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Abstract

This research effort extends the capabilities of existing model-based spatially periodic
quasistatic-field sensors. The research developed three significant improvements in the field
of nondestructive evaluation. The impact of each is detailed below:

1. The design of a distributed current drive magnetoresistive magnetometer that matches
the model response sufficiently to perform air calibration and absolute property mea-
surement. Replacing the secondary winding with a magnetoresistive sensor allows the
magnetometer to be operated at frequencies much lower than ordinarily possible, includ-
ing static (DC) operation, which enables deep penetration defect imaging. Low frequen-
cies are needed for deep probing of metals, where the depth of penetration is otherwise
limited by the skin depth due to the shielding effect of induced eddy currents. The ca-
pability to perform such imaging without dependence on calibration standards has both
substantial cost, ease of use, and technological benefits. The absolute property measure-
ment capability is important because it provides a robust comparison for manufacturing
quality control and monitoring of aging processes. Air calibration also alleviates the
dependence on calibration standards that can be difficult to maintain.

2. The development and validation of cylindrical geometry models for inductive and ca-
pacitive sensors. The development of cylindrical geometry models enable the design of
families of circularly symmetric magnetometers and dielectrometers with the “model-
based” methodology, which requires close agreement between actual sensor response
and simulated response. These kinds of sensors are needed in applications where the
components being tested have circular symmetry, e.g. cracks near fasteners, or if it is
important to measure the spatial average of an anisotropic property.

3. The development of accurate and efficient two-dimensional inverse interpolation and
grid look-up techniques to determine electromagnetic and geometric properties. The abil-
ity to perform accurate and efficient grid interpolation is important for all sensors that
follow the model-based principle, but it is particularly important for the complex shaped
grids used with the magnetometers and dielectrometers in this thesis.

A prototype sensor that incorporates all new features, i.e. a circularly symmetric magne-
tometer with a distributed current drive that uses a magnetoresistive secondary element, was
designed, built, and tested. The primary winding is designed to have no net dipole moment,
which improves repeatability by reducing the influence of distant objects. It can also support
operation at two distinct effective spatial wavelengths. A circuit is designed that places the
magnetoresistive sensor in a feedback configuration with a secondary winding to provide the
necessary biasing and to ensure a linear transfer characteristic. Efficient FFT-based methods
are developed to model magnetometers with a distributed current drive for both Cartesian



and cylindrical geometry sensors. Results from measurements with a prototype circular di-
electrometer that agree with the model-based analysis are also presented.

In addition to the main contributions described so far, this work also includes other re-
lated enhancements to the time and space periodic-field sensor models, such as incorporating
motion in the models to account for moving media effects. This development is important
in low frequency scanning applications. Some improvements of the existing semi-analytical
collocation point models for the standard Cartesian magnetometers and dielectrometers are
also presented.

Thesis Supervisor: Markus Zahn
Title: Professor of Electrical Engineering



Acknowledgments

This research project was sponsored by JENTEK Sensors, Inc. I would like to thank Dr.
Neil Goldfine, president of JENTEK and member of the thesis committee, for providing fi-
nancial sponsorship, encouragement, many helpful suggestions, and enthusiastic support.
Dr. Goldfine fosters a supportive and accommodating work environment at JENTEK, which
allowed me to take advantage of the company’s resources, and gave me freedom to direct my
efforts towards areas of greatest interest to me.

Many thanks go to my thesis supervisor, Professor Markus Zahn, not only for his guidance
and critical support of my work in this thesis, but also for being a mentor for many years.
I consider myself very lucky to have been able to learn from Professor Zahn for almost thir-
teen years, starting from my first year at MIT. Since then I have gone to him for advice on
numerous occasions, not only for academic matters, but for personal and career choices as
well. I would also like to thank the other thesis committee members, Professors Jeffrey Lang,
Terry Orlando, and Bernard Lesieutre, for their insightful comments at the defense and at
our committee and individual meetings.

Darrell Schlicker provided the highest level of support throughout the entire project. This
was especially important in the last several months. He designed the impedance analyzer
instruments used in most experiments. I have drawn on his expertise in electronics in the
design of the interface and support circuitry of the magnetoresistive sensor. Whenever baf-
fled by a particular measurement result or a theoretical derivation, I went to Darrell for a
brainstorm session. His willingness to help and generosity with which he lends his time are
qualities I have rarely found in others. Many aspects of this thesis would have been much
more difficult without his help. Thanks!

I would like to thank my other co-workers at JENTEK for their help in my work on this
project and for making it possible to devote so much of my time to my thesis. In particular, I
would like to thank Joni Goday for handling the financial aspects of my research, Dr. Andrew
Washabaugh for our numerous discussions of the mathematical and physical models, Paula
Gentile for help with graphics and literature, Dr. Vladimir Zilberstein for help with the choice
and design of the test samples, Vladimir Tsukernik for the drawing and machining of the
sensors and samples, Chris Root for finding potentially useful material samples, Wayne Ryan
for help with the ferrofluid experiments, and Dr. Karen Walrath for help with the sensor
prototype and for general advice. I would also like to thank my close friends Michelle McDevitt
and Jacqueline Aylas for manuscript review and emotional support.

Finally, I am truly grateful to my partner, Leo T. Mayer, for his love, support, and patience
over the last five years. He has helped me through many difficult times, and his unwavering
faith in me has always been a steady source of confidence and motivation.





Contents

1 Introduction 17
1.1 Imposed ω-k quasistatic sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.1.1 Meandering Wavelength Magnetometer (MWMTM) . . . . . . . . . . . . . 19
1.1.2 Magnetometer arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.1.3 Interdigitated electrode dielectrometer (IDEDTM) . . . . . . . . . . . . . . 21
1.1.4 Multiple-Wavelength Dielectrometer . . . . . . . . . . . . . . . . . . . . . 23

1.2 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.3.1 Magnetoresistive sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.3.2 Modeling sensors with rotational symmetry . . . . . . . . . . . . . . . . . 25
1.3.3 Magnetometers with distributed current drive . . . . . . . . . . . . . . . 26

1.4 Inverse estimation methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.4.1 Measurement grids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.4.2 Minimization methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.5 Magnetic field sensing technologies . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.6 Summary of Chapter 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2 Forward Models of the Spatially Periodic Sensors 33
2.1 Mathematical model and simulation method for the MWM . . . . . . . . . . . . 34

2.1.1 Magnetic diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.1.2 Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.1.3 Collocation points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.1.4 Fourier series representation . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.1.5 Normalized surface reluctance density . . . . . . . . . . . . . . . . . . . . 41
2.1.6 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.1.7 Setting up the matrix equation . . . . . . . . . . . . . . . . . . . . . . . . 47
2.1.8 Terminal currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.2 Mathematical model and simulation method for the IDED . . . . . . . . . . . . 48
2.2.1 Laplace’s equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.2.2 Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.2.3 Collocation points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.2.4 Fourier series representation . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.2.5 Surface capacitance density . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.2.6 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.2.7 Setting up the matrix equation . . . . . . . . . . . . . . . . . . . . . . . . 58
2.2.8 Calculating transcapacitance . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.3 Summary of Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7



8 CONTENTS

3 Modeling sensors with rotational symmetry 61
3.1 Magnetometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.1.1 Use of Fourier-Bessel series . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.1.2 Collocation points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.1.3 Surface reluctance density . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.1.4 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.1.5 Matrix equation and terminal currents . . . . . . . . . . . . . . . . . . . . 68

3.2 Dielectrometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.2.1 Sensor geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.2.2 Laplace’s equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.2.3 Collocation points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.2.4 Surface capacitance density and boundary conditions . . . . . . . . . . . 74
3.2.5 Calculating transcapacitance . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.3 Experimental verification of cylindrical coordinate model . . . . . . . . . . . . . 75
3.4 Summary of Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4 Distributed Current Drive Sensors 81
4.1 Why use a distributed current drive . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.3 Closed form solutions for the magnetic field . . . . . . . . . . . . . . . . . . . . . 83
4.4 Numerical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.5 Sensor of finite width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.6 Multiple homogeneous layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.7 Eliminating the net dipole moment . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.8 Sensor with rotational symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.8.1 Sensor description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.8.2 Sensor modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.9 Fast Hankel transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.9.1 Definition and derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.9.2 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.9.3 Application of the fast Hankel transform to the circular magnetometer . 107

4.10 Different wavelength modes with the same sensor . . . . . . . . . . . . . . . . . 109
4.11 Summary of Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5 Deep Penetration Magnetoresistive Magnetometer 113
5.1 Theory of the magnetoresistive and giant magnetoresistive effects . . . . . . . . 114

5.1.1 Magnetoresistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.1.2 Giant magnetoresistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.2 Operation of the secondary GMR sensor assembly . . . . . . . . . . . . . . . . . 119
5.2.1 GMR sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.2.2 Feedback loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.2.3 Electronics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.2.4 DC stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.2.5 AC stability and loop bandwidth . . . . . . . . . . . . . . . . . . . . . . . 122

5.3 Incorporating the effects of the feedback loop into the sensor model . . . . . . . 124
5.4 Conductivity / lift-off measurements at 12.6 kHz . . . . . . . . . . . . . . . . . . 125
5.5 Permeability / lift-off measurements at DC . . . . . . . . . . . . . . . . . . . . . 128
5.6 Thickness / lift-off measurements with a multi-layer structure . . . . . . . . . . 131



CONTENTS 9

5.7 Low frequency (100 Hz) thickness measurements . . . . . . . . . . . . . . . . . . 133
5.8 Crack detection through 1/4 inch stainless steel plate . . . . . . . . . . . . . . . 137
5.9 Magnetic permeability measurements of ferromagnetic fluids . . . . . . . . . . . 142
5.10 Summary of Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6 Further Extensions of the Sensor Models 145
6.1 Mathematical model of the MWM sensor in the presence of convection . . . . . 145

6.1.1 Changes to the diffusion equation . . . . . . . . . . . . . . . . . . . . . . . 145
6.1.2 Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
6.1.3 Collocation points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
6.1.4 Fourier series representation . . . . . . . . . . . . . . . . . . . . . . . . . 148
6.1.5 Normalized surface reluctance density . . . . . . . . . . . . . . . . . . . . 149
6.1.6 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
6.1.7 Setting up the matrix equation . . . . . . . . . . . . . . . . . . . . . . . . 150
6.1.8 Effect of convection on sensor response . . . . . . . . . . . . . . . . . . . . 151
6.1.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.2 Grid look-up and interpolation algorithms . . . . . . . . . . . . . . . . . . . . . . 153
6.2.1 Two-dimensional inverse interpolation . . . . . . . . . . . . . . . . . . . . 153
6.2.2 Search algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
6.2.3 Simple inverse two-dimensional interpolation . . . . . . . . . . . . . . . . 156
6.2.4 Complex inverse two-dimensional interpolation . . . . . . . . . . . . . . . 157
6.2.5 Handling triangular grid cells . . . . . . . . . . . . . . . . . . . . . . . . . 159
6.2.6 Comparison between the new and the old interpolation methods . . . . . 160
6.2.7 Handling multi-valued grids . . . . . . . . . . . . . . . . . . . . . . . . . . 161
6.2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

7 Summary and Conclusions 163
7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
7.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
7.3 Suggestions for continuing work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

7.3.1 Scaled down GMR magnetometer . . . . . . . . . . . . . . . . . . . . . . . 166
7.3.2 GMR magnetometer arrays . . . . . . . . . . . . . . . . . . . . . . . . . . 167
7.3.3 Applying the cylindrical geometry collocation point method to Rosette

sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

A Definition of Symbols, Abbreviations, and Acronyms 169

B Infinite Sums over Fourier Modes 175
B.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
B.2 Alternative formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

C Error analysis 183

D Calibration methods 187
D.1 Single point air calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
D.2 Air and shunt calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
D.3 Two point reference part calibration . . . . . . . . . . . . . . . . . . . . . . . . . 189
D.4 Other calibration methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191



10 CONTENTS



List of Figures

1-1 Layout of a typical MWM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1-2 Photograph of large MWM Array developed at JENTEK for use in metal land

mine detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1-3 Two-dimensional scan image generated with the large MWM array at JENTEK 21
1-4 Schematic layout of an IDED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1-5 Electric field lines for a three-wavelength dielectric sensor . . . . . . . . . . . . 23
1-6 Layout of a 5/2/1 mm three-wavelength dielectric sensor. . . . . . . . . . . . . . 24
1-7 Sensitivity comparison of magnetic sensor technologies . . . . . . . . . . . . . . 31

2-1 Definition of geometry parameters of the MWM . . . . . . . . . . . . . . . . . . 37
2-2 Collocation points and interval limits used in the analysis of the MWM . . . . . 40
2-3 Electronic interface of the IDED . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2-4 Piecewise-smooth collocation-point approximation for the electrostatic

potential of the IDED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2-5 Terminal current of an electrode in contact with a conducting dielectric medium. 53
2-6 Material structure with several layers of homogeneous materials . . . . . . . . 55

3-1 Basic structure of the circularly symmetric magnetometer (Rosette). . . . . . . 62
3-2 Definition of geometry parameters of circular dielectrometer. . . . . . . . . . . . 70
3-3 Normalized calculated potential at the electrode surface for the circular

dielectrometer in air . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3-4 Positions of 16 collocation points . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3-5 Layout of two circular dielectric sensors with different depth of sensitivity . . . 75
3-6 Permittivity/lift-off measurement grid for the pair of dielectric sensors in

Figure 3-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3-7 Results of measurements with the circular dielectric sensors . . . . . . . . . . . 78

4-1 Comparison between distributed and concentrated current drives . . . . . . . . 82
4-2 Geometry and current drive of the sensor analyzed in Section 4.3 . . . . . . . . 84
4-3 Sine transform of the current distribution of the sensor . . . . . . . . . . . . . . 85
4-4 The Lorentzian function and its Fourier transform . . . . . . . . . . . . . . . . . 87
4-5 Magnetic field at the origin, generated by a pair of conductors positioned at a

distance d on either side. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4-6 Discretized spectrum of the current excitation shown in Figure 4-2, in a

decaying exponential envelope. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4-7 Numerically calculated magnetic field of the periodic sensor . . . . . . . . . . . 91
4-8 Current envelope function for a sensor of finite width and its corresponding

sine transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

11



12 LIST OF FIGURES

4-9 Sine transform of the current excitation generated by discrete current elements 94
4-10 Numerically calculated magnetic field of the finite-width sensor . . . . . . . . . 95
4-11 Material structure that consists of more than one homogeneous layer . . . . . . 96
4-12 Equipotential surfaces of the magnetic scalar potential for multi-pole

moments with no ϕ-dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4-13 Magnetic field lines for � = 3 “octupole” moment potential . . . . . . . . . . . . 100
4-14 Number of winding turns for the finite sensor with no net dipole moment . . . 100
4-15 Structure of the circular magnetometer with distributed current drive . . . . . 101
4-16 Numerically calculated magnetic field of the circular magnetometer . . . . . . . 104
4-17 Results of the application of the fast Hankel transform . . . . . . . . . . . . . . 108
4-18 Magnetic field lines of the circular magnetometer, calculated with the fast

Hankel transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4-19 Winding pattern for the circular magnetometer that enables two different

fundamental wavelengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5-1 Photograph of the prototype sensor used in all experiments in Chapter 5 . . . . 114
5-2 Fermi diagram of conduction states in a ferromagnetic metal . . . . . . . . . . . 116
5-3 Diagram illustrating the giant magnetoresistive effect . . . . . . . . . . . . . . 118
5-4 Typical GMR magnetic field sensor layout . . . . . . . . . . . . . . . . . . . . . . 119
5-5 Transfer characteristic of the GMR magnetic sensor. . . . . . . . . . . . . . . . . 120
5-6 Structure of the hybrid sensor feedback loop . . . . . . . . . . . . . . . . . . . . 121
5-7 Feedback and interface circuit schematic . . . . . . . . . . . . . . . . . . . . . . 123
5-8 Conductivity/lift-off measurement grid for circular sensor at 12.6 kHz . . . . . . 126
5-9 Results of conductivity/lift-off measurements with the circular magnetometer . 127
5-10 Two wavelength magnitude/magnitude permeability/lift-off grid for the

circular magnetometer with DC excitation . . . . . . . . . . . . . . . . . . . . . 129
5-11 Permeability/lift-off measurement results with the circular GMR

magnetometer on magnetizable foam layer . . . . . . . . . . . . . . . . . . . . . 130
5-12 Three layer structure used in thickness/lift-off measurements . . . . . . . . . . 132
5-13 Thickness/lift-off measurement grid for the circular magnetometer at 12.6 kHz 133
5-14 Stainless steel layer thickness measurements at five different lift-offs . . . . . . 134
5-15 Low frequency (100 Hz) conductivity/thickness measurement grid and results . 135
5-16 Expanded views of the upper left corner of the grid in Figure 5-15 . . . . . . . . 136
5-17 A plot of the real part of complex exponential decay, characteristic of magnetic

diffusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
5-18 Geometry of stainless steel plate with a slot simulating a crack. . . . . . . . . . 137
5-19 Stainless steel plate configuration for three area scans . . . . . . . . . . . . . . 138
5-20 Area scan of stainless steel plate with the crack at the surface . . . . . . . . . . 139
5-21 Area scan of stainless steel plate with the crack 3.2 mm below the surface . . . 140
5-22 Area scan of stainless steel plate with the crack 7.2 mm below the surface . . . 140
5-23 Linear scan of simulated crack taken at multiple frequencies . . . . . . . . . . . 141

6-1 Locus of the transinductance of an MWM in magnitude/phase space as the
convection velocity increases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6-2 Real part of the magnetic vector potential Ay, shown for stationary and
moving media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6-3 Incorrect result of the closest grid point search algorithm . . . . . . . . . . . . . 154
6-4 Schematic diagram of the two-dimensional inverse interpolation in a grid cell . 156



LIST OF FIGURES 13

6-5 Diagram of a grid cell showing the points used by the complex inverse
two-dimensional interpolation algorithm . . . . . . . . . . . . . . . . . . . . . . 157

6-6 Grid cell transformed into a parallelogram . . . . . . . . . . . . . . . . . . . . . 158
6-7 Point and segment definitions for a triangular grid cell . . . . . . . . . . . . . . 159
6-8 Pathological test grid and path through the grid . . . . . . . . . . . . . . . . . . 160
6-9 Results with both interpolation methods for the radial property of the grid in

Figure 6-8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
6-10 Results with both interpolation methods for the azimuthal property of the

grid in Figure 6-8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

B-1 Three-dimensional plot of the infinite summation function in equation (B.3). . . 176
B-2 Plot of the functions f (x) and g(x) . . . . . . . . . . . . . . . . . . . . . . . . . . 177
B-3 Three-dimensional plot of the infinite summation function in equation (B.4). . . 178

C-1 Comparison between simulated and measured response of the magnetometer
in the conductivity/lift-off measurements . . . . . . . . . . . . . . . . . . . . . . 185



14 LIST OF FIGURES



List of Tables

1.1 Magnetoresistive sensors: advantages and application areas. . . . . . . . . . . . 30

3.1 Geometric and material parameters of the sensors in Figure 3-5. . . . . . . . . . 76
3.2 Results of measurements with the circular dielectric sensors, shown in

Figure 3-7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.1 Spherical harmonic functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.2 Number of winding turns for the finite sensor with no net dipole moment . . . . 99
4.3 Number of turns per winding wj for the circular magnetometer. . . . . . . . . . . 102
4.4 Fast Hankel transform normalized parameter values. . . . . . . . . . . . . . . . 107
4.5 Winding pattern for the rectangular magnetometer, enabling two different

fundamental wavelengths determined by the polarity of the connection . . . . . 109
4.6 Winding pattern for the circular magnetometer, enabling two different

fundamental wavelengths, determined by the polarity of the connection. . . . . . 109

5.1 Results of conductivity/lift-off measurements with the circular magnetometer,
shown in Figure 5-9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.2 Conductivity of metal alloys used in experiments . . . . . . . . . . . . . . . . . . 128
5.3 Experiment results of the permeability/lift-off measurements at DC, shown in

Figure 5-11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.4 Stainless steel layer thickness estimation results for various lift-offs . . . . . . . 134
5.5 Low frequency (100 Hz) conductivity/thickness measurement results for six

metal plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
5.6 Measured ferrofluid magnetic permeability . . . . . . . . . . . . . . . . . . . . . 143

A.1 Abbreviations and acronyms in alphabetical order. . . . . . . . . . . . . . . . . . 169
A.2 Definition of symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

C.1 Results of the conductivity/lift-off measurements of Section 5.4, including all
twenty sets, and showing percentage errors . . . . . . . . . . . . . . . . . . . . . 184

D.1 Data from Table C.1, re-calibrated using the two point reference part method . . 190

15



16 LIST OF TABLES



Chapter 1

Introduction

The goal of this research effort is to extend the capabilities of existing sensor technology based
on quasistatic magnetic and electric fields with imposed spatial periodicity. The main appli-
cation area for such sensors is in nondestructive evaluation of materials, especially detection
of flaws such as cracks, voids, and inclusions in metal components. They can also be used
for more general measurement of a material’s magnetic and dielectric properties, i.e. electric
conductivity, magnetic permeability, and dielectric permittivity, which can be related to other
physical properties of interest, such as density, thermal conductivity, chemical composition,
residual mechanical stress, etc. Geometric parameters of a test structure, such as layer thick-
ness and proximity, can also be measured with such sensors. An overview of existing sensor
technology is presented in Section 1.1.

The most important new idea explored in this work is the use of a giant magnetoresistive
sensor in place of the secondary magnetometer winding. This makes it possible to operate the
magnetometer at frequencies much lower than ordinarily possible, including DC operation,
since the magnetoresistive sensors respond to the magnitude of the magnetic flux density, as
opposed to the induced voltage in a secondary winding, which is proportional to the rate of
change of the linked magnetic flux. Low frequency operation is necessary for deep probing of
metals, where at higher frequencies the depth of penetration of the magnetic fields is limited
by the skin depth effect, caused by induced eddy currents.

Until now almost all sensors have been designed with rectangular geometry, suitable for
analysis in Cartesian coordinates. While modeling and numerical simulation of eddy current
sensors in cylindrical geometry have been done in the past, the existing semi-analytical col-
location point models cannot be used to describe sensors in alternative coordinate systems.
In this work the existing semi-analytical collocation point methods, used to model the mean-
dering winding magnetometer and the interdigital dielectrometer, are extended to cylindrical
coordinates, making them suitable to model sensors with circular geometry. These kinds
of sensors are needed in applications where parts being tested have cylindrical geometry,
e.g. testing for cracks near fasteners, or when it is important to measure the average of an
anisotropic property, as discussed in more detail in Chapter 3.

One of the main difficulties in developing semi-analytical models for the magnetometers is
that magnetic diffusion effects cause the winding current to be nonuniform across the winding
traces. Thus the drive current density is not known at the outset, requiring the use of colloca-
tion point methods. The sensor models can be made significantly simpler and more efficient
if the nonuniformity of the current distribution inside the conductors can be ignored, because
the known excitation current density can then be broken down into its constitutive spatial

17
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Fourier modes, and the magnetic fields can be obtained as a superposition of the solutions for
all wavenumber modes.

There is a class of sensors where this assumption can be justified. There the magnetic
fields are shaped by a number of windings, each with a varying number of turns, that fol-
low a sinusoidal envelope function in Cartesian geometry or a first order Bessel function in
cylindrical geometry. The physical dimensions of each winding, width and thickness, are
much smaller than the imposed spatial wavelength, the distance between the windings in the
primary, and the distance between the secondary winding and the nearest primary winding
segment. This makes it possible to treat the windings as infinitely thin, allowing the driven
current density to be modeled as a series of spatial impulse functions.

Methods are developed for efficient modeling of this class of sensors. Such sensors are
needed in applications that require high depth of sensitivity, where the standard periodic
sensor geometry would result in sensor footprints too large to be practical. Using a distributed
current drive makes it possible to have an imposed spatial period on the order of the sensor
length and width. These methods are also extended to cylindrical coordinates.

A prototype sensor incorporating all of these features, i.e. a circularly symmetric magne-
tometer with a distributed current drive using a magnetoresistive secondary element, is built
and tested in a variety of representative applications, confirming the validity of the semi-
analytical models, and demonstrating the new capability of low frequency operation for deep
penetration in metals.

The order in which material is presented in this thesis is chosen to avoid using a result
before its derivation. The existing collocation point models, with some changes and improve-
ments, are described in Chapter 2. Chapter 3 develops the corresponding models in cylindri-
cal geometry. The methods used to model distributed current drive sensors are presented in
Chapter 4, and the design and experimental results of the circularly symmetric, distributed
current drive, magnetoresistive sensor are presented in Chapter 5.

1.1 Imposedω-k quasistatic sensors

Almost all of the work in this research project is aimed at extending the capabilities of sensor
technology based on spatially periodic quasistatic fields. Such dielectrometer and magnetome-
ter sensors have been the focus of several research projects at the Laboratory of Electromag-
netic and Electronic Systems (LEES) at MIT for many years [1–11]. This section describes
some of the commercially developed sensors based on this work.

The basic idea behind the imposed ω-k quasistatic sensors is that the magnetometer wind-
ings or dielectrometer electrodes are laid out in a spatially periodic pattern on a substrate,
making one-sided contact with the material under test. The imposed spatial period (wave-
length) λ determines the rate of decay of the fields away from the sensor and is chosen to
achieve the desired depth of sensitivity. The frequency of excitation does not affect this depth
of sensitivity of the dielectrometer,∗ and also of the magnetometer at low frequency or with
nonconducting materials. Skin depth effects on the magnetic field at high frequency in con-
ductors result in a calculable decrease in magnetic field penetration depth with increasing
frequency. The periodic nature of the potentials and fields allows for the use of Fourier series
methods in the semi-analytical models.

∗See the foot note on page 70.
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The spatially periodic quasistatic sensors have several advantages over alternative sens-
ing technologies:

1. Control over the depth of sensitivity allows for measuring profiles of material proper-
ties by combining the results of measurements at varying depths, controlled by varying
sensor wavelength, or by varying frequency in good conductors with magnetometers.

2. The layout allows for a good match between simulated and measured sensor response
with the simulations carried out with efficient collocation point methods, described in
Chapter 2. This reduces the need for elaborate calibration standards and procedures.

3. The flexible substrate makes it possible to measure on curved surfaces, with the curva-
ture having no appreciable effect on sensor response.

4. The sensor geometry allows for the creation of sensor arrays, with good uniformity be-
tween individual array elements. The simulation methods remain valid for arrays.

1.1.1 Meandering Wavelength Magnetometer (MWMTM)

The MWM,∗ originally called the Inter-Meander Magnetometer, was conceived at the MIT
Laboratory for Electromagnetic and Electronic Systems by Professor James R. Melcher as
the magnetic analogue of the interdigital electrode dielectrometer. It is suitable for measure-
ments of conductivity, complex permeability, and thickness for single- and multiple-layered
magnetic and/or conducting media. The sensor was further developed at JENTEK and has
been successfully applied to a variety of practical applications [12–17]:

• Early stage fatigue measurement of metallic components and fatigue test
coupons [18–23].

• Anisotropic property measurement [24], e.g. permeability, related to residual stress, or
conductivity, resulting from cold working.

• Crack detection in metal components [19,22,25,26].
• Coating characterization [25–28], e.g. thermal barrier coatings.
• Ceramic coating thickness measurement [28].
• Quality control for shotpeened and cold worked areas, independent of surface

roughness [18,26,27,29].
• Weld quality [29].
• Measurement of applied and residual stress in ferromagnetic materials, such as

carbon steel [30].
• Surface characterization and measurement of subsurface corrosion [27,31].

The sensor geometry, with flat rectangular meandering windings, provides a number of
advantages over conventional eddy current sensors, including the following:

• Accurate modeling of sensor response.
• Ability to determine absolute properties such as electrical conductivity and magnetic

permeability.
• Ability to perform one-sided magnetic anisotropy measurements.
• Accurate determination of lift-off, i.e. proximity to a conductive or magnetic surface.
• Ability to conform to curved surfaces, including areas of double curvature.

∗MWM is a trademark of JENTEK Sensors, Inc.
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Figure 1-1: Layout of a typical MWM. The primary winding (wider trace) is driven with a
current ID. It generates a spatially periodic magnetic field H, shown for three meanders for
z > 0. The secondary windings (narrower trace) link some of this flux, and the voltages induced
at their terminals are VS1 and VS2. The two secondary windings are usually connected in series
(VS = VS1 +VS2) or in parallel (VS = VS1 = VS2). The sensor’s complex transimpedance, defined
as Z21 = VS/ID, is directly linked to the properties of the material under test.

• Additional control over the depth of sensitivity through the spatial winding
wavelength.

• Ability to be permanently mounted in poorly accessible locations for on-line
monitoring of damage [21].

• Ability to scan with and without direct contact with a component.

Figure 1-1 shows a schematic of the MWM. It consists of a primary winding and one or
more secondary windings laid out in a periodic pattern on an insulating flexible substrate.
The imposed spatial periodicity of the current excitation results in a periodic magnetic vector
potential. In the absence of conducting materials the vector potential and the magnetic field
intensity satisfy Laplace’s equation and decay away from the sensor surface with a charac-
teristic length proportional to the imposed spatial wavelength. In most cases, however, the
material under study is metal, which means that the governing equation is the magnetic dif-
fusion equation. The characteristic decay rate in this case is a function of both the imposed
spatial wavelength and the skin depth of the material, with the shorter one dominating, ac-
cording to equation (2.14).

The methods used to calculate the predicted sensor response are described in detail in
Chapter 2.

1.1.2 Magnetometer arrays

The possibility of two-dimensional imaging provided by magnetometer arrays is important
in military and civilian de-mining operations because the more detailed information that an
image provides can be used to reduce the number of false positives caused by other buried
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Figure 1-2: Photograph of large (0.85× 0.50 m) MWM Array, developed at JENTEK for use in
metal land mine detection [32]. There are eight sensing elements, not visible in this photo-
graph, situated in a row between the two center windings.

metal debris [32, 33]. These arrays implement the idea of using several windings to shape
the magnetic field so that the fundamental wavelength is approximately equal to the sensor
width [34,35]. This idea is further discussed in Chapter 4.

Figure 1-2 shows a photograph of large MWM Array developed at JENTEK for use in metal
land mine detection [32]. An array of secondary windings provides a one-dimensional profile of
the material properties along the direction of the primary windings. Moving the sensor array
in the perpendicular direction extracts a two-dimensional image of the material properties
such as the one shown in Figure 1-3.

1.1.3 Interdigitated electrode dielectrometer (IDEDTM)

The layout of a typical interdigitated dielectrometer is shown in Figure 1-4. A voltage VD is
applied to the driven electrode, while the sensing and guard electrodes are kept at ground
potential. A spatially periodic electric field is generated, which penetrates the material under
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Figure 1-3: Two-dimensional scan image generated with the large MWM array at JENTEK
[32]. This is a contour plot of the sensor signal. Four large metal objects have been identified in
this scan. The measurement number corresponds to the x coordinate where the scan length is
approximately equal to 80′′. The channel number, identifying each array element, corresponds
to the y coordinate, with scan area width of 15′′.
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Figure 1-4: Schematic layout of an IDED. There are two interdigitated comb electrodes.
A driving voltage VD is applied to one of them, the driven electrode, while the second one,
the sensing electrode, is kept at ground potential. The sensor transadmittance is defined as
Y21 = IS/VD, where IS is the current out of the sensing electrode. Two grounded fingers at
either side do not contribute to the signal IS in order to reduce the end effects due to the
sensor’s finite length.

test. The electric field lines originate on the driven electrode and terminate on the sensing
or guard electrodes. The changing surface charge on the sensing electrode is balanced by the
terminal current IS. The sensor’s complex transadmittance, defined as Y21 = IS/VD, is directly
linked to the properties of the material under test. The model used to simulate the interdigital
dielectrometer is presented in Section 2.2.

The IDED∗ is suitable for measurements on insulating or slightly conducting dielectric
materials. For reasons discussed in Section 3.2, measurements with the dielectric sensors are
generally more difficult than the magnetic sensors, because there are often more unknown pa-
rameters than degrees of freedom. Still, the interdigitated dielectrometer is in use in several
practical applications:

• Cure monitoring of polymers, epoxy, etc. [36].
• Measurement of porosity and thermal conductivity in ceramic thermal barrier

coatings [28].
• Moisture measurement in transformer oil and pressboard [3,5–8,11].
• Thin film characterization.

The cure monitoring application has received some attention recently [36]. During the
chemical reactions of the curing process the materials exhibit significant conductivity, which
is a strong function of the curing stage and continues to decrease for a long time after the
compound has officially attained its full strength. The conductivity is due to the presence of
free radicals during curing. Its value and rate of change are directly related to the curing
process, making it possible to identify clearly the different stages of the chemical reaction.

∗IDED is a trademark of JENTEK Sensors, Inc.
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Figure 1-5: Electric field lines for a three-wavelength dielectric sensor. The electric field lines
generated by the sensor with the largest wavelength penetrate furthest into the material. The
depth of sensitivity d is considered to be roughly one third of the spatial wavelength λ.

Furthermore, from the point of view of the parameter estimation methods, the presence of
conductivity adds another degree of freedom in the form of nonzero transcapacitance phase
angle. The measurement of moisture in dielectrics also takes advantage of the presence of
finite conductivity in the insulation.

1.1.4 Multiple-Wavelength Dielectrometer

The depth of sensitivity of the sensor depends on the imposed spatial wavelength, as seen in
Figure 1-5. Combining the results of sensors with different wavelengths can be used to mea-
sure properties as a function of depth or to estimate more than one unknown parameter. This
is especially useful for measurements where direct contact with the material is not possible,
such as noncontact cure monitoring [36]. The lift-off, i.e. the air gap thickness, is usually not
known, especially with the material deposited on a moving web, where some vertical motion,
or flutter, is inevitable. This requires the simultaneous estimation of three unknown param-
eters: the permittivity and conductivity, which change with cure state, and the lift-off. What
complicates matters even more is that the thickness of the film may be nonuniform, adding
another unknown to the set of properties that need to be estimated simultaneously.

In cases like this it is beneficial to combine the response of several sensors with different
spatial periods. Figure 1-6 shows the layout of a three-wavelength sensor. Although it is pos-
sible, the use of multiple wavelengths in magnetometers is usually not necessary, since inside
conducting materials magnetic diffusion makes it possible to change the depth of sensitivity
by changing the frequency, which changes the skin depth.

Multiple-wavelength dielectrometers have also been used to monitor the diffusion of mois-
ture into pressboard. The moisture content is related to the conductivity and permittivity.
The use of multiple wavelength sensors makes it possible to measure the variation of the
conductivity and permittivity with depth [7,8,11].

1.2 Goals

The goal of this research effort is to extend the capabilities of the existing spatially periodic
quasistatic-field sensors, with a focus on the magnetometers. Stated concisely, the main goals
are:

1. Incorporate magnetoresistive technology into sensor design to allow low frequency mag-
netometry measurements.
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Figure 1-6: Layout of a 5/2/1 mm three-wavelength dielectric sensor.

(a) Build prototype magnetometers that use magnetoresistive sensors.
(b) Build interface circuitry to connect to existing instrumentation.
(c) Make measurements to illustrate a variety of practical applications.

2. Extend models to describe sensors with cylindrical geometry. Using circularly symmetric
sensors offers advantages in a variety of applications.

(a) Develop mathematical models for dielectric and magnetic sensors.
(b) Implement models numerically to generate measurement grids.
(c) Build and test magnetometer and dielectrometer prototypes.

3. Build and model sensors with distributed current drive to allow for sensors whose spatial
wavelength is on the order of the sensor footprint.

(a) Develop efficient semi-analytical models for this type of sensor.
(b) Implement models numerically to generate measurement grids.
(c) Demonstrate validity of the models in practice.

4. Combine all these ideas in the design of a circularly symmetric magnetoresistive mag-
netometer with a distributed primary winding. Use it to make measurements on a set
of representative test structures.

1.3 Motivation

Sensing and measurement of magnetic fields in general is an important field that has many
applications in science and industry. In the area of nondestructive evaluation (NDE) of ma-
terials, magnetic fields are used to find structural defects, such as cracks, corrosion, etc., in
metals, using eddy current or other techniques based on magnetic fields. There are many ap-
plications in medicine, where magnetic fields are used to create images of tissues and internal
organs.
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1.3.1 Magnetoresistive sensors

The main reason to explore the use of magnetoresistive and giant magnetoresistive sensors
as an alternative to the secondary winding of the standard magnetometers is their ability to
operate at low excitation frequencies, down to DC. Operation at low frequencies is required
when testing materials for deeply buried flaws, which are otherwise hidden by the skin depth,
δ ∝ 1/

√
ω.

Magnetizable materials can even be measured with constant magnetic fields. In the ab-
sence of magnetic diffusion, the problem of calculating the magnetic field becomes analogous
to the electroquasistatic sensor.

Another reason for lowering the frequency of excitation is that at high frequencies a
material’s conductivity and magnetic permeability cannot be measured independently [1].
This considerably complicates conductivity measurements of ferromagnetic materials, such
as steel, because local permeability variations pollute the conductivity measurement. Such
permeability variations may be due, for example, to residual stresses.

There are several complications associated with the use of magnetoresistive sensors in the
magnetometer design. They have a highly nonlinear transfer characteristic. The nonlinearity
is in fact very extreme, since the sensors are insensitive to the polarity of the magnetic field
(see Figure 5-5). For this reason they are typically biased at an appropriate operating point
by an independent constant magnetic field source, such as a permanent magnet or a solenoid.
Since the magnetic field effects a resistivity change, the sensors also need electrical biasing
and an appropriate bridge configuration. Many of these issues are addressed by placing the
sensor in a feedback loop, as discussed in Chapter 5.

A few examples where low frequency operation, made possible by the use of magnetoresis-
tive sensors, is beneficial are:

• Subsurface corrosion (airplane skins, etc.).
• Flaws in magnetic media (hard drives, etc.).
• Detection of deeply buried defects in metals, or features in metals positioned below a

shielding material.
• Thickness measurement for metal components (0.1 – 2′′).
• Stress profile measurement in steel.

1.3.2 Modeling sensors with rotational symmetry

So far all periodic field magnetometers and dielectrometers, like the MWM and the IDED,
have been designed with Cartesian geometry, i.e. the magnetic or electric fields have an im-
posed periodicity in the x-direction and are considered invariant in the y-direction. Designing
circularly symmetric sensors offers several advantages and may be preferred in some appli-
cations:

1. They have fewer unmodeled end effects:

• The edges due to finite sensor width in the y-direction are completely eliminated,
since there are no edges in the ϕ-direction in cylindrical coordinates.

• In the dielectric case the edges due to the finite length in the x-direction can be
removed far from length scales of interest in the r-direction in cylindrical
coordinates, since the models assume the electric potential to be fixed at zero by a
ground plane at distances from the origin greater than the end of the
inter-electrode gap.
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2. The circular geometry ensures insensitivity to anisotropic properties, by effectively tak-
ing an average of the property in all directions in the x-y plane. This is useful in certain
applications, since it eliminates the need for precise sensor alignment when measuring
ferromagnetic materials whose magnetic permeability is anisotropic.

3. Many material defects and human-made structures have rotational symmetry, making
them ideal candidates for testing with rotationally symmetric sensors. An example ap-
plication is testing for cracks near rivets and bolts.

1.3.3 Magnetometers with distributed current drive

There are applications where the imposed spatial wavelength of the magnetic field needs to
be large for large penetration distances. An application that has such a requirement is land
mine detection. In order to be sensitive to a metal object located 15 cm below the surface,
the magnetometer must have a spatial wavelength of about 50 cm or more, which results in
a footprint of several square meters with the standard MWM geometry shown in Figure 1-1.
Since this is impractical, sensors have been developed where the magnetic field is generated
by several windings, each having a different number of turns, that follows a sinusoidal enve-
lope function. The fundamental wavelength of this envelope function is several times greater
than the winding spacing. This makes it possible to reduce the sensor footprint to be on the
order of the wavelength, or approximately 0.4 square meters. The distributed current drive
concept was developed by Dr. Neil Goldfine at JENTEK [32,34,35].

Another class of applications where a larger effective spatial wavelength is required, rela-
tive to the sensor footprint, is testing for deeply buried flaws in metals. Use of low excitation
frequencies and magnetoresistive secondary elements, as discussed in Section 1.3.1, over-
comes the depth limitation due to skin depth. In order to overcome the depth limitation due
to the imposed spatial wavelength, the sensor wavelength must be made several times larger
than the desired depth of sensitivity. Whereas in this application the resulting footprint of a
standard magnetometer layout may not be too large from a logistical perspective, a smaller
footprint makes the flaw signature more localized and improves sensitivity, since the flaw
signature is not averaged over a large area.

A further advantage of having a distributed current drive is that the effective spatial
wavelength may be changed dynamically, e.g. by varying the relative phase of two or more
superimposed windings, an idea discussed further in Section 4.10.

From a modeling perspective, an advantage of this kind of magnetic field excitation is that
the drive current distribution is known from the beginning, since the width of the windings
is small compared to the wavelength and may be approximated as being infinitely narrow.
This significantly simplifies numerical computation, since it makes it possible to apply fast
discrete Fourier transform methods directly, as shown in Chapter 4. These efficient methods
may also be applied to the MWM if one of the following circumstances is met:

1. Low frequency operation; the current is uniform across each winding.

2. High frequency operation; the current is concentrated at the winding edges and may be
represented by spatial impulse functions.

3. The current distribution effects are negligible or can be calibrated out, using the stan-
dard calibration methods discussed in Appendix D.
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1.4 Inverse estimation methods

Chapter 2 describes the forward models used to calculate the response of the MWM and IDED
from the sensor geometry parameters and the properties of the materials. During a mea-
surement the reciprocal task needs to be accomplished, which is to obtain absolute material
properties from the measured sensor response.

Several different methods have been used to approach this inverse problem. The method
most commonly used in practice uses measurement grids. It is described in Section 1.4.1.
An alternative approach is to use a root-finding method, which uses the forward model over
many iterations [7, 8]. There are many difficulties with this approach. The function that
relates sensor response to material properties is nonlinear, resulting in failure of the method
if the solution is not unique or if noise in the data leads to the lack of an exact solution.
Furthermore, because the method seeks an exact solution, the number of unknowns must
equal the number of degrees of freedom exactly. For example, if three unknowns are being
measured with an MWM at several frequencies [26], this method cannot be used, as every
frequency produces two constraints. While it is possible to simply ignore the extra constraints,
there is a much better alternative, which makes use of all data. This alternative to the root-
finding methods uses a least squares minimization technique to estimate multiple unknowns,
and has been successfully applied in a number of practical problems [26]. It is discussed in
Section 1.4.2.

Another approach proposed recently [37], which also avoids the need for iteration, can be
taken for estimating the conductivity and permittivity of a single unknown layer in a dielec-
trometer measurement. In this method the inverse problem is formulated as a generalized
eigenvalue problem, where the complex unknown parameter is one of the generalized eigen-
values. The multiple layers problem can be posed as a multi-variable eigenvalue problem.

1.4.1 Measurement grids

The method of parameter estimation using measurement grids was invented by Dr. Neil
Goldfine [1, 38]. The standard two-dimensional measurement grid is a database of sensor
responses calculated for a range of values of two material properties. For every combination
of values of the two parameters, the magnetometer transinductance or dielectrometer trans-
capacitance are computed and tabulated. The parameter estimation is then carried out by
using a two-dimensional inverse interpolation technique, to obtain the material properties
that correspond to the measured sensor response. It is also possible to have one-dimensional
grids, which relate a single unknown parameter to one measured quantity. Interpolation in
this case is usually trivial.

