

ing cool water, reducing SST and so cooling the atmosphere. In the advection process,

meridional currents advect warm or cool SST, which also forces the atmosphere.

Equation (2.38) is a relation between ψ̃ and ψo. Another is provided by (2.27),

36



which can be written, using (2.31):

(σ − ωr)ψo = −iακ2L2
o

(
µ

2
+ 1

)
ψ̃ (2.40)

where ωr is the oceanic baroclinic Rossby wave frequency

ωr ≡ −βkL2
o

For (2.40) to be consistent with (2.38), either ψ̃ = ψ̃o = 0 or

(
−iσ + γe +mγo

iak + γe

)
(σ − ωr) (−ν + iΓ) = rΓακ2L2

o

(
µ

2
+ 1

)
(2.41)

This is a quadratic dispersion relation for waves in our coupled system. The left

side of (2.41) is comprised of the product of three terms. The first describes the

response of SST to ocean dynamics and air-sea interaction. The second describes

the propagation of thermocline anomalies as Rossby waves (note the term ωr) and

the third describes the quasi-stationary response of the atmosphere to SST anomalies.

The right-hand side involves the feedback forcing of atmospheric windstress back onto

the ocean dynamics (note the presence of α). The solutions of (2.41) are:

σ =
1

2
(ωr − iγe − imγo)±i

√√√√√√−1

4
(ωr + iγe + imγo)

2 + r (−ak + iγe)


ακ2L2

o

(
µ

2
+ 1

) ν
Γ

+ i
(

ν
Γ

)2
+ 1




(2.42)

We note immediately that the presence of imaginary terms indicates the possibility

of growth or decay of the wave. The possibility of a growing coupled mode is the

centerpiece of the model because infinitesimal perturbations of the system can then

grow to large amplitude. If growing coupled modes exist, then they can be self-

starting and sustain themselves against dissipative effects which will become more

and more important as the coupled mode reaches finite amplitude.
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2.2.2 Form and growth mechanism of coupled mode

The complexity of (2.42) stems from the several different processes that play a role in

the SST equation (2.21). To gain an understanding of the physics of the coupling, we

must simplify the dispersion relation (2.42). We will now consider several different

cases, including only one or two terms in the SST equation in turn to study their

influence in isolation. We will begin with the simplest case which illustrates the

coupled interaction, and then consider other processes which modify this underlying

mechanism.

2.2.2.1 SST Case 1: Entrainment

The simplest case is the one where entrainment dominates the SST equation, and

advection, air-sea flux, and tendency are small. Then (2.21) reduces to

0 = −γe(SST − θsub)

SST = θsub = roψo (2.43)

implying perfect communication between thermocline perturbations and SST. Dom-

inance of entrainment requires that γe � ak, γe � σ, γe � mγo (numerical values

are considered in Section 2.3). Then the first term on the left side of (2.41) reduces

to 1, and there is only one solution to the now linear equation for σ:

σ = ωr − r


ακ2L2

o

(
µ

2
+ 1

) ν
Γ

+ i
(

ν
Γ

)2
+ 1


 (2.44)

The waves of our system move in a phase-locked fashion through the ocean and

atmosphere. Because the dynamical ocean is the only prognostic field (the SST

tendency term has been neglected), from one perspective the fluctuations exist fun-

damentally in the ocean. They are manifest in the atmosphere because it responds

to the modification of SST (and hence thermal forcing) induced by the ocean. But

the ocean only moves because the atmosphere blows over it — thus our mode is a
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coupled one.

We see the ocean connection by the presence of the oceanic Rossby wave frequency

ωr in (2.44). The second term in (2.44) contains a real part created by air-sea in-

teraction which (slightly) slows down or speeds up the oceanic Rossby waves. But σ

also has an imaginary part:

Im(σ) = −rακ2L2
o(
µ

2
+ 1)

1
(

ν
Γ

)2
+ 1

(2.45)

Since the waves have the form ei(kx−σt) sin ly, then Im(σ) must be positive for

growth. All the variables in (2.45) are positive-definite except (µ
2
+1). For Im(σ) > 0,

we need µ/2 + 1 < 0. What is the physical meaning of this condition on µ? It arose

from the “surface windstress” term in the oceanic forcing (2.18). Since

ψs =
1

2
ψ̂ − ψ̃ = −(

µ

2
+ 1)ψ̃

surface streamfunction anomalies have the same sign as the vertical shear ψ̃ when

µ < −2: i.e. the waves are then ‘equivalent barotropic’.

Waves near barotropic resonance (Û ≈ β̂
κ2 , with |µ| large) exhibit the strongest

barotropic response, and therefore grow the fastest. But the growth rates also depend

on the size of the equilibration term Γ relative to the advection-propagation param-

eter ν; ν depends on Û , Ũ , and the wave size. When |ν| � Γ, the wave has time

to equilibrate with the oceanic forcing (i.e., the left- and right-hand sides of (2.26)

independently approach zero). A large response will be excited, enhancing the cou-

pling. But if advection-propagation is much more rapid than equilibration (|ν| � Γ),

the response of the atmosphere is smaller and shifted away from the oceanic SST

anomaly, and growth of the coupled mode is slowed. These effects are encapsulated

in the factor
((

ν
Γ

)2
+ 1

)−1

in (2.45). It is the equilibrated atmospheric modes that

couple most efficiently and grow most rapidly.

The structure of the fastest-growing mode for the entrainment-dominated SST

case is sketched in Figure 2-4. As described above, any mode with positive growth
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Figure 2-4: Phase relationships between ocean and atmosphere for the fastest growing
coupled mode. The symbols H and L denote highs and lows of atmospheric pressure,
with the amplitude of the pressure anomaly increasing with height. The atmospheric
response is ‘equilibrated’, as in figure 2b. The symbols W and C denote warm and
cold SST, and the undulating line indicates the depth of the thermocline. Note the
high (low) pressure above warm (cold) water, and the phase match between wind
stress and current.

rate must have µ < −2, so the atmospheric response is equivalent barotropic (|ψ1| >
|ψ2| > |ψs| and each has the same sign), weakest at the surface and strongest aloft.

If the surface pressure anomaly is positive, the resultant anticyclonic surface winds

will cause downward Ekman pumping in the ocean which deepens the already-deep

thermocline leading (see (2.43)) to a warmer surface and a positive feedback. If the

surface pressure anomaly is negative, Ekman dynamics will suck up the thermocline

resulting in anomalously cold winter SST, again a positive feedback. For the coupling

physics adopted here, coupled growth will occur whenever the atmospheric response

is equivalent barotropic.
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The atmospheric and oceanic wave components need not be in phase with one

another, and the degree of phase-matching determines the rate at which the coupled

mode grows. Growth is fastest when ν/Γ is small in (2.45), which (from (2.35)

and (2.43)) occurs when the atmosphere equilibrates completely with the underlying

ocean, and high pressures occur directly over warm, deep-thermocline water (ψ̃ ∝
SST ∝ ψo). Then the Ekman pumping acts directly to increase the amplitude of

thermocline perturbations; the wind applies torque to the ocean to reinforce the

existing circulation. As the advection/propagation term |ν| increases, the atmospheric

perturbation is “blown away” from the oceanic anomaly which generates it, resulting

in a phase lead or lag; the Ekman pumping no longer perfectly matches the location

of greatest anomaly, so growth is slower. When |ν| completely dominates Γ, the

phase shift is 90◦ (ψ̃ ∝ iSST; ψ̃ ∝ iψo). In this case, the Ekman pumping does not

increase the thermocline anomalies at all because the wind forcing is in quadrature

with the ocean response. These two cases (zero lag and quadrature) correspond to

the equilibrated and directly-forced modes shown in Figure 2-2. More specifically,

the atmospheric wave lies westward of the oceanic wave by a phase angle:

θ = Tan−1
(
ν

Γ

)
(2.46)

If ν > 0, atmospheric pressure crests lie eastward of SST maxima, and vice versa for

ν < 0.

For atmosphere-ocean phase shifts between 90◦ and -90◦ , in the growing mode the

circulation induced by oceanic thermal forcing yields a windstress which reinforces

the sense of the pre-existing circulation. If the waves are able to equilibrate with their

energy source (|ν| � |Γ|), growth is rapid and the atmospheric geopotential anomalies

lie directly over their SST sources. But if the waves in the atmosphere propagate away

from the energy source more rapidly than that source can be renewed (|ν| � |Γ|),
the coupled phenomenon grows slowly, with atmospheric waves shifted downstream

from their SST sources (see (2.35)). In all cases of growth, though, the atmospheric

anomaly hovers near the SST heat source.
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It is useful to draw an analogy with a burning candle. The heat of the flame

melts and vaporizes the wax directly below it, which then provides chemical energy

to allow the flame to grow and maintain itself. If we blow gently on the candle flame,

we may transport it away from its fuel source faster than the fuel is renewed: the

flame weakens, and may die if we blow hard enough. In all cases, though, the flame

hovers above or beside the wick.

2.2.2.2 SST Case 2: Entrainment & Tendency

What happens if we include the SST tendency term in equation (2.21), but still neglect

meridional advection (and therefore ak in (2.42))? In the limit where ak � γe, (2.42)

reduces to

σ =
1

2
(ωr − iγe) ± i

√√√√√√−1

4
(ωr − iγe)

2 − iγeωr + iγer


ακ2L2

o

(
µ

2
+ 1

) ν
Γ

+ i
(

ν
Γ

)2
+ 1




(2.47)

In the case where entrainment is much faster than Rossby propagation (γe � ωr)

and is also faster than the air-sea coupling (γe � r[ ]), we may use the approximation
√

1 + x ≈ 1 + x/2 to find the approximate solutions:

σ1 ≈ ωr − rακ2L2
o

(
µ

2
+ 1

) ν
Γ

+ i
(

ν
Γ

)2
+ 1

(2.48)

σ2 ≈ −iγe + rακ2L2
o

(
µ

2
+ 1

) ν
Γ

+ i
(

ν
Γ

)2
+ 1

(2.49)

The first solution is identical to the entrainment solution without the tendency

term (2.44), described in detail in Section 2.2.2.1. The second solution is dominated by

rapid SST damping through entrainment (i.e., by the −iγe term). The Rossby wave

propagation term canceled in the expression for σ2: the solution does not propagate

as a Rossby wave, and is, in fact, decoupled from the dynamic ocean: therefore we

call it an “SST-only” mode. The second term, describing the air-sea interaction,

has the opposite sign in the SST-only mode as in the “entrainment mode” discussed
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Figure 2-5: Configuration of the rapidly-damped SST-only mode (equation (2.49)).
SST is out of phase with the very small subsurface thermal anomalies, leading to
rapid damping of SST.

in Section 2.2.2.1, suggesting that the conditions for growth discussed there cause

enhanced decay in this mode.

The structure of the SST-only mode is quite simple, and is depicted in Figure 2-5.

We begin with a warm patch of SST, but with only a slightly perturbed thermocline

having the opposite sign as SST. The SST patch generates an atmospheric response

above or downstream from it (depending on ν/Γ), but the patch is rapidly damped

by the γe(SST − θsub) term in (2.21), and decays in a short time 1/γe. The slight

Ekman pumping supplied by the wind during that time acts only to diminish the

initial thermocline anomaly; thus all fields decay to zero rapidly.

The two solutions span the range of possible initial conditions for SST and ψo. If

we begin with an arbitrary pattern of SST and ψo, the component which has SST

and ψo in phase will grow and propagate as described in Section 2.2.2.1 (assuming
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conditions for growth are met), while the out-of-phase component will decay rapidly

via the process described here, until only the in-phase component is observed.

2.2.2.3 SST Case 3: Advection & Tendency

Even though our SST scaling analysis suggests that entrainment is at least as impor-

tant as advection in winter months, it is useful to consider the advection mechanism in

isolation. Accordingly, we consider the form of the SST equation (2.21) with γe → 0

and γo → 0.
∂

∂t
SST′ = −~u′ · ∇SST

In the same limit, the dispersion relation (2.42) becomes

σ =
1

2
ωr ± i

√√√√√√−1

4
ω2

r − rak


ακ2L2

o

(
µ

2
+ 1

) ν
Γ

+ i
(

ν
Γ

)2
+ 1


 (2.50)

As before, we consider the case where the coupling term rak[ ] is smaller than the

Rossby wave propagation term ωr, in which case we get the following two approximate

solutions:

σ1 = ωr −
rak

ωr


ακ2L2

o

(
µ

2
+ 1

) ν
Γ

+ i
(

ν
Γ

)2
+ 1


 (2.51)

σ2 =
rak

ωr


ακ2L2

o

(
µ

2
+ 1

) ν
Γ

+ i
(

ν
Γ

)2
+ 1


 (2.52)

The solution σ1 has exactly the same structure as the entrainment mode described in

Section 2.2.2.1, with r replaced by rak/ωr. Growth occurs in this “advection mode”

when the atmosphere responds with barotropic highs over warm water, exactly as in

Section 2.2.2.1.

Like the entrainment mode, the advection mode has warm SST where ψo is large

(see Figure 2-4), but for an entirely different reason, illustrated in Figure 2-6. Oceanic

streamfunction anomalies will propagate from east to west. A streamfunction high

(depressed thermocline) will generate a northward flow to its west, advecting warm
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Figure 2-6: The process by which advection of mean meridional SST gradient leads
to warm SST anomalies over deep-thermocline water. See text for full description.

water from the south and creating a warming trend there. When the ψo anomaly

propagates to that spot, the advection ceases, and so does the warming. When the

ψo anomaly continues on to the west, it generates southward flow, bringing cold

water which cools the SST patch. Therefore, a maximum in SST is observed at the

maximum in ψo, and appears to follow that maximum as it propagates westward.

SST and ψo are in phase, and waves which propagate more slowly have more time to

build up larger SST anomalies: this is why the Rossby-wave propagation term occurs

in the denominator of the second term in σ1.

The second solution has no Rossby-wave propagation, and SST and ψo are out of

phase. The solution is most strongly damped when air-sea coupling is strong.

2.2.2.4 SST Case 4: Air-sea flux, entrainment, and tendency

The inclusion of the surface flux term into the SST equation should reduce the growth

of the coupled mode: after all, if a warm patch of SST is losing heat to the atmosphere

at a rate comparable to the rate of heating by entrainment or advection, the anomaly
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will have smaller magnitude and thus generate a less powerful atmospheric circulation.

However, the most rapidly growing mode from the previous three cases is unaffected

by the air-sea flux term. Our fastest-growing mode has ν/Γ = 0, so m=0 in (2.36):

SST = θa = raψ̃: there is no air-sea temperature difference (complete equilibration),

so the surface heat flux shuts off. In fact, by setting m=0 in (2.41), we get (2.47)

when advection is small.

We now consider the case where m is nonzero, but for convenience we assume

advection is small (ak � γe); our results will also hold for non-negligible ak. In the

limit mγo � ωr and mγo � r[ ], (2.42) can be approximated by:

σ1 ≈ ωr −
γe

γe +mγo

rακ2L2
o

(
µ

2
+ 1

) ν
Γ

+ i
(

ν
Γ

)2
+ 1

(2.53)

σ2 ≈ −iγe − imγo +
γe

γe +mγo

rακ2L2
o

(
µ

2
+ 1

) ν
Γ

+ i
(

ν
Γ

)2
+ 1

(2.54)

These two modes closely resemble the entrainment modes discussed in Section

2.2.2.2; however, the coupled growth term of the coupled solution (σ1) is multiplied

by the factor γe/(γe+mγo), and damping of the “SST-only” solution (σ2) is enhanced

by the air-sea flux. If γe ≈ γo (typical of the annual average), growth off-resonance

(where ||m|| ∼ 1) is reduced by about a factor of two. During the winter, when γe is

larger than γo, growth will not be significantly affected. During the summer, when

γe ∼ 0, (2.53) and (2.54) reduce to

σ1 ≈ ωr σ2 ≈ −imγo =
ν/Γ − i(ν/Γ)2

1 + (ν/Γ)2
γo (2.55)

Coupling between the geostrophic ocean and the mixed layer has ceased entirely; the

first solution takes the form of uncoupled propagating oceanic Rossby waves with no

expression in the mixed layer or atmosphere; the second equation shows the effect of

a 2-layer QG atmosphere over a “swamp” mixed layer. This mode resembles the “QG

atmosphere over a copper plate” discussed by Frankignoul (1985): it is characterized

by rapidly-damped patterns in SST and atmosphere which propagate eastward or
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westward depending on the phase of the atmosphere’s response to SST. If warm SST

produces warm air to the east of the SST anomaly (ν/Γ > 0), this warmth results in

a heat flux back into the ocean farther east than it originated, resulting in eastward

phase propagation, and vice versa for westward phase shifts. However, since this

“heat flux” mode is always damped on a timescale of order γ−1
o ∼ 8 months, it is

unlikely to play a role in decadal variability.

Allowing air-sea flux to affect the mixed layer cannot destroy our growing mode,

because the fastest-growing mode has vanishingly small air-sea flux. However, it

may reduce growth rates somewhat when conditions are slightly off-resonance. When

air-sea flux dominates over entrainment (as might happen in summer), the mixed

layer decouples from the dynamic ocean; Rossby waves continue to propagate in

the thermocline while the mixed layer exhibits rapidly-damped air-sea interaction as

described by Frankignoul (1985).

2.3 Discussion of solutions: predictions and sensi-

tivity

We now discuss the numerical values of the various parameters that characterize

our model and go on to consider its relevance to middle-latitude air-sea coupling.

Comparisons of our model with observed variability patterns are also made.

2.3.1 Frequency and scales

Oceanic Rossby waves with a frequency of ωr = 2 · 10−8 s−1 have a wave period of 10

years or so and thus could be implicated in decadal variability. This then implies a

zonal wavenumber of k = π/5500 km (for Lo = 45 km and β = 1.8 · 10−11 s−1 m−1),

a scale comparable to that of an ocean basin, and commensurate with, for example,

the scales of the leading modes of variability found by Deser & Blackmon (1993)

and Cayan (1992). It turns out that the modification of the real part of the phase

speed associated with coupling (the second term in (2.44)) is comparatively small (see
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below) and does not make a significant difference to the phase speed. Our advection

and entrainment coupled modes propagate at essentially the speed of internal oceanic

Rossby waves.

In Figure 2-7, µ is plotted as a function of Û and Ũ for a wave of size comparable

to the NAO; k = π/5500 km and l = π/3200 km. For Û > β̂
κ2 = 28 m/s, µ is positive,

implying an atmospheric response which switches sign between upper and lower levels,

leading to a decaying mode. In the lower left part of the Figure, 0 > µ > −2, again

implying damping. An equivalent barotropic response (and therefore a growing mode)

will occur if the zonal winds fall in the central triangular region. This can readily be

achieved by typical middle-latitude tropospheric winds.

