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Abstract

Conventional methods of discovering network topology require the cooperation of
network elements.  We present a method of network topology discovery based solely
upon end-to-end delay measurements that requires only the cooperation of end systems.
Previous work using end-to-end measurements has focused on discovering tree
topologies; the method here discovers more general networks.  The discovery method is
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network models using simulation.  We also develop an indicator of the quality of a
particular result.
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Chapter 1

Introduction

1.1  Motivation

     Knowledge of network topology is essential for network management and network

provisioning.  However, conventional methods of network discovery (e.g., SNMP-based

autodiscovery) rely on the cooperation of network elements and therefore have several

potential shortcomings.  For instance, network elements may be uncooperative due to

heavy loading that disables autodiscovery in order to reduce processor load.  Or, the

owner of the network elements might restrict their access rights.

      In addition, network elements may not have the functionality that is desired.

Traditional autodiscovery tools may use outdated protocols or protocols that have not yet

been implemented by network elements.  Autodiscovery tools may also be limited

because they can only detect the logical connectivity of a particular network layer.  For

example, ICMP and traceroute can not detect ATM switches.

     A discoverer may not want network elements to be aware of the discovery process.  In

a military context, we might want to make a map of the enemy’s network.  Or, an ISP

might want to verify the connectivity of a carrier network in order to verify service

agreements.

     This work responds to these concerns and provides a starting point for a system that

can discover a broad class of network topologies from end-to-end delay measurements.

The work grows out of a 1997 DARPA proposal by Christian Huitema at Telcordia

Technologies. The proposal received funding and became the Felix Project [6, 7].  The
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Felix Project focused on using non-invasive end-to-end measurements to determine

network characteristics.

     End-to-end measurements only require that the end systems be centrally controlled.

Any interior network elements may be uncooperative to the extent that they do not

respond to direct probing, such as ICMP, but they do forward probe packets.  The

topology discovery method presented here is based on two algorithms: the correlation

algorithm and the matroid algorithm.

1.2  Correlation and Matroid Algorithms

     Monitors collect the end-to-end delay measurements that are the starting point for

discovering network topology.  Monitors are placed at certain nodes in the network and

collect delay measurements by time-stamping packets that are sent to other monitors.

The links in a network that are traversed when a monitor sends a packet to another

monitor constitute a path.  The collected data is organized as end-to-end delay time as a

function of time for each path.

     The collected data is then used to discover the topology of the network in two steps.

First, the correlation algorithm determines the links in the network by correlating the

times when paths exhibit common end-to-end delay characteristics.  The output of the

correlation algorithm is a path-link matrix that identifies which links are on which paths.

The matroid algorithm (invented by P. D. Seymour) [7] then reconstructs the network

topology based upon the path-link matrix. The solution method is illustrated in

Figure 1-1.

Figure 1-1:  The topology discovery method.

   end-to-end
   delay
   measurements

  path-link
    matrix

discovered
network
topology

 correlation    matroid
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     The matroid algorithm uses linear algebra and graph theory to construct the network

topology from the path-link matrix.  The path-link matrix does not necessarily completely

determine the network topology.  For example, the matroid algorithm may produce a

network that contains split nodes, which are a set of nodes in the discovered network that

correspond to the same node in the original network.  The matroid algorithm can also

output localized uncertainties in the network topology or clouds.  For the purposes of this

paper, the matroid algorithm is treated as a black box.

      The contribution of this thesis is the development and validation of topology

discovery algorithms based upon the idea of correlating common end-to-end delay time

characteristics that occur on network paths.  Three correlation algorithms that are based

upon accompanying network models form the core of the work.  We start with relatively

simplistic network models and move towards more complex ones.  Validation of the

correlation algorithms is done using simulation.  We use simulation instead of real-world

traffic data because exploring the ideas of the correlation algorithm would initially be too

difficult with real-world data.

1.3  Related Work

     A number of related papers have been published recently.  We classify this related

work into three areas: end-to-end measurement systems, analysis and modeling of real-

world end-to-end measurements, and analysis and modeling of simulated end-to-end

measurements.  The present work belongs in the third area, analysis and modeling of

simulated end-to-end measurements.

       Measurement systems are primarily concerned with how end-to-end measurements

can be made accurately and what type of infrastructure is required to support these

measurements.  These projects are concerned with many systems related issues such as

scaling, distributed computing, and security.  The National Internet Measurement

Infrastructure (NIMI) project [13] proposes to build a large-scale measurement

infrastructure on top of the existing Internet, similar to the Domain Name System.  NIMI

is primarily concerned with scalability and security.  Another significant measurement
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system is Surveyor [20], consisting of 38 machines spread around the world.  One-way

delay and packet loss is measured between these machines.  Additional projects in this

area are: Skitter [19], Internet Performance Measurement and Analysis (IPMA) at Merit

[11], and Internet Monitoring & PingER at Stanford Linear Accelerator Center (SLAC)

[10].

     The second area of related work is analysis and modeling of real world end-to-end

measurements. This work uses end-to-end measurements from real-world network traces

to infer characteristics about the network.  Most of the work focuses on analyzing delay

and loss models.  For example, Yajnik et al. [23] present a method of estimating the loss

rates on links of a known multicast tree topology using the receivers’ loss patterns.

Further references in this area include [1, 12, 14, 24].

     The third broad area of related work that we consider is analysis and modeling of

simulated end-to-end measurements.  A number of simulation studies have been done on

inferring characteristics of multicast tree networks based upon the loss patterns of

receivers.  Caceres et al. [3] and Ratnasamy et al. [17] have developed maximum

likelihood estimations of multicast tree topologies and the packet loss rates on these links.

The basic insight is that if a multicast packet is lost along a link in the tree, all intended

recipients lower in the tree will be affected.  Intuitively, the closer the loss pattern of two

receivers, the more likely it is that they are closely related in the multicast tree.

     Moving from multicast to unicast streams but still considering only tree topologies,

Rubenstein et al. [18] and Harfoush et al. [9] suggest two different probing packet

techniques for characterizing the internals of a network.  Rubenstein et al. propose

analyzing two Poisson probe flows in order to detect if two co-located receivers or two

co-located senders have shared points of congestion.  Harfoush et al. suggest a method of

identifying shared loss by using Baysian probes.  Harfoush et al. are able to reconstruct

the tree topology and loss rates between a server and a set of clients using these probes.

Further references in this area include [2, 5, 16].
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     In the present work, we address the problem of inferring network topology for a mesh

of paths. We are not limited to tree topologies in any way. In addition to discovering the

network topology, we provide an estimate of individual link congestion rates.

1.4  Outline

     We present background material and the network topology generation process in

Chapter 2.  Chapters 3, 4, and 5 delve into the three network models that form the core

of the work.  Each of these chapters contains an explanation of the network model, a

correlation algorithm, results, and discussion.  Finally, we present conclusions and future

work in chapter 6.
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Chapter 2

Background

     Before we examine the three network models that form the core of this paper in

chapters 3, 4 and 5, we present background material.  In section 2.1, we introduce

terminology that will be used extensively throughout the paper.  Section 2.2 explains how

we generate the network topologies that are used for testing the topology discovery

algorithms.  Finally, in section 2.3, we present an overview of how the various pieces of

code fit together.

2.1  Terminology

     We define a network as a set of nodes and directed edges, or links.  Special nodes in

the network are monitors.  Nodes that are not monitors are interior nodes.  A path is the

set of nodes and links that are traversed if data is sent from one monitor to another

monitor.  Paths are simple, having no repeated nodes or links and consequently do not

have loops.  Paths are not necessarily symmetric.  That is, the set of nodes that is

traversed on the path between monitor M1 and monitor M2 need not be the same as the set

of nodes that is traversed by the path from monitor M2 to M1.  A path that is not

symmetric is asymmetric.  Paths are also stable.  A stable path is a path does not change

over time.  Figure 2-1 illustrates these concepts.
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Figure 2-1:  Illustration of network terminology.

     The network in Figure 2-1 has eleven nodes.  Five of these nodes are monitors and

they are labeled: M1, M2, M3…  The six interior nodes are labeled: N1, N2, N3…  Some

links are labeled next to arrowheads that indicate the direction of the link.  The links that

constitute path p are: L1, L2, L3, L4, and L5, while the links that constitute path q are: L2,

L6, L7, and L8.

      All of the network models are based upon packet-switched networks.  By time-

stamping the packets that are sent from one monitor to another, the end-to-end delay time

for a path is recorded.  If time-stamped packets are sent over time, then the end-to-end

delay time series from one monitor to another or a path’s end-to-end delay time series is

constructed.  Figure 2-2 is an example of such a time series.

     path  p

path  q
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L4

L5

L7

L8
M1

M5

M2
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M4

L1
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N2

N4

N5

N6



18

Figure 2-2:  Example of a path’s end-to-end delay time series.  Note that this time series is only
illustrative and is not meant to represent a recorded time series.  In practice, the time series tends to

be more punctuated and not as smooth as what is illustrated.

     Finally, we formalize the path-link matrix that was introduced in chapter 1.  One axis

of the matrix is indexed by a path name and the other axis is indexed by a link name.  We

put a 1 in position (i, j), if link j is on path i and a 0 otherwise.  Constructing such a

matrix for paths p and q, which are defined in Figure 2-1 yields:

    L1     L2    L3    L4    L5     L6    L7    L8    L9

     P     1     1     1     1     1      0     0    0    0

     Q     0     1     0     0     0      1     1    1    0

The path-link matrix serves as the interface between the correlation algorithm and the

matroid algorithm.  Note that the path-link matrix does not indicate how many nodes are

in the network, nor whether or not two different paths share common nodes.  Unlike an

adjacency-matrix representation of a graph, the path-link matrix does not necessarily

completely specify a network’s topology.

 2.2  Network Topology Generation and Reduction

      In this section, we discuss the methodology we use to create network topologies for

testing the topology discovery algorithms.  We wanted a method that could generate a

wide range of realistic network topologies, while keeping in mind the limitations of the

discovery algorithms.  Therefore, we create an initial randomized, realistic network

topology using the tiers program by Calvert et al. [4].  Next, we choose a fixed number of

time

de
la

y 
ti

m
e
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leaf nodes at random as monitors.  We remove nodes and links that are not traversed by

any paths, creating the visible network.  Finally, we simplify or reduce the visible

network, creating the reduced network.

     The tiers program generates randomized and realistic topologies according to a three

tier hierarchical structure. The three tiers are: Wide Area Networks (WANs),

Metropolitan Area Networks (MANs), and Local Area Networks (LANs).  Several

parameters control graph generation.  The user can specify the number of nodes in each

type of network as well as the number of MANs per WAN, and LANs per MAN.

Additionally, the connectivity within a network and between different types of networks

can be specified.  We refer to the network generated by tiers as the original network.

     Monitors are then selected randomly from among the leaf nodes of the original

network.  We choose the leaf nodes as monitors because they tend to be at the edge of the

network and therefore much of the network is contained on the paths between them.  If

we chose monitors in the center of the network, then the network topologies would

probably not be very complex or interesting.

     Given the choice of monitors, we determine the paths based upon shortest hop routing.

