
Implementing EFECT

by

Ivan Nestlerode

B.S., Computer Science and Engineering
Massachusetts Institute of Technology, 2000

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2001

c© Ivan Nestlerode, MMI. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis document

in whole or in part.

Author .
Department of Electrical Engineering and Computer Science

May 23, 2001

Certified by. .
Hari Balakrishnan

Assistant Professor of Computer Science, MIT
Thesis Supervisor

Certified by. .
Dan Heer

Technical Manager, Lucent Technologies
Thesis Supervisor

Accepted by .
Arthur C. Smith

Chairman, Department Committee on Graduate Students

Implementing EFECT

by

Ivan Nestlerode

Submitted to the Department of Electrical Engineering and Computer Science
on May 23, 2001, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

This thesis describes the design, implementation, and benchmarking of a software
prototype of EFECT [EFECT], a new certificate scheme that handles revocation
more gracefully than do current schemes. This prototype includes a client browser, a
certificate verification tree library, and a directory server.

The thesis includes analysis, both mathematical and empirical, to determine the
optimal values of EFECT’s parameters in terms of both speed and space. Finally, the
thesis includes a benchmark comparison of the optimized EFECT and a comparable
X.509 [X509] system. This comparison serves as proof that EFECT does indeed
outperform the X.509 scheme in some common scenarios.

Thesis Supervisor: Hari Balakrishnan
Title: Assistant Professor of Computer Science, MIT

Thesis Supervisor: Dan Heer
Title: Technical Manager, Lucent Technologies

2

Acknowledgments

This work is dedicated to my family. Their support in these last five years (and the

many years before) has been invaluable.

I would like to thank Hari Balakrishnan (my MIT thesis advisor) and Dan Heer

(my Lucent technical manager) for their guidance. I would also like to thank my

co-worker Irene Gassko for coming up with EFECT, and for discussing its details

with me many times over the course of this work.

3

Contents

1 Introduction 8

2 Background 10

2.1 The Need for Cryptography . 10

2.2 Secret Key Infrastructure . 11

2.3 Public Key Infrastructure . 11

2.3.1 Encryption . 12

2.3.2 Digital Signatures . 12

2.3.3 The Problem of Public Key Spoofing 12

2.4 Certificates and Certification Authorities 13

2.5 The Problem of Certificate Revocation 14

3 EFECT 15

3.1 X.509 Certificates and CRL’s . 15

3.2 Revocation: A New Perspective . 16

3.3 The EFECT Scheme . 16

3.4 EFECT Advantages . 18

3.4.1 Off-line Certificates . 18

3.4.2 Stronger CA Security . 19

3.4.3 Recovery from CA Key Compromise 20

3.4.4 Long Term Signatures . 21

3.4.5 Atomic Certificates . 22

3.4.6 Untrusted Directories . 23

4

3.5 Other Certificate Schemes . 24

4 Requirements and Design Decisions 26

4.1 Client Browser . 26

4.2 Certificate Verification Tree . 27

4.3 Directory Server . 27

5 Implementation Details 29

5.1 Client Browser . 29

5.2 Certificate Verification Tree . 30

5.3 Directory Server . 31

6 Experiments 32

6.1 Experimental Apparatus . 32

6.2 Experimental Questions . 32

6.2.1 Order of the Certificate Verification Tree 33

Hash Path Length . 33

Tree Search Speed . 35

6.2.2 Relative Performance of EFECT and X.509 37

Off-line Bulk Verification Scenario 37

Benchmark Details . 38

6.3 Conclusions . 40

7 Future Work 41

7.1 Memory Cache Manager . 41

7.2 CA Servicing of User Requests . 43

7.3 CA to Directory Communication . 44

7.4 Smart Cards . 45

7.5 Hash Path Compression . 45

8 Summary 47

5

List of Figures

6-1 Plots of Hash Path Length vs. Tree Size (for various k’s and tree

fullnesses) . 34

6-2 Plots of Speeds of Various Tree Operations vs. k (for n = 300, 000) . 36

6

List of Tables

6.1 Experimentally Measured Avg. Hash Path Lengths for n = 300, 000 . 35

6.2 Mean Verification Times and Standard Deviations for EFECT and X.509 39

7

Chapter 1

Introduction

The lack of a viable public key infrastructure has been a major barrier to the wide-

spread deployment of encryption and authentication technology. Algorithms have

already been developed that provide the strong encryption and authentication desired

by those who wish to purchase goods or communicate securely over the Internet. The

problem lies in distributing the keys for these algorithms. The current X.509 public

key infrastructure is cumbersome and fails to adequately address the problem of

certificate revocation.

Recent events highlight this revocation problem and the inability of the current

infrastructure to cope with it. In October 2000, it was announced that the private

key of Sun Microsystems1 had probably been compromised. In late January 2001,

imposters posing as Microsoft Corporation managed to get VeriSign to sign a certifi-

cate proclaiming that they were Microsoft. In these cases attackers had the ability

to pose as Sun and Microsoft respectively, gaining all of the software access priv-

ileges accorded to these two large corporations. Technically, these two certificates

were revoked, but since current Web browsers do not perform any sort of checks for

revocation,2 these revocations were effectively meaningless.

1Corporate names mentioned herein are trademarks and/or registered trademarks of their re-
spective companies (Sun Microsystems, Microsoft Corporation, VeriSign, and Netscape).

2In theory, a revocation mechanism exists in the X.509 scheme. In practice, the mechanism is
awkward enough that browser manufacturers avoided implementing it after a few unsuccessful tries
at getting it to work.

8

Such high-profile debacles threaten to undermine the credibility of cryptographic

technology in general. Certificate revocation must be addressed if cryptography is to

gain and maintain acceptance.

A new certificate scheme called EFECT has been developed that solves the re-

vocation problem more elegantly than do current certificate schemes like X.509. By

providing a more elegant revocation solution, EFECT will hopefully make manufac-

turers of Web browsers and other security-related products more likely to deal with

revocation properly.

This thesis describes the design and implementation of a software prototype of the

EFECT scheme. It also contributes an analysis of how a parameter of the EFECT

scheme affects the scheme’s performance. Finally, the thesis contributes an experi-

ment comparing the relative performances of X.509 and EFECT. The experimental

results suggest a scenario in which EFECT is a much more appropriate certificate

scheme than X.509.

The structure of the thesis is as follows. The next chapter provides the reader

with enough background in cryptography and key infrastructure to understand the

significance of and motivation for the EFECT scheme. Chapter 3 describes the details

of both the X.509 and EFECT schemes, highlighting the differences between the

two and the advantages gained by using EFECT. Chapter 4 lists the requirements

for the EFECT prototype and describes the design decisions made to meet those

requirements. Chapter 5 provides specific implementation details about each part of

the prototype. Chapter 6 describes results from two experiments: one involving the

optimization of an EFECT parameter, and one comparing the relative performances

of EFECT and X.509 in an off-line, bulk verification scenario. Chapter 7 lists ideas

for future improvement of the EFECT prototype. Chapter 8 concludes the thesis.

9

Chapter 2

Background

This chapter gives the reader enough background in cryptography and key infrastruc-

ture to understand the significance of the EFECT scheme. It describes the major

cryptographic paradigms in the order they occurred historically, explaining the prob-

lems at each stage and how these problems were solved by the next stage. It begins

with the problem of insecure communication and the solution of secret key cryptog-

raphy. It ends with the problem of certificate revocation, which leads us into our

discussion of EFECT in chapter 3.

2.1 The Need for Cryptography

The need for cryptography is a very old one. Militaries have always wanted secure

communication channels for delivering messages. With the current popularity of

communicating over computer networks, this need for secure channels has spread to

the population at large.

