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Abstract

As computer software has become more complex in response to increasing demands and
greater levels of abstraction, so have computer operating systems.  In order to achieve the
desired level of functionality, operating systems have become less flexible and overly
complex.  The additional complexity and abstraction introduced often leads to less
efficient use of hardware and increased hardware requirements.  In embedded systems
with limited hardware resources, efficient resource use is extremely important to the
functionality of the resources.  Therefore, operating system functionality not useful for
the embedded system's applications is detrimental to the system.  Component-based
software provides a way to achieve both the efficient application-specific functionality
required in embedded systems and the ability to extend this functionality to other
applications.

This thesis presents a component-based operating system, VORTOS, the Versatile
Object-oriented Real-Time Operating System.  VORTOS uses a virtual machine to
abstract the hardware, eliminating the need for further portability abstractions within the
operating system and application level components.  The simple modular component
architecture allows both the operating system and user applications to be extremely
flexible by allowing them to utilize the particular components required, without
sacrificing performance.

Thesis Supervisor: Sanjay Sarma
Title: Assistant Professor, Department of Mechanical Engineering
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Chapter 1

Introduction

Increased demand for functionality has increased the complexity of modern

software systems.  To deal with the added complexity, operating systems have provided

increased levels of abstraction.  While these added layers of abstractions simplify some

operations, they can also limit application flexibility.  This makes it harder to adjust these

systems for use with specialized applications calling for specific functionality and

efficiency requirements.

Embedded systems, in particular, have limited memories and processing power

available to them.  This means that programs and operating systems running on

embedded systems must run in an efficient manner, without using unnecessary memory

or processing time.  Since most embedded systems are targeted towards some very

specific application, their specific functionality requirements for efficient operation vary

greatly.  This means that operating systems must either be large enough to provide all of

the necessary functionality that could possibly be required or be customized for each

unique system.

The Versatile Object-oriented Real-time Operating System (VORTOS) addresses

these problems by providing a platform flexible enough to handle the specialized

functional needs of embedded systems without sacrificing efficiency.

This chapter gives an introduction to the problems faced by embedded systems

developers and provides an overview of VORTOS.  Section 1.1 gives a historical
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background of the problems of computer operating systems.  Section 1.2 reviews why

traditional operating systems are unsuitable for embedded applications.  Section 1.3

introduces VORTOS.  Section 1.4 covers the findings of this thesis and outlines the rest

of the thesis.

1.1 Historical Background

When personal computers were first introduced, specialized programs were

written for every task.  Writing these programs was a long and difficult task, since the

program had to take care of every aspect of interaction with the hardware, including

graphical display, user input, and low-level hardware functionality.  Since every program

had its own needs, similar but unique code was written for the same tasks in many

different programs.

As hardware resources became more plentiful within the computer, software

programs expanded to take advantage of these additional resources; consequently, the

design and functions of computer programs became more complex.  Computer operating

systems were introduced to simplify the design and construction of software.  The

purpose of an operating system is to provide services and hardware abstractions for

software applications to make writing these applications easier.  Examples of these

services and abstractions include program loading and scheduling, virtual memory

management, and graphical elements like menus and windows.  Instead of directly

interacting with every aspect of the hardware, software developers can write programs

made to run on these operating systems, allowing them to concentrate on the higher level

features specific to a single application.
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The general-purpose abstractions and services for the low-level tasks that

developers need eliminate the need for large amounts of redundant code between

software programs.  This has become even more important as new hardware devices have

been introduced.  It would be ludicrous for every single program to support every known

hardware device.  The decreased dependence on hardware enabled by operating systems

makes software programs more portable across different hardware platforms.

Unfortunately, the great benefits provided by operating systems come at a price.

If a software developer wants to add low-level functionality to the system or take

advantage of new hardware, the operating system vendor must add this support before the

software developer can take advantage of it.  Additionally, since operating systems are

designed for general application development, specific policies or algorithms at the

operating system level may not be the most efficient or most appropriate for any given

task an application may perform, and there is no way for a software developer to modify

this behavior.  Despite these problems, operating systems over the past 30 years have

made possible sophisticated software projects that would have been too complex or time-

consuming to implement without them.

Although operating systems have increased the feasibility and speed of complex

software projects, both the software and the computers themselves have also become

more complex.  The result is that modern software development is still a lengthy and

complex process.  According to the Standish Group, a quarter of all software projects fail

and another 50% fall behind schedule [13].  The services provided by current operating

systems are often not flexible enough to accommodate the needs of modern software

developers, forcing them to spend time trying to work around these constraints.  In
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addition, code for current operating systems is often poorly organized and inaccessible,

and so sometimes software developers cannot understand what the constraints are and

even when they do, they cannot change them.  This also makes bugs in software hard to

track down.  Even open-source solutions such as Linux do not alleviate this concern,

because the source code itself is so complex that very few people understand it well.

Even with a thorough understanding, modifying the operating system code of a system as

large and complicated as Linux is a significant undertaking.

As a result, while the power of computer hardware has been increasing

exponentially, the power of computer software has only increased linearly.  Indeed, as

computer software becomes more complex, developers have required higher levels of

abstraction using languages such as Java and C++ and markup languages such as XML to

make their projects more manageable.  However, these multiple layers of abstraction not

only add overhead, making software slower but also make adding new features not

accounted for by these abstraction layers and tracking down and fixing problems in

software extremely difficult.  This is particularly important in embedded systems, where

hardware resources are minimal and high levels of reliability are required for operation.

1.2 Traditional Operating System Characteristics

Traditional general-purpose operating systems, such as Linux and Microsoft

Windows, have several characteristics that make them inappropriate for use with

embedded systems.  These systems rely on a protected kernel to hide their inner workings

from user applications.  To meet the functionality needs of user applications, they provide

a variety of different interfaces for accessing the kernel.  These interfaces must be general
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enough to cover all the requests an application might make of the kernel, requiring the

kernel interfaces to contain a large amount of code simply for making the appropriate

requests from the hardware or other parts of the kernel [6].  Allowing applications to

dynamically modify these interfaces would provide much needed flexibility, but such

functionality cannot be incorporated into traditional kernels that were not designed with

such flexibility in mind.

Most traditional kernels, and even microkernels, are fairly large; therefore they

are more likely to generate exceptions while executing kernel code.  While the kernel

typically insulates the operating system from exceptions generated in user programs,

most operating systems are not protected from the exceptions generated while in kernel

mode.  Consequently, kernel exceptions can cause an entire operating system to fail.  A

very small, simple kernel minimizes the possibility for kernel errors, resulting in a more

stable operating system [7].

Additionally, since each user application makes use of the hardware resources

differently, the kernel is typically optimized for the most common cases.  This results in

sub-optimal performance for many applications [7].  Specialized operating systems

targeted towards specific narrow tasks can achieve much better performance than

operating systems optimized for the average case [8].  Component architectures allow

this sort of specialization without sacrificing flexibility, by allowing the appropriate

specialized component to be used for a particular task [5] [6].
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1.3 VORTOS Overview

The Versatile Object-oriented Real-Time Operating System (VORTOS)

overcomes the aforementioned limitations of traditional operating systems, by

minimizing the kernel code and providing the flexibility to allow specialization of the

operating system on a per-process basis.  VORTOS is a real-time operating system with a

component-based architecture, allowing it to be adaptable to a wide-range of

environments and applications.  It is highly scalable; it can be used in systems ranging

from embedded systems to high-end workstations to a distributed network of machines.

The component-based nature of VORTOS allows it to take advantage of whatever power

the underlying hardware has to offer.  Specialized components can be added for

additional functionality or efficiency.  It can satisfy real-time constraint requirements for

mission-critical operations, making it particularly suited for embedded applications.  Its

modular structure can adapt to changing conditions to best meet the needs of its users.

For embedded applications, unnecessary components can be removed for a smaller

memory footprint and application-specific components can be used to optimize

performance.  The kernel is extremely small and simple, providing a stable system.



19

Additional Components

Scheduler
Component

Memory
Management
Component

Compiler
Component

Virtual Machine

Hardware Platform

Figure 1.3.1: Logical layers of VORTOS architecture

VORTOS consists of a collection of objects running on a simple virtual machine

that provides an abstraction layer between the objects and the underlying hardware

platform.  Figure 1.3.1 graphically illustrates the logical layers of the VORTOS

architecture.  The operating system functions and user programs running on the virtual

machine are made up of a collection of objects called components that contain code and

data.  Components are run-time objects that provide specific services or functionality on a

given resource or data.  For example, a memory management component allocates and

deallocates memory to programs in the address space it corresponds to.  Since the

operating system functionality is implemented as a set of simple low-level components,

applications can choose the components that provide the exact functionality that they

need, providing maximum flexibility.  User applications can also provide additional

custom components to more efficiently take advantage of specific low-level hardware

resources, thereby enhancing the functionality of the entire system.

The Portable Virtual Machine Format (PVMF) virtual machine acts as a very

simple kernel.  The PVMF virtual machine provides a simple abstraction of the hardware

and simple services that allow the multiplexing of processor time across any number of
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different local or remote components, while satisfying any real-time constraints

requested.  Using a virtual machine provides binary compatibility for the components

across different hardware platforms.  Therefore, VORTOS can be ported to new hardware

by simply porting the virtual machine.  This gives software the flexibility to run on a

wide variety of platforms and even allows VORTOS to be embedded into existing

operating systems.  It also provides maximum stability against errors in both application

and operating system components, since individual components can be shut down or

replaced without crashing the entire operating system.

1.4 Thesis Overview and Contributions

The main contribution of this thesis is VORTOS, a general-purpose system that

can provide customized functionality for each application.  This custom functionality

allows specialized applications to run efficiently, without impeding the efficient

operation of other applications that do not require these specialized resources.  The key to

this flexibility is a new form of dynamic messaging architecture integrated with a

component-based architecture running on top of a virtual machine.  This thesis describes

VORTOS, the various components of its architecture, and how they fit together to

produce a flexible, scalable system.