2.3.2 Coupling constants

2.3.2.1 Mechanical

Let α′ scale the stress of the wind, τ , to the surface wind speed us thus:

τ ′ = α′us
′ (2.56)

To deduce a value for α′, consider the bulk aerodynamic drag law for the total (mean

+ anomaly) windstress (see Gill, 1982):

τ + τ ′ = c
D
ρa(us + us

′)2

where c
D

is the drag coefficient. After linearizing about the mean us, we obtain

τ ′ = 2c
D
ρaus · us

′ (2.57)

allowing us to identify:

α′ = 2c
D
ρaus
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Comparing (2.18), (2.56) and (2.57), we see that:

α =
α′

ρo0h
=

2c
D
ρaus

ρo0h

In accord with observations, for us = 5 m/s, h = 500 m, we find that α ≈ 2×1.3·10−3×1×5
103×500

=

3 · 10−8 s−1 = 1
1.1 years if c

D
= 1.3 · 10−3.

2.3.2.2 Thermal Equilibration

The inverse damping time-scale of a PV anomaly, Γ ≡ 4γa

κ2L2
a

, (2.33), depends on the

scale of the anomaly relative to the deformation radius and the radiative-convective

restoring time-scale. Inserting typical numbers we find

Γ ≡
[
4

1

14 days

(
1

660 km

)2
] [

10−12 m−2
]−1

= 7.7 · 10−6 s−1 =
1

1.5 days

This time-scale becomes shorter the greater the scale of the anomaly relative to the

deformation radius.

2.3.2.3 SST

By putting numbers into (2.39) we find that the SST coupling parameter r ≡ H/(2εθa0h) ≈
104 (2 · 10−4 · 290 · 500)

−1 ≈ 340. A reasonable value for a is a ≡ (ghε/f) ∂
∂y

SST =

10 · 500 · 10−4/10−4) · 3 · 10−6 = 0.015 m s−1. With k = 5 · 10−7 m−1, the advection

timescale is ak = 7.5 · 10−9 s−1. In Section 2.1.4.2, we established the entrainment

parameter γe = 1.3 · 10−7s−1 and the air-sea flux parameter γo = 5 · 10−8s−1. If

σ ∼ ωr ∼ 2 · 10−8 s−1, then for this choice of parameters γe � σ, γe � ak, γe > γo,

so the entrainment solution should dominate in the full dispersion relation (2.41),

perhaps with some contribution from air-sea flux. Furthermore, the second and third

terms beneath the radical in (2.42) are smaller than the first, so the approximation

leading to (2.48) and (2.49) should be valid. We now compute growth rates as a

function of wavelength and other parameters to see if this is indeed the case.
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Figure 2-8: Graph of growth rate (Im(σ)) as a function of wavelength for the coupled
dispersion relation (2.42) and its simplified forms. (a) and (b) are the two solutions
to (2.42) given the parameters in Table 2.1. Solid lines in (c) and (d) are for (2.47),
which neglects SST advection and air-sea flux; dashed lines are for the simplified forms
(2.48) and (2.49). (e) and (f) are for (2.50), which neglects entrainment; dashed lines
are for the simplified forms (2.51) and (2.52).

2.3.3 Growth rates

In Figure 2-8, growth rate is plotted as a function of zonal wavelength, using the values

for mean winds and coupling constants given in Table 2.1. These parameters are for a

“winter” simulation, in which the entrainment term is large. In (a) and (b), we show

the two solutions to (2.42), which includes all terms in the SST equation. Figures

(c) and (d) show the two solutions to (2.47), which includes SST entrainment and

tendency, along with their approximate solutions (that is, (2.48)=(2.44) and (2.49)).

Graphs (e) and (f) show the two solutions for the advection-only mode (2.50) along
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Quantity Variable Value
Coriolis parameter f 1 · 10−4 s−1

Beta β 1.8 · 10−11(m s)−1

Meridional wavenumber l π/3200 km
Atmospheric scale height H 10 km
Upper-layer mean wind U1 17 m/s
Lower-layer mean wind U2 8 m/s
Ocean upper layer thickness h 500 m
Mixed layer thickness hmix 100 m
Oceanic Rossby radius Lo 45 km
Atmospheric Rossby radius La 660 km
Windstress coupling constant α 3 · 10−8 s−1

Ocean density-temperature
scale factor ε 10−4 K−1

SST advection parameter a 0.015 m/s
Atmospheric air-sea flux parameter γa 8 · 10−7s−1 = 1/(14 days)
Oceanic air-sea flux parameter γo 5 · 10−8s−1 = 1/(8 months)
Mixed-layer entrainment parameter γe 1.3 · 10−7s−1 = 1/(3 months)

Table 2.1: Numeric parameter values

with their approximations (2.51) and (2.52).

We observe a highly scale selective growing mode with an e-folding time of 1-

2 years. Only those wavelengths which allow nearly-stationary free waves to exist

(i.e., ν ≈ 0) produce the phase matching between atmosphere and ocean and the

equivalent barotropic atmospheric response necessary for the coupled growing mode.

Even though the entrainment timescale (γe)
−1 is only 2.5 times faster than the air-sea

interaction timescale (γo)
−1, the solution including only entrainment and tendency

(solid line in (c)) or even entrainment alone (dashed line in (c)) provides a good

approximation to the growth rate of the full SST equation. This latter approximation

is based on the incredibly simple entrainment-dominated SST equation SST = roψo

(Section 2.2.2.1).

Note that, as expected from Section 2.2.2.3, the advection-tendency SST equa-

tion exhibits growth under the same conditions as the entrainment SST equation.

The entrainment mode and the advection mode are completely compatible and non-

interfering, and are, in fact, nearly indistinguishable in their SST, dynamic ocean,

and atmospheric patterns.
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For both entrainment and advection solutions, growth is most rapid for high (low)

pressure anomalies above warm (cold) water, in accord with observations of the cor-

relation between SST and surface pressure anomalies seen in the observations and

models on interannual-to-decadal timescales (see Deser & Blackmon, 1992 and Latif

& Barnett, 1996).

The growth rate and phase speed of the “SST-only” mode dominated by surface

heat flux (σ2 in (2.55)) is shown in Figure 2-9. The wave propagation direction

changes from eastward to westward as we cross over the wavelength of stationary free

atmospheric waves, and the damping reduces to zero (because m = 0 when ν/Γ = 0).

We can explain the reduced damping at resonance of the SST-only mode of the full

SST equation (part (b) of Figure 2-8) by noting that both entrainment and air-sea

flux tend to damp SST when the system is off-resonance, but the air-sea flux shuts

off at resonance.

We see, then, that both the entrainment and the advection process generate cou-

pled growing modes with similar growth rates and nearly-identical wavelength depen-

dence and structure (i.e., Figure 2-4 applies to both). The largest term in the SST

equation (the entrainment process) appears to dominate the behavior of the coupled

mode for the parameters chosen here, but if we decrease γe (as might happen when

summer begins) advection begins to dominate the growing mode. In Figure 2-10, we

show the dispersion relation when γe = 0. The air-sea flux term does not affect the

fastest growing mode (again, because m=0 there), but it does reduce off-peak growth

rates, narrowing the peak width. There is a region of weak damping for wavelengths

shorter than the wavelength of maximum growth: when air-sea flux is large, the phase

shift between wind stress and subsurface streamfunction can be greater than 90◦ , so

the wind torque opposes the subsurface vorticity. However, note that “wintertime”

growth at this wavelength (Figure 2-8) outweighs the damping, and the solutions for

an annual-average value of γe (7 · 10−8 s−1) (not shown) show no damping region.

As one might expect, growth rates also depend on the strength of the mean zonal

winds. Figure 2-11 shows contours of the growth rate of the entrainment-only solution

(2.45) for k = π/(5500 km)basin-scale modes (other parameters are as in Table 2.1)
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Figure 2-9: Real and imaginary parts of frequency for the “heat flux” mode discussed
in Section 2.2.2.4. Note change in propagation direction and cessation of damping at
resonance.
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Figure 2-10: As in figure 2-8(a,b), but with zero entrainment: γe = 0.
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as a function of baroclinic and barotropic winds. The growth rates range from years

to decades for a broad range of atmospheric winds. Growth only occurs in the shaded

triangle, where µ < −2 (see Figure 2-7). The winds needed to fall in the growth

region are consistent with those over the midlatitude oceans.

From these figures, we see that atmosphere-ocean anomalies the size of the mid-

latitude North Pacific or North Atlantic (commensurate with the scales of the NAO

and PNA) can exhibit fluctuations of decadal period and exponential growth in our

model for reasonable choice of basic state. The growth and surface expressions of these

modes appear strongest in the winter, when entrainment tightly couples SST with

the thermocline’s structure. The model predicts equivalent barotropic atmospheric

highs over warm SST, similar to that seen in observations of decadal variability (for

example, Kushnir, 1994).

The largest growth rate of the coupled mode is quite rapid, with an e-folding

timescale of 1.3 years. This is almost certainly fast enough to maintain the wave

against dissipative processes which have not been modeled here. One might feel that

growth is, in fact, too rapid: after all, this model suggests an increase in ampli-

tude of e5 ∼ 150 in a single Rossby-wave period. However, numerous unmodeled

processes will conspire to limit the growth. For example, the real coupled system

certainly has important dissipative processes unmodeled here. The real ocean has

time-mean currents which will try to rip the coherent Rossby waves apart before they

reach large amplitude. The presence of meridional walls will limit the lifetime and

therefore growth of an individual Rossby wave. Finally, in nature there are strong

seasonal changes: the terms composing the SST equation vary strongly with season,

as does the zonal wind pattern. The seasonal cycle is unlikely to affect the existence

and propagation of the thermocline perturbations which form the “memory” of our

system (since the cessation of entrainment in the summer tends to decouple the ther-

mocline from the mixed layer), but the mode might only be expressed in the SST

and atmosphere during the wintertime, restricting the growth to 6 months out of the

year.

In addition to inducing growth, the coupled physics also modifies the phase-speed
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of oceanic Rossby waves through the real part of the coupling term — see (2.42).

When the atmospheric response is slightly westward, the windstress accelerates the

waves toward the west, and vice versa for an eastward atmospheric response. This

wave frequency shift measures only 20% of the Rossby wave speed for the parameters

chosen here. Note, however that the phase speed of the fastest-growing mode is not

affected at all.

2.3.4 Comparison with the Antarctic Circumpolar Wave

The Antarctic Ocean circles the globe without continents and is periodic in the zonal

direction. Here the progress of oceanic Rossby waves are less impeded by meridional

boundaries than in the gyre regimes of ocean basins, so perhaps the unbounded model

described above is more directly applicable here than elsewhere. Let us see whether

the present model can support coupled oscillations in the Antarctic Ocean.

Our previous discussions show that conditions for growth depend crucially on the

sign of r and a. However, these quantities remain positive definite in the southern

hemisphere despite changes in the sign of f and ∂
∂y

SST. All the results of Section

2.2 still apply. According to our model, growth of decadal-scale coupled waves could

occur in the Southern Ocean if the atmospheric response to SST forcing is equivalent

barotropic and if highs are located above warm water.

Recently, White & Peterson (1996) and Jacobs & Mitchell (1996) described an

“Antarctic Circumpolar Wave” (ACW) which takes the form of a wavenumber-2

perturbation of SST, surface air pressure, sea-surface height, windstress, and sea ice

extent, circling eastward around Antarctica with a period of around 4 years. Jacobs

& Mitchell report that sea-surface height (a proxy for oceanic streamfunction ψo) is

coincident with SST. Both White & Peterson and Jacobs & Mitchell report that wind-

stress curl (and hence, to the extent that the geostrophic approximation is appropriate

at the surface, surface air pressure anomaly) appears to lead SST by 90◦ phase in the

observations. This configuration is summarized in Figure 2-12.

By using parameters appropriate to the Antarctic Ocean (U1 = 15 m/s, U2 = 5

m/s, l = π/3100 km, β = 1.6 · 10−11(m s)−1, other parameters as in Table 2.1), we
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Figure 2-12: Schematic summary of the Antarctic Circumpolar Wave based on ob-
served correlations between SST (W=warm, C=cold), atmospheric sea-level pres-
sure (H=high, L=low),meridional wind stress (τ), and sea-surface height observed
by White & Peterson and Jacobs & Mitchell. The wave encircles Antarctica with
wavenumber 2, and travels eastward at 10 cm/s.
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obtain a growing mode of wavenumber 2 around the globe, a growth rate of 0.35

yrs−1 and a westward phase speed of 4 cm/s. Our model assumes an ocean at rest:

to adapt it to the Antarctic Ocean, we simply suppose our model dynamics occur in

a frame moving eastward with the Antarctic Circumpolar Current at 10-15 cm/s: the

resultant phase speed “over ground” for our waves is 5-10 cm/s eastward. SST, ψo,

and ψ̂ are all approximately in phase.

This wave has some similarity to the ACW, but also some important differences.

Phase speed and wavelength are in good agreement, as is the phase match between

SST and ψo. However, our model predicts that the surface air pressure (and therefore

wind-stress curl) should be in phase with SST. Observations of the ACW show a

90◦ phase shift.

Our model can produce phase-shifted growing modes in two ways. An off-resonant

wave would have a significant phase shift (since ν/Γ 6= 0) between atmosphere and

ocean; such an off-resonant wave might be demanded by periodicity constraints. Fur-

thermore, the tendency term in the SST equation (2.21) can allow the SST response

to lag behind the forcing produced by the dynamic ocean. Moreover the requirement

that the amplitude of SST grow over time means some phase-shifting must occur to

allow the dynamic ocean to supply additional warmth to regions where SST is already

large.

The model can support growing modes with phase shifts, but it is difficult to gen-

erate phase shifts much larger than 45◦ . In addition, we note that if the atmosphere-

ocean phase shift is truly 90◦ , we must have ν/Γ → ∞ (see (2.46)), which means that

the atmospheric response to SST anomalies (see (2.35)) is zero, and growth does not

occur (see 2.45). While this could be an artifact of the atmospheric model chosen, we

note that a 90◦ lag between wind-stress curl and ψo implies that the windstress cannot

increase the amplitude of the oceanic streamfunction. The windstress is zero when

the currents are maximum and vice versa, so no work is done on the current, again

making growth impossible. We conclude that either the phase relationships in nature

are not as the presently-available observations suggest, or the Antarctic Circumpolar

Wave does not grow through windstress feedback coupling.
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While preparing this paper for submission, we became aware of a study by Qiu

and Jin (1997) which applies a model similar to ours to the Antarctic Circumpolar

Wave. Their SST equation resembles that of Section 2.2.2.3, but allows cooling of

SST anomalies by air-sea flux. They employ a greatly simplified atmosphere which ig-

nores β-effects and Rossby waves (essentially a thermodynamic equation plus thermal

wind), in which the response is assumed a priori to be equivalent barotropic. Their

ocean dynamics and coupling assumptions are similar to ours, but with two oceanic

levels and a mean zonal current. A coupled growing mode and a damped uncoupled

mode are found, just as in this study. However, our use of a more dynamically-based,

albeit still highly simplified, description of the atmosphere leads to differences that

cannot be ignored. The meridional wavelength and zonal wind speeds chosen by Qiu

and Jin are so small that any reasonable choice of the baroclinic component of the

mean winds (a factor not part of their model) generates a baroclinic response in our

model, with µ > 0 (see (2.32)). This leads to a decaying mode in our equations.

Their assumption that the atmosphere responds barotropically agrees with observa-

tions of the ACW, but it is not trivial to explain or generate such a response through

atmospheric dynamics. Most importantly, however, our model and that of Qiu & Jin

adopt the same mechanical forcing of the ocean by wind stress, and so theirs, like

ours, must prohibit growth when wind stress curl leads oceanic streamfunction by

90◦ .

The model described here, that of Qiu & Jin, and the observations have their

limitations. We note that Christoph and Barnett (1996) have observed an ACW in

their ECHAM4 + OPYC3 coupled numerical model. Because the model may provide

a continuous record of all relevant fields over many decades (particularly wind and

surface air pressure fields, which are difficult to measure remotely) it may be fruitful

to test our analytical model against this numerically simulated ACW.

2.3.5 Sensitivity to parameters

The parameters of our model are rather schematic and grossly represent a myriad

of processes. However, in the entrainment-tendency and advection-tendency limits,
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α, r, γe, and a, which are perhaps the most uncertain of the external parameters,

appear only as multipliers to the coupled growth terms in (2.48)=(2.44) and (2.51),

approximations to (2.42). As such, changing their values causes a proportional change

in the growth rate of the coupled wave, but not its structure or existence. Likewise,

Γ changes only the width of the peaks in Figure 2-8, which is relatively unimportant.

Larger Γ implies more rapid equilibration, allowing a wider range of atmospheric

waves to be in the equilibrated state.

The structure and existence of a growing coupled mode depends on µ and ν, and

therefore on U1, U2, β, k, and l. Experimentation has shown that most reasonable

midlatitude values of U1 , U2, l, and β result in growth at some zonal wavelength

k: however, the wavelength of the fastest-growing mode is rather sensitive to the

choice of these variables. By changing the zonal winds or meridional wavenumber by

20%, can change the wavelength of maximum growth in Figure 2-8 by 50% or more.

Frankignoul (1985) also noticed the ease in which a 2-layer QG model can be “tuned”

using the meridional wavenumber. Growing coupled modes are thus a robust feature

of this model, but their precise sizes and shapes are not. This is to be expected of a

simple model intended to illustrate a process rather than to simulate reality.

2.3.6 Energetics of growth mechanism

Where does the energy for growth come from? While our model does not rigorously

conserve energy, we may still consider the energetics of the natural system with true

mechanical and thermal energy fluxes in both air and sea, closing the energy budget.

The atmosphere gains energy from the ocean through surface heat flux and loses

energy through surface windstress drag. The storage of energy in the atmosphere is

small, so these two processes approximately balance. The ocean therefore “sees” the

atmosphere as a device which converts thermal energy (from surface heat flux) into

mechanical energy (via windstress).

