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Abstract

Conventiona methods of discovering network topology require the cooperation of
network elements. We present a method of network topology discovery based solely
upon end-to-end delay measurements that requires only the cooperation of end systems.
Previous work using end-to-end measurements has focused on discovering tree
topologies; the method here discovers more general networks. The discovery method is
based on two algorithms. the matroid al gorithm and the correlation algorithm. Thiswork
develops and validates the correlation algorithm for three increasingly sophisticated
network models using smulation. We also develop an indicator of the quality of a
particular result.
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Chapter 1

| ntroduction

1.1 Motivation

Knowledge of network topology is essential for network management and network
provisioning. However, conventional methods of network discovery (e.g., SNM P-based
autodiscovery) rely on the cooperation of network elements and therefore have several
potential shortcomings. For instance, network elements may be uncooperative due to
heavy loading that disables autodiscovery in order to reduce processor load. Or, the
owner of the network elements might restrict their access rights.

In addition, network elements may not have the functionality that is desired.
Traditional autodiscovery tools may use outdated protocols or protocols that have not yet
been implemented by network elements. Autodiscovery tools may aso be limited
because they can only detect the logical connectivity of a particular network layer. For
example, ICMP and traceroute can not detect ATM switches.

A discoverer may not want network elements to be aware of the discovery process. In
amilitary context, we might want to make a map of the enemy’s network. Or, an ISP
might want to verify the connectivity of a carrier network in order to verify service
agreements.

Thiswork responds to these concerns and provides a starting point for a system that
can discover abroad class of network topologies from end-to-end delay measurements.
The work grows out of a 1997 DARPA proposal by Christian Huitema at Telcordia
Technologies. The proposal received funding and became the Felix Project [6, 7]. The
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Felix Project focused on using non-invasive end-to-end measurements to determine
network characteristics.

End-to-end measurements only require that the end systems be centrally controlled.
Any interior network elements may be uncooperative to the extent that they do not
respond to direct probing, such as ICMP, but they do forward probe packets. The
topology discovery method presented here is based on two algorithms: the correlation
algorithm and the matroid a gorithm.

1.2 Correlation and Matroid Algorithms

Monitors collect the end-to-end delay measurements that are the starting point for
discovering network topology. Monitors are placed at certain nodes in the network and
collect delay measurements by time-stamping packets that are sent to other monitors.
Thelinksin a network that are traversed when a monitor sends a packet to another
monitor constitute a path. The collected datais organized as end-to-end delay time as a
function of time for each path.

The collected data is then used to discover the topology of the network in two steps.
First, the correlation algorithm determines the links in the network by correlating the
times when paths exhibit common end-to-end delay characteristics. The output of the
correlation algorithm is a path-link matrix that identifies which links are on which paths.
The matroid algorithm (invented by P. D. Seymour) [7] then reconstructs the network
topology based upon the path-link matrix. The solution method isillustrated in
Figure 1-1.

discovered
end-to-end )
delay path-link network
measurements matrix topology

Figure 1-1: Thetopology discovery method.
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The matroid algorithm uses linear algebra and graph theory to construct the network
topology from the path-link matrix. The path-link matrix does not necessarily completely
determine the network topology. For example, the matroid algorithm may produce a
network that contains split nodes, which are a set of nodes in the discovered network that
correspond to the same node in the original network. The matroid algorithm can also
output localized uncertainties in the network topology or clouds. For the purposes of this
paper, the matroid algorithm is treated as a black box.

The contribution of thisthesisis the development and validation of topology
discovery algorithms based upon the idea of correlating common end-to-end delay time
characteristics that occur on network paths. Three correlation algorithms that are based
upon accompanying network models form the core of the work. We start with relatively
simplistic network models and move towards more complex ones. Validation of the
correlation algorithmsis done using ssmulation. We use simulation instead of real-world
traffic data because exploring the ideas of the correlation algorithm would initially be too
difficult with real-world data.

1.3 Related Work

A number of related papers have been published recently. We classify this related
work into three areas. end-to-end measurement systems, analysis and modeling of real-
world end-to-end measurements, and analysis and modeling of simulated end-to-end
measurements. The present work belongs in the third area, analysis and modeling of
simulated end-to-end measurements.

M easurement systems are primarily concerned with how end-to-end measurements
can be made accurately and what type of infrastructure is required to support these
measurements. These projects are concerned with many systems related i ssues such as
scaling, distributed computing, and security. The National Internet M easurement
Infrastructure (NIMI) project [13] proposes to build a large-scale measurement
infrastructure on top of the existing Internet, similar to the Domain Name System. NIMI

is primarily concerned with scalability and security. Another significant measurement

13



system is Surveyor [20], consisting of 38 machines spread around the world. One-way
delay and packet loss is measured between these machines. Additional projectsin this
area are: Skitter [19], Internet Performance Measurement and Analysis (IPMA) at Merit
[11], and Internet Monitoring & PingER at Stanford Linear Accelerator Center (SLAC)
[10].

The second area of related work is analysis and modeling of real world end-to-end
measurements. Thiswork uses end-to-end measurements from real-world network traces
to infer characteristics about the network. Most of the work focuses on analyzing delay
and loss models. For example, Yajnik et al. [23] present a method of estimating the loss
rates on links of a known multicast tree topology using the receivers' loss patterns.
Further referencesin thisareainclude [1, 12, 14, 24].

The third broad area of related work that we consider is analysis and modeling of
simulated end-to-end measurements. A number of simulation studies have been done on
inferring characteristics of multicast tree networks based upon the loss patterns of
receivers. Cacereset al. [3] and Ratnasamy et al. [17] have developed maximum
likelihood estimations of multicast tree topologies and the packet loss rates on these links.
Thebasicinsight isthat if amulticast packet islost along alink in the tree, all intended
recipients lower in the tree will be affected. Intuitively, the closer the loss pattern of two
receivers, the more likely it is that they are closely related in the multicast tree.

Moving from multicast to unicast streams but still considering only tree topologies,
Rubenstein et al. [18] and Harfoush et al. [9] suggest two different probing packet
techniques for characterizing the internals of a network. Rubenstein et al. propose
analyzing two Poisson probe flows in order to detect if two co-located receivers or two
co-located senders have shared points of congestion. Harfoush et al. suggest a method of
identifying shared loss by using Baysian probes. Harfoush et al. are able to reconstruct
the tree topology and loss rates between a server and a set of clients using these probes.
Further referencesin thisareainclude[2, 5, 16].
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In the present work, we address the problem of inferring network topology for amesh
of paths. We are not limited to tree topologies in any way. In addition to discovering the
network topology, we provide an estimate of individual link congestion rates.

1.4 Qutline

We present background material and the network topology generation processin
Chapter 2. Chapters 3, 4, and 5 delve into the three network models that form the core
of thework. Each of these chapters contains an explanation of the network model, a
correlation algorithm, results, and discussion. Finally, we present conclusions and future
work in chapter 6.
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Chapter 2

Background

Before we examine the three network models that form the core of this paper in
chapters 3, 4 and 5, we present background material. In section 2.1, we introduce
terminology that will be used extensively throughout the paper. Section 2.2 explains how
we generate the network topologies that are used for testing the topology discovery
algorithms. Finally, in section 2.3, we present an overview of how the various pieces of

code fit together.

2.1 Terminology

We define a network as a set of nodes and directed edges, or links. Special nodesin
the network are monitors. Nodes that are not monitors are interior nodes. A path isthe
set of nodes and links that are traversed if data is sent from one monitor to another
monitor. Paths are simple, having no repeated nodes or links and consequently do not
have loops. Paths are not necessarily symmetric. That is, the set of nodesthat is
traversed on the path between monitor M, and monitor M, need not be the same as the set
of nodesthat is traversed by the path from monitor M, to M. A path that is not
symmetric isasymmetric. Paths are adso stable. A stable path is a path does not change
over time. Figure 2-1 illustrates these concepts.
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Figure2-1: Illustration of network terminology.

The network in Figure 2-1 has eleven nodes. Five of these nodes are monitors and
they arelabeled: M1, M, M3... Thesix interior nodes are labeled: N1, N2, N3... Some
links are labeled next to arrowheads that indicate the direction of the link. The links that
constitute path p are: Ly, Lo, L3, L4, and Ls, while the links that constitute path g are: L,
Le, L7, and Lg.

All of the network models are based upon packet-switched networks. By time-
stamping the packets that are sent from one monitor to another, the end-to-end delay time
for apath isrecorded. If time-stamped packets are sent over time, then the end-to-end
delay time series from one monitor to another or a path’s end-to-end delay time seriesis

constructed. Figure 2-2 is an example of such atime series.
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S

time

delay time

Figure 2-2: Example of a path’send-to-end delay time series. Notethat thistime seriesisonly
illustrative and is not meant to represent a recorded time series. In practice, thetime seriestendsto
be more punctuated and not as smooth aswhat isillustrated.

Finally, we formalize the path-link matrix that was introduced in chapter 1. One axis
of the matrix isindexed by a path name and the other axisisindexed by alink name. We
put alin position (i, j), if link j ison path i and a 0 otherwise. Constructing such a

matrix for paths p and g, which are defined in Figure 2-1 yields:

L, L, Ls Ly Ls Le L; Ls Lo
P 1 1 1 1 1 0 0 0 0
Q 0 1 0 0 0 1 1 1 0

The path-link matrix serves as the interface between the correlation algorithm and the
matroid algorithm. Note that the path-link matrix does not indicate how many nodes are
in the network, nor whether or not two different paths share common nodes. Unlike an
adjacency-matrix representation of a graph, the path-link matrix does not necessarily

completely specify anetwork’s topology.

2.2 Network Topology Generation and Reduction

In this section, we discuss the methodology we use to create network topologies for
testing the topology discovery agorithms. We wanted a method that could generate a
wide range of realistic network topologies, while keeping in mind the limitations of the
discovery algorithms. Therefore, we create an initial randomized, realistic network
topology using the tiers program by Calvert et al. [4]. Next, we choose a fixed number of
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leaf nodes at random as monitors. We remove nodes and links that are not traversed by
any paths, creating the visible network. Finaly, we simplify or reduce the visible
network, creating the reduced network.

The tiers program generates randomized and realistic topologies according to a three
tier hierarchical structure. The three tiers are: Wide Area Networks (WANS),
Metropolitan Area Networks (MANSs), and Local Area Networks (LANS). Severd
parameters control graph generation. The user can specify the number of nodesin each
type of network aswell as the number of MANSs per WAN, and LANs per MAN.
Additionally, the connectivity within a network and between different types of networks
can be specified. We refer to the network generated by tiers as the original network.

Monitors are then selected randomly from among the leaf nodes of the origina
network. We choose the leaf nodes as monitors because they tend to be at the edge of the
network and therefore much of the network is contained on the paths between them. |If
we chose monitorsin the center of the network, then the network topologies would
probably not be very complex or interesting.