This is implemented using breadth first search from each monitor.  This implementation

lends itself to the generation of asymmetric paths.  Empirical work by Vern Paxson [15]

found that in one network approximately 30% of the paths exhibited asymmetry.  We

find paths generated using breadth first search to be asymmetric approximately 35% of

time.  We assume that the routing is stable and thus paths do not change over time.  After

removing the nodes and links that are not traversed by any paths in the original network,

the visible network remains.

     From the visible network, we proceed to reduce the graph.  The correlation algorithm

requires that each link in the network be traversed by a unique set of paths.  The matroid

algorithm assumes that all paths are simple, a monitor is not an interior node in the

network, and that paths destined to the same monitor do not converge and then diverge.

This final assumption of the matroid algorithm means that all paths into a monitor form a

sink tree [21].
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     The visible network satisfies the requirements of the matroid algorithm.  A sink tree

into each monitor is assured by using breadth first search because the adjacency list that

is used to represent the network is examined in the same order in determining all paths.

We ensure that monitors are not in the interior of the network by choosing monitors from

among the leaf nodes in the original network.  Finally, shortest hop paths do not contain

any repeated nodes or links and therefore the simple path constraint is satisfied.

     The visible network does not necessarily satisfy the correlation algorithm’s

requirement that each link be traversed by a unique set of paths.  We classify links that

are traversed by the same set of paths as other links into two categories: series links and

equivalent links.  Series links can be found by identifying those nodes that have an in-

degree and out-degree of one or an in-degree and out-degree of two.  To illustrate this

concept, consider Figure 2-3.

Figure 2-3: Series links.  Figure 2-3(a) contains 6 series links.  Links L1, L2, and L3 are all traversed
by paths M1-M2, M1-M3, and M1-M4, while links L4, L5, and L6 are traversed by paths M2-M1, M3-M1,

and M4-M1.  Figure 2-3(b) modifies the network, eliminating the series links.

     In Figure 2-3(a), nodes 2 and 3 both have an in-degree and out-degree of two.  If we

designate the path from M1 to M3 as M1-M3, then links L1, L2, and L3 are traversed by

paths M1-M2, M1-M3, and M1-M4, while links L4, L5, and L6 are traversed by paths M2-

M1, M3-M1, and M4-M1.  We can remove these series links by removing nodes 2 and 3

and reconnecting the graph as shown in Figure 2-3(b).

M4

M3

M1

M2

N3

N2

 N1

L1

L2

L3

L4

L5

L6

M3
M4

M1
M2

 N1

          (a)           (b)
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     An equivalent link is a link that is traversed by the same set of paths as at least one

other link in the network, but it is not a series link.  Equivalent links are further classified

as consecutive equivalent links and non-consecutive equivalent links.  A consecutive

equivalent link has at least one node in common with another link that is traversed by the

same set of paths as itself.  A non-consecutive equivalent link is an equivalent link that

does not have a common node with a link that is traversed by the same set of paths as

itself.

     In Figure 2-4, we present an example of consecutive equivalent links.  The table in

Figure 2-4(b) is an ordered set of the links that are traversed on each path.  Notice that

links L7 and L8 always appear together in the table and are found on paths M1-M2 and

M3-M2.  Looking at the network diagram, links L7 and L8 share a common node and are

not series links.  Therefore, links L7 and L8 are consecutive equivalent links.  Links L2

and L10 are also consecutive equivalent links, while links L4 and L5 are series links.

Figure 2-4:  Consecutive equivalent links.  Links L7 and L8 share a common node and are traversed
by paths M1-M2 and M3-M2.  Thus, L7 and L8 are consecutive equivalent links.  Links L2 and L10 are
also consecutive equivalent links.  The table in Figure 2-4(b) indicates the links that are traversed on
the paths between the indicated monitors.

     We modify the network that contains consecutive equivalent links as follows.  We

define a group of consecutive equivalent links as set of consecutive equivalent links

where each link in the set is traversed by the same set of paths.  We can move from the

M1-M2: L2, L10, L8, L7

M1-M3: L2, L10, L12

M2-M1: L6, L5, L4, L1

M2-M3: L6, L9, L12

M3-M1: L11, L3, L1

M3-M2: L11, L8, L7
L1

L2

L4

L3

L12

L7

L8L5

L10

L9

L11

L6

M1

M2

M3

          (a)           (b)
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begin node to the end node of a group of consecutive equivalent links by traversing only

and all of those links that are in the group.  We remove all of the consecutive equivalent

links in a group from the network and then add to the network a single link from the

begin node to the end node.  After modifying the network in this manner, we remove

nodes that are no longer traversed by any path.  Applying this procedure to Figure 2-4

results in network found in Figure 2-5.

Figure 2-5:  Eliminating consecutive equivalent links.  Consecutive equivalent links L2, L7, L8, and
L10 are removed from the network in Figure 2-4(a).  Links L13 and L14 are added to the network. In
addition, the series links L4 and L5 are removed from Figure 2-4(a) and L15 is added.

     An example of non-consecutive equivalent links is shown in Figure 2-6. In the figure,

paths only traverse links that lie on the hexagon shape and links that are incident to a

monitor, except for paths M1-M4, M4-M1, M3-M6, and M6-M3. These paths traverse links

in the interior of the hexagon shape as shown.  Links L2 and L4 are non-consecutive

equivalent links, being traversed only by path M6-M3, while L1 and L3 are also non-

consecutive equivalent links, being traverse only by path M3-M6.  Paths M1-M4 and M4-

M1 contain analogous non-consecutive equivalent links as well.

L1
L3
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Figure 2-6: Non-consecutive equivalent links.  Links L2 and L4 are only traversed by the path M6-M3

and are thus non-consecutive equivalent links.  Similarly, links L1 and L3 are only traversed only by
the path M3-M6 and are thus non-consecutive equivalent links as well.  Analogous non-consecutive

links occur on the path M1-M4 and M4-M1.

     A network that has been checked for series and consecutive equivalent links and

modified appropriately is a reduced network.  The reduced network may seem very

different from the visible network.  However, a network that is modified because of series

links does not change the graph in any structurally significant ways.  Modifications to

network topology that are due to consecutive equivalent links are localized in the network

and the number of links in a group of consecutive equivalent links is typically small*.

Finally, we do not use networks that contain non-consecutive equivalent links.  However,

networks with non-consecutive equivalent links are extremely rare in practice**.

     We show the evolution from the original network, to the visible network, and finally

to the reduced network in Figures 2-7, 2-8, and 2-9, respectively.

                                                          
* We found that most groups of consecutive equivalent links had 2 links.
** In generating hundreds of sample topologies, we have found only one case of non-consecutive equivalent
links.
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Figure 2-7:  Original network topology generated by tiers. There are 180 nodes.

Figure 2-8:  Visible network.  Illustrates the network topology after monitors have been added and
non-traversed nodes and links have been removed.

Figure 2-9:  Reduced network.  Series and consecutive equivalent links have been removed from the
visible network.
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2.3  Implementation
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Figure 2-10: Code tool-chain.  Ovals refer to programs and squares refer to files.

    In Figure 2-10, we show how the various pieces of code interact.  Ovals refer to

programs and squares to files.  Walking briefly through this chart, the tiers program

generates the original network.  This network is input to the reduce program that chooses

monitors and removes non-traversed links and nodes, series links, and consecutive

equivalent links.  The reduce program captures the ideas of section 2.2.  The output of the

reduce program is a description of the reduced network, or a topology file.  The network

simulator then simulates a network model on the reduced network.  End-to-end delay

data is recorded by the network simulator and stored in a data file.  This data file is input

to the correlation algorithm, which attempts to solve for the path-link matrix.  Finally, the

matroid algorithm reconstructs the reduced network topology using the path-link matrix.

The matroid algorithm outputs the discovered network as a topology file.

      On the right-hand side of the figure, the reduced network is rendered and compared

with the discovered network.  Topomap is a graph drawing program that draws networks

in a visually appealing manner.  The purpose of fix is to place the monitors in the same

locations in the diagrams of the reduced network and the discovered network.  We can
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compare the reduced network and the discovered network visually as well as with the

graph isomorphism checker, imm.

     These programs were all written in C.  The primary authors of these programs are:

correlation- Jason Baron

fixed- Jason Baron

imm- Paul Seymour

matroid- Paul Seymour

network simulator- Jason Baron, Mark Garrett, Alex Poylisher

reduce- Jason Baron

topomap- Bruce Siegell

     The algorithm timings referred to in the remainder of this paper were all performed on

a Sun Ultra 5 running the SunOS 5.7 operating system with 64MB of RAM.
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Chapter 3

Non-Overlapping Congestion

     In this chapter, we consider the first network model.  In section 3.1, we explain the

assumptions and features of the network model.  Section 3.2 introduces the idea of

applying a threshold to the paths’ end-to-end delay time series to produce a binary

function. We find this to be a powerful technique and make use of it in solving this and

subsequent network models.  Section 3.3 presents two correlation algorithms—a simple

algorithm that does not take some of the aspects of this network model into account and a

more sophisticated algorithm that attempts to deal with these aspects.  The results of

testing the second algorithm are presented in section 3.4.  Finally, we provide results and

discussion in section 3.5.

3.1 Network Model

      The network model consists of FIFO output queuing, no input queuing, and no

processing delay at nodes.  Therefore, there is a one-to-one correspondence between

output queues and links. All links have identical bandwidth—1.55 Mbps.

      The congestion aspects form the core of the model.  Queues are congested by having

packets of size 1250 bytes independently injected into them at a rate that is chosen from a

heavy-tailed distribution*.  After the injected packets have made their way to the front of

the queue, they are simply discarded.  The time for which a queue is injected with packets

is fixed and this parameter is the congestion_length, which can be varied between

simulation runs.

                                                          
* We sample packet arrival rates from the VBR video trace used in [8].  This empirical data has a heavy-
tailed distribution.
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     The key feature of this network model is that only one queue is being injected with

packets at any given time.  Queues are chosen to have packets injected into them at

random.  More precisely, if there are k queues and one queue has finished being injected

with packets, then the probability that any one of the queues is chosen next for injection

with packets is k1 .  The time between the end of one queue being injected with packets

and the start of a subsequent queue being injected with packets is the controlled by the

inter_congestion_length parameter, which can be varied between simulation runs.

     Monitors send time-stamped packets or probes of size 576 bytes to other monitors in a

round-robin fashion. The frequency at which these packets are sent is inversely

proportional to the number of monitors. Specifically, if monitor M1 sends a probe packet

to monitor M2 at time t, then monitor M1 will send its next probe packet to monitor M3 at

a time that is uniformly chosen between t  and )2( monitorsofnumbert + .  Packets are

not sent at fixed intervals because we would like to detect events that may be happening

periodically.  As the size of the network grows, we increase the frequency that monitor

packets are sent in order to maintain the rate at which probes measure network

conditions.  The consequence of generating probe packets in this manner is that if there

are m monitors, then traffic may grow in some regions of the network by m3.

     Monitors that receive probes from other monitors calculate the end-to-end delay for a

particular path by subtracting the time-stamp on the packet from the time that the packet

was received. The receiving monitor then records the duple data: <time-stamp on

received packet, end-to-end delay time>.  Lost packets are ignored.