Measurement grids may be visualized by plotting every point in magnitude/phase space
and connecting points that correspond to a constant parameter with lines. Figure 5-8 shows
a typical conductivity/lift-off grid, where the two variable material properties are the con-
ductivity of an infinitely thick metallic layer and the sensor lift-off, which is the distance
between the material and the sensor windings. The two measured variables do not have to be
magnitude and phase, although this is by far the most common situation. Figure 3-6 shows
a magnitude/magnitude grid [54], combining the response of two separate dielectric sensors
to measure dielectric permittivity and lift-off independently. Similarly, Figure 5-10 shows a
magnetic magnitude/magnitude grid, where the two magnitudes correspond to magnetome-
ter measurements at two different spatial wavelength modes, excited within the same sensor
footprint. Other examples of two-dimensional measurement grids include the thickness/lift-
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off magnetometer grid in Figure 5-13 and the conductivity/thickness magnetometer grid in
Figure 5-15.

Visual inspection of a measurement grid can be used to assess in which region of the grid
the measurements have the highest sensitivity. In regions where the grid cells have small
areas, small changes in the instrument magnitude and phase lead to large changes in the es-
timated properties, so that measurements that fall in such regions have lower accuracy than
measurements in the grid regions with large cell areas. Another aspect of the quality of a
measurement is its selectivity, which is a measure of how independent the two estimated pa-
rameters are of each other [13]. The orthogonality of the cell edges is related to the measure-
ment selectivity in that region of the grid. The sensitivity and selectivity of a measurement
can be analyzed using singular value decomposition of the Jacobian matrix [1,13].

Although grid methods have been in use for a long time now, a new implementation has
been developed, presented in Section 6.2, which leads to significant improvements both in the
efficiency of the grid look-up and the accuracy of the results from the interpolation.

The power of parameter estimation via measurement grids stems from two important
advantages that this method has over alternative techniques:

1. Reliability. The parameter estimation is guaranteed to succeed if the data are on the
grid, i.e. if the measurement data fall inside the range area of the grid in magni-
tude/phase space. All other methods are iterative, which means that there is always
some danger of nonconvergence for a point that should have a solution, especially if the
initial guess is too far from the solution. Even for points off the grid, but still close to it,
the estimated properties are usually reasonable, while if iterative methods fail to con-
verge, the errors are typically dramatic. Reliability is a very important requirement in
commercial applications, where the individual user may not have the ability to assess
the quality of the data in a way possible in a laboratory environment.

2. High speed. Although the efficiency of the forward models has been greatly improved by
a judicious formulation that allows for much of the computations to be carried out only
once for a given sensor geometry (see Chapter 2), in general all iterative methods are
orders of magnitude slower than the grid look-up method. With present day technology,
typical numbers may be 5 to 10 seconds for a minimization algorithm estimation versus
20 to 30 milliseconds for a grid look-up. This makes it possible to carry out parame-
ter estimation in real time, which is another feature of commercial value, especially in
scanning and imaging applications [23,31,32].

The main practical disadvantage of using measurement grids is that this approach on its
own cannot be used to estimate more than two unknowns.∗ It can still be possibly used as
a step in some different iterative estimation algorithm. Since the properties are estimated
via interpolation, there is always some error for points lying between the grid points. The
accuracy can be improved by generating denser grids, but the need to store large amounts of
data in operative memory and on disk necessarily creates an unfavorable trade-off situation
between efficiency and accuracy. Stated another way, the cost of the estimation rises very
rapidly with improved accuracy, in contrast with iterative methods, where the opposite is
typically true.

∗In theory, the grid methods may be extended to three or more dimensions, but the complexity of the grid look-
up and inverse interpolation increases exponentially with the number of dimensions. Grid look-ups in more than
two dimensions have not yet been demonstrated in practice.
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1.4.2 Minimization methods

The least-squares minimization parameter estimation algorithm appears to be the best choice
for estimating more than two unknowns. It operates by defining an error function based on the
differences between measured and simulated sensor response. Using iterative applications of
the forward model, a set of parameters are found where the error function has a minimum,
establishing the set of material properties most likely to yield results matching the measured
data. If the problem is not over-determined, i.e. if the number of degrees of freedom equals
the number of unknowns, then finding a minimum where the value of the error function is
zero is equivalent to finding an exact solution.

The main advantage of this method is its universal applicability, most useful in cases
where there are no alternative estimation methods. It is also valuable in attempting to find
the most likely material property values over a range of experimental conditions. For exam-
ple, standard grid methods can be used for measuring the conductivity of a metal at several
frequencies independently, but the least-squares minimization method can combine the data
from all frequencies in a single estimation, thus finding the optimal solution over the en-
tire frequency range. Finally, since the forward model is run with the exact set of material
properties, the final result is typically more accurate than the grid interpolation method.

As discussed before, the reason that this method is not used universally is that it is rela-
tively slow and that it is not guaranteed to find a solution, or that the solution is the correct
one when it does, since the error function can have many local minima.

1.5 Magnetic field sensing technologies

One possible way of enhancing magnetometer performance is by using an alternative to re-
place the secondary winding as the means of detecting the magnetic field by a different type
of magnetic sensor. This section describes in very general terms some of the existing methods
for detecting and measuring magnetic fields, how they compare to each other, and whether
they are suitable for this application.

The simplest magnetic sensor is a “search coil,” which is a winding typically on a circular
or square frame. The voltage induced at its terminals responds to changing magnetic flux
linked by the winding. Since it only depends on the rate of change of the linked magnetic flux,
a sensor of this type is limited to higher frequencies, and when stationary is incapable of mea-
suring DC fields. The magnetoresistive sensors, on the other hand, are sensitive over a wide
frequency range, including zero. Along with sensors based on the Hall effect and the giant
magnetoresistive effect, these sensors are used when the application requires measurement
of low-frequency magnetic fields. A review and comparison of existing magnetic field sensors
is presented in [39].

Some of the methods used for measuring magnetic fields, along with their range of sensi-
tivity, are listed in Figure 1-7. Table 1.1 shows a list of the advantages of the magnetoresistive
sensor and some application areas, as shown in [40].

There are many other factors, such as cost, size, ease of calibration, temperature sensi-
tivity and temperature range of operation, which affect the choice of magnetic sensor for a
given application. Eddy current sensors used in nondestructive evaluation applications, for
example, are based on the search-coil sensor. Since they are sensitive to the rate of change
of magnetic flux, their use is often limited to relatively high frequencies, typically 1 kHz –
10 MHz. At these frequencies, however, structural materials such as aluminum and steel
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Advantages
High sensitivity – allowing operation over relatively great distances
Low source resistance – giving low sensitivity to electrical interference
High-temperature

operation
– 150◦C continuous, 175◦C peak (chip alone can withstand 175◦C

continuous)
Operation over a wide

frequency range
– from DC up to several MHz

Metal-film technology – giving excellent long-term stability
Low sensitivity to

mechanical stress
– facilitating mounting of the sensor and allowing its use in relatively

rough environments
Small size – can be fabricated with micron dimensions
Application areas
Traffic control – detection of vehicles
Low-cost navigation – allowing the production of simple compass systems with an accuracy of

around 1◦, ideal for automotive applications
Long-distance metal

detection
– for the detection of, for example, military vehicles by measuring

disturbances in the earth’s magnetic field
Motion detectors – by measuring position changes relative to the earth’s magnetic field
Current detection – for example, earth leakage switches
General magnetic field

measurement
– from 10 A/m to 10 kA/m

Direct-current
measurement

– starting currents in motor vehicles

Angular or position
measurement

– sensing of accelerator pedal or throttle position (engine-management
systems)

– position sensing in industrial automation systems (commercial sensor
arrays that can measure positions with an accuracy of 30 m)

– force/acceleration/pressure measurement using a moving magnet, for
example: engine-intake-manifold pressure sensors, fluid-level sensors,
low-cost weighing systems, geosonic (seismic) sensors, accelerometers

Mark detection and
counting

– camshaft or flywheel position sensors for engine ignition systems

– end-point sensors
– wheel-speed sensors for anti-blocking systems
– rpm counters (0 to 20 kHz) for engine tachometers and for electronic

synchromesh systems
– flow meters
– zero speed detectors — rpm control in electric motors
– general instrumentation

Magnetic recording – thin-film replay heads for tape and disk systems. Swipe readers for
credit cards, bus tickets, door locks, etc.

Table 1.1: Magnetoresistive sensors: advantages and application areas.
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2. Flux-Gate Magnetometer
3. Optically Pumped Magnetometer
4. Nuclear-Precesion Magnetometer
5. SQUID Magnetometer
6. Hall-Effect Sensor
7. Magnetoresistive Magnetometer
8. Magnetodiode

Earth’s magnetic field

10. Fiber-Optic Magnetometer

1. Search-Coil Magnetometer

9. Magnetotransistor

11. Magneto-Optical Sensor

Figure 1-7: Sensitivity comparison of magnetic sensor technologies [39]. The magnetoresistive
sensor includes the giant magnetoresistive sensor as well.

have skin depth on the order of tenths of a millimeter, which is a severe limitation to the
ability to examine materials for buried flaws. This is an example of an application where low
frequency sensitivity, as provided by the magnetoresistive sensor, is of critical importance.

On the other hand, a search-coil based sensor that does not use a magnetizable core has
the advantage of having a perfectly linear transfer characteristic, which is a property of this
type of sensor only. In order to approach linearity, magnetoresistive and other sensors need
to be biased with a constant magnetic field, and operated within a small dynamic range.
Linearity concerns for the magnetoresistive sensor are discussed in more detail in [41].

Eddy-current sensor arrays used for two-dimensional imaging have been developed and
used successfully to map surface defects in a metal plate [42]. As discussed before, it is diffi-
cult to measure buried metal flaws, such as cracks and voids, that lie below a layer of metal
with thickness on the order of, or greater than, the skin depth at the excitation frequency. In
order to detect such flaws it is necessary to use lower excitation frequencies, which propor-
tionally reduce the sensitivity of eddy current sensors.

To overcome this limitation, SQUID magnetometers have been used for defect mapping,
with some limited success [43]. Although SQUID technology has progressed substantially
over the last few years [44, 45], it has not yet reached the level of miniaturization and cost
that are required for the development of high-density imaging arrays.

The SQUID magnetometer is another extreme example of the tradeoff between the per-
formance characteristics of magnetic sensors [46]. It is sensitive to changes on the order of
a fraction of the flux quantum Φ0 = h/2e = 2.07 × 10−7G·cm2 = 2.07× 10−15 Wb, where h is
Planck’s constant and e is the electron charge, which makes it the most sensitive magnetic
sensor known. However, its response to values of enclosed flux which differ by an integral
number of flux quanta is identical. This means that SQUIDs are incapable of measuring
absolute magnetic field intensity and that local variations of the Earth’s magnetic field and
other interference must be “calibrated out”, shielded very carefully, or more than one sensor
must be connected in a differential mode, before any meaningful data may be obtained from a
SQUID. Furthermore, the need for operating the sensor at cryogenic temperatures makes it
a costly and rather bulky device, although SQUIDs based on high-TC superconducting mate-
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rials developed recently [44], which can operate at liquid nitrogen temperatures, have made
the SQUID magnetometer somewhat more practical.

An interesting application of the SQUID magnetometer to the detection of buried flaws is
presented in [45]. In this application the magnetic sensor is used to detect weak magnetic
fields generated by local current loops induced by the thermoelectric Seebeck effect when
a host metal material contains an inclusion of a different metal and a thermal gradient is
present. Magnetizable inclusions can also be detected by this method without the need for a
thermal gradient. In this application the ambient fields are canceled out by a second-order
gradiometer configuration that uses three SQUID heads.

Magnetoresistive and giant magnetoresistive sensors are discussed in more detail in Chap-
ter 5.

1.6 Summary of Chapter 1

In this chapter the subject of nondestructive evaluation using time and space periodic-field
quasistatic inductive and capacitive sensors has been introduced. The chapter has also intro-
duced some of the fundamental concepts on which much of the rest of the thesis depends:

1. General principles of operation of the model-based quasistatic periodic-field inductive
and capacitive sensors (Section 1.1).

2. Measurement grid methods for absolute dielectric, magnetic, conduction, and geometric
property estimation (Section 1.4).

3. Review of the state of the art technologies for sensing and measuring magnetic fields
(Section 1.5).

A range of new applications that require capabilities of these sensors not available until
now have motivated the research for improvements in the following areas:

1. Design of magnetometers with high depth of sensitivity by increasing low frequency
signal strength with the use of magnetoresistive sensors, and by exciting magnetic fields
with high effective spatial wavelength with the help of a distributed current drive.

2. Development and validation of cylindrical geometry models for inductive and capacitive
sensors.

3. Development and validation of efficient numerical techniques for modeling magnetome-
ters with distributed current drive in Cartesian and cylindrical coordinates.

4. Improvement in the accuracy and efficiency of two-dimensional inverse interpolation
and grid look-up techniques.

The results of the efforts in all of these areas are presented in the remaining chapters of the
thesis.



Chapter 2

Forward Models of the Spatially
Periodic Sensors

The analytical models of the cylindrical geometry sensors, developed in Chapter 3, are struc-
tured similarly to the collocation point methods in Cartesian geometry. The latter are also
often referenced by the methods used to model the magnetometers with distributed current
drive, presented in Chapter 4. To supply the background for these topics, it is necessary to
include a description of the Cartesian geometry collocation point methods for both magneto-
quasistatic and electroquasistatic sensors, along with all important formulas. This is done in
this chapter.

Although these methods have appeared many times in the literature [1–3, 7, 47], it has
always been difficult to find needed details, and different sources use different conventions. In
addition to providing a self-consistent source on which to base the material in the remaining
chapters, this chapter describes some changes to the models not previously published. While
most of these changes are not fundamental, but aimed mainly at improving computational
efficiency and at simplifying the equations, some are quite significant. The most important
of these is perhaps the way the zero-order Fourier mode is treated for the dielectric sensors.
This is discussed further in Section 2.2.

The MWM is analyzed in the magnetoquasistatic (MQS) regime, which ignores the term
in Ampère’s law due to the displacement current density. Similarly, the IDED is treated in
the electroquasistatic (EQS) regime, which ignores Faraday’s law and sets the curl of the elec-
tric field intensity to zero. Both cases assume that the contribution of electrodynamic (wave)
effects is negligible, which is justified if the spatial period of the electromagnetic waves at
the operating frequency is much greater than the characteristic length of the structure. The
IDED and the MWM are not operated at frequencies higher than 30 MHz, so that this require-
ment is typically satisfied by a margin of three orders of magnitude. The magnetoquasistatic
approximation is further discussed in Section 2.1.1.

In this chapter and for the rest of the thesis the sensors are assumed to be operated in
sinusoidal steady state with angular frequency ω. This means that all time dependent quan-
tities can be written in the following form:

F(r, t) = �{F̂(r)eiωt} (2.1)

where F̂ is a complex amplitude function only of spatial coordinates. Derivatives with re-
spect to time are transformed into multiplications by iω. The hat accents will be dropped in
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subsequent analysis.
For other notation conventions and symbol definitions, refer to Appendix A.

2.1 Mathematical model and simulation method for the MWM

This section contains the formulas used to calculate the response of the MWM, based on the
physical models. The equations are put in a form that closely parallels the steps and name
conventions used in the numerical simulation code.

This model assumes a secondary winding on either side of the primary, connected in series.
All material properties are considered independent of x, y, and time. The material structure
is assumed to consist of a number of homogeneous layers stacked up in the z-direction, where
the material interfaces are planes parallel to the x-y plane.

2.1.1 Magnetic diffusion

In the magnetoquasistatic regime in the presence of conducting materials the magnetic field
must satisfy the magnetic diffusion equation:

∇2H− iωσµH = 0 (2.2)

which is a direct consequence of Maxwell’s equations and Ohm’s law [48–50]. For the purpose
of this analysis, it is more convenient to find solutions to the magnetic vector potential A,
which satisfies the following definition:

∇×A = B (2.3)

Equation (2.3) only defines the curl of the vector potential. Its divergence must also be speci-
fied, if A is to be determined uniquely (within a constant of integration). The divergence can
be chosen in a particular problem to simplify the resulting equations, as will be shown later
in this section.

Using Faraday’s law ∇× E = −iωB, where the time derivative has been replaced with a
multiplication by iω according to equation (2.1), and combining it with equation (2.3) yields

∇× E = −iω∇×A (2.4)

Vector fields with equal curl may differ by the gradient of a scalar field, which makes it possi-
ble to express E in terms of A as

E = −iωA−∇Φ (2.5)

where Φ is the electric scalar potential. Combining Ampère’s law and Ohm’s law with the
results obtained so far yields

∇×H = J = σE = −σ
(
iωA+ ∇Φ

)
(2.6)

which can be manipulated as follows:

∇× (∇×A
)

= −σµ
(
iωA+∇Φ

)
(2.7)
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∇2A−∇(∇ ·A) = iωσµA+σµ∇Φ (2.8)

∇2A− iωσµA = ∇(∇ ·A+σµΦ
)

(2.9)

As mentioned earlier, there is freedom in the choice of the divergence of the vector poten-
tial. Therefore the right hand side of equation (2.9) can be set to zero by letting

∇ ·A = −σµΦ (2.10)

The differential equation that must be satisfied by A then becomes

∇2A− iωσµA = 0 (2.11)

Ignoring end effects, the current in the MWM is always in the y-direction and is indepen-
dent of y, which means that the same must be true of the vector potential:

A = Ay(x, z)ŷ (2.12)

The sensor structure is periodic in the x-direction with period λ, extending to infinity, so
that the appropriate set of solutions to equation (2.11) are given by:

A =
[
a1 sin(kx) + a2 cos(kx)

][
b1eγz + b2e−γz]ŷ (2.13)

with the complex wavenumber γ defined as

γ =
√
k2 + iωσµ (2.14)

or equivalently

γ =

√
k2 +

2i
δ2

δ =

√
2

ωσµ
(2.15)

where δ is the skin depth in the material.
In the absence of convection, treated separately in Section 6.1, and with an appropriate

choice for the point x = 0, symmetry considerations, shown later in equation (2.29), eliminate
the sine term in equation (2.13).

An important point to consider is that the solutions for the magnetic vector potential in
equation (2.13) have no divergence, i.e. ∇ ·A = 0. Equation (2.10) then requires the electric
scalar potential Φ also to be zero, which means that the electric field in equation (2.5) can be
written as

E = −iωA (2.16)

While the electric field E given by equation (2.16) satisfies the boundary conditions at the
interfaces of conducting homogeneous metal layers, which require that the tangential compo-
nent of the field be continuous, in insulating layers and near the winding surface in general it
does not. Equation (2.13) shows that E has only a y-component, while a z-component is needed
to account for the electric field component normal to the conductors in the insulating regions.
This apparent inconsistency is resolved by realizing that in insulating regions, where σ = 0,
equation (2.10) does not force Φ to zero, and in such regions appropriate solutions to Laplace’s
equation ∇2Φ = 0 will make it possible to determine E consistently via equation (2.5).
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A conclusion that can be drawn from this discussion is that the model applies only when
the sensor windings are surrounded by an insulating material. This is anyhow required to
constrain the winding current to remain within the windings. Although it is possible to solve
for the electric field E everywhere via Φ, it is not necessary, since the only contribution to
the magnetic field by the electric field component due to Φ comes from surface charge and
displacement current density, which are effects ignored in the magnetoquasistatic regime.

Another assumption tacitly made in the discussion so far, and a direct consequence of the
MQS approximation, is that the materials are either insulators, where σ = 0, Φ 
= 0, and the
electric field lines have a component normal to the conductor surfaces; or good conductors,
such as metals, where σ 
= 0, Φ = 0, and the electric field lines are tangential to the surfaces.
In the MQS regime in a current carrying wire the electric field is always tangential to the
surface. In the MWM model, the electric field is also tangential to the interface between two
conducting layers, because the winding current and the magnetic vector potential everywhere
have only a y-component.

If there are materials with conductivity ranges where one of the effects does not dominate
the other, it will be necessary to consider the full set of Maxwell’s equations, including the
treatment of surface charge and displacement current density, with Φ 
= 0 everywhere. This
is a much more complicated problem that does not appear to be of great practical significance
and will not be considered in this analysis.

It is important to show quantitatively under what conditions the MQS approximation
is justified, in addition to the frequency restriction described earlier. This can be done by
comparing the magnetic diffusion time τm = µσ�2, where � is a characteristic length scale,
such as the sensor spatial wavelength, to the charge relaxation time τe = ε/σ [50, §2.3]. In
the MQS regime τm � τe. The conductivity at which the two time constants become equal to
each other is given by

σ =
1
�

√
ε

µ
(2.17)

which is on the order of 0.1–1 S/m for typical magnetometers. Metal conductivities are typi-
cally five or more orders of magnitude greater, as shown in Table 5.2. This justifies the MQS
approximation in treating the MWM, which is used almost exclusively for measurements on
metals. The same is true for measurements on other relatively conductive nonmetallic ma-
terials like graphite, whose conductivity is typically on the order of a few hundred S/m. On
the other hand, when considering materials like salt water, for example in soil moisture and
contamination measurements, it would be necessary to include the full set of Maxwell’s equa-
tions.

2.1.2 Normalization

Most of the quantities in the model are normalized appropriately so that they are all di-
mensionless. This has many advantages, such as simplicity, but also saves on computation,
because many variables only appear in expressions of the same form. Moreover, some pa-
rameters, such as the frequency, sensor wavelength, meander length, and coil thickness, are
altogether eliminated from further computations.
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Figure 2-1: Definition of geometry parameters of the MWM. Due to symmetry, only one
quarter of a wavelength needs to be considered.

Coordinates

All spatial coordinates are normalized by the wavelength λ:

x̄ =
x
λ

ȳ =
y
λ

z̄ =
z
λ

(2.18)

Sensor parameters

The geometrical parameters of the MWM are shown in Figure 2-1. One period of the sensor is
shown in the figure. A period contains the two legs of the primary winding, carrying current
in opposite directions, and the two secondary windings. All length parameters, such as the
primary winding width c, secondary winding width d, and gap between the windings g, are
normalized by the sensor wavelength λ:

c̄ =
c
λ

d̄ =
d
λ

ḡ =
g
λ

(2.19)

One sensor period contains two primary winding traces, four secondary winding traces, and
four gaps, which leads to the following inequalities that must be satisfied by the normalized
sensor parameters:

0 <
c̄
2
; d̄; ḡ <

1
4

0 <
c̄
2

+ d̄+ ḡ <
1
4

(2.20)

The conductivity always appears in expressions like ωσµ (e.g. equation (2.15)) that have
units of [length−2]. The proper normalization for the winding conductivity is

σ̄coil = σcoil ·µ0ωλ∆ (2.21)

where one of the length parameters, ∆, is the thickness of the traces shown in Figure 2-1.
The choice of normalizing parameters is motivated by the form of the boundary condition in
equation (2.55), derived later. The coil thickness is assumed to be much smaller than the skin
depth, ∆ � δ.

In deriving the two-port impedance matrix of the MWM, if each port is driven in turn by
current with unity magnitude, the terminal voltages will be equal to the two-port impedances.
The currents are normalized by the driving current magnitude ID, and the voltages are nor-
malized as follows:

v̄ =
v

MLµ0ωID
(2.22)
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where ML is the meander length of the sensor, defined as the total length of the primary
winding.

Material parameters

Similar arguments hold for the geometric and physical properties of the material under test.
Each layer’s properties are normalized as follows:

t̄ =
t
λ

µ̄∗ =
µ∗

µ0
σ̄ = σ ·µ0ωλ2 (2.23)

where t is the layer thickness, µ∗ is the complex magnetic permeability, including magnetic
loss, and σ is the conductivity.

Other parameters

Other parameters that are normalized include the Fourier harmonic wavenumbers

k̄n = kn · λ =
2πn
λ

· λ = 2πn (2.24)

and similarly the complex wavenumbers

γ̄2
n = k̄2n + iσ̄µ̄∗ (2.25)

The complex wavenumber γ appears in equation (2.13) and is defined by equation (2.14).
For the rest of this chapter the bars will be dropped from the normalized variables to sim-

plify notation. All appropriate variables should be assumed to be normalized, unless explicitly
stated otherwise.

2.1.3 Collocation points

The goal is to calculate the two-port matrices of impedances and admittances:[
v1
v2

]
=
[
Z11 Z12
Z21 Z22

] [
i1
i2

] [
i1
i2

]
=
[
Y11 Y12
Y21 Y22

] [
v1
v2

]
Z = Y−1 (2.26)

This is accomplished by first finding the vector potential Ay at the surface as a function of
the two terminal voltages, and then using it to find the surface current density KS, integrated
across the width of the windings to obtain the terminal currents. For this purpose Ay is
represented as a piecewise-linear function, which connects its values at a set of collocation
points xm with linear segments.

If the origin of the x-axis is chosen at the center of the primary winding, symmetry consid-
erations constrain the vector potential in the following way (see Figure 2-1):

∂Ay

∂x

∣∣∣∣
x

=
∂Ay

∂x

∣∣∣∣−x (2.27a)

Ay(x) = −Ay

(
x+

1
2

)
(2.27b)
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The constraint on Ay that results from equation (2.27a) is

Ay(x) = Ay(−x) + AC (2.28)

where AC is an arbitrary constant of integration. Since only derivatives of the vector poten-
tial are meaningful, this constant may be set to zero for convenience, letting the symmetry
constraints be written as

Ay(x) = Ay(−x) (2.29a)

Ay(x) = −Ay

(
x+

1
2

)
(2.29b)

Choosing AC = 0 also ensures that the Fourier series expansion, developed in Section 2.1.4,
has no zero order term.

The symmetry properties in equation (2.29) mean that specifying Ay over one quarter of
the period is sufficient to determine it everywhere else. The piecewise-linear representation
of Ay in this interval is given by:

Ay(x) =
(xm+1 − x)am + (x− xm)am+1

xm+1 − xm
xm < x < xm+1 m = 0, 1, . . . , 4K − 1 (2.30)

where am are the values of Ay at the points xm. Lower case a is used because An are reserved
for the Fourier series amplitude coefficients. There are a total of 4K + 1 collocation points,
K over each of the four intervals into which the quarter-period is subdivided: one-half of the
primary winding, the gap between the windings, the secondary winding, and one-half of the
secondary gap. A consequence of the constraints in equation (2.29) is that

Ay

(
1
4

)
= Ay

(
−1
4

)
= −Ay

(
1
4

)
= 0 (2.31)

This means that

a4K = Ay

(
1
4

)
= 0 (2.32)

leaving 4K independent unknowns that need to be determined.
The unknowns will be found by generating 4K equations by applying boundary conditions

over 4K intervals. The collocation points themselves cannot be used to delimit these intervals,
because the problem is numerically unstable in this case. To understand why this is so,
consider the following: suppose that the integral over a particular interval is constrained to
be zero. This is achievable even if at the two end points the values are large, but opposite
in sign. A possible solution for the entire function could be a large magnitude oscillatory
function. On the other hand, if the collocation point lies in the middle of the interval, then
this constraint would force it to zero, as necessary.

The boundary conditions differ over the windings and in the gaps. As a consequence,
the edges of the windings must also be integration limit points. The points that delimit the
integration intervals, x∗m, should be concentrated near the edges of the windings, because the
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Figure 2-2: Collocation points and interval limits used in the analysis of the MWM, as defined
in equations (2.33) and (2.34). The distribution shown assumes K = 7.

magnetic fields are strongest there. The following definitions are used:

x∗m =
c
2
sin

(π

2
· m
K

)
x∗K+m =

c
2

+ g · 1− cos(πm/K)
2

x∗2K+m =
c
2

+ g+ d · 1− cos(πm/K)
2

x∗3K+m =
c
2

+ g+ d+
(
1
4
− c

2
− g− d

) [
1− cos

(π

2
· m
K

)]


0 ≤ m ≤ K (2.33)

The collocation points xm are situated in the middle of the integration intervals, except at the
two ends:

xm =


x∗m m = 0, 4K

x∗m+1 + x∗m
2

m = 1, 2, . . . , 4K − 1
(2.34)

The resulting distribution for the two sets of points is shown in Figure 2-2 for K = 7 intervals
in each of the four regions.

2.1.4 Fourier series representation

The magnetic field can be represented as a superposition of different spatial Fourier modes,
because a closed form solution exists for each mode, given by equation (2.13). The magnetic
vector potential at z = 0 is represented as a Fourier Cosine Series:

Ay(x) =
∞
∑
n=1
n odd

An cos(knx) (2.35)

Only odd-numbered modes are necessary, because of the constraints given in equation (2.29).
To obtain the Fourier coefficients An in terms of the values at the collocation points, the
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following integral must be solved:

An = 8
∫ 1/4

0
Ay(x) cos(knx) dx

= 8
4K−1

∑
m=0

∫ xm+1

xm

(xm+1 − x)am + (x− xm)am+1

xm+1 − xm
cos(knx) dx

=
8
k2n

4K−1

∑
m=0

cos(knxm+1)− cos(knxm)
xm+1 − xm

(
am+1 − am

)
+

8
kn

4K−1

∑
m=0

[
am+1 sin(knxm+1) − am sin(knxm)

]
(2.36)

The summation in the last term of equation (2.36) cancels out on a term by term basis, with
the exception of the first and last terms:

4K−1

∑
m=0

[
am+1 sin(knxm+1)− am sin(knxm)

]
= a4K sin(knx4K) − a0 sin(knx0) = 0 (2.37)

The two end terms are also equal to zero because x0 = 0 and a4K = 0. The remaining summa-
tion in equation (2.36) may be rewritten in a more convenient form:

An =
8
k2n

{
a0
1− cos(knx1)

x1

−
4K−1

∑
m=1

am

[
cos(knxm+1) − cos(knxm)

xm+1 − xm
− cos(knxm)− cos(knxm−1)

xm − xm−1

]} (2.38)

where the term multiplying a4K has been dropped because a4K = 0.

2.1.5 Normalized surface reluctance density

All information about the material that affects the sensor response can be distilled to the
value of the surface inductance density, evaluated in the plane of the windings for each spatial
mode n. It is most convenient to work with the normalized surface reluctance density, defined
as

Rn(z) =
1
kn

· Hx,n(z)
Ay,n(z)

(2.39)

The even symmetry required by equation (2.29a) eliminates the sine term in equation
(2.13), so that for each spatial Fourier mode n the magnetic vector potential can be written as

Ay,n(x, z) = Ãn(z) cos(knx) (2.40)

The tangential magnetic field intensity can be expressed in terms of the vector potential using
equation (2.3):

Hx,n(x, z) = − 1
µ∗ · ∂

∂z
Ay,n(x, z) (2.41)
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which can be written in abbreviated form as

H̃n(z) = − 1
µ∗ · d

dz
Ãn(z) (2.42)

where Hx,n(x, z) = H̃n(z) cos(knx). With this notation the normalized surface reluctance den-
sity can be written as

Rn(z) =
1
kn

· H̃n(z)
Ãn(z)

(2.43)

First consider a layer that extends to infinity in the positive z-direction, with bottom in-
terface at z = z0. Out of the solutions in equation (2.13), only the e−γz term remains finite at
z = ∞, leading to

Ãn(z) = Ãn(z0)e−γn(z−z0) (2.44)

and

H̃n(z) =
γn

µ∗ Ãn(z0)e
−γn(z−z0) (2.45)

Consequently, at the bottom interface of an infinitely thick layer,

Rn(z0) =
γn

µ∗kn
(2.46)

The next step is to relate Rn at the bottom interface of a layer of thickness t to its value
at the upper interface (z = z0 + t). In regions of finite thickness it is more convenient to work
with the hyperbolic function equivalent of equation (2.13):

A =
[
c1 sinh(γz) + c2 cosh(γz)

]
cos(kx)ŷ (2.47)

making it possible to express the vector potential in the layer in terms of its values at the two
interfaces as

Ãn(z) =
Ãn(z0 + t) sinhγn(z− z0) − Ãn(z0) sinhγn(z− z0 − t)

sinhγnt
(2.48)

Applying equations (2.42) and (2.43) to equation (2.48) yield the following equations for Rn(z)
at the two interfaces:

Rn(z0) = − γn

µ∗kn

[
Ãn(z0 + t)
Ãn(z0)

· 1
sinh(γnt)

− coth(γnt)

]
(2.49a)

Rn(z0 + t) = − γn

µ∗kn

[
coth(γnt) − Ãn(z0)

Ãn(z0 + t)
· 1
sinh(γnt)

]
(2.49b)

from which the ratio Ãn(z0 + t)/Ãn(z0) can be eliminated to arrive at the following transfer
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relation:

Rn(z0) =
γn

µ∗kn
· µ∗knRn(z0 + t) coth(γnt) + γn

µ∗knRn(z0 + t) + γn coth(γnt)
(2.50)

A more general treatment of transfer relations, including different coordinate systems, can be
found in [50, §2.16].

This makes it possible to calculate Rn(z = 0) in the plane of the windings by starting
with the infinite half-space layer that is furthest from the windings, using equation (2.46),
and then sequentially applying equation (2.50) across each layer until the winding surface is
reached

In the winding plane the symbol Rn is redefined to stand for the difference of the value of
the surface reluctance density above and below the windings as:

Rn ≡ Rn(z) = Rn(0+) − Rn(0−) =
1
kn

· Hx,n(z = 0+)− Hx,n(z = 0−)
Ay,n(z = 0)

(2.51)

because only this difference appears in the equations. The jump in the tangential component
of the magnetic field in the numerator of equation (2.51) is equal to the surface current density
KS in the plane of the windings, so that:

KSn = RnknAn (2.52)

The surface reluctance density Rn is the only quantity that changes when the same MWM is
used with different material structures.

2.1.6 Boundary conditions

To obtain the equations needed to solve for the values am of the vector potential Ay at the
collocation points xm, the appropriate boundary conditions are integrated over 4K intervals.
The boundary condition in the two gap regions is simple: the surface current must be zero.

KS(x) = Hx(x, z = 0+) − Hx(x, z = 0−) = 0 (2.53)

Over the windings the boundary condition derives from equation (2.4), which can be trans-
formed via Stokes’ Theorem into the following contour integral:∮

C
E · ds = −iω

∮
C
A · ds (2.54)

The chosen contour goes down the length of the windings in the y-direction, following all
meanders, and then across the sensor terminals. The integral of the electric field across the
terminals gives the terminal voltage v, while inside the windings the electric field can be
expressed in terms of the surface current density KS. The resulting boundary condition, in
unnormalized form, is

v = iωMLA(x) + ML
KS(x)
∆σcoil

(2.55)
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After normalization it becomes

KS(x) + iA(x)σcoil = vσcoil (2.56)

To generate the equations, the boundary conditions given in equations (2.53) and (2.56)
must be integrated over each integration interval. The following equation is used for the
integral of KS, which appears in both equation (2.53) and equation (2.56):∫ x∗m+1

x∗m
KS(x) dx =

∞
∑
n=1
n odd

Rnkn
∫ x∗m+1

x∗m
An cos(knx) dx

=
∞
∑
n=1
n odd

Rn
[
sin

(
knx∗m+1

)− sin
(
knx∗m

)]{
a0
1− cos(knx1)

x1

− 8
k2n

4K−1

∑
j=1

aj

[
cos(knxj+1)− cos(knxj)

xj+1 − xj
− cos(knxj)− cos(knxj−1)

xj − xj−1

]}

=
∞
∑
n=1
n odd

Rn
4K−1

∑
j=0

Mn
m, ja j

(2.57)

where use has been made of equation (2.38). The coefficients Mn
m, j constitute the contribution

to the integral over the mth interval of the vector potential at the jth collocation point for the
nth spatial Fourier mode. They can be derived from equation (2.57):

Mn
m, j =

4
k2n

{
− 1
xj+1 − xj

[
sin kn

(
x∗m+1 + xj+1

)
+ sin kn

(
x∗m+1 − xj+1

)
− sin kn

(
x∗m + xj+1

)− sin kn
(
x∗m − xj+1

)]
+
[

1
xj+1 − xj

+
1

xj − xj−1

]
·
[
sin kn

(
x∗m+1 + xj

)
+ sin kn

(
x∗m+1 − xj

)
− sin kn

(
x∗m + xj

)− sin kn
(
x∗m − xj

)]
− 1
xj − xj−1

[
sin kn

(
x∗m+1 + xj−1

)
+ sin kn

(
x∗m+1 − xj−1

)
− sin kn

(
x∗m + xj−1

)− sin kn
(
x∗m − xj−1

)]}
for j > 0

(2.58a)

and

Mn
m,0 =

4
k2n

· 1
x1

[
2 sin knx∗m+1 − 2 sin knx∗m − sin kn

(
x∗m+1 + x1

)
− sin kn

(
x∗m+1 − x1

)
+ sin kn

(
x∗m + x1

)
+ sin kn

(
x∗m − x1

)] (2.58b)

In principle, all Fourier terms up to infinity must be summed up to build the matrix of
equations. This high computational burden may be reduced by observing that for high values
of n, Rn asymptotically converges to a constant, labeled R∞. This can be deduced by looking
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at equations (2.25), (2.39), and (2.46), and keeping in mind that the layers adjacent to the
windings are insulating. In fact, unless the windings are embedded in magnetizable material,
then R∞ = 2, a unit from either side of the sensor. If N is such that Rn − R∞ ≈ 0 for n ≥ N,
then the integral can be written as a finite summation:

∫ x∗m+1

x∗m
KS(x) dx ≈

N

∑
n=1
n odd

(
Rn − R∞

) 4K−1

∑
j=0

Mn
m, ja j + R∞

∞
∑
n=1
n odd

4K−1

∑
j=0

Mn
m, ja j

=
N

∑
n=1
n odd

(
Rn − R∞

) 4K−1

∑
j=0

Mn
m, ja j + R∞

4K−1

∑
j=0

M′
m, ja j

(2.59)

where the coefficients M′
m, j are given by:

M′
m, j =

∞
∑
n=1
n odd

Mn
m, j =

1
π2

{
− 1
xj+1 − xj

[
f
(
x∗m+1 + xj+1

)
+ f

(
x∗m+1 − xj+1

)
− f

(
x∗m + xj+1

)− f
(
x∗m − xj+1

)]
+
[

1
xj+1 − xj

+
1

xj − xj−1

]
·
[
f
(
x∗m+1 + xj

)
+ f

(
x∗m+1 − xj

)
− f

(
x∗m + xj

)− f
(
x∗m − xj

)]
− 1
xj − xj−1

[
f
(
x∗m+1 + xj−1

)
+ f

(
x∗m+1 − xj−1

)
− f

(
x∗m + xj−1

)− f
(
x∗m − xj−1

)]}
for j > 0

(2.60a)

and

M′
m,0 =

∞
∑
n=1
n odd

Mn
m,0 =

1
π2 ·

1
x1

[
2 f
(
x∗m+1

)− 2 f
(
x∗m

)− f
(
x∗m+1 + x1

)
− f

(
x∗m+1 − x1

)
+ f

(
x∗m + x1

)
+ f

(
x∗m − x1

)] (2.60b)

The function f (x) used in equation (2.60) is defined as

f
( x
2π

)
=

∞
∑
n=0

sin(2n+ 1)x
(2n+ 1)2

= −1
2

∫ x

0
ln
(
tan

t
2

)
dt (2.61)

where the use of odd-numbered modes only in equation (2.60) has been made explicit. The
closed form of the sum shown in equation (2.61) is given in [51, eq. 1.29].∗ It can also be
derived via term by term integration of [52, eq. 1.442.2].

The function f (x) in equation (2.61) can be computed by performing the summation until
convergence is reached, but it converges rather slowly. An alternative formulation, which
uses the Bernoulli numbers Bn makes the computation of the function much faster, due to the

∗There is a printing error in this reference. Equation (2.61) is the correct expression.



46 Chapter 2. Forward Models of the Spatially Periodic Sensors

factorial term in the denominator:

f
( x
2π

)
=
x
2

(
1+ ln

2
x

)
−

∞
∑
n=1

(−1)n+1
(
22n−1 − 1

)
B2nx2n+1

2n(2n+ 1)!
(2.62)

This expression is obtained by taking the derivative of [1, eq. A.4]. In practice, the summation
never needs more than about 25 terms. The coefficients that multiply x2n+1 under the sum-
mation may all be pre-computed and stored in static memory, making the infinite summation
very fast in practice.

In [1] the formulation is in terms of the integral of f (x), which includes a numerically cal-
culated constant of integration. Formulating in terms of the definitions in this section is one
of the advantages of this method compared to the one given in [1], because the computations
often require taking small differences, and the machine precision limitation of using this con-
stant is a source of error. One consequence of this error is that the precision of the simulated
results stops improving past a certain relatively low number of collocation points.

The boundary condition in equation (2.56) also incorporates the integral of the vector po-
tential. It is written as follows: ∫ x∗m+1

x∗m
A(x) dx =

4K−1

∑
j=0

M′′
m, ja j (2.63)

Since equation (2.30) gives an explicit form for A(x) in terms of am, it is not necessary to
take the route via the Fourier series representation, although it is possible. The coefficients
M′′
m, j may be computed directly by substituting equation (2.30) into equation (2.63). Since the

integration intervals x∗m are interleaved with the collocation points xm, only the collocation
point enclosed in the interval and its two neighbors affect the integral. The result is a band
matrix:

M′′ =



M′′
0,0 M′′

0,1

M′′
1,0 M′′

1,1 M′′
1,2 0

M′′
2,1 M′′

2,2 M′′
2,3

. . .

M′′
3,2 M′′

3,3 M′′
3,4

0 M′′
4,3 M′′

4,4
. . .

. . . . . . . . .


(2.64)

whose nonzero elements are

M′′
m,m =

1
2

[
x∗m+1 − xm
xm+1 − xm

(
2xm+1 − xm − x∗m+1

)
+

x∗m − xm
xm − xm−1

(
x∗m + xm − 2xm−1

)]

M′′
m,m+1 =

1
2
·
(
x∗m+1 − xm

)2
xm+1 − xm

M′′
m+1,m =

1
2
·
(
x∗m − xm

)2
xm − xm−1

(2.65)

Note that all of these matrices, Mn, M′, and M′′, are independent of the material prop-
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erties, and therefore need to be computed only once for a particular sensor geometry. This
is at least in part intentional, by choosing appropriate normalization and definition for the
surface reluctance density Rn in equation (2.39). Moreover, only N of the Mn matrices need
to be pre-computed, with more of them being computed and stored on the fly as needed. This
leads to tremendous savings in computation, especially if the forward model is a component
of an iterative method, or when measurement grids for a particular MWM are generated.

2.1.7 Setting up the matrix equation

All of the equations that result from the boundary conditions are brought together in matrix
form,

Ma = b (2.66)

where a is a vector of the values am of the potential at the collocation points. The matrix M is
built from the pre-computed matrices using the following equations:

Mm, j =



N

∑
n=1
n odd

(
Rn − R∞

)
Mn
m, j + R∞M′

m, j

{
K ≤ m < 2K
3K ≤ m < 4K

N

∑
n=1
n odd

(
Rn − R∞

)
Mn
m, j + R∞M′

m, j + iσcoilM′′
m, j

{
0 ≤ m < K

2K ≤ m < 3K

(2.67)

which result directly from the boundary conditions and definitions in the previous section.
Since we are looking for the full two-port admittance matrix Y, the right hand side b of

the matrix equation contains two columns, one for driving each of the two windings sepa-
rately, i.e. for the first column v1 = 1 and v2 = 0, while for the second column v1 = 0 and
v2 = 1. Integrating the right hand side of equation (2.56) amounts to a simple multiplication
by x∗m+1 − x∗m. Thus all components of b are zero, with the exception of:

bm,0 = σcoil
(
x∗m+1 − x∗m

)
bm,1 =

1
2
σcoil

(
x∗m+1 − x∗m

) 0 ≤ m < K

2K ≤ m < 3K
(2.68)

The factor of 1/2 comes from the fact that there are two secondary windings per primary.
Solving the matrix equation yields values for am for each of the two driving conditions,

which fully determine the vector potential Ay in both cases.

