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Abstract
The environment has emerged as an important determinant of the performance of the modern

chemical industry.  Process engineering in the 21st century needs to evolve to include environmental
issues as part of the design objectives, rather than as constraints on operations.

A frequently cited objection to the use of quantitative indicators of environmental performance in
product and process design is that the underlying data are too uncertain for the numbers to have any real
meaning.  This thesis demonstrates that explicit incorporation of uncertainties allows bounds to be
established on the confidence of decisions made on the basis of uncertain indicators.  The examples
provided show that large uncertainties in indicators used to assess environmental performance do not
necessarily imply uncertainty in decision-making.

A series of computer-aided decision making tools have been developed to decrease the barriers to
the use of environmental valuation functions in routine design activities.  These tools include: uncertainty
propagation of relative performance measures, a spreadsheet-based fate, transport and exposure model for
chemicals, an information content chart for assessing the quality of uncertain indicators, a screening
procedure to identify the most important structural and parametric uncertainties in multimedia exposure
models, a process by product input-output life cycle assessment method to generate correlated
distributions of unit environmental indicators, an extension of the deterministic equivalent modeling
method for the generation of spreadsheet based polynomial chaos expansion metamodels of process
flowsheet models, and a database for managing uncertain parameters used in environmental valuation
models.

Case studies are presented to help the reader in learning the use of the tools.  The tools are also
applied to an analysis of the U.S. toxics release inventory, in which confidence bounds are developed for
the trends in impacts and the contributions of industrial sectors and specific chemical compounds to
overall potential impact.

Although the tools were developed bearing in mind the need for methods to evaluate the
environmental performance of chemical process design alternatives, the ideas can be applied to any
decision context in which there are significant uncertainties in the parameters of the objective function.

Thesis Supervisor: Gregory J. McRae
Title: Bayer Professor of Chemical Engineering
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Chapter 1 Introduction
1.1 Thesis Statement

This thesis focuses on the development of systematic procedures for incorporating

knowledge and concerns about environmental impacts into the design of chemical processes,

recognizing and managing the uncertainties associated with the evaluation of potential

environmental impacts.  This dissertation aims to tackle the challenge of linking traditional

process design (modeling within the plant), with environmental assessment (modeling of the

interactions of a chemical process with the environment), while recognizing the diversity of

value judgements regarding the environment (building value models).

Several benefits can be expected from an explicit incorporation of environmental

objectives in chemical process design:

• Lower environmental impacts from new and retrofitted processes as compared with

processes designed only with environmental compliance in mind.

• Anticipation and avoidance of future regulations that could impact a process, since new

regulations are typically introduced years after knowledge regarding environmental hazards

first becomes available.

• Discovery of design alternatives with superior economic performance, since superior

environmental performance is often associated with materials and energy efficiency.

Typically a designer will consider a very narrow set of alternatives within the possible

universe of design alternatives.  Procedures that identify design features leading to

environmental problems, in conjunction with procedures that identify the major contributors

to process costs, should be useful in focusing the attention of process designers on a richer

set of design alternatives.

• Improved allocation of environmental protection resources within an organization that

operates chemical processes.

• Improved relations with the communities that implicitly or explicitly give a corporation the

license to build and operate chemical processes, since the major concerns of outside
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stakeholders can be incorporated into the environmental value models used to evaluate

designs.

The research problem examined here is a special case of the more general problem of

designing a system when the designer is uncertain about (but not indifferent to) the tradeoffs

among conflicting objectives, and about how to measure the extent to which an objective is met.

The procedures developed in this project should be applicable in many other multi-criteria design

settings.

1.2 Structure of Thesis
The thesis is organized into two parts.  The first part (Chapters 2 to 5) concentrates on the

design process itself.  Figure 1-1 shows a flow diagram for the activities in the design process.

Given a problem statement, design teams will generate alternatives, analyze them (perhaps

through the use of process models), and evaluate their merit.  Several iterations will be

undertaken (inner loop) until no further opportunities to improve the design are perceived within

the current problem framing.  The term problem framing is used here to refer to the set of

explicit or implicit decisions that set the scope for the design effort.  Sensitivity analysis can be

used to assess the impact of these decisions, and refine them if necessary (outer loop).  A

proposed design will emerge from this process once the design team is satisfied that no further

significant improvement opportunities are available to them within the time framework allocated

to the project.

Chapter 2 reviews the literature on design procedures for chemical processes that

explicitly consider environmental issues.  The organizational framework for the review is the

design process itself, as shown in Figure 1-1.

Chapter 3 highlights the role of design as a tradeoff resolution exercise.  The chapter

discusses how designers use economic valuation models for guidance in the resolution of the

tradeoffs inherent to process design.  Every design implies a set of material and energy flows, as

well as a set of processing equipment specifications.  Economic value models map this

information into widely understood metrics (revenues, operating costs, and capital costs) and

summarize them into indicators that can be used to rank alternatives (e.g. net present value,

internal rate of return, or total annualized cost).  The chapter discusses how the widely used
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economic value models introduce a bias against capital expenditures in the conceptual phase of

process design, which in turn leads to material use, energy consumption, and waste generation

rates that are in excess of those that would be economically optimum.  This finding is consistent

with published accounts of the abundance of overlooked energy conservation and waste

reduction projects with rates of return in excess of 100%/year.  The second half of the chapter

introduces environmental valuation models. Environmental valuation models are a necessary

requirement for incorporating environmental concerns as design objectives. These models map

the information on equipment and material and energy flows implied by a design into

environmental impact metrics.  An environmental problem oriented framework is advocated for

the structuring of environmental value models.  The framework recognizes explicitly that value

judgments are needed to generate an indicator of overall environmental performance.

Conceptually, there is no difference between economic and environmental value functions.  The

main distinction comes from differences in data availability and precision.

Problem
Statement

Generation of
Alternatives

Analysis

Evaluation and
Optimization

Sensitivity
Analysis Design

Concept definition
Technology choices

Analysis boundaries
Level of detail

Level of accuracy
Treatment of
uncertainty

Objectives
Objective function

Constraints

Stopping rules

Problem Framing

ch 4

ch 5

ch 3

ch 2

Figure 1-1: Structure of Thesis. Part I: The Design Process
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Given the uncertainties inherent to the data used in environmental valuation models,

Chapter 4 discusses decision making under uncertainty in the context of process design.  After

reviewing the types of uncertainty present in process design, the chapter shows that even if there

is significant uncertainty associated with the absolute value of a design metric, there might be

considerable less uncertainty in the selection of a superior design among various alternatives

based on that metric.  The reason is the potential for a high degree of correlation among

distributions for the performance metrics of competing alternatives.  It follows that the key to the

successful use of environmental value models in process design is to structure the models and the

decision procedures in a way that preserves the underlying correlation structure.  The procedures

described in this chapter enable the designer to select superior designs and to assess the

confidence with which a design can be judged to be superior to other alternatives.  In some cases,

the uncertainties in a valuation function will not permit the distinction among competing design

alternatives, based upon the criteria the valuation function is trying to measure.  This is also a

useful result, since it tells the designer that other criteria should be used to distinguish among

alternatives.

Chapter 5 describes two important types of sensitivity analysis.  The first type of

analysis is used to identify the features of a design that have the largest contribution to its

performance. This analysis consists of propagating the uncertainty in the relative contribution of

individual design features to the overall measure of performance of a design.  This type of

analysis is very useful for establishing promising directions in the generation of new alternatives.

The second type of sensitivity analysis examines the contribution of model uncertainties and

value function uncertainties to the uncertainty in the discrimination between two competing

alternatives.  This type of sensitivity analysis provides guidance for allocating resources to

collect the data that would be most helpful to decision making.  A key conclusion obtained in

this chapter is that even though an environmental valuation model might contain hundreds of

uncertain factors, only a few of them are typically significant contributors to design choice

uncertainty.  Generous uncertainty bounds may be placed on uncertain data elements at a first

iteration, followed by careful examination of the minority of factors that turn out to be important

in decision-making.
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Figure 1-2: Structure of Thesis.  Part II: Environmental Evaluation Tools

The second part of thesis (chapters 6 to 9) describes the set of computer-aided tools used

to compute uncertainty distributions for the environmental impact valuation indicator of process

design alternatives.  The computation of environmental indicators corresponding to a set of

design decisions requires several modeling steps.  First, a process model is used to compute mass

and energy balances, as well as basic equipment design specifications.  This information then

needs to be translated into a vector of environmental interventions (e.g. air emissions) associated

with each process input and output.  For the case of raw materials and services, emissions should

include estimates of the emissions associated with upstream processes (life-cycle view).

Information about emissions can then be converted into estimates of environmental

concentrations and estimates of exposure through the use of multimedia fate, transport and

exposure models.  Finally, indicators for the contribution of each chemical to each environmental

problem of interested can be computed.  Aggregation of individual environmental impact

category scores into a final indicator is done using weighting factors derived from the

preferences of decision-makers or organizations.
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Chapter 6 argues that the evaluation of the potential environmental impact of toxic

releases should be given high priority within the environmental evaluation of chemical process

designs.  The chemical industry is responsible (directly or indirectly) for a large fraction of the

releases of toxic chemicals to the environment.  In addition, the public is more concerned about

toxic releases from chemical plants than about other environmental impacts the chemical

industry might cause.   Available indicators of toxicity potential are reviewed, and it is argued

that most of them are inadequate for use in the procedures described in chapters 4 and 5 because

they either include too few chemicals, or do not provide information regarding the uncertainty in

the indicators.  It is widely accepted that risk due to exposure to toxic chemicals is proportional

to exposure and toxicity.  A spreadsheet-based model of chemical fate, transport and exposure

that allows propagation of uncertainties while preserving correlation structure was developed as

part of this dissertation.  The model is needed to relate emissions to impacts.  The human

exposure model includes improved models for bioaccumulation through the terrestrial food chain

(the most widely used models currently in use have the potential for grossly overestimating

terrestrial food chain bioconcentration of chemicals with high octanol-water and octanol-air

partition coefficients, since these models are not constrained by mass balances).   The fate,

transport and exposure models are applied to a data set of 1300 chemicals to identify the model

and parametric uncertainties that have the largest impact on the distribution of relative exposures.

This analysis provides a roadmap for advancing research in exposure modeling. The chapter also

describes the development of a tool for assessing the information content of indicators.  This tool

is applied to the assessment of the information content of the indicators in EPA’s Waste

Minimization Prioritization Tool (WMPT).  The WMPT assigns toxicity, persistence and

bioaccumulation scores to chemicals based on a fence line approach, in which chemicals receive

a discrete score of 1, 2 or 3 on each criterion.  The EPA adopts this approach in order to be able

to combine data of different levels of quality.  The example shows that the fence line procedure

dilutes the quality of the data to the lowest common denominator, resulting in an indicator with

significantly less information content than the one developed in this work using the same

underlying data. The chapter closes with a comprehensive assessment of the potential

environmental impact of the releases to the environment reported in the Toxics Release

Inventory.
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Chapter 7 develops the process-by-product input-output life cycle assessment

methodology (PIO-LCA) as a way to manage uncertain life-cycle assessment data in a way that

enables the generation of uncertain life-cycle impact indicators without sacrificing correlation

structure. Life-cycle assessment tools are needed in the context of environmental evaluation of

chemical processes in order to take into account the impacts generated by the upstream processes

that provide the inputs used by a design.  A key feature of the procedure is the transparent and

consistent treatment of multiproduct processes and products produced in multiple processes

through economic allocation rules.

Chapter 8 shows how economic and environmental valuation models with uncertain

parameters can be integrated with the flowsheet models that are the main tool used by chemical

process designers today.  The deterministic equivalent modeling method (DEMM) is used to

generate spreadsheet-based polynomial chaos expansion metamodels of the process flowsheet

models.  The metamodels capture the impact of uncertainties in physical parameters on process

performance, which can be combined with spreadsheet-based economic and environmental

valuation models.  The resulting combined model can be used for stochastic optimization and

sensitivity analysis, enabling the designer to identify the parameters (physical, economic, or

environmental) that have the largest impact on the ranking of competing alternatives.

Chapter 9 discusses needs and strategies for managing the available knowledge that is

relevant to environmental valuation models.  It describes the data model, data sources, and

system functions of the database application developed in this project.  The chapter closes with

recommendations for implementing systems of this kind within organizations, as well as

recommendations to public generators and providers of environmental evaluation data

(governmental and academic organizations).

1.3 Summary of Contributions
The following list contains the major contributions made to enable designers to include

environmental concerns as an explicit objective in their designs.

• Explicit use of uncertainty propagation and uncertainty analysis as a means to cope

with partial information regarding environmental impacts.
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• Propagation of the uncertainty in relative performance measures as a way to manage

the decision uncertainty introduced by large uncertainties in valuation model

parameters.

• Development of a method for the propagation of uncertainties in life-cycle impact

assessment while preserving correlation structure.

• Analysis of the uncertainties in toxicity indicators.

• Development of an information content tool to rate sets of uncertain indicators in

terms of their usefulness to rank alternatives with confidence.

• Development of a tool to identify key parametric and structural uncertainties in

models used to derive environmental indicators.

• Refinement of existing models used to assess human exposure to pollutants.

• Extension of the deterministic equivalent modeling method to the generation of

polynomial chaos expansion representations of process flowsheet models that are

suitable for stochastic optimization

• Demonstration of the application of multivariate copula distributions to derive a

compact representation of the results of Monte Carlo simulations involving hundreds

or thousands of uncertain parameters while preserving most of the information

regarding correlations among the output variables of interest.

• Development of an environmental knowledge management tool to organize uncertain

data needed as input to environmental evaluation models.

• Demonstration of the application of the tools developed in this project through well

documented case studies.

1.4 Reading guide
The author hopes that this thesis will be of value to present and future chemical process

designers who might not be experts on decision analysis or environmental science.  In writing

this thesis an effort was made to strike a balance the need to reach an expert audience without

boring them with background details, and the need to reach a wider audience without
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overwhelming them with technical jargon.  The following reading list attempts to compensate for

any shortcomings in attaining the second goal:

• Making hard decisions: an introduction to decision analysis, by Robert T. Clemen (Duxbury

Press, 1996 2nd ed.) gives an excellent overview to decision analysis, including many

examples.  A new version of this book with the title Making hard decisions with Decision

Tools Suite (Duxbury Press, 2000) contains step-by-step instructions at the end of each

chapter for the use of Palisade Corporation’s Decision Tools Suite to solve the examples in

the text.  The Decision Tools Suite was used extensively for uncertainty propagation and

uncertainty analysis in this thesis.

• Uncertainty: A Guide to Dealing with Uncertainty in Quantitative Risk and Policy Analysis,

by M. Granger Morgan and Max Henrion (Cambridge University Press, 1990) is an excellent

summary of all aspects related to the incorporation of uncertainty into models of physical and

social systems.

• Environmental Assessment of Products by Wenzel, Hauschild, and Alting (Chapman & Hall,

1997) provides a very good overview of life cycle assessment and methods to estimate the

contributions of chemicals to various environmental impacts

• Multimedia environmental models: the fugacity approach by Donald Mackay (Lewis

publishers, 1991) provides an excellent overview of multimedia environmental modeling by

the creator of the methodology.

Most of the tools developed in this work can be applied outside of the field of chemical

engineering.  For interested readers who do not have a background in chemical engineering, an

introductory chemical process design book such as Conceptual Design of Chemical Process by

James Douglas (McGraw-Hill, 1988) or Analysis, Synthesis, and Design of Chemical Processes

by Turton, Bailie, Whiting, and Shaeiwitz (Prentice Hall PTR, 1988) should be sufficient as a

source of context-specific information.
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Chapter 2 Environmentally Conscious
Chemical Process Design1

con⋅scious  \‘kän-chəs\ adj. [L. conscius, fr. com- with + scire to know]
7. done or acting with critical awareness   8 a: likely to notice, consider,
or appraise b: being concerned or interested   c: marked by strong
feelings or notions.

Webster’s Ninth New College dictionary

2.1 Challenges for chemical process design in the 21st century
Chemical manufacturers face many challenges, including global competition and

regulatory demands for more benign products and production processes. Environmental issues

also determine how society perceives the chemical industry. Images of dangerous pollution,

reinforced by data on the generation of hazardous pollutants [1,2] have continued to drive public

perception, which in turn has put pressure on governments and regulatory agencies to tighten

environmental regulations.  Industry has responded to these concerns by developing programs

(such as Responsible Care) that establish goals for environmental health, safety, and product

stewardship [3].  More than 4,000 companies or facilities around the world have embraced the

ISO 14001 environmental management system standard.  The standard requires senior

management to adopt an environmental policy document that demonstrates commitment to

compliance with national laws and regulations, continual improvement, and pollution prevention

[4].  While the goals are certainly appropriate, the real problem and opportunity is how to

translate them into action.

The enormity of the challenge can be seen in Table 2-1. Even just using material

economy as a measure of waste generation there are wide variations across the chemical industry

and obviously many opportunities for improvement. Typically the most common way to reduce

pollutant emissions has been to add control technology to bring the process into compliance with

discharge standards. One consequence of this approach has been the allocation of large amounts

of capital to the installation and operation of environmental control equipment (Figure 2-1).

                                                
1 Reprinted, with permission, from J.A. Cano-Ruiz and G.J. McRae, Annual Review of Energy and the Environment,

Volume 23:499-536. 1998 by Annual Reviews www.AnnualReviews.org.
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While there is a clear need to improve economic and environmental performance there is

unfortunately very little operational guidance about how to do much better. For example,

consider the list of reference texts shown in Table 2-2. These books, which are currently used in

teaching chemical process design, contain little or no mention of environmental issues, the

process of decision making involving tradeoffs, or the larger context of the design process itself.

At present much of the needed information is scattered throughout the literature. The focus of

this review paper is to identify the issues, information sources and approaches to process design

that have the potential to lead to improvements in both economic performance and

environmental quality.

Table 2-1: Waste generation in different segments of the chemical industry2

Industry segment
Product
tonnage

Waste generation
(kg byproducts/
 kg product)

Oil Refining 106-108 ~0.1
Bulk Chemicals 104-106 <1-5
Fine Chemicals 102-104 5-50
Pharmaceuticals 101-103 25-100+

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

Plant &
Equipment

R&D Environmental

$15 billion/yr

Pollution control 
capital 
expenditures

Pollution control 
operating costs

Hazardous 
waste site 
remediation

Figure 2-1: U.S. Chemical Industry environmental expenditures in perspective (1999 data)3

                                                
2 Obtained from references [5,6]
3 Data from reference [7]
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Table 2-2: Approaches to environmental issues in chemical process design books.
Reference Treatment of environmental issues
Valle-Riestra: Project Evaluation in the
Chemical Processing Industries [8]

States that "the initiative to participate effectively in the struggle to preserve
the integrity of the environment must ultimately originate with each
engineer's inner conviction, not with externally imposed regulations", but
only uses economic criteria for evaluating designs.

Ulrich: A Guide to Chemical Engineering
Process Design and Economics [9]

Includes costing data for waste treatment facilities.  Otherwise no mention of
environmental issues.

Wells & Rose: The Art of Chemical
Process Design [10]

Advises the designer to be aware of the environmental constraints that are
applicable at the project location.

Douglas: Conceptual Design of Chemical
Processes [11]

1-page section stresses the importance of including the cost of meeting
environmental constraints in process cost estimates.

Edgar & Himmelblau: Optimization of
Chemical Processes [12]

Optimization is restricted to economic objective functions.

Baasel: Preliminary Chemical Engineering
Plant Design [13]

43-page chapter on “Pollution and its Abatement” includes a discussion of
the issues involved in determining appropriate standards.  No methodologies
are given for evaluating the environmental merit of a design

Hartmann & Kaplick: Analysis and
Synthesis of Chemical Process Systems
[14]

Introduction says that  “(processes) must scarcely pollute the environment”,
but methodologies to prevent pollution are not discussed.

Peters & Timmerhaus: Plant Design and
Economics for Chemical Engineers, 4th ed.
[15]

Contains a 16-page section on the challenges posed by environmental
regulations and on “end-of-pipe” treatment technologies.

Smith: Chemical Process Design [16] States that “chemical processes will in the future need to be designed as part
of an industrial development which retains the capacity of ecosystems to
support industrial activity and life.”   Includes a chapter on waste
minimization and a chapter on effluent treatment.   Includes many ideas and
examples for decreasing waste generation, but does not include
environmental evaluation methodologies.

Ludwig: Applied Process Design for
Chemical and Petrochemical Plants [17]

Environmental issues are not mentioned.

Woods: Process Design and Engineering
Practice [18]

The single reference to environmental issues says that "the equipment must
fit into the environment safely."

Perry's Chemical Engineer's Handbook, 7th

ed. [19]
111-page chapter on waste management has an 8-page section on pollution
prevention.

Biegler, Grossmann & Westerberg:
Systematic Methods of Chemical Process
Design [20]

Paragraph on environmental issues states that “environmental concerns
involve satisfying the very large number of regulations the government
imposes on the operation of a process.”

Turton et al.: Analysis, Synthesis, and
Design of Chemical Processes [21]

Includes data on waste treatment and disposal costs.  Adds an "environmental
control block" to the generic block flow process diagram.  Advocates
pollution prevention over "end-of-pipe" treatment alternatives. Includes 19-
page chapter on "Health, Safety, and the Environment".  Mentions the
pollution prevention hierarchy and life-cycle analysis, but does not give
specific guidance, methodologies or examples.
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2.2 The design process
Design is a complex activity [22].  It involves accepting as input an abstract description

of the desires of an organization and delivering a detailed description of a concrete product,

process or system that will satisfy those desires.  The activity is well characterized as a decision

process, involving many decision-makers and multiple levels of detail.  Figure 2-2 gives a flow

diagram of the design activity.  The design cycle of composed of all the discrete steps shown in

the figure.  Similar diagrams have been proposed elsewhere (e.g. [20,23]).

Design starts with problem framing.  Its critical importance in determining the outcome

of the design process is often overlooked.  Design problems are rarely fully specified.  Along the

path from receiving a problem statement to delivering a completed design, design teams make

decisions about concept definition, scope of analysis, design objectives, constraints, evaluation

criteria, and stopping rules.  Often framing decisions are made implicitly, by following available

precedent.  In a recent paper [24], Sargent recognizes the role of problem framing by

distinguishing between performance models (those used in the analysis stage of the cycle), and

valuation models (those used for alternative evaluation).

Once the design problem has been properly specified, the next step is the generation of

alternatives.  There are many different methods for generating chemical process design

alternatives, including the application of existing design concepts and the generation of new ones

from first principles.  Since the time available to complete a design project is often very limited,

there is a tradeoff between the number of alternatives that are explored and the level of detail

with which they can be analyzed.  Systematic alternative generation tools attempt to reduce the

severity of this tradeoff, by allowing a large number of alternatives to be generated and evaluated

simultaneously.

After alternatives have been generated, the next step is the analysis of alternatives.  In

this step, engineering analysis (usually starting with mass and energy balances) is applied to each

alternative generated to make predictions about the expected performance of the system.  The

result of this step might be a list of the inputs and outputs of the process, including the flow rate,

composition, pressure, temperature and physical state of all material streams in the process, as

well as the energy consumption rate from various sources.  Other useful information concerns
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the stocks of materials in the process, as well as other information related to the sizing of the

equipment units.

PROBLEM
STATEMENT

THE DESIGN PROCESS

  PROBLEM FRAMING  

• Concept definition

ALTERNATIVE GENERATION  
• Evolution of a base case design
• Adaptation of known designs
• Hierarchical procedures
• Heuristics
• Thermodynamic targeting
• Optimization of reducible

superstructures

• Analysis boundaries
• Level of detail
• Level of accuracy
• Treatment of uncertainty

ANALYSIS  
• Characterization of alternatives
• Prediction of performance

• Objectives
• Objective functions
• Constraints

EVALUATION AND OPTIMIZATION  
• Summarize features into metrics
• Search for alternatives that advance

objectives within constraints

• Stopping rules

SENSITIVITY ANALYSIS  
• Identifications of major contributions

to the objective functions
• Identification of major tradeoffs
• Robustness

DESIGN

Given a problem statement, the design work flows according to this diagram.   Each box in the diagram
corresponds to a section of this chapter in which approaches to the incorporation of environmental
objectives to each step of the design cycle are discussed.  Items highlighted are often not recognized
explicitly as elements of chemical process design

Figure 2-2: The design process.
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The analysis step will produce a large number of information elements for each

alternative analyzed.  In the evaluation step, this information is summarized into indicators of

performance that can be used to assess whether the requirements specified during the objective

formulation step have been met, and the extent to which the design objectives have been

advanced.   These indicators typically include economic indicators, such as capital investment

required and operating cost, but should also include indicators of safety and environmental

performance.   The evaluation step ends with a ranking of alternatives according to their overall

level of attractiveness.

Process design is iterative.  Before returning to the beginning of the design cycle, a

designer must examine the results obtained at the evaluation stage to identify opportunities for

improvement.  This can be done at the sensitivity analysis stage.   If the design team concludes

that there are no significant remaining opportunities for improvement, then the work stops.

Otherwise, an additional iteration on the design cycle is undertaken.  Iterations might involve

generating additional alternatives, or modifying the framing of the problem (for example, by

deciding to carry out more detailed analysis).  There is a strong interaction between alternative

generation, analysis, and evaluation, as depicted in Figure 2-2 by the inner feedback loop

connecting these three activities.

The various sections of this chapter organize the relevant literature in terms of the steps

of the design cycle.   When a particular design procedure contains elements relevant to more than

one step of the design cycle, we have chosen to mention it only once, in the first relevant section

of the review.  Papers have been selected for their relevance to the design of chemical processes

when avoiding environmental damage is one of the objectives of the design.     Although this

review focuses on process design, we must acknowledge that it is not worth investing

considerable effort in designing an environmentally benign process for the manufacture of an

environmentally hazardous chemical for which the intended use is dissipative (e.g. the well

known cases of tetraethyl lead and CFCs).   A relatively recent American Chemical Society

symposium-based book is a good pointer to the literature on the environmentally conscious

design of chemical products [25].
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2.3 Framing of the design problem with the environment as an
objective
A design problem may be represented by the mathematical program:

Max  P(d,z,θθθθ)
  d,z

s.t. h(d,z,θθθθ) = 0 (Problem DP)

g(d,z,θθθθ) ≤ b

d ∈ D, z ∈ Z

where d, z are the vectors of design and control variables, respectively, θθθθ is the vector of

uncertain parameters, h(d,z,θθθθ) is the vector of equations defining the model of the process,

P(d,z,θθθθ) is the objective function (which might be a function of multiple objectives), g(d,z,θθθθ) is

the vector of equations defining the constraints on the process, b is the vector of parameters

giving the upper bound of the constraint equations, and D and Z are the domains over which the

design and control variables are defined.

Solving problem DP is only one of the activities involved in the design process.  Prior to

deciding on the values of the d variables (which can be done by a computer given enough power

and appropriate algorithms), the designer must make decisions regarding the choice of design

objectives (i.e. what objective functions to use and what constraints to include), the set of design

alternatives to consider (i.e. the choice of decision variables to include and their domain, as well

as the logical constraints relating the variables), and the scope and degree of accuracy of the

model representing the problem (i.e. the functional form of the system equations).    The set of

all decisions made in the formulation of the optimization problem is what we call “problem

framing”.  The design process involves a series of iterations in which a different version of

problem DP is solved until either (a) the designer is satisfied with the design or (b) the time

allocated to the design problem has been exhausted.   Analysis carried out at each iteration

around the cycle gives the designer information that can be used in the formulation of the next

version of the design problem.

Figure 2-3 shows our view of the evolution of the framing of chemical process design

problems over the last 40 years.   Initially, chemical process design was limited to the design of

the core reaction and separation processes.   In response to the 1970s energy crisis, the domain of



46           CHAPTER 2.ENVIRONMENTALLY CONSCIOUS CHEMICAL PROCESS DESIGN                                                     

chemical process design was increased to include the interaction of the core process with the

utility systems.   Methods for heat and power integration were developed and applied to

industrial problems, and today most chemical process design books include at least one chapter

on heat integration or heat exchange network design.      As the cost of complying with

environmental regulations increased, chemical process designers became aware of the need to

take waste generation into account in their work.   Academia was slower to internalize this need,

and often ignored the generation of waste in the formulation of process synthesis problems.  A

typical example of this is a version of the second process diagram in Figure 2-3, published in a

1985 review paper of mathematical programming approaches to process synthesis [26].  In that

diagram, there are not outputs from the system other than the desired products.

The third panel of Figure 2-3 summarizes four emerging trends in the evolution of

problem framing with respect to the consideration of environmental impacts:

1) Inclusion of the waste treatment infrastructure in the analysis boundaries Blau [27] estimated

that up to 50% of the capital for new processes is devoted to handling wastes.  As a result,

industry is incorporating waste handling in the scope of process synthesis activities, and

making efforts to design processes that can use existing waste processing infrastructure,

avoiding the need to invest in new treatment facilities.

2) Materials integration The success of energy integration techniques in reducing operating and

capital costs [28] raised the question of whether similar savings can be achieved through

materials integration.  The potential savings might be overlooked if the boundaries of

analysis are drawn too tightly during problem framing.   Mizsey [29] has suggested that

process design should include efforts to identify potential matches between wastes (material

sources) and raw material requirements (material sinks) across processes and plants within a

company.  El-Halwagi and other researchers are developing materials integration techniques

as a cost-effective way of reducing pollutant emissions [30].
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Further incorporation of integration principles into chemical process design will reveal opportunities to decrease
raw material consumption while realizing cost savings.   Sustainability concerns will demand that process
designers consider environmental impacts throughout the production chain.

Figure 2-3: Evolution in the framing of the chemical process synthesis problem.
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3) Life cycle analysis Life-cycle analysis (also referred to as life-cycle assessment) is a

framework for considering the environmental impacts associated with every stage in the life

cycle of a product, from raw materials production to final disposal.   The consequences of

ignoring impacts over the entire life-cycle can be illustrated by an example taken from the

chemical engineering literature: In one of the first attempts to integrate environmental

objectives in the design of chemical processes, Grossmann and coworkers considered the

problem of synthesizing industrial chemical complexes with the two basic objectives of

maximizing net present value and minimizing the toxicity of the material flows in the system

[31].   The configuration they found when minimizing toxicity was one in which the

production of all intermediates was carried out by suppliers.   Even though the flows of toxic

materials decreases within the limits of the complex under this design, the overall

environmental impact could increase, if the production processes of the suppliers are more

polluting than those considered by the designers of the chemical complex, or if the supplier

plants were located in more sensitive areas.   Academia has recently applied life-cycle

thinking to chemical process synthesis problems [32-36], and there is growing interest in its

use in industry, particularly in Europe.   Bretz & Fankhauser [37] have published an account

of the routine use of life cycle assessment as part of chemical process design at Ciba

Specialty Chemicals.  The company developed a specialized computer system for integrating

life-cycle inventory data for more than 4,700 raw materials and 1,700 products.

4) Shift in emphasis from effluent concentrations to environmental impacts Most environmental

regulations are written in terms of effluent concentration standards.  Smith and Delaby [38]

have noted that regulations in terms of concentrations do not give a real account of the actual

emissions.  Furthermore, design problems framed as “minimize cost subject to not exceeding

allowable concentration limits” can result in solutions where dilution of waste streams is

used to meet the standard without changing the amount of pollutants released to the

environment [39].   Limiting effluent concentrations is only a means to achieve the end

objective of improving environmental quality [40].   Sharratt & Kiperstok have recently

coupled environmental receptor models to the mass exchange network synthesis problem in

order to pose the environmental constraint as an environmental quality standard, instead of as

an effluent concentration standard [41,42].   Industry has also applied this idea: Amoco used
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exposure to benzene in the vicinity of its Yorktown refinery (determined through

environmental modeling) as a criterion to rank pollution prevention projects [43,44].

2.4 Approaches to the generation of environmentally superior
design alternatives
The design of chemical processes with lower environmental impact starts with an

understanding of the sources of emissions and waste in chemical processes.  Figure 2-4 (adapted

from [45]) is an abstraction of a chemical process, in which raw materials are processed into

desired products.    Byproducts might be generated, either as a result of the desired reaction

stoichiometry, or as the consequence of undesired secondary reactions (selectivity losses).

Unwanted byproducts might also be generated in the separation system (e.g. by polymerization

reactions in distillation column reboilers).  Purge streams are necessary to prevent the

accumulation of trace components in recycle streams, unless these components can exit the

process in the product or byproduct streams.   Other materials introduced to the process include

reaction agents (e.g. catalysts, solvents, diluents, heat carriers) and separation agents (e.g.

solvents, adsorbents, entrainers), which contribute to waste generation since they degrade with

time and may exit the process with the purge or byproduct streams.   Leaks (known in the

literature as “fugitive emissions”) might occur anywhere in the system.   In addition, emissions

are produced in the systems that provide utilities to the process.

The term “zero-avoidable pollution” or ZAP has been coined to refer to the byproduct

waste generated in processes in which all raw materials, reaction agents, and separation agents

are recycled with 100% efficiency [46].   It is worth noting that ZAP designs are not necessarily

designs with minimum environmental impact.   There are two reasons for this: first, separation

and recycling require energy, and there are emissions associated with the supply of energy to a

process (e.g. emissions from fuel combustion); second, the quantity and composition of

byproduct waste generated in a ZAP design can be changed by changing the reaction path or by

changing the design of the reactor network. Examples of alternative “green” synthesis pathways

to a large number of chemicals have been reported [47,48].
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Figure 2-4: Material flows in a chemical process

The goal of environmentally conscious alternative generation is to produce designs that:

• have high economic potential

• have high conversion of raw materials into desired products,

• use energy efficiently, and

• avoid the release of hazardous substances to the environment.

The key to the discovery of such designs is process integration (energy integration,

materials integration, and processing task integration).  Pollution from a chemical process can be

viewed as the consequence of using the environment as a sink for unwanted byproducts and

unrecovered materials.   Using nonrenewable resources as a source of raw materials for a process

raises issues of sustainability.    These observations imply that design alternatives that increase

the use of process units and streams as material sources and sinks might have lower

environmental impact.   There are well-established energy integration techniques that reduce

consumption of utilities by using process streams as sources and sinks of heat [28].   The use of

processing task integration in reactive distillation processes has been shown to reduce costs,

energy use, and emissions [49,50].

Framing of the problem influences the range of alternatives that may be considered,

through the decisions made during concept definition.    A narrow concept definition might fix

prematurely the process chemistry, or limit the type of unit operations considered (e.g. it might

restrict the design team to use conventional, well-proven technologies).
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Reviews of methodologies to generate design alternatives with pollution prevention as an

objective have been given by Manousiathakis & Allen [51], Rossiter & Kumana [52], and

Spriggs [22,53].  The classification of approaches that follows is partly based on the discussion

presented in these references.

2.4.1 Use of documented pollution prevention solutions as a source of
design alternatives

Ideas for reducing waste generation in chemical processes have been published in

professional journals [54-63]. These ideas range from general questions intended to elicit ideas to

very specific process and equipment changes. Two particularly comprehensive collections of

ideas have been assembled by Nelson [64], and Smith & Petela [65-70]. Englehardt compiled a

list of references to pollution prevention technologies and classified them according to their

placement in the pollution prevention hierarchy and the function of the industrial hazardous

materials involved [71].   Government agencies compile and publish ideas for preventing

pollution in specific industry sectors from time to time (e.g. [72-75]). Electronic databases have

been created to enable designers to search for solutions that are most relevant to their

applications [76,77].

2.4.2 Design by case study

Under this approach, process models are used to simulate the performance of an existing

process or a base case design.  The design team next thinks of process modifications that might

improve system performance.  The process model is modified to incorporate the proposed

changes, and simulations are carried out to check whether the desired performance

improvements are realized in the model.   With the availability of process simulators (e.g. Aspen

Plus), this approach to process design has become widespread.  Examples of applications to

pollution prevention are given in [78-88].  Process modifications explored by this technique are

usually incremental in nature.

2.4.3 Hierarchical design approaches and other methods of structured
thinking

Douglas [89] applied his hierarchical process synthesis procedure to the problem of

identifying potential pollution problems and identifying process alternatives that can be used to
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eliminate these problems.  The recommendations obtained by his procedure are fairly general

(e.g. “change the chemistry”, “change the solvent”, “look for a different separation system”) and

serve as a starting point for the search of design alternatives.   The procedure has been used to

classify process improvements reported in the literature according to the sources of waste and the

waste minimization techniques applied [90].    Rossiter and coworkers built upon the procedure

by adding more key questions at each decision level, and used it to generate attractive

alternatives for reducing waste generation and emissions from the fluid catalytic cracking unit at

Amoco’s Yorktown, VA, refinery [91].  More recently, Douglas expanded his set of synthesis

rules for the design of separation system flowsheets for mixtures of vapors, organic liquids,

aqueous liquids, and solids [92].  The rules acknowledge explicitly the generation of waste

streams and provide some guidance for addressing the pollution problems arising from these

streams.

2.4.4 Pinch analysis and other targeting techniques

Pinch technology (birefly described below) was first developed as a tool for reducing the

capital and energy costs of a processing plant through the design of heat exchanger networks.   It

is most often used to design the heat recovery network of a process, once the core reaction and

separation processes have been defined.  Pinch technology recognizes that the majority of

chemical processes contain heat sources (hot process streams that need to be cooled) and sinks

(cold streams that need to be heated).   Instead of using utilities (e.g. steam, cooling water) to

bring all process streams to their desired temperatures, pinch technology exploits the heat

sources and sinks in the process before using utilities, thus reducing the operating cost of a

design.    A key feature of the pinch design method is that minimum utility consumption targets

and approximate capital costs of the associated heat exchanger network can be established prior

to the development of a design.  Another key feature is its use of diagrams to identify integration

opportunities within a process, a plant, or a total site.   A review of the state of the art in pinch

analysis up to 1994 is given in [28].  Buehner and Rossiter have reviewed the application of

pinch analysis to waste minimization problems [93].   Reducing energy consumption in a plant

can be translated into reduced flue gas emissions (for a given fuel and combustion technology

type), since less fuel needs to be burned [94].  BASF reported the results of an energy efficiency

campaign undertaken at their Ludwigshafen plant in the early 1980s [95].  Their efforts resulted
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in significant reductions in the generation of CO2, SO2, NOx, CO, ash, and wastewater, despite

increased production levels.

Minimizing energy consumption might not always result in minimizing the

environmental impact of utility systems.  Smith and Delaby argue that the established methods to

target the minimum energy consumption for a given process do not necessarily give insights

about the emissions of combustion products associated with supplying the heat and power

needed by the process [38].   They argue that considering global emissions (emissions generated

by fuel combustion on-site at furnaces, boilers, and gas turbines and off site at power generation

plants) gives a broader view of the pollution problem and is the view that should be universally

adopted.

Many separation processes are driven by heat inputs (e.g. distillation, evaporation) or by

heat removal (condensation, crystallization).  When such processes are used to recover materials

from waste streams, thermal pinch analysis can be used to minimize the cost and emissions

associated with the separation.  Smith & Delaby have given examples where energy savings are

achieved by integrating materials recovery and waste treatment units with the rest of the process

[94].  Richburg & El-Halwagi developed a short-cut method for the cost-optimal design of

condensation networks for the recovery of volatile organic compounds from air, based on pinch

analysis concepts [96].

El-Halwagi & Manousiathakis exploited the analogy between mass and heat transfer to

develop the concept of mass exchange network synthesis, based on the pinch method for heat

exchanger network synthesis [97].   They developed tools analogous to those used in thermal

pinch analysis (composition interval diagram, composite curves, grid diagram) and applied them

to a sample problem. A mass exchanger can be any direct-contact countercurrent mass transfer

operation, such as absorption, adsorption, liquid-liquid extraction, ion exchange, leaching, and

stripping [30].   As applied to pollution prevention, the goal of mass exchange networks is to

transfer species that are potential pollutants in effluent streams to streams in which they might

have positive value [50].   The idea of matching material sources and sinks has been further

elaborated by El-Halwagi and coworkers in the concept of waste-interception networks [98].

The main goal of these networks is to provide selective interception and rerouting of undesirable
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species that would otherwise exit a process to those parts of the process that can act as sinks for

these species.

Wang & Smith have developed a pinch design methodology for wastewater

minimization, using the more general mass exchange network framework as a basis [99,100].

Processes that use water are represented as limiting water profiles in a concentration versus mass

load diagram, which is analogous to the temperature versus enthalpy diagram used in the design

of heat exchanger networks.  The limiting water profile for a process represents the minimum

amount of water with the highest possible concentration of contaminants that would be able to

perform the task required in that process, and is not necessarily the actual water profile that will

be used in the final design.  Pinch analysis techniques are then used to establish targets for

minimum freshwater use (enabling reuse of water in processes that tolerate higher contaminant

concentrations) and to design networks consistent with those targets.  The methodology includes

the possibility of water regeneration (treatment) and recycling, and can be used in problems that

involve multiple contaminants.  An extension has been developed that makes the methodology

applicable to batch processes [101]. The same framework was used to develop a methodology

for the design of distributed effluent treatment systems that seeks to minimize the cost of

achieving specified concentrations in the wastewater effluent of a site by segregating wastewater

streams, combining them when economies of scale are attainable, and matching streams to

treatment processes [102]. Analysis at Linnhoff March have developed a similar methodology,

trademarked WaterPinch [103].  This method plots water sources and demands in a purity versus

water mass flow rate diagram.  Composite curves are developed for the sources and the demands,

and the pinch point is located.    Freshwater and wastewater targets can be read directly from the

diagram, once the composite curves have been brought together at the pinch point.    Pinch

analysis techniques have been applied to industrial wastewater minimization problems [104-

106].

Researchers have developed other targeting approaches for minimizing waste generation

in the core reaction and separation processes.  Flower and coworkers have developed tools for

establishing mass-efficiency targets for reaction and separation systems [107,108].  By using the

concept of the attainable region for reactors and the assumption of sharp splits for separators,

they develop lower bounds on the mass of waste byproducts that can be obtained for a given

reaction scheme.   Ahmad & Barton presented a methodology for the automatic targeting of
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maximum feasible solvent recovery from streams with an arbitrary number of components by

batch distillation [109].

2.4.5 Mathematical programming

The mathematical programming approach to process synthesis optimizes a reducible

superstructure to find the best combination of process units that achieve the design task.

Manousiathakis & Allen reviewed several process synthesis concepts and outlined their

importance for waste minimization [51]. Table 2-3 summarizes their task definitions and gives

examples of the application of mathematical programming to waste minimization under each

task.

Table 2-3: Process synthesis tasks and references to examples of their application to waste
minimization problems using the mathematical programming approach.

Task Task Definition [51] Examples
Material
Synthesis

Given a set of desirable properties, identify a material that
possesses these properties.

[36,110-113]

Reaction Path
Synthesis

Identify a reaction path that employs substances from a set of
permissible chemicals to yield a desired product (meeting
economic, thermodynamic and kinetic constraints).

[112,114-116]

Reactor Network
Synthesis

Given a reaction mechanism identify a network of reactors in
which these reactions transform raw materials to products at
optimum venture cost.

[117]

Separator
Network
Synthesis

Given a set of multicomponent feed streams, identify a network
of separators that can yield a set of desired product streams at a
minimum venture cost.

[118-123]

Recycle/Reuse
Network
Synthesis

Given a set of multicomponent waste streams, identify a network
of separators that allows the recycle of these waste streams
(meeting quality specifications) at minimum venture cost.

[98]

Heat Exchanger
Network
Synthesis

Given a set of hot and a set of cold streams identify a network of
heat exchanger units that can transfer heat from the hot to the
cold streams at minimum venture cost.

[124]

Mass Exchanger
Network
Synthesis

Given a set of rich streams and a set of lean streams, synthesize a
network of mass exchange units that can transfer certain species
from the rich streams to the lean streams at minimum venture
cost.

[39,97,119,125-
132]

Total Flowsheet
Synthesis

Given a reaction path that transforms new materials to desired
products identify a network of process units that accomplishes
the transformation at minimum venture cost.

[32,80,133,134]
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There are a large number of published mathematical programming formulations of the

problem of synthesizing recycle/reuse networks for waste reduction.   Although direct contact

mass exchangers are used in the majority of these formulations [39,97,119,125-131,135-137],

other unit operations have also been used, including condensers [118,121-123], and pressure-

driven membrane units [119,120,138]. The scope of applications include: single

[39,118,119,121,123,125-129,137,138] or multiple [122,131] transferable pollutants; linear

[39,119,125,126,129,131,137], convex [127], or general nonlinear [128] equilibrium functions;

fixed [118,121-123,125-129,131,138] or variable (within bounds) [39,120,130,137] recovery

targets; physical [39,118-123,125,126,130,131,135,137,138] or chemically reactive [127,128]

separations; inclusion of mass separating agent regeneration unit operations in the network [126],

and inclusion of flexibility constraints [137].

A common feature in these formulations is the use of cost minimization as the objective

function in the optimization.   Earlier formulations used a two-stage optimization procedure

[39,118,125-129,131].   First, operating cost minimization is used to establish minimum utility

consumption targets.  This is followed by the solution of a mixed integer linear programming

transshipment problem to design a network with the minimum number of units that meets the

minimum operating cost targets.  More recent formulations use a total cost minimization

approach, which include capital costs in the objective function [120-122,129,130,138].   Both

types of objective functions include only the cost side of the profit equation.   As the value of

recovered materials is not included, opportunities to improve the economic performance of these

networks by increasing material recovery beyond targets specified in the framing of the

optimization problem might be overlooked.

2.4.6 Expert systems and other Artificial Intelligence approaches

Huang and colleagues have listed features of the problem of generating waste

minimization alternatives that make knowledge-based expert systems and fuzzy logic attractive

tools for designers [132,139]:

• Incorporating environmental objectives into process design requires knowledge from many

disciplines; thus the task is knowledge-intensive.
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• The generation of waste minimization options is heavily dependent on experience.

Quantitative descriptions of the processes generating waste are often not available; hence,

qualitative information needs to be incorporated in the analysis.

• The available information pertaining to the environmental impact of a process is often

uncertain, imprecise, incomplete, and qualitative in the design stage.

• A large number of regulations and strategies for pollution prevention might be expressed as

rules.

One of the major barriers to process integration is the perception that highly integrated

processes are very difficult to control.  Huang & Fan have addressed this problem by developing

a hybrid intelligent design system that improves the controllability of heat and mass exchanger

networks by choosing stream matches that improve an index of controllability while keeping the

operating cost of the network at its minimum [136].  Their system combines pinch analysis for

the generation of targets with an expert system, fuzzy logic, and neural networks to assign stream

matches.

Computer-assisted systems for the rapid generation of alternative synthesis paths to a

desired chemical are available (e.g. SYNGEN, LHASA).  Their use to support pollution

prevention initiatives has been explored by government agencies [140] and as teaching aides

[141].

The EnviroCAD system has been developed at the New Jersey Institute of Technology as

an extension of BioDesigner, a program for the design and evaluation of integrated biochemical

processes [142].  The system takes as input data a set of waste streams and recommends

alternatives for waste recovery and recycling, treatment and disposal based on three knowledge

bases.  An expert system for generating feasible treatment trains for waste streams has also been

embedded in the Process_Assesor module of the BatchDesign_Kit under development at MIT

[46,143,144].  The expert system is based on heuristic rules containing knowledge of regulations

and treatment technologies.

2.5 Analysis of design alternatives
The function of the analysis step is to generate the information elements needed to

evaluate the merit of a design.   A challenge for designers interested in incorporating
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environmental considerations into their work is that many of the information elements needed to

evaluate the environmental impact of a proposed design alternative are not normally generated in

the analysis stage when economic performance is the only design objective.   Consider the case

of fugitive emissions.   Fugitive emissions are losses of process fluids through leaks in

equipment.  Although these losses are strongly influenced by equipment choices and operating

procedures, decisions made at the conceptual design stage (e.g. temperature, pressure and flow

rate of recycle streams) are also important contributing factors.  Fugitive emissions are usually

too small to impact the process mass and energy balances (typically 500-1500 g/Mg of product)

[50], but in some plants it has been estimated that fugitive emissions are responsible for 70-90%

of the environmental releases of hazardous substances [145].   Since the value of the materials

lost through fugitive emissions can be neglected in the economic evaluation of a process, no

effort is made during process design to estimate the magnitude of fugitive emission losses.

However, such estimates might be very important in determining the environmental merit of

competing design alternatives.   Another example is that of selectivity losses in reactors.   From

an economic perspective, all that is needed during the analysis stage is an estimate of the amount

of raw materials converted to unwanted byproducts, and an estimate of the resources needed to

separate the unwanted byproducts from the desired product.   Estimation of the amounts of

individual byproducts is usually not required.   However, two processes with the same selectivity

to the desired product might have very different environmental impact, depending on the

composition of the unwanted byproduct stream.   Thus, the set of chemical species considered in

the analysis might have to be expanded beyond the set used when economic performance is the

only evaluation criterion.

Not all mass and energy balances that are relevant for estimating the pollutant emissions

from a process are included in the standard flowsheets used during process design.   For

example, although energy consumption is typically quantified, the emissions associated with the

generation of electricity or steam of various grades typically are not.    In addition, environmental

concentrations of released pollutants might be necessary for a proper evaluation of the potential

environmental impact of a design.  In this case, the material balances used to evaluate the process

need to be expanded to include the fate and transport of environmentally sensitive species.

It has been noted [142,146] that commercial process simulators are still very deficient in

predicting chemical species concentrations in dilute process effluent or waste streams.  Unit
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operation models for innovative separation technologies (e.g. membrane separations) and waste

treatment equipment are not included in commercial process simulators, and are therefore

usually not included in conceptual process designs.  Farag and colleagues described the structure

of models of pollution control and waste treatment processes they developed using the Aspen

Plus simulator [147].  They noted that a challenge in the development of these models is that

they often involve the handling of types of materials that are not well characterized.

2.6 Approaches to the evaluation of design alternatives
The central question in process evaluation within an environmentally conscious design

framework is how to evaluate design alternatives from an environmental perspective.  A related

question is how to balance environmental objectives with other design objectives.

Problem framing has a direct impact on this step of the design cycle.   When the problem

is framed, decisions are made with respect to objectives that the design should advance, and in

particular, about the objective functions that will be used to translate the data produced during

the analysis step into aggregate metrics than can be used to optimize and rank design

alternatives.

A quantitative evaluation of a process flowsheet involves summarizing the information

generated during the analysis stage of design into a few metrics that can be used to optimize and

rank design alternatives.   An example of a metric used for economic evaluation is the net present

value [15].   It allows a design team to summarize into a single number information regarding

production and consumption of materials and utilities, as well as design specifications for

equipment.  The additional information needed is unit prices for materials and utilities,

correlations that relate equipment design specifications to their installed cost, and the discount

rate used by the firm to make tradeoffs between capital spent in the present and future cash

flows.

In contrast to the calculation of net present value, where all the additional information

needed to summarize flowsheet information into a single metric can be obtained from company

databases, market data, or vendors, no such information is available to chemical process

designers to allow the computation of an overall widely-accepted index of environmental

performance.    There are three main reasons for this:



60           CHAPTER 2.ENVIRONMENTALLY CONSCIOUS CHEMICAL PROCESS DESIGN                                                     

1) Relevant properties of chemicals (e.g. toxicity, environmental degradation constants) are not

readily available in the tools commonly used by chemical engineers (process simulators,

chemical process design handbooks).   The properties have not been measured for a large

number a chemicals, and the measurements that have been made frequently show wide

ranges of variation.  Although structure-activity relationship tools exist for estimating the

toxicity of chemicals for which biological assays are not available [148], the accuracy of

their predictions needs much improvement.

2) With the exception of environmental problems that are global in nature (e.g. ozone layer

depletion and greenhouse gas concentration increases), location-specific knowledge is

needed to estimate potential environmental impacts.  This is particularly challenging when

trying to estimate the environmental impact of the production of inputs obtained from

external suppliers.

3) People differ in the importance they assign to various environmental impacts.   This is not a

matter of disagreement about facts, but of differences in values.

2.6.1 Environmental concerns as constraints on economic optimization

The most common approach to incorporate environmental considerations in chemical

process design has been to treat them as constraints: upper limits are set for pollutant flows or

concentrations in waste streams (based on regulatory requirements), and designs that satisfy

these constraints are evaluated in terms of economic indicators, such as net present value [80],

annualized profit [134,149], payback period [53], operating margin [79,115], total annualized

cost [35,36,96,100,102,118-122,125,130,135,137,138,150-153], or operating cost [39,51,96-

98,122,126-128,131,139]. The search for economically attractive waste minimization design

alternatives is advanced by including the cost of waste treatment and disposal in the economic

objective function [79-81,89].   The costs associated with the retirement of process equipment

and site restoration at the end of the useful life of a process have usually not been included in the

analysis.

Surprisingly, the value of products, byproducts and recovered materials is often not

included in the objective function, as the majority of authors have chosen to use cost

minimization as their economic objective.  Depending on how the optimization problem is
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framed, this might lead to overlooking opportunities to increase the profitability of a design by

recovering materials from waste streams beyond the level required by compliance.

The main problem with incorporating environmental considerations as constraints on the

flow or concentration of chemical species in particular waste streams is that the proposed

solutions might not address the underlying environmental concern.  This is illustrated by the

examples given in a couple of papers addressing the synthesis of membrane separation networks

for waste reduction  [119,138].  The proposed networks split an aqueous waste stream into two

streams, one of which has a pollutant concentration that is low enough to meet the specified

discharge limits.  However, neither the fate nor the treatment cost of the concentrated stream are

considered in the solution.

A variation of this approach is to optimize for economic performance while setting

environmental objectives in terms of environmental quality standards in a particular receptor

(e.g. a water body or the airshed in an urban area) [41,42].  Although this approach presents

opportunities to achieve the desired level of environmental protection at lower social cost, it

poses challenges to individual firms, since their allowable emissions or discharges would be

affected by those of other firms sharing the same receptor.

2.6.2 Environmental concerns as objectives

Instead of treating environmental considerations as constraints, designers can choose to

treat them as an objective to be balanced against other objectives in the design [31-

33,35,36,46,86,117,124,134,149,153,154].   This requires establishing environmental

performance measures.    Several authors [155-157] have noted that the lack of metrics to

support objective environmental assessments is one of the main barriers to developing effective

pollution prevention and design for the environment approaches.   Linninger and coworkers have

pointed out that the lack of a general binding value system for environmental impact assessment

makes it very difficult to evaluate the environmental impact of a design [144].   Given the

diversity of prevailing views regarding the environment, such a binding value system might

never become available.
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MINIMIZATION OF EMISSIONS OF POLLUTANTS OF CONCERN

In cases where the emission of a single pollutant is the most important environmental

concern affecting a design, the mass of pollutant released to the environment can be used as an

indicator of environmental impact.   Such an approach has been used to study the tradeoff

between control cost and emissions of nitrogen oxides from a power plant [158] and a refinery

[151].   Some authors have chosen to use carbon dioxide emissions as a measure of flue gas

emissions from power generation [38], or associated with utilities used in chemical production

[81].

When more than one chemical is a source of environmental concern, environmental

evaluation becomes more complicated.  One approach is to use the release inventory directly as a

set of indicators.  This might be an acceptable solution when only a few pollutants are involved.

As an example, Chang & Hwang use emissions of COx, SOx, and NOx as three independent

environmental objectives to be minimized in the design of utility systems for chemical plants

[124].   The approach becomes unmanageable when upstream emissions are considered, as it is

done in life-cycle analysis.  It is not uncommon for life-cycle inventories to contain releases and

discharges of dozens of different species.  In such cases it is clearly necessary to summarize the

information into a small number of indicators that can be used to optimize and rank alternatives.

MINIMIZATION OF MASS OF WASTE GENERATED

It has been argued that mass is the only consistent and universal basis for aggregating

waste streams [83].  Indeed, indicators based on the mass of waste generated are the ones most

commonly used in the chemical engineering literature.   Examples of indicators used are: the

total mass of waste generated [109,117,134,149,159], the mass of waste generated per unit mass

of product [5,6,82,83,86-88,160-162],  and the mass of waste generated as a percentage of the

total mass of outputs from a process [163].

If waste minimization is understood as reducing the mass of waste generated in the

production of a product, the mass-based indices used in the references cited above are suitable

indicators for the objective of minimizing waste.  However, it should be kept in mind that waste

minimization is a means, not an end.  The goal is improved environmental quality [164].   In

seeking to avoid value judgements regarding the relative environmental impact of different
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chemicals, some authors go to the extreme of including inert substances (such as nitrogen in flue

gases) in the computation of the mass of waste generated [159].  Clearly, chemical process

designers should not be indifferent between the emission of 1 lb. of N2 and the emission of the

same amount of a highly toxic chemical.

Recognizing that not all substances in a waste stream raise the same level of concern with

respect to their environmental impact, some authors compute total mass of waste in special

categories of concern [46,161,165,166].  Some common categories include: regulated hazardous

waste, volatile organic compounds, and substances included in regulatory lists, such as the Toxic

Release Inventory in the United States.  In the system used at Polaroid Corporation, all materials

used or generated by the company are placed in one of five categories, according to their

potential hazard [167].   The total mass of materials used (in the case of the two most sensitive

categories) or contained in waste streams (in the case of the other three categories) is reported

separately for each category.

Although the approach mentioned above is a step in the right direction, it still falls short

of what is needed to incorporate environmental considerations into the evaluation of a design.

The reason is that the contribution of a unit mass emission to a particular environmental impact

might vary by orders of magnitude among the chemicals included even in narrowly defined

categories.    The alternative is to shift the focus from emissions to impacts.

MINIMIZATION OF CONTRIBUTIONS TO SPECIFIC ENVIRONMENTAL PROBLEMS

In the problem-oriented approach, the relative contributions of different chemical species

to identified environmental problems are used to obtain a weighted sum of the masses of

chemicals emitted.  The resulting figure can be interpreted as the mass emissions of a single

reference substance that would have the same contribution to an environmental problem of

concern as the particular mix of emissions being analyzed.   For example, emissions of different

greenhouse gases may be aggregated into an index by multiplying the emissions of each gas by

its global warming potential relative to CO2 [168].

The first attempts to apply the problem oriented approach in the development of

environmental indicators for the evaluation of chemical processes focused on toxicity.

Grossmann and coworkers multiplied the material flows in a chemical process by the inverse of
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the LD50 of each material, and added the resulting figures to obtain a toxicity index [31].  In a

study of the structure of the petrochemical industry that would minimize the toxicity of organic

pollutant emissions, Fathi-Afshar & Yang [154] divided material flows by their threshold limit

values (TLVs are upper limits to the concentration of pollutants in air in the work environment

recommended by the American Conference of Governmental Industrial Hygienists [169]), and

multiplied them by their vapor pressure (they assumed that fugitive emissions are proportional to

vapor pressure).    TLVs were also used by Horvath and coworkers as the basis for an index of

toxic emissions [170].

Literally dozens of different ranking and scoring schemes have been proposed to evaluate

chemicals based on measures of toxicity or measures of toxicity and exposure [171].  These

systems differ in the scoring criteria used, the endpoints used to score each criterion, the

algorithm used to aggregate individual scores into an overall score, and the procedures used to

score chemicals with missing data.    The hierarchy of indicators proposed by Jia and coworkers

(see Table 2-4) gives an example of the different levels of sophistication that can be used to

evaluate the potential toxic impacts of a design.    The fourth type of index is based on the

PEC/PNEC (Predicted Environmental Concentration / Predicted No Effect Concentration)

concept used for risk characterization [172], and has been characterized as the most consistent

with an environmental science approach [173].    Cave & Edwards have recently applied an

index of this type to compare the environmental hazard of six alternative routes to the production

of methyl methacrylate, based on the total inventory of chemicals present in the corresponding

plants [174].    Variations of these indices that take into account bioaccumulation in the food

chain have been developed [175,176].   A further level of sophistication is embedded in the

Human Toxicity Potential index developed by Hertwich and coworkers [177].   In addition to

toxicity, persistence, and environmental mobility, this index takes into account the relationship

between environmental concentrations and chemical doses received through different exposure

routes.

Toxicity is not the only environmental concern relevant to chemical process design.

Other relevant environmental problems to which a chemical process might contribute include

ozone layer depletion, climate modification, acid precipitation, and photochemical smog

formation.  Stefanis and coworkers [32,33,35,36,112,153] and Kniel and collaborators [34] have

applied such problem-oriented indices to the design of chemical processes.
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Table 2-4: Toxicity-based indicators for the evaluation of environmental releases
Aspects
Considered Example
Mass ∑=
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Qi,m is a toxicity-based environmental indicator for chemical releases to medium m.
Ec,m is the mass of chemical c released to medium m
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Cc,m is the toxicity-based reference concentration of chemical c in medium m.
Examples include the threshold limit value (TLV), lethal concentration fifty (LC50),
and the predicted no effect concentration (PNEC).  Other measures of toxicity that
can be used instead of reference concentrations include reference doses and cancer
potency factors.
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τc,m is the persistence of chemical c in medium m, and depends on the rate of the
chemical loss by advection, reaction and transfer to other media
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Fc,j,m is the intermedia mobility fraction of chemical c from medium j to medium m.
The values of τc,m and Fc,j,m are context specific.  Estimating these values requires
either the use of a multimedia mass balance model or a broad database of chemical
fate observations.

Note: this table has been adapted from a table shown in reference [178]

MINIMIZATION OF OVERALL INDICATORS OF ENVIRONMENTAL IMPACT

Efforts have been made to develop an overall index of environmental impact for use in

the quantitative evaluation of chemical process flowsheets [84,85,179,180].   Chemical process

designers willing to use such indices must keep in mind that these indices are meaningless

without input from the users about their values regarding the environment.   The Eco-indicator

95 is an example of an environmental indicator developed for product design applications where

the method developers have been very explicit about the value judgements used to weight

contributions to different environmental damages [181].  The method developers are also explicit

about the decisions they made to include or exclude environmental problem categories in their

indicator (for example, they decided to exclude local toxic impacts, since their focus was on

environmental effects on an European scale).  The weighting factors used in the Eco-indicator 95
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are developed in two stages.   First, individual problem oriented indicators are normalized by the

indicators corresponding to the emissions inventory of Europe.  In the second stage, normalized

scores are multiplied by reduction factors.  The reduction factor for a particular problem is

defined as the factor by which the current European emissions would have to be reduced so that

the resulting impact would not exceed “1 death per million people per year”, or a “5% ecosystem

impairment”.  The method developers are explicit in expressing their value judgement that 1

death per million people per year is equivalent to a 5% ecosystem impairment.   Users who do

not share that value judgement would need to develop their own reduction factors for each

problem.

INDUSTRIAL PERSPECTIVE

Examples of environmental indicators being used to evaluate processes in the chemical

industry are given in Table 2-5.   DeSimone & Popoff have published a book with accounts of

the approaches used by a wide variety of firms to measure their environmental performance

[182].

2.6.3 Trading off environmental objectives against other design objectives

The selection and refinement of a final design is a multiobjective decision problem,

where economic, environmental, and safety concerns might be in conflict [45].   As explained

above, “the environmental objective” is in itself a collection of many objectives, where

improving one objective might not be possible without worsening another.  For example,

decreasing solvent emissions by increased separations and recycling might lead to increased

emissions of combustion gases from energy generation.

The first step in the analysis of a decision problem with multiple objectives is the

identification of the set of non-dominated alternatives, also known as the Pareto set [46].   A

dominated alternative is one that is inferior to another feasible alternative in the set with respect

to all attributes under consideration.   This means that for each dominated alternative there is at

least one “win-win” alternative that can be attained without sacrificing achievement in any of the

design objectives.  The set of alternatives that remains after all the dominated alternatives have

been removed is the set of non-dominated alternatives.   Techniques for identifying the set of

non-dominated alternatives include the “ε-constraint technique” and the “weighting method
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approach”.  Both of these techniques have been applied to process design problems with

economic and environmental objectives [31,32,35,36,117,134,149,153,154].  For simple

problems involving discrete alternatives and only two objectives, the set of non-dominated

alternatives may be identified by inspection [151].

Table 2-5: Environmental indicators used for process evaluation in the chemical industry
Company Environmental index used Comments
Roche [160] Total mass of waste (before end-

of-pipe treatment) per unit mass
of end product

3M [163] Total mass of waste as a fraction
of the total mass of outputs of a
process (including products,
byproducts and wastes)

Polaroid [167] Total mass of chemical use or
waste in each of five categories
per standard unit or product

All chemicals in raw materials and waste are
assigned to one of the five categories, based
on relative hazard.

Rohm and Hass
[183]

Weighted sum of waste stream
masses, per unit mass of product

Weighting factors are the product of a
toxicity score (based on its NFPA health
hazard rating) and a “mode of delivery to the
environment” score (based on whether the
waste stream is directly discharged, treated
before release, or recycled or reused).

Imperial Chemical
Industries [184]

Equivalent emissions of reference
substance for ten environmental
impact categories

Potency factors for each category are
developed based on published studies and
standards.

Ciba Specialty
Chemicals [37]

Eco-Indicator 95 [181] and Swiss
Eco-scarcity method [185]

The toxicity of most chemicals is not
considered in either indicator.  The Eco-
scarcity method is based on national emission
targets established by the Swiss government.

The selection of the “best compromise” alternative from the set of non-dominated

alternatives requires input about the values and preferences of the people responsible for making

the decision.    Thus, design teams working on a problem with multiple objectives are faced with

the need to apply multiattribute decision making techniques [186,187] in which most process

engineers are not trained.   Some authors attempt to avoid the elicitation of values by

normalizing the objectives (so that their values for all alternatives are in the range 0-1), and then
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computing a norm [31,84,154].   This does not remove the need to evaluate tradeoffs, it merely

makes it more difficult to do so by eliminating relevant information.

Multiobjective goal programming is a technique that has also been used to solve chemical

process design problems without specifying weighting factors to tradeoff objectives against one

another [46,124].   The procedure involves stating goals for each objective of the design, ranking

the objectives in order of importance, and then choosing the alternative that minimizes

lexicographically the vector of deviations from the aspiration levels.    With this procedure, the

decision-maker makes tradeoffs implicitly by specifying the aspiration levels.  In addition, it is

likely that the tradeoffs will not be consistent across projects, since the aspiration levels will be

case specific.   A further problem with this technique lies in its use of lexicographical

minimization, since the technique does not attempt to strike a balance among conflicting

objectives.  A marginal improvement in a highly ranked goal, no matter how small, is always

preferred to improvements in goals ranked below it, no matter how large.   An example of this is

given by a lexicographic pollution prevention index that has been used to rank pollution

prevention alternatives [76,77].  In this index, the classification of the solution according to the

pollution prevention hierarchy is given priority over all other considerations.  As a result, the

most expensive, inefficient, and difficult to implement source reduction alternative is ranked

higher than the most profitable, effective, and easy to implement recycling option.

Weighted sums of dimensionless scores are commonly used to make decisions involving

multiple criteria.  In the analytical hierarchy process, the criteria are organized in a hierarchy,

where higher level scores are weighted sums of lower level scores [188].    Tradeoffs made using

these methods will not be consistent across projects, since the attribute values used in the

normalization are case specific.  Applications of these techniques to pollution prevention projects

have been published [43,189,190].

A different reaction to the valuation problem is to dismiss it as a “social science” problem

outside of the field of process engineering, but this gives no assistance to design engineers facing

the challenge of making a decision.   Our perspective on this issue is that even though it might be

difficult to establish precise levels for the tradeoffs that decision makers are prepared to make, it

is always possible to place bounds on them.  Sensitivity analysis (discussed in the next section)

can then be used to determine whether there is a need to undertake more thorough elicitation of
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preferences.    Ideally, many of these questions would be addressed at the corporate or division

level, allowing management to give design teams uniform guidance regarding the tradeoffs that

the company is prepared to make among the different objectives.

2.7 The role of sensitivity analysis
The main goal of sensitivity analysis is to determine whether the best alternative

identified advances the design objectives sufficiently, given current levels of uncertainty, to

make further search unnecessary. Framing of the design problem should specify the criteria to be

used to determine whether the gains from additional analysis are worth the additional time

required.  With respect to environmental objectives, the design team needs to be able to identify

those aspects of the design that are driving the environmental impact.  It is also necessary to

understand the tradeoffs associated with the modification of the aspects of the design driving the

impacts.

Ciric and collaborators have noted that costs associated with waste treatment and disposal

are difficult to estimate, since direct costs (e.g. landfill fees) are rapidly increasing and indirect

costs (e.g. liability, paperwork) are significant but hard to quantify [134,149].   This observation

motivated them to develop a procedure for determining the sensitivity of the maximum net

profits of a chemical process to changes in the waste treatment cost.   In this procedure, the

concave portions of the solution set of the multiobjective problem that maximizes profits and

minimizes waste are mapped into the solutions of the original profit maximization problem for

different values of the waste treatment cost.

There are very few examples of the application of sensitivity analysis to published

mathematical programming formulations of waste minimization [119,122,138].   Two of these

examples examine only the impact of adding additional structural constraints for the network of

separation units [122,138], while the other one analyzed the sensitivity of the optimal network to

equipment cost [119].    Sensitivity analysis on variables fixed at the problem framing stage (e.g.

recovery or concentration targets) has not been reported.

Many aspects of the evaluation of a chemical process design with respect to its

environmental performance are subject to considerable uncertainty.   Diwekar has examined the

impact of uncertainties associated with technical factors alone (e.g. equipment performance,



70           CHAPTER 2.ENVIRONMENTALLY CONSCIOUS CHEMICAL PROCESS DESIGN                                                     

emission rates) in the economic and environmental performance of a power plant design [158].

Proponents of environmental impact assessment indices [170,178] have noted the need for

quantifying the uncertainties in environmental indices and in any rankings that might result from

these indices, but work in this area is still in its infancy.

In order to improve the environmental performance of a design, it is necessary to

understand what are the features of a design that are the main drivers of its environmental

impact.  Thus, the calculation of an environmental index is not very useful unless the results can

be presented in a way that allows the design team to set priorities for further design work.

Unfortunately, most of the work reported in the literature has not addressed this problem.   Tools

analogous to the cost diagrams introduced by Douglas & Woodcock for the screening of designs

(based on economic objectives) [191] could be very useful in this regard.  Hilaly & Sikdar

[82,83] recommend the calculation of pollution indices (a measure of the mass of waste

produced per unit mass of product) for a complete flowsheet as well as for individual process

streams.  In their procedure, the units associated with process streams with high pollution indices

are then targeted for waste minimization.   Heinzle & Hungerbühler use a mass loss index (MLI)

to allocate all mass flows leaving a process to their cause.  Causes of mass inefficiencies include

stoichiometric formation of byproducts in desired reactions, incomplete conversion, selectivity

losses, purification losses, impurities contained in substrates, and losses of solvents, catalysts and

other auxiliary materials not recycled with 100% efficiency.  By weighting individual streams by

their cost or by a relative measure of environmental impact, those causes of mass inefficiency

with the greatest cost or potential ecological impact can be identified.   The design team would

focus their attention on reducing those sources of inefficiency in the next iteration.

2.8 Research needs
In December of 1992, the Center for Waste Reduction of the American Institute of

Chemical Engineers, the U.S. Environmental Protection Agency and the U.S. Department of

Energy sponsored a workshop to identify requirements for improving process simulation and

design tools with respect to the incorporation of environmental considerations in the simulation

and design of chemical processes [192,193].   Most of the needs identified during that workshop

are still present today.  The following list combines the subset of the needs identified in that
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workshop that we find most relevant (marked with an asterisk) with some additional needs we

identified during the preparation of this review.

GENERATION OF ALTERNATIVES

• Increase the integration of process chemistry into the generation of design alternatives

• Develop tools to identify new reaction pathways and catalysts *

• Extend alternative generation methods to include non-conventional unit operations *

• Develop methods that allow the rapid identification of opportunities to integrate processes

• Develop methods to recognize opportunities to match waste streams with feed streams, and

to prescribe the operations needed to transform a waste stream into a usable feed stream.

ANALYSIS OF ALTERNATIVES

• Predict generation of undesired byproducts *

• Improve prediction of reaction rates *

• Predict fugitive emissions and emissions from nonroutine operations (e.g. startup) *

• Improve characterization of non-equilibrium phenomena *

• Include waste-treatment unit operations in process simulators

• Increase the ability of process simulators to track dilute species *

• Improve stochastic modeling and optimization *

• Link process and environmental models *

• Build databases of properties relevant to environmental characterization of processes and link

them to process simulators

• Include information about uncertainties in databases

• Create databases with typical mass and energy balances (including trace components of

environmental significance) for widely used raw materials in the chemical industry, to

facilitate the characterization of upstream processes.
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• Develop guidelines to match the level of detail used in process models with the accuracy

needed to make decisions

EVALUATION OF ALTERNATIVES

• Develop accounting rules to allocate environmental impacts to specific processes and

products in complex plants

• Develop environmental impact indices that are able to combine data of different quality

while preserving their information content

• Develop screening indicators

• Develop frameworks that facilitate the elicitation of preferences needed as input to

multiobjective optimization

SENSITIVITY ANALYSIS

• Incorporate sensitivity analysis as a standard element in papers and books related to chemical

process design

• Develop indicator frameworks that allow rapid identification of the features of a design that

drive its environmental impact.

2.9 Conclusions
Environmental issues are emerging as one of the major driving forces for change in the

chemical industry. This chapter has presented a review of the issues, methodologies and future

needs for integrating environmental concerns into the design and operation of chemical

manufacturing facilities. While there are clearly many needs perhaps one of the most overriding

opportunities is for a change in attitudes.   A view of product and process design that sees

environment as an objective and not just as a constraint on operations can lead to the discovery

of design alternatives with improved environmental and economic performance.   An adoption of

environmentally conscious design ideas in academic curricula is perhaps the most significant

leverage point for moving the practice of chemical process design in this direction.
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Chapter 3 Valuation Models

“Since experience indicates that only a small number of ideas will ever have a
payout, we see that evaluation is one of the most significant components of any
design methodology”.

James M. Douglas

3.1 Introduction
Design problems are always underdefined. There are a large number of choices a

designer can make in the design of a process.  The choices include process chemistry, type of

unit operations, flowsheet topology (i.e. how the different unit operations are interconnected),

equipment selection and sizing, stream flow rates, temperatures and pressures, materials of

construction, process control strategies, etc.  Douglas states that it is often possible to generate

104 to 109 alternative processes for even a single-product plant [1].  According to Biegler,

Grossmann and Westerberg, it is not uncommon for the number of design alternatives for a

chemical process (based on the discrete decisions alone) to number 1015 [2].  It can be expected

that among this vast number of process alternatives, some alternatives will be much better than

others.

A key step needed to convert an ill-posed design problem into a well-posed problem is to

define the goals of the design.  Some of these goals will be objectives, while others will be

constraints.  The difference between an objective and a constraint is that designers aim to

maximize or minimize objectives (e.g. maximize profit, minimize environmental impact), while

they only strive to meet constraints (e.g. meet government regulations, fit process within

available land area).  It is common to find some degree of conflict among goals. In such cases,

the designer must decide how to resolve the tradeoffs among conflicting objectives. A very

common tradeoff it the one between minimizing capital investment and minimizing operating

costs.  It is almost always possible to decrease operating costs by increasing investment in

equipment.  Whether or not the additional investment is justified depends on, among other

factors, the return that a firm can expect to earn in alternative investments.