Communications over computer networks are inherently insecure: they can be

both eavesdropped and manipulated without either communicating party’s knowl-

edge. In order to secure these communications, we turn to cryptography for encryp-

tion and authentication.

Encryption gives us privacy. It obscures the messages being sent over the network,

so that only the authorized parties can read them.

10

Authentication gives us the ability to trust messages. When messages are au-

thenticated, the parties can be assured that the messages are correct (have not been

tampered with) and that they are from the proper party (and not an imposter).

A cryptographic key infrastructure gives us both encryption and authentication

capabilities.

2.2 Secret Key Infrastructure

In the early days of cryptography, encryption and authentication were achieved using

secret key cryptography. Secret key cryptography requires that the two parties doing

the encryption and authentication share a common secret (the secret key).

This is a cumbersome requirement. Probably the worst part of the requirement

is that in order to have secure communications, the two parties must have already

agreed on a shared secret. If they have a way to agree on a shared secret, then it

would seem they already have a secure communication channel. It may be possible for

two parties to share a key in person, and then go on to communicate over a network,

but this approach does not scale well to something like the Internet where people

frequently do not have the option of meeting in person before communicating.

2.3 Public Key Infrastructure

Since the publication of [DH], focus has shifted to public key cryptography. Public

key cryptography’s key infrastructure requirements are more reasonable than those

for secret key cryptography. Each party has a pair of keys: one public and one private.

Private keys are not revealed. Public keys are published for everyone in the group

to see. All parties know the algorithms D, E, S, and V for decryption, encryption,

signing, and verification respectively. These algorithms are all keyed.

These requirements are more easily met than those for secret key cryptography.

Two parties need not share a secret before communicating. Each party just needs

knowledge of the other’s public key.

11

2.3.1 Encryption

Public key infrastructure allows anyone with a given public key K, to send encrypted

messages to the party associated with K. As previously mentioned, the two parties

need not share a secret before the communication.

To encrypt a message m to Bob, Alice (or anyone else) would use Bob’s public

key B as follows to produce a ciphertext c: EB(m) = c. To decrypt this ciphertext c,

Bob would use his private key b as follows to obtain the message m: Db(c) = m.

2.3.2 Digital Signatures

Public key infrastructure also allows parties to create digital signatures, cryptographic

analogs of traditional paper and ink signatures. Digital signatures are different on

each document that is signed, unlike those of the paper and ink variety. A signature

by the party associated with public key K can be verified by anyone who knows K

(anyone involved in the key infrastructure). This verification means two things: that

the signed message has not been tampered with since the signature, and that the

message was signed by the key holder and not someone else.

To sign a message m, Bob would use his private key b as follows to produce

signature σ: Sb(m) = σ. To verify this signature σ, Alice (or anyone else) would use

Bob’s public key B as follows: VB(m,σ) = true if and only if σ = Sb(m).

2.3.3 The Problem of Public Key Spoofing

At first glance, public key infrastructure seems to have solved all of the problems of

the secret key infrastructure. Upon closer inspection though, we see that it assumes

that everyone knows which public key belongs to which party.

Let us see what would happen if this were not the case. A malicious party who

wished to read messages sent to Bob could advertise his own public key M as Bob’s

public key (which would really be B, not M). If Alice were to come across this key

M when trying to send messages to Bob, she might encrypt using M . In this case,

the malicious party could read these messages since he would have the private key

12

corresponding to the public key used in the encryption.

This “spoofing” of public keys is a significant problem with public key infrastruc-

ture. In order for the system to work, everyone involved must know without a doubt

which key belongs to which party.

2.4 Certificates and Certification Authorities

The usual solution to the public key spoofing problem is to have a trusted authority

who issues digitally signed statements that bind identities to public keys. These

signed statements are called certificates. The trusted authority issuing the certificates

is called a certification authority or a CA for short.

It is assumed that all users obtain the CA’s public key in a secure manner. This can

be done in person, but in practice it is often done by hard-coding the key into software

that all parties run. For example, a commercial CA called VeriSign distributes their

public key with Netscape’s Web browser.

Once users have this one key, they can securely find anyone else’s public key either

in an on-line certificate directory or from the CA directly. This solves both the prob-

lem of shared secrets and the problem of public key spoofing. Now to communicate

securely with Bob, Alice would simply get Bob’s certificate (from a directory or the

CA) before using it to encrypt the messages she wanted to send. By verifying the

CA’s signature on the certificate, Alice would know positively that the key on the

certificate was indeed Bob’s public key. Alice could also sign her messages to Bob

with her private key. Bob would decrypt the messages with his private key. He could

also verify Alice’s signatures by obtaining Alice’s certificate, verifying that certificate

with the CA’s public key, and then verifying Alice’s signatures with the public key in

Alice’s certificate.

13

2.5 The Problem of Certificate Revocation

With a CA in place signing certificates, it is easy to find the proper key needed

to communicate with someone. The problem is that private keys can be stolen or

compromised. It is worth noting that certificates usually have a natural expiration

date written on them. Certificates are only valid if the signature is good and they

have not expired. This is meant to coincide with the lifetime of a cryptographic key,

but key compromise is not a predictable phenomenon.

The problem arises when a key is compromised before its certificate expires natu-

rally. If Alice’s private key a is stolen, she should stop using the key pair (a,A), and

create a new one: (a′, A′). Unfortunately, there will still be a signed statement from

the CA claiming that Alice’s public key is A. Digital signatures cannot be undone,

so what is the CA to do at this point?

The usual solution is to have the CA issue a statement saying that the key A has

been revoked. The CA must also issue a new certificate for A′. The problem then

becomes how to distribute this revocation notice to everyone in the system. Without

proper distribution of this revocation notice, people using the system would continue

using A to encrypt messages to Alice, resulting in insecure communication. This is

known as the certificate revocation problem.

The current solutions to this problem are cumbersome. The solution used by

today’s most common system involves the CA issuing very large lists of revoked

certificates that everyone must check before using a certificate for communication.

Downloading and scanning through these lists can take significant time and band-

width, especially as the lists grow large. This solution is far from satisfactory, and

the EFECT solution is better in many cases.

Chapter 3 will discuss in more detail how current systems deal with the problem

of revocation, and will then explain EFECT’s more elegant solution to the problem.

14

Chapter 3

EFECT

For more information on any of the schemes mentioned in this chapter, the reader

is referred either to [EFECT], which describes each scheme in some detail, or to the

original papers listed in the bibliography. When we speak of determining the freshness

of a certificate in this chapter, we are referring to determining that the certificate has

been issued and has not been revoked.

3.1 X.509 Certificates and CRL’s

The “Internet X.509 Public Key Infrastructure”[X509] is currently the most com-

monly deployed certificate scheme. The scheme uses X.509 certificates and certificate

revocation lists (CRL’s). An X.509 certificate contains a serial number, the names of

the CA and the user, the public key of the user, dates of issuance and expiration, and

a signature from the CA over all of these fields. A CRL is a CA-signed list of serial

numbers of revoked certificates.

In the X.509 certificate scheme, determining freshness of a certificate involves

downloading the latest CRL from a repository, verifying the CA signature on that

CRL, and searching the CRL for the serial number of the certificate in question. It

is worth noting that one must download a new CRL as often as certificates can be

revoked: weekly revocation means downloading one CRL per week, daily revocation

means one CRL per day, etc. Given Micali’s estimate of a 10% certificate revocation

15

rate, these CRL downloads can take a significant amount of time and bandwidth

given a CA that revokes things quickly and serves millions of customers.