Consider the entrainment-dominated SST parameterization of Section 2.2.2.1. If

the interface between two ocean layers with temperature difference ∆T is anomalously

low by an amount ∆h, that column of water has an extra amount of heat (thermal
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energy) per unit area of magnitude

Eth = Cpρ∆h∆T

This heat is tied to an SST anomaly and so is accessible to the atmosphere through

air-sea interaction. If a nearby column has the opposite perturbation −∆h, the

atmosphere can be thought of as a heat engine which removes heat from the warm

patch and supplies it to the cold patch, diverting some of that heat flux to do “useful

work” (i.e., generate a windstress). This windstress can increase the kinetic (Ek) and

gravitational potential energy (Ep) of the ocean. Since our anomalies are much larger

than the oceanic Rossby radius, Ep � Ek (Gill, 1982). The gravitational potential

energy density of the above configuration, i.e., the amount of energy per unit area

that must be imparted by the wind to lift an interface between fluids of density

difference ∆ρ a height ∆h is

Ep =
g

2
∆ρ(∆h)2 =

g

2
ερ∆T (∆h)2

where ε = ∆ρ
ρ∆T

, equivalent to the coefficient of thermal expansion if salinity is con-

stant. The thermal energy contained in this anomaly is much, much greater than the

energy required to make it available:

Eth

Ep
=

Cp

(g/2)ε∆h
≈ 1.6 · 105

for ∆h = 50 m, Cp = 4000 J kg−1K−1, and ε = 10−4K−1. So if the atmospheric heat

engine is just .0006% efficient at converting the lateral thermal energy difference into

windstress which further lifts the interface, the coupled wave can replenish its energy

store.

We thus see that the energy for growth comes from the huge amount of thermal

energy stored in the thermocline, which is usually unavailable to the ocean dynam-

ics. But the application of windstress tilts the thermocline, turning vertical thermal

gradients into horizontal gradients which the atmosphere can use in a heat-engine
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fashion to create a windstress which further tilts the thermocline. The atmosphere is

a ‘catalyst’, allowing the ocean to extract energy from the vertical stratification. An

identical argument holds for the meridional-advection SST equation: the energy for

growth is now extracted from the mean meridional SST gradient.

2.4 Conclusion

We have described and analyzed a simple atmosphere-ocean model which supports

growing coupled modes and exhibits decadal oscillations in SST, air pressure, and

oceanic streamfunction. Moreover, the growth rate and form of the coupled modes

have aspects in common with observations of natural variability in the North Atlantic,

the North Pacific and the Antarctic Circumpolar Wave. The ‘clock’ of the coupled

model is provided by oceanic baroclinic Rossby waves (in this manner, it resembles

the model of Latif and Barnett (1994). Undulations of the sub-surface thermal field,

associated with the westward-propagating baroclinic Rossby waves, exposed to the

surface by wintertime mixed-layer deepening, induce SST anomalies which change

the diabatic heating rates of the atmosphere and hence its circulation. The resulting

anomalous winds blow over the ocean and exert a stress on it: in the growing mode,

this anomalous windstress acts to amplify sub-surface undulations, leading to larger

deep thermal anomalies and magnified SST anomalies, resulting in a positive feedback.

We find that the vertical structure of the atmospheric response to thermal forcing

is central to the coupling mechanism. In order to support a growing mode the response

must be equivalent barotropic, with highs above warm water. If the Doppler-shifted

atmospheric Rossby wave speed is sufficiently slow, so that the time it takes to cross an

SST anomaly is long compared to the thermal equilibration timescale, (|ν|/Γ � 1),

then thermal equilibration will occur and coupled modes grow rapidly enough to

maintain themselves against dissipative processes.

Two approaches to the specification of SST were considered. In the first, SST

was tied to subsurface thermal anomalies associated with vertical undulations in

isotherms. In the second SST was determined by horizontal circulation across a
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specified large-scale meridional SST gradient. Both ‘recipes’ yield growing modes

with very similar structure. The former model exhibits more rapid growth for the pa-

rameters chosen in this study, and (at least for the parameters chosen here) the limit

where entrainment completely dominates SST provides an excellent, simpler approxi-

mation to the full dispersion relation. Air-sea heat flux, the third important influence

on SST, acts to reduce the growth rate, but does not affect the fastest-growing mode

at all, because that mode has negligible air-sea temperature difference. The coupling

mechanism is most active during periods of rapid entrainment (winter); the mode may

become less strongly coupled and therefore “dormant” during the summer, though

subsurface Rossby waves will continue to propagate during dormancy.

Comparisons of such a simple model with observations must be rather tentative.

There is evidence that the response of the atmosphere to SST anomalies on interan-

nual timescales is equivalent barotropic with highs over warm surface anomalies —

see, for example, Kushnir (1994). Moreover, we find that the structure and growth

rate of the fastest growing coupled mode is broadly consistent with what is known of

the spatial scale, and low-frequency variability of the North Atlantic Oscillation. Our

mode will be much more strongly coupled in the winter, in agreement with Hurrell

& Van Loon’s (1997) and others’ observation that the NAO is strongest and shows

greatest persistence in winter. There are also some aspects that resemble the Antarc-

tic Circumpolar Wave, although observed air-sea phase relationships appear to differ

from this model’s predictions.

However, in relating this simple model to phenomena in the atmosphere and ocean,

one must proceed with care. The coupling parameters α and r are poorly known, the

true barotropic and baroclinic modes of the atmosphere are complicated pressure-

weighted averages of vertical quantities rather than the simple two-level sum and

difference used here, and quasi-geostrophy and the β-plane approximation give only

qualitative guidance on such large scales, particularly near resonance. Any of the

these factors could significantly change the numerical values of µ, ν and Γ.

Our use of a two-level QG atmosphere can easily be criticized. The behavior of

planetary wave models is is sensitive to the upper boundary conditions. A rigid lid was
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assumed here, which may overemphasize the downstream stationary-wave response

by prohibiting upward transmission of wave energy (Lindzen et al. 1968). However,

(Panetta et al. 1987) demonstrates that these deficiencies are not a major concern

for the flows considered here. Planetary wave models are also sensitive to the vertical

profile of heating (which is trivial in a 2-layer model). Our model may also be suspect

near resonance, as other dynamics may become important.

Of even more importance, perhaps, are the lack of zonal asymmetries in our model.

The model ocean has no meridional boundaries (there are no land masses!) and the

mean flow of the atmosphere is not purely zonal. However, nearly-stationary at-

mospheric waves also exist in non-uniform flows. For example, Marshall & Molteni

(1993) seek “neutral vectors” of the free atmosphere, and find free, almost-stationary

waves that can co-exist with climatological winds. Moreover, there is a strong resem-

blance between some of their neutral vectors and some of the EOFs computed from

ECMWF analyzed fields. One of these patterns closely resembles the NAO. In the

real atmosphere, neutral vectors may take the place of the linear nearly-stationary

Rossby waves that can efficiently couple with the ocean in this model. We investigate

this possibility more carefully in Chapter 4.

We christen this growth mechanism a “candle instability” by analogy with a burn-

ing candle. The candle’s flame feeds on the energy in the molten wax while melting

more wax, ensuring a constant fuel supply, in the same way that our atmospheric

model feeds on the SST anomalies, while driving a circulation which replenishes those

anomalies. The candle flame and our growing mode’s atmosphere also react similarly

to strong atmospheric advection.
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Chapter 3

Elaborations on the coupled

model; the role of neutral vectors

In order to allow solution by hand, the analytical model of Chapter 2 is oversimplified

in many ways. Among these are its constant zonal basic-state winds, the lack of a

re-entrant atmospheric geometry, the use of only two levels in the atmosphere, the

lack of coastal boundaries in the ocean, and the absence of basic-state currents in the

ocean. In this chapter, we develop a model which is capable of addressing some of

these problems. If we are to believe that the essential physics described in Chapter 2

operates in the real world, including these extra factors should not destroy the coupled

mode. In fact, we’ll see that some of these factors actually improve the model’s

agreement with observations. We conclude with a discussion of the atmospheric

dynamics of the coupled mode, showing their connections with the resonant patterns

termed “neutral vectors” by Marshall & Molteni (1993).

3.1 Elaborations upon the analytical model

3.1.1 Model equations

We restate here for convenience the system of coupled equations studied in the pre-

vious chapter:
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Dynamic Ocean:
∂

∂t
qo + β

∂

∂x
ψo = α∇2(

3

2
ψ2 −

1

2
ψ1) (3.1)

Atmosphere (upper level)

J(ψ1, Q1) + J(Ψ1, q1) =
γa

L2
a

((ψ1 − ψ2) − SST/ra) (3.2)

Atmosphere (lower level)

J(ψ2, Q2) + J(Ψ2, q2) = − γa

L2
a

((ψ1 − ψ2) − SST/ra) (3.3)

SST

∂

∂t
SST = −γo(SST − ra(ψ1 − ψ2)) − J(ψo, SST) − γe(SST − roψo) (3.4)

In the above, Ψ1 and Ψ2 are the basic-state atmospheric streamfunctions; ψ1, ψ2,

ψo are the streamfunction anomalies in the upper and lower atmospheric layers and

in the ocean; Q1 and Q2 are the basic-state atmospheric PV fields; and q1, q2, and qo

are the QG potential vorticity anomalies in the same layers. SST and SST are the

unperturbed and anomalous sea-surface temperature; the forcing term on the right

side of equation (3.1) is the mechanical forcing of the ocean by the winds extrapolated

down to the surface (α is a drag coefficient); the right-hand sides of equations (3.2)

and (3.3) represent a baroclinic thermal forcing via relaxation of the atmospheric

temperature anomaly (expressed using ψ1 − ψ2 through the thermal wind equation)

to a value set by SST; and the forcing terms for SST represent air-sea heat flux,

advection of the mean SST gradient, and entrainment, in that order. The parameters

ra and ro are conversion constants for translating streamfunctions into temperatures

via the thermal wind equation, in the atmosphere and ocean respectively.

This is a coupled system in four unknowns (ψ1, ψ2, ψo, and SST) and four equa-

tions. In the previous chapter,, we assumed that Ψ1, Ψ2, Q1, and Q2 were linear

functions of the meridional coordinate (i.e., the basic-state flows were constant and
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purely zonal). This makes the system linear and constant-coefficient, allowing plane-

wave solutions in an unbounded domain.

We now attempt to generalize these solutions to a periodic atmosphere domain

with a possibly-restricted ocean basin, allowing nonuniform atmospheric flows. We

will not consider here the important case of nonzero basic-state ocean currents.

3.1.2 Discretization

For arbitrary basic states, this equation must be solved numerically. We do this by

forming finite-difference forms of the equations above. There are a couple of caveats

in doing so, though.

First, in the ocean equation, we must disallow flow through the ocean boundaries;

we do this by specifying that ψo = 0 everywhere on the boundary.1 But equation

(3.1) is first-order in space, and so cannot satisfy this condition; we must introduce

a term which allows a frictional boundary layer on the western edge of the basin.

We’re not much interested in the detailed boundary layer structure, so we choose a

Stommel (1948) frictional term as the simplest possible choice:

∂

∂t
qo + β

∂

∂x
ψo = α∇2(

3

2
ψ2 −

1

2
ψ1) − ε∇2ψo

Second, we must be very careful to conserve PV exactly in the discretized atmo-

spheric equations. We write the left-hand-side advection operators in “flux form”:

Atmosphere (upper level)

∇ · (v1Q1) + ∇ · (V1q1) =
γa

L2
a

((ψ1 − ψ2) − SST/ra) (3.5)

1ψo =constant is sufficient to disallow flow through boundaries. Technically, since streamfunction
is proportional to layer thickness, the constant should be chosen at each timestep to conserve upper-
layer fluid volume globally. We sidestep this detail by setting the meridional width of the model equal
to one full wavelength of the coupled mode described in Chapter 2. A meridionally antisymmetric
layer thickness perturbation does not change the volume within the layer, since for every high there’s
a corresponding low. Thus, the boundary constant can remain zero at each timestep, and in practice
we find that the mean layer thickness remains nearly constant.
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Atmosphere (lower level)

∇ · (v2Q2) + ∇ · (V2q2) = − γa

L2
a

((ψ1 − ψ2) − SST/ra) (3.6)

These equations are differenced in such a way that the flux entering through each

face of a square box of area 4dxdy equals the flux leaving the adjoining box.

We must also add a small amount of vorticity diffusion and dissipation of PV

anomalies into the model atmosphere for numerical stability.

The model is discretized using a standard finite-difference scheme, with ψ- and

q-points coincident, and using a centered difference scheme for first derivatives. We

specify a periodic channel geometry in the atmosphere whose zonal and meridional

extents are 25,000 km and 7,200 km respectively. The north and south boundary

conditions in the atmosphere are designed to allow no PV flux through the walls.

The meridional grid spacing is 360 km; the zonal grid spacing is 550 km in the

atmosphere and 275 km in the ocean.2

Upon discretization, the SST and ocean streamfunction equations can be written

in the form

∂

∂t




SST

Ψo


 = P




Ψ1

Ψ2

SST

Ψo




(3.7)

where SST, Ψo, Ψ1, and Ψ2 are vectors containing the discretized elements of the

SST, ocean streamfunction, and atmospheric upper- and lower-layer streamfunction

anomaly fields. The matrix P is a sparse matrix representing the finite-differenced

forms of the differential operators in (3.1) and (3.4). We must find Ψ1 and Ψ2 using

2To ensure numerical stability, the western boundary current must be resolved. To do this
without using a gigantic drag coefficient ε, we must increase the resolution in the ocean beyond
what is required by the atmosphere. A simple two-point averaging/interpolation scheme is used to
switch between the coarse and fine grids. Calculation of the ocean parts of the equations is cheap
compared to the inversion required to solve for the atmospheric state, so this increase in ocean
resolution is gained at negligible computational cost.
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the side constraints provided by (3.5) and (3.6):

M




Ψ1

Ψ2


 =

γa

L2
ara



−SST

SST


 (3.8)

where M is a matrix incorporating discretized forms of the advection and dissipation

operators acting on the atmospheric state vectors.

3.1.3 Time evolution and eigenspectrum

We can step the system forward in time by inverting (3.8) to find Ψ1 and Ψ2 at

each timestep from SST, then plugging those into (3.7) to get the rate of change of

SST and Ψo, which can then be advanced to the next timestep using a simple Euler

forward scheme.

We can also solve for the eigenvectors of the system; this allows us to compute

frequencies and growth/decay rates for the coupled mode, as done in the previous

chapter. Conceptually, we imagine inverting (3.8) for Ψ1 and Ψ2, and then plugging

the result into (3.7). The result is

∂

∂t




SST

Ψo


 = P




γ
L2

ara
M

−1





−I 0

I 0









I 0

0 I











SST

Ψo


 ≡ R




SST

Ψo




This gives the tendency of the model state as a linear function of the model state.

The eigenvectors of the R matrix are the exact analogues of the modes in Chapter

2, and the associated complex eigenvalues give frequencies and growth rates of each

mode.

In practice, the inverse of M is a large dense matrix, and is thus expensive to

compute and store. Instead of computing R explicitly, we can write a subroutine to

perform the algorithm described previously: Input a (SST,Ψo) vector, solve (3.8)

for (Ψ1, Ψ2), then plug that into (3.7) to find the tendency of (SST, Ψo). This
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algorithm comprises a linear operator which does exactly what the explicit matrix R

does. The Arnoldi (Lehoucq et al. 1998) algorithm is an efficient way of computing

the eigenvectors and eigenvalues of a linear operator; that operator need not be an

explicit matrix, but can be specified as a “black-box” algorithm of the sort outlined

above.

In addition, the Arnoldi technique can solve for a small number of eigenvalues of

desired characteristics, rather than finding the entire eigenspectrum. In our case, cou-

pled modes which are rapidly damped are uninteresting: they will disappear rapidly

from the natural system and not be observed. Growing or very slowly damped modes,

however, will tend to persist in nature. Thus, we should look for the eigenvalues with

most positive real part.

By never computing the inverse of the M matrix and by looking only for the eigen-

values of interest, this computation becomes soluble in a few minutes on a desktop

Linux workstation running Matlab.

3.1.4 Channel model

We begin by running the model with a zonally-periodic channel ocean (no continents)

and uniform zonal winds in the upper and lower levels of 5 and 14 m/s, respectively.

This situation is similar to the analytically-soluble model in Chapter 2, except for

the channel geometry and a slightly different value of basic-state winds – this allows

us to compare the models. If a meridional wavelength the width of the channel is

assumed, the analytical model predicts a fastest-growing mode with a growth rate of

.37/year, a period of 7 years, and a zonal wavenumber of 3.1.

Figure 3-1 shows the time-evolution of the model. The model is initialized with

random numbers for the ψo and SST fields, and integrated forward with a 30-day

timestep for 55 years. The upper four panels of Figure 3-1 show a snapshot of anoma-

lies of upper and lower layer atmospheric streamfunction, SST, and ocean streamfunc-

tion. A wavenumber 3 mode is readily apparent; atmospheric pressure and SST are

only slightly out of phase (we will explain this shortly), and pressure anomalies are

equivalent barotropic. The Hovmoeller diagrams in the lower left show westward
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propagation of SST anomalies and of lower-level atmospheric perturbations. The

lower right panel shows a local 6-year oscillation caused by the model’s propagating

Rossby waves, and a growth rate of about .17 per year.

Why are atmospheric anomalies not perfectly in phase with SST, as predicted by

the analytical model? Why are growth rates smaller than the maximum predicted?

The ideal growing mode of the analytical model has a wavenumber of 3.1. This will not

satisfy the numerical channel model’s periodic boundary conditions. At wavenumber

3 (the nearest integral wavenumber to the ideal mode), the results of Chapter 2 predict

a growth rate of .13 per year, and a small phase offset between atmosphere and ocean

– the atmosphere no longer perfectly demonstrates equilibrated mode behavior.

Thus, when the effects of a periodic channel are considered, agreement between

the analytical model and the numerical model is nearly perfect; this validates the

numerical code.

We note in passing that, as we speculated in the previous chapter, this phase-

shift caused by the integer-wavenumber constraint enables the model to come close to

success in simulating the “Antarctic Circumpolar Wave”, or ACW (White & Peterson,

1996; Jacobs & Mitchell (1996)), a wavenumber-2 pattern of interannual variability in

the Southern Ocean which displays a 90-degree phase shift between sea-level pressure

and SST. However, as noted previously, a truly 90-degree phase shift is inconsistent

with growth in this model; either the phase shift in nature must be somewhat less

than 90 degrees, or our coupling mechanism is not active in ACW dynamics.

Next, we display the eigenvalues and eigenvectors of the tendency matrix (Figure

3-2). Each pair of eigenvalues has a pair of eigenvectors which are identical but for a

90◦ phase shift; phase propagation is always westward. There is exactly one complex-

conjugate pair of eigenvalues with positive real part (implying growth) in this model.