The role of the evaluation step of the design cycle is to map design decisions into

quantitative indicators that enable the design team to assess the degree to which various design
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alternatives advance the goals of a design problem.  This is done through valuation models (also

known as “objective functions”).  While process models map design decisions into material

flows and utility consumption rates, value models map physical information into measures of

performance.  These measures of performance are then used to rank alternatives and to gain

insights about the most promising directions for evolving the design.

A sense of the importance of careful consideration of valuation models can be gained

from the following quote from Ralph L. Keeney’s book “Value-focused thinking” [3]:

“In many complex decision situations, the consequences are significant, meaning
in the hundreds of millions of dollars or involving potential fatalities or large-
scale environmental degradation.  The only reason for an interest in such
problems is because some consequences may be much better than others, and
some alternatives may be much better than others.  And yet the amount of time
devoted to careful study of the appropriate values is minuscule relative to the time
used to address other aspects of the decision situation.  The “objective function”
may be chosen in an hour with very little thought, while several person-years of
effort and millions of dollars may be used to model the relationships between the
alternatives and the consequences and to gather information about the
relationships.  Since values are the entire reason for caring about the problem, it
would seem reasonable to use a portion of those resources to structure, quantify,
and understand the relevant values. Such an effort should be used to build a value
model.”

While chemical engineers devote considerable effort to building and validating process

models, relatively little effort is spent developing and validating the valuation models used to

assess the performance of their proposed designs.  I will show later in this chapter that one of the

byproducts of the lack of attention paid to valuation models is a significant bias against capital

expenditures that results in investment in processing equipment that is below the economic

optimum.

This chapter argues that the use of appropriate value models is fundamental to enable

designers to identify superior alternatives.  In particular, incorporation of environmental

concerns as additional objectives, rather than as constraints, should enable designers to develop

process alternatives with superior environmental and economic performance.  There are several

reasons for this:

a) Environmental regulations are constantly evolving.  What is permissible today might not be

permissible in the future.  Treating environmental concerns as objectives rather than
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constraints will result in designs that are less likely to require expensive retrofits as

environmental regulations are tightened.

b) Some of the reasons that contribute to environmental impacts also contribute to increase

costs.  For example, material that escapes a process plant as a pollutant can not be sold as a

product.  Instead, additional resources must be used to treat the material to decrease its

hazard.  Similarly, excessive use of utilities leads to pollution from the plants that provide the

utilities.  It is to be expected that there will be a correlation between energy and material

efficiency on one hand, and environmental performance on the other hand.

c) The existence of a vast number of alternatives for any design problem means that design

teams will only have time to explore a limited subset of the set of all possible alternatives.  It

is unlikely that they will find the best design on the first trial.  Using a richer valuation model

to score the alternatives allows designers to identify the features of a design that contribute

(or detract) the most to several dimensions of performance.  If design teams have this

information, they should be able to brainstorm more productively in subsequent iterations

around the design cycle.

This chapter is organized into two major sections.  The first section discusses economic

valuation models, while the second one focuses on environmental valuation models.  The section

on economic valuation models takes an in-depth look at the economic objective functions

commonly used at the conceptual stage of process design.  A detailed derivation of the

annualized profit economic potential model is shown, followed by a thorough discussion of the

uncertainties in the model.  The section closes with a discussion of the biases inherent to the

model, showing that these biases result not only in equipment that is too small relative to the

economic optimum, but also in excessive generation of pollutants.  The section on environmental

valuation models builds upon the discussion on economic models to make the argument that the

two types of models are conceptually similar, with the major distinction due to differences in

data availability and user familiarity.  The two main approaches to the construction of

environmental valuation models are shown, with references to various valuation systems.

Uncertainties are discussed, with particular emphasis on the uncertainties in weighting factors.
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3.2 Economic Valuation Models
The most common valuation models in use have monetary units.  This is natural, since a

principal objective for building a process is to make a profit. Figure 3-1 shows the structure of a

typical economic valuation model.  The first step in the evaluation procedure is to map design

decisions into flow rates and process equipment specifications through the use of process

models. The flow rates can then be converted into recurring cash streams (e.g. revenues and

operating costs) by multiplying them by unit prices.  Process equipment specifications can be

translated into purchased equipment costs through the use of cost correlations or equipment

fabrication cost models. At the conceptual design stage, all other capital costs are estimated as a

function of the purchased equipment cost.  Additional recurring cash streams (e.g. operating

labor and maintenance costs) are also a function of the equipment specifications.  The last step of

the analysis is the combination of capital costs and recurring cash streams into a single measure

of economic performance.  Recurring cash streams occurring in future periods can be discounted

and added to the capital cost to obtain a net present value (NPV), or the capital costs can be

annualized and added to the recurring cash streams to obtain a total annualized profit (TAP).  A

frequently used metric is the total annualized cost (TAC), in which the revenue streams are

excluded from the analysis.  Using TAC as an economic objective is only justified if all the

design alternatives produce the same amounts of products.  A third option is to calculate the

internal rate of return of the investment (IRR).  The IRR is defined as the discount rate that

would make the NPV equal to zero.

A key element in any economic value model of chemical process designs is the set of

coefficients used to combine revenues, operating costs and equipment costs into a single number,

since these coefficients ultimately determine how the operating cost vs. capital cost tradeoff is

resolved.   These coefficients are examined in detail in the following sections, using annualized

economic value models as the framework.  Section 3.2.1 introduces the total annualized profit

(TAP) economic valuation model.  The discussion of economic valuation models is built around

the TAP metric instead of around the NPV metric because it is more commonly used at the

conceptual stage of design.  The conclusions of this section do not change if NPV is used instead

of TAP as the economic valuation function.  The annualization factor (AF) is introduced as the

key parameter used to compare installed equipment costs and raw material and utility costs on

the same basis.  There are two major components to the annualization factor.  The first
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component is used to annualize capital investments necessary for the construction of a process.

The key parameter used to quantify this component is the capital charge factor (CCF).  In section

3.2.2, two capital charge factor models are described.  The second component in the

annualization factor accounts for fixed recurrent costs arising from the equipment, such as

maintenance, local taxes and insurance.  A full AF model including both components is

described in section 3.2.3.  Section 3.2.4 discusses the uncertainties associated with the various

parameters in the TAP model.  Finally, section 3.2.5 makes the argument that the economic

valuation procedures advocated by the process design textbooks are biased against capital

investment.  The impact of this bias is explored through an example.
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Figure 3-1: Elements of an economic valuation model

3.2.1 The total annualized profit economic valuation model

Process models usually yield the following information:

• Rates of products, byproducts, wastes, and raw materials (from the mass balance)

• Utility usage rates (from the energy balance)
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• Size data for major equipment units (from the performance equations used to model each unit

operation)

The first two sets of information can be translated into economic potentials for the

process through the use of prices [1]:

∑∑ −=
−=

mat rawmat rawprodprod PFPF
Costs  MaterialRawvenueReEP1 (3-1)

∑∑ −−=
−=

utilutilwastewaste PFPFEP
Costs UtilityCosts Disposal and Treatment Waste-EPEP

1

12 (3-2)

These economic potentials are upper limits for the gross margin of the process.  The gross

margin is defined by:

Gross Margin = Revenue – Variable Costs (3-3)

The main difference between gross margin and the economic potential EP2 given above is

that the former includes other variable costs (such as labor) which can not be easily estimated

directly from the mass and energy balances.

The conversion of equipment sizes into capital cost typically takes place according to the

following steps:

1. Equipment cost correlations are used to estimate purchased equipment cost (Cp).

2. Purchased equipment costs are multiplied by a series of factors to account for (i) direct

material and labor used for installation, (ii) indirect installation costs, and (iii) contingencies

and fees, to obtain an estimate of the total installed equipment cost, also known as onsite

cost, inside battery limits cost, or total module cost (CTM).

3. An additional factor is sometimes used to account for necessary investments in auxiliary

facilities, such as utility and waste treatment plants.  The total cost obtained is known as the

Fixed Capital Investment (FCI) or Grassroots Cost (CGR).

When this procedure for estimating capital costs is used, the only direct information used

is major equipment costs, which typically represent 20 to 40 percent of the fixed capital

investment.  The rest of the capital costs are assumed to increase in direct proportion to the cost

of equipment.  Although this procedure yields fixed capital costs that are within 30% of the

actual fixed capital cost, it has the effect of overestimating the marginal capital cost increase due
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to changes in equipment.  Processes designed through the optimization of an objective function

that uses purchased cost correlations and cost factors to estimate fixed capital investment costs

are likely to have equipment that is too small relative to the true optimum, since the impact of

each additional dollar invested in process equipment is overestimated.  A more detailed

discussion of this observation is given in section 3.2.5.

Under the annualized costs economic valuation model, the economic objective function

to be maximized at the conceptual stage of design is

EP3 = EP2 – AF × CTM
(3-4)

where AF is the installed equipment cost annualization factor and CTM is the total installed

equipment cost (see discussion above). Various process design textbooks differ in their

recommendations with respect to appropriate values of the AF. For example, Smith [4] obtains

the AF using the formula:
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where i is the applicable annual discount rate (or interest rate), and N is the number of years over

which the capital cost is annualized.  With i = 15%, and N = 11 years4, the formula above yields

AF = 0.191 yr –1.   In his chemical process design book [5], Ulrich recommends using an AF

between 0.15 and 0.20 yr –1.

Douglas calculates AF using the expression [1]:

AF = 0.191 + 2.42CCF (3-6)

where the capital charge factor (CCF) is calculated according to the formula:
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(3-7)

In the expression above, n is the length of the period of construction (years), N is the number of

years of operation, i is the discount rate, and τ is the tax rate.  With i = 15%, n = 4 years, N = 11

years, and τ = 48% (the tax rate used by Douglas in his book), the CCF is calculated as

0.358 yr-1.  With the assumptions stated above, the Douglas method yields AF = 1.05 yr –1

                                                
4 The choice of i=15% and N=11 years is made for consistency with Douglas [1]
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(Douglas uses a value of 1 yr–1 throughout his textbook).  Using the current tax rate of 34%

yields CCF=0.298 yr-1 and AF = 0.91 yr-1.  There is a rather large discrepancy (more than a

factor of 4 difference) in AF values among the different sources.  Sources of the discrepancy

include:

• The Douglas method includes an annual charge for maintenance, local taxes and insurance.

This is the first term on the right hand side of eq (3-6).

• The Douglas method assumes offsite costs equal to 45% of onsite costs for plant expansions;

the annualization factor used by Smith does not consider offsite costs

• The Douglas method assumes that the installed equipment cost does not include

contingencies and fees, so it adds them to the annualized capital cost.   It also adds a factor

for working capital and startup capital.  These factors together with the offsite cost factor

account for the coefficient preceding CCF in eq (3-6).

• Douglas’ CCF formula considers taxes, depreciation, recovery of working capital and the

salvage value of the equipment at the end of the project.

• The Douglas method assumes a long period of construction (n = 4).  If construction is

assumed to take place in one year (n = 1), the CCF drops to 0.287, resulting in an AF of

0.887.

The large discrepancy in annualization factors justifies a closer examination of how the

annualization factor is derived.  Design teams should invest the time required to verify that the

assumptions made in deriving the annualization factors they use to evaluate the tradeoff between

equipment costs and operating costs are appropriate for their design problem. In the next two

subsections derivations of expressions for the capital charge factor and the annualization factor

are presented, based on cost ratios frequently quoted in process design books.

3.2.2 Capital charge factor models

The capital charge factor (CCF) is defined here as the factor by which the total capital

investment (TCI) should be multiplied, so that the ratio of the modified capital cost to the annual

variable cost is the same as the ratio of the relative contributions of fixed capital cost and
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variable cost to the net present value (NPV) economic performance metric.  In other words, if

NPV is given by

∑∑ −−+−= ...210 mat rawmat rawprodprod PFaPFaTCIaNPV (3-8)

then the CCF is given by the ratio a0/a2.

ANNUITY FORMULA

The simplest CCF model is the annuity formula:

( )
( ) 11

1
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+= N

N

i
iiCCF (3-9)

where i is the discount rate (per year) and N is the project life (years).

This model is appropriate when taxes, working capital and salvage value credits to net

present value can be neglected.   Otherwise, more sophisticated models are needed.

DOUGLAS MODEL

In this subsection a detailed derivation of the Douglas CCF model (eq (3-7)) is presented.

The presentation given here differs from that by Douglas in that all of the input variables used in

the derivation are preserved in symbolic form, while Douglas substitutes numeric values

throughout his derivation.  Deriving the model in symbolic form enables the carrying out of

sensitivity and uncertainty analysis on the final CCF model as a function of uncertainties in the

key ratios used to derive it.  A nomenclature has been added to end of this chapter to help the

reader to follow the derivation.

The Douglas CCF model is built on the following assumptions:

• Fixed capital investments (FCI) are distributed uniformly over a period of n years

• Annual operating cash flows are constant over a project life of N years following

start-up

• Straight-line depreciation is used

• Depreciation allowances are excluded from total product cost (TPC)
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• Working capital (WC) and start-up cost (SC) are added to the FCI to obtain the total

capital investment (TCI)

• Working capital and part of the equipment cost (the salvage value, SV) are recovered

at the end of the project

• The present value is calculated with respect to the year in which process operations

start

With these assumptions, the net present value is the sum of the following three components:

a) Initial investment:
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b) Present value of cash flow from operations (net of taxes):
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c) Recovery of working capital and salvage value at the end of the project, discounted to present

value:
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Adding the three terms yields
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or, in terms of the TCI:
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where the ratio of TCI to FCI is given by

FCI
SC

FCI
WC

FCI
TCI ++= 1 (3-15)

According to the definition, the CCF is given by the ratio of the TCI coefficient to the

(Revenue-TPC) coefficient in eq (3-14):
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The final model is a function of 7 parameters: i, n, N, τ, (WC/FCI), (SC/FCI), and (SV/FCI)5.

With n = 1, and no taxes, depreciation, working capital, startup costs or salvage value, eq (3-16)

reduces to eq (3-9).

The procedure used by Douglas to derive the CCF can be implemented on a spreadsheet

to compute CCF for other cases, such as those with non-uniform schedules for investment,

process throughput, or depreciation.

3.2.3 Installed equipment cost annualization factor model

Part of the total product cost consists of factors that are commonly assumed to be

proportional to the capital investment.  Examples of these factors are maintenance, local taxes,

and insurance.  These kinds of costs need to be included in the analysis of the operating cost vs.

installed equipment capital cost tradeoff.  This is the origin of the term in eq (3-6) that does not

depend on the capital charge factor.

According to Douglas, the total product cost (TPC) is the sum of the following

components:

                                                
5 The definition of these symbols is given in the nomenclature (section 3.5)
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I. Manufacturing cost is the sum of direct production costs, fixed charges, and plant overhead

A. Direct production costs

1. Raw materials (obtained from flow rates of feed streams in the mass balance)

2. Utilities (estimated from the energy balance)

3. Maintenance and repairs: about 2-10% of FCI

4. Operating supplies: about 10-20% of cost for maintenance and repairs

5. Operating labor: estimated as $100,000 (in 1988 dollars) times the number of shift

positions (the number of shift-positions needs to be estimated from an examination of

the flowsheet)

6. Direct supervision and clerical labor:  about 10-25% of operating labor

7. Laboratory charges:  about 10-20% of operating labor

8. Patents and royalties: about 0-6% of total product cost

B. Fixed Charges equal the sum of local taxes and insurance (depreciation is treated

separately)

1. Local taxes: about 1-4% of FCI

2. Insurance: about 0.4-1% of FCI

C. Plant Overhead (OVHD): about 50-70% of the cost of operating labor, supervision, and

maintenance

II. General expenses: Sales, administration, research and engineering (SARE) costs are about

2.5% of the sales revenue for chemical intermediates, although they might be higher for

finished products sold directly to consumers.

Adding all the components yields the following expression:
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or, after factoring the terms that depend on TPC:
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The TAP metric is defined by:
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( ) TCICCFTPCueRevenTAP ×−−= (3-19)

Substituting eq. (3-18) into eq (3-19) yields
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Equation (3-20) has two bracketed terms.  The first term includes the contributions of

product revenue, raw materials, utilities, and operating labor.  The second term includes an

annual charge from the initial capital investment (given by the CCF factor) plus charges due to

recurrent costs arising from equipment cost (maintenance, local taxes, and insurance).

The expression for the annualization factor is derived from equations (3-4) and (3-20).

Defining the installed equipment cost annualization factor (AF) as the factor by which the

installed equipment costs (CTM) should be multiplied so that the ratio of the corrected equipment

cost to the raw material cost is the same as the ratio of the TCI coefficient to the raw material

costs coefficient in eq (3-20) yields the following expression:
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The only remaining step is to relate the total capital investment to installed equipment

cost (i.e. to derive an expression for the TCI/CTM ratio). Douglas breaks down fixed capital

investment into the following components:

A.  Direct costs

1. Onsite costs or ISBL (inside of battery limits) costs are obtained as the sum of the

product of the purchased cost of each piece of equipment times an equipment-specific

bare module factor

2. Offsite costs or OSBL (outside of battery limits) costs refer to auxiliary facilities (e.g.

steam plant, cooling towers) and buildings.  Douglas distinguishes between two cases:

a) Expansion of existing facility: 40 to 50% of onsite costs
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b) Construction of a grass-roots plant or a major plant expansion: up to 200 or 400% of

the onsite costs

B. Indirect costs

1. Owner’s costs include engineering, supervision and construction expenses; however,

the bare module factors used to estimate onsite costs already include engineering and

construction.  Douglas uses a factor of 5% × Direct costs

2. Contingencies and fees.  Douglas assumes that the sum of contingencies and fees

equals about 20% of the direct costs

a) Contingency: about 5-20% of FCI

b) Contractor’s fee: about 1.5-5% of FCI

Adding the components listed above yields
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Combining eqs (3-15), (3-21) and (3-22) yields the expression used by Douglas to

calculate the installed equipment cost annualization factor:
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This is the expression used to compare the tradeoff between a marginal increase in

variable costs (e.g. raw materials, utilities) and a marginal increase in installed equipment cost.

If the product of the annualization factor times an incremental installed equipment cost is less

than the annual raw material and/or utility savings obtained as a result of the additional

investment, then the investment is profitable.  The AF depends on the parameters of the CCF

model, as well on the values of the 8 additional cost ratios used in eq. (3-23).

3.2.4 Uncertainties in economic valuation models

This section examines the uncertainties in the economic valuation model

∑ ∑ ∑ ∑ ×−−−−= TMwastewasteutilutilmat rawmat rawprodprod CAFPFPFPFPFEP3 (3-24)
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The focus is on the uncertainties that depend only on the valuation model, that is, uncertainties

that will affect the value of the economic potential metric even when the predictions of the

process models are assumed to be 100% accurate.  Under this assumption, the uncertainty in the

first four terms on the right-hand side of eq. (3-24) depends exclusively on the uncertainty in

prices.  There are three sources of uncertainty for the last tem in eq. (3-24):

a) Uncertainties in the models used to estimate purchased equipment costs from equipment

sizes and specifications

b) Uncertainties in the derivation of installed equipment costs from purchased equipment costs

c) Uncertainties in the parameters in the annualization factor model.

Each of these sources of uncertainty is examined in detail in the following subsections.

UNCERTAINTIES IN PRICES

Even though current prices for all products, raw materials, utilities, and waste treatment

and disposal services might be known precisely at the time of a conceptual design evaluation, the

average prices6 throughout the life of the project are uncertain.  Discounted cash flow average

prices throughout the life of the project can be calculated using the following expression:
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where Pk is the price k years into the future, n is the number of years into the future when the

process will start operations, N is the number of years the process will operate, and i is the

discount rate.  As the discount rate increases, the weight of prices farther into the future

decreases, resulting in less uncertain discounted cash flow average prices.

In this work, future prices are estimated using a Markov-type model, where the price in

year k+1 is related to the price in year k by the price volatility multiplier fp
7:

Pk+1 = fpPk (3-26)

                                                
6 The term average prices is used here to mean discounted cash flow average prices.  Today’s prices are more

relevant to the average price as evaluated today than prices 10 years from now.
7 fp is a random variable.
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This method is the same as the one commonly used to model the uncertainty in stock

prices in the financial literature [6]. Historical data can be used to estimate fp distributions for

each price of interest by following this procedure:

1. Convert all prices to real prices (i.e. correct prices for inflation)

2. Calculate the ratio of the real price in year j to the real price in year j+1

3. Compute the logarithmic mean and geometric standard deviation of all price ratios in the

sample

4. Model fp as independent identically distributed (i.i.d.) lognormal distributions with median

value equal to the logarithmic mean of the price ratios and uncertainty factor equal to the

square of the geometric standard deviations8.

In the absence of historical data (for example, for prices for a new product), the

marketing department can be asked to estimate subjective distributions for fp.

The results of the procedure are illustrated in Figure 3-2 (methylene chloride prices) and

Figure 3-3 (natural gas prices).  Historical data were obtained from the journal Chemical

Marketing Reporter and from the U.S. Energy Information Agency, respectively.  The U.S.

producer price index (average for all commodities) was used to correct prices for inflation. A

value of 1 was chosen for n, while a triangular distribution with parameters minimum = 9.5,

maximum = 16.5, and most likely value = 10 was chosen for N (see Table 3-4).  The graphs

show historical data as well as 68% and 95% confidence intervals for prices up to year 2016.

Each graph also shows a sample price trajectory calculated by the Markov price model.  The

central value and 95% confidence intervals for the year 2001 discounted cash flow average price

are provided as well.  The resulting uncertainty factor calculated for both average prices was

close to 1.5.

                                                
8 The uncertainty factor is defined here as the factor by which the median or central value should by multiplied or

divided to yield the 95% confidence interval around the central value.
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Figure 3-2: Historical data and future uncertainty for methylene chloride prices
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Figure 3-3: Historical data and future uncertainty for natural gas prices

UNCERTAINTIES IN EQUIPMENT COST

The uncertainty in purchased equipment cost correlations is illustrated here through an

example. Figure 3-4 shows a comparison among heat exchanger purchased equipment cost

correlations obtained from six different sources [1,7-11]. Cost data from the various sources was

brought to the same basis by using the 1996 (mid year) value of the Marshall & Swift Equipment
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Cost Index (M&S=1037) [11]. Even for such a common piece of equipment as a heat exchanger,

there is roughly a factor of 3 difference between the low and high estimates obtained from the

chart (this translates into an uncertainty factor of 1.7 around the central estimate).  In the charts

presented in his book [12], Guthrie placed uncertainty bounds around the central estimates.  For

the heat exchanger case, the uncertainty bounds are given by the central estimate plus or minus

33% (the uncertainty bounds are also shown in Douglas’ book, where a few of Guthrie’s charts

are reproduced).  The author assumes that Guthrie used 68% confidence intervals.  If this is

indeed the case, then the data used by Guthrie have an uncertainty factor of 1.8 around the

central estimate, which is consistent with the range values shown in Figure 3-4.

$1,000

$10,000

$100,000

$1,000,000
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Heat transfer area (ft2)
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Douglas (Guthrie's data, 1968) Turton (Ulrich data compilation, 1982)

Figure 3-4: Correlations for the estimation of purchased equipment cost of floating-head shell
and tube heat exchangers
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UNCERTAINTIES IN INSTALLATION COST FACTORS

At the conceptual stage of design, installed equipment costs are usually derived by

multiplying purchased equipment costs by installation cost factors. These factors account for all

the expenses needed to install a new equipment unit, including labor, piping, insulation, paint,

instrumentation, shipping, engineering, supervision, etc., and are also known as bare module

factors. A general expression for the installation cost factor, fBM, may be written as:

PMBM FFBBf 21 += (3-27)

where FM and FP are correction factors for material of construction and design pressure,

respectively.  For each piece of equipment, the installed equipment cost is calculated by the

relationship

pBMBM CfC = (3-28)

where Cp is the purchased cost for a carbon-steel unit designed to operate at atmospheric

pressure, and CBM is the installed cost (or bare module cost) of the specified unit. Total installed

equipment cost CTM is obtain by adding the bare module costs for the various pieces of

equipment in the design:

∑= BMTM CC (3-29)

Various design books differ in the way they obtain installation cost factors, as illustrated

in Table 3-1.  The surprising level of agreement among the factors for heat exchangers shown in

the third column of the table is not the result of different authors arriving independently to the

same figures, but rather a consequence of the fact that, with the exception of the Aspen

simulator, all of the sources cited rely directly or indirectly on the work published by K.M.

Guthrie more than 25 years ago [12,13].

Although the installation factors shown in Table 3-1 are independent of equipment size,

this is not what was shown in Guthrie’s original work.  Figure 3-5 compares Guthrie’s “norm”

bare module factors for heat exchangers with bare module factors calculated using the charts in

Guthrie’s book as a function of base equipment cost. The difference between the two size-

dependent curves shown is the inclusion or exclusion of engineering man-hours in the bare

module cost.  Personal computers and design software available today that was not available in

1970 should have significantly reduced this cost component.  The chart demonstrates that relying

on norm modular factors (the factors quoted in all the design books) might result in significant
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errors in the estimate of the contribution of a particular unit to fixed capital investment.  This

translates into suboptimal sizing of individual units.  In general, the use of size-independent

installation factor biases the designer in the direction of specifying units that are too small

relative to the optimum.  This can be more clearly seen in Figure 3-6, where the marginal

contribution to total installed equipment cost with respect to purchased equipment cost is shown

for heat exchangers.  Assuming a constant installation cost factor increases the total installed cost

of heat exchangers by $3.14 to $3.39 (depending on whether single or multiple installation

modular factors are used) for each $1.00 increase in equipment cost.  However, using the more

rigorous size-dependent factor results in significantly lower contributions, even for the smallest

equipment sizes.

Table 3-1: Comparison of approaches to the estimation of installation cost factors
Author Approach Example for Heat Exchangers
Smith [4]
Douglas [1]

B1 = 0
B2 = f(equipment type only)

B2 = 3.5

Turton et al. [11]
Ulrich [5]

B1 ≠ B2
both factors are a function of equipment type
only

B1 = 1.8; B2 = 1.50
(Fixed tube sheet or U-Tube type)

Biegler et al. [2] B2 = 1.0
B1 = f(equipment type, total equipment cost)
There are 5 values depending on the total
purchased cost of all units within each
equipment type

B1 = 2.29 (ΣCp < $200K)
     = 2.18 ($200K < ΣCp < $400K)
     = 2.14 ($400K < ΣCp < $600K)
     = 2.12 ($600K < ΣCp < $800K)
     = 2.09 ($800K < ΣCp < $1,000K)
Cp above are given in 1968 prices

Baasel [7] B1 = 0
B2 = f(equipment type,
                   number of units installed)

B1 = 3.39 (single unit)
B1 = 3.29 (2 to 6 units)
B1 = 3.18 (6 to 12 units)
B1 = 3.14 (12 to 18 units)
B1 = 3.12 (18 to 24 units)
B1 = 3.09 (24 to 30 units)

Aspen Plus process
simulator (release 9)a

B1 ≠ B2
both factors are a function of equipment type
only

B1 ≅ 1.91
B2 ≅ 1.90

a) The factor model in Aspen Plus gives material factors (in $ material/$ purchased equipment cost) and labor
factors (in man-hours/1979 material cost).  The values of B1 and B2 in the table were calculated by multiplying
the labor factors by estimated 1979 hourly wages.
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Figure 3-5: Guthrie's installation factors for heat exchangers
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Figure 3-6: Marginal contributions to installed equipment cost with respect to purchased
equipment cost for heat exchangers (based on Guthrie's data)
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UNCERTAINTIES IN ANNUALIZATION FACTORS

Parametric Uncertainties
As illustrated in section 3.2.1, there is a large discrepancy in recommended values of the

annualization factor among various process design textbooks.  A close examination of the

assumptions used to derive the annualization factor in any of the textbooks shows that there are

also significant uncertainties in the annualization factor model parameters.  The factors used to

derive total capital investment and annual charges (e.g. from maintenance and insurance) are not

precisely known and are likely to vary from project to project.  In addition, it is difficult to

predict the actual project life, so the number of years of operation is a very important uncertain

factor.

To illustrate the uncertainty inherent in annualization factors, information used by

Douglas in the derivation of the annualization factor value he uses has been transformed into

probability distributions for the various factors.  For most factors, a triangular probability

distribution was used, with the range given by the minimum and maximum values cited by

Douglas, and the most likely value given by the particular value chosen by Douglas when he

carried out his calculations.  When the most likely value chosen by Douglas would not be the

same as the mean of a triangular distribution built as described above, a beta distribution was

used instead. The parameters of the distribution were chosen such that the shape of the

distribution was close to triangular and its mean was the same as the value used by Douglas.

Uniform distributions were used when Douglas cited a range of values but did not choose a most

likely value. A summary of the distributions used in the total product cost and total capital

investment models is given in Table 3-2 through Table 3-4.

A Monte Carlo simulation of a more detailed spreadsheet version of the annualization

factor model discussed in section 3.2.3 yielded the results shown in Table 3-5 for six different

combinations of discount rate and tax law assumptions. The table shows that annualization

factors increase as the discount rate increases.  They also increase when the tax rate increases

and when less generous depreciation schedules are allowed.  Plots of four of the distributions are

shown in Figure 3-7.  Not surprisingly, the annualization factor is very sensitive to the choice of

discount rate, as evidenced by the widening of the distributions for the case where the design

team is uncertain about the appropriate value of the discount rate.
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Table 3-2: Parametric uncertainties in the capital cost estimation model of Douglas

Capital cost component Distribution for cost factor
Mean
value

I.  Fixed capital investment (FCI)
A.  Direct costs

Onsite costs or ISBL (inside of battery limits)
are obtained as the sum of the product of the
purchased cost of each piece of equipment times
an equipment-specific bare module factor: 50-
60% of FCI
Offsite costs or OSBL (outside of battery limits),
refer to auxiliary facilities (e.g. steam plant,
cooling towers) and buildings.  Douglas
distinguishes between two cases:

a) Expansion of existing facility: 40 to 50%
of onsite costs %)50%,45%,40T(=

Onsite
Offsite a 45%

b) Construction of a grass-roots plant or a
major plant expansion: up to 200 or 400%
of the onsite costs

%)400%,200U(=
Onsite
Offsite b 300%

B. Indirect costs
Owner’s costs include engineering, supervision
and construction expenses: 5 to 15% of direct
costs; however, the bare module factors used to
estimate onsite costs already include engineering
and construction.

%)5.7%,5%,5.2T(' =
Direct

sOwner

(estimated using one half of the range of
engineering and supervision)

5%

Contingencies and fees.  Douglas assumes that
the sum of contingencies and fees equals about
20% of the direct costs

a) Contingency: about 5-20% of FCI
%)20%,25.13%,5T(. =

Direct
Cont

The most likely value is chosen so that
mean of the sum of contingency and fee
corresponds to 20% of the direct costs

16.75%

b) Contractor’s fee: about 1.5-5% of FCI %)5%,5.1U(. =
Direct
Fee

3.25%

II. Working capital:  about 10-20% of the TCI %)20%,15%,10T(=
TCI
WC

15%

III.  Start-up costs:  about 8-10% of FCI
%)4.10%,10%,3.10%,8β(=

FCI
SC c

The mode and the maximum value were
chosen so that the mean value
corresponds to the value used by
Douglas without extending the range too
much beyond the range cited.

10%

Accuracy factor: Probable accuracy of a study estimate
(factored estimate) is up to ±25%

%)125%,100%,75T(=
nomTCI

TCI
100%

a) A T(a,b,c) distribution is a triangular distribution with parameters a=minimum value, b=most likely value,
c=maximum value.

b) A U(a,b) distribution is a uniform distribution with parameters a=minimum value, b=maximum value.
c) A β(a,b,c,d) distribution is a beta distribution with parameters a=minimum value, b=mode, c=mean, d=maximum
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Table 3-3: Parametric uncertainties in the total product cost model
Total product cost component Distribution for cost factor Mean

value
I.  Manufacturing cost

A.  Direct production costs
1. Raw materials
2. Utilities
3. Maintenance and repairs: about 2-10% of FCI

%)60%,50U(
%)10%,4%,3%,2β(=

÷=
FCI

Onsite
FCI

Maint
Onsite
Maint

%55
%4

4. Operating supplies: about 10-20% of cost for
maintenance and repairs %)20%,15%,10T(

.
.. =

Maint
SupOp

15%

5. Operating labor
6. Direct supervision and clerical labor:  about 10-

25% of operating labor
%)25%,20%,21%,10β(

.
. =

LaborOp
Superv

20%

7. Laboratory charges:  about 10-20% of operating
labor

%)20%,15%,10T(
.

=
LaborOp
Lab

15%

8. Patents and royalties: about 0-6% of total product
cost %)6%,3%,0T(=

TPC
Royalties 3%

B. Fixed Charges
Local taxes: about 1-4% of FCI
Insurance: about 0.4-1% of FCI

%)5%,3%,9.2%,4.1β(.& =
FCI

InsTax
3%

C. Plant Overhead: about 50-70% of the cost of operating
labor, supervision, and maintenance

%)70%,60%,50T(=OVHD 60%

II.  General expenses:  Administrative costs are about 2-5% of
total product cost

%)5%,5.2%,1.2%,0.2β(
Re

=
v

SARE
2.5%
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Table 3-4: Uncertain factors in the capital charge factor model
Factor in CCF calculation Distribution for CCF

factor
Mean value

Base case: Fixed at τ = 48% 48%
Current tax law case: 34%
for the first year.
For subsequent years

τττ ∆+= −1jj

where (∆τ) is modeled as a
discrete distribution with the
following values and
probabilitiesa:

34%
Tax rate:  Douglas uses 48%, but comments that the rate has been

changed and is likely to change again in the future; the
current tax rate is 34%

∆τ
-8%
-4%
-2%
-1%
0%

+1%
+2%
+4%
+8%

P(∆τ)
0.01
0.02
0.04
0.08
0.70
0.08
0.04
0.02
0.01

Base case: Fixed at 10%/yr
for first 10 years, zero
thereafter)

10%/yrDepreciation allowance:  Douglas uses 0.1(FCI) which
corresponds to straight-line depreciation with 10-yr lifetime,
but most corporations take advantage of the modified
accelerated cost recovery system (MACRS) depreciation
schedule allowed by current tax law.

Current tax law case:
MACRS method for 9.5
years class life

Yr
1
2
3
4
5
6
7

%/yr
20.00
32.00
19.20
11.52
11.52
5.76

0
Service life: Douglas states that for petroleum processes a 16-yr

life is often assumed, while for chemical plants an 11-yr life
is often taken.

)5.16,10,5.9T(=N 12

Period of construction:  Douglas uses 4 years Fixed at 4 yers 4
Fraction of capital investment made during first year of

construction:  10-15% of FCI; Douglas uses 10% T(10%,10%,15%) 11.67%

Fraction of capital investment made during second and third
years of construction:  35-40% of FCI each year; Douglas
uses 40%

two i.i.d. T(35%,40%,40%)
distributions

38.33%

Revenues and variable costs during first three years of operation,
as a fraction of the nominal value.  Douglas states that
experience indicates that the production rate increases from
60 to 90 to 95% during the first, second, and third years of
operation, respectively.

Fixed at 60% for year 1,
90% for year 2,
and 95% for year 3.

60%
90%
95%

Discount rate.  Douglas states that a value of i = 0.15 is the
smallest value he would ever consider for a new project, and
that a value of 0.20 is more realistic to add a margin of
safety.  For a high-risk project he might use i=0.33

Base case: Fixed at 20%/yr

Value judgment uncertainty
case:
i=β(15%,17%,20%,33%)

20%

20%

a) The probability distribution is loosely based on changes in U.S. corporate tax rates in the period 1929-1991 [10]



110         CHAPTER 3. VALUATION MODELS                                                                                                                

Table 3-5: Impact of parametric uncertainty on annualization factors
Depreciation and taxes

Douglas base case Current tax laws case
i = 15% median = 1.05 yr-1

UF = 1.26
median = 0.87 yr-1

UF = 1.26
i = 20% median = 1.38 yr-1

UF = 1.25
mdeian = 1.12 yr-1

UF = 1.25
Discount

rate
Uncertain:

i = β(15%,17%,20%,33%)
median = 1.37 yr-1

UF = 1.52
median = 1.11 yr-1

UF = 1.49
Note: UF = Uncertainty factor, defined such that the 95% confidence interval is given by (median/UF, median×UF)

0 0.5 1 1.5 2 2.5 3

Installed equipment cost annualization factor (yr-1)

Base case, i = 20%
Current tax laws, i = 20%
Base case, i uncertain
Current tax laws, i uncertain

Figure 3-7: Annualization factor probability density distributions (Douglas model)

Structural uncertainties
This section examines the impact of various structural uncertainties on the installed

equipment cost annualization factor.  The first structural uncertainty analyzed is the type of

indirect costs included in the estimation of fixed capital investment.  Douglas considers two

types of projects: (i) expansion of an existing facility, and (ii) construction of a grassroots plant

(see Table 3-2).  Peters and Timmerhaus consider an additional type of project, which lies

somewhere in between the two types of projects considered by Douglas: construction of a new

plant at an existing site [10].
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Even though the factored capital cost estimation method yields acceptable predictions of

total capital cost at the conceptual stage of design, it is not obvious that annualization factors

built using the full set of cost factors are appropriate for the purpose of sizing equipment.  For

example, the optimum number of trays for a distillation column should not be a function of

whether the column is being added to an existing plant or erected as part of a new plant at a new

site.  For this reason annualization factors are computed here for an additional type of project,

referred to as an “equipment sizing project”.  Table 3-6 shows the modifications made to the

parameters in the Douglas annualization factor model in the calculation of equipment sizing

annualization factors.  In choosing which factors to set to zero, consideration was given to

whether a particular cost item could be expected to increase proportionally with equipment cost

as the size of a particular piece of equipment (e.g. a distillation column) was increased.  As

previously discussed, one would not expect offsite costs to increase (for the case of distillation

columns and heat exchangers they should actually decrease, as consumption of utilities

decreases).  Unanticipated costs (accounted for by the contingency/FCI factor) should not

change.  The amount of working capital would not be expected to change significantly, since the

bulk of the material stored in the plant is located in storage tanks, and not in processing

equipment. The amount of royalties paid should remain constant, so the royalties/TPC factor is

set to zero as well.  An additional adjustment made for the calculation of the equipment sizing

annualization factors was to change the reference cost for the maintenance cost and salvage value

factors.  Installed equipment costs are used as reference cost instead of fixed capital investment,

using the distribution of FCI to CTM ratios in the facility expansion case to carry out the

conversion.  This is done based on the assumption that the real cost driver for maintenance cost

is installed equipment cost and not fixed capital investment.  Keeping FCI as the cost driver

would have resulted in an underestimation of maintenance cost as FCI decreases when many of

the cost ratios are set to zero.
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Table 3-6: Changes made to the parameters in the Douglas annualization factor model for the
purpose of deriving an annualization factor appropriate for sizing equipment

Factors Change
Offsite/Onsite
Owner’s cost/Direct cost
Contingency/FCI
Working capital/TCI
Start-up capital/FCI
Royalties/TPC
Overhead Rate
SARE/Revenue
Fraction of capital investment made in first, second,
and third years of construction (all investments are
assumed to be made in the last year of construction)

Set to zero

Maintenance factor Changed from
β(2%,3%,4%,10%) × FCI to
β(3.46%,5.74%,7.26%,16.4%) × CTM
(since maintenance is assumed to be proportional to
installed equipment cost and FCI decreases significantly
after many fixed cost factors are set to zero).

Salvage value Changed from 3% of FCI to 5.5% of Installed equipment
cost

The difference between the three design scenarios are shown in Table 3-7 and Figure 3-8,

for the base case Douglas model with straight-line depreciation, a tax rate of 48%, and a discount

rate of 15%.  There is more than a factor of 6 difference in installed equipment cost annualization

factors between the equipment sizing scenario and the grassroots plant scenario.  This means that

an additional dollar invested in equipment would have to generate six times as much savings in

raw materials or utilities costs to be considered worthwhile if grassroots scenario annualization

factors are used to evaluate alternative designs, as compared to the case of using equipment

sizing scenario annualization factors.  As discussed above, the optimum size of a piece of

processing equipment should be independent of whether it is being retrofitted to an existing

process or installed in a new site.  Economic valuation models based on the grassroots plant

scenario may be appropriate for assessing the economic viability of an entire project, but should

not be used within an optimization framework to set equipment sizes.
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Table 3-7: Effect of indirect cost factor assumptions on the annualization factors obtained from
the Douglas model

Case AF (central value, in yr-1) Uncertainty factor
Grassroots plant 2.66 1.43
Plant expansion 1.05 1.26
Equipment sizing 0.41 1.26
Notes: i = 15%, τ=48%, and straight-line depreciation; cost factor distributions are given in Table 3-2 through Table
3-4 (base case distributions).

0.1 1 10

installed equipment cost annualization factor (yr-1)

equipment sizing
facility expansion
grassroots plant

Figure 3-8: Probability density distributions for installed equipment cost annualization factors
calculated using the Douglas model for three different design scenarios, using a
discount rate of 15%

The second structural uncertainty examined in the section is the set of assumptions used

to build the cost model.  Douglas-type annualization factor models were developed based on

information contained in several process design textbooks. Table 3-8 lists the major assumptions

made in each of the cases examined. A discount rate of 15% was used in all cases. The

parameters obtained for the distributions of the installed equipment cost annualization factor are

listed in the last two rows of the table. Distributions for a subset of these cases (those

corresponding to the facility expansion design scenario) are shown in Figure 3-9.  There is about

a factor of four difference between the low end of the lowest distribution and the high end of the

highest distribution.   Even if facility expansion annualization factors are used to evaluate
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alternative process designs instead of more appropriate equipment sizing annualization factors,

Figure 3-9 shows that the rule of thumb AF = 1 yr-1 shifts the operating cost vs. capital cost

tradeoff too much in the direction of avoiding capital expenditures.

0.1 1 10

Installed equipment cost annualization factor (yr-1)

Smith

Turton, facility expansion

P&T, facility expansion

Baasel, new unit at existing site

Biegler et al.

Ulrich, facility expansion

Douglas, facility expansion

Figure 3-9: Installed equipment cost annualization factor distributions obtained from the
economic evaluation assumptions of various process design books.

This exercise has shown that there are significant uncertainties in the value of the

annualization factor that is appropriate for use in conceptual design stage economic objective

functions, even when designers have no uncertainty regarding the appropriate value of the

discount rate to be used in the economic analysis.   It is important to emphasize that this finding

also applies when the net present value economic valuation model is used, since the total

annualized profits economic valuation metric is proportional to net present value.  Using the

definition of the capital charge factor, and assuming that all capital investments are made in the

first year of the project, TAP and NPV are related through the expression

CCF
TAP

CCF
TPCenueRevTCINPV =−+−= (3-30)



Table 3-8: Installed equipment cost annualization factor model assumptions and results for various process design textbooks.
Douglas [1] Turton et al. [11] Peters and Timmerhaus [10] Baasel [7]a Ulrich [5]

Facility
expan-

sion
Grass-
roots

Smith [4]
Facility
expan-

sion
Grass-
roots

Biegler
et al. [2] Facility

expan-
sion

New unit
existing

site
Grass-
roots

New unit
existing

site
Grass-
roots

Facility
expan-

sion
Grass-
roots

Maint/FCI 2-10% 6% 2-10% 4-6% 2-6% 2.5-8.6% 2-10%
Op.Sup./Maint 10-20% n/cb 10-20% 40% 10-20% 15-20% 10-20%
OVHD 50-70% n/c 50-70% 20% 50-70% n/c 50-70%
Tax&Ins./FCI 1.4-5% n/c 1.4-5% 3% 1.4-5% 2-3% 1.4%-3%

Onsite
Offsite 40-

50%
200-

400%
25-67% 0% 27-43% 40% 12-29% 12-32% 21-45% 10-26% 45-56% 0% 23-37%

Cont&Fee/FCI 6.5-25% n/c 15% 15% 5-13% 9% 13% 10%
FCI accuracy 25% 30% -20% to +30% 25-40% -20% to +40% 14% -20% to +30%
WC/FCI 10-20% 15% 15%-20% 18% 10-20% 13-26% 10-20%
SC/FCI 8-10% n/c n/c n/c 8-10% 8-10% n/c
Depreciation Straight line n/c MACRS schedule MACRS MACRS schedule ACRS schedule Straight line
Service Life 10-16 years 5-10 years 10-15 years 9-15 yr 9-13 years 7-11 years 10 years
Tax rate 48% n/c 30% 34% 34% 34% 50%
SV/FCI 3% n/c n/c n/c 0-10% n/c n/c
Period of
construction

4 years 1 year 2 years 1 year 1 year 2-3 years 3 years

AF (central
value, yr-1)

1.05 2.66 0.46 0.52 0.67 0.66 0.57 0.59 0.67 0.58 0.76 0.70 0.91

AF (uncer-
tainty factor)

1.26 1.43 1.44 1.32 1.32 1.32 1.40 1.39 1.40 1.40 1.40 1.28 1.27

a) Parameters not provided in the main body of the text were derived from examples.
b) n/c = not considered
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SUMMARY

The following uncertainties in the annualized profit economic evaluation model have

been identified and characterized:

• Prices (uncertainty factor ~ 1.5, might be much higher for new products, waste disposal

services)

• Purchased equipment cost (uncertainty factor ~ 1.7)

• Installation cost factor (uncertainty factor ~ up to 1.5, depending on equipment size)

• Annualization factor (uncertainty factor ~ 1.4 if the discount rate is known)

Chapter 4 discusses approaches to decision making and flowsheet optimization in the

presence of significant uncertainties in valuation models or objective functions.  The following

section focuses on the impact of the biases (systematic errors) identified in the annualized profit

valuation model.

3.2.5 The impact of widely used heuristics on the resolution of the
operating vs. capital cost tradeoff

"Hey, there is a $100 bill on the floor over there!"
"That can't possibly be a real $100 bill. If it were, some one would have
already picked it up."

Opening quote in “Preventing Industrial Pollution at its Source:
A Final Report of the Michigan Source Reduction Initiative”

This section discusses how the widely used economic value models used in the

conceptual phase of process design introduce biases against capital expenditures, which in turn

lead to material use, energy consumption, and waste generation rates that are in excess of those

that would be economically optimum.  This finding is consistent with published accounts of the

abundance of overlooked energy conservation and waste reduction projects with rates of return

in excess of 100%/year.  For example, Figure 3-10 shows selected results from the energy and

waste reduction contest at the Louisiana division of the Dow Chemical Company [14].
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Figure 3-10: Results of the Energy and Waste Reduction Contests at Dow Chemical (Louisiana
Division)
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It is remarkable that after 12 years of having the contest, the number of winning projects

continued to increase, when one would have expected that as time went by it would have become

more difficult to find profitable opportunities to save energy and reduce waste.  The average

return on investment for all projects was greater than 100% in each of the 12 years for which

data was provided, and it was as high as 450% in 1989.  A recent account of a similar effort at

the Midland site [15] reported a 180% annual return on $3 million invested in projects to reduce

toxic waste generation and emissions.  These projects have such high rates of return that they

would be worth pursuing even if there were no environmental benefits associated to them.

Amazingly, by the own admission of the Dow managers involved in the Midland project, the

investment opportunities would not have been identified in the absence of a pollution prevention

objective.  A question that comes to mind after reading these accounts is: why is there such an

abundance of suboptimal processes?

The author proposes two answers to this question.  The first one was already briefly

discussed at the beginning of this chapter, namely, that there is such a vast number of design

alternatives associated to any process design problem that it is highly unlikely that designers will

have examined the most profitable ones before the time available for analysis is exhausted.  The

second one, which is examined in detail here, is that widely used economic valuation models and

procedures introduce biases against profitable capital investments.

Consider again the economic potential valuation model, eq (3-24). Assume that the

design team is trying to size the equipment for a design alternative.  As the equipment sizes vary,

the flows of materials and utilities are likely to vary as well.  The direction and magnitude of the

variations would be predicted by the process model.  Variations in flow rates impact the

economic potential of the process through the first four terms on the right hand side of eq (3-24).

Increasing the size of the equipment also impacts the economic potential directly by increasing

the capital cost and the annual maintenance, local tax and insurance charges, which are captured

by the last term in eq (3-24).  An increase in equipment size is profitable if the marginal increase

in economic potential from the terms varying with flow rates is larger than the marginal increase

in annualized capital costs.  For example, increasing the number of trays in a distillation column

would decrease the amount of utilities needed to effect the desired separation, thus increasing the

economic potential through a reduction in the magnitude of the utility cost term.  But increasing

the number of trays would increase the cost of acquiring, installing, and maintaining the column.
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At some point the additional annualized costs associated with increasing the number of trays

would be larger than the utility savings.  The optimum number of trays would then be given by

the number at which the incremental utility savings are just balanced by the incremental

annualized cost.

The marginal utility savings are given by:
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while the marginal increase in annualized column costs is given by:
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Assume that we have available a perfect process model that allows us to predict precisely

the marginal changes in utility consumption rates in the distillation column with respect to the

number of trays.  Assume further that we have company data that allows us to estimate precisely

the change in purchased column cost with respect to the number of trays.  In that case, the point

at which the two marginal changes are equal depends entirely on the utility prices (PHU and PCU),

the marginal change in bare module cost with respect to purchased cost (∂CBM/∂Cp), and the

annualization factor (AF).  As these last two factors increase, adding a tray becomes less

desirable.  Current economic evaluation models introduce the following biases:

• The use of installation factors that are independent of size overestimates the magnitude of

(∂CBM/∂Cp), as was shown in Figure 3-6 for the case of heat exchangers.  This source might

be responsible for a factor-of-two overestimation in marginal annualized capital costs.

• Depending on the annualization factor model used, there might be many capital cost factors

considered that are independent of the sizing decision.  The most obvious example is the

(offsite/onsite) capital cost factor that accounts for auxiliary facilities. Instead of allocating

the capital cost of utility and waste treatment plants to the utility and waste streams that make

the building of these plants necessary, the offsite/onsite capital cost factor allocates them to

the equipment that could reduce the need for such plants.  In this case, not only the

magnitude, but even the sign of the predicted marginal change is wrong!  Based on the

distributions shown in Figure 3-8, it may be estimated that current procedures overestimate

the magnitude of AF by a factor of 2 to 8.
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• Current design methods encourage designers to apply generous contingency factors and high

discount rates as a way to respond to uncertainties.  Both adjustments result in increasing the

magnitude of the annualization factor, introducing further biases against capital investments.

Consider a project where the major source of uncertainty is product price.  The process will

be designed using well-known technology.  Increasing the discount rate and contingency

factors in the economic potential model used to size equipment will result in heat exchangers

and distillation columns that are too small relative to the optimum resolution of the well-

known tradeoff between equipment size and utilities cost.  A high discount rate might be

appropriate for managers evaluating the decision of whether or not to go ahead with the

entire project, but the sizing of conventional equipment should be done according to

annualization factors that accurately reflect marginal costs and a firm’s opportunity cost of

capital.  Rather than imposing large discount rates, managers should use uncertainty analysis

to generate a distribution of net present values for the project using the firm’s opportunity

cost of capital.  This approach would result in an appropriate resolution of the capital vs.

operating cost tradeoff without the loss of any information regarding risk (a more thorough

discussion on approaches to decision making with uncertainties in valuation models is given

in Chapter 40).

EXAMPLE:  SIZING A HEAT EXCHANGER

The points made in the preceding paragraphs are illustrated here through an example.

Consider the solvent recovery flowsheet shown in Figure 3-11 (details on the case study from

which the flowsheet was extracted are given in Appendix A). Assume that this flowsheet is part

of a new process being built in an undeveloped site (grassroots project).  Assume further that the

product made by the parent process is a new pharmaceutical product.  Because of uncertainties in

the demand for the product and its price, management has instructed the design team to use a

25% discount rate to evaluate the project.  We are currently interested in determining the

optimum size for the heat exchanger used to preheat the feed to the solvent recovery system.
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Figure 3-11: Heat exchanger sizing example flowsheet

An Aspen Plus process model is used to predict the steam input rates required to comply

with a specification of 2 parts per million (ppm) methylene chloride in the effluent.  In this

example it is assumed that there are no uncertainties in physical properties.  Uncertainties in the

economic valuation model parameters are also ignored here, with the exception of structural

uncertainties that contribute to the bias against capital investment (a separate heat exchanger

sizing example that takes into account uncertainties in physical properties and valuation model

parameters is given in section 4.7.2).  The optimum size of the heat exchanger is found directly

by the simulator as the solution to the following optimization problem:

( )

ppmCts

FPAreaCfAFMin

effClCH

steamsteampBMFsteamArea

2.. ,

,

22
≤

+××

The key tradeoff in the optimization is the capital cost of the heat exchanger vs. the cost

of steam required to achieve the effluent concentration specification.  As the area of the heat

exchanger increases, more heat is transferred from the effluent stream to the feed stream,

decreasing the steam requirement in the flash drums.  The objective function used for the
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optimization captures this tradeoff.  For the sake of simplicity in the illustration, cooling water

costs associated to the condenser and electricity costs associated to the pump are omitted from

the objective function. These costs are small compared to the cost of steam and move in the same

direction as steam costs when the area of the heat exchanger is varied.  The annualization factor

is found through the procedure outlined in section 3.2.3.  In this example information in the book

by Peters and Timmerhaus [10] is used to derive the annualization factors.  Three design contexts

are examined: new plant at new site (grassroots design), expansion of an existing facility, and

equipment sizing. As explained earlier, equipment sizing annualization factors should always be

used to size equipment, regardless of design context.  The point of solving the optimization

problem with annualization factors derived from other sets of assumptions is to illustrate the

magnitude of the bias against capital investment resulting from applying such economic

valuation rules.  For each design context two AF values are calculated: one for a discount rate of

25% and another one for a discount rate of 15%, assuming that the latter rate is the opportunity

cost of capital of the firm.  This results in six different values for the AF, summarized in Table

3-9.

Table 3-9: Values of the annualization factor used in the heat exchanger sizing example
design context

Discount rate GR: grassroots design FE: facility expansion ES: equipment sizing
25% 0.91 (1.4) 0.78 (1.4) 0.50 (1.2)
15% 0.67 (1.4) 0.57 (1.4) 0.38 (1.2)
  Note: the values in parenthesis are the uncertainty factors around the central estimate.

The cost correlation in Perry’s handbook [8] is used to obtain the purchased heat

exchanger cost as a function of heat transfer area.  Two approaches to estimating the installation

factor fBM are used.  First, a value of 3.39 independent of size is used, as recommended by most

design books (see Table 3-1).  In the second approach, size-dependent installation factors were

derived from the charts provided by Guthrie [12]9.  The resulting curves for purchased and

installed equipment costs are shown in Figure 3-12.

                                                
9 Engineering cost was excluded from the calculation.  It is assumed that the number of person-hours required to

design a heat exchanger has decreased considerably since the time of publication of Guthrie’s book due to the
current availability of personal computers and design software.
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Figure 3-12: Equipment cost correlations used in the heat exchanger sizing example

The combination of 6 values for the annualization factor and two approaches to

estimating the installation cost factor yield 12 separate cases.  The assumptions for each case, as

well as the optimization results, are shown in Table 3-10.  Case 1 corresponds to my

interpretation of the recommendations by design textbooks and what would result from using the

economic valuation model embedded in earlier versions of the Aspen process simulator (the

current version does no longer include economic evaluation). I do not know whether this is what

is practiced in industry at the conceptual design stage.  Case 12 corresponds to what I believe

would be the correct value model to use for the purpose of sizing equipment.  The optimum heat

transfer area recommended by the recommended approach is more than 3 times larger than the

heat exchanger area obtained using the rules of thumb given in design textbooks.  The last three

columns of the table give the incremental investment, annual operating cost savings, and internal

rates of return on the incremental investment of the optimum design values obtained for each set

of economic valuation parameters compared to the base case.  With an internal rate or return of

60%, the incremental investment of $42,000 needed to install a 3,500 ft2 heat exchanger instead
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of a 960 ft2 one would be paid back in less than two years.  An additional benefit is obtained if

environmental concerns are part of the design objective, since steam use is reduced by 1,400

lb./hr.  This translates into a 14% reduction in emissions from the boiler used to raise the steam.

In conclusion, this example has demonstrated how current economic evaluation practices

(use of high discount rates, use of factored capital cost estimates, use of size-independent

installation cost factors) might bias designers against profitable capital investments.  This bias

against capital investment can be reasonably expected to result in higher use of utilities and

higher waste generation rates.  Careful consideration of economic valuation models used to size

equipment at the conceptual stage of design can thus be expected to lead to designs that are more

profitable and have lower environmental impact.

Table 3-10: Results for the heat exchanger sizing example

Case

Basis
for
AFa i AF fBM

Area
(ft2)

Steam
use
(lb/hr)

Installed
costb

Annual
op. cost
($/yr)c

Incre-
mental
invest-
mentd

Annual
savings
($/yr)e IRROIIf

1 GR 25% 0.91 fixed 962 11110 $63,581 266,463
2 FE 25% 0.78 fixed 1044 10973 $65,531 263,551 $1,950 2,911 148%
3 ES 25% 0.50 fixed 1585 10340 $76,776 250,406 $13,194 16,056 119%
4 GR 15% 0.67 fixed 1245 10701 $69,997 257,853 $6,416 8,610 132%
5 FE 15% 0.57 fixed 1397 10549 $73,132 254,756 $9,551 11,707 120%
6 ES 15% 0.38 fixed 1904 10186 $82,487 247,616 $18,906 18,847 96%
7 GR 25% 0.91 variable 1780 10260 $80,329 249,037 $16,748 17,426 101%
8 FE 25% 0.78 variable 2037 10117 $84,724 246,322 $21,143 20,141 92%
9 ES 25% 0.50 variable 2921 9788 $98,038 240,513 $34,456 25,950 70%
10 GR 15% 0.67 variable 2284 9990 $88,693 243,919 $25,112 22,544 86%
11 FE 15% 0.57 variable 2630 9878 $93,909 242,035 $30,327 24,428 76%
12 ES 15% 0.38 variable 3490 9664 $105,566 238,667 $41,984 27,795 60%
a) GR = grassroots (new plant at new site), FE = facility expansion, ES = equipment sizing
b) The installed cost is calculated using size-dependent installation cost factors
c) Includes charges for maintenance, maintenance supplies, maintenance overhead, local taxes and insurance
d) Installed cost (case i) – Installed cost (case 1)
e) Annual operating cost (case i) – Annual operating cost (case 1)
f) IRROII: Internal rate of return on incremental investment.  Calculated assuming (conservatively) a 5-year service

life.
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3.3 Environmental valuation models

3.3.1 Introduction

Treating environmental concerns as an objective in process design requires the use of a

quantitative measure of performance that provides the designer with information about the

effects of design decisions on potential environmental impacts.   An environmental valuation

model is the means through which environmental concerns may influence the tradeoffs made by

a designer.

As in the case of economic valuation models, the role of environmental valuation models

is to summarize information about material flows, utility usage rates, and equipment design

specifications into a small set of performance metrics. These performance metrics can then be

used to rank alternative designs.

There is no universally accepted measure of environmental performance.  One of the

reasons for this is that people differ in the importance they assign to different types of

environmental impacts.  While science and engineering can be used to estimate the potential

contribution of a particular design to specific environmental problems, the relative importance

assigned to different environmental impacts is something that must be done by decision-makers

based on their own values regarding the environment.

There is a growing literature on methods for environmental impact assessment [16-21].

Although these methods have been mostly developed to aid designers of consumer products, the

principle on which the methods are based can be applied to process design problems. There are

two major approaches to environmental evaluation that can be distinguished on the basis of the

stage of the analysis at which societal values with respect to the environment are incorporated.

In the first approach, government goals and regulations are used directly to weigh emissions of

different substances.  One example is the Swiss eco-points system, which is based on the Swiss

government assessment of the sustainable level of Swiss emissions of various substances [22].

The Swiss eco-points environmental valuation model is given by:

i
i i

i

i

F
Fc
F

Fc
Indicator ∆×





××= ∑ 11012 (3-33)
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where Fci is the sustainable emission of substance i in Switzerland (according to the policy

objectives of the Swiss government), Fi is the level of emissions of substance i in the year used

as reference for the computation of the weighting factors, and ∆Fi is the level of emissions

attributable to the product or process under consideration.  Another example is the “critical

volumes” method, where emissions to air are weighted by the inverse of an air concentration

standard (usually a standard for workplace exposure) and emissions to water are weighted by the

inverse of a drinking water concentration standard [23,24].  In this way, masses of various

pollutants are expressed as volumes of contaminated air or contaminated water.

The second approach to environmental valuation is known as the problem-oriented

approach.  Under this approach, scientific considerations are treated separately from societal

considerations.  The problem-oriented approach proceeds according to the following steps:

1. Design decisions are used to generate an inventory of emissions of potentially harmful

substances.  A life-cycle perspective is used to create the inventory.  This means, in the case

of process evaluation, that not only the direct emissions of the process are considered, but

also the emissions by upstream processes that supply raw materials and utilities.

2. Environmental science is used to translate the emissions inventory into marginal

contributions to the driving force behind various types of environmental problems.  For some

environmental problems there are widely accepted indicators for weighting the contribution

of different substances to the driving force for that problem (e.g. global warming potentials

and ozone depletion potentials, see Table 3-11).  Consensus has not yet been achieved on

measures of the contribution to the driving force for other problems (e.g. ecotoxicity).

3. A weighting method is used to summarize the contributions to the various environmental

problems into a single indicator of environmental performance.  Procedures used to derive

the weighting factors include contingent monetary valuation of impacts [16,21], use of

political targets [20], and elicitation of preferences from expert panels [19].

The sequence of steps is illustrated by the example in Figure 3-13.  Even though the

structure of the environmental valuation model is linear, environmental impacts are not

necessarily assumed to be linear functions of the emissions.  For example, many of the

characterization factors in use are derived from perturbations around highly nonlinear models.

What the linear structure of model implies is that the contribution of a particular process to
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environmental impacts is small enough relative to the contribution from all human activities that

the marginal change in impacts can be approximated by a linear function.
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Figure 3-13: Components of an environmental valuation model10

3.3.2 Uncertainties in environmental valuation models
There are several sources of uncertainty in environmental valuation models.  First, there are

uncertainties in the estimation of the magnitude of environmental exchanges resulting from a

given activity (e.g. what pollutants and in what amounts will be emitted to provide 1 kWh of

electricity to a process?).  Then there is scientific uncertainty about the magnitude of the

marginal contribution to specific environmental problems due a marginal increase in specific

environmental exchanges.  Finally, there is valuation uncertainty about the relative importance

assigned to marginal contributions to specific environmental problems.  Each of these sources of

uncertainty are discussed in the following subsections.

                                                
10 The following subscripts are used in the figure: i is used for activities, j for environmental exchanges (e.g.

emissions of a particular substance), and k for environmental impact categories (e.g. ozone depletion).
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Table 3-11: Widely used environmental impact metrics for specific environmental problems
Environ-
mental
Problem

Characteri-
zation factor Characterization factor definition

Sources of
characteriza-
tion factors Comments

Climate
change

Global
warming
potential
(GWP) ∫

∫= T
COCO

T
ii

i
dttma

dttma
GWP

0 22

0

)(

)(

where ai is the radiative forcing
due to a unit increase in
atmosphereic concentration of gas
i, mi(t) is the time-decaying
atmospheric abundance of a pulse
of injected gas, and T is the time
horizon.

Intergo-
vernmental
Panel on
Climate
Change [25]

A time horizon of 100 years
is usually chosen. CO2 is
the reference substance.
The GWP is then expressed
as kg of CO2 equivalents
per kg of substance.

Stratospheric
ozone
depletion

Ozone
depletion
potential
(ODP)

[ ]
[ ]∫

∫
−

= T

CFC

T

i
i

dttO

dttO
ODP

0 113

0 3

)(

)(

δ

δ

where δ[O3]i(t) is the calculated
time-decaying depletion in global
column average ozone
concentration due to a unit pulse
emission of substance i, and T is
the time-horizon for the calculation

World
Meteoro-
logical
Organi-
zation [26]

T=∞ is usually chosen. A
two-dimensional model of
the atmosphere is used for
the calculations. The ODP
is expressed as kg of CFC-
11 equivalents per kg of
substance

Photoche-
mical smog

Photoche-
mical
Oxidants
Creation
Potential
(POCP)

[ ]
[ ]∫

∫= T

Ethylene

T

i
i

dttO

dttO
POCP

0 3

0 3

)(

)(

δ

δ

where δ[O3]i(t) is the calculated
change in ozone concentration due
to a marginal change in emissions
of substance i, and T is the time-
horizon for the calculation

Various
researchers
[27-32]

T is usually 4 to 5 days.  A
trajectory photochemical
model is normally used.
The most widely used
POCP values are based on a
trajectory from Germany to
Ireland.  The POCP is
expressed as kg of ethylene
equivalents per kg of
substance

Acid
deposition

Acidification
Potential
(AP) 22 SOSO

ii
i MWn

MWn
AP =

where ni is the number of hydrogen
ions released per mole of substance
i emitted, and MWi is the molecular
weight of substance i.

[17,33,34] The AP is expressed as kg
of SO2 equivalents per kg of
substance.  If the
geographical location of the
emissions is known, a more
sophisticated acidification
potential can be used, based
on marginal changes in the
area of ecosystems
impacted per marginal
change in emissions (see
ref. [34])
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UNCERTAINTIES IN THE ESTIMATION OF ENVIRONMENTAL EXCHANGES.

The most common environmental exchanges considered in environmental valuation

models are pollutant emissions.  Three types of emissions are important with respect to process

design.  The first type is direct emissions from the process.  The second type is direct emissions

from upstream processes located in the same site that supply raw materials or utilities for the

process.  Finally, upstream emissions taking place in other locations might have significant

environmental impact contributions (for example, emissions at electricity generating plants).

Direct emissions from the process are not known with certainty before the process is built, and

might be subject to significant estimation uncertainties, specially if the pollutants are not

expected to have a major influence in the overall mass balance.  Direct emissions from upstream

processes located in the same plant may be measured or estimated.  Measured emissions might

be subject to statistical variation.  Additional sources of uncertainty for offsite emissions include

accessibility to data, allocation rules, and comprehensiveness of the analysis.  A method

designed to manage these sources of uncertainty is presented in Chapter 7.

The range of uncertainties in emission factors is illustrated in Table 3-12. At the

conceptual stage of design it might be difficult to estimate emissions of compounds that do not

affect significantly the mass and energy balances, since these compounds are not likely to be

included in process models.  Depending on their environmental mobility, persistence, and

toxicity, however, these compounds might account for a significant fraction of the impact from a

process.  The author recommends that designers estimate the order of magnitude of the emissions

and then use the methods discussed in Chapter 5 to determine whether it is important to obtain

more accurate estimates.  A typical order of magnitude for fugitive emissions for volatile organic

chemicals is 1/1000 of the stream flows in a process [35].
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Table 3-12: Typical uncertainties in air pollutant emission factors

Pollutant
Measurment

method
UF (directly
measured)

UF
(extrapolated)

Type of emission
source Reference

CO2 Analysis of fuel
carbon

1.02 1.4 Combustion
processes

[16]

SO2 Analysis of fuel
sulphur content

1.1 3 Uncontrolled
combustion
processes

Estimate, this
work

CO Continuously
monitored

2.2 4 Large incineration
plants

[16]

CO Random sampling 1.2 4 Car fleet [16]

CH4 Gradient method or
collection in hoods

2.2 9 Diffuse emissions
from landfills

[16]

PAC Random sampling,
gas or liquid
chromatography

4 16 Power and heat
generation

[16]

Metals Random sampling
of particles

4 16 Combustion
processes where
the metals are
trace elements

[16]

Specific
organic

compounds

Organic vapor
analyzer readings

3 10+ Fugitive emissions Estimate, based
on data in [35]

UNCERTAINTIES IN CHARACTERIZATION FACTORS

Characterization factors are used to translate environmental exchanges into contributions

to specific environmental problems.  Characterization factors are also known as classification

factors [18], or equivalency factors [16,20], and are commonly expressed in units of equivalent

kg of a reference substance per kg of substance of interest.  The Eco-indicator’99 method uses

the term “damage factors” to refer to characterization factors expressed in units of physical

damages per kg of substance of interest [19]. Uncertainties in characterization factors come

mainly from scientific uncertainties, although value judgment uncertainties also play a role

through the choice of reference scenarios and time horizons. Table 3-13 provides a few examples

of uncertainties in characterization factors.  Uncertainty factors derived from information given

by the source of each factor are indicated (in parenthesis) when available.  The table shows

examples of variations in characterization factors due to evolving knowledge and models (the

GWP for methane and the POCP for ethanol), due to differences in reference scenarios (the ODP

for HFC-141b), and differences among authors (PM10).  Typical uncertainty factors are in the
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range 2 to 25.  Uncertainty factors for other endpoints (such as toxic effects) might be an order of

magnitude higher, as discussed in Chapter 6.

Table 3-13: Examples of the uncertainties in characterization factors

Environmental
Problem

Characterization
factor endpoint
(units)

Example
substance Scenario

Characteri-
zation factor
value (UF) Ref. Comments

Climate
Change

Contribution to
radiative forcing
(kg CO2
equivalent/kg)

CH4 T = 100 yrs 11
24.5
21 (1.8)

[36]
[37]
[25]

1992 estimate
1994 estimate
1995 estimate

Ozone
depletion

Contribution to
depletion of
stratospheric
ozone
concentrations
(kg CFC-11
equivalent/kg)

HCFC-141b T = ∞
T = 500 yrs
T = 100 yrs
T = 20 yrs
T = 5 yrs

0.10
0.11
0.13
0.33
0.54

[38]

Photochemical
Smog

Contribution to
increase in
tropospheric
ozone
concentrations
(kg Ethylene
equivalent/kg)

Ethanol T = 5 days
(Austria to
Ireland
trajectory)

Average of 11
European
trajectory
scenarios

0.399
0.386
0.446 (1.23)

0.268 (2)

[28]
[27]
[31]

[30]

Respiratory
effects

Premature
mortalitya

(YOLL/kg)

PM10 Global average
European
average

4.2×10-4 (9)
7.6×10-4 (19)

[16]
[19]

 a) YOLL = Years of life lost

UNCERTAINTIES IN WEIGHTING FACTORS

The final step in the environmental valuation model shown in Figure 3-13 is the

aggregation of the various environmental problem category scores into an overall environmental

indicator.  This requires the use of weighting factors.  The weighting factors should reflect the

tradeoffs a decision-maker is willing to make among marginal increases in the indicators for the

various environmental problems.  There are three main approaches used to derive the weighting

factors:
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(a) Monetary methods  Under this approach estimates are made of the physical impacts resulting

from an increase in the score for each environmental problem (e.g. the number of skin cancer

cases resulting from a 1% decrease in stratospheric ozone concentration).  Contingent

valuation methods are then used to place a monetary value on each type of physical impact.

The sum of the product of the marginal physical impacts times the monetary value per impact

is then used as the weighting factor for the environmental problem score. The resulting

overall environmental indicator has monetary units. Environmental valuation models using

this approach include the Swedish EPS system [16] and the explicit life cycle assessment

method (XLCA) [21].  Monetized environmental impacts should not be added directly to

total annual profit to obtain an overall indicator of performance for a process, unless it is

clear that the corporation carrying out the project is willing to tradeoff a dollar of private cost

for a dollar of social cost11.

(b) Political targets  This method computes the score for each environmental problem indicator

that would result if environmental exchanges for a particular region in a reference year met

the goals set by a government.  The inverse of the score for each problem becomes the

weighting factor.  The resulting overall environmental indicator can be interpreted as the

contribution of a particular process to the total allowable impact.  An example of this

approach is the EDIP method, which uses Danish political targets to derive the weighting

factors [20].  Implicit in this method is the strong assumption that governments arrive to

political targets for each environmental problem using the same procedures to balance costs

and benefits.

(c) Multicriteria assessment methods  In this approach the weights are derived from the opinion

of a panel of experts..  A typical procedure is to compute the scores resulting from a known

pattern of environmental exchanges (e.g. the annual emissions of an entire region) and to ask

the panel what percent increase in the score for environmental problem X would be deemed

equally undesirable as a 10% increase in the score for environmental problem Y.  The

resulting indicator has arbitrary units (e.g. “eco-points” in the case of the Eco-Indicator’99

method [19]). The resulting weighting factors can be strongly dependent on the way the

                                                
11 Most corporations would probably even resist trading off one dollar of social cost for a cent of private cost.
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questions to the experts are framed (see discussion about the weights in the Eco-Indicator’99

method below)

Table 3-14 compares the weighting factors assigned to several environmental problem

category scores by four different environmental valuation models. Due to the lack of consensus

on indicators to measure contributions to human toxicity and ecotoxicity, the table gives the

weighting factors assigned by each model to a unit emission of a representative chemical within

each category.   Since the overall indicator units used by the different methods are different

across models, entries in the table can not be directly compared.  However, ratios of the entries in

one column can be compared to ratios of the same entries in other columns, since all the

valuation models are linear.  One such comparison is shown in Figure 3-14 where selected

valuation factors from Table 3-14 have been normalized by dividing them by the valuation factor

for the photochemical smog impact category.  The value for most ratios spans two orders of

magnitude or less.  Notable exceptions are the eutrophication : photochemical smog valuation

factor ratio (3 orders of magnitude) and the mercury ecotoxicity : photochemical smog valuation

factor ratio (4 orders of magnitude). The benzene cancer impact : photochemical smog valuation

ratio is remarkably stable. It is clear from the chart that the Eco-Indicator’99 method places a

much higher relative valuation on ecosystem impacts than the other methods listed.

There are significant differences in some of the weighting factors used by the different

models.  Take for example CFC-11.  It contributes to both global warming and ozone depletion.

It has an ODP of 1 (by definition) and a GWP100 in the range 540 to 2100 [25].  In the EDIP

method, the contribution of CFC-11 to ozone depletion is considered to be between 360 and

1140 times as serious as its contribution to global warming, while in the Eco-Indicator’99

method the contribution to ozone depletion is only between 2 and 10 times as serious as the

contribution to global warming.  In the EPS method both contributions are comparable.  Another

interesting comparison is given by the weighting factors used for the toxic effects of lead and

benzene. In both the XLCA and EPS systems, a unit emission of lead to air is considered to be at

least three orders of magnitude more harmful than a unit emission of benzene to air.  Both

emissions are comparable in importance in the EDIP method, while the toxic impact of lead on

humans is neglected in the Eco-Indicator’99 method.  In view of the data in Figure 3-14, it is

reasonable to assign an uncertainty factor of 10 to most of the weighting factors used in
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environmental valuation models.  Higher uncertainty factors (30-100) would be appropriate for

the valuation factors for ecosystem impact categories.