3.2 Revocation: A New Perspective

X.509 and other current certificate schemes handle revocation using different strate-

gies, but there is a similarity shared by all of these strategies: determining freshness

is a separate process from obtaining the certificate. This means that communicating

securely involves two initial steps: obtaining a person’s certificate, and then obtaining

information about the freshness of that certificate. Basically, a certificate is not useful

without more current knowledge about its freshness.1

Let us assume that revocation information is updated daily (current schemes op-

erate under a similar time frame). If we have to recheck the freshness of a certificate

daily, having the certificate itself seems of little use. If we must recheck the certificate

on-line each day, why not just get the certificate itself at the same time? Why not

issue certificates daily with an expiration time of a day? It would provide the same

freshness guarantee while simplifying the two-step process down to a single step. This

is the central idea behind EFECT. Certificates are reissued daily, eliminating the need

for revocation without sacrificing any freshness.

3.3 The EFECT Scheme

As previously mentioned, a CA in the EFECT scheme reissues every certificate on a

daily basis (certificates expire daily). To update the certificate of a compromised key,

there is no longer a need to issue a revocation statement and a new certificate. We

simply alter the certificate the next day to reflect the key change. When a user gets a

certificate, she knows it has not been revoked within a day. This freshness guarantee

is exactly the same as the one provided by current two-step schemes.

1We assume that users of these systems check for revocation. Not bothering to check for revo-
cation is not considered an acceptable solution in this thesis or in [EFECT]. Think of the financial
problems of a store that did not bother to verify its customers’ credit cards.

16

Daily reissuing is not feasible using other certificate schemes. Signing millions of

individual certificates at 1 second per signature takes weeks if done as a serial com-

putation. The reason EFECT can do daily reissuing is that EFECT CA’s do not sign

individual certificates. An EFECT CA essentially signs all of a day’s certificates in a

single digital signature, making the computational overhead much more reasonable.

The EFECT CA does this by arranging a day’s certificates as the leaves of a

Merkle tree [Merkle]. A Merkle tree employs a collision-free hash: a cryptographic

primitive for “fingerprinting” data.2 Each certificate is hashed in the leaf nodes.

Sibling node hashes are concatenated and then hashed to compute the hash of the

parent node. This proceeds all the way up to the root of the tree. Due to these

recursive applications of the hash function, the hash value at the root then depends

on every bit of information in the leaves (certificates). By signing this root hash, the

EFECT CA is essentially signing all of the information in all of the certificates for

that day.

Verifying an X.509 certificate involves verifying the digital signature on that cer-

tificate. Then that certificate is checked against a CRL to check for revocation. An

EFECT certificate has no signature on it. Instead, an EFECT certificate contains a

body (the certified information) and a path (the authentication). This path is a list

of hashes up the tree from the certificate leaf to the root, including the sibling hashes

along the way. By verifying the EFECT CA’s signature on the root hash of the tree,

and hashing the certificate body upwards with the provided hashes, the verifier knows

that if the signed root matches her computed root, the certificate is valid. There is

no revocation check since EFECT certificates are issued for one-day periods and are

never revoked.

This path verification works because of the collision-free property of the hash. The

logic is that if someone could give a path to the root that was not in the EFECT CA’s

tree, that person could find collisions in the hash function. Since the hash function is

2A collision-free hash is a function that maps input of an arbitrary length to an output of fixed
length. It has two important and related properties. First, it is hard to invert (to compute the input
given only the output). Also, it is hard to find a collision: two inputs that hash to the same output.

17

collision-free, this forgery is infeasible. The curious reader is referred to [Merkle] for

a more rigorous proof of this assertion.

Note that the verification of the EFECT CA’s root signature only needs to happen

once a day for a given verifier. Further verifications only require hashing of the path

from the certificate to the root, plus an equality check against the root hash signed

by the CA.

The CA’s building and hashing of the tree are guaranteed to be efficient. The

underlying tree is a B+tree, so standard tree operations (insertion, deletion, and

search) are guaranteed to be logarithmic in the number of certificates. Each day

involves incremental changes to the tree (to add new certificates and delete old ones),

which may make slight changes to the overall structure of the tree. Only the changed

parts of the tree need to be rehashed. Even the initial hashing of the entire tree does

not take very long since, according to Rivest, hashing is approximately 10,000 times

faster than computing a digital signature. Exact times for this initial building and

hashing can be found in section 6.2.1.

3.4 EFECT Advantages

As will be demonstrated in section 6.2.2, certificate verification is much more effi-

cient in EFECT than in X.509. Additionally, EFECT has other advantages that are

even more important than improved verification speed. This section discusses these

advantages.

3.4.1 Off-line Certificates

Certificates were originally proposed as a mechanism for distributing public keys

securely in an off-line manner. First, Diffie and Hellman [DH] proposed a trusted

directory that would list names and corresponding public keys. They mentioned

specifically that this directory could reside on-line. Later, Kohnfelder [Kohnfelder]

noted that a trusted on-line directory is a performance bottleneck. He proposed

splitting the directory into individually signed entries called certificates. By splitting

18

the directory into certificates, users of the system would no longer need to contact a

trusted authority in an on-line manner. With the authority’s public key, certificate

verification could happen off-line.

Given that the original purpose of certificates was to move key distribution off-

line, the EFECT scheme attempts to deal with the revocation problem in as off-line

a manner as possible. For a given verifier in the EFECT scheme, there is only one

on-line communication per day: acquiring the signed root of the day from the CA.

By verifying this one signature in the morning, the verifier can do the rest of the

day’s certificate verifications off-line by comparing the computed root hashes on the

certificates to the signed one.

Note that this attempt to be as off-line as possible is in stark contrast to schemes

such as SDSI/SPKI [SDSI], which require that all freshness checks be made on-line.

It would seem that given the original motivation for certificates, this on-line approach

is hardly an improvement over the original Diffie-Hellman idea of a central, trusted,

on-line directory.

Although not explicitly stated in [X509], it is possible to elicit similarly off-line

behavior from the X.509 scheme. By downloading the day’s CRL in the morning

and verifying the signature on it, a verifier can be off-line for the rest of the day.

The verifier would verify the signature on an X.509 certificate, and then search the

CRL for that certificate’s serial number to verify freshness. This is exactly the mode

of operation used in section 6.2.2 when comparing the performance of X.509 and

EFECT. The advantages of EFECT in this scenario are discussed in detail in that

section.

3.4.2 Stronger CA Security

Since an EFECT CA only computes one signature per day, it can afford to use slower

signature schemes with stronger security properties.

The security of a digital signature scheme generally increases with the length of

the signing key, but unfortunately the amount of time required to sign also increases.

A CA must balance the security gained from a longer key against the need to perform

19

a certain number of signatures per day. Since EFECT CA’s compute fewer signatures

per day than X.509 CA’s, an EFECT CA can afford to use a longer key than an X.509

CA for a given user population.

For an EFECT CA, it is also possible to use a threshold scheme where the CA

signing key is split into pieces and distributed around the globe. Some majority of the

pieces would be needed to use the key, but the compromise of less than the majority

of the pieces would not be a problem. The key could be rebuilt and reshared in the

event of a partial compromise, so as to make the compromised shares useless. This

threshold technique greatly enhances security, but is cumbersome for more than a

few signatures. Here as with long keys, the fact that the EFECT CA performs fewer

signatures enables the EFECT CA to use a previously infeasible technique to guard

against CA key compromise.

Finally, the small number of signatures made by an EFECT CA means that there

are less signatures available for cryptanalysis by an adversary than under X.509.