The structure of one of the eigenvectors associated with this pair is shown in the

figure: it has the structure seen in the forward model run. The damping rates of

the other eigenmodes are determined by the vorticity dissipation in the ocean model:

mutual atmosphere-ocean feedback is relatively unimportant to their evolution.
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Figure 3-1: Snapshots and evolution of the numerical model, run in channel configu-
ration. The upper two frames show the upper and lower atmospheric streamfunction
anomalies (ψ1,ψ2) in m2/s, with identical contour spacing in both frames. Below
them are the SST anomalies, in K, and ocean streamfunction anomalies, in m2/s.
The lower left pair of panels show time-longitude sections of SST and ψ2, taken at
the latitude of the small “×” in the upper panels. The bottom right figure shows a
timeseries of SST and ψ2, taken at the ×.
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Figure 3-2: Upper panel: Eigenvalues of the coupled model’s tendency matrix. Model
parameters are identical to Figure 3-1. Lower panels: Real part of eigenvector asso-
ciated with the eigenvalue with largest real part.
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3.1.5 Ocean basin

For our first attempt at extending the model beyond the constraints of the analytical

model, we restrict the ocean domain to a basin 6000 km wide. The atmosphere is still

a 25,000 km zonally-reentrant channel. We define the surface temperature anomaly

which forces the atmosphere to be zero for land points: only the ocean induces coupled

variability. We refer to this setup as the “single-basin model”.

We expect the coupled mode to be weaker for two reasons: first, only 1/4 of the

surface area of the model is generating a coupled feedback; and second, the western

ocean boundary strongly damps the propagating Rossby waves which embody the

memory of the coupled system.

Figure 3-3 shows the eigenvalues of the single-basin model, along with the eigenvec-

tor corresponding to the rightmost eigenvalue pair. We see clearly that all eigenvalues

have been shifted leftward, signifying damping. This leftward shift corresponds to a

damping rate of roughly 1/(2.5 years). There is no longer a coupled growing mode,

due to the strong damping caused by western boundary dissipation. However, ob-

serve the structure of the rightmost, “least-damped” mode. It displays barotropic

wavenumber-3 structure in the atmosphere with matching wavelengths in the ocean,

and high pressure over warm water – precisely the arrangement which grows most

quickly in the analytical model.

The process by which damping occurs is easy to understand. A warm SST patch

at the western side of the basin will generate the wavenumber-3 pattern characteristic

of the atmosphere’s equilibrated mode. This pattern will provide a windstress forcing

at the eastern side of the basin which creates a cool “child” SST anomaly to the west

of the “parent”. For a growing mode to occur, the parent must bring the amplitude

of the child up to its own amplitude before the parent is destroyed at the western

boundary. This condition cannot be met with the choice of so narrow a basin (we

have found that the critical basin width for these parameters is about 15,000 km),

and so each parent produces a child weaker than itself, and the mode gradually dies

away.
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Figure 3-3: Same as 3-2, but for a single ocean basin 6000 km wide
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There are now no growing modes in this system; it is universally damped. How-

ever, if this system is excited with white stochastic forcing (as from atmospheric

synoptic eddies), the least-damped mode should retain the most energy, and be the

most prominent. Thus the physical interaction described in Chapter 2 remains im-

portant in understanding the behavior of the present system. We will test this claim

in section 3.1.7.

The NAO and other observed patterns do not exhibit rapid growth and pure-tone

oscillations; instead, the NAO’s timeseries spectrum (Hurrell & Van Loon, 1997) is

predominantly reddish, with some apparent enhancement of power at interannual

frequencies, similar to what would be produced by the present model when stochasti-

cally forced. In the previous chapter, we noted the unrealistically rapid growth, and

speculated that unmodeled damping processes would counteract it. Here, we find

that this is indeed the case.

One thing to note is that localization of anomalous SST forcing does not localize

the atmospheric response, which remains global. This is in apparent contradiction to

the identification of NAO and PNA patterns in the real atmosphere, which appear

to be confined to ocean basins, or at least hemispheres. However, most papers which

identify the NAO and PNA (Hurrell, 1995, Cayan, 1992) identify them as patterns of

correlation with one or two points in an ocean basin, or else as EOFs of variability

over an ocean basin or the eastern/western hemisphere. Global-scale EOF analysis

(Wallace and Thomson, 1998) produces less restricted patterns – see Appendix B for

a comparison of EOF computations in global and sectorial domains. Alternatively,

the uniformity of our atmospheric background flow may incorrectly allow atmospheric

Rossby waves to circle the planet without impediment.

This global influence leads to a rather unusual result when two ocean basins are

placed within the domain (figure not shown). The same wavenumber-3 pattern ap-

pears in the atmosphere; the Rossby wave and SST patterns in the two ocean basins

vary synchronously, since both are forced to couple to the same atmospheric pattern.

It seems unlikely that such large-scale synchronous evolution should occur in reality.

However, Meehl & Arblaster (1998) and White & Cayan (1998) find decadal fluctu-
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ations in SST and surface pressure which vary in sync between Pacific and Atlantic

in observations and coupled models.

3.1.6 Varicose atmospheric background flow

Next, we attempt to study the effect of a more realistic atmospheric background flow

on the model physics. One possible way to do this would be to simply insert an

observed basic-state flow in for the two atmospheric levels. However, the state used

would be dependent on the map projection used to place the data in a cylindrical

channel; the extremely simple geometry of the model atmosphere (especially the

use of only two vertical levels and the use of solid walls to north and south) would

probably negate any accuracy of simulation gained by using a realistic flow; and

most important, it would be difficult to identify which of the various wiggles in the

atmospheric state was causing a particular effect. Thus, we proceed with a schematic

formulation for the atmospheric stationary wave pattern.

In general, the midlatitude atmospheric flow at intermediate height exhibits a jet

which constricts over the western shores of the Atlantic and Pacific, and is spread

out over the eastern shores of the basins. We schematize this pattern by specifying

a basic-state wind field which looks like Figure 3-4. The zonally- or meridionally-

averaged wind speed is constant and identical to the values used in the previous

experiments.

Figure 3-5 shows the evolution of the model with an ocean basin identical to that

in Section 3.1.5, and with basic-state winds as shown in Figure 3-4. Perturbations

decay to zero, as before, due to the destruction of oceanic anomalies at the western

boundary. Oscillation and damping rates are similar the single-basin model, and the

atmospheric wave pattern again generally shows barotropic wavenumber-3 behavior,

although there are now some more complicated details to the atmospheric response.

The atmospheric wave no longer propagates westward in phase with SST anomalies;

instead, it remains more or less fixed at a particular longitude, and fluctuates in sign.

The non-uniform background flow locks the atmospheric response to a particular

longitude – intriguingly, its maxima lie just eastward of the basin’s center, which is
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Figure 3-4: Basic-state streamfunction pattern used in the varicose background
flow experiment. The basic-state streamfunction is given by the relation ψ =
U0y + 0.1 · UO(Ly/2)F (x, y), where F (x, y) = sin(2πy/Ly) sin2(πy/Ly) sin(4π(x −
x0)/Lx) sin2(2π(x − x0)/Lx) when x > x0 and x < (Lx/2 + x0), and F (x, y) = 0
elsewhere. UO is the wind velocity in either level from the uniform-flow experiment,
x0 is 106 m, and Lx and Ly are the zonal and meridional extents of the channel.

just where the NAO’s centers of action lie.

The SST pattern of this system is more complex than the simple propagating wave

pattern of previous experiments, but generally shows westward-propagating patches

of warm and cool water.

3.1.7 Response to stochastic forcing

In Section 3.1.5, we noted that when confined to a basin, the coupled mode was

no longer growing, but remained the least-damped mode. We stated that the least-

damped mode would be most susceptible to excitation by stochastic forcing. In this

section, we verify this claim.

We consider the case of a varicose background atmospheric flow over an ocean

basin, as in Section 3.1.6, and compute a long forward evolution of the model, as in

Figure 3-5. But now, at each timestep, after computing the atmospheric response to

SST (ψ1, ψ2), we randomly generate an additional stochastic streamfunction compo-

nent (ψ1s, ψ2s), add it to the response, and use the result to force the dynamic ocean

and SST parts of the coupled model (3.1, 3.4).

The stochastic component of the atmospheric fields are chosen to very roughly
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Figure 3-5: Same as for Figure 3-1, but with a varicose atmospheric background flow
as pictured in Figure 3-4. The small amplitude of the wave in all fields is of no
consequence, since the model is linear.
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mimic the structure and amplitude of transient eddies in the atmosphere. At each

model timestep (∆t =1 month) we generate a Gaussian random streamfunction field,

spectrally truncated to zonal wavenumber 8 and meridional wavenumber 3. Thus

the smallest wavelengths are around 3000 km. We multiply this by sin(πy/Ly)
0.7 to

bring the eddy amplitude to zero at the northern and southern walls, thus avoiding

boundary condition problems. We multiply this field by an amplitude factor of 180

geopotential meters in the upper layer and 120 geopotential meters in the lower layer,

to create an equivalent barotropic streamfunction pattern. These fields drive the

ocean through air-sea heat flux term and wind-stress curl.

In Figure 3-6, we show snapshots of the model state, and its evolution through

time. The atmospheric components plotted here are only the deterministic responses

to SST; the additional random component is not shown in these figures.

As we would expect, the stochastic model’s evolution is much less orderly. How-

ever, the patterns of atmospheric response show the wavenumber-3 by wavenumber-1

mode previously identified as a coupled mode, though the resemblance is not always

as strong as in this snapshot. SST anomalies show westward propagation, and both

atmospheric and oceanic variables show strong interannual variability. The ampli-

tude of SST anomalies is of order a degree or so, with atmospheric responses of a few

tens of geopotential meters; these amplitudes are very similar to the amplitudes of

observed coupled interannual Atlantic variability (Czaja & Marshall, 2000b).

To more clearly isolate the dominant patterns of variability, we perform an EOF

analysis on the upper atmospheric streamfunction field. The first two EOFs are

shown in Figure 3-7. The first EOF explains 55% of the non-stochastic part of the

atmospheric variability; the second EOF explains 35%. The first EOF shows a pre-

dominantly zonally-symmetric pattern, with no clear temporal structure and only

a weak covarying oceanic pattern (not shown). This mode reacts strongly to SST

anomalies, but is unable to excite a mutually-coupled interaction. We will revisit

this pattern in Section 3.2. The second EOF is much more interesting. It shows a

wavenumber-3 structure identical to the least-damped coupled mode, as well as fairly

regular oscillations with a period of about 5 years. The amplitude of this mode is

82



0 10 20

12

14

16

18

20

22

24

26

28

tim
e 

(y
ea

rs
)

x (1000 km)

SST

0 10 20

12

14

16

18

20

22

24

26

28

x (1000 km)

Lower atm. 

−5 0 5

12

14

16

18

20

22

24

26

28

SST at x

K
−50 0 50

12

14

16

18

20

22

24

26

28

Lower atm ψ at x

gpm

−60
−40
−20
0
20
40

2

4

6

Upper atm: 12.3 years
y 

(1
00

0 
km

)

−60
−40
−20
0
20
40

2

4

6

Lower atm.

y 
(1

00
0 

km
)

−3

−2

−1

0

1

2

4

6

y 
(1

00
0 

km
)

SST

−20000

−10000

0

0 5 10 15 20 25

2

4

6

x (1000 km)

y 
(1

00
0 

km
)

Ocean streamfunction

Figure 3-6: Same as Figure 3-5, but with stochastic forcing added. Amplitude of
stochastic atmospheric perturbations is 180 geopotential meters in upper layer, 120
gpm in lower layer. Only the deterministic part of the atmospheric perturbation is
shown here. Units of atmospheric perturbations are gpm; units of SST are K, units
of ocean streamfunction are m2/s.
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about 10% of the total atmospheric amplitude including both stochastic and deter-

ministic contributions. As we predicted, the least-damped coupled mode previously

discussed does, in fact, explain a large amount of the stochastic model’s variability.

3.1.8 Summary

This series of experiments shows that eliminating some of the simplifications made

in Chapter 2 does change the results in significant ways. A re-entrant geometry

imposes an integer-wavenumber constraint on the coupling, which cannot always be

satisfied by the coupled mode. Introducing coastlines in the model generates a strong

damping tendency, as oceanic Rossby waves destroy themselves against the western

boundary. Introducing a spatially-varying background atmospheric flow modifies the

atmospheric wave pattern and locks the wave maxima to particular longitudes, where

oscillate in a standing pattern. Adding stochastic forcing preferentially excites the

coupled mode, and produces coupled interannual variability of reasonable amplitude.

These changes do not invalidate the essential physical process described in Chapter

2. In fact, in general, they improve the model’s resemblance to observations of the

NAO and (to a lesser extent) the Antarctic Circumpolar Wave. This improves our

confidence in the model as a plausible mechanism for exciting interannual variability.

The one remarkably persistent result of these experiments is that the atmospheric

response is characterized by a wavenumber-3, equivalent-barotropic pattern. In the

plane-parallel flow of the analytic model, this pattern is the equilibrated mode, in

which the Rossby wave phase speed nearly balances the downstream advection speed;

this allows PV to accumulate over the forcing region, until the atmosphere comes into

equilibrium with its forcing.

For the varicose background flow experiment, the complicated background flow

and basic-state PV field prohibits us from easily verifying that the above description

remains true. Thus, we move now into a discussion of “neutral vectors”, which provide

a way for us to identify equilibrated flows, even in very complex simulations.
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3.2 Neutral Vectors

In Chapter 2, we noted briefly a connection between the dynamics of the atmospheric

component of the analytic model and the “neutral vectors” discussed by Marshall

and Molteni (1993). We observed that the coupled mode’s atmospheric behavior was

characterized by an approximate balance between westward Rossby wave propagation

and eastward PV advection by the mean flow; the approximate balance of these terms

allows PV in the model to accumulate and come into equilibrium with the thermal

forcing.

Marshall and Molteni (MM, hereafter) were interested in atmospheric wave pat-

terns which tended to persist in a given state for long periods of time. They attempted

to compute patterns of maximum persistence by beginning with a forced three-layer

QGPV model, which we schematize as:

∂

∂t
q = M(Ψ) + f

where Ψ is a vector representing the model streamfunction, q is the model potential

vorticity, M is a nonlinear tendency operator, and f is a PV source term. Linearizing

this model about some basic state gives

∂

∂t
q = MΨ + f (3.9)

The use of the same matrix label M in both (3.9) and (3.8) is deliberate: they are

essentially the same thing. MM were interested in the free, unforced perturbations

which displayed the smallest time tendency. Free, unforced waves obey

∂

∂t
q = MΨ (3.10)

To find the modes with the smallest time tendency, MM attempted to minimize the

expression3

3Actually, MM wrote their equations as streamfunction tendencies, and minimized
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λ2 =

〈
∂
∂t

q, ∂
∂t

q
〉

〈Ψ,Ψ〉 (3.11)

where 〈a,b〉 is the inner product of a and b. This expression minimizes the size of the

mode’s tendency, normalized by the magnitude of the mode itself. Inserting (3.10)

into (3.11), we seek to minimize

λ2 =
〈MΨ,MΨ〉
〈Ψ,Ψ〉 =

〈
M

†
MΨ,Ψ

〉

〈Ψ,Ψ〉

where M
† is the adjoint of M. The Ψ which minimize λ will be the eigenvectors Ψn

of M
†
M with minimum eigenvalue λ2

n.

λ2 =

〈
M

†
MΨn,Ψn

〉

〈Ψn,Ψn〉
=

〈λ2
nΨn,Ψn〉
〈Ψn,Ψn〉

Marshall and Molteni call these smallest eigenvectors of M
†
M the “neutral vec-

tors” of the atmospheric model. They can also be defined as the right singular vectors

of M with the smallest singular values. One of the most remarkable results of their

study, which received only passing mention in the paper, is that at least one of the

neutral vectors closely resembles one of the empirical orthogonal functions (EOFs) of

the observed wintertime streamfunction fields (namely, the NAO) – the neutral vec-

tors are among the most prominent modes of variability of the true atmosphere. We

will demonstrate and elaborate upon this point in Chapter 4. That neutral vectors

resemble EOFs is perhaps not surprising: the neutral vectors are, by design, the most

stable and persistent wave patterns, so it makes sense that these patterns should be

prevalent in observations.

Neutral vectors are important because they identify the most prominent patterns

of variability in the system from a dynamical framework. EOFs identify the most

prevalent patterns in the data, but do not explain why those patterns appear.

〈
∂

∂t
Ψ, ∂

∂t
Ψ
〉
/ 〈Ψ,Ψ〉. This has the advantage of allowing λ to be interpreted as an inverse timescale,

but since modes with small streamfunction tendency must also have small PV tendency, the dif-
ference should be otherwise unimportant. The technique used here is computationally simpler and
faster, and will make further developments more lucid.
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What are the dynamics of a neutral vector? The matrix M encapsulates the

Rossby wave propagation, downstream advection, and dissipation terms of the QGPV

equation. For MΨ to be small, dissipation must be weak (implying large-scale pat-

terns), and there must be a near-balance between the propagative and advective

terms.

The similarity between the dynamical balance that defines a neutral vector and

the balance required to produce a growing mode in our coupled model leads us to

ask: Is the atmospheric component of the coupled mode always a neutral vector, even

in complicated geometry? If so, what is it about neutral vectors which makes them

prone to coupling?

3.2.1 Coupled modes and neutral vectors

Using the same Arnoldi technique we employed to find the eigenvalues of the coupled

system with largest positive real part, we can efficiently find the eigenvectors of M
†
M

(all of which are positive or zero, since the matrix is self-adjoint) which have smallest

magnitude. We have computed the most neutral vectors of the constant zonal-flow

atmosphere (not shown). The first five vary only meridionally, and have no zonal

structure. As such, they are completely unaffected by zonal advection or Rossby

wave propagation. Only frictional dissipation influences them: they are “neutral” in

a rather trivial way.

The most neutral vectors with zonal structure are #6 and #7; they display

wavenumber 3 structure zonally, and wavenumber 1 zonally, and are 90◦ out of phase

with each other. This is exactly the structure of the coupled mode found in 3.1.4.

In Figure 3-8, we show the three most neutral modes for the atmosphere with

a varicose background flow discussed in Section 3.1.6. The most neutral vector is

a zonal mode analogous to the modes with no zonal structure found above; it also

closely resembles the first EOF of the stochastically-excited coupled model of Section

3.1.7. The second and third neutral vectors display structures nearly identical to

the structure of the coupled mode in Section 3.1.6. (The shape of the atmospheric

pattern in Section 3.1.6 varies periodically in the time-evolving model run; it tends to
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Figure 3-8: Maps of the first three neutral vectors of the atmospheric with a varicose
background flow as pictured in Figure 3-4. From top to bottom, neutral vectors 1-3.
Left column: upper-level streamfunction. Right column: lower-level streamfunction.

oscillate between a state resembling neutral vector 2 and a state resembling neutral

vector 3.

This provides a demonstration that the neutral vectors continue to determine

the behavior of the atmospheric component of the coupled system, even when the

atmosphere has a complicated background flow.

3.2.2 Relevance of neutral vectors to coupled interaction

Why is it the neutral vectors which are so important to the coupled model? The

magnitude of coupling in the model is determined, at least partly, by the size of the

atmospheric response to SST anomalies. An SST pattern which does not significantly
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excite the atmosphere cannot invoke coupling.

Suppose we took the model in (3.9) and looked at the forced, stationary response

to a thermal forcing f .