2.1.8 Terminal currents

The last step is obtaining the terminal currents of the two windings for the two separate
driving voltage conditions. This can be accomplished by integrating the surface current KS

over each of the two windings. Fortunately this is very easy, because the total current in
a winding is simply the sum of the integrals of KS over the intervals contained within the
boundaries of the windings. If the following two-row matrix F is set up with the use of the
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pre-computed matrices:

F0, j = 2
K−1

∑
m=0

 N

∑
n=1
n odd

(
Rn − R∞

)
Mn
m, j + R∞M′

m, j



F1, j =
3K−1

∑
m=2K

 N

∑
n=1
n odd

(
Rn − R∞

)
Mn
m, j + R∞M′

m, j


(2.69)

where the factor of 2 in the first line is needed because only half of the primary winding is
contained in the quarter period, then the two-port admittance matrix can be obtained directly
by multiplying the matrix a of vector potential coefficients by the matrix F:

[
Y11 Y12
Y21 Y22

]
=

[
F

]


a


(2.70)

The impedance matrix is the inverse of the admittance matrix: Z = Y−1.

2.2 Mathematical model and simulation method for the IDED

Although the principle of duality provides many parallels between the magnetoquasistatic
and electroquasistatic regimes, there is one fundamental difference: there is no equivalent
to magnetic diffusion, i.e. the electrostatic potential Φ obeys Laplace’s equation. From the
point of view of the model, this means that for each spatial mode the decay constant in the
z-direction is purely real and equal to the wavenumber, i.e. it is independent of the excitation
frequency ω.

The model of the interdigital sensor is presented in [2] and [3]. In the course of a NASA and
JENTEK sponsored research project at MIT in 1995–96, which used IDEDs to measure poros-
ity in ceramic thermal barrier coatings [28], it became clear that the model presented in the
aforementioned sources is incorrect, or at least incomplete, with significant consequences in
a number of practical applications.∗ The issue is how the zero-order Fourier mode is treated,
which is important in the presence of a grounded layer on the other side of the test structure.
This was first discussed in a report [47] written in 1997. The model presented in this section
does treat the zero-order mode correctly, which is its major contribution to previously pub-
lished versions of the model. There are other changes too, primarily in the way the various
quantities are defined, similar to the MWM model of the previous section. This results in sim-
pler formulas and improvements in the performance of the numerical methods. Others have

∗This analysis was done in collaboration with Dr. Philip A. von Guggenberg.
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Figure 2-3: Electronic interface of the IDED, designed to keep the sensing electrode virtually
grounded.

also made improvements to the original model, such as accounting for the nonzero electrode
height [37].

Many of the steps in this algorithm closely follow the steps in the MWM model of the previ-
ous section. Consequently, only the features characteristic of the dielectrometer are discussed
in detail, with only the formulas shown for steps that parallel the magnetometer method.

The structure of the IDED is shown in Figure 1-4. A cross section of half a period of the
sensor is also shown in Figure 2-4. The sensing electrode is kept at ground potential via a
feedback circuit, such as the one shown in Figure 2-3. The value of the electrostatic potential
is thus known at both electrodes, being equal to the driving voltage VD at the driven electrode,
and zero at the sensing electrode. In the gap between the electrodes it is determined via a
collocation point method, as discussed below.

2.2.1 Laplace’s equation

For the purpose of this model it is assumed that the sensor is infinite and uniform in the
y-direction. Due to the spatial periodicity in the x-direction, the useful set of solutions to
Laplace’s equation ∇2Φ = 0 are

Φ(x, z) =
[
a1 sin(kx) + a2 cos(kx)

][
b1ekz + b2e−kz

]
+ (c1 + c2x)(d1 + d2z) (2.71)

Unlike the magnetic case, where the constant component of the vector potential is set
to zero (see Section 2.1.3), the zero reference of the electric scalar potential is fixed by the
presence of grounded electrodes and cannot be set to an arbitrary value. As a consequence, at
the electrode surface the potential can have a nonzero spatially constant component, requiring
the consideration of the last term in equation (2.71).

If the x = 0 point is chosen at the middle of one of the electrodes, the sensor symmetry
dictates that a1 = 0 and c2 = 0 in equation (2.71). The remaining relevant solutions are

Φ(x, z) =
(
b1ekz + b2e−kz

)
cos(kx) + d1 + d2z (2.72)

2.2.2 Normalization

As in Section 2.1, it is convenient to keep most quantities normalized in order to simplify
the analysis and speed up computation. The spatial coordinates are normalized according to
equation (2.18).

The geometrical parameters of the IDED are shown in Figure 2-4. The electrode widths
c and d, as well as all other length parameters, such as the substrate thickness h and the
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v1
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x1 x2 x3

1

Driven

c λ/2 x
d

Sensing

V/VD

Figure 2-4: Piecewise-smooth collocation-point approximation to the electrostatic potential of
the IDED. Three collocation points at x1, x2, and x3 are shown. The sensing electrode is shown
wider than the driven electrode to emphasize the fact that they do not need to have the same
width.

various layer thicknesses t, are normalized by the wavelength λ:

c̄ =
c
λ

d̄ =
d
λ

h̄ =
h
λ

t̄ =
t
λ

(2.73)

All permittivities are normalized by the permittivity of vacuum ε0:

ε̄∗ =
ε∗

ε0
ε̄S =

εS

ε0
(2.74)

where ε∗ is the complex permittivity defined by equation (2.87), and εS is the permittivity of
the substrate.

The terminal voltages and the electrostatic potential Φ are normalized by the driving
voltage VD, such that the potential at the driven electrode is equal to 1. The normalization of
the sensing electrode current is

Ī =
I

MLε0ωVD
(2.75)

where ML is the meander-length of the sensor, i.e. the total length of the sensing electrode
fingers, and ω is the excitation frequency. The wavenumber is normalized as

k̄n = kn · λ = 2πn (2.76)

For the rest of this section, the bars will be dropped from the normalized variables to sim-
plify notation. All appropriate variables should be assumed to be normalized, unless explicitly
stated otherwise.
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2.2.3 Collocation points

In the sensor gap the electrostatic potential is approximated as an interpolation of its value
between a set of K + 2 collocation points, xm. With the x = 0 point chosen as shown in
Figure 2-4, symmetry dictates that

Φ(x) = Φ(−x) (2.77)

which means that only one half of the period needs to be considered in order to determine
Φ(x) uniquely everywhere. The piecewise-linear representation of Φ(x) in the gap is given by

Φ(x) =
(xm+1 − x)vm + (x− xm)vm+1

xm+1 − xm
xm < x < xm+1 m = 0, 1, . . . ,K (2.78)

where vm are the values of Φ at the points xm. There are a total of K + 2 collocation points.
The first one, x0, and last one, xK+1, are located at the electrode edges, where the potential is
known. Therefore there are K unknowns that must be determined to find Φ. The collocation
points are concentrated near the edges, where the potential is changing the fastest, following
a simple cosinusoidal distribution:

xm =
c
2

+
1− c− d

4

[
1− cos

(
πm
K+ 1

)]
0 ≤ m ≤ K+ 1 (2.79)

The value of the potential at the collocation points is determined by integrating the appro-
priate boundary conditions over a set of K intervals, delimited by the points x∗m. Each interval
encloses one collocation point. The interval boundaries are positioned half way between the
collocation points, except at the two ends:

x∗m =


x0 m = 0
xK+1 m = K

xm+1 + xm
2

m = 1, 2, . . . ,K− 1

(2.80)

2.2.4 Fourier series representation

As in the magnetic case, the electric field is represented as a superposition of different spatial
Fourier modes:

Φ(x) = Φ0 +
∞
∑
n=1

Φn cos(knx) (2.81)

Unlike the magnetic case, both odd and even modes must be included in this case, because
there is no analogy to the quarter-wave symmetry here. Furthermore, the expansion includes
a zero-order term Φ0, since the reference point of the potential cannot be chosen arbitrarily,
having already been determined by the ground potential at the sensing electrode, the back
plane, and the ground plane. The summation expressions in this section include all values
of n.
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Expressing the series coefficients Φn in terms of vm leads to the following expressions:

Φn = 4
∫ 1/2

0
Φ(x) cos(knx) dx

= 4
∫ x0

0
cos(knx) dx+ 4

K

∑
m=0

∫ xm+1

xm

(xm+1 − x)vm + (x− xm)vm+1

xm+1 − xm
cos(knx) dx

=
4
kn

sin(knx0) +
4
k2n

K

∑
m=0

cos(knxm+1) − cos(knxm)
xm+1 − xm

(
vm+1 − vm

)
+

4
kn

K

∑
m=0

[
vm+1 sin(knxm+1) − vm sin(knxm)

]
(2.82)

The first term in equation (2.82) results from integration over the driven electrode, where the
potential is fixed at the driving voltage, whose normalized value is unity. The potential is zero
at the sensing electrode and therefore this interval is not included.

The last summation in equation (2.82) cancels out on a term-by-term basis, except for the
two end terms multiplying v0 and vK+1. The latter is at the sensing electrode edge, where the
potential is zero, and can be ignored. The v0 term makes a contribution that exactly cancels
the leading term in equation (2.82), since v0 = 1. Carrying out these simplifications results
in:

Φn = − 4
k2n

K

∑
m=1

vm

[
cos(knxm+1)− cos(knxm)

xm+1 − xm
− cos(knxm) − cos(knxm−1)

xm − xm−1

]

− 4
k2n

· cos(knx1) − cos(knx0)
x1 − x0

(2.83)

Note than in equation (2.83) the index of the summation starts at m = 1. The first term has
been written out separately because v0 = 1 is known, and thus its coefficient will contribute
to the right hand side of the matrix equation.

The constant term may similarly be evaluated as:

Φ0 = 2
∫ 1/2

0
Φ(x) dx = 2

∫ x0

0
dx+ 2

K

∑
m=0

∫ xm+1

xm

(xm+1 − x)vm + (x− xm)vm+1

xm+1 − xm
dx

= 2x0 + 2
K

∑
m=0

(vmxm+1 − vm+1xm) + 2
K

∑
m=0

(vm+1 − vm)(xm+1 − xm)

= x0 + x1 +
K

∑
m=1

vm(xm+1 − xm−1)

(2.84)

2.2.5 Surface capacitance density

There are two parameters of a medium that determine the quasistatic distribution of elec-
tric fields: the dielectric permittivity ε and the conductivity σ . The former determines the
displacement current density from the electric field, while the latter relates the conduction
current density to the electric field. The permittivity governs energy storage (reactive power)
phenomena, while the conductivity determines the power dissipation (active power). It is
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I

ε, σE

Figure 2-5: Terminal current of an electrode in contact with a conducting dielectric medium.

possible to combine these two effects by adding the effect of the ohmic conductivity to the
imaginary (loss) component of the complex permittivity.

Consider an electrode in contact with a medium as shown in Figure 2-5. In the one-
dimensional geometry in the figure, the current density and the electric field are perpendicu-
lar to the electrode. Let the normal component of the electric field at the electrode surface be
E. The terminal current I can be obtained by integrating the total current per unit electrode
area J that flows into the electrode. The total current density is given by

J = JC + JD = σE+
d
dt

(εE) (2.85)

where JC is the conduction current density and JD is the displacement current density.
Under sinusoidal steady state operation equation (2.85) becomes

J = JC + JD = σE+ iωεE = iωE
(
ε +

σ

iω

)
(2.86)

It is convenient to define the complex permittivity ε∗ of a medium as:

ε∗ = ε′ − iε′′ = ε − i
σ

ω
(2.87)

making it possible to rewrite equation (2.86) as

J = iωε∗E (2.88)

In analogy to the surface reluctance density defined in Section 2.1.5, in the electroqua-
sistatic regime it is possible to define the complex surface capacitance density as

C∗
n(z) =

1
kn

· ε
∗(z)Ez,n(z)

Φn(z)
n > 0 (2.89a)

C∗
0(z) =

ε∗(z)Ez,0(z)
Φ0(z)

(2.89b)

As before, all information about the material under test is contained in the value of C∗
n at

z = 0 for all spatial Fourier modes.
Taking advantage of duality, it is possible to use equations (2.40) through (2.51), after
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making the following substitutions:

Φ ←→ Ay

ε∗Ez ←→ Hx

C∗
n ←→ Rn

ε∗ ←→ 1
µ∗

(2.90)

and letting γn → kn, since there is no diffusion term in the electroquasistatic case.
At the bottom interface (z = z0) of any layer, for high mode numbers

lim
n→∞C∗

n(z0) = ε∗ (2.91)

and the transfer relation across a layer of thickness t and complex permittivity ε∗ is

C∗
n(z0) = ε∗C∗

n(z0 + t) coth(knt) +ε∗

C∗
n(z0 + t) +ε∗ coth(knt)

n > 0 (2.92)

To calculate the transfer relation for n = 0, the linear component of equation (2.72) must
be used, leading to

Φ0(z) =
(z− z0)Φ0(z0 + t) − (z− z0 − t)Φ0(z0)

t
(2.93)

and

Ez,0(z) = − d
dz

Φ0(z) = −Φ0(z0 + t) −Φ0(z0)
t

(2.94)

At the two interfaces, C0(z) is

C0(z0) = −ε∗

t

[
Φ0(z0 + t)

Φ0(z0)
− 1

]
(2.95a)

C0(z0 + t) = −ε∗

t

[
1− Φ0(z0)

Φ0(z0 + t)

]
(2.95b)

which can be combined to yield the following transfer relation:

C∗
0(z0) =

ε∗C∗
0(z0 + t)

tC∗
0(z0 + t) +ε∗ (2.96)

A material structure with several homogeneous layers is shown in Figure 2-6. One notable
difference is that while in the magnetic case there always is a top layer of infinite thickness,
in the electrostatic case the top layer is limited by a ground plane. This is true even if no such
electrode is present in an experimental setup, since there are many objects in the vicinity
which are at ground potential, which act as a ground at a certain effective distance. In fact, it
is better to explicitly place a grounded metal plate behind the material under test, so that it
is at a controlled distance to be used in the model. Nonetheless, it is still possible to model a
structure with no ground plane by letting the thickness of the top layer approach infinity.

The surface capacitance density at the bottom interface of this ground-limited top layer
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Figure 2-6: Material structure with several layers of homogeneous materials

can be computed from equations (2.92) and (2.96) by taking the limit where Cn(z0 + t) → ∞,
since Φn(z0 + t) = 0 at the top interface in contact with the ground plane:

C∗
n(z0) = ε∗ coth(knt) n > 0 (2.97a)

C∗
0(z0) =

ε∗

t
(2.97b)

which approaches ε∗ for all n > 0 at sufficiently large values of the thickness t.
The quantity σ∗

S is defined as the jump in the normal component of ε∗E:

σ∗
S (x) = ε∗Ez(x) = ε∗(z = 0+)Ez(x, z = 0+)−ε∗(z = 0−)Ez(x, z = 0−) (2.98)

It would be equal to the surface charge density in the absence of ohmic conduction in the
medium. Incorporating the conductivity as part of the complex permittivity changes ε, C,
and σS to ε∗, C∗, and σ∗

S . The jump in the normal component of the total current density,
conduction and displacement, is expressed in terms of σ∗

S via equation (2.88):

Jz = iωσ∗
S (2.99)

Using equation (2.98), the values of the surface capacitance density above and below the
electrodes can be combined in a single quantity:

C∗
n ≡ C∗

n(z) = C∗
n(0

+)− C∗
n(0

−) =
1
kn

· σ∗
S n

Φn(z = 0)
(2.100)

resulting in the following expression for the coefficients of the Fourier series expansion of
σ∗

S (x):

σ∗
S n = C∗

nknΦn (2.101)

2.2.6 Boundary conditions

Compared to the magnetometer, formulating the boundary conditions that need to be applied
over the integration intervals around each collocation point is much simpler in the dielectric
case. This is due to the fact that in the electroquasistatic regime the metal electrodes can be
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treated as infinitely conducting, so that the potential at the electrodes is known. It needs to be
determined only in a single region in the gap, unlike the MWM where there are four separate
regions, as seen in Figure 2-1.

The relevant boundary condition between electrodes is

σ∗
S (x) = 0 (2.102)

which results from equation (2.99), since there is no electrode to act as a current source or
sink, and no surface conduction is considered. Surface conductivity and permittivity may be
modeled by introducing an extra layer and letting its thickness approach zero. The integral
of the condition in equation (2.102) is∫ x∗m+1

x∗m
σ∗

S (x) dx =
∞
∑
n=1

∫ x∗m+1

x∗m
C∗
nΦnkn cos(knx) dx+

∫ x∗m+1

x∗m
C∗
0Φ0 dx

= −
∞
∑
n=1

(
C∗
n

[
sin

(
knx∗m+1

)− sin
(
knx∗m

)]×
× 4
k2n

{
K

∑
j=1

vj

[
cos(knxj+1) − cos(knxj)

xj+1 − xj
− cos(knxj) − cos(knxj−1)

xj − xj−1

]

+
cos(knx1)− cos(knx0)

x1 − x0

})

+ C∗
0
(
x∗m+1 − x∗m

) [
x0 + x1 +

K

∑
j=1

vj(xj+1 − xj−1)

]

=
∞
∑
n=0

C∗
n

K

∑
j=1

Mn
m, jv j = 0

(2.103)

In matrix form this set of equations is Mv = b, where v is a vector of the unknown potential
values vm. The matrix M is calculated for a particular material structure as:

M =
∞
∑
n=1

C∗
nM

n + C∗
0M

0 (2.104)

where the sub-matrices Mn are defined in equation (2.103). The advantage of formulating M
as a summation of sub-matrices is that they depend only on the sensor parameters, and need
to be computed once when calculating the sensor response for a variety of material proper-
ties and geometries. After substituting equations (2.83) and (2.84) into equation (2.103), the
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elements of Mn are determined to be:

Mn
m, j =

2
k2n

{
− 1
xj+1 − xj

[
sin kn

(
x∗m+1 + xj+1

)
+ sin kn

(
x∗m+1 − xj+1

)
− sin kn

(
x∗m + xj+1

)− sin kn
(
x∗m − xj+1

)]
+
[

1
xj+1 − xj

+
1

xj − xj−1

]
·
[
sin kn

(
x∗m+1 + xj

)
+ sin kn

(
x∗m+1 − xj

)
− sin kn

(
x∗m + xj

)− sin kn
(
x∗m − xj

)]
− 1
xj − xj−1

[
sin kn

(
x∗m+1 + xj−1

)
+ sin kn

(
x∗m+1 − xj−1

)
− sin kn

(
x∗m + xj−1

)− sin kn
(
x∗m − xj−1

)]}
for n > 0

(2.105a)

and

M0
m, j =

(
x∗m+1 − x∗m

)(
xj+1 − xj−1

)
(2.105b)

As in the magnetic case, the surface capacitance density approaches a limit C∗∞ for large
values of n. Using a similar definition, it is possible to separate the C∗∞ component:

∫ x∗m+1

x∗m
σ∗

S (x) dx ≈
N

∑
n=1

(
C∗
n − C∗∞

) K

∑
j=1

Mn
m, ja j + C∗∞

∞
∑
n=1

K

∑
j=1

Mn
m, ja j

=
N

∑
n=1

(
C∗
n − C∗∞

) K

∑
j=1

Mn
m, ja j + C∗∞

K

∑
j=1

M′
m, ja j

(2.106)

where the elements of the matrix M′ are given by

M′
m, j =

∞
∑
n=1

Mn
m, j =

1
π2

{
− 1
xj+1 − xj

[
g
(
x∗m+1 + xj+1

)
+ g

(
x∗m+1 − xj+1

)
− g

(
x∗m + xj+1

)− g
(
x∗m − xj+1

)]
+
[

1
xj+1 − xj

+
1

xj − xj−1

]
·
[
g
(
x∗m+1 + xj

)
+ g

(
x∗m+1 − xj

)
− g

(
x∗m + xj

)− g
(
x∗m − xj

)]
− 1
xj − xj−1

[
g
(
x∗m+1 + xj−1

)
+ g

(
x∗m+1 − xj−1

)
− g

(
x∗m + xj−1

)− g
(
x∗m − xj−1

)]}

(2.107)

In the dielectric case the summation does include the even-numbered Fourier terms, so



58 Chapter 2. Forward Models of the Spatially Periodic Sensors

that the function g(x) differs from f (x) of equation (2.61). The definition of g(x) is

g
( x
2π

)
=

∞
∑
n=1

sin(nx)
n2

= −
∫ x

0
ln
(
2 sin

t
2

)
dt (2.108)

The closed form of the sum is taken from [51, eq. 1.25], or via term-by-term integration of [52,
eq. 1.441.2]. As for f (x), a fast converging series expression is also possible for g(x) [3, eq. A.6]:

g
( x
2π

)
= x

[
1+ ln(x)

]− ∞
∑
n=1

(−1)n+1B2nx2n+1

2n(2n+ 1)!
(2.109)

The function g(x) is further discussed in Appendix B.

2.2.7 Setting up the matrix equation

The set of equations generated by equation (2.103) are written in matrix form as Mv = b.
The matrix M is already defined in equation (2.104). Forming the right hand side vector b
in the dielectric case is quite different. In the magnetic case the constant term comes from
the boundary conditions over the windings, which include the terminal voltages. Here, how-
ever, the constant terms arise from the expressions multiplying v0 = 1, written out explicitly
outside the sums in equation (2.103). It also has a contribution due to the n = 0 term, so that

b =
∞
∑
n=1

C∗
nb
n + C∗

0b
0 (2.110)

Extracting the appropriate terms from equation (2.103) gives

bnm =
2
k2n

· 1
x1 − x0

[
sin kn

(
x∗m+1 − x1

)
+ sin kn

(
x∗m+1 + x1

)
− sin kn

(
x∗m − x1

)− sin kn
(
x∗m + x1

)
− sin kn

(
x∗m+1 − x0

)− sin kn
(
x∗m+1 + x0

)
+ sin kn

(
x∗m − x0

)
+ sin kn

(
x∗m + x0

)]
for n > 0

(2.111a)

and

b0m = −(
x∗m+1 − x∗m

)(
x0 + x1

)
(2.111b)

Solving the matrix equation results in full knowledge of the electrostatic potential Φ(x) at
the electrode surface.

2.2.8 Calculating transcapacitance

In the magnetometer case, the entire two-port impedance matrix is computed. Although full
measurement information is contained in the transinductance term, having all components
is useful, because it makes it possible to include parasitic source and load impedances in the
model and account for them. In the case of the dielectrometer, the only useful component of
the two-port matrix is the transcapacitance, because the sensing electrode voltage is always
at zero potential and the current into the driven electrode is generally too small for any source
impedance to have an appreciable effect on the measurement results.



2.3. Summary of Chapter 2 59

Obtaining the transcapacitance term is done by integrating σ∗
S over the area of the virtu-

ally grounded sensing electrode. In the magnetic case this integral was already computed for
the windings, but in the dielectric case the electrode surface needs to be considered separately.
Using equation (2.99), the transcapacitance is determined as follows:

CT = −
∞
∑
n=1

∫ 1/2

xK+1

C∗
nΦnkn cos(knx) dx−

∫ 1/2

xK+1

C∗
0Φ0 dx

= −
∞
∑
n=1

C∗
n sin(knxK+1)

4
k2n

{
K

∑
j=1

vj

[
cos(knxj+1) − cos(knxj)

xj+1 − xj
− cos(knxj) − cos(knxj−1)

xj − xj−1

]

+
cos(knx1)− cos(knx0)

x1 − x0

}

− C∗
0

(
1
2
− xK+1

)[
x0 + x1 +

K

∑
j=1

vj(xj+1 − xj−1)

]
(2.112)

where the sensing electrode extends from xK+1 = 1/2− d/2 to 1/2.

2.3 Summary of Chapter 2

In this chapter the semi-analytical collocation point models for the MWM and the IDED,
which are the inductive and capacitive implementations of the Cartesian geometry quasistatic
spatially periodic sensors, have been presented in detail. The new concepts in this formulation
include:

1. The equations are written in a form that lends itself to efficient numerical implementa-
tion.

2. The infinite series are formulated in a way that minimizes sensitivity to machine impre-
cision.

3. The distributions of collocation points and integration interval limits are chosen to max-
imize the numerical stability of the collocation point method.

4. The zero-order term in the dielectric case is treated appropriately, correcting errors in
earlier work.

Although most of the material in this chapter has appeared in previous publications, the
formulation and conventions used here have the advantages of completeness, consistency,
and efficiency of the numerical implementation. These qualities make the material in this
chapter a solid base for the development of the cylindrical geometry models in Chapter 3, the
distributed current drive magnetometer models in Chapter 4, and the moving media analysis
in Section 6.1. Furthermore, this chapter has already become a useful reference source for
users of the MWM and IDED Cartesian geometry sensors and arrays.
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Chapter 3

Modeling sensors with rotational
symmetry

As already briefly discussed in the introductory Section 1.3.2, there are several reasons why
it may be advantageous to design rotationally symmetric sensors. In the case of the Cartesian
geometry sensors, such as the existing MWM and IDED, it is necessary to assume that: (1) the
extent of the sensor is infinite in the y-direction, and all physical quantities are independent of
y; and (2) all physical quantities are spatially periodic in the x-direction with a period equal
to the spatial wavelength λ, and extend to infinity in the x-direction. Whereas the second
assumption is generally justified when guard electrodes or windings are used near the two
sides, as illustrated in the IDED schematic in Figure 1-4, there is really no easy way to justify
the first one, unless impractically long sensors are designed.

The circular geometry completely eliminates the y edge effect, because the counterpart
of y in cylindrical coordinates for this geometry is ϕ. The x edge effect, which corresponds
to r in cylindrical coordinates, can also be minimized by making the radius R, used in the
mathematical model, large compared to the relevant length scales.

A further possible advantage of the rotationally symmetric sensors is their insensitivity to
anisotropy of the material. Anisotropy plays a particularly important role in magnetometer
measurements, where a metal’s conductivity may be anisotropic, due to processing, such as
rolling or directional solidification. Furthermore, in ferromagnetic metals the magnetic per-
meability can manifest strong anisotropy due to residual or applied stress. Whereas there
are many cases when it is useful to measure this anisotropy [18, 24], at other times it may
be preferable to measure the directional average of a property. For example, when comparing
two parts, the lack of sensitivity to direction eliminates the need for precise alignment of the
sensor to the anisotropy axis.

Finally, certain structures, such as holes and fasteners, are by nature rotationally sym-
metric. Cracks that originate from a hole propagate radially out, and thus a sensor with con-
centric windings is ideal for this application, since it is uniformly sensitive to cracks around
the entire circumference of the hole. Such sensors have already been developed at JENTEK,
called Rosettes [23], whose basic structure is shown in Figure 3-1. At present the measure-
ment grids for these sensors are still being generated with the Cartesian coordinate methods
outlined in Section 2.1, which can be justified only if the width of the annulus that contains
the active windings is small compared to the radius, which is not true for practical sensors.
Using the method developed in this chapter will result in more accurate models for these
sensors.

61
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VS1
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Figure 3-1: Basic structure of the circularly symmetric magnetometer (Rosette).

This chapter presents mathematical models and numerical techniques used to calculate
the response of sensors with rotational symmetry. Both the magnetic and dielectric cases
are presented in Sections 3.1 and 3.2 respectively. Section 3.3 shows experimental results
with the dielectric sensor, which confirm the validity of the model developed in Section 3.2.
Only the collocation point methods are discussed in this chapter; methods for modeling of the
circular magnetometer with distributed current drive are presented in Sections 4.8 and 4.9.

The problem is approached similarly to the Cartesian collocation point methods in Chap-
ter 2. Frequent references to that chapter are made, in order to illustrate the parallels and
the differences between the two coordinate systems. Unlike Chapter 2, in this chapter no nor-
malization is included in the equations.

Perhaps the most important difference is that the periodicity built into the Cartesian ge-
ometry sensors, which makes it possible to use Fourier series methods efficiently, does not
exist in cylindrical geometry. This is not to say that the idea of imposing a certain spatial
periodicity as a way of controlling the effective depth of sensitivity no longer holds; on the
contrary, this still is the main factor that determines the radii and spacing of the electrodes
or windings. In cylindrical coordinates Fourier-Bessel Series is used instead, but the radius R
over which the Bessel Series is applied is chosen large compared to the characteristic lengths
of the sensor. As a consequence of choosing a large radius, terms of much higher order must
be considered for the same numerical precision. This, coupled with the lack of convenient
closed form product and summation formulas for Bessel functions, makes the computational
burden much higher than the Cartesian coordinate methods.

3.1 Magnetometer

In this section the equations needed for developing the numerical method used to model the
circularly symmetric magnetometer are developed.

The magnetometer windings are formed on a planar substrate in the form of concentric
annuli, as shown in Figure 3-1. It is most convenient to formulate the problem in cylindrical
coordinates, with the origin at the center of the sensor, and the z-axis perpendicular to the
plane of the sensor. Because of the winding layout, the current always flows only in the ϕ-
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direction, and all physical quantities are independent of the angle coordinate ϕ. The magnetic
vector potential must therefore be of the following form:

A = Aϕ(r, z)ϕ̂ (3.1)

The magnetic diffusion equation (2.11) requires that the function Aϕ(r, z) be a solution to the
following partial differential equation:

∂
∂r

[
1
r
· ∂

∂r
(rAϕ)

]
+

∂2

∂z2
Aϕ − iωσµAϕ = 0 (3.2)

A useful solution to equation (3.2) is

A = J1(βr)
(
c1e+γz + c2e−γz

)
ϕ̂ γ =

√
β2 + iωσµ (3.3)

where J1 is the Bessel function of the first kind of order one. The Bessel function of the
second kind Y1, which also satisfies the radial part of equation (3.2), is not suitable, because
it has a singularity at r = 0, where A must remain finite. The role of the wavenumber k
in equation (2.14) is played by β in cylindrical coordinates. In terms of equation (3.3), the
electromagnetic flux density B is:

B = ∇×A =
1
r
· ∂

∂r
(rAϕ)ẑ+

∂
∂z
Aϕ r̂

= βJ0(βr)
(
c1e+γz + c2e−γz

)
ẑ+ γJ1(βr)

(
c1e+γz − c2e−γz

)
r̂

(3.4)

3.1.1 Use of Fourier-Bessel series

The form of equation (3.3) suggests that Aϕ, at a given value of z, may conveniently be rep-
resented by a Fourier-Bessel series based on J1. A function f (r) may be represented as an
infinite summation of Bessel functions over an interval (0, R) as follows [53]:

f (r) =
∞
∑
n=1

AnJ1
(αn

R
r
)

0 < r < R (3.5)

where αn are the positive real zeros of J1. The trivial zero α0 = 0 does not participate in this
series. To find the series coefficients An, the following integral must be evaluated:

An =
1
Qn

∫ R

0
r f (r)J1

(αn

R
r
)
dr (3.6)

where the coefficients Qn are given by:

Qn =
∫ R

0
rJ21

(αn

R
r
)
dr =

R2

2
J22 (αn) =

R2

2
J20 (αn) (3.7)

The transformation of J2 to J0 in the last equation is possible because of the following equality:

J2(x) =
2
x
J1(x) − J0(x) (3.8)
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which means that J2(αn) = −J0(αn), since J1(αn) = 0. Attempting to express everything in
terms of J0 and J1 only is motivated by the desire to maintain the analogy of the relationship
between these two functions to the sine/cosine pair in Cartesian coordinates. The roles of J0
and J1 are reversed in the dielectric case, as seen in Section 3.2. Furthermore, restricting
the use of Bessel functions to J0 and J1 is beneficial from the point of view of computational
efficiency.

The radius R is the outer limit of the interval over which the Bessel series expansion is
applied. It is chosen to be several times greater than the outer radius of the sensor, in order to
make the effect of any phantom magnetic fields that result from the summation of the series
outside of this radius negligible.

3.1.2 Collocation points

Since no specific winding layout is used in this section, Figure 3-1 being only a simple example
of a possible layout, no explicit definition of the collocation points is given. As in Section 2.1.3,
the collocation points rm should be spread out over the interval where A is to be determined,
i.e. 0 ≤ r ≤ R, with higher concentration of points near the winding edges, and interleaved
with the integration limit points r∗m. The latter must include the winding edges exactly, in
order to have the same boundary conditions apply within the range of each interval. The
total number of collocation points used in the analysis in this section, including the first and
last points, is K + 1. Thus a total of K constraining equations are required, since the vector
potential needs to be determined only to within an additive constant. The last collocation
point is at rK = R. The first one does not need to be at the origin, because for r < r0 the
potential is fully determined by, and equal to, its value at r0, for reasons described below.

The next step is expressing the series coefficients of the Bessel function expansion of the
magnetic vector potential in terms of its value at the collocation points, in analogy to equa-
tion (2.38). The choice of interpolating function in the Cartesian case is a simple line connect-
ing the two neighboring points, which leads to equation (2.30). Using this same function here
would be unsuitable, because equation (3.6) yields an integral, namely

∫
xJ1(x) dx, that has no

closed form solution.∗ More generally, integrals of the form
∫
xp J1(x) dx cannot be solved when

p is an odd integer. Conversely, when p is an even integer, closed form solutions are possible,
as in the following cases: ∫

J1(x) dx = −J0(x) (3.9a)∫
x2 J1(x) dx = x2 J2(x) (3.9b)

Equation (3.9) suggests that a convenient function to be used for interpolation between
two consecutive collocation points is:

y = c1x+
c2
x

x > 0 (3.10)

Specifically, in terms of its values y1 and y2 known at two distinct points x1 and x2, with

∗At least, not a practical closed form solution. This integral may be expressed as a hypergeometric function.
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0 ≤ x1 < x2, the value of a function y(x) is given by the following formula:

y =


y2
x2
x x1 = 0 and y1 = 0

(y1/x2 − y2/x1) x+ (x1y2 − x2y1)/x
x1/x2 − x2/x1

otherwise
(3.11)

Using this interpolation function, the magnetic vector potential between two collocation
points is given by the following expression:

Aϕ(r) =
amrm

(
r2m+1/r− r

)
+ am+1rm+1

(
r− r2m/r

)
r2m+1 − r2m

rm ≤ r ≤ rm+1

m = 0, 1, . . . ,K− 1
(3.12)

analogous to equation (2.30). For 0 ≤ r ≤ r0 the magnetic vector potential must be constant
and equal to a0, since its partial derivative with respect to r at r = 0 must be zero, or else Bz
would be infinite there. Therefore equation (3.10) cannot be used in this interval, since both
coefficients would have to be zero. To avoid having to carry out an integral with no closed
form over this interval, which would result from constant Aϕ(r), it is best to set the constant
potential there to zero, using the degree of freedom afforded by the arbitrary constant that
can be added to the vector potential. Thus

Aϕ(r) = a0 = 0 0 ≤ r ≤ r0 (3.13)

Letting

βn ≡ αn

R
(3.14)

the series coefficients are obtained by an integral from zero to rK = R, which can be divided
up as:

An =
1
Qn

K−1

∑
m=0

∫ rm+1

rm
rAϕ(r)J1(βnr) dr (3.15)

Substituting equation (3.12) into equation (3.15) and carrying out the integration yields

AnQnβn =
K−1

∑
m=0

(
1

r2m+1 − r2m
×

×
{
am+1rm+1

[
r2m+1 J2(βnrm+1)− r2mJ2(βnrm) + r2mJ0(βnrm+1)− r2mJ0(βnrm)

]
− amrm

[
r2m+1 J2(βnrm+1) − r2mJ2(βnrm) + r2m+1 J0(βnrm+1) − r2m+1 J0(βnrm)

]})
(3.16)
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which, with the help of equation (3.8), is written as

AnQnβ
2
n = 2

K−1

∑
m=0

am+1rm+1 − amrm
r2m+1 − r2m

[
rm+1 J1(βnrm+1) − rm J1(βnrm)

]
−βn

K−1

∑
m=0

[
am+1rm+1 J0(βnrm+1) − amrmJ0(βnrm)

] (3.17)

The second summation in equation (3.17) cancels out on a term by term basis, with the excep-
tion of the first and last terms. The other summation can be rewritten as

An = − 4
α2
n J20 (αn)

{
aKrK

[
rK−1 J1(βnrK−1)
r2K − r2K−1

+
βn

2
J0(βnrK)

]

+
K−1

∑
m=1

amrm

[
rm+1 J1(βnrm+1) − rm J1(βnrm)

r2m+1 − r2m
− rm J1(βnrm) − rm−1 J1(βnrm−1)

r2m − r2m−1

]} (3.18)

similar to equation (2.38). Use has been made of the fact that a0 = 0 and J1(βnrK) = 0.

3.1.3 Surface reluctance density

As seen in equation (3.3), the z-dependence of the magnetic vector potential is identical to the
Cartesian case in equation (2.13), with β substituted for the wavenumber k in the definition
of the complex wavenumber γ. Consequently, the concept of defining the surface reluctance
density Rn(z) and finding its value at the electrode surface for every spatial mode n via trans-
fer relations across every homogeneous layer is directly applicable here. After substituting β

for k, equations (2.39), (2.46), and (2.50) through (2.52) become

Rn(z) ≡ 1
βn

· Hr,n(z)
Aϕ,n(z)

(3.19)

Rn(z0) =
γn

µ∗βn
(3.20)

Rn(z0) =
γn

µ∗βn
· µ∗βnRn(z0 + t) coth(γnt) + γn

µ∗βnRn(z0 + t) + γn coth(γnt)
(3.21)

Rn ≡ Rn(0+)− Rn(0−) =
1
βn

· Hr,n(z = 0+) − Hr,n(z = 0−)
Aϕ,n(z = 0)

(3.22)

KSn = RnβnAn (3.23)

At the bottom interface (z = z0) of any layer for high mode numbers

lim
n→∞Rn(z0) =

1
µ∗ (3.24)

which means that unless embedded in a magnetizable material,

R∞ = lim
n→∞ Rn =

2
µ0

(3.25)
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3.1.4 Boundary conditions

In the gaps between the windings the condition is that the surface current density must be
zero, as in equation (2.53):

KS(r) = Hr(r, z = 0+)− Hr(r, z = 0−) = 0 (3.26)

Similarly, for a single turn winding the contour integral∮
C
E · ds = −iω

∮
C
A · ds (3.27)

results in a boundary condition of the form

v = iω(2πr)Aϕ(r) + (2πr)
KS(r)
∆σcoil

(3.28)

A complicating factor in equation (3.28) as compared to equation (2.55) is that equation (3.27)
involves integration over ϕ, which introduces a factor of r to the integrand.

Integrating the boundary conditions given by equations (3.26) and (3.28) over an inter-
val, in order to generate a constraining equation for the evaluation of the potential at the
collocation points, involves an integral of the surface current density:∫ r∗m+1

r∗m
KS(r) dr =

∞
∑
n=1

∫ r∗m+1

r∗m
RnAnβn J1(βnr) dr

= −
∞
∑
n=1

AnRn
[
J0(βnr∗m+1)− J0(βnr∗m)

]
=

∞
∑
n=1

Rn
K

∑
j=1

Mn
m, ja j

(3.29)

The coefficients Mn
m, j constitute the contribution to the integral over the mth interval of the

vector potential at the jth collocation point for the nth Bessel mode. They can be obtained by
substituting equation (3.18) into equation (3.29) yielding

Mn
m, j =

4
α2
n J20 (αn)

[
J0(βnr∗m+1) − J0(βnr∗m)

]
×

× r j

[
r j+1 J1(βnr j+1)− r j J1(βnr j)

r2j+1 − r2j
− r j J1(βnr j)− r j−1 J1(βnr j−1)

r2j − r2j−1

]
for j < K

(3.30a)

and

Mn
m,K =

4
α2
n J20 (αn)

[
J0(βnr∗m+1) − J0(βnr∗m)

]
rK

[
rK−1 J1(βnrK−1)
r2K − r2K−1

+
βn

2
J0(βnrK)

]
(3.30b)

At this point the method diverges somewhat from the Cartesian coordinate method of Sec-
tion 2.1. The difference comes from the fact that when using Bessel functions there is no anal-
ogous closed form of the infinite summation used to define function f (x) in equation (2.61).
Consequently, there is no benefit in isolating the R∞ component and creating a separate M′
matrix. This issue is treated with more detail in Appendix B.

Before integrating the boundary condition over the windings, it is convenient to divide
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both sides of equation (3.28) by 2πr first, leading to the following expression for the integral
of the left hand side: ∫ r∗m+1

r∗m

v
2πr

dr =
v
2π

ln
( r∗m+1

r∗m

)
(3.31)

The right hand side of equation (3.28) contains a term with
∫
KS(r) dr, already handled in

equation (3.29), and an integral over Aϕ(r). The latter may be obtained by integrating equa-
tion (3.12) directly, but closer scrutiny reveals that this is unnecessarily complicated. The
interpolation function in equation (3.11) was chosen in order to make it possible to find a
closed form expression for the Bessel series coefficients. Since this function is only an ap-
proximation to Aϕ(r) anyway, it is better for the purpose of this integral to assume a linear
interpolation function, similar to equation (2.30):

Aϕ(r) =
am(rm+1 − r) + am+1(r− rm)

rm+1 − rm
(3.32)

yielding

2
∫ r∗m+1

r∗m
Aϕ(r) dr = am−1

(r∗m − rm)2

rm − rm−1
+ am+1

(r∗m+1 − rm)2

rm+1 − rm

+ am

[
r∗m − rm
rm − rm−1

(r∗m + rm − 2rm−1) +
r∗m+1 − rm
rm+1 − rm

(2rm+1 − rm − r∗m+1)
]

rm−1 < r∗m < rm < r∗m+1 < rm+1

(3.33)

If written as ∫ r∗m+1

r∗m
Aϕ(r) dr =

K

∑
j=1

M′′
m, ja j (3.34)

the matrix M′′ will have exactly the form given in equation (2.64), with nonzero elements
given by

M′′
m,m =

1
2

[
r∗m+1 − rm
rm+1 − rm

(
2rm+1 − rm − r∗m+1

)
+

r∗m − rm
rm − rm−1

(
r∗m + rm − 2rm−1

)]

M′′
m,m+1 =

1
2
·
(
r∗m+1 − rm

)2
rm+1 − rm

M′′
m+1,m =

1
2
·
(
r∗m − rm

)2
rm − rm−1

(3.35)

3.1.5 Matrix equation and terminal currents

Integrating the boundary conditions over each of the intervals delimited by r∗m yields equa-
tions that may be combined in matrix form to solve for the unknown am, which appear in
vector a in the matrix equation Ma = b. The matrix M can be built from the previously
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defined matrices Mn and M′′ as follows:

Mm, j =


∞
∑
n=1

RnMn
m, j rm is in a gap

1
∆σcoil

∞
∑
n=1

RnMn
m, j + iωM′′

m, j rm is in a winding
(3.36)

The right hand side b is determined from equation (3.31), and its nonzero elements are
given by:

bm,p =
1
2π

ln
( r∗m+1

r∗m

)
(3.37)

if p = 0 and rm falls on the primary winding, or if p = 1 and rm falls on the secondary winding.
Solving the matrix equations determines am, which in turn determine the magnetic vec-

tor potential A. The magnetic flux intensity B may now be obtained everywhere via equa-
tion (3.4).

To determine the terminal currents, the surface current density KS(r) is integrated across
each of the two windings. This can be done by taking advantage of the established matrices
by defining the two-port sensor matrix as a product of matrices

Y = Fa (3.38)

where a is the just calculated set of collocation point vector potential values. The required
form for F is

Fp, j = ∑
m

∞
∑
n=1

RnMn
m, j (3.39)

with the understanding that the same constraints on the values of m included in the summa-
tion hold as for equation (3.37) above.

This concludes the derivation of the formulas necessary to implement the collocation point
method of modeling a magnetometer with circular geometry.

3.2 Dielectrometer

This section presents the model of the rotationally symmetric dielectrometer. Although most
of the research in this project is focused on magnetic sensors, there are reasons why it is
beneficial to consider the electroquasistatic sensor: no one has worked on this model before,
and a sensor of this geometry already exists at JENTEK, which makes it easy to test the model
experimentally, with the results presented in Section 3.3.

Although the principle of duality provides many parallels between the magnetoquasistatic
and electroquasistatic regimes, there is one fundamental difference: there is no equivalent
to magnetic diffusion, i.e. the electrostatic potential Φ obeys Laplace’s equation. From the
point of view of the model, this means that for each spatial mode the decay constant in the
z-direction is purely real and equal to the wavenumber k, or β in cylindrical coordinates. It is
thus independent of the excitation frequency ω.

In practical terms the lack of the equivalent of magnetic diffusion, already discussed in
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Figure 3-2: Definition of geometry parameters of circular dielectrometer.