3.4.3 Recovery from CA Key Compromise

The EFECT scheme is more resilient to the compromise of a CA’s private key than

the X.509 scheme is. In the event that a CA private key is compromised, both schemes

require the CA to generate a new key pair, and advertise that new public key over

some secure out-of-band channel.

In addition to generating and distributing the new public key, an EFECT CA

merely re-signs the day’s root hash in the new private key, and broadcasts this re-

signed root hash the same way that it broadcasts the daily root hash each day.3

Unlike the EFECT CA which only has to compute one signature, an X.509 CA

would have to re-sign and redistribute each outstanding certificate in addition to

issuing a CRL revoking each outstanding certificate. Also, this CA key compromise

is more likely to happen to an X.509 CA than an EFECT CA given that the EFECT

3Actually, the CA must re-sign all old roots as well in order for the long term signatures (see
section 3.4.4) to work properly. This is still an improvement over re-signing each certificate under
X.509 when the number of certificates is larger than the number of days for which we archive
signature keys.

20

CA can take better security precautions for a similarly sized user population (as

mentioned in section 3.4.2).

3.4.4 Long Term Signatures

While the majority of digital signatures are used to authenticate ephemeral transac-

tions (network logins, session key negotiations, etc.), some signatures must be veri-

fiable for long periods of time. Things like loans, mortgages, and business contracts

must be verifiable for many years after they are signed. The problem then becomes

how to verify a digital signature many years after its creation. To securely verify the

signatures on a signed document, one must have the certified public keys correspond-

ing to the private keys that signed the document.

One strategy to make this work would be for the signers to attach their certifi-

cates to the document being signed (in addition to signing the document with their

respective private keys). The problem then becomes CA compromise. In 30 years, a

CA key is likely to change. One can’t just verify the old certificates using the old CA

key as that key may have been compromised, in which case arbitrary contracts could

be forged. The certificates for the 30 year old public keys must somehow be signed

in the most current CA key to prevent forgery.

In a scheme like X.509 where certificates are individually signed, it is very hard

to make sure that a CA changing its key re-signs all old certificates. The CA would

have to keep track of each certificate issued over the entire contract time span. Over

time, this ends up being a very large storage requirement.

In the EFECT scheme, it is not necessary for the CA to archive entire old certifi-

cate trees. It is enough for the EFECT CA to archive just the daily signed root hashes

of old trees. If the EFECT CA changes keys, it just re-signs the old root hashes using

its new key. This effectively re-certifies all of the old certificates4 without the need

to keep track of each old certificate individually. It is then up to contract signers to

4It makes sense to question whether we should be blindly recertifying old certificates in old trees.
With proper semantics, the answer is yes. By re-signing old roots, the CA is just certifying each old
certificate tree as being the specific certificate tree it had on that given date in the past. The CA is
not certifying that certificates from the old tree are valid in the most current timeframe.

21

store their certificates and hash paths of the day along with the signed contract.

A verifier of an old contract would verify (using the current CA public key) the

root hash for the day listed in the contract, verify that the hashes for the attached

certificates hash up to the signed old root hash, and finally verify the signatures on

the document using the public keys specified in the attached certificates.

One final problem remains: compromise of contract signers’ keys. This problem

is not solved by EFECT, nor is it solved by X.509 or any other current certificate

schemes. New forward-secure digital signature schemes such as that of Abdalla and

Reyzin [AR] may help solve this difficult problem.

3.4.5 Atomic Certificates

Our previous notion of a certificate is a narrow one: a CA-signed binding of a public

key to a name. To be more general, a certificate could be any statement signed by

a CA. It could be a statement binding a person’s name to a date of birth or to a

social security number. It is conceivable that eventually there may be CA’s that

certify similar information. Note that unlike public key certificates, some of these

other kinds of certificates may contain sensitive information. Unfortunately, if all of

a user’s sensitive information is put in a single certificate, the user loses the ability

to disclose only the appropriate fields to someone.

In order to provide users with finer-grained control of the disclosure of their infor-

mation, Raghu [atomic] proposed the idea of atomic certificates. Atomic certificates

contain just one certified field, giving the user the power to disclose as little or as

much information as is appropriate. The user would just reveal the atomic certificates

for the appropriate fields.

When comparing the ability of X.509 and EFECT to handle atomic certificates,

it is useful to think of the additional storage overhead per certificate: given one of

a user’s certificates, how much space (not including the certificate body itself) is

required to store another certificate for that user? In the X.509 scheme, having the

first certificate does not help you. Storing another X.509 certificate requires space for

another digital signature. In the EFECT scheme, if a user’s certificates are near each

22

other in the tree,5 storing another certificate only requires another couple of hashes.

This is because the hash paths for the two certificates overlap in all but a few hashes

in the bottom.

Most digital signatures (using reasonably large keys) are at least an order of

magnitude larger than the output from commonly used hash functions, so EFECT

allows a user to store more certificates in the same amount of space. Therefore,

atomic certificates can be implemented much more efficiently (in terms of space)

under EFECT than under X.509. This will be especially important in the future,

when certificates are stored on smart cards and other devices with small memories.

3.4.6 Untrusted Directories

In the X.509 scheme, certificates and CRL’s are distributed in various directories

(called “repositories” in [X509]). Having many directories eliminates the bottleneck

of users’ having to get every certificate and CRL directly from the CA. The authors

of [X509] claim that these directories can be untrusted since both certificates and

CRL’s are signed by the CA. While it is true that signed information can be dis-

tributed without any doubts as to its authenticity, it is not true that these directories

can be truly untrusted. If an X.509 certificate does not exist, there is no CA signature

attesting to its non-existence.

This means that a directory can plausibly deny the existence of a certificate re-

gardless of whether that certificate actually exists. This flaw makes possible at least

two unpleasant scenarios. In the first scenario, a company bribes a directory into not

giving out the certificates of the company’s competitors. In the second scenario, a

high-profile directory loses part of its database due to technical problems and tries to

deny that the lost certificates exist (in order to save face). In both of these scenarios,

the user is none the wiser since there is no CA signature attesting to a certificate’s

non-existence.

In the EFECT scheme, it is possible for a directory to prove the non-existence of a

5This is a very reasonable assumption. If the search key for the B+tree is something like
“username-field”, then all of a user’s atomic certificates would indeed be adjacent.

23

certificate. The proof uses hash paths from the certificate verification tree similar to

the ones used for certifying the certificates. The only difference is that at the bottom,

the hashes are taken over the search keys instead of over the certificate bodies.

To prove the non-existence of Bob’s certificate, the directory would provide the

search keys on either side of where Bob’s search key would go (say “Alice” and

“Charlie”) and the search key hash paths of these two search keys. By verifying that

the two hash paths were for adjacent search keys in the tree, and that they each

hashed up to the search key root hash of the day signed by the CA6, the user would

be convinced of the non-existence of Bob’s certificate.

Note what is proved in each step of the verification. By checking that each search

key hashes upwards to the root hash, the user verifies that the two search keys are in

the tree. By checking the adjacency of the hash paths, the user verifies that the two

search keys are adjacent in the tree. Since the two search keys are adjacent, Bob’s

search key could not be between them, so Bob’s certificate is not in the tree. Both

checks are necessary to prevent the directory from creating false non-existence proofs.

By requiring directories to prove non-existence of certificates, the EFECT direc-

tories can be truly untrusted unlike the X.509 directories. By requiring users to trust

directories, the X.509 scheme sacrifices security to gain efficiency in certificate distri-

bution. The EFECT scheme requires no such security sacrifice for efficient certificate

distribution.