      Two aspects of the model make finding the path-link matrix from the collected data

difficult.  If one could measure the underlying congestion aspects perfectly, then a

congestion event or an increase in a path’s end-to-end delay time would begin and end at

almost the same time on those paths that contain the congested queue.  However, since

we are probing at somewhat random intervals, increases and decreases in end-to-end

delay measurements do not line up between paths perfectly in time.  We consider this to

be an inherent measurement difficulty.  A second difficulty arises if the

inter_congestion_time is small.  Since queues are being injected with packets according
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to a heavy-tailed distribution, end-to-end delay times on paths that do not share any

common queues may show correlation, despite the fact that only one queue is injected

with packets at any given time.

     Let us ignore the second difficulty for a moment.  There is still a question of when to

conclude that two paths share a common congestion event because of measurement

uncertainty.  We deal with this difficulty by applying a threshold to the end-to-end delay

time series.

3.2  Applying a Threshold to the Delay Time Series

      In order to decide if two paths share a common congestion event, we first apply a

threshold to the end-to-end delay time series of each path.  The result is a binary function

that is 0 when the delay time series is below the threshold and 1 when the delay time

series is above the threshold.  To illustrate, the end-to-end delay time series for paths p

and q are shown in Figure 3-1.

Figure 3-1:  Applying a threshold.  The end-to-end delay time series for paths p and q are shown with
a threshold drawn on top.  Note that this time series is only illustrative and is not meant to represent
a recorded time series.  In practice, the time series tends to be more punctuated and not as smooth as

what is illustrated.
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After applying a threshold, the binary functions that result are in Figure 3-2.

Figure 3-2:  Binary functions.  The binary functions that result from applying a threshold to the end-
to-end delay time series of paths p and q.

     In practice, we set the threshold at a level such that if no queues are congested on a

path then the end-to-end delay time for that path should be below the threshold value.

However, if at least one link congests on a path then the paths’ end-to-end delay time

should exceed the threshold value.  We have set the threshold value to satisfy these

properties by looking at the end-to-end delay time series.  Setting the threshold in this

manner certainly does not guarantee that the threshold will have its desired properties.

     Based upon the binary functions, we can easily specify rules as to when a common

congestion event is shared between paths.  A rule might be: if the starting and ending

times when two binary functions take on the value of 1 are similar, then this is a shared

congestion event.  Therefore, paths p and q share three congestion events.  They might

share a fourth event.  However, the starting and ending times when the two binary

functions are 1 are disparate due to measurement uncertainty.

     There are certainly other techniques for identifying common congestion events on two

paths.  For example, one might consider using a continuous correlation function.  We

time

path q

de
la

y 
ti

m
e

time

path p

de
la

y 
ti

m
e



31

have not explored the use of such techniques completely, but we show that applying a

threshold to a delay time series is a powerful technique.

3.3  Algorithm

3.3.1  First Correlation Algorithm

     Given the technique of applying a threshold to a path delay time series, a simple

algorithm for determining the path-link matrix presents itself.  Scan all paths over time

and identify or circle the times when combinations of paths simultaneously take on the

value 1.  For example, a sample of the time series for the four paths p, q, r, and s is shown

in Figure 3-3.

Figure 3-3:  Circling algorithm.  Times when only path p and path r share a congestion event are
circled.  If we continue circling all the unique sets of congestion events in this manner, we can

construct the path-link matrix in a straightforward manner.

Here, we have circled the three instances when only paths p and r share a congestion

event.  If we continue to circle congestion events in this manner, then we can easily

construct the path-link matrix.  The columns in the path-link matrix correspond to the

columns that we have circled.  Paths in a circle that have a value of 1 are 1 in the

corresponding position in the path-link matrix and 0 otherwise.  The key assumption is

that each link in the network is traversed by a unique set of paths and therefore any two

circled sets of congestion events that have the same set of congested paths must have

been caused by the same link in the network.  It also follows that any two circles of

   path p:
   path q:
   path r:
   path s:

time
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congestion events that have a different set of congested paths must have been caused by a

different link in the network.

     This algorithm, which we refer to as the circling algorithm, solves this congestion

model to an extent.  However, it does not address the two difficulties of the network

model.  First, if the inter_congestion_length approaches 0, it would start to become

unclear as to what should be circled.  Second, measurement uncertainty causes

congestion events to not line up perfectly in time and thus circling becomes more

difficult.

3.3.2  Second Correlation Algorithm

     We now propose an algorithm that addresses the two difficulties of this model.  The

basic idea of the algorithm is to use pair-wise comparisons between paths that indicate

whether or not two paths share a common cause of congestion.  This pair-wise

comparison takes many events into consideration, instead of just a single event as in the

circling algorithm.  The algorithm forms groups of paths that have at least one common

link by adding one path at a time to a group through pair-wise comparisons.  When the

algorithm terminates, the groups correspond to columns in the path-link matrix. We must

be careful in constructing these groups, since if there are n paths, then there are 2n

possible groups.

   In deriving a pair-wise comparison test, we start with a model that contains two paths.

Paths p and q are shown in Figure 3-4.  We classify the links on these two paths as

belonging to one of three categories: links on path p and not on path q, links on path q

and not on path p, and finally links on both paths p and q.  These three categories of links

can be thought of as three causes of the congestion events that are observed on paths p

and q.  We represent the probability that at least one link congests in each of these three

categories as: t
qpP , t

qpP , and t
pqP .  We refer to these three probabilities as trigger

probabilities, since they can be thought of as triggering congestion events.   
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Figure 3-4:  2-path trigger probabilities.  Links that are dashed are meant to represent zero or more
links.  t

qpP is the probability that at least one of the links that is on path p and not on path q congests.

t
qpP is the probability that at least one of the links that is on path q and not on path p congests.

Finally, t
pqP  is the probability that at least one link of the links common to both paths p and q

congests.

     There are four possible outcomes that we can observe, looking at the binary functions

of both paths p and q at any instant in time.  Path p might be 1 or 0 and path q might be 1

or 0.  To calculate an estimate of the probability of any one of these four outcomes, one

can divide the total time that each one of these four outcomes occur by the total

observation time. We refer to the probability of each outcome as an observation

probability.  The notation that we use to designate the probability of each one of these

four outcomes is: o
pqP , if both paths’ binary functions are 1, o

qpP , if path p’s binary

function is 1 and path q’s binary function is 0, o
qpP , if path p’s binary function is 0 and

path q’s binary function is 1, and o
qpP , if both paths’ binary functions are 0.

     Assuming that the trigger probabilities are independent, the relationship between the

observation probabilities and the trigger probabilities is the same here as in Ratnasamy et

al. [17].  However, the underlying model that Ratnasamy uses is different from the model

here.  The Ratnasamy equations are:

t
qpP

t
qpP

t
pqP

path p

path q
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The solution of t
pqP  from Ratnasamy is:
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If the value of t
pqP  is significant, we conclude that two paths share a common congestion

cause.  We refer to testing two paths for a common cause as the t
pqP  test.

      This pair-wise test addresses the two difficulties of the model as follows.  First, it

addresses the issue of queues being simultaneously congested because the model assumes

that triggering events can happen simultaneously.  Second, we assume that the

measurement uncertainty is short relative to the duration of the congestion_length and

thus the trigger probability estimates are not significantly affected.  We have been a bit

brief about this model because we will return to it in greater detail in chapter 4.

     Assume that for two paths, a and b, the value of the t
pqP  test is significant and

therefore we conclude that paths a and b share a common congestion cause.  We form the

group(a,b) and associate the intersection of path a’s binary function and path b’s binary

function with this group.  The intersection of two binary functions is 1 when both binary

functions are 1 and 0 otherwise.  The result of the intersection operation is a binary

function that provides some information as to what congestion events the two paths have

in common.

     Now, we could test whether path c shares a common congestion cause with group(a,b)

by applying the t
pqP  test again, treating the intersected binary function formed from paths

a and b as one binary function and path c’s binary function as the other binary function.
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If the t
pqP  test is not significant, then we continue to grow the group(a,b) by trying the t

pqP

test with additional paths. However, if the t
pqP  test is significant then we form the

group(a,b,c) and associate the intersection of the binary functions of path a, b, and c with

this group.

     In deciding whether or not to keep the group(a,b), we subtract the binary function

associated with group(a,b,c) from the binary function associated with the group(a,b).

The subtraction operation is 1 when the minuend is 1 and the subtrahend is 0 and 0

otherwise.  If we determine that there is a significant binary function left, meaning that

there are a number of congestion events yet to be explained, then group(a,b) is kept.

Otherwise, if this binary function is not significant, we delete the group(a,b).  We also

define a unite operation on two binary functions that is 1 when at least one binary

function is 1 and 0 otherwise. Based upon the intersection, subtraction, and unite

operation, and the two significance tests (the t
pqP  test and the test for detecting if

significant congestion events remain), we construct the algorithm in

Figure 3-5.
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Figure 3-5:  Pseudocode of the correlation algorithm.

Input:

    NUMBER_OF_PATHS; the number of paths
    PATH_BINARY_FUNCTIONS : Array (Binary Function); PATH_BINARY_FUNCTION[i] is
                                                    the binary function of path i

Output:

    PATH_LINK_MATRIX: 2D Array; x ji , =

CORRELATE () {

    processed_events : Binary Function; initially contains no Events
    unexplained_events : Binary Function

    for path = 1 to NUMBER_OF_PATHS
        unexplained_events = PATH_BINARY_FUNCTIONS[path] subtract processed_events
        if unexplained_events is significant
            BREAK-UP(unexplained_events, path, (path+1))
        processed_events = processed_events unite PATH_BINARY_FUNCTIONS[path]

}

BREAK-UP(matching_events: Binary Function, group_paths : set of paths in this group,
lowest_candidate_path : minimum path that we try to add to this group) {

    intersect : Binary Function

    for path = lowest_candidate_path to NUMBER_OF_PATHS

        if t
pqP test between matching_events and PATH_BINARY_FUNCTIONS[path] is significant

            intersect = matching_events intersect PATH_BINARY_FUNCTIONS[path]
            matching_events = matching_events subtract intersect
            BREAK-UP(intersect, group_paths ∪  path, (path+1))
            if matching_events is not significant
                return

    append 1 column to PATH_LINK_MATRIX
    for all i ∈  group_paths
        PATH_LINK_MATRIX[ i, numOfColumns(PATH_LINK_MATRIX)] = 1

}

1  if path i contains link j
0  otherwise
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     The input to the algorithm is the NUMBER_OF_PATHS, and the

PATH_BINARY_FUNCTIONS. For convenience, we assume that the paths are

numbered 1 through the NUMBER_OF_PATHS.  Therefore, we index into the

PATH_BINARY_FUNCTIONS array with a number between 1 and

NUMBER_OF_PATHS.

     The algorithm recursively forms a tree in a depth first manner. A group is associated

with each node in the tree.  Associated with a group are a set of paths, group_paths, a

binary function, matching_events, and the lowest_candidate_path.  We attempt to add all

paths with a number greater than or equal to the lowest_candidate_path number to the

group.