Section 2.2, makes dielectric measurements much harder to perform for the following reasons:

1. In the absence of conductivity in the materials, the sensor transadmittance is purely
imaginary (capacitive), and therefore there is enough information to determine only a
single unknown quantity. Since in practice the sensor lift-off, which is the thickness of
the air gap between the sensor electrodes and the material, is almost always unknown,
due to surface roughness, sensor electrode thickness, etc., in order to measure even
a single unknown material property, data from two sensors with different depths of
sensitivity must be combined. Conductivity in the material does not improve matters
significantly either, since the extra information present in the phase signal is used up
by the extra unknown property, the conductivity. It is usually not possible to assume
that this conductivity is known, because in nominally insulating materials, on which
these dielectric measurements are performed, the conductivity is a very strong function
of temperature, relative humidity, and the presence of contaminants.

2. Since the depth of penetration is independent of frequency,∗ it is not possible to obtain
extra information by operating the same sensor at two or more frequencies.

As a consequence, unless some questionable assumptions are made, two or more sensors
need to be used simultaneously, if a meaningful measurement is to be performed.

3.2.1 Sensor geometry

A top view of the sensor considered in this section is shown in Figure 3-5. A cross section
of the sensor is shown in Figure 3-2, which also defines the geometrical parameters. In the
analysis it is assumed that everywhere for r ≥ b the potential at z = 0 is forced to zero by
the presence of a ground plane. The sensing electrode is formed as a cut-out from this ground
plane, with as small a gap as practically possible. It is kept at ground potential via a circuit
like the one shown in Figure 2-3. The other side of the sensor substrate is also kept at ground
via an electrode over the entire area of the sensor.

The value of the electrostatic potential is known for 0 ≤ r ≤ a, where it is equal to the
driving voltage, and for r ≥ b, where it is zero. In the gap, it is determined via a collocation
point method. An example of a potential function for a sensor in air is shown in Figure 3-3.

∗This is actually strictly true only within a single homogeneous layer, which is the most important case anyway.
But in a two-layer structure, a slightly conducting thin layer close to the sensor may let the electric field penetrate
and reach to the next layer at high frequencies, while completely shielding the field at low frequencies. At least in
theory, in such cases it is possible to obtain extra information by operating at multiple frequencies.
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✻Φ(r)
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a b r

Figure 3-3: Normalized calculated potential at the electrode surface for the circular dielec-
trometer in air. In this case a = 0.5 mm, b = 1.5 mm, and the substrate thickness is
h = 0.127 mm.

3.2.2 Laplace’s equation

Due to symmetry, the potential is independent of ϕ, i.e. Φ = Φ(r, z). Laplace’s equation
assumes the following form:

∇2Φ =
1
r

∂
∂r

(
r

∂
∂r

Φ

)
+

∂2

∂z2
Φ = 0 (3.40)

The relevant solution of this differential equation is:

Φ(r, z) = J0(βr)
(
c1e−βz + c2e+βz

)
(3.41)

since the Bessel function Y0 is infinite at r = 0. For this solution the electric field is given by:

E = −∇Φ = βJ1(βr)
(
c1e−βz + c2e+βz

)
r̂+ βJ0(βr)

(
c1e−βz − c2e+βz

)
ẑ (3.42)

Because of equation (3.41), the Bessel series to use in this case is based on J0:

f (x) =
∞
∑
n=1

AnJ0
(αn

R
x
)

0 < x < R (3.43)

where αn here are the positive real of J0. The zeros are numbered from one, i.e. α1 = 2.405.
Correspondingly, An and Qn are given by

An =
1
Qn

∫ R

0
x f (x)J0

(αn

R
x
)
dx (3.44)

Qn =
∫ R

0
x J20

(αn

R
x
)
dx =

R2

2
J21 (αn) (3.45)

As in the magnetometer case, the radius R is the outer limit of the interval over which
the Bessel series expansion is applied. It is chosen to be several times greater than the outer
radius of the sensor, in order to make the effect of any phantom electric fields resulting from
the summation of the series terms outside of this radius negligible.
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Figure 3-4: Positions of 16 collocation points. The points are concentrated near the electrode
edges, where the potential is changing most rapidly. The concentration is skewed toward the
driven electrode.

3.2.3 Collocation points

In the sensor gap the electrostatic potential is approximated by an interpolation of its value
between a set of K+ 2 collocation points, rm. The first and last ones are at the electrode edges,
and inbetween the points are concentrated near the edges, where the potential is changing
the most rapidly as shown in Figure 3-3. The collocation points are more heavily concentrated
near the driven electrode, according to the following formula:

rm = a+
b− a
2

{
1− cos

(
mπ

K+ 1

)
+ 0.15

[
cos

(
2mπ

K+ 1

)
− 1

]}
m = 0, 1, 2, . . . ,K+ 1 (3.46)

A bit of the second harmonic is added to the traditionally used cosinusoidal distribution, in
order to skew the points toward the driven electrode. Figure 3-4 shows the resulting positions
of the collocation points. The integration intervals, delimited by r∗m, are positioned half way
between the collocation points, except at the two ends:

r∗m =


r0 m = 0
rK+1 m = K

rm+1 + rm
2

m = 1, 2, . . . ,K − 1

(3.47)

As before, a suitable interpolation function must be chosen to express Φ as a function of its
values at the collocation points. Integrals of the form

∫
xp J0(x) dx have closed form solutions

when p is an odd number. For example:∫
xJ0(x) dx = xJ1(x) (3.48a)∫
x3 J0(x) dx = x3 J1(x)− 2x2 J2(x) (3.48b)
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An appropriate interpolation function therefore is

y = c1 + c2x2 (3.49)

which results in the following interpolation function y(x) in the interval between x1 and x2:

y =
y1(x22 − x2) + y2(x2 − x21)

x22 − x21
(3.50)

Using equation (3.50), the Bessel series coefficients in the expansion of the potential Φ

over the period 0 ≤ r ≤ R are given by:

Φn =
1
Qn

[∫ a

0
rJ0(βnr) dr+

K

∑
m=0

∫ rm+1

rm
rJ0(βnr)

vm(r2m+1 − r2) + vm+1(r2 − r2m)
r2m+1 − r2m

dr

]
(3.51)

where the coefficients Qn are defined in equation (3.45) and βn = αn/R. The first term in
equation (3.51) results from integration over the driven electrode, where the potential is forced
to the driving voltage and may be set to unity for the computation of the transcapacitance.
The potential is zero for r ≥ b and therefore this interval is not included. Carrying out the
integration yields

ΦnQnβ
2
n = βnaJ1(βna) + 2

K

∑
m=0

vm − vm+1

r2m+1 − r2m

[
r2m+1 J2(βnrm+1)− r2mJ2(βnrm)

]
+ βn

K

∑
m=0

[
vm+1rm+1 J1(βnrm+1) − vmrmJ1(βnrm)

] (3.52)

The terms in the second summation of equation (3.52) cancel out on a term by term basis,
except for the two end terms multiplying v0 and vK+1. The latter is at rK+1 = b, where the
potential is zero due to the ground, and can be ignored. The first one contributes a term equal
to −βnaJ1(βna), which exactly cancels the leading term in equation (3.52), since v0 = 1. This
results in a much simpler expression:

Φn =
4

α2
nJ21 (αn)

K

∑
m=0

vm − vm+1

r2m+1 − r2m

[
r2m+1 J2(βnrm+1)− r2mJ2(βnrm)

]
(3.53)

which can be rewritten as

Φn =
4

α2
n J21 (αn)

{
r21 J2(βnr1) − r20 J2(βnr0)

r21 − r20

+
K

∑
m=1

vm

[
r2m+1 J2(βnrm+1) − r2mJ2(βnrm)

r2m+1 − r2m
− r2mJ2(βnrm) − r2m−1 J2(βnrm−1)

r2m − r2m−1

]}
(3.54)

Note than in equation (3.54) the index of the summation starts at m = 1. The first term has
been written out separately, because v0 = 1 is known, and its coefficient will contribute to the
right hand side of the matrix equation.
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3.2.4 Surface capacitance density and boundary conditions

All equations derived in Section 2.2.5 directly apply to cylindrical coordinates. The constant
term C∗

0 is not needed in this case.
In cylindrical coordinates the σ∗

S (r) = 0 constraint of equation (2.103) takes the following
form: ∫ r∗m+1

r∗m
σ∗

S (r)2πr dr =
∞
∑
n=1

∫ r∗m+1

r∗m
C∗
nΦnβn J0(βnr)2πr dr

= 2π
∞
∑
n=1

C∗
nΦn

[
r∗m+1 J1(βnr

∗
m+1) − r∗mJ1(βnr∗m)

]
=

∞
∑
n=1

C∗
n

K

∑
j=0

Mn
m, jv j = 0

(3.55)

After substituting equation (3.54) into equation (3.55), the elements of Mn are determined
to be:

Mn
m, j =

8π
α2
n J21 (αn)

[
r∗m+1 J1(βnr

∗
m+1) − r∗mJ1(βnr∗m)

]
×

×
[ r2j+1 J2(βnr j+1)− r2j J2(βnr j)

r2j+1 − r2j
−
r2j J2(βnr j) − r2j−1 J2(βnr j−1)

r2j − r2j−1

] (3.56)

Similarly, the right hand side vector b of the matrix equation is given by

b =
∞
∑
n=1

C∗
nb
n (3.57)

where the elements of bn are

bnm = − 8π
α2
n J21 (αn)

[
r∗m+1 J1(βnr

∗
m+1) − r∗mJ1(βnr∗m)

] r21 J2(βnr1) − r20 J2(βnr0)
r21 − r20

(3.58)

Solving the matrix equation results in full knowledge of the electrostatic potential Φ(r)
at the electrode surface. Figure 3-3 shows this function for a dielectric sensor in air, using
straight lines to interpolate between its values at the collocation points.

3.2.5 Calculating transcapacitance

In analogy to Section 2.2.8, the transcapacitance is obtained by integrating σ∗
S over the elec-

trode area:

CT = −
∞
∑
n=1

∫ a2

a1
C∗
nΦnβn J0(βnr)θr dr

= −θ
∞
∑
n=1

C∗
nΦn

[
a2 J1(βna2)− a1 J1(βna1)

] (3.59)

where the electrode extends from a1 to a2 radially and has an arc angle of θ, which for practical
sensors must be less than 2π . In Figure 3-5 both sensors have θ = π , i.e. 180◦.

In order to express the transcapacitance CT in terms of the potential values v calculated
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Driven

Sensing

Ground

Driven

Ground

Sensing

Figure 3-5: Layout of two circular dielectric sensors with different depth of sensitivity. The
depth of sensitivity is determined by the position of the sensing electrode. Ignoring the effect
of the narrow gap between the virtually grounded sensing electrode and the ground electrode,
the electric field is identical for both sensors.

in the last step, equation (3.54) is substituted into equation (3.59), yielding

CT = −4θ
∞
∑
n=1

C∗
n

α2
n J21 (αn)

[
a2 J1(βna2) − a1 J1(βna1)

]{ r21 J2(βnr1)− r20 J2(βnr0)
r21 − r20

+
K

∑
m=1

vm

[
r2m+1 J2(βnrm+1) − r2mJ2(βnrm)

r2m+1 − r2m
− r2mJ2(βnrm) − r2m−1 J2(βnrm−1)

r2m − r2m−1

]}
(3.60)

The method described in this section is used to generate the measurement grid shown in
the next section.

3.3 Experimental verification of cylindrical coordinate model

This section describes an experiment designed to test the cylindrical geometry methods in
this chapter in general, and the dielectric case in particular. The experiment entails mea-
surements with a pair of circular dielectrometers with different depths of sensitivity, shown
in Figure 3-5.

At the frequency of operation, 15.8 kHz, all materials used in the experiment can be
treated as perfect insulators, i.e. their values of the permittivity ε∗ are purely real. This
means that the sensor transcapacitance is also purely real, and no useful instrument phase
data are available. This frequency is chosen primarily as a matter of convenience for use with
the standard test instruments at JENTEK. There is no loss of generality by working only with
real ε, because working with complex ε∗ results in no changes to the model.

In this experiment two unknown quantities are measured simultaneously, by combining
the magnitude of the signal from the two sensors. The two unknown quantities are the permit-
tivity of a dielectric plate positioned above the sensors, and the lift-off, defined as the distance
between the bottom surface of the plate and the sensor electrode surface. The thickness of
the plate is known, 1.58 mm, and is included in the model used to generate the measurement
grid. The entire sensor assembly is contained in a metal chamber, whose cover acts as the
ground plane, positioned several centimeters above the sensor and the dielectric plate.
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Parameter Sensor 1 Sensor 2
Driven electrode outer radius a 1.75 mm
Ground plane inner radius b 4.5 mm
Sensing electrode inner radius a1 4.75 mm 9.1875 mm
Sensing electrode outer radius a2 5.50 mm 10.625 mm
Sensing electrode segment angle θ 180◦
Substrate thickness h 0.254 mm
Substrate relative permittivity εS 2.1

Table 3.1: Geometric and material parameters of the sensors in Figure 3-5.

The reason for choosing a dielectric sensor with a magnitude/magnitude grid∗ to test the
models is that this configuration is most sensitive to the accuracy of the model, and in partic-
ular to the correct treatment of the differences between cylindrical and Cartesian geometry.
To understand why this is so, consider the alternatives:

1. For a magnetic sensor the test material would have to be metal, where the conductivity
is the dominant material property. Using insulating ferromagnetic materials, such as
ferrites, could be an alternative, but these usually have values of the magnetic perme-
ability that are so high as to be essentially infinite. In other words, it is very difficult
to differentiate between insulating ferrites of relative permeability of, say, 500 vs. 2000.
When using metal, signal phase information has to be considered, which means that
in order to have only two degrees of freedom, a single sensor would have to be used.
The reason why the dielectric magnitude/magnitude measurement is more sensitive to
the correctness of the model is that, since the only difference between the two dielec-
tric magnitude signals stems from the position of the sensing electrode, this difference
is extremely sensitive to correct modeling of the sensor geometry, while both magnetic
measurement quantities would be affected similarly by an error in the model.

2. Another possibility is to use a single dielectric sensor with a material with non-negligible
conductivity. However, as with the magnetic sensor, incorrect modeling of the sensor ge-
ometry would tend to affect the two measured quantities similarly, while the difference
between two magnitude signals is based entirely on geometrical considerations.

The geometric parameters of the sensors in Figure 3-5 are listed in Table 3.1. Converting
the raw sensor magnitude data to estimated parameter data is done with the help of a two
dimensional measurement grid. Measurement grids are described in Section 1.4.1. The grid
used here is shown in Figure 3-6. A way to understand of the grid qualitatively is to follow
two constant lift-off lines, for two different values of the lift-off. When the lift-off is low, the
average slope of the line is low, because the signal of the first sensor increases much faster
than the second one, since it is closer to the driven electrode. On the other hand, at higher lift-
off values the lines become almost vertical, since the dielectric plate is too far from the first
sensor to affect its response significantly, while some of the electric field lines that terminate
on the second sensor electrode still pass through the plate.

A curious aspect of the grid in Figure 3-6 is that at the highest lift-off values the sensors’
magnitudes actually decrease with increasing permittivity, and as a consequence in the figure
the ε = 1 point on the grid is not at the bottom left corner. This happens because while the

∗The concept of magnitude/magnitude grids was developed by Dr. N. J. Goldfine and Dr. A. Washabaugh [54].
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Figure 3-6: Permittivity/lift-off measurement grid for the pair of dielectric sensors in Fig-
ure 3-5. The thickness of the dielectric plate is fixed at 1.58 mm (1/16′′). The relative permit-
tivity range of the grid is from 1 to 10, and the lift-off range is 0.01 mm to 10 mm, both on a
logarithmic scale.

plate is too far from the sensors for any electric field lines that terminate on the sensing
electrodes to pass through it, it can still affect the response by redirecting some of the field
lines that would otherwise have ended on the electrodes to the grounded back plane, which
is the sensor enclosure cover in this setup. This effect would not have been modeled correctly
if the back plane had not been considered, which is how the models used to be formulated
by others [2, 3]. For further discussion on the effect of the back plane to the collocation point
models, refer to Section 2.2.

The measurements are made with two dielectric sheets of equal thickness, 1.58 mm, made
of different materials. The first one is made of polycarbonate (Lexan), with a dielectric con-
stant of 3.2. The second one is made of material used in printed circuit boards, with a higher
dielectric constant, apparently near 4.8. These two dielectric plates are suspended above the
sensors with the aid of spacers at the sides, at lift-offs ranging from intimate contact, which
is a few hundredths of a millimeter due to surface roughness, to about three millimeters.

The calibration method used for this set of measurements is two-point reference calibra-
tion. For a discussion of the available calibration methods and the circumstances that favor
one versus the others, refer to Appendix D. One of the reference points is the air point, ε = 1.
The other reference point is taken with a polycarbonate plate, whose permittivity is known
and equal to 3.2, with an empirically determined value for the reference lift-off, 0.02 mm,
which accounts for surface roughness and the nonzero electrode thickness, not otherwise in-
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Figure 3-7: Results of measurements with the circular dielectric sensors. Two sets of measure-
ments are shown with materials of different permittivity, taken at a variety of lift-off positions.
Each set follows lines of constant permittivity on the measurement grid.

Data set Permittivity Lift-off [mm] Data set Permittivity Lift-off [mm]
1 3.20 0.019 11 4.76 0.029
2 3.22 0.070 12 4.83 0.100
3 3.18 0.135 13 4.73 0.139
4 3.15 0.299 14 4.90 0.213
5 3.14 0.458 15 4.84 0.325
6 3.30 1.028 16 4.68 0.497
7 3.46 1.528 17 4.82 0.984
8 3.49 1.845 18 4.48 1.662
9 3.57 1.979 19 4.53 1.865
10 3.60 2.877 20 3.68 2.641

Table 3.2: Results of measurements with the circular dielectric sensors, shown in Figure 3-7.
Data sets 1–10 are taken with the polycarbonate plate, with nominal permittivity of 3.2. Data
sets 11–20 are taken with the printed circuit board material.
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corporated in the model.∗ For this measurement it is not practical to use one-point air calibra-
tion, because with this sensor geometry the parasitic coupling to the sensing electrode leads
cannot be neglected. Still, an attempt is made to remain true to the principle of model-based
sensor design, where calibration parameters have a valid physical interpretation, by keeping
the air point as one of the reference points.

The results of the measurements are listed in Table 3.2 and plotted on the measurement
grid in Figure 3-7. The two groups of ten measurement sets correspond to the two different
materials. It can be seen right away in the table that the task of independently measuring per-
mittivity and lift-off has succeeded. The measured permittivity is decoupled from the varying
lift-off. The accuracy of the measurement decreases significantly at high lift-off values, above
approximately 1 mm. This is understandable, since at these separations very few of the elec-
tric field lines pass through the material. This can be visualized graphically by noting that
the high lift-off points fall on areas of the grid in Figure 3-7 where the grid lines are very
dense, which means that small variations of the sensor response result in large variations of
the estimated properties.

It can be further observed in Figure 3-7 that the two data sets follow two separate lines of
constant permittivity, closely matching the curvature of these lines. This, more than anything
else, validates the correctness of the model, since it is very unlikely that a correct relationship
that is so highly nonlinear could be accidental.

3.4 Summary of Chapter 3

The semi-analytical collocation point models have been successfully applied to magnetic and
dielectric sensors with cylindrical geometry in Sections 3.1 and 3.2 respectively. The depen-
dence of the electromagnetic fields on the z-coordinate exactly parallels the Cartesian case,
while the periodic sinusoidal dependence on the x-coordinate is transformed to Bessel func-
tions of the r-coordinate in cylindrical geometry. This requires the use of Fourier-Bessel series.
Although there is no periodicity in this geometry, the basic principles of the periodic sensors
can still be applied by choosing a domain for the Bessel series that is much larger than the
characteristic sensor dimensions.

The validity of the newly developed methods has been confirmed for the capacitive sensor
by an experiment, described in Section 3.3, designed to be particularly sensitive to the correct
treatment of the sensor geometry.

The new models make it possible to design new families of model-based sensors for a new
range of applications. They also provide the basis for the extension of the distributed current
drive models, developed in Chapter 4, to cylindrical geometry, adopted for the design of the
prototype giant magnetoresistive magnetometer described in Chapter 5.

∗Lesieutre et al. present a method of incorporating electrode thickness into the semi-analytical models in [37].
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Chapter 4

Distributed Current Drive Sensors

In magnetometers where the primary windings are driven in a way that excites a magnetic
field with a fundamental spatial wavelength much greater than the distance between neigh-
boring windings, the numerical techniques used to calculate the sensor response are funda-
mentally different. If the assumption is made that the physical dimensions of the conductors
are small with respect to the other relevant length parameters, it becomes possible to analyze
each Fourier mode independently, which significantly simplifies the computations, and elim-
inates the need for iterative techniques or for solving large sets of simultaneous equations.
This is a consequence of the fact that with this assumption the current excitation is indepen-
dent of the resulting magnetic fields, and the constituent Fourier modes are decoupled from
each other. It is thus possible to use fast Fourier transforms and related methods to arrive at
the magnetic field distribution. These principles are presented in more detail, and with some
specific examples, in the rest of this chapter.

Note that these methods may also be applied to the MWM in cases where it is acceptable
to assume a current distribution within the windings determined a priori. Suitable candi-
dates are: low frequency operation, where the current is uniform across each winding; high
frequency operation, where the current is concentrated at the winding edges and may be rep-
resented by spatial impulse functions; and cases where the current distribution effects are
negligible and can be absorbed in the calibration step.

Three types of sensors are modeled in this chapter:

1. Infinite periodic sensor with a distributed current drive. The simulation results are
shown in Section 4.4. This is the simplest case to consider.

2. Rectangular (Cartesian) sensor with a finite width. The finite width of the sensor must
be included in the model. Discussed in Section 4.5.

3. Circularly symmetric sensor with a distributed current drive. The methods developed
for the other two sensors are combined with some of the ideas from Section 3.1, resulting
in the model presented in Sections 4.8 and 4.9. This is the geometry of choice for the
giant magnetoresistive sensor in Chapter 5.

Fourier methods are used to compute the sensor response to a material structure that
consists of a stack of layers with homogeneous properties. There is no property variation in a
direction parallel to the plane of the sensor.

81
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Figure 4-1: Comparison between distributed and concentrated current drives. (a) Two pos-
sible current profiles exciting a fundamental spatial mode of similar wavelength. (b) Corre-
sponding spatial spectra.

4.1 Why use a distributed current drive

The concept of a distributed drive was first proposed by Prof. James R. Melcher [4] and refined
by Dr. N. J. Goldfine et al. [32, 34, 35]. It is possible to excite a spatial mode of the same fun-
damental wavelength by using a single current loop of similar dimensions, instead of having
several windings that follow a sinusoidal envelope function, which is the case considered in
this chapter. Such single-loop implementation would be much simpler than the proposed dis-
tributed current drive. Figure 4-1 illustrates why the distributed drive current configuration
is to be preferred, by comparing the spatial spectra of the two alternative current excitation
schemes.

The applied surface current drive for both cases is shown in Figure 4-1 (a). The discrete na-
ture of the sinusoidal current drive is ignored for the sake of this discussion. If the conductor
spacing h is significantly smaller than the sensor width L, this simplification is justified. The
single loop is represented by a pair of Lorentzian pulse functions, defined by equation (4.20)
with a = L/100. Figure 4-1 (b) shows the corresponding spatial spectra.

In the case of the sinusoidal drive the magnitude of the transform falls off quickly for wave-
numbers greater than the dominant mode, while the spectrum of the single loop shows sub-
stantial energy at wavenumbers much greater than the fundamental. In practice, this means
that in the former case the energy is concentrated in the modes that penetrate furthest into
the material, which is the desirable characteristic of distributed current drive designs, while
in the latter case the sensitivity to material properties away from the surface is substantially
reduced.

4.2 Definitions

The following definition for the exponential Fourier transform is used in the rest of this chap-
ter:

f (x) =
1
2π

∫ ∞

−∞
F(q)eiqx dq (4.1a)

F(q) =
∫ ∞

−∞
f (x)e−iqx dx (4.1b)

Given these definitions, the operation of convolution, denoted by the symbol ⊗, is defined
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as

f (x) ⊗ g(x) =
∫ ∞

−∞
f (x′)g(x− x′) dx′ (4.2a)

F(q) ⊗ G(q) =
1
2π

∫ ∞

−∞
F(q′)G(q− q′) dq′ (4.2b)

Note the factor of 1/(2π), needed when working in the q-domain. With these definitions,
multiplication in one domain corresponds to convolution in the other, if the Fourier transform
definition in equation (4.1) is used.

In many cases it is more convenient to work with sine transforms, defined as

f (x) =
2
π

∫ ∞

0
FS(q) sin(qx) dq (4.3a)

FS(q) =
∫ ∞

0
f (x) sin(qx) dx (4.3b)

where the assumption is made that both f (x) and FS(q) are odd functions. The sine transform
of an odd function f (x) can be obtained from its exponential Fourier transform as

FS(q) =
i
2
F(q) (4.4)

In this chapter plots of sine transforms are only shown with positive values of q, because
they are odd functions. If a function can be represented as a summation of sinusoids as
follows:

f (x) =
∞
∑
n=1

An sin(knx) (4.5)

though not necessarily as a Fourier series, which requires the wavenumbers kn to form a
harmonic sequence, then its continuous sine transform is

FS(q) =
π

2

∞
∑
n=1

Anu0(q− kn) (4.6)

where u0(x) is the unit impulse function, sometimes denoted as δ(x).
The sinc function, which appears in many results in this chapter, is defined as

sinc(x) ≡

sin(x)
x

x 
= 0

1 x = 0
(4.7)

Appendix A lists most of the symbols and acronyms and their definitions.

4.3 Closed form solutions for the magnetic field

In this section a simple case is considered, with only one infinitely thick layer on one side of
the windings, and air, or some other insulating nonmagnetizable material, on the other, as
shown in Figure 4-2.
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Figure 4-2: Geometry and current drive of the sensor analyzed in Section 4.3. The current
drive is implemented as a sequence of conductors oriented in the y-direction, each carrying a
current with magnitude determined by a sinusoidal envelope function, as shown in the lower
plot. Each conductor is assumed to be infinitely thin, so that the surface current density Ky
consists of a series of spatial impulse functions. The structure is assumed to repeat periodically
to infinity in the positive and negative x-direction, and to be of infinite extent in the y-direction.
The material below the electrodes is air, and above is a material of a given conductivity and
magnetic permeability, extending to infinity in the positive z-direction.

If the drive winding pattern is repeated infinitely many times, i.e. sufficiently many on
either side of the point of interest so as to appear to the local field as infinite, then the drive
current and vector potential may be represented by Fourier series, with each mode decoupled
from the rest.

The surface current density, shown in Figure 4-2, can be written as

K(x) = ID
∞
∑

n=−∞
u0(x− nh) sin

(
2πnh
L

)
= ID sin

(
2πx
L

) ∞
∑

n=−∞
u0(x− nh) (4.8)

where L is the spatial period, and h is the separation between adjacent windings. Figure 4-2,
as well as all other figures in this chapter, use h = L/16 as the winding spacing. For reasons
that will become clear later in this chapter, it is advantageous to design magnetometers with
integral values of L/h, preferably a power of two.
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Figure 4-3: Sine transform of the current distribution of the sensor, given by equation (4.10).
It is plotted for positive values of q only, because all sine transforms are odd functions.

The Fourier transform of equation (4.8) is

K(q) = ID
2π
2i

[
u0

(
q− 2π

L

)
− u0

(
q+

2π
L

)]
⊗
[
2π
h

∞
∑

n=−∞
u0

(
q− 2πn

h

)]

=
ID
h
· 2π
2i

∞
∑

n=−∞

{
u0

(
q− 2π

[
n
h

+
1
L

])
− u0

(
q− 2π

[
n
h
− 1
L

])} (4.9)

where the symbol ⊗ is used to denote convolution. The corresponding sine transform

KS(q) =
ID
h
· π

2

∞
∑

n=−∞

{
u0

(
q− 2π

[
n
h

+
1
L

])
− u0

(
q− 2π

[
n
h
− 1
L

])}
(4.10)

obtained from equation (4.9) via equation (4.4), is more useful, because it represents the cur-
rent distribution as a summation of impulse functions in reciprocal “sine” space, and therefore
directly gives the coefficient of every constituent sinusoidal mode. The sine transform function
in equation (4.10) is shown in Figure 4-3.

The next step in computing the magnetic fields that result from this current excitation is
to calculate the contribution of each constitutive spatial Fourier mode. Let the current density
of a mode with wavenumber q = k be

Ky(x) = K0 sin(kx) (4.11)

The solutions of the magnetic diffusion equation, given in equation (2.13), also apply in
this geometry. The solutions above and below the sensor are of the form:

Ay(x, z) =

{
Aa sin(kx)e−γz z ≥ 0
Ab sin(kx)ekz z ≤ 0

(4.12)

with γ defined in equation (2.14). In terms of the two unknown coefficients Aa and Ab, the
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magnetic field intensity is

H(x, z) =


Aa

µ0µr

[
γ sin(kx)x̂+ k cos(kx)ẑ

]
e−γz z > 0

Ab

µ0

[−k sin(kx)x̂+ k cos(kx)ẑ
]
ekz z < 0

(4.13)

where µr = µ/µ0 is the relative permeability of the material above the windings.
The boundary conditions at the surface z = 0 require that

Hx(x, z) = Hx(x, z = 0+) − Hx(x, z = 0−) = Ky(x) (4.14a)

µrHz(x, z = 0+) = Hz(x, z = 0−) (4.14b)

The constraint in equation (4.14b) is satisfied if Aa = Ab.
Substituting equations (4.11), (4.12) and (4.13) into equation (4.14) yields

Aa = Ab =
µ0µrK0
γ + kµr

(4.15)

resulting in

Ay(x, z) =


µ0µrK0
γ + kµr

sin(kx)e−γz z ≥ 0

µ0µrK0
γ + kµr

sin(kx)ekz z ≤ 0

(4.16)

The corresponding expressions for the magnetic field intensity are

H(x, z) =


K0

γ + kµr

[
γ sin(kx)x̂+ k cos(kx)ẑ

]
e−γz z > 0

K0µr

γ + kµr

[−k sin(kx)x̂+ k cos(kx)ẑ
]
ekz z < 0

(4.17)

In general, the summation of the above result over all spatial modes must be carried out
numerically. In some simple cases it is possible to derive an analytical expression. As an
example, consider the magnetic field at the origin (x = 0, z = 0) when the material under
test is air, i.e. µr = 1 and σ = 0, or δ = ∞. In this simplest possible case equation (4.17)
degenerates to

H(x = 0, z = 0) =
K0
2
ẑ (4.18)

which is independent of the wavenumber k. Summing over all modes that characterize the
current distribution in Figure 4-2 presents a problem. As can be seen in equation (4.10),
the magnitude of the impulses does not decrease with increasing wavenumber. This is a
consequence of neglecting the finite width of the current elements. Attempting to combine
equations (4.10) and (4.18) with the help of equation (4.6) yields a summation of the following
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Figure 4-4: The Lorentzian function, defined in equation (4.20), and its Fourier transform,
defined in equation (4.21). The area under f (x) is equal to 1, so that f (x) → u0(x) when a → 0.
The area under the transform is 2π f (0) = 2/a.

form:

Hz =
ID
2h

(
1+ ∑ 1−∑ 1

)
(4.19)

which does not formally converge. In order to carry out this computation it is necessary
initially to give each current element a finite width and then take the limit of the result as
this width approaches zero. Any pulse function of area unity can be used in place of the
impulse functions in equation (4.8) for this purpose, but it is most convenient to choose one
whose Fourier transform will make the summation over modes easy to carry out. For example,
a function that has a transform whose positive side is a decaying exponential works well,
because the summation becomes a pair of geometric series. This function is the Lorentzian

f (x) =
1
2π

· 2a
x2 + a2

(4.20)

and it can be used in place of u0(x). It is plotted in Figure 4-4, together with its Fourier
transform

F(q) = e−a|q| (4.21)

Using equations (4.10), (4.18) and (4.21), it is now possible to write the magnetic field at
the origin (x = 0, z = 0) as

Hz =
ID
2h

S (4.22)
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−d d0

z

x

Hz =
ID
πd
I = IDI = −ID

Figure 4-5: Magnetic field at the origin, generated by a pair of conductors positioned at a
distance d on either side.

where S is the summation over the Fourier modes and is given by

S = lim
a→0

[
e−2πa/L +

∞
∑
n=1

e−2πa(n/h+1/L) −
∞
∑
n=1

e−2πa(n/h−1/L)

]

= 1+ lim
a′→0

[(
e−a

′/L− ea
′/L
) ∞

∑
n=1

e−na
′/h

]
(letting a′ = 2πa)

= 1− 2 lim
a′→0

[
sinh(a′/L)
ea′/h − 1

]
= 1− 2 lim

a′→0

(1/L) cosh(a′/L)
(1/h)ea′/h

= 1− 2
h
L

(4.23)

The magnetic field intensity at the origin (x = 0, z = 0) is therefore

Hz =
ID
2h
S =

ID
2h

(
1− 2h

L

)
(4.24)

As a way of validating the Fourier series method used to obtain the result in equation
(4.24), it is possible to calculate the magnetic field intensity for this simple case using a direct
method. The field at the origin generated by a pair of conductors positioned at x = ±d,
extending to infinity in the y-direction, and each carrying current ID as shown in Figure 4-5,
is given by

Hz =
ID
πd

(4.25)

calculated directly from Ampère’s Law. The entire sensor must therefore generate a magnetic
field whose magnitude at the origin is

Hz =
∞
∑
n=1

ID
πnh

sin
(
2πnh
L

)
=

ID
2h

(
1− 2h

L

)
(4.26)

where use has been made of the following formula [52, eq. 1.441]:

∞
∑
n=1

sin(nπx)
n

=
π

2
(1− x) (4.27)

Equation (4.26) agrees with equation (4.24), which confirms that the Fourier transform
method developed in this section give the correct result.
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4.4 Numerical analysis

The analytical method shown above also works if the material above the sensor is magneti-
zable (µr > 1), because in this case equation (4.17) still depends on k only via the sine (or
cosine) term, which makes it possible to carry out the summation over modes in closed form.
However, if a conducting material with finite skin depth δ is present, the calculations must be
carried out numerically.

This can be done with the help of fast Fourier transform (FFT) methods. The algorithm
has the following steps:

1. Obtain the sine transform of the current excitation. For the periodic sensor this is given
by equation (4.10). For the finite width sensor this step has several substeps, as dis-
cussed in Section 4.5.

2. Discretize the spectrum. A property of the FFT algorithm is that the number of sample
points in q-space is equal to the number of points in the spatial discretization of the
magnetic field in the x-direction. This consideration should determine how many sample
points to obtain.

If the sensor wavelength L, defined in Figure 4-2, is an exact multiple of h, then all
impulse functions in Figure 4-3 fall on multiples of 2π/h in q-space. This means that
no information is lost if the discretization step is set to this value. Otherwise a much
denser discretization would be necessary to maintain the information in the spectrum.
Furthermore, since the FFT algorithm is more efficient if the number of samples is
a power of two, it is preferable for L/h also to be a power of two. For the example
considered in this chapter, L = 16h.

3. Apply a decaying exponential envelope to the discrete spectrum, to give the current ele-
ments a finite width. The decay rate should be chosen such that most of the transition
has happened by the end of the series of samples. If the exponent decays too fast, then
information is unnecessarily being lost, while if the decay is too slow, the resulting field
will not be smooth, as a result of the sudden step in the spectrum effectively introduced
at the end of the sample sequence. A plot of the resulting discretized spectrum of Fig-
ure 4-3 is shown in Figure 4-6.

4. Choose a discretization step in the z-direction. This should most likely be the same as
the one in the x-direction, determined in step 2.

5. For every value of z, obtain the spectrum of the vector potential by applying equa-
tion (4.16), without the sine term, to the excitation spectrum of step 3.

6. For every value of z, apply inverse FFT to obtain the vector potential as a function of
x and z. Standard FFT algorithms perform exponential, not sine, Fourier transforms.
As seen in equation (4.4), the sine transform of a function FS(q), defined for q > 0, can
be calculated by taking the inverse exponential Fourier transform of the odd function
whose positive side is FS(q), and multiplying the result by i/2. Therefore the discrete
sine transform can be obtained by first appending a reversed copy of the sample array
to itself, and then applying the inverse FFT algorithm to the longer sequence.∗

∗This procedure introduces a factor of two redundancy in the numerical calculation. The easiest way to take
advantage of it is to take the discrete Fourier transform of two functions simultaneously, e.g. for two different
values of z, as discussed in [81].
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Figure 4-6: Discretized spectrum of the current excitation shown in Figure 4-2, in a decaying
exponential envelope.

A contour plot of the vector potential yields the magnetic field lines, since they correspond
to lines of constant vector potential. The result of applying this algorithm to the case of the
sensor in air is shown in Figure 4-7 (a).

The magnetic fields that result when the material under test has a finite skin depth is
shown in Figure 4-7 (b). Unlike the field of Figure 4-7 (a), in this case the temporal phase
angle of the vector potential depends on z. The figure shows the real part of the calculated
response.

The best way to get the actual magnetic field intensity H is to avoid calculating the vec-
tor potential by carrying out the algorithm as outlined above, but with equation (4.17) used
in step 5 instead. The alternative way of calculating it from the vector potential introduces
unnecessary numerical imprecision into the result, because it involves taking numeric deriva-
tives.

4.5 Sensor of finite width

When the sensor is not infinitely wide, one must include the finite size as part of the analy-
sis. It is no longer possible to use a quasi∗ Fourier series representation, where the spectrum
consists of a series of impulse functions, as in Figure 4-3. The full Fourier transform of the
magnetic field distribution in this case is continuous. The discrete Fourier transform (DFT)
methods therefore require a finer discretization of the spectrum. By virtue of the discreteness
of the numerical transform methods, the functions represented by DFTs in both domains are
always periodic, but this periodicity may be ignored if the period is much larger than the in-
terval of interest. The spacing between samples in reciprocal space in this case is determined
as the inverse of the minimum distance that two sensors must be physically separated in

∗The word “quasi” used here is meant to convey that the spectrum shown in Figure 4-3 does not necessarily
form a harmonic sequence, and therefore is not a Fourier Series, although it is similar to it in that it represents
the coefficients of the sinusoidal modes that constitute the original function. On the other hand, a practical
implementation of the sensor requires that L be an exact multiple of h, which does in fact make the spectrum a
Fourier series, with most coefficients equal to zero.
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Figure 4-7: Numerically calculated magnetic field of the periodic sensor in air (a), and when
the material above it is metal with skin depth δ = 0.1L (b).
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order to influence each other only negligibly, which is usually much greater than the spatial
region of interest. This stands in contrast to the periodic case considered in the previous sec-
tion, where the sample distance in reciprocal space is the inverse of the fundamental sensor
wavelength.

The numerical algorithm remains largely the same as before, with the exception of the cal-
culation of the excitation spectrum, which now must consider the finite size of the sensor. The
current distribution in this case can be obtained by multiplying the function in equation (4.8)
by the square-pulse function

f (x) =

1 |x| <
W
2

0 otherwise
(4.28)

where W is the width of the sensor. The Fourier transform of the square-pulse function is

F(q) =
sin(qW/2)

q/2
= W sinc

(
qW
2

)
(4.29)

which must be convolved with the spectrum of equation (4.9) in order to obtain the Fourier
transform of the current excitation of the finite sensor. The resulting sine transform is:

KS(q) = ID
W
4h

∞
∑

n=−∞

{
sinc

(
W
2

[
q− 2π

(
n
h

+
1
L

)])
− sinc

(
W
2

[
q− 2π

(
n
h
− 1
L

)])}
(4.30)

In practice it is easier to carry out the discretization of the current excitation after the
sine transform of the truncated sinusoid is calculated, for reasons presented in step 4 on
page 93 later in this section. The spectrum of the nondiscretized single-period surface current
density is obtained by taking the convolution of a sinusoid of period L and equation (4.29),
and converting it to a sine transform via equation (4.4):

KS(q) =
i
2
· ID 2π2i

[
u0

(
q− 2π

L

)
− u0

(
q+

2π
L

)]
⊗W sinc

(
qW
2

)

= ID
W
4

{
sinc

(
W
2

[
q− 2π

L

])
− sinc

(
W
2

[
q+

2π
L

])} (4.31)

The current envelope function for the sensor of finite width, for the case when W = L,
and its sine transform, given by equation (4.31), are shown in Figure 4-8 with the thick lines.
It can be seen in the figure that the peak wavenumber, which is a measure of the effective
fundamental wavelength, is not 2π/L, as it would be in the case of the periodic sensor. In
order to make this effective wavelength equal to the wavelength L of the current envelope,
the width W would have to be increased to 1.210L (calculated numerically). The result would
be an envelope function that includes the tail of a second period on either side, as shown in
Figure 4-8 with thin lines. This is undesirable, because if the sensor ends do not coincide with
zeros in the current excitation, the resulting sharp transition at the ends contributes to more
energy in the higher wavenumber modes, which have shallower penetration depths. This is
clearly visible in Figure 4-8 (b). This is the reason why W = L is the optimal choice. On the
other hand, extending the current excitation past the end of the period may be necessary for
other reasons, as discussed in Section 4.7.
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Figure 4-8: Current envelope function for a sensor of finite width (a), and its corresponding
sine transform (b). Two cases are shown, for the sensor width W equal to the wavelength L
(thick lines), and forW = 1.210L, making the effective sensor wavelength equal to the sinusoid
wavelength (thin lines).

When using a sensor of finite width, the first two steps in the algorithm outlined on page 89
in Section 4.4 need to be replaced by the following steps:

1. Obtain the sine transform of the current envelope function, as in Figure 4-8 (b).

2. Discretize and truncate the transform. The length of the transform sample to use in this
step is determined by the number of current segments in the sensor. For the example
used in this chapter, where W = L = 16h, the sine transform in Figure 4-8 (b) must be
truncated at q = 8(2π/L). As before, the sample density is determined by the necessary
precision.

3. Append a reversed and negated copy of the sequence to its end, in order to make the
FFT algorithm carry out the inverse sine transform.

Alternatively, the result of the first three steps may be obtained by taking the FFT of
the current profile directly, especially in cases when a closed form of the transform of the
profile function is not available.

4. Replicate the resulting sequence a number of times. The resulting sine transform is
shown in Figure 4-9. Periodicity in one domain implies discreteness in the other, and
therefore the effect of this step is to build into the data the fact that the current distri-
bution is not continuous, but rather generated by discrete current segments. Replication
is a simple operation and this is why this method is preferred to discretizing the drive
profile function first and convolving with equation (4.29) later. The number of periods
is determined by the needed level of detail in close proximity to the current segments.
The greater the number of periods, the narrower the implied effective width of the con-
ductors. For example, four periods are used in the calculation of the field distributions
shown in Figure 4-10.

5. Proceed with steps 3–6 on page 89.

It is informative to compare the spectrum in Figure 4-9 to that in Figure 4-3. One can
see that the effect of limiting the sensor to only one wavelength is to smear out the peaks
at the excitation wavenumbers, and as a consequence the magnetic field can no longer be
represented as a superposition of individual sinusoidal modes.
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Figure 4-9: Sine transform of the current excitation generated by discrete current elements.
It is computed by step 4 on page 93. The discrete nature of the transform is not explicitly
shown in the plot. Compare to the spectrum in Figure 4-3.

The magnetic field calculated in this way is shown in Figure 4-10, with the same materials
and current excitation as in Figure 4-7, but with no current elements for |x| > L/2 (see
Figure 4-2). By comparing these sets of figures, the observation may be made that they differ
little at the origin, where the sensing elements are positioned, but there is a substantial
difference toward the ends of the sensor.

4.6 Multiple homogeneous layers

The models developed so far in this chapter may be extended to apply to material structures
that consist of more than one homogeneous layer. Figure 4-11 shows a diagram of such a
layered material structure.