3.5 Other Certificate Schemes

There are many other certificate schemes that have been proposed as improvements

to X.509. Some of these schemes are Micali’s CRS1 and CRS2 [CRS], Kocher’s

CRT [CRT], Naor-Nissim’s 23CRT [23CRT], and SDSI/SPKI [SDSI]. Since EFECT

is an attempt to improve upon X.509, it would seem logical to address these others

6To enable directories to do proofs of non-existence, the CA must broadcast not just one signed
root value of the day, but two. The message would include a timestamp, the root hash value hashing
over certificate bodies (for certificate verification), the root hash value hashing over search keys (for
non-existence proofs), and the CA’s signature over these three things.

24

attempts at improvement.

This thesis focuses only on X.509 and EFECT for a few reasons. First, it makes

sense to compare EFECT to the most commonly used certificate scheme, which is

certainly X.509 right now. Also, because X.509 is the scheme in common use today,

software implementations of X.509 were easily attainable for the benchmark compar-

ison in section 6.2.2.

Also, the major differences between EFECT and X.509 also exist between EFECT

and all of the above-mentioned schemes: X.509 and all of the above-mentioned

schemes involve individually signed certificates that may be revoked before their expi-

ration date. EFECT certificates are not individually signed, nor can they be revoked

before their expiration. This property that EFECT certificates are never revoked or

negated once issued is referred to as monotonicity in the literature.

Because of the central difference in individual signing and monotonicity, the ar-

guments about stronger CA security, easier recovery from CA key compromise, and

better support for long term signatures and atomic certificates still hold for EFECT

versus any of the above-mentioned schemes. The argument about untrusted directo-

ries holds against any of the above-mentioned schemes except CRS2 (CRS2 directories

can also prove non-existence).

25

Chapter 4

Requirements and Design

Decisions

This chapter describes the various parts of the EFECT prototype, what the require-

ments were for these parts, and what design decisions were made in order to meet

those requirements.

4.1 Client Browser

The client browser allows a user to acquire and manage EFECT certificates. It can

be configured to connect to any EFECT directory server on the Internet, and the CA

public key is configurable. Using the client browser, a user can download EFECT

certificates from a network directory, verify proofs of certificate non-existence from

such a directory, verify and examine certificates, and store and load certificates to

and from the local disk.

The first requirement for the client browser part of the prototype was that it must

have a graphical user interface (GUI). The second requirement for the client browser

was that it must be as portable as possible. These requirements were chosen to ensure

that the users of the EFECT system would be able to use an easily understandable

interface on any computer anywhere, regardless of operating system.

In order to meet both of these requirements, I chose to implement the client

26

browser in Java. The Java Swing package provides a way to write graphical user

interfaces that will run on any operating system to which Java has been ported (both

Windows and Unix).

4.2 Certificate Verification Tree

The certificate verification tree part of the prototype is an implementation of the tree

described in [EFECT]. It is a Merkle tree (hashes at every node) overlayed on top of a

B+tree. The order of the tree, k, can be changed during compilation. The certificate

verification tree implementation supports insertion, deletion, various searches, and

calculation of the hashes.

The first requirement for the certificate verification tree was that it must be fast.

The second requirement for the tree was that it must present a clean interface for

tree operations (insertion, deletion, hashing, etc.). The speed requirement was meant

to ensure that a server performing tree searches would be able to handle heavy query

loads. The interface requirement was meant to ensure that there would be a clean,

modular separation between the tree code and the directory server code.

In order to meet these requirements, I chose to implement the certificate verifica-

tion tree in C++. I decided that an object-oriented interface to the tree operations

would be the cleanest, which narrowed the language choice to Java or C++. The

performance penalty associated with Java was not acceptable for this part of the

system, violating the first requirement, so I chose C++.

4.3 Directory Server

The directory server is the replacement for the “repository” of the X.509 system. The

directory server maintains a copy of a given day’s certificate verification tree. Over

a network, the server answers client queries about certificates in its tree. There can

be many instances of the directory server running in many different locations. This

mirroring of the tree enhances performance of the system and poses no additional

27

problems of trust: the directories can be truly untrusted due to their ability to prove

certificate non-existence.

The requirement for the directory server was that it must be fast, and that it must

be able to service multiple requests from the network concurrently without blocking

on any one of them. Also, the directory server must use the interface provided by the

certificate verification tree.

I could have chosen a threaded Java server to handle the multiple concurrent

connection requirement, but Java would have violated the speed requirement. Also,

the interface to the tree would not have been very clean because it would have involved

native (non-Java) function calls within the Java code.

I chose to implement the directory server in C for three reasons. First of all, C is

fast and would satisfy the speed requirement. My second reason was that C has easy

access to a non-blocking network programming interface. This interface would allow

the program to service multiple requests in a single thread of control, eliminating

the need to use multithreading. Eliminating multithreading is highly desirable in

terms of both program complexity and performance. In a multithreaded program,

one must lock all of the tree data structures before using them in order to prevent race

conditions. If done improperly, the locking (or lack thereof) can cause bugs that are

very hard to find. Even if done correctly, the locking and the thread context switching

waste computer cycles that could be better spent servicing requests. My third reason

for choosing C was that it would be easy to use the C++ tree implementation from

a C program.

28

Chapter 5

Implementation Details

5.1 Client Browser

I wrote the client browser in Java, using Java’s Swing package to implement the

graphical user interface. I used Java’s security package for the SHA-1 hash function,

the DSA signature algorithm, and for parsing of X.509 certificates.

There are two threads of control in the client browser. One thread does all of

the network communications (sending and receiving), and the other thread does ev-

erything else: responds to GUI input, performs cryptographic computations, and

performs file system I/O. I kept the limit at two threads to simplify the program-

ming, as complex multithreaded programs are notoriously difficult to write correctly.

I broke the threads up this way because the network operations are the only ones that

can block for long periods. By isolating the blocking network calls into a separate

thread, I gained the ability to interrupt those calls with a stop button on the GUI.

Java’s old thread control methods (suspend(), stop(), etc.) have been depre-

cated due to their unsafe nature. Some of them allow race conditions while others

allow deadlocks. To do safe thread control, I devised a new method called safeStop()

for stopping the network thread. The idea was that the user should be able to stop

that thread with the push of a GUI button.

The basic idea behind safeStop() is that it sets a variable, indicating that the

thread should stop. The thread polls this variable periodically to see if it has been

29

asked to stop. The one problem is that the network thread may block during network

reads. If the user were to push the stop button during a read, the thread would

not stop because it wouldn’t be able to poll the variable while blocking. To fix this,

safeStop() shuts the network socket, interrupting any blocking reads or writes. The

network thread gets an exception, polls the variable (which tells it to stop), and stops.

Computed results from the network thread get passed back to the GUI thread

via a Vector. Some result passing was necessary, because the network thread cannot

draw things on the screen in a thread-safe manner.

Most of the complexity of the client browser comes from the fact that it uses two

threads. More threads would have further complicated it, and fewer threads would

not have allowed the client to interrupt slow operations.

5.2 Certificate Verification Tree

The certificate verification tree was written in C++, using OpenSSL for the SHA-1

hash function.

First, I wrote the B+tree code. All nodes contain pointers to keys, leaf nodes

contain pointers to data, and non-leaf nodes contain pointers to children. I used

textbook pseudo-code definitions of the B+tree operations (search, insert, and delete)

as the basis of this part of my code. Then, I added the hashes to each node, and

wrote methods to hash the tree from the bottom up. Finally, I added methods to

extract hash paths and certificates for a given search key.

The certificate verification tree is the part of the prototype that it is farthest from

what a real system would need in terms of optimizations. By using pointers explicitly,

the existing implementation assumes that all objects are in memory. In a production

system, the entire tree would not be in memory all at once, so the representation

would need to be changed. Section 7.1 discusses the changes that would be necessary

in a real system.