Table 3-14: Environmental problem weighting factors used in four different environmental
valuation models

Eco-Indicator’99a

EDIPb Hierarch. Egalitarian Individ. XLCA EPS
Impact category Indicator units EnvPts/unit EcoPts/unit EcoPts/unit EcoPts/unit US$/unit Eur/unit
HUMAN HEALTH IMPACTS
Global Warming kg CO2 equiv. 0.00015 0.0055 0.0041 0.013 0.014 0.11
Ozone Depletion kg CFC-11 equiv. 114 27 20 57 n/cc 99
Photochemical smog kg Ethylene equiv. 0.06 0.055 0.041 0.13 5 1.8
Primary particles kg PM10 equiv. n/c 9.7 7.3 18 12.6 37
Secondary particles kg SO2 equiv. n/c 1.4 1.0 2.6 12.6 4.3
Human toxicity (cancer)
   Benzene to air kg Benzene 0.06 0.065 0.048 0.11 1.9 1.9
Human toxicity (non-cancer)
   Hg to air kg Hg 2.7 n/c n/c n/c 1900 48
   Pb to air kg Pb 0.032 n/c n/c n/c 4400 2910
ECOSYSTEM IMPACTS
Eutrophication kg NO2 equiv 0.0067 0.45 0.56 0.32 n/c 0.018
Acidification kg SO2 equiv. 0.010 0.081 0.10 0.058 0.38 0.017
Ecotoxicity
   Malathion to soil kg Malathion n/c 0.0022 0.0027 0.0015 n/c 0.015
   Hg to air kg Hg 0.022 65 81 2.5 n/c 12
RESOURCE DEPLETION ResPts/unit
   Copper kg Cu 0.016 0.87 1.2 49 n/c 208
   Crude oil kg Crude oil 3.9E-05 0.14 0.11 0 n/c 0.51
a) The Eco-Indicator’99 method provides weighting factors for three different world-views.  The world-views are

labeled “Hierarchist”, “Egalitarian”, and “Individualist”.
b) In the EDIP method, environmental impacts and resource impacts are scored separately.  No weighting factor is

provided to aggregate environmental impact points and resource points into a single overall score.
c) n/c = not considered; the substance or impact category receives a valuation of zero.

In investing resources to pursue environmental quality beyond the level required by laws

and regulations, corporations should verify that the weighting factors they assign to each of the

environmental problems are consistent with their values and the values of their stakeholders.

Although precise weighting factors might be impossible to obtain, it should not be difficult to

obtain ranges for the weighting factors based on tradeoffs that the corporation and its

stakeholders know they would be willing to consider.  The decision-making procedures

introduced in the next chapter allow designers to identify superior alternatives even in the

presence of uncertainties in valuation model coefficients.
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Figure 3-14: Comparison of relative weighting factors for various environmental impact
categories across four environmental valuation methods.

It is very important to check that the tradeoffs implied by the chosen weights are

consistent with tradeoffs the decision-makers know they would be willing to make. To illustrate

this point, a brief discussion of the weighting method used by a widely used environmental

evaluation method is presented next.  The developers of the Eco-Indicator’99 method used a

panel procedure to derive the weights they use to combine scores for impacts on human health,

ecosystems, and resources.  Human health impacts combine mortality and morbidity effects

using disability-adjusted life-years lost (DALYs) as a metric12, ecosystem quality impacts are

measured in terms of potentially disappeared fraction of vascular plant species per m2 per year

(PDFm2yr)13, and depletion of nonrenewable resources in measured in terms of the excess energy

                                                
12 The DALY indicator measures the total amount of ill health, due to disability and premature death, attributable to

specific diseases and injuries.  For example, a death occurring at age 30 instead of age 82 (the reference life
expectancy for the model) is assigned 52 DALYs.  Years lived with disabilities receive scores lower or equal than
1 DALY/year.  For example, 10 years lived with paraplegia are assigned a score of 5 to 7 DALYs, while 10 years
living with arthritis may receive a score of 1.2 to 2.4 DALYs.

13 The two following situations would receive the same score: (a) complete elimination of all plant species from a
100 m2 plot for 10 years, (b) elimination of 1% of plant species from a 100 km2 region for a year.  Both situations
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that would be required to produce the resource sometime in the future when the total amount

extracted by mankind equals 5 times the amount extracted up to 1990 (in MJ).   In the panel

procedure, the method developers asked panel members to rank the relative importance of the

contributions of 1990 European emissions and land-use patterns to each of the three categories.

Developers classified respondents into three types of worldviews regarding the environment

(Hierarchists, Egalitarians, and Individualists) and used their responses to develop weighting

factors for each of the impact categories and worldviews.

According to the Eco-indicator’99 method, subscribers to each of the worldviews should

be willing to make the tradeoffs shown in Table 3-1514.  It would be acceptable, for example, to

clear forests in order to supply the world’s need for fuels from agriculture, as long as the annual

yield per m2
 was higher than the tradeoff value shown in the last column of the table15.

Individualists should be willing to tradeoff a year of life expectancy today for 50,000 MJ of

energy in the distant future.  At current electricity prices (the most expensive form of energy)

and assuming no discounting, this would place a value of about $1,500 per year of life saved.

This is in sharp contrast with the description of the individualist perspective given in the Eco-

indicator’99 methodology report.  According to the report, individualists have a short-term rather

than a long-term perspective, and give more importance to the needs of present generations over

the needs of future generations.  Implied valuations for a year of life saved under the other two

perspectives range from $17,000 to $32,000, which are consistent with the low end of the range

used in methods based on willingness to pay.  This example indicates that the method of value

elicitation used in the Eco-indicator’99 method resulted in a gross overestimation of the

weighting factor for the resource impact category, at least with respect to the individualist

perspective.  The author suspects that the reason for this is that members of the panel were not

asked what tradeoffs they would be willing to consider, but rather to rank the damage categories

in decreasing order of importance, with some information about the current level of impacts in

Europe as background.

                                                                                                                                                            
would be assigned a score of 1000 PDFm2yr.  The models used in the Eco-indicator’99 method assume that
damages to ecosystems are reversible over a sufficiently long time scale.

14 The tradeoffs were calculated by first computing how many eco-points are assigned to 1 MJ of excess energy, 1
DALY, and 1 PDFm2yr for each of the three perspectives.  The figures were then divided by each other, since the
method assumes that 1 ecopoint due to human health impacts is valued as much as 1 ecopoint due to resource
depletion or 1 ecopoint due to decreasing ecosystem quality.
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Table 3-15: Implied tradeoffs in the Eco-indicator'99 model

Perspective

Resources-
Human Health trafeoff

(MJ/DALY)

Ecosystem Quality- Human
Health tradeoff

(PDFm2yr/DALY)

Resources-
Ecosystem Quality tradeoff

(MJ/PDFm2yr)
Egalitarian 576,531 198,980      2.897
Hierarchist 1,095,890 333,904      3.282
Individualist 49,517 1,190,506      0.042
Note: to put this figures in perspective, 1991 per capita energy consumption in Europe was 193,000 MJ while 1991
cropland use per capita was 2,700 m2 [39]; there were 0.11 DALYs lost per capita in established market economies
in 1990 [40].

DEFAULT ENVIRONMENTAL VALUATION FACTORS USED IN THIS WORK

Table 3-16 lists the valuation factors used for the case studies in this thesis.  The

valuation factors were chosen so that they would be consistent with the EPS and XLCA methods.

Values for the weighting factor used for the ecotoxicity categories were chosen so that the

valuation of 1 kg of mercury (released to either air, water, or soil) in terms of its aquatic or

terrestrial ecotoxicity would be approximately equal to one half the value used in the EPS

method16.  Valuation factors for the eutrophication and acid deposition categories were increased

based largely on Figure 3-14, which shows that the EPS method is the only one that gives a

higher weighting to a GWP unit than to both an EP and an AP unit.  In building Table 3-16, the

author attempted to span the range of uncertainties in weighting factors observed in

environmental valuation methods in current use.  The author does not recommend, however, that

designers apply these weighting factors directly without checking first that implied tradeoffs are

consistent with the values of their corporations.

                                                                                                                                                            
15 Production of rapeseed oil in Europe currently yields about 3.5 MJ/m2yr [16]
16 The assumption is that half of the valuation comes from impacts on aquatic organisms and half from impacts to

terrestrial organisms
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Table 3-16: Environmental valuation factors used in this thesis

Impact category Indicator (units)

Valuation
factor

($/unit)
Uncertainty

factor
Characterization factor sources
used

Global warming GWP (kg CO2
equivalent)

0.03 10 IPCC [25,36,37]
EPS method [16]

Ozone depletion ODP (kg CFC-11
equivalent)

100 10 WMO [17,26,38]

Photochemical smog POCP (kg ethylene
equivalent)

2 10 Derwent et al. [27-31]

Particulate matter
impacts (including
secondary aerosols)

(kg PM10
equivalent)

40 10 Derived from EPS method [16]

Human toxicity
(cancer)

(DALYs) 85000 4 Eco-Indicator’99 [19]
Derived from EDF [41]a

Derived from MPCA [42]b

EPS method [16]
Chapter 6 of this thesis

Human toxicity
(non-cancer effects,
excludes impacts
from ozone and
particulates)

(DALYs) 85000 4 Eco-Indicator’99 [19]
EPS method [16]
derived from EDF [41]c

derived from CML/RIVM [43]d

derived from MPCA [42]e

Chapter 6 of this thesis

Acidification AP (kg SO2
equivalent)

0.8 10 H+ Stoichiometry [34]
EPS method [16]

Eutrophication EuPwater (kg N-tot
equivalent)

0.8 50 EPS method [16]
CML/NOVEM/RIVM  [17]

Aquatic ecotoxicity AETP (kg 1,4-
dichlorobenzene to
water equivalent)

0.0001 100 CML/RIVM [43]

Terrestrial
ecotoxicity

TETP (kg 1,4-
dichlorobenzene to
industrial soil
equivalent)

0.0000003 100 CML/RIVM [43]

a) The conversion factors 1 TEPcancer, air (kg benzene to air equivalent) = 7.5×10-6 DALYs, and 1 TEPcancer, water (kg benzene to
water equivalent) = 3.9×10-5 DALYs were used.

b) The conversion factor 1 MPCA unit (dimensionless) = 3.0×10-18 DALYs/kg was used, for substances for which the MPCA
score was based on cancer endpoints

c) The conversion factors 1 TEPnoncancer,air (kg toluene to air equivalent) = 1.3×10-9 DALYs, and 1 TEPnoncancer, water (kg toluene
to water equivalent) = 3.3×10-9 DALYs were used.

d) The conversion factor 1 HTP unit (kg 1,4-dichlorobenzene equivalent to air) = 6.5×10-10 DALYs was used, for substances
for which the HTP score was based on human non-cancer endpoints

e) The conversion factor 1 MPCA unit (dimensionless) = 3.0×10-18 DALYs/kg was used, for substances for which the MPCA
score was based on human non-cancer endpoints

See Chapter 6 for a discussion on the uncertainties associated with extrapolating characterization factors across various methods.



                                                                                                                                                 3.4  Conclusions         139

SUMMARY

The following uncertainties in problem-oriented environmental valuation models have

been identified and characterized:

• Environmental exchange (emission) factors (uncertainty factor ~ 1.02 to 20)

• Characterization factors (uncertainty factor ~ 2 to 25 for most impacts, 100+ for toxicity

indicators)

• Weighting factors (uncertainty factor ~ 4-10 for human health related categories, 10-100 for

ecosystem impacts)

As expected, these uncertainties are much larger than the uncertainties in the economic

valuation model discussed in the previous subsection.  However, large uncertainties do not imply

lack of information.  Chapter 4 shows how the decision problem may be structured in a way that

enables designers to identify superior alternatives even in the presence of these large

uncertainties.

3.4 Conclusions
This chapter makes two important points:

• Careful consideration of the valuation models used to compare design alternatives is

necessary for the identification of superior alternatives.  Economic valuation models

frequently used at the conceptual stage of process design bias designers against profitable

capital investments.  This bias is likely to result in energy use and waste generation rates that

are higher than those that would be economically optimum, leading to excessive

environmental impact.

• There are no conceptual differences between economic and environmental valuation models.

Both types of valuation models include uncertain parameters and subjective value judgments.

The main differences are the availability of data (e.g. prices are more readily available than

environmental problem potency factors), the size of the uncertainties, and the familiarity of

decision-makers with making value choices (e.g. choosing discounting factors vs. choosing

weighting factors for environmental problem driving force indicators).  Tools developed in
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this work aim to decrease the barriers to incorporating environmental objectives in process

design by addressing each of these three differences.

3.5 Nomenclature

AETP Aquatic ecotoxicity potential (kg 1,4-dichlorobenzene to water equivalent)
AF Annualization factor (year-1)
AP Acidification potential (kg SO2 equivalent)
Cp Purchased cost of a piece of equipment constucted of carbon steel and designed to operate at atmospheric

pressure ($)
CCF Capital charge factor (year-1)
CTM Total installed equipment cost, also known as onsite cost ($)
DALYs Disability-adjusted life years lost (person-years)
EP1 First screening level economic potential (Revenue from products minus raw materials cost, $/yr)
EP2 Second screening level economic potential (EP1 minus waste treatment and disposal and utility costs, $/yr)
EP3 Third screening level economic potential (EP2 minus annualized equipment cost, $/yr)
EuP Eutrophication Potential (kg N-tot equivalent)
Fprod Flow rate of product from a process (lb/yr)
Fraw mat Flow rate of raw material fed to a process (lb/yr)
Fwaste Flow rate of waste stream (lb/yr)
Futil Utility use rate (e.g. kWh/yr)
fBM Installation factor, also known as bare module factor ($/$)
fp Price volatility multiplier
FCI Fixed capital investment ($)
GWP Global warming potential (kg CO2 equivalent)
i discount rate (%/yr)
IRR Internal Rate of Return (%/yr)
n length of period of construction (years)
N process service life (years)
NPV Net Present Value ($)
ODP Ozone depletion potential (kg CFC-11 equivalent)
OVHD Plant overhead rate ($/$)
Pprod Product price ($/lb)
Praw mat Raw material price ($/lb)
Pwaste Waste treatment and disposal cost ($/lb)
Putil Utility price (e.g. $/kWh)
PM10 Particulate matter less than 10 microns in diameter
POCP Photochemical oxidants creation potential (kg ethylene equivalent)
SARE Sales, administration, research, and engineering expenses ($/yr)
SC Startup Cost ($)
SV Salvage Value ($)
TAC Total Annualized Cost ($/yr)
TAP Total Annualized Profit ($/yr)
TETP Terrestrial ecotoxicity potential (kg 1,4-dichlorobenzene to industrial soil equivalent)
TPC Total Product Cost ($/yr)
WC Working Capital ($)
τ Tax rate (%)
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Chapter 4 Decision Making under
Uncertainty

4.1 Introduction
Uncertainty is always present in models of real systems.  There is uncertainty about the

model structure, uncertainty about the values of model parameters, uncertainty in forecasting

external conditions, and uncertainty about decision-maker preferences regarding various aspects

of process performance.  This chapter addresses the problem of making decisions when there is

considerable uncertainty in the valuation functions used to assess system performance.  Although

the techniques in this chapter can be applied to any decision problem in which the decision-

maker is uncertain about the valuation of alternatives, they are particularly relevant to the

incorporation of environmental issues as design objectives.  The chapter starts with a brief

review of uncertainties in process design and the approaches used to address them.  The chapter

continues with the description of a procedure to reduce decision uncertainty by preserving the

correlation among the distributions of performance indicators obtained for competing

alternatives.  An extension of the procedure that allows placing uncertainty bounds on the

optimum values of decision variables is presented next.  A brief discussion of utility theory is

used to introduce utility functions that may be used to embed the decision uncertainty reducing

procedure proposed here into mathematical programming formulations.  Two examples are given

at the end of the chapter to illustrate the application of the ideas introduced herein.

4.2 Uncertainties in process design
Process design proceeds in several stages, starting from basic research and development,

followed by process synthesis, conceptual design, and finally, by detailed design.  As a process

moves from the initial research stage to construction and operation, the amount of information

available increases.  There is considerable uncertainty at the early stages of the design process.

Unfortunately, it is at these early design stages that the majority of the process costs and

environmental impacts become fixed by decisions made on the basis of uncertain information

[1,2], since as the design process advances the freedom available to designers to change the

design is reduced.  These trends are shown in Figure 4-1.
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Development step in the design process

Chemistry Conceptual 
design

Detailed 
design

Construction 
and Startup

Operation

Process information

Design freedom

Portion of process 
performance fixed by 

design decisions

Figure 4-1: Availability of information, design freedom, and portion of process performance
fixed by design decisions as a function of the process development stage

There are many uncertainties that are important in the design of a process. The following

categories have been proposed for the classification of uncertainties related to process design [3]:

a) Model-inherent uncertainty includes uncertainty about parameters for which a single

true value exists, but the value is not precisely known at design time.  It includes

kinetic constants, physical properties, and transport parameters.  Information

regarding this type of uncertainty is usually obtained from experimental data.

b) Process-inherent uncertainty refers to uncertainty in fluctuating parameters, such as

stream flow rates and temperatures.  Information regarding this type of uncertainty is

usually obtained from plant measurements.  Two cases can be distinguished here.  In

the first case, the values of the parameters fluctuate, but the range and frequency of

variations are well known. In the second case, the values of the parameters are

anticipated to fluctuate, but the range and frequency of variations are not precisely

known at the time of the design effort.  In the first case, there is variability rather than
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uncertainty.  All the values in the parameter distribution are true, in the sense that all

the values will be experienced by the process once it is built.  The appropriate way to

deal with this type of uncertainties is to compute a distribution-weighted average of

the valuation models over the range of variability. Process control systems may be

included in the design to reduce variability. The second case is a combination of

variability and uncertainty.  In this case, the parameters of the variation distribution

themselves are uncertain.  Not all of the possible values in the variation distribution

will be realized once the process is built.  For example, it might be anticipated that a

flow rate to a process will vary in a way that can be described by a normal

distribution with coefficient of variation (i.e. the standard deviation divided by the

mean) equal to 10%.  However, there is uncertainty about what the true value for the

mean of the flow rate distribution will be once the design is built, perhaps due to

uncertainty in product demand.  In this case, the mean of the distribution would itself

be described a subjective probability distribution.

c) External uncertainty includes uncertainty about factors external to the process, such

as market conditions (product demand, raw material prices) and ecosystem sensitivity

to process emissions.  The uncertainties in valuation model parameters discussed in

Chapter 3 would be included in this uncertainty class.

In addition to the parametric uncertainties mentioned above (uncertainties about the

value of a parameter used in a model), there are also structural uncertainties, which are

uncertainties about the models themselves.  Not all models describe the world with the same

accuracy.  Simplified (short-cut) models are frequently used at the early stages of design.

Engineers are constantly trying to strike a balance between model accuracy and the availability

of information.  A very detailed model of a reactor might be available, but it might not offer

significant improvement as a decision support tool over a simpler model if most of the model

parameters are known with very little precision.

The academic process design community often represents design problems as

mathematical programs of the following form:
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Max  V(d,z,θθθθ)
  d,z
s.t. h(d,z,θθθθ) = 0 (Problem DP1)

g(d,z,θθθθ) ≤ b

d ∈ D, z ∈ Z

where d, z are the vectors of design and control variables, respectively, θθθθ is the vector of

uncertain parameters, h(d,z,θθθθ) is the vector of equations defining the model of the process,

V(d,z,θθθθ) is the objective function (which may be a function of multiple objectives), g(d,z,θθθθ) is

the vector of equations defining the constraints on the process, b is the vector of parameters

giving the upper bound of the constraint equations, and D and Z are the domains over which the

design and control variables are defined.

In the above representation, parametric uncertainty is uncertainty about the values of the

parameters in vector θθθθ, while structural uncertainty is uncertainty about the functional form of

the functions V(•), h(•), and g(•).  Parametric uncertainty can be conveniently represented by

probability distributions over the range of values that may be assumed by the parameters.  There

is no equally convenient way of representing structural uncertainty within a mathematical

framework.  An approach that has been suggested is to embed multiple models into a larger

metamodel with each submodel being assigned a certain degree of belief [4].  In this way, the

structural uncertainty is transformed into a discrete parametric uncertainty.

4.3 Approaches to decision making under uncertainty
Uncertainty in most engineering models used at the conceptual stage of process design is

frequently ignored.  This is unfortunate, since it can be shown that if we have any knowledge of

the uncertainty then the expected value of including uncertainty in the analysis is never negative

(neglecting the extra effort involved in the analysis) [5].  Due to increases in computing power

and advances in the development of uncertainty propagation techniques, the amount of effort

needed to incorporate uncertainty analysis into the design process decreases every year.

A common approach to design under uncertainty is the use of heuristics. These include

the use of contingency factors, high discount rates, and overdesign factors.  These heuristics are
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designed to decrease the downside risk of project.  If a project can be shown to be profitable

despite the use of all of these adjustments, then designers feel confident that there is a very small

chance that the project will turn out to be unprofitable.  The previous chapter showed how some

of these rules of thumb might lead to biases against profitable investment.

The preferred approach to dealing with uncertainty is to incorporate it explicitly in the

analysis.  The book by Morgan and Henrion [5] provides an excellent guide to dealing with

uncertainty in quantitative analysis. Pistikopoulos [3] reviews several research developments for

incorporating uncertainty in mathematical optimization models of chemical processes.  Tatang

[6] developed the deterministic equivalent modeling method to reduce the barriers to performing

uncertainty analysis of engineering systems by significantly reducing computational cost

(relative to Monte Carlo simulation).

Direct incorporation of uncertainty allows designers to search for designs that maximize

the expected value of a measure of performance of their choice.  For designs with several goals,

chance constrained formulations can be used to maximize the expected value of an objective

subject to satisfying prescribed goals with a probability equal or higher than a value specified by

the designers [7].  In mathematical terms, the chance-constrained optimization problem is given

by:

Max  E[V(d,z,θθθθ)]
  d,z
s.t. h(d,z,θθθθ) = 0 (Problem DP2)

P[g(d,z,θθθθ) ≥ b] ≤ αααα

       d ∈ D, z ∈ Z

where E[•] is the expected value operator, P[g(•) ≥ b] is the probability that the function g(•) has

a value equal or greater than constant b, and αααα is the vector of acceptable probabilities of

exceeding the vector of constant values b.

While these approaches are well suited for goals that are measured in tangible units, they

are not as useful when the goals are more difficult to measure.  In particular, it is not obvious that

maximizing the expected value of an environmental impact indicator that may be uncertain to

more than an order of magnitude would help designers to identify the least damaging alternative.

An alternative approach is introduced in the following section.
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4.4 Decreasing decision uncertainty by preserving correlation
structure
This section focuses on the problem of discriminating among competing alternatives

when there are significant uncertainties in the valuation models used to assess their merit.  One

of the conclusions reached in Chapter 3 was that there are significant uncertainties in the

valuation models used to assess the performance of alternative process designs.  The

uncertainties are rather large in the case of environmental valuation models.  Even though the

uncertainties were not as large for the case of economic valuation models, they were still

significant.

The presence of large uncertainties in environmental valuation functions creates a

dilemma for designers interested in improving environmental performance.  On one hand,

ignoring uncertainties and ranking designs based on a nominal environmental performance score

leads to results that are at best difficult to justify.  On the other hand, including uncertainties

would appear to make it difficult to make decisions, since the noise in indicator scores might be

much larger that the difference in scores among the various alternatives.  Fortunately, there is a

way out of this dilemma.  The key to the solution is that uncertain scores may be highly

correlated, and thus uncertainties in scores might not always imply uncertainty in distinguishing

among alternatives.

A small example is used to illustrate the difference between uncertainty in valuation

functions and the uncertainty in ranking alternatives based on uncertain value functions.

Consider two alternatives, A and B.   Both alternatives differ with respect to the levels of two

attributes.  It is assumed that the levels of the attributes are known with certainty. An additive

value function is used to evaluate the two alternatives. The function used is

Vi = c1L1,i + c2L2,i (4-1)

where Vi is the valuation assigned to alternative i (assume that V is a measure of performance we

are interested in maximizing), Lj,i is the level of attribute j in alternative i, and cj is the valuation

coefficient for a unit of attribute j.  Even though we are certain about the levels of the attributes

in both alternatives, we are uncertain about the values of the valuation coefficients (this is similar

to being uncertain about prices in economic value functions or about unit environmental
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indicators in environmental value functions).  The attribute levels and valuation coefficient

distributions used for this example are shown in Table 4-1.

Table 4-1: Data for the illustrative example
Attribute level
(Alternative A)

Lj,A

Attribute level
(Alternative B)

Lj,B

Valuation coefficient
cj

Attribute 1 4 3.7 LogN(2,5)

Attribute 2 0.1 0.05 LogN(8,10)
Note: logN(a,b) is used to represent a lognormal distribution with central value a and uncertainty factor b.  The
uncertainty factor is equal to the square of the geometric standard deviation.

As a consequence of the uncertainty in the valuation coefficients, the valuations for

alternative A (VA) and alternative B (VB) are uncertain.  Monte Carlo simulation was used to

propagate the uncertainty in the valuations.  The results are shown in Figure 4-2.  The box plots

in the figure mark the median valuation as well as the 5th, 25th, 75th, and 95th percentile

valuations. At first glance, it appears that it would not be possible to distinguish between the two

alternatives with a reasonable degree of confidence, since the distributions for their valuations

overlap so much.  However, an examination of the attribute values in Table 4-1 shows that this

must be mistaken conclusion.  The level of each of the attributes is higher for alternative A than

for alternative B, so alternative A must be better than alternative B regardless of the uncertainty

in the valuation coefficients, as long as the sign of the coefficients is always positive.

Judging decision uncertainty by the overlap in the distributions of the valuation of each

alternative presupposes that these distributions are independent of each other, when they may be

in fact highly correlated.  For example, Figure 4-3 shows a scatter plot of the results of a Monte

Carlo simulation of the valuation of alternatives A and B assuming that the distributions shown

in Figure 4-2 are independent.  This plot is very different from a plot of the results of the original

simulation, shown in Figure 4-4.  As expected, in no instance Alternative B receives a higher

valuation than Alternative A (all of the scatter points are below the 1:1 diagonal line in the

figure).  It follows that the distributions shown in Figure 4-2 are not independent, but in fact are

highly correlated.  The reason is that in the states of the world in which a valuation parameter cj

is high, it is high for both alternatives. Despite the order of magnitude uncertainty in the absolute

level of the valuations, there is no decision uncertainty whatsoever about the relative ranking of
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the alternatives. As long as the alternatives in a decision problem share at least one attribute, one

can expect that there will be correlations among the valuations for the various alternatives.

1

10

100

Alternative A Alternative B

Figure 4-2: Distributions of absolute valuations for the illustrative example

0.1
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100

1000

0.1 1 10 100 1000

Valuation (Alternative A)

Figure 4-3: Scatter plot of valuations for the illustrative example, under the assumption of
independence between valuation distributions
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Figure 4-4: Scatter plot of actual valuations for the illustrative example

What this example indicates is that whenever there are significant uncertainties in

valuation functions, it is more useful to look at relative measures of performance rather than

absolute levels of performance.

To illustrate this point, the uncertainty in the relative measures VA–VB and VA/VB was

propagated.  The first relative measure is the difference in valuations between two alternatives

(referred to from here on as the delta indicator), while the second relative measure is the ratio of

the valuations of two alternatives (referred to as the ratio indicator).

The results are shown in Figure 4-5.  The box plots for both indicators tell the decision-

maker that he or she may be at least 95% confident that Alternative A is superior to Alternative

B since, in the case of delta indicator, the 5th percentile value is greater than zero, and in the case

of the ratio indicator, the 5th percentile value is greater than one.  The delta indicator might be

useful to decision-makers when the valuation function is measured in tangible units (e.g. $).  In

such cases, the distribution of differences can be used to make statements such as “one can be

x% confident that alternative y is z units better (or worse) than the reference alternative”.  If the

decision-maker is not used to thinking in terms of the valuation function units (e.g.
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environmental impact measured in “eco-points”), then the distribution of delta indicators is not

likely to provide much information.  In such cases the distribution of a ratio indicator is much

more useful, since it enables the user to make statements of the type “one can be x% confident

that alternative y has at most z% of the impact of the reference alternative”.  Decision-makers

who are not used to thinking in terms of eco-points might not have any trouble ranking

alternatives based on their relative environmental impact expressed as a ratio.

0

0.5

1

1.5

2

2.5

3

3.5

4

V(A)-V(B) V(A)/V(B)

Figure 4-5: Relative valuations for the alternatives in the illustrative example

Referring again to Figure 4-5, the statement can be made that Alternative A is between

0.4 and 3.8 units better than Alternative B (90% confidence level).  This might or might not be

very informative, depending on how tangible the units of valuation are.  Alternatively, the

statement that Alternative A has between 1.08 and 1.4 times the value of Alternative B can also

be made (again, at the 90% confidence level). This is a more tangible statement to most people.

These figures are consistent with the attribute levels shown in Table 4-1, as they must be.  When

c1 is much larger than c2, then the relative valuation will be given by the ratio of the values of

attribute 1 in Alternatives A and B (4/3.7 = 1.08).  When c2 is much larger than c1 then the
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relative valuation is given by the ratio of the values of attribute 2 (0.1/0.05 = 2).  Thus in this

simple example one should be 100% confident that Alternative A has between 1.08 and 2 times

the value of Alternative B, regardless of the distribution of the coefficients c1, and c2.

This simple example has shown how important it is to consider the correlation among the

valuation distributions for various alternatives as a way to reduce decision uncertainty in the

presence of significant valuation uncertainties.  Further illustrations of the power of the

technique are provided by the two examples at the end of this chapter.   The following decision

algorithm may be used to choose the best design among a discrete set of alternatives:

1. Choose one of the alternatives as the base case alternative. The lack of an “official”

base case should not be an impediment to implementing this procedure.  Any

alternative may be used as a base case.

2. Use uncertainty propagation techniques to obtain distributions of relative valuations

for each alternative with respect to the base case.  Monte Carlo simulation has been

used for most of the examples in this thesis.  When Monte Carlo simulation is

infeasible due to the amount of time needed to run a model (e.g. when the time

needed to converge a process flow sheet model is greater than a few seconds), other

techniques are needed.  A review of such techniques is provided in Chapter 8.

3. Select the most promising alternative, based on the relative valuation distributions,

and designate it as the new base case.  For problems involving a few discrete

alternatives and two objectives (e.g. economics and environmental performance), the

most promising alternative may be selected by inspection of a graphical

representation of the relative distributions (e.g. see Figure 4-26 in the example at the

end of this chapter).  Otherwise, stochastic optimization techniques based on utility

functions are needed.   These techniques are discussed in section 4.6.

4. If no alternative with a significant probability of being superior to the current base

case was found in step 3, exit the loop.  Otherwise, go back to step 2.   After the best

alternative is chosen the sensitivity analysis techniques discussed in Chapter 5 may be

used to gain insights about the features of the design that most influence its

performance.  Such information can be used to generate new alternatives.
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Figure 4-6 provides a graphical representation of the information flows involved in the

propagation of the uncertainty in two relative measures of performance (discounted cash flow

and environmental impact).

Process
model

Environmental
valuation

model

Economic
valuation

model
base case design

variables

design variables

Uncertainty propagation

relative
environmental

impact

relative
discounted
cash flow

Alternative
generation

Ranking and
sensitivity analysis

process
parameters

economic
evaluation factors

environmental
evaluation factors

Figure 4-6: Example of decision-making cycle for process design based on two objectives

4.5 Confidence limits on the optimum values of decision
variables
The procedure described in the previous section can be used to select the most promising

alternative from a set in the presence of large uncertainties.  Determining the optimum value of a

decision variable under uncertainty is not very meaningful without a confidence interval around

the optimum value.  Some design variables might be optimal within a small range, while others

may vary over a wide range without causing significant changes in expected performance.

Distributions of the relative valuation of alternatives with respect to a chosen base case

may be used to establish confidence limits around the optimum values of the decision variables.

The procedure is outlined here and illustrated in the examples at the end of this chapter:

1. Choose the design with the decision variables set at their optimum level as the base

case design, following the algorithm described in the previous section.
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2. Select a set of alternative designs.  When more than one decision variable is involved,

the alternative designs may be selected by varying the values of the decision variables

using design-of-experiments techniques.

3. Select a desired confidence interval (for example, the 68% confidence interval

corresponding to 1 standard deviation in normal distributions)

4. Propagate uncertainties in relative measures of performance.  Test whether the

hypothesis “Alternative i is better than the base alternative” can be rejected with

confidence level equal to the desired confidence interval.  If the hypothesis can be

rejected, then alternative i would fall outside the desired confidence interval around

the optimum, otherwise alternative i should be included in the confidence interval.

For delta indicators, one is interested in the probability that the value of the delta

indicator is lower than zero for objective functions one is interested in minimizing

(e.g. cost, environmental impact) or higher than zero for functions one is interested in

maximizing (e.g. profits).  If the probability is higher than the confidence of interest,

then the hypothesis can be rejected.  For ratio indicators the same criteria apply, but

the reference point is one instead of zero.

5. Add new alternatives and repeat step 4 until the desired level of resolution in the

confidence interval is obtained.

4.6 Utility functions

“If a process change can reduce emissions by 40% while increasing costs by less
than 5% we would implement it”

Experienced process designer at Dow Chemical

4.6.1 Introduction

While graphs of relative measures of performance such as the ones introduced in section

4.4 might be sufficient as decision-making aides in cases with a relative small set of discrete

alternatives, it is desirable to have available utility functions for use by stochastic optimization

algorithms.  A utility function would allow a designer to use a computer and optimization

algorithms to carry out the search for the most promising alternative, without requiring the
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designer to spend considerable amounts of time examining graphs of relative performance

distributions.  This is particularly useful if a superstructure model of the process is available that

encodes multiple flowsheet configurations.  The graphical tools introduced earlier in this chapter

could always be used at the end of the analysis to check whether the new base case identified by

the computer is indeed preferable to the current base case, given a designer’s attitude to risk and

his or her willingness to make tradeoffs among competing objectives.

The approach to utility functions taken here is pragmatic.  They are used mainly as

devices to enable computer-based searches of promising alternatives.  The utility functions

introduced in this chapter most likely do not capture all the nuances of attitudes towards risk and

towards tradeoffs among multiple objectives that designers might exhibit.

The usefulness of utility functions arises from the definition of utility in utility theory [8].

According to utility theory, if an appropriate utility is assigned to each possible consequence and

the expected utility of each alternative is calculated, then the best alternative is the one with the

highest expected utility.  Utility functions can then be used within stochastic optimization

algorithms, with the maximization of expected utility as the objective function of the

optimization.  The main difficulty lies in the determination of the appropriate utilities.

Utility theory can be applied to problems with a single attribute or to problems with

multiple attributes.  The main purpose of the application of utility theory to problems with a

single attribute is to properly take into account decision-makers attitudes towards risk.  Multiple

attribute utility functions are useful both in situations where there is uncertainty (thus combining

a decision-maker’s attitudes towards risk with his or her attitudes towards tradeoffs), and in

situations without uncertainty (in this case the role of the utility function is to capture decision-

maker attitudes towards tradeoffs by collapsing a vector of attributes into a single scalar measure

of preference).

4.6.2 Single-attribute utility functions

There is a wide body of evidence that most decision-makers are not indifferent among

acts with the same expected payoff but different payoff probability distributions.  For example,

consider the following four alternatives [8]:

Alternative 1: earn $100,000 for sure
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Alternative 2: earn $200,000 or $0, each with probability 0.50

Alternative 3: earn $1,000,000 with probability 0.1, or $0 with probability 0.90

Alternative 4: earn $200,000 with probability 0.9 or lose $800,000 with probability 0.1

For each of the four alternatives, the expected amount earned is exactly $100,000.  Using

expected earnings as the criterion for selecting among alternatives would yield the prediction that

decision-makers should be indifferent among the alternatives listed above.  However, most

people are not indifferent among the four alternatives, since their risk profiles are quite different.

The assessment of utilities for a single attribute typically proceeds along the following

procedure:

1. Set up a scale by arbitrarily assigning utility values to two possible values of the uncertain

attribute (the symbol x is used to refer to a particular value taken by the attribute).  Usually a

utility value of zero is assigned to the least preferred possible value of the attribute (xo) and a

utility of one to the most preferred possible value (x*).  Using the notation u(x) to refer to the

utility of attribute value x, the choice above would give u(xo) = 0 and u(x*) = 1 .

2. For each other possible attribute value, assess a probability p such that the decision maker is

indifferent between an alternative that yields the value of interest and a second alternative

that has a p chance of yielding the most preferred value and a complementary 1-p chance of

yielding the least preferred value.  Then, because the expected utility of both alternatives

must be the same under utility theory, the utility of outcome x is given by the relation

u(x) = p u(x*) + (1-p) u(xo) = p×1+ p×0 = p    (4-2)

In problems with a few possible (discrete) consequences, the direct assessment technique may be

appropriate.  For problems with a large number of possible consequences it is more useful to

define a utility function and set the value of its parameters through the assessment of the utilities

of a few discrete points.  For more details the reader is referred to the work of Keeney and Raiffa

[8] and to the introductory book on decision analysis by Clemen [9].

The assessment of utility functions over attributes with which the decision-maker has no

familiarity (e.g. eco-points) can be extremely difficult.  To address this problem, and to take full

advantage of the information embedded in relative measures of performance, it is proposed that

relative measures of performance be used as the basis for utility functions when the attribute

units are not very tangible.  Such utility functions must satisfy the requirement
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E[u(xA|B as base case)] = -E[u(xB|A as base case)] (4-3)

where the notation E[u(xA|B as base case)] stands for the expected value of the utility of

alternative A with respect to the attribute x measured relative to alternative B.  This condition is

needed to guarantee that if alternative A is preferred to alternative B when the evaluation is made

using B as the base case alternative, alternative A will still be preferred to alternative B if the

evaluation is made using A as the base case alternative.  This condition places strict restrictions

on the form that utility functions may take, and in particular, it restricts the type of risk attitudes

that may be encoded.  This is the main disadvantage to the use of relative measures of

performance.  For problems where there are large uncertainties (especially if these uncertainties

are related to the valuation models), it is a small price to pay in exchange for reducing decision

uncertainty.

A simple utility function that satisfies eq (4-3) for relative measures of performance

based on ratios is the logarithmic function
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The negative sign in eq (4-4) implies that lower values of attribute x are preferred (for example,

when x is a measure of environmental impact).  When higher values of attribute x are preferred,

then the negative sign should be dropped.  Eq (4-4) is only applicable to attributes that can not

change sign (for example, it could be use to compare relative cost, but not relative profit).

Decision-makers who accept eq (4-4) as a utility function should be indifferent between a base

case design and an alternative that has an equal probability of having twice or half the impact of

the base case design.

Table 4-2 shows the results of the application of the utility function given by eq (4-4) to

four different distributions of relative performance.  For each example, four views of the

distribution are shown: density plots (using a linear or a logarithmic scale for the relative

measure of performance) and box plots, showing the 5th, 25th, 50th, 75th, and 95th percentiles of

the distributions (using a linear or a logarithmic scale). The certainty equivalent relative

performance for each distribution is shown as a thick line.  In the case of examples (i) and (iii), a

decision-maker whose attitude towards risk was well represented by eq (4-4) would be

indifferent between the base case design and a design with relative performance (e.g. relative
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environmental impact) described by the distributions shown in the corresponding row of the

table.  In the case of example (ii), the designer would prefer the base case design, but would be

indifferent between the alternative design and a design guaranteed to have twice the

environmental impact of the base case design.  Finally, the designer would prefer the design

alternative with relative performance distribution as shown in example (iv), and would be

indifferent between that alternative and an alternative guaranteed to have half of the

environmental impact of the base case design.

For designers for whom the tradeoffs implied by eq (4-4) would not be acceptable,

alternative utility functions satisfying eq (4-3) may be tried.  In particular, the family of utility

functions given by
m
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may be used to vary the weight given to extreme values17 by varying the value of the parameter

m (m is restricted to positive values).  When m is less than one, less weight is given to extreme

values.  A value of m=1 yields eq (4-4), while a value of m larger than one increases the

emphasis given to extreme values.

                                                
17 Here the phrase “extreme values” is used to refer to values that are relatively distant from 1.0 on a logarithmic

scale.
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Table 4-2: Examples of the application of the single attribute logarithmic utility function over
distributions of relative measures of performance (ratio indicators)

No. Linear scale Log scale
CEa Relative
performance

i

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

0.01 0.1 1 10 100

0.01 0.1 1 10 100

1

ii

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

0.01 0.1 1 10 100

0.01 0.1 1 10 100

2

iii

0 1 2 3

0 1 2 3

0.1 1 10

0.1 1 10

1

iv

0 1 2 3

0 1 2 3

0.1 1 10

0.1 1 10

0.5

Note: (a) CE = certainty equivalent.  The certainty equivalent relative performance is defined as the constant relative
performance having a utility equal to the expected utility over the distribution of relative performance.  In the case
of the logarithmic utility function given by (4-4) it is given by exp{-E[u(xi/xbc)]}.
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4.6.3 Multiple-attribute utility functions

In principle, the direct assessment procedure outlined for single-attribute utilities could

also be used to assess utilities over multiple attributes.  This is practical if there are only a few

consequences over the vector of attributes x (e.g. the discrete set of N alternatives given by x1,

x2, ..., xN), where N is a small number. In the direct assessment procedure, the utility values for

two of these alternatives would be assigned directly. The rest of the utility values would be

obtained by asking the decision-maker to express preferences involving the outcome represented

by the set of attribute values xi and lotteries involving the sets of attribute values for which

utilities were assigned directly.  In practice, this is rarely done.  Instead, single-attribute utility

functions are first assessed over each of the attributes and then, after checking the validity of

certain assumptions, a multiattribute utility function of the type

u(x) = f(u1(x1), u2(x2), ...) (4-6)

is postulated.  A commonly used function is the multilinear utility function, which in the case of

two attributes is given by:

u(x1,x2) = k1u1(x1) + k2u2(x2) + k12u1(x1)u2(x2) (4-7)

The three constants in eq (4-7) are assessed by asking the decision maker to express his or her

preferences over three sets of lotteries involving different combinations of attribute outcomes.  A

detailed procedure is provided in Keeney and Raiffa’s book [8].

Most designers would probably have a difficult time expressing their preferences over

lotteries involving tradeoffs between absolute measures of economic and environmental

performance.  On the other hand, designers are used to thinking of tradeoffs involving intangible

objectives in terms such as those used in the opening quote of this section.  For this reason, the

following two-attribute utility function is proposed:

( ) 





−





−−=





bc

i

bc

i

bc

i

x
x

x
xu

2

2

1

1 lnln1 αα
x
x

(4-8)

where the weighting factor α may take values between zero and one. For the examples used in

this thesis, the attributes x1 = total annualized cost (TAC) and x2 = environmental impact

indicator (Ω) are used.  Choosing an α value of 0.5 would give equal importance to reducing

relative cost and reducing relative environmental impact. There is empirical evidence that private
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companies do not assign equal weight to environmental and economic performance [10], so

lower values of α would be typically chosen.

A contour plot of eq (4-8) is shown in Figure 4-7 for the case α=0.1.  Designers for

whom eq (4-8) α=0.1 is a good representation of their willingness to make tradeoffs between

cost and environmental impact would be indifferent among design alternatives lying on the same

utility curve in Figure 4-7.  They should also be willing to switch from the base case alternative

to any design lying on a utility curve higher than zero.  In particular, one can see that the two-

attribute utility function shown in Figure 4-7 is consistent with the statement quoted at the

beginning of this section.  An alternative with 5% more cost than the base case alternative but

60% of the impact (40% across-the-board reduction in emissions) needs to have a utility equal or

higher than zero in order to be preferred.  The impact of the value of the weighting factor α on

the shape of the zero utility indifference curve is shown in Figure 4-8.  This chart may be used by

design teams to find the α-value that is consistent with their willingness to make tradeoffs

between relative cost and relative environmental impact.  For example, designers for whom the

value α=0.05 is appropriate would not be willing to make the tradeoff mentioned in the opening

quote of this section, since the alternative with 1.05% relative cost and 60% relative impact is

now located above the zero utility indifference curve.

10%

100%

1000%

-10% -5% 0% 5% 10%

Change in cost relative to base case

u = 0
u = -0.05

u = -0.10

u = -0.15

u = 0.05
u = 0.10

u = 0.15

Figure 4-7: Indifference curves for a two attribute utility function over relative cost and relative
environmental impact with α=0.1
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Figure 4-8: Zero-utility indifference curves for the attributes relative cost and relative
environmental impact based on the proposed logarithmic utility function.

Given the high level of uncertainty in measures of environmental performance, the author

believes that the utility functions proposed in this chapter are satisfactory for incorporation in

stochastic programming formulations, particularly at the conceptual stage of design.  Even if the

utility functions do not capture fully designer attitudes towards risk and their willingness to make

tradeoffs among competing objectives, they include enough flexibility to serve as a good first

approximation to the preference structure of a decision-maker. One way to verify that the design

alternative found by the computer through maximization of expected utility is indeed superior to

the design alternative that maximizes expected economic performance is to propagate the

uncertainties in relative cost and relative environmental impact of the maximum expected utility

alternative with respect to the minimum expected cost alternative.  Designers could then examine

plots of these distributions and check whether they would be willing to make the tradeoffs made

by the computer.
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4.7 Examples

4.7.1 Choosing the operating set point for a solvent recovery system

INTRODUCTION

The solvent recovery system configuration shown in Figure 4-9 was used for this

example. The function of the system is to recover methylene chloride solvent from the feed

stream into the recycle stream.  The amounts of solvent not recovered are discharged to the

sewer system with the effluent stream.  A feed stream containing 1.4% weight fraction

methylene chloride in water is fed to the process.  The flow rate of the feed stream is 100,000

lb./hr and its temperature 95°F. 200 psia steam is used to strip methylene chloride from water in

the two flash drums labeled TOWER1 and TOWER2.  The mixture of water and solvent vapors

recovered from the top of TOWER1 is fed to a condenser.  Upon condensation at 75°F, two

liquid phases are formed.  The aqueous phase is returned to the TOWER1 vessel, while the

solvent-rich phase is recycled to the upstream process, thus decreasing the need for purchasing

fresh solvent.   Steam inputs are regulated by a concentration controller.  The task in this

example is to find the optimum concentration set point for the controller. A motivation for doing

this might be to negotiate a discharge permit with the local authorities. Details on the case study

used as a basis for this example are given in Appendix A.

The key tradeoff in this system involves steam input and solvent losses.  As the amount

of steam fed to the system increases, more methylene chloride is recovered overhead, and less is

lost as discharge to the sewer.  From an economic perspective, the tradeoff is one between the

cost of supplying steam and the cost of purchasing make-up methylene chloride to replace the

amounts lost with the wastewater discharge.  There are also tradeoffs from an environmental

impact perspective.  The key tradeoff is that between the impact of the discharged solvent

(including the impact of producing the make-up methylene chloride required to replace what is

lost), and the impact of supplying steam (including the impact of producing and burning the fuel

used in the steam boiler).
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Figure 4-9: Flowsheet for the concentration set point selection example

For this example it is assumed that the process is already operating.  Further assumptions

made are that the system performance is known, and that the amount of steam required to meet a

given effluent concentration standard is given by the curve shown in Figure 4-1018.

ANALYSIS

Sources of Uncertainty
Because of the assumptions given in the introduction, the only uncertainties in this

example are the ones associated with the evaluation of environmental performance. Future prices

are uncertain, but the set point could be changed in the feature to respond to changes in prices.

The concern in this example is to find the optimum concentration set point given today’s

conditions. A different set point could be chosen tomorrow if conditions changed. Uncertainties

associated with evaluating environmental performance include uncertainties in emission factors,

input-output technical coefficients19, environmental problem contribution characterization factors

                                                
18 The curve was obtained from a model of the system implemented on the Aspen Plus process simulator.
19 Used to generate the life-cycle emissions inventories according to the PIO-LCA method, see Chapter 7.
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for individual chemicals, fate and transport properties of chemicals, human exposure model

parameters, and environmental problem valuation factors.
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Figure 4-10: Steam consumption as a function of effluent concentration set point for the set point
selection example

Process Model
A model of the process shown in Figure 4-9 was developed using the Aspen Plus process

simulator.  A design specification was used to vary the steam input rate (Fsteam, in lb./hr) to meet

specified methylene chloride concentrations in the effluent. The mass flow of methylene chloride

in the effluent stream (FCH2Cl2, in lb./hr) was passed along with the steam input rate to the

valuation models. For this exercise it was assumed that the model predictions matched exactly

the observed process performance.
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Economic Valuation Model
The key economic tradeoff is the one between utility costs (mostly due to steam use) and

the costs associated with purchasing make-up methylene chloride to replace what is lost with the

effluent.  The variable cost20 for this system is given by:

2222 ClCHClCHsteamsteam PFPFCost += (4-9)

It was assumed that current prices for steam and methylene chloride are, respectively,

$2.9/1000 lbs. and $0.40/lb.

Environmental Valuation Model
It would be interesting to know what the environmentally optimum concentration set

point would be, since this information might be of help in anticipating or negotiating effluent

concentration standards for this process.  The environmental impact of the system is evaluated

using the expression:

2222 ClCHClCHsteamsteam FF Ω+Ω=Ω (4-10)

where Ωi are unit environmental impact indicators.  Using the methods explained in Chapters 6

and 7, the following distributions were obtained for the marginal environmental impact

valuations of 1 lb. of 200 psia steam and 1 lb. of methylene chloride released to the sewer

system21:

)17.0,21.7Gamma(44.1log

)19.12,19.5Beta(07.438.3log

2210

2110

==+−=Ω

==×+−=Ω

βα

αα

ClCH

steam (4-11)

(4-12)

The distributions are correlated with a rank correlation coefficient of 0.66.  The copula method22

was used to generate the joint distribution shown in Figure 4-11.  Note the wide range spanned

by the distribution (about 2 orders of magnitude in each direction)23.

                                                
20 There are additional costs from electricity consumption by the pump and cooling water use at the condenser, but

since these costs are much lower than the steam and make-up solvent costs they have been omitted from the
presentation.

21 The marginal environmental impact valuations are given in units of ELU (environmental load units) per pound.
An ELU is defined as a dollar of social cost calculated according to the contingent valuation method, using the
weighting factors given in Table 3-16.

22 See section 7.5.3
23 See Figure 4-20 for probability density plots of the marginal distributions.
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Figure 4-11: Joint probability density distribution of the unit environmental indicators for steam
and methylene chloride discharges

RESULTS

Set point selection based on economic considerations
Given the assumption that the system performance is well known, it is straightforward to

determine the economically optimum set point.  All the information needed is the price of the

make-up solvent and the cost of the utilities used by the system. Using a solvent cost of $0.40/lb

methylene chloride and a steam cost of $2.9/1000 lbs. one finds that the economically-optimum

set point is 25 ppm (see Figure 4-12), which yields a variable cost of $38.7/hr (or $310,000/yr

assuming 8000 hrs of operation per year).
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Figure 4-12: Variable costs as a function of effluent concentration set point

Set point selection based on graphical analysis of environmental impact distributions
Figure 4-13 shows the simulated distributions for the environmental impact indicator of

several different effluent concentration set points.  The chart shows the median valuation as well

as the 5th, 25th, 75th, and 95th percentiles of each distribution.

It would be difficult to distinguish among the alternatives with confidence on the basis of

the results shown in Figure 4-13, given the overlaps among the various distributions.  A very

different picture is obtained when the ratio of the environmental valuation for each set point to

the environmental valuation of a reference set point is used as a basis for the decision.  Figure

4-14 shows the results when a set point of 100 ppm is used as a base case.  It is now clear than

set points above 100 ppm or below 10 ppm are more likely to be considered to have more serious

environmental impacts than the base case.  On the other hand, set points in the range 15-80 ppm

have an even or better chance of having lower environmental impact.
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Figure 4-13: Environmental impact indicator distributions for the concentration set point
selection example
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Figure 4-14: Relative environmental impact distributions with respect to a 100 ppm base case
for the concentration set point selection example
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A plot of relative environmental impact distributions vs. relative variable cost (taking the

100 ppm set point as base case) is shown in Figure 4-15.  This plot shows that the minimum cost

alternative (setting the concentration set point at 25 ppm) has a reasonable chance of having

better environmental performance than the 100 ppm base case.  Based on this observation, the 25

ppm alternative is chosen as the new base case and carry out an additional Monte Carlo

simulation.

0.5
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0.9 1 1.1 1.2

Relative cost

100 ppm

2 ppm

220 ppm25 ppm

3 ppm
5 ppm

10 ppm

Figure 4-15: Relative environmental impact distributions vs. relative variable cost (100 ppm
base case) for the concentration set point selection example24

The results of the simulation are shown in Figure 4-16.  The majority of the alternatives

now have more than a 50% chance of having more environmental impact than the 25 ppm

alternative chosen as the new base case.  In particular, once can be 95% confident that tightening

the effluent concentration standard to 2 ppm would result in worsening the environmental

impact. Alternatives in the range 15 ppm to 180 ppm have more than a 25% chance of having

lower environmental impact than the 25 ppm alternative, but the magnitude of the improvement

is very small (especially compared to the magnitude of the potential worsening for the higher

                                                
24 A line connecting the median points of the distribution was added to help the reader to follow the trends in relative

impact and relative cost as the effluent concentration set point varies from 2 to 300 ppm.
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concentration set points). Based on this analysis the conclusion is reached that in this particular

example choosing the set point that minimizes variable costs is consistent with minimizing

environmental impact.  If one accepts the 25 ppm alternative as a plausible environmentally

optimum choice, then a 75% confidence interval of 15 ppm to 180 ppm would be obtained based

on the procedure described in section 4.5.
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Figure 4-16: Relative environmental impact distributions with respect to a 25 ppm base case for
the concentration set point selection example

Set point selection by expected utility minimization
Table 4-3 shows stochastic optimization results obtained using the utility function

introduced in section 4.6.  The optimization problem was solved twice, first using the 100 ppm

alternative as the base case, and then using the economic optimum (25 ppm) alternative as the

base case.  As shown in Table 4-3, the optimization results were sensitive to the value of α (α=0

corresponds to single criterion economic optimization, while α=1 corresponds to single criterion

environmental impact minimization), but not to the choice of base case.
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Table 4-3: Expected utility minimization results for the concentration set point selection example
Base case = 100 ppm Base case = 25 ppm

α
Optimum
set point

Expected
utility

Optimum
set point

Expected
utility

0 25 0.0553 25 0
0.05 25 0.0566 25 0
0.1 25 0.0579 25 0
0.2 24 0.0608 24 0.00003
0.5 23 0.0687 23 0.0003
1 21 0.0828 21 0.0013

0.8 0.9 1 1.1 1.2

Environmental impact of 21 ppm set point / 
Environmental impact of 25 ppm set point

Figure 4-17: Probability density plot for the environmental impact indicator of the 18 ppm
alternative relative to the 25 ppm alternative

The probability density plot for the environmental impact indicator of the 21 ppm

concentration set point alternative relative to the 25 ppm alternative is shown in Figure 4-17.  As

Table 4-3 indicates, the utility function U = -ln(Relative Environmental Impact) transforms the

density plot shown in Figure 4-17 into an expected utility of 0.0013.  This means that a decision-

maker concerned only with environmental performance and having risk attitudes consistent with

the logarithmic utility function would be indifferent between: (a) switching from the 25 ppm

base case to the 21 ppm alternative, and (b) switching from the 25 ppm base case to an

alternative guaranteed to have 99.87% of the environmental impact of the 25 ppm alternative25.

The utility function thus gives a slightly higher weight to the relative long tail below a relative

                                                
25 -ln(0.9987) = 0.0013
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impact of 1 than to the bulk of the density which is concentrated at a position slightly larger than

1.  Given the minor relative environmental benefit that could be expected from switching to the

21 ppm alternative, it is decided to keep the 25 ppm alternative as the optimum set point, which

is the same result that had been obtained through the graphical method.

4.7.2 Sizing a heat exchanger

INTRODUCTION

This example is a follow-up to the heat exchanger sizing problem presented in section

3.2.5.  The design scenario is the same as the one discussed in that section.  The question of

interest is finding the optimum size for a heat exchanger that will be used to preheat the feed to

the solvent recovery process shown in Figure 4-18.  Details on the case study used as a basis for

this example are given in Appendix A. As in chapter 3, it is assumed that the process is required

to comply with a concentration limit of 2 ppm methylene chloride in the effluent26.
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HOTFEED
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EFF
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Figure 4-18: Flowsheet for the heat exchanger sizing example
                                                
26 This assumption implies that local regulators have not yet been enlightened by the results of the previous example.
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ANALYSIS

Sources of Uncertainty
The following sources of uncertainty are considered:

a) Model-inherent uncertainties.  Uncertainties in the overall heat transfer coefficient

and in the vapor-liquid and liquid-liquid equilibria of mixtures of water and

methylene chloride are considered.

b) Process-inherent uncertainties.  Variability (rather than uncertainty27) in feed

temperature and concentration is considered.  Feed flow is assumed to be constant

(for example, through a flow controller and a storage tank upstream from the

process).

c) Valuation model uncertainties.  For the economic valuation model, uncertainties in

prices, equipment cost, and annualization factors28 are considered.  Uncertainties in

the environmental valuation model include uncertainties in emission factors, input-

output technical coefficients, characterization factors, fate and transport properties of

chemicals, human exposure model parameters, and environmental problem valuation

factors29.

Process Model
A model of the process shown in Figure 4-18 was developed using the Aspen Plus

simulator.  Uncertainty analysis of this model was carried out using the deterministic equivalent

modeling method (DEMM, see section 8.2).  DEMM was used to develop a spreadsheet-based

metamodel of the Aspen plus model.  The metamodel takes two types of inputs: uncertain inputs

and decision variable values.  The uncertain inputs used in the metamodel were: thermodynamic

binary interaction parameters for the activity coefficient model of the methylene chloride-water

system, overall heat transfer coefficient for the heat exchanger, feed temperature, and feed

concentration.  The decision variables were the logarithm of the effluent concentration set point

                                                
27 Recall the distinction between uncertainty and variability made in section 4.2.
28 The uncertainty in the annualization factor arises from uncertainties in many parameters (see section 3.2.4).
29 See the following sections for further discussion on environmental value model uncertainties: 3.3.2 (general

discussion and discussion of uncertainties in valuation factors); 6.4 (uncertainties in the human exposure model);
7.5 (uncertainties in the PIO-LCA model).
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and the logarithm of the heat exchanger area30.  Uncertain outputs calculated by the metamodel

included: steam use rate, condenser duty, and methylene chloride discharge rate.  Steam use and

condenser duty were modeled using a full fourth order approximation with second-, third-, and

fourth-order cross terms, while the effluent discharge was modeled using a fourth order

approximation without cross terms. Table 4-4 summarizes the uncertainty distributions used in

the process model.  Details on the derivation of these distributions can be found in Appendix A

(section A.4).

Economic Valuation Mode
The key economic tradeoff is the one between operating cost (mostly due to steam use)

and the costs associated with the exchanger (including capital cost and annual charges due to

maintenance, taxes and insurance)31.  A total annualized cost (TAC) economic valuation model

was used to take these tradeoffs into account:

( ) ( )HXpBMClCHClCHcwcondcwsteamsteam AreaCfAFPFPQFPFTAC ×+++=
2222

� (4-13)

For a given choice of heat exchanger area, the spreadsheet process metamodel will

generate distributions for the annual steam consumption (Fsteam), condenser cooling duty ( condQ� ),

and methylene chloride discharges in the effluent (FCH2Cl2) as a function of the uncertain process

model parameters.  The cooling water use (Fcw) is calculated as a function of the condenser duty

assuming an allowable water temperature rise of 30°F.  Distributions for the discounted-cash

flow average prices (Pi) for steam and methylene chloride were estimated using the procedure

described in section 3.2.4, while the price of cooling water was assumed to be constant.  The

following distributions were used:

200 psia steam:
Cooling water:
Methylene chloride:

$0.0029/lb × LogNormal(median=1.027, UF=1.124)
$0.12/m3

 (fixed)
$0.40/lb × LogNormal(median=1.005, UF=1.122)

                                                
30 It was found that the output variables of interest were easier to describe in terms of polynomials of log(Csp) and

log(Area) than in terms of polynomials of Csp and Area.  Using logarithms enables one to use lower order
approximations to obtain an accurate model as compared to using untransformed variables.

31 See section 3.2 for a discussion on the operating cost vs. capital cost tradeoff.
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Table 4-4: Uncertainty distributions used to build the spreadsheet-based process metamodel
Input variable Distribution Probability density plot
Binary
interaction
parameters in
the NRTL
model
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The cost correlation in Perry’s handbook [11] was used to estimate the purchased

equipment cost of the heat exchanger, with a correction factor designed to take into account the

uncertainty in the cost correlation32:

( ) )65.1,1LogNormal(
1000

700,21$
59.0

2 ==×





×= UFmedian

ft
AreaAreaC HX

HXp (4-14)

A size-dependent installation cost factor was used, following the advice given in section

3.2.5.  The following equation was derived based on data published in Guthrie’s cost estimation

book [12]:

( ) ( )[ ]22
10

2
1010 1log0641.01log4974.05134.1log ftAreaftAreaf HXHXBM ×+×−= (4-15)

Finally, the distribution for the equipment-sizing annualization factor (AF) derived from

data in the book by Peters & Timmerhaus was used (assuming a discount rate of 15% and a

uniform distribution for the period of operation, ranging from 9 to 13 years).  The uncertainty in

the annualization factor was modeled using a lognormal distribution with median value 0.38 yr-1

and an uncertainty factor of 1.2 (see Table 3-9 and related text).  Probability density plots of the

four probability distributions used in the economic valuation model are shown in Figure 4-19.

Environmental Valuation Model
As the size of the heat exchanger increases and steam consumption decreases, one would

expect environmental impact to decrease due to lower fuel production and combustion

requirements.  An initial response to sizing a heat exchanger based on environmental criteria

might then be to make it as large as feasible.  There are limits to this strategy, however.  As the

heat exchanger area increases, the marginal amount of energy saved per incremental area

decreases.  At some point, the incremental energy needed to build a very large exchanger

(starting with the energy needed to produce the steel sheet) will be larger than the incremental

energy savings.  Therefore one can expect that for very large heat exchangers the environmental

impact of manufacturing the exchanger will be greater than the avoided environmental impact

from raising steam.

                                                
32 The uncertainty factor was estimated using the charts published in [12].  This uncertainty factor is also consistent

with the range of equipment costs obtained from several different cost correlations (see Figure 3-4)
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Figure 4-19: Probability distributions used in the TAC economic valuation function for the heat
exchanger sizing example

For this exercise, it is assumed the most of the environmental impact of building the

exchanger is due to the production of the steel sheet used in its construction.  Under this

assumption, the environmental valuation function used for this example is given by

( ) ( )
N

AreaWFQFF steelHXHX
ClCHClCHcwcondcwsteamsteam

Ω
+Ω+Ω+Ω=Ω

2222
� (4-16)

where Ω is an annualized environmental impact indicator (in environmental load units/yr.)33, the

Ωi are unit environmental impact indicators (calculated using the PIO-LCA method, as described

in section 7.3.4), N is the number of years the process will be in operation (assumed uncertain

and represented by a discrete uniform distribution with range 9 to 13 years), and WHX is the

weight of the heat exchanger calculated as a function of its area.  Modeling the shell of the

exchanger as a cylinder, WHX is estimated as:

                                                
33 An “environmental load unit” or ELU is a dollar of social cost calculated using the environmental problem

valuation factors given in Table 3-16.
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where D, L and hshell are, respectively,  the shell diameter, length, and thickness, htubes is the

thickness of the tubes, and ρsteel is the density of steel.  The shell is assumed to have a thickness

of 3/8 in. [13], and a length of 16 ft [14].  The shell diameter is calculated as a function of the heat

exchanger area by the expression [14]:

( ) 21100
3

ft
AreaftD HX= (4-18)

A steel density of 0.2833 lb/in3 (7.85 g/cm3) is assumed. It is further assumed that ¾ in. outside

diameter tubes are used.  The tube wall thickness at this stage of the design is uncertain in the

range 0.034-0.134 in. (0.9-3.4 mm) [11]. This uncertainty is represented by a beta distribution

with parameters α1=1.65 and α2=3.27.

The copula method (see section 7.5.3) was used to generate a joint distribution of the unit

environmental indicators for steam (in ELU/lb. 200 psia steam), cooling water (in ELU/m3),

methylene chloride discharges (in ELU/lb.), and steel sheet (in ELU/lb.).  The marginal

distributions used are:
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(4-20)

(4-21)

(4-22)

The joint distribution of unit environmental indicators is generated by combining the marginal

distributions listed above with the following rank correlation matrix:

Ωsteam Ωcw ΩCH2Cl2 Ωsteel
Ωsteam 1 0.68 0.66 0.62
Ωcw 0.68 1 0.68 0.80

ΩCH2Cl2 0.66 0.68 1 0.66
Ωsteel 0.62 0.80 0.66 1

Probability density plots for all of the distributions used in the environmental valuation

function (eq (4-16)) are shown in Figure 4-20.  Note the wide range (between 2 and 3 orders of

magnitude) spanned by the distributions for unit environmental impacts.
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Figure 4-20: Probability distributions used in the environmental valuation function for the heat
exchanger sizing

Propagation of Uncertainty
In order to preserve the correlations among the valuation distributions for the various

design alternatives, both valuation models were incorporated in the spreadsheet containing the

process metamodel.  Process-inherent uncertainties are addressed by integrating over the
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different realizations of the uncertainty in feed flow and concentration34.  For example, the

average TAC for each realization of the model-inherent (xm) and valuation model uncertainties

(xv) and each value of the decision variable AreaHX is calculated as:

( ) ( )∫ ∫
∞

∞−

∞

∞−

= feedfeedfeedfeedHXfeedfeedHXave dCdTCfTfAreaCT,TACArea,TAC )(,,,),( vmvm xxxx (4-23)

where f(Tfeed) and f(Cfeed) are the probability density functions for the feed temperature and the

feed methylene chloride concentration, respectively.

Nested Monte Carlo simulations are avoided through the use of the Gaussian quadrature

method to perform the integration [15]:

( ) ij

N

i

N

j
HXjfeedifeedHXave wAreaCT,TACArea,TAC ∑∑

= =
≅

1 1
,, ,,,),( vmvm xxxx (4-24)

For each realization the model-inherent and valuation model uncertainties, the TAC

model is evaluated N2 times for different discrete values of Tfeed and Cfeed.  The matrix below

shows the values used and the weights (wij) assigned to each combination of values (3 quadrature

points per process variable were used)35:

Cfeed
1.05wt% 1.40 wt% 1.75 wt%

  86.3 °F 0.027778 0.111111 0.027778
  95.0 °F 0.111111 0.444444 0.111111Tfeed

103.7 °F 0.027778 0.111111 0.027778

The same procedure is used to calculate average environmental impact indicators as a

function of the decision and uncertain variables.

Distributions for the following indicators are calculated through Monte Carlo Simulation:

• )( HXave AreaTAC

• )( HXave AreaΩ

                                                
34 See the discussion in section 4.2, under the heading Process-inherent uncertainty.
35 The weight values were obtained from the tables in reference [15].  Tables of weight values can also be found in

[16,17].
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A heat exchanger area of 3500 ft2 was chosen as the base case design, based on the

results of the example in section 3.2.5. It is crucial that the same realization of the uncertain

process and valuation parameters be used for the evaluation of the numerator and denominator in

the relative measures of performance in order to preserve the correlation among the valuations

for the alternatives and the base case design.  Propagation of uncertainties was carried out using

Microsoft Excel (version 97 SR-1) with the @Risk add-on (version 3.5, Palisade Corporation) on

a personal computer with a Pentium II processor.

RESULTS

Sizing according to economic criteria
Figure 4-21 shows the distributions for the total annualized cost (TAC) of several

different heat exchanger size alternatives obtained by propagating uncertainties through the

process and economic valuation models.  The plot shows the median value as well as the 5th,

25th, 75th, and 95th percentile values.  Due mostly to the uncertainty in the thermodynamic

parameters (see Chapter 5 for a full sensitivity analysis), there is considerable uncertainty in the

amount of steam required to meet the effluent concentration set point.  This translates directly

into uncertainty in annual steam costs, and thus in total annualized cost.  An examination of

Figure 4-21 would suggest that there is very little difference in economic performance for heat

exchanger sizes in the range 1000 to 8000 ft2.  Faced with this information, designers would be

inclined to specify the lowest heat exchanger size (1000 ft2), since it has the lowest capital cost.

This conclusion would be wrong, as demonstrated in Figure 4-22, where the uncertainty in the

ratio of the TAC of each alternative to the TAC of the 3500 ft2 base case alternative is shown.

The high degree of correlation in TAC among the various alternatives allows one to say with

more than 85% confidence that the 3500 ft2 alternative is cheaper than the 1000 ft2 alternative.

One might be uncertain about what the actual TAC will be, but one knows that the 1000 ft2

alternative will cost between 1.8% less and 12.3% more than the 3500 ft2 alternative (90%
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confidence interval), depending on how the uncertainties are resolved. It can also be said with

more than 75% confidence that sizes lower than 1800 ft2 or larger than 3700 ft2 would be more

costly than the base case alternative. Accepting the base case alternative as the economic

optimum, the statement above defines the 75% confidence interval around the optimum.

Expected TAC minimization would have yielded 2900 ft2 as the optimum size for the heat

exchanger, but would not have given any information regarding the confidence interval around

the optimum.  As Figure 4-23 shows, the 2900 ft2 alternative is indeed better on average than the

3500 ft2 alternative, but the difference is very small (within 1% in most cases).  Designers

interested in such small differences could carry out an additional Monte Carlo simulation

choosing 2900 ft2 as the new base case to refine the confidence interval around the economic

optimum.
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Figure 4-21: Total annualized cost distributions for the heat exchanger sizing example
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Figure 4-22: Relative total annualized cost distributions for the heat exchanger sizing example
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Figure 4-23: Probability density plot for the TAC of the 2900 ft2 alternative relative to the
3500 ft2 base case alternative
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Sizing according to environmental impact criteria
Propagating the uncertainty in the absolute indicator of environmental performance yields

very little information, as shown in Figure 4-24.  The 90% confidence interval around the

median indicator for each of the alternatives spans more than one order of magnitude (note that

the scale for the y-axis in this figure is logarithmic, while the scale for the y-axis in Figure 4-21

was linear).  A plot of the distribution of the ratio of the environmental indicator for each

alternative to the environmental indicator for the base case alternative (3500 ft2) yields much

more information, as shown in Figure 4-25.  One can be more than 75% confident that

decreasing the heat exchanger size to 3000 ft2 or below will cause more environmental impact,

while there is more than a 75% chance that increasing the size of the exchanger would improve

environmental performance.
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Figure 4-24: Environmental impact indicator distributions for the heat exchanger sizing example
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Figure 4-25: Relative environmental impact distributions for the heat exchanger sizing example

Sizing according to a compromise between economic and environmental impact criteria
Figure 4-26 shows a plot of the distribution of relative environmental impact vs. the

distribution of relative TAC for a subset of the alternatives considered.  Based on this diagram,

one can see that the 2500 ft2 alternative is an inferior alternative, since even though it has only an

approximately even chance of having lower cost, it has more than a 90% chance of having worse

environmental impact. The alternatives with areas of 2900 and 3100 ft2 have more than an even

chance of having lower annualized costs than the base alternative.  Of these two, the 3100 ft2 has

the best distribution of relative impact, although its probability of exceeding the environmental

impact of the base case alternative is more than 90%.  Alternatives with sizes in the range 3400

ft2 to 3700 ft2 can barely be distinguished from one another.  The 4500 ft2 alternative has an 85%

chance of having lower impact, but it also has an 85% chance of having higher cost.  In this case,

a tradeoff exists, and it is up to the design team to decide whether the additional expense is

justified.  Using the utility function introduced in section 4.6.3 with α=0.1 yields a negative

utility for the switch from the 3500 ft2 to the 4500 ft2 alternative.  In other words, since
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it may be concluded that the base alternative (the 3500 ft2 alternative) would be preferred to the

4500 ft2 alternative by designers whose willingness to make tradeoffs between relative measures

of economic and environmental performance is well characterized by eq (4-8) with an α value of

0.1.

The maximum utility relative to the 3500 ft2 base case among the alternatives considered

is obtained for a heat exchanger size of 3100 ft2.  Giving equal weight to both criteria (that is,

choosing α=0.5), shifts the optimum size to 4100 ft2.  It is doubtful that a private company would

every use higher α values. This indicates that the exchanger size that had been obtained in

Chapter 3 without considering uncertainty is in fact close to optimal.  Consideration of

uncertainties would allow a designer to be quite confident about the decision, despite the

considerable uncertainties faced at the conceptual stage of design.
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Figure 4-26: Relative environmental impact vs. relative total annualized cost for a subset of the
alternatives considered in the heat exchanger sizing example
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4.8 Conclusion
The key contribution made in this chapter is the idea of using relative measures of

performance as a means to decrease the uncertainty in decision-making in the presence of large

uncertainties in system and valuation models.  The method works particularly well when

parameters with large uncertainties have a strong influence in the absolute measures of

performance of the alternatives one is interested in comparing.
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Chapter 5 Sensitivity Analysis
5.1 Introduction

The previous chapter solved the problem of discriminating among design alternatives in

the presence of large uncertainties.  Finding the best alternative in a set is only one element of

the design cycle.  As reviewed in Chapter 2, design is an iterative activity.  Design teams usually

undertake several iterations in the design cycle.  Before returning to the beginning of the design

cycle, the results obtained at the evaluation stage must be examined to identify improvement

opportunities.  Having identified the process features that contribute the most to the different

indicators used in its evaluation, design teams can use the alternative generation tools at their

disposal to address the critical design features.  At this stage it is also important to prioritize data

collection efforts, so that resources are invested in obtaining the information that will contribute

the most to reducing uncertainty in the key design decisions.

5.2 Identification of improvement opportunities
In order to improve the environmental performance of a design, it is necessary to identify

the features of the design that are the main drivers of its environmental impact.  Thus, the

calculation of an environmental valuation metric is not very useful unless the results can be

presented in a way that allows the design team to set priorities for further design work.

Examples of sensitivity analysis tools used to identify pollution prevention opportunities in

process design include the mass loss index (MLI) developed by Heinzle & Hungerbühler [1] and

the mass-based pollution index developed by Hilaly & Sikdar as part of their waste reduction

algorithm (WAR) [2,3].

In the MLI procedure, the mass of all non-product streams leaving a process are allocated

to their cause. Causes of mass inefficiencies include stoichiometric formation of byproducts in

desired reactions, incomplete conversion, selectivity losses, purification losses, impurities

contained in substrates, and losses of solvents, catalysts and other auxiliary materials not

recycled with 100% efficiency.  By weighting individual streams by their cost or by a relative

measure of environmental impact, those causes of mass inefficiency with the greatest cost or
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potential ecological impact can be identified.   The design team would focus their attention on

reducing those sources of inefficiency in the next iteration.

In the WAR algorithm, pollution indices (measures of the mass of pollutants released per

mass of product produced) are calculated for the whole process and for individual streams.  Unit

operations directly upstream from high pollution index streams are targeted for modification.  In

their papers, Hilaly & Sikdar are reluctant to include environmental impact metrics as a

weighting factor in their mass-based indices.  Specifically, they do not recommend including

toxicity because “the toxicity of a compound cannot be quantified in terms of a unique numeric

value” [3].  Although toxicity indicators are indeed uncertain, this does not mean that they do not

contain information or that they can not be used for sensitivity analysis.  In this subsection an

approach is presented to increase the information content of sensitivity analysis using uncertain

indicators.