0 = MΨ + f

What pair of forcing and response will have the largest response per unit forcing? We

want to find the Ψ and f will maximize

λ−2 = 〈Ψ,Ψ〉 / 〈f , f〉

Since f = −MΨ, this is equivalent to minimizing

λ2 =
〈MΨ,MΨ〉
〈Ψ,Ψ〉

This is exactly the condition required for the neutral vectors. Thus, the neutral vec-

tors are not only the most stationary modes in the unforced time-evolving model,

they are also the forced, stationary modes which exhibit the largest response to ex-

ternal forcing. This is exactly the same sort of resonance behavior which makes a

playground swing build up to large amplitude when the forcing matches the natu-

ral resonance of the swing, though in our case the resonance is spatial rather than

temporal.

Interestingly, this means we can not only find the neutral vectors, Ψn, but also the

“optimal forcing patterns” fn which maximally excite them, by solving MΨn+fn = 0.

The Ψ are the right singular vectors of M; the fn are the left singular vectors.

In our coupled model, which has a very simple atmospheric heating scheme, the

connection between SST and baroclinic PV forcing is a simple linear relation. Thus,

when the coupled model’s SST has a strong projection onto the baroclinic part of an

optimal forcing pattern fn, we see a corresponding strong atmospheric response of the

corresponding neutral vector.

This is illustrated in Figure 3-9. At the top of the figure, we show the upper-level

streamfunction of neutral vectors 2 and 3 for the wavy-background flow model; these
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were the neutral vectors which resembled the coupled model’s behavior. The upper

timeseries shows the projection of the model’s atmospheric state onto the first five

neutral vectors. Since the model ocean has a western boundary, the model response

is damped. We have thus multiplied the projection values by et/3yrs, to counteract

the exponential decay and zoom in on the longer-term variations. We see clearly

the oscillation of the model state between neutral vectors 2 and 3, as described in

the previous section. The lower pair of contour plots show the baroclinic part of the

optimal forcing pattern associated with these neutral vectors. The lower timeseries

shows the projection of the thermal forcing anomalies generated by SST onto the

first five optimal forcing patterns, rescaled as with the neutral-vector timeseries. The

match is identical, as a consequence of the linearity of the atmospheric response

operator.

From Figure 3-9, we can describe the behavior of the coupled mode. As the model’s

SST pattern evolves according to ocean dynamics, it projects alternately onto two

different optimal forcing patterns. This projection excites a large atmospheric neutral

vector response, which then provides a windstress to further modify the SST.

One point of concern regarding this description concerns the robustness of the

optimal forcing patterns. In Figure 3-9, the optimal forcing patterns show compli-

cated fine structure in some areas (particularly near x=5000 km, y=3200 km, in the

“pinched” part of the background flow; there, we find an alternating positive/negative

banded pattern at the gridscale level.) This may be due to the minimal eddy viscosity

used in this model. If most of the SST forcing pattern’s projection onto this pattern

occurs in this fine-structure region, we should be concerned that the stability of the

coupled mode is sensitive to small changes in the model domain. However, we find

(figure not shown) that the bulk of the projection of SST onto the forcing pattern

occurs in the broad “wings” to the north and south in forcing pattern 2, and to the

northeast and southeast in pattern 3.
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3.3 Conclusions

We have built a numerical model which obeys the coupled physics desribed in our

earlier paper, but which allows for more complex geometry and non-uniform basic-

state flows. The existence of a western boundary causes damping of the coupled

mode due to oceanic Rossby-wave dissipation; however, this does not destroy the

viability of our coupling mechanism. The use of a non-uniform background flow in the

atmosphere does not present further problems: instead, by locking the atmospheric

streamfunction anomalies to particular longitudes, it increases the resemblance to

observed interannually-varying patterns, which do not propagate.

Our most generally-useful finding is that the coupled model’s atmospheric response

takes the form of “neutral vectors”, patterns which exhibit a near-balance between

mean-flow advection and Rossby wave propagation. The explanation for this is that

neutral vectors are the modes most readily excited by thermal forcing provided by

ocean SST anomalies. This strong response is thus able to imprint itself back upon

the ocean.

Our model is extraordinarily crude, and so we should not expect the particular

shapes and patterns of the coupled mode and the atmospheric neutral vectors to corre-

spond in detail with observed patterns, although their rough agreement is promising.

However, the physical mechanism of coupling (excitation of neutral vectors by SST

forcing) can be applied in much more realistic situations, and our results suggest that

neutral vectors are likely to be important for atmosphere-ocean interaction in a very

general sense.

In particular, Marshal & Molteni’s identification of an NAO-like pattern as the

first singular vector of their 3-layer QG model (which has a very realistic climatology),

combined with the implication of the NAO in long-term atmosphere-ocean coupling by

a great many authors, hints strongly that neutral vectors can be useful in identifying

and interpreting coupled atmosphere-ocean interactions.

In the next chapter, we return to Marshall & Molteni’s 3-layer QG model, to look

more closely at the connection between neutral vectors and EOFs, and to try to find
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the optimal forcing pattern associated with their first neutral vector (the one which

resembles the NAO). The ability to identify a forcing pattern which produces the

NAO pattern would be a major step forward: we could use it to see whether the

patterns of SST associated with a strong NAO pattern are those which are capable

of exciting the NAO. If this is true, this strongly suggests (but does not prove) that

SST plays an active role in driving the NAO pattern, and implies that interannual

NAO variability may be a mutually coupled phenomenon.

The identification of neutral vectors is not limited to simple QG models with

trivial model physics. The tendency matrix M can be arbitrarily complex: it could

even represent an entire atmospheric general circulation model, linearized about some

suitable basic state. The M
† matrix is then the adjoint of this model. The Lanczos

technique can find eigenvectors of an arbitrarily general linear algorithm; we can thus

find the neutral vectors of an entire linearized GCM, along with the corresponding

optimal forcing patterns. This is, as one might imagine, a computationally inten-

sive task. However, the implementation could be made easier through the use of

an automatic tangent linear / adjoint compiler (Marotzke et al. 1999) which can

automatically generate adjoint model code from the forward source.

The neutral vector concept can be generalized to almost any model physics, and

will be relevant to the investigation of atmosphere-ocean coupled modes whenever

the atmosphere responds to SST forcing anomalies in an essentially linear way, and

when a large atmospheric response will produce a large forcing of the ocean by the

atmosphere.

The optimal forcing pattern / neutral vector pair can be viewed as a mechanism

which accepts a small SST thermal forcing from the ocean and returns a large atmo-

spheric response, which may translate into a large feedback onto the ocean. However,

this is only half the story: the ocean must be able to accept the forcing provided by the

atmosphere and return (some nontrivial projection onto) the neutral vector’s optimal

forcing pattern in order for a mutually coupled interaction to occur (see Figure 3-10).

Optimal forcing pattern / neutral vector pairs can play a key role as pattern-selective

amplifiers in a coupled atmosphere-ocean system.
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This provides pattern-selective amplification of ocean anomalies.
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Chapter 4

Neutral vectors and optimal

forcing patterns in a 3-layer

quasigeostrophic model

In Chapter 2, we identified a potential mechanism of coupled atmosphere-ocean inter-

action which leads to interannual variability. In Chapter 3, found that the shape of

this coupled mode is determined by nearly-resonant “neutral vector” patterns in the

atmosphere. Neutral vector patterns provide the maximal atmospheric response to

external forcing, thus providing an amplification mechanism. In this chapter, we take

what we have learned about the role of neutral vectors in coupled air-sea interaction

and attempt to apply it to a more realistic model of atmospheric dynamics – namely,

the 3-layer quasigeostrophic model used by Marshall and Molteni (1993) (hereafter

referred to as MM).

The model and neutral vector computation techniques are described in Section

4.1. We discuss the the model’s empirical orthogonal functions in Section 4.2. The

neutral vectors are discussed in Section 4.3, with some mathematical insight into the

connection between neutral vectors and EOFs is given in Section 4.3.2. We consider

the model’s optimal forcing patterns in Section 4.4, including an attempt to discover

whether the optimal forcing patterns remain optimal in the full nonlinear model in

Section 4.4.3.
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4.1 Molteni’s 3-layer quasi-geostrophic model

Molteni’s model is discussed in some detail in his thesis (1994), and in Marshall &

Molteni (1993). The model is a 3-layer, global, spectral model at T21 resolution, with

pressure as a vertical coordinate. The quasi-geostrophic potential vorticity equations

are discretized at the three pressure levels (200, 500, 800 mb), giving prognostic

equations for PV:

∂

∂t
q1 = −J(ψ1, q1) −D1(ψ1, ψ2) +S1

∂

∂t
q2 = −J(ψ2, q2) −D2(ψ1, ψ2, ψ3) +S2

∂

∂t
q3 = −J(ψ3, q3) −D3(ψ1, ψ2) +S3

The ψn and qn are the streamfunction and QGPV at each level, Dn encapsulate various

dissipative processes (see Molteni, 1994), and the Sn are a constant PV source term.

PV is defined as:

q1 = ∇2ψ1 −R−2
1 (ψ1 − ψ2) +f

q2 = ∇2ψ2 +R−2
1 (ψ1 − ψ2) −R−2

2 (ψ2 − ψ3) +f

q3 = ∇2ψ3 +R−2
2 (ψ2 − ψ3) +f(1 + h/H0)

where R1 and R2 are (spatially constant) Rossby radii of deformation, h is the height

of topography, and H0 is a topographic scaling factor.

The model covers the entire globe, so it does not have artificial “walls” at the

equator or elsewhere which may spuriously reflect planetary waves. However, since

QG dynamics is not really appropriate near the equator (and the constant values

for the Rossby radii are certainly wrong there), the model’s behavior in the tropics

should not be taken too seriously.

In the mid-latitudes, however, the model’s dynamics are reasonable, and it can

be made to produce a very good mean flow field through careful specification of the
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constant forcing fields Sn. This is done by setting the Sn equal to the opposite of

the average PV tendencies obtained by inserting observed streamfunction fields into a

version of the model equations from which the Sn are omitted. This forces the model

to have a stable climatology which is near the observed fields used to generate the

Sn. The technique is similar to the “flux correction” used to eliminate climate drift

in coupled GCMs. See Molteni (1994) for more details. The Sn used for this study

are computed from ECMWF streamfunction analyses, using data from December

through March for 1983 through 1993 (Michelangeli and Vautard, 1998). As a result,

the model attempts to simulate the northern wintertime climatology.

Figure 4-1 compares various model mean fields with observations; these fields are

computed from a 5000-day integration of the model. Comparisons with observed

wintertime mean streamfunction (not shown) show that the model does a very good

job at reproducing the mean flow of the observations used to compute S. The mid-

latitude jets have the correct magnitude and the correct confluence/diffluence as they

pass over continents and oceans; generally, the model’s mean state lies within a few

percent of observations. Model eddy activity, as shown by streamfunction standard

deviation in the lower panel, is less accurate, but the model does have the right

amplitude of eddy activity; we do see storm tracks over the northern hemisphere

oceans, at approximately the right longitudes. The Pacific storm track looks quite

similar to observations; however, the Atlantic storm track does not have a sharp

northern boundary, and eddy activity is generally somewhat stronger than observed

over the pole.

We use this 5000-day run to compute empirical orthogonal functions of the model

output. The EOFs shown in Section 4.2 are computed over the entire model domain,

using monthly-mean data. EOFs computed over weekly-averaged data are quite sim-

ilar.
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Figure 4-1: 3-layer QG model mean climatology, based on 5000 daily fields. Top
panel: mean streamfunction, 200 mb, contour interval 20 · 106 m2/s. Middle panel:
mean streamfunction, 500 mb, contour interval 10 · 106 m2/s. Lower panel: Model
streamfunction standard deviation, 500 mb, contour interval 106 m2/s.
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4.1.1 Computing neutral vectors

We compute neutral vectors using the same general technique as introduced in Section

3.2. As before, the linearized system takes the form:

∂

∂t
q = −J(ψ, q) − J(ψ, q) −D(ψ) + S (4.1)

where overlined terms represent the basic state, and unmarked terms represent per-

turbation quantities. We discretize and write this in vectorized form as

∂

∂t
q = M

∗Ψ + S (4.2)

For consistency with MM’s analysis, we depart from the technique introduced in

Section 3.2, by performing a PV inversion of both sides of this equation.

∂

∂t
Ψ = MΨ + f (4.3)

Here, M is the streamfunction tendency operator, and f is the streamfunction forcing

perturbation. We now minimize the tendency (for the unforced problem) or the

forcing (for the steady problem)

λ2 =
〈 ∂

∂t
Ψ, ∂

∂t
Ψ〉

〈Ψ,Ψ〉
unforced, time-evolving (4.4)

λ2 = 〈f ,f〉
〈Ψ,Ψ〉

forced, steady (4.5)

by computing the left and right singular vectors of M as described in section 3.2. One

advantage of the PV inversion is that it allows the eigenvalues λ to be interpreted

as inverse timescales – a mode will remain relatively unchanged for a time λ−1. One

awkward aspect is that while the neutral vectors are still streamfunction anomalies,

the optimal forcing patterns are now streamfunction forcing patterns rather than PV

forcing patterns.

One can make various choices for the inner product in equation 3.11; This boils

down to the question: “We want to find the patterns whose tendency is smallest...
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but what do we mean by smallest?”. To begin, we choose an inner product identical

to that used by MM: the norm of a streamfunction vector is proportional to its kinetic

energy. We refer to the is as the “KE norm”; a different choice will be considered in

Section 4.4.1.

The only remaining difficulty is to construct the M matrix. This job is made much

simpler by the existence of a linearized version of the Molteni model code, supplied to

us by David Ferreira. We linearize about the mean state of the 5000-day run shown

in Figure 4-1. Using this linearized code, we simply compute the tendencies of a

complete set of orthonormal spectral Green’s function perturbations, and use those

tendencies to build up an explicit matrix M column-by-column. We then use Matlab’s

eigensolver to compute the smallest eigenvectors of M
†
M. We do not use the Arnoldi

technique, because the tendency matrix is dense (but smaller) when expressed using

a spectral basis. However, the eigenvalues can still be found fairly rapidly.

4.2 Empirical orthogonal functions

The first few EOFs of the model’s monthly-mean streamfunction fields are shown in

Figure 4-2. The EOFs are different from those described by Molteni et al. (1998);

this is probably because Molteni et al. computed hemispheric EOFs of the eddy

fields (i.e., zonal-mean components are removed), while we compute global EOFs of

the full streamfunction. Also, Molteni’s patterns are EOFs of observed fields, while

we compute EOFs of the model output – and the model is, of course, not perfect.

Nonetheless, the model EOFs do resemble observations. The first EOF, explaining

35% of the variance of monthly means, has the dipolar nature of the NAO in the

Atlantic, but is much more zonally extensive. It more closely resembles an “annular

mode”, or the “Arctic Oscillation” (AO) (Thomson & Wallace, 1998), which are

commonly seen in full-hemisphere EOF analyses of observations and models.

Wallace (2000) makes a strong case that the NAO and the AO are really the

same phenomenon: an “annular mode” which is somewhat stronger in the Atlantic

than elsewhere. We have noted that papers which use EOFs localized to the Atlantic
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Figure 4-2: Empirical orthogonal functions computed from monthly means of a 5000-
day integration of the Molteni QG model. EOFs are computed on global model
output at all 3 levels; EOF amplitude at 500 mbar is shown here.
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domain (Cayan, 1992 for example) tend to find a more localized NAO pattern, while

hemispheric EOF calculations (Thompson & Wallace, 1998) tend to find the annular

AO pattern. In Appendix B, we show why this might occur.

The second EOF of the model is essentially identical to the planetary wave pattern

associated with the PNA (Pacific–North America) pattern (Wallace, 1995). We see a

wave-train extending from the subtropical Pacific near the dateline over the Gulf of

Alaska and Canada, and ending in the subtropical West Atlantic. Authors interested

in ENSO teleconnections (for example, Keables, 1992) have suggested that the PNA

is a response to tropical SST forcing anomalies; this cannot be complete answer, since

our model produces a beautiful PNA pattern without any time-varying forcing.

The third EOF displays a wave train extending from the mid-latitude Pacific west

of the dateline over the pole to Western Europe, and has wavelengths similar to the

first two EOFs.

4.3 Neutral vectors

When we computed neutral vectors for the 3-layer model in the straightforward man-

ner discussed in section 4.1.1, we discovered that while the EOFs were confined to the

northern hemisphere, the neutral vectors were found in either or both hemispheres.

The reason for this difference will be discussed in Section 4.3.2. We feel it is unlikely

that a dynamical connection exists between wave patterns in alternate hemispheres;

it is more likely that two separate neutral patterns in the two hemispheres share

similar eigenvalues. The SVD analysis cannot distinguish two modes with similar

eigenvalues, and will return two orthogonal linear superpositions of the two modes.

A “rotated neutral vector analysis”, along the lines of rotated EOFS (Richman, 1986),

might help to separate the modes.

Instead of rotating the modes, we focus on the northern hemisphere by adding an

artificial damping term to the M matrix. This term is proportional to sin(φ/2−π/4)6

(where φ is latitude in radians), and damps PV anomalies with a timescale of 5 days

at the south pole, 8 days at 45◦ S, 40 days at the equator, and 1500 days at 45◦ N.
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Thus, any otherwise-neutral mode in the southern hemisphere will have a significant

tendency due to this damping effect, making it less neutral. The general effect is to

re-order the neutral mode patterns, giving preference to northern-hemisphere modes.

4.3.1 Neutral vector structure

In Figures 4-3 through 4-5, we show neutral vectors and optimal forcing patterns

computed using the “kinetic energy” norm used by MM. We describe the neutral

vectors (right-hand column) in detail in this section; the optimal forcing patterns are

discussed in Section 4.4.1.

The first neutral vector (Figure 4-3, right column) shows a roughly zonally-

symmetric pattern, with a negative center over the pole surrounded by a positive

annulus in high middle latitudes. This annulus has enhanced energy over western

Siberia and the North Atlantic. The whole pattern is equivalent barotropic, and

broadly resembles the first model EOF, although its mid-latitude annulus is shifted

farther to the north.

The second neutral vector resembles the first EOF quite closely; we see broad

positive centers over the northern mid-latitude oceans, forming a nearly-complete

annulus about the globe, with a polar negative center. Once again, the mode is

barotropic, with amplitude increasing with height. The projection of this pattern

onto the NAO pattern is quite strong.

The third neutral vector displays a pattern nearly identical to the PNA pattern.

We see a barotropic wave train extending from the subtropical Pacific over the Gulf

of Alaska, northern Canada, and into the subtropical east Atlantic. The subtropical

Pacific maximum is shifted west across the dateline compared to the observed PNA,

but elsewhere, the resemblance between neutral vector 3, EOF 2, and the PNA is

very strong.