Fortunately, there is a good abstraction layer between the certificate verification

tree and the directory server. The changes outlined in section 7.1 could be made with

30

a very small number of changes to the directory server code.

5.3 Directory Server

The directory server was written mainly in C, with the only C++ features used being

the object-oriented calls to the certificate verification tree. Network I/O is done in

a non-blocking manner using callbacks. This allows the server to handle multiple

network connections simultaneously without using threading or multiple processes.

This simpler design was much easier to write and debug, and can even outperform

a threaded version in cases where the overhead of the threading library is very high

(many simultaneous requests).

The server supports a few different modes of operation to allow for different kinds

of certificates. The most common mode of operation is to allow anyone to ask for

any certificate in the tree, and to allow anyone to ask for non-existence proofs for

certificates not in the tree. This is the mode of operation that a directory server for

a tree full of public key certificates would use.

There is also a mode of operation where one can only get the hash path for

a certificate by presenting the certificate body, and where non-existence proofs are

not supported. This mode of operation would be appropriate for a certified tree of

sensitive personal data. In this case the server should not give out the data to unau-

thorized clients, nor should the server reveal which users are in the database. Since

the non-existence proofs reveal user names from the database, they are disallowed in

this mode of operation.

31

Chapter 6

Experiments

6.1 Experimental Apparatus

The benchmarks in section 6.2.1 were measured on a Sun Ultra 30 running Solaris 2.6

with 512 MB of physical memory and 1.5 GB of swap. All code was compiled us-

ing GCC 2.8.1. Routines for crypto (SHA-1 and DSA) and X.509 were taken from

OpenSSL 0.9.6-beta1.

Initially, the benchmarks in section 6.2.2 were also measured on that same ma-

chine. For reasons that will be discussed in section 6.3, the experiment ended up

being run on a second machine. The second machine was a Sun Ultra 60 running

Solaris 2.8 with 1024 MB of physical memory and 2 GB of swap. The compilers and

libraries were the same as on the first machine.

6.2 Experimental Questions

Experiments were performed to find two answers. The first answer we were looking for

was the optimal value of k, the order of the CVT. The second answer we were seeking

was how the EFECT prototype (using the optimal k) compares to a comparable X.509

system in terms of performance in an off-line, bulk verification scenario. This scenario

was meant to model the daily computation performed by a merchant verifying many

customer certificates (credit cards).

32

6.2.1 Order of the Certificate Verification Tree

The order k of the CVT determines the branching factor of the tree. Since a non-root

node must have at least k search keys and no more than 2k search keys, the branching

factor is at least k+1 and at most 2k+1. This branching factor determines the length

of a hash path from a tree of a given size and affects the running time of the tree

operations.

Hash Path Length

It is possible to compute the number of hashes in a hash path from a CVT as a

function of k, the order of the tree, and n, the number of certificates in the tree.

hashpathlength(n, k) = (k + 1.1)(
lnn− ln k

ln (k + 1)
+ 1) + 0.1 (6.1)

hashpathlength(n, k) = (2k + 1.1)(
lnn− ln 2k

ln (2k + 1)
+ 1) + 0.1 (6.2)

Equation 6.1 describes the length of a hash path (in number of hashes) for a minimally

full B+tree while equation 6.2 is the analogous equation for a full B+tree.

These two length equations are plotted against n for various k in figure 6-1. The

figure shows that a k of 1 minimizes the length for full trees while a k of 2 minimizes the

length for minimally full trees. As one goes from full to non-full trees, the optimality

of k = 1 quickly disappears, with that hash path length rising to almost the length

at k = 4. Given this behavior, the k of 2 should minimize the length of the hash path

for realistic trees.

The theory was supported by an experiment measuring the average lengths of

hash paths on trees with 300,000 certificates and various values of k. Table 6.1

indicates that the k of 2 does indeed minimize the average hash path length. Note

that averaging was necessary because the hash paths from non-full B+trees do not

have the same length.

33

0 0.5 1 1.5 2 2.5 3

x 10
5

10

20

30

40

50

60

70

80

90
Full Tree Hash Path Length vs. n (k=1 upwards to k=10)

n = Number of Certs

H
as

h
P

at
h

Le
ng

th
 (

in
 #

 o
f h

as
he

s)

0 0.5 1 1.5 2 2.5 3

x 10
5

10

20

30

40

50

60
Min. Full Tree Hash Path Length vs. n (k=2 upwards to k=10, k=1 dashed)

n = Number of Certs

H
as

h
P

at
h

Le
ng

th
 (

in
 #

 o
f h

as
he

s)

Figure 6-1: Plots of Hash Path Length vs. Tree Size (for various k’s and tree full-
nesses)

34

k Average Hash Path Length (in bytes)
1 868.4
2 804.5
3 842.1
4 891.4
5 960.9
6 1056.2
7 1097.2
8 1126.3
9 1177.0

10 1241.8

Table 6.1: Experimentally Measured Avg. Hash Path Lengths for n = 300, 000

Tree Search Speed

The search speed running time was not formally analyzed. A real implementation

of a CVT would perform explicit management of a memory cache of nodes (see

section 7.1). The formal analysis would basically be a cache-miss analysis of the

search algorithms parameterized on Z, the size of the memory cache. Since the

prototype implementation does not do this memory caching explicitly, its performance

is intrinsically bound to the performance of the virtual memory subsystem of the

underlying operating system.

A formal analysis of the interaction between the CVT and Solaris’s virtual memory

subsystem was not feasible, so an empirical analysis was performed instead. Speed

measurements were taken for the various tree operations (building, hashing, and

search) on trees with 300,000 certificates and various values of k. For each value of

k, the time to build the tree from scratch was measured, the time to hash the entire

tree was measured, and the total time required to do one hash path search for each

key in the tree was measured. This whole process was repeated in a sequential loop

ten times for each value of k (k = 1, k = 2, ..., k = 10, k = 1, k = 2, ...) The final time

values for each k were obtained by averaging over the 10 trials for that k. Figure 6-2

shows the results of these measurements.

The search measurement is the most important as it measures the time to extract

35

0 1 2 3 4 5 6 7 8 9 10 11
0

50

100

150

200

250

300
Times for Building (circle), Hashing (square), and Search (diamond) vs. k

k

T
im

es
 fo

r
V

ar
io

us
 T

re
e

O
pe

ra
tio

ns
 (

in
 s

ec
on

ds
)

Figure 6-2: Plots of Speeds of Various Tree Operations vs. k (for n = 300, 000)

36

a hash path given a search key. In EFECT, this search operation occurs much more

frequently than tree building or hashing of the tree. In terms of speed performance,

the search time is the most important thing to optimize. This speed optimization

must be balanced against the hash path size optimization discussed previously.

The optimal search speed happens when k = 5, but it is not significantly faster

than the speed at k = 4. Since the hash path gets smaller with smaller k around this

point, we chose the value of k = 4 for the tests against X.509 in the next section (in

order to have good speed and small certificates). Luckily, the speeds for tree building

and hashing are also near optimal at k = 4.

6.2.2 Relative Performance of EFECT and X.509

It is claimed in [EFECT] that verification in the EFECT scheme is much faster than

verification in the X.509 scheme. This experiment was designed to investigate that

claim in an off-line verification scenario.

Off-line Bulk Verification Scenario

The off-line verification scenario is as follows. An X.509 verifier verifies the signature

on the day’s CRL once at the beginning of the day. Then for each X.509 certificate,

the X.509 verifier verifies the signature on the certificate and scans the day’s CRL for

that certificate’s serial number. An EFECT verifier verifies the signature on the root

of the day once at the beginning of the day. Then for each EFECT certificate, the

EFECT verifier verifies that the certificate’s hash path hashes up to the signed root

of the day. Each verifier will verify many certificates during the day (thousands of

verifications). All verification is off-line except for the initial verification of the CRL

or the signed root.