Despite the large uncertainty in the absolute value of the overall environmental impact

indicator for a design, the uncertainty in the contribution of individual design features to the

overall indicator might be significantly lower.  The reason for this is that in most situations the

uncertainty in the indicator for the whole is highly correlated with the uncertainty in the indicator

for the most important parts.  Following the correlation-structure preservation principles

introduced in section 4.4, it is recommended that sensitivity analysis be performed through the

propagation of uncertainty in contribution ratios.

Consider an environmental valuation model written in terms of the process inputs (e.g.

raw materials, utilities) and non-product outputs (e.g. waste streams):

∑∑
∈∈

Ω+Ω=Ω
Outputsj

jj
Inputsi

ii OI ��
(5-1)

where iI� is consumption rate of input i, jO� is generation rate of input j, the Ωi and Ωj are the

environmental impact indicators per unit of input and per unit of output, respectively, and Ω is

the indicator for the whole process.

As seen in the examples of Chapter 4, the uncertainty in an indicator such as the one

given in eq (5-1) may span more than an order of magnitude.  Sensitivity analysis would be

performed by propagation of the uncertainty in the ratios
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where the same random variable realizations used to compute the numerator are used in the

corresponding expression of the denominator.  Examples of distributions for the above quantities

obtained through Monte Carlo simulation are shown in the examples at the end of this section.

The procedure here is quite general and can be applied to any valuation model with

uncertain parameters.  As was shown in section 3.2.4 there are significant uncertainties

associated with the economic valuation models used at the conceptual stage of design.  It could

even be applied to Hilaly & Sikdar’s pollution indices, since even mass-based indicators will be

uncertain at the conceptual design stage due to uncertainties in process model parameters.

5.3 Uncertainty analysis

5.3.1 Introduction

The term uncertainty analysis has been defined as the collection of methods used for

comparing the importance of the input uncertainties in terms of their relative contributions to

uncertainty in the outputs [4].  The related term uncertainty propagation is given to the

collection of methods used to calculate the uncertainty in the model outputs induced by the

uncertainties in its inputs.  All of the techniques introduced thus far in Chapter 4 and section 5.2

are instances of uncertainty propagation.  This section describes the use of uncertainty analysis

techniques in the context of environmentally conscious chemical process design.

It is extremely useful to be able to identify the input parameter distributions that are

responsible for most of the uncertainty in an output variable of interest.  Having identified those

parameters, resources could be invested to reduce their uncertainty (e.g. by performing

experiments, or by making more careful valuation assessments), thereby reducing the uncertainty

in the quantities on the basis of which decisions must be made (these include the relative

measures of performance introduced in Chapter 4).
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5.3.2 Variance contribution methods

In the case of an output variable that is the sum of normally distributed random variables,

an exact determination of the contribution of the variance of each input variable to the variance

of the output variable can be made analytically.  Consider the following model:

y = a0 + a1x1 + a2x2 + a3x3 (5-4)

where the xi are normally distributed random variables with mean µi and standard deviation σi,

and the ai are model constants.

Under the assumptions stated above, the uncertainty in the output variable y is given by a

normal distribution with parameters

µy = a0 + a1µ1 + a2µ2 + a3µ3 (5-5)

and

233213311221
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where σij is the covariance between xi and xj.

In the case that x1, x2, and x3 are mutually independent, their covariances are all equal to

zero.  In that case, the attribution of variance contributions is straightforward:
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where fvar,i is the fraction of the variance contributed by variable xi.

In the case of correlated variables, the allocation of the covariance term contributions to

the variance contribution of each variable is split (somewhat arbitrarily) according to the

contribution of the variance terms [5].  For example, the variance contribution attributed to

variable x1 would be:
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A similar derivation can be obtained for the case of models where the output variable is

the product of powers of lognormally distributed input variables.

For other combinations of model structure and probability distributions, analytical

expressions for the variance contribution are not as easy to obtain.  One way to circumvent this
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difficulty is to use the deterministic equivalent modeling method (DEMM). DEMM uses

orthogonal polynomial chaos expansions (i.e. series expansions written in terms of polynomials

of random variables) to approximate the distribution of an output variable [6,7].  A principal

advantage of the method is that it the variance contribution of each input variable can be directly

estimated using the coefficients of the expansion.  A disadvantage of the method from the

perspective of this thesis is that its current implementation is not compatible with spreadsheet

models that have hundreds of uncertain inputs, such as the environmental valuation models

presented in section 6.3 and Chapter 736.  For this reason, this section focuses on uncertainty

analysis techniques that can be applied to the outputs of Monte Carlo simulations involving a

large number of inputs.

5.3.3 Correlation methods

Correlation measures are used to evaluate the degree of association between pairs of

random variables.  By tradition, a measure of correlation between the variables X and Y must

fulfill the following requirements [8]:

1. The correlation measure should take only values between −1 and +1

2. If the larger values of X tend to be observed at the same time that the large values of

Y are observed, then the measure of correlation should be positive and close to +1 if

the tendency is strong.

3. If larger values of X tend to be observed when small values of Y are observed, then

the measure of correlation should be negative and close to –1 if the tendency is

strong.

4. If values of X and Y are independent (i.e. if their variations are random with respect

to one another) the measure of correlation should be close to 0.

The most commonly used measure of correlation is Pearson’s product moment

correlation coefficient, also known as the linear correlation coefficient:

                                                
36 The method is used for other purposes in this work (i.e. to generate polynomial chaos expansion models of

flowsheet process models, as discussed in section 8.2).
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If the outputs of a Monte Carlo simulation are available in an electronic spreadsheet, then

the Excel function CORREL(array1,array2) can be used to calculate r.

The Pearson correlation coefficient is a measure of the strength of the linear association

between X and Y.  A value of close to r=0 does not necessarily imply that two random variables

are independent, but rather that their association, if one exists, is not linear.

Consider, for example, the model given by

2
110 xy x += (5-10)

where x1 and x2 are two independent random variables with parameters (µ1=1, σ1=2) and

(µ1=1, σ1=0.1)37.  The results of a Monte Carlo simulation of eq (5-10) with 1,000 iterations are

shown in Figure 5-1.  It is obvious from this chart (note the logarithmic y-axis) that most of the

uncertainty in the value of y comes from the uncertainty in the value of x1.  The degree of linear

association is very weak, however, with a Pearson correlation coefficient of 0.236.
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Figure 5-1: Scatter plot of 1000 pairs (X1, Y) from the model defined in eq (5-10)

                                                
37 This functional form appears frequently in environmental valuation models, since many parameters are typically

described by lognormal distributions
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A more robust measure of the degree of association between two random variables is the

Spearman rank correlation coefficient (ρ), which is the Pearson product moment correlation

coefficient applied to the sample ranks instead of being applied to the sample values [9]:
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The rank correlation coefficient is a good indicator of dependence when the relationship

between factors is monotonically increasing (positive coefficients) or decreasing (negative

coefficients).  In the example above, the rank correlation coefficient calculated between y and x1

was 0.994. The rank correlation coefficient will still fail to detect strong associations that are not

monotonic (e.g. y = x2 when x is a normally distributed random variable with mean equal to

zero)38.  In Microsoft Excel, the calculation of rank correlation coefficients is done in two steps.

First, arrays of ranks are created by using the function rank(cell ref, array ref). This is followed

by the application of the correl function as explained before.  The @Risk Monte Carlo simulation

add-on for Excel39 has the option of calculating rank correlation coefficients between each of the

outputs and each of the inputs used in a simulation.

The Spearman rank correlation coefficient can be used as a test statistic to test for

independence between two random variables. When the sample size (n) is large (as in Monte

Carlo simulation), the pth quantile of ρ is given approximately by [8]:

( )
1

1

−
Φ=

−

n
pwp (5-12)

where Φ-1(p) is the inverse of the standard normal distribution evaluated at p40.

The property above can be used to test for independence between two random variables.

For a two-tailed test, the hypotheses take the following form [8]:

                                                
38 This is not anticipated to be a problem in environmental valuation models, as they consist mostly of sums of

products of positive random variables.
39 Palisade corporation, www.palisade.com
40 For example, Φ-1(0.9725) = 1.96
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H0: The Xi and Yi are mutually independent
H1: Either (a) there is a tendency for the larger values of X to be paired with the larger

values of Y, or (b) there is a tendency for the smaller values of X to be paired with
the larger values of Y.

H0 is rejected at the level α (e.g. at α=0.05 corresponding to 95% confidence) if the

absolute value of ρ is greater than the value of wp given by eq (5-12) evaluated at p = 1 - α/2.

(e.g. evaluated at p = 0.975).  For a Monte Carlo simulation with 2000 iterations, the absolute

value of the correlation coefficient would have to be lower than 1.96/(2000−1)0.5 = 0.0438 for the

independence hypothesis to be accepted with more than 95% confidence.  In spreadsheet models

with hundreds of uncertain parameters, such as those employed in this work, the test above

provides with a useful tool to screen out parameters that do not materially contribute to the

uncertainty in a decision.  In situations where the model size gets close to limitations in hardware

or time available for analysis, this screening tool allows the analyst to remove uncertainty

distributions that are unimportant.

Care must be taken with the interpretation of rank correlation coefficients for the case of

correlated input variables.  There can be situations where two input variables are strongly

correlated, with one of them contributing strongly to the uncertainty in the output variable, while

the other has only marginal importance.  The rank correlation coefficient uncertainty analysis

method will give large values of Pearson’s ρ for both input variables.

As an example, consider the model given in eq. (5-4) with the following parameters:
covariance matrix

Variable ai µi x1 x2 x3

x1 1 0 x1 100 0 8
x2 1 0 x2 0 10 0
x3 1 0 x3 8 0 1

Uncertainty analysis results are given in Table 5-1.  The contribution of the variance in

variable x3 to the variance in y is negligible (less than 1%), and yet the value of its rank

correlation coefficient is high, due to the high degree of correlation between x1 and x3.
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Table 5-1: Uncertainty analysis results for the example with correlated uncertain inputs

Variable
Variance

contribution
Spearman rank

correlation coefficient
x1 91.2% +0.95
x2 7.9% +0.26
x3 0.9% +0.78

Partial correlation and step-wise regression methods can be used to filter out inputs that

do not have large contributions to the output uncertainty but are strongly correlated with inputs

that do have significant contributions [8,9].  The step-wise linear regression method is available

in @Risk.  A partial rank correlation method is not yet available in that package.

5.4 Example: Retrofit of a solvent recovery system

5.4.1 Original process

This example is a continuation of the example introduced in section 4.7.1.  The process

flowsheet from that section is reproduced here as Figure 5-2.  The problem originally posed was

the identification of the best concentration set point for the operation of the process.  Sensitivity

analysis is applied in this section to two set point candidates: the economically optimum

concentration set point, found in section 4.7.1 to be 25 ppm, and a 2 ppm limit that the local

environmental permitting authorities have set for the process effluent.

It had been found in section 4.7.1 that, despite the large uncertainty in the environmental

impact indicator (more than an order of magnitude, see Figure 4-13), it was possible to conclude

with more than 95% confidence that operating the process at the lower concentration limit would

have more serious environmental consequences than operating it at the economically optimum

set point.

The results of the sensitivity analysis performed on both alternatives is shown in Figure

5-3.  Despite the large uncertainties in the unit environmental indicators used in the example,

there is virtually no uncertainty in the conclusion that at either set point the overwhelming

majority of the environmental impacts are due to steam generation and not to the release of small

quantities of methylene chloride. For the 25 ppm case, the 90% confidence interval for the

contribution of steam to the total environmental impact indicator is given by the range 92.1 to
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99.9%, while the 90% confidence interval for the steam contribution in the 2 ppm case is 99.1%

to 99.9%.

 

TOWER1

TOWER2
STEAM

FEED

EFFLUENT

RECYCLE
COND

DECANT PUMP

CC

Figure 5-2: Flowsheet for the concentration set point selection example

0.00001 0.0001 0.001 0.01 0.1 1

STEAM

EFFLUENT

COOLING
WATER

ELECTRICITY

Fraction of total environmental impact indicator (Csp = 25 ppm)

0.00001 0.0001 0.001 0.01 0.1 1

Fraction of total environmental impact indicator (Csp = 2 ppm)

Figure 5-3: Distributions for the contribution of process inputs and process outputs to the
environmental impact indicator for two different effluent concentration set points.
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These results aid in the interpretation of the relative impact distributions shown in Figure

4-16.  At low effluent concentration set points, most of the impact of both the reference and the

alternative operation policies is contributed by steam.  Thus in the expression

...

...

2222

2222

+Ω+Ω
+Ω+Ω

=
Ω
Ω

ClCH
bc

ClCHsteam
bc

steam

ClCH
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ClCHsteam
alt

steam
bc

alt

FF
FF

(5-13)

the first term in both the numerator and the denominator tends to dominate, and the

environmental impact ratio is mostly the ratio of steam consumption of the alternative operation

policy to the base case operation policy, yielding relatively narrow distributions for the relative

impact indicator.  As the concentration set point is increased, the relative importance of the

second term in the numerator increases, and thus one obtains relatively broad distributions, as

shown on the right hand side of Figure 4-16. It is clear from the sensitivity analysis that the main

source of environmental impact is related to the raising of steam.  These results can be used to

negotiate with regulators an increase in the effluent concentration limit from 2 ppm to 25 ppm in

exchange for making an investment to reduce steam consumption (for example, by installing a

heat exchanger).  The examples in sections 3.2.5 and 4.7.2 showed that the installation of a heat

exchanger not only would reduce environmental impact but would also decrease overall costs.

5.4.2 Process with heat exchanger

In this example sensitivity and uncertainty analysis are applied to the example previously

described in section 4.7.2.  The flowsheet for that example is reproduced here as Figure 5-441.

The problem posed was the determination of the optimum size for a heat exchanger to be

retrofitted to the solvent recovery process.  Uncertainties in the example included physical

uncertainties (thermodynamic parameters and heat transfer coefficient), economic valuation

factors, and environmental valuation factors.  The 90% confidence interval for total annualized

cost (TAC) spanned a factor of roughly 3, while the uncertainty in the environmental impact

indicator was an order of magnitude higher.

                                                
41 The reader should refer back to section 4.7.2 for details regarding the problem statement, process model, valuation

models, and uncertainties.
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Figure 5-4: Flowsheet for the heat exchanger sizing example

SENSITIVITY ANALYSIS RESULTS

Figure 5-5 shows distributions for the contributions of steam consumption, cooling water

use, heat exchanger procurement, and methylene chloride losses to the total annualized cost and

environmental impact indicator valuation models used for this example.  Despite the uncertainty

it is clear that the largest contribution to both measures comes from steam consumption.  Process

designers should look for further ideas to decrease the amount of energy required to effect the

recovery.  One such idea (the use of a stripping column instead of two flash drums) is examined

in the last example of this section.

It is interesting to note that the ranking of contributions with respect to the economic

objective is not the same as the one with respect to the environmental objective.  The impact of

building the heat exchanger (estimated from the impact of all the processes involved in the

manufacture of the required amount of steel sheet, starting with the extraction of fuels and raw

materials) is minor compared to the environmental impact of the process input and output

streams.  From an economic perspective, however, the annualized cost of purchasing, installing,

and maintaining the heat exchanger has a significant contribution to overall costs.  In section



                                                                                           5.4  Example: Retrofit of a solvent recovery system         205

4.7.2 it was determined that a heat exchanger with an area of 2,900 ft2 would minimize expected

annualized cost.  It was also found that environmental impact was likely to decrease as heat

exchanger size increased.

0% 20% 40% 60% 80% 100%

Steam

Cooling
water

Methylene
chloride
losses

Heat
exchanger

Contributions to TAC

0% 20% 40% 60% 80% 100%

Contributions to Environmental Impact 

Figure 5-5: Distributions for the contribution of process inputs and process outputs to (a) total
annualized cost, and (b) environmental impact indicator for the 3500 ft2 heat
exchanger alternative

UNCERTAINTY ANALYSIS RESULTS

The results of uncertainty propagation on absolute and relative measures of performance

for this example were presented in section 4.7.2.  In particular, a box plot of relative

environmental impact distributions vs. relative TAC distributions taking a heat exchanger size of

3,500 ft2 as the base case alternative was presented in Figure 4-26.    On the basis of that plot,

two alternatives (in addition to the base case alternative) are chosen for uncertainty analysis in

this section.  The choices selected are the 2,900 ft2 alternative (i.e. the alternative with minimum

expected TAC) and the 6,000 ft2 alternative (which has more than a 75% chance of having less

impact than the base case alternative, but also a non-negligible change of having higher impact).

Rank correlation coefficient plots for the absolute measures of performance are given in

Figure 5-6 (TAC) and Figure 5-7 (environmental impact indicator).  As these results were

obtaining by performing a Monte Carlo simulation with 2,000 points, the rank correlation
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coefficient absolute value (|ρ|) below which lack of correlation of an uncertain input with the

uncertain output of interest could be established (95% confidence) is calculated as 0.044 through

the use of eq (5-12).  The range of rank correlation coefficient values not considered significant

is shown between the two dashed lines in the figures.

-1.0 -0.8 -0.6 -0.4 -0.2 0 +0.2 +0.4 +0.6 +0.8 +1.0

thermodynamic parameter 1

thermodynamic parameter 2

themodynamic parameter 3

Heat transfer coefficient

Purchased cost correlation

Annualization factor

Steam price

Rank correlation coefficient (TAC)

2900 ft2 3500 ft2 6000 ft2

Figure 5-6: Uncertain factor contributions to the uncertainty in total annualized cost for three
different choices of heat exchanger size

In the case of total annual cost, the largest contribution to uncertainty comes form the

uncertainty in the parameters used to describe the vapor-liquid and liquid-liquid equilibria of the

system water-methylene chloride.  In particular, the infinite dilution activity coefficient for

methylene chloride in water is a key factor in determining the amount of steam required to meet

the 2 ppm effluent concentration specification.  The uncertainty in the heat transfer coefficient is

found to have a negligible effect on the uncertainty in TAC.
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For the case of environmental impact valuation, Figure 5-7 shows that the uncertainty in

the unit environmental impact for steam generation has by far the greatest contribution to

uncertainty, followed by the uncertainty in thermodynamic parameters.

-1.0 -0.8 -0.6 -0.4 -0.2 0 +0.2 +0.4 +0.6 +0.8 +1.0

Thermodynamic parameter 1

Thermodynamic parameter 2

Thermodynamic parameter 3

Heat transfer coefficient

Steel sheet use per unit area

Years of operation

Steam impact valuation

Methylene chloride impact valuation

Cooling water impact valuation

Steel sheet valuation

Rank correlation coefficient (environmental impact indicator)

2900 ft2 3500 ft2 6000 ft2

Figure 5-7: Uncertain factor contributions to the uncertainty in environmental impact valuations
for three different heat exchanger size choices

The more relevant results regarding uncertainty in the selection among various

alternatives are the rank correlation coefficient charts for relative measures of performance

shown in Figure 5-8 (relative TAC) and Figure 5-9 (relative environmental impact).  These

figures show that the relative ranking of input uncertainties in terms of their contribution to the

uncertainty in the performance measure indicators are not necessarily the same than that based

on contributions to the uncertainty in the selection among competing alternatives.

With respect to the sizing of the heat exchanger based on economic considerations,

Figure 5-8 shows that the uncertainty in thermodynamic parameters is still very important.
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However other factors that did not contribute much to the uncertainty in TAC now show up as

having very important contributions to relative TAC (i.e. the uncertainty in the equipment cost

correlation and the uncertainty in the heat transfer coefficient).   In the case of sizing based on

environmental considerations, Figure 5-9 shows that thermodynamic parameter uncertainty is

more important than the uncertainty in the unit environmental impact valuation for steam.  As in

the case of sizing according to economic considerations, the uncertainty in the heat transfer

coefficient becomes important.  These observations are consistent with engineering intuition,

which tells us that the key factors determining whether the additional investment in heat

exchanger area is justified given the incremental energy savings should be important to the

decision.

-1.0 -0.8 -0.6 -0.4 -0.2 0 +0.2 +0.4 +0.6 +0.8 +1.0

Thermodynamic parameter 1

Thermodynamic parameter 2

Thermodynamic parameter 3

Heat transfer coefficient

Purchased cost correlation

Annualization factor

Steam price

Rank correlation coefficient (relative TAC)

2900 ft2 6000 ft2

Figure 5-8: Uncertain factor contributions to the uncertainty in relative total annualized cost for
two different choices of heat exchanger size (base case alternative has a 3,500 ft2

heat exchanger)
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Rank correlation coefficient (relative environmental impact)
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Figure 5-9: Uncertain parameter contributions to the uncertainty en relative environmental
impact valuations for two different choices of heat exchanger size (base case
alternative has a 3,500 ft2 heat exchanger)

5.4.3 Process with steam stripping column

INTRODUCTION

Motivated by the sensitivity analysis performed in the previous example, this example

considers an additional retrofit option to the installation of a heat exchanger: the replacement of

the two flash drum vessels of the original process by a steam stripping column.  The proposed

flowsheet configuration is shown in Figure 5-10.

The tasks in the new design problem are the sizing of the heat exchanger and the design

of the stripping column.  There are three decision variables describing the column: the number of

trays, its diameter, and the spacing between trays.  As the number of trays increases, the

separation efficiency increases.  However, there are decreasing returns to scale, since the

addition of a tray to a short column has a greater relative impact on separation efficiency than the

addition of a tray to a tall column.  Column diameter and tray spacing are important for proper

operation of the column.  A column with diameter that is too narrow has a higher chance of
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flooding.  When flooding occurs, liquid bypasses the tray contact area, resulting in failure of the

column to achieve the desired separation.

COND
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STEAM

FEED

BOT2

CONDIN CONDOUT

VENT

AQUEOUS

ORGANIC

RECYCLE

PUMP

EFF

HOTFEED

Figure 5-10: Flowsheet for the stripping column retrofit example

ANALYSIS

Sources of Uncertainty
The following sources of uncertainty are considered:

a) Model-inherent uncertainties.  Uncertainties in the overall heat transfer coefficient, in

the column efficiency, and in the vapor-liquid and liquid-liquid equilibria of mixtures

of water and methylene chloride are considered.

b) Process-inherent uncertainties.  Uncertainty (rather than variability) in feed flow and

temperature is considered.  Feed concentration is assumed to be the concentration of a

saturated aqueous solution of methylene chloride in water at the feed temperature.
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c) External uncertainties.  There is uncertainty about the future values of the permissible

concentration of methylene chloride in the sewer discharge.

d) Valuation model uncertainties.  For the economic valuation model, uncertainties in

future prices, equipment cost, and annualization factors42 are considered.

Uncertainties in the environmental valuation model include uncertainties in emission

factors, input-output technical coefficients, characterization factors, fate and transport

properties of chemicals, human exposure model parameters, and environmental

problem valuation factors43.

Process Model
A model of the process shown in Figure 5-10 was developed using the Aspen plus

simulator. Uncertainty propagation of this model was carried out using the deterministic

equivalent modeling method (DEMM, see section 8.2).  DEMM was used to develop two

spreadsheet-based metamodel of the Aspen plus model.  In model 1, the steam rate was set at the

rate that minimized operating cost, which was assumed to be only a function of steam cost and

methylene chloride replacement cost44.  In model 2, the steam rate was set at the rate necessary

to meet a prescribed effluent concentration standard.  The final spreadsheet model was a

combination of both metamodels.  Metamodel 1 was the default model used, unless the resulting

effluent concentration was higher than the concentration standard encountered in a particular

Monte Carlo iteration, in which case steam rate was set according to metamodel 2.

Table 5-2 lists the inputs used to build the two metamodels, as well as the uncertain

outputs and the polynomial chaos expansion level of approximation used to model each output.

The uncertainty in column efficiency was modeled outside the DEMM representation of

the Aspen model.  For a given specification of the number of trays made by the designer, an

equivalent theoretical number of trays is computed during the Monte Carlo simulation by

                                                
42 The uncertainty in the annualization factor arises from uncertainties in many parameters (see section 3.2.4).
43 See the following sections for further discussion on environmental value model uncertainties: 3.3.2 (general

discussion and discussion of uncertainties in valuation factors); 6.4 (uncertainties in the human exposure model);
7.5 (uncertainties in the PIO-LCA model).

44 Under this assumption, the optimum steam rate is only a function of process uncertainties and the ratio of the
prices of methylene chloride and steam.  Knowledge of the actual prices is not necessary to find the optimum
steam rate.
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multiplying the specified physical number of trays by the uncertain column efficiency.  The

calculated theoretical number of trays is then used as an input to the metamodel.

Table 5-2: Structure of DEMM metamodels used to propagate uncertainty in the stripping
column retrofit example

Model Uncertain inputs Decision variables Uncertain outputs

PCE level of
approxi-
mation

Model 1:
Min
OpCost

Feed flow rate
Feed temperature
NRTL parameters (3)
Heat transfer coefficient

Area
lnNa

ln(Psteam/PMeCl2)

Steam consumption rate
Condenser duty
log10(Effluent concentration)
log10(MeCl2 discharge rate)
Column flooding diamter at

24 in. tray spacing

5th + bilinear
5th + bilinear
4th

4th

5th + bilinear

Model 2:
Meet Csp

Feed flow rate
Feed temperature
NRTL parameters (3)
Heat transfer coefficient

Area
lnNa

Concentration set
point

Steam consumption rate
Condenser duty
MeCl2 discharge rate
Column flooding diamter at
24 in. tray spacing

6th + 3rd order
cross terms
+ bilinear

(for all
outputs)

a) lnN stands for the natural logarithm of the theoretical number of column stages.  The collocation points calculated
by DEMM were modified so that each collocation point used for lnN corresponded to an integer value of N.

Table 5-3 shows the distributions used to build the spreadsheet metamodel.  It was

assumed in this example that, as a result of the uncertainty analysis in the previous example, the

design team spent resources in improving its estimate of the overall heat transfer coefficient.

The new distribution is compared with the old distribution on the density plots in the second row

of the table.

Economic Valuation Model
The key economic tradeoff is the one between operating cost (mostly due to steam use)

and the costs associated with the exchanger and the stripping column (including capital cost and

annual charges due to maintenance, taxes and insurance)45.  Because it was assumed in this

example that effluent concentration standards could tighten from year to year, a net present cost

(NPC) economic valuation model was used instead of the total annualized cost model used

elsewhere in this thesis:

                                                
45 See section 3.2 for a discussion on the operating cost vs. capital cost tradeoff.
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 Table 5-3: Uncertainty distributions used to build the spreadsheet-based process metamodel
Input variable Distribution Probability density plot
Binary
interaction
parameters in
the NRTL
model
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Input variable Distribution Probability density plot
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where the parameter symbols used are the same as those used in the economic valuation models

section (section 3.2).  Depreciation factors (fdep,k) are taken from the table of values for the

MACRS method for a 9.5 year class life (see Table 3-4).  The fixed capital investment (FCI) is

given by:

( ) ( ) ( )[ ] 





++=

TM
shelltraystraysptraysBMtraysshelltraysshellpshellBMHXpHXBM C

FCIDNCfhDNCfAreaCfFCI ,,, ,,,,,, (5-15)

where the symbols not previously defined in Chapter 3 are Ntrays (number of trays), Dshell (column

diameter), htrays (spacing between trays), and (FCI/CTM) which is a factor used to calculate the

contribution to FCI that can be directly attributed to the total installed equipment cost (CTM,

given by the sum of the terms inside the square brackets).
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The purchased cost (Cp,i) and installation cost factor (fBM) correlations used were those

published in the process design textbook by Turton et al. [10]46

For a given specification of heat exchanger area, and each realization of the random

variables theoretical number of trays, feed flow, feed temperature, and year-to-year prices and

effluent standards, the spreadsheet process metamodel will calculate the steam consumption

(Fsteam), condenser cooling duty ( condQ� ), and methylene chloride effluent discharge (FCH2Cl2)

corresponding to each year of operation. The model will also calculate the flooding diameter at

htrays = 24 inches.  The annual cooling water use (Fcw) is calculated as a function of the condenser

duty assuming an allowable water temperature rise of 30°F.  It was assumed that the process

would operate for 10 years.  A discount rate of i=15% was used in the estimation of net present

cost.

Year-to-year trajectories for methylene chloride prices, steam prices, tax rates, and

effluent concentration standards were calculated using Markov-type models (see Figure 3-2 for

confidence intervals and a sample trajectory of the future prices of methylene chloride calculated

through this method).  The price of cooling water was assumed to remain constant at $0.12/m3.

The uncertainty distributions used for the parameters in the economic valuation model are

summarized in Table 5-4.

Environmental Valuation Model
The environmental valuation model was the same one used in section 4.7.2, augmented

with terms to account for the environmental impact of fabricating the column47:

( )
( ) ( ) ( )[ ]
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DWNhNDWAreaW
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ClCHClCHcwcondcwsteamsteam

Ω++
+

Ω+Ω+Ω=Ω

,,

2222
�

(5-16)

                                                
46 As the installation factors published in the textbook by Turton et al. (and in all other design textbooks) are size-

independent installation factors, it must be recognized that the economic valuation function will introduce a bias
against capital investment (see section 3.2.5).  In a real design setting, designers should use plant data or
knowledge bases such as the ICARUS process evaluator to estimate size-dependent installation cost factors.

47 As in the case of the heat exchanger, the assumption is made that most of the impact comes from the fabrication of
the steel sheet used to construct the column.
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Table 5-4: Uncertainty distributions used in the economic valuation model
Input variable Distribution Probability density plot
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The heat exchanger weight (WHX) is calculated according to eq (4-17).  The weight of the

column shell is given by:

steelshellshellshellshellShell hDHDW ρππ 




 += 2

4
(5-17)

where the shell height (Hshell) is calculated as:

traystraysShell hNftH += 15 (5-18)

and the shell thickness may take 3 discrete sizes, depending on shell diameter: 0.4 in for

Dshell < 3.5 ft, 0.47 in for 3.5 ft < Dshell < 5 ft, and 0.53 in for Dshell > 5 ft [10].

The weight of an individual tray (Wtray) is estimated using the expression

steelplateshelltrayl hDW ρπ 2

4
= (5-19)

where hplate is the equivalent thickness of a tray.  This quantity is assumed uncertain, and is

described by the following beta distribution:

( )2.2,8.3Beta25.0125.0 21 ==×+= ααininhplate

0 0.2 0.4 0.6
Equivalent tray thickness (inches)

The rest of the uncertainties in the environmental valuation model (the unit

environmental impact indicators and the heat exchanger tube thickness) are the same as those

used in section 4.7.2.

Technical constraints
The following technical constraints were imposed on the design:

• The height:diameter aspect ratio of the column was restricted to be equal or lower than 30

[11]

• The maximum acceptable probability of flooding was set at 0.5%.  Data from the Aspen plus

simulator was used to derive a correlation for flooding diameter as a function of tray spacing

and the flooding diameter at 24 inches of tray separation:
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• The maximum acceptable frequency of violations of the concentration standard was set at

1%.

• Columns diameters were restricted to the range 2.5 ft to 6 ft

• The number of actual trays was restricted to the range 29 to 71 so that the theoretical number

of trays would be restricted to the range 2 to 10.

Objective function
Designs were selected to maximize expected utility over relative net present cost and

relative environmental impact, using eq (4-8) for the utility function..  The initial base case

design had a heat exchanger area of 3,500 ft2, 50 plates, a column diameter of 4 ft, and 9 inches

of spacing between trays.

Optimization procedure
Stochastic optimization was used to identify the best values for the decision variables.

The genetic algorithm RiskOptimizer for Excel48 was used to solve the following optimization

problem:
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48 Palisade Corporation, www.palisade.com
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RESULTS

Problem P5-1 was solved three times for three different values of the utility function

parameter α: α=0 (relative cost minimization), α=1 (relative environmental impact

minimization), and α=0.1 (compromise between relative cost minimization and relative

environmental impact minimization, giving more weight to the economic criterion).  The results

are summarized in Table 5-5.

Both the heat exchanger area and the tray spacing optimal values are at corner points.

This means that the range of areas used to derive the metamodel was too narrow.  The range

should be expanded in a subsequent iteration.

Table 5-5: Stochastic optimization results for the retrofit example
α=0 α=0.1 α=1

Area (ft2) 5000 5000 5000
Number of trays 36 42 60
Shell diameter (ft) 3.81 3.81 3.65
Tray spacing (in) 9 9 9

Following the recommendation given at the end of section 4.6.3, uncertainty propagation

is performed on the relative performance metrics of the α=0.1 and α=1 designs using the

economically optimum design (α=0) as the base case.  The results are shown in Figure 5-11

(relative cost) and Figure 5-12 (relative environmental impact).  While it is clear that the 60 tray

column will have lower environmental impact than the 36 tray column most of the time, it is also

clear that it will be more expensive.  On the other hand, the 42 tray column has a cost that is

almost indistinguishable from that of the 36 tray column, but its environmental performance is

clearly superior.  Based on these observations, it appears that the expected utility minimization

procedure with α=0.1 was succesful in finding a win-win alternative.

The performance of the design obtained after two iterations of the design cycle is quite

impressive when compared to the original process (i.e. the design used for the example in section

5.4.1). Not only would net present cost decrease, but the uncertainty in net present cost would

decrease as well (Figure 5-13).  With respect to environmental performance, it is uncertain

whether environmental impacts were decreased by a factor of five or by a factor of ten (Figure
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5-14), but it is very clear that a substantial improvement was achieved, despite order of

magnitude uncertainties in the indicators used to measure environmental performance.

0.1 1 10
Relative cost (relative to 36 tray base case design)

60 trays 42 trays

Figure 5-11: Relative NPC distributions for two stripping column designs relative to the
economically optimum design

0.1 1 10
Relative environmental impact (relative to 36-tray base case)

60 trays 42 trays

Figure 5-12: Relative environmental impact distributions for two stripping column designs
relative to the economically optimum design
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Figure 5-13: Probability density plots of discounted cash flow for the original and the retrofitted
solvent recovery processes

0 0.1 0.2 0.3 0.4 0.5

Relative Environmental Impact      
(Optimized Retrofit/Existing Process)

Figure 5-14: Probability density plot for the relative environmental impact of the retrofitted
solvent recovery process relative to the original process
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Chapter 6 Evaluation of the Environmental
Impact of Toxic Releases

6.1 Introduction
The evaluation of the potential environmental impact of toxic releases should be given

high priority within the environmental evaluation of chemical process designs.  A reason for this

is that the chemical industry is responsible (directly or indirectly) for a large fraction of the

releases of toxic chemicals to the environment.  In addition, the public is more concerned about

toxic releases from chemical plants than about other environmental impacts the chemical

industry might cause.

Unfortunately, our knowledge about the potential environmental impacts of chemicals in

the environment is incomplete and imprecise.  Nevertheless, information does exist which can be

used to support efforts to improve the environmental performance of products and processes.

The purpose of this section is to provide designers with tools to assess the potential

environmental impact of toxic chemical releases, recognizing and managing the many

uncertainties involved.

The chapter is organized as follows:

• Section 6.2 introduces the concept of toxicity indicators.  Eight different indicator systems

available for process design are reviewed.  An estimate of the uncertainty in toxicity

indicators is made by examining correlations among the indicator values for chemicals

common to several of the indicator sets.

• Section 6.3 describes the multi-media fate, transport, and human exposure model used in this

dissertation to obtain probability distributions of human toxicity potential (HTP) indicators

for a large number of chemicals.  Special emphasis is placed on the derivation of the

equations used in the exposure component of the model.

• Section 6.4 introduces two new tools for the management of uncertainty in environmental

indicators.  A sensitivity analysis tool is used to identify important parametric and structural

uncertainties in the fate, transport, and exposure model.  The quality of indicator sets is

assessed through an information content graphical tool.
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• Section 6.5 demonstrates the power of the tools introduced in earlier sections by undertaking

an uncertainty analysis of the potential impact of the releases reported in the U.S. Toxics

Release Inventory during the last 10 years.  The case study demonstrates how present

knowledge is sufficient to identify with confidence priorities for action and priorities for

focused research.

6.2 Toxicity indicators

6.2.1 Introduction

Emission inventories typically include dozens of different substances.  In some decision

contexts the emissions inventories are sufficient to identify the option with lower potential

impact.  This can be done when one option has equal or higher emissions of every single

substance in the inventory than another option to which it is being compared.  Unfortunately,

these decision contexts are rare.  More often there are tradeoffs, in which one option has higher

emissions of one substance but lower emissions of another one.  In such cases it is necessary to

summarize the vectors of emissions into a few scalar measures of performance that can be used

to rank alternatives.

There are many types of toxic effects associated with chemicals in the environment.

Many indicators can be developed, depending on which safeguard subjects (e.g. humans, aquatic

organisms, fish-eating predators, etc.) and which endpoints are considered.  Guinée and Heijungs

[1] distinguish two approaches to the development of toxicity indicators: (i) develop separate

indicators for each toxic effect, and (ii) base indicators on the environmental concentration or

exposure dose at which the first observable adverse effect occurs.  Human toxicity indicators are

frequently developed for two types of effects: (a) cancer risk, for which no threshold

concentration or dose is presumed to exist, and (b) non-cancer effects, for which a safe

concentration or dose (the “no effect level”) is assumed to exist.  Indicators for non-cancer

effects are based on the concentration or dose at which the first observable adverse effect occurs.

This implicitly assumes that all observable adverse effects are equally undesirable.

Indicators need to be consistent with the risk assessment paradigm, where risk depends

on both toxicity and exposure.  Literally dozens of different toxicity indicators or scoring

systems have been proposed.  The hierarchy shown in Table 6-1 (based on the work of Jia and
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coworkers [2] and Hertwich and collaborators [3]) is useful for examining how closely a

proposed indicator adheres to the risk assessment paradigm. In order of increasing sophistication,

indicators use (a) toxicity alone, (b) toxicity and persistence, (c) toxicity, persistence, and

environmental mobility, or (d) toxicity and exposure through several exposure pathways.

Bioaccumulation is frequently used as a surrogate for exposure.  Its use assumes that ingestion of

plant and animal products is the predominant exposure route.

Table 6-1: Hierarchy of toxicity indicators, based on the risk assessment paradigm
Aspects Considered Equation Examples
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Notes: Ii,m = toxicity potential indicator of sophistication level i applicable to environmental medium m; Ec,m =
Emission of chemical c to medium m; Qc,k = Toxic potency of chemical c through exposure route k; τc,m =
persistence of chemical c in medium m; Cc,j,m = Predicted concentration of chemical c in medium m as a result of a
unit emission to medium j; Bc = bioaccumulation factor for chemical c; Kc,j,k = predicted exposure to chemical c
through exposure route k resulting from a unit emission to medium j.

Table 6-2 lists features of eight toxicity indicators available in the open literature.  With

the exception of the CMU-ET index [5], all of the indicators in the table include measures of

exposure.  As the table shows, indicator values are available for only a small number of

chemicals.  For comparison, the United States produce or import close to 3,000 chemicals

(excluding polymers and inorganic chemicals) at rates of more than 1 million pounds per year

[11], and there are more than 60,000 chemicals reported to be in commercial use [12].  The

indicators with the largest number of scored chemicals in the table (WMPT, CMU-ET) are also
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the ones that follow the risk assessment paradigm least closely. It is worth noting the effect of

including potential doses in the range of values taken by the indicators.  The CMU-ET index,

which only includes toxicity, has a significantly lower range of indicator values, despite having

the largest number of values of any of the indicator sets.

6.2.2 Uncertainties in toxicity indicators

Most of the sources of environmental indicators do not provide information about the

uncertainty in individual indicator values. Hofstetter [13] provides a squared geometric standard

deviation (σg
2) for each of his cancer indicators (the squared geometric standard deviation is the

number by which the nominal value should be divided and multiplied to generate the 95%

confidence interval for the indicator49).  The value of σg
2

 ranges from 5 to 240.  A similar range

of σg
2

 was calculated for the exposure component of the TEP cancer and non-cancer indicators

[14].  Although these are large uncertainties, they are significantly lower than the dispersion in

nominal indicator values.  The typical squared geometric standard deviation for the set of

indicator values of a system that takes into account exposure and toxicity ranges from 105 to 106.

There are several sources of uncertainty in toxicity indicators.  These include parametric

uncertainties (e.g. toxic potency factors, physical properties of chemicals, environmental

transport parameters), structural uncertainties (e.g. choice of models used to estimate exposure),

and value-judgment uncertainties (e.g. risk level used to estimate acceptable carcinogen dose to

compare cancer and non-cancer impacts on the same scale).

One way to estimate the total amount of uncertainty contained in these indicators is to

examine plots of indicator values obtained from different sources that use similar methods.  For

example, Figure 6-1 shows a plot of Hofstetter cancer indicator values vs. EDF TEP cancer

indicator values for emissions to air of 1 kg of each substance belonging to both indicator sets.

The solid line in the figure is the best fit to the equation

(Hofstetter cancer indicator) = k(EDF TEP indicator) (6-1)

                                                
49 Throughout this work the term uncertainty factor has been used to refer to the square of the geometric standard

deviation.



Table 6-2: Toxicity indicators available in the open literature

Indicator Units
Release
media

Multi-media
model Exposure routes

Toxicity
endpoints

# of
chemicals

# of TRI
chemicals
with 1997
releases Uncertainty Range

TEP Cancer
[15]

kg benzene eq./kg air
water

Cancer risk 129 106 13 orders of
magnitude
σg

2
  ≈ 40,000

TEP
Noncancer
[15]

kg toluene eq./kg air
water

CalTox

air, water, leaf
crops, root crops,
beef, milk, eggs,
fish, soil, dermal

No effect dose 245 211

σg
2
 of exposure

ranges from 5 to
>120 [14]
(uncertainties in
toxicity not
considered)

14 orders of
magnitude
σg

2
  ≈ 100,000

HTP [10] kg 1,4-dichloro benzene
to air eq/kg

air
water
ag soil
ind soil

USES air, water, leaf
crops, root crops,
beef, milk, fish, soil

No effect dose,
1 in 10,000
cancer risk dose

85 67 not considered 17 orders of
magnitude
σg

2
  ≈ 50,000

Cancer
DALYs
[13,16]

Disability-adjusted life-
years lost/kg

air
water

EUSES air, water, leaf
crops, root crops,
beef, milk, fish, soil

Cancer risk 55 47 σg
2
 ranges from

5 to 240; typical
value is 30

10 orders of
magnitude
σg

2
  ≈ 35,000

MPCA
index [17]

dimensionless (score
proportional to risk)

air Mackay air, water, leaf
crops, fish, soil

No effect dose,
1 in 100,000
cancer risk dose

163 116 not considered 18 orders of
magnitude
σg

2
  ≈

1,400,000
EDIP ht
[18]

person-yr/kg
(magnitude of person-yr
allowance based on
Danish political targets for
year 2000)

air
water
soil

Ad-hoc
(persistence
treated
qualitatively)

air, leaf crops, beef,
milk, fish, soil

No effect dose,
1 in 1,000,000
cancer risk dose

93 68 not considered 22 orders of
magnitude
σg

2
  ≈ 300,000

WMPT [9] logarithmic scale with
discrete values from 4 to 9
(1 point difference ~ 100-
fold difference in risk)

any Mackay exposure estimated
as persistence × fish
bioaccumulation
factor

No effect dose,
3 in 1,000
cancer risk dose

368 177 not considered;
minimum σg

2
 of

10-100 due to
discretization;

10 orders of
magnitude
σg

2
  ≈ 48,000

CMU-ET
[5]

kg H2SO4 eq/kg any none exposure is not a
factor

TLV
concentration
(based on
occupational
exposure)

570 208 not considered 7 orders of
magnitude
σg

2
  ≈ 670

Note: There were 493 chemicals or chemical groups with reported releases to air, water or wastewater treatment plants in the 1997 Toxics Release Inventory
(TRI).  Of these, 235 are listed by the EDF as recognized or suspected carcinogens.
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Figure 6-1: Correlation between Hofstetter DALYs and EDF TEP cancer indicators (air
emissions)

The two dashed lines shown are plots of the relations

(Hofstetter cancer indicator) = (k ×UF)(EDF TEP cancer indicator) (6-2)

and

(Hofstetter cancer indicator) = (k ÷ UF)(EDF TEP cancer indicator) (6-3)

where k is an indicator unit conversion constant and UF is the uncertainty factor in the

correlation, given by the equation
2














=

indicator cancer TEP EDF
indicator cancer HofstetterGSDUF (6-4)

where GSD(•) is the geometric standard deviation operator.  For the comparison shown in Figure

6-1, k has a value of 7.5×10-6, while UF takes a value of 280.  This means that one could

estimate a missing value of the Hofstetter cancer indicator for air emissions by multiplying the

corresponding value from the EDF TEP indicator system by 7.5×10-6.  One would expect the

estimated value to be accurate within a factor of 280 (95% confidence interval).  Although the

uncertainty factor is quite large, it is small compared to the 10 order-of-magnitude range of
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indicator values.  Thus there is reasonably good agreement between the two indicator sets with

regard to air emission unit indicators.

The agreement is not as good for the case of unit indicators for discharges to water

(Figure 6-2). In this case, the uncertainty factor takes a value of 4,800 (more than an order of

magnitude higher than in the case of air emissions).  Summaries of uncertainty factors for

correlations among the indicator systems cited in Table 6-2 are shown in Table 6-3 (cancer

indicators), Table 6-4 (non-cancer effects indicators), and Table 6-5 (combined cancer and non-

cancer toxicity indicators). Also shown in the tables are the uncertainty factors for the correlation

between air emissions and water discharges unit indicators within the same indicator system.

The intermedia uncertainty factors are low (ranging from 40 to 230) for those systems that use

multimedia partitioning models to calculate concentrations in exposure media.  The intermedia

uncertainty factor for the EDIP method is quite high (53,000).  This indicates that the semi-

quantitative procedure used to estimate exposures in the EDIP method gives quite different

results than procedures based on rigorous multimedia fate and transport models.
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Figure 6-2: Correlation between Hofstetter DALYs and EDF TEP cancer indicators (water
discharges)
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Table 6-3: Uncertainty factors for cancer indicators based on correlations among indicator
systems

MPCA
(Cancer)

TEP Cancer
(air)

Cancer DALYs
(air)

TEP Cancer
(water)

Cancer DALYs
(water)

MPCA
(Cancer)

1
(N=55)

800
(N=49)

280
(N = 33)

TEP Cancer
(air)

800
(N=49)

1
(N=129)

270
(N=46)

210
(N=121)

Cancer DALYs
(air)

280
(N = 33)

270
(N=46)

1
(N=55)

40
(N=54)

TEP Cancer
(water)

210
(N=121)

1
(N=129)

4,800
(N=45)

Cancer DALYs
(water)

40
(N=54)

4,800
(N=45)

1
(N=55)

Table 6-4: Uncertainty factors for non-cancer indicators based on correlations among indicator
systems

MPCA
(NonCancer)

TEP NonCancer
(air)

HTP
air)

TEP NonCancer
(water)

HTP
(water)

MPCA
(NonCancer)

1
(N=108)

6,700
(N=71)

50,000
(N=20)

TEP NonCancer
(air)

6,700
(N=71)

1
(N=245)

1,800
(N=50)

150
(N=243)

HTP
(air)

50,000
(N=20)

1,800
(N=50)

1
(N=76)

230
(N=76)

TEP NonCancer
(water)

150
(N=243)

1
(N=245)

63,000
(N=50)

HTP
(water)

230
(N=76)

63,000
(N=50)

1
(N=76)

Table 6-5: Uncertainty factors for chronic toxicity indicators (combined cancer and non-cancer)
based on correlations among indicator systems

MPCA
(human)

HTP (air) EDIP ht (air) WMPT
(human)

EDIP ht
(water)

HTP (water)

MPCA
(human)

1
(N=108)

26,000
(N=44)

820,000
(N=38)

80,000
(N=76)

HTP (air) 26,000
(N=44)

1
(N=84)

1,800
(N=36)

9,300
(N=50)

190
(N=84)

EDIP ht (air) 820,000
(N=38)

1,800
(N=36)

1
(N=92)

7,600
(N=28)

53,000
(N=93)

WMPT
(human)

80,000
(N=76)

9,300
(N=50)

7,600
(N=28)

1
(N=368)

34,000
(N=28)

27,000
(N=50)

EDIP ht
(water)

53,000
(N=93)

34,000
(N=28)

1
(N=93)

23,000
(N=36)

HTP (water) 190
(N=84)

27,000
(N=50)

23,000
(N=36)

1
(N=84)

It can be concluded from the uncertainty factor tables that typical uncertainties in cancer

indicators range from 2 to 3 orders of magnitude, while uncertainties for non-cancer effects
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indicators range from 3 to 6 orders of magnitude.  The larger uncertainties associated with non-

cancer effects are most likely due to disagreements in the concentration or dose level considered

to be safe, as well as to disagreements in the first observable effect that is considered adverse.

The EDF TEP and MPCA indicators rely on United States risk assessment databases, while the

HTP and EDIP systems rely on European databases.  Later in the chapter (section 6.3.5)

estimates are shown of the uncertainty in toxicity factors derived from the propagation of

physical property and toxic potency probability distributions through a multimedia fate, transport

and exposure model.
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6.3 Spreadsheet-based model for the generation of toxicity
indicators under uncertainty
This section describes the multi-media fate, transport, and human exposure model used in

this work to obtain indicators of the potential toxic impacts of chemical releases on humans

through chronic exposure.  The information flows in the model are summarized in Figure 6-3.

BCFfish

RCF

BTFbeef

BTFmilk
Air

Water

Sediments

Root-zone soil

Ground soil

Vegetation

Inhalation

Inhalation

Water
ingestion

Water
ingestion

Food
ingestion

Irrigation

Food
ingestion

transpiration

air exchange,
particle

deposition

Modified Mackay-type
level III fugacity model Human exposure model

Figure 6-3: Linkage of emissions to human dose through a combined multimedia fate, transport,
and exposure model

When a chemical substance is emitted to the environment, it will undergo transport and

transformation processes.  As a result of these processes, substance concentrations within the

various environmental compartments will build up until the rate of the degradation processes

becomes equal to the emission rate.  People might be exposed to chemicals in the environment

through a variety of pathways, including the inhalation of ambient air, and the ingestion of water

and various food products.  Depending on the properties of a specific chemical, the terrestrial of

aquatic food chains might act to increase the concentration of the chemical in the fatty tissues of

the organisms placed higher in the food chain.  Once a substance enters an exposed subject

through any of the pathways mentioned above, it might damage one or more target organs.  The

risk posed by a chemical to an organism is then not only a function of the inherent toxicity of the
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chemical, but also of the likelihood that the chemical will be taken in by the target organism

before it is degraded.  There is an enormous range of lifetimes for chemicals in the environment.

Many substances will be quickly decomposed through physical or biological processes, while

others might persist in the environment for many years.

This section is organized as follows: the first subsection describes the model used to link

emissions to environmental concentrations.  With the exception of a few modifications that are

discussed in detail, the model is largely a combination of Mackay’s EQC model [19,20] and the

CalTox model [21].  Tables are used throughout subsection 6.3.1 to provide all the necessary

details of the model structure, equations, and parameter distributions in a concise manner.

Subsection 6.3.2 provides a more detailed derivation of the exposure model.  In the course of this

project it was found that many of the correlations used widely today to estimate concentrations in

food products have the potential to grossly exaggerate human exposure.  A couple of the

equations used by practitioners do not even adhere to mass balance constraints.  This situation is

remedied by the derivation of new correlations that give reasonable fits to the available

experimental data while obeying fundamental physical principles.

Subsection 6.3.3 provides a brief overview of the toxicity endpoints commonly used in

risk assessment and gives the equations used to combine measures of exposure and toxicity into

toxicity indicators.  Minimum data requirements and strategies to handle missing data are

provided in subsection 6.3.4.  The combined fate, transport, and exposure model was applied to a

large data set, propagating uncertainties in model and chemical-specific parameters to generate

uncertainty distributions for the human toxicity indicator of more than 500 chemicals.  A

summary of the results is given in subsection 6.3.5.

6.3.1 Multi-media fate and transport model

The multi-media fate and transport model used in this work is an adaptation of Mackay’s

level III fugacity model [19,20].  The model has been implemented on a Microsoft Excel

spreadsheet so that all the chemical-specific calculations are made in one row of the spreadsheet.

This allows simultaneous processing of thousands of chemicals in the same file.  In addition,

simultaneous calculation of exposure for the complete set of chemicals of interest allows

preservation of correlation structure when propagating uncertainties through Monte Carlo
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sampling.  The spreadsheet structure enables the use of a single set of values for uncertain

parameters common to all the chemicals (e.g. landscape parameters) within each iteration.

MODEL STRUCTURE

The model calculates how a chemical released to air, water or soil partitions among six

compartments: lower atmosphere, surface water, sediments, ground soil, root-zone soil, and

vegetation.  Each compartment is modeled as a combination of two or more pure phases, as

shown in Table 6-6.  Thermodynamic equilibrium is assumed within each compartment.   There

are three differences in compartment structure between the model used in this work and the

standard level III Mackay model:

• The aquatic biota phase is excluded from the surface water compartment, since its presence

does not affect the mass balances even for the chemicals with the highest bioconcentration

factors.

• Mackay’s soil compartment has been split into two compartments, following the example set

in the CalTox multimedia exposure model [21].

• A terrestrial vegetation compartment has been added.  Inclusion of a terrestrial vegetation

compartment in a Mackay-type model has been shown to have potentially significant effects

on air and soil concentrations, depending on chemical properties [22].

Table 6-6: Compartments included in the multi-media fate and transport model
Compartment Phases Notes
Lower atmosphere Air

Aerosol particles
Surface water Water

Suspended particles
Mackay’s formulation includes an aquatic biota phase
within the surface water compartment

Sediments Water
Sediment particles

Ground-surface soil Soil particles
Water
Air

Root-zone soil Soil particles
Water
Air

Mackay’s model includes a single soil compartment

Terrestrial vegetation Tissue lipids
Tissue water
Tissue air
Soil layer

Mackay’s model does not include a terrestrial
vegetation compartment
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Table 6-7 lists the contaminant transport and transformation processes included in the

fate and transport model.  All of the mechanisms included in Mackay’s standard model have

been incorporated to the model described here.  Additional processes are needed to link the root-

zone soil and terrestrial vegetation compartments.  Most of these mechanisms were taken or

adapted from the CalTox model.   The impact of decisions made regarding model structure on

human exposure is examined in detail in section 6.4.1.

The model equations are written in terms of fugacities (unit: Pa), fugacity capacities

(units: mol/m3·Pa) and “D values” (units: mol/Pa·hr).

The fugacity property was defined by G.N. Lewis in 1901 as a convenient tool to define

thermodynamic equilibrium for engineering applications [23].  In ideal gas mixtures the fugacity

of a component is equal to its partial pressure.  In general, the fugacity of a component i in a

mixture, fi, is defined using the chemical potential as

)(ln TfRT iii λµ += (6-5)

where µi is the chemical potential and λi(T) is the chemical potential of the pure component i in

an ideal gas state at temperature T and pressure 1 bar  or 1 atm., depending on the convention

being used.  The fugacity is thus a function of temperature, pressure, and composition.  The

multimedia partitioning model assumes that chemicals are present in the different environmental

media in dilute enough quantities that their fugacities are only a function of temperature and of

the concentration of the chemical of interest.  It is also assumed that at equilibrium (the state at

which the fugacity of a chemical in all compartments is the same), concentrations in the different

compartments can be related through equilibrium constants (independent of composition).

The concentration Ci,j of a chemical i in medium j is related to its fugacity fi,j through the

fugacity capacity Zi,j:

Ci,j = fi,jZi,j (6-6)
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Table 6-7: Chemical transport and transformation processes included in the fate and transport
model

Compartment Gains Losses
Lower atmosphere emissions

diffusion from surface water
diffusion from ground-surface soil
stomatal air exchange with plants*

diffusion from plant leaves*

diffusion to surface water
diffusion to ground-surface soil
washout by rain
particle deposition
stomatal air exchange with plants*

diffusion to plant leaves*

gas-phase degradation
advection

Surface water discharges
diffusion from air
particle deposition from air
washout by rain from air
diffusion from sediments
sediment resuspenstion
soil solution runoff
soil erosion

diffusion to air
diffusion to sediments
sediment deposition
liquid-phase degradation
advection

Sediments diffusion from surface water
sediment deposition

diffusion to surface water
sediment resuspension
degradation
sediment burial

Ground-surface soil releases
diffusion from air
particle deposition from air
washout by rain from air
diffusion from root-zone soil
leaf loss and senescence*

diffusion to air
soil solution runoff
soil erosion
diffusion to root-zone soil
water advection to root-zone soil*

degradation
Root-zone soil diffusion from ground-surface soil

water advection from ground-surface
soil*

phloem flow from plants*

diffusion to ground-surface soil
root-uptake by plants*

degradation*

ground water leaching*

Terrestrial
vegetation

particle deposition from air*

stomatal air exchange*

diffusion from air*

particle deposition from air*

root-uptake from root-zone soil*

stomatal air exchange*

diffusion to air*

leaf loss and senescence (advection of
plant matter to ground-soil) *

phloem flow to root-zone soil*

Note: Processes marked with an asterisk*
 are not part of Mackay’s EQC model.

For the air medium, Zair
50 is obtained from the ideal gas law as Zair = 1/RT.

The model solves a set of 6 simultaneous algebraic equations (one equation per

compartment):

                                                
50 The subscript i for the chemical is dropped from the notation in the rest of this chapter for convenience, since all

equations involve a single chemical species.
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where Ej is the rate of emissions into compartment j (mol/hr), Djk is the D value for transport

from compartment j to compartment k, DA,j is the D value for advective transport from medium j

to areas outside the model domain, and DR,j is the D value for degradation in medium j.  All D

values have units of mol/Pa·hr.  Advective D values for the atmosphere and surface water

compartments may be set to zero (closed model, appropriate for global modeling) or to rates

based on the average residence time of air and water inside the modeling region (open model,

appropriate for regional modeling).  Advective D values are used to account for sediment burial

and groundwater leaching regardless of whether the model is run as an open or closed system.

COMPARTMENT PROPERTIES

The fugacity capacity definitions for all the pure phases in the model are given in Table

6-8.  The bulk fugacity capacity for a compartment is the sum of the fugacity capacity for each

phase in the compartment multiplied by the volume fraction that the phase occupies.  Bulk

fugacity capacities used in this work are shown in Table 6-9.

For substances with negligible vapor pressure the Henry’s law constant might be zero,

which leads to an infinite fugacity capacity for the water phase.  The approach taken by Mackay

and others is to use a different equilibrium criterion as the calculation basis for substances of this

type51.  Defining Zwater as 1.0 for all chemicals with negligible vapor pressure introduces the

aquivalence equilibrium criterion Q, with units of mol/m3, to be used in place of fugacity (this is

equivalent to the use of activities instead of fugacities when dealing with solutions in chemical

engineering). Table 6-10 shows the adjustments made to the Z value expressions in the case of

chemicals with negligible vapor pressure.

                                                
51 Mackay calls chemicals with negliglble Henry’s law constants “Type 2” chemicals, while chemicals modeled with

the fugacity equilibrium criterion are “Type 1” chemicals”.
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Table 6-8: Pure phase fugacity capacity definitions
Phase Z Definition

Air Zair RT
1

Water Zwater H
1

Soil particles Zsp waterDs
sp ZK

000,1
ρ

    (If KDs not available, estimated as KDs = φspKoc)

Sediment particles Zdp waterDd
dp ZK

000,1
ρ

   (If KDd not available, estimated as KDd = φdpKoc)

Suspended particles Zwp waterDw
wp ZK

000,1
ρ

   (If KDw not available, estimated as KDw = φwpKoc)

Aerosol particles Zap airvap
Lq

Z
Pv

c 1









 θ

Vegetation lipids Zpl water
m
owZK

Notes: R = gas constant (8.314 J/mol·K); T = absolute temperature (K), H = Henry’s law constant (Pa·m3/mol); ρi =
solid particle density (kg/m3); KDi = solids-water partition coefficient (L/kg); φi = mass fraction of organic carbon in
phase i (g/g); Koc = organic carbon partition coefficient (if not available estimated as log Koc = log Kow − b +
N(0,0.36)); cθ = constant in aerosol particle fugacity model (Pa); vq = volume fraction aerosol particles in air
(m3/m3); PL

vap = vapor pressure of liquid (Pa): for solids PL
vap is estimated as PL

vap = Pvapexp{6.79(1-Tm/T)}, where
Pvap is the solid vapor pressure (Pa), and Tm is the melting point (K); Kow is the octanol-water partition coefficient
(dimensionless); m = constant in the vegetation lipids fugacity model.

Table 6-9: Bulk compartment fugacity capacity definitions
Compartment Z Definition
Lower atmosphere Za (1– vq)Zair + vqZap
Surface water Zw (1– vwp,w)Zwater + vwp,wZwp
Sediments Zd (1– vdp,d)Zwater + vdp,dZdp
Ground soil Zg va,gZair + vw,gZwater + (1– va,g – vw,g)Zsp
Root zone soil Zrz va,rzZair + vw,rzZwater + (1– va,rz – vw,rz)Zsp
Ground vegetation Zp va,pZair + vw,pZwater + vL,pZpl + vsp,pZsp
Notes: vi,j is the volume fraction of pure phase i in compartment j; all other terms are defined in Table 6-8.



                                6.3.Spreadsheet-based model for the generation of toxicity indicators under uncertainty         239

Table 6-10: Adjustments to Z values required for chemicals with negligible vapor pressure.
Phase or compartment Z Adjustments to definitions for type II chemicals
Water Zwater 1
Air Zair H
Aerosol particles Zap Kqw (if Kqw not available, estimated as Kqw = Zsp)

Terrestrial vegetation Zp sppspwater
p

metals

metals ZvZ
TSCF
SCF

,000,1
+

ρ
  (only for metals)

 Notes: Kqw: aerosol-water partition coefficient (m3/m3); SCF = stem concentration factor (kg fresh mass/L), TSCF =
transpiration stream concentration factor; all other terms defined in Table 6-8 or Table 6-9.

The expressions for computing the advection and degradation D values are given in Table

6-11 and Table 6-12, respectively. Note that pure phase Z values are used for the lower

atmosphere and surface water degradation D value definitions, while bulk phase Z values are

used for the sediments, ground soil, and root zone soil compartments.

Table 6-11:  Advection D value definitions
Compartment DA Definition
Lower atmosphere DA,a GairZa
Surface water DA,w GwaterZw
Sediments DA,d UburialAwZd
Ground soil n/a
Root zone soil DA,rz UrechargeAgZwater
Vegetation n/a
Notes:  Gi = Advective flow out of medium i (m3/hr); Uburial = sediment burial rate (m3/m2·h); Aw = Horizontal area
of the model domain occupied by water (m2); Ag = Horizontal area of the domain occupied by land (m2); Urecharge =
ground water recharge rate (m3/m2·h).

Table 6-12 : Degradation D value definitions
Compartment DR Definition
Lower atmosphere DR,a kaVaZair
Surface water DR,w kwVwZwater
Sediments DR,d kdVdZd
Ground soil DR,g ksVgZg
Root zone soil DR,rz ksVrzZrz
Vegetation DR,p Neglected
Notes:  ki = first order degradation decay constant in medium i (hr-1); ki is related to the degradation half life ti
through ki=ln(2)/ti.
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INTERMEDIA TRANSPORT EQUATIONS

Table 6-13 lists the expressions used to calculate the intermedia transport D values used

in the model. The definitions for the mass transfer coefficients in Table 6-13 (the U values) are

given in Table 6-14. Most of the equations were taken from Mackay’s EQC model or from the

CalTox model. The exceptions are discussed in the following paragraphs.

Table 6-13: Intermedia transport D value definitions
From To Mechanism D Expression Source
Lower
atmosphere

Surface
water

Diffusion Daw,dif

waterair

w

ZUZU

A

21

11 +

Mackay

Lower
atmosphere

Surface
water

Rain
dissolution

Daw,r







a

rain

a
waterw Z

t
h

ZUA ,min 3

This work

Lower
atmosphere

Surface
water

Particle
deposition

Daw,dep [ ] apqqg ZvUQUA +3
Mackay

Lower
atmosphere

Surface
water

All Daw Daw,diff + Daw,r + Daw,dep Mackay

Surface
water

Lower
atmosphere

Diffusion Dwa Daw,diff Mackay

Lower
atmosphere

Ground-
surface soil

Diffusion Dag,dif

airwaterair

g

ZUZUZU

A

765

11 +
+

Mackay

Lower
atmosphere

Ground-
surface soil

Rain
dissolution

Dag,r







a

rain

a
waterg Z

t
hZUA ,min 3

This work

Lower
atmosphere

Ground-
surface soil

Particle
deposition

Dag,dep AgU23Zap This work

Lower
atmosphere

Ground-
surface soil

All Dag Dag,dif + Dag,r + Dag,dep Mackay

Ground-
surface soil

Lower
atmosphere

Diffusion Dga Dag,dif Mackay

Surface
water

Sediments Diffusion Dwd,dif AwU8Zwater Mackay

Surface
water

Sediments Deposition Dwd,dep AwU9Zwp Mackay

Surface
water

Sediments All Dwd Dwd,dif + Dwd,dep Mackay

Sediments Surface
water

Resuspension Ddw,res AwU10Zdp Mackay

Sediments Surface
water

All Ddw Dwd,diff + Ddw,res Mackay

Ground-
surface soil

Surface
water

Soil water
runoff

Dgw,run AgU11Zwater Mackay

Ground-
surface soil

Surface
water

Erosion Dgw,e AgU12Zsp Mackay
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From To Mechanism D Expression Source
Ground-
surface soil

Surface
water

All Dgw Dgw,run + Dgw,e Mackay

Ground-
surface soil

Root-zone
soil

Diffusion Dg rz,dif

waterairwaterair

g

ZUZUZUZU

A

141365

11
+

+
+

CalTox

Ground-
surface soil

Root-zone
soil

Water
advection

Dg rz,adv AgU15Zwater CalTox

Ground-
surface soil

Root-zone
soil

All Dg rz Dg rz,dif + Dg rz,adv CalTox

Root-zone
soil

Ground-
surface soil

Diffusion Drz g Dg rz,diff CalTox

Root-zone
soil

Terrestrial
vegetation

Root uptake Drz p AgU16ZwaterTSCF This work

Terrestrial
vegetation

Root-zone
soil

Phloem flow Dp rz AgU17Zphl CalTox

Terrestrial
vegetation

Ground soil Leaf loss and
senescence

Dpg AgU18Zp CalTox

Lower
atmosphere

Terrestrial
vegetation

Particle
deposition

Dap,dep AgU19Zap CalTox

Lower
atmosphere

Terrestrial
vegetation

Stomatal air
exchange

Dap,stom Ag LAI U20Zair CalTox

Lower
atmosphere

Terrestrial
vegetation

Diffusion Dap,diff

airwaterair

g

ZUZUZU

LAIA

72221

11 +
+

× CalTox

Lower
atmosphere

Terrestrial
vegetation

All Dap Dap,dep + Dap,stom + Dap,dif CalTox

Terrestrial
vegetation

Lower
atmosphere

All Dpa Dap,stom + Dap,dif This work

Notes: Ui = Mass transport coefficient (m/hr), defined in Table 6-14; ha = height of the lower atmosphere
compartment (m); train = average duration of interval between rainfall events (hr); Zphl = fugacity capacity of phloem
liquid = fw,phlZwater, where fw,phl is the volume fraction of water in the phloem liquid; LAI = leaf area index (m2

leaves/m2 ground).
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Table 6-14: Mass transfer coefficient definitions
U Description Expression Source of

Expression
U1 Air side,  air-water MTC (m/hr) Model parameter
U2 Water side, air-water MTC (m/hr) Model parameter
U3 Rain rate (m3/m2·hr) Model parameter
U4 Aerosol wet and dry deposition (U3Q + Uq)vq Mackay
U5 Ground-soil:air phase diffusion MTC DAg,eff/(hg/2)

where
DAg,eff = va,g

10/3/(va,g+vw,g)2]DA

Mackay

CalTox
U6 Ground soil:water phase diffusion MTC DWg,eff/(hg/2)

where
DWg,eff = vw,g

10/3/(va,g+vw,g)2]DW

Mackay

CalTox
U7 Air side, air-ground MTC DA/δag CalTox
U8 Sediment-water MTC

( ) effWddWwd DdD ,2/
1

+δ
where
DWd,eff = vw,d

4/3DW

CalTox

U9 Sediment deposition (m3/m2·hr) Model parameter
U10 Sediment resuspension fresuspU9 Mackay
U11 Soil-water runoff frunoffU3 Mackay
U12 Soil-solids runoff (erosion rate) U11vss,runoff Mackay
U13 Root zone-soil:air phase diffusion MTC DArz,eff/(hrz/2)

where
DArz,eff = va,rz

10/3/(va,rz+vw,rz)2]DA

Mackay

CalTox
U14 Root zone soil:water phase diffusion MTC DWrz,eff/(hg/2)

where
DWrz,eff = vw,rz

10/3/(va,rz+vw,rz)2]DW

Mackay

CalTox
U15 Recharge rate frechargeU3 CalTox
U16 Transpiration rate (U3-U11-U15) × min(1.0,0.43m2/kg × bioinv) This work

U17 Phloem flow rate fphlU16 CalTox
U18 Leaf loss and senescence dp/τp CalTox
U19 Aerosol deposition on plants Uqfintvq CalTox
U20 Stomata conductance (DA/Dwv-A)Uwv-stom CalTox
U21 Plant soil layer:air phase diffusion MTC DAg,eff/(δslyr/2) CalTox
U22 Plant soil layer:water phase diffusion MTC DWg,eff/(δslyr/2) CalTox
U23 Aerosol deposition on ground soil (U3Q + (1-fint)Uq)vq This work
Notes:  Q = particle scavenging ratio by rain (m3/m3); Uq = Aerosol dry deposition velocity (m/hr); DAi,eff = effective
diffusion coefficient in air phase of compartment i (m2/hr); hi = depth or compartment i (m); DA = diffusion
coefficient in air (m2/hr); DWi,eff = effective diffusion coefficient in water phase of compartment i (m2/hr);
DW = diffusion coefficient in water (m2/hr); δij = thickness of boundary layer between compartments i and j (m);
fresusp = ratio of sediment resuspension rate to sediment deposition rate (dimensionless); frunoff = ratio of runoff to
precipitation (dimensionless); vss,runoff = volume fraction of suspended solids in runoff water (m3/m3);
bioinv= terrestrial vegetation dry mass inventory (kg/m2); fphl = ratio of phloem flow to transpiration rate
(dimensionless); τp = effective lifetime of above-ground biomass (hrs); fint = fraction of particles deposited over land
area by dry deposition intercepted by plants (dimensionless);  Dwv-A = diffusion coefficient for water vapor in air
(m2/h); Uwv-stom = conductance of water vapor through stomata (m/hr); δslyr = thickness of soil layer on plant surfaces
(m).
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Rain dissolution
The equations for transport from air to water or soil by rain dissolution used in Mackay’s

model are:

Daw,r= U3AwZwater (6-8)

and

Dag,r = U3AgZwater (6-9)

These equations in effect assume that rain takes place continuously.  For compounds with

low Henry’s law constants the resulting persistence in air can be much less than an hour (for

sulfuric acid, the model calculates a persistence of about 20 seconds, which is obviously too

low).  The solution adopted here is to set a ceiling on the rain dissolution transfer rate based on

the frequency of rain events.  The values of Drw,max and Drs,max are calculated by setting the

minimum residence time due to rain dissolution to be equal to the average interval between rain

events (train):

w
rain

a

gw

w

rain

aair
raw A

t
h

AA
A

t
ZV

D =
+

=(max), (6-10)

and

g
rain

a

gw

g

rain

aair
rag A

t
h

AA
A

t
ZVD =

+
=(max), (6-11)

The rain dissolution transport equations used are then:







= a

rain

a
waterwraw Z

t
h

ZUAD ,min 3, (6-12)

and







= a

rain

a
watergrag Z

t
h

ZUAD ,min 3, (6-13)

as shown in Table 6-13.

A comparison between the two cases is shown in Figure 6-4, where the atmospheric

persistence of emissions to air of the substances listed in the United States toxic release

inventory (TRI) [24] is calculated according to both methods.  Assuming continuous rain can

lead to gross underestimates of atmospheric persistence for substances with very low Henry’s

law constants (an extreme example is phosphoric acid, for which the difference between the two
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approaches is seven orders of magnitude).  A similar observation was made by Hertwich in his

doctoral dissertation with respect to the rain dissolution and wet deposition equations in the

CalTox model [14]. The approach taken by Hertwich was to remove rain from the model. Figure

6-5 compares the approach used in this work to that taken by Hertwich.  For a handful of

substances in the TRI neglecting the rain dissolution mechanism leads to a moderate

overestimation of persistence in air.
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Figure 6-4: Comparison between the continuous and intermittent rain approaches to estimating
rain dissolution transport rates (persistence of emissions of TRI substances to air).
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Figure 6-5: Sensitivity of the fate and transport model to the exclusion of the rain dissolution
mechanism (persistence of emissions of TRI substances to air).

Particle deposition
Particles deposit through two mechanisms: dry deposition and scavenging by rain.  For

deposition to surface water, the particle deposition mass transfer coefficient is given by:

U4 = (U3Q + Uq)vq (6-14)

For deposition to land there are two types of surfaces available for deposition (ground-

surface soil and terrestrial vegetation), and the combined particle deposition mass transfer

coefficient should be allocated between the two.  It is assumed that particles scavenged by rain

do not adhere to plants and are deposited directly to ground soil.  For particles deposited from air

by dry deposition an interception factor (fint) is used, calculated according to the equation used in

the CalTox model:

fint = 1 – exp(−2.8 m2/kg × bioinv) (6-15)

Under these assumptions, the mass transfer coefficients for particle deposition to ground-

surface soil and terrestrial vegetation are given, respectively, by:

U23 = (U3Q + (1−fint)Uq)vq (6-16)
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and

U19 = Uqfintvq (6-17)

with the sum of U23 and U19 being equal to U4.