Chapter 2 discusses related work to VORTOS.  Chapter 3 gives an overview of

the component architecture and virtual machine used to provide a flexible, scalable

system.  The instruction set architecture used by the virtual machine is detailed in

Chapter 4.  Chapter 5 introduces a unique dynamic messaging architecture that is

responsible for providing the high level of flexibility and customizability of VORTOS.
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Chapter 6 describes the essential operating system components and how they work

together to create a usable system that allows easy substitution of policies and dynamic

filtering of programmatic content.  Chapter 7 discusses the compiler sub-system and how

machine code generated by a commercial off-the-shelf compiler is translated into usable

virtual machine code by the system.  Chapter 8 describes an implementation of the

system and the simplicity benefits in implementation provided by the VORTOS

architecture.  Chapter 9 presents conclusions and suggests future work.
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Chapter 2 

Related Work

Since operating systems cover a broad area of computer science research, there is

a large amount of related work in this area, and thus a large amount of overlapping

research.  This chapter reviews several approaches used to address the problems of

embedded systems and operating system software in general.  Section 2.1 looks at prior

component-based solutions.  Section 2.2 reviews customizable software approaches.

Section 2.3 explores the abstraction provided by virtual machines.  Section 2.4 looks at

some translation and recompilation resources for compatibility.

2.1 Component-based Software

Component-based operating systems have a long history.  UNIX itself was

formed based on the idea of modular components, separating out functionality into a

kernel, various user-level utility programs, and libraries of code, with all components

using a portable source language, C [1].  However, UNIX suffers from the flexibility and

efficiency problems of traditional operating systems described earlier in Section 1.2.

In the early 1990’s, Taligent created an operating system known as Pink that was

based completely around autonomous components generated from C++ classes [2].

Although this provided increased flexibility, the overhead from the run-time

manipulation of C++ classes resulted in significant performance degradation [2].
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VORTOS takes a similar component-based approach, but with a much more lightweight

component architecture.

Scout is another component-based operating system designed to have multiple

components communicating over a network while running in parallel [3].  Similarly,

CORBA provides a uniform standard for distributed objects to communicate over a

network and could be used to provide remote access to local VORTOS components [4].

UIUC’s 2K Operating System uses CORBA to provide networked access to its

components [5].  However, Scout, CORBA and 2K all implement messaging and

componentization at a higher level than VORTOS, and so do not receive as much of a

flexibility or efficiency benefit from componentization.  The high level messaging also

increases system overhead, making implementation on embedded systems difficult.

2.2 Separating Mechanism from Policy

More recently, it has become common for operating systems to separate

mechanism from policy to maximize flexibility.  Harvard’s VINO does this to maximize

the reusability of code [6].  The Exokernel [7] and Cache Kernel [8] make this separation

under the assumption that applications know how to allocate memory and schedule tasks

for their specific needs, so can achieve performance better than that of a general-purpose

kernel scheduler.  The Exokernel attempts to reduce the operating system kernel to a

series of basic hardware abstraction calls, much like VORTOS’ virtual machine abstracts

the hardware through a virtual machine [7].  Stanford's Cache Kernel allows kernels to be

implemented as plug-in modules that provide different types of functionality through a

kernel multiplexing scheme [8].  However, neither the Exokernel nor the Cache Kernel
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provides the same level of functionality realized by VORTOS’ general-purpose uniform

component architecture.  Rather than simply allow customization of basic hardware

kernels, VORTOS goes a step further by allowing the customization of every aspect of

the operating system and applications running on it.

2.3 Virtual Machines

Virtual machine architectures have been around for quite some time, and are quite

useful for process migration.  FLUX-OS is an operating system that supports application-

specific and recursive virtual machines.  These virtual machines can be customized on a

per-application basis to provide specialized functionality [9].  However, having a separate

virtual machine for each customized scenario has too large a footprint for many

embedded systems.  The Spin operating system allows processes to migrate application-

specific functionality into kernel space, allowing user applications to supplement but not

replace kernel functionality [10].  Hope is an operating system that runs on parallel

virtual machines and uses optimistic prediction to maximize parallelism, but does not

provide any form of customized functionality [11].  Virtual machines such as Sun

Microsystem’s Java and Synthetix are high-level virtual machines that can generate code

at run-time for faster execution [12].  By combining a virtual machine with a component

architecture, VORTOS obtains the functionality and efficiency benefits of both

approaches.
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2.4 Translation Technologies

Dynamic recompilation has become a popular approach for overcoming some of

the performance limitations of virtual machine architectures such as Java and Synthetix

[12].  Dynamic recompilation is common among game console emulators for

performance reasons.  These systems use dynamic recompilation to speed up execution of

virtual machine code by translating it into machine code for the underlying native

hardware processor on-the-fly.  Apple uses dynamic recompilation on its PowerPC

computers to provide compatibility with software written for older Motorola 68000

processors [14].  Digital developed an i386 to Alpha translator for similar compatibility

reasons [15].  UQBT is a general-purpose retargetable binary translator for general binary

code translation.  It performs static binary translation for better optimization and to avoid

delays at run-time [16].  VORTOS is built with a similar, but more specific binary

translator tailored specifically for the virtual machine architecture used in VORTOS.
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Chapter 3 

VORTOS Overview

This chapter provides a general overview of VORTOS by describing its three

main parts involved in its operation: the components, the virtual machine, and the

recompiler sub-system.  Section 3.1 describes the components that provide the operating

system functionality to the applications.  Section 3.2 explains the virtual machine that

these components run on top of.  Section 3.3 describes the translation mechanism used to

compile the components into compatible virtual machine code.

3.1 Components

VORTOS is a purely component-based operating system.  All functionality,

including memory management, multitasking, and context switching, which are

traditionally included in the kernel, are contained in components.  Components contain

header information, executable instructions, and data.  Component functionality is

described in general terms to VORTOS by means of the class code, type code, and

implementation code associated with each component.  The class code indicates the

general functional class of the object, for example, a class code of 'fsys' indicates that a

component is a file system and a class code of 'memm' indicates the component is a

memory management component.  There are five basic class codes defined within

VORTOS as shown in Table 3.1.1.
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Table 3.1.1: Common Class Codes
Component Name Class Code

Loader 'load'

Scheduler 'sche'

Memory Manager 'memm'

Disk Driver 'ddrv'

Filesystem 'fsys'

File Storage Component 'stor'

The type code indicates the functional subclass or specific type within the general

functional class of a given component.  For example, a type code of 'ext2' indicates that a

component is an ext2 file system component, and a type code of 'page' indicates a page-

based memory management component.  There are eight basic type codes defined within

VORTOS as shown in Table 3.1.2.

Table 3.1.2: Common Type Codes
Component Name Type Code

Loader 'load'

Scheduler 'sche'

Object-oriented Memory Manager 'oomm'

Page-based Memory Manager 'page'

SCSI Driver 'scsi'

IDE Driver 'ide '

Ext2 Filesystem 'ext2'

NTFS Filesystem 'ntfs'

XFS Filesystem 'xfs '

File Storage Component 'stor'

The implementation code contains a unique identifier for the component.  It is

similar to the Universal Product Code (UPC) in that it uniquely identifies the author of
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the component, and allows every author to have multiple uniquely identified versions of

the same component.  For shared usage, these codes should be assigned by a central

authority or group, similarly to the distribution of IP addresses.  All of the components

developed as part of this thesis have an implementation code of zero.

Page-based Memory
Manager

SCSI
Driver

IDE
Driver

Scheduler
Component

Ext2
NT

FS
XFS

Object-oriented
Memory Manager

File Storage
Component

Figure 3.1.3: Some Example Components

Figure 3.1.3 provides some example components and Table 3.1.4 shows their

associated class codes, type codes, and implementation codes.

Table 3.1.4: Example Codes
Component Name Class Code Type Code Implementation Code

Page-based Memory Manager 'memm' 'page' 0x00000000

Object-oriented Memory Manager 'memm' 'oomm' 0x00000000

Scheduler 'sche' 'sche' 0x00000000

SCSI Driver 'ddrv' 'scsi' 0x00000000

IDE Driver 'ddrv' 'ide ' 0x00000000

Ext2 Filesystem 'fsys' 'ext2' 0x00000000

NTFS Filesystem 'fsys' 'ntfs' 0x00000000

XFS Filesystem 'fsys' 'xfs ' 0x00000000

File Storage Component 'stor' 'stor' 0x00000000
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A component can have any number of entry points to its code, and each entry

point has a specific message code associated with it.  Message codes are publicly defined

codes that allow components to be called by others.  Each component with a given class

code shares at least a common subset of message codes.  Each component with a given

class code and type code will generally share most or all of the same message codes.

These message codes are discussed in more detail in Chapter 5.

The most central component is the loader component.  The loader component

loads into memory the components necessary for operation and coordinates and keeps

track of all of the components currently available and loaded.  Other components can

query the loader component for information about the components in the system and can

also call on it to load and unload components as needed.  The loader component is

discussed in more detail in Chapter 6.

Additional commonly required components for useful functionality of VORTOS

include a memory management component, a scheduler component, a networking

component, and a persistent storage component.  A memory management component

provides the essential memory allocation and organization functionality.  A scheduler

component can allow custom scheduling of processor time between processes by

assigning and modifying the relative priority levels of running processes and

rescheduling them.  Networking components can provide both connection-oriented and

connectionless transactions over the network.  A persistent storage component can load

the appropriate file system component to access data saved on a hard disk.
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All of these components run in their own user-level address-space, so that if one

component crashes, it can be killed or reloaded as appropriate without bringing down the

rest of the system.  This also allows the "hot-swapping" of components when desired.

Since the core parts of a traditional kernel are all implemented within components, even

these parts of the operating system receive the benefits of this protection.  If the memory

manager somehow accesses an invalid address and triggers a memory protection fault,

the virtual machine will notify the scheduler, which will restart the memory management

component.