This experiment was meant to model what a busy merchant would do in a day of

verifying something like a credit card certificate. The model was chosen because it is a

model in which verification time savings will be most pronounced (the per-certificate

time saved is multiplied by the large number of verifications performed). Another

37

reason this model is relevant is because EFECT certificates can be significantly smaller

than X.509 certificates when grouped together, allowing more of them to fit on a smart

card (the credit card being verified). EFECT’s good performance in this experiment

would indicate an area where EFECT has multiple significant advantages over X.509.

Benchmark Details

The benchmark had two main phases:

1. For each of 300,000 users, certificates were created and written to disk for each

of the three schemes to be tested: EFECT with SHA-1, X.509 with DSA and

SHA-1, and X.509 with RSA and SHA-1.

2. For each of 300,000 users, the X.509 DSA certificate was verified, the EFECT

certificate was verified, and the X.509 RSA certificate was verified (in that

order). All verifications were timed using a microsecond timer.

The certificate bodies for all three schemes were identical: a fixed PGP 1024-bit

public RSA key with the given user’s name prepended. Since we were not interested

in extracting information from the certificates themselves, the X.509 format was not

actually used. Verification times depend mainly on the length of the data in question,

not on its specific content. This certificate format was chosen for simplicity. Had the

actual X.509 format been used, the results would not have been significantly different.

For EFECT, the root was signed using a 2048-bit DSA key. For X.509 with DSA,

the certificates and the CRL were signed using the same 2048-bit DSA key as used in

EFECT. For X.509 with RSA, the certificates and the CRL were signed using a 2048-

bit RSA key. The two CRL’s were identical (except for the signatures). They each

contained the same 10% of the certificate serial numbers (every tenth serial number

was on the list). The serial numbers were not actually written on the certificates, but

were implied by the sorted order of the usernames.

EFECT verification time includes the time to hash up the path to the alleged root

plus the time to compare the alleged root to the signed root. X.509 verification time

38

Certificate Mean Verification Standard Deviation
Scheme Time (in µs) (in µs)

EFECT with SHA-1 160.0 8.3
X.509 with DSA and SHA-1 73656.7 9612.9
X.509 with RSA and SHA-1 6259.5 2995.9

Table 6.2: Mean Verification Times and Standard Deviations for EFECT and X.509

includes the time to verify the digital signature plus the time to do a binary search

on the CRL for the certificate’s serial number.

EFECT verification times do not include the time to verify the DSA signature on

the root. X.509 verification times do not include the time to verify the signature on

the CRL. Since these verifications only happen once per day, the differences in their

times are not important.

For each of the schemes, the 300,000 verification times were averaged. These

means (and their standard deviations) are shown in table 6.2.

None of the verification times include disk accesses. Variations in disk access

times would have been nearly as large as the verification times themselves, making

the timing data useless.

Actually, the first version of this experiment was aborted when it was discovered

that the directory being accessed was an NFS mount rather than a local hard disk.

This was discovered because the experiment had taken an order of magnitude longer

to run than had been predicted, and still was not finished. When this was discovered,

the experiment was moved to an isolated machine with a large local disk. It is worth

noting that the non-local file system affected performance of the system far more than

the certificate verification scheme used.

39

6.3 Conclusions

The parameter k, the order of the EFECT CVT, affects both the size of the hash

paths associated with EFECT certificates and the speed at which a server can extract

those paths from the tree. Unfortunately, space optimality and speed optimality occur

at different values of k. Fortunately, the two optimal values were not too far apart.

The calculations and experiments from section 6.2.1 indicate that smaller k results

in shorter hash paths for k ≥ 2. Section 6.2.1 also showed that a k of 5 provides

the fastest hash path search time,1 but that k = 4 was approximately as fast and

would result in smaller hash paths. This k of 4 was used in the benchmark comparing

EFECT and X.509.

Certificate verification is significantly faster in the EFECT scheme than in the

X.509 scheme. EFECT verification is about 460 times faster than DSA X.509 verifi-

cation and about 39 times faster than RSA X.509 verification. However, it is worth

noting that these speed savings are less significant in any verification system that

stores certificates on a hard disk. This is because the time difference between ver-

ification schemes is on the order of the time required for a hard disk access. In a

verification system accessing a networked file system, the verification time savings

become completely insignificant compared to the amount of time spent accessing the

file system.

So although EFECT is indeed faster for verification, its novel properties (as de-

scribed in section 3.4) are probably more important than any verification speed gains.

It would be wise for authors designing future schemes to notice this fact: further ver-

ification speed gains probably are not meaningful in real systems.

1Note that this k of 5 was empirically determined, and that a system that implements the explicit
node caching described in section 7.1 would probably have a different optimal value of k.

40

Chapter 7

Future Work

This chapter discusses aspects of the prototype that could be improved by future

work. These ideas were considered but rejected due to time constraints.

7.1 Memory Cache Manager

For optimal performance, the certificate verification tree routines should utilize a

custom memory cache manager that would move tree nodes between memory and

disk appropriately. This cache manager would be tailored to the tree algorithms,

having an appropriate replacement policy and performing occasional prefetching of

nodes.

The tree routines would have to request nodes from the cache manager before

using those nodes, and would relinquish nodes when through with them. The cache

manager would pin a node in memory upon request, only moving it back to disk after

the application relinquished it. The cache manager could also keep non-requested

nodes in memory as per its prefetching strategy and replacement policy. Between a

routine’s requesting a node and relinquishing that node, the cache manager would

provide the routine with access to the node through accessor functions using some

handle to identify the node. By routing the node accesses through accessor functions,

the cache manager could easily keep track of dirty nodes and access patterns. This

information would make the cache manager more efficient because it would not have

41

to write non-dirty nodes back to disk, and it would have more detailed information

available for prefetching and the replacement policy.

Prefetching would only make sense during horizontal tree traversal. This is be-

cause during vertical traversal, there is no way to predict which child will be accessed.

During horizontal traversal, all siblings of a given node are generally accessed (to

gather the appropriate hashes for verifying a certificate). Given this, a good prefetch-

ing strategy would be to prefetch sibling groups during horizontal traversal. The

accessor functions should be written in such a way as to make it easy for the cache

manager to determine the traversal direction of the calling routine.

The replacement policy could be similarly tuned to the access patterns of the tree

routines. It is known that the tree searches go down the tree to the bottom and

come back up those same nodes, traversing siblings at each level. Given this traversal

pattern, the cache manager knows that once the routine has moved up past a given

node, that node will not be used again.

Tuning the replacement policy to this access pattern would result in a lower per-

centage of cache misses than that achieved by the operating system and its general

purpose replacement policy for its virtual memory system. Another reason the cache

manager would increase performance is that it would use a page size appropriate for

the size of a tree node, rather than a general purpose page size used by the operating

system.

The cache manager would make it possible to run the directory server on a machine

with a small virtual memory. We would never need too much virtual memory at any

one time (just enough for a path down or across the tree). In the current prototype,

the entire tree resides in virtual memory, making it impossible to serve large trees on

machines with small virtual memories.

This cache manager optimization was not done due to time constraints. It would

involve replacing the pointer fields in each node with a handle understood by the

cache manager. It would also require making each tree node a fixed size, with search

keys embedded in the nodes. Currently the search keys reside outside of the nodes

with the nodes holding only pointers to them. Currently, the certificates also reside

42

outside of the nodes. In a tree full of small atomic certificates, the certificates should

probably be moved into the nodes. In a tree of public key certificates, the certificates

should probably be nodes of their own as their size would be comparable to the size

of non-leaf nodes.