     The procedure BREAK-UP is called on the node in the tree where we are progressing.

The group associated with this node is the current group. The BREAK-UP procedure

successively tries the t
pqP  test between the binary function associated with the current

group, matching_events, and the binary function for all paths with a path number greater

than the lowest_candidate_path.  If this test is significant at any point, we form a new

group.

     The paths associated with the new group include all the paths in the current group and

the path that was being tried when the t
pqP  test returned a significant result.  Let us

assume that we were trying to add path i, when the t
pqP  test returned a significant result.

The binary function associated with the new group is formed via the intersection of the

binary function that is associated with the current group and the binary function of path i.

We also subtract the binary function that we have just associated with the new group

from the current group’s binary function. We call BREAK-UP next on this new group

where we have set the new group’s lowest_candidate_path to (i + 1).

     Control is returned from the BREAK-UP procedure to the parent node in the tree in

two cases.  First, if the binary function associated with the current group is no longer

significant.  Second, when we have finished trying to add all paths greater than or equal

to the lowest_candidate_path number to the current group and the congestion events
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associated with the current group are significant.  In this second case, we have identified

a link and therefore we add a column to the path-link matrix.

     The algorithm is initialized in the procedure CORRELATE by calling BREAK-UP on

initial groups.  We form one initial group for each path, initializing the set of paths that

we associate with each initial group to contain that single path.  The

lowest_candidate_path is set to one more than the path number that is associated with

each initial group.  We initialize the binary function for the initial group that contains

only the path i by subtracting all of the binary functions that have a path number that is

less than i from path i’s binary function.  This is analogous to subtracting the new group’s

binary function from the current group’s binary function during a call to BREAK-UP.

The root node of the tree can be thought of as containing all of the congestion events on

all of the paths.  By subtracting the binary functions of all paths that are numbered less

than i from the binary function of path i, we are subtracting all congestion events that we

have already explained.

3.3.3  Time and Space Complexity

     We analyze the running time of the second correlation algorithm, assuming that the

significant tests are always correct. Let:

M ≡  number of monitors

P ≡  number of paths = M ×(M – 1)

L ≡  number of links

N ≡  simulation length

The number of leaves in the tree that is formed is L and the number of nodes between the

root and a leaf is at most P.  Therefore, there are O(PL) nodes in the tree.  We can also

associate at most a single intersection and subtraction operation with each node in the
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tree. The t
pqP  test takes time proportional to N. At each node in the tree we perform the

t
pqP  test at most O(P) times. Therefore, we bound the running time of this algorithm as

O(P2LN).

3.3 Results and Discussion

     The algorithm performed well when the inter_congestion_length was large.  However,

as the inter_congestion_length was decreased towards zero, the algorithm did not

necessarily find the correct path-link matrix.  Here, we only present the largest network

that was solved with the algorithm.

     The reduced network has 30 monitors, 36 internal nodes, and 160 links.  The

correlation algorithm solved for the correct path-link matrix in 20 seconds using 80

minutes of simulated traffic.  The congestion_length was 10 seconds and the

inter_congestion_length was 5 seconds.  The reduced network is shown in Figure 3-6 and

the discovered network in Figure 3-7.  The two networks are identical except for 8 split

nodes that are mostly in the interior of Figure 3-7.  When we show an example or data

about the topology discovering algorithms, the correlation algorithm always finds the

correct path-link matrix, unless otherwise noted.  The split nodes are the result of the

matroid algorithm.
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Figure 3-6: Reduced network.  30 monitors, 36 interior nodes, and 160 links.

Figure 3-7:  Discovered network.  Network discovered by the matroid and correlation algorithms.
This network is identical to the reduced network except for 8 split nodes.  These split nodes appear as

two nodes that are slightly offset.  By comparing Figure 3-7 with Figure 3-6 the split nodes can be
identified.
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     We have developed an algorithm that attempts to account for the difficulties of the

non-overlapping congestion model.  The algorithm performed well when the

inter_congestion_time was large.  However, as the inter_congestion_time approached 0

the correct path-link matrix was elusive.  Despite the algorithm’s shortcomings, the

algorithm begins to capture ideas of how to deal with overlapping congestion events that

are due to different queues and measurement uncertainty.

     One problem with the algorithm is that the meaning of the t
pqP  test is unclear, when

one of the binary functions is the result of intersected and subtracted binary functions.

Another problem is deciding when the t
pqP  test is significant and when a significant

number of congestion events remain in a binary function.

    The subsequent network model has no measurement uncertainty.  Instead, we focus on

the difficulty that is caused when queues simultaneously congest.  Thus, we isolate one of

the difficulties of this network model.



42

Chapter 4

Overlapping Congestion in Discrete Time

     The overlapping congestion in discrete time network model both simplifies and

complicates aspects of the non-overlapping congestion network model.  We introduce the

overlapping congestion in discrete time network model in section 4.1.  Section 4.2

presents a probability framework that forms the basis for the algorithm that is presented

in section 4.3.  Finally, in section 4.4, we provide results and discussion.

4.1  Network Model

     In this network model, time is divided into discrete intervals.  There is no input

queuing at nodes, only output queuing.  Therefore, there is a one-for-one correspondence

between queues and links.

     In each interval, each queue either does or does not congest.  The probability that a

queue congests in an interval is fixed at the same value for all intervals and is

independent of all other queue congestion.  Different queues may have different

probabilities of congestion or congestion rates.  We assume that the congestion rate on

each link is greater than zero and that the congestion rate on the least congested link in

the network is known.  When a queue congests during a time interval n, all paths that

traverse this queue are congested or high during time interval n.  Therefore, a path p is

congested during the time interval n if and only if at least one queue on path p congests

during time interval n.

     We can use a binary function to represent the congestion that occurs on a path over

time.  This binary function is 1 in time interval n if the path is congested and 0 otherwise.

We refer to this binary function as a path’s end-to-end delay time series.
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     This congestion model abstracts away some difficulties that we encountered in solving

the non-overlapping model.  Most importantly, all paths that contain a congested queue

are all high simultaneously.  There are no longer questions about whether or not

congestion is temporally related.  Thus, the measurement uncertainty of the non-

overlapping model is no longer troublesome.

     However, simultaneously congesting queues introduces new difficulties in

determining the paths that traverse each link in a network.  For instance, the sets of links

on two separate paths in a network may be disjoint.  However, queues on both of these

paths might congest simultaneously.  Consequently, there would appear to be a link in the

network traversed by both paths.  In order to begin to reason about this model, we

introduce a probability framework in the next section.

4.2  Probability Analysis

4.2.1  Observation Probability

     An observation probability is defined as the probability that specific paths are or are

not congested.  In order to formalize this notion, we introduce some random variables:



 λ

=λ otherwise0

ntimeatcongestedislinkif1
]n[x                                    (4.1)

Next, we define a random variable that is 1 if at least one link on path p is congested

during interval n and 0 otherwise.



 =∈λ∃

= λ
otherwise0

1]n[xthatsuchpif1
]n[y p                                   (4.2)
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Now, we define a random variable that takes on the value 1 if from among a certain set of

paths, some of these paths are congested, while the remaining paths in the set are not

congested:



 ====

=
otherwise0

0]n[y,1]n[y,0]n[y,1]n[y1
]n[z

srqp
s,r,q,p                  (4.3)

Note that a path without a bar above it refers to a path that is congested while a path with

a bar above it refers to path that is not congested.  We introduce the observation

probability as:

]1]n[zPr[P s,r,q,p
o

s,r,q,p ==                                                   (4.4)

We let o
ieP  represent a general observation probability, where e is the set of excluded

paths and i is the set of included paths.  A path that is excluded from the observation

probability is not congested and thus has a bar above it.  A path that is included in the

observation probability refers to a path that is congested and does not have a bar above it.

A path that does not appear in the subscript of an observation probability is ignored.

     In order to be clear about the meaning of an observation probability, we imagine that

the end-to-end delay time series for paths p, q, r, and s are as shown in Figure 4-1.

Figure 4-1:  Calculating an observation probability.  The binary functions of paths p, q, r, and s are
shown.  We have circled the times when paths p and r are congested and paths q and s are not

congested.  By dividing the number of times we have circled this event, 3, by the simulation length,

25, we estimate o
s,r,q,pP .

   path p:
   path q:
   path r:
   path s:

     1                     5                           10                        15                         20                         25
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An estimator of o
s,r,q,pP is:

N

z
P̂

N
1 s,r,q,po

s,r,q,p
∑=                                                    (4.5)

Therefore, in the example of Figure 4-1, an estimate of o
s,r,q,pP  is 253  or 0.12.

4.2.2  Trigger Probability

     Estimates of the observation probabilities are calculated from the time series.

However, these estimates are not informative as to individual link congestion rates.  In

order to estimate individual link congestion rates, we introduce the trigger probability.

     A path p consists of a set of links. If all of the links in a given network are contained

in the set U, then the complement of the set of links that constitute path p is defined as all

of those links contained in the set U and not in the set p.  We refer to this set of links,

denoted p , as path p’s complementary links.  The intersection of path p’s links and path

q’s complementary links is also a set of links.  Therefore, thinking of a path as a set of

links, we adopt the following notation:

srqpsrqp ∩∩∩=                                                        (4.6)

We define a random variable that is 1, if there is congestion on at least one link in the set

that is defined by the intersection of certain paths’ links and certain paths’

complementary links.





=′
otherwise0

ntimeatcongestedissrqpsettheinlinkoneleastatif1
]n[z srqp        (4.7)
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The trigger probability is defined as:

]]1]]n[zPr[P srqp
t

srqp =′=                                                   (4.8)

We let t
ieP  denote a general trigger probability.  A path that is included in the trigger

probability does not have a bar above it and refers to the set of links on that path.  A path

that is excluded from the trigger probability has a bar above it and refers to that path’s

complementary links.  A path that does not appear in a trigger probability subscript is

ignored.

     We assume that each link in the network is traversed by a unique set of paths.

Therefore, we characterize a link by specifying whether or not each path traverses that

link.  Therefore, if there are n paths, then there are (2n-1)* possible links.  Some of the

possible links are in the network and are true links, while some of the possible links are

not in the network and are false links.

     Through the intersection of the sets of links referred to by included and excluded

paths, a trigger probability specifies a set of links that are truly in the network or the

empty set.  Assuming that we have n paths and we include or exclude each path in a

trigger probability (we do not ignore any paths), then the trigger probability is fully

specified and must refer to an individual link.  This individual link could either be a true

link or a false link.  If it is a false link then the intersection of the sets of links referred to

by the included and excluded paths is the empty set.  There are (2n – 1)** fully specified

trigger probabilities that correspond to each of the possible links.

     Assume that each link in the network congests with a probability greater than zero and

that we observe the network for an infinite amount of time.  Also, assume that we can

calculate the value of all fully specified trigger probabilities.  The trigger probabilities

that refer to true links would have a value greater than zero, while the trigger probabilities

that refer to false links would have a value of zero.  The fully specified trigger

                                                          
* We do not consider the link that is not traversed by any path.
** We do not consider the fully specified trigger probability that excludes all paths.
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probabilities that refer to false links specify an empty set of links and therefore the

probability of congestion is zero.  In practice, trigger probabilities are not necessarily

equal to their limiting value because of finite sample sizes.  Although we do not observe

the trigger probabilities directly, we can relate the trigger probabilities to the observation

probabilities.