Root uptake
In the CalTox model, the transfer of contaminants from root-zone soil to plants through

root uptake (transpiration) is estimated as

Drz p = AgUtranspireZwater (6-18)

where Utranspire is calculated as a fraction of the balance between rain (U3), runoff (U11) and

groundwater recharge (U15):

Utranspire = (U3 – U11 – U15)ftranspire (6-19)

where ftranspire is the fraction of the evapotranspiration water flux from soil that is due to

transpiration.  CalTox models ftranspire as a function of the vegetation density:

ftranspire = 0.43 m2/kg × bioinv (6-20)

Two modifications were made to the CalTox equations.  First, ftranspire is constrained to be

less or equal than 1.0:

U16 = (U3 – U11 – U15) × min(1.0, 0.43 m2/kg × bioinv) (6-21)

The second modification made is to adjust the flux in eq (6-18) to take into account the

transpiration stream concentration factor (TSCF):

Drz p = AgUtranspireZwaterTSCF (6-22)

The TSCF is defined as the ratio of the concentration of a chemical in the transpiration stream to

that in soil water, and is dependent upon lipophilicity (see section 6.3.2 for details)

Atmosphere-vegetation exchange
The transfer of chemicals from air to plants is the sum of three contributions: stomatal

gas exchange, diffusion through leaves, and particle deposition:

Fluxap = Dapfa = (Dap,stom + Dap,dif + Dap,dep)fa (6-23)

The CalTox model sets Dpa = Dap.  This assumes that the rate of particle deposition on to

leaf surfaces is balanced by the removal of these particles by wind.  If further assumes that

particles achieve thermodynamic equilibrium with leaves before their removal.  This assumption

is dropped here, and particle resuspension from leaves is neglected.  This leads to
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Fluxpa = Dpafa = (Dap,stom + Dap,dif)fp (6-24)

SOLUTION METHOD

Chemical fugacities in each of the six environmental compartments in the model are

found by solving the following system of equations:

Ea − DT,afa + Dwafw + Dgafg + Dpafp = 0 (6-25)

Ew + Dawfa − DT,wfw + Dgwfg + Ddwfd = 0 (6-26)

Eg + Dagfa − DT,gfg + Drz gfrz + Dpgfp = 0 (6-27)

+ Dg rzfg − DT,rzfrz + Dp rzfp = 0 (6-28)

+ Dwdfw − DT,dfd = 0 (6-29)

+ Dapfa + Drz pfrz − DT,pfp = 0 (6-30)

where the DT,i terms are the total losses from compartment i, including reaction, advection and

transfer to other compartments, as shown in eqs (6-31) to (6-36) below:

DT,a =    Daw + Dag + Dap + DR,a + DA,a (6-31)

DT,w = Dwa + Dwd + DR,w + DA,w (6-32)

DT,g = Dga + Dgw + Dg rz + DR,g (6-33)

DT,rz =    Drz g + Drz p + DR,rz + DA,rz (6-34)

DT,d =    Ddw + DR,d + DA,d (6-35)

DT,p = Dpa + Dpg + Dp rz (6-36)

The solution to the system of equations (6-25) to (6-30) is given by:

( )

( )( )p rzap
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rz grzT

rz g
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DaaaD
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D
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453
,

5,

3332
, (6-37)

rzg fabf 53 += (6-38)

rzga fafabf 432 ++= (6-39)

gaw fafabf 211 ++= (6-40)

w
wT

wd
d f

D
D

f
,

= (6-41)
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PARAMETRIC UNCERTAINTIES

The tables in this chapter contain the parameter distributions used in the implementation

of the multimedia fate and transport model.  Lognormal distributions have been used for all of

the parameters.  In this work, lognormal distributions are characterized by two parameters: the

central value52 (X(50)), and the uncertainty factor (UF). The lognormal density function is related

to these two parameters by:

( )


























−
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π
(6-54)

The 95% confidence interval for a random variable described by a lognormal distribution

with parameters X(50) and UF is the given by (X(50)÷UF, MLV(50)×UF)53.  The moments of the

lognormal distribution are given by:

( )
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and

( ) ( ) 
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= 1lnexplnexp

222
)50( UFUFXVariance (6-56)

The UF is also equal to the geometric standard deviation squared (σg
2).  Finally, the UF is

related to the coefficient of variation, CV, by

( ){ }( )221lnexp CVUF += (6-57)

where CV is defined as the ratio of the standard deviation to the mean of the distribution.  The

CalTox model uses the mean value and the CV to parametrize lognormal distributions [25,26].

Although mathematically equivalent, the (X(50), UF) parametrization is preferred to the (mean

value, CV) parametrization, since the former can easily be translated into confidence intervals.

X(50) and UF values presented in the tables in this section that list the CalTox model as their

                                                
52 The central value is defined as the median of the distribution.  The median is also the 50th percentile value,

meaning that 50% of the values in the distribution will be below this value.
53 The shorthand notation x ~ LogN(a,b) is used throughout this thesis to describe random variables that are

lognormally distributed with parameters X(50)=a and UF=b.
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source were obtained by applying eqs (6-55) and (6-57) to the parameters used by the CalTox

model.

Equations for parameters used in Table 6-8 through Table 6-14 that are calculated as a

function of other parameters are also shown in the tables below.

Table 6-15:  Distributions for the parameters describing the lower atmosphere compartment

Symbol Parameter Name Central value
Source of

central value
Uncertainty

factor
Source of

UF
A Model domain area 10×1012

 m2 This work n/a calculation
basis

ha Atmospheric mixing height 1000 m [20] 2.45 This worka

Uwind Yearly average wind speed 1.44 m/s [25] 3.4 [25]
train Interval between rain events 72 hrs This work

(subjective)
2.0 This work

(subjective)
vq Volume fraction of aerosols in

atmosphere
10×10-11 [20] 3.2 [25]

T Annual mean temperature 288 K [27] 1.05 This work
(subjective)

cθ aerosol fugacity correlation
constant

3.57×1010 (vq)0.4 estimated from
data in [27]

Va Air compartment volume A·ha [20]
ta Air compartment advection

residence timeb

windU
A

×23.0

[27]

Ga Advective flow out of air
compartment

a

a

t
V [20]

a) An UF of 60.5 was chosen so that the maximum value of ha (arbitrarily defined as the 0.99997 fractile of the
lognormal distribution) would not exceed 6000 m (the global average value).

b) Used when the model is run as an open system.  If the model is run as a closed system ta = ∞.
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Table 6-16: Distributions for the parameters describing the surface water compartment

Symbol Parameter Name Central value

Source of
central
value

Uncertainty
factor

Source of
UF

fwater Fraction of landscape surface
occupied by surface water

0.10 [20] 2.65 This worka

hw Surface water mixed depth 20 m [20] 2.24 This workb

ρwater Water density 1000 kg/m3 [20] − Well known
parameter

twater Advective residence timec 1000 hrs [20]
vwp,w Volume fraction of suspended

sediments in surface water
5×10-6 [20] 5.3 [25]

φwp Organic carbon content of suspended
sediment particles

20% by volume [20] 1.1 This workd

ρwp Suspended sediment particle density 1500 kg/m3 [20] 1.1 [25]
Aw Area occupied by surface water A·fwater [20]
Vw Surface water compartment volume Aw·hw [20]
Gw Advective flow out of surface water

compartment
w

w

t
V [20]

a) An UF of 70.5 was chosen so that the maximum value of fwater (arbitrarily defined as the 0.99997 fractile of the
lognormal distribution) would not exceed 70% (the global average value).

b) An UF of 50.5 was chosen so that the maximum value of hw (arbitrarily defined as the 0.99997 fractile of the
lognormal distribution) would not exceed 100 m (the global average value for the oceans).

c) Used when the model is run as an open system.  If the model is run as a closed system = ∞.
d) An UF of (1.2)0.5 was chosen so that the maximum value of φwp (arbitrarily defined as the 0.99997 fractile of the

lognormal distribution) would not exceed 25% (the maximum value cited by Mackay).



252         CHAPTER 6. EVALUATION OF THE ENVIRONMENTAL IMPACT OF TOXIC RELEASES                                        

Table 6-17: Distributions for the parameters describing the soil compartments

Symbol Parameter Name Central value

Source of
central
value

Uncertainty
factor

Source of
UF

hg Ground surface soil depth 0.007 m [25] 5.29 [25]
hrz Root-zone soil depth 0.80 m [25] 2.53 [25]
φsp Organic carbon content of soil particles 2.0% by volume [20] 2.0 This worka

ρsp Soil particle density 2400 kg/m3 [20] 1.1 [25]
va,g Volume fraction of air in ground

surface soil
0.24 [25] 1.6 [25]

vw,g Volume fraction of water in ground
surface soil

0.13 [25] 1.8 [25]

va,rz Volume fraction of air in root-zone soil 0.21 [25] 1.8 [25]
vw,rz Volume fraction of water in root-zone

soil
0.12 [25] 1.8 [25]

b Contant in the organic carbon
partitioning model

0.35 This work,
based on
data in
[20,27]

1.05 This work,
based on
data in
[20,27]

Ag Area occupied by soil Ag·(1-fwater) [20]
Vg Volume of the ground surface soil

compartment
Ag·hg [27]

Vrz Volume of the root-zone soil
compartment

Ag·hrz [27]

a) An UF of (4)0.5 was chosen so that the maximum value of foc (arbitrarily defined as the 0.99997 fractile of the
lognormal distribution) would not exceed 8% (the maximum value cited by Mackay).

Table 6-18: Distributions for the parameters describing the sediments compartment

Symbol Parameter Name Central value

Source of
central
value

Uncertainty
factor

Source of
UF

hd Depth of sediments 0.05 m [20] 5.3 [25]
φdp Organic carbon content of sediment

particles
4.0% by volume [20] 2.5 This worka

ρdp Sediment particle density 2400 kg/m3 [20] 1.1 [25]
vs,d Volume fraction of solids in sediments 0.2 [20] 2.0 This workb

Vd Volume of the sediments compartment Aw·hd [20]
a) An UF of (0.25/0.04)0.5 was chosen so that the maximum value of φdp (arbitrarily defined as the 0.99997 fractile

of the lognormal distribution) would not exceed 25% (the maximum value cited by Mackay)
b) An UF of (4)0.5 was chosen so that the maximum value of vs,d (arbitrarily defined as the 0.99997 fractile of the

lognormal distribution) would not exceed 80% (the maximum value cited by Mackay).



                                6.3.Spreadsheet-based model for the generation of toxicity indicators under uncertainty         253

Table 6-19: Distributions for the parameters describing the terrestrial vegetation compartment

Symbol Parameter Name Central value

Source of
central
value

Uncertainty
factor Source of UF

hp Equivalent depth of terrestrial
vegetation compartment

0.01 m [28] 5.6 [25]

fdm Terrestrial vegetation dry matter
fraction

20%, by weight [25] 2.2 [25]

fabove Fraction of terrestrial vegetation
dry mass above ground

0.50 [29] − not assessed

ρp Terrestrial vegetation fresh mass
density

810 kg/m3 [25] 1.5 [25]

va,p Volume fraction of air in
terrestrial vegetation tissues

0.20 Table 6-29 − uncertainty in
UF_Kpa

dominates
vw,p Volume fraction of water in

terrestrial vegetation tissues
0.64 Table 6-29 − uncertainty in

UF_Kpa
dominates

vL,p Volume fraction of lipids in
terrestrial vegetation tissues

0.012 Table 6-29 − uncertainty in
UF_Kpa

dominates
m Exponent of Kow in the equation

Zpl = Kow
mZwater

0.89 Table 6-29 1.13 Table 6-29

UF_Kpa Uncertainty factor associated
with the leaf-air partition
coefficient correlationa

100 [30] n/a

δslyr Thickness of soil layer on
vegetation surfaces

5×10-6
 m [29] − not assessed

fw,phl Volume fraction of water in
phloem sap

0.90 [26] − not assessed

τp Effective lifetime of above-
ground biomass tissues

4320 hrs [29] − not assessed

SCFmetals Default stem concentration
factor for metals

120 L/kg fresh
plant

[18] − not assessed

Vp Volume of terrestrial vegetation
compartment

Ag·hp [28]

bioinv Terrestrial vegetation dry mass
inventory

above

dmppd
f

fρ [26]

LAI Leaf area index
invkg

m bio26.5 [26]

vsp,v Volume fraction of soil particles
on vegetation surfaces

p

gslyr

V
ALAI ×δ This work

TSCFmetals Default transpiration stream
concentration factor for metals

TSCFmax This work
(assumed)

a) In the spreadsheet model, a correction factor modeled as LogN(1,100) is used to account for the uncertainty in
the estimation of vegetation-air partition coefficients.
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Table 6-20: Distributions for the parameters used to calculate transport rates

Symbol Parameter Name Central value
Source of

central value
Uncertainty

factor Source of UF
U1 Air side,  air-water MTC 5 m/hr [20] − not assessed
U2 Water side, air-water MTC 0.022 m/hr This work,

based on data
in [20,27]

1.5 This work,
based on data

in [20,27]
U3 Rain rate 0.474 m/yr [20] 2.8 [25]
U9 Sediment deposition rate 5×10-7

 m3/m2/hr [20] 3.0 This work
(subjective)

Q Aerosol rain scavenging
ratio

2×105 [20] 10

Uq Aerosol dry deposition
velocity

10 m/h [20] 8.8 [25]

DA Diffusion coefficient in air 0.02 m2/hr [20] 3.2 This work,
based on data

in [27]
DW Diffusion coefficient in

water
2×10-6 m2/hr [20] 3.2 This work,

based on data
in [27]

δag Thickness of air-soil
boundary layer

0.005 m [25] 1.49 [25]

δwd Thickness of water-
sediments boundary layer

0.02 m [20] − not assessed

fresusp ratio of sediment
resuspension rate to
sediment deposition rate

0.40 [28] 1.25 This work,
based on data

in [28]
frunoff ratio of runoff to

precipitation rates
0.50 [20] 1.37 [25]

frecharge ratio of ground water
recharge to precipitation
rates

0.006 [27] 2.0 This work
(subjective)

fphl ratio of phloem flow to
transpiration rate

0.1 [29] − not assessed

Dwv-A diffusion coefficient for
water vapor in air

0.086 m2/hr [29] − not assessed

Uwv-stom conductance of water
vapor through stomata

376 m/day [29] − not assessed

vss,runoff Runoff solids volume
fraction

2×10-4 [20] 2.0 This work
(subjective)
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6.3.2 Human exposure model

The exposure model links modeled environmental concentrations to human exposure.

Two intake routes are considered: ingestion and inhalation.  A third route (dermal exposure) is

included in the CalTox model, but not used here.  Sensitivity analysis carried out on a large set of

chemicals (see Section 6.4.1) showed that this route had a negligible contribution to total human

exposure for emissions to air and water.  It was therefore omitted from the final model.  The total

human exposure is the sum of the product of exposure media contact rates (Ri) times exposure

media concentrations (Ci):

∑=
i

iiCRExposure (6-58)

EXPOSURE PATHWAYS AND EXPOSURE MEDIA CONTACT RATES

There are 9 exposure media in the model: air, bathroom air, tap water, fish, aboveground

crops, root crops, beef, milk, and eggs.  Concentrations and contact rates with these media are

used to derive indicators of human exposure via the inhalation and oral routes.  These indicators

are given by:

( ) AE
CRCR

Dose
j

airairair bathair bath
inh ∑

+
= (6-59)

and

( ) AE
CRCRCRCRCRCRCR

Dose
j

eggseggsbeefbeefmilkmilkfishfishcrops rootcrops rootLcrops leaf watertap watertap
oral ∑

++++++
= (6-60)

where the doses calculated by the model are normalized by the ratio of emissions to landscape

area.  The final dose indicators have therefore units of [(mg/kg/day)/(kg/km2/day)].

The expressions used to calculate the exposure media contact rates (the Ri in eqs (6-59)

and (6-60)) are listed in Table 6-21. Table 6-22 shows the distributions for the parameters in the

exposure media contact rate expressions used.  The model estimates exposure media

concentrations on the basis of environmental media concentrations calculated by the fate and

transport model. The estimation of five auxiliary quantities is also required: concentrations in

irrigated ground surface and root-zone soils, and daily intakes by dairy cattle, beef cattle, and
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hens. There are a total of 35 exposure pathways linking environmental media concentrations to

human intake. These pathways are summarized in Table 6-23.

Table 6-21: Exposure media contact rate expressions
Exposure medium Type of contact Contact rate expression Contact rate units
Bathroom air inhalation ETbath×BRactive m3/kg/day

Air inhalation ETresting×BRresting

    + (24-ETbath-ETresting) ×BRactive
m3/kg/day

Tap water ingestion IRtap water m3/kg/day
Aboveground crops ingestion IRgrain + IRf/vfabove kg/kg/day
Root crops ingestion IRf/v(1-fabove) kg/kg/day
Fish ingestion IRfish kg/kg/day
Milk ingestion IRmilk kg/kg/day
Beef ingestion IRbeef kg/kg/day
Eggs ingestion IReggs kg/kg/day

Table 6-22: Distributions for the parameters in the exposure media contact rate expressions

Symbol Parameter name Central value
Uncertainty
factor

ETbath Exposure time in shower or bath 0.23 hrs/day 3
BRactive Active breathing rate 0.0182 m3/kg/hr 1.8
BRresting Resting breathing rate 0.0063 m3/kg/hr 1.5
ETresting Exposure time, resting 8 hrs/day 1.1
IRtap water Tap water ingestion rate 0.022 L/kg/day 1.5
IRgrain Grain ingestion rate 0.0036  kg/kg/day 1.5
IRf/v Fruits and vegetables ingestion rate 0.0048  kg/kg/day 1.5
fabove Fraction of ingested fruit and vegetables

that are aboveground crops
0.47 1.2

IRfish Fish ingestion rate 0.00027 kg/kg/day 2.2
IRmilk Milk ingestion rate 0.0064   kg/kg/day 1.5
IRbeef Beef ingestion rate 0.0029   kg/kg/day 1.5
IReggs Eggs ingestion rate 0.00044 kg/kg/day 1.8
Note: Parameter values and uncertainty factors taken from [26].
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Table 6-23: Exposure pathways in the exposure model
Environ-
mental

medium Intermediate pathway steps
Exposure
medium Intake Route

→ Inhalation
→ Aboveground

crops
→ Ingestion

→ Inhalation by dairy cattle → Milk → Ingestion
→ Inhalation by beef cattle → Beef → Ingestion

Air
(gas and
aerosols)

→ Inhalation by hens → Eggs → Ingestion
→ Aboveground

crops
→ Ingestion

→ Ingestion by dairy cattle → Milk → Ingestion
→ Ingestion by beef cattle → Beef → Ingestion
→ Ingestion by hens → Eggs → Ingestion
→ Ingestion by dairy cattle → Milk → Ingestion
→ Ingestion by beef cattle → Beef → Ingestion

Ground
soil

→ Above-
ground
crops → Ingestion by hens → Eggs → Ingestion

→ Root crops → Ingestion
→ Aboveground

crops
→ Ingestion

→ Ingestion by dairy cattle → Milk → Ingestion
→ Ingestion by beef cattle → Beef → Ingestion

Root zone
soil → Above-

ground
crops → Ingestion by hens → Eggs → Ingestion

→ Tap water → IngestionSurface
water

(dissolved
phase)

→ Bathroom air → Inhalation
(while
showering)

→ Fish → Ingestion
→ Ingestion by dairy cattle → Milk → Ingestion
→ Ingestion by beef cattle → Beef → Ingestion
→ Ingestion by hens → Eggs → Ingestion

→ Aboveground
crops

→ Ingestion

→ Ingestion by dairy cattle → Milk → Ingestion
→ Ingestion by beef cattle → Beef → Ingestion
→ Ingestion by hens → Eggs → Ingestion
→ Ingestion by dairy cattle → Milk → Ingestion
→ Ingestion by beef cattle → Beef → Ingestion

→ Irrigated
ground
soil

→ Above-
ground
crops → Ingestion by hens → Eggs → Ingestion

→ Root crops → Ingestion
→ Aboveground

crops
→ Ingestion

→ Ingestion by dairy cattle → Milk → Ingestion
→ Ingestion by beef cattle → Beef → Ingestion

Surface
water

(dissolved
and

suspended
particle
phases)

→ Irrigated
root-
zone
soil

→ Above-
ground
crops → Ingestion by hens → Eggs → Ingestion
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The rest of this subsection is organized as follows: the equations used to compute

environmental media concentrations are given first.  This is followed by a description of the

equations used to estimate chemical concentrations in irrigated soil.  Crop concentration models

are discussed next, starting with models for the estimation of concentrations in above-ground

plant parts, followed by a discussion of the models used to estimate concentrations in roots.  The

equation and parameters used to estimate intake of chemicals by farm animals is given after the

section on concentrations in crops.  Animal bioaccumulation models are discussed next, starting

with the well known fish bioconcentration models and proceeding to biotransfer models for the

estimation of concentrations in beef, milk, and eggs.  New correlations are proposed to overcome

a major flaw in models currently in use, namely that they do not obey mass balance constraints

and might have animals excreting chemicals in amounts larger than they take in.  The subsection

closes with the expressions used to estimate chemical concentrations in tap water and bathroom

air.

ENVIRONMENTAL MEDIA CONCENTRATIONS

Concentrations of chemicals in environmental media are derived directly from the

fugacities calculated by the multimedia fate and transport model.  The symbols, units, and

expressions for the environmental media concentrations used in the exposure model are listed in

Table 6-24.

Table 6-24: Environmental media concentrations used in the human exposure model
Medium Phase Symbol Concentration

Units
Equation

vapor
v
aC mg/(m3 air) ( )kg

mg
aair fZ 610×

air
particles

part
aC mg/(m3 air) ( )kg

mg
aapq fZv 610×

ground
surface
soil

bulk Cgs mg/(kg dry soil) ( )kg
mg

sp

irrg
water

ss

sw
sp

f
Z

v
v

Z 6)(

,

, 10×





+

ρ

root zone soil pore water Csw mg/(L water) ( ) ( )L
m

kg
mg

irrrzwater fZ 336
)( 1010 −××

liquid
l
wC mg/(L water) ( ) ( )L

m
kg
mg

wwater fZ 336 1010 −××
surface water suspended

particles
ss
wC mg/(L water) ( ) ( )L

m
kg
mg

wwpws fZv 336
, 1010 −××

Note: fg(irr) and frz(irr) are the fugacities of irrigated ground surface soil and irrigated root-zone soil, respectively.
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CONCENTRATIONS OF CHEMICALS IN IRRIGATED SOIL

Concentrations in irrigated soil are estimated using the fugacities calculated by the fate

and transport model.  The following equations are used:

( ) 




 +
++++

++++
=

3

3
)(

U
UU

DDDDD

fZAUfDfDfDE
f

irr
infrz, ggwdiffrz, ggaRg

wwgirrppgrzg rzaagg
irrg (6-61)
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infrz, gdiffrz, gprz p

irrrz (6-62)

where Uirr is the irrigation rate, in units of m3/m2·hr, and fg(irr) and frz(irr) are the fugacities in

irrigated ground surface soil and irrigated root zone soil, respectively (the rest of the symbols are

defined in section 6.3.1).  When there is no irrigation (Uirr = 0), fg(irr) and frz(irr) become equal to fg

and frz, respectively.  A value of Uirr equal to 0.876 m3/m2·hr is used.

This approach is very different from the one used in the CalTox model.  In CalTox, soil

water concentrations are estimated by adding the soil water concentration calculated by the fate

and transport model to the product of the surface water concentration and an arbitrary factor

called “fraction of chemical concentration in irrigation water retained in soil water”, which is

assumed to be equal for all chemicals (the default value is firr = 0.25).  This procedure leads to

the following equations for irrigated soil fugacities:

wirrgirrg fff f)( += (6-63)

and

wirrrzirrrz fff f)( += (6-64)

The results of the two approaches are compared in Figure 6-6 for the case of water

releases of the compounds in the toxic release inventory.  The CalTox approach results in much

higher irrigated soil concentrations for volatile compounds and for compounds with very large

soil-water partition coefficients.
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Figure 6-6: Comparison between two methods of estimating irrigated soil concentrations (1000
kg/hr discharges to water of TRI chemicals into a 10 million km2 landscape)

CONCENTRATION OF CHEMICALS IN ABOVEGROUND CROPS

Three types of models are presented here: (i) bioconcentration in plant leaves of

chemicals taken up from air, (ii) bioconcentration in plant leaves and stems of chemicals taken

up from soil, and (iii) models combining the previous two mechanisms plus aerosol deposition

and rain splash.  The first two types of models are discussed because they contain building

blocks for the third model.  The section shows that for many chemicals it is necessary to take

into account the kinetics of chemical uptake.  Commonly used thermodynamic equilibrium

models can lead to gross overestimation (many orders of magnitude) of chemical concentrations

in plants.
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Plant leaves-air bioconcentration model
The most common approach to model the bioconcentration of organic compounds in

above ground vegetation is to assume that plant leaves are in thermodynamic equilibrium with

the surrounding air [17,31]:

( )



 +++== owGWCCWA
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A
AL

D

A
airdryleaves KvKvv

H
RTvKBCF ///)( ρ
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ρ
ρ

(6-65)

where BCFleaves(dry)/air is the plant leaves-air bioconcentration factor in (mg/kg dry mass)/(mg/kg

air), ρA is the density of air (kg/m3), ρD is the dry weight content per volume of fresh leaves

(kg/m3), KL/A
 is the leaf-air partition coefficient (dimensionless), vi are volume fractions in the

leaf (with the subscripts A, W, C, G corresponding to air, water, cuticle, and glycerol lipids,

respectively), and KC/W is the cuticle-water partition coefficient (dimensionless).    

The last two terms in eq (6-65) may be grouped into a single term that depends on Kow:
m
owpLowGWCC KvKvKv ,/ ≈+ (6-66)

where vL,p is the volume fraction of lipids in the plant and m is a correction factor for differences

between plant lipids and octanol [32].

Substitution of eq (6-66) into eq (6-65) yields

( )



 ++== m
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RTvKBCF ,//)( ρ

ρ
ρ
ρ

(6-67)

Table 6-25 summarizes values of vA,vW, vL,p, and m found in the literature.

Table 6-25: Pure phase volume fractions in plant leaves
Reference vA vW vL,p m
Riederer [31] 0.30 0.645 0.007 1
Hope [33] 0.40 0.40 0.01 1
Paterson [34] 0.19 0.70 0.05 1
Trapp and Matthies [32] 0.80 0.02 0.75-0.97
Paterson [35] 0.24 0.727 0.03 1

It has been noted that for large values of the product (RT/H)Kow, the time needed to reach

equilibrium may exceed the life of the leaf [34], and thus it can be expected that eq (6-67) would

tend to overestimate contaminant concentration in plants when the kinetics of uptake are

comparable to the kinetics for leaf growth.



262         CHAPTER 6. EVALUATION OF THE ENVIRONMENTAL IMPACT OF TOXIC RELEASES                                        

Above-ground plant parts-soil bioconcentration models
Two models are widely used for the plant-soil bioconcentration factor.  The first model is

the Travis and Arms correlation [36]:

( ) 58.0
/)( 7.38 −= owsoildryplant KBCF (6-68)

where BCFplant(dry)/soil has units of (mg/kg dry plant)/(mg/kg dry soil).

The bioconcentration factor may be expressed in units of (mg/kg fresh plant)/(mg/kg dry

soil) by multiplying by the plant dry matter fraction, fDM (with units of kg dry plant/kg fresh

plant):

soildryplantDMsoilfreshplant BCFfBCF /)(/)( = (6-69)

McKone assumes fDM = 0.20 to yield [33]:

( ) 58.0
/)( 7.7 −= owsoilfreshplant KBCF (6-70)

The second widely used model is the stem concentration factor model proposed by

Briggs et al. [37]:

TSCFKSCF xylemstem /= (6-71)

where SCF is the stem concentration factor [(mg/kg fresh plant)/(mg/L soil solution)], Kstem/xylem

is the stem-xylem stream partition coefficient [(mg/kg fresh plant)/(mg/L transpired water)], and

TSCF is the transpiration stream concentration factor [in units of (mg/L transpired water)/(mg/L

soil solution)].  Kstem/xylem is related to Kow by:

( )( )m
owpLpw

plant
xylemstem KvvK ,,/

1 +=
ρ (6-72)

The TSCF is modeled using a Gaussian curve:

[ ]baKTSCFTSCF ow /)(logexp 2
max −−= (6-73)

Table 6-26 summarizes parameter values found in the literature for equations (6-69)–(6-73).
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Table 6-26: Plant-soil bioconcentration factor model parameters
Reference vw,p vL,p m TSCFmax a b fDM
Briggs et al. [37] 0.82 0.0089 0.95 0.784 1.78 2.44
Hsu et al. [38] 0.7 3.07 2.78
Table 6-25 0.4-0.8 0.007-0.5 0.75-1.00
McKone [33] 0.20
Optimized, with data
from [36-39]

0.64 0.012 0.89 0.9* 1.78* 4.83 0.28

* Parameter value at lower allowed bound

The two models are compared in Figure 6-7 and Figure 6-8 below.  Bioconcentration

factors expressed in terms of the concentration in dry soil can be converted to bioconcentration

factors expressed in terms of the concentration in soil solution using the soil-water distribution

coefficient (KD), with units of (mg/kg soil particles)/(mg/L water):

owocD KK 41.0f ×= (6-74)

where foc is the organic carbon weight fraction of the soil.  CalTox uses a value of 0.3% for foc,

while Mackay uses a value of 2%.  The two bioconcentration factors are related by:

soilfreshplant
spss

sw
Dsoilfreshplant

water soil

soil BCF
v

v
KBCF

C
CSCF /)(

,

,
/)( 










+==

ρ
(6-75)

where vw,s is the volume fraction of water in soil, vs,s is the volume fraction of solid particles in

soil, and ρsp is the solid particle density (kg/L).  Typical values are vw,s = 0.3, vs,s = 0.5, and

ρsp=2.65 kg/L.
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The Travis and Arms correlation fits the data of Travis and Arms better than the Briggs et

al. model with either the constants of Briggs et al. or those of Hsu et al.  On the other hand, there

is a very poor fit between the Travis and Arms correlation to the data of Briggs et al. at low

values of Kow.  Estimating a new set of constants for the model of Briggs et al. yields acceptable

agreement with all the experimental data, as shown in Figure 6-9, Figure 6-10, and Figure 6-11.
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Figure 6-9: Relationship between the transpiration stream concentration factor and the octanol-
water partition coefficient
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Models combining several uptake mechanisms
In the CalTox model, the concentration of organic chemicals in above-ground plant parts

is the sum of four contributions:

a) leaf-air exchange

b) aerosol deposition

c) uptake from soil through roots

d) rain splash

The expression used in CalTox is:

gs
rain
psrsps

part
a

part
pa

v
a

v
paplants CKCKCKCKC +++= (6-76)

where Cplants is the concentration in plants (mg/kg fresh mass), Crs is the concentration in root

soil (mg/kg dry soil), Kps is given by BCFplant(fresh)/soil in eq (6-70), and Kps
rain is a constant

independent of chemical properties.  The first two transfer coefficients have the following

definitions:

AL
F

v
pa KK /

1
ρ

= (6-77)

wsplants

deppart
pa kM

v
K = (6-78)

where ρF is the plant fresh mass density, vdep is the particle deposition velocity (m/d), Mplants is

the average inventory of plants per unit area (kg fresh mass/m2), kws is a first order rate constant

for the removal of chemicals from vegetation surfaces as a result of weathering and senescence

(day-1).

By analogy with eq (6-78), Kps
rain  may be written as:

wsplants

splash
soilrain

ps kM
FK = (6-79)

where Fsoil
splash is the flux of splashed soil to plants, given in units of (kg dry soil/m2/day).

Examination of the above expressions shows that while the rain splash and particle

deposition mechanisms take plant growth into account, the air-leaf exchange mechanism

assumes thermodynamic equilibrium, and thus may lead to an overestimation of contaminant

concentrations in plants.
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Trapp and Matthies proposed a model that combines uptake from soil and air with growth

dilution and metabolism [32]:

( ) ( )
( )

ge
AL

LLT

v
aLLTswL

F
L

kk
K

VAg
CVAgCTSCFVQC

++

+⋅=

/

/
//1

ρ (6-80)

where CL is the concentration in plant leaves (mg/kg fresh weight), (Q/VL) is the ratio of

transpiration (m3/day) to leaf volume (m3), Csw is the contaminant concentration in soil water

(mg/m3), gT is the leaf overall air-exchange conductance (m/day), (AL/VL) is the ratio of leaf area

(m2) to leaf volume (equal to the inverse of one half of the leaf average thickness, in m),  ke is a

first-order elimination decay constant (1/day), and kg is a first order plant growth constant

(1/day).  Possible decay mechanisms include metabolism and photodegradation.  For the case of

negligible soil uptake and air-exchange kinetics that are much faster than degradation and plant

growth, eq (6-80) reduces to:

F

v
aAL

L
CKC

ρ
/= (6-81)

which is the expression used in the CalTox model for the air (vapor phase) contribution to

contaminant concentration in plants.

Typical values for the constants in eq (6-80) are given in Table 6-27.

Table 6-27: Literature values for the parameters in the Trapp and Matthies aerial plant parts
bioaccumulation model
Parameter Value References

0.8 – 1.8 day-1 [32]Q/VL
4.6 – 13 day-1 [35]
850 – 2500 m-1 [32]
670 m-1 [31]

AL/VL

2800 m-1 [35]
0.05 day-1 [32]
0.024 day-1 [35]

kg

0.01 – 0.10 day-1 [40]
715 kg/m3 [31]
500 kg/m3 [32]

ρF

890 kg/m3 [34]
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Values of gT and ke are properties specific to each chemical substance.  The overall

conductance can be written as the sum of a boundary layer resistance in series with two

resistances in parallel: a cuticle resistance and a resistance for uptake through the stomata:

SCblairT gggg +
+= 111

,
(6-82)

The cuticle resistance is the product of the cuticle mass transfer coefficient times the

cuticle-air partition coefficient, which is proportional to the octanol-air partition coefficient, as

discussed at the beginning of this section.  Thus, gT can be related to KO/A through the expression:

SAOCmblairT gKkgg +
+=

/,,

111
(6-83)

Table 6-28 summarizes parameter values found in the literature.

Table 6-28: Literature values for the parameters in the leaf conductance model
Parameter Value References

0.0003 [35]
0.01× (18/MW)0.5 [31]
0.005 [32]

gair,bl (m/s)

0.003 (assuming V/L = 1000 m-1) [34]
0.001× (18/MW)0.5 [31]gS (m/s)
0.0001 – 0.001 [32]

km,C (m/s) 1.1×10-10 (assuming V/L = 1000 m-1) [34]

The fitted model shown in Figure 6-12 has the following parameter values: gS = 0.0001

m/s, gair,bl = 0.005 m/s, km,C = 1.3×10-11 m/s; the confidence interval was generated by

multiplying the values predicted by eq (6-83) by a lognormal distribution with central value 1

and an uncertainty factor of 3.2.

A derivation similar to the one used by Trapp and Matthies is used in the following

paragraphs to derive a plant bioconcentration model that incorporates the four mechanisms used

in the CalTox model.  The main advantage of the model proposed here is that it avoids

unrealistic overestimation of bioconcentration for chemicals with large values of KO/A.
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Figure 6-12: Relationship between leaf air conductance and the octanol-air partition coefficient

The mass balance in the aboveground parts of the plant is given by:

change of chemical mass in aerial plant parts =

                          gaseous flux from/to air (NA) + flux from soil via xylem (NXy)

           – flux to soil via phloem (NPh) + flux from particle deposition (Ndep)

                       + flux from rain splash (Nrain) – decay (RE)

(6-84)

Expressed in mathematical terms, the mass balance becomes:
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(6-85)

where CL
tissue is the contaminant concentration in plant tissue (mg/kg fresh plant), CL

dep is the

amount of contaminant deposited on plant surfaces (mg/kg fresh plant), QXy is the upward flow

of xylem sap (m3/day), QPh is the downward flow of phloem sap (m3/day), Kstem/phloem is the plant-

phloem sap partition coefficient (L/kg fresh plant), LAI is the leaf-area index (m2 leaves/m2

ground surface), and the other terms have been defined previously.

Assuming constant leaf density, the left-hand side of eq (6-85) may be expanded as
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(6-86)

During the vegetative phase, the growth can be approximated by an exponential function

[32], with a first order growth constant kg:

Lg
L Vk

dt
dV = (6-87)

Substitution into eq (6-85) yields
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The leaf concentration (CL) is the sum of the concentration in plant tissue (CL
tissue) and the

contribution from solid deposits on plant surfaces (CL
dep).  Assuming that deposits do not interact

with plant tissue, eq (6-88) can be separated into
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and
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At steady state,
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and
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where he product LAI(VL/AL)ρL is equal to the plant fresh mass inventory per unit area (Mplants)

used in eqs (6-78) and (6-78).   In the case where leaf-air exchange kinetics dominate over all

other processes, eq (6-91) reduces to eq (6-81).  Similarly, for the case where movement of

chemicals by transpiration is the fastest process, eq (6-91) reduces to the Briggs model (eq (6-

71)), provided that the product Kstem/phloem(QPh/QXy) is equal to Kstem/xylem.

The final form of the above-ground crops bioconcentration model used in this work is
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The list of parameter values for eq (6-88) is shown in Table 6-29.

Table 6-29: Parameter values used in the above-ground crops bioconcentration model
Parameter Values Reference
AL/VL 1400 m-1, σg

2 = 2.0 Table 6-27
gT Eq (6-83) with the following parameter values:

gair,bl = 0.005 m/s
km,C = 1.3×10-11 m/s
gs = 0.0001 m/s
σg

2 = 3.2
QXy/VL 3 d-1, σg

2 = 4.0 Table 6-27
TCSF Eq (6-73) with the following parameter values:

TSCFmax=0.9
a = 1.78
b = 4.83

Table 6-26

vdep 190 m/d, σg
2 = 9.0 [20,40]

Fsoil
splash 0.0003 kg soil/m2/day [33]

Mplants 3 kg(fresh mass)/m2, σg
2 = 3.0 [40]

kg 0.035 d-1, σg
2 = 3.0 Table 6-27

ke
tissue, ke

dep 0
ρL 814 kg/m3, σg

2 = 1.5
KL/A Eq (6-68) with the following parameter values:

vA = 0.20
vW = 0.64
vO = 0.012

Kstem/xylem Eq (6-72) with the following parameter values:
ρL = 814 kg/m3, σg

2 = 1.5
vw,p = 0.64
vL,p = 0.012
m = 0.89, σg

2 = 1.13

Table 6-26
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The impact of using eq (6-76) vs. using eq (6-96) on the estimation of human exposure to

TRI chemicals emitted to air is shown in Figure 6-1354.  Clearly, using an equilibrium model

instead of a kinetic model to estimate concentrations in plant tissues can lead to very large

overestimation errors for some chemicals.
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Figure 6-13: Comparison between two methods for estimating chemical concentrations in
above-ground crops

CONCENTRATION IN ROOT CROPS

The concentration of a chemical in root crops is calculated using the equation

                                                
54 Emissions to air of 1000 kg/hr of each chemical into a 100,000 km2 landscape were used for the dose-based

comparisons in this section.
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swcrops root CRCFC ×= (6-94)

where Croot crops has units of mg/(kg fresh root), and RCF is the roots-soil solution

bioconcentration factor, with units of (mg/kg root)/(mg/L soil solution).

There are two widely used root-soil bioconcentration models for organic chemicals. The

one used in CalTox is based on the vegetation bioconcentration model of Travis and Arms (eq

(6-70)).  McKone multiplies the coefficient in eq (6-70) by a factor of 35 to extrapolate from

above-ground plant parts to roots [26,33]:

( ) 58.0
/ 270 −= owsoilroots KBCF (6-95)

where BCFroots/soil is the roots-dry soil bioconcentration factor, with units of (mg/kg root)/(mg/kg

dry soil).

This model can be converted from a dry-soil basis to a soil-water basis by use of the soil-

water distribution coefficient:
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The Uniform System for the Evaluation of Substances [41] uses the model of Briggs et al. [39]:
77.003.082.0 owKRCF += (6-97)

Figure 6-14 shows a comparison between the two RCF models.  The analogous chart for

BCFroots / soil is shown in Figure 6-15. Since KD is estimated as a function of the organic carbon

fraction (foc), the basis conversion factor shown in equation (6-96) is a function of foc.  The two

curves shown on each figure span the organic carbon fraction range of 0.3% to 2%.  Given the

close agreement between the available experimental data and Briggs model, this is the model

incorporated into the exposure model used in this work.

A RCF of 120 (L/kg roots) is used as a default for metals and metal compounds [18].
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Figure 6-14: Root-soil water bioconcentration models.
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Figure 6-15: Root-dry soil bioconcentration models.
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FARM ANIMAL INTAKE DOSES

The farm animal exposure model is similar to the one used by CalTox [21].  Farm

animals are assumed to be exposed to chemicals in the environment through four intake routes:

inhalation of air (vapor and particles), ingestion of water, ingestion of feed (aboveground crops),

and ingestion of soil. The equation used is:

( ) ( )( ) gssoilLfeedgww
ss
w

l
ww

part
a

v
a CICICCICCInhIntake ++−+++= _f1 (6-98)

where Intakei is the daily intake of a chemical by a farm animal (beef cattle, dairy cattle, or hens)

with units of mg/day, Inh is the animal inhalation rate (m3/day), Iw is the water ingestion rate

(L/day), Ifeed is the animal feed ingestion rate (kg/day), Isoil is the soil ingestion rate (kg/day), CL

is the concentration in aboveground crops (mg/kg), and fw-gw is the fraction of water needs

supplied by groundwater.  The distributions for the inhalation and ingestion parameters used in

this work are listed in Table 6-30.  The distribution used for fw-gw is lognormal with central value

0.80 and σg
2 = 1.2 [26].

Table 6-30: Farm animal exposure media contact rates
Parameter (Units) Dairy cattle Beef cattle Hens
Inh (m3/day) 117; σg

2 = 1.8 same as dairy cattle 2.11; σg
2 = 1.8

Iw (L/day) 34; σg
2 = 1.5 same as dairy cattle 0.084; σg

2 = 1.2
Ifeed (kg/day) 83; σg

2 = 1.5 56; σg
2 = 2.2 0.120; σg

2 = 1.1
Isoil (kg/day) 0.33; σg

2 = 3.5 same as dairy cattle 9.2×10-6; σg
2 = 5.3

Note: Parameter distributions were obtained from [26]. The table shows the central value and the squared geometric
standard deviation of lognormal distributions.

FISH BIOCONCENTRATION MODELS

The most widely used [1,17,26,41-45] fish bioconcentration model is one proposed by

Mackay [46]:

log BCF = log Kow – 1.32; n = 44, r2 = 0.95; se = 0.25 (6-99)

where BCF is the ratio of the volumetric concentration of an organic chemical in fish to that in

water.  Mackay’s model was derived from a data set with a minimum log Kow of 1.35 and a

maximum log Kow of 6.0.

Experimental data shows that for chemicals with log Kow greater than 6, the fish

bioconcentration factor tends to level off or decrease, rather than increase [47].  For example,
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Figure 6-16 shows data retrieved from the Syracuse Research Corporation ISIS BCF file by the

U.S. Environmental Protection Agency [48].  The data clearly indicates that Mackay’s model

should not be used beyond the range of log Kow values used to derive it.   It has been shown that,

even in the absence of metabolic transformation, the bioconcentration factor depends only on

partitioning between fish lipids and water if the rate of elimination of chemicals from the fish

through fecal excretion is small compared to the rate of transport of chemicals across the gills

[49].  Assuming transport across the gills depends on diffusion across an aqueous and a lipid

layer in series, it can be shown that for sufficiently high values of Kow, transport across the

aqueous layer will become the rate limiting process, leading to a leveling off or even a decrease

in BCF at the high end of the Kow scale.
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Figure 6-16: Comparison of fish bioconcentration factor correlations with experimental data

Among three alternative models designed to account for the decrease in BCF at high log

Kow values [50-52], the one developed by Bintein et al. [52] was judged to be of superior predictive

ability when the models were tested against a database of BCF values recorded for 227

chemicals [53]:
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logBCF = 0.91 logKow – 1.975 log(Kow/1.47×106 + 1) – 0.786;

                                                              n=154, r = 0.95, se=0.347
(6-100)

A recent paper [54] describes a fish BCF estimation method based on statistical analysis

of 694 chemicals.  For nonionic compounds, the BCF is estimated according to the following

relation:

( )( );5.0,4.14log37.1,70.0log77.0minmaxlog    FK  FKBCF iowiow ∑ ∑++−+−=

n = 610, r2= 0.73, se=0.67
(6-101)

where Fi are correction factors derived from a compound’s chemical structure.  Meylan and

coworkers found that eq (6-101) gave a better agreement between predicted and observed values

than eq (6-100) when applied to the full data set of 610 compounds.

The following equation is used in the spreadsheet exposure model when experimental

BCF values are not available55:

( )( ) )67.0,0(5.0,4.14log37.1,70.0log77.0minmaxlog N   K  KBCF owow ++−−= (6-102)

Eqs (6-100) and (6-102) are also shown in Figure 6-16.  Note that for some compounds

measured BCF are significantly lower than those predicted by eq (6-102).  This is most likely

due to metabolism.  Biotransformation acts to decrease the equilibrium level of a labile chemical

relative to that of a persistent chemical with the same hydrophobicity [55].  In the absence of

information regarding biotransformation rates, the predictions of eq (6-102) may be considered

estimates of the upper limit of the BCF.

MILK BIOTRANSFER MODELS

The most widely used [1,26,40,41,56] milk bioconcentration model is the biotransfer

factor model of Travis and Arms [36]:

log BTFm = –8.10 + log Kow; n = 28, r2 = 0.55, se = 0.80 (6-103)

The milk biotransfer factor (BTFm) is defined as the ratio of the contaminant

concentration in milk (Cm, in mg/kg) to the lactating cow’s daily contaminant intake (Intakelc, in

mg/day).   This model has been criticized both for the high spread of the measured factors around

                                                
55 The notation N(a,b) is used throughout this thesis to represent a normally distributed random variable with mean

value a and standard deviation b.
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the predicted value [57,58], and for the fact that it predicts biotransfer factors for compounds

with log Kow values above 6.5 that would have the cow excreting more contaminant that it

ingests [58].

A maximum value of BTFm can be calculated on the basis that the amount of contaminant

excreted in the milk must be less or equal to the amount taken in by the cow:

QmCm ≤ Intakelc (6-104)

where Qm is the daily milk production rate (in kg/day).  Use of the definition BTFm = Cm/Intakelc

yields:

m
m Q

BTF 1≤ (6-105)

A typical value of Qm is 17 kg/day [59].  Thus the maximum value of log BTFm may be estimated

as –log(17) = –1.2.

McLachlan developed a model of the fractional absorption of contaminants in lactating

cows [58], based on data for persistent hydrophobic contaminants:

ow
lcabs K8, 10785.2283.1

1f −×+
= (6-106)

Combining the absorption model with the mass balance constraint gives:

m

lcabs
m Q

BTF ,f
= (6-107)

This model predicts a constant milk biotransfer factor for log Kow values lower than about 6.  For

compounds at the high end of the hydrophobicity scale, the model predicts milk biotransfer

factors to be inversely proportional to Kow.

Based on eq (6-107), McLachlan argues that the milk biotransfer factor should be

independent of Kow over a broad range.  This is, however, inconsistent with the experimental data

shown in Figure 6-17 [36,57,60].  Fractional absorption sets only an upper limit on the

biotransfer factor to milk.  The fate of absorbed contaminants includes excretion with milk,

excretion with urine, storage in fat tissue, and metabolic degradation.  It is very likely that the

ratio of the fraction of absorbed contaminant excreted with milk to the fraction of absorbed

contaminant excreted with urine is proportional to Kow.  This would explain why the data appears

to indicate an upper limit for BTFm that increases with Kow for log Kow values lower than 6.  The
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spread of the data below the maximum limit would be explained by metabolic degradation,

which can not be predicted on the basis of log Kow alone.  Dowdy et al. have developed a model

that predicts BTFm based on the molecular connectivity index [57] with functional group

correction factors for polar compounds.  The standard error of the model they propose is lower

than that for models based on Kow.    They believe their model is better able to account for

variations in metabolism.  It must be noted, however, that their model also violates the mass

balance constraint for sufficiently large molecules.
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Figure 6-17: Comparison of milk biotransfer factor models with experimental data

A new model for BTFm valid for compounds with negligible metabolic degradation in the

cow is proposed here.  The model can be used in risk assessment as a valid upper bound in the

absence of experimental BTFm values:

( )mabsowm Q  KBTF logflog,6logminlog −−= (6-108)
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where fabs is calculated according to eq (6-106).  The model is shown in Figure 6-17.  The

uncertainty in the correlation is modeled using a uniform distribution for the intercept in eq (6-

108):

( )mabsowm Q   KBTF loglogf),2.10,0.6U(logminlog −−= (6-109)

For metals, a default value of –4.0 is used for logBTFm when experimental values are not

available.

BEEF BIOTRANSFER MODELS

As with the case of milk biotransfer models, the most widely used beef biotransfer model

is the one proposed by Travis and Arms [36]:

log BTFb = –7.6 + log Kow; n = 36, r2 = 0.65, se = 0.97 (6-110)

The beef biotransfer factor (BTFb) is defined as the ratio of a contaminant concentration

in beef (Cb mg/kg) to the beef cow’s daily intake (Intakebc, in mg/day).  Assuming a constant

exposure to contaminants throughout the life of the cow, a maximum value for BTFb can be

calculated using the mass balance constraint:

CbMb ≤ IntakebcTbc (6-111)

where Mb is the mass of beef obtained from the cow (kg), and Tbc is the average age at which

beef cattle are sacrificed.  Substituting eq (6-111) into the definition of BTFb yields:

b

bc
b M

TBTF ≤ (6-112)

The ratio Mb/Tbc can be estimated from livestock inventory and beef production statistics

as 0.33 kg/day.  Thus an upper limit for log BTFb is –log (0.33) = 0.48, which is clearly an

overestimate, since chemicals stored in beef fat would also be stored in other fat tissue.  The

Travis and Arms correlation violates even this conservative upper limit for values of log Kow

higher than about 8.1 (Figure 6-18).
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Figure 6-18: Comparison of beef biotransfer correlations with experimental data

McLachlan recommends dividing the total amount of contaminant absorbed during the

life of a cow by its weight to estimate concentrations in the meat of nonlactating cattle.  For

nonlactating cattle, the absorption factor is given by

ow
bcabs K8, 10785.2200.1

1f −×+
= (6-113)

Combining the absorption model with the mass balance constraint gives:

b

bcbcabs
b M

T
BTF ,f

= (6-114)

There is a stronger correlation between BTFb and BTFm than between either of BTFb or

BTFb with log Kow, as can be seen in Figure 6-19.  A geometric mean regression of the data

shown in the figure [36,57,61,62] yields



                                6.3.Spreadsheet-based model for the generation of toxicity indicators under uncertainty         283

log BTFb = (1.16±0.05)log BTFm + 1.14±0.20; n = 50, r = 0.94 (6-115)

Constraining the slope in eq (6-115) to be 1.0 yields

)500,0N(590loglog . . BTF  BTF mb ++= (6-116)

The use of equation (6-116) in risk assessment is recommended to estimate an upper limit

for log BTFb, where BTFm is either measured or estimated according to eq (6-108).

-6

-5

-4

-3

-2

-1

0

-6 -5 -4 -3 -2 -1

log BTFmilk

Travis and Arms data set

Dowdy et al. data set

Stevens data set (metals)

geometric regression

regression with slope 1

95% confidence interval
around regression with
slope 1

Figure 6-19: Correlation between beef and milk biotransfer factors

EGG BIOTRANSFER MODEL

There is no widely used model for the biotransfer of contaminants to chicken eggs.  A

model is derived here using the biotransfer model for milk and data for the fat/diet

bioaccumulation factor in cows and poultry [60].

Figure 6-20 shows a plot of BAFpoultry vs. BAFcow.  Both factors are given in units of

(mg/kg animal fat)/(mg/kg dry feed).  Geometric mean regression yields:
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logBAFpoultry = (0.93±0.10)logBAFcow + 0.82±0.21; n = 20, r=0.89 (6-117)

Since a slope of 1.0 is included in the confidence interval, a linear relationship between

BAFpoultry and BAFcow may be assumed.  Constraining the slope in eq (6-117) to be 1.0 and

refitting the data yields

logBAFpoultry = logBAFcow + 0.75 +N(0, 0.55) (6-118)
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Figure 6-20: Correlation between poultry and cattle fat-diet bioaccumulation factors

The poultry fat/diet bioaccumulation factor is related to the eggs biotransfer factor

through the relation

poultry
hfeed

e

feedhfeed

efate

h

e
e BAF

QCQ
C

Intake
CBTF

,,

, ff
=== (6-119)

where Ce is the concentration of contaminant in eggs (mg/kg), Intakeh is the egg-laying hen daily

contaminant intake rate (mg/day), fe is the weight fraction of fat in eggs, Cfat,e is the contaminant

concentration in egg fat (mg/kg), Qfeed,h is the food ingestion rate of hens (kg dry feed/day),  and

Cfeed is the contaminant concentration in the feed (mg/kg dry feed).
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Similarly, the milk biotransfer factor may be related to the cattle fat/diet bioaccumulation

factor through the relation

m
m

lcfeed

lcfeedlc

mm

feed

mfat
cow BTF

Q
QIntake

C
C
C

BAF
f

f ,

,

, === (6-120)

where Cfat,m is the contaminant concentration in milk fat, fm is the weight fraction of fat in milk,

and Qfeed,lc is the food ingestion rate of lactating cows (kg dry feed/day).

Combining equations (6-119) and (6-120) gives the following relationship between BTFm

and BTFe:

m
cow

poultry

hfeed

lcfeed

m

e
e BTF

BAF
BAF

Q
Q

BTF
,

,

f
f= (6-121)

Typical values for the fat contents and feed rates above are: fe = 11% [63], fm = 3.7% [36,64],

Qfeed,h = 0.100 kg/day [65], and Qfeed,lc = 16 kg/day [36,57].

Substituting these values and eq (6-118) into eq (6-121) yields:

)55.0,0N(4.3loglog  BTFBTF me ++= (6-122)

The mass balance constraint for biotransfer to eggs is given by:

hee IntakeCQ ≤ (6-123)

or

ee QBTF loglog −≤ (6-124)

where Qe is the daily egg production rate (kg/day) for a single hen.  A typical value of Qe = 0.040

kg/day is obtained by multiplying an annual egg production rate of 256 eggs/365 days [66] by an

average egg weight of 0.058 kg [63].  As shown in Figure 6-21, eq (6-122) may violate the mass

balance constraint.

The use of the following model, combining eqs (6-122) and (6-124), is recommended:

( )eme Q  BTFBTF log),55.0,0N(4.3logminlog −++= (6-125)

where BTFm is either measured or estimated using eq (6-108).   The model is compared to

experimental data in Figure 6-21.  BAFpoultry values in the data set published by Garten and

Trabalka [60] were converted to BTFe values using eq (6-119).



286         CHAPTER 6. EVALUATION OF THE ENVIRONMENTAL IMPACT OF TOXIC RELEASES                                        

-6

-5

-4

-3

-2

-1

0

1

2

3

4

-4 -2 0 2 4 6 8 10

log Kow

This work (95th percentile)

This work (5th percentile)

BTFeggs vs. BTFmilk
correlation (95th percentile)
mass balance constraint

Garten and Trabalka data set

Figure 6-21: Comparison of chicken egg biotransfer factor correlation with experimental data

CONCENTRATION OF CHEMICALS IN TAP WATER

It is assumed that tap water is free of suspended particles.  It is also assumed that the

concentration of contaminants in ground water is zero.  With these assumptions, the

concentration of chemicals in tap water is given by:

( ) l
wgww watertap CC _f1−= (6-126)

CONCENTRATION OF CHEMICALS IN BATHROOM AIR

Exposure to volatile chemicals transferred from tap water to air while showering might

be significant relative to other exposure routes.  The concentration in bathroom air (Cbath air ) is

estimated according to the method used in the CalTox model:
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( )
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(6-127)

where Wbath is the water use rate for showering/bathing (L/hr), VRbath is the bathroom ventilation

rate (m3/hr), and the term enclosed in square brackets is a dimensionless mass transfer efficiency

from water to air in the bathroom.  Parameter values are given in Table 6-31.

Table 6-31: Values for the parameters used in the bathroom air concentration model
Symbol Parameter name Central value Uncertainty factor
fw-gw Fraction of water needs

supplied by groundwater
0.8 1.2

Wbath Water use rate for
showering/bathing

7.4 L/min 2.2

VRbath Bathroom bentilation
rate

0.93 m3/min 2.2

Note: Central values and uncertainty factors have been derived from data in [26].

6.3.3 Toxicity endpoints

Two types of toxic effect endpoints are usually considered in risk assessment: (i) cancer

effects, and (ii) other chronic non-cancer effects.

CANCER EFFECTS

The risk associated with the exposure to cancer-causing agents is evaluated using either

cancer potency factors (also known as cancer slope factors), or concentration-based unit risk

factors.  The lifetime probability of developing cancer is estimated by the equation:

P(Cancer) = CSF × Dose (6-128)

or

P(Cancer) = UR × Concentration (6-129)

where CSF is the cancer slope factor  (usually expressed in units of (mg/kg/day)-1) and UR is the

unit risk factor, which has inverse concentration units.  Since unit risk factors are usually used to

compute cancer risks for the inhalation route, the concentration used is the expression above is

the concentration of the chemical in air.   Unit risks can be converted to cancer slope factors
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using exposure media contact rates. For example, the equivalence between inhalation unit risks

and inhalation cancer slope factors is given by:

P(Cancer) = URinh × Ca = CSFinh × (BR × Ca) (6-130)

where BR is the average breathing rate in units of m3/kg/day56. Thus

BR
URCSF inh

inh = (6-131)

The lifetime cancer probability estimate assumes exposure to the same dose or

concentration throughout the life span of the exposed individuals.  An explicit assumption in the

risk assessment paradigm for cancer-causing agents is that there is no safe level of exposure.  As

the dose or concentration decreases, there is a corresponding decrease in cancer risk, but the risk

does not vanish unless the exposure drops to zero.

The cancer human toxicity potential (HTP) indicator calculated by the spreadsheet model

is the sum of the cancer risk from the inhalation route and the cancer risk from the ingestion

route.  The risk for each route is computed by multiplying the appropriate modeled dose [in

(mg/kg/day)/(kg/km2/day)] by the cancer slope factor for that particular route [in units of

(mg/kg/day)-1]:

HTPcancer=CSFinh ×Doseinh + CSForal ×Doseoral (6-132)

where the inhalation and oral doses (Doseinh and Doseoral, respectively) are calculated according

to eqs (6-59) and (6-60).  If a slope factor is only available for one of the routes, it is assumed

that it can be applied to both routes. An exception is made when there is information available

indicating that the substance does not pose health risks through the route for which toxicity

potency factors are not available (e.g. inhalation potency factors are not extrapolated to estimate

oral potency factors for asbestos and sulfuric acid).

CHRONIC NON-CANCER EFFECTS

For non-cancer health effects it is assumed that there are safe levels of chronic exposure

below which no noticeable toxic effects will take place.  The estimates for these safe-levels are

known as reference concentrations (RfC) and reference doses (RfD) in the American literature.

                                                
56 The standard assumption used is BR = (20 m3/day)/(70 kg) = 0.286 m3/kg/day
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The nomenclature used in Europe is predicted no-effect concentrations (PNEC) and acceptable

or tolerable daily intakes (ADI/TDI).  These safe-levels are determined from observations of the

lowest dose or concentration at which the first adverse effect occurs either in people or in

experimental animals, or the highest dose at which there are no observable effects.

An implicit assumption made when comparing chemicals on the basis of their non-cancer

assessment factors is that all toxic effects are equally undesirable.  An alternative would be to

calculate a separate assessment factor for each chronic toxic effect of concern, but due to the

large number of potential end-points, the large number of chemicals in use, and the paucity of

toxicity data, this option has not been pursued by the risk assessment community.

The metric used to characterize the risk from exposure to chemicals causing non-cancer

effects is the hazard quotient (HQ), which compares the daily exposure to a chemical to the

reference value at which no adverse effects are expected in even the most sensitive individuals of

a population:

RfD
DoseHQ = (6-133)

or

RfC
ionConcentratHQ = (6-134)

Most of the risk assessment data is derived from animal studies, although for a few

chemicals the available epidemiological data is sufficient to establish risk assessment factors

based on direct observations of toxic impacts in humans.  A series of safety factors are typically

used to estimate human reference doses on the basis of animal reference doses.  For example, the

U.S. EPA uses the safety factors listed in Table 6-32 [67].  The cumulative nature of the safety

factors means that a toxicological LOAEL obtained from a short-term animal study would be

divided by a factor of in the range 1,000 to 10,000 in order to derive a human reference dose.
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Table 6-32: Safety factors applied to non-cancer toxicity data for the derivation of reference
doses

Type of uncertainty

Safety
factor
used

Uncertainty in the extrapolation from valid experimental results in studies using prolonged
exposure to average healthy humans

10

Additional uncertainty in extrapolating from valid results of long-term studies on experimental
animals when results of studies of human exposure are not available or are inadequate.

10

Additional uncertainty in extrapolating from less than chronic results on experimental animals
when there are no useful long-term human data

10

Additional uncertainty in deriving an RfD from a lowest observable adverse effect level
(LOAEL), instead of a no observable adverse effect lovel (NOAEL)

10

Modifying factor (MF) used to account for scientific uncertainties of the study and data base not
explicitly treated above; e.g., the completeness of the overall data base and the number of species
tested. The default value for the MF is 1.

1 to 10

The non-cancer HTP indicator is calculated by the spreadsheet model as the sum of the

hazard quotient from the inhalation route and the hazard quotient from the ingestion route:

oral

oral

inh

inh
noncancer RfD

Dose
RfD
Dose

HTP += (6-135)

where the inhalation reference dose (RfDoral) is related to the reference concentration through an

expression analogous to eq (6-131):

BRRfCRfDinh

111 ×= (6-136)

If a reference dose is only available for one of the routes, it is assumed that it can be

applied to both routes, unless there is information available indicating that the chemical poses no

chronic non-cancer risks through the route for which a reference dose is not available.

AGGREGATION OF CANCER AND NON-CANCER IMPACTS

A combined chronic health indicator is computed as the weighed sum of the cancer risk

indicator and the non-cancer effects indicator:

HTP = HTPcancer + w·HTPnon-cancer (6-137)

where the weighing factor w is the probability of cancer that is considered equivalent to exposure

to a non-carcinogen at the reference dose.  Values of w in the environmental evaluation literature
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range from 10-6 to 10-3 [9,17,18,68,69].  Uncertainty in the parameter w is therefore modeled by

a lognormal distribution with central value 10-5 and an uncertainty factor of 10057.

6.3.4 Chemical-specific input data requirements

In addition to toxicological cancer slope factors and reference doses, the multimedia fate,

transport, and exposure model accepts chemical-specific data for the following parameters:

Henry’s law constant (H), vapor pressure (Pvap), solubility (Solub), molecular weight (MW),

solid particles-water distribution coefficients in soil (KDs), sediments (KDd), and suspended

sediments (KDw), melting point (Tm), aerosol-water partition coefficient (Kqw), octanol-water

partition coefficient (Kow), fish bioconcentration factor (BCF), degradation half-life in air (ta),

degradation half-life in water (tw), aerobic degradation half-life (taerobic), hydrolysis half-life

(thydrolysis), degradation half-life in soil (ts), and degradation half-life in sediments (tsed).  Data

gaps in required parameters are overcome using the default expressions shown in Table 6-33.

The environmental information management system EnvEvalTool developed in this work

(see Chapter 9) was used to store toxicological and fate and transport data for chemicals. As

described in section 9.4.2, a hierarchy of data sources was established for each type of data

element, with less uncertain data sources ranked higher than sources with more uncertainty. An

uncertainty distribution was assigned to each data element. When uncertainty distributions were

not given in the original data source, lognormal distributions were assigned to them.  The central

value used was the nominal value published in the source consulted, while the uncertainty factor

of the distribution was derived from correlations between data from the source of interest and

data from the highest-quality sources for that type of data element.

Following the data quality ranking hierarchy, when no high-quality data was available for

a required data element, estimates were obtained based on lower-preference quantitative, semi-

quantitative or even qualitative information by generating correlations between lower-preference

data and high-preference data.

                                                
57 The uncertainty factor is defined here as the factor by which the central value should be multiplied and divided to

yield the 95% confidence interval for the value of a lognormally-distributed random variable
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Table 6-33: Expressions used to provide estimates for required chemical-specific parameters
with missing data

Expression used when parameter value is not available
Symbol “Type 1” chemicals “Type 2” chemicals Metals

H

    1.              
MWSolub

Pvap

    2.      ( )5104.1,15LogN 3 ×
m
mol

L
vapP

    3.    ( )6107.1,46.0LogN 3 ×⋅
mol

mPa

0

KDs φspKoc LogN(1000,525)
KDd φdpKoc KDs

KDw φwpKoc KDs

PL
vap

1. Pvap                            (if T ≥ Tm)

   













 −

T
T

P mvap 179.6exp

                                      (if T < Tm)

2.         ( )5104.1,15LogN 3 ××
m
molH

Not used

Kqw Not used Zsp
Kow N(2.2,2.0) Not used
BCF Eq (6-102) LogN(100,2)

ta LogN(39 hrs, 460) ∞

tw

           1.                  Min(           taerobic,            thydrolysis)
           2.                  Min(LogN(500 hrs, 11.4),thydrolysis)
           3.                          LogN(500 hrs, 11.4)

∞

ts tw ∞
tsed 4×ts ∞

Notes: Most of the distributions listed in this table are based on data for TRI chemicals with 1997 reported
emissions; the distribution for KDs,metals is based on data in [18]; the distribution for BCFmetals is derived from data in
[70]; other expressions are taken from [9,27].

As an illustration, Table 6-34 shows the hierarchy used to assign distributions for the

non-cancer inhalation reference concentration. The twelfth row of the table shows that

occupational exposure threshold limit value factors were used to estimate reference

concentrations for 76 of the chemicals with TRI emissions in the period of interest. A correction

factor of 1/750 is used to estimate RfCs from TLVs, with an uncertainty factor 85. The source of

these correction and uncertainty factors is shown in Figure 6-22, where risk assessment non-
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cancer chronic inhalation factors are plotted against the ACGIH TLVs.  The correction factor

(CF) was given by the solution to the following optimization problem:

( ) ( )
0

log.. 10
>

×−=
CF                      

CFTLVRfCStdDevUF     ts

UFMin
CF

(P6-1)

where StdDev(•) is the standard deviation operator, and UF stands for the uncertainty factor.
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Figure 6-22: Correlation between TLV values and chronic non-cancer health effects risk
assessment values.



Table 6-34: Data elements used to derive probability distributions for non-cancer chronic toxicity reference concentrations (TRI
chemicals with emissions to air, discharges to water, or transfers to wastewater treatment plants in 1988-1997)

Type of Data Data Element Units Source Year
Number
available

Number
used Median value Uncertainty factor

RfC mg/m3 This work 2000 18 18 Distribution developed on the basis of conflicting information
IRIS RfC mg/m3 [71] 2000 55 45 RfC (SF×MF)0.5

 or 14
ATSDR MRL mg/m3 [72] 2000 33 17 MRL 14
CalEPA REL µg/m3 [73] 2000 129 63 1000×REL 14
IRIS/HEAST RfC mg/m3 [74] 1999 18 9 RfC 14
OPPTEIM RfC mg/m3 [75] 1999 89 16 RfC (SF×MF)0.5

 or 14
CalEPA REL µg/m3 [74] 1997 100 1 1000×REL 14
EPA RfC mg/m3 [7] 1997 68 3 RfC 14
EPA HWIR RfC mg/m3 [74] 1995 2 2 RfC 14
EDF-CalEPA REL µg/m3 [74] 1994 2 2 1000×REL 14

Quantitative
inhalation data

CAPCOA REL µg/m3 [74] 1992 7 6 1000×REL 14
ACGIH TLV mg/m3 [76] 1997 219 76 TLV/750 85
ACGIH LC50 mg/m3 [77] 1991 72 1 LC50/(150,000) 150

Quantitative inh.
data used with
extrapolation NIOSH LC50 mg/m3 [77] 1995 104 11 LC50/(180,000) 200

RfD mg/kg/day This work 2000 13 1 Distribution developed on the basis of conflicting information
IRIS RfD mg/kg/day [71] 2000 174 68 RfD×70/20 (SF×MF)0.5

 or 20
IRIS/HEAST RfD mg/kg/day [74] 1999 216 9 RfD×70/20 20
OPPTEIM RfD mg/kg/day [75] 1999 257 22 RfD×70/20 (SF×MF)0.5

 or 20

Quantitative oral
data

OPP RfD mg/kg/day [74] 1997 29 8 RfD×70/20 20
CML RfD est from NOAEL mg/kg/day [10] 1996 4 1 RfD×70/20 60
ACGIH LD50 mg/kg [77] 1991 95 1 LD50/(22,000)×70/20 140

Quantitative oral
data used with
extrapolation NIOSH LD50 mg/kg [77] 1995 161 8 LD50/(21,000)×70/20 200

CERCLA RQ lbs [9] 1994 47 4 RQ/(45,400)×70/20 210Semi-quantitative
CERCLA RQ lbs [7] 1994 64 2 RQ/(45,400)×70/20 210
HSAT Rank 1,2 or 3 [9] 1998 5 2 1→0.006; 2→0.005; 3→0.0006 400
HSAT Rank 1,2 or 3 [7] 1997 314 48 1→0.006; 2→0.005; 3→0.0006 400
HSAT Category Rank 1,2 or 3 [7] 1997 267 1 1→0.006; 2→0.005; 3→0.0006 400

Qualitative

TSCA Triage L, M or H [78] 1994 257 12 L→0.018; M→0.007; H→0.003 480
No Data 33 0.005 800
Notes: “Source” is the reference from which the values were extracted (includes secondary sources); Year is the year of publication of the original database;
“Median value” shows the formula used to convert data elements into median RfC values; SF and MF, are respectively, the uncertainty (safety) factor and the
modifying factor used in the IRIS and HEAST databases.
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In a few cases, credible sources had widely different values for the same data element.  In

such cases, distributions for the data element that were wide enough to include all credible

estimates were developed and placed at the top of the hierarchy. For instance, the first row of

Table 6-34 shows that there were 18 chemicals for which equally credible sources of reference

concentrations differed by a factor larger than the default uncertainty factor of 14 assigned to the

distributions.  An example is chromium, for which the HEAST database gives a RfC of 0.0001

mg/m3 and for which CalEPA’s OEHHA has assigned a REL of 0.0008 µg/m3 (8×10-7 mg/m3).

For this case study a lognormal distribution with central value 9×10-6 mg/m3 and uncertainty

factor 125 was used to span both distributions.

6.3.5 Modeling results

HUMAN EXPOSURE POTENTIALS

The combined fate, transport and exposure model was ran with data for a set of 1,318

chemicals were obtained from EPA’s 1998 Waste Minimization Prioritization Tool Spreadsheet

Document [9].  The purpose of the exercise was to examine the uncertainty associated with the

estimation of chemical exposure. Figure 6-23 shows the distribution of geometric mean values

for the exposure indicator associated with emissions to air and discharges to surface water.  The

figure also shows where in the distribution the values for three common chemicals fall. There is

a 4 to 5 order-of-magnitude difference in exposure potential between phenol and carbon

tetrachloride.  This means that between 10,000 and 100,000 more pounds of phenol would have

to be released to the environment as pounds of carbon tetrachloride for people to be exposed to

equal quantities of both pollutants.
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Figure 6-23: Distribution of geometric means for the exposure indicator of 1,318 chemicals
included in the WMPT database

Figure 6-24 shows the distribution for uncertainty factors in the same sample of

chemicals.  Uncertainty factors were calculated from the Monte Carlo simulation results as the

square of the geometric standard deviation of an indicator’s value.  Most of the uncertainty

factors are in the range 4 to 200 (exposure from emissions to air), or in the range 10 to 100

(discharges to surface water).
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Figure 6-24: Distribution of uncertainty factors for the exposure indicator of 1,318 chemicals
included in the WMPT database

HUMAN TOXICITY POTENTIALS

In a second exercise, distributions for human toxicity potentials (HTP, see eqs (6-132),

(6-135), and (6-137)) were obtained for all of the chemicals in the U.S. toxics release inventory

with any reported emissions in the period 1988-199758. As shown in Figure 6-25, the cancer

indicator geometric means span a range of about 8 orders of magnitude.  This means that the

emission of one gram of a substance at the high end of the distribution of about one hundred

million times as likely to cause cancer than the emission of a gram of a substance at the low end

of the spectrum.  In other words, it would be necessary to emit 100 metric tons of a substance at

the low end of the distribution to generate a cancer risk that is approximately equal to that

imposed by the emission of a gram of a substance from the high end of the distribution.  A

                                                
58 These distributions were obtained as part of the case study described in section 6.5.
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similar plot is shown in Figure 6-26, this time for the case of a chronic health indicator that

combines cancer and non-cancer impacts.  This distribution is even broader, spanning a range of

more than 10 orders of magnitude.
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Figure 6-25: Distribution of cancer risk indicators for emissions to air of 263 substances with
reported TRI emissions in 1988-1997 and some information regarding
carcinogenicity.

The median uncertainty factor for cancer risk indicators is about 30, with 80% of the

cancer risk indicators having uncertainty factors lower or equal than 100 (Figure 6-27).  The

range of uncertainty factors obtained here is consistent with the estimates in the range 5 to 240

made by Hofstetter (see section 6.2.2).  It is also somewhat lower than the 2 to 3 orders of

magnitude uncertainty that had been estimated on the basis of correlations among different

indicator sets.  Not surprisingly, the uncertainty factors associated with the combined cancer and

non-cancer indicators are larger, as shown in Figure 6-28.  In this case half of the chemicals have

uncertainty factors larger than 100.  These values are much lower, however, than the 3 to 5
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orders of magnitude range that had been estimated on the basis of correlations among different

indicator sets.  Given the fact that the parametric uncertainties included in the model (both for

landscape properties and chemical-specific properties) were quite generous, the poor agreement

in indicator values among the various indicator sets presented in section 6.2.2 must be due to

differences in model structure.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1E-14 1E-12 1E-10 1E-08 0.000001 0.0001 0.01 1 100
Chronic toxicity indicator (kg/km2/day)-1

Air emissions Water discharges WWTP transfers

Figure 6-26: Distribution of chronic toxicity indicators (expressed as cancer risk equivalents)
for emissions to air of 505 substances with reported TRI emissions in 1988-1997.
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Figure 6-27: Distribution of uncertainties in cancer risk indicators for emissions to air of 263
substances with reported TRI emissions in 1988-1997 and some information
regarding carcinogenicity.
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Figure 6-28: Distribution of uncertainties in chronic risk indicators for emissions to air of 505
substances with reported TRI emissions in 1988-1997
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6.4 Management of uncertainty in toxicity impact indicators

6.4.1 Ranking of model uncertainties through the analysis of relative
indicator distributions

Considerable effort was spent in section 6.3 to check whether assumptions made to model

different environmental processes were sound.  With so many possible choices and uncertain

parameters, it would be very useful to have tools that enable the modeler to distinguish between

those choices that are important and those that are inconsequential.

There are a large number of structural and parametric uncertainties in the model.  The

structural uncertainties are summarized in Table 6-35.  In addition to chemical-specific uncertain

parameters, there are 80 uncertain parameters in the combined multimedia exposure model (see

the tables in section 6.3 for the parameter names and their distributions).  The various structural

and parametric uncertainties vary in their contribution to the uncertainty in human doses.  Some

of the uncertainties have a significant impact, while others have practically no effect.

METHOD

Properties of the distribution of relative doses are used to assess and rank model

uncertainties. The relative dose of a chemical i computed by the model when parameter or

structural uncertainty j is varied relative to the dose of the same chemical under base case (bc)

conditions is given by:

bci

ji
ji Dose

Dose
RD

,

,
, = (6-138)

For a set of chemicals, two properties of the distribution of RDi,j values can be used to

assess the impact of uncertainties:

(a) The geometric mean of the RDi,j values is used to assess whether uncertainty j

introduces systematic biases in the calculated doses.