Given the choice of monitors, we determine the paths based upon shortest hop routing.
Thisisimplemented using breadth first search from each monitor. This implementation
lendsitself to the generation of asymmetric paths. Empirical work by Vern Paxson [15]
found that in one network approximately 30% of the paths exhibited asymmetry. We
find paths generated using breadth first search to be asymmetric approximately 35% of
time. We assume that the routing is stable and thus paths do not change over time. After
removing the nodes and links that are not traversed by any pathsin the original network,
the visible network remains.

From the visible network, we proceed to reduce the graph. The correlation algorithm
requires that each link in the network be traversed by a unique set of paths. The matroid
algorithm assumes that all paths are ssmple, amonitor is not an interior node in the
network, and that paths destined to the same monitor do not converge and then diverge.
Thisfinal assumption of the matroid algorithm meansthat all paths into a monitor form a
sink tree [21].
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The visible network satisfies the requirements of the matroid algorithm. A sink tree
into each monitor is assured by using breadth first search because the adjacency list that
is used to represent the network is examined in the same order in determining all paths.
We ensure that monitors are not in the interior of the network by choosing monitors from
among the leaf nodes in the original network. Finally, shortest hop paths do not contain
any repeated nodes or links and therefore the ssmple path constraint is satisfied.

The visible network does not necessarily satisfy the correlation algorithm’s
requirement that each link be traversed by a unique set of paths. We classify links that
are traversed by the same set of paths as other links into two categories:. series links and
equivalent links. Serieslinks can be found by identifying those nodes that have an in-
degree and out-degree of one or an in-degree and out-degree of two. To illustrate this

concept, consider Figure 2-3.

Ml L6

M
Ly \ N, M, Mlo @)
MO | O \Nl/

L, \\» le O
L \
N / O
Of OMs |\/|4O Ms
My
@ (b)

Figure2-3: Serieslinks. Figure2-3(a) contains 6 serieslinks. LinksL4, L,, and Ly areall traversed
by paths M -M ,, M 1-M 3, and M -M 4, whilelinks L4, Ls, and Lg are traversed by paths M ,-M 1, M3-M 4,
and M M. Figure 2-3(b) modifiesthe network, eliminating the serieslinks.

In Figure 2-3(a), nodes 2 and 3 both have an in-degree and out-degree of two. If we
designate the path from M; to M3 as M3-M3, then links L1, Lo, and L3 are traversed by
paths M1-M>, Ml-M3’ and M1-Myg, while links L4, Ls, and Le are traversed by pathS M-
M1, M3-M4, and M4-M;. We can remove these series links by removing nodes 2 and 3

and reconnecting the graph as shown in Figure 2-3(b).
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An equivaent link isalink that is traversed by the same set of paths as at |east one
other link in the network, but it is not aserieslink. Equivalent links are further classified
as consecutive equivalent links and non-consecutive equivalent links. A consecutive
equivalent link has at least one node in common with another link that is traversed by the
same set of paths asitself. A non-consecutive equivaent link is an equivaent link that
does not have a common node with alink that is traversed by the same set of paths as
itself.

In Figure 2-4, we present an example of consecutive equivalent links. Thetablein
Figure 2-4(b) is an ordered set of the links that are traversed on each path. Notice that
links L7 and Lg always appear together in the table and are found on paths M1-M, and
M3-M,. Looking at the network diagram, links L7 and Lg share acommon node and are
not serieslinks. Therefore, links L7 and Lg are consecutive equivalent links. LinksL;

and Lo are also consecutive equivalent links, whilelinks L4 and Ls are series links.

Mo
O
L, M1-M2: Ly, Lig, Lg, Ly
L‘b M1-M3: Ly, Lio, L1z
|_5/ Ls M2-M1: L, Ls, Lg Ly
|_4 O M2-Ms: L, Lo, L1
/.O — Q L M3-M1: Ly, Lg, Ly
O g leOlVl3 M3-My: Ly, Lg, Ly
@ (b)

Figure 2-4: Consecutive equivalent links. LinksL; and Lgshareacommon node and are traver sed
by paths M ;-M, and M3-M,. Thus, L;and L g are consecutive equivalent links. LinksL,and Lygare
also consecutive equivalent links. Thetablein Figure 2-4(b) indicatesthelinksthat aretraversed on
the paths between theindicated monitors.

We modify the network that contains consecutive equivaent links as follows. We
define a group of consecutive equivalent links as set of consecutive equivalent links

where each link in the set is traversed by the same set of paths. We can move from the
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begin node to the end node of a group of consecutive equivalent links by traversing only
and all of those links that arein the group. We remove all of the consecutive equivalent
linksin a group from the network and then add to the network a single link from the
begin node to the end node. After modifying the network in this manner, we remove
nodes that are no longer traversed by any path. Applying this procedure to Figure 2-4

resultsin network found in Figure 2-5.

M,
O xLu

Le

O

Lis Lo

O on
Li/ Ls Lis \11
Mlo\/ L”OM

Figure 2-5: Eliminating consecutive equivalent links. Consecutive equivalent linksL,, L, Lg, and
L 10 areremoved from the network in Figure 2-4(a). LinksL ;3 and L4 are added to the network. In
addition, the serieslinks L, and Ls are removed from Figure 2-4(a) and L 15 is added.

An example of non-consecutive equivalent linksis shown in Figure 2-6. In the figure,
paths only traverse links that lie on the hexagon shape and links that are incident to a
monitor, except for paths M1-M4, M4-M1, M3-Mg, and Mg-M3. These paths traverse links
in the interior of the hexagon shape as shown. Links L, and L4 are non-consecutive
equivalent links, being traversed only by path Mg-M3, while L; and L3 are also non-
consecutive equivaent links, being traverse only by path M3-Mg. Paths M;-M4 and M 4-
M contain analogous non-consecutive equivalent links as well.
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Figure 2-6: Non-consecutive equivalent links. LinksL,and L, areonly traversed by the path Mg-M 3
and ar e thus non-consecutive equivalent links. Similarly, linksL, and Lz are only traversed only by
the path M s-Mg and ar e thus non-consecutive equivalent linksaswell. Analogous non-consecutive
links occur on the path M ;-M 4 and M 4-M ;.

A network that has been checked for series and consecutive equivaent links and
modified appropriately is areduced network. The reduced network may seem very
different from the visible network. However, a network that is modified because of series
links does not change the graph in any structurally significant ways. Modifications to
network topology that are due to consecutive equivalent links are localized in the network
and the number of linksin a group of consecutive equivalent linksistypically smal IEI.

Finally, we do not use networks that contain non-consecutive equivalent links. However

networks with non-consecutive equivalent links are extremely rarein practice
We show the evolution from the original network, to the visible network, and finally
to the reduced network in Figures 2-7, 2-8, and 2-9, respectively.

" We found that most groups of consecutive equivalent links had 2 links.
" In generating hundreds of sample topologies, we have found only one case of non-consecutive equivalent
links.

23



LAN —e—

Figure2-8: Visiblenetwork. Illustratesthe network topology after monitor s have been added and
non-traver sed nodes and links have been removed.

e

Figure 2-9: Reduced network. Seriesand consecutive equivalent links have been removed from the
visible network.
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2.3 Implementation
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Figure 2-10: Codetool-chain. Ovalsrefer to programsand squaresrefer tofiles.
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In Figure 2-10, we show how the various pieces of code interact. Ovalsrefer to
programs and squares to files. Walking briefly through this chart, the tiers program
generates the original network. This network isinput to the reduce program that chooses
monitors and removes non-traversed links and nodes, series links, and consecutive
equivalent links. The reduce program captures the ideas of section 2.2. The output of the
reduce program is a description of the reduced network, or atopology file. The network
simulator then ssimulates a network model on the reduced network. End-to-end delay
datais recorded by the network simulator and stored in adatafile. Thisdatafileisinput
to the correlation algorithm, which attempts to solve for the path-link matrix. Finaly, the
matroid algorithm reconstructs the reduced network topology using the path-link matrix.
The matroid algorithm outputs the discovered network as a topology file.

On the right-hand side of the figure, the reduced network is rendered and compared
with the discovered network. Topomap is a graph drawing program that draws networks
in avisually appealing manner. The purpose of fix isto place the monitorsin the same

locations in the diagrams of the reduced network and the discovered network. We can
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compare the reduced network and the discovered network visually as well as with the
graph isomorphism checker, imm.

These programs were al written in C. The primary authors of these programs are:

correlation- Jason Baron

fixed- Jason Baron

imm- Paul Seymour

matroid- Paul Seymour

network simulator- Jason Baron, Mark Garrett, Alex Poylisher
reduce- Jason Baron

topomap- Bruce Siegell

The agorithm timings referred to in the remainder of this paper were all performed on
a Sun Ultra 5 running the SunOS 5.7 operating system with 64MB of RAM.
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Chapter 3

Non-Over lapping Congestion

In this chapter, we consider the first network model. In section 3.1, we explain the
assumptions and features of the network model. Section 3.2 introduces the idea of
applying athreshold to the paths' end-to-end delay time series to produce a binary
function. We find this to be a powerful technique and make use of it in solving this and
subsequent network models. Section 3.3 presents two correlation algorithms—a simple
algorithm that does not take some of the aspects of this network model into account and a
more sophisticated algorithm that attempts to deal with these aspects. The results of
testing the second algorithm are presented in section 3.4. Finally, we provide results and

discussion in section 3.5.

3.1 Network Model

The network model consists of FIFO output queuing, no input queuing, and no
processing delay at nodes. Therefore, there is a one-to-one correspondence between
output queues and links. All links have identical bandwidth—21.55 Mbps.

The congestion aspects form the core of the model. Queues are congested by having
packets of size 1250 bytes independently injected into them at arate that is chosen from a
heavy-tailed distributi onE! After the injected packets have made their way to the front of
the queue, they are simply discarded. The time for which a queue isinjected with packets
is fixed and this parameter is the congestion_length, which can be varied between

simulation runs.

" We sample packet arrival rates from the VBR video trace used in [8]. Thisempirical data has a heavy-
tailed distribution.
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The key feature of this network model is that only one queueis being injected with
packets at any given time. Queues are chosen to have packets injected into them at
random. More precisely, if there are k queues and one queue has finished being injected
with packets, then the probability that any one of the queues is chosen next for injection

with packetsis 1/k . The time between the end of one queue being injected with packets
and the start of a subsequent queue being injected with packets is the controlled by the

inter_congestion_length parameter, which can be varied between simulation runs.
Monitors send time-stamped packets or probes of size 576 bytes to other monitorsin a
round-robin fashion. The frequency at which these packets are sent isinversely
proportional to the number of monitors. Specificaly, if monitor M1 sends a probe packet
to monitor M, at time t, then monitor M1 will send its next probe packet to monitor M3 at

atime that is uniformly chosen between t and t + (2/number of monitors). Packetsare

not sent at fixed intervals because we would like to detect events that may be happening
periodically. Asthe size of the network grows, we increase the frequency that monitor
packets are sent in order to maintain the rate at which probes measure network
conditions. The consequence of generating probe packetsin this manner isthat if there
are m monitors, then traffic may grow in some regions of the network by .