 4.2.3  Relating Trigger Probabilities to Observation Probabilities

     The sample network shown in Figure 4-2 has 5 monitors, 20 paths and 24 links.  Let

us relate the trigger probabilities to the observation probabilities for paths p and q, as

shown.

Figure 4-2:  Relating trigger probabilities to observation probabilites for paths p and q.

     path  p

path  q

L2

L3

L4

L5

L7

L8
M1

M5

M2

M3

M4

L1

L6
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     Using the random variables that we have defined:

]1]n[zPr[P q,p
o

q,p ==

]0]n[y,0]n[yPr[ qp ===

The probability that there is no congestion on either path p or path q is:

]0]n[x],n[x,0]n[x,0]n[x,0]n[x,0]n[x,0]n[x,0]n[xPr[
87654321

======== λλλλλλλλ

Making use of the fact that links congest independently:

]0x,0x,0xPr[]0x,0x,0x,0xPr[]0xPr[
87654312

===⋅====⋅== λλλλλλλλ

Finally, realizing that these three sets of links can be written as the following path

intersections, we have:

)P1)(P1)(P1( t
qp

t
qp

t
pq −−−=

     This equation relates an observation probability to three trigger probabilities.  For two

paths, there are three trigger probabilities of interest: t
pqP , t

qpP , and t
qpP .  We are only

interested in links that are on either path p or path q and therefore do not consider the

trigger probability, t
qpP .  Expressing the observation probabilities o

pP  and o
qP  in terms of

the three trigger probabilities of interest yields two more equations, giving us a total of

three equations in three unknowns:
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)P1)(P1)(P1(P t
qp

t
qp

t
pq

o
qp −−−=          (4.9)

)P1)(P1(P t
qp

t
pq

o
p −−=                                                      (4.10)

                                         
)P1)(P1(P t

qp
t
pq

o
q −−=

                                                     (4.11)

     We refer to equations (4.9), (4.10), and (4.11) as the 2-path equations.  The form of

the 2-path equations is similar to equations derived by Ratnasamy and McCanne [17].

Using the notation introduced here, the Ratnasamy equations can be written as:

t
qp

t
qp

t
pq

t
pq

o
pq PP)P1(PP −+=                                              (4.12)

)P1(P)P1(P t
qp

t
qp

t
pq

o
qp −−=                                             (4.13)

t
qpqp

t
pq

o
qp P)P1)(P1(P −−=                                             (4.14)

     The 2-path equations differ from the Ratnasamy equations in an important respect.

Although, observation probabilities are only on the left-hand sides and trigger

probabilities only on the right-hand sides of both sets of equations, the 2-path equations

only involve observation probabilities that are the result of an absence of triggering

events.  In the Ratnasamy equations, observation probabilities reflect both the absence as

well as a presence of triggering events.  The right-hand sides of equations (4.9), (4.10),

and (4.11) only multiply together inverse trigger probability terms that are of the form:

(1 - t
ieP ).  On the other hand, the Ratnasamy equations contain terms of the form (1 - t

ieP )

and ( t
ieP ) combined in a more complex manner.  Although the model used in deriving the

2-path equations differs from the model used by Ratnasamy, the trigger probabilities are

equivalent*.

     The 2-path equations are solved for the trigger probabilities as follows.  The terms

t
qpP  and t

qpP  are solved for by dividing equation (4.9) by equations (4.11) and (4.10),

                                                          
* A proof of the equivalence of the trigger probabilities is found in the Appendix.
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respectively.  The term t
pqP  is obtained by substituting the values of t

qpP  and t
qpP  into

equation (4.9).  The solved trigger probabilities are:

o
q

o
qpt

qp P

P
1P −=                                                             (4.15)

              
o
p

o
qpt

qp P

P
1P −=                                                            (4.16)

o
qp

o
q

o
pt

pq P

PP
1P −=                                                         (4.17)

     Assume that all of the links in Figure 4-2 congest at a rate greater than zero and the

network is observed for an infinite amount of time.  If any of the three trigger

probabilities defined by equations (4.15), (4.16), and (4.17) are greater than zero, then we

have not necessarily discovered an individual true link.  Instead, some of these trigger

probabilities might refer to a set of consecutive links.  For instance, t
qpP  refers to the

probability of congestion on at least one link of links L1, L3, L4, and L5, while t
qpP  refers

to the probability of congestion occurring on at least one link of links L6, L7, and L8.  The

term t
pqP , however, corresponds to just one link, L2.  Therefore we could make the

following statement:

 ]1xPr[P
2

t
pq == λ                                                        (4.18)

Thus, we have related a trigger probability to an individual link congestion rate.

     Since we do not know the network topology a priori, we can not necessarily equate a

trigger probability that is not fully specified with the congestion rate on an individual

link.  We must either include or exclude every path in a trigger probability in order to

specify an individual link.  However, a non-zero trigger probability that is not fully
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specified must refer to at least one true link.  A trigger probability that has a non-zero

value and ignores some paths is a true lead, while a trigger probability that has a value of

zero and ignores some paths is a false lead.

4.2.3.1  3-Path equations

     We now extend the 2-path equations to three paths. Writing the equations in 3 sets

according to the number of paths excluded by the observation probability on the left-hand

side of the equation yields:

)P1)(P1)(P1)(P1)(P1)(P1)(P1(P t
rqp

t
rqp

t
rqp

t
qrp

t
rqp

t
rpq

t
pqr

o
rqp −−−−−−−=          (4.19)

)P1)(P1)(P1)(P1)(P1)(P1(P t
rqp

t
rqp

t
qrp

t
rqp

t
rpq

t
pqr

o
qp −−−−−−=                            (4.20)

)P1)(P1)(P1)(P1)(P1)(P1(P t
rqp

t
rqp

t
qrp

t
rqp

t
rpq

t
pqr

o
rp −−−−−−=                (4.21)

)P1)(P1)(P1)(P1)(P1)(P1(P t
rqp

t
rqp

t
qrp

t
rqp

t
rpq

t
pqr

o
rq −−−−−−=                (4.22)

)P1)(P1)(P1)(P1(P t
rqp

t
rqp

t
rpq

t
pqr

o
p −−−−=                                (4.23)

)P1)(P1)(P1)(P1(P t
rqp

t
qrp

t
rpq

t
pqr

o
q −−−−=                                             (4.24)

)P1)(P1)(P1)(P1(P t
rqp

t
qrp

t
rqp

t
pqr

o
r −−−−=                                             (4.25)

We have written seven independent equations in the seven unknown trigger probabilities

of interest.  The left-hand side of each equation contains an observation probability that

only excludes paths.  The right-hand side of each equation contains only fully specified

inverse trigger probabilities that contradict the observation probability that is on the left-

hand side.  A trigger probability contradicts an observation probability if the trigger

probability includes a path that is excluded by an observation probability.
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     We solve for the 7 trigger probabilities in order from the greatest number of excluded

paths to the least number of excluded paths.  A possible solution order for the trigger

probabilities is thus t
rqpP  followed by t

rqpP , t
rqpP , t

qrpP , t
rqpP , t

rpqP , and finally t
pqrP .  We

refer to these trigger probabilities as trigger probabilities (1) through (7), respectively.

Solving for trigger probabilities (1), (2) and (3) involves dividing equation (4.19) by

equation (4.22), (4.21), and (4.20), respectively. For example, we solve for t
rqpP as:

o
qp

o
rqpt

rqp P

P
1P −=                                                        (4.26)

     Next, we solve for the three trigger probabilities that exclude one path and include two

paths.  The procedure is analogous for all three of these trigger probabilities, and

therefore we only solve for one of these trigger probabilities, t
qrpP .  Dividing equation

(4.19) by equation (4.23):

                   )P1)(P1)(P1)(P1)(P1)(P1)(P1(P t
rqp

t
rqp

t
rqp

t
qrp

t
rqp

t
rpq

t
pqr

o
rqp −−−−−−−

                                   =

                     )P1()P1)(P1)(P1(P t
rqp

t
rqp

t
rpq

t
pqr

o
p −−−−

Thus,

)P1)(P1)(P1(
P

P
t

rqp
t

rqp
t
qrpo

p

o
rqp −−−=

Solving for the trigger probability t
qrpP :

)
)P1)(P1(

1
)(

P

P
(1P

t
rqp

t
rqp

o
p

o
rqpt

qrp −−
−=                                 (4.27)
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     t
qrpP  is written as a function of observation probabilities and trigger probabilities that

have already been computed.  Finally, we solve for t
pqrP  by substituting all of the

previously solved trigger probabilities into equation (4.19).  Note that we could have

solved for trigger probabilities (1), (2), and (3) in any order, since each of these trigger

probabilities only depends upon observation probabilities.  We could also solve for

trigger probabilities (4), (5), and (6) in any order because these trigger probabilities only

depend on observation probabilities and the trigger probabilities (1), (2) and (3).

4.2.3.2  n-Path Equations

     We can generalize the path equations to the case of n paths.  We write (2n-1)

independent equations for the (2n-1) trigger probabilities of interest.  The left-hand side of

each equation contains one observation probability that only excludes paths.  Thus, the

(2n – 1) subsets of n excluded paths (we ignore the empty set), constitute the left-hand

sides of the equations.  The right-hand side of each equation multiplies together fully

specified inverse trigger probability terms that contradict the observation probability that

is on the left-hand side of the equation.

     We generalize the solution technique used to solve the 3-path equations to solve for an

arbitrary trigger probability, t
IE

P .  In the term t
IE

P , E is the set of excluded paths and I is

the set of included paths and nEI =+ .  We solve for the trigger probabilities in order

from those that have the greatest number of excluded paths to those that have the least

number of excluded paths.  Therefore, when solving for the trigger probability t
IE

P , we

assume that we already have the values for all of the trigger probabilities that exclude

more than E  paths.  In solving for t
IE

P , we consider two of the (2n-1) equations—the

master equation and the specific equation.
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     Let N be the set of all paths.  The master equation has o
N

P  on its left-hand side

(equation (4.19) is a master equation for n = 3).  The right-hand side of the master

equation multiplies together all of the fully specified inverse trigger probability terms

because all of the fully specified trigger probability terms contradict the observation

probability, o
N

P .  The specific equation, used in solving for t
IE

P , has the term o
E

P  on its

left-hand side.  The right-hand side of the specific equation only multiplies together fully

specified inverse trigger probability terms that contradict the observation probability, o
E

P .

We classify the fully specified inverse trigger probability terms in both the specific and

master equation into three classes.  Using t
ieP  as a general trigger probability, the three

classes of terms are: Ee < , or class 1, Ee = , or class 2, and Ee > , or class 3.