The thickness of the top layer in the figure is treated as infinite, which means that it is
many times larger than the real part of the characteristic decay rate 1/γ in that material,
so that the properties at the upper surface have no effect on the sensor response. In practice
there is always a layer of air, or another nonmagnetic insulating material, between the sensor
and the material. This layer, number 4 in the figure, must be included in the model, and its
thickness is known as the measurement “lift-off.”

The structure in Figure 4-11 may represent a metal coating on a metal substrate, which is
a very common situation [26]. Layer number 1 represents the substrate, layer 3 is the coating,
and layer 2 is used to model an inter-diffusion zone, whose properties are often quite different
from either the coating or the substrate.

The effect of having more than one homogeneous layer of material above the sensor en-
ters the computational method only at step 5 in the method on page 89 in Section 4.4, as a
change in equation (4.16), because the invariance of the material structure in the x- and y-
directions is maintained. The idea is similar to the method in Section 2.1.5, with the surface
reluctance density Rn relating the magnetic vector potential to the normal component of the
magnetic field intensity, as in equation (2.51). Rn is derived from the properties of the layers
in Figure 4-11, using equations (2.46) and (2.50).

In terms of Rn, for every Fourier mode n equation (4.15) becomes

Aa = Ab =
Kn
knRn

(4.32)

where Kn is the Fourier component of order n of the surface current density. This fully deter-
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Figure 4-10: Numerically calculated magnetic field of the finite-width sensor in air (a), and
when the material above it is metal with skin depth δ = 0.1L (b).



96 Chapter 4. Distributed Current Drive Sensors

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

�
�
�

�
�
�

���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������

t1 = ∞

t2

t3

t4σ4 = 0, µ4 = µ0

sensor

σ1, µ1

σ2, µ2

σ3, µ3

Figure 4-11: Material structure that consists of more than one homogeneous layer. The top-
most layer is assumed to extend to infinity. An air layer that models the sensor lift-off is in-
cluded between the sensor and the material under test. The sensor windings are represented
by � and ⊗.

mines the magnetic field, via equation (4.13).

4.7 Eliminating the net dipole moment

The finite width sensor, described in Section 4.5, has a net dipole moment in the sense that at
distances larger than the sensor wavelength the magnetic field approaches the form of a field
generated by a magnetic dipole at the origin. It can easily be seen that the net dipole moment
is not zero, because each pair of windings, comprising a current segment on either side of the
center, together with the return current path, forms a current loop of nonzero area, and the
effective magnetic moments of all these loops point in the same direction.

Certainly, close to the sensor windings, at typical measurement distances, the magnetic
field is described well by the model of the preceding sections. The reason for addressing the
net dipole moment is not to improve the results of this model.

It is important that the sensors have a winding layout which results in no net dipole
moment.∗ This is due to the following reason: At some distance away from the sensor, the
assumptions of the model no longer hold. The sensor is finite in the y-direction, which cannot
be ignored at distances comparable to the sensor length. Furthermore, the discrete Fourier
transform does have an implied periodicity, determined by the reciprocal domain sample fre-
quency, so that the finite width sensor model only holds at distances much smaller than the
distance between the sensor and its first phantom image. For example, the magnetic field
lines shown in Figure 4-10 have a phantom image period sixteen times greater than the sen-
sor width W.

These unmodeled effects in general do not affect the accuracy of a measurement, because
all practical measurement procedures include a calibration step, designed to compensate for
such imperfections of the model, which do not change with time or experimental conditions.
Calibration methods are discussed in more detail in Appendix D.

The difficulty comes from the rate at which the sensor loses sensitivity with distance. Near
the sensor surface the magnetic field decays essentially exponentially, at a rate determined

∗This issue was first discovered and addressed by Darrell E. Schlicker in connection with the standard MWM.
It led to a redesign of the MWM with two separate layers for the primary and secondary windings.
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by its spatial wavelength and the skin depth in the medium, given in equation (2.14). Far
from the sensor the fields fall off at a rate determined by the lowest order multi-pole moment
excited by the sensor. This should be a high order moment, since it is important for the sensor
to lose sensitivity quickly with distance. Otherwise its response would be slightly affected by
the presence of magnetizable and/or conducting objects in its vicinity, even if they are much
farther than the material under test. Whereas this effect may be small, even compared to
other unmodeled effects, the problem is that it can change with time, as objects near the
sensor are moved, or when the sensor is moved to inspect a new location. This means that it
cannot be eliminated via calibration, ultimately leading to lack of reproducibility.

Sometimes very small changes in the material properties must be measured, e.g. conduc-
tivity variations related to shotpeen intensity or cold work quality [18, 24]. In cases like that
the accuracy of the measurement may be substantially degraded by the presence of a net
dipole moment. It is desirable for the sensor to lose sensitivity far from its active region as
quickly as possible. This is why the goal is to create a winding pattern with no net dipole
moment.

The analysis of the sensor in the far field, i.e. at distances much greater than the sensor
dimensions, is most conveniently formulated in spherical coordinates with the use of the mag-
netic scalar potential. This is because at large distances all windings and conducting media
may be represented by a singularity at the origin, since there is no interest in the magnetic
field details near the sensor. This makes it possible to write the magnetic field intensity in the
current-free region as a gradient of a scalar potential Ψ , defined everywhere except at r = 0:

H = −∇Ψ (4.33)

The magnetic scalar potential must obey Laplace’s equation, because the divergence of the
magnetic flux density is zero: ∇2Ψ = 0. In spherical coordinates it becomes

1
r2

∂
∂r

(
r2

∂
∂r

Ψ

)
+

1
r2 sinθ

· ∂
∂θ

(
sinθ

∂
∂θ

Ψ

)
+

1
r2 sin2θ

· ∂2

∂ϕ2Ψ = 0 (4.34)

which, letting Ψ (r,θ,ϕ) = R(r)Y(θ,ϕ), separates into

d
dr

(
r2
d
dr
R
)
− �(� + 1)R = 0 (4.35)

and

1
sinθ

· ∂
∂θ

(
sinθ

∂
∂θ
Y
)

+
1

sin2θ
· ∂2

∂ϕ2Y + �(� + 1)Y = 0 (4.36)

The solutions of equation (4.35) are r� and r−�−1, and the solutions to equation (4.36) are [55]:

Y�m(θ,ϕ) =

√
2� + 1
4π

· (� −m)!
(� +m)!

Pm�
(
cosθ

)
e−imϕ m = −�, . . . , � (4.37)

where Pm� are the Associated Legendre functions. The series of functions Y�m are the spherical
harmonic functions. They are written out for the first several values of � in Table 4.1.

For magnetic fields the lowest order possible is the dipole moment, whose scalar magnetic
potential decays as r−2. Figure 4-12 shows the equipotential surfaces of the scalar magnetic
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� = 0 Y00 =
√

1
4π

� = 1


Y11 = −1

2

√
3
2π

sinθ eiϕ

Y10 =

√
3
4π

cosθ

� = 2



Y22 =
1
4

√
15
2π

sin2θ e2iϕ

Y21 = −1
2

√
15
2π

sinθ cosθ eiϕ

Y20 =

√
5
4π

(
3
2
cos2θ − 1

2

)

� = 3



Y33 = −1
4

√
35
4π

sin3θ e3iϕ

Y32 =
1
4

√
105
2π

sin2θ cosθ e2iϕ

Y31 = −1
4

√
21
4π

sinθ
(
5 cos2θ − 1

)
eiϕ

Y30 =

√
7
4π

(
5
2
cos3θ − 3

2
cosθ

)

� = 4



Y44 =
3
16

√
35
2π

sin4θ e4iϕ

Y43 = −3
4

√
35
4π

sin3θ cosθ e3iϕ

Y42 =
3
8

√
5
2π

sin2θ
(
7 cos2θ − 1

)
e2iϕ

Y41 = −3
4

√
5
4π

sinθ
(
7 cos3θ − 3 cosθ

)
eiϕ

Y40 =
√

9
4π

(
35
8
cos4θ − 30

8
cos2θ +

3
8

)
Table 4.1: Spherical harmonic functions defined in equation (4.37).

potential for the three lowest order rotationally symmetric multipole modes. The requirement
for rotational symmetry is due to the fact that the sensor windings are confined to the x-y
plane, and applies both to the rectangular sensor and to the circular sensor of Section 4.8. Of
the spherical harmonic functions Y�m in Table 4.1, only those with m = 0 have this symmetry,
i.e. are independent of ϕ. The “quadrupole” mode, � = 2, cannot be excited by these magnetic
sensors, since it is even with respect to z, whereas flipping the sensor upside down reverses
the current direction in all windings, changing the sense of all magnetic fields.

If the dipole moment is eliminated, the next dominant mode is the “octupole,” or � = 3
moment, whose magnetic field lines are shown in Figure 4-13. The potential of this mode has
a r−4 dependence, which means that the magnetic field intensity falls off as r−5. In practice
this is fast enough that canceling out the dipole moment is all that is required to eliminate
unwanted long range sensitivity.

Instead of driving each current segment of the sensor independently, it is much easier to
set the correct current profile by changing the number of windings in each segment. As a
consequence, the relative values of the segment current must be ratios of integer numbers.
Since the sensor length is constant, the dipole moment of each loop made up of windings at
x = ± jh is proportional to the number of windings wj and to j:

p ∝ jwj (4.38)
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Figure 4-12: Equipotential surfaces, Ψ (r,θ,ϕ) = Ψ0, of the magnetic scalar potential for multi-
pole moments with no ϕ-dependence. These three cases correspond to the spherical harmonic
functions Y10 (a), Y20 (b), and Y30 (c) respectively. If the dipole (� = 1) moment is zero, then
the lowest order moment remaining for the magnetometer is � = 3, since the � = 2 moment is
not allowed, due to its symmetry.

which means that in order to cancel out the net dipole moment, these individual contributions
must sum up to zero:

N

∑
j=1

jwj = 0 (4.39)

where N is the total number of current segments in one half of the sensor.
To satisfy equation (4.39), the sensor must include a fraction of a wavelength past the

end of the single period, where the current flow is in the opposite direction (see Figure 4-2).
Since both j and wj are integers, it is impossible to satisfy equation (4.39) exactly while at
the same time strictly following the sinusoidal envelope function. A compromise is shown
in Table 4.2, which lists a winding pattern resulting in no net dipole moment. The winding
turns are also plotted in Figure 4-14. The current in the last two segments deviates from
the sinusoid. Another consideration in choosing the numbers in this table is to taper off the
current towards the ends of the sensor, in order to avoid rapid changes in the primary current
distribution, which would result in more energy in higher Fourier modes. This matter was
previously discussed in Section 4.5.

j = x/h 0 1 2 3 4 5 6 7 8 9 10 11 12
Winding turns wj 0 5 9 12 13 12 9 5 0 −5 −9 −7 −4

Table 4.2: Number of winding turns wj for the finite sensor with no net dipole moment. Neg-
ative number of turns means that the winding is wound in the opposite direction (clockwise).
Only the windings for x ≥ 0 are given, because the sensor is symmetric.
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z

Figure 4-13: Magnetic field lines for � = 3 “octupole” moment potential. The central region is
left blank, because the density of lines increases very rapidly, due to the r−5 dependence of the
magnetic field intensity.

4.8 Sensor with rotational symmetry

This section describes a circular magnetometer with a distributed current drive, applying the
ideas and methods of Chapter 3 to the sensors in this chapter.

When designing distributed current drive sensors, the reasons for preferring a circular
geometry are even more compelling. Since the sensor width is the same as, or similar to, the
spatial wavelength, the edge effects due to the finite length in the y-direction are much more
pronounced. Even worse, the total amount of current that flows in this return path is equal
to the total of all windings, making it several times higher than the winding with the highest
current. To make the edge effects negligible, it would be necessary to make the sensor width in
the y-direction perhaps a factor of ten larger than its length, defeating the purpose of having
a distributed drive in the first place, which is to create a relatively large spatial wavelength

0 

5 

9 

12 
13 

12 

9 

5 

0 

−5 

−9 −7 
−4 

Figure 4-14: Number of winding turns for the finite sensor with no net dipole moment, accord-
ing to Table 4.2. The sinusoidal envelope function is shown with a dashed line. The number of
turns do not fall exactly on the curve, since they need to be integers. The number of turns in the
last two windings on either side are tapered off in order to avoid rapid changes in the primary
current distribution, which would result in more energy in higher order Fourier modes.
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W

h

Figure 4-15: Structure of the circular magnetometer with distributed current drive. There is
a set of concentric grooves, equally spaced h apart, to hold the primary windings. The number
of turns in each winding follows a first order Bessel function envelope, according to Table 4.3.
There is no groove at r = W, since this point corresponds to a zero in the envelope function.

excitation with a small footprint. Employing a circular geometry altogether eliminates the
unmodeled edge effects.

This section discusses a sensor with this geometry and the changes needed to adapt the
modeling techniques developed so far in this chapter to cylindrical coordinates.

4.8.1 Sensor description

A circularly symmetric sensor with distributed primary current drive has been created. Its
structure is shown in Figure 4-15. The sensor substrate is made of a 0.5 inch thick polypropy-
lene plate with 3 mm wide concentric grooves used to hold the windings. The grooves are
spaced h = 1 cm apart, machined at an angle directed radially inward to keep the windings in
place at the correct radius. The two straight radial grooves are used to hold wires connecting
the windings.

The current drive follows a Bessel function envelope, J1(α1r/W), where α1 ≈ 3.832 is the
first zero of J1. There is no groove at r = W = 8 cm, because this point corresponds to the
zero in the Bessel function. Windings are present past the first zero, in order to allow for net
dipole moment cancellation, as discussed in Section 4.7. Unlike the rectangular sensor, whose
windings have a fixed length, here the dipole moment of each winding is proportional to the
square of the radius, which changes the requirement for dipole cancellation to

N

∑
j=1

j2wj = 0 (4.40)

The number of windings chosen for this sensor prototype are given in Table 4.3 and in Fig-
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j = r/h 1 2 3 4 5 6 7 8 9 10 11
Winding turns wj 5 9 11 12 11 8 4 0 −4 −4 −3

Table 4.3: Number of turns per winding wj for the circular magnetometer.

ure 4-19.
This sensor is built with a single sensing element, located in the center. Since a magne-

toresistive sensor is used, details and experimental measurement results are presented in
Chapter 5. This section focuses on the mathematical models of the sensor response, used to
generate appropriate measurement grids.

4.8.2 Sensor modeling

The surface current density of a sensor with N concentric windings is

KS(r) = ID J1
(α1

W
r
) N

∑
j=1

u0(r− jh) = ID
N

∑
j=1

u0(r− jh)J1
(α1

W
jh
)

(4.41)

where h is the radial spacing of the windings, and W is the position of the first zero of the
current distribution. This envelope function is chosen to match the solutions of the magnetic
diffusion equation in cylindrical coordinates, shown in equation (3.3). Using the definition
of the Fourier-Bessel Series from Section 3.1.1, the series coefficients of the surface current
density are

Kn =
1
Qn

∫ R

0
rKS(r)J1(βnr) dr =

2ID
R2 J20 (αn)

N

∑
j=1

J1
(α1

W
jh
)
J1(βn jh) jh (4.42)

where βn = αn/R, and the radius R, over which the series is defined, is chosen large compared
to W.

The counterpart of equations (4.12) and (4.13) of Section 4.3 in cylindrical coordinates are

Aϕ(r, z) =

{
AaJ1(βr)e−γz z ≥ 0
AbJ1(βr)eβz z ≤ 0

(4.43)

and

H(r, z) =


Aa

µ0µr

[
γJ1(βr)r̂+ βJ0(βr)ẑ

]
e−γz z > 0

Ab

µ0

[−βJ1(βr)r̂+ βJ0(βr)ẑ
]
eβz z < 0

(4.44)

Application of the boundary conditions then yields

Aa = Ab =
µ0µr ID
γ + βµr

(4.45)

exactly analogous to equation (4.15).
The method of incorporating multiple layers in the model, developed in Section 4.6, is also

directly applicable in this case. Combining the results in equations (4.44), (4.32), and (4.42),
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and summing over all Fourier-Bessel modes, yields the following result for the magnetic flux
density at the origin:

Bz(r = 0, z = 0) = ID
∞
∑
n=1

2
R2 J20 (αn)

· 1
Rn

N

∑
j=1

J1
(α1

W
jh
)
J1(βn jh) jh (4.46)

So far the ideal value of the drive current density in equation (4.41) has been used. In the
practical implementation of the sensor, the shape of the current density is achieved by adjust-
ing the number of turns in each segment of the winding, to approximate the ideal envelope
function. As a consequence, the total effective current in each segment is an integral mul-
tiple of the driving current. The approximation can be made arbitrarily close by increasing
the number of turns, but from a practical perspective a compromise must be made between
the coarseness of the quantization and the increasing inductance and parasitic capacitance of
the primary winding, as the total number of turns increases. The winding turns in Table 4.3
are the result of such a compromise. Figure 4-19 plots the actual number of turns and the
corresponding ideal envelope function for two different winding patterns.

To use the actual current density that results from the winding pattern in Table 4.3, equa-
tion (4.41) must be replaced with

KS(r) = ID
N

∑
j=1

wju0(r− jh) (4.47)

where the value of the driving current ID is not necessarily the same. As discussed in Chap-
ter 5 and Appendix D, such multiplicative factors in the magnitude of the sensor response
can be ignored in the simulations, since they are absorbed in the sensor calibration step.
Equations (4.42) and (4.46) must similarly be altered as follows:

Kn =
2ID

R2 J20 (αn)

N

∑
j=1

wjJ1(βn jh) jh (4.48)

Bz(r = 0, z = 0) = ID
∞
∑
n=1

2
R2 J20 (αn)

· 1
Rn

N

∑
j=1

wjJ1(βn jh) jh (4.49)

Equations (4.44), (4.45), and (4.48) are used to calculate the magnetic field lines of the
sensor in this section for air and metal, in analogy to the results shown in Figure 4-10. The
results are shown in Figure 4-16.

The measurement grids used in Chapter 5, shown in Figures 5-8, 5-10, 5-13, and 5-15, are
generated using a version of this method, described in Section 5.3.

One may visually confirm that the field far from the windings in Figure 4-16 (a) has no
dipole moment by comparing it to the pattern in Figure 4-13, observing that the dominant
multi-pole moment appears to be the “octupole” (� = 3) moment.

4.9 Fast Hankel transform

Methods similar to the FFT methods in Section 4.4 may be used to model sensors with rota-
tional symmetry, such as the one described in Section 4.8. The magnetic vector potential in
this case is represented as a Fourier-Bessel series, applied over the interval 0 < r ≤ R, where
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Figure 4-16: Numerically calculated magnetic field of the circular magnetometer in air (a),
and when the material above it is metal with skin depth δ = 0.2W (b), where W is the radius
where the first order Bessel function has its first zero.
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the radius R is chosen to be large compared to the relevant length scale.
Calculating the Bessel series coefficients and then summing over the spatial modes, as

done in Section 4.8, can be a very computationally intensive task. The Cartesian geometry
case took advantage of the FFT methods, which unfortunately have no direct analog for the
Bessel series.

The continuous Fourier-Bessel transform is better known as the Hankel transform. A
method of Hankel transform evaluation using FFT methods is described in [56]. There the
Hankel transform is carried out in two FFT steps. This section presents an implementation
of this Fast Hankel Transform (FHT), as an alternative to the direct method of Section 4.8.

4.9.1 Definition and derivation

The Hankel transform can be based on Bessel functions of any order. Here the relevant
transform is based on J1. It is defined as follows:

g(u) =
∫ ∞

0
f (r)J1(ur)r dr (4.50)

If the following substitutions are made:

r = r0eαx (4.51)

u = u0eαy (4.52)

f̂ (x) = r f (r) = r0eαx f
(
r0eαx

)
(4.53)

ĝ(y) = ug(u) = u0eαyg
(
u0eαy

)
(4.54)

then equation (4.50) transforms to the following correlation integral:

ĝ(y) =
∫ ∞

−∞
f̂ (x)̂(x+ y) dx (4.55)

where the kernel ̂(x) is defined as

̂(x) = αr0u0eαx (4.56)

Taking the Fourier transform, defined in equation (4.1b), of both sides of equation (4.55),
the following relationship is derived:

F
{
ĝ
}

=
∫ ∞

−∞
ĝ(y)e−iky dy =

∫ ∞

−∞
f̂ (x) dx

∫ ∞

−∞
̂(x+ y)e−iky dy

=
∫ ∞

−∞
f̂ (x)e+ikx dx

∫ ∞

−∞
̂(y′)e−iky

′
dy′ = F

{
̂
}
· 2πF−1

{
f̂
} (4.57)

where the substitution y′ = y+ x was used.
It is therefore possible to compute the Hankel transform by applying the Fourier transform

twice. It is important to realize that the Fourier transform of the kernel ̂ does not depend
on the original function f (r), and therefore needs to be computed only once for multiple Han-
kel transform evaluations. This step is also the only one which involves evaluating Bessel
functions. These features of the fast Hankel transform give it its computational advantage.
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4.9.2 Discretization

The Fourier transform steps can be carried out using fast Fourier transform methods, where
x and y assume integer values between zero and N − 1. The necessity for discrete sampling
raises several considerations:

Exponential point distribution

If the sample points are spaced evenly in the x-domain, as required by the FFT, their distri-
bution in the r-domain is exponential. This necessarily results in oversampling for low values
of r, if a minimal sampling frequency is to be maintained at the upper end of the range.

Due to the exponential distribution of the sample points, one cannot take advantage of the
impulse-train structure of the current drive, given in equation (4.41). As discussed previously
in Section 4.4 for the rectangular sensor, the sample frequency does not need to be higher
than the spatial frequency of the primary windings, which results in very fast computation.
In this case there is no particular advantage to the even spacing of the primary windings.

Furthermore, the transition from the continuous representation, where the surface cur-
rent density is given as a sum of impulse functions, to the discrete domain, is no longer
accomplished simply by using the impulse function magnitudes as the values at the sample
points. Due to the nonuniform spacing of the sample points, a finite spatial width must be
given to each winding, with many sample points falling inside it, in order to capture the mag-
nitude of the current in each segment correctly. For example, in Figure 4-17, discussed later
in this section, Gaussian pulses are used to represent the surface current density of the circu-
lar sensor in place of impulse functions. The surface current density in equation (4.47) in this
case is changed to

KS(r) = ID
N

∑
j=1

wj

∆
√
2π

e−(r− jh)2/2∆2
(4.58)

where ∆ is the width of the Gaussian pulse.

Padding with zeros

The use of a discrete Fourier transform representation automatically implies that both the
function and its transform are periodic, with a period equal to the range over which the func-
tions are sampled. It can be inferred from equation (4.55) that if f̂ and ĝ are defined at N
points, then N + N = 2N points are needed for ̂. Therefore, in order to calculate the trans-
form correctly, f̂ needs to be first padded by appending additional N zeros, and after ĝ is
calculated via the FHT, the last N points must be ignored, since they are meaningless and
represent aliasing effects.

Choosing appropriate values for α, r0, and u0

Given the spatial extent rmax, maximum spatial frequency umax, and number of points N,
chosen to be a power of 2 for computational efficiency, the parameters α, r0, and u0 need to be
determined. The point spacing,αr0eαn at its rarest point, n = N, as well as the minimum value
r0 itself, should be roughly equal to each other and to the inverse of the highest “frequency”
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Parameter Value

N 210 = 1024
α 0.00515
r0 0.0154
rmax 3.00
q0 0.946
qmax 184

Table 4.4: Fast Hankel transform normalized parameter values.

value in the reciprocal domain. This results in the following equation for α:

αeαN = 1 (4.59)

This in turn determines r0 and u0:

r0 = rmaxe−αN (4.60)

u0 = umaxe−αN (4.61)

Whether or not the resulting values of r0 and u0 are small enough to be able to represent the
discretized functions with adequate accuracy depends on the original choice of N. It is also
possible to pick r0 and u0 first, and let this determine α and N, as was done in [56].

4.9.3 Application of the fast Hankel transform to the circular
magnetometer

The first step in applying the FHT to calculate the response of the circular magnetometer is
to verify that the values of the various FHT parameters are appropriate, to ensure that the
transform represents the sensor with adequate precision, while keeping the computational
burden at a minimum.

Figure 4-17 (a) is a plot of the surface current density in equation (4.58). The FHT is
applied to obtain the transform of the surface current density, with the result shown in Fig-
ure 4-17 (b). The FHT parameters used are given in Table 4.4. This transform is similar in
structure to the spectrum shown in Figure 4-9. Here the magnitude decreases with increas-
ing q because of the nonzero width of the current pulses in the r-domain. A similar amplitude
envelope was used in the computations in Section 4.5, although not explicitly shown in Fig-
ure 4-9. In that case the exponential decay was imposed on the spectrum after it was com-
puted, while here it occurs naturally, because the initial current function already includes the
nonzero pulse width.

Applying the FHT for a second time to the transform restores the original function, be-
cause the Hankel transform is its own inverse. The result is shown in Figure 4-17 (c). It can
be seen in the figure that the twice-transformed function f ′(r) is a very close match to f (r),
with the exception of the ripples that result from the finite length of the spectrum, the ripple
frequency being dominated by the first nontrivial component past the truncated end of the
spectrum, somewhere near qW = 190 in this case.

Thus the correctness of the FHT developed in this section is confirmed. This method can
now be applied to generate the same magnetic field line diagrams as Figure 4-16 in Sec-
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Figure 4-17: Results of the application of the fast Hankel transform. The FHT parameters
used are given in Table 4.4. (a) The function used to represent the surface current density
KS(r) of the primary winding. (b) The fast Hankel transform of this function. (c) The original
function restored with another application of the FHT. The high frequency ripples are well
understood, and are due to the truncation of the Hankel transform.
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A 0 14 22 21 13 3 −4 −4 0 1 −2 −7 −4
B 0 −4 −4 3 13 21 22 14 0 −11 −16 −7 −4

A+ B 0 10 18 24 26 24 18 10 0 −10 −18 −14 −8
A− B 0 18 26 18 0 −18 −26 −18 0 12 14 0 0

Table 4.5: Winding pattern for the rectangular magnetometer, enabling two different funda-
mental wavelengths, determined by the polarity of the connection.

A 13 21 21 15 7 1 −1 0 1 −4 −3
B −3 −3 1 9 15 15 9 0 −9 −4 −3

A+ B 10 18 22 24 22 16 8 0 −8 −8 −6
A− B 16 24 20 6 −8 −14 −10 0 10 0 0

Table 4.6: Winding pattern for the circular magnetometer, enabling two different fundamental
wavelengths, determined by the polarity of the connection.

tion 4.8, by using the numerical techniques of Sections 4.4 and 4.5, using the FHT in place of
the FFT. The results are shown in Figure 4-18. The two sets of figures appear identical.

4.10 Different wavelength modes with the same sensor

It is possible to change the fundamental wavelength of the current excitation without chang-
ing the geometry of the sensor, by changing the current distribution in the primary winding
segments. This may be accomplished by supplying an independent current drive for each seg-
ment, and changing the relative magnitudes of these drives to follow an appropriate envelope
function with the needed spatial wavelength.

Another possibility, which avoids the need for multiple drives, is to use two or more inde-
pendent winding circuits, and to switch the relative current direction between them. As an
example, consider the winding pattern in Table 4.5, meant for the rectangular sensor.

Two windings, A and B, and the number of turns each has in every winding segment, are
shown in this table. As before, negative turns indicate that they are wound in the opposite
direction. When the two windings are driven with the same polarity, the resulting current
distribution is proportional to the one in Table 4.2, exciting a mode with a fundamental wave-
length equal to the length of the sensor. If, on the other hand, the two windings are driven
with opposite polarities, the resulting excitation has a fundamental wavelength equal to one-
half of the sensor length.

The depth of sensitivity of the sensor depends on the imposed spatial wavelength. There-
fore, the use of more than one excitation wavelength provides some information on how the
material properties change with depth. Furthermore, the use of more than one wavelength
within the same footprint has the advantage that the lift-off, defined as the distance between
sensor and material, is the same for both modes of operation. This is very useful when there
are more than two unknown parameters, and measurements under two different applied mag-
netic field distributions are necessary to determine all unknowns uniquely.

A similar idea can be applied to the circular sensor, where the higher mode uses α2 ≈ 7.016
in the current envelope function, so that W is the radius where it has its second zero. The
winding pattern, including the dipole cancellation windings for both modes, is given in Ta-
ble 4.6, and is plotted in Figure 4-19. This is the winding pattern actually used in the sensor
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Figure 4-18: Magnetic field lines of the circular magnetometer, calculated with the fast Han-
kel transform: in air (a), and when the material above it is metal with skin depth δ = 0.2W
(b), where W is the radius where the first order Bessel function has its first zero.
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Figure 4-19: Winding pattern for the circular magnetometer that enables two different funda-
mental wavelengths, determined by the polarity of the connection, according to Table 4.6. The
filled circles correspond to the A+ B connection, and the hollow circles correspond to A− B.
Because the number of turns result from the combination of two separate windings, the num-
bers are two times greater than the ones listed in Table 4.3. The first order Bessel envelope
function is shown with dashed lines for both configurations. The number of turns do not fall
exactly on the curves, since they need to be integers. The number of turns in the last two
windings are tapered off in order to avoid rapid changes in the primary current distribution,
which would result in more energy in higher order Fourier-Bessel modes.

built for experimentation. Results of two-wavelength measurements carried out using this
approach are presented in Section 5.5.

4.11 Summary of Chapter 4

In this chapter an analysis has been carried out of the unique characteristics of magnetome-
ters with a distributed current drive. For such sensors it may be assumed that the drive
current distribution is known, which makes them suitable for very efficient discrete Fourier
transform methods. To illustrate the power of such methods, the magnetic field lines have
been computed for the three basic magnetometer geometries considered, shown in Figures 4-7,
4-10, and 4-16.

The effort in this chapter has focused on addressing considerations of the practical design
of a circular magnetometer with a distributed primary winding. The Bessel series approach,
introduced in Chapter 3, is applied to developing a method for modeling this new magnetome-
ter design. Other important factors have also been considered, such as the elimination of the
net dipole moment for improved measurement repeatability (Section 4.7), and layout of the
primary winding that permits sensor operation at two distinct effective spatial wavelengths
(Section 4.10). A methodology has also been presented in Section 4.9 for extending the highly
efficient Cartesian fast Fourier transform method to the computation of the Fourier-Bessel
(Hankel) transform, required by the cylindrical geometry.

In summary, many important theoretical tools have been developed that are needed for
the design of the high performance magnetometer, described in Chapter 5, capable of absolute
property measurement without the need for calibration standards.
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Chapter 5

Deep Penetration Magnetoresistive
Magnetometer: Structure and
Measurement Results

This chapter describes the design of a circularly symmetric, distributed current drive magne-
tometer with a secondary sensor based on the giant magnetoresistive (GMR) effect. It is an
implementation of the ideas and models presented in the previous chapters.

As discussed in Chapter 1, the use of a magnetoresistive sensor allows the magnetometer
to be operated at frequencies lower than currently possible with existing MWM and other
eddy current sensors. Indeed, it is possible to operate this magnetometer with temporally
constant magnetic field excitation, confirmed experimentally with measurements shown in
Section 5.5. Low frequency operation is needed to increase the depth of sensitivity of the
magnetometer, which is determined by the skin depth δ ∝ 1/

√
ω, and by the imposed spatial

period via equation (2.14). The latter can be made large by using a distributed current drive,
as discussed in Chapter 4.

The principles of operation of the magnetoresistive and giant magnetoresistive sensors are
described in Section 5.1.

A photograph of the prototype sensor used in the experiments in this chapter is shown in
Figure 5-1. It is built according to the diagram in Figure 4-15, with W = 8 cm and h = 1 cm.
There are two overlapping windings, with the number of turns in each groove determined by
the A and B rows in Table 4.6. These two windings are connected in series, and the polar-
ity of the connection determines which of the two current drive patterns, given in Table 4.6
and Figure 4-19, are excited. The two excitation modes have different effective fundamental
spatial wavelengths.

A secondary sensor assembly, consisting of a giant magnetoresistive sensor and a sec-
ondary solenoidal coil, is positioned at the center of the magnetometer. They are connected in
a feedback loop, as described in Section 5.2. A circuit board that hosts the GMR sensor buffer
amplifier, not visible in the photograph, is positioned near the center below the magnetometer
base. The primary windings and the sensor assembly are connected to a circuit board that
contains the secondary coil driver, compensation amplifier, and interface electronics. It does
not need to be in very close proximity to the sensor. The interface circuitry is connected to the
impedance analyzer instrumentation used to measure the magnetometer’s transfer function
magnitude and phase angle.

Section 5.2 describes the reasons for placing the GMR sensor in a feedback loop with

113
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Figure 5-1: Photograph of the prototype sensor used in all experiments shown in Chapter 5.
The sensor base is built according to Figure 4-15, and the number of turns in each segment of
the primary winding are specified in Table 4.6 and Figure 4-19. A secondary sensor assembly,
consisting of a giant magnetoresistive sensor and a secondary solenoidal coil, connected in
a feedback loop as described in Section 5.2, is positioned at the center of the magnetometer.
Below the base, not visible in the photograph, is a circuit board hosting a buffer amplifier stage.
The visible detached circuit board contains the secondary coil driver, compensation amplifier,
and interface electronics.

a secondary driven winding. The design of the supporting electronic circuit is shown, and
questions associated with the dynamic behavior of the feedback loop are addressed. The
presence of the secondary driven coil needs to be incorporated in the model developed in
Chapter 4. This expansion of the model is described in Section 5.3.

Sections 5.4 and beyond are dedicated to reporting the results of a variety of measure-
ments, chosen to illustrate the useful new unique features of this magnetometer, including
ultra low frequency, and DC two-wavelength measurements on magnetizable materials, eval-
uation of thick metallic coatings, thickness measurement of thick metal plates, used for corro-
sion mapping of metal components via measurements through the opposite surface, detection
of deeply buried flaws in metals, and measurements of the magnetic permeability of ferroflu-
ids.

5.1 Theory of the magnetoresistive and giant
magnetoresistive effects

This section describes magnetoresistance, magnetoresistive anisotropy in ferromagnetic met-
als, and giant magnetoresistance in metallic magnetic superlattices. This is a qualitative dis-
cussion, since these are complex quantum effects, and the actual physics behind the operation
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of the sensors based on these phenomena does not affect the modeling of the magnetometer
response. Furthermore, as shown in Section 5.2, the sensor is connected in a way that elimi-
nates the effect of the transfer function of the magnetoresistive sensor on the magnetometer
response.

5.1.1 Magnetoresistance

In general magnetoresistance is an effect which results when the carrier trajectories in a
material are curved due to the Lorentz force which acts in a direction orthogonal to their
motion. If an electron undergoes no scattering, then in the presence of a magnetic field it
follows a helical orbit with angular frequency

ωC =
eB
m∗ (5.1)

(the cyclotron frequency), where e is the charge of the electron, B is the magnetic flux density,
and m∗ is the cyclotron effective mass. When scattering is present, the carriers experience a
drag force characterized by a decay time constant τ , related to the conductivity as

σ =
ne2τ
m∗ (5.2)

where n is the carrier density. The dimensionless product

ωCτ =
Bσ
ne

(5.3)

is a measure of how significant the magnetoresistance is under the specified conditions. It
represents the mean angular deflection that a carrier undergoes between collisions. If this
number is much less than one, then the trajectory radius is much greater than the mean free
path and consequently the resistivity is not affected. To make an observable difference, ωCτ

must be of order unity or greater [57].
In practice, to meet this condition it is necessary to use very pure materials at cryogenic

temperatures, in order to make τ large, and subject the sample to an extremely strong mag-
netic field, > 1T, to make ωC large.

It can be shown that the curved trajectories themselves do not necessarily lead to mag-
netoresistance, so that the condition ωCτ > 1 is a necessary, but not sufficient condition for
magnetoresistance. In materials with only one type of carrier that has a spherical Fermi sur-
face, like the alkali metals, the diagonal elements of the resistivity tensor remain unchanged,
and no magnetoresistance is observed. A the other extreme, in materials such as the noble
metals, which have highly irregular interconnected Fermi surfaces, the magnetoresistance is
rather strong and very much dependent on the orientation of the magnetic field with respect
to the crystal lattice axes. Alternatively, materials like the semimetal bismuth, which have an
equal number of electrons and holes as carriers, also exhibit high magnetoresistance [57]. The
resistivity ρ = 1/σ of the material along the magnetic field direction is unaffected, as carriers
moving in this direction experience no Lorentz force, while it is increased in the orthogonal
direction, i.e. ρ‖ < ρ⊥.
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Figure 5-2: Fermi diagram of conduction states in a ferromagnetic metal. At low temperatures
the spin-up 3d states are almost completely filled, and due to the magnetization, the holes in
this band are not evenly distributed between the five d-orbitals. This results in anisotropy
in the scattering rates of conduction electrons, leading to magnetoresistive anisotropy in such
materials.

Magnetoresistive anisotropy

In the following discussion it is assumed that anisotropic behavior due to crystal lattice sym-
metries is negligible, which is true for amorphous or polycrystalline materials. In this case
the direction of the magnetic field determines the resistive anisotropy axis in the material.

A stronger magnetoresistive effect of a different nature, also known as magnetoresistive
anisotropy, is observed in thin films of ferromagnetic metals and alloys [58]. The trends ob-
served in these materials are in some respects opposite to those described so far. In ferro-
magnetic thin films the magnetoresistive effect is strongest in alloys, such as Ni-Fe, while
the large number of crystalline defects in alloys tends to make τ shorter. Furthermore, the
lower resistivity is observed in the orthogonal direction, i.e. ρ‖ > ρ⊥, also in contradiction to
ordinary magnetoresistance.

Clearly, a different mechanism is responsible for this effect. One theory that presents an
explanation for this behavior is given in [58]. According to this explanation, the conductivity
is largely determined by s-electrons scattering into and out of d-orbitals, with the scattering
caused by lattice vibration and lattice imperfections, much higher in alloys than in pure met-
als. The current may be divided in two branches, corresponding to spin-up and spin-down
electrons. This is known as the two-current, or two-band, model, and is commonly used to
model transport phenomena in ferromagnetic transition metals [59, 60]. Ignoring spin ex-
change between the s-electrons keeps the two bands independent, and the total resistivity
is

ρ =
ρ↑ρ↓

ρ↑ + ρ↓
(5.4)

where ρ↑ and ρ↓ are the resistivities of the spin-up and spin-down branches respectively. At
low temperatures the 3d spin-up states are almost completely occupied, allowing only 4s to
4s transitions, resulting in less scattering and lower resistivity for the spin-up band. This
condition is graphically illustrated in Figure 5-2.



5.1. Theory of the magnetoresistive and giant magnetoresistive effects 117

This in itself does not introduce any anisotropy. However, when the spin-orbit interaction
is considered, some mixing of parallel and antiparallel states occurs, and as a consequence
there are some unoccupied parallel 3d states (holes) even at absolute zero. These holes are not
equally distributed between the five d-orbitals, with a deficit of holes in orbitals perpendicular
to the magnetization. The 4s to 3d transition probability is smallest if the s-electron moves
perpendicular to the orbit. Thus an electron moving in the direction of magnetization has a
higher than average probability of being trapped in a 3d state, resulting in higher resistivity
in this direction, i.e. ρ‖ > ρ⊥.

Results shown in [58] indicate that magnetoresistive anisotropy is strongest in Fe/Co/Ni
alloys with an average atomic magnetic moment of one Bohr magneton µB, independent of
the actual alloy composition. The Bohr magneton µB = eh̄/(2me) is the magnetic moment of
an electron, where me is the electron rest mass, and h̄ = h/(2π) is the normalized Planck’s
constant. This effect has yet to be explained theoretically.

One of the earlier practical magnetoresistive sensors based on this effect was proposed
by R. P. Hunt in 1971 [61], and since then they have enjoyed popularity for many practical
applications, some of which are listed in Table 1.1 [40,62–64].

5.1.2 Giant magnetoresistance

The magnetoresistive effect is generally on the order of a few percent, perhaps as much as
5% at low temperature. Giant magnetoresistance refers to magnetoresistive changes of 20%
or more [65], observed in certain metallic magnetic superlattices, also called magnetic mul-
tilayers. It was first described in 1988 [66] and has since then been an area of very active
research [67–73, and many papers in 74].

The definition used in the literature for reporting the magnitude of the giant magnetore-
sistive (GMR) effect is not consistent in whether the change in resistivity is referenced to its
highest value, which occurs with no external field, or its lowest value, which occurs in sat-
uration. This can lead to large disparity in the reported values. One must be aware which
convention is used when comparing the performance of different structures. The definition
used here expresses the magnitude as a percent change of the resistivity with respect to its
value with no external field, i.e. ∆ρ/ρmax.

Giant magnetoresistance was first observed in Fe/Cr magnetic superlattices [66], where a
drop of as much as 45% of the resistivity was measured at liquid helium temperature (4.2 K).
At room temperature the magnitude of the effect was reduced to about 12%. Other material
systems have been tested since then, with the Co/Cu magnetic superlattice emerging as the
system of choice in the development of practical sensors. It exhibits resistivity drops of up to
55% at liquid helium temperature and 40% at room temperature [69].

The magnetic superlattices have alternating layers of a nonferromagnetic and ferromag-
netic metal. The thickness of the nonferromagnetic layers is chosen such that in the absence
of applied external magnetic field the moments of consecutive ferromagnetic layers are ar-
ranged antiparallel to each other. This antiferromagnetic coupling between these layers has
been ascribed to indirect exchange interactions through the nonferromagnetic layers [66]. The
presence of an external field acts to align the moments of all ferromagnetic layers, resulting
in reduction of the electric resistivity. This is schematically illustrated in Figure 5-3. The
magnetoresistance is thus defined as [61]

∆ρ

ρmax
=

ρ↑↓ − ρ↑↑
ρ↑↓

(5.5)
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Figure 5-3: Diagram illustrating the giant magnetoresistive effect. GMR is the result of dif-
ferences in the scattering of spin-up and spin-down electrons at the layer interfaces. In the
absence of external magnetic fields the moments of adjacent ferromagnetic layers are antipar-
allel, resulting in medium resistivity for both spin bands. In the presence of an externally
applied magnetic field the ferromagnetic layers are aligned, drastically reducing the scatter-
ing of spin-up electrons, which acts to reduce the overall resistivity of the superlattice.

where ρ↑↑ and ρ↑↓ are the resistivities in the parallel and antiparallel states respectively.
The physical explanation for this phenomenon, as initially suggested in [66], hinges on

the spin-dependent scattering characteristic of ferromagnetic metals. As before, the current
is divided into two branches, for spin-up electrons and spin-down electrons [59, 60]. In the
antiferromagnetic state, on average both types of electrons experience the same set of scatter-
ing potentials, resulting in the two branches having equal resistivity of intermediate value,
2ρ↑↓ = ρ↑ = ρ↓ (see equation (5.4)). In the aligned state, the spin-up electrons are scattered
much less effectively, resulting in low resistivity for this current branch and an overall lower
resistivity for the entire structure, ρ↑↑ ≈ ρ↑ � ρ↓.

Several publications offer explanations and theoretical models for the difference of scat-
tering for spin-up and spin-down electrons [65, 68]. Two distinct processes can lead to such
difference. The first is spin-flip scattering. As illustrated in Figure 5-2, in ferromagnetic
metals there is a difference in the number of available states at the Fermi level for spin-up
and spin-down electrons. Thus an electron spin-polarized in one ferromagnetic layer may ex-
perience spin reversal when it enters the next one [67]. Such scattering events are caused
by spin-orbit effects, by impurities with a localized magnetic moment, or by magnons (spin
waves).

The other process leading to scattering differences between the two electron bands is spin-
dependent scattering at the layer interfaces, which is the only effect considered by the Boltz-
mann transport equation model in [68]. As pointed out in that publication, there would be
no magnetoresistance effect for perfect interfaces, and as the surface roughness increases, so
does the scattering. The scattering rates for the two types of electrons can differ by a factor of
six or more [66, 68], leading to the needed difference in resistivity in the two branches of the
current.
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Figure 5-4: Typical GMR magnetic field sensor layout [75]. Four magnetic superlattice resis-
tors are formed on a common ceramic substrate and connected in a bridge configuration. Two
of the resistors are shielded from external fields. Ferromagnetic flux concentrators are used to
increase the effect of the magnetic field on the other two resistors. If a voltage is applied across
a pair of diagonally opposed terminals, a differential voltage is developed across the other pair
in the presence of magnetic field.