(b) The geometric standard deviation shows whether uncertainty j changes the ranking

of the chemicals in the set with respect to the computed dose.
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Table 6-35: Structural uncertainties in the combined multimedia exposure model
Model Num Modeling choice Mackay

EQC
[20]

CalTox
[14]

This
work

1 Include aquatic biota subcompartment in surface water
compartment?

Yes No No

2 Number of soil layers 1 3 2
3 Include terrestrial vegetation compartment? No Yes Yes
4 Include aerosol particle resuspension from soil? No Yes No
5 Include aerosol particle resuspension from plant surfaces? n/a Yes No
6 Include soil layer in the calculation of terrestrial vegetation

bulk fugacities?
n/a No Yes

7 Include aerosol particle layer in the calculation of terrestrial
vegetation bulk fugacities?

n/a Yes No

8 Include air advection out of control volume? Yes No No
9 Include water advection out of control volume? Yes No No
10 Basis for degradation rates in lower atmosphere

compartment
? Bulk

comp.
Air
phase

11 Basis for degradation rates in surface water compartment ? Bulk
comp.

Water
phase

12 Basis for degradation rates in ground soil compartment ? Water
phase

Bulk
comp.

13 Basis for degradation rates in root zone soil compartment n/a Water
phase

Bulk
comp.

14 Basis for degradation rates in sediments compartment ? Water
phase

Bulk
comp.

15 Type of rain dissolution equations used Conti-
nuous

No rain Inter-
mittent

Fate and
transport

16 Include TSCF correction to root uptake transport rate? n/a No Yes
17 Type of irrigation model n/a Fraction

retained
Mass
balance

18 Type of leaf crops bioconcentration model n/a Equili-
brium

Kinetic

29 Root crops bioconcentration model used n/a McKone Briggs
et al.

20 Milk biotransfer model used n/a Travis
et al.

This
work’s

21 Beef biotransfer model used n/a Travis
et al.

This
work’s

Exposure

22 Eggs biotransfer model used n/a CalTox This
work’s

Suppose we were uncertain about the landscape area used as a basis for the calculations.

Increasing the landscape area by a factor of 10 while leaving emissions and all other parameters

unchanged would decrease the dose of all chemicals by a factor of 10, since the concentrations in

all environmental media would decrease by a factor of 10 (for a closed system).  In this case, the

geometric mean of the RDi,(10x landscape area) distribution would be 0.10, while the geometric
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standard deviation would be exactly 1.0.  This means that the ranking of chemicals with respect

to dose is unchanged by the arbitrary choice of landscape area.

Data for a set of 1,318 chemicals were obtained from EPA’s 1998 Waste Minimization

Prioritization Tool Spreadsheet Document [9] were used for the analysis presented in this

section.  According to the EPA’s documentation, this data set includes chemicals in commerce

with the potential to adversely impact human or ecological health.  The combined multimedia

fate, transport and exposure model was used to estimate human doses resulting from releases of

1000 kg/hr to either air or water in a 100,000 km2 landscape.  The doses obtained with all the

uncertain parameters set at their central values and all the modeling choices resolved as

described in section 6.3 were used as base case doses in the sensitivity analysis.  Uncertain

parameters were sampled at the 5th and 95th percentiles of their distributions, while structural

uncertainties were examined by switching the choice made in this work to the alternative

choice59.

RESULTS

Table 6-36 shows sensitivity analysis results for the structural uncertainties.  The table is

sorted in descending order of maximum geometric standard deviation.  The structural uncertainty

with the largest impact is the choice of aboveground crops bioconcentration model.  Other

structural uncertainties associated with the exposure model turn out to be very significant,

including the choice of irrigation, milk biotransfer, and beef biotransfer models. Structural

uncertainties with little consequence include: whether aquatic biota is considered in the

calculation of bulk surface water fugacities, whether aerosol particles are resuspended from soil

or plant surfaces, whether a soil layer is included in the calculation of bulk plant fugacities, and

whether the TSCF correction is implemented for the uptake of chemicals from root zone soil by

terrestrial vegetation.

Sensitivity analysis results for a subset of the parametric uncertainties are shown in Table

6-37.  Only results for the top 20 parameters ranked in order of descending maximum geometric

standard deviation are shown.  The columns for the logarithmic mean metric show the ratio of
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the maximum logarithmic mean to the minimum logarithmic mean. The impact of the parametric

uncertainties is small compared to the impact of the modeling uncertainties.  The most important

parametric uncertainties are associated with aerosol particles, suspended sediments, the

aboveground crops bioconcentration model, and with the parameter that specifies what fraction

of water needs are satisfied by groundwater sources.

Table 6-36: Sensitivity results for structural uncertainties
Air emissions Water discharges

Name Model GSD LogMean GSD LogMean
Type of leaf crops bioconcentration model Exposure 92.005 71.582 2.328 1.374
Type of milk biotransfer model Exposure 7.713 1.117 7.520 1.799
Type of irrigation model Exposure 1.142 1.040 6.240 3.841
Type of beef biotransfer model Exposure 4.837 1.392 6.030 1.723
Basis for degradation rates in ground soil Fate and Transport 3.269 2.073 4.365 2.069
Number of soil layers Fate and Transport 1.456 1.023 2.893 0.780
Type of rain dissolution equations Fate and Transport 2.691 0.678 1.000 1.000
Type of root crops bioconcentration model Exposure 2.467 1.339 1.372 1.042
Basis for degradation rates in air Fate and Transport 2.372 0.710 1.031 0.996
Include air advection? Fate and Transport 2.366 0.764 2.228 0.824
Include water advection? Fate and Transport 1.256 0.953 1.970 0.539
Include plants compartment? Fate and Transport 1.817 1.028 1.338 1.046
Basis for degradation rates in root zone soil Fate and Transport 1.577 1.234 1.111 1.039
Type of eggs biotransfer model Exposure 1.123 1.012 1.397 1.077
Basis for degradation rates in sediments Fate and Transport 1.011 1.001 1.233 1.148
Basis for degradation rates in water Fate and Transport 1.000 1.000 1.182 0.922
Include aerosol layer in plants compartment? Fate and Transport 1.049 0.995 1.029 0.997
Include TSCF correction to root uptake by
terrestrial vegetation?

Fate and Transport 1.016 0.996 1.005 0.999

Include aerosol particle resuspension from leaf
surfaces?

Fate and Transport 1.004 1.000 1.000 1.000

Include soil layer in plants compartment? Fate and Transport 1.004 1.001 1.000 1.000
Include aquatic biota subcompartment in water
compartment?

Fate and Transport 1.000 1.000 1.002 1.001

Include aerosol resuspension from ground soil? Fate and Transport 1.001 1.000 1.000 1.000

                                                                                                                                                            
59 All the structural uncertainties are binary choices, with the exception of the number of soil layers.  The 3-layer

soil option was not implemented in the spreadsheet model, so the alternative choice used in the sensitivity
analysis is 1 soil layer.
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Table 6-37: Sensitivity analysis results (top 20 parametric uncertainties)
Air Emissions Water Discharges

Symbol UF Ref Model
Max(GSD5th,
         GSD95th)

max(LogMean5th,
        LogMean95th)
min(LogMean5th,
        LogMean95th)

Max(GSD5th,
         GSD95th)

max(LogMean5th,
        LogMean95th)
min(LogMean5th,
        LogMean95th)

Uq 8.8 Table 6-20 Fate and transport 1.628 1.909 1.111 1.029
vwp,w 5.3 Table 6-16 Fate and transport 1.001 1.000 1.470 1.338
fw-gw 1.2 Table 6-31 Exposure 1.029 1.020 1.422 1.600

Q 10 Table 6-20 Fate and transport 1.400 1.210 1.049 1.007
Mplants 3.0 Table 6-29 Exposure 1.390 1.582 1.216 1.163

kg 3.0 Table 6-29 Exposure 1.390 1.582 1.216 1.163
U9 3.0 Table 6-20 Fate and transport 1.086 1.023 1.388 1.628
vq 3.2 Table 6-15 Fate and transport 1.346 1.328 1.053 1.015
hp 5.6 Table 6-19 Fate and transport 1.333 1.157 1.077 1.023
hg 5.29 Table 6-17 Fate and transport 1.198 1.161 1.310 1.202
hw 2.24 Table 6-15 Fate and transport 1.054 1.041 1.295 2.268
m 1.13 Table 6-29 Exposure 1.295 1.266 1.098 1.044
ha 2.45 Table 6-15 Fate and transport 1.280 2.766 1.192 1.178

Fsoil
splash 3.3 Table 6-29 Exposure 1.112 1.076 1.275 1.192

IRfish 2.2 Table 6-22 Exposure 1.049 1.026 1.255 1.815
fwater 2.65 Table 6-15 Fate and transport 1.108 1.053 1.230 4.036
U3 2.8 Table 6-20 Fate and transport 1.192 1.051 1.060 1.024
DA 3.2 Table 6-20 Fate and transport 1.185 1.026 1.011 1.001
hrz 2.53 Table 6-17 Fate and transport 1.179 1.129 1.003 1.003

DISCUSSION

The procedure used here can also be used to identify exposure pathways that do not

contribute significantly to the exposure indicator.  This allows simplifying the model without

eliminating important pathways.  A structural sensitivity analysis with the WMPT chemical data

set was carried out turning off one exposure pathway at a time.  The results are shown in Table

6-38.  The table shows that the egg ingestion and bathroom air inhalation pathways are not

important and could be safely removed from the model.

6.4.2 Assessment of the information content of indicators

A set of indicators provides information if it allows a decision-maker to discriminate

among alternatives.  By definition, the assessment of the information content of indicators

requires the specification of the decision context in which they will be applied.  Since it is

impossible to know a priori all the decision contexts in which environmental indicators will be

applied, an arbitrary decision context is specified for the purpose of information content
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assessment.  The decision context is the discrimination among emissions of different substances,

assuming the amounts emitted are the same (e.g. one is trying to decide whether a 1 kg emission

of substance A is worse than the emission of 1 kg of substance B).

Table 6-38: Sensitivity results for exposure pathways
Air emissions Water discharges

Sensitivity tested GSD LogMean GSD LogMean
Include air inhalation route? 4.992 0.446 3.008 0.752
Include irrigation of agricultural soil? 1.074 0.999 4.022 0.771
Include rainsplash to leaf crops? 1.075 0.969 3.986 0.785
Include plant ingestion route? 2.216 0.644 3.835 0.806
Include fish ingestion route? 1.237 0.973 3.511 0.326
Include aerosol deposition to leaf crops? 3.099 0.560 1.099 0.989
Include uptake from air by leaf crops? 2.515 0.556 1.180 0.949
Include water ingestion route? 1.042 0.985 2.026 0.642
Include uptake from soil by leaf crops? 1.613 1.340 1.037 1.001
Include beef ingestion route? 1.322 0.768 1.181 0.911
Include suspended particles in water ingested by farm animals? 1.000 1.000 1.297 0.929
Include milk ingestion route? 1.233 0.821 1.105 0.943
Include roots ingestion route? 1.202 0.939 1.027 0.995
Include bathroom air inhalation route? 1.000 1.000 1.022 0.992
Include egg ingestion route? 1.019 0.980 1.017 0.990

In the absence of information about the properties of the substances, one would expect to

be wrong 50% of the time in making a statement such as “emitting 1 kg of substance A is worse

than emitting 1 kg of substance B.” That is, without information one would not expect to be

more accurate in making pair-wise comparisons as someone who makes the comparisons by

flipping a coin.  On the other hand, if a toxicity indicator was available that gave a higher (more

damaging) score to A than to B, the confidence in the ranking would be a function of the

difference in indicator scores and the uncertainty associated with the indicator score for each

substance.  Confidence in the ranking would increase as the difference in scores increased, but

would decrease as the uncertainties in the individual indicators increased.

A graphical tool is proposed to assess the information content of indicators. This chart is

referred to as an information content chart.  The chart plots the descending cumulative fraction

of the total pair-wise comparisons among members of a set that can be resolved at different

confidence levels when an indicator is applied to rank the members of the set.  The domain of the
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x-axis goes from 50% (e.g. coin-flipping) to 100% (absolute confidence).  The domain of the y-

axis goes from 0 to 1.  As the information content of an indicator increases, the curve in the chart

shifts towards the upper right-hand side of the chart.  This is illustrated next with a couple of

examples.

ILLUSTRATIVE EXAMPLES

Example 1
Suppose we have 101 objects in a set.  We have an indicator that assigns the scores

0,1,2,...100 to the different members of the set.  If there were no uncertainty in the indicator, we

would be able to rank any two objects selected from the set with 100% confidence, since no two

objects have the same score.  Assume instead that there is uncertainty, and that each indicator

value is normally distributed with a mean value equal to the nominal score and a standard

deviation equal to 1 (Case 1), 10 (Case 2), 20 (Case 3), or 50 (Case 4).  The distribution for the

difference between two normal random variables may be used to calculate the confidence with

which two objects can be ranked:
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(6-139)

where FN(•) is the standard normal distribution function, µi is the mean value of the indicator

score for object i  (the nominal value in this example), and σi is the standard deviation of the

indicator score for object i (ranging from 1 to 50 in the example, depending on the case).  In a

more general case, where the uncertainty in the indicators is described by an arbitrary

distribution function, the confidence is given by simulation:

( ) ( ){ }0,,0,%100 kjkjjk IndIndPercIndIndPercMaxConfidence −−−= (6-140)

where Perc(Indj – Indk,0) is the percentile of the distribution of the difference in indicator scores

of objects j and k that corresponds to a value of zero.

The information content chart for this example is shown in Figure 6-29. When the

standard deviation of the indicator equals 1, one can be 95% confident in the ranking of the vast

majority of pairs of objects drawn from the set.  The exceptions are pairs that differ by 1 or 2

indicator score points.  As the standard deviation of the scores increases, the fraction of pair-wise
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comparisons that can be made with 95% confidence drops from 0.952 (case 1) to 0.59 (case 2),

0.30 (case 3) or 0 (case 4).  This shows that as the uncertainty in an indicator increases, its

information content decreases.
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Figure 6-29: Information content chart for example 1

Example 2
Suppose we have two indicators available to rank the objects from the previous example.

One of the indicators has a low standard deviation (assume every object’s indicator has a

standard deviation of 5), but it is only available for half of the objects in the set.  The second

indicator has a high standard deviation (assume a standard deviation of 50), but is available for

all the objects in the set (this is the indicator used as Case 4 in the previous example).  Figure

6-30 shows the information content chart for this example.  Since the high-quality indicator is

only available for half the objects in the set, it can only be applied in 25% of all possible pair-

wise comparisons among members of the set.  For those cases in which it can be applied, the

resolution is quite high.  Almost 20% of the pair-wise comparisons (i.e., 80% of the comparisons

that can be made on the basis of that indicator) can be made with 95% confidence.  The low-

quality indicator can be applied to all members of the set, so all possible pair-wise comparisons
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can be made with more than 50% confidence.  However, no comparisons can be made with 95%

confidence.  It is not necessary to choose between these two alternatives: using both indicators60

gives a significant information content gain, as shown by the dashed curve in Figure 6-30.
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Figure 6-30: Information content chart for example 2

COMPARISON TO OTHER INDICATORS OF INFORMATION CONTENT

In a similar context to the one addressed in the chapter, Hertwich [14] proposed a

resolution metric that measures how many times the indicator distribution for an object can be

fitted into the indicator distribution for all objects, minus one.  Hertwich’s definition is based on

lognormal distributions:

object

objectset
j LMD

LMDLMD
Resolution

−
= (6-141)

where LMD is a logarithmic measure of dispersion (e.g. the geometric standard deviation or the

logarithm of the ratio of the 95th percentile value to the 5th percentile value).

                                                
60 The high quality indicators are used for the objects for which it is available and the low quality indicators for the
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Adapting Hertwich’s definition to the examples in this section, the difference between the

95th and 5th percentile values is used as the measure of dispersion.  Monte Carlo simulation was

used to find the 5th and 95th percentiles61.  The results are shown in Table 6-39.  As the

uncertainty in an indicator increases, Hertwich’s resolution metric decreases.  However, it is

difficult to get a feeling for the differences in discrimination power among indicators based on

the resolution metric alone.  Several misleading conclusions could be derived from the resolution

metric when applied to the examples in this section:

• It would appear that Case 1 is at least an order of magnitude more informative than Case 2, in

example 1.  The information content chart shows that there is at most a doubling in the

comparisons that can be made with high confidence from Case 2 to Case 1.

• It is clear form the information content chart that combining indicators in example 2 is

significantly more informative than using the high-quality indicator alone.  This same

conclusion is difficult to reach on the basis of resolution values.

The author believes that the information content chart proposed here is superior in its

ability to inform decision-makers about the discrimination power of alternative indicators.

Table 6-39:  Hertwich’s resolution metric results for examples 1 and 2.
Example Case Resolution

Case 1 (σ = 1) 26.9
Case 2 (σ = 10)   1.97
Case 3 (σ = 20)   0.76

Example 1

Case 4 (σ = 50)   0.14
High quality  4.65 for half of the objects; 0 for the other half
Low quality  0.14 for all objects

Example 2

Combination  5.20 for half of the objects; -0.38 for the other half

                                                                                                                                                            
rest of the objects.

61 In the absence of uncertainty, the dispersion would be 90, i.e. the difference between the 95th and 5th percentiles of
a uniform distribution from 0 to 100; with uncertainty the dispersion increases, since many of the objects are able
to take values outside of the original range.
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APPLICATIONS

Assessment of the information content of low quality data elements
Information content charts were used in the process of building the database of chemical

properties used in the work (see section 9.4 for a description of the database).  As an example,

the information content chart for the data elements used to estimate non-cancer reference

concentrations (RfC) for the inhalation exposure route is presented here.  A summary of the

information sources used to generate RfC distributions was presented in Table 6-3462. The

corresponding information content chart is shown in Figure 6-31.  The decision context used to

build this chart was the comparison of TRI chemicals with reported releases in the period 1988-

1997 on the basis of RfC values alone. Even though including semi-quantitative and qualitative

data increases the number of chemicals that can be evaluated from 388 to 457, very little

information is added, since the uncertainty factors associated with these data sources are

comparable to the uncertainty factor of the prior distribution used when no information is

available.  On the other hand, the figure shows that information is added when TLVs and LC50’s

are used to estimate missing assessment values.  Using these sources of information increases the

fraction of pair-wise comparisons that can be resolved with 95% confidence from 0.12 to 0.16.

There is an even larger information gain associated with allowing extrapolation from oral risk

assessment values.  Allowing this extrapolation increases the fraction of pair-wise comparisons

that can be resolved with more then 95% confidence to 0.25.

Based on the information content chart it can be concluded that it is worthwhile to

incorporate TLVs and LC50s to the database, while there is no much benefit in compiling the

semi-quantitative and qualitative data elements shown in the last 6 rows of the table.

                                                
62 The reader is encouraged to refer back to Table 6-34 (page 294) when following the discussion presented in this

paragraph.
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Figure 6-31: Non-cancer inhalation route risk assessment factor -- information content chart for
TRI chemicals with reported emissions in the period 1988-1997

Comparing approaches to dealing with heterogeneous data
The Office of Solid Waste and the Office of Pollution Prevention and Toxics of the U.S.

Environmental Protection Agency have developed a screening tool called the Waste

Minimization Prioritization Tool (WMPT) [7,9].  The tool was designed to help stakeholders to

prioritize source reduction and recycling activities based on human health and ecological risk.

One of the goals of the developers of the WMPT was to derive scores for the largest

possible number of chemicals.  In order to do this, data of different levels of quality had to be

used.  The EPA adopted a fence line approach to develop their scores.  Each data element used in

the scoring algorithm was assigned a value of 1 (low concern), 2 (medium concern) or 3 (high

concern) using fence lines (i.e. border values) defined for each data source. For most high-

quality data, a factor of 100 difference separated the fence line values. The scoring algorithm use

to derive the human health concern score in shown in Figure 6-32.
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Figure 6-32: Human health concern scoring algorithm used in EPA’s waste minimization
prioritization tool

A problem with the fence line approach is that it reduces the quality of the data to the

lowest common denominator.  For instance, the highest quality data source used to estimate

cancer toxicity is the cancer slope factor (CSF) extracted from the IRIS database.  In the fence

line approach, any IRIS CSF in the range 0.046 to 4.6 mg/kg/day is assigned a value of 2,

resulting in a loss of information, since many CSFs are known to better precision than a factor-

of-100 uncertainty.

An alternative approach, which is the one used in this work, is to estimate uncertainty

factors for all levels of the data hierarchy, as was illustrated in Table 6-34 for the case of the non-

cancer inhalation risk assessment factor.  Uncertainties can then be propagated through the fate,

transport and exposure model to estimate human exposure potential and combined with the

probability distributions for the toxic potency factors to arrive at a distribution of human toxicity

potentials (HTP).
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The information content tool was used to compare both approaches.  In deriving the

information content plot for the WMPT scores, a standard deviation of 0.95 was assumed for the

uncertainty in the final discrete score (this is equivalent to assuming that each of three additive

factors has an uncertainty characterized by a standard deviation of  0.55)63.

The information content plot for this comparison is shown in Figure 6-33.  The step

changes in the plot for the WMPT indicator are a consequence of the discrete scale used.  Only

15% of all possible pairwise comparisons can be resolved with more than 90% confidence using

the WMPT indicator (a score difference of 3 points is required).  On the other hand, 45% of all

possible pairwise comparisons can be resolved with more than 90% confidence through the

propagation of uncertainties in the HTP model.
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Figure 6-33: Information content chart for the WMPT case study (set of 363 chemicals with
toxicity data in the WMPT database)

                                                
63 The factor of 0.95 was derived by examining distributions of HTP values for chemicals within each WMPT

human health concern discrete score. The geometric standard deviations of the distributions corresponded to
WMPT standard deviations in the range 0.56 to 1.26.
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Evaluating the quality of an environmental indicator
In this section information content charts are provided for the simulation results presented

in section 6.3.5.  Information content charts are presented for (i) human exposure potential

indicators calculated for the set of 1318 chemicals in the WMPT database (Figure 6-34, (ii)

human toxicity potential indicators (non-cancer and combined cancer and non-cancer) for the set

of 505 chemicals with reported released in the TRI in the period 1988-1997) (Figure 6-35), and

(iii) human toxicity potential indicators for the subset of TRI chemicals with emissions for which

some type of information regarding carcinogenicity is available (Figure 6-36).
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Figure 6-34: Information content chart for the human exposure indicator (set of 1318 chemicals
in the WMPT database)
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Figure 6-35: Information content chart for the TRI indicators case study (set of 505 chemicals
with reported emissions to air in 1987-1997)
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Figure 6-36: Information content chart for the use of HTP (cancer) to rank chemicals in the TRI
(set of 263 chemicals with cancer information)
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Despite the significant uncertainties involved in the calculation of exposure potentials

and HTPs, the information content charts show that the information content of the indicators is

reasonably high.  More than 70% of pairwise comparisons can be resolved with 68% confidence

or higher in all indicators.  At the 95% confidence level, between 25% and 33% of chemical

comparisons can be resolved on the basis of human exposure indicators, while 40% of all

possible comparisons in the TRI set can be resolved on the basis of the combined cancer and

non-cancer effects HTP indicator.  Figure 6-35 also shows that there is a higher information

content in a combined cancer and non-cancer effects indicator than in an indicator that only

considers non-cancer effects, despite the rather large uncertainty used for the tolerable risk level

factor used to bring both types of effects to the same scale (see eq (6-137)).

6.5 Case Study: Application of the human toxicity potential
indicator to the Toxic Release Inventory

6.5.1 Introduction

Industries and governments around the world are making considerable efforts to compile

data regarding releases of toxic chemicals to the environment.  These efforts were initiated by the

enactment of the Emergency Planning and Community Right-to-Know Act (EPCRA) in the

United States in 1986.  The EPCRA mandates manufacturing firms to report their releases of

toxic chemicals annually.  The information is collected and made available to the public by the

U.S. Environmental Protection Agency (EPA).  The universe of chemicals required to be

reported has grown from an initial list of about 370 to more than 600.  Starting with the reporting

year 1998 (data for which will be published later this year), the universe of facilities required to

report to the TRI was expanded to include metal mining, coal mining, coal and oil fired electric

utilities, waste treatment and disposal facilities, solvent recovery services, and wholesale

distributors of petroleum and chemicals.

The TRI has become a powerful tool for pollution prevention.  The compilation and

publication of lists of prominent toxic chemical releasers has prompted a large number of firms

to make commitments to reduce their releases of TRI chemicals.  There is some concern,

however, that since these lists are compiled on the basis of the total mass of chemicals released,

firms might be emphasizing the reduction of high-volume releases that might not pose much risk
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to human health over the elimination of lower volume releases of the most toxic and persistent

chemicals [2,5,8].

Indicators of human health risk from the release of toxic chemicals of increasing

sophistication have been proposed.  Horvath and coworkers used the inverse of the ACGIH

occupational exposure threshold limit value (TLV) as a toxicity weighting factor to aggregate

TRI data [5].  Their choice of inverse TLV as an indicator was mainly dictated by the availability

of TLV values for a large fraction of the chemicals in the TRI.  Hertwich and collaborators

introduced a human toxicity-equivalent-potential indicator (TEP) that incorporates not only

toxicity but also exposure through various pathways, including ingestion of plant and animal

products [14].  The cancer and chronic non-cancer indicators for air emissions and water

discharges developed by Hertwich et al. are being used by the Environmental Defense Fund

(EDF) to rank facilities, industrial sectors, and chemical releases in their Scorecard web site [79].

There are two main barriers to the use of health impact indicators in pollution prevention:

1) None of the proposed indicators has scores for the complete set of chemicals of interest to

regulators, producers, and concerned citizens.

2) While mass is not a good measure of risk, it has the advantage of being a tangible and

objective measure.  Although there are uncertainties associated with the measurement or

estimation of emissions, there is no uncertainty in the meaning of the unit of measurement.

There is no disagreement on the meaning of a kilogram.  On the other hand, health risk

impact indicators are necessarily uncertain quantities, even if the amounts emitted are exactly

known.  The uncertainty arises from uncertainties in the models that link emissions to

potential doses, from uncertainties in physical properties, and from uncertainty in the toxicity

endpoint values, which are usually extrapolated from animal data.  A firm showing up as the

top polluter in a list compiled on the basis of health risk impact indicators could argue its

way down the list by challenging the data and methods used to derive the scores.

The EPA has been working in the development of environmental indicators for the TRI at

least since 1991.  They have recently released an inhalation risk indicator for use in scoring air

releases only [68].  All other relevant exposure routes are not addressed by this indicator.  While

the agency is understandably reluctant to publish indicators that can be challenged due to
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uncertainties in models or data, delay in including all relevant exposure routes means that these

routes will not be considered when setting priorities for reducing risk.

This case study shows how uncertainty in models and data does not necessarily translate

into uncertainty in decisions to reduce potential health impacts.  Explicit incorporation of

uncertainties is used to overcome the two barriers mentioned above.  Lower quality data can be

incorporated into the analysis, allowing chemicals with lower data availability to be scored (the

score being more uncertain as less high quality data is available).  The results of the analysis are

not as easy to challenge, since disagreements about data are transformed into uncertainty

distributions for the data element for which there is disagreement.  Results that are robust in the

presence of these uncertainties would not change depending on how the disagreement was

ultimately resolved.  Important results that are sensitive to particular uncertainties provide

guidance to authorities and industries for the allocation of resources to reduce those

uncertainties.   Although the focus of this case study is on TRI releases, the methods discussed

here are applicable to any decision problem where there is uncertainty in the indicator used to

assess performance.

6.5.2 Analysis

ENVIRONMENTAL RELEASES

The following releases reported in the Toxic Release Inventory in the period 1988-1997

are considered: (i) total air emissions (stack emissions and fugitive emissions), (ii) surface water

discharges, and (iii) transfers to publicly-owned wastewater treatment plants (POTWs).

Wastewater treatment plant biodegradation and partitioning data are used to translate POTW

transfers into emissions to air, discharges to surface water and releases to land (it is assumed that

sludge from POTWs is applied to land).  Other releases and transfers were not included in the

calculations, since the judgement was made that releases to landfills and underground injection

wells have a very small chance of reaching environmental media of concern.
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FATE, TRANSPORT, AND EXPOSURE MODELING

Long-term human exposure to chemicals is modeled using the multimedia fate and

transport model described in section 6.3.1 and the human exposure model described in section

6.3.2.

SOURCES OF INFORMATION

The environmental information management system EnvEvalTool developed in this work

(see Chapter 9) was used to extract data and uncertainty distributions for physical properties and

toxicity factors for the TRI chemicals with releases in the 1988-1997 period.  The hierarchy

contained in the EnvEvalTool was augmented for this case study by placing at the bottom of the

hierarchy a prior distribution based on the distribution of that data element among the TRI

chemicals in the database for which the element was available.  This was done to ensure that the

model could be run for all chemicals, even when data for a necessary physical property was

missing.

UNCERTAINTY PROPAGATION

Monte Carlo simulations were performed using the @Risk add-on for Microsoft Excel

(Palisade Corporation) on a personal computer with a Pentium-II processor, using 10,000

iterations per simulation.

CHOICE OF UNCERTAIN OUTPUTS

Two types of uncertain outputs were specified: (a) absolute values of health impact

indicators, and (b) relative values of health impact indicators with respect to a benchmark.  As

shown in the results section, the second type of uncertain output is more useful for making

comparisons and setting priorities.  The reason is that a good choice of benchmark reduces

decision uncertainties by taking advantage of the correlations among the distributions of absolute

indicator values (see section 4.4 for a detailed discussion).
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6.5.3 Results

YEAR-TO-YEAR COMPARISONS

There has been a significant decrease in the total mass of TRI chemicals released to the

environment since the baseline year of 1988 (Figure 6-37, top chart).  The total of air emissions,

water releases, and transfers to wastewater treatment plants in 1997 was less than half of that in

1988, despite the substantial increase in the number of chemicals subject to reporting that took

place in 1995.  The human chronic toxicity indicator developed in this thesis was applied to the

inventory to test whether a corresponding decrease in risk took place in the same period.  The

distributions for the indicator (Figure 6-37, middle chart) suggest that there is no significant

difference in risk among the different reporting years, since the uncertainty (almost 2-orders of

magnitude for the 90% confidence interval) is much larger than the difference in median values.

However, this interpretation of the distributions does not take into account the fact that the

distributions are highly correlated.  A much better indication of progress is given by the

distributions for the relative health risk indicator with respect to a reference year, as shown in the

bottom chart of Figure 6-37, where 1988 is used as a reference year.  Several interesting

observations can be derived from the chart:

• Even though reported releases and transfers decreased by about 13% from 1988 to 1989,

there is a 25% probability that the releases and transfers reported for 1989 had a higher

impact than those reported in 1988;

• Despite the two orders of magnitude uncertainty in the health risk indicator, it can be said

with confidence that reported releases and transfers in each year of the period 1990-1994 had

lower potential health impacts than those of the benchmark year 1988.
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Figure 6-37: TRI 1988-1995.  Combined air emissions, water discharges, and wastewater
treatment plant transfers: (a) aggregated by mass, (b) combined cancer and non-
cancer chronic effects health risk indicator, (c) chronic risk indicator relative to
1988.64

                                                
64 The Box plots show the median value and the 5th, 25th, 50th and 95th percentiles of the distributions.
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• Even though the total mass of reported releases and transfers for 1997 was the lowest on

record, their potential impact could be as much as eight times higher than the impact of the

releases and transfers reported for 1988.  The reason for this is the 1995 expansion of the set

of chemicals required to be reported.  Since there is no data for releases and transfers of the

newly added chemicals for reporting years prior to 1995, the health risk indicators computed

for 1988-1994 implicitly assume that emissions for these chemicals were equal to zero. This

is extremely unlikely.  If, in contrast, a qualitative change in the relative distributions from

1994 to 1995 had not been observed, it would have meant that the expansion in the chemical

list was not justified from the point of view of chronic health risks.

Changing the reference year to 1995 yields the relative impact distributions shown in

Figure 6-38.  Even though the total mass of releases decreased from 1995 to 1997, one can only

be about 65% confident that the risk posed by the 1997 reported releases and transfers was lower

than those from 1995.
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Figure 6-38: TRI 1988-1995.  Chronic health risk indicator from combined air emissions, water
discharges, and wastewater treatment plant transfers, relative to 1995
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CHEMICAL COMPARISONS

In order to identify the TRI chemicals with the largest contributions to potential health

impacts, distributions for the relative contribution of each chemical to the combined cancer and

chronic non-cancer toxicity score were generated (this is another example of the application of

the sensitivity analysis techniques introduced in section 5.2).  Key results are shown in Figure

6-39 and Figure 6-40. Figure 6-39 shows the total quantities released and the contribution to risk

from the TRI chemicals with 1997 releases larger than 10 million pounds. Methanol, nitrate

compounds, and ammonia contribute, respectively, 16%, 12%, and 10% of the combined mass of

TRI reported releases to air, water, and wastewater treatment plants in 1997.  However, none of

these chemicals has a significant probability of contributing to even 0.1% of the total chronic

toxicity risk posed by the 1997 reported releases. As Figure 6-40 shows, the chemicals

contributing most of the risk account for a very small fraction of the total mass of reported

releases.

There were 425 chemicals or chemical categories with reported emissions to air,

discharges to surface water, or transfers to wastewater treatment plants in the 1997 TRI. Only 21

of these chemicals or chemical groups have a 5% or greater probability of accounting for more

than 1% of the total risk.  These substances contributed less than 5% of the total mass of 1997

reported releases to air, water, and wastewater treatment plants.
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Figure 6-39: Individual chemical contributions to (a) total reported quantities, and (b) combined cancer and non-cancer chronic
toxicity indicator (TRI chemicals with more than 10 million pounds of reported releases in 1997)
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A RISK-BASED ASSESSMENT OF THE 33/50 PROGRAM

In 1991 the EPA launched the “33/50 program”, a voluntary initiative which received its

name from its goals of reducing emissions and transfers of 17 high-priority chemicals by 33% in

1992 and by 50% in 1995 using reported 1988 data as a baseline [80]. Companies were invited to

participate in the program by setting their own goals and schedules to meet them. The program

met its goals ahead of schedule, as shown in Figure 6-41, and is highly regarded as an example

of alternatives to traditional command and control regulations.  The health risk indicator was

applied to the releases and transfers shown in the figure to test whether a reduction in risk

commensurate with the reduction in mass could be discerned.  The result is shown in Figure

6-42.  By 1995, the most likely reduction in risk achieved relative to the 1988 baseline was 55%,

although there is a 5% probability that the achieved risk reduction was less than 32%.  Contrary

to the steady decrease in mass of chemicals released, it appears that not much progress was

achieved between 1991 and 1992, or between 1995 and 1996.  The reason for the discrepancy is

that the chemicals that contribute the most to risk are not the chemicals released in the highest

quantity.  This can be seen in Figure 6-43, where individual chemical contributions to risk and

mass are displayed for 1988.  By completely eliminating releases of toluene, xylenes, methyl

ethyl ketone, and methyl isobutyl ketone while leaving other releases unchanged, it would have

been possible to meet the program goals with a 57% reduction in mass without making hardly a

dent in risk.  Fortunately, this was not the case, as emissions for each of the 17 chemicals have

been reduced.

Two key findings of EPA’s final analysis of the 33/50 program [80] are that

• Facilities reported more source reduction activity (pollution prevention) for 33/50

chemicals than for other TRI chemicals and this activity covered a greater percentage

of production-related waste for 33/50 chemicals than for other TRI chemicals, and

• Reductions continued at a higher rate for 33/50 chemicals than for other TRI

chemicals in the year after the 33/50 Program ended.
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Figure 6-41: Reported TRI releases and transfers of 33/50 Program Chemicals, 1988-1997
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Figure 6-42: Chronic toxicity risk from reported TRI releases and transfers of 33/50 Program
Chemicals, 1988-1997 (relative to 1988)

These findings highlight the importance of assembling lists of high priority pollutants

based on the environmental goals one is trying to achieve.  The sensitivity tools used in this case

study were applied to the 1988 and 1997 TRI to identify those chemicals that should have been

included in the 33/50 program, had the only selection criteria been reducing chronic health risks.

A similar exercise was carried out to identify the chemicals that should be included in the next

version of the program.  Two selection criteria were used.  First, the chemical or chemical group

needed to have a 5% or higher probability of contributing at least 1% of the total chronic toxicity
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score for the year evaluated.  Second, the chemical needed to have a 5% or lower probability of

contributing less than 1 in 1,000,000 to the total chronic toxicity score (this screen was used to

eliminate chemicals for which the score was too uncertain)65.  The results are shown in Table

6-40.  The most important omission from the original list appears to be arsenic and arsenic

compounds (see Figure 6-40).

Table 6-40: List of chemicals in the 33/50 Program, compared with lists created on the
basis of chemical contributions to risk from 1988 and 1997 TRI releases

Original 33/50 Chemicals

Chemicals selected based on
contribution to risk from 1988
reported releases

Chemicals selected based on
contribution to risk from 1997
reported releases

Carbon tetrachloride
Chloroform
Tetrachloroethylene
Dichloromethane
1,1,1-Trichloroethane
Benzene
Trichloroethylene
Toluene
Xylenes
Methyl ethyl ketone
Methyl isobutyl ketone

Carbon tetrachloride
Chloroform
Tetrachloroethylene
Dichloromethane
1,1,1-Trichloroethane
Carbonyl sulfide
Ethylene oxide
1,2-Dichloroethane
Methyl chloride
Methyl bromide
Polybrominated biphenyls

Carbon tetrachloride
Chloroform
Tetrachloroethylene
Carbonyl sulfide
Ethylene oxide
Polycyclic aromatic compounds
Methyl iodide

Cadmium and compounds
Chromium and compounds
Lead and compounds
Mercury and compounds
Nickel and compounds
Cyanide compounds

Cadmium and compounds
Chromium and compounds
Lead and compounds
Mercury and compounds
Nickel and compounds
Cyanide compounds
Arsenic and compounds
Copper and compounds
Cobalt and compounds
Barium and compounds

Cadmium and compounds
Chromium and compounds
Lead and compounds
Mercury and compounds
Nickel and compounds
Cyanide compounds
Arsenic and compounds
Copper and compounds
Cobalt and compounds
Manganese and compounds
Sulfuric acid (air emissions)

Notes: The median contribution to risk from underlined chemicals is higher than 1%; chemicals in italics are not
included in subsequent lists; chemicals in boldface do not appear in the original list of 33/50 chemicals; reporting of
releases of polycyclic aromatic compounds was not required before 1995; 3 chemicals (1-Chloro-1,1,2-2-
tetrafluoroethane, 1,1-dichloro-2-fluoroethane, and chlorine dioxide) were not included in the 1997 list due to the 5th

percentile 1-in-a-million contribution filter, but their 95th percentile contribution exceeds 1% -- further research into
their toxicity is needed to narrow the uncertainty.

                                                
65 The list of chemicals meeting the first screen but failing the second one could be used to direct resources to the

reduction of the uncertainties.  One would expect producers of those chemicals to be among the first parties
interested in carrying out the analysis to determine whether the true risk is more likely to be towards the higher or
the lower end of the distribution.
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INDUSTRIAL SECTOR COMPARISONS

Another example of the low correspondence between mass and risk is given by

comparing TRI releases across industrial sectors.  The left hand chart in Figure 6-44 compares

industrial sectors on the basis of total reported mass of TRI chemicals released in 1997.  Releases

were aggregated into industrial sectors using the first 2 digits of the standard industry

classification code (SIC code) reported by each facility in their TRI submission forms for 1997.

The sector with the largest mass of chemicals released or transferred was Chemicals (SIC code

28), followed by Paper (SIC code 26) and Primary Metals (SIC code 33).  The chart on the right

hand side of Figure 6-44 tells a different story.  Even though the Primary Metals sector account

for only 11% of the mass of TRI chemicals released in 1997, it is responsible for 14 to 67% of

the total chronic health risk posed by TRI releases.  The food sector is fourth in mass rankings,

with about 7% of reported TRI releases, but accounts for at most 0.7% of the health risk.  In

contrast, the textile sector, which contributed 1.3% of the mass, was responsible for up to 11% of

the chronic health risk.
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6.5.4 Discussion
A large fraction of the uncertainty in the ratio of potential chronic impact from reported

TRI emissions in 1997 to the one for 1988 is due to the uncertainty in the contribution of

polycyclic aromatic compounds.  The EPA defines the polycyclic aromatic compounds group

category as a set of including 19 specific chemicals [24].  The 19 compounds differ not only in

toxicity, but also (and more widely) in fate and transport properties.  Figure 6-45 shows the

median value and the 50% and 90% confidence intervals for the unit cancer risk indicator for the

19 compounds in the PACs group.  The large confidence interval for dibenzo(a,e)fluoranthene is

due to physical property data gaps in the database. The distribution for the unit risk indicator for

the group was obtained by sampling from each of the 19 distributions with equal probability.

The result is that even though the 90% confidence interval for each PAC typically spans 2.5 to 3

orders of magnitude, the 90% confidence interval for the group indicator spans 5 orders of

magnitude.  Individual reporting of releases of each of the 19 compounds would be needed to

decrease the uncertainty in the potential health risk posed by emissions from chemicals

belonging to this category.
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Figure 6-45:  Unit cancer risk indicators for compounds in the Polycyclic Aromatic Compounds
(PAC) chemical group.
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COMPARISON WITH OTHER RESULTS BASED ON CHRONIC TOXICITY INDICATORS

This section compares the results obtained with the method described here to two other methods

that are being used to rank TRI emissions from a risk-based perspective: (a) the Toxic Equivalent

Potentials method used in the Environmental Defense Fund Scorecard web site (EDF TEP), and

(b) the Environmental Indicators Model distributed in CD-ROM by EPA’s Office of Pollution

Prevention and Toxics (OPPTEIM).  As Table 6-41 shows, using the probabilistic approach to

estimating missing data elements resulted in a significant expansion of the set of chemicals or

chemical groups with a risk score.

Table 6-41: Availability of indicators to score 1997 reported TRI releases
TRI chemicals with 1997 emissions and available indicators

Toxicity endpoint EDF TEP OPPTEIM This work
Cancer 95 (45% of recognized

or suspected
carcinogens)

213 (100% of recognized
or suspected carcinogens)

Non-cancer 193 (47%) 412 (100%)
Combined 315 (76%) 412 (100%)

EDF toxic equivalent potentials
The toxic equivalent potential scores used by the Environmental Defense Fund are

calculated using similar procedures to the ones used to derive cancer and non-cancer chronic

toxicity indicators in this work.  The major differences are:

� The EDF uses the CalTox multimedia partitioning and exposure model.  While the model

used here shares many of the features of the CalTox model, there are some significant

differences with respect to the calculation of concentrations in food, as discussed in section

6.3.2.

� The model used in this work does not consider the dermal contact exposure route.

� When degradation rates for a chemical in a particular medium are not available, the EDF sets

the degradation rate to zero.  The approach taken in this work was to assign an uncertainty

distribution equal to the distribution of degradation rates among all the chemicals in the data

set for which the rate is available.

� When high-quality toxicity assessment values are not available for at least one exposure

route for a particular endpoint (either cancer or non-cancer), the EDF does not calculate a

toxic equivalent potential for that endpoint.  This effectively sets the toxic equivalent
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potential to zero.  In this dissertation lower-quality toxicity data were used instead to estimate

uncertainty distributions with uncertainty factors derived from the correlation scatter between

the lower-quality data set and higher quality data sets, as illustrated in Figure 6-22.  When no

toxicity data were available, the prior distributions in Table 6-42 were used.

Table 6-42: Default toxicity distributions used

Endpoint Distribution for toxicity factor
Number of
Chemicals

Non-cancer reference dose, mg/kg/day Lognormal(0.005,800) 33
Cancer slope factor, (mg/kg/day)-1 (EDF
recognized carcinogens)

Lognormal(0.84,1300) 2

Cancer slope factor, (mg/kg/day)-1 (EDF
suspected carcinogens)

Lognormal(0.15,1300) 11

Notes:  The first parameter in the distribution is the median value; the second parameter is the uncertainty factor (the
quantity by which the median value should be multiplied or divided to generate the 95% confidence interval).

Figure 6-46 and Figure 6-47 compare EDF TEP cancer scores and relative contributions

to the cancer risk indicator developed in this work for the top 50 chemicals ranked, respectively,

by their EDF TEP score and their calculated median contribution to cancer risk. The scores and

contributions are based on reported 1997 air emissions and water discharges. Figure 6-48 and

Figure 6-49 show analogous information for non-cancer chronic effects.
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Figure 6-46: Comparison between EDF cancer toxic equivalent potentials and distributions for the contribution to the total cancer
risk indicator (top 50 chemicals with reported 1997 releases or transfers to air, surface water, and wastewater treatment
plants, sorted by EDF cancer score).
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Figure 6-47: Comparison between EDF cancer toxic equivalent potentials and distributions for the contribution to the total cancer
risk indicator (top 50 chemicals with reported 1997 releases or transfers to air, surface water, and wastewater treatment
plants, sorted by median contribution to cancer risk).
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Figure 6-48: Comparison between EDF non-cancer toxic equivalent potentials and distributions for the contribution to the total non-
cancer chronic toxicity indicator (top 50 chemicals with reported 1997 releases or transfers to air, surface water, and
wastewater treatment plants, sorted by EDF non-cancer score).
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Figure 6-49: Comparison between EDF non-cancer toxic equivalent potentials and distributions for the contribution to the total non-
cancer chronic toxicity indicator (top 50 chemicals with reported 1997 releases or transfers to air, surface water, and
wastewater treatment plants, sorted by median contribution to non-cancer toxicity indicator).
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There is general agreement between the results obtained here and the scores published in

Scorecard.  As Figure 6-50 shows, only 5 out of 88 compounds for which Scorecard has cancer

scores fall outside the calculated 90% confidence intervals.  Similarly, only 12 of 179 chemicals

for which Scorecard has non-cancer scores are outside the 90% confidence intervals (Figure

6-51).  The major differences can be traced to the way in which data gaps are handled.  It appears

that Scorecard overestimates the contribution of several substances (e.g. nitrobenzenes and

methacrylonitrile in Figure 6-48) due to the assumption of infinite degradation lifetimes for

substances with missing data.  Similarly, nickel’s contribution to cancer appears to be

underestimated in Scorecard due to nonconsideration of nickel’s cancer potency when ingested.

The contributions of several important compounds are ignored in Scorecard due to lack of high-

quality data (e.g. polycyclic aromatic compounds in Figure 6-47 and carbonyl sulfide in Figure

6-49).  Other than differences in the treatment of missing high-quality data, the main difference

between the results published in Scorecard and those shown here is that the EDF results could be

considered as one out of the thousands of iterations used to generate the distributions shown

here.  The method developed in this work allows one to make statements about the confidence

with which two chemicals, industrial sectors, facilities, or reporting years can be ranked with

respect to one another. In the absence of correlations between indicator scores, the analysis

suggests that differences in EDF scores of less than two orders of magnitude are not significant.

Smaller differences (as the difference in score between two reporting years) could be significant

only if the distributions for the scores were highly correlated.  Propagation of the uncertainty in

the ratio of the indicator scores would be required to determine how significant those differences

are.
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OPPT Environmental Indicators Model
EPA’s Office of Pollution Prevention and Toxics has developed an indicator model

(OPPTEIM) for ranking TRI emissions [68].  The full model has been operationalized for air

emissions only, and consists of four components:

• the quantity of pollutant emitted

• an adjustment for toxicity

• an adjustment for exposure potential

• an adjustment to reflect the size of the potentially exposed population
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In contrast with the fate and transport model used in this work (in which pollutant

concentrations are assumed to be well mixed within each of the environmental compartments of

the fate and transport model), the OPPTEIM calculates air concentrations in the vicinity of each

emission source.  The OPPTEIM uses a Gaussian plume model to calculate pollutant

concentrations in the center of each 1 km by 1 km grid cell in a 21 km by 21 km area

surrounding a facility with emissions.  Exposure potentials are calculated for each cell by

multiplying the estimated pollutant concentration by an adult’s breathing rate.  Exposure

potentials are multiplied by the population in each grid cell to yield the final exposure indicator.

The OPPTEIM gives higher weighting to toxic emissions taking place in highly populated areas,

while the fate and transport model used in this dissertation does not differentiate among

emissions on the basis of their geographic location.

Other major differences between the EPA approach and the approach used in this work

are: (i) in calculating air concentrations, the OPPTEIM takes into account air degradation rates

only, while the model described in section 6.3.1 considers additional processes (such as particle

deposition, rain dissolution, and dry deposition to surfaces), (ii) the exposure model described in

section 6.3.2 considers the ingestion route in addition to the inhalation route. For many

chemicals the ingestion route is the dominant long-term exposure route, even if they are emitted

to air only.

Figure 6-52 and Figure 6-53 compare OPPTEIM scores and contributions to the

combined chronic toxicity indicator calculated in this work for the top 50 chemicals ranked,

respectively, by their OPPTEIM score and their median calculated contribution to chronic

toxicity. The scores and contributions are based on reported 1997 air emissions only. There is

less correspondence between the measure developed in this thesis and the OPPTEIM scores than

between the combined health risk indicator and EDF's toxic equivalent potentials. This can be

seen more clearly by comparing Figure 6-54 with Figure 6-50, or with Figure 6-51. The

OPPTEIM tends to give lower scores relative to this work for substances with long

environmental persistence and substances for which the main contribution to risk comes from the

ingestion route.  The model tends to give higher scores for substances that are quickly removed

from the atmosphere by dry or wet deposition processes. This is not surprising, given the

differences in the calculation of the exposure potentials.  By restricting their calculations to a 441

km2 area surrounding each facility, the OPPTEIM effectively gives equal exposure weight to
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substances with atmospheric lifetimes higher that about a day, whether the lifetime is 2 days or 5

years.  By ignoring the ingestion route, the OPPTEIM model does not give higher weighting to

chemicals that bioaccumulate through food chains.  The OPPTEIM is more appropriate for

ranking exposures to people who live near an emission source (local impacts), while the risk

indicator used in this dissertation is more appropriate for ranking risks to the general population

(regional or global impacts). The indicator used in this work is particularly more relevant

regarding cancer risk, since there is no exposure threshold for cancer effects.  As distance from

an emission source increases, the concentration of a persistent and volatile carcinogen decreases

due to dilution, but the size of the exposed population increases.

Figure 6-55 shows that the exposure potential and population size adjustments have a

very marginal impact in the OPPTEIM scores aggregated at the national level.  96.65% of the

variation in the indicator can be explained by the product of mass released times toxicity via the

inhalation route.  As discussed above, the reason is that the potential exposure calculations are

not affected by bioaccumulation and persistence (except for substances with degradation half

lives shorter than a day).
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Figure 6-52: Comparison between OPPTEIM scores and contribution to combined chronic toxicity indicator (Top 50 TRI chemicals
with 1997 reported emissions to air, sorted by OPPTEIM score)
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Figure 6-53: Comparison between OPPTEIM scores and contribution to combined chronic toxicity indicator (Top 50 TRI chemicals
with 1997 reported emissions to air, sorted by median contribution to toxicity indicator)
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CASE STUDY CONCLUSIONS

Uncertainty propagation allows combination of information of different qualities without

diluting the information content of the highest quality data.  This example shows that

uncertainties in indicators used to assess environmental performance do not necessarily imply

uncertainty in decision-making.  In particular, the analysis presented here shows two types of

decisions that can be made:
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• Identify priority pollutants that account for a majority of potential impacts

• Allocate resources to reduce key uncertainties

There are hundreds of chemicals with reported emissions in the toxics release inventory,

but only a few of them have more than a 5% chance of contributing at least 1% of the total

impact.  There are also hundreds of data elements for which information of the highest quality is

not available.  However, there are only a few data elements that have the potential to affect the

list of priority chemicals.
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Chapter 7 Process by Product Input-
Output Life Cycle Assessment

7.1 Introduction
The incorporation of environmental issues as a design objective is limited in practice by

the availability of environmental impact indicators appropriate for making quantitative tradeoffs.

In contrast, designers have easy access to managerial cost accounting data that provide them with

unit costs for the raw materials, utilities, and waste treatment services that might be part of their

design.  The availability of these unit costs allows designers to compare the economic

performance of alternative designs, and to optimize their performance by resolving tradeoffs in

the direction that maximizes profitability.  If unit environmental indicators for raw materials,

utilities, waste treatment services, and environmental releases were available, designers could

compare alternative designs and resolve tradeoffs in the direction that minimizes potential

environmental impact.  A combination of economic and environmental objectives could then be

used to identify superior design alternatives.  The process-by-product input-output life cycle

assessment (PIO-LCA) method developed in this chapter provides systematic procedures for

generating unit environmental impact indicators in a transparent manner.  In addition to

providing indicator values, the procedure provides data that allow the user to interpret the results

and to identify the factors that drive the indicator values.  The method can be easily implemented

on a spreadsheet. The resulting spreadsheet models can be rapidly updated when new

information becomes available.

The remainder of the introductory section gives a brief overview of life-cycle assessment

and input-output analysis. Section 7.2 introduces the example used throughout the rest of the

chapter to illustrate the application of the PIO-LCA method.  The method is developed in section

7.3, where data requirements are provided, followed by the derivation of the equations needed to

generate and interpret environmental impact indicators.   Section 7.4 demonstrates the versatility

of the method by providing several illustrative applications of the matrices and vectors that can

be generated with the method. Section 7.5 discusses the propagation of uncertainties in the input-

output model.  Finally, a comparison between the PIO-LCA method and a linear programming
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formulation that uses the same underlying data is presented in the discussion section, showing

how both approaches complement each other.  A spreadsheet-based tool designed to automate

the calculations presented in the chapter is presented in Appendix C.

7.1.1 Life cycle assessment

Engineers should consider not only the environmental impacts directly generated in the

processes they design, but also take into account the environmental impacts associated with the

provision of the products and services they specify as inputs to their processes.  Failure to

incorporate upstream impacts would lead to designs where as much production as possible is

outsourced to suppliers, since emissions would then be placed outside of the boundary of

analysis [1].  Life-cycle assessment (LCA) is a process used to evaluate the burdens placed on

the environment by the production of a product or the provision of a service.  The procedure

attempts to take into account the use of resources and the generation of pollution at every stage

of the supply, use, and disposal chains, from the initial extraction of raw materials until the point

at which all residuals are returned to the environment [2].

The main stages in LCA are scope definition, inventory analysis, impact analysis, and

improvement analysis.  By far the most developed component of LCA is the inventory analysis

stage.  This is a very time consuming step for which specialized software and databases have

been developed [3].  A problem with these databases is that the life cycle inventory for a product

(e.g. electricity) is often provided without showing the contributions of each of the processes that

contribute to the inventory.  It is therefore very difficult, if not impossible, to update the

inventories to reflect technological changes in one or more of the upstream processes.  A second

problem is that most product and process level LCA software represents production of a product

as a process tree, when a network representation is often closer to reality.  For example, Figure

7-1 shows the process tree for the production of chlorine in the Netherlands generated using

SimaPro 4.0 and its processes database [3].  The emissions stored in the database for the

processes that supply rock salt and electricity include emissions from upstream processes.  An

alternative representation is shown in Figure 7-2, where products and processes associated with

the production of chlorine in the United States are shown as a network.  Note that the three

inputs to the chlor-alkali processes (brine, electricity, and thermal energy from gas-fired boilers)

are connected (either directly or indirectly) to many processes in common, for example the coal-
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fired power plant.  If the emissions inventory for power generation in coal-fired power plants

included trace metal emissions from coal combustion, then all three inputs would inherit a

fraction of these emissions.

Figure 7-1: Process tree representation of chlorine production in the LCA software SimaPro

There are several important distinctions between the tree and network representations:

1) The network representation allows feedback loops, where the outputs of a process can be

used by the processes that supply its inputs.  For example, in Figure 7-2 natural gas is used as

an input by the gas-fired power plants to generate electricity.  Electricity is in turn used as an

input for the production of natural gas.

2) The network representation shows the relationships among products produced in

multiproduct processes.

3) The network representation shows more clearly instances of an input common to many

processes.

The ability of a network representation to show more relationships than a tree

representation also makes it appear to be more complicated to analyze, particularly due to the

possible presence of feedback loops.  Input-output analysis is used here to overcome this

difficulty.

7.1.2 Input-output analysis

Input-output analysis techniques pioneered by Wassily Leontief [4] can be used to

analyze complex production networks.  A key assumption is that the network of interactions can



358         CHAPTER 7.PROCESS BY PRODUCT INPUT-OUTPUT LIFE CYCLE ASSESSMENT                                                

be appropriately described by linear relationships.  For example, if 3.2 kWh of electricity were

needed to produce 1 kg of chlorine, then 3200 kWh of electricity would be required to produce

1000 kg of chlorine.  The majority of input-output models use data at the national or regional

levels, with interactions among industries and commodities expressed in monetary terms.  The

methods can also be used at the enterprise level with interactions among processes and products

expressed in physical units [5].
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The economic input-output approach to analyze environmental burdens as a result of

economic activity was first studied by Leontief [6].  Detailed descriptions of various input-output

models that incorporate environmental concerns have been provided by Miller [7].  By taking

advantage of the more recent availability of data, the Green Design Initiative group at Carnegie

Mellon University [8-10] has developed the methodology of economic input-output

environmental life cycle assessment (EIO-LCA).  This chapter builds on the methodology of

EIO-LCA to allow for analysis at a deeper level of detail (process level), and to include impact

and improvement analysis.  The process level input-output life cycle assessment (PIO-LCA)

methodology presented in this work provides systematic procedures for addressing multiproduct

processes and products produced in multiple processes.  It also provides a framework for

organizing and managing LCA data in a way that allows designers to trace impacts to the

processes that originate them and that allows rapid updating of life cycle inventories when

emission factors for an underlying process are updated.

7.2 Illustrative example
A life-cycle impact assessment of chlorine production (from cradle to gate) is used as an

example throughout this chapter to illustrate how the methodology is applied.   Tables with

intermediate results are provided so that this chapter may serve as a tutorial for analysts

interested in learning the method.  The method relies heavily on matrix algebra, which facilitates

computer implementation but might be a source of confusion to the reader.  A glossary of

matrices and vectors is provided in the appendix (section 7.8).  Readers are encouraged to refer

frequently to the glossary and the tables as they follow the derivations in the next section.   Even

though the literature, government statistics, and specialized databases were consulted to obtain

data for the example [3,11-17], the sources used might not the most recent or most relevant. The

purpose of this chapter is to introduce the tool and show its application, and not the presentation

of particular analysis results for management or policy decisions.

There are three major processes currently in use for the production of chlorine.  All three

processes are based on the electrolysis of an aqueous solution of sodium chloride [11]:

2NaCl + 2H2O → Cl2 + 2NaOH + H2 (7-1)

The evolution of chlorine takes place in the anode of the electrolytic cell:
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2Cl-  → Cl2 + 2e- (7-2)

while the nature of the reaction at the cathode depends on the specific process.  The three

processes are the mercury cell process, the diaphragm cell process, and the membrane cell

process. In the mercury cell process, sodium amalgam is produced at the cathode.  The amalgam

is reacted with water in a separate reactor to produce hydrogen gas and caustic soda solution.

Mercury is recycled to the electrolytic cell.  In the diaphragm cell process, the anode is separated

from the cathode by a permeable asbestos-based diaphragm.  Sodium hydroxide and hydrogen

gas are produced directly at the cathode.  Steam is used to evaporate water from the caustic

solution recovered from the cathode.  In the membrane cell process, a cation-permeable ion-

exchange membrane separates the anode and the cathode.  Only sodium ions and some water

pass through the membrane.  As in the case of the diaphragm cell process, sodium hydroxide and

hydrogen gas are produced in the cathode.  The caustic solution leaves the membrane cell at a

relatively high concentration, and thus less steam is required to concentrate the solution to

commercial specifications.  The major difference in operating cost among the three processes is

due to the consumption of energy as electricity and steam. In building the process network it was

assumed that natural gas is the fuel used to generate the steam used in the membrane cell and

diaphragm cell processes.   For the sake of simplicity (and because of limited data), the processes

supplying electrolytic cell materials have been omitted from the analysis.

7.3 The PIO-LCA method

7.3.1 Input data

Two product-by-process matrices represent the technologies: A “use matrix” (B) and a

“make matrix” (C).   Columns in each matrix correspond to individual processes, while rows

correspond to products (product inputs in the use matrix, product outputs in the make matrix).

The word “product” in this context refers to any product or service of economic value.  Both

matrices have the same dimensions, but they do not need to be square matrices.  The only

structural requirement is that each product with nonzero entries in the corresponding row of the

use matrix must be produced by at least one process, and thus must have a nonzero entry in the

corresponding row of the make matrix.   An entry Bij in the use matrix gives the number of units

of product i that are used as input by one unit of throughput of process j.  An entry Cij in the
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make matrix gives the number of units of product i that are produced as output by one unit of

throughput of process j.  The use and make matrices for the example are shown in Table 7-166.

The second to fourth columns of the use and make matrices contain, respectively, the input and

output information for the three alternative processes for producing chlorine through electrolysis.

Table 7-1: Use and make matrices for the chlorine LCA example
PR

OC
ES

S

PRODUCT INPUTS
Chlorine kg
Coal kg 1
Diesel fuel kg 0.02
Electricity MJ 0.36 10.8 11 11.7 0.05 0.14 1.4 0.12 0.14
Hydrogen kg
Mechanical energy from diesel engines MJ 2.53 0.27
Natural gas kg 19.5 2 19.5
Oil kg 1 23.2
Railroad transport kg-km 467
Salt from brine kg 1.65 1.65 1.65
Sodium hydroxide kg
Thermal energy from coal furnace MJ 0.01 10.2
Thermal energy from industrial gas furnace MJ 9 1.35 1.84 31.9 1.27 0.53
Thermal energy from oil furnace MJ 0.55 0.03 0.06 9.73
Thermal energy from utility gas furnace MJ 10.2

PRODUCT OUTPUTS UNITS
Chlorine kg 1 1 1
Coal kg 1
Diesel fuel kg 1
Electricity MJ 3.6 3.6 3.6 3.6 3.6
Hydrogen kg 0.03 0.03 0.03 1
Mechanical energy from diesel engines MJ 1
Natural gas kg 1
Oil kg 1
Railroad transport kg-km 1000
Salt from brine kg 1
Sodium hydroxide kg 1.12 1.12 1.12
Thermal energy from coal furnace MJ 29.6
Thermal energy from industrial gas furnace MJ 1055
Thermal energy from oil furnace MJ 1055
Thermal energy from utility gas furnace MJ 1055

UNITS B = [use matrix]

C = [make matrix]

Processes with a single output have only one non-zero entry in the corresponding column

of the make matrix.  For example, the “coal production process” listed in column 6 of the

matrices has a single output, and thus a single nonzero entry in the make matrix.  The coefficient

                                                
66 The four first tables in this chapter (Table 7-1 through Table 7-4) were generated automatically in Microsoft Excel

using the EnvEvalTool described in section 9.4.  Details are given in section B.3 in Appendix B.
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of 1 in the matrix means that this process has been defined on the basis of the production of 1 kg

of coal, since the unit of measurement used for the product “coal” is the kilogram.

Multi-product processes may have several nonzero entries in the corresponding column

of the make matrix.  In the example, all three chlor-alkali processes produce three products with

commercial value: chlorine, sodium hydroxide, and hydrogen.    Note that the entries in the make

matrix give the meaning of a unit of throughput for each process. The results of the methodology

are not sensitive to the basis chosen to define a unit of process throughput, as long as the units

used to measure inputs and outputs of each product are consistent across all processes.  Processes

could be defined on the basis of a unit of product output, on the basis of annual production, or on

any other basis that is convenient or consistent with existing sources of data.  For example, the

references consulted to obtain technical coefficients for the electricity generation processes give

inputs, outputs and emissions on the basis of 1 kWh of electricity generated [12].   Since the unit

for the electricity “product” in the tables is MJ, the corresponding entries in the make table were

set to 3.6, using the unit conversion 1 kWh = 3.6 MJ.   Similarly, a conversion factor of 1 million

BTU = 1055 MJ was used to generate the entries for the most of the fossil fuel combustion

processes67, since the source consulted uses a million BTU of thermal energy as the basis for

listing emissions.

Data regarding environmental exchanges are organized into a matrix of direct

environmental exchanges (E).  The columns of E correspond to the processes, listed in the same

order as in matrices B and C, while its rows correspond to environmental exchanges.  An entry

Ekj gives the number of units of environmental exchange k arising from one unit of throughput of

process j.  For example, the entry in the fifth column and seventh row of Table 7-2 states that the

coal furnace process generates 2.7 kg of carbon dioxide per kg of coal burned.  Environmental

exchanges include pollutant releases to the different environmental media, and may also include

depletion of natural resources or any other externality of interest to the analyst.   Mass and

energy balances could be closed around each process if enough “product” and “environmental

exchange” inputs and outputs were considered, but the applicability of the method does not

require inclusion of all the inputs and outputs needed to close mass balances.  As an example,

consider the last column in Table 7-1 and Table 7-2.  The “utility gas furnace” process uses a

                                                
67 The exception is the coal furnace process, which is defined on the basis of 1 kg coal burned.
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commercial input of 19.5 kg of natural gas (matrix B) to generate 1055 MJ of thermal energy as

steam (matrix C).  It also generates at least 54.4 kg of pollutants (sum of the entries in the last

column of matrix E).  Most of the difference between the mass of outputs and the mass of inputs

can be attributed to the consumption of oxygen from the air used in combustion. However, since

air is not a commercial input, there is no corresponding row for air in matrices B and C.  There is

also no row for oxygen depletion in matrix E, since the reservoir of oxygen in the atmosphere is

not being disturbed significantly by human activities68.

The analyst has the freedom to structure the use and make matrices in any manner that is

consistent with the available data.  In the example, data were available for the emission of

combustion products from furnaces burning different types of fuels. Thermal power plant

emissions were estimated by specifying thermal energy as an input for the power generation

processes.  When this modeling approach is adopted, there is no need to list combustion

emissions in the power generation columns of matrix E, since combustion emissions are already

taken into account by the specification of the output of a furnace process as an input to the

corresponding power generation process.  An alternative approach that could be taken is to list

the emissions directly under the power generation processes, and replacing the specification of

thermal energy as an input with the specification of the appropriate fuel input.  The difference

between the two approaches is shown schematically in Figure 7-3.

The existence of multiproduct processes and products that can be produced by different

technologies makes it necessary to establish accounting rules to allocate or attribute process

throughputs to product demands (since a one to one correspondence between products and

processes would not exist in these cases).  Allocation is necessary to avoid double counting.

Suppose a design uses chlorine as an input, but it does not require any sodium hydroxide.  It

would not be reasonable to charge chlorine with the responsibility for all of the impacts resulting

from the operation of the chlor-alkali processes. Clearly, consumers of sodium hydroxide share

some of the responsibility for causing the chlor-alkali processes to be operated.

                                                
68 The conversion of oxygen into carbon dioxide is a cause for concern, but this concern is properly taken into

account by including a row for carbon dioxide emissions in matrix E



Table 7-2: Environmental exchanges matrix for the chlorine LCA example
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EXCHANGE TYPE EXCHANGE UNITS E = [Environmental exchanges matrix]

Air 2,3,7,8-Tetrachlorodibenzo-p-dioxin kg 1E-11 1E-11
Air Ammonia kg 9E-07 9E-07 9E-07
Air Arsenic kg 2E-07 1E-07 5E-06 1E-07
Air Asbestos kg 2E-08
Air Barium kg 1E-07 1E-07 1E-07 1E-06 9E-09 1E-06
Air Cadmium kg 2E-08 1E-06
Air Carbon dioxide kg 2.7 0.076 54.4 5.5 0.21 6E-05 88.1 54.4
Air Carbon monoxide kg 0.002 3E-04 0.016 0.018 0.018
Air Carbon tetrachloride kg 5E-06 5E-06 5E-06
Air Chlorine kg 0.004 0.004 0.004
Air Cobalt kg 5E-08 5E-08 2E-05 5E-08
Air Cyanide kg 1E-06
Air Dichlorodifluoromethane kg 6E-06 6E-06 6E-06
Air Hydrazine kg 3E-09 3E-09 3E-09
Air Hydrochloric acid kg 1E-07 1E-07 1E-07 6E-04 1E-04
Air Hydrogen sulfide kg 3E-04
Air Isophorone kg 3E-07
Air Lead kg 2E-07 1E-07 5E-06 1E-07
Air Mercury kg 4E-06 4E-08 4E-07
Air Methane kg 3E-05 0.001 0.025 1E-03 1E-04
Air Nickel kg 1E-07 2E-06 3E-04 2E-06
Air NOx (as NO2) kg 0.005 0.001 0.063 0.002 0.14 0.024
Air PM10 kg 0.008 0.003 0.044 0.001
Air Sulfur dioxide kg 0.017 1E-04 3E-04 6E-04 0.6 3E-04
Air Sulfuric acid kg 4E-08 4E-08 4E-08
Air Total Suspended Particles kg 1E-04 2E-04
Water Barium kg 2E-07 2E-07 2E-07
Water Chlorine kg 1E-06 1E-06 1E-06
Water Hydrochloric acid kg 3E-07 3E-07 3E-07
Water Mercury kg 1E-07
Water Sulfuric acid kg 2E-09 2E-09 2E-09 9E-04 5E-06 5E-04 0.001 1E-05
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coal Coal-fired
power plant electricity

thermal
energy

from coal

combustion products

Coal furnace

coal Coal-fired power plant electricity

combustion products

(a) combustion product emissions listed under furnace process

(b) combustion product emissions listed under power plant process

Figure 7-3: Two alternative approaches for listing emissions of combustion products associated
with the coal-fired power plant process

Two sets of data are needed as inputs to the two allocation rules used in the PIO-LCA

method.  The first is information about the proportions (as a fraction of total demand) in which

different processes are used to supply the demand for a product that can be made by different

processes.  This information is organized into a “market share” matrix (F).  An entry Fji gives the

fraction of the demand for product i that is fulfilled by the outputs of process j. Table 7-3 shows

the market share matrix for the example69.  The market shares correspond to production in the

United States in the period 1980-1990.  There are four products that are made by more than one

process, namely electricity (column 6), and the products of the chlor-alkali processes (columns 1,

5, and 11).  Electricity is generated by five different types of power plants, and the corresponding

entries in F give the proportion in which each type of power plant contributes the supply of

electricity to the United States national grid.

                                                
69 Note the switching of rows and columns in matrix F compared to matrices B, C, and E.  The reason for the switch

is that the matrices are meant to be read by columns.  The market share fractions shown on the table are relative
to the total of all processes contributing to the output of the product shown in the table.
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Table 7-3: Market share matrix for the chlorine LCA example

PR
OD

UC
T

PROCESS
Brine pumping 100%
Chloralkali production (diaphragm cell process) 78% 8% 78%
Chloralkali production (membrane cell process) 6% 1% 6%
Chloralkali production (mercury cell process) 16% 2% 16%
Coal furnace 100%
Coal production 100%
Coal-fired power plant 57%
Diesel engine 100%
Diesel fuel production 100%
Gas-fired power plant 9%
Hydroelectric plant 11%
Industrial gas furnace 100%
Methane reforming 90%
Natural gas production 100%
Nuclear power plant 20%
Oil furnace 100%
Oil production 100%
Oil-fired power plant 3%
Railroad transport 100%
Utility gas furnace 100%

F = [market share matirx]

The second set of data needed is price information, organized in a product price vector

(p).   Prices are used to carry out throughput allocations of multiproduct processes on the basis of

value.  The reason for doing this is that product values (masses × price) are more representative

of the driving force for the continuing operation of a process than product masses [18].  Some

analysts prefer to carry out allocations on the basis of mass.  This can easily be done in the PIO-

LCA method by simply setting the same price per unit mass for all the products.

The only prices needed are the prices of products produced in multiproduct processes,

since prices for products produced in single product processes do not affect the calculations.

This is the reason why some of the entries in vector p shown in Table 7-4 have the default value

999 (any nonzero value can be used; the reason a nonzero value is needed is to prevent division

by zero in eq (7-3) below).

Prices are used together with the make matrix in the first allocation accounting rule to

build an “allocation matrix” (G).  The entries in G are given by:
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where the subscripts i and i' correspond to the product and the subscript j to the process.

Table 7-4: Price and demand vectors for the chlorine LCA example

PRODUCT
Chlorine 0.21 $/kg 1000 kg
Coal 999 $/kg 0 kg
Diesel fuel 999 $/kg 0 kg
Electricity 999 $/MJ 0 MJ
Hydrogen 0.8 $/kg 0 kg
Mechanical energy from diesel engines 999 $/MJ 0 MJ
Natural gas 999 $/kg 0 kg
Oil 999 $/kg 0 kg
Railroad transport 999 $/kg-km 0 kg-km
Salt from brine 999 $/kg 0 kg
Sodium hydroxide 0.24 $/kg 0 kg
Thermal energy from coal furnace 999 $/MJ 0 MJ
Thermal energy from industrial gas furnace 999 $/MJ 0 MJ
Thermal energy from oil furnace 999 $/MJ 0 MJ
Thermal energy from utility gas furnace 999 $/MJ 0 MJ

d = demand vectorp = price vector

Note: The value 999 is used as a default value in the price vector when the price information
is not needed (i.e. when the product is not made in multiproduct processes)

The value Gji gives the amount of throughput of process j (as defined by the

corresponding column in matrix C – one unit of throughput makes the amounts of products

shown in that column) that is attributable to one unit of the product i made in that process. Note

that for single product processes the entry Gji is given by 1/Cij. The allocation matrix for the

example is given in Table 7-5.  Note that in addition to allocating process throughputs to the

individual products made in a multiproduct process, the allocation matrix also carries out basis

conversions.  Consider the power generation processes.  The basis for these processes is that a

unit of throughput generates 3.6 MJ of electricity.  It follows that a product demand of 1 MJ of

electricity from a power generation process would require a throughput of 1 MJ ÷ 3.6 MJ =

0.278 power generation throughput units.
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Table 7-5: Allocation matrix for the chlorine LCA example

Brine pumping 1
Chloralkali production (diaphragm cell process) 0.419 1.596 0.479
Chloralkali production (membrane cell process) 0.419 1.596 0.479
Chloralkali production (mercury cell process) 0.419 1.596 0.479
Coal furnace 0.034
Coal production 1
Coal-fired power plant 0.278
Diesel engine 1
Diesel fuel production 1
Gas-fired power plant 0.278
Hydroelectric plant 0.278
Industrial gas furnace 9E-04
Methane reforming 1
Natural gas production 1
Nuclear power plant 0.278
Oil furnace 9E-04
Oil production 1
Oil-fired power plant 0.278
Railroad transport 0.001
Utility gas furnace 9E-04

G = [Allocation matrix]

The second allocation rule distributes the demand for a product among the different

processes that produce it on the basis of market share.  The allocation matrix is combined with

the market share matrix to give a process-by-product throughput matrix (D), where each element

of D is given by:

jijiji GFD ⋅= (7-4)

The entry Dji gives the amount of throughput of process j that is attributable to the

demand for one unit of product i at the current prices and prevailing process supply mix.  Table

7-6 gives matrix D for the chlorine production example.  Column 4 shows that a demand of 1 MJ

of electricity is being charged with 0.159 units of throughput from the coal-fired plant process,

0.007 oil-fired plant throughput units, 0.025 gas-fired plant throughput units, 0.056 nuclear plant

throughput units, and 0.030 hydroelectric plant throughput units.  Since each throughput unit

from a power plant has been defined to generate 3.6 MJ of electricity, it can easily be checked

that together the throughputs from the 5 processes listed above do indeed generate 1.00 MJ of

electricity.
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Table 7-6: Process by product throughput matrix for the chlorine LCA example

Brine pumping 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
Chloralkali production (diaphragm cell process) 0.327 0 0 0 0.125 0 0 0 0 0 0.374 0 0 0 0
Chloralkali production (membrane cell process) 0.025 0 0 0 0.01 0 0 0 0 0 0.029 0 0 0 0
Chloralkali production (mercury cell process) 0.067 0 0 0 0.026 0 0 0 0 0 0.077 0 0 0 0
Coal furnace 0 0 0 0 0 0 0 0 0 0 0 0.034 0 0 0
Coal production 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
Coal-fired power plant 0 0 0 0.159 0 0 0 0 0 0 0 0 0 0 0
Diesel engine 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
Diesel fuel production 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
Gas-fired power plant 0 0 0 0.025 0 0 0 0 0 0 0 0 0 0 0
Hydroelectric plant 0 0 0 0.03 0 0 0 0 0 0 0 0 0 0 0
Industrial gas furnace 0 0 0 0 0 0 0 0 0 0 0 0 9E-04 0 0
Methane reforming 0 0 0 0 0.9 0 0 0 0 0 0 0 0 0 0
Natural gas production 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
Nuclear power plant 0 0 0 0.056 0 0 0 0 0 0 0 0 0 0 0
Oil furnace 0 0 0 0 0 0 0 0 0 0 0 0 0 9E-04 0
Oil production 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
Oil-fired power plant 0 0 0 0.007 0 0 0 0 0 0 0 0 0 0 0
Railroad transport 0 0 0 0 0 0 0 0 0.001 0 0 0 0 0 0
Utility gas furnace 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9E-04

D = [Process by product throughput matrix]

jijiji GFD =

Summarizing, the data required to generate life-cycle environmental intervention

inventories using the PIO-LCA method consists of technical descriptions of each process (in the

corresponding columns of B, C, and E), and statistical/economic information regarding prices

and market shares in the vector p and the matrix F.  The relationship between the matrices B, C,

and E and the process-product diagram is shown in Figure 7-4, using the mercury cell process as

an example.