Monitors that receive probes from other monitors cal cul ate the end-to-end delay for a
particular path by subtracting the time-stamp on the packet from the time that the packet
was received. The receiving monitor then records the duple data: <time-stamp on
received packet, end-to-end delay time>. Lost packets are ignored.

Two aspects of the model make finding the path-link matrix from the collected data
difficult. If one could measure the underlying congestion aspects perfectly, then a
congestion event or an increase in a path’ s end-to-end delay time would begin and end at
amost the same time on those paths that contain the congested queue. However, since
we are probing at somewhat random intervals, increases and decreases in end-to-end
delay measurements do not line up between paths perfectly in time. We consider thisto
be an inherent measurement difficulty. A second difficulty arisesif the

inter_congestion_timeissmall. Since queues are being injected with packets according
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to a heavy-tailed distribution, end-to-end delay times on paths that do not share any
common queues may show correlation, despite the fact that only one queue is injected
with packets at any given time.

Let usignore the second difficulty for amoment. Thereis still aquestion of when to
conclude that two paths share a common congestion event because of measurement
uncertainty. We deal with this difficulty by applying athreshold to the end-to-end delay

time series.

3.2 Applyinga Threshold tothe Delay Time Series

In order to decide if two paths share a common congestion event, we first apply a
threshold to the end-to-end delay time series of each path. The result isabinary function
that is 0 when the delay time seriesis below the threshold and 1 when the delay time
seriesis above the threshold. To illustrate, the end-to-end delay time series for paths p
and q are shown in Figure 3-1.

o threshold
£ path p
2
g P N— —
time
% threshold path g
&
g /\\‘_\/\/\/’N\ —
time —»

Figure 3-1: Applying athreshold. Theend-to-end delay time seriesfor pathsp and g are shown with

athreshold drawn on top. Notethat thistime seriesisonly illustrative and is not meant to represent

arecorded time series. In practice, thetime seriestendsto be more punctuated and not as smooth as
what isillustrated.
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After applying athreshold, the binary functions that result are in Figure 3-2.

2 path p

&

° ] 1 1 0O
time —»

2 path q

g

& ] [ 10O
time —»

Figure 3-2: Binary functions. Thebinary functionsthat result from applying a threshold to the end-
to-end delay time series of pathsp and g.

In practice, we set the threshold at alevel such that if no queues are congested on a
path then the end-to-end delay time for that path should be below the threshold value.
However, if at least one link congests on a path then the paths' end-to-end delay time
should exceed the threshold value. We have set the threshold value to satisfy these
properties by looking at the end-to-end delay time series. Setting the threshold in this
manner certainly does not guarantee that the threshold will have its desired properties.

Based upon the binary functions, we can easily specify rules as to when a common
congestion event is shared between paths. A rule might be: if the starting and ending
times when two binary functions take on the value of 1 are similar, then thisis ashared
congestion event. Therefore, paths p and g share three congestion events. They might
share afourth event. However, the starting and ending times when the two binary
functions are 1 are disparate due to measurement uncertainty.

There are certainly other techniques for identifying common congestion events on two

paths. For example, one might consider using a continuous correlation function. We

30



have not explored the use of such techniques completely, but we show that applying a
threshold to a delay time seriesis a powerful technique.

3.3 Algorithm

3.3.1 First Correlation Algorithm

Given the technique of applying athreshold to a path delay time series, asimple
algorithm for determining the path-link matrix presentsitself. Scan al paths over time
and identify or circle the times when combinations of paths simultaneously take on the
value 1. For example, asample of the time series for the four pathsp, g, r, and sis shown

in Figure 3-3.

path p m/M e e =

— ]

: [ [
P = =) =I
paths: _ 1 1 [

time————————»

Figure 3-3: Circling algorithm. Timeswhen only path p and path r share a congestion event are
circled. If we continuecircling all the unique sets of congestion eventsin this manner, we can
construct the path-link matrix in a straightforward manner.

Here, we have circled the three instances when only paths p and r share a congestion
event. If we continue to circle congestion events in this manner, then we can easily
construct the path-link matrix. The columnsin the path-link matrix correspond to the
columns that we have circled. Pathsin acirclethat have avalueof 1 arelinthe
corresponding position in the path-link matrix and O otherwise. The key assumptionis
that each link in the network is traversed by a unique set of paths and therefore any two
circled sets of congestion events that have the same set of congested paths must have
been caused by the same link in the network. It also follows that any two circles of
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congestion events that have a different set of congested paths must have been caused by a
different link in the network.

This agorithm, which we refer to as the circling algorithm, solves this congestion
model to an extent. However, it does not address the two difficulties of the network
model. First, if theinter_congestion length approaches 0, it would start to become
unclear as to what should be circled. Second, measurement uncertainty causes
congestion events to not line up perfectly in time and thus circling becomes more
difficult.

3.3.2 Second Correlation Algorithm

We now propose an algorithm that addresses the two difficulties of thismodel. The
basic idea of the agorithm isto use pair-wise comparisons between paths that indicate
whether or not two paths share a common cause of congestion. This pair-wise
comparison takes many events into consideration, instead of just asingle event asin the
circling algorithm. The algorithm forms groups of paths that have at least one common
link by adding one path at atime to a group through pair-wise comparisons. When the
algorithm terminates, the groups correspond to columns in the path-link matrix. We must
be careful in constructing these groups, since if there are n paths, then there are 2"
possible groups.

In deriving a pair-wise comparison test, we start with amodel that contains two paths.
Paths p and g are shown in Figure 3-4. We classify the links on these two paths as
belonging to one of three categories: links on path p and not on path g, links on path q
and not on path p, and finally links on both paths p and . These three categories of links
can be thought of as three causes of the congestion events that are observed on paths p
and q. We represent the probability that at least one link congests in each of these three

categories as: P, qu,and Pt,- Werefer to these three probabilities as trigger

probabilities, since they can be thought of as triggering congestion events.
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Figure 3-4: 2-path trigger probabilities. Linksthat are dashed are meant to represent zero or more
links. Pﬁa isthe probability that at least one of the linksthat ison path p and not on path g congests.

Péq isthe probability that at least one of the linksthat is on path g and not on path p congests.
Finally, Pl isthe probability that at least onelink of the links common to both pathsp and g
congests.

There are four possible outcomes that we can observe, looking at the binary functions
of both paths p and g at any instant in time. Path p might be 1 or 0 and path g might be 1
or 0. To calculate an estimate of the probability of any one of these four outcomes, one
can divide the total time that each one of these four outcomes occur by the total
observation time. We refer to the probability of each outcome as an observation
probability. The notation that we use to designate the probability of each one of these

four outcomesis: Pe

%+ 1T both paths' binary functions are 1, Py, if path p’sbinary

functionis 1 and path s binary functionis 0, Py, if path p’s binary functionis 0 and
path ' sbinary functionis 1, and Pg; , if both paths’ binary functions are 0.

Assuming that the trigger probabilities are independent, the relationship between the
observation probabilities and the trigger probabilities is the same here as in Rathasamy et
al. [17]. However, the underlying model that Ratnasamy usesis different from the model

here. The Rathasamy equations are:
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Pg, =Py, + (1— PL )PP, (3.1)

pPg” pq
PO, = (1= Pi, )P, (1= PL.) (32
P = (1= Piq) (L - Pig) Py (3:3)

The solution of R, from Ratnasamy is:

pt = PoaPpa + PoqPog + PogPia +(Pa)? — Py
P

Py +Pog + P —1

(3.4)

If the value of R, issignificant, we conclude that two paths share acommon congestion
cause. Werrefer to testing two paths for acommon cause asthe P, test.

This pair-wise test addresses the two difficulties of the model asfollows. First, it
addresses the issue of queues being simultaneously congested because the model assumes
that triggering events can happen simultaneously. Second, we assume that the
measurement uncertainty is short relative to the duration of the congestion_length and
thus the trigger probability estimates are not significantly affected. We have been abit
brief about this model because we will return to it in greater detail in chapter 4.

Assume that for two paths, a and b, the value of the P!, test is significant and

therefore we conclude that paths a and b share a common congestion cause. We form the
group(a,b) and associate the inter section of path a’s binary function and path b’s binary
function with this group. The intersection of two binary functionsis 1 when both binary
functions are 1 and O otherwise. The result of the intersection operation is a binary
function that provides some information as to what congestion events the two paths have
in common.

Now, we could test whether path ¢ shares a common congestion cause with group(a,b)

by applying the PB{, test again, treating the intersected binary function formed from paths

a and b as one binary function and path ¢’ s binary function as the other binary function.

34



If the B, test is not significant, then we continue to grow the group(a,b) by trying the P,

test with additional paths. However, if theR}, test is significant then we form the

group(a,b,c) and associate the intersection of the binary functions of path a, b, and ¢ with
this group.

In deciding whether or not to keep the group(a,b), we subtract the binary function
associated with group(a,b,c) from the binary function associated with the group(a,b).
The subtraction operation is 1 when the minuend is 1 and the subtrahend is0 and 0
otherwise. If we determine that there is a significant binary function left, meaning that
there are anumber of congestion events yet to be explained, then group(a,b) is kept.
Otherwise, if this binary function is not significant, we delete the group(a,b). We aso
define a unite operation on two binary functionsthat is 1 when at least one binary
function is 1 and O otherwise. Based upon the intersection, subtraction, and unite

operation, and the two significance tests (the R, test and the test for detecting if

significant congestion events remain), we construct the algorithm in
Figure 3-5.
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Input:

NUMBER_OF_PATHS; the number of paths
PATH_BINARY_FUNCTIONS : Array (Binary Function); PATH_BINARY_FUNCTION]i] is
the binary function of path i

Output:

1 if pathi containslink j

PATH_LINK_MATRIX: 2D Array; Xii= 0 otherwise

CORRELATE () {

processed_events : Binary Function; initially contains no Events
unexplained_events : Binary Function

for path = 1 to NUMBER_OF_PATHS
unexplained_events = PATH_BINARY_FUNCTIONS[path] subtract processed_events
if unexplained_events is significant
BREAK-UP(unexplained_events, path, (path+1))
processed_events = processed_events unite PATH_BINARY_FUNCTIONS|path]

BREAK-UP(matching_events: Binary Function, group_paths : set of paths in this group,
lowest_candidate_path : minimum path that we try to add to this group) {

intersect : Binary Function

for path = lowest_candidate_path to NUMBER_OF_PATHS
if P;q test between matching_events and PATH_BINARY_FUNCTIONS[path] is significant

intersect = matching_events intersect PATH_BINARY_FUNCTIONS[path]
matching_events = matching_events subtract intersect
BREAK-UP(intersect, group_paths [ path, (path+1))
if matching_events is not significant

return

append 1 column to PATH_LINK_MATRIX
for all i [J group_paths
PATH_LINK_MATRIX[ i, numOfColumns(PATH_LINK_MATRIX)] = 1

Figure 3-5: Pseudocode of the correlation algorithm.
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The input to the algorithm isthe NUMBER_OF PATHS, and the
PATH_BINARY_FUNCTIONS. For convenience, we assume that the paths are
numbered 1 through the NUMBER_OF _PATHS. Therefore, we index into the
PATH_BINARY_FUNCTIONS array with a number between 1 and
NUMBER_OF PATHS.