Due to the spin alignment in a ferromagnetic metal, the spin-up and spin-down electrons
have different band structure, Fermi surface, effective mass, etc. This is why the scattering
rates for the different spin electrons can be different for the same scatterer. A. Fert and I. A.
Campbell apply the two-band model to resistivity data in Ni and Fe based alloys to obtain a
consistent set of parameters for the scattering within each spin band for various impurities
[59,60]. The large differences in scattering rates have been confirmed experimentally.

On the whole, the best quantitative physical model of the giant magnetoresistive effect
appears to be the one developed by R. Q. Hood and L. M. Falicov [65]. One of the conclusions
drawn in this work is that spin-flip scattering can account for no more than a few percent
of magnetoresistance, and a large difference in interface scattering for the different spins is
needed to explain the observed large GMR values.

5.2 Operation of the secondary GMR sensor assembly

5.2.1 GMR sensor characteristics

A commercially available magnetic sensor, based on the giant magnetoresistive effect, is used
as the secondary element of the magnetometer. The sensor is manufactured by Nonvolatile
Electronics, Inc. It consists of four magnetic superlattice resistors, deposited on a common
ceramic substrate, and connected in a bridge configuration, as shown in Figure 5-4 [75]. Two
of the resistors are shielded from external magnetic fields. Ferromagnetic flux concentrators
are used to increase the effect of the magnetic field on the other two resistors. If a voltage is
applied across a pair of diagonally opposed terminals, a potential difference appears between
the other terminal pair in the presence of an externally applied magnetic field.

Figure 5-5 is a plot of the transfer characteristic of this magnetic sensor [75]. Several
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Figure 5-5: Transfer characteristic of the GMR magnetic sensor biased at 5 V [75]. This
curve illustrates some of the features of the giant magnetoresistive effect: the output voltage
is independent of the field polarity, saturates at high fields, and displays some hysteresis.

features of the giant magnetoresistive effect are evident in this figure. The differential output
voltage is independent of the polarity of the applied field, because either polarity leads to a
departure from the fully antiparallel alignment. At a certain field magnitude, about 50 Oe
for this sensor, the output reaches a saturation value, corresponding to complete alignment of
the ferromagnetic layers. Finally, the response shows some hysteresis.

The highly nonlinear nature of the transfer characteristic, especially near zero, makes
it necessary to operate the sensor with a certain DC field bias, moving the operating point
to the linear region of the characteristic, at approximately 25 Oe and 0.15 V. The biasing
may be accomplished with the help of a permanent magnet, but a magnet will perturb the
surrounding magnetic flux density, more than just adding its constant field. Alternatively,
the sensor may be biased with an electromagnet.

5.2.2 Feedback loop

While DC biasing addresses the nonlinearity and hysteresis problems, a severe limitation still
remains: satisfactory operation is maintained only for fields with magnitudes that are small
compared to the DC bias field. As the field magnitude increases, the response becomes more
and more nonlinear, and for amplitudes on the order of the bias field, saturation and polarity
reversal come into effect.

To address these limitations, it is beneficial to place the sensor in a feedback configuration
with a secondary winding, as shown in Figure 5-6. In this way the magnetic field at the GMR
sensor remains constant during operation, eliminating the effect of the nonlinear transfer
characteristic, while maintaining sensitivity at low frequencies. The magnitude of the current
in the secondary winding is taken as the output signal, and since the relationship between
this current and the magnetic field for an air-core winding is perfectly linear, so is the transfer
characteristic of the entire hybrid sensor structure.

Another benefit of the feedback configuration is temperature stability. Since the measured
quantities are currents in the windings, which are directly related to the magnetic fields,
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Figure 5-6: Structure of the hybrid sensor feedback loop. The secondary winding maintains a
constant magnetic field at the GMR sensor, determined by the value of the DC bias. This allows
for high dynamic range and linearity, while retaining low frequency sensitivity. In addition to
gain, the forward stage of the loop includes an integral term, which ensures zero error at DC.

temperature dependence of the GMR sensor or winding resistance, etc. has no effect on the
magnetometer response.

The magnetic field magnitude that this hybrid sensor can measure is limited only by the
magnitude of the field that the secondary winding can produce, which can be orders of mag-
nitude higher than the saturation field of the GMR sensor. There is a further advantage of
the feedback connection: biasing the GMR sensor to the appropriate operating point is accom-
plished simply by adding an appropriate DC voltage offset at the input of the gain stage. This
is much better than the biasing methods described so far, because correct biasing is main-
tained even if the position of the GMR sensor with respect to the bias source changes, which
would not be true for biasing with a constant field source. This eliminates the need for com-
plex alignment methods, since biasing at the correct level is automatic with the appropriate
choice of circuit components.

There can be situations where this kind of feedback configuration may be inappropriate.
The bandwidth of the hybrid sensor is limited by the dynamics of the feedback loop, and is
always narrower than open-loop operation. Therefore, at high frequencies the sensor may
need to be operated open-loop, although it is still possible to keep the loop closed for low
frequencies at the same time, in order to maintain the proper DC bias. This is not a severe
limitation, since this magnetometer is not designed for high frequency operation, where it may
be more appropriate to use a standard MWM, or simply the induced voltage in a secondary
winding. An additional limitation of the feedback loop configuration is that in an array setup,
the feedback windings of adjacent elements will be coupled to each other, leading to inter-
channel cross talk. It is in general possible to compensate for this in the models, but it is
better to avoid such situations by appropriate shielding or by open-loop operation.

5.2.3 Electronics

A full schematic of the electronic circuit used to implement the feedback loop, biasing, and
interface is shown in Figure 5-7. The resistor bridge of the GMR sensor is shown as U1. The
output impedance of the sensor is relatively high, on the order of 40 k
, and in order to avoid
parasitic signal and noise pick-up, as well as extra phase shift due to cable capacitance, a
buffer amplifier is placed in close proximity to the sensor. The entire buffer stage assembly,
which also implements the sensor DC biasing scheme, is enclosed in a dashed box in the
figure. The buffering is accomplished with a high bandwidth instrumentation amplifier U2.
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The voltage regulator U3 is needed to ensure constant sensor voltage and field biasing. The
DC operating point is set by the voltage divider implemented with R1 and R2. This first
amplifier stage has a gain of ten.

The loop gain and compensation, described later, are implemented with the U4 amplifier
stage. The secondary winding is driven by the high power video amplifier U5, connected as
a unity gain follower. Since U5 is a current feedback operational amplifier, it is necessary to
include R9, which is also used to set the bandwidth of the stage.

The current IF through the secondary feedback winding is measured as the voltage across
a precision zero-inductance power resistor R10, connected in series. The last stage, imple-
mented with U6, is used as a coaxial cable driver. It also eliminates the DC component of the
signal, and brings the output magnitude to the optimal input levels of the JENTEK impedance
analyzer equipment. For constant field measurements, which do not require an impedance
analyzer, the output signal is taken at test point 3.

5.2.4 DC stability

Because of the rectifying effect of the GMR sensor, the overall polarity of the feedback loop
depends on the direction of the magnetic field, which means that as the circuit is initially
powered up, it may enter a positive feedback mode, which is unstable, and leads to the output
of U5 saturating at the positive supply voltage level, rendering the system inoperable. On the
other hand, once the correct operating point is established, then the feedback is negative, and
the loop remains stable from then on, unless the magnetic field reaches such magnitude that
the driver of the secondary winding cannot keep up, in which case the loop may again become
unstable.

This complication is a direct consequence of the GMR sensor transfer characteristic, and
cannot be avoided. It is therefore necessary to implement some external mechanism that de-
tects the faulty condition and resets the loop by forcing the output to be near the operating
point. A much simpler remedy, used in this implementation, is to ensure that the current
through the secondary winding is always negative, by connecting a diode D1 in series with it.
This does resolve the stability problem, and ensures that the feedback loop always recovers
to the proper operating point. However, it also introduces a limitation. While the magni-
tude of the measured field is unlimited in the positive direction, in the negative direction its
magnitude may not exceed that of the bias field. Although this compromise is acceptable for
the prototype magnetometer, in a more general setting it may be necessary to incorporate an
auxiliary “watch dog” circuit of the kind described above.

5.2.5 AC stability and loop bandwidth

Ignoring for the moment the U4 stage, the ideal open-loop transfer characteristic consists of
a single pole at ω = R10/L, introduced by the relationship between driver output voltage
and secondary winding current IF. In the ideal case where this is the only pole, the loop is
always stable, and its bandwidth can be increased indefinitely by increasing the loop gain.
In practice all operational amplifiers have a limited bandwidth, plus parasitic capacitances
always introduce extra phase.

The approach taken here to find the optimal loop gain is to measure the open-loop transfer
function experimentally. This is done by shorting out R6 and C1, which turns U4 into a voltage
follower, applying a signal at test point 2, and measuring the relative magnitude and phase
of the voltage at test point 1. The input signal must include an appropriate DC offset, needed
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for proper biasing of the GMR sensor.
As expected, the phase angle reaches −45◦ at about 100 kHz, the frequency of the pole. The

phase angle reaches −90◦ at about 350 kHz, which is chosen as the loop bandwidth, allowing
for plenty of phase margin, 90◦ [76]. This is accomplished by choosing R6 so that the gain of
the U4 amplifier stage is equal to the inverse of the open-loop magnitude at this frequency.

The presence of C1 in series with R6 is useful, though not required, because it introduces
a pole at ω = 0 and a zero at ω = 1/(R6C1), near 2 kHz. As a consequence, the feedback loop
error, given by the voltage at test point 1, is zero at DC, and small at low frequencies.

5.3 Incorporating the effects of the feedback loop into the
sensor model

Initially the measurement grids used in the experiments in this chapter had been generated
via equation (4.49). The results were less than satisfactory, and complex two-point reference-
part calibration methods, described in Appendix D, had to be employed to bring the data near
the correct place in the grid, and even then the results were poor for points far from the two
reference calibration points. It became apparent that there was a large unmodeled effect that
had to be taken in consideration.

This unmodeled effect is the dependence of the relationship between the feedback winding
current IF and the magnetic flux intensity at the origin Bz(x = 0, z = 0) on the material under
test. The previous section assumed that the output signal IF, is directly proportional to the
imposed field at the origin, since the secondary winding is a solenoid tightly wound around
the GMR sensor. The experiments show that that this assumption is not justified.

A different way of looking at this is that while equation (4.49) gives Bz/ID, where ID is the
primary current, the impedance analyzer measures IF/ID. It is therefore necessary to develop
a method of calculating Bz/IF as a function of the material structure and sensor parameters.

This turns out to be a very easy task, because it can be done by applying the method of
Section 4.8 directly to the special case of a single concentric winding. Thus, if the feedback
coil’s radius is rF, and it has wF turns, then the surface current density is

KS(r) = IFwFu0(r− rF) (5.6)

whose Fourier-Bessel series components, derived from equation (4.42), are

Kn =
2IFwF

R2 J20 (αn)
J1(βnrF)rF (5.7)

leading to the required relationship

Bz(r = 0, z = 0) = IFwF

∞
∑
n=1

2
R2 J20 (αn)

· 1
Rn
J1(βnrF)rF (5.8)

Taking the ratio of equations (4.49) and (5.8) yields the expression of the complex transfer
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function magnitude, measured by the impedance analyzer:

IF
ID

=

∞
∑
n=1

2
R2 J20 (αn)

· 1
Rn

N

∑
j=1

wjJ1(βn jh) jh

∞
∑
n=1

2
R2 J20 (αn)

· 1
Rn
wF J1(βnrF)rF

(5.9)

The measurement grids in this chapter have been generated using equation (5.9), and
normalized to the magnitude in air, so that the air point on a grid always has unity magnitude
and zero phase. For all grid plots in this chapter, the normalized magnitude is the magnitude
of the ratio IF/ID divided by the magnitude of this ratio for the magnetometer in air.

The magnitude/magnitude grid in Figure 5-10 did not acquire its characteristic spiral
shape until the correction described in this section was applied to the model. The spiral
curve followed by the experimental data in Section 5.5 was what first suggested the need for
the change, and once applied, it significantly improved the results of all other measurements
as well.

5.4 Conductivity / lift-off measurements at 12.6 kHz

The first set of measurements with the GMR magnetometer consists of conductivity/lift-off
measurements with three different materials, at a range of lift-off values. The measurement
grid used is generated via equation (5.9). It is shown in Figure 5-8. Since both the conductivity
and the lift-off parameters vary over a relatively wide range, the parameter values for this
grid are chosen on a logarithmic scale. As discussed in Section 1.4.1, the grid cell area is
a measure of the sensitivity of the measurement in that region of the grid. For the grid in
Figure 5-8, it should be noted that for high conductivity and lift-off values the grid cells would
have been even narrower, if the parameter values had been equally spaced on a linear scale.

This pair of estimated properties is chosen because it is the most common type of mea-
surement made with the MWM family of magnetometers and magnetometer arrays. The
measurements are carried out at 12.6 kHz, which is the lowest frequency supported by the
JENTEK impedance analyzer instruments, in order to illustrate the low frequency capability
of this magnetometer. A simple one-point air calibration method is used for this measure-
ment and for all other measurements in this chapter. Calibration methods and their effect on
measurement error are described in Appendix D.

The lift-off is changed by placing plastic sheet shims between the sensor and the metal
plates. A set of five shims, whose thicknesses are approximately related as consecutive powers
of two, makes it possible to take many data points at closely spaced values of the lift-off. The
results are shown in Figure 5-9 and listed in Table 5.1.

The first observation to make in Figure 5-9 is that the three data sets follow lines of
constant conductivity very closely. Since the sensitivity of the measurement decreases at
higher lift-off, only the first twelve out of the twenty data sets are listed in the table. The last
column in the table lists the nominal values of the lift-off, calculated by adding the thicknesses
of the shims used, measured with a caliper. The estimated lift-off values are in excellent
agreement with the nominal values. The conductivity data in Table 5.1 are also in good
agreement with the numbers reported in the literature [77, 78]. Table 5.2 lists typical values
of the conductivity for the metals used in this chapter. The magnitude, nature, and source of
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Figure 5-8: Conductivity/lift-off measurement grid for circular sensor at 12.6 kHz. The two
coordinate axes are the magnitude and phase of the ratio IF/ID, normalized by its value in air.

the measurement errors are discussed in more detail in Appendix C.
The lowest value of the lift-off, 3.3 mm, corresponds to carrying out the measurement with

no shim, and is equal to the effective depth of the windings below the surface. This amount
has been added to the data in the last column, after having been estimated by taking the
average of the difference between the magnetometer estimated values and the measured shim
thicknesses. This number is quite reasonable, given that the average depth of the grooves is
on the order of 3 mm, and that the winding thickness, about 2 mm, is not considered by the
model.

As discussed in Appendix C, there appears to be an optimal range of the lift-off, 5–7 mm,
where the estimated conductivity is most accurate. This is to be expected, since sensitivity to
the material’s conductivity is lost as it is positioned further from the sensor surface. Being too
close to the sensor windings also reduces the accuracy, since the effects of the nonzero winding
thickness become stronger in close proximity.

It may appear at first that there is too much spread in the conductivity data in Table 5.1.
Given that this measurement was carried out with no calibration standards and with a single
air calibration point, the simplicity of the model used, and the fact that no empirical data
have been used to compute the grid, we consider these measurement results to be remarkably
good. It has taken years of effort to improve the MWM design to the point where with one
point air calibration it can produce results as accurate as these.

If it is necessary to perform a very exact conductivity measurement, then a two-point ref-
erence part calibration is recommended, with the properties of the two reference parts, or the
same part at two lift-off values, closely bracketing the properties of the unknown part. A com-
parison of the measurement error and other performance criteria of the different calibration
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Figure 5-9: Results of conductivity/lift-off measurements with the circular magnetometer.
Three sets of measurements are shown with metal plates of different conductivity, taken at a
variety of lift-off positions. Each set follows a line of constant conductivity on the measurement
grid, which is an expanded view of the grid in Figure 5-8.

Cu 110 Al 6061 Al 2024 Nominal
Data Cond. Lift. Cond. Lift. Cond. Lift. lift-off
set [MS/m] [mm] [MS/m] [mm] [MS/m] [mm] [mm]
1 59.2 3.3 29.5 3.2 18.0 3.3 3.3
2 59.2 4.1 28.9 4.0 17.8 4.1 4.1
3 58.7 4.8 28.7 4.7 17.8 4.8 4.8
4 58.3 5.6 28.6 5.5 17.6 5.6 5.6
5 57.8 6.5 28.3 6.4 17.6 6.5 6.5
6 57.1 7.4 28.1 7.3 17.5 7.3 7.3
7 55.7 8.0 27.4 7.9 17.3 8.0 8.0
8 56.1 8.9 27.5 8.7 17.4 8.8 8.8
9 54.3 9.5 26.8 9.4 17.1 9.4 9.4
10 55.2 10.3 27.0 10.2 17.2 10.3 10.2
11 53.5 10.9 26.4 10.8 17.0 10.9 10.9
12 53.0 11.7 26.3 11.7 16.7 11.7 11.7

Table 5.1: Results of conductivity/lift-off measurements with the circular magnetometer,
shown in Figure 5-9. Only the first twelve sets of the twenty shown in the figure are listed,
due to the lack of sensitivity at higher lift-off values, as illustrated by the narrowing grid cells
at the top right corner of Figure 5-9.
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Conductivity
Material [MS/m]
Copper 110 58
Aluminum 6061 27.3
Aluminum 2024 17.5
Stainless steel 304 1.39

Table 5.2: Conductivity of metal alloys used in experiments. The data for aluminum alloys
have been obtained from [78], and the others are from [77].

techniques are discussed in Appendix D.
The results presented in this section confirm the validity of the model developed in Chap-

ter 4. The remaining measurements in this chapter are chosen to illustrate the unique advan-
tages of the GMR magnetometer, by using frequencies and material thicknesses out of bounds
of the standard MWM sensors.

5.5 Permeability / lift-off measurements at DC

The measurement described in this section combines the signal magnitudes of the magne-
tometer at two different imposed spatial wavelengths with DC excitation, to determine the
magnetic permeability of a layer of known thickness and its lift-off from the sensor surface.
This type of measurement is unique in three important ways: (1) no other quasistatic sensor
has ever been operated in the fully static regime at DC; (2) two-wavelength magnetometry
has never been tried before; and (3) the wavelength of the sensor can be changed dynami-
cally, with the material under test still in place. These are all useful capabilities, especially
in measuring magnetizable materials without the limitation caused by the skin depth effect.

With DC operation, the time-varying term in the diffusion differential equation (2.11) dis-
appears, and the problem becomes completely parallel to dielectrometry measurements on
insulating materials. All amplitudes in the model are now real numbers, and one measure-
ment provides only one degree of freedom.

Measurements at two different spatial wavelengths are carried out by changing the polar-
ity of the series connection of the two overlapping primary windings, whose winding patterns
are determined by the A and B rows in Table 4.6. As shown in Figure 4-19, the resulting
current drive profiles follow a first order Bessel function J1, with the r = W = 8 cm radius
corresponding to its first and second zeros respectively. In cylindrical geometry the current
drive and other physical quantities are not periodic, so there is no spatial “period” or “wave-
length” to speak of. In this case the radius at the first zero of the Bessel function profile is the
counterpart of the spatial period in Cartesian geometry, which determines the rate of Lapla-
cian decay in the z-direction of the fundamental spatial wavenumber mode, according to the
solutions in equation (3.3). If this radius is named the effective spatial wavelength, then the
long and short wavelengths are W = 8 cm and Wα1/α2 = 4.4 cm.

The magnitude/magnitude measurement grid [54] used for parameter estimation is shown
in Figure 5-10. As with the grid in Figure 5-8, the values of the two parameters, relative
permeability and lift-off, are equally spaced on a logarithmic scale. The spiral nature of the
grid, not shared by its dielectric counterpart in Figure 3-6, is due to the influence of the
material under test on the feedback loop transfer function, and can only be modeled correctly
if the changes in the model, described in Section 5.3, are applied. The physical explanation
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Figure 5-10: Two wavelength magnitude/magnitude permeability/lift-off grid for the circular
magnetometer with DC excitation. The short and long wavelength current drive patterns are
excited by appropriate connection of the two overlapping primary windings, and correspond to
effective spatial wavelengths of 4.4 cm and 8 cm respectively. The thickness of the magnetizable
layer is fixed at 1 mm.

of this spiral behavior is as follows: In general, as a magnetizable material is brought closer
to the sensor windings, the magnitude of the signal increases, because the material tends
to concentrate the magnetic flux. However, as the lift-off is reduced even further, this field
concentration effect begins to affect the secondary feedback winding too, and since its radius
is much smaller than the radii of the segments of the primary winding, this effect begins to
dominate the overall magnetometer transfer function, bringing the magnitude back down.
This effect is easy to observe in the grid in Figure 5-10.

This measurement is completely analogous to the dielectrometer measurements described
in Section 3.3. Both types of measurements use the signal magnitudes at two different spa-
tial wavelengths to estimate the dielectric permittivity or magnetic permeability of a sample
with known thickness and its distance from the sensor electrodes or windings. The magneti-
zable layer consists of 1 mm thick polymer that contains ferromagnetic particles suspended
in the polymer foam. The sensor lift-off is controlled with the same set of plastic shims as in
Section 5.4. The results of the measurement are shown in Figure 5-11, and listed in Table 5.3.

The measurement procedure at DC presents some challenges. On the one hand, the only
equipment necessary are a power supply and a voltmeter, making the measurement simpler.
On the other hand, the accuracy of the measurement is lower than that possible with AC
excitation. When operating the sensor at a certain frequency, the magnitude of this frequency
component in the output signal can be measured very accurately by mixing it with a signal at
the same frequency from the same source, and passing the resulting signal through a low pass
filter to obtain the DC component. The signal can be integrated over many cycles, resulting



130 Chapter 5. Deep Penetration Magnetoresistive Magnetometer

1 1.01 1.02 1.03 1.04 1.05

1

1.005

1.01

1.015

1.02

1.025

1.03

1.035

1.04

Short wavelength normalized magnitude

Lo
ng

 w
av

el
en

gt
h 

no
rm

al
iz

ed
 m

ag
ni

tu
de

5 m
m

2.5 mm

20
 m

m

10
 m

m

2

3

4

5

Figure 5-11: Permeability/lift-off measurement results with the circular GMR magnetome-
ter of 1 mm thick magnetizable foam layer. The data points follow a spiral line of constant
permeability. The grid is an expanded view of the grid in Figure 5-10.

Data Relative Lift-off Nominal
set permeability [mm] Lift-off [mm]
1 4.23 4.2 4.2
2 4.30 5.0 5.0
3 4.30 5.7 5.7
4 4.29 6.6 6.5
5 4.28 7.5 7.4
6 4.19 8.1 8.2
7 4.21 8.9 8.9
8 4.36 10.0 9.7
9 4.37 10.8 10.3
10 4.39 11.7 11.1
11 4.21 12.0 11.8
12 4.28 13.1 12.6
13 4.43 14.4 13.5
14 4.44 15.2 14.3
15 4.41 15.8 15.0
16 4.50 17.0 15.8

Table 5.3: Experiment results of the permeability/lift-off measurements at DC, shown in Fig-
ure 5-11. Only the first sixteen out of the thirty-one sets shown in the figure are listed, due to
the lack of sensitivity at higher lift-off values, as illustrated by the narrowing grid cells in the
lower left of Figure 5-11.
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in a very accurate measurement of the transfer function at this frequency.
With DC operation this frequency mixing technique is not available. Furthermore, it is

not practical to average the signal over a long time, because outside factors affecting the
measurement may change during that time. For example, the output voltage of the power
supply used to drive the primary winding may be not perfectly stable, and the primary current
is also affected by changing contact resistance in the leads and the changing resistance of the
primary winding itself, as its equilibrium temperature varies based on the thermal insulation
caused by the material under test. Finally, changes in the physical position of the sensor can
alter its output due to the presence of magnetically active objects in the vicinity, and as a
result of changes of its position relative to the direction of the earth’s magnetic field.

The approach taken in this measurement to eliminate the signal noise introduced by all
these factors is to measure the sensor response in air not just once before the measurement,
as is done with the other measurements in this chapter, but before every data point, with
as little time in between as possible. In this way every measurement data point has its own
air calibration reference. Air calibration and other calibration techniques are described in
Appendix D.

Bearing in mind that in general DC data are less accurate, the results in Table 5.3 are
still very good, even if the lift-off does not track its nominal value as well as the data in
Section 5.4. The relative permeability of the polymer layer is measured to be about 4.3. As in
the conductivity/lift-off measurements of the previous section, the measurement results are
most accurate for lift-off values in the 5–7 mm range.

The data follow a constant permeability curve quite well. An interesting phenomenon that
may be observed in Figure 5-11 is that at the highest lift-off values, there is a range where
the magnitude of the short wavelength signal is lower than its value in air. The grid lines
confirm that this effect is physical. It is due to the fact that this far from the surface the
magnetizable layer is too far to intercept any magnetic field lines going through the center,
but is still close enough to attract some of the field lines away from the surface. An exact dual
of this effect is observed in the dielectrometer grids in the presence of a ground plane behind
the material sample. This can be seen in Figure 3-6, where at the high lift-off with nonunity
relative permittivity the magnitudes dip slightly below the air point.

5.6 Thickness / lift-off measurements with a multi-layer
structure

Thickness/lift-off measurements most often arise in applications where it is necessary to mea-
sure the thickness of a metallic coating on a metal substrate. The multi-layer structure that
needs to be modeled has at least three layers, two metal layers and an air layer, where the
conductivity and magnetic permeability of the two metal layers are known. A diagram of
this structure is shown in Figure 5-12. Low frequency operation, made possible by the GMR
magnetometer, allows measurement of much higher coating thicknesses. The measurements
described in this section illustrate this type of measurement by determining the thickness of
a stainless steel layer, backed by a copper layer. The upper limit of the thickness of a stainless
steel layer that can be measured at 12.6 kHz is approximately 5 mm.

The measurement grid used in this application is shown in Figure 5-13. It assumes opera-
tion at 12.6 kHz. The conductivities of stainless steel 304 and copper 110, used for generating
the grid, are taken from Table 5.2. Unlike the measurement grids used in the previous two
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Figure 5-12: Three layer structure used in thickness/lift-off measurements. The two proper-
ties being estimated are the thickness t of the first metal layer and the thickness h of the air
layer, called the lift-off. The thickness of the second metal layer is considered to be infinite,
since it is much greater than the skin depth in this material.

sections, the parameter values for this grid are chosen on a linear scale.
The copper plate is 3.2 mm thick, but its thickness is modeled as being infinite, because

it is several times greater than the value of the skin depth δ in copper at this frequency,
0.59 mm, calculated using equation (2.15). This is typical of coating characterization applica-
tions, where the substrate is much thicker than the depth of sensitivity of the magnetometer.
In comparison, due to its much lower conductivity, the skin depth in the stainless steel layer
is 3.8 mm, several times greater than that of the copper layer, and comparable to the plate
thicknesses. By considering the size of the grid cells in Figure 5-13, it can be observed that
the thickness measurement, but not the lift-off, loses sensitivity for thickness values below
about 0.5 mm and above 5 mm. This is explained by comparing these values to the skin depth
of 3.8 mm. At the lower thickness values the stainless steel layer has little influence on the
magnetic fields, since its conductivity is much lower than that of the copper layer, which dom-
inates the sensor response. At the high end of the thickness range the exponential decay of
the magnetic field intensity makes the magnetometer insensitive to the position of the ma-
terial interface. For these two limits the grid lines approach two constant lift-off lines of the
infinite-half-space conductivity/lift-off grid in Figure 5-8, corresponding to the conductivities
of copper and stainless steel. This can be confirmed visually by comparing the two grids.

Optimal sensitivity, corresponding to the biggest and most orthogonal grid cells, is
achieved for thicknesses on the order of 3 mm, approximately equal to (π/4)δ. This is to
be expected, as explained in the next section, and illustrated by the curve in Figure 5-17. If
the values of the thickness parameter in the grid extend past the (π/2)δ = 6 mm point, the
grid would develop a curl, also described in Section 5.7.

The thickness of the stainless steel layer in this set of measurements is changed by stack-
ing up to four plates of various thicknesses in different combinations. As with the plastic
plates used for changing the lift-off, the thicknesses of the metal sheets are chosen to allow
for a wide range of possible total thickness values. Twelve sets of data are taken at each one
of five different lift-off values. The results are shown in Figure 5-14 and listed in Table 5.4.

As in all other measurements in this chapter, the calibration of the sensor and equipment
is done with a single point in air. Therefore any deviation of the actual material conductivities
from the quoted values used for the generation of the grid would lead to errors in the estimated
properties. This is particularly true at the lower thickness values, where the grid cells are very
narrow. This explains the negative thickness values reported in the first row in Table 5.4,
which lists data taken with no steel layer. Nevertheless, it can be seen in Figure 5-14 that
these five points fall exactly on the grid edge, as they should. If an application requires better
accuracy at such low thickness values, a two-point calibration method, including calibration
on the copper layer, would eliminate the effect of any disparity between the conductivity value
used in generating the grid and the actual conductivity of the part. Also, higher frequency
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Figure 5-13: Thickness/lift-off measurement grid for the circular magnetometer at 12.6 kHz.
The thickness is of a stainless steel layer on an infinitely thick copper substrate.

would improve sensitivity to thinner coatings by reducing the skin depth. The choice not to
take this approach here is made in order to emphasize the high level of agreement between
the simulated and measured results, as evidenced in the rest of the table, by avoiding the use
of empirical measurements with a calibration standard.

The excellent agreement between the nominal and estimated values of the thickness and
lift-off in Table 5.4 is further confirmation of the validity of the analytical model, applied to a
more complex material structure that incorporates more than one conducting metal layer.

5.7 Low frequency (100 Hz) thickness measurements

This section describes another type of measurement, not possible with previous magnetome-
ters, namely thickness measurement of quarter inch or thicker aluminum plates. In order to
make the skin depth large enough, the magnetometer is operated at 100 Hz, which yields a
skin depth of 9.5 mm for the more conducting aluminum alloy 6061 tested.

One important application of this type of measurement is in corrosion mapping, where
the side that experiences corrosion is not accessible for direct measurement. Since the other
material property being measured is conductivity, an area scan of this type simultaneously
detects cracks and other flaws in the metal, as illustrated in the next section.

The conductivity/thickness grid used in this set of measurements is shown in Figure 5-15.
Unlike all other grids considered, this one does not have lift-off as one of the two estimated
parameters. The lift-off is assumed to be known and equal to 3.3 mm, the intrinsic magne-
tometer value obtained from the measurements in Section 5.4. There are two reasons why
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Figure 5-14: Stainless steel layer thickness measurements at five different lift-offs. Each data
set follows a line of constant lift-off. The data are listed in Table 5.4.

Data h = 3.3 mm h = 4.1 mm h = 4.8 mm h = 5.6 mm h = 6.5 mm Nominal
set Thk. Lift. Thk. Lift. Thk. Lift. Thk. Lift. Thk. Lift. thickness
1 −0.33 3.57 −0.33 4.40 −0.33 5.05 0.02 5.60 0.24 6.33 0.00
2 0.61 3.26 0.63 4.06 0.63 4.72 0.71 5.54 0.69 6.49 0.60
3 0.92 3.26 0.93 4.09 0.94 4.81 0.94 5.64 0.97 6.54 0.96
4 1.49 3.23 1.50 4.08 1.56 4.73 1.53 5.57 1.55 6.51 1.50
5 1.93 3.23 1.94 4.07 1.95 4.76 1.95 5.60 1.97 6.53 1.89
6 2.14 3.21 2.16 4.06 2.16 4.73 2.15 5.60 2.16 6.51 2.10
7 2.57 3.25 2.58 4.06 2.56 4.78 2.56 5.63 2.57 6.54 2.49
8 2.90 3.24 2.90 4.06 2.88 4.77 2.89 5.60 2.90 6.53 2.85
9 3.45 3.24 3.47 4.05 3.50 4.72 3.50 5.55 3.52 6.49 3.39
10 4.13 3.22 4.12 4.04 4.13 4.75 4.13 5.55 4.10 6.50 3.99
11 4.33 3.24 4.43 4.06 4.46 4.75 4.46 5.55 4.44 6.49 4.35
12 5.03 3.23 5.01 4.05 5.30 4.76 5.04 5.55 5.04 6.49 4.95

Table 5.4: Stainless steel layer thickness estimation results for various lift-offs h. Each of the
five sets of twelve measurements is taken at a different value of the lift-off.
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Figure 5-15: Low frequency (100 Hz) conductivity/thickness measurement grid and results
for six different metal plates. The data are listed in Table 5.5. The grid is built assuming a
constant lift-off of 3.3 mm.

lift-off is almost always one of the unknown properties to be estimated in magnetometer mea-
surements: (1) at the lower thickness scales typical of MWM sensors dust particles and sur-
face roughness make a non-negligible contribution to the lift-off; and (2) grids including lift-off
have more closely “orthogonal” cells, and thus better selectivity, as other material properties
are less independent of each other when they enter the model. The relatively large minimum
lift-off value for this sensor reduces the importance of the first consideration. The second one
still remains an issue, as can be observed in the upper right corner of Figure 5-15, where the
grid cells collapse and approach zero area, as their edges become almost parallel to each other,
making it impossible to measure conductivity and thickness independently. Grid look-ups in
such an area of the grid are naturally unreliable. Nonetheless, there is a large region of the
grid where the two unknown properties are sufficiently independent of each other.

Another interesting property displayed by this grid is that near the upper left corner lines
of constant conductivity form spirals, as they approach the limiting point, which corresponds
to infinite thickness. As a result the grid folds in on itself, sometimes several times for a
large enough range of thicknesses. This means that for certain values of the complex sensor
magnitude there can be two or more solutions, all physically valid. Expanded views of this
region of the grid are shown in Figure 5-16.

This kind of behavior can be manifested by magnetometer grids where one of the unknown
parameters is the thickness of a metal layer [13]. This is caused by the fact that in the
presence of magnetic diffusion, the exponent γ of the z-dependent term is a complex number,
as shown in equation (2.14). If the decay is dominated by the skin depth, as is the case here,
the real and imaginary components of γ are approximately equal. The resulting exponential
decay is shown in Figure 5-17, which is a plot of �{e−(1+i)z/δ} = e−z/δ cos(z/δ).
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Figure 5-16: Expanded views of the upper left corner of the grid in Figure 5-15, showing the
curl in the grid.

Due to the imaginary part of the exponent, the phase of the induced eddy currents changes
with depth, so that the effect of the missing tail of the exponent, due to the finite width of the
layer, can alternatively enhance or reduce the fields at the secondary sensor, leading to the
spiral grid effect. Exactly the same phenomenon is responsible for the sign reversal of the
crack signature in Figure 5-22 in the next section, compared to the other two scans taken at
shallower depths.

Since 100 Hz is outside the range of frequencies available with the JENTEK impedance
analyzer equipment, an HP 4263A instrument is used to carry out measurements shown in
Figure 5-15 and Table 5.5. This has certain disadvantages, because the JENTEK software
environment provides some useful features, such as data averaging, filtering, and real time
grid look-up, unavailable here.

The data in Table 5.5 are in good agreement with the conductivity values in Table 5.2 and
the nominal thicknesses, measured with a caliper. One notable exception is the 1.3 mm thick
aluminum plate. It is simply out of the range of sensitivity for this measurement. This can
be seen visually in Figure 5-15, with this point falling in a very narrow region of the grid.

✲

✻

z/δ

�{e−(1+i)z/δ
}

= e−z/δ cos(z/δ)
1

0.5

0
π/2 π 3π/2 2π

Figure 5-17: A plot of the real part of complex exponential decay, characteristic of magnetic
diffusion.
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Nominal Measured Measured
Data Material thickness conductivity thickness
set [mm] [MS/m] [mm]
1 Cu 110 3.2 56.2 3.39
2 Al 2024 3.2 17.5 3.34
3 Al 2024 1.3 12.5 2.19
4 Al 6061 6.7 29.1 6.53
5 Al 2024 9.9 17.1 10.38
6 Al 6061 9.8 28.1 9.52

Table 5.5: Low frequency (100 Hz) conductivity/thickness measurement results for six metal
plates.

Given how narrow the grid is at this point, and that only one point air calibration is used, it
is fortunate that the point does not fall outside of the grid. Similarly, given that the Al 2024
3.2 mm point is also in a very narrow region, it is surprising that the values estimated for
this case are as good as they are. This loss of sensitivity for metal layers with thicknesses
much less than the skin depth is exactly analogous to the measurement of thin coatings in
Section 5.6.

5.8 Crack detection through 1/4 inch stainless steel plate

The last set of experiments with the prototype GMR sensor magnetometer illustrate its abil-
ity to detect material flaws hidden behind a thick layer of metal. They are carried out by
performing area scans of a set of stainless steel plates, into one of which a one inch long slot
has been milled out to simulate a crack. The geometry of the plate and slot are shown in
Figure 5-18.

The grid used for this measurement is the conductivity/lift-off grid in Figure 5-8. The
crack is not modeled explicitly, but its presence is usually manifested by a local reduction in
the value of the measured effective conductivity. In some cases, depending on its depth and

25 mm

Slot lengh

Slot width 0.4 mm

3.2 mm

thickness
Plate

12 in
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Plate center

Slot

Slot depth 

2.4 mm

Figure 5-18: Geometry of stainless steel plate with a slot simulating a crack.
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Sensor side Sensor sideSensor side

(a) (b) (c)

Figure 5-19: Stainless steel plate configuration for three area scans. The three arrangements
position the simulated crack at the upper surface (a), 3.2 mm below the upper surface (b), and
7.2 mm below the upper surface (c).

position below the surface, it may appear as a local change in the lift-off, as explained later in
this section.

The scans are carried out by attaching a linear encoder to the magnetometer base, and
sliding it down the length of the plates, using a ruler as a guide. The instrument takes data
continuously and records it together with the encoder position. The position of the ruler is
changed in small increments in the x-direction, for a total of thirty-nine linear scans, com-
bined into one two-dimensional area scan. The number of points in the y-direction is typically
between 500 and 1000 and the data are processed in a way that averages and interpolates the
points, giving a value for every 0.1 inch increment in the y-direction. The excitation frequency
is 12.6 kHz.

Due to the relatively large diameter of the magnetometer, ≈ 11′′, relative to the plates’
dimensions, 12′′ × 12′′, the area scanned is limited to less than 6′′ × 6′′. Even so, near the
edges of the scan area some of the sensor windings fall past the end of the plates. The magne-
tometer always has its inner windings, contained in a circle with radius equal to W = 8 cm,
corresponding to the first zero of the Bessel function current distribution, over the metal
plates.

Three scans are taken, with the stainless steel plates arranged as shown in Figure 5-19.
The image generated by the first scan, with the slot at the surface, is shown in Figure 5-20.
The image shows the conductivity, normalized by its value far away from the crack, by assign-
ing color according to the scale shown on the right side of the figure. The crack signal is very
strong, with the effective conductivity decreasing more than 3% near the crack position.

The double hump signature of the crack is characteristic of the effect cracks have on the
signal of spatially periodic magnetometers. The crack alters the magnetic fields by causing
an interruption in the path of the eddy currents induced in the metal. The induced current
density tends to mirror the current density of the drive, and as a consequence the disruption
caused by the crack is greatest when it is directly below the primary winding nearest to the
sensing element, and is oriented perpendicular to the direction of the current. This explains
the nature of the signature seen in Figure 5-20.

The image generated with the crack positioned 3.2 mm below the surface is shown in
Figure 5-21. The change of the effective conductivity is approximately 2.5% in this case.

The most important area scan is done with the crack 7.2 mm below the surface. The image
is shown in Figure 5-22. In this case the conductivity change is less than 0.5%, which is barely
greater than the noise level with this setup. This is to be expected, since the skin depth of
the stainless steel at the excitation frequency is 3.8 mm, calculated earlier in Section 5.6. The
quality of the image at this depth can be improved by measuring at a lower frequency, with
the skin depth becoming correspondingly larger. This experiment confirms that this type of
magnetometer can detect deeply buried cracks by operating at sufficiently low frequency.
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Figure 5-20: Area scan of stainless steel plate with the crack at the surface. The position of
the crack is indicated with a white line. The color in the image represents the value of the
conductivity, normalized by its average value far away from the crack, according to the scale
on the right side of the figure.

It is important to understand that the depth of sensitivity to flaws cannot be extended
indefinitely by making the frequency of excitation arbitrarily low. There are two factors that
contribute to the eventual loss of sensitivity at lower frequencies. The first one is that since
the flaws affect the measurement by altering the eddy current path, and are thus manifested
as a change in the effective conductivity, if the frequency is lowered to the point where the
Laplacian decay term in equation (2.14) begins to dominate, the measurement loses sensitiv-
ity to the presence of the flaw and to the conductivity in general. The second factor is that
as the skin depth becomes larger, in order to reach a flaw buried deeper, the flaw’s signature
becomes more diluted by the averaging of the conductivity over a greater volume of metal.
Consequently, the size of the smallest crack that can be detected increases. Nevertheless,
since the GMR sensor overcomes the previously described loss of sensitivity experienced by
standard eddy current sensors at low frequencies, the depth of sensitivity is much greater
than what can be achieved with the MWM and other magnetometers, as confirmed by the
data in this section.

An interesting feature to be observed in Figure 5-22 is that the effective conductivity
change is in the opposite direction, i.e. near the crack the measured effective conductivity
is actually higher. The cause of this effect is the same as what causes the grid in Figure 5-15
to curl in. As illustrated in Figure 5-17, the phase of the induced eddy currents changes with
depth. With the crack positioned 7.2 mm below the surface, which is 0.6π skin depths into
the metal, falling in the negative region in Figure 5-17, it interrupts eddy currents that are
flowing in a direction opposite to the surface eddy currents, thereby increasing the magnetic
flux at the sensor. This reversal of the eddy current direction and associated magnetic field
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Figure 5-21: Area scan of stainless steel plate with the crack 3.2 mm below the surface. The
position of the crack is indicated with a white line.
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Figure 5-22: Area scan of stainless steel plate with the crack 7.2 mm below the surface. The
position of the crack is indicated with a black line. Because of the change in phase of the
induced current, at this depth the polarity of the crack signature is reversed.
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Figure 5-23: Linear scan of simulated crack taken at multiple frequencies. The slot is 3.2 mm
below the surface, according to Figure 5-19 (b). The motion is in the y-direction, with the
slot oriented perpendicular to the scan direction at a position just before the 3 inch point.
The x-position of the scan corresponds to the right end point of the slot in Figure 5-20. The
conductivity is normalized by its value far away from the slot. As the frequency of excitation is
increased, decreasing the skin depth, the polarity of the crack signature is reversed.

can also be observed in Figure 4-16 (b), where the magnetic field lines reverse direction deeper
into the metal.

An interesting consequence of this effect is that there is a characteristic depth, near π/2
skin depths, where a crack causes no change in the effective conductivity. Figure 5-23 shows
one of the constitutive linear scans used to generate the area scan in Figure 5-21, taken at
eight different frequencies, with the slot 3.2 mm below the surface. It can be seen that at
40 kHz the crack cannot be detected. At this frequency the skin depth is 2.1 mm, so that the
slot extends from 1.5δ to 2.6δ in the z-direction, and it straddles the π/2 point in Figure 5-17
in just the right proportion to cancel out its effect on the measured effective conductivity.
As expected, at higher frequencies and corresponding lower skin depths the polarity on the
signature is reversed.