3.2 Virtual Machine

All components run on top of a virtual machine that provides inter-component

messaging facilities.  The virtual machine can be viewed as a very simple kernel,

somewhat similar to the kernel in the Cache Kernel [8] or Exokernel [7] systems.  Each

task is assigned a dynamic priority level by the operating system.  A component may

have several corresponding tasks.  The virtual machine executes tasks in a round-robin

fashion among those tasks with the highest priority.  The scheduler component adjusts

these priorities as necessary and helps ensure that real-time tasks meet their deadlines.

The virtual machine also dispatches messages to components and vectors interrupts and

exceptions to the appropriate components.  A unique identification number assigned by

the loader component when a component is first loaded identifies the target component of

a message.

By using a virtual machine, VORTOS components can run on a wide variety of

platforms, and even from within other operating systems, without modification.  Only the

virtual machine implementation itself needs to be ported, and since it is an extremely
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simple virtual machine with a simple instruction set as described in Chapter 4, it can be

easily ported to virtually any hardware or software platform, even those with minimal

resources such as embedded systems.

The virtual machine contains a built-in debugger that can be used to pause and

step through execution of PVMF instructions.  Also it can display and disassemble

instructions and data in memory, and display the contents of all of the registers of the

virtual machine.  The low-level facilities of the debugger make it easier to diagnose and

debug even very fundamental components of the operating system.

3.3 Recompiler Sub-system

VORTOS includes a recompiler sub-system that translates instructions from

foreign instruction set architectures to the PVMF instructions.  The recompiler is not part

of the operating system itself, but is used for translating code during software

development.  It allows code to be developed on existing platforms, alleviating the need

for a VORTOS-specific compiler.  The recompiler reads in the compiled instructions

from the code generated by the foreign compiler one by one and replaces each one with

the corresponding PVMF instructions.  Since the assumptions made by foreign processors

are different from those made by the VORTOS virtual machine, several extra control

instructions are sometimes necessary for a single foreign instruction.  Sometimes it may

be necessary to save values stored in registers in foreign code on the stack temporarily in

PVMF code if there are not enough registers available.  On the flip side, frequently

accessed variables currently stored on the stack in the foreign code can be stored in

registers in the PVMF code as an optimization when there are extra registers available.
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Additionally, memory references need to be offset by the proper amounts to contain their

proper values in the generated PVMF code.  The recompiler sub-system is described in

more detail in Chapter 7.
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Chapter 4 

Virtual Machine Architecture

This chapter details the general architecture of the 32-bit Portable Virtual

Machine Format (PVMF-32) virtual machine.  Section 4.1 describes the memory address

model and architecture of the virtual machine itself.  Section 4.2 describes the PVMF-32

instruction set.  Section 4.3 explains the interrupt architecture used by the virtual

machine.  The exception model is detailed in Section 4.4.  Section 4.5 describes the

multitasking model.  Section 4.6 describes the debugger built into the virtual machine.

Section 4.7 provides an analysis of the design features of the virtual machine.

4.1 PVMF-32 Overview

The PVMF-32 virtual machine is a virtual 32-bit processor with a very simple

RISC-like instruction set.  The PVMF-32 is register-based, with a 32-bit address space.

PVMF-32 has 16 primitive operations that operate on some combination of integer

registers, floating-point registers, and 16-bit constant values.  An architectural diagram of

the virtual machine is shown in Figure 4.1.1.
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Figure 4.1.1: The Virtual Machine

The virtual machine has 31 general-purpose 32-bit integer registers named r0-r30

and 31 general-purpose 64-bit floating-point registers named fpr0-fpr30.  Each of the 64-

bit floating-point registers conforms to the IEEE 754 standard for double-precision

floating-point numbers.  An additional integer register (r31) and an additional floating-

point register (fpr31) always contain a value of zero.  The current implementation of the

virtual machine uses the 32-bit integer register (r30) as a pointer to the base of the current

stack.  The virtual machine operates solely in big-endian mode.
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Root node of memory map

0x1000 Physical memory block start address
4096 Physical memory block length
r,w Permissions on memory block

0x1000 Start address of block in component address space
0x2000 End address of block in component address space

Address map of memory below
0x1000 in component address space

Address map of memory
above 0x2000 in component

address space
0x5000 Physical memory block

start address
0xC000 Physical memory

block start address
1024 Physical memory block

length
2048 Physical memory

block length
r,w Permissions on memory

block
r Permissions on

memory block
0x0C00 Start address of block in

component address space
0x2000 Start address of

block in component
address space

0x1000 End address of block in
component address space

0x2800 End address of
block in component

address space

Address map of
memory below
0x0C00 in
component address
space

Address map of
memory between

0x1000 and 0x1000
in component
address space

Address map of
memory between

0x2000 and 0x2000
in component
address space

Address map of
memory above

0x2800 in
component address

space
NULL NULL NULL NULL

Figure 4.1.2: The Memory Map Structure

The PVMF-32 virtual machine uses a 32-bit object oriented memory addressing

model.  Each component has its own address space and a memory map structure

associated with it.  When execution is in a component's address space, its memory map is

used for all memory references during execution.  The memory map structure is a binary
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tree structure used to hierarchically partition an address space as shown in Figure 4.1.2.

Figure 4.1.2 shows a memory map that maps data from various discontiguous physical

memory blocks of various sizes into one continuous memory block from 0x0C00 to

0x2800 in the component's address space.  Each node in the memory map contains the

starting and ending addresses in the component's address space that the node corresponds

to, the size and location in physical memory of the actual data, and the read, write, and

execute permissions on that data block.  Each node can have a unique size and

permissions.  The addresses in the component address space do not have to be

continuous.

When a memory address in the component's address space is accessed, this

address is compared to the start and end component address space values in the root node

of the memory map.  If the accessed address is between these start and end values, this

node is used to map the address to a physical address.  If the accessed address is less than

the start address in this node, the same process is repeated on the left child node, and if

the access address is greater than the end address in this node, this process is repeated on

the right child node.  If a NULL node is reached or the permission value on the

appropriate node does not allow the attempted form of memory access, a memory access

exception is thrown.

Each component has separate memory map structures for code and data

references.  The code memory map is used for translating address references in branch

instructions, while the data memory map is used to translate address references during

load and store instructions.  The current implementation assumes that the code memory

map only contains a single node, for efficiency purposes.



39

Upon startup, the virtual machine starts by clearing all values in all registers to

zero and loading a ram image from disk.  The ram image contains the initial state of all

memory in the virtual machine, including the initial code to run.  The virtual machine sets

up the interrupt queue and installs a generic timer interrupt handler that generates a

rescheduling message.  The virtual machine then sets up the stack and memory map

structures for the initial thread and starts executing instructions sequentially at the

program counter.  Since the program counter is zero at initialization time, this means the

execution begins with the instruction at memory address zero.  In most cases, this will be

the code for the loader component described in Section 6.1.

4.2 Instruction Set

The primitive instructions of the PVMF-32 virtual machine include addition,

subtraction, multiplication, division, bitwise-AND, bitwise-OR, bitwise-XOR, bitwise-

rotation, loading a register from memory, storing a register in memory, absolute and

relative conditional branching, and comparison instructions.  Table A.1 in Appendix A

lists all of the PVMF-32 instructions, their assembly mnemonics, and their effects.  In

The following notation is used to describe the instructions: rX represents an integer

register, fprX represents a floating-point register, CONST represents a 16-bit integer

constant, and PC is the current address the virtual machine is executing.  Note that 16-bit

integer constants are used for both floating-point and integer instructions.
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Register-based instruction

OpCode
(8 bits)

Res-
erved

(3
bits)

Register
First

Argument
(5 bits)

Register
Result
(5 bits)

Reserved
(6 bits)

Register
Second

Argument
(5 bits)

Immediate Instruction

OpCode
(6 bits)

Register
Result
(5 bits)

Register
First

Argument
(5 bits)

Constant Second Argument
(16 bits)

Figure 4.2.1: Instruction Formats

Figure 4.2.1 shows the two different formats of instructions.  The first argument

to an instruction and the result are always registers, while the second argument can either

be a register or a 16-bit constant depending on which format the instruction is in.

Register-based instructions have an extra two bits in their opcodes, so some of the entries

in the hash table of the virtual machine jump to the code to execute the same immediate

instructions.

There are two special instructions for message passing.  These instructions are

called by components to interact with other components.  The only ways components

interact are through one of these two instructions, Send Message or Fork Message.  Each

type of component has a number of well-defined message codes that can be passed in a

register to the message instruction to indicate to the virtual machine which function of a

component to jump to.  Another register contains the local identification number of the

component to send the message to.  The versatility of the message passing instructions is

explored in detail in Section 5.
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The Send Message instruction calls the message in the object indicated by the

values in the registers used as arguments for the Send Message instruction.  This

instruction transfers control of the processor to the function with the specified message

code in the specified object, until a return message is sent to object ID 0.  The virtual

machine intercepts all return messages to object ID 0 and returns control of execution to

the original caller at the instruction just after the Send Message instruction.  The result of

the message call is placed in the register specified in the Send Message instruction's final

argument.

The Fork Message instruction performs the same actions as the Send Message

instruction.  However, instead of transferring control to the destination object, a new

thread is created which begins execution at the function with the specified message code

in the destination object.  This new thread executes simultaneously at the same priority

level as the original thread, while the original thread continues to execute the instructions

following the Fork Message instruction without waiting for a result from the called

object.

4.3 Interrupts

Components can send messages to the loader to register and remove interrupt

handlers.  The loader maintains a list of all currently registered interrupt handlers.  When

an interrupt occurs, the virtual machine saves the information passed to its generic

interrupt handler in a queue.  Adding new entries to the queue is done in such a way to

place a very small hard upper bound on the amount of time spent adding entries to the

queue, at the expense of possibly losing interrupts if they are not handled quickly enough.
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Since hardware can only store a fixed number of interrupts at a time, this is a danger in

any case, so this is unlikely to be a problem in practice.