      In these terms, the master and specific equations have the following form:

Master equation:

Specific Equation:

All trigger probabilities in class 1 are included in the specific equation.  For all of the

trigger probabilities in class 1, no matter how the e  excluded paths are chosen there

must be at least one path in the set E that is not in the set e.  Therefore, there is at least

one path in the set E that is also in the set i. Thus, all terms in class 1 contradict t
E

P  and

≠∩>−=< EiandEe.t.sP)P1(except,Ee.t.sPEe.t.sP t
ie

t
IE

t
ie

t
ie

)...P1)(P1()...P1)(P1()...P1)(P1(P t
ie

t
ie

t
ie

t
ie

t
ie

t
ie

o
E

−−•−−•−−=

∅

Ee.t.sPEe.t.sPEe.t.sP t
ie

t
ie

t
ie >=<

)P1)...(P1()P1)...(P1)(P1()P1)...(P1(P t
ie

t
ie

t
IE

t
ie

t
ie

t
ie

t
ie

o
N

−−•−−−•−−=
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must be included in the specific equation.  All terms from class 2 are also included,

except for the term t
IE

P .  The term t
IE

P  does not contradict o
E

P .  However, all other terms

in class 2 contradict o
E

P  because there is no way of picking i without including at least

one path that is in E.  Finally, it is more difficult to generalize about the nature the terms

included from class 3.  However, we again include only those trigger probabilities from

class 3 that contradict the observation probability, o
E

P .

     Solving for t
IE

P  involves dividing the master equation by the specific equation,

yielding the quotient equation.

Quotient Equation:

     In both the master and specific equation, class 1 terms are identical and therefore there

are no terms from class 1 in the quotient equation.  The terms from class 2 are identical in

both the master and specific equations, except the term ( t
IE

P1− ), which is in the master

equation and not in the specific equation.  Therefore, the only term from class 2 in the

quotient equation is: ( t
IE

P1− ).  Finally, the master equation includes all of the trigger

probability terms from class 3, while the specific equation includes only those terms from

class 3 that contradict the observation probability, o
E

P .  Therefore, the quotient equation

contains only those trigger probabilities from class 3 that do not contradict the

observation probability, o
E

P .  However, we assume that we have already solved for all

trigger probabilities where Ee >  and thus we can solve for t
IE

P .

     We write the general form of a trigger probability as:

∅=∩> EiandEe.t.sPremainsPonlycanceltermsall t
ie

t
IE

)P1)...(P1()P1(
P

P
t
ie

t
ie

t
IEo

E

o
N −−•−•=
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     This general trigger probability formula applies to all of the trigger probabilities,

except for the trigger probability that does not exclude any paths.  We represent a general

trigger probability that does not exclude any paths as t
IP , where nI = .  The value of this

trigger probability is obtained directly from the master equation.  We substitute the values

for all of the trigger probabilities in the master equation and then solve the equation for

t
IP .  The general form of the trigger probability that does not exclude any paths is:

0ethatsuchPallcontainsS,

St
ieP

)P1(

P
1P t

iet
ie

o
Nt

I >


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
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


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





∈
−

−=
∏

                 (4.29)

We now turn to the algorithm that makes use of these trigger probabilities.

4.3  Algorithm

     It is not computationally feasible to compute all of the fully specified trigger

probabilities.  For example, in a network that has 10 monitors, there are 90 paths and thus

290 fully specified trigger probabilities.  The total number of trigger probabilities grows

exponentially in the number of paths.

     We significantly reduce the number of trigger probabilities that need to be calculated

by making use of true and false leads.  The idea is to start by calculating the two trigger

∅
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probabilities that ignore all paths except for one: t
aP and t

aP .  If either of these trigger

probabilities is non-zero, or a true lead, then we add path b as both included and excluded

to both of these trigger probabilities.  Assume that t
aP  and t

aP  are true leads.  Thus, we

calculate: t
abP , t

baP , t
baP , and t

baP .  Now, assume that t
baP , t

baP , and t
ba

P , are true leads,

but t
abP  is a false lead.  We calculate t

cbaP and t
cbaP  for t

baP , t
bcaP and t

cbaP  for t
baP , and

t
cba

P and t
cba

P for t
ba

P .  However, we do not add any paths as either included or excluded

to t
abP .

     In this manner, the algorithm forms a binary tree (see Figure 4-7), where we calculate

trigger probabilities that have excluded and included a total of d paths at depth d.  Each

horizontal level in the tree corresponds to solving the d-path equations.  If there are k true

leads at depth d, then we calculate (2k) trigger probabilities at depth (d + 1).  Thus, we

prune the complete binary tree by following true leads and ignoring false leads.

     By not calculating certain trigger probabilities, we no longer solve the full set of

d-path equations at depth d.  Trigger probabilities that are not calculated are

approximated as zero.  In the path equations, this corresponds to setting the inverse

trigger probability terms, (1 - t
ieP ), to 1.  Thus, we start with the full set of path equations

at each level, set some of the (1 - t
ieP ) terms to 1, and then solve what remains.

     Since the simulation is run for a finite length of time, the estimates of the observation

probabilities have not necessarily converged to their limiting value.  Therefore, setting

many of the trigger probabilities to zero is an approximation.  Thus, the calculated values

for the trigger probabilities are approximations as well.

     A trigger probability that has a value that is greater than zero is not necessarily a true

lead because trigger probabilities are only approximations of their limiting values.

Therefore, instead of using zero as a decision threshold, we choose another value, the

pruning_threshold.  We redefine a true lead as a trigger probability that ignores some

paths and refers to at least one true link and a false lead as a trigger probability that

ignores some paths and refers to the null set.
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     The pseudocode of the algorithm is divided into two procedures.  The procedure

CALCULATE-TRIGGER-PROBABILITY, in Figure 4-3, calculates the value of a trigger

probability according to equations (4.28) and (4.29).  Figure 4-4 contains the procedure,

CORRELATE, which captures the algorithm that was just described.

Figure 4-3: Pseudocode of the calculate-trigger-probability procedure.

Input:

   t
IE

P

    SIGINIFICANT_TRIGGER_PROBABILITIES

Output:

    value of t
IE

P

CALCULATE-TRIGGER-PROBABILITY () {

    trigger_value = 1

    if the set E is empty

        observation_value = o
I

P

    else

        observation_value 
o
E

o
IE

P

P
=

    for ∈t
ieP  PREVIOUS_TRIGGER_PROBABILITIES

        if =∩ Ei ∅
            trigger_value = trigger_value )P1( t

ie−×

    −= 1P t
EI 





value_trigger

value_nobservatio

}
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Figure 4-4:  Psuedocode of the correlation algorithm.

Input:

    NUMBER_OF_PATHS

Output:

    PATH_LINK_MATRIX

CORRELATE () {

     next_triggers = { }t
1

t
1

P,P

     for d = 1 to NUMBER_OF_PATHS

         triggers = next_triggers  
         set next_triggers empty
         set significant_triggers empty
        1dd +=′

         for ∈t
ieP triggers  (successive t

ieP ’s are selected from the triggers such that e
                                          monotonically decreases)

             CALCULATE-TRIGGER-PROBABILITY ( t
ieP , significant_triggers)

             if t
ieP  > prunning_threshold

                 significant_triggers = ∪t
ieP  significant_triggers

                 if d < number_of_paths

                     next_triggers = next_triggers  t
dieP ′∪ t

die
P ′∪

                 else
                     add a new column to the PATH_LINK_MATRIX

        set rows indexed by the paths in the set e to 0 in the new column
        set rows indexed by the paths in the set i to 1 in the new column

}
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Figure 4-5: Sample network topology for demonstrating the correlation algorithm.  The table in
Figure 4-5(b) identifies the path names.  For example, path M1-M3 is path q.

We examine the algorithm’s behavior on the network shown in Figure 4-5(a).  Figure 4-

5(b) indicates the names of the paths. For instance, path q is the path from monitor M1 to

M3.  The binary tree that might result from running the algorithm is shown in Figure 4-7.

     The light-colored lines in Figure 4-7 indicate areas where that algorithm no longer

needs to search. At each level, the trigger probabilities are solved in order from most

excluded paths to least excluded paths and not in the order that the trigger probabilities

appear.  The surviving leaves of the tree are the trigger probabilities that refer to true

links.  Here, we have successfully identified all 9 links and construct the path-link matrix

shown in Figure 4-6.

    L1     L2    L3    L4    L5     L6    L7    L8    L9

     P     1     1     x     X     x      x     X    X    X

     Q     x     X     1     1     x      x     X    X    X

     R     x     X     x     X      1      1     x    X    X
     S     x     X     1     X     x      x     1    X    X

     T     x     X     x     X      1      x     x     1    X

     U     1     X     x     X     x      x     x    X     1

Figure 4-6: Path-link matrix for the network shown in Figure 4-5.
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Figure 4-7:  Binary tree constructed by the correlation algorithm.  Light-colored lines are branches
of the binary tree that the algorithm does not search down.
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4.3.1  Pruning_threshold

     We now examine the pruning_threshold in more detail.  At any depth in the binary

tree, there are some true leads and some false leads.  We do not know which trigger

probabilities are true leads and which trigger probabilities are false leads.  The

distribution of true and false leads at an arbitrary depth in the tree might look like Figure

4-8(a) or Figure 4-8(b):

Figure 4-8:  Distribution of the true and false leads.  In 4-8(a) the true and false leads overlap, while
in 4-8(b) the true and false leads could be separated with a threshold.

The distributions in Figure 4-8(a), can not be separated with a threshold value.  However,

the distributions in Figure 4-8(b) can be separated with a threshold value.

     The pruning_threshold is based on the assumption that each link in the network

congests at a rate that is greater than zero.  If a link congested at a rate of zero, then we

would have no way of separating true leads from false leads.  Therefore, the model

assumes a minimum link congestion rate that is greater than zero.

     Additionally, we assume that the rate of congestion on the least congested link in the

network is known.  True leads have a value that is at least the estimated rate of

congestion on the least congested network link, since a true lead refers to at least one true

link.  As previously discussed, false leads are approximately zero.  Therefore, a logical

value of the pruning_threshold is somewhere between zero and the minimum link

congestion rate.

     A poorly set pruning_threhold causes several difficulties.  If the pruning_threshold is

set too low such that there are false leads to the left and right of the pruning_threshold,

          (a)           (b)

false leads                      true leads

0

false leads           true leads

0
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then false leads are included in the trigger probability calculations.  Including false leads

in the computation may improve the estimates of the trigger probabilities as we show in

chapter 5.  However, including false leads increases the running time of the algorithm and

we still have the problem of separating the true links from the false links at the last level.

Another problem arises if the pruning_threshold is set too high such that there are true

leads to the left and right of the pruning_threshold.  If this occurs, then at least one true

link will be absent from the path-link matrix.  We would like to detect if the

pruning_threshold is poorly set or if true and false leads overlap as in Figure 4-8(a).

     We start by treating values that are greater than the pruning_threshold as belonging to

one distribution and the values that are less than the pruning_threshold as belonging to

another distribution.  We refer to the values that are greater than the pruning_threshold as

distribution 1 values and the values that are less than the pruning_threshold as

distribution 2 values.  We define the mean and standard deviation of distribution 1 and

distribution 2 as 1µ  and 1σ , and 2µ  and 2σ , respectfully.  We define η  using the

following two equations:

11 ησ−µ=τ                                                              (4.30)

22 ησ+µ=τ                                                              (4.31)

A high value of η  suggests that the two distributions are well separated, while a low

value of η  might suggest that the pruning_threshold is poorly set or that the true and

false leads overlap as in Figure 4-8(a).  An assessment of η  as an indicator of well

separated distributions is found in section 4.4.1.