The algorithm recursively forms atree in a depth first manner. A group is associated
with each node in the tree. Associated with a group are a set of paths, group _paths, a
binary function, matching_events, and the lowest_candidate path. We attempt to add all
paths with a number greater than or equal to the lowest_candidate path number to the
group.

The procedure BREAK-UP is called on the node in the tree where we are progressing.
The group associated with this node is the current group. The BREAK-UP procedure

successively triesthe B, test between the binary function associated with the current

group, matching_events, and the binary function for all paths with a path number greater
than the lowest_candidate path. If thistest is significant at any point, we form a new
group.

The paths associated with the new group include all the pathsin the current group and
the path that was being tried when the P}, test returned asignificant result. Let us

assume that we were trying to add path i, when the R, test returned a significant result.

The binary function associated with the new group is formed via the intersection of the
binary function that is associated with the current group and the binary function of pathi.
We also subtract the binary function that we have just associated with the new group
from the current group’ s binary function. We call BREAK-UP next on this new group
where we have set the new group’slowest_candidate pathto (i + 1).

Control isreturned from the BREAK-UP procedure to the parent node in the tree in
two cases. Firgt, if the binary function associated with the current group is no longer
significant. Second, when we have finished trying to add all paths greater than or equal

to the lowest_candidate path number to the current group and the congestion events
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associated with the current group are significant. In this second case, we have identified
alink and therefore we add a column to the path-link matrix.

The agorithmisinitialized in the procedure CORRELATE by calling BREAK-UP on
initial groups. We form oneinitial group for each path, initializing the set of paths that
we associate with each initial group to contain that single path. The
lowest_candidate path is set to one more than the path number that is associated with
each initial group. We initialize the binary function for theinitial group that contains
only the path i by subtracting all of the binary functions that have a path number that is
lessthan i from path i’ s binary function. Thisis analogous to subtracting the new group’s
binary function from the current group’s binary function during a call to BREAK-UP.
The root node of the tree can be thought of as containing all of the congestion events on
all of the paths. By subtracting the binary functions of al paths that are numbered less
than i from the binary function of path i, we are subtracting al congestion events that we

have aready explained.

3.3.3 Time and Space Complexity

We analyze the running time of the second correlation algorithm, assuming that the

significant tests are always correct. Let:

M = number of monitors
P = number of paths=M x(M —1)
L = number of links

N = simulation length
The number of leavesin thetree that isformed is L and the number of nodes between the

root and aleaf isat most P. Therefore, there are O(PL) nodesin the tree. We can aso

associate at most a single intersection and subtraction operation with each node in the
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tree. The B, test takestime proportional to N. At each node in the tree we perform the

Pt test a most O(P) times. Therefore, we bound the running time of this algorithm as

O(P’LN).

3.3 Resultsand Discussion

The agorithm performed well when the inter_congestion_|length was large. However,
astheinter_congestion_|length was decreased towards zero, the algorithm did not
necessarily find the correct path-link matrix. Here, we only present the largest network
that was solved with the algorithm.

The reduced network has 30 monitors, 36 internal nodes, and 160 links. The
correlation algorithm solved for the correct path-link matrix in 20 seconds using 80
minutes of simulated traffic. The congestion_|ength was 10 seconds and the
inter_congestion_length was 5 seconds. The reduced network is shown in Figure 3-6 and
the discovered network in Figure 3-7. The two networks are identical except for 8 split
nodes that are mostly in the interior of Figure 3-7. When we show an example or data
about the topology discovering agorithms, the correlation algorithm always finds the
correct path-link matrix, unless otherwise noted. The split nodes are the result of the
matroid algorithm.
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Figure 3-6: Reduced network. 30 monitors, 36 interior nodes, and 160 links.

r12r113

Figure 3-7: Discovered network. Network discovered by the matroid and correlation algorithms.
Thisnetwork isidentical to the reduced network except for 8 split nodes. These split nodes appear as
two nodesthat are dightly offset. By comparing Figure 3-7 with Figure 3-6 the split nodes can be
identified.
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We have developed an algorithm that attempts to account for the difficulties of the
non-overlapping congestion model. The algorithm performed well when the
inter_congestion_time was large. However, asthe inter_congestion_time approached 0
the correct path-link matrix was elusive. Despite the algorithm’s shortcomings, the
algorithm begins to capture ideas of how to deal with overlapping congestion events that
are due to different queues and measurement uncertainty.

One problem with the algorithm is that the meaning of the P}, test is unclear, when
one of the binary functions is the result of intersected and subtracted binary functions.
Another problem is deciding when the R, test is significant and when a significant

number of congestion events remain in abinary function.

The subsequent network model has no measurement uncertainty. Instead, we focus on
the difficulty that is caused when queues simultaneously congest. Thus, we isolate one of
the difficulties of this network model.
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Chapter 4

Overlapping Congestion in Discrete Time

The overlapping congestion in discrete time network model both simplifies and
complicates aspects of the non-overlapping congestion network model. We introduce the
overlapping congestion in discrete time network model in section 4.1. Section 4.2
presents a probability framework that forms the basis for the algorithm that is presented

in section 4.3. Finally, in section 4.4, we provide results and discussion.

4.1 Network Modd

In this network model, time is divided into discrete intervals. Thereis no input
gueuing at nodes, only output queuing. Therefore, there is a one-for-one correspondence
between queues and links.

In each interval, each queue either does or does not congest. The probability that a
gueue congestsin an interval isfixed at the same value for al intervalsand is
independent of al other queue congestion. Different queues may have different
probabilities of congestion or congestion rates. We assume that the congestion rate on
each link is greater than zero and that the congestion rate on the least congested link in
the network is known. When a queue congests during atime interval n, all paths that
traverse this queue are congested or high during timeinterval n. Therefore, apath pis
congested during the timeinterval nif and only if at least one queue on path p congests
during time interval n.

We can use a binary function to represent the congestion that occurs on a path over
time. Thisbinary functionis 1 intimeinterva nif the path is congested and O otherwise.

We refer to this binary function as a path’s end-to-end delay time series.
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This congestion model abstracts away some difficulties that we encountered in solving
the non-overlapping model. Most importantly, all paths that contain a congested queue
are all high smultaneously. There are no longer questions about whether or not
congestion istemporally related. Thus, the measurement uncertainty of the non-
overlapping model is no longer troublesome.

However, simultaneously congesting queues introduces new difficultiesin
determining the paths that traverse each link in a network. For instance, the sets of links
on two separate paths in a network may be digoint. However, queues on both of these
paths might congest simultaneously. Consequently, there would appear to be alink in the
network traversed by both paths. In order to begin to reason about this model, we
introduce a probability framework in the next section.

4.2 Probability Analysis

4.2.1 Observation Probability

An observation probability is defined as the probability that specific paths are or are

not congested. In order to formalize this notion, we introduce some random variables:

if link A\i ested at ti
x;\[n]=§) if lin llscong imen 4.1)
otherwise

Next, we define arandom variable that is 1 if at least one link on path p is congested

during interval n and O otherwise.

_ @ if OAOpsuch that x[n] =1
Yplnl = Ep otherwise (4.2)
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Now, we define arandom variable that takes on the value 1 if from among a certain set of
paths, some of these paths are congested, while the remaining paths in the set are not
congested:

3 yplnl =1 yg[n =0,y,[n] =1 y{n] =0

_ (4.3)
otherwise

Zp,a,r,é[n] =

Note that a path without a bar above it refersto a path that is congested while a path with
abar above it refers to path that is not congested. We introduce the observation
probability as:

Pﬁq,r,g =Pr{zpgrsnl =1] (4.4)

Welet P3 represent a general observation probability, where e isthe set of excluded

paths and i isthe set of included paths. A path that is excluded from the observation
probability is not congested and thus has a bar aboveit. A path that isincluded in the
observation probability refersto a path that is congested and does not have a bar aboveit.
A path that does not appear in the subscript of an observation probability isignored.

In order to be clear about the meaning of an observation probability, we imagine that
the end-to-end delay time series for pathsp, g, r, and s are as shown in Figure 4-1.

pathp: L [T1 /1 [ 1\ T 7T 1
pathq: 1 M mOlm T a1
pathr: [ B i i A 1 T
path s: r— /) 1\ Tt T S

1 5 10 15 6 25

Figure4-1: Calculating an observation probability. The binary functions of pathsp, g, r, and sare
shown. We have circled the times when pathsp and r are congested and paths g and sare not
congested. By dividing the number of timeswe have circled this event, 3, by the simulation length,

25, weestimate P - <.



An estimator of Pog sis:

S ) Zpgrs
(4.5)

Therefore, in the example of Figure 4-1, an estimate of Py g (s is 3/25 or0.12.

4.2.2 Trigger Probability

Estimates of the observation probabilities are cal culated from the time series.
However, these estimates are not informative asto individual link congestion rates. In
order to estimate individual link congestion rates, we introduce the trigger probability.

A path p consists of aset of links. If al of the linksin agiven network are contained
in the set U, then the complement of the set of links that constitute path p is defined as all
of those links contained in the set U and not in the set p. Werefer to this set of links,
denoted p, as path p's complementary links. The intersection of path p’slinks and path

g’'s complementary linksis also aset of links. Therefore, thinking of a path as a set of

links, we adopt the following notation:
pars=pngnrns (4.6)
We define arandom variablethat is 1, if thereis congestion on at least one link in the set

that is defined by the intersection of certain paths' links and certain paths
complementary links.

1 if atleast onelink in the set pqrsSiscongested at timen

arsln] = 47
Zpars(] %) otherwise (47
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Thetrigger probability is defined as:
Prt)aré = Pr[zpgs[n]] =1] (4.8)

We let Péi denote a general trigger probability. A path that isincluded in the trigger

probability does not have a bar above it and refersto the set of links on that path. A path
that is excluded from the trigger probability has a bar above it and refersto that path’s
complementary links. A path that does not appear in atrigger probability subscript is
ignored.

We assume that each link in the network is traversed by a unique set of paths.
Therefore, we characterize alink by specifying whether or not each path traverses that
link. Therefore, if there are n paths, then there are (2”-1)E|p0$i blelinks. Some of the
possible links are in the network and are true links, while some of the possible links are
not in the network and are false links.