Between instructions, when the virtual machine is in a synchronized and well-

defined state, the queue is emptied and for each of the entries in the queue, the virtual

machine sends a message to each component that has an interrupt handler registered for

the interrupt that created that entry.  These messages are sent using the same mechanism

described for the Fork Message instruction in Section 4.2 so that they can be processed in

parallel with each other and other ongoing processes.  However, the newly spawned

threads for forking these new messages to the appropriate components are given a special

high priority value, so that they will get processed before further execution.  In most

cases, this means that these interrupts will all be handled completely before the rest of the

processes resume execution, unless the interrupt handlers block, in which case other

processes will continue execution normally as long as there is no higher priority process

active.

4.4 Exception Handling

The exception handling mechanism for the virtual machine is fairly simple.  The

virtual machine inserts a special exception handler to be called by the underlying

hardware the virtual machine is running on whenever a hardware exception occurs.  An

exception is also thrown if code running on the virtual machine attempts to execute an

illegal instruction or access memory out of bounds.  When the exception handler is

called, it sets a boolean flag in the virtual machine's global memory space.  Setting this

flag when it is already set has no effect, so that redundant exceptions are not generated by
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the code that generated an exception before the initial exception is handled.  The virtual

machine periodically checks to see if the flag is set and if it is, it sets another flag and

transfers execution to the exception handling message in the component that generated

the exception.  If the second flag is already set or if that component has no exception

handling message, control is transferred to a routine in the loader to forcibly unload the

offending component.  These checks only occur at safe points in between instructions, so

that the virtual machine will not be left in an invalid or unsynchronized state when

control is transferred.

4.5 Threads

The virtual machine allows multiple threads of execution to run simultaneously.

Each thread has a positive numerical priority associated with it.  All ready threads with

the highest priority level are rotated through in a round-robin fashion.  Every tenth of a

second, the virtual machine suspends the current thread and register context and loads the

thread and context with the highest priority.  This interval can be changed as desired by

the operating system.  If multiple threads have the same priority, and it is the highest

priority of any active thread, the thread with the highest priority that has not run for the

longest time interval is loaded.  The tenth of a second timer is then reset and control of

the processor is transferred to the newly loaded thread.  When the virtual machine starts,

it loads a special thread called the idle thread.  The idle thread does nothing but

continuously loop.  It has a priority of zero, the lowest priority of any thread, so that it

will only execute when no other threads are active.  Using an idle thread simplifies the

scheduling algorithm since it ensures that at least one thread is always ready to run.
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Each thread has a dynamically resizable stack associated with it.  Local data such

as stack frames for functions and local variables can be stored on this stack.

0xFC   VAddress    return stack pointer

0xF8   VAddress    return stack base

0xF4   VAddress    return code offset

0xF0   VAddress    return objectID

stack base addr -> 0xEC    local stack data

0xE8    local stack data

stack pointer -> 0xE4    local stack data

Figure 4.5.1: Stack Layout in Memory

The layout of the stack is shown in Figure 4.5.1.  The current implementation uses

register r30 for the stack pointer and register r29 for the stack base address.  The base

address will always be higher than the stack pointer, because the stack grows downwards.

When a message instruction occurs, the virtual machine saves the current stack pointer,

stack base address, the address of the following instruction, and the calling object's ID

number on the stack.  The stack base is set to the address of the current stack pointer after

all this information has been stored on the stack.  The data address space of the called

object is modified to include the new stack, starting from the new stack base.  If stack

space is running low, this can be used to continue the stack in another portion of memory

by storing the stack's information in the new portion of memory rather than right on the

current stack, then updating the stack pointer and base and to point to the new portion of
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memory, right below the stored information.  The new object will normally not have

access to any of the stack information from the calling object.

4.6 Debugger

This implementation of the virtual machine includes a built-in debugger for

tracing problems during program and operating system development.  The virtual

machine can display windows showing the current values of every register for each CPU

currently executing.

Figure 4.6.1: Virtual Machine Register Window

When the value of a register changes, that register is briefly highlighted in red as

shown with the program counter in Figure 4.6.1 to provide visual feedback when

registers are modified.  The state of the virtual machine's RAM can be examined in a hex

dump as seen in Figure 4.6.2.
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Figure 4.6.2: Hexadecimal Dump of Virtual Machine RAM

The user can either execute instructions continuously or halt execution and step

through one instruction at a time on command.  The currently executing instruction is

marked in the disassembly window.  This window, shown in Figure 4.6.3, provides a

disassembly of the RAM using the assembly mnemonics listed in Appendix A.

Figure 4.6.3: Virtual Machine RAM Disassembly



47

4.7 Design Analysis

By using a virtual machine, VORTOS components can run on a wide variety of

platforms, and even from within other operating systems, without modification.  Only the

virtual machine implementation itself needs to be ported, and since it is an extremely

simple virtual machine with a simple instruction set, it can easily be ported to virtually

any hardware or software platform, even those with minimal resources.

Keeping the virtual machine instruction set small and simple also keeps the

footprint of the virtual machine small.  The low-level, register-based architecture of the

virtual machine avoids the overhead commonly incurred by higher levels of abstraction.

The simple RISC-style instruction set provides low-level primitives that can be

efficiently implemented on any modern hardware processor.  This is particularly

important for embedded systems with limited hardware resources available.

Furthermore, these low-level primitives do not constrain higher level applications, since

they only perform the basic arithmetic functions.  Higher level abstractions often limit

functionality and performance because they constrain data representations to a given

form.  Data and programs that do not fit the artificially constructed abstractions well may

be awkward to implement and less efficient.  The design impact of the special messaging

instructions is explored more fully in Chapter 5.

The PVMF-32 virtual machine is a 32-bit processor.  Since most modern

microprocessors use either 32 or 64 bit registers and addressing, most processors should

be able to handle the 32-bit virtual machine quite naturally.  At the same time, since most

embedded processors currently in use have 32 bit registers and addressing, using a 64-bit

virtual machine would unnecessarily increase the size of the system.  Since few
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embedded systems have more than the four gigabytes of memory addressable by a 32-bit

processor anyway, requiring them all to use 64-bit addressing would just be a waste of

space or processing power.  Furthermore, the architecture of the virtual machine and

operating system is portable enough that a 64-bit virtual machine could be implemented

if desired.  PVMF-32 code could be translated to run on a 64-bit virtual machine with

little difficulty using methods similar to those described in Chapter 7.

Using 64-bit floating-point registers that conform to the IEEE 754 double-

precision standard was a logical choice, since this format is commonly used among

modern floating-point processors and can be emulated using multiple 32-bit registers if

necessary.  16-bit integer constants are used with both integer and floating-point

instructions, since 16-bits is enough space to represent many common integral values but

most floating-point numbers that are not integers require more than 16 bits of precision.

Immediate instructions and register-based instructions have different formats to

accommodate the 16-bit arguments used by immediate instructions.  Two of these bits are

used by register-based instructions to further differentiate between instructions, allowing

additional register-based instructions.

The virtual machine runs in big-endian mode.  This means it works well with big-

endian processors, but it will also work with little-endian processors.  However, little-

endian implementations of the virtual machine will need to swap the byte order of words

from memory after every load and before every store instruction.  This may cause a very

small performance overhead to be incurred on little-endian machines.  Note however, that

little-endian processors face a similar situation when transmitting data over most

networks, since TCP/IP stores data in big-endian byte order.
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Since each component has its own code and data address spaces, the virtual

machine can easily enforce per-component memory isolation, to prevent one component

from illegally writing to the memory of another.  The ability to map memory to a

component's address space arbitrarily allows more flexibility in implementing memory

allocation schemes, since memory blocks can be discontinuous and scattered throughout

memory in any arbitrary fashion.  Furthermore, since these addresses are virtual

addresses, the memory manager can perform defragmentation of memory blocks

transparently to the application.  Components can explicitly share portions of their

memory space with other components by sending the appropriate messages to the

memory management component, which will then map the given memory ranges to the

address spaces of the additional components.  Using shared memory allows fast data

transfer between components, but since memory must be explicitly shared illegal

accesses will still be detected.  Having separate code and data address spaces allows code

addresses to be marked as executable but not writable or readable, increasing stability and

security by protecting loaded code from malicious or accidental modification.  The

assumption that the code address space is continuous both in the address space and in

memory was an optimization that improves the performance of the virtual machine

without placing undue constraints on the software, since situations requiring arbitrary

mapping of the code of simple components are rare since shared objects are accessed

entirely through the messaging instructions.  It also places an upper-bound on the amount

of time necessary to fetch instructions from memory.  This is important for systems that

require real-time performance.  To provide a similar upper-bound on loads and stores to
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and from the data address space requires limiting the depth of the data memory map tree,

which can be done on a per-component basis by the developer of a component.

The interrupt architecture provides a simple, generic interface for interrupts that

does not disrupt the operating of real-time processes with arbitrary interrupt handlers.  At

the same time, the queuing of messages at interrupt time provides a flexible dispatch

mechanism that allows drivers to execute safely and securely in user-mode.  Therefore,

errors in drivers can be contained from the rest of the system and drivers can be easily

dynamically loaded and hot-swapped.  Since exception handling uses the same

mechanism, these advantages apply to hardware exceptions as well as interrupts.

The threading model employs a simple low-cost scheduling algorithm that can be

used to implement more sophisticated scheduling algorithms.  Real-time processes can be

given a higher priority than other processes to help them meet their timing constraints.