4.3.2  Time and Space Complexity

Let:

M ≡  number of monitors

P ≡  number of paths = M ×  (M – 1)
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L ≡  number of links

N ≡  simulation length

      Assuming that the algorithm always follows true leads and ignores false leads, the

analysis of the algorithm’s running time is straightforward.  The depth of the binary tree

that the algorithm explores is P.  At depth d in the tree, we add path d as both excluded

and included to all trigger probabilities that are above the pruning_threshold at depth (d –

1).  When the algorithm starts, d is set to 1.  The algorithm increases d by one in each

iteration until d = P.

     At any depth in the search tree, there is at most one true lead for each true link.  The

number of false leads at level d is at most the number of true leads at level (d - 1).

Therefore, the width of the tree is O(L), and the number of nodes in the tree is O(LP).

     At each node in the tree, we calculate a trigger probability as detailed in the

CALCULATE-TRIGGER-PROBABILITY procedure. Two observation probabilities are

required.  The time required to calculate an observation probability is O(N) (using the

memory model discussed below).  We also need to search through each link as specified

in the CALCULATE-TRIGGER-PROBABILITY procedure.  This requires O(L) time.  Thus,

the time required at each node is: O(N+L).  Therefore, the time complexity of the

algorithm is: O(LPN+L2P).

     We implemented several different memory models for this algorithm that trade off

memory and time.  A rather straightforward memory implementation produces the O(N)

bound for calculating each observation probability.  Notice that the algorithm only

requires observation probabilities that exclude all paths.  Therefore, to calculate an

arbitrary observation probability, o
eP , we start by inverting all of the binary functions of

the paths that are in the set e.  This involves a logical not, since the binary functions are

represented as a string of 0’s and 1’s.  Next, we intersect the inverses of all of the binary

functions using the logical binary operator, and.  The result of this operation is a single

binary function that is o
eP ’s signal.  Finally, we obtain the value of o

eP  by adding up the

number of 1’s in o
eP ’s signal and dividing by the simulation length, N.
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     We associate a signal with the current leaves in the binary tree.  Thus, it is easy to

compute the signal and the value of the observation probability for the children of these

leaves.  At depth d, we create a right-child by adding path d as excluded and a left-child

by adding path d as an included to the observation probability of a leaf node.  When we

add path d as excluded to the observation probability of a leaf node, we need only

intersect the inverse of path d’s binary function with the signal that is associated with the

leaf node.  This operation results in a new signal.  The value of the observation

probability for the right-child is calculated directly from the new signal.  Creating a left-

child involves copying the signal and value of the observation probability of the leaf node

directly to the child node.  Therefore, the time required to calculate an observation

probability at each node is O(N).

      Under this memory model, O(LN) space is required to store the signals and O(PN)

space for storing the original observations.  Therefore, we conclude that this memory

model requires O(N(P+L)) space.

4.4  Results and Discussion

     In section 4.4.1, we explain how the pruning_threshold was set and propose a method

for setting the pruning_threshold that does not assume knowledge of the congestion rate

on the least congested network link.  We also briefly examine the reliability of η .

Section 4.4.2 explores the running time of the algorithm.  Section 4.4.3 shows how the

algorithm performed when the link congestion rates were varied, and section 4.4.4

presents the largest networks that were solved. Finally, section 4.4.5 summarizes our

findings and points the way towards the subsequent network model.

4.4.1  Pruning_threshold and η

      If the observation probabilities converge to their limiting values, then false leads are

zero and true leads have a value that is at least the rate of congestion on the least
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congested link in the network.  We assume that the minimum congestion rate among all

of the links in the network is known and set the pruning_threshold at 40% of this

congestion rate.  We choose 40% because it is natural to set the pruning_threshold

approximately halfway between the minimum link congestion rate and zero, while

preferring to include false links rather than excluding true ones.  For example, if the rate

of congestion on the least congested network link is .1%, then the pruning_threshold is

set at .04%.

     In general, however, one does not know the minimum link congestion rate in a

network.  We propose the following modification to the algorithm that does not assume

knowledge of the minimum link congestion rate.  After we have calculated the trigger

probabilities at a certain depth, we sort the calculated trigger probability values.  Then,

we establish the false lead distribution with the first few of the lowest trigger probability

values and the true lead distribution with the first few of the highest trigger probability

values.  We then alternately pick the remaining highest and lowest trigger probability

values and assign them to the closer of the two distributions.  The number of standard

deviations away from the mean of each distribution could be used as a measure of

distance.  The value of η  might again be used to determine if we are in troubled case.

     We only tested the algorithm using a pruning_threshold that was set a priori.  Given

this method of setting the pruning_threshold, we briefly investigated η  as to its ability to

indicate when the pruning_threshold was poorly set and when the distributions of true

and false leads overlapped.  We do not have any conclusive data about the effectiveness

of η , but in varying many simulation parameters, we found that a value of η  that was

greater than 5.5 always yielded the correct path-link matrix.  As a sanity check, we also

verified that as the simulation was run for longer lengths of time the value of η

increased.
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4.4.2 Running Time

     In assessing the running time of the algorithm, we use η  as a proxy for the quality of

the result.  Since we are interested in the topology of the network, increasing the length of

the simulation increases the running time of algorithm while possibly leaving the answer

unchanged.  Therefore, we use η  to normalize the results.

     Previously, we formulated the running time of the algorithm as O(LPN+L2P).  Here,

we investigate how the simulation length, N, increases as a function of the size of the

network for constant η .  The most descriptive characteristics of the size of a network are

the number of links and the number of paths.

     In the log-linear plot shown in Figure 4-9, the simulation length, N, is roughly a

straight line with respect to the number of links. Thus, the length of the simulation time

required to solve for the path-link matrix is exponential in the size of the network.
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Figure 4-9:  Simulation length as a function of the number links.  The congestion rate on all links is
10%.
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A good fit for the simulation length as a function of the number of links and paths in the

network is:

PLeN +=                                                              (4.32)

The R2 value of the OLS fit of this function was .9937, suggesting that this functional

form explains almost all of variation in the simulation length [22].

      In Figure 4-10, we plot the running time of the correlation algorithm and the network

simulator as a function of the number of links in the network.  The time required for both

programs grows exponentially as we would expect.
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Figure 4-10:  Running time of the correlation algorithm and the network simulator as a function of
the number of links. Time is measured in seconds.  The congestion rate on all links is 10%.
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4.4.3 Varying the Link Congestion Rates

     In assessing the running time of the algorithm, all links were congested at the same

10% rate.  In this section, we explore the convergence time of the correlation algorithm

when the link congestion rates varied.  For all data points in Figure 4-11, we use the

network shown in Figure 4-12.

Congestion

rate

Simulation

length η
Simulation

time (sec.)

Correlation

time (sec.)

.20 15,360,000 3.9 1,096 10,294

.15 960,000 5.5 112 72

.10 64,000 5.1 4 8

.05 9,600 5.3 1 6

.01 3,200 4.7 1 5

.005 6,400 4.7 1 5

.002 19,200 5.4 2 6

.001 25,600 4.7 2 7

.0001 288,000 4.7 17 33

.00002 1,152,000 5.3 68 124

.01-.05 9,600 2.3 1 5

.01-.1 320,000 2.2 21 27

.01-.15 1,920,000 2.3 124 150

.0001-.001 320,000 2.0 20 34

.0001-.005 960,000 2.1 58 106

.0001-.01 3,200,000 1.7 197 1964

Figure 4-11:  Varying the link congestion rates.  Table showing the effects of varying the link
congestion rates on the correlation algorithm’s convergence time.  A single number for the link
congestion rate means that all links in the network congested at that rate.  A range for the link

congestion rate means that the links were congested a rate that was chosen uniformly from the range.
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Figure 4-12:  Reduced network used for varying the link congestion rates.  There are 10 monitors, 16
interior nodes, and 64 links.

     There are a few interesting trends to note in Figure 4-11.  First, when all links are

congested at the same rate, a 1% congestion rate produced the shortest convergence time.

The convergence time of the correlation algorithm increases exponentially as link

congestion rates are increased above 1% but increases linearly as link congestion rates

are decreased below 1%*.  As the congestion rate increases above 1%, the probability that

two or more links congest simultaneously increases relative the probability that only a

single link congests.  Therefore, a longer simulation length is required to sort out all of

the events.  Similarly, as the link congestion rate decreases below 1%, it becomes more

and more likely that no links in the network congest.  Thus, a longer simulation length is

required to observe congestion in the network.

     A range for the congestion rate means that each link in the network selects its own

congestion rate uniformly from this range.  Note that the typical value of η decreases.

This is due to the fact that the true link congestion rate distribution is spread out and

                                                          
* We demonstrated this relationship with a plot (not shown) similar to the one shown in Figure 4-9.
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therefore has a high standard deviation.  As the congestion rate range is increased, the

simulation length increases exponentially.

4.4.4  Largest Solved Networks

      The largest network we solved when all links congested at a 10% rate is shown in

Figure 4-13.  This reduced network has 20 monitors, 29 interior nodes, and 100 links.

The network discovered by the correlation and matroid algorithms is shown in Figure 4-

14.  The two networks are identical, except for three split nodes (from the matroid

algorithm) in the interior of the discovered network.

Figure 4-13:  Reduced network.  There are 20 monitors, 29 interior nodes, and 100 links.
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Figure 4-14:  Discovered network.  Network discovered by the matroid and correlation algorithms.
This network is identical to the reduced network except for 3 split nodes.  The simulation length, N,

was 6104.6 ×  and the correlation algorithm took approximately 10 hours.

     We present the largest reduced network we solved for in Figure 4-15, where all links

are congested at a 1% rate.  The reduced network consists of 50 monitors, 61 interior

nodes, and 219 links.  The network discovered by the correlation and matroid algorithms

is identical to the reduced network, except for five split nodes. The discovered network is

shown in Figure 4-16.
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Figure 4-15:  Reduced network.  There are 50 monitors, 61 interior nodes, and 219 links.

Figure 4-16:  Discovered network.  Network discovered by the correlation and matroid algorithms.
The network is identical to the reduced network except for 5 split nodes.  The simulation length, N,

was 5105 ×  and the correlation algorithm took approximately 22 hours.
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4.4.5  Summary

     The overlapping congestion in discrete time model isolates the issue of simultaneously

congesting queues.  We developed a probability framework to reason about the model

and developed techniques to solve for certain quantities in an efficient manner.  We

found that the algorithm always found the correct path-link matrix as long as the

simulation length was increased sufficiently.  In the next chapter, we return to a network

model that is similar to that of chapter 3.  Measurement uncertainty is added back to the

model, and we allow queues to congest simultaneously.
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Chapter 5

Overlapping Congestion

     In this chapter, we consider the third and final network model, overlapping

congestion.  This network model combines aspects of the first two network models and is

the most complex.  In section 5.1, we present the details of this network model.  Next, we

present the correlation algorithm that we use to solve the model in section 5.2.  We

provide results and discussion in section 5.3.