Through the intersection of the sets of links referred to by included and excluded
paths, atrigger probability specifies a set of links that are truly in the network or the
empty set. Assuming that we have n paths and we include or exclude each path in a
trigger probability (we do not ignore any paths), then the trigger probability is fully
specified and must refer to an individual link. Thisindividual link could either be atrue
link or afalselink. If itisafaselink then the intersection of the sets of |inks referred to
by the included and excluded paths is the empty set. Thereare (2" —1) -

trigger probabilities that correspond to each of the possible links.

Assume that each link in the network congests with a probability greater than zero and
that we observe the network for an infinite amount of time. Also, assume that we can
calculate the value of al fully specified trigger probabilities. The trigger probabilities
that refer to true links would have a value greater than zero, while the trigger probabilities

that refer to false links would have avalue of zero. The fully specified trigger

" We do not consider the link that is not traversed by any path.
" We do not consider the fully specified trigger probability that excludes all paths.
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probabilities that refer to false links specify an empty set of links and therefore the
probability of congestion is zero. In practice, trigger probabilities are not necessarily
equal to their limiting value because of finite sample sizes. Although we do not observe
the trigger probabilities directly, we can relate the trigger probabilities to the observation
probabilities.

4.2.3 Relating Trigger Probabilitiesto Observation Probabilities

The sample network shown in Figure 4-2 has 5 monitors, 20 paths and 24 links. Let
us relate the trigger probabilities to the observation probabilities for paths p and g, as

shown.

Figure4-2: Relatingtrigger probabilitiesto observation probabilitesfor pathsp and g.
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Using the random variables that we have defined:

0
o

= Pr{zg gln] =1]
= Prlyp[n] =0,yq[n] = 0]
The probability that there is no congestion on either path p or path g is:

=Prio,[nf =0, [N =0,x) [n]=0,x) [N =0x) [n] =0,x) [n] =0,x [n].x) [n]=0]

Making use of the fact that links congest independently:

=Prlxy, =0 Pr[x) =0,x) =0,x) =0x) =0Fr[x) =0x) =0x) =0]

Finally, realizing that these three sets of links can be written as the following path

intersections, we have:
= (L Rig) (L Pha) (1~ P)

This equation relates an observation probability to three trigger probabilities. For two

paths, there are three trigger probabilities of interest: PY,, P[gq , and Prtlﬁ . Weareonly
interested in links that are on either path p or path q and therefore do not consider the
trigger probability, Pi;. Expressing the observation probabilities Pg and Pg in terms of

the three trigger probabilities of interest yields two more equations, giving us atotal of

three equations in three unknowns:
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Po% = (1- Pl )(1- Pl )(1- PLy) (4.9)
© = (1-PL,)(1-PL) (4.10)
P2 =(1-P)L-P5,) (4.12)

We refer to equations (4.9), (4.10), and (4.11) as the 2-path equations. The form of
the 2-path equationsis similar to equations derived by Ratnasamy and McCanne [17].
Using the notation introduced here, the Ratnasamy equations can be written as:

P = Phg + (1= Piy) PP (4.12)
PS: = (1= Pig)Ps (1-P5y) (4.13)
RSy = (1= Rig) (1~ Pyg) Py (4.14)

The 2-path equations differ from the Ratnasamy equations in an important respect.
Although, observation probabilities are only on the | eft-hand sides and trigger
probabilities only on the right-hand sides of both sets of equations, the 2-path equations
only involve observation probabilities that are the result of an absence of triggering
events. In the Ratnasamy equations, observation probabilities reflect both the absence as
well as a presence of triggering events. The right-hand sides of equations (4.9), (4.10),
and (4.11) only multiply together inverse trigger probability terms that are of the form:

(1- PL). Ontheother hand, the Ratnasamy equations contain terms of the form (1 - P%)
and (P, ) combined in a more complex manner. Although the model used in deriving the

2-path equations differs from the model used by Ratnasamy, the trigger probabilities are
equival entE!
The 2-path equations are solved for the trigger probabilities as follows. The terms

Py and P5, are solved for by dividing equation (4.9) by equations (4.11) and (4.10),

" A proof of the equivalence of the trigger probabilitiesis found in the Appendix.
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respectively. Theterm B, is obtained by substituting the values of Pgﬁ and qu into

equation (4.9). The solved trigger probabilities are:

SR 4.15
pq — E ( . )
q
Po_
—1__Pq
Pl =1= 5 (4.16)
p
Pt =1- _P{,’ i (4.17)
pq po )

Assumethat all of the linksin Figure 4-2 congest at a rate greater than zero and the
network is observed for an infinite amount of time. If any of the three trigger
probabilities defined by equations (4.15), (4.16), and (4.17) are greater than zero, then we
have not necessarily discovered an individual true link. Instead, some of these trigger

probabilities might refer to a set of consecutive links. For instance, Pg,a refersto the

probability of congestion on at least one link of links L1, L3, L4, and Ls, whiIePTgq refers

to the probability of congestion occurring on at least one link of links Lg, L7, and Lg. The

term Pt , however, corresponds to just one link, L,. Therefore we could make the

pq’

following statement:
Plq =Prlx,, =1 (4.18)

Thus, we have related atrigger probability to an individual link congestion rate.

Since we do not know the network topology a priori, we can not necessarily equate a
trigger probability that is not fully specified with the congestion rate on an individual
link. We must either include or exclude every path in atrigger probability in order to
specify an individual link. However, anon-zero trigger probability that is not fully
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specified must refer to at least one true link. A trigger probability that has a non-zero
value and ignores some pathsis atrue lead, while atrigger probability that has a value of
zero and ignores some pathsis afalse lead.

4.2.3.1 3-Path equations

We now extend the 2-path equations to three paths. Writing the equations in 3 sets
according to the number of paths excluded by the observation probability on the left-hand

side of the equation yields:

Pf?ﬁ =@1- P[thr)(l_ Prt)cf)(l_ Prt)ar )L~ Pfthr)(l_ Prtﬁ)(l_ Pft)qf )L PftJar) (4.19)
P = A= Fig) A~ Fog )1~ R )~ R )~ R ) A~ i) (4.20)
Pg: = (L= Plq )L Pl M1 Rl )L~ Pl )L~ Py )AL Pl ) (42
P% =(1- Prgqr )A- quf )= Ppt)ar )a- Pft)qr )A- P%qf )A- P%)ﬁr ) (4.22)
PP = (L= Pl (1= Pl )(1~ P )1 Pir) (423)
Po = (1-Pi, )1~ Pl )1~ PL, )1~ PLy) (4.24)

0 = (1~ Pl )A- Pl )= P, )A-PL,) (4.25)

We have written seven independent equations in the seven unknown trigger probabilities
of interest. The left-hand side of each equation contains an observation probability that
only excludes paths. The right-hand side of each equation contains only fully specified
inverse trigger probabilities that contradict the observation probability that is on the |eft-
hand side. A trigger probability contradicts an observation probability if the trigger
probability includes a path that is excluded by an observation probability.
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We solve for the 7 trigger probabilities in order from the greatest number of excluded
paths to the least number of excluded paths. A possible solution order for the trigger

probabilitiesisthus Py followed by Py, Piy s Pogr s Pige s Pogr» and finally RS, . We

ar *
refer to these trigger probabilities as trigger probabilities (1) through (7), respectively.
Solving for trigger probabilities (1), (2) and (3) involves dividing equation (4.19) by

equation (4.22), (4.21), and (4.20), respectively. For example, we solve for P%ar as:

t = PT?W
Pl =1- = (4.26)

Next, we solve for the three trigger probabilities that exclude one path and include two
paths. The procedure is analogous for al three of these trigger probabilities, and

therefore we only solve for one of these trigger probabilities, P

%qr - Dividing equation

(4.19) by equation (4.23):

P A=Po =P Y= P (1~ P ) A=Po (1~ Py ) (4~ Py

Thus,

Poar
oo = (1= Py )1~ P (L= Pl
p

Solving for the trigger probability Prt,qr :

) (4.27)

P 1
Por =1= (-2
o Py (1= Por )1~ Pogr)
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Pt

%o 1S Written as afunction of observation probabilities and trigger probabilities that

have already been computed. Finaly, we solve for Bf,

by substituting all of the
previously solved trigger probabilities into equation (4.19). Note that we could have
solved for trigger probabilities (1), (2), and (3) in any order, since each of these trigger
probabilities only depends upon observation probabilities. We could also solve for
trigger probabilities (4), (5), and (6) in any order because these trigger probabilities only

depend on observation probabilities and the trigger probabilities (1), (2) and (3).

4.2.3.2 n-Path Equations

We can generalize the path equations to the case of n paths. We write (2"-1)
independent equations for the (2"-1) trigger probabilities of interest. The left-hand side of
each equation contains one observation probability that only excludes paths. Thus, the
(2"— 1) subsets of n excluded paths (we ignore the empty set), constitute the | eft-hand
sides of the equations. The right-hand side of each equation multiplies together fully
specified inverse trigger probability terms that contradict the observation probability that
ison the left-hand side of the equation.

We generalize the solution technique used to solve the 3-path equations to solve for an

arbitrary trigger probability, PL . Intheterm PL , Eisthe set of excluded pathsand | is

the set of included paths and |I| +|E| = n. We solve for the trigger probabilitiesin order

from those that have the greatest number of excluded paths to those that have the least

number of excluded paths. Therefore, when solving for the trigger probability P, we
assume that we aready have the values for all of the trigger probabilities that exclude
more than |E| paths. In solving for P , we consider two of the (2"-1) equations—the

master equation and the specific equation.
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Let N be the set of all paths. The master equation hasPg on its |eft-hand side

(equation (4.19) isamaster equation for n = 3). The right-hand side of the master
equation multiplies together all of the fully specified inverse trigger probability terms
because all of the fully specified trigger probability terms contradict the observation

probability, PS. The specific equation, used in solving for Pél , hastheterm P2 onits
left-hand side. The right-hand side of the specific equation only multiplies together fully
specified inverse trigger probability terms that contradict the observation probability, P2.

We classify the fully specified inverse trigger probability terms in both the specific and

master equation into three classes. Using P asageneral trigger probability, the three
classes of terms are: | <|E|, or class 1, |[¢ =|E|, or class 2, and | >|E|, or class 3.

In these terms, the master and specific equations have the following form:

Master equation:
pe = (@-PL)..a-PL) -(1—Pé)(1—Pé)...(1—P%I) * (1-PL)..a-PL)
- _J — _/ — J/
P ste<[E P st.|d=[g P st.|d>[g
Specific Equation:
PR = (1-R)A-F)-. *(1-P5)A-Fy)-. *(1-P5)A-Fg)-.