The stack architecture isolates stack frames of functions across components, which

provides a higher level of stability.  Even if a component corrupts its stack space, the

stack of the calling object will be unaffected.  This also prevents common security

problems associated with stack buffer overflows, since the called object cannot access the

return address stored on the stack.  Furthermore, since the code address space does not

include the stack, executable code cannot be stored on the stack.  Although this may

cause some problems with very machine-specific self-modifying code, it should not

impact most applications and provides added security and stability benefits.

The debugger built into the virtual machine provides useful feedback for

development and allows step-by-step execution, monitoring, and debugging even of the

lowest-level components of the operating system.
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Chapter 5 

Component Architecture

This chapter discusses the component architecture of VORTOS and describes the

way components interact through messaging.  The general nature of the component-

oriented messaging system provides a huge amount of flexibility.  Section 5.1 describes

the structure of components and their characteristics.  Section 5.2 describes the

messaging architecture.  Section 5.3 discusses the ramifications and consequences of the

component-oriented messaging approach.

5.1 Component Structure

Components are objects containing code and data, just like executable files for

any modern architecture.  The data organization of each component in memory or storage

begins with a header that contains information about how the component is used.  The

header is followed by a code and data section as shown in Figure 5.1.1.
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Offset Field Data Type

0x0000 objected 32-bit unsigned integer

0x0004 codeOffset 32-bit unsigned integer

0x0008 dataOffset 32-bit unsigned integer

0x000C codeLength 32-bit unsigned integer

0x0010 dataLength 32-bit unsigned integer

0x0014 size 32-bit unsigned integer

0x0018 classCode 32-bit unsigned integer

0x001C typeCode 32-bit unsigned integer

0x0020 implementationCode 32-bit unsigned integer

0x0024 attributes 32-bit unsigned integer

0x0028 instance 32-bit unsigned integer

0x002C createdBy 32-bit unsigned integer

0x0030 instructionMap Memory Map Node (See

Section 4.1)

0x0048 dataMap Memory Map Node (See

Section 4.1)

0x0060 Message Offset Table

msgCode1 offset1
msgCode2 offset2
msgCode3 offset3

… …
0x00000000 0x00000000

Array of [32-bit unsigned

integer, 32-bit unsigned

integer]

codeOffset instruction list Array of 32-bit unsigned

integers

dataOffset Arbitrary data block arbitrary data block

Figure 5.1.1: Component Structure
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Each component has an object ID assigned to it when it is loaded into memory.

The objectID field is updated to contain this value when the component is loaded.  The

codeOffset and dataOffset fields indicate the offsets from the beginning of the header to

the start of the code and data sections of the component, respectively.  Similarly, the

codeLength and dataLength fields indicate the lengths of these sections.

The size field indicates the total size of the component, including the header.  The

classCode, typeCode, and implementationCode fields indicate the class code, type code,

and implementation codes of the component, respectively, as defined in Section 3.1.  The

attributes field is reserved for future use and is intended to indicate that a component

possesses certain attributes.

The instance field is instantiated with the component is loaded into active

memory.  Its value is the number of other components with the same typeCode currently

active at the time the component is started.  The createdBy field contains the object ID of

the object that made the call to load this component into active memory.  The

instructionMap and dataMap fields contain the code address space and data address

space maps, respectively, as described in Section 4.1.

At the end of the component's header is the message offset table, which contains

an array of paired 32-bit unsigned integers containing a list of message codes and the

corresponding offsets in the component to jump to when those messages occur.  These

message codes are similar to class and type codes in that their values correspond to

ASCII strings that indicate their purpose, such as 'open' for the open component message.

The end of the message offset table is indicated by a pair of zero entries in the table, since
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a message code of zero is not valid.  The code and data themselves occur at the position

in the component indicated by the codeOffset and dataOffset fields, respectively.

5.2 Component Messaging

Components interact with each other solely through a simple message passing

protocol, using the Send Message and Fork Message instructions described in Section

4.2.  When the virtual machine executes a message instruction, it looks through the

message offset table in the header of the object with the object ID passed as an argument

to the message instruction.  In the current implementation, the object ID assigned to an

object is the address of the beginning of that object's header in memory.  The virtual

machine sequentially scans each entry in the message offset table until it finds the

message code passed as an argument to the message instruction, then jumps to the

corresponding offset listed in the message offset table.  If the target message code cannot

be found, the "Default" message with message code 'deft' of the target object is called

instead.  This allows components control over what happens when an unknown message

code is received.  If the target object does not have a 'deft' message, the virtual machine

sends a "Not Supported" message with message code 'nots' to the calling object instead.

If the calling object does not have a 'nots' message, the virtual machine throws an

exception by sending an "Exception" message with message code 'xcpt' to the loader.

The same message code can have different meanings for different class codes.

This allows the author of a new class to define message codes as desired.  The message

codes for the components included in the operating system are described along with those

components in Chapter 6.  New message codes may be added as needed.
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All messages are dispatched to the correct destination by the virtual machine,

allowing messages to be routed to alternate components when desirable.  Since messages

are the only form of communication between components, this allows a wide range of

flexibility in the use of components and application-specific components.  For example, a

process with a complex memory management scheme can use its own memory

management component instead of using the default system memory management policy

by sending messages to its custom memory management component instead of the

default system component.  This allows greater efficiency for applications that wish to do

their own memory allocation.  However, this places no additional requirements on other

applications, since they can always use the system’s memory management policy by

default.  The preferred components for a given function, such as memory management or

task scheduling can also be specified on a per-application basis if desired, allowing great

flexibility to users and developers alike.

This general message-passing system also allows one or more filters to be applied

to components by redirecting the messages for a target component to a filter component

by assigning the target object's ID to the filter instead.  The filter component can supply a

'deft' message that passes any message not specified in the filter on to the target object

while allowing the filter to monitor or modify the arguments or destroy the message as

desired.  Furthermore, individual message functions in the filter can provide "wrapper"

functionality, such as a compression filter that automatically compresses the data sent to

it with a "write" message before passing the data to the target object and automatically

decompresses data received from the target object with a "read" message before returning

it to the caller.  This allows the compression filter to be applied to any component that
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reads and writes data with a "read" and "write" message and automatically provides

transparent compression to the target component without any modification.  This also

allows the implementation of a simple form of inheritance, where the messages defined in

the filter "override" those of the component the filter is intercepting messages for.

In addition, components can be swapped in and out of the system at run-time

without the need for complex initialization and shutdown procedures by simply routing

the messages to the new component.  This rerouting is accomplished by simple assigning

the new component the object ID of the old component.  This is particularly useful for

embedded systems, which often require high system availability.

5.3 Design Analysis

By isolating code modules into components and adopting a uniform message-

passing model, VORTOS makes it simple to distribute components across processors,

both locally and across a network.  Since components are simply pieces of PVMF code

on the virtual machine, components can even migrate across a heterogeneous network to

a remote system of a different architecture.  This means that VORTOS can be run as a

truly distributed operating system, and will easily scale up to large heterogeneous

networks of computer systems.  By adding an ORB component to the system,

components can be exported quite naturally as CORBA objects, allowing interoperability

with a wide range of existing networked systems.

This component architecture also makes it simple to scale downwards to

embedded systems and microcontrollers.  When space is at a premium, only the essential

components, such as memory management and scheduling, need to be loaded or included
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with the system.  An embedded system with no need for a graphic subsystem can leave

out all the graphical components.  If specific functionality is required, the necessary

components can be included in the system.  For example, a cell phone’s processor may

need to send data over a wireless network.  The wireless driver component and some

networking components could be included to provide this functionality, but since a cell

phone has no hard drive, file system components are unnecessary and can be left out,

making the total footprint of the system smaller, which is important on a cellular phone

with a very limited memory.

The ability to reroute messages to components and to use filter components is a

very powerful feature of VORTOS.  The "Not Supported" message allows components to

provide their own recovery functions rather than being arbitrarily killed for making an

invalid external call.  The "Default" message provides a way to handle unexpected or

unknown messages and allows the easy implementation of filter components that can be

applied to a target component without knowing all of the internal details of the target

component.  This architecture allows the implementation of components that can

automatically encrypt or compress data sent to the filtered components.  Even messages

such as the "Exception" message could be intercepted by a filter component that, for

example, logs all exceptions to a file.  This also allows hot-swappable components,

redundant components that provide insulation against failure, and components that apply

only in certain contextual situations, such as only for certain users or only allow a certain

amount of data to pass through them before they shutdown for security or bandwidth

reasons.
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Chapter 6 

Basic Components

VORTOS itself is a collection of components running on top of the virtual

machine.  The components in that collection can be customized to fit the needs of the

user.  However, there is a default set of core components that create a functional system.

The Loader component described in Section 6.1 loads and manages the operating system

and the components.  The Task Scheduler described in Section 6.2 coordinates and

provides information about processes.  The Memory Manager described in Section 6.3 is

responsible for allocating and managing memory for processes.

6.1 Loader

The primary component of VORTOS is the loader component.  It has a class code

and type code of 'load'.  The loader component provides the code necessary to initialize

and load the operating system and the key components at boot time.  It is also used to

load and make queries about components.  These queries include obtaining the

identification number of a particular component through the 'getc' message code.  The

loader maintains a list of all current instantiations of components.

When the loader receives a 'getc' message, it looks for an existing component with

the class code, type code, and implementation code specified in the arguments to the

message.  If the caller requests a component this is not currently active, the loader will

automatically load that component and assign it an object ID and call its 'open' message.
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Since a component’s identification number is required to call a component, the scheduler

component always maintains an identification number of zero.

To find out if a component has a given message code, the message code 'hasm'

can be sent to the loader to find out if a component with a specific object ID has a given

message code.  Upon receiving a 'hasm' message he loader searches the message offset

table described in Section 5.1 for a 'hasm' message code and if present, the loader sends

this message to the target component that is the object of the query and returns the result

of the message to the caller.  If the target component does not have a 'hasm' message,

then the loader searches the message offset table of the target component itself to

determine if it contains the message code passed in the query, then returns the result to

the caller.  This process ensures that components can provide their own 'hasm' message

handlers to respond directly to queries about which messages they support, rather than

relying on the scan done by the loader.  This is important because components that take

advantage of the "Default" message, such as filter components, may not have a specific

message handler for a given message, but may pass that message on to another

component by intercepting it through a "Default" message handler.  In these cases, the

loader's scan of the message offset table would indicate that the message in question was

not supported, even though for example, the object that a filter component passes its

messages on to may support the message code in question.