Note that this optimization could change the empirically determined value of k

from section 6.2.1, as the operating system’s virtual memory performance may well

have determined that value.

7.2 CA Servicing of User Requests

The current prototype has a fixed tree that it serves. Currently, there are no mech-

anisms for changing the tree other than the low-level C tree library routines for

insertion and deletion. In a real system, the CA would want some high-level way

to queue up certificate creation and revocation requests and incorporate those user

requests into the next day’s tree. This high-level user request queue interface would

be implemented using the low-level tree interface.

The details of servicing user requests would depend heavily on the nature of the

CA. A credit card company would already have mechanisms for processing new card

and revocation requests. A credit card CA would then just add software to reframe

the requests as tree operations for the next time period. Basically, this issue is not

directly related to the EFECT scheme. It is just a matter of how a real company

or organization processes input from its customers or members. The requests from

the customers or members would just need to be mapped into tree operations, which

would be queued up for the next time period.

At the beginning of the next time period, the CA would perform the necessary tree

manipulations (insertion for issuing a certificate and deletion for revoking a certifi-

cate), and would rehash the necessary parts of the tree. Finally, it would timestamp

and sign the top of this new tree.

43

7.3 CA to Directory Communication

In the current prototype, there is no separation between the CA and the certificate

directory. The building, hashing, and signing of the tree are all currently done in

the directory server. In a real system, the CA and the directory would be distinct

entities, so there would need to be some protocol to move the tree between the two.

For efficiency, the CA could send a list of the incremental changes from the last

time period’s tree, rather than a copy of the entire new tree. The incremental change

message would include the search keys of revoked certificates (to be deleted from the

tree), and the search keys and bodies of newly issued certificates. This communication

would be digitally signed by the CA to prevent forgery. Encryption would only be

necessary for trees of sensitive information, not for trees of public keys. Assuming

that there was agreement between the CA and the directories on the order in which

to perform these tree operations, the directories and the CA’s would end up back in

synch for each time period without having to send the entire tree over the network.

In the beginning, a new certificate directory would get an incremental update from

nothing, basically a list of all search keys and certificates in the tree.

For tree rehashing, the two options would be to have the CA send over a signed

list of the new hash values or to have the directories recompute these values locally.

At first it seems wasteful to have the local directories recompute these hashes when

the CA is already computing them. In fact, this rehashing is not an expensive compu-

tation. Doing the rehashing locally is fast enough for an off-line computation, saves

bandwidth by not sending those hashes over the network, and simplifies our design

by not requiring yet another protocol be spoken between the directories and the CA.

Finally, the CA would have to send the directories the timestamped signature for

the new time period.

44

7.4 Smart Cards

One of the major uses for EFECT is in a credit card scenario, where the credit card

company would run a CA, certifying the keys of the credit card holders. The credit

card holders would keep their private keys and their certificates on smart cards. Stores

would have smart card readers where customers would insert smart cards in order to

make purchases. The smart card readers in stores would verify the certificate hashes

on a customer’s smart card, as well as performing some sort of challenge/response

protocol with the card in order to verify possession of the private key corresponding

to the certificate.

The current prototype can only store downloaded certificates on the local disk of

the machine running the EFECT client software. Eventually, the client software will

need to be able to store the downloaded certificates onto a smart card. It may be

possible to automatically download and save the user’s certificates on the smart card

in response to the insertion of the card into the card reader. This functionality would

greatly simplify the user experience.

Also, the hash path verification routines currently found in the client software

would need to be ported to the smart card reader. The challenge/response protocol

would need to be written from scratch for the smart card reader as it does not exist

in the current prototype.

7.5 Hash Path Compression

The current encoding of hash paths is not optimal for multiple certificates. When

storing certificates that are nearby nodes in the same CVT, the hash paths will differ

in only a few hashes at the bottom. This hash redundancy means that very good

compression is possible. One such compression scheme would involve a bit flag for each

hash denoting the hash as either a literal value or a reference to another existing hash.

The reference would only have to be a few bits in length. By encoding redundant

hashes as a few bits instead of 20 bytes, we would save significant amounts of space

45

when storing adjacent certificates in the tree.

This path compression will be especially important when users have many certifi-

cates to carry on devices with small memories (smart cards, phones, other wireless

devices, etc.).

46

Chapter 8

Summary

EFECT is a new certificate scheme that solves the certificate revocation problem

more elegantly than do current schemes like X.509. Compared to X.509, EFECT also

provides faster certificate verification, smaller certificates, fully untrusted certificate

distribution, and better protection against CA key compromises.

The software described in this thesis implements the EFECT scheme and meets

the prototype design requirements. The software is portable and modular, and it

meets speed requirements. Also, it includes a graphical interface for the client.

The order of the EFECT certificate verification tree affects both the size of the

EFECT certificates and the search performance of the tree. An order was found in

this thesis that is nearly optimal for both certificate size and search speed.

The EFECT prototype was configured with this nearly optimal tree order, and an

experiment was conducted to compare the relative performances of EFECT and X.509

in an off-line, bulk verification scenario. The results show that certificate verification

is significantly faster in the EFECT scheme than in the X.509 scheme. It should

be noted that although EFECT verification is faster, the time savings can easily be

dwarfed by the time required to access a file system. EFECT’s other advantages seem

more important than improved verification speed in light of this realization.

The results in this thesis demonstrate that EFECT is a suitable replacement for

X.509 in situations where the certified user population is large, situations where bulk

verification takes place, or situations where certificates must be stored in limited space

47

(wireless devices and smart cards). Hopefully after a few future modifications, this

software will be deployed to provide the public key infrastructure in some of these

scenarios.

48

Bibliography

[AR] Michel Abdalla and Leonid Reyzin. A New Forward-Secure Digital Sig-

nature Scheme. In Tatsuaki Okamoto, editor, Advances in Cryptology—

ASIACRYPT 2000, volume 1976 of Lecture Notes in Computer Science,

pages 116–129, Kyoto, Japan, 3–7 December 2000. Springer-Verlag.

[DH] Diffie and Hellman. New Directions in Cryptography. IEEE Transactions

on Information Theory IT-22, 6 (Nov. 1976), 644–654.

[EFECT] I. Gassko, P. Gemmell, and P. MacKenzie. Efficient and Fresh Certifi-

cation. In PKC2000, pp. 342–353.

[X509] R. Hously, W. Ford, W. Polk, and D. Solo. Internet X.509 Public Key

Infrastructure Certificate and CRL Profile. RFC 2459.

[CRT] Paul Kocher. A Quick Introduction to Certificate Revocation Trees

(CRTs). http://www.valicert.com/technology/

[Kohnfelder] Loren Kohnfelder. Towards a Practical Public-key Cryptosystem. Bach-

elor’s thesis, MIT, May 1978.

[Merkle] R. Merkle. A Certified Digital Signature. Advances in Cryptology:

CRYPTO ’89, pp.218–238.

[CRS] S. Micali. Efficient Certificate Revocation. RSA Data Security Confer-

ence, San Francisco, California, January, 1997.

[23CRT] M. Naor, K. Nissim. Certificate Revocation and Certificate Update. Pro-

ceedings of Usenix ’98.

49

[atomic] Narayan Raghu. ATOMIC CERTIFICATES. IETF Internet draft.

[SDSI] links to SDSI and SPKI materials can be found at

http://theory.lcs.mit.edu/cis/sdsi.html

50