7.3.2 The inventory analysis stage of PIO-LCA

Once the data has been organized as described in the previous section, it is very easy to

obtain life-cycle environmental exchanges associated with any vector of product output demands

d, following standard input-output analysis techniques.

The vector of direct product production requirements arising from the demand vector d is

given by

qdirect = (I + BD)d (7-5)
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electricity

Mercury chloralkali
process

hydrogen

sodium
hydroxide

chlorine

1 kg

1.12 kg

0.028 kg

salt from
brine

1.65 kg

11.7 MJ

Hg to air: 3x10-6 kg
  Cl2 to air: 3x10-5 kg
    H2 to air: 1x10-4 kg

Environmental exchanges (Ekj)

Process input  from tecnosphere (Bij)

Process output to technosphere (Cij)

j Process

i Product

Figure 7-4: Correspondence between product-process flow diagrams and input-output matrices

where I is the identity matrix, and the matrix product BD = Aprod is the product-by-product

direct requirements matrix.  Table 7-7 shows matrix Aprod for the example.  Column 4 shows that

the production of 1 MJ of electricity requires the provision of 1.631 MJ of thermal energy from

coal-fired furnaces, 0.068 MJ from oil-fired furnaces, and 0.259 MJ from gas-fired utility

furnaces. Column 1 shows that the production of 1 kg of chlorine is being charged with the

production of 0.7 kg of salt and the generation of 4.6 MJ of electricity.  These requirements are

much lower than the requirements shown in the use matrix, which states that to produce 1 kg of

chlorine, 1.85 kg of salt and between 10.8 and 11.7 MJ of electricity are required, depending on

the process.  The reason is that these processes also produce 1.12 kg of sodium hydroxide and

0.028 kg of hydrogen per kg of chlorine produced, and matrix Aprod allocates the input

requirements among all three of the chlor-alkali process outputs. Multiplying column 1 by 1 kg,

column 11 by 1.12 kg, column 5 by 0.028 kg, and then adding the three vectors obtained, yields

the actual amounts of physical inputs required.
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Table 7-7: Product-by-product direct requirements matrix for the chlorine LCA example

Aprod = BD

Chlorine (kg)
Coal (kg) 0.034
Diesel fuel (kg) 0.024
Electricity (MJ) 4.591 0.052 0.144 3.009 0.124 0.142 0.36 5.246
Hydrogen (kg)
Mechanical energy from diesel engines (MJ) 2.53 3E-04
Natural gas (kg) 1.8 0.018 0.018
Oil (kg) 1 0.022
Railroad transport (kg-km) 15.8
Salt from brine (kg) 0.691 0.263 0.79
Sodium hydroxide (kg)
Thermal energy from coal furnace (MJ) 0.01 1.631
Thermal energy from industrial gas furnace (MJ) 2.975 1.839 29.84 1.271 0.53 3.4
Thermal energy from oil furnace (MJ) 0.545 0.068 0.027 0.064
Thermal energy from utility gas furnace (MJ) 0.259

Aprod = [Product by product direct requirements matrix]

The vector of total product requirements (including direct and indirect product

requirements) is given by

q = (I + Aprod + Aprod Aprod + Aprod Aprod Aprod + …)d  = (I − Aprod)-1 d (7-6)

where the matrix (I − Aprod)-1
 is the product-by-product total requirements matrix. The terms in

the sum can be interpreted as follows: Id is simply the amount of products demanded; Aprodd

gives the amounts of products (raw materials) used directly in the production of the products

demanded; AprodAprodd gives the amount of products required to produce the raw materials used

by processes that manufacture the products demanded, etc. This principle has been applied

before to process-based life cycle analysis.  Boustead [19] suggests that the analyst should iterate

on the calculation of requirements until no noticeable change is detected. This is in fact the

calculation procedure given by the series Id + Aprodd + Aprod Aprodd + Aprod Aprod Aprodd + …

The product-by-product total requirements matrix for the example is given in Table 7-8.

Note that now chlorine production (column 1) requires the production of coal, oil, diesel, and

natural gas, as well as the supply of transportation services.  The diagonal elements of matrix

Aprod give an indication of the importance of feedback loops.  Products for which the diagonal

element has a value of 1 do not participate in feedback loops.  Products that are part of feedback
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loops have a diagonal value higher than 1.  For example, the diagonal element for natural gas has

a value of 1.025 in Table 7-8.  This means that 0.025 kg of natural gas are consumed directly or

indirectly by the processes needed to produce 1 kg of natural gas.  The corresponding vectors of

direct and total product requirements associated with the production of 1000 kg of chlorine are

shown in Table 7-9.

Table 7-8: Product-by-product total requirements matrix for the chlorine LCA example

(I-Aprod)-1

Chlorine (kg) 1
Coal (kg) 0.269 1.004 0.016 0.055 0.189 4E-04 0.007 0.008 1E-07 0.02 0.307 0.034 1E-04 2E-04 1E-04
Diesel fuel (kg) 0.017 0.061 1.001 0.004 0.012 0.024 4E-04 5E-04 6E-06 0.001 0.02 0.002 8E-06 1E-05 8E-06
Electricity (MJ) 4.869 0.07 0.295 1.005 3.419 0.007 0.128 0.144 2E-06 0.362 5.565 0.002 0.002 0.003 0.002
Hydrogen (kg) 1
Mechanical energy from diesel engines (MJ) 0.714 2.541 0.043 0.147 0.501 1.001 0.019 0.021 3E-04 0.053 0.816 0.09 3E-04 5E-04 3E-04
Natural gas (kg) 0.081 0.003 0.046 0.005 2.426 0.001 1.025 0.011 3E-07 0.002 0.093 1E-04 0.019 2E-04 0.019
Oil (kg) 0.025 0.062 1.015 0.005 0.019 0.024 0.001 1.002 7E-06 0.002 0.028 0.002 2E-05 0.022 2E-05
Railroad transport (kg-km) 125.5 1.967 7.603 25.91 88.14 0.182 3.292 3.716 1 9.326 143.5 15.87 0.061 0.082 0.061
Salt from brine (kg) 0.691 0.263 1 0.79
Sodium hydroxide (kg) 1
Thermal energy from coal furnace (MJ) 7.946 0.125 0.481 1.64 5.579 0.012 0.208 0.235 3E-06 0.59 9.081 1.004 0.004 0.005 0.004
Thermal energy from industrial gas furnace (MJ) 3.123 0.149 2.438 0.016 32.96 0.059 1.304 0.546 2E-05 0.006 3.569 0.005 1.024 0.012 0.024
Thermal energy from oil furnace (MJ) 0.342 0.042 0.632 0.07 0.304 0.015 0.037 0.074 4E-06 0.025 0.391 0.001 7E-04 1.002 7E-04
Thermal energy from utility gas furnace (MJ) 1.262 0.018 0.076 0.26 0.886 0.002 0.033 0.037 5E-07 0.094 1.442 6E-04 6E-04 8E-04 1.001

[Product by product total requirements matrix]

As described in the previous section, environmental exchanges are associated with

process throughputs rather than with products. The total product requirement vector can be

translated into a total process throughput requirements vector by pre-multiplying with matrix D:

x = Dq  = D(I − Aprod)-1 d (7-7)

The matrix D(I − Aprod)-1
 is the process-by-product total requirements matrix.  A direct process

throughput requirements vector xdirect can be obtained by pre-multiplying the demand vector d

by matrix D. The direct throughput requirements vectors gives the amount of process activity

directly associated with the provision of the products specified in the demand vector. The total

throughput requirements vectors gives the amount of process activity associated with the

provision not only of the products specified in the demand vector, but also with the provision of

all the necessary raw materials. The vectors of direct and indirect process throughput
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requirements for the example are shown in Table 7-10.  The vector xdirect has nonzero entries

only for those processes whose outputs include products in the demand vector d, while the vector

x has nonzero entries for all the processes needed to produce the products in vector d, including

those processes that supply raw materials. Vectors of throughput requirements need to be read

side by side with matrix C (e.g. Table 7-1), since matrix C gives the definition a unit of

throughput for each process.

Table 7-9: Vectors of product requirements and equivalent production requirements for the
chlorine LCA example

Chlorine (kg) 1000 1000 419 419
Coal (kg) 269 269
Diesel fuel (kg) 17 17
Electricity (MJ) 4591 4869 4865
Hydrogen (kg) 12 12
Mechanical energy from diesel engines (MJ) 714 714
Natural gas (kg) 81 81
Oil (kg) 25 25
Railroad transport (kg-km) 125546 125546
Salt from brine (kg) 691 691 691
Sodium hydroxide (kg) 469 469
Thermal energy from coal furnace (MJ) 7946 7946
Thermal energy from industrial gas furnace (MJ) 2975 3123 3123
Thermal energy from oil furnace (MJ) 342 342
Thermal energy from utility gas furnace (MJ) 1262 1262

Cx = 
equivalent 

total 
production 

vector

qdirect = direct 
product 

requirements 
vector

q = total 
product 

requirements 
vector

Cxdirect = 
equivalent 

direct 
production 

vector

Further insight into the role of allocation is obtained by pre-multiplying the throughput

requirements vectors by matrix C (as shown in the last two columns of Table 7-9).  If there were

no multiproduct processes in the model, or if products were demanded in the same proportion in

which they are produced in multiproduct processes, then Cxdirect would be equal to the demand

vector d.  In the example, vector d has a single entry, namely the demand for 1000 kg chlorine.

The process throughputs in vector xdirect result in the production of 419 kg chlorine, 469 kg

sodium hydroxide, and 12 kg of hydrogen.  This can be interpreted as follows: at the market

prices used in the example, the demand for 1000 kg of chlorine is considered equivalent (in

terms of its contribution to the generation of environmental impacts) to the demand for 419 kg

Cl2, 469 kg NaOH, and 12 kg H2.  Note that at the product prices given in Table 7-4, 1000 kg of
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chlorine would be valued at $210, which is the same as the combined value of the products listed

in vector Cxdirect.

Table 7-10: Throughput requirements vectors for the chlorine LCA example

Brine pumping 691 691
Chloralkali production (diaphragm cell process) 327 327 327
Chloralkali production (membrane cell process) 25 25 25
Chloralkali production (mercury cell process) 67 67 67
Coal furnace 269 269
Coal production 269 269
Coal-fired power plant 775 775
Diesel engine 714 714
Diesel fuel production 17 17
Gas-fired power plant 123 123
Hydroelectric plant 147 147
Industrial gas furnace 3 3
Methane reforming 0
Natural gas production 81 81
Nuclear power plant 272 272
Oil furnace 0.3 0.3
Oil production 25 25
Oil-fired power plant 34 34
Railroad transport 126 126
Utility gas furnace 1.2 1.2

xdirect = Dd = 
vector of 

direct process 
throughput 

requirements

x = Dq = 
vector of total 

process 
throughput 

requirements
Diag(x)

Once the total process throughput vector has been obtained, the vector of life cycle

environmental exchanges can be computed using the environmental intervention matrix:

e = Ex = ED(I − Aprod)-1 d (7-8)

Table 7-11 shows the environmental exchanges inventory obtained for the chlorine production

example. The vector e shown in Table 7-11 is similar in structure to emission inventories for

chlorine published in emission inventory databases.  Presented in this form, the inventory does

not provide the user with information about which processes contribute to the resulting

emissions.
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Table 7-11: Life cycle environmental exchanges inventory and matrices of process contributions
to the inventory for the chlorine LCA example

Air: 2,3,7,8-Tetrachlorodibenzo-p-dioxin (kg) 3.50E-09 3E-09 4E-12
Air: Ammonia (kg) 3.77E-04 3E-04 2E-05 6E-05
Air: Arsenic (kg) 5.19E-05 5E-05 3E-07 1E-06 1E-07
Air: Asbestos (kg) 5.03E-07 5E-07
Air: Barium (kg) 4.65E-05 3E-05 3E-06 7E-06 3E-06 3E-09 1E-06
Air: Cadmium (kg) 6.63E-06 6E-06 5E-07
Air: Carbon dioxide (kg) 1.05E+03 725.5 54.24 161 17.02 0.016 28.57 65.05
Air: Carbon monoxide (kg) 9.07E-01 0.618 0.214 0.047 0.006 0.022
Air: Carbon tetrachloride (kg) 2.09E-03 0.002 1E-04 3E-04
Air: Chlorine (kg) 1.68E+00 1.307 0.101 0.268
Air: Cobalt (kg) 1.91E-05 1E-05 2E-07 7E-06 6E-08
Air: Cyanide (kg) 3.04E-04 3E-04
Air: Dichlorodifluoromethane (kg) 2.51E-03 0.002 2E-04 4E-04
Air: Hydrazine (kg) 1.26E-06 1E-06 8E-08 2E-07
Air: Hydrochloric acid (kg) 1.48E-01 3E-05 3E-06 7E-06 0.148 4E-05
Air: Hydrogen sulfide (kg) 2.19E-02 0.022
Air: Isophorone (kg) 6.99E-05 7E-05
Air: Lead (kg) 5.33E-05 5E-05 4E-07 2E-06 1E-07
Air: Mercury (kg) 2.78E-04 3E-04 1E-05 1E-07
Air: Methane (kg) 2.04E+00 0.007 0.004 2.026 3E-04 2E-04
Air: Nickel (kg) 1.39E-04 3E-05 5E-06 1E-04 2E-06
Air: NOx (as NO2) (kg) 2.98E+00 1.344 0.928 0.187 0.449 0.045 0.029
Air: PM10 (kg) 2.09E+00 2.069 0.009 0.014 0.001
Air: Sulfur dioxide (kg) 5.08E+00 4.622 0.1 9E-04 0.163 0.195 3E-04
Air: Sulfuric acid (kg) 1.68E-05 1E-05 1E-06 3E-06
Air: Total Suspended Particles (kg) 1.20E-01 0.071 0.049
Water: Barium (kg) 8.38E-05 7E-05 5E-06 1E-05
Water: Chlorine (kg) 4.19E-04 3E-04 3E-05 7E-05
Water: Hydrochloric acid (kg) 1.26E-04 1E-04 8E-06 2E-05
Water: Mercury (kg) 6.70E-06 7E-06
Water: Sulfuric acid (kg) 7.00E-01 7E-07 5E-08 1E-07 0.698 6E-04 0.001 3E-04 4E-04

Air: 2,3,7,8-Tetrachlorodibenzo-p-dioxin (kg) 2E-10 3E-09 2E-10 6E-10 4E-09 1E-11 4E-09 4E-12 4E-12 2E-12 5E-12 7E-12 4E-12 3E-12 4E-12 2E-13 2E-12
Air: Ammonia (kg) 3E-21 3E-04 2E-05 6E-05 4E-23 4E-20 3E-23 1E-23 3E-24
Air: Arsenic (kg) 3E-06 4E-05 3E-06 9E-06 5E-05 3E-07 5E-05 1E-07 1E-07 2E-07 4E-07 1E-07 2E-06 5E-08 1E-06 5E-09 2E-07
Air: Asbestos (kg) 5E-07 2E-22 8E-25 9E-25 8E-25
Air: Barium (kg) 7E-08 4E-05 3E-06 7E-06 5E-08 5E-08 5E-08 4E-08 4E-08 1E-06 3E-06 1E-07 8E-09 2E-08 7E-09 2E-09 1E-06
Air: Cadmium (kg) 3E-07 5E-06 4E-07 1E-06 6E-06 4E-08 6E-06 2E-08 2E-08 5E-09 1E-08 2E-08 5E-07 7E-09 4E-07 1E-09 5E-09
Air: Carbon dioxide (kg) 45.31 846.4 55.01 150.1 786.7 58.39 786.4 58.34 4.1 72.22 178.8 24.93 0.016 29.03 1.52 27.92 2.761 72.22
Air: Carbon monoxide (kg) 0.044 0.708 0.052 0.146 0.837 0.208 0.836 0.216 0.002 0.023 0.05 0.003 0.006 9E-04 0.006 0.01 0.023
Air: Carbon tetrachloride (kg) 2E-20 0.002 1E-04 3E-04 2E-22 2E-19 2E-22 7E-23 1E-23
Air: Chlorine (kg) 1E-17 1.307 0.101 0.268 2E-19 2E-16 2E-19 5E-20 1E-20
Air: Cobalt (kg) 1E-06 1E-05 1E-06 3E-06 1E-05 3E-07 1E-05 2E-07 2E-07 9E-08 2E-07 9E-08 7E-06 5E-08 7E-06 1E-08 9E-08
Air: Cyanide (kg) 2E-05 2E-04 2E-05 5E-05 3E-04 1E-06 3E-04 3E-07 3E-07 2E-07 5E-07 6E-07 7E-08 2E-07 7E-08 1E-08 2E-07
Air: Dichlorodifluoromethane (kg) 2E-20 0.002 2E-04 4E-04 2E-22 3E-19 2E-22 8E-23 2E-23
Air: Hydrazine (kg) 9E-24 1E-06 8E-08 2E-07 1E-25 1E-22 1E-25 4E-26 9E-27
Air: Hydrochloric acid (kg) 0.008 0.114 0.009 0.025 0.148 6E-04 0.148 2E-04 2E-04 9E-05 2E-04 3E-04 7E-05 1E-04 7E-05 7E-06 9E-05
Air: Hydrogen sulfide (kg) 3E-04 0.02 6E-04 0.001 2E-04 2E-04 2E-04 2E-04 2E-04 0.006 0.016 0.022 2E-05 7E-05 2E-05 1E-05 0.006
Air: Isophorone (kg) 4E-06 5E-05 4E-06 1E-05 7E-05 3E-07 7E-05 7E-08 7E-08 4E-08 1E-07 1E-07 2E-08 5E-08 1E-08 3E-09 4E-08
Air: Lead (kg) 3E-06 4E-05 3E-06 9E-06 5E-05 3E-07 5E-05 1E-07 1E-07 2E-07 5E-07 1E-07 2E-06 5E-08 2E-06 5E-09 2E-07
Air: Mercury (kg) 5E-07 8E-06 6E-07 3E-04 1E-05 5E-08 1E-05 1E-08 1E-08 7E-09 2E-08 2E-08 1E-07 8E-09 1E-07 7E-10 7E-09
Air: Methane (kg) 0.032 1.878 0.054 0.106 0.029 0.021 0.029 0.02 0.02 0.598 1.483 2.076 0.002 0.007 0.002 9E-04 0.598
Air: Nickel (kg) 7E-06 1E-04 8E-06 2E-05 4E-05 3E-06 4E-05 3E-06 3E-06 2E-06 6E-06 1E-06 1E-04 6E-07 9E-05 2E-07 2E-06
Air: NOx (as NO2) (kg) 0.144 2.335 0.17 0.476 2.287 0.899 2.286 0.935 0.007 0.032 0.196 0.013 0.449 0.046 0.003 0.045 0.044 0.032
Air: PM10 (kg) 0.107 1.614 0.126 0.355 2.079 0.009 2.078 0.003 0.003 0.003 0.012 0.005 0.015 0.002 0.014 1E-04 0.003
Air: Sulfur dioxide (kg) 0.261 3.911 0.306 0.864 4.749 0.122 4.748 0.111 0.011 0.004 0.01 0.012 0.163 0.196 0.005 0.188 0.005 0.004
Air: Sulfuric acid (kg) 1E-22 1E-05 1E-06 3E-06 2E-24 2E-21 2E-24 5E-25 1E-25
Air: Total Suspended Particles (kg) 0.006 0.093 0.007 0.02 0.072 0.068 0.072 0.071 1E-04 7E-05 2E-04 3E-04 0.049 3E-05 9E-05 3E-05 0.003 7E-05
Water: Barium (kg) 6E-22 7E-05 5E-06 1E-05 8E-24 9E-21 8E-24 3E-24 6E-25
Water: Chlorine (kg) 3E-21 3E-04 3E-05 7E-05 4E-23 4E-20 4E-23 1E-23 3E-24
Water: Hydrochloric acid (kg) 9E-22 1E-04 8E-06 2E-05 1E-23 1E-20 1E-23 4E-24 9E-25
Water: Mercury (kg) 4E-22 7E-06 2E-23 1E-20 4E-25 2E-25
Water: Sulfuric acid (kg) 0.036 0.539 0.042 0.119 0.003 0.003 0.7 8E-04 8E-04 0.001 0.003 0.002 5E-04 5E-04 8E-04 4E-05 4E-04

e = Ex      
life cycle 

environmental 
exchanges 

inventory vector
E Diag(x) = [Direct Process Contributions]

E(I-DB)-1x = [Total (direct + indirect) process contributions]

Two auxiliary matrices are helpful for understanding the sources of the total exchanges

contained in vector e. A matrix of direct process contributions to the environmental exchanges

inventory vector is generated by multiplying matrix E by the diagonal matrix Diag(x) obtained

by constructing a square matrix with zero entries in all of its off-diagonal elements and with each

diagonal entry set equal to the corresponding entry in vector x.  The Diag(x) matrix for the
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example is shown next to vector x in Table 7-10.  The E Diag(x) matrix decomposes the life

cycle emissions inventory into the contributions to the inventory made by each process.  This

matrix is useful for tracing the environmental exchanges back to processes that generated them.

For example, the E Diag(x) matrix in Table 7-11 shows that 725 kg out of the 1050 kg of carbon

dioxide emissions attributed to the provision of 1000 kg of chlorine take place in coal furnaces.

Note that the columns of matrix E Diag(x) can be added back to obtain vector e.

The second matrix useful for interpretation gives the direct and indirect process

contributions to the environmental exchanges vector.  This matrix is given by the formula

E(I-DB)-1 Diag(x) (7-9)

where the matrix (I-DB)-1 is the process-by-process total requirements matrix.  This matrix

shows not only the environmental exchanges resulting directly from operating each process to

the extent required to supply the products in vector d, but also the exchanges generated in the

operation of all the processes needed to supply inputs to the process in each column. The bottom

half of Table 7-11 shows that when indirect exchanges are included, the contribution of the coal-

fired power plants to the carbon dioxide emissions inventory rises from 725 kg (direct emissions)

to 787 kg (which includes the direct emissions plus all of the indirect emissions associated with

the production and delivery of the fuel used by the power plants).  Note that, in contrast with the

case of the E Diag(x) matrix, the columns of E(I-DB)-1 Diag(x) can not be added to generate the

environmental exchanges inventory70.

This section has shown how life-cycle emission inventories can be generated as needed

based on direct process emissions data.  This provides a more transparent way to store and

update emissions inventory data.  It also provides a transparent mechanism to trace

environmental exchanges back to the processes that generate them, which is very valuable for

data quality control. As better information is obtained for any of the processes in the system, the

matrix multiplication’s would take care of updating the life-cycle inventories associated with any

of the products in the system.

                                                
70 For example, adding carbon dioxide emissions over all the columns yields 3200 kg.  The reason for the

discrepancy is that emissions taking place in one process are reported under many different processes (they are
reported in the originating process plus all the downstream processes that use its outputs).
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7.3.3 The impact analysis stage of PIO-LCA

It is common practice in life-cycle assessment to assume linear models at the impact

assessment stage.  This does not mean necessarily that environmental impacts are assumed to

increase linearly with environmental exchanges over the whole range of possible exchanges

(from zero to the world-wide level of exchanges), but rather that the contributions due to the

process or product of interest to the designer are small enough compared to the total world output

that the marginal increase in environmental impacts can be considered linear.  Impact assessment

usually proceeds in two steps.  In the first step, environmental indices for individual impact

categories are computed by multiplying each environmental intervention by a potency factor and

adding the results within each impact category71.  For example, to evaluate the contribution of a

vector of emissions to the greenhouse effect impact category, the amounts of each substance

emitted are multiplied by their global warming potentials (GWP) relative to that of CO2.

A potency factor matrix H can be defined so that each entry Hkl corresponds to the

potency factor (or characterization or equivalency factor, as they are also known) for intervention

k in terms of the unit of measure for impact category l.  Table 7-12 shows the H matrix used in

the example.  Sources for the characterization factors used are given in Table 3-16. Human

toxicity potentials were calculated using the models described in section 6.3.  As seen in Table

7-12, potency factors within any impact category might vary over many orders of magnitude.

The vector of impact category environmental indicators ψψψψ is obtained by multiplying the

transpose of matrix H with the life-cycle inventory e:

ψψψψ  = HTe = HTEx = HTED(I − Aprod)-1 d (7-10)

The vector has an entry for each environmental impact category.

The second step in the impact assessment stage is the evaluation step, where the

individual impact category indicators are aggregated into an overall index of environmental

impact Ω, by using weighting factors based on the preferences of the organization for which the

analysis is being conducted.  A vector of valuation factors w can be defined, where each element

wk is the weight given to impact category k.  Social cost based on willingness to pay was chosen

here as an indicator, but any other valuation method (e.g. eco-points) can be used.  The vector of

                                                
71 See section 3.3 for further discussion on environmental valuation methods.
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valuation factors used in the example is also shown at the bottom of Table 7-1272.  There is no

unique correct value for these valuation factors, since they depend on the willingness of the

decision-maker to make tradeoffs between different impact categories.  The valuation factors are

appropriate if they are consistent with the choices an organization is willing to make for setting

priorities among environmental problems.

Table 7-12: Characterization and valuation factors used in the chlorine LCA example

Global 
warming 

potential (100 
year horizon)

Ozone 
depletion 
potential

Human toxicity 
potential 
(cancer)

Human toxicity 
potential 

(noncancer)
Respiratory 

effects

Photo-
chemical 
oxidants 
creation 
potential

Acidification 
potential

Eutrophication 
potential EN

VI
RO

NM
EN

TA
L 

IM
PA

CT
 

CA
TE

GO
RY

UNITS kg CO2 
equivalent/kg

kg CFC-11 
equivalent/kg DALYs/kg DALYs/kg

kg PM10 
equivalent/kg

kg Ethylene 
equivalent/kg

kg SO2 
equivalent/kg

kg NO2 to air 
equivalent/kg

H = [Characterization factor matrix]EXCHANGE TYPE ENVIRONMENTAL EXCHANGE
Air 2,3,7,8-Tetrachlorodibenzo-p-dioxinkg 1.83E+03 1.22E+02
Air Ammonia kg -1.66E+01 1.31E-08 1.03E-01 1.88E+00 2.71E+00
Air Arsenic kg 3.70E-02 8.55E-04
Air Asbestos kg 1.09E-03
Air Barium kg 2.95E-05
Air Cadmium kg 1.48E-01 6.34E-04
Air Carbon dioxide kg 1.00E+00
Air Carbon monoxide kg 3.00E+00 5.90E-08 1.80E-02
Air Carbon tetrachloride kg -1.52E+03 1.11E+00 1.45E-02 2.43E-04
Air Chlorine kg 2.79E-07
Air Cobalt kg 2.37E-02 5.45E-04
Air Cyanide kg 4.21E-04
Air Dichlorodifluoromethane kg 6.66E+03 9.80E-01 4.74E-07
Air Hydrazine kg 5.22E-03 1.26E-05
Air Hydrochloric acid kg -1.53E+01 1.90E-07 9.50E-02 8.80E-01
Air Hydrogen sulfide kg -3.47E+01 2.78E-06 2.31E-01 1.88E+00
Air Isophorone kg 2.29E-09 4.57E-11
Air Lead kg 3.79E-03 9.28E-04
Air Mercury kg 1.11E-01
Air Methane kg 2.10E+01 6.00E-03
Air Nickel kg 3.14E-02 2.43E-05
Air NOx (as NO2) kg 4.00E+01 3.49E-06 7.63E-02 1.17E-01 7.00E-01 1.00E+00
Air PM10 kg -8.30E+00 1.00E+00
Air Sulfur dioxide kg -2.33E+01 4.21E-09 1.54E-01 4.80E-02 1.00E+00
Air Sulfuric acid kg -1.52E+01 1.45E-06 3.39E-07 1.00E-01 6.50E-01
Air Total Suspended Particles kg -8.30E+00 1.00E+00
Water Barium kg 2.62E-05
Water Chlorine kg 1.74E-06
Water Hydrochloric acid kg 3.75E-08
Water Mercury kg 8.74E-02
Water Sulfuric acid kg 3.03E-13 1.37E-12

Valuation factor $ 3.00E-02 1.00E+02 85000 85000 40 2 0.8 0.8
w' = Transpose of valuation factor vector

H = [Characterization factor matrix]

If a vector w is available, the overall indicator can be calculated by:

Ω = wTψψψψ  = wTHTe = wTHTEx = wTHTED(I − Aprod)-1 d (7-11)

                                                
72 See section 3.3 for a discussion of valuation factors.
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It is useful to have information about the contributions of each process or environmental

intervention to the impact category and overall indicator scores.  This aids the designer in

understanding the sources of impacts and in setting priorities for checking the quality of the input

data.  The following matrix operations can be used to obtain such information (see Table 7-13

and Table 7-14 for results from the illustrative example):

Diag(e) H: Matrix of contributions of environmental exchanges to

impact category scores.

Diag(e)H Diag(w): Matrix of contributions of environmental exchanges and

impact categories to overall valuation.

Diag(e)Hw: Vector of contributions of environmental exchanges to

overall valuation.

Diag(x) ETH: Matrix of contributions of process throughputs to impact

category scores.

Diag(x) ETH Diag(w): Matrix of contributions of process throughputs and impact

categories to overall valuation.

Diag(x) ETHw: Vector of contributions of process throughputs to overall

valuation.

Diag(w) HTEx = Diag(w) HTe: Vector of contributions of impact category scores to overall

scores.

ψ = HTe = HTEx: Vector of impact category scores.

Ω  = wTHTe = wTHTEx: Overall valuation (scalar).

Table 7-13 and Table 7-14 show that the largest contribution to the overall indicator

comes from the respiratory effects impact category, followed by the global warming category.

Table 7-13 shows that the majority of the impacts are attributed to four substances: carbon

dioxide (global warming impact), nitrogen oxides, sulfur dioxide, and particulate matter (mostly

due to respiratory impacts).  Mercury emissions (a salient source of concern in chlorine

production) account for less than 2% of the total valuation. In terms of process contributions to

the overall impact indicator, Table 7-14 shows that the majority of the impacts (80%) are due to

combustion product emissions from coal furnaces.  This shows the importance of the life cycle



380         CHAPTER 7.PROCESS BY PRODUCT INPUT-OUTPUT LIFE CYCLE ASSESSMENT                                                

perspective.  Direct emissions from the three chlor-alkali processes combined account for less

than 4% of the impact attributed to chlorine production.  Most of the impacts can be traced to the

use of electricity in the electrolysis cells (mainly from the burning of coal in coal-fired power

plants). It is clear that leaving electricity generation out of the analysis would have resulted in a

gross underestimation of the impacts.

Table 7-13: Life-cycle impact valuation for the chlorine LCA example, showing environmental
exchange and impact category contributions

Diag(e) H w
Air: 2,3,7,8-Tetrachlorodibenzo-p-dioxin 0 0 6E-06 4E-07 0 0 0 0 0 0 0.544 0.036 0 0 0 0 0.6 0.3%
Air: Ammonia -0.01 0 0 5E-12 4E-05 0 7E-04 0.001 -0 0 0 4E-07 0.002 0 6E-04 8E-04 0.0 0.0%
Air: Arsenic 0 0 2E-06 4E-08 0 0 0 0 0 0 0.163 0.004 0 0 0 0 0.2 0.1%
Air: Asbestos 0 0 5E-10 0 0 0 0 0 0 0 5E-05 0 0 0 0 0 0.0 0.0%
Air: Barium 0 0 0 1E-09 0 0 0 0 0 0 0 1E-04 0 0 0 0 0.0 0.0%
Air: Cadmium 0 0 1E-06 4E-09 0 0 0 0 0 0 0.083 4E-04 0 0 0 0 0.1 0.0%
Air: Carbon dioxide 1051 0 0 0 0 0 0 0 31.54 0 0 0 0 0 0 0 31.5 17.5%
Air: Carbon monoxide 2.721 0 0 5E-08 0 0.016 0 0 0.082 0 0 0.005 0 0.033 0 0 0.1 0.1%
Air: Carbon tetrachloride -3.19 0.002 3E-05 5E-07 0 0 0 0 -0.1 0.232 2.586 0.043 0 0 0 0 2.8 1.5%
Air: Chlorine 0 0 0 5E-07 0 0 0 0 0 0 0 0.04 0 0 0 0 0.0 0.0%
Air: Cobalt 0 0 5E-07 1E-08 0 0 0 0 0 0 0.039 9E-04 0 0 0 0 0.0 0.0%
Air: Cyanide 0 0 0 1E-07 0 0 0 0 0 0 0 0.011 0 0 0 0 0.0 0.0%
Air: Dichlorodifluoromethane 16.73 0.002 0 1E-09 0 0 0 0 0.502 0.246 0 1E-04 0 0 0 0 0.7 0.4%
Air: Hydrazine 0 0 7E-09 2E-11 0 0 0 0 0 0 6E-04 1E-06 0 0 0 0 0.0 0.0%
Air: Hydrochloric acid -2.26 0 0 3E-08 0.014 0 0.13 0 -0.07 0 0 0.002 0.562 0 0.104 0 0.6 0.3%
Air: Hydrogen sulfide -0.76 0 0 6E-08 0.005 0 0.041 0 -0.02 0 0 0.005 0.202 0 0.033 0 0.2 0.1%
Air: Isophorone 0 0 2E-13 3E-15 0 0 0 0 0 0 1E-08 3E-10 0 0 0 0 0.0 0.0%
Air: Lead 0 0 2E-07 5E-08 0 0 0 0 0 0 0.017 0.004 0 0 0 0 0.0 0.0%
Air: Mercury 0 0 0 3E-05 0 0 0 0 0 0 0 2.628 0 0 0 0 2.6 1.5%
Air: Methane 42.79 0 0 0 0 0.012 0 0 1.284 0 0 0 0 0.024 0 0 1.3 0.7%
Air: Nickel 0 0 4E-06 3E-09 0 0 0 0 0 0 0.37 3E-04 0 0 0 0 0.4 0.2%
Air: NOx (as NO2) 119.3 0 0 1E-05 0.227 0.348 2.087 2.981 3.578 0 0 0.886 9.098 0.696 1.67 2.385 18.3 10.2%
Air: PM10 -17.4 0 0 0 2.094 0 0 0 -0.52 0 0 0 83.74 0 0 0 83.2 46.3%
Air: Sulfur dioxide -118 0 0 2E-08 0.782 0.244 5.081 0 -3.55 0 0 0.002 31.28 0.488 4.065 0 32.3 17.9%
Air: Sulfuric acid -0 0 2E-11 6E-12 2E-06 0 1E-05 0 -0 0 2E-06 5E-07 7E-05 0 9E-06 0 0.0 0.0%
Air: Total Suspended Particles -1 0 0 0 0.12 0 0 0 -0.03 0 0 0 4.812 0 0 0 4.8 2.7%
Water: Barium 0 0 0 2E-09 0 0 0 0 0 0 0 2E-04 0 0 0 0 0.0 0.0%
Water: Chlorine 0 0 0 7E-10 0 0 0 0 0 0 0 6E-05 0 0 0 0 0.0 0.0%
Water: Hydrochloric acid 0 0 0 5E-12 0 0 0 0 0 0 0 4E-07 0 0 0 0 0.0 0.0%
Water: Mercury 0 0 0 6E-07 0 0 0 0 0 0 0 0.05 0 0 0 0 0.0 0.0%
Water: Sulfuric acid 0 0 2E-13 1E-12 0 0 0 0 0 0 2E-08 8E-08 0 0 0 0 0.0 0.0%

Ω = wTHTe
System Total 1090 0.005 4E-05 4E-05 3.242 0.62 7.34 2.982 32.7 0.478 3.803 3.718 129.7 1.241 5.872 2.386 179.9

% contribution 18% 0% 2% 2% 72% 1% 3% 1%

% 
contribution

Impact Category Indicators Impact Category Valuations

life-cycle 
environmental 

impact 
valuation ($)

ΨΨΨΨT = (HTe)T                                     

Transpose of the vector of impact category 
indicators

 (Diag(w)HTe)T                                 

Transpose of the vector of impact category 
valuations

Diag(e) H Diag(e) H Diag(w)
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Table 7-14: Life-cycle impact valuation for the chlorine LCA example, showing process and
impact category contributions

Diag(x) ETH w

Brine pumping 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0 0.0%
Chloralkali production (diaphragm cell process) 10.56 0.004 2E-05 8E-07 3E-05 0 6E-04 8E-04 0.317 0.373 2.017 0.065 0.001 0 5E-04 6E-04 2.8 1.5%
Chloralkali production (membrane cell process) 0.812 3E-04 2E-06 6E-08 3E-06 0 5E-05 6E-05 0.024 0.029 0.155 0.005 1E-04 0 4E-05 5E-05 0.2 0.1%
Chloralkali production (mercury cell process) 2.166 8E-04 5E-06 3E-05 7E-06 0 1E-04 2E-04 0.065 0.076 0.414 2.594 3E-04 0 1E-04 1E-04 3.1 1.8%
Coal furnace 654.2 0 1E-05 7E-06 2.897 0.39 5.693 1.344 19.63 0 0.912 0.558 115.9 0.78 4.554 1.075 143.4 79.7%
Coal production 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0 0.0%
Coal-fired power plant 0 0 2E-13 1E-12 0 0 0 0 0 0 2E-08 8E-08 0 0 0 0 0.0 0.0%
Diesel engine 89.07 0 0 3E-06 0.158 0.117 0.749 0.928 2.672 0 0 0.277 6.301 0.234 0.599 0.742 10.8 6.0%
Diesel fuel production 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0 0.0%
Gas-fired power plant 0 0 2E-16 8E-16 0 0 0 0 0 0 2E-11 7E-11 0 0 0 0 0.0 0.0%
Hydroelectric plant 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0 0.0%
Industrial gas furnace 168.7 0 2E-07 7E-07 0.023 0.023 0.132 0.187 5.06 0 0.014 0.056 0.932 0.046 0.106 0.15 6.4 3.5%
Methane reforming 1E-13 0 0 0 0 0 0 0 4E-15 0 0 0 0 0 0 0 0.0 0.0%
Natural gas production 58.8 0 0 6E-08 0.005 0.012 0.041 0 1.764 0 0 0.005 0.202 0.024 0.033 0 2.0 1.1%
Nuclear power plant 13.75 0 0 2E-06 0.108 0.06 0.477 0.449 0.413 0 0 0.133 4.331 0.12 0.382 0.359 5.7 3.2%
Oil furnace 25.76 0 3E-06 2E-07 0.048 0.015 0.226 0.045 0.773 0 0.285 0.016 1.907 0.029 0.181 0.036 3.2 1.8%
Oil production 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0 0.0%
Oil-fired power plant 0 0 1E-16 5E-16 0 0 0 0 0 0 9E-12 4E-11 0 0 0 0 0.0 0.0%
Railroad transport 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0 0.0%
Utility gas furnace 66.25 0 7E-08 1E-07 0.004 0.004 0.02 0.029 1.987 0 0.006 0.009 0.142 0.008 0.016 0.023 2.2 1.2%

Ω = wTHTEx
System Total 1090 0.005 4E-05 4E-05 3.242 0.62 7.34 2.982 32.7 0.478 3.803 3.718 129.7 1.241 5.872 2.386 179.9

% contribution 18% 0% 2% 2% 72% 1% 3% 1%

% 
contribution

Impact Category Indicators Impact Category Valuations

life-cycle 
environmental 

impact 
valuation ($)

ΨΨΨΨT = (HTEx)T                                   

Transpose of the vector of impact category 
indicators

 (Diag(w)HTEx)T                               

Transpose of the vector of impact category 
valuations

Diag(x) ETH Diag(x) ETH Diag(w)

7.3.4 The improvement analysis stage of PIO-LCA

In the context of process design, it is desirable to have available a set of unit indicators

that can be used by designers to evaluate the tradeoffs associated with changing the mix of inputs

and outputs of a process.  Examples include deciding how to make tradeoffs between alternative

raw materials or between increasing the efficiency with which a material is used and the amount

of energy needed to increase material recovery.

Obtaining environmental indicator scores for each input to a process is only the first part

of the analysis.  Designers need to know what factors drive the score for each input, in order to

identify improvement opportunities.  Knowledge of the factors with the greatest contribution to

the scores can also be used by those responsible for maintaining the information to set priorities

when working to improve the quality of the data.
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Matrix operations are also the starting point for sensitivity analysis.  The necessary

vectors and matrices are introduced in this subsection.  Their application is illustrated in section

7.4.

The vector of indicators for the impact of each unit of environmental intervention is given

by:

ΩΩΩΩe = Hw (7-12)

Similarly, the vector of indicators corresponding to the direct impact of each unit of

process throughput is given by:

ΩΩΩΩxdirect = ETHw (7-13)

while the vector of indicators corresponding to the total impact of each unit of process

throughput is calculated using the expression:

ΩΩΩΩx = (I-DB)-1ETHw (7-14)

Finally, the vector of indicators for the impact of one unit of product is given by:

ΩΩΩΩd = (I − Aprod)-1DTETHw (7-15)

Indicators can also be obtained at the impact category level.  The matrix of indicators for

the impact of each unit of environmental exchange within each impact problem category is

matrix H (by definition).  The matrix of indicators for the direct impact of each unit of process

throughput within each impact category is given by:

ΨΨΨΨxdirect = ETH (7-16)

Similarly, the matrix of indicators for the total impact of each unit of process throughput

within each impact category is given by:

ΨΨΨΨx = (I-DB)-1ETH (7-17)

Finally, the matrix of indicators for the impact of each unit of product is given by:

ΨΨΨΨd = (I − Aprod)-1DTETH (7-18)

Examples of these matrices are given as needed in the next section.
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7.4 Illustrative Applications

7.4.1 Obtaining a life-cycle inventory and life-cycle environmental
indicators for chlorine production.

Given the input data in matrices B, C, E, F and H, and in vectors p and w, the next step

would be to specify vector d.  A basis of one metric ton of chlorine is chosen, and thus the only

nonzero entry of vector d is the entry corresponding to the product “chlorine (kg)”, which is

given a value of 1000. The environmental exchanges inventory is given by the vector e  =

ED(I − Ac)-1d (Table 7-11), where matrices D, and Ac have been obtained as described in the

Input Data section.  The vector of life-cycle environmental indicators for each impact category in

matrix H is given by ψψψψ  = HTe (Table 7-13 or Table 7-14, bottom left).  The overall indicator is

computed using Ω = wTψ ψ ψ ψ ((Table 7-13 or Table 7-14, bottom right).  A social cost of $180/ton of

chlorine is computed from the data used in the example.  This turns out to be of the same order

of magnitude as the selling price of chlorine ($210/ton, as shown in Table 7-4).  Since the

potency and valuation factors used are typical of the factors used by regulatory agencies when

they estimate the costs and benefits of environmental regulations, one could treat the ratio of the

social cost to the price (or private cost) of chlorine as an indicator of the likelihood that this raw

material (or the associated upstream processes) could face additional regulations in the future.

Companies that strive to minimize the estimated social cost of their designs are less likely to be

faced with the need to undertake expensive retrofits to respond to changes in the regulatory

environment during the life of the process.

7.4.2 Identifying the main drivers for environmental impact in chlorine
production.

The vector Diag(x) ETHw is used to identify the processes that contribute the most to the

overall valuation. Table 7-14 shows that the largest contribution comes from coal combustion in

furnaces (80%).  The most important environmental exchanges can be identified using matrix

Diag(e)Hw.  The results in Table 7-13 show that the most important exchanges are emissions of

SO2, NOx, CO2, and PM10. The E Diag(x) matrix (top of Table 7-11) can be used to trace

exchanges back to the processes that generate them.  The data in Table 7-11 shows that 91% of

the sulfur dioxide emissions, 45% of the nitrogen dioxide emissions, 69% of the carbon dioxide
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emissions, and 99.2% of the particulate patter emissions originate in coal furnaces.  With respect

to mercury, only 4% of the emissions come from power plants and combustion processes, with

the mercury cell process accounting for 96% of the emissions.

Table 7-15: Environmental indicators per unit of product for the chlorine LCA example

Chlorine (per kg) 1.09 5E-06 4E-08 4E-08 0.003 6E-04 0.007 0.003 0.033 5E-04 0.004 0.004 0.13 0.001 0.006 0.002 0.18
Coal (per kg) 0.342 2E-23 6E-10 1E-08 6E-04 4E-04 0.003 0.003 0.01 2E-21 5E-05 0.001 0.025 9E-04 0.002 0.003 0.0417
Diesel fuel (per kg) 0.263 2E-22 7E-09 2E-09 3E-04 9E-05 1E-03 4E-04 0.008 2E-20 6E-04 1E-04 0.012 2E-04 8E-04 3E-04 0.0219
Electricity (per MJ) 0.18 4E-22 3E-09 2E-09 7E-04 1E-04 0.001 6E-04 0.005 4E-20 2E-04 2E-04 0.027 2E-04 0.001 5E-04 0.0343
Hydrogen (per kg) 9.096 2E-06 2E-08 3E-08 0.003 0.001 0.008 0.004 0.273 2E-04 0.002 0.002 0.106 0.002 0.006 0.003 0.40
Mechanical energy from diesel engines (per MJ) 0.131 8E-25 2E-10 5E-09 2E-04 2E-04 0.001 0.001 0.004 8E-23 1E-05 4E-04 0.009 3E-04 9E-04 0.001 0.0157
Natural gas (per kg) 0.838 9E-23 7E-10 1E-09 2E-04 2E-04 8E-04 2E-04 0.025 9E-21 6E-05 1E-04 0.006 4E-04 6E-04 1E-04 0.0329
Oil (per kg) 0.067 9E-23 1E-09 5E-10 1E-04 3E-05 3E-04 1E-04 0.002 9E-21 9E-05 4E-05 0.004 5E-05 2E-04 1E-04 0.0069
Railroad transport (per kg-km) 4E-05 -0 4E-14 1E-12 6E-08 4E-08 3E-07 4E-07 1E-06 -0 4E-09 1E-07 2E-06 9E-08 2E-07 3E-07 4.2E-06
Salt from brine (per kg) 0.065 1E-22 1E-09 9E-10 2E-04 4E-05 5E-04 2E-04 0.002 1E-20 9E-05 7E-05 0.01 9E-05 4E-04 2E-04 0.012
Sodium hydroxide (per kg) 1.246 5E-06 5E-08 5E-08 0.004 7E-04 0.008 0.003 0.037 5E-04 0.004 0.004 0.148 0.001 0.007 0.003 0.21
Thermal energy from coal furnace (per MJ) 0.094 -0 1E-09 1E-09 4E-04 6E-05 8E-04 3E-04 0.003 -0 1E-04 1E-04 0.015 1E-04 7E-04 2E-04 0.0195
Thermal energy from industrial gas furnace (per MJ) 0.07 9E-24 7E-11 2E-10 1E-05 1E-05 6E-05 6E-05 0.002 9E-22 6E-06 2E-05 4E-04 2E-05 5E-05 5E-05 0.0026
Thermal energy from oil furnace (per MJ) 0.077 2E-24 1E-08 5E-10 1E-04 4E-05 7E-04 1E-04 0.002 2E-22 8E-04 5E-05 0.006 9E-05 5E-04 1E-04 0.0096
Thermal energy from utility gas furnace (per MJ) 0.068 5E-22 7E-11 1E-10 6E-06 6E-06 3E-05 3E-05 0.002 5E-20 6E-06 9E-06 2E-04 1E-05 2E-05 2E-05 0.0023

ΨΨΨΨd = (I-Aprod)-1DTETH                 
Matrix of environmental impact indicators per unit of product 

demand

ΨΨΨΨd Diag(w)                         
Matrix of impact category valuations per unit of product demand

ΩΩΩΩd = ΨΨΨΨdw 
vector of 

environmental 
impact valuations 
per unit of product 

demand

7.4.3 Obtaining unit indicators for process design evaluation.

Suppose a designer is working on the retrofit of an existing process that uses chlorine as a

raw material.  Several process changes have been proposed to reduce chlorine emissions, and the

designer is interested in analyzing the overall improvement in environmental performance.  The

proposed process changes differ in their effectiveness in reducing emissions, as well as in the

type and amounts of utilities they consume.  It would be therefore useful to the designer to have

a unit indicator for the overall environmental impact of chlorine production, chlorine emissions,

and key utilities, such as electricity and thermal energy (used for raising steam).  These unit

indicators could then be used in the same way as prices are used to evaluate the overall

improvement in operating cost from retrofit alternatives designed to reduce cost. All of the

required unit indicators are included in the vectors ΩΩΩΩd and ΩΩΩΩe shown respectively, in Table 7-15,

and Table 7-16. The impact of chlorine production is valued at $0.18/kg (first row in the last
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column of Table 7-15), while chlorine emissions are valued at $0.024/kg (tenth row in the last

column of Table 7-16).  This means that most of the environmental benefit obtained from

decreasing chlorine emissions would be due to decreasing the demand for chlorine to replace

what is lost, rather than from the impact of the chlorine emissions themselves.  With respect to

utilities, electricity is valued at $0.034/MJ (or about 12 cents per kWh), and thermal energy from

gas furnaces at $0.0026/MJ (Table 7-15, rows 4 and 13).  The valuation for the impact of thermal

energy supply would increase to $0.0195/MJ if coal were used as fuel (Table 7-15, row 12).

Table 7-16: Environmental impact valuations per unit of environmental exchange for the
chlorine LCA example

Air: 2,3,7,8-Tetrachlorodibenzo-p-dioxin (per kg) 0 0 2E+08 1E+07 0 0 0 0 1.7E+08
Air: Ammonia (per kg) -0.498 0 0 0.001 4.12 0 1.504 2.168 7.3
Air: Arsenic (per kg) 0 0 3141 72.67 0 0 0 0 3214
Air: Asbestos (per kg) 0 0 92.36 0 0 0 0 0 92
Air: Barium (per kg) 0 0 0 2.508 0 0 0 0 2.5
Air: Cadmium (per kg) 0 0 12565 53.86 0 0 0 0 12619
Air: Carbon dioxide (per kg) 0.03 0 0 0 0 0 0 0 0.030
Air: Carbon monoxide (per kg) 0.09 0 0 0.005 0 0.036 0 0 0.13
Air: Carbon tetrachloride (per kg) -45.66 110.5 1234 20.63 0 0 0 0 1320
Air: Chlorine (per kg) 0 0 0 0.024 0 0 0 0 0.024
Air: Cobalt (per kg) 0 0 2017 46.3 0 0 0 0 2063
Air: Cyanide (per kg) 0 0 0 35.8 0 0 0 0 35.8
Air: Dichlorodifluoromethane (per kg) 199.7 98 0 0.04 0 0 0 0 298
Air: Hydrazine (per kg) 0 0 443.5 1.072 0 0 0 0 445
Air: Hydrochloric acid (per kg) -0.459 0 0 0.016 3.8 0 0.704 0 4.1
Air: Hydrogen sulfide (per kg) -1.042 0 0 0.236 9.224 0 1.504 0 9.9
Air: Isophorone (per kg) 0 0 2E-04 4E-06 0 0 0 0 0.00020
Air: Lead (per kg) 0 0 322.3 78.84 0 0 0 0 401
Air: Mercury (per kg) 0 0 0 9438 0 0 0 0 9438
Air: Methane (per kg) 0.63 0 0 0 0 0.012 0 0 0.64
Air: Nickel (per kg) 0 0 2666 2.065 0 0 0 0 2668
Air: NOx (as NO2) (per kg) 1.2 0 0 0.297 3.052 0.233 0.56 0.8 6.1
Air: PM10 (per kg) -0.249 0 0 0 40 0 0 0 40
Air: Sulfur dioxide (per kg) -0.699 0 0 4E-04 6.156 0.096 0.8 0 6.4
Air: Sulfuric acid (per kg) -0.457 0 0.123 0.029 4.02 0 0.52 0 4.2
Air: Total Suspended Particles (per kg) -0.249 0 0 0 40 0 0 0 40
Water: Barium (per kg) 0 0 0 2.229 0 0 0 0 2.2
Water: Chlorine (per kg) 0 0 0 0.148 0 0 0 0 0.15
Water: Hydrochloric acid (per kg) 0 0 0 0.003 0 0 0 0 0.0032
Water: Mercury (per kg) 0 0 0 7426 0 0 0 0 7426
Water: Sulfuric acid (per kg) 0 0 3E-08 1E-07 0 0 0 0 1.4E-07

H Diag(w)                             
Matrix of impact category valuations per unit of 

environmental exchange

ΩΩΩΩe = Hw 
vector of 

environmental 
impact valuations 

per unit of 
environmental 

exchange
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7.4.4 Comparing three processes for manufacturing chlorine.

  Two approaches are illustrated.  The first one is based on the use of the sensitivity

matrices and vectors.  Since the three chlor-alkali processes have been defined using the same

throughput basis (the corresponding columns in the C matrix are identical), vector ΩΩΩΩx can be

used to compare the processes from a life-cycle perspective (including direct and direct

contributions).  Table 7-17 (rows 2 to 4) shows that the mercury cell process has at least 10%

more impact than either of the other two processes, while the membrane cell process is slightly

better than the diaphragm cell process.  The differences among the three processes are much

more pronounced when only the direct process impacts given by vector ΩΩΩΩxdirect are considered

(Table 7-18).  This shows that most of the impact associated with the diaphragm and membrane

cell processes arises from the processes energy inputs.  It also means that while impacts in the

area directly adjacent to a chlor-alkali facility will be significantly higher for a process using the

mercury-cell process, the difference in overall long term impact over a larger geographic scale

would not be very different.

Table 7-17: Environmental indicators per unit of process throughput for the chlorine LCA
example (direct and indirect impacts)

Unit Impact Environmental Impact Indicators and 
Valuations

Brine pumping 0.065 5E-23 1E-09 9E-10 2E-04 4E-05 5E-04 2E-04 0.002 5E-21 9E-05 7E-05 0.01 9E-05 4E-04 2E-04 0.012
Chloralkali production (diaphragm cell process) 2.705 1E-05 1E-07 3E-08 0.008 0.001 0.017 0.007 0.081 0.001 0.009 0.003 0.306 0.003 0.014 0.006 0.42
Chloralkali production (membrane cell process) 2.21 1E-05 1E-07 3E-08 0.008 0.001 0.017 0.007 0.066 0.001 0.009 0.003 0.308 0.003 0.014 0.005 0.41
Chloralkali production (mercury cell process) 2.242 1E-05 1E-07 5E-07 0.008 0.001 0.018 0.007 0.067 0.001 0.009 0.041 0.326 0.003 0.015 0.006 0.47
Coal furnace 2.793 2E-24 4E-08 4E-08 0.011 0.002 0.024 0.009 0.084 2E-22 0.003 0.003 0.457 0.004 0.019 0.007 0.58
Coal production 0.342 -0 6E-10 1E-08 6E-04 4E-04 0.003 0.003 0.01 -0 5E-05 0.001 0.025 9E-04 0.002 0.003 0.042
Coal-fired power plant 0.968 6E-22 1E-08 1E-08 0.004 7E-04 0.008 0.003 0.029 6E-20 0.001 0.001 0.158 0.001 0.007 0.002 0.20
Diesel engine 0.131 6E-25 2E-10 5E-09 2E-04 2E-04 0.001 0.001 0.004 6E-23 1E-05 4E-04 0.009 3E-04 9E-04 0.001 0.016
Diesel fuel production 0.263 9E-24 7E-09 2E-09 3E-04 9E-05 1E-03 4E-04 0.008 9E-22 6E-04 1E-04 0.012 2E-04 8E-04 3E-04 0.022
Gas-fired power plant 0.697 -0 7E-10 1E-09 6E-05 6E-05 3E-04 3E-04 0.021 -0 6E-05 9E-05 0.002 1E-04 3E-04 2E-04 0.024
Hydroelectric plant 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Industrial gas furnace 73.32 -0 7E-08 2E-07 0.011 0.011 0.06 0.066 2.2 -0 0.006 0.021 0.441 0.022 0.048 0.053 2.8
Methane reforming 9.645 -0 8E-09 1E-08 0.002 9E-04 0.005 0.003 0.289 -0 6E-04 0.001 0.063 0.002 0.004 0.002 0.36
Natural gas production 0.838 -0 7E-10 1E-09 2E-04 2E-04 8E-04 2E-04 0.025 -0 6E-05 1E-04 0.006 4E-04 6E-04 1E-04 0.033
Nuclear power plant 0.051 0 0 6E-09 4E-04 2E-04 0.002 0.002 0.002 0 0 5E-04 0.016 4E-04 0.001 0.001 0.021
Oil furnace 80.99 1E-22 1E-05 6E-07 0.15 0.046 0.705 0.143 2.43 1E-20 0.88 0.049 5.982 0.092 0.564 0.114 10
Oil production 0.067 -0 1E-09 5E-10 1E-04 3E-05 3E-04 1E-04 0.002 -0 9E-05 4E-05 0.004 5E-05 2E-04 1E-04 0.0069
Oil-fired power plant 0.747 -0 1E-07 5E-09 0.001 4E-04 0.006 0.001 0.022 -0 0.008 5E-04 0.055 8E-04 0.005 0.001 0.093
Railroad transport 0.035 -0 4E-11 1E-09 6E-05 4E-05 3E-04 4E-04 0.001 -0 4E-06 1E-04 0.002 9E-05 2E-04 3E-04 0.0042
Utility gas furnace 71.75 -0 7E-08 1E-07 0.006 0.007 0.032 0.027 2.152 -0 0.006 0.01 0.245 0.013 0.026 0.022 2.47

ΨΨΨΨx = (I-BD)-1ETH                    
Matrix of total (direct + indirect) environmental 

impact indicators per unit of process throughput

ΨΨΨΨx Diag(w)                         
Matrix of total (direct + indirect) impact category 

valuations per unit of process throughput

ΩΩΩΩx = ΨΨΨΨxw 
vector of total 

(direct + indirect) 
environmental 

impact valuations 
per unit of process 

throughput
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Table 7-18: Environmental indicators per unit of process throughput for the chlorine LCA
example (direct impacts only)

Brine pumping 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Chloralkali production (diaphragm cell process) 0.032 1E-05 7E-08 2E-09 1E-07 0 2E-06 2E-06 1E-03 0.001 0.006 2E-04 4E-06 0 1E-06 2E-06 0.0085
Chloralkali production (membrane cell process) 0.032 1E-05 7E-08 2E-09 1E-07 0 2E-06 2E-06 1E-03 0.001 0.006 2E-04 4E-06 0 1E-06 2E-06 0.0085
Chloralkali production (mercury cell process) 0.032 1E-05 7E-08 5E-07 1E-07 0 2E-06 2E-06 1E-03 0.001 0.006 0.039 4E-06 0 1E-06 2E-06 0.0470
Coal furnace 2.434 0 4E-08 2E-08 0.011 0.001 0.021 0.005 0.073 0 0.003 0.002 0.431 0.003 0.017 0.004 0.53
Coal production 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Coal-fired power plant 0 0 3E-16 1E-15 0 0 0 0 0 0 2E-11 1E-10 0 0 0 0 1.28E-10
Diesel engine 0.125 0 0 5E-09 2E-04 2E-04 0.001 0.001 0.004 0 0 4E-04 0.009 3E-04 8E-04 0.001 0.0152
Diesel fuel production 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Gas-fired power plant 0 0 2E-18 7E-18 0 0 0 0 0 0 1E-13 6E-13 0 0 0 0 7.13E-13
Hydroelectric plant 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Industrial gas furnace 56.98 0 6E-08 2E-07 0.008 0.008 0.045 0.063 1.709 0 0.005 0.019 0.315 0.015 0.036 0.051 2.15
Methane reforming 5.5 0 0 0 0 0 0 0 0.165 0 0 0 0 0 0 0 0.165
Natural gas production 0.726 0 0 8E-10 6E-05 2E-04 5E-04 0 0.022 0 0 6E-05 0.002 3E-04 4E-04 0 0.025
Nuclear power plant 0.051 0 0 6E-09 4E-04 2E-04 0.002 0.002 0.002 0 0 5E-04 0.016 4E-04 0.001 0.001 0.021
Oil furnace 79.43 0 1E-05 6E-07 0.147 0.045 0.698 0.14 2.383 0 0.878 0.048 5.881 0.091 0.558 0.112 9.95
Oil production 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Oil-fired power plant 0 0 3E-18 1E-17 0 0 0 0 0 0 3E-13 1E-12 0 0 0 0 1.6E-12
Railroad transport 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Utility gas furnace 55.4 0 6E-08 9E-08 0.003 0.003 0.017 0.024 1.662 0 0.005 0.007 0.119 0.006 0.014 0.019 1.8

ΨΨΨΨxdirect = (I-BD)-1ETH                 
Matrix of direct environmental impact indicators per 

unit of process throughput

ΨΨΨΨxdirect Diag(w)                     
Matrix of direct impact category valuations per unit of 

process throughput

ΩΩΩΩxdirect = 
ΨΨΨΨxdirectw 

vector of direct 
environmental 

impact valuations 
per unit of process 

throughput

The second approach to comparing the processes is based on changing the market share

matrix and repeating the analysis in parts (a) and (b) three times.  In each iteration, the process of

interest is given a 100% market share in the production of chlorine.  This procedure allows the

analyst to take full advantage of the information provided by the contribution matrices.  Key

results are shown in Figure 7-5 (chemical contributions) and Figure 7-6 (process contributions).
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Figure 7-5: Environmental exchange contributions to the environmental impact indicator of
chlorine production for three chlor-alkali processes
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Figure 7-6: Process throughput contributions to the environmental impact indicator for chlorine
production for three chlor-alkali processes
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7.4.5 Impact of changing input suppliers.

  The case of using an alternative source of electricity other than electricity from the

national grid is examined next.  In particular, the environmental impact indicator for chlorine

production using the membrane cell and electricity supplied by the national grid is compared

with the indicator for chlorine production also using the membrane cell, but using electricity

from an on-site natural gas-fired cogeneration plant. Table 7-19 shows the changes made to the

use and make matrices to incorporate a new process (the cogeneration plant) and two new

products (electricity from cogeneration and thermal energy from cogeneration).  It is assumed

that only the chlor-alkali processes obtain electricity and steam from the cogeneration plant. All

other processes in the network continue to consume electricity from the national grid. The fuel

consumption per kWh of electricity from the cogeneration plant is assumed to be the same as that

for a gas-fired power plant, but the industrial gas furnace is used rather than the utility gas

furnace as the source of thermal energy.  It is not necessary to fill out the entries for the

cogeneration process in the environmental exchanges matrix, since the combustion product

emissions of the industrial gas furnace are inherited by the cogeneration process through the

specification of thermal energy as an input.  An alternative approach would have been to enter

natural gas as an input to the cogeneration process (instead of thermal energy) and to enter

emission factors for the cogeneration process in the environmental exchanges matrix. An

electricity price of $0.06/kWh ($0.0167/MJ) and steam price of $0.0032/MJ are used in vector p

for the purposes of allocating cogeneration plant throughput to the two products electricity and

steam (thermal energy).  The results are shown in Figure 6.  The social cost of chlorine

production decreases by about a factor of 4 when the cogeneration plant is used as a source of the

electricity and steam in the chlor-alkali processes.
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Table 7-19: Technical coefficient matrices for the chlorine LCA example, incorporating a
cogeneration process into the process network

PR
OC

ES
S

PRODUCT INPUTS
Chlorine kg
Coal kg 1
Diesel fuel kg 0.024
Electricity from national grid MJ 0.36 0.052 0.144 1.4 0.124 0.142
Electricity from cogeneration plant MJ 0.36 10.8 11 11.7
Thermal energy from cogeneration plant MJ 9 1.35
Hydrogen kg
Mechanical energy from diesel engines MJ 2.53 0.269
Natural gas kg 19.5 2 23
Oil kg 1 23.24
Railroad transport kg-km 467.2
Salt from brine kg 1.65 1.65 1.65
Sodium hydroxide kg
Thermal energy from coal furnace MJ 0.01 10.25
Thermal energy from industrial gas furnace MJ 1.839 31.9 1.271 0.53 10.25
Thermal energy from oil furnace MJ 0.545 0.027 0.064 9.73
Thermal energy from utility gas furnace MJ 10.25

PRODUCT OUTPUTS UNITS
Chlorine kg 1 1 1
Coal kg 1
Diesel fuel kg 1
Electricity from national grid MJ 3.6 3.6 3.6 3.6 3.6
Electricity from cogeneration plant MJ 3.6
Thermal energy from cogeneration plant MJ 5.657
Hydrogen kg 0.028 0.028 0.028 1
Mechanical energy from diesel engines MJ 1
Natural gas kg 1
Oil kg 1
Railroad transport kg-km 1000
Salt from brine kg 1
Sodium hydroxide kg 1.12 1.12 1.12
Thermal energy from coal furnace MJ 29.57
Thermal energy from industrial gas furnace MJ 1055
Thermal energy from oil furnace MJ 1055
Thermal energy from utility gas furnace MJ 1055

UNITS B = [use matrix]

C = [make matrix]
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Figure 7-7: Comparison between the U.S. national grid and a gas-fired cogeneration plant as
sources of electricity for chlorine production using the membrane cell process

7.4.6 Comparison between chlorine production in the United States and
Western Europe

  The mercury cell process is used to a larger extent in Europe than it is in the United

States.  It is estimated that in 1994, 64% of European chlorine was produced via the mercury cell

process, while the diaphragm and membrane cell processes accounted for, respectively, 24% and

11% of total production [20].  The production mix for electricity is also different from the one in

the United States, with lower contribution from coal power plants and higher contributions from

nuclear, hydroelectric, and oil-fired plants.  An estimate for the market shares in the UCPTE

power network (Western Europe including the British Isles) is: 25.2% coal, 10.7% oil, 7.4%

natural gas, 40.3% nuclear, and 16.4% hydro [21].  A comparison between chlorine production

in the two regions can be obtained by changing the market share matrix F (Table 7-20) and

repeating the analysis undertaken in subsections 7.4.1 and 7.4.2. Figure 7-8 shows the results of

this exercise.  Despite the higher contribution of the mercury cell process to chlorine production

in Europe, the overall indicator for European production is 36% lower than the one for U.S.

production, due mainly to the lower contribution of coal-fired power plants to electricity

generation in Europe.  Note than increasing either the toxicity potency factor for mercury or the
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valuation factor for the toxic effects impact category by a factor of 10 would shift the balance in

favor of U.S. production.

Table 7-20: Market share matrix for the production of chlorine under ca. 1990 Western
European conditions

PR
OD

UC
T

PROCESS
Brine pumping 100%
Chloralkali production (diaphragm cell process) 24% 2% 24%
Chloralkali production (membrane cell process) 11% 1% 11%
Chloralkali production (mercury cell process) 64% 6% 64%
Coal furnace 100%
Coal production 100%
Coal-fired power plant 25%
Diesel engine 100%
Diesel fuel production 100%
Gas-fired power plant 7%
Hydroelectric plant 16%
Industrial gas furnace 100%
Methane reforming 90%
Natural gas production 100%
Nuclear power plant 40%
Oil furnace 100%
Oil production 100%
Oil-fired power plant 11%
Railroad transport 100%
Utility gas furnace 100%

F = [market share matirx]
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Figure 7-8: Comparison of the environmental impact of chlorine production in United States vs.
Western Europe

7.5 Uncertainty propagation

7.5.1 Introduction

A legitimate question that may be raised after examining the results of the PIO-LCA

environmental valuation method applied to the life cycle assessment of chlorine production is

how much confidence can one place in the conclusions of the analysis.  After all, there are many

uncertainties involved in the estimation of the data used as input to the method73.

The underlying data of the model is given by:

• process descriptions: B, C, and E matrices

• economic data: p vector, F matrix

• environmental assessment data: H matrix

• subjective valuation data: w vector

                                                
73 In fact, 625 uncertain parameters were used in the PIO-LCA model of chlorine production, including 458

uncertain factors in the multimedia fate, transfer and human exposure model (see section 6.3) used to generate the
characterization factors for the cancer and non-cancer chronic toxicity impact categories.
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One of the advantages of organizing LCA data in the manner proposed in this chapter is

to facilitate updating.  For example, if new emissions data for the generation of electricity in

coal-fired power plants became available it would not be necessary to reenter the emissions data

for every process that uses electricity.  The PIO-LCA method matrix multiplications would take

care of propagating the change in emissions through the different processes that use electricity

directly or indirectly.  This property also allows the propagation of uncertainties in technical

coefficients (i.e. use, make, and environmental exchange factors) and valuation data while

preserving correlation structure.  For example, when the emission of a particular trace substance

in coal combustion is sampled at a high value in an iteration of a Monte Carlo simulation, that

one high value would be use in the computation of all unit indicators that inherit that emission in

that particular iteration.  In this way, samples of correlated unit indicators may be drawn from the

PIO-LCA model for use in environmental valuation functions.

Uncertainty propagation can be conveniently carried out in spreadsheet software with

uncertainty analysis add-ons by substituting distribution functions for nominal values in the cells

that contain the inputs to the model.  In a reasonably sized model the maintenance and

documentation of the distributions used becomes an important part of the task.  One of the key

functions of the EnvEvalTool introduced in section 9.4 is the generation of fully documented

input matrices and vectors for the Excel spreadsheet implementation of the PIO-LCA model,

including the appropriate uncertainty distribution functions.

The reader might recall that in section 7.3.3 a social cost of $180 was estimated for the

valuation of the environmental impacts associated with the production of 1000 kg of chlorine.

Uncertainty analysis performed on the model shows that there is more than one order of

magnitude uncertainty in this estimate, as shown in Figure 7-9.
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Figure 7-9: Uncertainty distributions for the overall environmental indicator for chlorine
production obtained from Monte Carlo simulation of the PIO-LCA model

A comparison between the three chlor-alkali processes in the process network had shown

that the mercury cell route was between 10 and 15% more damaging than the other two routes.
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Propagation of uncertainties in the unit environmental indicators for the three processes (i.e. on

the three elements of the Ωx vector corresponding to the chlor-alkali processes) was carried out

to test whether this conclusion was robust in the presence of uncertainty.  A first look at the

distributions obtained (Figure 7-10) suggests that the differences are not significant.  This would

be a mistaken conclusion.  As explained in section 4.4, judgements about the ranking of two

alternatives characterized by uncertain valuation functions should take into account correlations

among the measures of performance for the two alternatives.  Using the output file from the

Monte Carlo simulation performed on the PIO-LCA model it is possible to derive ratios of the

unit impact indicator for one chloralkali process against the indicator for another process.  Those

distributions are shown in Figure 7-11.  Although there is a 70% chance that the diaphragm

process has higher impact than the membrane process74, the difference between the two

processes is vary small.  On the other hand, it can be concluded that the mercury cell process is

significantly more damaging to the environment than the other two.  The probability that the

impacts of the mercury cell process receive a higher valuation than the impacts of the diaphragm

cell and membrane cell processes are, respectively, 82% and 92%.  There is also more than a

15% probability that the mercury cell process is at least twice as damaging than the other two75.

0.1 1 10

diaphragm cell

membrane cell

mercury cell

Unit environmental indicator ($/unit of process throughput)

Figure 7-10: Comparison of three chlor-alkali processes using absolute environmental impact
indicators

                                                
74 70% of the ratios of the environmental impact indicator of the diaphragm process to the indicator for the

membrane process derived from the Monte Carlo simulation output file had values higher than 1.  This means
that in 70% of the cases the impact of the diaphragm process received a higher valuation.

75 In more than 15% of the Monte Carlo iterations the impact ratios of the membrane cell process and the diaphragm
cell process to the mercury cell process were lower than 0.5
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Figure 7-11: Comparison of three chlor-alkali processes using relative environmental impact
indicators

This example has shown the power of the PIO-LCA method in decreasing decision

uncertainty by preserving correlation structure in the presence of a large number of uncertainties.

In fact, the confidence in the relative ranking of the three processes was increased in this

example through the use of uncertainty analysis in a model that preserves correlation

information.  Additional information can be gained through the use of sensitivity analysis,

discussed next.

7.5.2 Sensitivity analysis

ANALYSIS OF CONTRIBUTIONS TO THE ENVIRONMENTAL IMPACT INDICATOR

In terms of fractions of the overall indicator, the contributions of each process i,

environmental exchange j, and impact category k can be calculated as follows:

fproc.i = (ETHw)ixi/Ω

fex.j = (Hw)jej/Ω

fcat.k = wkψk/Ω

(7-19)

(7-20)

(7-21)
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Propagation of the uncertainty in the contributions above can be used to distinguish those

factors that are important from those who do not even have a small chance of being important.  It

typically turns out that even when there are dozens of substances in a life-cycle emissions

inventory, only a few of them have at least a 5% chance of accounting for more than 1% of the

total score for a given activity.  This suggests that at the beginning of the analysis, only order of

magnitude estimates for direct emissions and characterization factors are needed.  After a first

pass, those factors that can not be neglected can be investigated more carefully.