Components can send a "Register Interrupt" message with message code 'regi' to

the loader component to register an interrupt handler.  When an exception is generated or

an interrupt occurs, the virtual machine will queue up a message to be sent to the

registered component.  All messages in the queue will be sent asynchronously as soon as
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the currently executing instruction has finished executing.  The list of registered interrupt

messages and their destination components is maintained by the loader and read by the

virtual machine at interrupt time.  When the loader component receives an exception

message, it will set a flag indicating that the given component has generated an exception

and then it will send a 'xcpt' message to the component that generated the exception.  If

another exception message for the same component is received before the call to the first

'xcpt' message returns or if the loader receives a 'nots' message for the 'xcpt' message send

to the offending component, the loader will kill the offending component.  The flag set

before sending the 'xcpt' message ensures that the loader does not get stuck in a loop,

where it keeps sending an 'xcpt' message to an object, but that object keeps generating

exceptions before returning, generating additional 'xcpt' messages to the loader for the

same object.

If the loader notices that no memory management component is currently running,

it will automatically load the default memory management component, since a memory

manager is required for most operations.  Since the loader needs to be able to access all of

the components in the system, the loader's address space is mapped to the entire address

space of the physical RAM available to the virtual machine, and this address space is also

provided to the memory management component.  The loader gives other components

their own private non-overlapping address spaces for added stability and security.  Since

many common problems are the result of an attempt to access a NULL pointer, the loader

begins the address spaces for these components at the virtual address 0x00000004 instead

of 0x00000000, so the attempts to access a NULL pointer will generate an exception and

be detected immediately.
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6.2 Task Scheduler

The scheduler is responsible for allocating processor time between processes, and

reserving processor time for components that need real-time guarantees.  The virtual

machine provides a default scheduling algorithm described in Section 4.5 that should be

quite adequate for most scheduling needs.  However, applications that wish finer grain

control over the scheduling process may provide a scheduler component.

By assigning itself a priority equal to the highest priority thread running, the

scheduler can cause itself to be called at regular intervals by the virtual machine's simple

scheduling algorithm and can reorder tasks and thread priorities according to any

customized scheduling needs.  Rather than inserting an additional thread into the task

queue, the scheduler can also register itself for a timer interrupt at a given timer interval

and can adjust thread priorities as needed at such periodic timer intervals.

6.3 Memory Manager

Another important component is the memory management component, which is

responsible for the layout and allocation of physical memory within the machine, as well

as flushing caches and paging memory to disk when necessary.  The memory

management component organizes memory into structures that the virtual machine

understands.  The memory map trees are described in Section 3.1.  The virtual machine

uses this information to resolve addresses on a per-component basis for loads, stores, and

branching instructions.  This allows it to easily enforce per-component memory isolation,

thereby preventing one component from illegally writing to the memory of another.  If

this happens, the virtual machine will generate an exception.  Components can explicitly
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share portions of their memory space with other components by sending a 'shar' message

to the memory management component, which will then map the given memory ranges to

the address spaces of the additional components.

The initial implementation of the default memory manager provides a simple

memory manager that can handle three message codes.  The first message code 'memb'

allocates a block of memory of a size specified in the argument to the message and does

not return until the request can be satisfied.  The second message code 'memd' frees a

previously allocated block of memory.  The third message code 'memr' attempts to

allocate satisfy a memory allocation request, but fails and returns NULL if the request

cannot be satisfied within a given amount of time.  This is useful for real-time systems

that cannot afford to block for arbitrary amounts of time.

The memory manager also reserves a portion of the available memory for system

usage.  How much memory is reserved depends on the system and can be modified by the

user.  The default setting is to reserve 1 megabyte of memory for each thread running or

one quarter of the total amount of memory for all the threads combined, whichever is

less.  If the memory manager notices that a thread's stack is running out of memory, it

will allocate an additional share of memory for that thread.  If a thread attempts to go

beyond the lower allocated bound of its stack, a memory access exception will occur and

the loader will call the memory manager to allocate additional memory for the thread.

Since this could be problematic for real-time threads, real-time programs should ensure

that enough memory is available before beginning critical operations.
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6.4 Design Analysis

The loader and memory management components are required components in

VORTOS, since the virtual machine relies on both of their services.  No other

components are required, but users are free to utilize as many components as they desire,

even multiple components of the same type for different specialized applications.

Custom scheduler components can be supplied to enhance or modify the virtual

machine's scheduling policy.  In fact, a virtual machine component can run on top of the

virtual machine and can host its own memory manager and scheduler components,

allowing the hierarchical segregation of resources.

The loader and memory management components provide much of the basic

functionality required by embedded systems, but unlike traditional kernel or even

microkernel based operating systems they do not restrict what can be added to the core of

the operating system, since new components that extend the operating system

functionality can be easily added without any modification to the existing components.

Only those components that provide necessary functionality need to be included, so the

memory footprint of the system can be kept small, which is important given the limited

amount of memory available on embedded systems.
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Chapter 7 

Recompiler Architecture

This chapter discusses the implementation and design of the recompiler.  Section

7.1 describes how the recompiler translates foreign code into the PVMF instruction set so

it can run on the virtual machine.  Section 7.2 explores the consequences of this design.

7.1 Description

To provide compatibility with existing binary code, VORTOS includes a dynamic

recompiler system for binary translation.  Although not an essential part of the operating

system itself, the recompiler sub-system is quite useful.  The dynamic recompiler

translates code written for different hardware and software platforms into PVMF-32

code.  Different components can be used for translating code from each hardware

instruction set and binary execution format to PVMF-32 code.  Currently the only

implemented translation is from PowerPC code to PVMF-32 code.

The recompiler sub-system in the current implementation is a standalone program

written in ANSI C for maximum portability.  This also has the added benefit of providing

an environment independent of VORTOS for bootstrapping purposes.  Code can be

written and compiled using a standard prepackaged or 3rd-party compiler, and then the

program can be translated into PVMF-32 format.  Since VORTOS is not required for this

translation, even the initial loading and privileged code for VORTOS can be developed in
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this manner.  This also ensures that bugs in VORTOS do not affect the translation, which

was particularly important while writing and debugging the core parts of VORTOS itself.

The recompiler takes as an optional argument the pathname of the input file to

translate.  If no argument is given it uses standard input as the input file.  The recompiler

has several routines that each attempt to process a different file format and return an error

if the file is not in the format that routine assumes.  The recompiler will try the routine for

every supported format in sequence, until a routine either returns without an invalid

format error or it has gone though every routine available.  If the routine for every

supported format fails, the recompiler will output an unrecognized format error and exit.

In a VORTOS-hosted implementation of the recompiler, these routines could be

implemented as separate components, but the current implementation only supports the

PEF container format or raw code and PowerPC instructions.  Exported symbols in a PEF

container are labeled with message codes formed from the first four letters of the symbol

name.  The exception is any main symbol, which is always labeled with the message code

'open'.

The recompiler sequentially scans each instruction in the file and generates one or

more meta-instructions for each instruction.  A meta-instruction is a structure with the

format shown in Table 7.1.1.  These structures are linked together sequentially through

their next field, which points to the next meta-instruction in the sequence.



67

Table 7.1.1: Meta-Instruction Structure
Field Data Type

sourceOffset 32-bit unsigned integer

primType 16-bit signed integer

arg1 32-bit unsigned integer

arg2 32-bit unsigned integer

result 32-bit unsigned integer

constArg 16-bit unsigned integer

flagsSet Array [0..15] of 32-bit unsigned integer

refAddress Meta-Instruction Pointer

next Meta-Instruction Pointer

The sourceOffset field contains the offset in the source binary of the instruction

that caused this meta-instruction structure to be generated.  The primType field contains

the primitive operation type corresponding to this meta-instruction.  This has a value of

the first 8 bits of the opcode of the corresponding PVMF-32 instruction.  The arg1, arg2,

and result fields contain the register numbers for the first argument, second argument,

and result of the instruction, respectively.  If the second argument is a constant rather

than a register, the arg2 field contains zero.  The constArg field contains the value of the

constant argument to the instruction, if any.  The flagsSet field is an array containing the

numbers of the flags or condition registers that are modified by the instruction.  The

refAddress field contains a pointer to the meta-instruction referenced by the instruction, if

it is a branch instruction, otherwise it contains NULL.

The recompiler maintains a hash table with pointers to 64 functions that actually

generate the meta-instructions.  The recompiler will hash into the table on the first 6 bits

of each PowerPC instruction and jump to the corresponding function to generate the
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meta-instructions for that opcode.  The mappings of PowerPC instructions to meta-

instructions is fairly straightforward, although sometimes it takes multiple meta-

instructions to perform the function of one PowerPC instruction.  Any register arguments

are generated by looking up the current value of the PowerPC register arguments in a

table and using the found numerical result or creating a new table entry with a unique

register value if no result is found.  When a PowerPC instruction overwrites a register,

the table entry for that register is cleared and a new unique register value is assigned to

the new register.  This ensures that each sequence of code that uses a register refers to

that register as a unique register but all of the instructions in the sequence use the same

number to refer to the register.  The same process is followed for the array of flagsSet.

However, when a conditional register or flag is overwritten, all previous references to it

are removed from the meta-instructions, back to just after the last read from it.  When a

branch instruction is encountered, the refAddress field is set to a pointer to the meta-

instruction corresponding to the source address to branch to, if it exists.  Otherwise, a

new meta-instruction is created and a pointer to it is stored in the refAddress field.  When

the source address to branch to is reached, the new meta-instruction is used instead of

creating another meta-instruction for that sourceAddress.  Additional meta-instructions

are still created as needed.  If the branch address cannot be determined until run-time, the

refAddress field points to a special dynamic field and is filled in at run-time.