It should be quite obvious that these patterns strongly resembles the model EOFs

and observed patterns of low-frequency variability. To emphasize this point, and to

demonstrate that these resemblances are not the result of chance correlations in a low-

dimensional system, we present Figure 4-6. This figure shows the cross-correlations
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Figure 4-3: Right column: Neutral vector #1 for model climatology, KE inner prod-
uct. Left column: corresponding optimal forcing pattern. Contour interval is arbi-
trary, but consistent from level to level.
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Figure 4-4: Right column: Neutral vector #2 for model climatology, KE inner prod-
uct. Left column: corresponding optimal forcing pattern.
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Figure 4-5: Right column: Neutral vector #3 for model climatology, KE inner prod-
uct. Left column: corresponding optimal forcing pattern.
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Figure 4-6: Cross-correlations between model EOFs (vertical axis) and neutral vectors
computed using a KE norm (horizontal axis). The absolute value of the correlation
is indicated by the size of the dots. Correlations less than 0.2 are not plotted.

between the shapes of the model EOFs (Figure 4-2) and the neutral vectors (horizontal

axis). The absolute value of the correlation for each pair is indicated by the size of

the dots. Correlations less than 0.2 are not plotted.

The observations discussed above are borne out in this figure: neutral vectors 1

and 2 project onto EOF 1, and neutral vector 3 projects onto EOF 2. We also see

that and neutral vector 1 projects onto EOF 3. But more importantly, the strongest

correlations are among the first few EOFs and neutral vectors (the large dots are

clustered in the upper left corner). If the correlations arose by chance, we would
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expect this figure to show a random scattering of small points throughout the domain.

We have done a rough comparison of these patterns with the results of d’Andrea

(2000), who attempted to find the results which minimize the tendency of a nonlinear

model, using a method of steepest descent. We find good agreement between some

of the neutral vectors shown here and some of d’Andrea’s patterns. Interestingly, in

some cases, the neutrality of a mode in the nonlinear model is sign-dependent: the

“positive” phase of a neutral vector may appear in d’Andrea’s set of patterns with

minimal tendency, while the “negative” phase may not.

Since the first few neutral vectors project strongly onto the EOFs, we should

expect that a substantial amount of the model’s natural variability resides in the

subspace of the first few neutral vectors. Figure 4-7 demonstrates that this is the

case. The three most neutral vectors explain more of the variance of a 5000-day

model run than any other singular vector. The first three EOFs explain 50% of the

variance of monthly means, while the first three neutral vectors explain 37% of the

variance – almost as much.1

Many papers have been written which project observed variability onto the first

few EOFs to study its statistics (Hannachi 1997; Haines & Hannachi 1995; Molteni

et al. 1988), or which use EOFs to generate a reduced-subspace model which en-

capsulates most of the system’s variability (Achatz & Branstator 1999; Kaplan et al.

2000; d’Andrea 2000). We find here that neutral vectors are almost equally good

for these purposes. They also have the advantage over EOFs that they represent

dynamically-important modes of the system, rather than being empirically selected.

4.3.2 Relationship between neutral vectors and EOFs

In the previous section, we observed a close connection between EOFs and neutral

vector patterns. Here, we present a mathematical explanation for this connection.2

1Since EOFs, by definition, maximize explained variance, the variance explained by neutral
vectors must be smaller.

2While writing, I found that most of the results presented in this section have been published by
Navarro (1993). Since many readers will be unfamiliar with that work, and since my discussion of
the importance of the ff

† matrix goes beyond Navarro’s study, I present the derivation in full here.
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Figure 4-7: Comparison of fractional variance of monthly-mean model output ex-
plained by EOFs (dots) with variance explained by neutral vectors (x’s).
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Suppose the atmosphere consists of a number of “slow modes” (stationary plane-

tary wave patterns like the NAO and PNA), which respond in a linear way to stochas-

tic forcing generated by “fast modes” (transient eddy forcing), such that during any

observation period n, the stochastic forcing fn excites a planetary wave response Ψn:

MΨn = fn → Ψn = M
−1fn

or, defining matrices Ψ and f whose columns are the Ψn and fn:

Ψ = M
−1

f

The EOFs are defined as the eigenvectors of the covariance matrix ΨΨ†:

ΨΨ† = M
−1

ff
†
M

−†

Consider for a moment the case where the eddy forcing is isotropic and spatially

uncorrelated, and the equations are normalized so that f has unit amplitude: ff
† = I.

Then

ΨΨ† = M
−1

M
−† (4.6)

We may decompose the M matrix using its singular vectors thus:

M = UΛV
† (4.7)

The columns of V are the right singular vectors (the neutral vectors); the columns

of U are the left singular vectors (the optimal forcing patterns), and Λ is a diagonal

matrix of singular values. Inserting this into (4.6), and using the fact that V
−1 = V

†

and U
−1 = U

†, we obtain:

ΨΨ† = V
−†Λ−1

U
−1

U
−†Λ−1

V
−1 = VΛ−2

V
†

Since VΛ−2V
† is in diagonalized form, its eigenvectors are V and its eigenvalues are
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the diagonal elements of Λ−2. Thus, the EOFs (which are the eigenvectors of the

covariance matrix ΨΨ†) are identical to the singular vectors of the tendency matrix.

Since Λ is raised to the -2 power, the dominant EOFs correspond to the smallest

singular vectors – that is, to the neutral vectors.

What happens when the transient eddy forcing covariance is not proportional to

the identity matrix, as we assumed above? Then we have:

ΨΨ† =
(
M

†
(
ff

†
)−1

M

)−1

(4.8)

The matrix
(
ff

†
)−1

is the inverse of the eddy forcing covariance matrix. It is symmet-

ric and positive definite (assuming the inverse exists). It thus has the structure and

position of a weight matrix for an inner product between the M matrix with itself.

Thus, in the presence of nonuniform stochastic forcing, we can compare the EOFs to

the singular vectors of M computed using this unusual weight matrix
(
ff

†
)−1

. We

demonstrate this by performing an SVD decomposition of M (equation (4.7)), where

now the orthonormality of the V and U are defined using the inner products

V
†
V = I U

†
(
ff

†
)−1

U = I

Then, using (4.7):

M
†
(
ff

†
)−1

M = VΛU
†
(
ff

†
)−1

UΛV
† = VΛ2

V
†

And so, returning to (4.8):

ΨΨ† =
(
M

†
(
ff

†
)−1

M

)−1

= VΛ−2
V

Thus, the principal EOFs of this system are the neutral vectors (V), where the SVD

analysis used to compute the neutral vectors uses the inverse of the stochastic forcing

correlation matrix as a weight matrix to normalize the optimal forcing patterns (U).

What is the significance of this odd weight matrix
(
ff

†
)−1

? Consider the simple
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case where each vector element represents a location in space, and the stochastic

forcing is spatially uncorrelated but inhomogeneous. Then the eddy forcing covariance

matrix will be diagonal, with larger elements on the diagonal where forcing is strong.

Thus the weight
(
ff

†
)−1

is small where the eddy forcing is large. In computing neutral

vectors, we want to minimize the forcing needed to excite them. A forcing pattern

will be “small” with respect to this weighted norm when it has small amplitude where

the weight is large, and vice versa. Thus, the SVD analysis selects neutral vectors

whose forcing patterns are localized at the site of large eddy forcing.

This allows us to explain the observation made in Section 4.3.1 that the domi-

nant EOFs all lie within the northern hemisphere, while the neutral vectors reside in

both hemispheres, unless we force them into the north using an artificial hemispheric

damping. High-frequency eddy activity, and thus eddy forcing, are far stronger in

the northern hemisphere (where it’s wintertime). Thus, neutral vector patterns sen-

sitive to northern-hemisphere forcing will be driven more strongly, and so northern-

hemisphere modes will be more prominently visible in the model output, even though

they’re no more “neutral” than southern-hemisphere modes.

To observe a closer connection between EOFs and neutral vectors, we should com-

pute neutral vectors using a norm weighted with the inverse eddy forcing covariance,

rather than any more traditional norm. It is not easy to build this forcing covariance

matrix from observations alone, but since eddy flux is proportional to eddy strength,

using the covariance of high-frequency eddy streamfunction instead might give good

results.

4.4 Optimal forcing patterns

4.4.1 Optimal forcing pattern structure

The pattern which maximally excites neutral vector 1 (left column of Figure 4-3)

shows two broad regions of sensitivity of opposite signs: one focused on Kamchatka

and extending over the east Pacific and Siberia, and a second focused on the tropical
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Pacific and covering Africa, Europe, the North Atlantic, and North America. The

pattern is baroclinic, with an out-of-phase response in the lower two layers and nearly

zero sensitivity at the upper level. This implies a sensitivity to low-level heating –

which hints that this mode may be sensitive to forcing by SST anomalies.

The second optimal forcing pattern (left column of Figure 4-4) shows a sensitiv-

ity to low-level PV forcing over much of the North Pacific, particularly the Sea of

Okhotsk, and to an opposite sign of forcing over the North Atlantic and the Arctic.

Once again, the mode is sensitive to low-level heating.

The optimal forcing pattern for neutral vector 3 (Figure 4-5) also shows a global-

scale dipole, with sensitivity to low-level baroclinic forcing. The forcing centers lie at

the beginning and end of the PNA-like wave train.

If we stopped here, we would conclude that the optimal forcing patterns are most

sensitive to broad-scale, low-level thermal forcing. In some cases (like Figure 4-5,

in which forcing centers lie at the beginning and end of the wave train), the spatial

relationship of forcing to response makes sense, while in others (like Figure 4-3, in

which an east-west dipole pattern gives rise to a zonally symmetric structure), it’s

not so obvious.

However, this analysis has chosen to use an inner product in (4.4) in which the

norm of a streamfunction vector is proportional to its kinetic energy. This is only one

of a wide array of sensible choices of inner product. For example, we could choose

an inner product where the norm of Ψ was proportional to the root-mean-square

streamfunction rather than the kinetic energy. We could also attempt to minimize

the PV tendency rather than the streamfunction tendency, or use an inner product

which applied different weights to different geographical areas or vertical levels (see

Appendix B).

We find that while the neutral vectors are relatively insensitive to the choice of

inner product, the optimal forcing patterns look very different for different inner

products. This is demonstrated in Figure 4-8, which shows the first neutral vector

and optimal forcing pattern using an inner product in which ||Ψ|| is proportional to

the root-mean-square streamfunction anomaly, which we call the “psi norm”.
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Figure 4-8: Right column: Neutral vector #1 for model climatology, Psi inner prod-
uct. Left column: corresponding optimal forcing pattern. Compare with Figure 4-3
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The first neutral vector for the psi norm looks virtually identical to the first neutral

vector of the KE norm. However, the optimal forcing pattern looks radically different.

Rather than being characterized by a planetary-sized dipole structure, we see many

narrow, closely-spaced zones of positive and negative sensitivity. These tend to be

strongest in the tropics, where, as we have already mentioned, the model’s dynamics

are the least believable; they also occur to some extent in the southern hemisphere

(not shown in this polar projection). The tendency for the optimal forcing to be low-

level heating remains, but is much less prominent. With the exception of a strong

sensitivity to mid-layer forcing over eastern Siberia, the first optimal forcing patterns

of the KE and psi norms look completely different.

We have tried several other choices of norm, including an attempt to minimize

PV tendency (as done in (3.11)) rather than streamfunction tendency; we find very

generally that neutral vectors are not strongly dependent on the norm we choose,

while the optimal forcing patterns are highly norm-sensitive.

4.4.2 Norm-sensitivity of optimal forcing patterns

Why do the two norms display identical neutral vectors if their optimal forcing pat-

terns so different? Consider the atmospheric response equation MΨ = f . A neutral

vector has small f , so the neutral vector algorithm selects the components of Ψ to

ensure the near-cancellation of the various terms in the M matrix. This cancellation is

independent of the norm selected, so the neutral vector pattern is not norm-sensitive.

However, relatively large changes in f can result from relatively small changes in Ψ,

since the left side of the equation is a difference of small terms. If the norm penalizes

one sort of pattern more heavily, the amplitude of that pattern in f can be made

small with only small changes to Ψ.

The psi norm applies equal weight to all wavenumbers, while the KE norm pe-

nalizes high wavenumbers (for which ∇ψ is large) more heavily. As a result, the KE

optimal forcing patterns are more broad-scale. However, this analysis cannot tell us

whether one norm is “better” than another.

While I was in the process of performing these computations, the potential for
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norm-sensitivity was pointed out by Grant Branstator (1999). However, the norm-

sensitivity we found could not have been definitely predicted before attempting the

experiment. A system in which less cancellation of terms within MΨ was possible (for

example, a heavily-damped system) would have less perfect neutral vectors, and would

also be less norm-sensitive. A trade-off exists between the perfection of neutral vectors

and the sensitivity of optimal forcing patterns. Unfortunately, it turns out that this

system does not lie within a useful middle ground where both neutral vectors and

optimal forcing patterns are well-defined. This is indicated by the value of eigenvalue

λ1 corresponding to the most neutral pattern. It corresponds to a timescale of about

two years – incredibly long compared to the dominant timescales of the terms in the

PV equation (a week or two), implying almost perfect cancellation of terms. This

maximizes the importance of the neutral vectors in explaining model variability, but

minimizes the utility of the optimal forcing patterns.

This phenomenon can also be explained in terms of the condition number of the

M matrix (defined as the ratio of the largest and smallest singular values). When this

number is large, the matrix is “poorly conditioned”, and the response Ψ is sensitive

to small perturbations in f or M. A singular matrix has an infinite condition number.

For our M, the condition number is of the order 104, implying rather large sensitivity

to forcing, but we must stress that the matrix is not close to being singular to within

machine precision.

Navarro (1993) performed an essentially identical neutral vector analysis on a

barotropic model, using the January 300-mb climatological flow. His neutral vector

patterns look completely different from those found in this analysis, and are much

less similar to observed patterns like the NAO, PNA, and AO. However, Navarro’s

work agrees that the neutral vectors strongly resemble the model’s EOFs, and that

the condition number of the M matrix is relatively large, leading to large sensitivity

to forcing. Interestingly, Navarro’s optimal forcing patterns show some similarity to

those shown in Figure 4-8, particularly in their fine-scale, zonally-oriented bands of

sensitivity in the tropics.
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4.4.3 Response of the nonlinear model to “optimal” forcing

We have found in Section 4.4.1 that the optimal forcing patterns are difficult to

define unambiguously, since they vary dramatically between different definitions of

the inner product. Nevertheless, it is useful to find out whether these patterns, which

are optimal in forcing the linearized stationary planetary wave model, are also optimal

in forcing the full non-linear time-evolving model. If this model were quasi-linear, we

would expect to see a large neutral vector response to optimal forcing. However,

nonlinear effects may spoil this correspondence. If the optimal forcing patterns found

using the linear model do not excite a strong response in the nonlinear model, we

cannot expect them to tell us much about the sensitivity of the true atmosphere to

PV forcing.

We want to find the time-mean perturbation response to a constant “optimal”

forcing perturbation. We proceed by running three integrations of Molteni’s model.

First, we create a pair of control runs (runs 1 and 2), where Sn in (4.1) are unchanged

from the specification described in Section 4.1. These two runs are initialized with

very slightly different initial conditions, and so produce different instances of synoptic

eddies. The difference between the mean state of these two runs will give us some

idea of the uncertainty of the mean, with which we can compare the experimental

run.

In the experimental run (run 3), we perturb Sn by a small amount in the direction

of the first optimal forcing pattern for the KE norm (left column of Figure 4-3). Of

course, we perform a PV inversion to convert the optimal forcing pattern from a

streamfunction forcing to a PV forcing. The amplitude of this forcing amounts to

about 4% of the basic-state value of S. We expect that the difference in the mean

states of runs 1 and 3 should look like KE neutral vector 1 (right column of Figure

4-3).

All three runs are performed for 10,000 days of integration; the run length was

increased in order to reduce the uncertainty of the sample mean fields.

The top panel of Figure 4-9 shows the difference in the means of the two unper-

118



Difference between means, unperturbed runs

10.6

0.2

−0.2 −1.4−1.4
−0.2

−0.6

0.2
−0.2

0.2
0.20.2

0.2

0.6

0.2
0.2

0.2

−0.6−0.2

  60oE  120oE  180oW  120oW   60oW    0o    60oE 

  60oS 

  30oS 

   0o  

  30oN 

  60oN 

Difference between unpert. and KE#1 perturbed runs

−0.6

−0.2
0.2

1 1

0.6
−1.4 1

1.4
1

−0.6

−0.6
−1

−0.6

−0.2

0.6
1

0.2

  60oE  120oE  180oW  120oW   60oW    0o    60oE 

  60oS 

  30oS 

   0o  

  30oN 

  60oN 

Figure 4-9: Response of the nonlinear model to “optimal” forcing. Top: Streamfunc-
tion difference between 10000-day means of two unperturbed model runs at 500 mbar
is shown; contour interval is .4·105 m2/s. Bottom: 500-mbar streamfunction response
to forcing with the KE optimal forcing pattern #1.

119



turbed runs. We see differences in the means of order 105 m2/s. The bottom panel

shows the difference between the means of perturbed and unperturbed runs. The

differences are likewise of order 105 m2/s. Thus, any response seen is indistinguish-

able from the noise. One might argue that while the amplitude is small, a structure

reminiscent of neutral vector 1 is seen in the response. However, this same structure

is seen in the top panel too3, so that doesn’t prove anything.

The the linearized model responds to the forcing with the first neutral vector

pattern (right column of Figure 4-3), with an amplitude4 of about 6 · 107 m2/s. The

upper limit on the nonlinear model’s response to the forcing is less than 1% of this.

Thus, we conclude that the “optimal” forcing patterns are ineffective at exciting the

nonlinear model.

Why? Take the time-average of the PV equation solved by the model (4.1):

J(ψ, q) = −D(ψ) + S − J(ψ′, q′) (4.9)

Barred terms represent time means; primed terms represent time-fluctuating terms

with zero time mean. Now, consider the time-average balance of PV when we apply

a forcing perturbation, Snv. We denote the streamfunction and PV of the response

to forcing as ψnv and qnv.

J(ψ + ψnv, q + qnv) = −D(ψ + ψnv) + S + Snv − J(ψ′, q′) (4.10)

We expand the terms in (4.10) and take the difference between it and 4.9. We assume

3Why does the difference between unperturbed runs show neutral vector structure? The uncer-
tainty of the sample mean is σ/

√
N , where σ is the standard deviation and N is the number of

independent observations. Most atmospheric patterns show little persistence on timescales longer
than a week. But the neutral vectors evolve very slowly, persisting for months or longer. Thus
the N appropriate for the neutral vectors is abnormally small; the sample mean amplitude of the
“fast” modes converges more quickly than the sample mean amplitude of the neutral vectors as we
integrate for longer. In the limit of very long integrations, the residual of sample means will have
its structure dominated by the neutral vectors.