To avoid the risk of missing a flaw in this way, it is common practice to test at more than
one frequency. In addition, while the real part of the exponent may average out to zero, the
imaginary component in that case does not, and consequently the crack signature is present
in a plot of the effective lift-off. This is also evident in the grid in Figure 5-15, where a constant
conductivity line may change its direction along a spiral, but never crosses itself.
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5.9 Magnetic permeability measurements of ferromagnetic
fluids

The circular magnetometer is also used to measure the magnetic permeability of a set of
samples of different ferrofluids. Ferromagnetic fluids, or ferrofluids, are highly paramagnetic
materials synthesized by introducing a colloidal suspension of permanently magnetized single
domain particles, typically magnetite, of order 10 nm diameter in a carrier fluid [79, 80] [49,
§12.2.4]. A surfactant, such as oleic acid, is needed to keep the particles from agglomerating
from attractive magnetic and van der Waals forces, by using steric repulsion with a molecular
monolayer coating around each particle. Typical ferrofluids can thus remain gravitationally
and magnetically stable indefinitely. The particle density of a typical ferrofluid is on the order
of 1023 m−3.

Since ferrofluids are typically electrical insulators, in the absence of other materials the
phase of the magnetometer transfer function is zero. The imaginary component µ′′ of the
complex magnetic permeability µ∗ is defined by

µ∗ = µ′ − iµ′′ (5.10)

The imaginary component µ′′ reflects energy loss due to magnetization. At excitation frequen-
cies of several megahertz or higher, µ′′ can become significant, in which case the magnetome-
ter phase is not zero, and the information contained in it can be used to estimate its value.
Typical power loss mechanisms are associated with the change in magnetization direction
due to particle rotation in the carrier liquid, called Brownian relaxation, or by rotation of the
magnetization within the particle, called Néel relaxation.

Neither one of these processes can be observed with the magnetometer used in this set of
experiments, because it is not designed to be operated at the high frequency range needed to
observe the loss spectrum of the fluids. Whatever contribution to the phase the imaginary
component of the permeability may have is overwhelmed by the parasitic phase shift due
to the self-capacitance of the primary winding. Consequently, at a given excitation spatial
wavelength only one degree of freedom is available, making it possible to estimate only one
unknown parameter. Unlike measurements on conducting media, operation at different fre-
quencies does not provide independent information, which is also the case with dielectrometer
measurements.

The type of measurement carried out with the ferromagnetic fluids estimates their mag-
netic permeability, assuming that the lift-off and the thickness of the magnetic layer are
known. The thickness is calculated by dividing the measured volume of fluid by the surface
area of the flat-bottomed glass vessel used to contain the liquid during measurement. The
lift-off is the sum of the intrinsic lift-off of the sensor and the thickness of the bottom of the
glass container. It is best to measure this lift-off experimentally, using the conductivity/lift-off
method described in Section 5.4, with several thick sheets of copper positioned at the bot-
tom of the glass beaker. In this way any nonuniformity in the lift-off due to glass thickness
variation and/or curvature is absorbed into a single average effective lift-off value.

The results of measurements with six ferrofluid samples are shown in Table 5.6. The
inner diameter of the circular beaker is 18.5 cm, corresponding to a surface area of 269 cm2.
The first four tests use 50 cm3 fluid samples, yielding a layer thickness of t = 1.87 mm. The
volume in sets 5 and 6 is increased by 50 and 100 cm3 respectively, by adding water to the
water-based fluid in set 4, yielding layer thicknesses of 3.74 mm and 5.61 mm. The measured
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Data Type of Saturation Measured relative
set ferrofluid magnetization permeability µr

Ferrofluidics Corporation Isopar-m
(similar to kerosene) ferrofluids

1 Lot no. 1634 400 Gauss 1.95
2 NF 1848 400 Gauss 1.62
3 NF 1680 250 Gauss 1.26

Georgia Pacific Lignosite
water-based ferromagnetic liquid

4 Concentrated 150 Gauss 1.39
5 Diluted with one part water 75 Gauss 1.22
6 Diluted with two parts water 50 Gauss 1.18

Table 5.6: Measured ferrofluid magnetic permeability. This is a single unknown measurement
at 12.6 kHz. The thickness of the fluid and the lift-off are known and included in the generation
of the measurement grid.

average lift-off value is h = 6.5 mm. The measurements are carried out at 12.6 kHz.
For a given type and size of ferromagnetic particles, the magnetic susceptibility χm in a

ferrofluid is expected to be proportional to the density of the particles. The permeability is
expressed in terms of the susceptibility as

µ = µ0µr = µ0
(
1 + χm

)
(5.11)

Therefore the susceptibilities of the three different concentrations of water-based ferrofluid,
given as sets 4, 5, and 6 in Table 5.6, should be expected to be related in proportion as
1 : 1/2 : 1/3. The actual measured susceptibility values are 0.39, 0.22, and 0.18, in the ratio
1 : 0.56 : 0.46. Thus the diluted samples have susceptibilities higher than expected. This is
due to the fact that when water is added to the vessel, even after stirring, the concentration of
ferromagnetic particles remains higher closer to the bottom, resulting in property averaging
biased toward overestimating the permeability, since the exponential magnetic field profile
places higher weight on the properties of material closest to the sensor.

In principle, the magnitudes of two fundamental wavelength modes can be combined to es-
timate two unknown properties simultaneously, as described in Section 5.5. For the measure-
ments in this section, given that both the thickness and lift-off are known and well controlled,
better accuracy of the permeability measurement is achieved by limiting the estimation pro-
cess to a single unknown property.

5.10 Summary of Chapter 5

This chapter has described a magnetometer that incorporates all of the new ideas in its design:
a giant magnetoresistive secondary element, a distributed primary winding, and cylindrical
geometry. The correct treatment and analysis of all of these features is necessary for the
successful operation of the new magnetometer, along with the improvements in grid look-up
methods that are described in Section 6.2.

A solution has been found for the problems that result from the highly nonlinear and
limited response of the GMR sensor, which is to place it in a feedback loop with a secondary
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winding (Section 5.2). The transfer characteristics of the loop also depend on the material
under test, and this has made it necessary to expand the distributed current drive model,
developed in Chapter 4, to incorporate these effects (Section 5.3). Having addressed all of
these issues, the magnetometer has been tested in a range of applications:

1. Conductivity/lift-off measurements on nonmagnetic metals (Section 5.4).

2. Two-wavelength permeability/lift-off measurements on magnetizable nonconducting
materials (Section 5.5).

3. Thickness/lift-off measurements for a metal layer in a two-metal test structure (Sec-
tion 5.6).

4. Thickness/conductivity measurements for thick metal plates at ultralow frequency and
high skin depth (Section 5.7).

5. Detection of cracks buried beneath a thick layer of metal (Section 5.8).

6. Magnetic permeability measurements of ferromagnetic fluids (Section 5.9).

All of these are absolute property measurements that have been performed using a one-
point air calibration method, i.e. without the use of calibration standards. The excellent
agreement between the property values obtained with the magnetometer and data from other
sources demonstrates the success of the most important new contribution to existing NDE
technology, which is the ability to perform low-frequency deep-penetration absolute property
measurements without the need for calibration standards.



Chapter 6

Further Extensions of the Sensor
Models

Each of the two sections in this chapter is an extension of the semi-analytical models described
in previous chapters. Section 6.1 introduces motion to the model of the MWM sensor, which
can be useful in scanning applications at low frequencies and high scanning speeds, if the
distance traveled by the sensor in one temporal cycle period is not negligible compared to
the effective spatial wavelength. Section 6.2 describes improvements to the grid look-up and
inverse interpolation methods.

6.1 Mathematical model of the MWM sensor in the presence
of convection

In order to scan a material for flaws, a sensor array can be moved so that the one-dimensional
property profile, provided by the row of sensing elements, can be used to generate a two-
dimensional image. Most often the time interval determined by the scanning speed and the
characteristic length scale of the sensor is much greater than the time period of the imposed
AC field, and in this case the effects of the motion become negligible.

However, as the excitation frequency is lowered, in order to overcome the depth of pene-
tration limitation due to the skin depth effect, it may become important to incorporate sen-
sor motion into the mathematical models. This section shows the changes to the model of
Section 2.1 that result from convection, and shows the results of simulations based on this
modified model.

6.1.1 Changes to the diffusion equation

The most convenient way of incorporating motion in magnetoquasistatic systems is to replace
E by E+ v× B [49,50], so that the current density is written as

J = σ
(
E+ v× B

)
(6.1)

and equation (2.6) becomes

∇×H = −σ
(
iωA+∇Φ − v× B

)
(6.2)

145
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Using the same gauge condition in equation (2.10) and the other manipulations in Sec-
tion 2.1.1, equation (6.2) leads to the following equation for the magnetic vector potential:

∇2A = iωσµA−σµv× (∇×A
)

= iωσµA+σµ
(
v · ∇)

A (6.3)

As before, current flows only in the y-direction, and all quantities are independent of y, so
that the y-component of the velocity has no effect on the sensor response. The velocity can
thus be assumed to be only in the x-direction. Consequently

A = Ay(x, z)ŷ v = ux̂ (6.4)

and the partial differential equation for Ay becomes

∂2

∂x2
Ay +

∂2

∂z2
Ay = iωσµAy +σµu

∂
∂x
Ay (6.5)

As will be discussed in more detail later in this section, the presence of convection breaks
the symmetry that allows the solutions of equation (6.5) to be written only in terms of cosines,
as was done in Section 2.1. The full exponential form must be used here:

Ay = A0e−ikxe±γz (6.6)

The sign of k in the exponent is arbitrary, because both positive and negative spatial wave-
numbers will be considered. After substitution in equation (6.5), equation (6.6) leads to the
following constraint on γ:

γ =
√
k2 + iσµ(ω − uk) (6.7)

Comparing equation (6.7) to equation (2.14) shows that the way convection enters the
collocation point model is that if a homogeneous layer is moving with a velocity u with respect
to the sensor, and it is possible for each layer to have a different velocity, then the frequency
ω in that layer is replaced with ω − uk, analogous to induction motors. As a consequence,

γn 
= γ−n (6.8)

which means that positive and negative wavenumber modes must be considered separately,
and the full exponential form of the Fourier series must be retained.

The magnetometer geometry is shown in Figure 2-1. All definitions are the same as in
Section 2.1. As was done in that section, all physical quantities are normalized according
to the equations in Section 2.1.2. Given the normalization of σ and k, the velocity must be
normalized as

ū =
u

ωλ
(6.9)

leading to the following expression for the normalized γ̄ in terms of the other normalized
quantities:

γ̄n =
√

(2πn)2 + iσ̄µ̄∗(1− 2πnū) (6.10)
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6.1.2 Symmetry

The presence of convection changes the symmetry constraints of equation (2.27) to

∂Ay

∂x

∣∣∣∣
x

= ∂Ay

∂x

∣∣∣∣−x (6.11a)

Ay(x) = −Ay

(
x+

1
2

)
(6.11b)

Comparing equation (6.11) to equation (2.27) shows that the even symmetry with respect
to x = 0 is broken, because v changes direction when reflected across the y-z plane. The
negative symmetry of translation by 1/2 still holds because, the presence of motion does not
invalidate the fact that half a period to the right all current flows in the opposite direction,
changing the sense of most other physical quantities as well.

The effect of the broken symmetry is to require the use of the full exponential Fourier
series, instead of the even cosine series. Furthermore, a full half period must be included in
the model, to determine the magnetic vector potential everywhere.

As before, only odd-numbered Fourier modes are needed, due to the translational symme-
try conditions, and, as in Section 2.1, all summations over Fourier modes use only odd values
of n.

6.1.3 Collocation points

Since the interval of interest now contains one half wavelength, the number of regions mod-
eled separately increases to seven, with the addition of the return leg of the secondary wind-
ing, another gap, and half of the return leg of the primary.

This number may be reduced to six by shifting the origin from the center of the primary
winding to its left edge. This change does not violate the built-in symmetry assumptions in
equation (6.11), since the odd symmetry with respect to the origin is already broken.

If K collocation points are still placed in each interval, the total number becomes 6K. The
distribution of the points is made cosinusoidal in every interval. It is still necessary for the
integration interval limits to include the winding edges, and in analogy to equation (2.33)
they are defined as

x∗m = ctm

x∗K+m = c+ gtm

x∗2K+m = c+ g+ dtm

x∗3K+m = c+ g+ d+
(
1
2
− c− 2d− 2g

)
tm

x∗4K+m =
1
2
− g− (1− tm)d

x∗5K+m =
1
2
− (1− tm)g



0 ≤ m ≤ K (6.12)

where tm is defined as

tm =
1− cos(πm/K)

2
(6.13)
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The geometrical parameters c, d, and g are defined in Figure 2-1, and all length parameters
are normalized by the wavelength λ. As in equation (2.34), the collocation points xm are
situated in the middle of the integration intervals, except at the two ends:

xm =


x∗m m = 0, 6K

x∗m+1 + x∗m
2

m = 1, 2, . . . , 6K − 1
(6.14)

The collocation points span half a period, so that x6K − x0 = 1/2. Equation (6.11) requires
that

a6K = −a0 (6.15)

where am are the values of Ay at the points xm. Equation (6.15) is the extra constraint needed
to make the number of independent unknowns equal to the number of integration intervals.
The corresponding constraint in Section 2.1 is equation (2.32).

6.1.4 Fourier series representation

The magnetic vector potential is represented as an exponential Fourier series:

Ay(x) =
∞
∑

n=−∞
n odd

Ane−iknx (6.16)

Only odd-numbered modes are necessary, because of the constraint given in equation (6.11).
To obtain the Fourier coefficients An in terms of the values at the collocation points, the
following integral must be solved:

An = 2
∫ 1/2

0
Ay(x)eiknxdx

= 2
6K−1

∑
m=0

∫ xm+1

xm

(xm+1 − x)am + (x− xm)am+1

xm+1 − xm
eiknxdx

=
2
k2n

6K−1

∑
m=0

eiknxm+1 − eiknxm

xm+1 − xm

(
am+1 − am

)
+

2
ikn

6K−1

∑
m=0

[
am+1eiknxm+1 − ameiknxm

]
(6.17)

The summation in the last term of equation (6.17) cancels out on a term by term basis,
with the first and last terms also canceling each other due to the wrap-around effect:

a6Keiknx6K = −a0eikn(x0+ 1
2 ) = −a0eiknx0eiπn = a0eiknx0 (6.18)

where n is an odd number, and use has been made of the previously established relationships
a0 = −a6K and x6K − x0 = 1/2. The remaining summation in equation (6.17) can be rewritten
as

An = − 2
k2n

6K

∑
m=1

am

[
eiknxm+1 − eiknxm

xm+1 − xm
− eiknxm − eiknxm−1

xm − xm−1

]
(6.19)
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if, for convenience, an extra collocation point is defined:

x6K+1 = x1 +
1
2

(6.20)

This works because

−a0 e
iknx1 − eiknx0

x1 − x0
= a6K

−eiknx6K+1 + eiknx6K

x6K+1 − x6K
(6.21)

having used the same method as in equation (6.18).

6.1.5 Normalized surface reluctance density

Equations (2.39) through (2.52) apply without any changes, as long as negative values for
the mode number n are allowed, and the definition of γn used in each layer is obtained via
equation (6.7).

6.1.6 Boundary conditions

As before, the surface current must be zero in the gaps, requiring no changes to equation
(2.53). Equation (2.56) also applies, but there is one complication: whereas over the primary
winding the terminal voltage is still v1, it is not known ahead of time how v2 is divided between
the two legs of the secondary winding, since the symmetry is broken and the voltage is not
divided equally.

If −v′ is the terminal voltage in equation (2.56) applied over the second leg of the sec-
ondary winding, then for the first leg v2 − v′ must be used. The extra unknown v′ requires an
additional constraint, in order to determine the vector potential uniquely. The extra equation
comes from the restriction that the total current in both legs of the secondary winding must
be equal in magnitude.

The integral over KS remains in a similar form:∫ x∗m+1

x∗m
KS(x) dx =

∞
∑

n=−∞
n odd

Rnkn
∫ x∗m+1

x∗m
Ane−iknx dx

= −
∞
∑

n=−∞
n odd

iRn
[
e−iknx

∗
m+1 − e−iknx

∗
m

] 2
k2n

6K

∑
j=1

aj

[
eiknx j+1 − eiknx j

x j+1 − xj
− eiknx j − eiknx j−1

xj − xj−1

]

=
∞
∑

n=−∞
n odd

Rn
6K

∑
j=1

Mn
m, ja j

(6.22)
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which leads to the following definition of Mn
m, j:

Mn
m, j =

2i
k2n

{
− 1
xj+1 − xj

[
eikn(xj+1−x∗m+1) − eikn(xj+1−x∗m)

]
+
[

1
xj+1 − xj

+
1

xj − xj−1

]
·
[
eikn(xj−x

∗
m+1) − eikn(xj−x

∗
m)
]

− 1
xj − xj−1

[
eikn(xj−1−x∗m+1) − eikn(xj−1−x∗m)

]} (6.23)

It is still possible to use the shortcut implemented in Section 2.1.6 via R∞ and M′
m, j. If N

is large enough, so that Rn ≈ R∞ for n > N and Rn ≈ −R∞ for n < −N, then the modes with
positive and negative indices may be paired up as

∞
∑
n=1
n odd

2i
k2n

(
eiknx − e−iknx

)
= −4

∞
∑
n=1
n odd

sin(knx)
k2n

= − 1
π2 f (x) (6.24)

where f (x) is the function defined in equation (2.61). The integral over KS(x) in equation
(6.22) can then be written as:∫ x∗m+1

x∗m
KS(x) dx ≈

N

∑
n=−N
n odd

(
Rn − R∞

) 6K

∑
j=1

Mn
m, ja j + R∞

6K

∑
j=1

M′
m, ja j (6.25)

where the coefficients M′
m, j are given by:

M′
m, j =

∞
∑

n=−∞
n odd

Mn
m, j = − 1

π2

{
− 1
xj+1 − xj

[
f
(
xj+1 − x∗m+1

)− f
(
xj+1 − x∗m

)]
+
[

1
xj+1 − xj

+
1

xj − xj−1

]
·
[
f
(
xj − x∗m+1

)− f
(
xj − x∗m

)]
− 1
xj − xj−1

[
f
(
xj−1 − x∗m+1

)− f
(
xj−1 − x∗m

)]}
(6.26)

The computation of the integral over A(x) does not depend on the Fourier representation,
which means that equations (2.63), (2.64), and (2.65) remain valid in the presence of motion.

6.1.7 Setting up the matrix equation

As explained in the previous section, there is an extra unknown, v′, and an extra equation
which must be considered when setting up the matrix equation. If v′ is appended to the end of
the vector a, then the matrix M in Ma = b has one extra row and one extra column, compared
to the matrices Mn, M′, and M′′, which are 6K × 6K matrices. This results in the following
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definition for the elements of M:

Mm, j =



N

∑
n=−∞
n odd

(
Rn − R∞

)
Mn
m, j + R∞M′

m, j


K ≤ m < 2K
3K ≤ m < 4K
5K ≤ m < 6K

0 ≤ j ≤ 6K

N

∑
n=−∞
n odd

(
Rn − R∞

)
Mn
m, j + R∞M′

m, j + iσcoilM
′′
m, j


0 ≤ m < K

2K ≤ m < 3K
4K ≤ m < 5K

0 ≤ j ≤ 6K

σcoil
(
x∗m+1 − x∗m

) {
2K ≤ m < 3K
4K ≤ m < 5K

j = 6K{
3K−1

∑
�=2K

−
5K−1

∑
�=4K

} N

∑
n=−∞
n odd

(
Rn − R∞

)
Mn

�, j + R∞M′
�, j

 m = 6K 0 ≤ j ≤ 6K

0 m = 6K j = 6K
(6.27)

where the definition of the last row, m = 6K, which implements the constraint that the total
of the current in the two legs of the secondary winding must be zero, is derived from equa-
tion (2.69). The following short hand notation was used in equation (6.27):{

∑1−∑2

}[ ] ≡ ∑1

[ ]−∑2

[ ]
(6.28)

The definition of b in equation (2.68) remains unchanged, with the addition of an extra
row of zeros at the bottom.

A minor change in equation (2.69) requires the removal of the factor of two, since the entire
primary is in the half period, and the addition of a column of zeros:

Fm, j =



K−1

∑
�=0

 N

∑
n=−∞
n odd

(
Rn − R∞

)
Mn

�, j + R∞M′
�, j

 m = 0 j < 6K

3K−1

∑
�=2K

 N

∑
n=−∞
n odd

(
Rn− R∞

)
Mn

�, j + R∞M′
�, j

 m = 1 j < 6K

0 j = 6K

(6.29)

6.1.8 Effect of convection on sensor response

The implementation of the changes to the model shown in this section makes it possible to
study how the sensor response changes with increasing velocity. Figure 6-1 shows the trajec-
tory of the sensor transinductance in magnitude/phase space, as the velocity of the material
is increased.

An interesting phenomenon to observe in Figure 6-1 is that for a certain range of values
the phase of the transinductance becomes positive, corresponding to impedance with a nega-
tive real component. Whereas this may appear nonphysical at first, one must bear in mind
that this is a two-port transinductance of a continuum system and cannot be thought of as
a single lumped component. A somewhat similar phenomenon of negative transconductance
and transcapacitance can occur in the IDED [10].
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Figure 6-1: Locus of the transinductance of an MWM in magnitude/phase space as the con-
vection velocity increases.
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Figure 6-2: Real part of the magnetic vector potential Ay, shown for stationary and moving
media. It can be seen that the odd symmetry with respect to the quarter-period point is broken
while the translational symmetry still holds, as implied by equation (6.11). The potential
in this figure corresponds to driving the secondary winding, which is the opposite of typical
operation, but the effect is easier to observe in this case.



6.2. Grid look-up and interpolation algorithms 153

Figure 6-2 shows a comparison between a moving and stationary metal layer. In addition
to breaking the symmetry with respect to the quarter-period point, clearly visible in the figure,
the motion also acts to decrease the magnitude of the potential. The ability of the conducting
material to counteract the imposed magnetic field improves at higher speed, a behavior also
observable in Figure 6-1.

6.1.9 Summary

This section has illustrated how to incorporate material motion into the semi-analytical collo-
cation point model of the magnetometers with Cartesian geometry. Although the analysis has
focused on the MWM, the same methods are also directly applicable to modeling Cartesian
geometry magnetometers with distributed current drives, of the type described in Chapter 4.
Most magnetometer arrays, used for generating two-dimensional scans of a material, for ex-
ample the one shown in Figure 1-2, fall in the latter category.

Use of magnetoresistive secondary elements, as described in Chapter 5, makes it possible
to operate magnetometers and magnetometer arrays at very low excitation frequencies, and
in such cases the scanning velocity may begin to have an appreciable effect on the sensor
response, and will have to be incorporated in the simulation methods.

6.2 Grid look-up and interpolation algorithms

This section describes the most recent implementation of the two-dimensional grid look-up
algorithm. The purpose of this algorithm is to convert the value of the measured transimpe-
dance of a sensor to material properties, i.e. parameter estimation, by interpolating between
the points of a look-up table of pre-computed sensor responses, known as a measurement grid.
The concept of using measurement grids for parameter estimation is described in Section 1.4.

The type of interpolation that needs to be carried out for a grid look-up is not what is done
in typical look-up table algorithms, which are forward interpolation algorithms. This is a
critical distinction and deserves some more explanation. Interpolation methods of this nature
are discussed in [81], though the subject of two-dimensional inverse interpolation algorithms
is not discussed at all.

6.2.1 Two-dimensional inverse interpolation

The concept of inverse interpolation is best illustrated with an example. Suppose there is a
function y(x), whose values yn are known at a set of points xn. The independent variable is x,
and xn are chosen by the designer of the look-up table to span the anticipated function domain.
The most common task is finding a value for y at a given value of x. This is one-dimensional
forward interpolation and is very easy to carry out, since it is known from the start which xn
is closest to x, etc.

Finding a value of x that corresponds to a given value of y in the table described above
is what is known as inverse interpolation. It is a much more difficult operation, especially if
y(x) is not a monotonic function. Furthermore, the values of y may be repeated, and are not
evenly spaced, unless the function is a straight line.

In two dimensions, forward interpolation entails finding the value of a function y(x1, x2)
from x1 and x2 by interpolating in a two-dimensional table that lists the values of y at a
set of predetermined values of the two independent variables. This can be done via bilinear
interpolation or its higher order variants. The key feature is that, as in the one-dimensional
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Figure 6-3: Example of a situation where the closest grid point to a target point is not one of
the corners of the grid cell enclosing the target point.

case, it is known from the outset which is the closest point in the table to the target point, and
which of the table’s points to use for the interpolation. The actual interpolation is also easy,
since when plotted in x1-x2 space the table forms a rectangular grid.

Two-dimensional inverse interpolation comes about when there is a table that lists the
values of two functions, y1(x1, x2) and y2(x1, x2), at a set of predetermined values of the inde-
pendent variables, which form a rectangular grid. The goal is to find the appropriate values
for x1 and x2 where the functions y1 and y2 attain a pair of known values. This task is orders
of magnitude more complicated. Here are some of the complications:

• Even when both target y1 and y2 fall inside the ranges of the corresponding functions,
there is no guarantee that a solution exists.

• It is not known at the outset what the indices of x1 and x2 are for the point closest to
the target.

• Even if the first two difficulties are overcome, and it is established which cell in the
table should be used for interpolation, in general in y1-y2 space this cell is not
rectangular, or even a parallelogram, and no standard interpolation formula can be
applied.

The grid methods implement this kind of two-dimensional inverse interpolation to convert
the sensor measurement’s magnitude and phase data to real physical quantities, such as con-
ductivity and lift-off. The measurement grids are generated by applying the forward models,
described in Chapters 2–4, at a set of values for the two parameters, giving the magnitude and
phase at each combination. The two measurement parameters do not need to be magnitude
and phase, it is possible to have magnitude/magnitude grids for two sensors, or two spatial
wavelengths inside the same sensor, for example the grids used in Section 3.3 and Section 5.5.

Previously the method of identifying the closest grid point, used to establish which cell to
use in the interpolation, was to calculate the distance to each point on the grid and pick the
shortest one. This is clearly very inefficient, and can also give the wrong result in some cases,
as seen in Figure 6-3. The cell that contains the target point is shaded in the figure. The
closest grid point to the target is clearly not one of its four corners.

The actual interpolation step was also deficient in many respects for nonrectangular grid
cells, giving discontinuous interpolation not only at cell boundaries, but sometimes even inside
the same cell, in addition to sometimes manifesting bias toward some of the grid cells that
cannot be justified geometrically.

This section describes methods that successfully overcome all of these limitations. It is
divided into three subsections: the search algorithm, which aims to find the grid cell inside
which the target point is located; and two interpolation methods of increasing performance
and complexity.
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6.2.2 Search algorithm

The function of this algorithm is to locate quickly the grid cell that contains the target point.
It can be roughly divided into four steps:

1. Choose a starting point. Initiating the search close to the target point can significantly
improve the efficiency of the search. In general, this should be the cell used in the last
look-up, because it is very likely that consecutive measurements lie close together on the
grid. In fact, in most cases the last cell used contains the current target point, so that
this step often concludes the search. If this is the first look-up in the current session, a
rough interpolation is done based on the four corners of the grid to estimate the indices
of the starting point, using a method similar to the one described in Section 6.2.3.

2. Zoom out. If the target point is not inside the current cell, increase the size of the area
tested to 2× 2, 4× 4, etc., until either the current grid “square” (collection of cells being
considered) contains the target point, or it reaches a predefined limit or the size of the
entire grid.

3. Move the grid square. If the grid square currently under consideration does not contain
the target point, move to the next grid square of the current size in the direction toward
the target point. Keep moving until one of the following three conditions occurs:

(a) The target point falls inside the current square.

(b) The square reaches the edge of the grid.

(c) It cannot be determined which the correct direction to move is. This last condition
can occur in special cases near singular points, near grid folds, or if the current grid
square is not a convex quadrangle.

4. Zoom in. If the size of the current grid square is greater than a single grid cell, reduce
it by a factor of two and go back to step 3. Otherwise, end the search.

If in the end the current grid cell contains the target point, the search was successful.
Otherwise, the target point is most likely off the grid.

There can be cases when the search fails even if the target point is on the grid. This can
happen if the grid is so curved that moving in a direction toward the target in the plane of
the grid, i.e. in magnitude/phase space, moves away from the correct cell in parameter space.
These cases are handled by reverting to the “brute force” method of computing the distance
to every point on the grid and finding the closest grid point to the target point. It is then used
as the starting cell for a second run through the search algorithm. If, in fact, the target point
is on the grid, this will find the correct cell with a very high likelihood. Most often, however,
if the first run fails, it is because the point is off the grid, so that if used every time a point off
the grid is encountered, this second search step takes a disproportionately long time to run,
which can create problems, especially when performing real-time estimation. Whether to give
up after the first try or attempt the long search method depends on the particular application.

In order to determine the direction to move in step 3 above, a formula (equation (6.31)) is
applied that calculates the area of the triangles formed by each of the four sides of the grid
square and the target point, and the sign of the result is used to determine whether the target
point lies inside the square, or else in which direction the square is to be moved. For example,
if the target point is to the “right” of both the “left” and “right” sides of the square, it must
be moved one over to the right, etc. The directions here are put in quotations, because the
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Figure 6-4: Schematic diagram of the two-dimensional inverse interpolation in a grid cell.
Each pair of opposing sides is associated with two values of a parameter being estimated, P or
Q. d1 through d4 are the distances from the target point T to the four grid edges.

meanings of “right”, “left”, “top”, and “bottom” depend on the direction of increasing parameter
index number, and on whether the grid is “right-handed” or “left-handed”, i.e. whether the
axes in magnitude/phase space and parameter space have the same or opposite sense.

6.2.3 Simple inverse two-dimensional interpolation

This interpolation method is based on the distances between the target point and the lines of
constant parameter, P or Q, as shown in Figure 6-4:

P =
d3P1 − d1P2
d3 − d1

Q =
d4Q1 − d2Q2

d4 − d2
(6.30)

The distances d1 through d4 are calculated by dividing the area of the triangle with vertices
at the two corners and the target point by the length of the cell side, and then dividing by two.
The following formula is used to find the triangle area:

Aijk = xi(yk − yj) + xj(yi − yk) + xk(yj − yi) (6.31)

The sign of Aijk can be positive or negative, depending on whether the motion is in a posi-
tive (counterclockwise) or negative (clockwise) direction along the circumscribed circle when
going from i to j to k. Therefore this formula retains directionality information, although it
calculates area. If all three points lie on a line, the result is zero.

It is important to realize that the distances d1 through d4 in equation (6.30) are signed
quantities, so that when the target point lies inside the cell, d1 and d3 have opposite signs, as
do d2 and d4. The order of the area indices in equation (6.31) is important. The advantage
of maintaining the polarity information is that the correct result will be obtained even if the
target point lies outside the grid cell used for interpolation.

The problem with the “simple” method in this section is continuity across cell boundaries.
The value of the parameter associated with the cell wall being crossed, e.g. P when crossing
line 1–2 in Figure 6-4, is continuous, because it is equal to the value of the parameter on
that line, P1. However, the value of the other parameter, e.g. Q, when crossing line 1–2,
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Figure 6-5: Diagram of a grid cell showing the points used by the complex inverse two-
dimensional interpolation algorithm. Points 5–8 are positioned on the grid cell edges according
to equation (6.32). Instead of being associated with line segments, the four parameter values
P1, Q1, P2, and Q2 are now associated with points 5–8 respectively.

in general makes a discontinuous jump as the grid cell being used for interpolation changes.
This is usually a very small jump, since in most grids the edges of neighboring cells are nearly
parallel.

The practical implications of this discontinuous behaviour are most pronounced when us-
ing iterative techniques, e.g. in coating characterization applications where three unknowns
are measured simultaneously [26], or other multiple-unknown measurements, where it could
lead to lack of convergence. It is also possible to observe the effect when scanning along a part
with continuously varying properties using a coarser grid, where the measured property may
appear to change in steps.

6.2.4 Complex inverse two-dimensional interpolation

To solve the discontinuity problem, given a target point on a grid cell wall, both of the esti-
mated parameters, P and Q, must depend only on the coordinates of the target point and the
two end points of the edge being crossed, common to both cells. For example, when the target
point lies on line 1–2, both P and Q must depend only on the coordinates of points 1, 2, and T.
With the simple method this is true only for P.

This is accomplished in the following way. Instead of using equation (6.30) to calculate P
and Q directly, it is used to find the coordinates of four new points, 5–8, one on each of the
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Figure 6-6: Grid cell transformed into a parallelogram via points 5–8. The interpolation
becomes the simple linear operation given in equation (6.33). The ratios a and b are determined
by the lengths of the sections into which the line segments 5–7 and 6–8 are divided by lines
through the target point T and parallel to the two segments.

four sides of the cell, as shown in Figure 6-5. This is done via the following equations:

x5 =
d4x2 − d2x1
d4 − d2

y5 =
d4y2 − d2y1
d4 − d2

(6.32a)

x6 =
d3x2 − d1x3
d3 − d1

y6 =
d3y2 − d1y3
d3 − d1

(6.32b)

x7 =
d4x3 − d2x4
d4 − d2

y7 =
d4y3 − d2y4
d4 − d2

(6.32c)

x8 =
d3x1 − d1x4
d3 − d1

y8 =
d3y1 − d1y4
d3 − d1

(6.32d)

Now instead of being associated with a line segment, each of the two pairs of grid param-
eters is associated with a pair of points, as shown in Figure 6-6. If, for example, the target
point lies on cell side 1–2, points 8 and 6 will coincide with 1 and 2 respectively, making Q
dependent only on these two points, as required. If P and Q are expressed in terms of the
coefficients a and b, using

P = (1− a)P1 + aP2 Q = (1− b)Q1 + bQ2 (6.33)
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Figure 6-7: Point and segment definitions for a triangular grid cell. Corners 3 and 4 of the
cell coincide. The distance d3 is not well defined, because the line through points 3 and 4 is not
unique. A solution is to pick the line parallel to segment 1–2. The distance d3 is then equal to
the difference between d1 and the distance from point 3 to segment 1–2, keeping in mind that
the distances are signed quantities, and in this example d3 is negative.

then standard bilinear interpolation leads to the following expressions for these coefficients:

a =
(x8 − x6)(y− y5)− (x− x5)(y8 − y6)

(x8 − x6)(y7 − y5)− (x7 − x5)(y8 − y6)
(6.34a)

b =
(x− x6)(y7 − y5)− (x7 − x5)(y− y6)

(x8 − x6)(y7 − y5)− (x7 − x5)(y8 − y6)
(6.34b)

Using this procedure, the grid cell has effectively been transformed from an arbitrary
quadrangle to a parallelogram, outlined with dotted lines in Figure 6-6, although the shape
of this parallelogram depends on the coordinates of the target point.

6.2.5 Handling triangular grid cells

In the past the grid look-up algorithms could not handle cases when two adjacent corners
of a grid cell coincided, as in the grid cell in Figure 6-7. This can be a serious impediment,
since grids with some triangular cells appear to be quite common. Most often this type of
measurement grid arises when the “air” point, which is the sensor response in air, is included
in the grid, at which point the sensor response does not change with lift-off, and the entire
edge of a grid collapses into a single point. Often the air point is used as a reference for sensor
calibration, as described in Appendix D, necessitating its inclusion in the grids to avoid the
need for special treatment.

As a working example consider the case where points 3 and 4 coincide, as shown in Fig-
ure 6-7. The main problem with applying the method outlined in the previous section directly
is that the distance d3 is not well defined, because points 3 and 4 do not uniquely define a line.
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Figure 6-8: Pathological test grid and path through the grid followed by the target point. The
new algorithm makes sure that the estimated values of the two properties remain continuous
at cell edge crossings inside the grid, and that proper parameter estimation is possible inside
the triangular cells near the grid singularity at (22, 0).

It is not possible simply to use the distance between the target point T and point 3, because
the polarity information is lost in this case, among other things, and the results would be very
wrong indeed, especially if the target is outside the cell, which we hope to handle with at least
some grace. The solution is to take the direction of the line through 3 and 4 to be parallel
to the line through 1 and 2. A consequence of this is that the line through 6 and 8 is always
parallel to 1–2 and passes through the target point T. The undefined distance d3 needs to be
redefined via the segments as shown in the figure.

6.2.6 Comparison between the new and the old interpolation methods

A test grid is used to compare the performance of the two interpolation methods, shown in
Figure 6-8. It is crooked by design, so that the discontinuity of the estimated properties is
more pronounced. The grid also includes three triangular grid cells. The values of the param-
eters are shown with arrows in the figure. The range of the “radial,” or perhaps “horizontal,”
property is from 30 to 0 and the range of the “azimuthal,” or “vertical,” property is from −3 to
3. The figure also shows the continuous path followed by the target point through the grid,
which would ideally result in a continuous estimate of the two properties.

The results of using the two look-up methods are shown in the plots in Figures 6-9 and
6-10. A number of discontinuous steps are visible at grid line crossings with the simple
method, while the new complex method remains continuous. As seen in the plot of the radial
property, the complex method can also be discontinuous, but only outside the grid. Whereas
an attempt has been made to treat off-grid cases reasonably, in general continuity cannot be
guaranteed, because it is not possible to determine uniquely which grid cell should be used for
the interpolation. Nonetheless, one can see that as long as the target point remains near the
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grid, the results of the complex method are still quite reasonable. It is only in the azimuthal
property near the singular point at (22, 0) that the estimated property attains extreme values,
but this is to be expected, since several segments with different parameter values merge to
a single point there. Following the air point example, this is the equivalent of attempting to
estimate the lift-off of a material made of air, which is clearly meaningless.

It can be seen in the plots of the estimated properties that the old method curves end
prematurely. This is because the old method could not effectively handle nonstandard, e.g.
triangular, grid cells, which it encounters in the process of locating the bounding grid cell.

6.2.7 Handling multi-valued grids

There are cases when a grid folds in on itself, as described and illustrated in Section 5.7. This
look-up algorithm also attempts to handle this kind of grid, at least in the simplest cases
when there is no more than one “fold” or “twist”. The main difficulty is that the searching
stage of the algorithm may become confused near the fold line. For example, at the fold many
grid cells are quadrangles whose opposite edges cross. It is not possible to determine whether
the target point is to the “left” or “right” of a cell whose left and right edges intersect. In fact,
it is not possible to decide whether the target point falls inside the cell at all.

The approach taken in such cases is to try four different runs of the search algorithm
described in Section 6.2.2, starting at the four corners of the grid. Practice has shown that
this approach is quite effective at handling most cases, providing even for the possibility of
finding two solutions in the areas where the grid surface overlaps itself. No attempt is made
to determine which one of the two solutions is to be considered the “correct” one, as such
decisions need to be made at a higher level, using other information.

6.2.8 Summary

This section has described changes to the existing grid look-up algorithms that result in sub-
stantial improvements of the efficiency and accuracy of these methods. In particular, the
numerical search algorithm that locates the grid cell that encloses the target point has been
made very efficient and capable of handling unconventional or singular grids. The inverse
interpolation step is formulated in a way that ensures continuity of both estimated properties
throughout the range of the grid. In addition to better accuracy and efficiency, the new grid
look-up is much more robust in its ability to treat unusual cases, such as target points that
lie outside the grid or near grid singularities, in a reasonable way.

High performance of the grid look-up algorithm is essential for obtaining the full benefits
of the model-based sensor methodology. The algorithm enhancements described in this section
have already led to great improvements in the quality of data taken with the MWM, IDED,
and their derivatives. Furthermore, the continuity property is very important in algorithms
that include grid look-ups as an intermediate step in an iterative process, as is the case with
several algorithms used to estimate more than two unknowns simultaneously. The robustness
is also very valuable in such cases.

In addition to its application in measurements with the magnetic and dielectric sensors,
this method has independent value as a generic numerical tool for two-dimensional inverse
interpolation.
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Figure 6-9: Results with both interpolation methods for the radial property of the grid in
Figure 6-8. The values estimated with the new complex method are continuous across internal
cell boundaries. The line of the simple method ends prematurely because it cannot handle
triangular grid cells.
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Figure 6-10: Results with both interpolation methods for the azimuthal property of the grid in
Figure 6-8. The values estimated with the new complex method are continuous across internal
cell boundaries. The extreme values attained near the end of the path are due to the fact that
they correspond to target points outside the grid, near a grid singularity, where grid lines with
different values of the azimuthal parameter converge to a single point.



Chapter 7

Summary, Conclusions, and
Suggestions for Continuing Work

7.1 Summary

The main focus of the research effort has been to extend the depth of sensitivity of the periodic-
field quasistatic magnetometers, in order to allow them to detect flaws, such as cracks, voids,
and inclusions, buried deep in a metallic component, or hidden behind a metal layer. This
type of measurement is difficult with the MWM and traditional eddy current magnetometers,
because in the frequency range of sensitivity of these devices, the depth of penetration is lim-
ited by the skin depth of the magnetic field in the metal. In order to overcome this limitation,
it is necessary to make the skin depth on the order of, or larger than, the thickness of metal
between the flaw and the sensor. This may be accomplished by lowering the frequency of
operation, since the skin depth is related to frequency as δ ∝ 1/

√
ω.

The output of traditional eddy current magnetometers is the induced voltage in a sec-
ondary winding. Since it is proportional to the rate of change of the magnetic flux, the sen-
sitivity of the measurement decreases with decreasing frequency, which makes such sensors
unsuitable for low frequency operation. In order to overcome this limitation, the approach
taken here is to replace the secondary winding with a giant magnetoresistive magnetic field
sensor, which responds to the magnitude of the magnetic flux density, and consequently has
no lower bound on its frequency of operation.

A prototype magnetometer that uses this idea has been built and tested. Its deep pene-
tration and low frequency operation capabilities have been used for a range of measurement
applications:

1. Conductivity/lift-off measurements on nonmagnetic metals.

2. Two-wavelength permeability/lift-off measurements on magnetizable nonconducting
materials.

3. Thickness/lift-off measurements for a metal layer in a two-metal test structure.

4. Thickness/conductivity measurements for thick metal plates at ultralow frequency and
high skin depth.

5. Detection of cracks buried beneath a thick layer of metal.

6. Magnetic permeability measurements of ferromagnetic fluids.

163
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Successful operation of the GMR-based magnetometer has required that solutions be
found to a number of design problems. Magnetic sensors based on the giant magnetoresis-
tive effect are passive components, with a highly nonlinear transfer characteristic and limited
dynamic range. These limitations have been overcome by appropriate biasing, and by plac-
ing the sensor in a feedback loop configuration with a secondary winding that maintains the
magnetic flux density at the sensor constant.

The imposed spatial wavelength of the magnetometer is the other factor, together with
skin depth, that can potentially limit its depth of sensitivity. It must therefore also be long
compared to the required depth of penetration. Generating a magnetic field pattern with
a long effective spatial wavelength, while avoiding the need to increase the magnetometer
footprint to impractical dimensions, is accomplished by shaping the current in each segment
of the primary winding to follow an appropriate envelope function.

An important necessary requirement for GMR magnetometer operation is the develop-
ment of good mathematical and physical models, needed for the interpretation of data, and
for parameter estimation of absolute properties. Such models must address the nature of the
distributed current drive primary winding, and must be developed in cylindrical coordinates,
because of the circular symmetry chosen for the sensor prototype.

Efficient simulation methods based on the fast Fourier transform have been developed
for distributed current drive magnetometers, with versions available for both Cartesian and
cylindrical geometry. The validity of the simulation results has been demonstrated by show-
ing the close agreement between a variety of experimental data and corresponding sensor
simulations.

In addition to the many stages of the project that have had to be completed before a GMR
magnetometer could be tested successfully, the capabilities of the spatially periodic sensor
family have been extended in a number of other areas:

1. The existing semi-analytical collocation point methods, used to model magnetometers
and dielectrometers, have been reformulated in a way that offers several advantages:

(a) The magnetometer and dielectrometer models, previously developed by different
earlier research teams, now use a formulation that maintains the direct parallels
between the magnetoquasistatic and electroquasistatic regimes, afforded by the
principle of duality. Unifying the two models is beneficial in that improvements
in one can be directly incorporated in the other with little extra effort.

(b) The electroquasistatic model has corrected earlier errors by incorporating the zero
order spatial Fourier mode properly. This makes a particularly noticeable improve-
ment in cases where a ground plane is present behind the material under test.