After the entire sequence of meta-instructions has been generated, the recompiler

scans through the linked link of meta-instructions and generates a PVMF-32 instruction

for each one.  For each new register number encountered, the recompiler assigns the

register to a new PVMF-32 register.  However, the PVMF-32 registers are released after
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the last use of each register number in the meta-instruction list.  If every register is

allocated and another needs to be allocated, the one referenced farthest in the past is

temporarily saved on the stack.  A sample of the translation process can be seen in Table

7.1.2.

Table 7.1.2: Instruction Translation
C Source Code Meta-Instruction(s) PVMF-32 Instruction(s)

char *strcpy(char *dest,char
*source)
{

stw       r31,-0x0004(SP) STOREC  r0,-0x0004,r30

char *start = dest; mr        r31,r3 OR            r1,r1,r0

while(*source != 0) { b         $+0x0014 BRZC       r31,0x0014,r31

OR             r31,r31,r3

*dest++ = *source++; lbz       r0,0x0000(r4) LOADB     r2,r31,r3

addi      r4,r4,1 ADDC      r2,0x0001,r2

stb       r0,0x0000(r3) STOREB   r3,r31,r1

addi      r3,r3,1 ADDC      r1,0x0001,r1

OR            r31,r31,r3

lbz       r0,0x0000(r4) LOADB    r2,r31,r3

extsb     r0,r0 SEXT        r3,1,r3

cmpwi     r0,0

} bne       $-0x001C BRNZC    r3,-0x001C,r31

*dest = 0; li        r0,0 OR           r31,r31,r3

stb       r0,0x0000(r3) STOREB  r3,r31,r1

return(start); mr        r3,r31 OR           r0,r0,r1

lwz       r31,-0x0004(SP) LOADC  r30,-0x0004,r0

} blr BZ           r31,r0,r31
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7.2 Design Analysis

Since the recompiler is written entirely in ANSI C, it can be easily recompiled on

alternate hardware platforms.  It operates directly on compiled binary code, so developers

can use standard commercial off-the-shelf compilers that they are familiar with, and the

recompiler will turn the output into PVMF-32 code.

The register sweeping process allows efficient allocation of registers and

condition flags, so that extra instructions are not added unnecessarily.

In addition to translating code from foreign binary formats to PVMF-32, the

recompiler could also conceivably recompile PVMF-32 code into the native instruction

set of the underlying hardware for faster execution.  This is similar to the way Just In-

Time compilation works in Java.

For lightweight systems and code with real-time constraints, common features of

embedded systems, such translations may need to be done ahead of time to avoid

unnecessary bottlenecks or system requirements.  Additional instructions can be added to

the translated code to provide the necessary real-time guarantees.  The translation can

also be cached for future use.

In fact, since the current implementation is targeted towards embedded

processors, it uses the very strategy described above.  Since the recompiler is

implemented as a standalone program and not currently integrated into the rest of the

system, the recompiler must be run on code generated by a PowerPC compiler to

translate it to PVMF-32 code before it can be used.  The PVMF-32 code can then be run

on top of the VORTOS Virtual Machine with other PVMF-32 code.  An alternative

implementation of the recompiler would include it as a VORTOS component that would
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automatically be sent a message to recompile any non-PVMF-32 code loaded for

execution.  This would allow VORTOS to execute code from multiple instruction sets

automatically, without requiring the user to worry about what system the code was

compiled for.  Although this transparent binary compatibility is a valuable feature for

many users, the current implementation does not take this alternative approach, since it

adds additional processing and memory requirements to the system making it less

suitable for embedded processors.
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Chapter 8 

Implementation

This chapter describes the implementation of VORTOS.  Section 8.1 describes the

computing environment used to develop and test VORTOS.  Section 8.2 explains some

difficulties with the implementation.  Section 8.3 analyses the performance of VORTOS.

Section 8.4 critiques the implementation and compares it to other conventional operating

systems.

8.1 Experimental Setup

VORTOS was developed and tested on the same hardware and software platform.

The hardware consisted of a 500 MHz PowerBook G3 running Mac OS 9.1.  The

majority of the code was written in ANSI C using Metrowerks CodeWarrior Pro 5.  The

C code was compiled to a shared Macintosh library with native PowerPC code.  The

recompiler then translated the code from PowerPC instructions into PVMF-32

instructions so that it could be run on the virtual machine.  The recompiler itself was

written in ANSI C and compiled and linked into a Macintosh executable using standard

settings for shared libraries.

The code for the virtual machine was written in C using the Macintosh API.  The

code was compiled and linked into a Macintosh executable so that it could run on top of

the Mac OS.  Test runs were conducted on this hardware platform comparing the
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performance of the Java virtual machine, VORTOS, and the Mac OS.  The results are

described in Section 8.3.

8.2 Difficulties

The main difficulty encountered was the lack of an existing compiler to generate

PVMF-32 code.  Rather than generating the code by hand, the recompiler described in

Chapter 7 was developed to address this need.  The debugger described in Section 4.6

was absolutely essential in getting the system working and tracking down problems, since

there were no display or network drivers for output in the initial implementation.  Most of

the problems encountered during development of the initial implementation were a result

of the complexities involved in developing the recompiler described in Chapter 7, such as

improper mapping of instructions between architectures.

8.3 Performance

Performance testing was done using a program to compute values of the

Fibonacci sequence.  It performs sequential computations of the first 40 numbers in the

Fibonacci sequence.  The test program uses a naïve approach, acting only recursively and

not remembering the data from previous computations, so after each number is

calculated, the program starts from the beginning again and performs the same

calculations again before getting the next number in the sequence.  The test program was

written in both Java and C for testing purposes.  The C source is given in Figure B.1 in

Appendix B, and the Java source is given in Figure B.2.  The test program was run in

Java on the Apple Java Virtual Machine, which includes a Just-In-Time compiler that
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does dynamic recompilation to native PowerPC code.  The test program was also

compiled in C for the PowerPC running Mac OS 9, for the PVMF virtual machine hosted

on Mac OS 9, and for the Motorola 68000 processor, emulated by Mac OS 9 on the

PowerPC.  Metrowerks CodeWarrior Pro 5 was used to generate all executables.  No

optimizations were used when compiling any of the programs.  The test program was run

ten times in each case, and the best, worst, and mean times are noted in Table 8.3.1.  All

times are in seconds.

Table 8.3.1: Fibonacci Test Run Times
Test Platform Java PVMF-32 PowerPC

running Mac

OS 9

68000,

emulated by

PowerPC

Mean Time 24.6 69.3 17.9 55.7

Minimum Time 24.0 64.1 17.6 55.7

Maximum

Time

26.6 75.3 18.4 55.7

The PVMF virtual machine does slightly worse than the 68000 emulator.

However, all of the other tests are running as native code, whereas the PVMF virtual

machine is interpreting each instruction.  Since the PVMF virtual machine only does

slightly worse than the 68000 emulator, adding a dynamic recompiler to native PowerPC

code would most likely bring the PVMF virtual machine closer to the speed of native

code.  In addition, the additional overhead of an extra operating system hurt the

performance of the test program as well.
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8.4 Analysis

The use of ANSI C for VORTOS and the recompiler makes this implementation

both portable and efficient with minimal overhead, which makes it well suited for

embedded systems.  Most modern operating systems are mostly written in C.

The performance of the virtual machine was not overly slow, but fell behind other

virtual machines and emulators.  The addition of a dynamic recompiler to translate

PVMF-32 code into the native instruction set would improve performance considerably.

The simplicity of the virtual machine made it very straightforward to implement.

Furthermore, the small size of the instruction set and the use simple mathematical

primitives for instructions made mapping PowerPC instructions to PVMF-32 instructions

very natural in most cases.  A higher-level virtual machine such as the Java Virtual

Machine would be more complicated to implement and would have a larger footprint.

The simple messaging architecture eliminated the need for any sort of static or

dynamic load-time linking of components, since messages are dispatched to the proper

recipients at execution time.  This provides the size and flexibility advantages of the

dynamically linked libraries seen in many modern operating systems, but with even

greater flexibility because of the ability to substitute components around at run-time and

still have the messages be properly delivered.  The code loader does not have to worry

about resolving all external symbol references at load-time, since the messaging system

will automatically find the proper offset with a component at execution time.  This made

writing the loader easier, since it does not need to resolve symbol references, and made

writing the translator much easier, since no static linking of libraries was necessary.
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Chapter 9 

Conclusions

The Versatile Object-oriented Real-Time Operating System, VORTOS, provides

a portable, real-time, component-based operating system with a uniquely high level of

flexibility that addresses the specialized requirements of embedded systems.  It has a

simple architecture and a small memory footprint; therefore, it works well with the

limited resources of embedded systems.  VORTOS provides a greater level of flexibility

than traditional operating systems because of its modular component structure and

dynamic messaging architecture.  Components with specialized policies or functionality

can supplement or replace existing components, providing high levels of extensibility and

customizability.

The versatility provided by the dynamic messaging architecture suggests many

possible applications for VORTOS.  The uniform centralized dispatching of all messages

would lend itself well to real-time computer intrusion detection and monitoring.  The

virtual machine architecture and messaging system make distributed computing possible

with a few additional components.  Transparent encryption is possible through the use of

component filters.  However, more components need to be created for each of these

applications.

A dynamic recompiler to compile PVMF-32 code into the native instruction set of

the underlying hardware would help performance considerably.  In addition,

implementing hardware drivers would allow VORTOS to run directly on the hardware,
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instead of running on top of another operating system, which would also improve

performance.