4This is more than 30% of the amplitude of the model’s mean state. While the forcing pertur-
bation is a small fraction of the basic-state forcing, the linear response is a large fraction of the
basic-state streamfunction, precisely because the forcing perturbation is “optimal”. We recognized
that a response this large would not fully satisfy linearity conditions; the experiment shown here
was a “first try”, with an intentionally large forcing to make the response as obvious as possible.
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the perturbation is small enough that the eddy forcing J(ψ ′, q′) is unchanged.

J(ψ, qnv) + J(ψnv, q) = −D(ψnv) − J(ψnv, qnv) = Snv

The terms which are linear in ψnv are just the terms which make up the linearized

tendency operator M
∗ in (4.2):

M
∗(ψnv) − J(ψnv, qnv) = Snv (4.11)

This equation differs from the linear forcing response equation by the presence of

the term J(ψnv, qnv). Generally, for small forcing perturbations, this term is small.

However, we’re supplying a forcing which excites a neutral vector. Therefore, both

M
∗(ψnv) and Snv are unusually small. In fact, if we assume the response is linear, and

use M
∗ψnv = Snv to calculate ψnv and then check our assumption by plugging that

ψnv into the nonlinear Jacobian term, we find that the Jacobian term is 600 times

larger than the forcing! Since the amplitude of the forcing term is proportional to

the streamfunction, while the amplitude of the Jacobian term is proportional to the

square of the streamfunction, we must make the forcing (and thus the response) 600

times smaller to make J(ψnv, qnv) ∼ Snv. This means that the nonlinear self-advection

of the response dominates the forcing unless the response amplitude is smaller than

105 m2/s. This amplitude is indistinguishable from the noise.

A possible solution to this problem was suggested by Franco Molteni (personal

communication, 2000). One could add a quantity to the forcing perturbation Snv

which cancels out the contribution of the nonlinear Jacobian term in (4.11). Thus

a large neutral-vector response could be excited which did not imbalance the PV

equation. One difficulty here is that we carefully selected the optimal forcing pattern

to maximally excite a response, but when we add this extra forcing term, the resulting

pattern is no longer necessarily “optimal” in either its linear or nonlinear response.

The correct solution to this problem is to perform a nonlinear optimization of the

response to forcing.
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4.5 Conclusions

The results of this chapter are mixed. We find that the neutral vectors of Molteni’s

3-layer model closely resemble the EOFs of that model, even though the EOFs are

computed from data generated by a nonlinear model integration, and the neutral

vectors arise from singular vector decomposition of a linearized model. The neutral

vectors explain almost as much of the nonlinear model’s variance as the EOFs do;

this indicates their importance in understanding model variability, and makes them

useful in constructing reduced-subspace models of atmospheric variability. We have

demonstrated that, if one assumes that the EOFs result from linear excitation of

relatively slow modes by transient eddy PV forcing, then one can demonstrate that

the patterns of EOFs and neutral vectors are mathematically identical. The caveat

to this is that the neutral vectors must be computed using an inner product weighted

by the inverse of the eddy forcing covariance.

Thus, neutral vectors appear to be a very useful concept in studying the low-

frequency variability of the atmosphere. Their advantage over EOFs is that they

have a simple physical interpretation – they are the most slowly-evolving patterns

within the atmosphere, the patterns for which advection of PV anomalies nearly

balances their tendency to propagate as Rossby waves.

These results lead to the following tempting, though speculative chain of logic:

Fluctuations of EOF patterns like the NAO and PNA account for much of the at-

mosphere’s interannual variability. The EOFs of the observed atmosphere look like

this model’s neutral vectors. Since the neutral vectors are, in the linear model, the

patterns which most strongly respond to forcing, we are led to suspect that if any at-

mospheric modes are involved in interannual atmosphere-ocean coupled interactions

of the sort discussed in Chapters 2 and 3, the NAO and its relatives should be. Even

if the specific dynamics of those chapters are not active, the high linear sensitivity of

the neutral vectors makes them a useful paradigm for the study of atmosphere-ocean

interaction.

Observations (see Chapter 1) show that patterns like the NAO and its relatives
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dominate both the intraseasonal and the interannual variability of the atmosphere.

The neutral vector paradigm gives one of several possible explanations for this. Neu-

tral vectors are the patterns which respond most strongly to forcing in the linear

model. High-frequency forcing from transient eddies will generate short-term vari-

ability, while low-frequency forcing from SST anomalies or other processes will lead

to interannual variability. The same pattern is easily excited by both intrinsic and

extrinsic forcing of the atmosphere.

While neutral vectors are a powerful tool for understanding the atmosphere’s

variability, the optimal forcing patterns appear to be much less useful. While their

structure suggests that the neutral vectors may be easily excited by low-level baro-

clinic forcing, such as would arise from heating generated by SST anomalies, their

patterns are not robust. We can get wildly different “optimal” forcing patterns by

using a different inner product in our singular vector decomposition. This is because

the optimal forcing patterns are the small residual differences between large terms in

the atmospheric response equation, so small differences in the analysis can make huge

differences in the results. The neutral vectors do not display this sensitivity. Even

worse, the optimal forcing patterns are ineffective in exciting a large response in the

full nonlinear model. This is because the nonlinear self-interaction of the response to

forcing dominates over the forcing itself, unless that response is immeasurably small.

This may make it difficult to generalize the coupled atmosphere-ocean interaction

which was discussed in Chapters 2 and 3 to more complicated models of air-sea

interaction. While the neutral vectors are the most sensitive to forcing (including

forcing arising from SST anomalies) in linear models, they are not very responsive

in the nonlinear model discussed in Section 4.4.3. In addition, our discussion of the

interaction between neutral vectors and the ocean in Section 3.2.2 hinged on the idea

that, as SST anomalies moved around, they projected onto first one, then another of

the optimal forcing patterns. Each strong projection excited a neutral vector response,

which fed back onto the ocean. Here, we find that the shape of the optimal forcing

patterns is not robust. As a result, the regular alternation of projection necessary for

the coupled wave will be difficult to identify, if it occurs at all.
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Chapter 5

Summary and future projects

5.1 Summary

In Chapter 2, we discovered that, under favorable circumstances, the interaction of

atmospheric and oceanic Rossby waves can lead to a coupled growing mode. Un-

dulations of the ocean thermocline produce SST anomalies through advection and

entrainment; these excite a stationary wave response to thermal forcing in the atmo-

sphere, and the resulting wind-stress feeds back upon the ocean thermocline through

Ekman pumping. The propagation of thermocline undulations as Rossby waves causes

the entire pattern to move slowly westward. This mode is roughly as large as an ocean

basin, has barotropic atmospheric structure, a roughly decadal period, and a growth

rate corresponding to an e-folding time of several years. The wavelength and phase

correspondence of the mode resembles the North Atlantic Oscillation and (to a lesser

extent) the Antarctic Circumpolar Wave. Interestingly, enhanced interannual and

decadal variability have been reported in both of these observed patterns.

The analytical model presented in Chapter 2 is oversimplified in many respects,

including its use of an unbounded domain and a spatially-invariant atmospheric back-

ground flow. We addressed these simplifications in Chapter 3. There, by recomposing

the coupled physics in a numerical model, we were able to consider the effect of a

re-entrant channel atmosphere, a closed ocean basin, and a varicose atmospheric

background flow. We found that the coupled dynamics remains important in all
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these cases. When confined to an ocean basin, the coupled mode becomes damped.

This occurs because westward-propagating oceanic Rossby waves are destroyed at the

ocean’s the western boundary. Nevertheless, the coupled mode is most easily excited

by stochastic forcing. A varicose atmospheric background flow breaks the isotropy

of the atmospheric equations: the atmospheric component of the pattern no longer

propagates westward, but exhibits standing oscillations at preferred longitudes. This

increases the resemblance of the coupled mode to the NAO and similar patterns. We

concluded with the observation that the atmospheric dynamics of the coupled model

are essentially identical to the “neutral vectors” (defined as the minimum singular

vectors of the model tendency matrix) discussed by Marshall and Molteni (1993).

This makes sense because, as we showed, the neutral vectors are the patterns which

react most strongly to anomalous forcing.

In Chapter 4, we considered these neutral vectors in more detail, using Molteni’s

3-layer quasigeostrophic atmospheric model. We found a strong similarity between

the model’s EOFs and its neutral vectors. Similarity between these patterns and

EOFs of the observed atmosphere (such as the NAO and its relatives) is also strong,

and the neutral vectors explain much of the atmosphere’s variability. We showed

mathematically that there is a strong mathematical connection between EOFs and

neutral vectors. Since the neutral vectors react most strongly to forcing (including

SST forcing), and since the neutral vectors strongly resemble dominant modes of the

observed atmosphere such as the NAO and PNA, these observed patterns are the

most likely to be involved in atmosphere-ocean interaction. However, we find that

while the neutral vectors are clearly defined and very useful, the “optimal forcing

patterns” which excite them are much less so. Solving for these patterns is not a

well-posed problem, and the results vary greatly with small changed in technique.

In addition, these patterns are not successful in exciting a strong response from a

nonlinear model.

This work has made some progress in identifying atmospheric patterns which

are likely to be involved in atmosphere-ocean coupled interaction, and in identifying

mechanisms by which that interaction might occur. However, many uncertainties
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remain, particularly in computing the sensitivity of these patterns to SST forcing.

We now discuss ways to address some of these problems.

5.2 Future work

A moderate number of relatively small projects were suggested in the text of this

paper, which could be easily performed in a relatively short time. We discuss these

first, followed by some longer-term projects which expand upon the current work.

First, we could add a basic-state oceanic current to the numeric model of coupled

interaction described in Chapter 3. A double-gyre configuration of currents is the ob-

vious choice. Since the period of oceanic baroclinic Rossby waves (which currently sets

the oscillation timescale of the model) is comparable to the gyre revolution time, we

expect the coupled mode to be significantly modified by this addition. However, the

basic interaction mechanism discussed in Chapter 3 (in which different atmospheric

neutral vectors are excited as SST anomalies move around, the neutral vectors pro-

viding a feedback forcing to the ocean) can still occur, even if the SST anomalies

are transported by the mean flow rather than moving in sync with Rossby waves.

Whether a positive feedback is possible depends on the details of the interaction.

In Section 4.3.2, we predicted that the similarity of EOFs to neutral vectors would

be improved if the neutral vectors were computed using the inverse of the eddy forc-

ing covariance matrix as the weight matrix for the inner product. This prediction

should be checked. The key difficulty lies in computing the covariance of the eddy

forcing matrix. One could compute the covariance of monthly-average (say) values of

J(ψ′, q′). Alternately, one could simply suppose that the magnitude of eddy forcing

is roughly proportional to the strength of the eddies, and use the covariance of eddy

streamfunction itself. The similarity of EOFs and neutral vectors may still not be

perfect because of our assumption in Section 4.3.2 that the “slow modes” respond in

steady-state fashion to the eddy forcing.

In Section 4.4.3, we hypothesized that a large response to forcing could be pro-

duced by adding to the forcing a quantity which canceled out the nonlinear advection
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term in 4.11. This is easy enough to check, even if its implications are unclear (see

the last paragraph of 4.4.3).

The most obvious of the longer-term projects we contemplate is to look for ev-

idence of the coupled mode described in Chapter 2 in a nonlinear coupled climate

model or in observations. The simplest possible coupled model might be the Molteni

QG model coupled to a simple ocean model, but the investigation could be done in

a GCM of arbitrary complexity. We expect the difficulty in identifying the mode

to increase with model complexity. The observation which will most unambiguously

identify the coupled mode is a spatial covariance of warm SST, an atmospheric high,

and a depressed thermocline. However, depending on what happens when we add a

basic-state ocean current to our simple coupled model as discussed above, a coupled

interaction might be possible without a strongly undulating thermocline.

The existence of a linearized version of the Molteni model makes it particularly

easy to use to compute neutral vectors. However, there are some drawbacks to this

model. It does not adequately simulate tropical dynamics, and it does not have a good

representation of thermal forcing (surface heat fluxes, radiative-convective schemes,

etc.). Most notably, few-layer QG models have been criticized by Lindzen et al.

(1968), who claims that their vertical structure permits spurious resonances to occur.

Since resonances are exactly what we’re looking for in computing neutral vectors,

this is cause for concern; however, Panetta et al. (1987) dispute the seriousness of

this objection. In any case, many of these problems go away if we compute the

neutral vectors of a primitive equation model of the atmosphere. While difficulties in

interpretation may diminish, procedural difficulties in computing the neutral vectors

increase dramatically. Since primitive equation models generally have many more

variables than a QG model of similar resolution, the size of the matrix whose singular

vectors must be computed increases dramatically. Unless we can restrict the domain

of the problem (see Appendix B for a discussion of the difficulty in doing this), we

may have to accept much longer computation times.

One issue which was avoided in the description of the Molteni model’s linear re-

sponse to thermal forcing was the change in synoptic eddy PV flux which arises as a
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result of changes in the time-mean flow. That is, we tacitly assumed that J(ψ ′, q′)
t

was insensitive to changes in the time-mean flow ψ
t
. This is not the case: eddy activ-

ity depends on the mean flow. To the extent that this dependence is linear, it adds an

additional contribution to the linearized tendency matrix M. Such a linear model of

the sensitivity of eddy forcing to changes in time-mean flow is called a “storm-track

model” (Branstator, 1995). It would be interesting to see how the neutral vector

patterns are influenced by the addition of a storm-track model to M. One slight diffi-

culty is that construction of storm-track models is computationally demanding, since

it involves computing J(ψ′, q′)
t

for every possible linearly independent perturbation

of ψ
t
.

One of the conclusions of Chapter 4 is that nonlinear self-interaction is crucial to

understanding the response of the atmosphere to PV forcing anomalies. D’Andrea

(2000) has performed the equivalent of a “neutral vector” computation on the non-

linear steady-state response equation, using a method of steepest descent. Using the

results of this study, and extending it to find the nonlinear equivalent of optimal

forcing patterns, one could analyze the nonlinear sensitivity of the model to forcing

in a manner analogous to the approach used here with a linear model.

Finally, if what one really wanted to do was to compute the sensitivity of the NAO

(or one of its relatives) to SST forcing, one could do precisely that, without using

neutral vectors as intermediaries. We can imagine setting up an adjoint problem

using a large GCM, in which we directly computed the sensitivity of an NAO-like

cost function to perturbations in SST. This is a very large project, and there are

two difficulties here. First, this essentially an adjoint approach to the time-honored

problem of determining the atmospheric response to a prescribed SST anomaly (see,

for example, Palmer and Sun (1985), Kushnir and Held (1996)). Since the response

in such experiments depends greatly on the choice of model used, it is possible that

the adjoint problem we contemplate will be similarly sensitive. Secondly, Tom Haine

(2000) has suggested that computing this sort of adjoint sensitivity experiment system

with chaotic elements (such as synoptic eddies), which show sensitive dependence on

boundary conditions, may be fundamentally ill-posed.
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Broadly speaking, I feel that progress toward understanding the degree to which

coupled interaction shapes interannual variability of the atmosphere and ocean de-

pends on two factors. The first is robust determination, using a variety of atmospheric

models and data, of how the atmosphere responds to SST forcing. The second is im-

proved observations and analysis of atmosphere/ocean interaction on long timescales.

At the moment, atmospheric models react to SST forcing anomalies in wildly dif-

ferent ways (Latif & Barnett, 1994, Kushnir & Held, 1996), and our observations of

the atmosphere-ocean system are so incomplete and ambiguous that we do not know

what the models should be doing. The neutral vector paradigm in particular can help

us gain understanding of how and why atmospheric models differ in their response

to forcing, and may eventually lead to better understanding of atmosphere-ocean

interaction.
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Appendix A

The effect of strong potential

vorticity diffusion on the coupled

model

Peter Stone (1999) and others have (quite rightly) been concerned about the mag-

nitude of diffusion within the atmosphere of the coupled model. The atmosphere

seethes with eddies, which play a large role in transporting PV within it. The sim-

plest parameterization for the effect of transient eddies on the mean PV gradient is

as a diffusive process. Dr. Stone suggested that an appropriate value for the eddy PV

diffusivity κ in the atmosphere was roughly 106 m2/s. The analytical model discussed

in Chapter 2 has zero diffusion, while the numerical model discussed in Chapter 3

uses only enough diffusion to provide numerical stability, and has a diffusion constant

χ ≈ 1.4 · 104 m2/s.

In this appendix, we discuss the effect of potential vorticity diffusion on the 2-layer

atmospheric models used in Chapters 2 and 3. We present an analytical derivation of

the changes to the analytical model of Chapter 2, and will briefly discuss extension

of these results to the numerical model of Chapter 3.
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A.1 Changes to the GM99 model equations

We parameterize the effects of transient eddies as a diffusive PV flux within the

atmospheric PV equations (2.8):

J(ψ2, q2) =
gHS

2fL2
a

+ χ1∇2q1

J(ψ1, q1) = − gHS

2fL2
a

+ χ2∇2q2

For this derivation, we make the simple assumption that the diffusion constants

χn are horizontally invariant. However, they cannot be the same in both layers,

for reasons to be discussed in Section A.2. Taking sums and differences of the PV

equations as was done in (2.9) and (2.10), and defining χ̂ = χ1 +χ2 and χ̃ = χ1 −χ2:

J(ψ̂, q̂) + J(ψ̃, q̃) = χ̂∇2q̂ + χ̃∇2q̃ (barotropic)

J(ψ̃, q̂) + J(ψ̂, q̃) = −2gHS
fL2

a

+ χ̂∇2q̃ + χ̃∇2q̂ (baroclinic)

We now proceed to linearize the equations about a zonally-uniform basic state, as

done on page 23. We find that equations (2.25) and (2.26) now become:

Û
∂

∂x
∇2ψ̂ + β̂

∂

∂x
ψ̂ + Ũ

∂

∂x
∇2ψ̃ = χ̂∇4ψ̂ + χ̃∇2(∇2 − 1

L2
a

)ψ̃

Ũ
∂

∂x
∇2ψ̂+β̃

∂

∂x
ψ̂+Û

∂

∂x
(∇2ψ̃− 2

L2
a

ψ̃)+β̂
∂

∂x
ψ̃ =

4

L2
a

γa(ψ̃−
1

ra

SST′)+ χ̃∇4ψ̂ + χ̂∇2(∇2 − 1
L2

a

)ψ̃

Looking for plane wave solutions as in Section 2.2.1, we obtain

− Û ikκ2ψ̂ + β̂ikψ̂ − Ũ ikκ2ψ̃ = χ̂κ4ψ̂ + χ̃κ2κ2
aψ̃ (A.1)

− Ũ ikκ2ψ̂ + β̃ikψ̂− Û ikκ2
aψ̃ + β̂ikψ̃ =

4

L2
a

γa(ψ̃− 1

ra
SST) + χ̂κ2κ2

aψ̃ + χ̃κ4ψ̂ (A.2)

As a result this change, when we use (A.1) to solve for µ (the ratio of barotropic to
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baroclinic streamfunction), we obtain

µ ≡
Ũ − iκ2

aχ̃/k

Û − β̂/κ2 − iκ2χ̂/k
(A.3)

instead of (2.32). Notice that µ now has an imaginary component, rather than being

purely real as in Chapter 2. As a result, the modes will have a difference in phase

between the upper and lower layers. This phase tilt allows the Rossby waves to carry

PV to balance the diffusive PV transport.