~— J [} y
PLstld<|E P stlg=|Eexcept@-PL) PYstld>[EandinEzD

hd

All trigger probabilitiesin class 1 are included in the specific equation. For all of the

trigger probabilitiesin class 1, no matter how the |d excluded paths are chosen there
must be at least one path in the set E that isnot in the set e. Therefore, thereis at least

one pathintheset Ethatisasointheseti. Thus, al termsin class 1 contradict P% and
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must be included in the specific equation. All termsfrom class 2 are also included,

except for theterm Pf, . Theterm P, does not contradict P2. However, all other terms
in class 2 contradict P2 because there is no way of picking i without including at least

one path that isin E. Finaly, it is more difficult to generalize about the nature the terms
included from class 3. However, we again include only those trigger probabilities from

class 3 that contradict the observation probability, P2.
Solving for PY, involves dividing the master equation by the specific equation,

yielding the quotient equation.

Quotient Equation:

po
N . (1-pPL «(1-PL)..aA-Pt
= a-PL) (1-PL)..a-PL)
E
all terms cancel only P%I remains PL st|g>|Elandin E=O

In both the master and specific equation, class 1 terms are identical and therefore there
are no terms from class 1 in the quotient equation. The terms from class 2 are identical in

both the master and specific equations, except the term (1- P, ), which isin the master

equation and not in the specific equation. Therefore, the only term from class 2 in the

guotient equation is. (1- Pél ). Finally, the master equation includes all of the trigger

probability terms from class 3, while the specific equation includes only those terms from

class 3 that contradict the observation probability, P2. Therefore, the quotient equation

contains only those trigger probabilities from class 3 that do not contradict the

observation probability, P2. However, we assume that we have aready solved for all

trigger probabilities where | > |E| and thus we can solve for P, .

We write the general form of atrigger probability as:
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S containsall P, such that|g>|E|andin E=0 (4.28)

This general trigger probability formula appliesto al of the trigger probabilities,
except for the trigger probability that does not exclude any paths. We represent a general

trigger probability that does not exclude any pathsas P!, where |I| =n. Thevalueof this
trigger probability is obtained directly from the master equation. We substitute the values
for al of the trigger probabilities in the master equation and then solve the equation for

PIt . The general form of the trigger probability that does not exclude any pathsis:

] d

O po [l
Pt =1- 0O N Oscontainsal PL such that|¢ >0 (4.29)
O H(l—Péi)D

Ef%i S @

We now turn to the algorithm that makes use of these trigger probabilities.

4.3 Algorithm

It is not computationally feasible to compute all of the fully specified trigger
probabilities. For example, in a network that has 10 monitors, there are 90 paths and thus
2% fully specified trigger probabilities. The total number of trigger probabilities grows
exponentially in the number of paths.

We significantly reduce the number of trigger probabilities that need to be calculated
by making use of true and false leads. Theideaisto start by calculating the two trigger
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probabilities that ignore all paths except for one: Ptand PL. If either of these trigger

probabilitiesis non-zero, or atrue lead, then we add path b as both included and excluded
to both of these trigger probabilities. Assumethat P and P! aretrueleads. Thus, we

calculate: Py, Py, Py, and Py, Now, assumethat P, Py, and PL, aretrue leads,
but Py, isafalselead. Wecalculate Py andPy_ for Py, Py and Pl for Py, and
Ps.and PL_for PL.. However, we do not add any paths as either included or excluded

to Py

In this manner, the algorithm forms a binary tree (see Figure 4-7), where we calcul ate
trigger probabilities that have excluded and included atotal of d paths at depth d. Each
horizontal level in the tree corresponds to solving the d-path equations. If there are k true
leads at depth d, then we calculate (2K) trigger probabilities at depth (d + 1). Thus, we
prune the complete binary tree by following true leads and ignoring false leads.

By not calculating certain trigger probabilities, we no longer solve the full set of
d-path equations at depth d. Trigger probabilities that are not calculated are
approximated as zero. In the path equations, this corresponds to setting the inverse
trigger probability terms, (1- PL), to 1. Thus, we start with the full set of path equations

at each level, set some of the (1 - P) termsto 1, and then solve what remains.

Since the simulation is run for afinite length of time, the estimates of the observation
probabilities have not necessarily converged to their limiting value. Therefore, setting
many of the trigger probabilities to zero is an approximation. Thus, the calculated values
for the trigger probabilities are approximations as well.

A trigger probability that has avalue that is greater than zero is not necessarily atrue
lead because trigger probabilities are only approximations of their limiting values.
Therefore, instead of using zero as a decision threshold, we choose another value, the
pruning_threshold. We redefine atrue lead as atrigger probability that ignores some
paths and refersto at least one true link and afalse lead as atrigger probability that
ignores some paths and refers to the null set.
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The pseudocode of the algorithm is divided into two procedures. The procedure
CALCULATE-TRIGGER-PROBABILITY, in Figure 4-3, calculates the value of atrigger
probability according to equations (4.28) and (4.29). Figure 4-4 contains the procedure,
CORRELATE, which captures the algorithm that was just described.

Input:
t
PE|
SIGINIFICANT_TRIGGER_PROBABILITIES
Output:

t
value of PEl

CALCULATE-TRIGGER-PROBABILITY () {
trigger_value = 1

if the set E is empty

observation_value = PTO

else

0
observation_value L'O
E

for Pé [J PREVIOUS_TRIGGER_PROBABILITIES
if in E=0
trigger_value = trigger_value X (1—PY,)

; prservati on_val ue%
trigger _ value

Figure 4-3: Pseudocode of the calculate-trigger-probability procedure.
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Input:
NUMBER_OF_PATHS
Output:

PATH_LINK_MATRIX

CORRELATE () {
next_triggers = {Pl Pt}
- 1’ 1

for d = 1 to NUMBER_OF_PATHS

triggers = next_triggers
set next_triggers empty
set significant_triggers empty

d=d+1

for P’éi L] triggers (successive P’éi 's are selected from the triggers such that |e|
monotonically decreases)

CALCULATE-TRIGGER-PROBABILITY ( Pfti , Significant_triggers)
if Péi > prunning_threshold

significant_triggers = Péi [ significant_triggers
if d <number_of paths
. _ . t t
next_triggers = next_triggers [J Péi d | Péia'
else
add a new column to the PATH_LINK_MATRIX

set rows indexed by the paths in the set e to 0 in the new column
set rows indexed by the paths in the set i to 1 in the new column

Figure 4-4. Psuedocode of the correlation algorithm.
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Figure 4-5: Sample network topology for demonstrating the correlation algorithm. Thetablein
Figure 4-5(b) identifiesthe path names. For example, path M ;-M s is path g.

We examine the algorithm’ s behavior on the network shown in Figure 4-5(a). Figure 4-
5(b) indicates the names of the paths. For instance, path q is the path from monitor M, to
M3s. The binary tree that might result from running the algorithm is shown in Figure 4-7.

The light-colored lines in Figure 4-7 indicate areas where that algorithm no longer
needs to search. At each level, the trigger probabilities are solved in order from most
excluded pathsto least excluded paths and not in the order that the trigger probabilities
appear. The surviving leaves of the tree are the trigger probabilities that refer to true
links. Here, we have successfully identified all 9 links and construct the path-link matrix
shown in Figure 4-6.

L, L, L Ly Ls Le L, Lg Lg
P 1 1 X X X X X X X
Q X X 1 1 X X X X X
R X X X X 1 1 X X X
S X X 1 X X X 1 X X
T X X X X 1 X X 1 X
U 1 X X X X X X X 1

Figure 4-6: Path-link matrix for the network shown in Figure 4-5.
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Figure4-7: Binary tree constructed by the correlation algorithm. Light-colored lines are branches
of the binary treethat the algorithm does not search down.
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4.3.1 Pruning_threshold

We now examine the pruning_threshold in more detail. At any depth in the binary
tree, there are some true leads and some false leads. We do not know which trigger
probabilities are true leads and which trigger probabilities are false leads. The
distribution of true and false leads at an arbitrary depth in the tree might look like Figure
4-8(a) or Figure 4-8(b):

false leads true leads fase leads true leads
AN b/ \NEIVAN
) °

Figure 4-8: Distribution of thetrue and falseleads. 1n 4-8(a) thetrue and false leads overlap, while
in 4-8(b) the true and false leads could be separated with a threshold.

The distributions in Figure 4-8(a), can not be separated with a threshold value. However,
the distributions in Figure 4-8(b) can be separated with athreshold value.

The pruning_threshold is based on the assumption that each link in the network
congests at arate that is greater than zero. If alink congested at a rate of zero, then we
would have no way of separating true leads from false leads. Therefore, the model
assumes a minimum link congestion rate that is greater than zero.

Additionally, we assume that the rate of congestion on the least congested link in the
network is known. Trueleads have avaluethat is at |east the estimated rate of
congestion on the least congested network link, since atrue lead refersto at least one true
link. Aspreviously discussed, false leads are approximately zero. Therefore, alogical
value of the pruning_threshold is somewhere between zero and the minimum link
congestion rate.

A poorly set pruning_threhold causes severa difficulties. If the pruning_threshold is
set too low such that there are false leads to the left and right of the pruning_threshold,
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then false leads are included in the trigger probability calculations. Including false leads
in the computation may improve the estimates of the trigger probabilities as we show in
chapter 5. However, including false |eads increases the running time of the algorithm and
we still have the problem of separating the true links from the false links at the last level.
Another problem arisesif the pruning_threshold is set too high such that there are true
leads to the left and right of the pruning_threshold. If thisoccurs, then at least one true
link will be absent from the path-link matrix. We would like to detect if the
pruning_threshold is poorly set or if true and false leads overlap asin Figure 4-8(a).

We start by treating values that are greater than the pruning_threshold as belonging to
one distribution and the values that are less than the pruning_threshold as belonging to
another distribution. We refer to the values that are greater than the pruning_threshold as
distribution 1 values and the values that are less than the pruning_threshold as
distribution 2 values. We define the mean and standard deviation of distribution 1 and
distribution 2 as p; and o;, and p, and o,, respectfully. We define n using the

following two equations:

T=H,—N0, (4.30)
T=Hp, +N0, (4.31)

A high value of n suggests that the two distributions are well separated, while alow
value of n might suggest that the pruning_threshold is poorly set or that the true and
false leads overlap asin Figure 4-8(a). An assessment of n asan indicator of well

separated distributions is found in section 4.4.1.

4.3.2 Time and Space Complexity

Let:
M = number of monitors
P = number of paths=M x (M —1)
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L = number of links

N = simulation length

Assuming that the algorithm always follows true leads and ignores false leads, the
analysis of the algorithm’ s running time is straightforward. The depth of the binary tree
that the algorithm exploresis P. At depth d in the tree, we add path d as both excluded
and included to all trigger probabilities that are above the pruning_threshold at depth (d —
1). When the agorithm starts, disset to 1. The algorithm increases d by one in each
iteration until d = P.

At any depth in the search tree, there is at most one true lead for each true link. The
number of falseleads at level d is at most the number of true leads at level (d - 1).
Therefore, the width of the tree is O(L), and the number of nodesin the treeis O(LP).