The architecture is flexible enough to allow custom specification of new

components without having to modify the existing components, but the existing

components can be replaced as well if a custom scheduling algorithm is necessary, for

example.  A recompiler that converts PVMF-32 code to native machine code would

improve performance.  Both the recompiler and the virtual machine can be extended to

support additional platforms, which should not be very difficult given the high portability

of VORTOS.

VORTOS provides many incidental benefits as well.  The virtual machine

architecture means that programs running on VORTOS are binary compatible across

hardware platforms.  The component architecture and separate address spaces provide an

improved level of stability and security.  The recompiler provides compatibility with

existing systems.  These benefits, combined with the major benefits from the dynamic

messaging architecture make VORTOS well-suited to embedded applications and

flexible enough to scale up to larger systems as well.
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Appendix A

Table of Instructions

Table A.1: Table of Instructions
Instruction Format
Integer Addition ADD rA, rB, rC (rA + rB) -> rC
Integer Addition ADDC rA, CONST, rC (rA + CONST) -> rC
Unsigned Integer Addition UADD rA, rB, rC (rA + rB) -> rC
Unsigned Integer Addition UADDC rA, CONST, rC (rA + CONST) -> rC
Floating-point Addition FADD fprA, fprB, fprC (fprA + fprB) -> fprC
Floating-point Addition FADDC fprA, CONST, (fprA + CONST) -> fprC
Sign Extend SEXT rA, CONST, rC (CONST)rA -> rC
Integer Subtraction SUB rA, rB, rC (rA - rB) -> rC
Integer Subtraction SUBC rA, CONST, rC (rA - CONST) -> rC
Unsigned Integer USUB rA, rB, rC (rA - rB) -> rC
Unsigned Integer USUBC rA, CONST, rC (rA - CONST) -> rC
Floating-point Subtraction FSUB fprA, fprB, fprC (fprA - fprB) -> fprC
Floating-point Subtraction FSUBC fprA, CONST, (fprA - CONST) -> fprC
Integer Multiplication MUL rA, rB, rC (rA * rB) -> rC
Integer Multiplication MULC rA, CONST, rC (rA * CONST) -> rC
Unsigned Integer
Multiplication

UMUL rA, rB, rC (rA * rB) -> rC

Unsigned Integer
Multiplication

UMULC rA, CONST, rC (rA * CONST) -> rC

Floating-point Multiplication FMUL fprA, fprB, fprC (fprA * fprB) -> fprC
Floating-point Multiplication FMULC fprA, CONST, (fprA * CONST) -> fprC
Integer Division DIV rA, rB, rC (rA / rB) -> rC
Integer Division DIVC rA, CONST, rC (rA / CONST) -> rC
Unsigned Integer Division UDIV rA, rB, rC (rA / rB) -> rC
Unsigned Integer Division UDIVC rA, CONST, rC (rA / CONST) -> rC
Floating-point Division FDIV fprA, fprB, fprC (fprA / fprB) -> fprC
Floating-point Division FDIVC fprA, CONST, (fprA / CONST) -> fprC
Integer Bitwise-AND AND rA, rB, rC (rA & rB) -> rC
Integer Bitwise-AND ANDC rA, CONST, rC (rA & CONST) -> rC
64-bit Bitwise-AND FAND fprA, fprB, fprC (fprA & fprB) -> fprC
64-bit Bitwise-AND FANDC fprA, CONST, (fprA & CONST) -> fprC
Integer Bitwise-OR OR rA, rB, rC (rA | rB) -> rC
Integer Bitwise-OR ORC rA, CONST, rC (rA | CONST) -> rC
64-bit Bitwise-OR FOR fprA, fprB, fprC (fprA | fprB) -> fprC
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64-bit Bitwise-OR FORC fprA, CONST, fprC (fprA | CONST) -> fprC
Integer Bitwise-XOR XOR rA, rB, rC (rA ^ rB) -> rC
Integer Bitwise-XOR XORC rA, CONST, rC (rA ^ CONST) -> rC
64-bit Bitwise-XOR FXOR fprA, fprB, fprC (fprA ^ fprB) -> fprC
64-bit Bitwise-XOR FXORC fprA, CONST, (fprA ^ CONST) -> fprC
Integer Bitwise-Rotate ROT rA, rB, rC (rA << rB)+(rA >> 32-rB) -

> rC
Integer Bitwise-Rotate ROTC rA, CONST, rC (rA << CONST)+(rA >>

32-CONST) -> rC
64-bit Bitwise-Rotate FROT fprA, fprB, fprC (fprA << fprB)+(fprA >>

64-fprB) -> fprC
64-bit Bitwise-Rotate FROTC fprA, CONST,

fprC
(fprA << CONST)+(fprA
>> 64-CONST) -> fprC

Integer Compare-Less-Than CMPLT rA, rB, rC (rA < rB) -> rC

Integer Compare-Less-Than CMPLTC rA, CONST, rC (rA < CONST) -> rC

Unsigned Integer Compare-
Less-Than

UCMPLT rA, rB, rC (rA < rB) -> rC

Unsigned Integer Compare-
Less-Than

UCMPLTC rA, CONST,
rC

(rA < CONST) -> rC

Floating-point Compare-
Less-Than

FCMPLT fprA, fprB, rC (fprA < fprB) -> rC

Floating-point Compare-
Less-Than

FCMPLTC fprA, CONST,
rC

(fprA < CONST) -> rC

Integer Compare-Greater-
Than

CMPGT rA, rB, rC (rA > rB) -> rC

Integer Compare-Greater-
Than

CMPGTC rA, CONST, rC (rA > CONST) -> rC

Unsigned Integer Compare-
Greater-Than

UCMPGT rA, rB, rC (rA > rB) -> rC

Unsigned Integer Compare-
Greater-Than

UCMPGTC rA, CONST,
rC

(rA > CONST) -> rC

Floating-point Compare-
Greater-Than

FCMPGT fprA, fprB, rC (fprA > fprB) -> rC

Floating-point Compare-
Greater-Than

FCMPGTC fprA, CONST,
rC

(fprA > CONST) -> rC

Integer Compare-Equal-To CMPEQ rA, rB, rC (rA == rB) -> rC

Integer Compare-Equal-To CMPEQC rA, CONST, rC (rA == CONST) -> rC

Floating-point Compare-
Equal-To

FCMPEQ fprA, fprB, rC (fprA == fprB) -> rC

Floating-point Compare-
Equal-To

FCMPEQC fprA, CONST,
rC

(fprA == CONST) -> rC

Branch-On-Zero Absolute BZ rA, rB, rC if (rA == 0) { PC+4 -> rC ;
rB -> PC }
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Branch-On-Zero Absolute BZC rA, CONST, rC if (rA == 0) { PC+4 -> rC ;
CONST -> PC }

Branch-On-Zero Relative BRZ rA, rB, rC if (rA == 0) { PC+4 -> rC ;
(rB + PC) -> PC }

Branch-On-Zero Relative BRZC rA, CONST, rC if (rA == 0) { PC+4 -> rC ;
(CONST + PC) -> PC }

Branch-On-Not-Zero
Absolute

BNZ rA, rB, rC if (rA != 0) { PC+4 -> rC ;
rB -> PC }

Branch-On-Not-Zero
Absolute

BNZC rA, CONST, rC if (rA != 0) { PC+4 -> rC ;
CONST -> PC }

Branch-On-Not-Zero
Relative

BRNZ rA, rB, rC if (rA != 0) { PC+4 -> rC ;
(rB + PC) -> PC }

Branch-On-Not-Zero
Relative

BRNZC rA, CONST, rC if (rA != 0) { PC+4 -> rC ;
(CONST + PC) -> PC }

Integer Load LOAD rA, rB, rC *(rA + rB) -> rC
Integer Load LOADC rA, CONST, rC *(rA + CONST) -> rC
Half Integer Load LOADH rA, rB, rC (*(rA + rB) >> 16) -> rC
Quarter Integer Load LOADB rA, rB, rC (*(rA + rB) >> 24) -> rC
Floating-point Load FLOAD rA, rB, fprC *(rA + rB) -> fprC
Floating-point Load FLOADC rA, CONST, *(rA + CONST) -> fprC
Integer Store STORE rA, rB, rC rA -> *(rC + rB)
Integer Store STOREC rA, CONST, rC rA -> *(rC + CONST)
Half Integer Store STOREH rA, rB, rC (rA & 0xFFFF) -> *(rC +

rB)
Quarter Integer Store STOREB rA, rB, rC (rA & 0xFF) -> *(rC + rB)
Floating-point Store FSTORE fprA, rB, rC fprA -> *(rC+ rB)
Floating-point Store FSTOREC fprA, CONST, fprA -> *(rC + CONST)
Send Message MSG rA, rB, rC Send message rB to object

id rA; store response in rC
Fork Message MSGF rA, rB, rC Send message rB to object

id rA and continue
execution without blocking;
store response in rC
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Appendix B

Code Listings

long fib(int n) {
     if (n < 1)
        return 0;
     else
       if (n == 1)
         return 1;
       else {
         long result = (fib(n-1) + fib(n-2));
         return result;
       }
  }
}

void main(void) {
register long result;
clock_t start = clock();
int i;

for (i=0;i<40;i++) result = fib(i);
printf("Program took %f seconds\n", (float)(clock() -

start)/(float)CLOCKS_PER_SEC);
}

Figure B.1: Fibonacci C Source Code Listing
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public class fibonacci {
  public static void main(String args[]) {

  long result;

  long startTime = System.currentTimeMillis();
for (int i=0;i<40;i++) result = fib(i);

    System.out.println("Fibonacci Took" +
(System.currentTimeMillis()-startTime) + "ms");
  }
  public static long fib(int n) {
     if (n < 1)
        return 0;
     else
       if (n == 1)
         return 1;
       else {
         long result = (fib(n-1) + fib(n-2));
         return result;
       }
  }
}

Figure B.2: Fibonacci Java Source Code Listing