(c) Perhaps with greatest significance, the equations are written in a way that cleanly
separates the computation of intermediate results that depend only on the sensor
geometry, and which constitute the greatest computational burden, from those that
depend on the material under test. In almost all practical cases, the former need to
be carried out only once per session, and as a consequence the tasks of generating
measurement grids for a given sensor, or running parameter estimation based on a
minimization algorithm, have been rendered many times more efficient.

2. The semi-analytical collocation point methods have been extended to cylindrical geom-
etry. New practical applications have required the development of analogs of the stan-
dard magnetometers and dielectrometers that have rotational symmetry, suitable for
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measurements on circularly symmetric components or in cases where it is important to
avoid the dependence of sensitivity on orientation. These extended models have been
successfully applied to this new type of sensor. Experimental data have been presented
that confirm the validity of these models by showing the close agreement between sim-
ulated and measured dielectrometer behavior.

3. The highly efficient FFT methods, used to simulate sensors with distributed current
drive, can also be applied for modeling of magnetometers that traditionally use the col-
location point technique, in cases when the exact distribution of the current density
inside the windings is not important.

4. The magnetometer collocation point models have also been extended to accommodate
relative motion between the magnetometer and the material under test. This effect may
become important in scanning applications at low frequencies, if the distance traveled
by the sensor in one temporal cycle period is not negligible compared to the effective
spatial wavelength.

Several improvements to the measurement grid look-up method, which is the most com-
mon approach to two-dimensional parameter estimation, have also been presented. Superior
performance has been demonstrated in both aspects of the look-up process:

1. The numerical search algorithm has been made much more efficient and more reliable.
In addition to being able to find the needed target cell quickly, the new method is also ca-
pable of responding appropriately to unusual cases, which arise in the presence of topo-
logical anomalies in the grid, such as folds, twists, curls, or triangular grid cells. This
capability has become very important recently, as new practical applications have intro-
duced whole new classes of nonstandard measurement grids, like magnitude/magnitude,
or higher-dimensional grids that involve three or more unknowns.

2. The inverse two-dimensional interpolation stage has been formulated in a way that
guarantees continuity in both of the estimated properties across grid cell boundaries.
This avoids the problem of introducing artificial “features” to a sensitive property scan,
and also improves convergence of iterative algorithms that use grid look-up as an inter-
mediate step. Furthermore, compared to previous interpolation methods, on the whole
the improvement in the algorithm’s performance for grid cells whose opposite sides are
appreciably nonparallel makes it possible to use coarser grids with the same level of ac-
curacy, leading to further improvement in efficiency, as well as conservation of computer
memory resources.

7.2 Conclusions

The combination of the various enhancements and innovations in this work has resulted in the
design of a whole new magnetometer sensor structure, capable of absolute property measure-
ment of conductivity, magnetic permeability, and layer thickness at metal depths previously
unattainable with the periodic-field eddy current magnetometers. It has been successfully
demonstrated in the following deep-penetration measurements:

1. Detection of a crack hidden behind a 0.25′′ steel plate.

2. Thickness of aluminum plates on the order of 0.4′′.
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3. Thickness of a steel layer approximately 0.2′′ thick in a two-metal structure.

These thickness values are at least a factor of ten higher than the current thickness upper
limits of the MWM with the same materials, and are nowhere near the outer bound of the
depth of sensitivity of the magnetoresistive magnetometer. Rather, they are the result of
the choice of convenient frequencies and materials used to show feasibility. The depth of
penetration limits of this sensor design have yet to be determined, and by operating at very
low frequencies can in principle be extended to any material thickness.

Another important conclusion is that it has been possible to create a deep penetration mag-
netometer that matches the models so well that it can measure absolute physical properties
without the need for calibration standards. The excellent results of a range of different mea-
surements with the prototype magnetometer that rely only on a single calibration point in air
demonstrate that the models used to simulate the sensor response, based on Fourier-Bessel
analysis and the magnetic diffusion equation, are valid and accurate.

While there are other (nonperiodic) types of eddy-current sensors that use sensing coils
with high number of turns for increased sensitivity at frequencies as low as 1 kHz, they are
not capable of air calibration, and thus always require calibration standards and empirical
calibration curves.

In addition to validating the simulation techniques, the experiments also confirm that the
circuits that implement the feedback loop are operating correctly, and that the errors due to
unmodeled parasitic effects can be neglected.

The data taken with the circular capacitive sensors in Chapter 3 demonstrate that the
cylindrical geometry formulation of the collocation point methods is correct, and that this is
an acceptable layout for dielectric sensors.

Altogether this thesis has demonstrated the feasibility of the new sensing technology con-
cepts, and has opened up several possibilities for further improvements of existing time and
space periodic sensor technology and design of new types of magnetometers and dielectrome-
ters that belong to this class of sensors.

7.3 Suggestions for continuing work

The validity of the semi-analytical models and numerical methods has been confirmed, and
the feasibility of creating a deep penetration magnetometer has been demonstrated. Now the
research and design effort can focus on the adaptation of the principles established in the
construction of the prototype to specific practical applications. A few of the potential areas of
further research are suggested in this section.

7.3.1 Scaled down GMR magnetometer

The dimensions of the prototype magnetometer analyzed here have been chosen to make con-
struction and experimentation easier. The relatively large size has made it possible to use
prepackaged off-the-shelf components, and has relaxed the requirements on the connections,
circuits, windings, etc., that are needed to minimize the performance deterioration due to
parasitic and unmodeled effects. It has also facilitated the implementation of the multiple-
wavelength idea, which requires double the number of turns in the primary winding. One of
the first questions that needs to be investigated is how miniaturization will affect the mag-
netometer’s performance, and what new engineering challenges will arise from its smaller
size.
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In general, a smaller magnetometer footprint is desirable because it increases its versa-
tility in being able to inspect components with smaller dimensions. In addition, reducing
the size of the secondary winding of a magnetometer or a magnetometer array improves sen-
sitivity, because the signal is less diluted by averaging over a large area. Nevertheless, the
minimal size of the magnetometer footprint will be limited by the minimal spatial wavelength
requirement, determined by the necessary depth of penetration. For example, if one is to be
able to see through 1/4′′ of aluminum, the imposed spatial wavelength needs to be on the
order of an inch.

Another aspect of the practical design of a smaller version of the GMR magnetometer is
making its base flexible, which is a property of the standard MWM. If a similar flexible circuit
technology is to be used, one must address the question of how the distributed current drive
primary winding is to be designed. Multiple turn windings are difficult to implement in a
planar two-dimensional topology, so that in this case it would possibly be more appropriate to
shape the surface current density by controlling the current, not the number of turns, of each
winding segment.

Regardless of the exact implementation details, it is almost certain that the next stage in
the process of adapting GMR magnetometer technology to practical applications is the design
and implementation of a smaller, perhaps by a factor of a hundred in area, version of the GMR
magnetometer prototype.

7.3.2 GMR magnetometer arrays

The ultimate goal of the GMR magnetometer effort is to be able to design analogs of the ex-
isting MWM sensor arrays to use GMR secondary elements, rather than secondary windings.
In principle, this may be as simple as adapting an existing MWM array geometry by replac-
ing the individual secondary elements with pre-manufactured GMR sensor chips. One of the
questions that arises is whether it will be practical in this case to maintain the feedback loop
configuration. While offering many advantages, the feedback connection does increase the
size requirements on each array element, in addition to introducing unwanted cross-coupling
between the individual array elements. Therefore in an array configuration the preferred
mode of operation may be open-loop, in which case an alternative biasing method must be
designed. For example, it may be possible to set the operating point by adding a DC offset to
the primary current drive. Most likely, though, this would lead to impractically large current
requirements for the primary, so that the preferred biasing method may be to place a suitable
permanently magnetized flexible ferromagnetic polymer layer behind the sensor array. Fer-
romagnetic polymers are made by a suspension of small ferromagnetic particles. A further
advantage of this approach is that it is relatively easy to incorporate the effect of a magneti-
zable layer in the model, due to its spatial uniformity. The presence of a magnetizable layer
will concentrate the magnetic field intensity on the active side of the magnetometer array, but
it has not yet been established whether this will lead to improvement or deterioration of the
sensitivity to material faults.

With low frequency operation in scanning applications it may be necessary to incorporate
some of the model changes that include media motion into the methods used to simulate such
sensor arrays.

With the present homogeneous layer models, as the depth of the flaw’s position is in-
creased, the relative effect a material flaw has on the effective measured conductivity of the
metal is reduced in magnitude, and is spread over a wider area. Therefore, in deep penetra-
tion applications it may be necessary to apply data filtering and transformations that combine
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the signal from many individual pixels to reconstruct the original position of the flaw.

7.3.3 Applying the cylindrical geometry collocation point method to
Rosette sensors

The cylindrical coordinate magnetometer method described in Chapter 3 has not yet been ap-
plied to practical magnetometers, although JENTEK’s Rosette sensor arrays, which have the
appropriate geometry, are already in use in a number of crack detection and fatigue monitor-
ing applications. It is interesting to determine whether use of the cylindrical geometry model
will lead to a performance improvement for these magnetometers. The validity of the dielec-
tric equivalent of the model has already been confirmed by measurements with the circular
dielectrometer in Chapter 3.



Appendix A

Definition of Symbols,
Abbreviations, and Acronyms

Most of the mathematical symbols used in this document are shown in Table A.2. Symbols
used only locally, and not meaningful outside of the paragraph that defines them, are usually
not listed here. Not listed are also summation indices, such as j, �, m, or n.

Bold upright Roman letters are used for vectors. Unit vectors are denoted by a hat ac-
cent ‘ˆ ’ over the lowercase symbol. Subscripts in italics denote array or matrix indices and
coordinate components, while upright Roman subscripts are considered part of the symbol’s
name. The coordinates used are: Cartesian (x, y, z), cylindrical (r,ϕ, z), and spherical (r,θ,ϕ).

Abbreviations and acronyms are listed in Table A.1.

Table A.1: Abbreviations and acronyms in alphabetical order.

DFT Discrete Fourier Transform
EQS Electroquasistatic
FFT Fast Fourier Transform
FHT Fast Hankel Transform
GMR Giant Magnetoresistive
IDED∗ Interdigitated Electrode Dielectrometer
MQS Magnetoquasistatic
MUT Material Under Test
MWM∗ Meandering Winding Magnetometer
NDE Non-Destructive Evaluation
SQUID Superconducting Quantum Interference Device

Table A.2: Definition of symbols

Symbol (Eq.) / Fig. Page Description

¯ accent (2.18), etc. 37 Normalized quantity
continued on next page

∗MWM and IDED are trademarks of JENTEK Sensors, Inc.
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continued from previous page

Symbol (Eq.) / Fig. Page Description

ˆ accent (2.1) 33 Complex amplitude. Also used for unit
vectors and in the definition of the FHT˜ accent (2.40) 41 Implied cos(knx) factor

⊗ (4.2) 83 Convolution

f (z) Discontinuous change in f (z) across a
boundary, usually at z = 0

A, Ay(x), Aϕ(r) (2.3) 34 Magnetic vector potential

An (2.35), (3.15) 40, 65 Fourier component of A

am (2.30) 39 Values of A at collocation points

a (2.66) 47 am as a vector

a 3-2 70 Driven electrode radius

a1, a2 3-2 70 Inner and outer radii of sensing
electrode

αn (3.5), (3.43) 63, 71 Zeros of J1(r) or J0(r)

B Magnetic flux density

Bn (2.61), (2.108) 45, 58 Bernoulli numbers

b 3-2 70 Inner radius of guard ring

b (2.66) 47 Right hand side vector for matrix
equation

bn, b0 (2.110) 58 Fourier components of the vector b

β,βn (3.14) 65 “Wavenumber” in cylindrical
coordinates

C∗
n(z) (2.89) 53 Complex surface capacitance density

C∗
n,C

∗
0 (2.100) 55 Jump in the surface capacitance

density across the electrode plane

C∗∞ (2.106) 57 Asymptotic limit of C∗
n for high values

of n

CT (2.112), (3.59) 59, 74 Transcapacitance of dielectric sensors

c 2-1, 2-4 37, 50 Primary winding width; driven
electrode width

χm (5.11) 143 Magnetic susceptibility χm = µr − 1

d 2-1, 2-4 37, 50 Secondary winding width; sensing
electrode width

continued on next page
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continued from previous page

Symbol (Eq.) / Fig. Page Description

∆ 2-1 37 Winding thickness

δ (2.15) 35 Skin depth

E Electric field intensity

e Base of natural logarithms

ε (2.85) 53 Dielectric permittivity

ε0 Dielectric permittivity of vacuum

ε∗ (2.87) 53 Complex dielectric permittivity,
including conduction loss

εS 2-6 55 Dielectric permittivity of sensor
substrate

F{}
Fourier transform

F (2.70), (3.38) 48, 69 Matrix used to compute
transimpedance matrix from magnetic
vector potential

F(q) (4.1b) 82 Fourier transform function of f (x)

FS(q) (4.3b) 83 Sine transform function of f (x)

f (x) Used to denote a generic function

f (x) (2.61), (B.1), B-2 45, 175, 177 Infinite summation function for MWM

g 2-1 37 Gap between windings

g(x) (2.108), (B.2), B-2 58, 175, 177 Infinite summation function for IDED

γ,γn (2.14) 35 Magnetic diffusion complex
wavenumber

H Magnetic field intensity

h 4-2, 4-15 84, 101 Spacing between windings of
distributed current drive

h 2-6 55 Dielectrometer substrate thickness

h 5-8 126 Sensor lift-off

ID 1-1 20 Magnetometer drive current

IS 1-4 22 Dielectrometer sense current

IF (5.6) 124 Secondary feedback winding current

i Imaginary unit
continued on next page
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continued from previous page

Symbol (Eq.) / Fig. Page Description

i1, i2 (2.26) 38 Two-port terminal currents

J Electric current density

J0, J1, J2 Bessel functions of the first kind

K (2.30), (2.78) 39, 51 Number of collocation points per region

KS(x),KS(r) (2.53), (3.26) 43, 67 Surface current density

KSn (2.52), (3.23) 43, 66 Fourier component of KS(x) or KS(r)

k, kn (2.24) 38 Wavenumber, kn = 2πn/λ

L 4-2 84 Period (wavelength) of current drive
envelope function

λ 2-1, 2-4 37, 50 Periodic sensor wavelength

M (2.66) 47 Matrix of collocation point constraints

Mn,M0,M′,M′′ (2.67), (2.104) 47, 56 Fourier components and other
submatrices of M

ML Meander length, total length of
windings/electrodes

µ Magnetic permeability

µ0 Magnetic permeability of vacuum

µr Relative magnetic permeability
µr = µ/µ0

µ∗ Complex magnetic permeability,
including magnetic, but not conduction,
loss

N (2.59) 45 Upper limit of needed Fourier modes

ω Angular frequency of excitation

p (2.59) 45 Magnetic dipole moment

Φ(x),Φ(r) (2.72), (3.41) 49, 71 Electric potential

Φn (2.81), (3.51) 51, 73 Fourier components of Φ(x) or Φ(r)

Ψ (4.33) 97 Magnetic scalar potential

Qn (3.7), (3.45) 63, 71 Bessel series normalization coefficients

continued on next page
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continued from previous page

Symbol (Eq.) / Fig. Page Description

R (3.5), (3.43), (4.42) 63, 71, 102 Bessel series expansion radius, chosen
much greater than sensor dimensions

Rn(z) (2.39) 41 Surface reluctance density

Rn (2.51) 43 Jump in the surface reluctance density
across the winding plane

R∞ (2.59) 45 Asymptotic limit of Rn for high values
of n

rm (3.46) 72 Collocation points in cylindrical
coordinates

r∗m (3.47) 72 Integration interval limits in cylindrical
coordinates

rF (5.6) 124 Radius of secondary feedback coil

ρ Resistivity ρ = 1/σ

ρ‖,ρ⊥ Section 5.1.1 Directional resistivity, parallel and
perpendicular to direction of
magnetization

ρ↑,ρ↓ (5.4) 116 Ferromagnetic metal resistivities due to
spin-up and spin-down electrons

ρ↑↑,ρ↑↓ (5.5) 117 Resistivity in parallel and antiparallel
states of GMR superlattice

sinc(x) (4.7) 83 sinc(x) = sin(x)/x, x 
= 0; sinc(0) = 1

σ Electric conductivity, J = σE

σcoil Conductivity of the MWM windings

σ∗
S (x),σ∗

S (r) (2.98) 55 Jump in ε∗E across z = 0 boundary

σ∗
S n (2.101) 55 Fourier components of σ∗

S (x) or σ∗
S (r)

t (2-6), (4-11) 55, 96 Material layer thicknesses

θ (3.59) 74 Arc angle of the sensing electrode of the
circular dielectrometer

u (6.4) 146 x-component of the convection velocity

u0(x) Unit impulse functional

VD 1-4 22 Dielectrometer driven electrode voltage

VS,VS1,VS2 1-1 20 Magnetometer secondary winding
voltages

continued on next page
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continued from previous page

Symbol (Eq.) / Fig. Page Description

v (6.1) 145 Convection velocity

vm (2.78) 51 Values of the electric potential Φ at the
collocation points

v 56 vm as a vector

v1, v2 (2.26) 38 Two-port terminal voltages

v′ Section 6.1.6 Part of the secondary winding terminal
voltage, associated with one of its legs

W 4-8 93 Distributed current drive
magnetometer width

W 4-15 101 Radius where the first order Bessel
function has its first zero

wj Tbl. 4.2, 4.3 99, 102 Turns per winding for distributed
current drive

wF (5.6) 124 Number of turns in secondary feedback
coil

xm (2.34), (2.79) 40, 51 Collocation points in Cartesian
coordinates

x∗m (2.33), (2.80) 40, 51 Integration interval limits in Cartesian
coordinates

Y,Y11, etc. (2.26) 38 Two-port admittance matrix and its
elements

Y�m(θ,ϕ) (4.37), Tbl. 4.1 97, 98 Spherical harmonic functions

Y0,Y1 Bessel functions of the second kind

Z, Z11, etc. (2.26) 38 Two-port impedance matrix and its
elements



Appendix B

Infinite Sums over Fourier Modes

This appendix discusses in some detail the properties of the infinite summation functions that
arise in the collocation point methods, discussed in Chapters 2 and 3.

As illustrated in Section 2.1, while summing over the Fourier modes, past a certain mode it
is possible to carry out the summation over the remaining modes in a single operation, using
equations (2.59) and (2.60). Equation (2.61), repeated here for convenience, defines a function
f (x), which results from the evaluation of the Fourier series:

f
( x
2π

)
=

∞
∑
n=0

sin(2n+ 1)x
(2n+ 1)2

= −1
2

∫ x

0
ln
(
tan

t
2

)
dt (B.1)

This function, given by the integral
∫
ln(tan x) dx, appears often enough in Fourier series

analyses that perhaps it deserves to be given its own name. A relative of this function also
appears in the collocation point methods used to model the IDED in Section 2.2:

g
( x
2π

)
=

∞
∑
n=1

sin(nx)
n2

= −
∫ x

0
ln
(
2 sin

t
2

)
dt (B.2)

Several aspects of these Fourier series are discussed in this appendix. Section B.1 presents
the infinite sums for both Cartesian and cylindrical coordinate systems, some of their prop-
erties, and methods of computing them. Section B.2 presents a way of altogether eliminating
the need for evaluating the sum in equation (B.1). No computational advantage is achieved
via this alternative method, because in the end it appears again as

∫
ln(tan x) dx, but this

alternative formulation suggests a way to approach the cylindrical coordinate case, where the
sum cannot be evaluated in closed form.

B.1 Overview

The values of the magnetic vector potential at the collocation points are determined by apply-
ing the appropriate boundary conditions over a set of intervals, each containing one collocation
point, as described in Section 2.1. After carrying out the integration over these intervals, the
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Figure B-1: Three-dimensional plot of the infinite summation function in equation (B.3).

need arises to evaluate the following function:

f (x1, x2) =
∞
∑
n=1
n odd

sin(knx1) cos(knx2)
n2

(B.3)

where x1 is one of the integration interval limits x∗m, and x2 is one of the collocation points xm.
In fact, all such combinations need to be evaluated. The surface plot of this function is shown
in Figure B-1.

Equation (B.3) can be simplified using a product formula, so that it is evaluated via two
applications of the single variable function in equation (B.1). The surface plot is shown as a
comparison to the cylindrical case, where no such product formula exists.

The function f (x) in equation (B.1) is plotted in Figure B-2. One interesting characteris-
tic of this function is that its derivative at its zeros is infinite. This can be seen by taking
the derivative in its definition, which results in a sum of the form ∑(1/n). This turns out to
be of practical significance, because when used in the collocation point methods, often differ-
ences of its values are taken for arguments very near zero. An attempt was made once to
evaluate this function via interpolation in a look-up table, but significant errors arose no mat-
ter how dense the interpolation points near zero were. Interpolation cannot handle infinite
derivatives adequately, since that requires the interpolation points to be infinitely dense in
this vicinity. Consequently, it is always necessary to use the Bernoulli number series given in
equation (2.62) to evaluate the function.

The function g(x), defined in equation (B.2), is also shown in Figure B-2. It includes the
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Figure B-2: Plot of the functions f (x) and g(x). A sinusoid with the same period is shown for
comparison.

even Fourier modes, manifested as a skew toward zero. Its derivative is also infinite at x = 0,
but not at x = 1/2.

As seen in equations equation (3.30) and equation (3.56), analogous infinite summation
series arise in cylindrical coordinates:

f (r1, r2) =
∞
∑
n=1

J1(αnr1)J0(αnr2)
α2
n J20 (αn)

αn : J1(αn) = 0 (B.4)

and

g(r1, r2) =
∞
∑
n=1

J2(αnr1)J1(αnr2)
α2
n J21 (αn)

αn : J0(αn) = 0 (B.5)

A surface plot of f (r1, r2) in equation (B.4) is shown in Figure B-3. At this time there appears
to be no efficient method of calculating it, other than carrying out the summation itself up
to a sufficiently high number of terms. Its derivative with respect to r1 is also infinite at
r1 = r2 = 0.

The lack of an efficient method of calculating the sum in equations (B.4) and (B.5) [82] is
what motivated the search for an alternative approach to setting up the constraining equa-
tions for the collocation points, which avoids the infinite sums.

B.2 Alternative formulation

The magnetoquasistatic case is considered in this section. The infinite summation arises from
the need to express the surface current density KS in terms of the magnetic vector potential
Ay, which in turn is expressed in terms of its values am at the collocation points xm. The
boundary conditions of the surface current density, now a function of am, can be integrated
over a set of intervals to create the constraints needed to solve for the unknowns am. In the
Fourier domain, equation (2.52), repeated here for convenience, expresses the surface current
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Figure B-3: Three-dimensional plot of the infinite summation function in equation (B.4).

density in terms of the vector potential:

KSn = RnknAn (B.6)

As discussed in Section 2.1.6, at high values of n the surface reluctance density Rn ap-
proaches a common value, R∞, which is used for all n in equation (B.6), allowing the summa-
tion of all modes to be carried out in a single step.

The new idea here is to find an expression of KS(x) in terms of Ay(x) in the x-domain, fully
bypassing the Fourier series operations. The question that needs to be answered is this: If
the sine series coefficients of a function F(x) are An, then which is the function G(x) whose
sine series coefficients are knAn? In other words, given that

F(x) =
∞
∑
n=1

An sin(knx) kn =
2πn
λ

(B.7)

and

G(x) =
∞
∑
n=1

Ankn sin(knx) (B.8)

how is G(x) expressed in terms of F(x)?
Multiplication by the transform variable in one domain corresponds to differentiation in
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the other. Therefore, since

An =
2
λ

∫ λ/2

−λ/2
F(x) sin(knx)dx (B.9)

then via integration by parts

Ankn =
2
λ

∫ λ/2

−λ/2
F′(x) cos(knx)dx (B.10)

While differentiation does yield the necessary factor of kn, it also changes all sines to cosines,
so that another operation is necessary to reach G(x), derived later in this section.

There is another way of thinking about this problem. Consider the full exponential Fourier
series:

F(x) =
∞
∑

n=−∞
Ane−iknx kn =

2πn
λ

(B.11)

In this formulation the function G(x) must be expressed as:

G(x) =
∞
∑

n=−∞
|kn|Ane−iknx (B.12)

When considering the full exponential series, the operation in the Fourier domain that trans-
forms Ay to KS is multiplication by the absolute value of kn. From a physical perspective,
this comes about from the fact that the exponential component e±γz of the solutions in equa-
tion (2.13) must have a negative real part for z > 0, for both positive and negative values
of the wavenumber kn, to make sure that the field decays to zero at infinity. With negative
values of kn the solution with the opposite sign in the exponent must be taken.∗ This is
equivalent to multiplication by the sign function in reciprocal space, effectively converting
the cosines resulting from the differentiation back to sines. Another example of the use of the
full exponential Fourier series in the collocation point model is given in Section 6.1.

For the continuous Fourier transform, multiplication by the sign function in the reciprocal
domain corresponds to convolution with its transform in the real domain. The equivalent in
the discrete series case turns out to be circular convolution with the cotangent function. To
show this, substitute equation (B.10) in equation (B.8), having returned to the original sine

∗For the purpose of this discussion, the definition of γ, given by equation (2.14), is altered so that γ incorporates
the sign of k, i.e. γ = sgn(k)

√
k2 + iωσµ. This is unlike the convention used in Section 6.1, where the change of

sign discussed in this paragraph is implicit in the definition of γ in equation (6.7), where it has a positive real part
for both positive and negative values of k.
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series form:

G(x) =
∞
∑
n=1

sin(knx)
2
λ

∫ λ/2

−λ/2
F′(t) cos(knt)dt =

2
λ

∫ λ/2

−λ/2
F′(t)dt

∞
∑
n=1

sin(knx) cos(knt)

=
1
λ

{∫ λ/2

−λ/2
F′(t)dt

∞
∑
n=1

sin kn(x− t) +
∫ λ/2

−λ/2
F′(t)dt

∞
∑
n=1

sin kn(x+ t)
}

=
2
λ

∫ λ/2

−λ/2
F′(t)dt

∞
∑
n=1

sin kn(x− t)

=
1
λ

∫ λ/2

−λ/2
F′(t) cot

π

λ
(x− t) dt

(B.13)

Equation (B.13) makes it possible to get an expression of KS(x) in terms of am directly from
equation (2.30). Taking the derivative of the vector potential function

A′
y(x) =

am+1 − am
xm+1 − xm

xm < x < xm+1 (B.14)

and switching to normalized quantities (i.e. λ → 1), the following expression for KS(x) is
obtained:

KS(x) = R∞
∫ 1/2

−1/2
A′
y(t) cot π(x− t) dt

= R∞
4K−1

∑
m=1

am+1 − am
xm+1 − xm

{
−

∫ xm+1−1/2

xm−1/2
cot π(x− t) dt−

∫ −xm
−xm+1

cot π(x− t) dt

+
∫ xm+1

xm
cot π(x− t) dt+

∫ 1/2−xm
1/2−xm+1

cot π(x− t) dt
} (B.15)

where all four quarter periods are considered separately, since the cotangent function does
not have the same symmetry. It has also been taken into consideration that A′

y(x) is odd with
respect to the x = 0 point, and even with respect to x = 1/2, which is a consequence of the
symmetry properties of Ay(x) given in equation (2.29). Carrying out the integration,

KS(x) =
R∞
π

4K−1

∑
m=1

am+1 − am
xm+1 − xm

{
− ln

∣∣∣∣sin[π(x− xm) +
π

2

]∣∣∣∣+ ln
∣∣∣∣sin[π(x− xm+1) +

π

2

]∣∣∣∣
− ln

∣∣∣∣sin[π(x+ xm+1)
]∣∣∣∣+ ln

∣∣∣∣sin[π(x+ xm)
]∣∣∣∣+ ln

∣∣∣∣sin[π(x− xm)
]∣∣∣∣− ln

∣∣∣∣sin[π(x− xm+1)
]∣∣∣∣

+ ln
∣∣∣∣sin[π(x+ xm+1)− π

2

]∣∣∣∣− ln
∣∣∣∣sin[π(x+ xm)− π

2

]∣∣∣∣
}

(B.16)

Converting the terms containing π/2 to cosines and combining them with the corresponding
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sine terms finally yields

KS(x) =
R∞
π

4K−1

∑
m=1

am+1 − am
xm+1 − xm

[
ln
∣∣tan π(x− xm)

∣∣+ ln
∣∣tan π(x+ xm)

∣∣
− ln

∣∣tan π(x− xm+1)
∣∣− ln

∣∣tan π(x+ xm+1)
∣∣] (B.17)

It can be seen in equation (B.17) that building the matrix M′ of Section 2.1.6 involves
taking the integral

∫
ln(tan x) dx, which, as seen in equation (B.1), is the same as evaluat-

ing the function f (x), defined by the infinite sum. In other words, while completely avoiding
the infinite sum, no direct benefit has been achieved, except for deriving a proof for equa-
tion (B.1). The indirect benefit is that an alternative approach is now available for handling
the analogous problem in cylindrical coordinates.

Following the same steps, if the Bessel series expansion of a function F(r) is given by

F(r) =
∞
∑
n=1

AnJ1
(αn

R
r
)

0 < r < R αn : J1(αn) = 0 (B.18)

then how can the function G(r), defined by

G(r) =
∞
∑
n=1

αn

R
AnJ1

(αn

R
r
)

(B.19)

be expressed in terms of F(r) in the r-domain? As in the Cartesian case, differentiation with
respect to r yields the necessary factor of αn/R, but it also changes J1 to J0. Therefore it is
necessary to derive the operation that would change J0 back to J1, analogous to the circular
convolution with the cotangent in the Cartesian case.

Because of the lack of (finite) product formulas for Bessel functions [82], the last step
appears to be a very difficult task, and is still open for further study. Should this problem
be solved, it would lead to tremendous improvement of the computational efficiency of the
collocation point method in cylindrical coordinates.
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Appendix C

Error analysis

Although at this stage of the development of the new GMR sensor-based magnetometer tech-
nology the goal is to establish the basic principles of operation and to demonstrate feasibility,
it is important to consider the magnitude, nature, and source of the measurement errors
in one representative experiment. The conductivity/lift-off measurements described in Sec-
tion 5.4 are a good choice, because they are the most common type of measurement made
with the MWM family of magnetometers and magnetometer arrays.

The results of the measurements in Section 5.4, previously listed in Table 5.1, are repeated
in Table C.1, for all twenty sets, accompanied by the percent deviation of the estimated prop-
erties from the reference values. For the lift-off, the latter are obtained from the caliper
thicknesses of the plastic shims, and are listed in the last column of the table. These nominal
lift-off values are listed with only one digit after the decimal point, because of local variations
of the shim thickness, and because dust and surface roughness affect the total lift-off when
several shims are used. The reference metal conductivities are taken from Table 5.2, and are
repeated in Table C.1 at the top of the columns for each of the three metal samples.

It may be observed in the data in Table C.1 that the lift-off errors are much smaller than
the conductivity errors. This is a known characteristic of all model-based magnetometer mea-
surements. It is due to the much higher sensitivity of the sensor response to lift-off, compared
to other properties of the test structure. The sensitivity and selectivity of a measurement to
a physical property may be determined by analysis based on singular value decomposition of
the corresponding Jacobian matrix [1,13]. The high sensitivity to lift-off is also the main rea-
son why it is chosen to be one of the unknown properties in most measurement grids, because
if a grid is built with an assumed lift-off value, there is a danger that a small difference in the
actual physical lift-off, possibly due to surface roughness or dust, would lead to large errors
in the estimated properties.

Each data point in Table C.1 is the average of seven sequential measurements. The aver-
aging is carried out after the grid look-up has been performed, because in this way the data are
compensated for actual lift-off differences among the seven individual measurements, which
may be due, for example, to varying pressure applied by the operator to the material/sensor
interface. The availability of more than one measurement per data point makes it possible to
compute standard deviations, as a measure of the noise. It is unnecessary to list these stan-
dard deviations for every data point in Table C.1, because there is little variation among them
for the different data points in this measurement. The averages of the standard deviations of
the conductivity and lift-off estimates are 0.43% and 0.046% respectively.

The measurement noise, characterized by the standard deviation values listed above, is
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Figure C-1: Comparison between simulated and measured response of the magnetometer in
the conductivity/lift-off measurements. A systematic error is evident at higher lift-offs that
results in an offset of every measurement point toward the lower left of the corresponding
simulated point. This is attributed to unmodeled changes in the primary winding current, due
to the parasitic inter-winding capacitance.

clearly not enough to account for the magnitude of the errors reported in Table C.1. The errors
due to instrumentation noise, etc. are not directly relevant to this research effort, whose focus
is on the validity of the semi-analytical models, and on the demonstration of the principle
of operation. Furthermore, the deviations from the reference values in Table C.1 manifest a
clear bias, which is in the same direction and increases in magnitude as the lift-off increases.
They are clearly due not to noise, which would result in uncorrelated random errors, but to
the effects of unmodeled or parasitic magnetometer behavior.

To investigate the latter point further, it is useful to move from considering errors in
property space to magnetometer magnitude/phase space. The data are shown in a magni-
tude/phase plot in Figure C-1, which also shows the simulated sensor response for the three
samples, using the conductivity values from Table 5.2 and the measured lift-off values in
Tables 5.1 and C.1.

The data in Figure C-1 clearly demonstrate the presence of systematic error that results
in an offset of every measurement point toward the lower left of the corresponding simulated
point at higher lift-offs. This error is most likely due to the parasitic self-capacitance of the
primary winding. The instrumentation only measures the primary winding current at the
magnetometer terminals, which means that the effect of parasitic cable and inter-winding
capacitance is not eliminated. Although the frequency at which the data was taken, 12.6 kHz,
is far below the self-resonant frequency of the primary winding, which is on the order of a



186 Appendix C. Error analysis

megahertz, the resulting negative phase shift and magnitude decrease are nonetheless non-
negligible. Although this difference in measured and actual drive current is compensated
for in the calibration step, as described in Appendix D, it is quite sensitive to the loss factor
of the resonance, which changes in the presence of materials with finite conductivity, and is
therefore dependent on the lift-off. As magnetometers with smaller dimensions and fewer
winding turns are designed, this source of error will be greatly diminished.

Although all errors in the figure are small, the corresponding errors of the estimated prop-
erties at higher lift-offs can be large. For example, the copper conductivity for set 20 is more
than 25% off. This is due to the loss of sensitivity of the measurement as the material is
moved farther away from the magnetometer. This loss of sensitivity can be observed on the
grid in Figure 5-8, where the density of grid lines is high in the upper right corner of the grid.
When the grid cells are narrow, small changes in signal magnitude or phase result in large
changes of the estimated properties.

It can also be observed in Table C.1 that the error increases somewhat at the lowest lift-off
values, so that there is an optimal range of the lift-off, approximately 5–7 mm, where the
estimated conductivity is most accurate. Being too close to the sensor windings also reduces
the accuracy, since the effects of the nonzero winding thickness become stronger as the sepa-
ration between the windings and the metal samples becomes smaller and comparable to the
thickness of the windings.

Although it is expected that the errors due to parasitic and unmodeled effects will become
less significant as the magnetometer design is improved and its size is reduced, it is also
possible to improve the accuracy of a particular measurement significantly by performing a
two-point reference calibration instead of the air calibration used in Section 5.4. In this ap-
proach the calibration parameters are chosen to ensure that the measured response matches
the simulated response at two points in magnitude/phase space that are closely spaced and
positioned on either side of the expected data point. Thus the precision of the estimated prop-
erties in this range can be made arbitrarily high, at the expense of precision in other areas
of the grid. The trade-offs of the different calibration methods are discussed in more detail
in Appendix D, which also compares the measurement errors associated with them. The av-
erage percentage error magnitudes reported in the bottom line of Table C.1 are used for a
quantitative comparison between the two methods.

This appendix has described the measurement errors of the conductivity/lift-off measure-
ments and has discussed the source and nature of these errors. As the new technology and
numerical techniques mature, more research will be needed to analyze the performance of
the magnetometers and to develop sensor improvements that minimize such measurement
errors.



Appendix D

Calibration methods

In this context calibration refers to the processing step applied to raw impedance analyzer
data before they are passed through the measurement grid for parameter estimation, and to
the methods used in obtaining the parameters used in this step. The methods described in
this appendix have been developed at JENTEK Sensors, Inc., and are an integral component
of JENTEK’s copyrighted GridStationTM software environment [83].

The calibration step is in general necessary because of the presence of unmodeled parasitic
effects of a physical nature, and because the instrumentation itself can introduce magnitude
and phase errors. The raw data transformation is a very simple linear operation of the form

Z = K · Z− Zoff (D.1)

where Z is the raw complex measurement magnitude, and Z is the complex magnitude used
for parameter estimation. The two coefficients K and Zoff are also complex numbers.

Both K and Zoff have a physical interpretation. The constant offset term Zoff represents
the parasitic coupling of the primary drive to the secondary signal, which can be due to cable
capacitance and inductive pick-up, unmodeled sensor interconnect traces, etc.

The phase angle of the complex parameter K compensates for phase offsets, usually in-
troduced by the interface electronics and the impedance analyzer. For the magnetometer in
Chapter 5, there is another source of phase error. Due to its relatively high total number
of turns, the primary winding has a large inductance, typically on the order of 1 mH. This
in itself is not a problem, since all measurements are referred to the current in the primary.
The unknown phase offset is introduced by the self-capacitance of the winding, which can-
not be eliminated from the overall sensor transfer function, because the primary current is
measured at its terminals, while the capacitance is distributed across the windings. This in-
troduces phase angle that is dependent on the frequency of excitation, on the resistance of the
winding, which can change with temperature, etc.

The absolute value of K scales the magnitude of the sensor signal to match the correspond-
ing magnitude on the measurement grid. In general it is not practical to attempt to obtain
the exact magnitude in the models, for several reasons: Various stages of the equipment have
amplification that is not known with high precision. Furthermore, preamplifier gain stages
in JENTEK instruments may have variable gain, used to tune the instrument to the dynamic
range with optimal signal to noise ratio. Sometimes a new sensor is designed that has exactly
the same parameters as an existing sensor, such as wavelength, gap, etc., but which has a
larger or smaller footprint. In such cases the same measurement grids may be used, with the
extra scale factor absorbed in the calibration step. Finally, from a practical point of view, it is
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easier not to have to keep track of the numerous scale factors introduced at various stages of
the measurement process.

Based on the arguments outlined so far, it is clear that the complex scale factor K is always
needed. On the other hand, under ideal conditions Zoff may be taken to be zero. Use of a
calibration step makes it possible to normalize all grids in Chapter 5 to the simulated sensor
response in air, which makes grid visualization and interpretation easier.

The rest of the appendix describes specific methods for obtaining the calibration parame-
ters, K and Zoff, used in a particular measurement.

D.1 Single point air calibration

This is the simplest calibration method. It involves making a measurement with the sensor
in air, and taking K to be the ratio of the simulated sensor complex magnitude in air and the
measured complex magnitude. This method assumes that there is no parasitic coupling, i.e.
Zoff = 0.

The advantages of this method are its simplicity and that it does not involve measurement
standards. Unlike calibration on standard parts, whose properties may not be known exactly
and may shift with aging, the electromagnetic properties of air are known and universal. As
discussed later in Section D.3, where the two methods are compared, an additional positive
aspect of air calibration is that it does not bias the measurement accuracy to be better for a
particular range of estimated property values.

Air calibration gives good results only if the sensors’ parasitic coupling is negligible. For
example, it is not a good choice for the experiment in Section 3.3, because the circular di-
electric sensors have non-negligible parasitic coupling of the driven electrode to the sensing
electrode traces and to the leads that connect the dielectrometer to the buffer amplifier. On
the other hand, the success with which this method has been applied to the GMR magnetome-
ter in Chapter 5 implies that the parasitic coupling in that type of magnetometer is indeed
negligible.

D.2 Air and shunt calibration

In general, two data points are needed to determine both K and Zoff uniquely. This method
takes the point of view that Zoff is a measurable physical quantity. It is obtained by shunting,
or disconnecting if appropriate, the secondary sensing element while driving the primary, and
measuring the resulting signal level. This signal is due entirely to parasitic coupling.

The value of K is then determined by an air measurement, as with the single point air
calibration method, after having subtracted the measured offset Zoff from the instrument
complex magnitude in air.

While this method is very useful for MWM measurements, it cannot be applied to the
GMR magnetometer, since with the secondary in a feedback loop it is not possible to shunt
or disconnect it in a meaningful way: disconnecting at the output of the loop would ignore
parasitic pickup by the loop components, which is most likely the dominant source, while
disconnecting the GMR sensor itself prevents loop operation altogether.
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D.3 Two point reference part calibration

The two complex calibration parameters may alternatively be obtained from measurements
at any two points on the grid, by solving the resulting system of two linear equations. This
method is very useful in a number of different cases.

If a property is to be measured with very high precision, and it is known ahead of time
what its value is likely to be approximately, then by choosing two points on the grid in close
proximity to the unknown, it is possible to guarantee that this region of the grid is in very
good agreement with the standard used for the measurement. For example, this occurs in
situations where the purpose of the measurement is not to obtain the absolute value of a
physical property of the material, which may be known, but to capture with high precision
local variations in this property. The most common example of this is in conductivity/lift-off
measurements, where the sensor is calibrated on a sample of known conductivity, with and
without a plastic shim.

Another situation where reference point calibration may be needed is when the value of a
material property is built into the grid. For example, the thickness/lift-off grid in Section 5.6
incorporates the conductivity of the copper and steel layers. In such cases reference calibra-
tion on the actual substrate material eliminates errors that are introduced into the thickness
estimation by a difference between the actual conductivity of the copper layer and the value
assumed in the generation of the grid. Such differences may be due to variation between
different parts.

There is a danger associated with the use of this method. Since it guarantees that mea-
surements at the two reference points produce the prescribed parameter values, it is possible
to force a measurement to match any region of any grid. If the reference points are chosen to
fall on either side of the unknown property, then with this method practically any grid will
produce results which, while being wrong, are not far out of the expected range, so that the
user is not aware that there is problem with the measurement. Similarly, this method makes
it possible to “calibrate out” errors due to hardware failure, improper connection, etc., or to
hide real discrepancies between simulated and measured sensor behavior.

On a more fundamental level, by treating the calibration step simply as a linear transfor-
mation, with the two point reference part method the two calibration parameters are deter-
mined empirically, and lose their physical meaning, which is in discord with the principle of
model-based sensor design. Relying on sound physical models, as opposed to empirical cali-
bration, is what sets apart the spatially periodic quasistatic sensors from other eddy current
and similar technologies. Still, as discussed earlier, there are many applications where use of
this method is beneficial.

As a way of comparing the air and reference part calibration methods, consider the data
in Table D.1. The table shows the results of using two point reference calibration with the
measurements in Section 5.4. It has the same format as Table C.1. The two reference points
chosen are with Aluminum 6061, which is the intermediate conductivity material, with no
shim and with a 6.1 mm shim, corresponding to data sets 1 and 9 respectively. The reference
conductivity used is 27.3 MS/m, taken from Table 5.2.

As expected, the results for Al 6061 are markedly better than those in Table C.1, with
the average errors of the first twelve sets reduced by more than a factor of three for both
the conductivity and lift-off estimates. In fact, the lift-off values for this material match
the nominal values perfectly if listed with one digit after the decimal point. However, the
improved performance for this material comes at the expense of measurement accuracy for
other materials. While the estimated conductivity for copper and Al 2024 may be only a
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little worse in this case as compared to air calibration, a definite offset is apparent in the
estimated lift-off for these materials, leading to much larger average errors. Thus the two-
point reference calibration has introduced an accuracy bias towards Al 6061 samples with 3.3
to 9.4 mm lift-off.

D.4 Other calibration methods

There are other methods of obtaining the two calibration parameters, usually tailored to spe-
cific applications. For example, it is possible to use more than two reference points. In this
case the system of equations for K and Zoff is over-determined, and can be solved in the least
squares sense. In other applications these calibration methods may be combined in a multiple-
step algorithm.

In all cases, the goal is to improve sensor design and models to the point where single
point air calibration would provide adequate performance for most applications.
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