At each node in the tree, we calculate atrigger probability as detailed in the
CALCULATE-TRIGGER-PROBABILITY procedure. Two observation probabilities are
required. The time required to calculate an observation probability is O(N) (using the
memory model discussed below). We aso need to search through each link as specified
in the CALCULATE-TRIGGER-PROBABILITY procedure. Thisrequires O(L) time. Thus,
the time required at each node is: O(N+L). Therefore, the time complexity of the
algorithm is: O(LPN+L?P).

We implemented severa different memory models for this algorithm that trade off
memory and time. A rather straightforward memory implementation produces the O(N)
bound for calculating each observation probability. Notice that the algorithm only
requires observation probabilities that exclude al paths. Therefore, to calculate an

arbitrary observation probability, P9, we start by inverting all of the binary functions of

the pathsthat areinthe set e. Thisinvolvesalogical not, since the binary functions are
represented as astring of 0'sand 1's. Next, we intersect the inverses of all of the binary
functions using the logical binary operator, and. The result of this operationisasingle

binary function that is P?’ssignal. Finally, we obtain the value of P2 by adding up the

number of 1'sin P2’ssignal and dividing by the ssmulation length, N.
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We associate a signal with the current leavesin the binary tree. Thus, it is easy to
compute the signal and the value of the observation probability for the children of these
leaves. At depth d, we create aright-child by adding path d as excluded and a left-child
by adding path d as an included to the observation probability of aleaf node. When we
add path d as excluded to the observation probability of aleaf node, we need only
intersect the inverse of path d's binary function with the signal that is associated with the
leaf node. This operation resultsin anew signal. The value of the observation
probability for the right-child is calculated directly from the new signal. Creating a left-
child involves copying the signal and value of the observation probability of the leaf node
directly to the child node. Therefore, the time required to calcul ate an observation
probability at each node is O(N).

Under this memory model, O(LN) space is required to store the signals and O(PN)
space for storing the original observations. Therefore, we conclude that this memory

model requires O(N(P+L)) space.

4.4 Results and Discussion

In section 4.4.1, we explain how the pruning_threshold was set and propose a method
for setting the pruning_threshold that does not assume knowledge of the congestion rate
on the least congested network link. We also briefly examine the reliability of 1.

Section 4.4.2 explores the running time of the algorithm. Section 4.4.3 shows how the
algorithm performed when the link congestion rates were varied, and section 4.4.4
presents the largest networks that were solved. Finally, section 4.4.5 summarizes our

findings and points the way towards the subsequent network model.

4.4.1 Pruning_threshold and n

If the observation probabilities converge to their limiting values, then false leads are
zero and true leads have a value that is at |east the rate of congestion on the least
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congested link in the network. We assume that the minimum congestion rate among all
of the linksin the network is known and set the pruning_threshold at 40% of this
congestion rate. We choose 40% because it is natural to set the pruning_threshold
approximately halfway between the minimum link congestion rate and zero, while
preferring to include false links rather than excluding true ones. For example, if the rate
of congestion on the least congested network link is .1%, then the pruning_threshold is
set at .04%.

In general, however, one does not know the minimum link congestion rate in a
network. We propose the following modification to the algorithm that does not assume
knowledge of the minimum link congestion rate. After we have calculated the trigger
probabilities at a certain depth, we sort the calculated trigger probability values. Then,
we establish the false lead distribution with the first few of the lowest trigger probability
values and the true lead distribution with the first few of the highest trigger probability
values. We then alternately pick the remaining highest and lowest trigger probability
values and assign them to the closer of the two distributions. The number of standard
deviations away from the mean of each distribution could be used as a measure of

distance. Thevalueof n might again be used to determine if we are in troubled case.

We only tested the algorithm using a pruning_threshold that was set a priori. Given
this method of setting the pruning_threshold, we briefly investigated n asto its ability to
indicate when the pruning_threshold was poorly set and when the distributions of true
and false leads overlapped. We do not have any conclusive data about the effectiveness
of n, but in varying many simulation parameters, we found that avalue of n that was
greater than 5.5 always yielded the correct path-link matrix. Asasanity check, we also
verified that as the ssmulation was run for longer lengths of time the value of n

increased.
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4.4.2 Running Time

In assessing the running time of the algorithm, we use n as aproxy for the quality of
the result. Since we are interested in the topology of the network, increasing the length of
the simulation increases the running time of algorithm while possibly leaving the answer
unchanged. Therefore, we use n to normalize the results.

Previously, we formulated the running time of the algorithm as O(LPN+L?P). Here,
we investigate how the simulation length, N, increases as a function of the size of the
network for constant n. The most descriptive characteristics of the size of anetwork are
the number of links and the number of paths.

In the log-linear plot shown in Figure 4-9, the simulation length, N, isroughly a
straight line with respect to the number of links. Thus, the length of the ssimulation time

required to solve for the path-link matrix is exponential in the size of the network.
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Figure 4-9: Simulation length asa function of the number links. The congestion rate on all linksis
10%.
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A good fit for the simulation length as a function of the number of links and pathsin the

network is:

N=e-*P (4.32)

The R? value of the OL S fit of this function was .9937, suggesting that this functional
form explains almost all of variation in the simulation length [22].

In Figure 4-10, we plot the running time of the correlation agorithm and the network
simulator as afunction of the number of linksin the network. The time required for both

programs grows exponentially as we would expect.
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Figure 4-10: Running time of the correlation algorithm and the network simulator asa function of
the number of links. Timeismeasured in seconds. The congestion rateon all linksis 10%.
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4.4.3 Varying theLink Congestion Rates

In assessing the running time of the algorithm, all links were congested at the same

10% rate. In this section, we explore the convergence time of the correlation algorithm

when the link congestion rates varied. For all data pointsin Figure 4-11, we use the

network shown in Figure 4-12.

Congestion Simulation Simulation Correlation
rate length n time (sec.) time (sec.)
.20 15,360,000 3.9 1,096 10,294
15 960,000 5.5 112 72
10 64,000 51 4 8
.05 9,600 5.3 1 6
.01 3,200 4.7 1 5
.005 6,400 4.7 1 5
.002 19,200 5.4 2 6
.001 25,600 4.7 2 7
.0001 288,000 4.7 17 33
.00002 1,152,000 5.3 68 124
.01-.05 9,600 2.3 1 5
01-.1 320,000 2.2 21 27
.01-.15 1,920,000 2.3 124 150
.0001-.001 320,000 2.0 20 34
.0001-.005 960,000 2.1 58 106
.0001-.01 3,200,000 17 197 1964

Figure4-11: Varyingthelink congestion rates. Table showing the effects of varying the link
congestion rates on the correlation algorithm’s convergencetime. A single number for thelink
congestion rate meansthat all linksin the network congested at that rate. A rangefor thelink

congestion rate meansthat the linkswere congested a rate that was chosen unifor mly from the range.
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Figure 4-12: Reduced network used for varying thelink congestion rates. There are 10 monitors, 16
interior nodes, and 64 links.

There are afew interesting trends to note in Figure 4-11. First, when all links are
congested at the same rate, a 1% congestion rate produced the shortest convergence time.
The convergence time of the correlation algorithm increases exponentially as link
congestion rates are increased above 1% but increases linearly as link congestion rates
are decreased below 1% El As the congestion rate increases above 1%, the probability that
two or more links congest simultaneously increases relative the probability that only a
single link congests. Therefore, alonger simulation length is required to sort out all of
the events. Similarly, asthe link congestion rate decreases below 1%, it becomes more
and more likely that no links in the network congest. Thus, alonger ssmulation length is
required to observe congestion in the network.

A range for the congestion rate means that each link in the network selects its own

congestion rate uniformly from thisrange. Note that the typical value of ndecreases.

Thisis dueto the fact that the true link congestion rate distribution is spread out and

" We demonstrated this relationship with a plot (not shown) similar to the one shown in Figure 4-9.
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therefore has a high standard deviation. As the congestion rate range is increased, the

simulation length increases exponentially.

4.4.4 |Largest Solved Networks

The largest network we solved when all links congested at a 10% rate is shown in
Figure 4-13. Thisreduced network has 20 monitors, 29 interior nodes, and 100 links.
The network discovered by the correlation and matroid algorithms is shown in Figure 4-
14. Thetwo networks are identical, except for three split nodes (from the matroid

algorithm) in the interior of the discovered network.
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Figure 4-13: Reduced network. Thereare 20 monitors, 29 interior nodes, and 100 links.
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Figure 4-14: Discovered network. Network discovered by the matroid and correlation algorithms.
Thisnetwork isidentical to the reduced network except for 3 split nodes. The simulation length, N,

was 6.4 %106 and the correlation algorithm took approximately 10 hours.

We present the largest reduced network we solved for in Figure 4-15, where al links
are congested at a1% rate. The reduced network consists of 50 monitors, 61 interior
nodes, and 219 links. The network discovered by the correlation and matroid algorithms

isidentical to the reduced network, except for five split nodes. The discovered network is
shown in Figure 4-16.
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Figure 4-15: Reduced network. Thereare 50 monitors, 61 interior nodes, and 219 links.

: ' afaz

Figure 4-16: Discovered network. Network discovered by the correlation and matroid algorithms.
Thenetwork isidentical to the reduced network except for 5 split nodes. The simulation length, N,

was 5% 10° and the correlation algorithm took approximately 22 hours.
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445 Summary

The overlapping congestion in discrete time model isolates the issue of simultaneously
congesting queues. We developed a probability framework to reason about the model
and developed techniques to solve for certain quantities in an efficient manner. We
found that the algorithm always found the correct path-link matrix as long as the
simulation length was increased sufficiently. In the next chapter, we return to a network
model that is similar to that of chapter 3. Measurement uncertainty is added back to the
model, and we allow queues to congest simultaneoudly.
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Chapter 5

Overlapping Congestion

In this chapter, we consider the third and final network model, overlapping
congestion. This network model combines aspects of the first two network modelsand is
the most complex. In section 5.1, we present the details of this network model. Next, we
present the correlation algorithm that we use to solve the model in section 5.2. We
provide results and discussion in section 5.3.

5.1 Network Model

The network model is based upon the non-overlapping model. However, in chapter 3,
only one queue receives packets at any time. Here, we allow any number of queuesto be
simultaneously congested with packets asin chapter 4. Specifically, each queue
alternates periods of activity, when it receives packets, with periods of idleness, when it is
not receiving packets. The duration of an active period is uniformly distributed between
0 and the congestion_length, while the duration of anidle period is uniformly distributed
between 0 and the inter_congestion_length. The duration of both theidle and active
periods are chosen independently. Asin the non-overlapping network model, the
congestion packets are removed from the network after they have been served. Therate
that queues are injected with packets during an active period is again chosen from a
heavy-tailed distribution as in chapter 3. All of the data collection and network aspects
are the same here as they were in the non-overlapping network model.

Asin chapter 3, athreshold is applied to the end-to-end delay time series to create a
continuous-time binary function for each path. A sample of some binary functionsis

shown in Figure 5-1.
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Figure5-1: Sample of several paths binary functions. In thissimulation the congestion_length was
10 seconds and theinter_congestion_length was 100 seconds.