5.1 Network Model

     The network model is based upon the non-overlapping model.  However, in chapter 3,

only one queue receives packets at any time.  Here, we allow any number of queues to be

simultaneously congested with packets as in chapter 4.  Specifically, each queue

alternates periods of activity, when it receives packets, with periods of idleness, when it is

not receiving packets.  The duration of an active period is uniformly distributed between

0 and the congestion_length, while the duration of an idle period is uniformly distributed

between 0 and the inter_congestion_length.  The duration of both the idle and active

periods are chosen independently.  As in the non-overlapping network model, the

congestion packets are removed from the network after they have been served.  The rate

that queues are injected with packets during an active period is again chosen from a

heavy-tailed distribution as in chapter 3.  All of the data collection and network aspects

are the same here as they were in the non-overlapping network model.

     As in chapter 3, a threshold is applied to the end-to-end delay time series to create a

continuous-time binary function for each path.  A sample of some binary functions is

shown in Figure 5-1.
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Figure 5-1: Sample of several paths’ binary functions.  In this simulation the congestion_length was
10 seconds and the inter_congestion_length was 100 seconds.

5.2  Algorithm

     We use the algorithm from the previous chapter with minor modifications to adapt it

to continuous time.  We also now set the pruning_threshold to a low value, instead of

between zero and the smallest link congestion rate as was done in chapter 4.  Setting the

pruning_threshold in this way leads to the inclusion of some false leads into the path

equations, which we find improves the estimates of the trigger probabilities.  Including

false leads in this manner means that we carry around all of the true leads and some of the

false leads.  Thus, we may be able to separate the true and false leads at some later point.

However, if we set the pruning_threshold too high, we might exclude some true leads

and there would be no obvious way of recovering.

     We are not completely sure why setting the pruning_threshold to a low value allows

the algorithm to succeed.  One reason is that if the pruning_threshold is too high, then we

might prune away true leads.  We also reason that in a finite run length, the observation

probabilities and the trigger probabilities are not equal to their limiting value.  Therefore,

although false leads are zero in the limit, in practice they may be better estimated as
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being non-zero.  Thus, setting false leads to zero may add random noise into the system.

By including some false leads in the path equations, the number of nodes in the binary

tree formed by the algorithm is no longer easily bounded.

     We include false leads in the calculations by setting the pruning_threshold just above

zero.  True links are separated from false links at the bottom level of the binary tree by

using a second threshold, the final_pruning_threshold.  In Figure 5-2(a), we show how

the pruning_threshold is set at an arbitrary level in the binary tree, and in Figure 5-2(b)

we show how the final_pruning_threshold is set on the bottom level of the binary tree.

Figure 5-2.  Setting of the pruning_threshold and the final_pruning_threshold.  In Figure 5-2(a) the
pruning_threshold is set just above zero.  In Figure5-2(b), the final_pruning_threshold is set between

zero and the minimum link congestion rate.

     In practice, we set the pruning_threshold arbitrarily to 0.001.  In these experiments,

the minimum link congestion rate was never set below 1%.  The final_pruning_threshold

is set in the same way that the pruning_threshold was set in chapter 4.  That is, we

assume that the minimum link congestion rate is known and set the pruning_threshold at

40% of this rate.

  0

false leads                      true leads

pruning_threshold

true leadsfalse leads

final_pruning_threshold

  0

          (a)           (b)
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5.3  Results and Discussion

     Tight asymptotic bounds of the algorithm’s time complexity are no longer apparent

due to the inclusion of false leads.  We plot the running time of the algorithm as a

function of the number of links in Figure 5-4.  We again use η  as a proxy for the quality

of a result.  Figure 5-4 shows the running time of the algorithm for η  = 4.
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Figure 5-3:  Running time of the correlation algorithm, in seconds, as function of the number of
links.  η  = 4.  For all simulations, the congestion_length was 10 seconds and the

inter_congestion_length was 100 seconds.

     In this log-linear plot, the running time is roughly a straight line with respect to the

number of links. Thus, the length of the simulation time required to solve for the path-

link matrix appears to be exponential in the size of the network.  Factors that caused the

algorithm to take longer to converge included increasing the congestion_length relative to

the inter_congestion_length and increasing the individual link congestion rates.

     In Figures 5-4 and 5-5, we plot the histogram of the values of fully specified trigger

probabilities for two different simulation lengths.  The simulation length used to generate
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Figure 5-4 was twice as long as the simulation length used in Figure 5-5.  The network

used for these plots contained 10 monitors and 54 links.  The congestion_length was set

at 10 seconds and the inter_congestion_length was 100 seconds.

     In Figure 5-4, the estimated congestion rates on the false links are tightly centered

about 0, and a final_pruning_threshold set at 0.04 would successfully separate the true

links from the false links.  However, in Figure 5-5, the congestion rates of the false links

and the true links overlap, and therefore the final_pruning_threshold can not be set to

separate the two distributions.

Figure 5-4: Histogram of separated fully specified trigger probabilities.  The highest false trigger
probability is less than 0.02, while the lowest true trigger probability is greater than 0.04.



80

Figure 5-5: Histogram of overlapping fully specified trigger probabilities.  Here, the true and false
trigger probabilities overlap and therefore they can not be separated with a threshold.

     The algorithm successfully solves for the path-link matrix, despite the two aspects that

make this network model difficult to solve.  The first aspect, simultaneously congesting

queues, is addressed using the probability model from chapter 4.  The second aspect is

that paths that share a congesting queue may not see the effect of this congestion

simultaneously.  Although the algorithm is not specifically designed for this aspect, we

conjecture that this aspect only causes a small amount of noise.  Thus, we find that the

probability model from chapter 4 is successful in solving for the path-link matrix, if we

include a number of false leads.

     However, we do not know if the algorithm is successful over the full range of possible

parameter settings. For example, it is not clear that the algorithm will always be

successful as the congestion_length is increased relative to the inter_congestion_length.

We also do not fully understand how the inclusion of false leads allows the algorithm to

solve for the correct path-link matrix.
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Chapter 6

Conclusions

     Based upon the idea of correlating paths’ end-to-end delay times, we have developed

topology discovery algorithms for three increasingly complex network models.  Path end-

to-end delay measurements on a reduced network serve as input to the correlation

algorithm.  The correlation algorithm solves for the path-link matrix, which is used by the

matroid algorithm to reconstruct the topology of the network.

     In the first network model, non-overlapping congestion, only one queue is congested

at a time by having packets injected into it for a fixed length of time.  These packets are

removed from the network after they have been serviced.  The correlation algorithm first

applies a threshold to the paths’ end-to-end delay time series, creating binary functions.

A pair-wise comparison test that indicates whether or not two paths share a common

congestion cause is used to construct groups of paths with a common congestion cause.

Using a systematic construction, these groups correspond to links upon termination.  The

algorithm performed well.  However, as the time between successive queue congestion

approached zero, the correct path-link matrix was not always obtained.  (Subsequent

correlation algorithms were able to solve for the correct path-link matrix in this model

even when the time between successive queue congestion was zero.  Thus, we view the

first correlation algorithm as a stepping stone for the subsequent correlation algorithms.)

     We identified two causes of incorrect answers for the first correlation algorithm that

motivate the subsequent algorithms.  First, congestion in two paths’ delay time series that

is caused by the same congesting queue is not necessarily temporally identical.  Second,

congestion in a path’s time series occurs when a queue on that path is heavily occupied.

Thus, even though only one queue is injected with packets at any given time, two queues
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might simultaneously be the source of path congestion.  The next network model that we

develop isolates this second cause.

      Overlapping congestion in discrete time is the second network model.  Queues

congest independently and thus multiple queues can congest simultaneously.  If a queue

is congested at time n, then all paths that contain that queue are also congested at time n.

Thus, a path is congested at time n if and only if at least one link on that path is congested

at time n.

     We developed a probability model to solve the second network model.  We introduced

a trigger probability that indicates whether a certain set of paths share a common cause of

congestion.  We solve for the trigger probabilities in an efficient manner and construct

the path-link matrix based upon the significant trigger probabilities.

     We developed η, which measures the statistical distance between the true and false

fully specified trigger probabilities, to indicate the quality of a particular result.  We

found that our ability to find larger and larger networks was limited only by time.  There

was no numerical instability.  However, over many randomly generated network

topologies, the time complexity of the algorithm was exponential in the size of the

network.

     Finally, the third model, overlapping congestion, combines aspects of the first two

network models.  Similar to the first network model, this model is set in continuous time.

However, queues congest independently and for random periods of time.  Thus, queues

can be simultaneously injected with packets as in the second network model, and

congestion measurements are not necessarily temporally identical as in the first network

model.

     Adapting the second algorithm to continuous time and adjusting the setting of some

parameters solved the third network model.  As in the first algorithm, we initially

threshold the paths’ end-to-end delay time series to create binary functions.  If queues

were congested for a short amount of time relative to not being congested, then the

correct path-link matrix was obtained.  However, a full investigation of the conditions

necessary to obtain the correct path-link matrix must be left for future study.



83

     Making some aspects of the network models more realistic motivates much of the

future work that we now discuss.  An unrealistic assumption that the correlation

algorithms use is that the minimum link congestion rate is known.  We propose a possible

fix for this problem based upon clustering the trigger probabilities into two groups such

that the relative distance between the two groups is maximized in terms of the means and

the standard deviations of each group.

     Another assumption that all of the network models are based upon is that queue

congestion occurs independently.  In reality, this model is not necessarily realistic since

congestion is caused by traffic flows that traverse multiple links.  Thus, we would be

interested if these (or other) correlation algorithms can cope with this issue.

     Modifying the way in which network topologies are generated would increase the

soundness of our testing methods.  In our study, we have removed series and equivalent

links before using the correlation algorithm.  However, a more robust testing method

would leave the series and equivalent links in the network.  The correlation and matroid

algorithms should then output the corresponding reduced network.

     An important area of future work is moving from real-world data to the binary

functions that are used by the correlation algorithms.  We threshold the end-to-end delay

time series to create a binary function.  However, we do not have a systematic way of

setting this threshold.  Furthermore, it may be necessary to look at loss rates in order to

produce these binary functions.  For example, in RED (or another non-FIFO) queuing

scheme, loss may be a better indication of congestion than delay. Although we have

focused on end-to-end delay measurements, the probability analysis from chapter 4 can

be formulated in terms of a loss model, where a trigger probability refers to the packet

loss rate on a link rather than its congestion rate.  Thus, some hybrid method that

combines delay and loss data might prove necessary.
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Appendix

     Here, we show that the expressions for the trigger probabilities derived by Ratnasamy

and McCanne [17] are equivalent to the trigger probabilities derived from the 2-path

equations. Here are Ratansamy and McCanne’s original equations and solutions for the

trigger probabilities:
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The 2-path equations:
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Solving the 2-path equations using the technique from chapter 4:
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Now, we show that A.4b, A.5b, and A.6b are equal to A.4a, A.5a, and A.6a respectively:
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