As before, we now use µ to eliminate ψ̂ from (A.2). Equation (2.35) now becomes:

(
1 + i

ν

Γ
+ κ2

aχ̂
Γ

− κ2χ̃µ
Γ

)
ψ̃ =

1

ra
SST

This change can be interpreted as follows: The maximum response to SST forcing still

occurs when ν is small, but since (as it turns out) the quantity in parentheses above is

now greater than 1, the ψ̃ response will be weaker than in the no-diffusion case. This

makes sense, for we expect PV diffusion to weaken the response to forcing. However,

and more importantly, since the expression for ν (2.34) contains the complex factor

µ, ν contains an imaginary part as well, greatly complicating the analysis.

We now combine this expression with the oceanic response equations, as discussed

in Section 2.2.1.2. The dispersion relations (2.42), (2.44), et cetera are modified such

that the term
ν
Γ

+ i
(

ν
Γ

)2
+ 1

is transformed into
ν
Γ

+ i
(
1 + κ2

aχ̂/Γ − κ2χ̃µ/Γ
)

(
ν
Γ

)2
+
(
1 + κ2

aχ̂/Γ − κ2χ̃µ/Γ
)2

So that, for example, the entrainment-only dispersion relation (2.44) is now

σ = ωr − r


ακ2L2

o

(
µ

2
+ 1

) ν
Γ

+ i
(
1 + κ2

aχ̂/Γ − κ2χ̃µ/Γ
)

(
ν
Γ

)2
+
(
1 + κ2

aχ̂/Γ − κ2χ̃µ/Γ
)2


 (A.4)
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One must also remember to use the new definition of µ from equation (A.3). This

equation is too complicated to understand intuitively; however, we can still measure

the effect of the diffusion parameter by plotting the dispersion relation as in figure

2-8, once we have chosen appropriate values for χ̃ and χ̂.

A.2 Constraints on the values of the diffusion con-

stants

The diffusion constants χ1 and χ2 are not arbitrary. Marshall (1981) showed that

since eddies only redistribute PV rather than creating or destroying it, the eddy

diffusion constants χn in a zonally-symmetric, 2-layer QG channel ocean model must

obey the relation ∫ L

0

(
H1χ1

∂q1

∂y
+H2χ2

∂q2

∂y

)
dy = 0 (A.5)

where the Hn are the thicknesses of the layers, and qn are the basic-state PV gradients.

This relation can be adapted to our 2-level atmospheric pressure-coordinate model:

assuming χn are uniform within a level, we find that

χ1

χ2
= −

(
∂q2

∂y

y
)

(
∂q1

∂y

y
)

It is clear that both diffusion constants may be chosen to be positive only if the basic-

state PV gradients are of different signs in the two layers – that is, if the necessary

condition for baroclinic instability in this model (Pedlosky, 1987) is met. This is the

case for the model parameters used here (Table 2.1).

We may transform this equation from layer variables to modal variables:

χ̂

χ̃
= − β̃

β̂

where β̃ and β̂ are defined in (2.13) and (2.14). For the parameters used in Chapter

2, χ̂/χ̃ = −1.15. We choose χ̂ positive, which makes χn positive in both layers.
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Figure A-1: Growth rate (Im(σ)) as a function of wavelength for the coupled dis-
persion relation (A.4), which adds PV diffusion to the model in Chapter 2. Dotted
line: barotropic diffusion constant χ̂ = 0; Dash-dotted: χ̂ = 4 · 105 m2/s; Dashed:
χ̂ = 8 · 105 m2/s; Solid: χ̂ = 1.2 · 106 m2/s. In all cases, χ̃ = −0.87χ̂.

A.3 Results

Figure A-1 shows the imaginary part of the dispersion relation with PV diffusion

included, for the simple “entrainment-only” SST parameterization (A.4). This figure

is to be compared with Figure 2-8c. We show the growth rate for values of the

barotropic diffusion constant χ̂ ranging from 0 to 1.2·106 m2/s, and with χ̃ = −0.87χ̂

as constrained by the analysis in Section A.2.

We observe, firstly, that the presence of a diffusive term does not destroy the

coupled growing mode. When diffusion is small, the peak in Figure A-1 is shorter

and slightly broader, so the coupled mode grows less rapidly, but a wider range

of wavelengths will be amplified. Growth is reduced simply because diffusion, as

a dissipative process, reduces the atmospheric wave amplitude. Why is the peak

broader? We saw in Chapter 2 that coupled growth requires an equilibrated mode
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in the atmosphere, for which the advective tendency is smaller than the damping

tendency. Diffusion increases the damping tendency, making it easier to satisfy this

criterion.

When diffusion is large, the shape of the growth curve changes. The peak growth

rate shifts to slightly smaller wavelengths, and wavelengths shorter than 10,000 km

undergo coupled damping. Concurrent with this change is a tendency for the cou-

pled mode’s atmospheric response to lie upstream of the forcing SST anomaly. For

wavelengths smaller than 10,000 km, the atmospheric response is more than 90◦ out

of phase: this leads to negative feedback (see Figure 2-4) and a damped mode. The

fact that the fastest-growing mode differs in wavelength by only a few hundred km

from a highly damped mode is cause for some concern about the sensitivity of growth

rate to small changes in the parameters.

A.4 Conclusion

Generally, we see that the model’s coupled behavior is not vastly changed by the

addition of eddy PV diffusion. The coupled mode still exhibits a rough phase match

between SST forcing and atmospheric response, we still need a nearly-equilibrated

atmospheric mode to achieve this phase match, and the wavelength of such a mode

is quite similar to the nondiffusive case. The response of a diffusive atmosphere may

be somewhat more sensitive to model parameters, but the bulk features of the model

described in Chapter 2 still hold.

We have also experimented with adding diffusion to the numerical model of chapter

3. A slight difficulty is presented by the fact that Marshall’s relation between the layer

diffusion constants (A.5) was derived on the assumption that the mean PV field was

zonally-symmetric – this is not always true in our numerical coupled model. However,

Marshall’s results can be extended to cover zonally-asymmetric flows in our situation,

producing a constraint on the χn essentially identical to (A.5), allowing the results of

this section to be applied to the numerical model.
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Appendix B

On the merits of computing EOFs

and neutral vectors in restricted

domains

In several contexts throughout this thesis, and in conversations with other scientists

about preferred atmospheric modes, the subject of the size of the domain of analysis

has come up. For example, when computing EOFs, some workers (Cayan, 1992) have

chosen to restrict the analyzed data to a single ocean basin, while others (Thomson

and Wallace, 1998, Molteni et al. , 1988) compute EOFs over hemispheric or global

domains. In computing neutral vectors, one could also choose to find patterns which

respond most strongly to forcing located over a single ocean basin, or to forcing with

a particular vertical structure. In this appendix, we consider the merits of this type

of restricted domain.

B.1 EOFs in restricted domains

EOFs of atmospheric variability are very commonly computed over the domain of the

North Atlantic or North Pacific (Walker & Bliss, 19321, Cayan, 1992). This tends to

1Walker and Bliss do not call their technique a regional EOF analysis, but Wallace (2000) shows
that it is equivalent to one.
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produce traditional features like the NAO and PNA patterns. On the other hand,

EOF analyses of the entire northern hemisphere (Wallace and Thomson (1998)) tend

to produce the roughly zonally-symmetric, hemisphere-spanning Arctic Oscillation as

the leading mode.

Which of these styles of analysis is better? A strong case can be made for either. A

global or hemispheric EOF analysis attempts to produce a pattern which maximizes

the explained variance over the entire globe or hemisphere. As a result, a globally-

computed EOF is at risk of combining several dynamically-unconnected patterns

from around the globe, erroneously lumping them together. On the other hand,

computing EOFs over a single basin might produce an apparently-local pattern, even

if the “true” dynamical mode is global in extent. The standard remedy for this is to

regress the locally-computed EOF timeseries over the global domain, to detect global

teleconnections if they exist. However, as we will show below, this technique is not

always effective in the presence of eddy “noise”.

As a demonstration, we construct two mock datasets and perform EOF analyses

on them. These datasets are a superposition of one or more well-structured “signals”

(analogous to some dynamical mode of the atmosphere) plus some background “noise”

(which mimics atmospheric eddies). Both datasets are 300 time units long, and

contain 30 spatial points. Both have an identical amount of background noise. This

noise is Gaussian in time, but locally correlated in space: the noise is generated by

spatial cubic interpolation of 10 independent Gaussian random variables. This is

intended to mimic weekly samples of synoptic eddies.

The first dataset contains a signal whose shape is a two-hump “global pattern”

given by the dashed line in the first panel of figure B-1. We multiply this pattern by

a Gaussian-random amplitude at every time point, and add the noise timeseries. The

amplitude of the signal is half that of the noise.

The second dataset consists of two uncorrelated “local” signals, shown as the

dashed and dash-dotted lines in the second panel of B-1. The “left signal” has a

single hump on the left side of the domain, and is zero on the right, and vice versa for

the “right signal”. We multiply each by an independent Gaussian-random amplitude,
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and add the noise timeseries. Again, each signal has half the amplitude of the noise.

Now we perform two kinds of EOF analysis on each dataset, attempting to extract

the signals from the noise. First, we perform a global EOF analysis, in which we find

patterns which maximize covariance over the whole domain. Second, we perform a

pair of “local” EOF analyses, finding patterns which maximize covariance over the

left half and the right half of the domain separately. We regress the amplitude of

these patterns upon the whole-domain dataset to recover any teleconnections with

areas outside the region where the EOF was computed.

Figure B-1 shows the results. In the top panel, we see that the global EOF analysis

easily extracts the global signal from its noisy dataset. Similarly, in the bottom panel,

the local EOF analyses easily extracts the local signals from their dataset.

The second panel shows the results of a global EOF analysis on the dataset which

contains two uncorrelated local signals. The first two EOFs of the analysis consist

of orthogonal superpositions of the two local signals. These two EOFs are global in

extent: looking solely at them, one might conclude that there were a pair of global

patterns in the data, rather than two local signals.

The third panel shows the results of local EOF analyses on a dataset which con-

tains one global signal. Each EOF analysis picks up the part of the signal within its

sector, and indicates almost no correlation with the other half of the domain. Look-

ing at these EOFs, one might conclude that the dataset consisted of a pair of local

signals, rather than a single global signal.

So, global EOF analysis can indicate global correlations where none exist, and

local EOF analysis can indicate that global correlations do not exist, when they do.

It’s a paradox reminiscent of the wave-particle duality in quantum mechanics: the

behavior observed depends on the measurement technique.

Why does the global EOF analysis indicate global patterns when none exist?

When two signals of equal strength are present, the EOF analysis produces a pair

of identical eigenvalues λ1, λ2. In this situation, there is an ambiguity in the choice

of eigenvectors v1, v2: any linear superposition of v1 and v2 is also an eigenvector.

Thus, the EOF analysis finds a mixture of the two true signals. If you believe that
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Figure B-1: Results of global and local EOF analyses, performed on noisy artificial
datasets containing either one global or two local signals. See text for full explanation.
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the patterns are truly local, you can use a “rotated EOF analysis” (Richman, 1986)

to separate the signals. (However, note that if you’re wrong, and the two signals are

globally-correlated, rotating the EOFs to produce local patterns is still possible, but

misleading.)

Why does the local EOF analysis indicate local patterns when the true signal is

global? When the double-bump global signal produces a bump on (say) the left side,

there will a bump on the right side too. But when the dataset is noisy, many of

the cases where the data has a bump on the left side will be due to the noise, and

no bump will occur on the right. These cases tend to reduce the correlation of the

left bump with the right bump, lowering the apparent strength of the teleconnection.

This effect increases as the signal-to-noise ratio goes down.

Both global and local EOF analyses can mislead one about the existence of tele-

connections. But the crucial point is this: with global EOF analyses, you can tell

when you’re being misled. Spurious apparent global teleconnections only occur when

the analysis produces two nearly-equal eigenvalues. This indicates that a technique

like rotated EOF analysis (Richman, 1986) is called for. In contrast, there’s no way

to tell when local EOF analysis is spuriously indicating no global teleconnection.2

B.2 Neutral vectors in restricted domains

Difficulties also arise in computing neutral vectors within a restricted domain, but

for a rather different reason. The following shows what happens if we restrict the

computation to a particular vertical mode.

Consider the equation for atmospheric response in the 2-layer model (3.8). For

clarity in the following discussion, we take the sum and difference of the upper and

lower-layer PV equations, rewriting the system in terms of the barotropic and baro-

clinic streamfunction, as was done in (2.9) and (2.10). With appropriate changes to

the elements of M, the system can be written:

2This isn’t quite true. One can analyze the correlation between the amplitude timeseries of the
left and right EOFs; if a statistically significant correlation exists, the patterns may be dynamically
connected. However, this is not generally done.

140



MΨ =





A B

C D








Ψ̃

Ψ̂


 =




f̃

f̂




where f̂ and f̃ represent barotropic and baroclinic PV forcing, and the submatrices

A, B, C, and D encapsulate the dependence of each of Ψ̃ and Ψ̂ on each of f̃ and f̂ .

If forcing is thermal (from SST), then f̂ = 0.

In section 3.2.2, we looked for the patterns which responded most strongly to any

forcing, be it barotropic or baroclinic. But since the thermal forcing provided by the

model’s ocean is purely baroclinic, perhaps it makes sense to maximize the response

to baroclinic only forcing. That is, perhaps we should minimize

λ2 =

〈
f̃ , f̃

〉

〈Ψ,Ψ〉

It turns out that this is a bad idea. Since f̃ = [AB]Ψ, (B.2) can be rewritten

λ2 =
〈[AB]Ψ, [AB]Ψ〉

〈Ψ,Ψ〉 =

〈


A
2

AB

BA B
2





Ψ,Ψ

〉

〈Ψ,Ψ〉 (B.1)

But look what’s happened! C and D encapsulate the barotropic PV tendency terms

of the equation, but they have been eliminated. In choosing to be sensitive only to

baroclinic forcing, we have thrown away the entire barotropic PV equation! Since the

barotropic PV equation is crucial to the coupled mode (most notably in determining

the value of µ in (2.32)), the “neutral vectors” of this system are completely unlike

the patterns important to atmosphere-ocean coupling. In fact, since the rows and

columns of





A
2

AB

BA B
2





are not linearly independent, half of its eigenvalues are

identically zero – the matrix is singular. Even if one throws away the zero singular

vectors, the remaining “neutral vectors” are simply the largest modes which fit in the
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domain, and do not show the nearly-resonant dynamics discussed earlier.3

A different way of looking at this is to say that, since we’re sensitive only to

baroclinic forcing, we are specifying an particular inner product which gives zero

weight to the barotropic forcing component. That is, we minimize

λ2 =
〈MΨ,MΨ〉S

〈Ψ,Ψ〉 =
Ψ†M

†
SMΨ

Ψ†Ψ
(B.2)

where the weight matrix S is

S =





I 0

0 0





You can verify that M
†
SM = [AB][AB]†, and thus that (B.1) and (B.2) are the same.

But if we choose an inner product which gives the barotropic PV tendency zero

weight, then the model can have as large a barotropic tendency as it likes without

affecting the tendency norm. Thus, any mode with zero baroclinic tendency and

arbitrary barotropic tendency is perfectly “neutral” according to this norm.

The correct way to approach this problem is to treat the barotropic PV equation

as a side constraint which restricts the minimization to a certain subspace, rather

than as part of the minimization problem itself. However, this is somewhat involved

mathematically, and as the point of this appendix is to call attention to problems

with restricted analysis rather than to provide complete solutions, we do not present

the derivation here.

Similar problems arise when we restrict the neutral vectors geographically. At-

tempting compute the patterns which respond most strongly to, say, forcing over the

Atlantic in Molteni’s 3-layer QG model means that we are throwing away all dy-

namics occurring outside the region of interest. It also means choosing a norm with

zero weight outside the Atlantic, so the resulting “neutral vectors” have identically

zero tendency/forcing over the Atlantic and arbitrary patterns elsewhere. The “cor-

3There are two ways to compute the singular vectors of an N-by-M matrix: by finding the
eigenvectors of M

†
M or of MM

†. The larger of these matrices will always have N −M identically
zero singular values, with the remainder being identical to those of the smaller matrix. Instead of
“throwing out” the zero singular vectors, one can just solve the smaller problem. However, this
doesn’t change the result.
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rect way” described in the previous paragraph is now more difficult, because of the

more complicated structure of the M matrix. In addition, since the 3-layer model is

spectral, it is difficult to define a geographically-localized inner product. In gridpoint

space, we can multiply ψ at each point by a geographically-variable weight, but such

a multiplication in gridpoint space equates to a convolution in spectral space. The

appropriate weight matrix is thus quite complicated.

We have not investigated it in detail, but there are indications that restricting

the domain of the neutral vectors themselves, rather than their forcing, may also pose

problems. If we ask for the forcing pattern which maximizes the response over, say,

the Atlantic basin, the problem is not singular in the same way as before. Instead of

having modes with λ2 = 0 in (3.10) because they have zero tendency except where

the weight of the upper inner product is zero, we will have some modes with λ2 = ∞
because they have nonzero tendency but zero amplitude where the weight of the lower

inner product is nonzero. Another way to look at it is that rather than deleting rows

of M, we’re deleting columns. The presence of patterns with infinite singular values

doesn’t mean the problem is impossible (after all, these modes will have zero response

in the domain of interest to forcing), but the problem is rather difficult.

B.3 Conclusion

We see that computing EOFs or neutral vectors in restricted domains poses many

difficulties. When local EOFs are computed, one is at risk of mistaking a truly global

pattern for a local phenomenon. When local neutral vectors are computed, problems

with singular matrices and deleting important model dynamics arise.

These difficulties may warrant the use of EOF and neutral vector computations on

global domains, even when that isn’t quite what you want. Globally-computed EOFs

risk mistaking two local patterns for two global ones, but this error can easily be

detected by noticing the equality of eigenvalues. Globally-computed neutral vectors

seem to pose no problems in practice.
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