5.2 Algorithm

We use the algorithm from the previous chapter with minor modifications to adapt it
to continuous time. We also now set the pruning_threshold to alow value, instead of
between zero and the smallest link congestion rate as was done in chapter 4. Setting the
pruning_threshold in this way leads to the inclusion of some false leads into the path
equations, which we find improves the estimates of the trigger probabilities. Including
false leads in this manner means that we carry around all of the true leads and some of the
falseleads. Thus, we may be able to separate the true and false leads at some later point.
However, if we set the pruning_threshold too high, we might exclude some true leads
and there would be no obvious way of recovering.

We are not completely sure why setting the pruning_threshold to alow value allows
the algorithm to succeed. Onereasonisthat if the pruning_threshold istoo high, then we
might prune away true leads. We also reason that in afinite run length, the observation
probabilities and the trigger probabilities are not equal to their limiting value. Therefore,
although false leads are zero in the limit, in practice they may be better estimated as
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being non-zero. Thus, setting false leads to zero may add random noise into the system.
By including some false leads in the path equations, the number of nodes in the binary
tree formed by the algorithm is no longer easily bounded.

We include false leads in the calcul ations by setting the pruning_threshold just above
zero. Truelinks are separated from false links at the bottom level of the binary tree by
using a second threshold, the final_pruning_threshold. In Figure 5-2(a), we show how
the pruning_threshold is set at an arbitrary level in the binary tree, and in Figure 5-2(b)
we show how the final_pruning_threshold is set on the bottom level of the binary tree.

pruning_thresnold final_pruning_threshold

false leads true leads talse leads P true leads

avAN AN AN
| o(

(@
Figure5-2. Setting of the pruning_threshold and the final_pruning_threshold. In Figure 5-2(a) the
pruning_threshold is set just above zero. In Figure5-2(b), thefinal_pruning_threshold is set between
zero and the minimum link congestion rate.

b)

In practice, we set the pruning_threshold arbitrarily to 0.001. In these experiments,
the minimum link congestion rate was never set below 1%. Thefinal_pruning_threshold
IS set in the same way that the pruning_threshold was set in chapter 4. That is, we
assume that the minimum link congestion rate is known and set the pruning_threshold at
40% of thisrate.
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5.3 Results and Discussion

Tight asymptotic bounds of the algorithm’s time complexity are no longer apparent
due to theinclusion of false leads. We plot the running time of the algorithm as a

function of the number of linksin Figure 5-4. We again use | asaproxy for the quality

of aresult. Figure 5-4 shows the running time of the algorithm for n = 4.
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Figure5-3: Running time of the correlation algorithm, in seconds, as function of the number of
links. N =4. For all smulations, the congestion_length was 10 seconds and the

inter_congestion_length was 100 seconds.

In thislog-linear plot, the running time is roughly a straight line with respect to the
number of links. Thus, the length of the simulation time required to solve for the path-
link matrix appears to be exponential in the size of the network. Factors that caused the
algorithm to take longer to converge included increasing the congestion_length relative to
the inter_congestion_length and increasing the individual link congestion rates.

In Figures 5-4 and 5-5, we plot the histogram of the values of fully specified trigger

probabilities for two different simulation lengths. The simulation length used to generate

78



Figure 5-4 was twice as long as the simulation length used in Figure 5-5. The network
used for these plots contained 10 monitors and 54 links. The congestion_length was set
at 10 seconds and the inter_congestion_length was 100 seconds.

In Figure 5-4, the estimated congestion rates on the false links are tightly centered
about 0, and afinal_pruning_threshold set at 0.04 would successfully separate the true
links from the false links. However, in Figure 5-5, the congestion rates of the false links
and the true links overlap, and therefore the final _pruning_threshold can not be set to
separate the two distributions.

1868

188

NEINAl

Figure5-4: Histogram of separated fully specified trigger probabilities. The highest falsetrigger
probability islessthan 0.02, while the lowest truetrigger probability isgreater than 0.04.
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Figure 5-5: Histogram of overlapping fully specified trigger probabilities. Here, thetrueand false
trigger probabilities overlap and thereforethey can not be separated with a threshold.

The agorithm successfully solves for the path-link matrix, despite the two aspects that
make this network model difficult to solve. The first aspect, simultaneously congesting
gueues, is addressed using the probability model from chapter 4. The second aspect is
that paths that share a congesting queue may not see the effect of this congestion
simultaneously. Although the algorithm is not specifically designed for this aspect, we
conjecture that this aspect only causes a small amount of noise. Thus, we find that the
probability model from chapter 4 is successful in solving for the path-link matrix, if we
include a number of false leads.

However, we do not know if the algorithm is successful over the full range of possible
parameter settings. For example, it isnot clear that the agorithm will aways be
successful as the congestion_length is increased relative to the inter_congestion_length.
We also do not fully understand how the inclusion of false leads allows the algorithm to

solve for the correct path-link matrix.
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Chapter 6

Conclusions

Based upon the idea of correlating paths' end-to-end delay times, we have developed
topology discovery algorithms for three increasingly complex network models. Path end-
to-end delay measurements on areduced network serve as input to the correlation
algorithm. The correlation agorithm solves for the path-link matrix, which is used by the
matroid algorithm to reconstruct the topology of the network.

In the first network model, non-overlapping congestion, only one queue is congested
at atime by having packetsinjected into it for afixed length of time. These packets are
removed from the network after they have been serviced. The correlation algorithm first
applies athreshold to the paths' end-to-end delay time series, creating binary functions.
A pair-wise comparison test that indicates whether or not two paths share a common
congestion cause is used to construct groups of paths with acommon congestion cause.
Using a systematic construction, these groups correspond to links upon termination. The
algorithm performed well. However, as the time between successive queue congestion
approached zero, the correct path-link matrix was not always obtained. (Subsequent
correlation algorithms were able to solve for the correct path-link matrix in this model
even when the time between successive gueue congestion was zero. Thus, we view the
first correlation agorithm as a stepping stone for the subsequent correlation algorithms.)

We identified two causes of incorrect answers for the first correlation algorithm that
motivate the subsequent algorithms. First, congestion in two paths delay time series that
is caused by the same congesting queue is not necessarily temporally identical. Second,
congestion in a path’ s time series occurs when a queue on that path is heavily occupied.

Thus, even though only one queue is injected with packets at any given time, two queues
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might simultaneously be the source of path congestion. The next network model that we
develop isolates this second cause.

Overlapping congestion in discrete time is the second network model. Queues
congest independently and thus multiple queues can congest simultaneously. If aqueue
is congested at time n, then al paths that contain that queue are also congested at time n.
Thus, apath is congested at timenif and only if at least one link on that path is congested
a timen.

We developed a probability model to solve the second network model. We introduced
atrigger probability that indicates whether a certain set of paths share acommon cause of
congestion. We solve for the trigger probabilitiesin an efficient manner and construct
the path-link matrix based upon the significant trigger probabilities.

We developed n, which measures the statistical distance between the true and false
fully specified trigger probabilities, to indicate the quality of a particular result. We
found that our ability to find larger and larger networks was limited only by time. There
was no numerical instability. However, over many randomly generated network
topologies, the time complexity of the algorithm was exponential in the size of the
network.

Finally, the third model, overlapping congestion, combines aspects of the first two
network models. Similar to the first network model, this model is set in continuous time.
However, queues congest independently and for random periods of time. Thus, queues
can be simultaneously injected with packets as in the second network model, and
congestion measurements are not necessarily temporally identical asin the first network
model.

Adapting the second algorithm to continuous time and adjusting the setting of some
parameters solved the third network model. Asin thefirst algorithm, weinitially
threshold the paths' end-to-end delay time seriesto create binary functions. If queues
were congested for a short amount of time relative to not being congested, then the
correct path-link matrix was obtained. However, afull investigation of the conditions
necessary to obtain the correct path-link matrix must be left for future study.
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Making some aspects of the network models more realistic motivates much of the
future work that we now discuss. An unrealistic assumption that the correlation
algorithms use is that the minimum link congestion rate is known. We propose a possible
fix for this problem based upon clustering the trigger probabilities into two groups such
that the relative distance between the two groups is maximized in terms of the means and
the standard deviations of each group.

Another assumption that all of the network models are based upon is that queue
congestion occurs independently. In reality, thismodel is not necessarily realistic since
congestion is caused by traffic flows that traverse multiple links. Thus, we would be
interested if these (or other) correlation algorithms can cope with thisissue.

Modifying the way in which network topologies are generated would increase the
soundness of our testing methods. In our study, we have removed series and equivalent
links before using the correlation algorithm. However, a more robust testing method
would leave the series and equivalent links in the network. The correlation and matroid
algorithms should then output the corresponding reduced network.

An important area of future work is moving from real-world data to the binary
functions that are used by the correlation algorithms. We threshold the end-to-end delay
time seriesto create a binary function. However, we do not have a systematic way of
setting this threshold. Furthermore, it may be necessary to look at loss rates in order to
produce these binary functions. For example, in RED (or another non-FIFO) gqueuing
scheme, loss may be a better indication of congestion than delay. Although we have
focused on end-to-end delay measurements, the probability analysis from chapter 4 can
be formulated in terms of aloss model, where atrigger probability refers to the packet
loss rate on alink rather than its congestion rate. Thus, some hybrid method that

combines delay and loss data might prove necessary.
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Appendix

Here, we show that the expressions for the trigger probabilities derived by Rathasamy

and McCanne [17] are equivaent to the trigger probabilities derived from the 2-path

eguations. Here are Ratansamy and M cCanne’' s original equations and solutions for the

trigger probabilities:

P = Piq + (1~ Pq)PaqPoq

P5, = (1= Pi)Plg (L= Ply)

PSy = @ P~ Ppﬁ)P%

pa q

(o]
t Ppﬁ

N 1_(qu + PF(;q)

Pt = —qu
pq T 1 _
1- (P, +Pg)
pt = PeaPoa *+ PP * PoaPia + (Psa)? P
P
Poq + Pgq +Pog 1

The 2-path equations:

Py = (L~ Pl )L~ Pig) (1~ Pj,)
RS = (=P~ Pl

PY = (1= P~ Ply)

Solving the 2-path equations using the technique from chapter 4:

84

(A.1a)
(A.29)

(A.39)

(A.43a)

(A.5a9)

(A.63)

(A.1b)
(A.2b)

(A.3b)



> (A.4b)

pt = ﬁ
p po
q
Po
P%q =1 Fi): (A5b)
[
0 PO
Pt =1- ;Oq (A.6b)
pa

Now, we show that A.4b, A.5b, and A.6b are equal to A.4a, A.5a, and A.6a respectively:
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Since P, + Pg, + Pgy + Pgy =1, then:

PO
= Pa (A.49)
1-(Pgy +PY)

Similarly,
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P
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