The nominal contributions of each process and environmental exchange are shown in the

last column of Table 7-14 and Table 7-13, respectively. The nominal contributions of each

environmental problem category are shown in the last row of either table.  By specifying the

elements of the vectors just cited as uncertain outputs of the Monte Carlo simulation, it is

possible to generate distributions for the contributions.  Process contributions to the chlorine

environmental impact valuation are shown in Figure 7-12.  The reader might recall that in the

discussion in section 7.3.3 it was said that the contribution of the chloralkali processes to the

total impact valuation was minor (less than 4% of total). Figure 7-12 shows that this is true in

many states of the world, but it also shows that in some states of the world76 the contribution of

the mercury cell process can be quite significant.  The conclusion that the bulk of the impact is

contributed by the combustion of coal in power plants to provide electricity for the processes is

unchanged.

Distributions for the contributions of individual chemical emissions to the life-cycle

environmental impact indicator of chlorine are shown in Figure 7-13.  The figure confirms the

observation made in section 7.3.3 that emissions of the combustion products carbon dioxide,

sulfur dioxide, nitrogen oxides, and particulate matter account for the bulk of the impact.  The

figure also shows that although the nominal contribution of mercury emissions was minor (less

than 2%), it can be significant depending on how uncertainties are resolved.  An interesting point

raised by Figure 7-13 is that in 10% of the iterations the effects of sulfur dioxide were valued to

be beneficial.  This happened when the valuation factor for global warming was sampled at a

high end of the distribution and the valuation factor for respiratory effects of particulate matter

                                                
76 The phrase “state of the world” refers to a particular combination of realizations of the random variables in the

model.
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was sampled at a low end of the distribution.  Sulfate aerosols reflect sunlight and thus have a

negative contribution to radiative forcing [22].  Unfortunately they are also quite damaging to

human health, so in most of the model iterations the total impact of sulfur dioxide is judged to be

adverse.
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Figure 7-12: Distributions for process contributions to the environmental impact indicator of
chlorine production
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Figure 7-13: Distributions for emission contributions to the environmental impact indicator of
chlorine production

Figure 7-14 shows distributions for the contributions of each environmental impact

category considered in the example to the total impact valuation of chlorine production.  The

figure confirms the observation made in section 7.3.3 that the largest contribution comes from

the respiratory effects of particulate matter category, followed by the global warming category.

Two problem categories with relatively low nominal contributions to the total valuation (human

cancer toxicity potential and human non-cancer toxicity potential, each with a nominal

contribution of about 2%) have the potential for accounting for a large fraction of the total

impact valuation.  In particular, the human non-cancer toxicity potential category contributes to

more than half of the impact in 10% of the Monte Carlo simulation iterations.  In contrast, ozone

depletion and photochemical smog creation have virtually no significant chance of having a

significant contribution to the total valuation of the environmental impacts associated with

chlorine production.
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Figure 7-14: Distributions for environmental problem category contributions to the
environmental impact indicator of chlorine production

ANALYSIS OF CONTRIBUTIONS TO UNCERTAINTY

Although the preceding examples confirmed many of the initial observations regarding

significant contributions to the overall environmental impact indicator, they also raised some

interesting questions regarding the potentially important contributions from sources not

identified previously.  The next step of the analysis is the identification of those parameters in

the environmental valuation model that contribute the most to various uncertainties.

Uncertainties considered include uncertainty in overall valuations, uncertainty in the ranking

between two alternatives, and uncertainties in the contributions of various sources to the overall

environmental indicator.

Identification of the factors that drive the uncertainty in the various model outputs of

interest can be done using the output data generated during Monte Carlo simulation. Spearman

rank correlation coefficients are computed between the outputs of interest and each of the

uncertain inputs to the model.  Those factors for which the absolute value of their rank
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correlation coefficients with respect to the score of interest are closest to one would be targeted

for more careful assessment of their probability distributions.

The Spearman rank correlation coefficient rs between two sampled quantities, x and y, is

given by:
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This is a more robust measure of correlation than the linear correlation coefficient, and is

a good indicator of dependence when the relationship between factors is monotonically

increasing (positive coefficients) or decreasing (negative coefficients)77.

As an example, Figure 7-15 shows the rank correlation coefficients between the

uncertainty in the overall environmental impact indicator for chlorine production (shown in

Figure 7-9) and the uncertainties in the model with which it is most strongly correlated.

Valuation factor uncertainties dominate, with the top-ranked uncertainties being the uncertainties

in the valuation factors for the respiratory effects, human toxicity potential, and global warming

categories.  Another significant parametric uncertainty is the uncertainty associated with the

tolerable risk level parameter used to place cancer slope factors and non-cancer reference doses

on the same scale (see eq (6-137)).  Several correlated characterization factors for the

contributions of several inorganic species to the formation of fine particulate matter follow in

importance78.  The valuation factors for two impact categories that had been shown in Figure

7-14 to be unimportant turn out to be somewhat correlated with the overall impact valuation.

The reason for this apparently paradoxical result is that the valuation factors for the ozone

depletion and photochemical oxidant creation categories are correlated with all three of the

valuation factors with the largest contributions to impact.  Their correlation with the overall

                                                
77 See section 5.3 for a more detailed discussion of Spearman rank correlation coefficients.
78 The EPS method literature was used to derive distributions for the characterization factors of inorganics within the

“respiratory effects from particulate matter” impact category [23].  In the EPS method the contribution of most
inorganics to mortality and morbidity through the particulate matter pathway is estimated with reference to the
contribution of sulfur dioxide.  As a result, the uncertainty in the characterization factors for most inorganics
(expressed as PM10 equivalents) is a combination of the uncertainty in the SO2 characterization factor and the
uncertainty in the equivalence factor used to relate a specific inorganic compound to SO2.  The characterization
factors could be decoupled by swtching from PM10 to SO2 as the reference substance for the respiratory effects
category.
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value of the indicator is mostly a consequence of the drawing of correlated samples in the

simulation79
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Figure 7-15: Rank correlation coefficients for the uncertainty in the absolute value of the overall
environmental evaluation indicator for chlorine production

The next uncertainty examined is the uncertainty in the relative environmental indicator

of chlorine production using the diaphragm cell process relative to that using the membrane cell

process (the top distribution in Figure 7-11).  The relative importance of valuation factor

contributions is much lower in this case.  The top uncertainties are now the uncertainties in the

electricity consumption rate for both processes.  Drawing a value for electricity consumption in

the membrane cell process from the high end of its distribution tends to make the membrane cell

process appear more damaging relative to the diaphragm cell process (the converse also applies).

A major difference between the two processes is that the diaphragm cell process requires

                                                
79 The storage of correlation coefficients in the EnvEvalTool database used as a source of the data for the chlorine

example is discussed in section 9.4.1.  That section also contains a table showing the correlation coefficients
among environmental valuation factors used in this work (Table 9-2).
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significantly more steam (thermal energy from the industrial gas furnace) than the membrane cell

(see Table 7-1).  The most significant contribution to the environmental impact of generating

steam in gas fired boilers comes from carbon dioxide’s contribution to the greenhouse effect.

Because of this, the impact of chlorine production through the diaphragm process tends to be

penalized when the valuation for the global warming impact is sampled from the high end of its

distribution.  The relatively high correlation of the environmental impact ratio with the valuation

factor for the ozone depletion category is a byproduct of the correlation between the global

warming and ozone depletion valuation factor distributions80.  Sampling from the high end of the

respiratory effects valuation factor distribution tends to decrease the value of the environmental

impact ratio, by decreasing the relative importance of the industrial gas furnace emissions as

compared to the emissions from the coal furnaces used to generate electricity.
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Figure 7-16: Rank correlation coefficients for the uncertainty in the ratio of the life-cycle unit
environmental indicator of the diaphragm cell process to that of the membrane cell
process

The analysis carried out for the uncertainty in the ratio of environmental impacts of

chlorine production using the membrane cell process relative to the mercury cell process is

shown in Figure 7-17.  Uncertainties in several fate, transport, and toxicological properties of

mercury are shown to be highly correlated with the environmental impact ratio.  The main route

                                                
80 The reader is referred again to Table 9-2.
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for taking mercury out of the landscape in the multimedia fate and transport model used in this

work is sediment burial.  This loss mechanism is more effective when mercury partitions into

particles (soil-water partition coefficient), when the particles deposit rapidly, and when a larger

fraction of the landscape is covered by water.  This explains why the last three factors in the

figure are positively correlated with the impact ratio membrane cell process / mercury cell

process.  In contrast, increasing mercury emissions (E factor), increasing its toxicity (1/RfC), or

increasing mercury’s volatility (Henry’s law constant) has the effect of increasing the potential

for toxic effects from mercury (toxicity potential = exposure × toxicity).
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Figure 7-17: Rank correlation coefficients for the uncertainty in the ratio of the life-cycle unit
environmental indicator of the membrane cell process to that of the mercury cell
process

Not surprisingly, many of the same factors that contribute to make the mercury cell

process less attractive than the membrane cell process also contribute to the uncertainty in the

contribution of mercury emissions to the overall environmental impact indicator for chlorine

production (recall the long tail of the distribution for this contribution shown in Figure 7-13).

The rank correlation coefficients are shown in Figure 7-18.  The negative coefficients for the
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rank correlation with the respiratory effect factors for hydrogen chloride and ammonia are due to

their contribution (and to the contribution of the factor for SO2, with which they are strongly

correlated) to the denominator in eq (7-20).
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Figure 7-18: Rank correlation coefficients for the uncertainty in the contribution of emissions of
mercury to air to the overall environmental impact indicator of chlorine production

Finally, Figure 7-19 analyzes the uncertainty in the contribution of the non-cancer toxic

effects on humans impact category to the overall evaluation, which was shown in Figure 7-14 to

have the potential to be a significant contributor.  In addition to the factors that contribute to

increasing the toxic impact valuation for mercury, the toxicity of nitrogen oxides turns out to be

an important factor as well.  The overwhelming source of uncertainty, however, is the

uncertainty in the tolerable risk level subjective assessment parameter.

In summary, the analysis of contributions to uncertainty carried out in this section has

identified no more than a couple dozen uncertainties (out of more than 600 used in the model) as

uncertainties to which attention should be paid in order to decrease environmental valuation

uncertainty and uncertainty in the ranking of alternative processes.  The next logical step for this

example would be to make a more careful assessment of the willingness of the decision makers
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to make tradeoffs between cancer and non-cancer effects (it should be possible to cut down the

uncertainty factor from 100 to maybe 10).  After that, a compilation of the most recent data on

the fate of mercury emissions in the environment should provide the largest opportunity for

reducing uncertainty.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

HTP model parameter: Tolerable Risk Level 

E factor: Hg from mercury cell process

HTP model parameter: Hg Henry's law constant

H factor: HCl / respiratory effects from particulate matter

HTP model parameter: NOx RfC

H factor: NH3 / respiratory effects from particulate matter

HTP model parameter: Hg Soil-water distribution coefficient

HTP model parameter: Hg RfC

Rank correlation coefficient

Figure 7-19: Rank correlation coefficients for the uncertainty in the contribution of the human
chronic toxicity potential (non-cancer) category to the overall environmental
impact indicator of chlorine production

7.5.3 Implementation in practice: Generation of correlated unit impact
distributions

It is probably not practical for designers to embed the full PIO-LCA model81 in the

valuation models used to assess and rank alternatives.  Fortunately, the problem can be separated

in a way that preserves the underlying correlation structure.

Eq (7-11) gives the full expression for calculating the overall environmental impact

indicator associated with a vector of final demands.

                                                
81 This is especially true if a full multimedia exposure model is used concurrently to generate some of the

characterization factors.
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Ω = wTψψψψ  = wTHTe = wTHTEx = wTHTED(I − Aprod)-1 d (7-11)

The vector of unit environmental indicators ΩΩΩΩd can be generated independently of any

design:

ΩΩΩΩd = wTHTED(I − Aprod)-1 (7-15)

Therefore, if a joint probability distribution of the unit environmental indicators in vector

ΩΩΩΩd could be generated that preserved the correlation structure of the full PIO-LCA model, then

the uncertainty in the overall environmental impact indicator would be obtained by propagating

the uncertainty in the model

Ω = ΩΩΩΩd d (7-23)

where the vector d could be the uncertain output of a process model.  The main advantage of

accomplishing this would be to decrease dramatically the number of distribution functions in the

environmental valuation model, from the hundreds typically present in a combined PIO-LCA +

Human Toxicity Potentials model to a handful of correlated unit indicator distributions.

In this work, the multivariate normal copula distribution [24] has been used to summarize

the results of Monte Carlo simulations into joint probability distributions of unit environmental

indicators.  Details on the procedure are provided in section 8.3.

7.6 Discussion

7.6.1 Computational cost of refining the analysis

As shown by the illustrative applications, the PIO-LCA method allows LCA users to

refine the analysis by incorporating new data elements as they become available.  This is done by

adding columns and rows to the data input matrices and vectors (B, C, E, F, H, p, and w), or by

filling zero entries in the existing matrices.  As the problem becomes more complex, the matrices

may grow in size or become less sparse, but the number of matrices used in the analysis does not

change.  The contribution and sensitivity matrices allow the analyst to determine whether the

addition of a particular product, process, or environmental exchange changes the results

significantly.  Details of a Visual Basic implementation of the method in Microsoft Excel

spreadsheets are given in Appendix C.  The tool was used to generate automatically all the

output matrices shown in this chapter.
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7.6.2 Relationship to linear programming formulations

DERIVATION OF LP FORMULATION FROM PIO-LCA MATRICES AND VECTORS

The data required by the PIO-LCA methodology can be used as input to the following

optimization problem:

T

TT
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where the matrix Fmin can be used to place constraints on process throughputs.  Specifying

Fmin = F forces processes to operate in such a way that products that can be supplied by more

than one process are produced by the different processes in the proportions specified in the

market share matrix F.  Unit indicators for each product would be given by the reduced costs on

the demand constraints [25].

The linear programming (LP) formulation is useful for identifying changes in prevailing

process market shares that would decrease the overall environmental impact indicator.  To

illustrate the use of the LP formulation and to compare it with the results of the allocation

method, problem (LP1) is solved three times for the chlorine production example: (i) setting

(Fmin)ji = Fji for the products chlorine and electricity (i.e. current market shares), (ii) chlorine

process market share constraint removed, and (iii) setting Fmin = 0 (no market share constraints).

In case (i) there is no flexibility for switching among chlor-alkali or electricity processes. As

shown in Table 7-21, the entries in the vector of process throughputs obtained using the LP

formulation have higher values than the entries in the corresponding vector obtained using the

matrix inversion method on the example.  The reason is that the matrix inversion method

incorporates allocation rules, so that the process throughputs (and the associated environmental

impact scores) that would be obtained with the LP formulation are divided among the three

products chlorine, sodium hydroxide and hydrogen.  Note that the product (C-B)x has three

nonzero entries (one for each coproduct), while the demand vector d has only an entry for

chlorine.  The unit indicator for chlorine would also be higher under the LP formulation than
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under the PIO-LCA formulation, since the demand constraints for sodium hydroxide and

hydrogen are non-binding.  In effect, the LP formulation allocates all of the impacts of a

multiproduct process to the product for which demand is equal to production rate (the product for

which the demand is a binding constraint).

Case (ii) represents the problem of choosing the best process for manufacturing chlorine.

The solution to the LP problem uses 1000 throughput units of the membrane process, with no

throughput from either the mercury or the diaphragm processes. The total impact indicator is 5%

lower than in case (i).

In case (iii) the LP formulation is allowed to choose among the different electricity

processes as well as from the different chlor-alkali processes.  Not surprisingly, electricity is only

generated at hydroelectric plants, since the E matrix does not include any nonzero entries for that

process.  The total impact indicator is now 97% lower than in case (i).  This is consistent with

earlier results that showed that a large portion of the life-cycle environmental impact of chlorine

manufacturing is due to the processes involved in electricity generation.
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Table 7-21: Linear programming results for the chlorine LCA example

PIO-LCA 
solution Fmin = F

Fmin = F for 
electricity, 

Fmin = 0 for 
all other 
products Fmin = 0

PROCESSES
Brine pumping 691.3 1650.0 1650.0 1650.0
Chloralkali production (diaphragm cell process) 326.8 780.0 0.0 0.0
Chloralkali production (membrane cell process) 25.1 60.0 1000.0 1000.0
Chloralkali production (mercury cell process) 67.0 160.0 0.0 0.0
Coal furnace 268.7 641.3 643.0 0.0
Coal production 268.7 641.3 643.0 0.0
Coal-fired power plant 775.0 1849.8 1854.6 0.0
Diesel engine 713.6 1703.2 1707.7 0.0
Diesel fuel production 17.1 40.9 41.0 0.0
Gas-fired power plant 123.1 293.8 294.5 0.0
Hydroelectric plant 147.4 355.1 356.0 3221.4
Industrial gas furnace 3.0 7.1 1.5 1.3
Methane reforming 0.0 0.0 0.0 0.0
Natural gas production 81.0 193.4 84.7 25.6
Nuclear power plant 271.9 648.9 650.6 0.0
Oil furnace 0.3 0.8 0.8 0.0
Oil production 24.7 58.9 59.0 0.0
Oil-fired power plant 33.8 80.7 80.9 0.0
Railroad transport 125.5 299.6 300.4 0.0
Utility gas furnace 1.2 2.9 2.9 0.0

PRODUCTS
Chlorine (kg) 419 1000 1000 1000
Coal (kg) 0 0 0 0
Diesel fuel (kg) 0 0 0 0
Electricity (MJ) 0 0 0 0
Hydrogen (kg) 12 28 28 28
Mechanical energy from diesel engines (MJ) 0 0 0 0
Natural gas (kg) 0 0 0 0
Oil (kg) 0 0 0 0
Railroad transport (kg-km) 0 0 0 0
Salt from brine (kg) 0 0 0 0
Sodium hydroxide (kg) 469 1120 1120 1120
Thermal energy from coal furnace (MJ) 0 0 0 0
Thermal energy from industrial gas furnace (MJ) 0 0 0 0
Thermal energy from oil furnace (MJ) 0 0 0 0
Thermal energy from utility gas furnace (MJ) 0 0 0 0

Total for all process throughputs 180$         429$      409$         12$         
Overall indicator: wTHTEx

LP solution

Process throughputs: x

Net production: (C-B)x

COMPARISON WITH OTHER LP FORMULATIONS

Rudd and coworkers [26] built a linear programming model of the petrochemical

industry.  The model includes 297 chemical processes and 203 products.  The constraints of the

model are given by:
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Given an objective function, the model seeks the best combination of values for the process

operation levels Xj and feedstock purchases Fi such that the product demands Di are satisfied

within the specified process capacity limits Bj and feedstock supply availabilities Si.  Fathi-

Afshar and Yang [27] applied this model to the problem of identifying the petrochemical

industry structure with the lowest production cost and lowest gross toxicity.  Emissions of a

particular toxic substance from the chemical processes in the network were assumed to be

proportional to the total production requirements for that chemical and to its vapor pressure.  The

inverse of the ACGIH threshold limit value (TLV) was used as a toxicity potency factor.

Sensitivity analysis was used to rank chemicals with respect to the total contribution (direct plus

indirect) of a unit mass of chemical final demand to the overall toxicity indicator score, by

obtaining the reduced cost of the demand constraints when the objective function is to minimize

the overall toxicity indicator score.

In the present formulation, the coefficients aij are divided among the make and use

matrices, with the positive coefficients being incorporated into the make matrix and the negative

coefficients into the use matrix (as positive numbers).  Product demands are incorporated into the

product demand vector, and feedstock purchases from exogenous sources are not permitted (this

is equivalent to setting Si = 0 in Rudd’s model), since in life cycle assessment one is interested in

accounting for the environmental impacts associated the entire process and product network,

including the production of feedstocks.  Process throughput constraints may be placed in the

formulation introduced here either indirectly using the Fmin matrix (particularly for the case of

process throughputs outside of the decision-maker’s control) or directly by using vectors of

process throughput upper and lower bounds.

7.6.3 Specifying appropriate market shares

In the example presented here, the market shares of different power plants in the

generation of electricity consumed by the chlor-alkali processes have a very significant impact

on the calculated social cost of chlorine production.  The question arises of what the appropriate

market shares are that should be used for evaluating the impact of marginal increases in the

demand for electricity.  More generally, the relevant question is what rules should be used to

specify market shares to appropriately reflect changes in environmental exchanges due to

marginal increases in the demand for products and services.  The shares of the different primary
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energy sources in the planned capacity additions (1998-2007) to the United States power grid are

88.7% natural gas, 4.9% coal, 2.8% petroleum, 1.5% hydro, 0% nuclear, and 2.2% waste heat

[28].  With respect to chlor-alkali production, it is likely that the majority of capacity additions

will take place using the membrane cell process.  Assuming a 100% capacity expansion market

share for the membrane cell process and using the capacity expansion market shares listed above

for the electricity generation processes, yield a much lower indicator for chlorine production

(Figure 7-20).  This example shows that the choice of basis for market shares can make a

substantial difference in the analysis.  It is suggested that capacity expansion market shares be

used for products with increasing annual production.  For products with stable or decreasing

annual production it appears more appropriate to use average market shares, since demand for a

product with decreasing production would tend to support continued operation of existing plants.
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Figure 7-20: Impact of product market share specifications on the environmental impact
valuation of chlorine production

7.7 Conclusions
The PIO-LCA method is a powerful tool for estimating environmental impact indicators

for products and services.  It allows designers not only to produce emission inventories and

environmental impact scores, but also to trace environmental exchanges and contributions to the
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indicators back to the processes that generate them.  It also provides a flexible mechanism for

storing environmental exchange data in a way that allows easy updating when new information

becomes available.  The allocation rules used by PIO-LCA are explicit and are directly related to

the cause for processes to operate.  A major benefit of the method is its ability to preserve

correlations in unit environmental indicators for different products, processes, and environmental

exchanges.  As described in Chapter 4, preserving correlation structure is key to reducing

decision uncertainty in the presence of large uncertainties in valuation models.  The matrix

manipulations shown in this chapter have been used to develop a PIO-LCA macro add-on to

Microsoft Excel82.  Other software tools have been developed to link the PIO-LCA method with

the environmental information management system described in Chapter 983.

                                                
82 See Appendix C
83 For a description of the tools, see Appendix B
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7.8 Appendix: Vector and matrix glossary
Matrix or vector Description Rows Columns

Example
size

Aprod = BD Product-by-product direct requirements
matrix

Products Products 15 by 15

Aproc = DB Process-by-process direct requirements
matrix

Processes Processes 20 by 20

B Use matrix Products Processes 15 by 20

C Make matrix Products Processes 15 by 20

D Process-by-product throughput matrix Processes Products 20 by 15

d Demand vector Products 15 by 1

Diag(e) H Matrix of contributions of environmental
exchanges to impact category scores

Exchanges Impact
categories

31 by 8

Diag(e) H Diag(w) Matrix of contributions of environmental
exchanges and impact categories to overall
valuation

Exchanges Impact
categories

31 by 8

Diag(e) Hw Vector of contributions of environmental
exchanges to overall valuation

Exchanges 31 by 1

Diag(x) ETH Vector of contributions of process
throughputs to impact category scores

Processes Impact
categories

20 by 8

Diag(x) ETH Diag(w) Matrix of contributions of process
throughputs and impact categories to overall
valuation

Processes Impact
categories

20 by 8

Diag(x) ETHw Vector of contributions of process
throughputs to overall valuation

Processes 20 by 1

Diag(w) HTEx Vector of contributions of impact category
scores to overall scores

Impact
categories

8 by 1

E Environmental exchanges matrix Exchanges Processes 31 by 20

E Diag(x) Matrix of direct process contributions to the
total environmental exchanges vector

Exchanges Processes 31 by 20

E(I- DB)-1 Diag(x) Matrix of direct plus indirect process
contributions to the total environmental
exchanges vector

Exchanges Processes 31 by 20

e = Ex Total environmental exchanges vector

(known as the life cycle inventory in LCA)

Exchanges 31 by 1

F Market share matrix Processes Products 20 by 15

G Allocation matrix Processes Products 20 by 15

H Potency factors matrix Exchanges Impact
categories

31 by 8

(I − DB)-1 Process-by-process total requirements matrix Processes Processes 20 by 20

(I − Aprod)-1 Product-by-product total requirements matrix Products Products 15 by 15

p Product price vector Products 15 by 1
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Matrix or vector Description Rows Columns
Example

size
q = (I − Aprod)-1d Total product requirements vector Products 15 by 1

qdirect  = (I +Aprod)d Direct product requirements vector Products 15 by 1

x = Dq Total process throughput requirements vector Processes 20 by 1

xdirect = Dd Direct process throughput requirements
vector

Processes 20 by 1

w Valuation vector Impact
categories

8 by 1

Ω = wTψψψψ Overall valuation (scalar) 1 by 1

ΩΩΩΩd = (I − Aprod)-1 DTETHw Vector of overall impact indicators per unit
of product

Products 15 by 1

ΩΩΩΩe = Hw Vector of overall impact indicators per unit
of environmental exchange

Exchanges 31 by 1

ΩΩΩΩx = (I − DB)-1ETHw Vector of overall total (direct + indirect)
impact indicators per unit of process
throughput

Processes 20 by 1

ΩΩΩΩxdirect = ETHw Vector of overall direct impact indicators per
unit of process throughput

Processes 20 by 1

ΩΩΩΩx = (I − DB)-1ETHw Vector of overall total (direct + indirect)
impact indicators per unit of process
throughput

Processes 20 by 1

ψψψψ  = HTe Vector of environmental impact category
indicators

Impact
categories

8 by 1

ΨΨΨΨd = (I − Ac)-1 DTETH Matrix of impact category indicators per unit
of product

Products Impact
categories

15 by 8

ΨΨΨΨxdirect = ETH Matrix of direct impact category indicators
per unit of process throughput

Processes Impact
categories

20 by 8

ΨΨΨΨx = (I − DB)-1ETH Matrix of total (direct + indirect) impact
category indicators per unit of process
throughput

Processes Impact
categories

20 by 8

7.9 Literature Cited
[1] Grossmann, I. E.; Drabbant, R.; Jain, R. K.  Incorporating Toxicology in the Synthesis of

Industrial Chemical Complexes, Chemical Engineering Communications 1982, 17, 151.

[2] Keoleian, G. A.; Menerey, D. Life Cycle Design Guidance Manual, U.S. Environmental
Protection Agency. EPA/600/R-92/226: Washington, D.C., 1993.

[3] PRé Consultants, B. V. SimaPro 4.0 version 4.0.024: Amersfoort, the Netherlands, 1999;
http://www.pre.nl/simapro.html.

[4] Leontief, W. W. Input-output economics; Oxford University Press: New York, 1966.

[5] Lin, X.; Polenske, K. R.  Input-output modeling of production processes for business
management, Structural Change and Economic Dynamics 1998, 9, 205.



                                                                                                                                            7.9.Literature Cited         417

[6] Leontief, W.  Environmental Repercussions and the Economic Structure:  An Input-
Output Approach, The Review of Economics and Statistics 1970, 52, 262.

[7] Miller, R. E.; Blair, P. D. Input-output analysis : foundations and extensions; Prentice-
Hall: Englewood Cliffs, N.J., 1985.

[8] Lave, L. B.; Cobas-Flores, E.; Hendrickson, C. T.; McMichael, F. C.  Using Input-Output
Analysis to Estimate Economy-wide Discharges, Environmental Science and Technology
1995, 29, 420A.

[9] MacLean, H. L.; Lave, L. B.  A Life-Cycle Model of an Automobile, Environmental
Science and Technology 1998, 32, 322A.

[10] Hendrickson, C.; Horvath, A.; Joshi, S.; Lave, L. B.  Economic Input-Output Models for
Environmental Life-Cycle Assessment, Environmental Science and Technology 1998, 32,
184A.

[11] Schmittinger, P.; Curlin, L. C.; Asawa, T.; Kottowski, S.; Beer, H. B.; Greenberg, A. M.;
Zelfel, E.; Breitstadt, R. Chlorine in Ullmann's Encyclopedia of Industrial Chemistry; 5th
ed.; Gerhartz, W., Ed.; VCH: New York, 1986; Vol. A6.

[12] Stephan, D. G.; Knodel, R. M.; Bridges, J. S.  A "Mark I" Measurement Methodology for
Pollution Prevention Progress Occurring as a Result of Product Design Decisions,
Environmental Progress 1994, 13, 232.

[13] Boustead, I. Eco-profiles of the European plastics industry. Report 2: Olefin Feedstock
Sources, Association of Plastics Manufacturers in Europe: Brussels, 1993.

[14] Kostick, D. S. Salt, http://minerals.usgs.gov/minerals/pubs/commodity/salt/580497.pdf;
accessed on 11/29/99.

[15] USEIA Electric Power Annual 1998 Volume I,
http://www.eia.doe.gov/cneaf/electricity/epav1/epav1_sum.html; accessed on 11/29/99.

[16] USDOC 1993 Commodity Flow Survey: United States,
http://www.census.gov/prod/2/trans/93comflo/tc92cf52.pdf; accessed on 11/29/99.

[17] Czuppon, T. A.; Knez, S. A.; Newsome, D. S. Hydrogen in Kirk-Othmer encyclopedia of
chemical technology; 4th ed.; Kirk, R. E., Othmer, D. F., Kroschwitz, J. I. and Howe-
Grant, M., Ed.; John Wiley & Sons: New York, 1995; Vol. 13.

[18] Aelion, V.; Castells, F.; Viroutis, A.  Life Cycle Inventory Analysis of Chemical
Processes, Environmental Progress 1995, 14, 193.

[19] Boustead, I.  Life Cycle Analysis, AIChE Symposium Series 1995, 91, 94.

[20] Ayres, R.  The Life-Cycle of Chlorine, Part I: Chlorine Production and the Chlorine-
Mercury Connection, Journal of Industrial Ecology 1997, 1, 81.

[21] SAEFL Life Cycle Inventories for Packagings, Volume II, Swiss Agency for the
Environment, Forests and Landscape. Environmental Series No. 250/II: Berne, 1998.

[22] Pan, W. The role of aerosols in the troposphere : radiative forcing, model response, and
uncertainty analysis, Ph. D. Thesis, Massachusetts Institute of Technology, Dept. of
Earth, Atmospheric, and Planetary Sciences: Cambridge, Mass., 1996.



418         CHAPTER 7.PROCESS BY PRODUCT INPUT-OUTPUT LIFE CYCLE ASSESSMENT                                                

[23] Steen, B. A systematic approach to environmental priority strategies in product
development (EPS). Version 2000 - Models and data of the default method, Chalmers
University of Technology, Centre for Environmental Assessment of Products and
Material Systems. CPM report 1999:5, 1999.

[24] Clemen, R. T.; Reilly, T.  Correlations and copulas for decision and risk analysis,
Management Science 1999, 45, 208.

[25] Azapagic, A.; Clift, R.  Life Cycle Assessment and Linear Programming:  Environmental
Optimization of Product System, Computers and Chemical Engineering 1995, 19, S229.

[26] Rudd, D. F.; Fathi-Afshar, S.; Treviño, A. A.; Stadtherr, M. A. Petrochemical
Technology Assessment; John Wiley & Sons: New York, 1981.

[27] Fathi-Afshar, S.; Yang, J.-C.  Designing the Optimal Structure of the Petrochemical
Industry for Minimum Cost and Least Gross Toxicity of Chemical Production, Chemical
Engineering Science 1985, 40, 781.

[28] USEIA Inventory of Electric Utility Plants in the United States 1999,
http://www.eia.doe.gov/cneaf/electricity/ipp/t14p01.txt; accessed on 11/30/99.



Chapter 8 Uncertainty propagation
strategies

8.1 Introduction
Most chemical processes built today are designed using process flowsheet models.

Several companies license user-friendly software that enables designers to create a working

process flowsheet model after a few hours of work.

One unintended consequence of the availability of these packages is that inexperienced

engineers tend to place too much faith on the simulation results, without realizing that these

results might be subject to considerable uncertainties.  The most popular packages include large

physical property data banks, and it is tempting to rely on these without first validating model

predictions.  Experienced designers know better, and in order to minimize the risk of designing a

process that does not work as planned, they tend to add overdesign factors (also known as safety

factors) to compensate for the uncertainty.

In recent years reports of the application of uncertainty propagation to process models

have emerged from the academic community.  In one of the earliest examples, researchers at

Carnegie Mellon University added Monte Carlo simulation capabilities to the public version of

the Aspen process simulator [1].  The tool was applied to the simulation of an integrated coal

gasification combined cycle electricity generation system [2,3] in a contract for the U.S.

Department of Energy.  The researchers reported that it took in the order of 12 hours to run 100

Monte Carlo iterations on their model.

The impact of uncertainties in thermodynamic parameters on process designs has been

studied through the propagation of uncertainties in unit operation model using Monte Carlo

simulation [4,5].   A study of the design of a liquefied natural gas (LNG) plant through Monte

Carlo simulation of a specially designed flowsheet program included stochastic optimization (i.e.

decision variable optimization considering uncertainty) [6].  Several days of computer time were

needed to converge to the optimum level of the decision variables.
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Monte Carlo simulation has also been applied to differential-algebraic equation dynamic

simulators [7,8].  In addition, several approaches to the consideration of uncertainty in

mathematical programming representations of process design problems have been developed [9-

11], but their application remains the domain of a small group of experts.

The author believes that process design will continue to be based on flowsheet simulators

for the foreseeable feature.  These simulators offer many advantages to designers, including

graphical interfaces and extensive libraries of unit operation models and physical property data.

The propagation of parameter uncertainties through these models is not something done routinely

in industry today, mainly because of the amount of time needed to run the models.  This chapter

explores procedures for reducing the amount of time required to carry out uncertainty

propagation and uncertainty analysis in process models.

Even with the rapid advances in hardware and software, uncertainty propagation of

flowsheet models through Monte Carlo simulation is not yet practical for most industrial-strength

problems due to the amount of time needed to run the model hundreds of times.  The goal of this

chapter is to reduce the barriers to uncertainty propagation and uncertainty analysis of process

models taking environmental concerns into consideration.  This is done through the use of two

tools: (a) the generation of spreadsheet process metamodels through the use of the deterministic

equivalent modeling method (DEMM), and (b) the generation of multivariate unit environmental

indicators that preserve most of the correlation information of a full PIO-LCA environmental

evaluation model.

8.2 Development of spreadsheet metamodels for stochastic
optimization of flowsheet models

8.2.1 Introduction to the deterministic equivalent modeling method

Our research group at MIT has accumulated considerable experience in the application of

the deterministic equivalent modeling method (DEMM) for the uncertainty analysis of models of

complex systems [12-16].  An excellent description of the method is provided in Cheng Wang’s

dissertation [15], to which the reader is referred for more background and details than the short

summary given here.
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The centerpiece of the method is the approximation of a random variable that is itself a

function of other random variables by a polynomial chaos expansion (i.e. a truncated infinite

series written in terms of orthogonal polynomials of random variables). In contrast to many other

methods, the collocation approach of the DEMM method can be applied to models of the black

box type (i.e. models for which the model equations are not available to the analyst).  Flowsheet

models are a prime example of models used as black box models, where designers are rarely

aware of every single equation used by the flowsheeting software to build a model.

The polynomials used as a basis for the expansion are chosen depending on the

probability distribution family to which the random variables used as model inputs belong.  For

example, consider a model whose output Y depends on random variables X1 and X2:

),( 21 XXgY = (8-1)

Assume, without loss of generality, that X1 and X2 are normally distributed random

variables.  Because the input variables are normally distributed, each of them can be represented

by a two-term polynomial of a unit normal random variable:

1111 ξbax += (8-2)

2222 ξbax += (8-3)

In the expressions above, the coefficients of the expansion correspond to the first two moments

of the distribution (i.e. ai is the mean of Xi and bi its standard deviation).  ξ1 and ξ2 are unit

normal random variables with zero mean and unit standard deviation.

Since the input random variables were represented by polynomials in ξ1 and ξ2, the

polynomial chaos expansion of Y is made in terms of polynomials of the random variables ξ1 and

ξ2:
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21,ξξ (8-4)

where the Hj are a special class of orthogonal polynomials known as Hermite polynomials.

Assume we are interested in developing a second order polynomial approximation.  In that case,

the expansion will have six terms:

( ) 1, 211 =ξξH (8-5)

( ) 1212 , ξξξ =H (8-6)
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( ) 2213 , ξξξ =H (8-7)

( ) 1, 2
1214 −= ξξξH (8-8)

( ) 21215 , ξξξξ =H (8-9)

( ) 1, 2
2216 −= ξξξH (8-10)

To generate the approximation to the original response y = g(x1,x2), the model is solved

six times for six pairs of different values (ξ1,ξ2).  These pairs of values are known as collocation

points in the method, and are constructed from the zeros of the next order Hermite polynomial.

In this case, the collocation points are:

(0,0)

(1.732,1.732)

(1.732,0)

(-1.732,0)

(0,1.732)

(0,-1.732)

The coefficients of the expansion (i.e. the yj) are found by solving the system of equations

( ) ( )∑
=

=⋅+⋅+
6

1
2211 0,00,0

j
jj Hybabag (8-11)

( ) ( )∑
=

=⋅+⋅+
6

1
2211 0,732.10,732.1

j
jj Hybabag (8-12)

( ) ( )∑
=

=⋅+⋅+
6

1
2211 732.1,0732.1,0

j
jj Hybabag (8-13)

( ) ( )∑
=

=⋅+⋅+
6

1
2211 732.1,732.1732.1,732.1

j
jj Hybabag (8-14)

( ) ( )∑
=

−=⋅+⋅−
6

1
2211 0,732.10,732.1

j
jj Hybabag (8-15)

( ) ( )∑
=

−=⋅−⋅+
6

1
2211 732.1,0732.1,0

j
jj Hybabag (8-16)

Six model runs are needed to obtain the terms on the left hand side of eqs (8-11)-(8-16).

The goodness of fit of the model is evaluated by solving the model at the collocation

points for the next order of expansion approximation, and comparing the model response with

the predictions of eq (8-4) with N=6 and the yj values given by the solution to eqs (8-11)-(8-16).

Figure 8-1 [15] shows a flow diagram for the implementation of the collocation approach of

DEMM to black box models. Dr. Menner Tatang has developed a computer program (known as
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demmucom) that carries out all the calculations and determinations shown in the diagram [14].  It

is up to the user to make judgment calls with respect to which uncertain inputs should be

included in the model, and with respect to whether the model has acceptable error and/or

acceptable dimensionality.

Iteration to
increase the
accuracy of
the DEMM
approximation

Iteration to
increase the
accuracy of
the DEMM
approximation

Iterative selection
of key parameters
Iterative selection
of key parameters

No

No

Yes

Yes,
Go to
Next
Order

Reduce No. of
Uncertain Parameters

Based on VC

 Describe Uncertain Input Parameters

Determine Output PCE Representation

Calculate Collocation Points

Determine PCE Coefficients

Calculate Error of Truncation

BLACK BOX  MODEL

Acceptable Error?

Calculate Variance Contributions
of Parameters

Calculate No. of Terms of Next
Order of PCE Approximation

Acceptable Dimensionality?

Figure 8-1: DEMM flow diagram (collocation approach)84

If the uncertain response of interest is smooth and regular with respect to each of the

uncertain inputs, then a highly accurate polynomial representation of the original model can be

produced with a small number of model runs. Full probability distributions for the output

variables of interest can be recovered by running a Monte Carlo simulation on the polynomial

chaos expansion model.  Even though a Monte Carlo simulation is still involved, there are large

computational advantages to running a Monte Carlo simulation on a model that only takes a

fraction of a second to calculate when compared to running a Monte Carlo simulation on a model

that might take several minutes (or even hours) to converge.  An additional advantage of the

method is that variance contribution analysis (i.e. the attribution of contributions to variance in

the output to each of the uncertain inputs) can be made directly by arithmetic manipulations of

the coefficients in the expansion.

                                                
84 Reproduced from reference [15]
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8.2.2 Extension to generate models that respond to decision variables as
well as to uncertain inputs

In some aspects, the deterministic equivalent modeling method may be seen as a member of a

class of uncertainty propagation methods known as response surface methods [17].  The

difference between Monte Carlo simulation and response surface methods may be explained

using the diagram shown in Figure 8-2 [15] for a model that depends on two uncertain

parameters.  In Monte Carlo simulation, random values of the parameters x and y are drawn with

probability proportional to that of the probability density function of x and y, respectively.  The

model g(x,y) is evaluated for each pair of values (x,y) drawn by the Monte Carlo sampling

routine.  The solution to the model at each point is stored.  As the number of samples drawn

increases, the histogram of model responses approximates the probability density function of the

random variable z. As the number of samples increases to infinity, the entirety of the response

surface over the domain of the parameter distributions will be sampled.  In response surface

methods, the model g(x,y) is evaluated at a small number of (x,y) points.  A response surface is

then fit through those points.  The model is run at a new set of points and the predictions of the

response surface approximation are compared with the model response.  If the errors are small,

the original model is set aside, and Monte Carlo simulation is carried out on the response surface

model instead of on the original model to obtain an estimate of the probability density function

of the output variable z.

There are three key issues related to response surface modeling [17]:

• Selection of the small discrete set of input variable values to run the model

• Screening the uncertain inputs to identify which ones need to be modeled as uncertain inputs

• Selection of a functional form for the response surface

The DEMM approach provides specific answers to the first and third issues.  It also

provides valuable information to help the user in resolving the second issue through the iterative

parameter selection loop shown in Figure 8-1.  In particular, the collocation approach criterion

for the selection of input variable sets strives to obtain a model that is most accurate in the high

probability region of input parameter space.
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Figure 8-2: Explicit access to a model response surface through the Monte Carlo method85

In this thesis, DEMM has been used as a response surface method to generate polynomial

representations of flowsheet models that respond to changes in uncertain parameters as well as to

changes in decision variables.  The polynomial model is then implemented on spreadsheet

software (Microsoft Excel) where it can be combined with spreadsheet-based economic and

environmental impact valuation models.  During Monte Carlo simulation, decision variable

values are held constant while uncertain input parameters vary according to their specified

probability distributions.  In the approach taken in this work, decision variables are represented

by uniform distributions over their allowed domains, so that DEMM will attempt to generate a

response surface polynomial chaos expansion (PCE) metamodel that is equally accurate over the

entire decision variable domain.  The approach is schematically shown in Figure 8-3.

                                                
85 Reproduced from reference [15]
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Process
simulator

model

demmucom
tool

uncertain
parameters

decision
variables

PCE
metamodel

• spreadsheet based

• accurate in high probability region

• runs in < 1 sec

• can combine with value models

• rigurous simulation

• may take minutes to run

Figure 8-3: Use of demmucom to generate PCE metamodels of process flowsheet models

An additional advantage of using DEMM to generate a response surface model is that the

variance contribution calculations of DEMM can be used as a type of global sensitivity analysis

to rank decision variables with respect to their impact on changing the values of the output

variables of interest86.  The use of DEMM to generate process flowsheet metamodels is

illustrated next with an example

8.2.3 Example: generating DEMM metamodels for the solvent recovery
case study

This section provides some details on the generation of the heat exchanger retrofit

metamodel used for the examples in sections 4.7.2 and 5.4.2.  The flowsheet for the process is

reproduced here as Figure 8-4.

A model that responded to eight variables was built.  Six of the variables (feed

temperature, feed concentration, thermodynamic parameters ξa, ξb ξc, and overall heat transfer

coefficient) can be characterized as parametric uncertainties.  The other two variables (heat

exchanger area and effluent concentration set point) were decision variables. See Table 4-4 for

descriptions and density plots of the probability distributions used.

A metamodel with 8 uncertain output variables was generated [steam use (Steam),

condenser duty (Q), effluent concentration (Ceff), methylene chloride discharge in stream EFF
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(inEff), methylene chloride flow in stream AQUEOUS (inAq), methylene chloride flow in

stream VENT (inVent), methylene chloride flow in stream RECYCLE (inRecy), and effluent

stream temperature (Teff)].  Only three of these (steam use, condenser duty, and methylene

chloride discharge) were used as inputs to the valuation models in the examples.

COND

DECANT

TOWER1

TOWER2

STEAM

TOP1

TOP2

BOT2

CONDIN CONDOUT

VENT

AQUEOUS

ORGANIC

RECYCLE

PUMP

HOTFEED

FEED

EFF

BOT1

Figure 8-4: Heat exchanger sizing example process flowsheet

Plots of metamodel performance vs. order of approximation used are shown in Figure 8-5

and Figure 8-6 (detail view).  A rather stringent criterion of 99.9% index of agreement was

arbitrarily chosen as a stop criterion for adding additional terms to the approximation.  A 4th

order PCE expansion without cross terms achieved indices of agreement higher than 99.0% for

all outputs of interest.  Achieving 99.9% agreement for all the variables required the use of a full

4th order PCE with all the possible combinations of 2nd, 3rd, and 4th order cross terms.  Although

the cost of increasing the order approximation increases only linearly with the order of

approximation when no cross terms are included in the model, the cost increases much more

rapidly as higher order cross terms are added.  As Figure 8-7 shows, the 4th order model without

                                                                                                                                                            
86 The variance contribution analysis is carried out treating the decision variables as additional uncertain parameters.
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cross terms required only 74 flowsheet evaluations (33 for obtaining coefficients and 41 for error

checking)87. In contrast, the full 4th order model with all possible cross terms required a total of

1004 flowsheet evaluations (498 for obtaining coefficients and 506 for model error

determination).

85%
86%
87%
88%
89%
90%
91%
92%
93%
94%
95%
96%
97%
98%
99%

100%

1st 2nd 2nd
Full

3rd 3rd +
bil.

3rd
Full

4th 4th +
bil.

4th +
3rd

4th
Full

Order of Approximation

Teff

inEff

Steam

Q

inAq

Figure 8-5: Index of agreement vs. order of approximation used to build the PCE model

                                                
87 Of these, the 33 model evaluations needed for obtaining the coefficients were already available, since they were

the ones used to calculate the error of truncation in the 3rd order model.
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Figure 8-6: Detail view of the index of agreement vs. level of approximation chart
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Figure 8-7: Number of model runs needed to build and evaluate the goodness of fit of the PCE
model

Variance contribution results obtained under the assumption that the distributions

specified for the decision variables were parametric uncertainties are shown in Figure 8-8.

Decision variables account for a large fraction of the uncertainty in process outputs.  Of the
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parametric uncertainties, thermodynamic uncertainty is the most important in terms of the

contribution to the uncertainty in steam use.  This is in agreement with the uncertainty analysis

carried out in section 5.4.2, in which it was found that the third thermodynamic parameter

(thermoc) was the physical parameter with the largest contribution to uncertainties in annualized

cost and environmental impact valuation.  This chart also suggests that feed variability could

have been dropped from the model, in order to decrease the number of cross terms required to

achieve 99.9% index of agreement.

Steam2 Q inEff Teff

Output

Csp

Area

U

thermoc

thermob

thermoa

Cfeed

Tfeed

Figure 8-8: Variance contribution analysis

Even at 1004 model runs the cost of building the PCE model is lower than the cost of

running Monte Carlo simulations on the Aspen flowsheet model, since a Metamodel valid over a

wide range of effluent concentration set points and heat exchanger sizes was obtained with a

number of flowsheet calls that is comparable to the number of simulations that would have been

required to obtain output distributions for a single combination of concentration set point and

heat exchanger area.
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8.3 Generation of multivariate distributions to interface process
models with value models

8.3.1 Introduction

From the point of view of a designer, all that is needed to incorporate environmental

issues as an objective in process design is the availability of unit indicators.  These indicators

could then be applied to the input and output rates predicted by a design to produce an overall

impact indicator (this is analogous to the use of prices to calculate operating cost as an economic

performance indicator).  A major difference between these indicators and prices is that the

environmental indicators can be expected to have significant uncertainties associated to them.

Neglecting to consider these uncertainties would undermine the effort by casting doubts on the

significance of the results.

The PIO-LCA environmental valuation models introduced in Chapter 7 typically have

hundreds of uncertain inputs.  This is particularly true when the PIO-LCA model is linked to a

fate, transport, and exposure model for the calculation of some of the characterization factors

(e.g. human toxicity potentials).  From the point of view of a designer, it is not practical to

propagate hundreds of uncertainties through a large spreadsheet model every time a new design

alternative is considered.

In section 7.5.3 it was shown that the PIO-LCA method could be used to propagate

uncertainties in unit environmental impacts, independently of the input and output levels

associated with any particular design.  This suggests that the propagation of uncertainties in unit

environmental impacts be done once, and its results used to obtain distributions for environ-

mental impact indicators once the input and output levels of different designs have been

specified.

Distribution fitting software (e.g. BestFit88) can be used to fit a probability distribution to

the results of a Monte Carlo simulation.  Current software is able to test dozens of different

distributions and fit distribution parameters to data sets containing hundreds of points within a

couple of minutes.  The availability of these tools suggests that a convenient way to generate the

required unit impact distributions would be to obtain them through the fitting of Monte Carlo

                                                
88 Palisade Corporation (www.palisade.com)
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simulation data.  The distributions obtained (~100 to 101 distributions) could then be used instead

of the original PIO-LCA model (~ 103 – 104 distributions) to provide unit environmental

valuations for process models.

A major weakness of the approach suggested above is that significant information might

be lost in the translation of Monte Carlo results into distribution functions, even if the

distribution functions fit the data perfectly.  The reason for this is that the use of independently

fitted distribution functions assumes that there are no correlations among the various modeled

indicators, when the correlations might in fact be quite significant.

 In Chapter 4 it was demonstrated that a key to avoid the overestimation of decision

uncertainty is to preserve the correlations among the scores for different alternatives.  Since

different unit environmental impact indicators share many uncertain parameters in common (e.g.

the valuation factor used to weigh global warming potentials), it is to be expected that unit

environmental impact indicators will be correlated as well.

8.3.2 Preserving correlation structure through direct use of Monte Carlo
results

One way to address the problem of information loss is to use the results of the Monte

Carlo simulation directly.  This would be done as follows:

1. Assign a sequential number to each iteration result from the Monte Carlo simulation,

i = 1, 2, 3, ... N, where N is the number of iterations used in the simulation.

2. Arrange the iteration results in matrix form, where each row of the matrix

corresponds to an iteration of the original simulation, and each column to a simulation

output of interest.  Using the example of unit environmental indicators as the

simulated outputs of interest, the value of the unit environmental indicator for raw

material j in iteration i would be given by Ωij.

3. At each iteration of the Monte Carlo simulation of a process model, draw a sample

from the set {1,2,3...N} with probability 1/N.  Use the value drawn as a lookup index

to the matrix defined in the step above.  Unit impact indicators should be read

simultaneously from the row with index equal to the value drawn and used within the

same iteration of the Monte Carlo simulation.
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The method described above has the main advantage of preserving all the information

regarding correlations among unit indicators contained in the results of the simulation of the

PIO-LCA model.  It has the disadvantage that the information about distribution densities and

correlations among unit indicators is not accessible in explicit form.  Its implementation on a

spreadsheet model requires the allocation of several thousand cells to store the results of the

original simulation.  An alternative approach that yields a more compact representation is

described next.

8.3.3 Preserving correlation structure through the use of copula
multivariate distributions

Copula multivariate distributions represent joint distributions of random variables as a

function of the marginal distributions.  In mathematical symbols, the joint probability density

f(x1, x2, ..., xn) can be written in copula form as:

( ) ( ) ( ) ( ) ( )[ ]nnnnn xFxFcxfxfxxxf ,...,...,...,, 111121 ××= (8-17)

where fi(xi) is the marginal probability density function (pdf) for random variable Xi, Fi(xi) is the

corresponding cumulative distribution function (CDF), and the function c[F1(x1),..., Fn(xn)] is

called the copula density.  According to Sklar’s Theorem (1959), any joint distribution can be

written in copula form [18]. Portions of the information that follows has been obtained from the

excellent introduction to copulas for decision analysis provided by Clemen and Reilly [18].

Although there are many copula families [19,20], the multivariate normal copula is used

exclusively in this work, mostly for practical reasons, the most important one being the ease with

which they can be simulated in the @Risk Monte Carlo simulation package.  Like other copula

families, the multivariate normal copula allows the specification of any distribution family for

the marginal distributions.  Its name is derived from the fact that it encodes dependence through

pair-wise correlation coefficients in the same way that the multivariate normal distribution uses

product-moment correlations to encode dependence among its marginal normal distributions.

The multivariate normal copula density function is given by

( ) ( ) ( ) ( ){ } 2/11
1121 /2/exp...,...,, RyIRy −−×××= −T

nnn xfxfxxxf (8-18)

where R is matrix of product-moment correlation coefficients, I is the identity matrix, and the

elements of vector y are defined as:
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( )[ ]iii xFy 1−Φ= (8-19)

where Φ-1 is standard normal inverse transformation.

The elements rij of the R matrix are obtained from the Spearman rank correlation

coefficient (ρij) between random variables Xi and Xj
89:







=

6
sin2 ij

ijr
πρ

(8-20)

Simulating from a copula multivariate distribution is a straightforward task: The first step

is to generate a vector (y1, y2 ,..., yn) from a multivariate-normal process with correlation matrix

R.  One way to accomplish this is to find a lower triangular matrix U such that UUT = R.  The

vector y would then be given by

Uξy = (8-21)

where ξξξξ is a vector of i.i.d. unit normal random variables [21]  (i.e. independent normal random

variables with µ=0 and σ=1).

The second step of the procedure is to calculate the standard normal cumulative

distribution function Φ(yi) for each of the correlated standard unit random variables.  Finally, the

inverse marginal distribution functions are used to calculate the values of the random variables

corresponding to the correlated unit normal random variables.  The vector of random variable

values thus obtained comes from a process that has the specified marginal distributions as well as

the required rank correlation coefficients.

Distribution fitting and simulation from the distribution are even more

straightforward if the package @Risk is used to carry out Monte Carlo simulations.  For

distribution fitting, the results of a Monte Carlo simulation would be used as input to a program

such as BestFit to obtain the marginal distributions.  The matrix of rank correlation coefficients

would be obtained from the simulation output data by generating vector of ranks using the Excel

function rank(cell,array) and computation of the person product-moment correlation between two

arrays of ranks, using the Excel function correl(rankarray1, rankarray2).

For simulation, the @Risk function

                                                
89 For a discussion of rank correlation coefficients, see section 5.3.3.
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=RiskCorrmat(matrix cell range, position) + distribution function (8-22)

would be used, where matrix cell range specifies a range within the spreadsheet where the rank

correlation coefficients are stored, position is the position of the variable of interest in the

correlation matrix, and distribution function is any of the probability distributions available in

@Risk.

As an example, the Excel and @Risk formulas needed to represent the uncertainty in the

unit environmental impacts used in the example in section 4.7.2 are shown in Figure 8-9.

A B C D E F G

1 Unit environmental indicators: Steam
Cooling 
water

Methylene 
chloride

Steel 
sheet

2 Steam =(RiskCorrmat(C2:F5,1)+RiskBeta(5.19,12.19))*4.07-3.38 1 0.68 0.66 0.62
3 Cooling water =RiskCorrmat(C2:F5,2)+RiskNormal(1.64,0.47) 0.68 1 0.68 0.8
4 Methylene chloride =(RiskCorrmat(C2:F5,3)+RiskGamma(7.21,0.17))-1.44 0.68 0.68 1 0.66
5 Steel sheet =(RiskCorrmat(C2:F5,4)+RiskErlang(6,0.2))-1.27 0.62 0.8 0.66 1
6
7
8
9

10
Figure 8-9: Example of @Risk representation of a multivariate normal copula distribution

The copula method has the advantage that it can provide a compact representation of the

results of a Monte Carlo simulation.  A further advantage is that the correlations among variables

are shown explicitly.  One of the disadvantages of the method is that it is only an approximation

to the distribution underlying the Monte Carlo simulation used to fit its parameters.

EXAMPLE

Figure 8-10 shows a scatter plot of a 2000 iteration Monte Carlo simulation performed on

the PIO-LCA model used to derive the unit environmental indicators for steam and methylene

chloride discharges (see section A.4.3 for details).  It is clear from the figure that high values of

the unit indicator for steam tend to be associated with high values of the unit indicator for

methylene chloride.  Their rank correlation coefficient is 0.66.  An empirical distribution

obtained from these points is shown in Figure 8-11 in the form of a contour plot. A 3-

dimensional view of the empirical distribution is presented in Figure 8-12.  The height of each

vertex in the surface plot was obtained by counting the number of scatter points located in a

square with dimension equal to 1/3 or a log unit centered on the x-y coordinate of the vertex.
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A contour plot and a 3-dimensional surface plot of the corresponding bivariate normal

copula distribution are shown, respectively, in Figure 8-13 and Figure 8-14. The plots were

obtained by evaluating eq (8-18) at 0.1 log unit intervals, using the marginal density functions

fi(xi) fitted to the data (shown in the top row of Figure A-8 in Appendix A).  Comparing these

plots with the empirical contour plot and the empirical surface plot it can be concluded that the

bivariate copula distribution is a reasonably good approximation to the results of the Monte

Carlo simulation.  The goodness of the fit allows using only 6 cells in a spreadsheet to represent

the uncertainty (2 cells for the @Risk expressions for the marginal distributions, and 4 cells for

the correlation matrix), instead of 4000 cells to store the results of the Monte Carlo simulation.

 For comparison, Figure 8-15 and Figure 8-16 show, respectively, the contour plot and

the surface plot that would be obtained if it had been assumed that the marginal probability

densities were independent from each other.  It is clear that ignoring the correlation would have

resulted in a significant loss of information.
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Figure 8-10: Scatter plot of 2000 (steam, methylene chloride discharge) unit environmental
indicator pairs obtained from Monte Carlo simulation of a PIO-LCA model
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Figure 8-11: Contour plot of the empirical joint probability density of steam and methylene
chloride discharge unit environmental indicators
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Figure 8-12: 3-dimensional plot of the empirical joint density of the unit indicators of steam and
methylene chloride
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Figure 8-13: Contour plot of the bivariate normal copula distribution for steam and methylene
chloride discharges estimated from parameter fitting of Monte Carlo results
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Figure 8-14: 3-dimensional plot of the bivariate normal copula distribution of the unit indicators
of steam and methylene chloride
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Figure 8-15: Contour plot of the bivariate normal distribution for steam and methylene chloride
discharges unit environmental indicators obtained under the assumption that the
unit indicators are independent from each other.
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Figure 8-16: 3-dimensional plot of the joint distribution of the unit indicators of steam and
methylene chloride, obtained under the assumption of independence among the unit
indicator distributions.
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8.4 Conclusion
Figure 8-17 summarizes the computational advantages of using the tools described in this

chapter.  PIO-LCA models contain hundreds of uncertain parameters, but are rapidly computed,

since they are linear models.  Their demand on CPU time is modest, but require substantial

memory and/or storage capacity.  Flowsheet models, in contrast, might take several minutes to

converge but typically contain only a few uncertain parameters of importance.  Combining both

models produces a combined model with the worst characteristics of both.  It contains hundreds

of uncertain parameters and might take several minutes to converge.  The tools described in this

chapter address both weaknesses.  Multivariate copula distributions are used to generate joint

distributions of unit environmental indicators while preserving their correlation structure, thus

dramatically decreasing the number of uncertain parameters that must be propagated.  DEMM

metamodels might take several dozen to several hundred flowsheet model runs to build, but once

built they can be rapidly executed.  The availability of a rapidly executable model with a low

number of uncertain parameters greatly expands the universe of process design problems upon

which stochastic optimization can be performed.
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Figure 8-17: Computational advantages of using the tools described in this chapter in the
environmental evaluation of process flowsheets under uncertainty
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Chapter 9 Knowledge representation and
data management strategies

9.1 Introduction
There are two major differences between factors used in economic valuation models (e.g.

prices) and factors used in environmental impact valuation models (e.g. toxicity factors).  The

former are fairly certain and relatively easy to obtain in the context of process design (e.g. by

making a call to the purchasing department), while the latter are quite uncertain and not as

widely available.  An additional complication arises from the need to take into account impacts

taking place in upstream processes (life cycle perspective).  Private costs are usually fully

internalized in prices, so it is not necessary to know details about the economic performance of

upstream processes to obtain an indicator of life cycle economic performance.  The indicator is

the price itself.  No such convenience exists with respect to the estimation of environmental

impacts, therefore it becomes necessary to study a whole network including upstream processes

in order to obtain estimates of life-cycle environmental impact.  A method for analyzing these

process networks was introduced in Chapter 7 (the process input-output life cycle assessment

method, or PIO-LCA method).  With the software tool described in Appendix C, the major

barrier to the implementation of the PIO-LCA method is not the computation of the matrix

operations, but rather the collection and maintenance of the data distributions used by the model.

These features of environmental valuation data make the use of an environmental

knowledge management system a necessity for implementation in practice.  Such a system is

described in this chapter.  Before proceeding to the description of the data model and system

functions, some thoughts are provided regarding the characteristics of the data and the functions

that the system needs to provide.

9.2 Data characteristics
Significant amounts of knowledge regarding the interaction of chemicals with the

environment have been generated during the last few decades.  As interest in environmental

issues continues to grow, governments and corporations are devoting more resources to

environmental research and to the testing of chemicals.  Unfortunately, data are still lacking for a
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large number of chemicals of commercial importance.  The highest quality (least uncertain) data

are available for only a relatively small set of chemicals.  For larger sets of chemicals

information is available, but its quality is lower.  There is a tradeoff between data quality and

data quantity.  If we restrict ourselves to the use of high quality data only, we ignore a lot of

existing knowledge.  However, if we use low quality data we run the risk of diluting the

information content of high quality data.  An example of the latter is the Waste Minimization

Prioritization Tool (WMPT) developed by the U.S. Environmental Protection Agency [1].  In the

development of the WMPT the EPA adopted a fence line approach to allow the incorporation of

semi-quantitative and even qualitative data in the ranking of chemicals according to their toxicity

and potential for exposure.  As a result, all the data used were converted into discrete scores of 1

(low concern), 2 (medium concern), and 3 (high concern).  For properties measured in tangible

units, a 1 point difference in this scale corresponded to a factor of about 100.  This effectively

diluted the information known to better than a factor of 100 to the lowest common denominator

(see the example in section 6.4.2 for an information content analysis).

The approach taken here is to use and propagate probability distributions as a means to

combine data of different qualities without diluting the information content of the high quality

data.  Two examples of the variability in data quality are provided here for environmentally

relevant properties of chemicals.  The first example concerns the Henry’s law constant for the

chemical 1,4-dichlorobenzene.  5 sources of data are compared in Figure 9-1: (i) the critical

review of Henry’s law constants by Staudinger and Roberts [2], (ii) Syracuse Research

Corporation’s physical properties database [3], (iii) an estimate based on the ratio of

experimental vapor pressure and solubility data, (iv) a group contribution method

(HENRYWING), and (v) a bond contribution method (HENRYWINB)90.  Although the central

estimates given by the five methods are quite close, there are clear differences in the reliability of

each source, with highest priority given to the critical selection of studies by Staudinger and

Roberts and lowest priority given to the property estimation methods.

                                                
90 Both methods are included in the HENRYWIN software publushed by the Syracuse Research Corporation.
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Figure 9-1: Probability distributions for the value of the Henry's law constant for 1,4-
dichlorobenzene

The second example compares data for the oral cancer potency factor for benzene (Figure

9-2).  The highest quality data available is a recent update to the entry for benzene in the IRIS

database [4].  The cancer potency factor cited in the IRIS database was derived from human data

(occupational exposure).  At a lower level in the data hierarchy one finds potency factors derived

from animal studies (CPDB mouse, CPDB rat, and RQPOT) [5].  The distribution assigned to the

factor used by the California environmental protection agency (CalEPA) has an intermediate

uncertainty range [6].  In this example there is more variability in central estimates than in the

Henry’s law constant example.  The graph shows, however, that all the lower quality

distributions include the high probability region of the IRIS cancer potency factor distribution

within their high probability domains.  Had a value for benzene not been available in the IRIS

database, it would have reasonable to use a distribution based on rodent data.  The confidence in

the valuation of the impacts of benzene would necessarily have been lower than the one that can

be obtained by using the IRIS database factor, but higher than the one that would be obtained if

the only information available had been qualitative evidence indicating that benzene was a

possible human carcinogen.
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Figure 9-2: Comparison of probability distributions for the cancer oral potency factor of
benzene

9.3 System requirements
An environmental evaluation information management system must be able to perform

the following functions:

• Store probability distributions for various factors stored within the system.  Examples given

throughout this work have shown that it is not uncommon to have order-of-magnitude

uncertainties surrounding factors used in environmental assessment.

• Allow users to rank sources of information so that the highest-quality sources will be

accessed preferentially when retrieving data for environmental valuation models.

• Allow users to efficiently generate fully documented environmental valuation models on

which uncertainty analysis (e.g. Monte Carlo simulation) can be performed.  Users should be

able to trace factors with large contributions to valuations (or to the uncertainty in valuations)

back to the source of data and distributions used.

• Enable periodic updates of the data without loosing older data.  It is important to keep older

data to check for consistency when various sources differ significantly.
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It is also desirable that the system be able to interact with commonly available software

packages.  This facilitates the import of data from electronic sources (e.g. the internet and

commercially-available CD-ROMs).  An environmental knowledge management tool satisfying

these requirements was developed for this dissertation and is described in the following section.

9.4 EnvEvalTool:  a tool for managing environmental evaluation
information
This section describes the environmental information management tool developed as part

of this dissertation.  The EnvEvalTool (short for “Environmental Evaluation Tool”) was

developed taking advantage of widely used software.  Microsoft Access was used for the

database component of the tool, while Microsoft Excel was used as the modeling platform (the

fate and transport model discussed in section 6.3 and the process input-output life cycle

assessment model introduced in Chapter 7 were both implemented on Excel).  The representation

of uncertainty within the tool was designed to take full advantage of the availability of Monte

Carlo simulation add-ons for Excel.  The software package @Risk91 was used in this work, but

the data model should be compatible with competing products with only minor modifications.

Key features of the tool and its implementation are discussed in this section.  Details

including table structures, SQL statements for queries, and listings of the Visual Basic code used

to implement system functions are given in Appendix B.

9.4.1 Data model

The structure of the data model used in the EnvEvalTool is shown in Figure 9-3 and

Figure 9-4. Figure 9-3 shows the tables in the data model that are used to manage the input-

output and economic information required by the PIO-LCA method92, while Figure 9-4 shows

the part of the data model that is used to manage chemical property and environmental problem

valuation information. Relationships between tables are shown as lines connecting the

appropriate fields.  One-to-many relationships are noted by a 1 on the “one” side of the

relationship and an ∞ on the “many” side.

                                                
91 Palisade Corporation (www.palisade.com)
92 See section 7.3.1 for a description of the required input data.



Figure 9-3: EnvEvalTool data model (input-output data and economic information)



Figure 9-4: EnvEvalTool data model (chemical properties and valuation factors)
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The tables used to store numeric information use the same data model to store

information about uncertainty distributions.  The Distributions table is used to store probability

distribution definitions.  In the current implementation, distributions with up to 3 parameters may

be specified.  The field @Risk Expression is used to provide the definition of each distribution

function, and is given by the Excel formula that should multiply the nominal value to generate

the desired distribution.  Table 9-1 gives the list of distribution functions currently contained in

the database. The last five rows of the table show the distributions used in the database to

represent the uncertainty in the emission factors published by the EPA in the AP-42 series [7]93.

If it were decided that a lognormal distribution with uncertainty factor94 of 10 overestimates the

uncertainty emission factors with an AP-42 rating of E, a new distribution function definition

could be entered in the @Risk Expression field of the Distributions table without having to

modify every single record in the Emission factors table containing an E-rated emission factor.

Every factor with a value “EPA_E” in its Distribution code field would then inherit the new

distribution.  This is just one illustration of the advantages of storing environmental evaluation

data in a carefully considered data model.

A second feature common to most of the tables that store quantitative information is the

use of a data source code to link to tables giving details about the source used to obtain a

particular factor.  All of the tables used to store source details are also linked to a table of

bibliographic or electronic references (the References table).  Important data contained in the

References table included the download date for information obtained from electronic sources.

The four tables used to manage data sources (Sources of Input-Output Data, Sources of

Emission Factors, Sources of Characterization Factors, and Sources of Exposure Factors)

include a Priority field used to store the order of preference in which data distributions should be

used.  The queries used to access the data then give preference to a high priority data element

over a low priority data element when both elements are available for the same factor.

Chemicals in the database are uniquely identified through their chemical abstract service

number (CAS Number).  When a chemical has not been assigned a CAS number, the

                                                
93 The EPA assigns five qualitative ratings to the emission factors in the AP-42 series, going from a rating of “A”

(Excellent) to “E” (poor).
94 Throughout this thesis the term “uncertainty factor” is used to refer to the square of the geometric standard

deviation of the lognormal distribution.
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CAS Number field is used to store a provisional code assigned by the user.  A table of chemical

synonyms (the Chemical Names table) is provided to facilitate the retrieval of CAS numbers

when the user does not know the CAS number for a particular chemical of interest.

Table 9-1: Listing of records in the Distributions table of the EnvEvalTool database
Distribution
Code

Nominal value
definition

Parameter 1
definition

Parameter 2
definition

@Risk Expression

Binomial High value Low value prob(low value) (1-(1-[Parameter 1]/[Nominal Value])
*RiskBinomial(1,[Parameter 2]))

Lognormal geometric mean square of
geometric standard
deviation

exp(RiskNormal(0,ln([Parameter 1])/2))

Lognormal2 arithmetic mean geometric mean /
arithmetic mean

square of geometric
standard deviation

exp(RiskNormal(ln([Parameter 1]),
ln([Parameter 2])/2))

Missing nominal value
Normal arithmetic mean two times the

relative standard
deviation

(RiskNormal(1,[Parameter 1]/2))

Normal2 arithmetic mean two times the
standard deviation

(RiskNormal(1,(abs([Parameter 1] /
[Nominal Value]))/2))

Triangular most likely value Minimum / most
likely value

Maximum / most
likely value

(RiskTriang([Parameter 1],1,
[Parameter 2]))

Uniform nominal value Minimum /
nominal value

Maximum /
nominal value

(RiskUniform([Parameter 1],
[Parameter 2]))

EPA_A central value exp(RiskNormal(0,ln(1.15)/2))
EPA_B central value exp(RiskNormal(0,ln(1.3)/2))
EPA_C central value exp(RiskNormal(0,ln(1.7)/2))
EPA_D central value exp(RiskNormal(0,ln(3.0)/2))
EPA_E central value exp(RiskNormal(0,ln(10)/2))

As discussed in Chapter 4, preservation of correlation structure is key to reducing

decision uncertainty when there are large uncertainties associated with valuation models.  The

EnvEvalTool provides a mechanism for storing correlation information, in the form of Spearman

rank correlation coefficients95.  Three tables are used to store correlation coefficients, as shown

in the top right portion of Figure 9-4.  The current implementation allows storage of correlations

among characterization factors, among valuation factors, and between characterization and

valuation factors.  As an example, the information provided in the documentation for the EPS

environmental valuation method [8] was used to derive probability distributions for the valuation

factors of several environmental problem categories96 (Table 9-2).  Examination of the results of

                                                
95 See sections 5.3 and 8.3 for more discussion on rank correlation coefficients.
96 See section 3.3 for a discussion of uncertainties in environmental problem category valuation factors.
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the Monte Carlo simulation revealed a high degree of correlation among several factors.  This is

not surprising, since ultimately all the valuations in the EPS method depend on the valuations

assigned to several endpoint effects, such a lost year of life expectancy or a year living with

severe nuisance.  When the valuation given to one of the endpoints (e.g. the value of a year of

life expectancy lost) is sampled at the high end if its distribution, one would expect that the

valuation factors derived from impact categories for which that endpoint is an important

contributor [e.g. toxicity (DALYs) and health effects from particulate matter (PM10 effects)]

would tend to take values at the high of their distributions as well.

Table 9-2: Correlations among probability distributions for impact category valuation factors
derived from the EPS method.

Global
warming
potential
(GWP)

Ozone
depletion
potential
(ODP)

Respiratory
effects
from
particulate
matter
(PM
effects)

Photoche-
mical
oxidants
creation
potential
(POCP)

Disability-
adjusted
life years
lost due to
exposure to
toxic
substances
(DALYs)

Eutrophi-
cation
potential
(EP)

Aquatic
ecotoxicity
potential
(AETP)

Terrestrial
ecotoxicity
potential
(TETP)

GWP 1 0.38 0.22 0.15 0.39
ODP 0.38 1 0.13 0.15 0.24
PM effects 0.22 0.13 1 0.17 0.53
POCP 0.15 0.15 0.17 1 0.30
DALYs 0.39 0.24 0.53 0.30 1
EP 1 0.22 0.26
AETP 0.22 1 0.18
TETP 0.26 0.18 1

9.4.2 Sources of data

A wide variety of sources were consulted to obtain the data stored in the EnvEvalTool

database.  Sources included government agencies, commercial publishers, environmental

advocacy groups, and academic research groups.  The database currently stores more than 60,000

factors distributed among approximately 6,000 chemicals.  Table 9-3 lists the codes and

descriptions of the exposure modeling factors stored in the database, as well as the data sources

relied upon for each factor.  A similar listing is given in Table 9-4 for the case of environmental

impact category characterization factors.
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Table 9-3: Sources of data for physical properties used in exposure modeling
Exposure factor code Exposure factor description Sources of data
Tm Melting point [1,3,9]
Pvap Vapor pressure at ~25 degC [1,3,9,10]
Solub Water solubility at ~25 degC [3,9-11]
K Henry Henry's law constant at ~25 degC [1-3,9-12]
Log Kow Base 10 logarithm of the Octanol-water partition coefficient [1,3,9-11,13]
logKds Soil-liquid partition coefficient [10-12,14,15]
BCF Bioconcentration factor [1,10,11,13,16]
t_air Half life in air [1,3,10,11,17-19]
t_aerobic Aerobic degradation half life [1,10,13]
t_hydrolysis Hydrolysis half life [1,10,13]
t_water Half life in surface water [1,10,11,17,19]
t_soil Half life in soil [1,10,17,19]
t_sed Half life in sediments [1,10,17,19]
WWTP_to_air
WWTP_to_water
WWTP_to_sludge

Fraction of chemical entering a wastewater treatment plant that
volatilizes to air, remains in water effluent, or partitions to sludge

[11]

Table 9-4: Sources of data for factors characterizing the contributions of chemicals to specific
environmental problems

Impact category code Impact category name Sources of data
GWP100 Global Warming Potential over 100-year period [8,20-25]
ODP Ozone Depletion Potential [23,26,27]
PM10 Effects Health effects from particulate matter [8,28]
Respiratory DALYs Disability-adjusted life years lost due to respiratory effects [29]
POCP Photochemical Ozone Creation Potential [8,27,28,30-34]
Cancer DALYs Disability-adjusted life years lost due to chemical carcinogens [1,8,29,35-38]
Cancer UR inh Cancer concentration-in-air-based unit risk factor:  Life-time

cancer unit risk from inhalation of air containing 1
microgram/m3 of substance

[1,4,6,10,11,36,39,40]

Cancer CSF oral Oral Cancer Slope factor [1,4-6,10,11,13,36,40]
Cancer CSF Cancer slope factor (based on weight-of-evidence) [1,4,13,35,41-43]
NonCancer DALYs Disability-adjusted life years lost due to chronic non-cancer

effects from chemicals
[1,8,35-38,44]

NonCancer invRfC inh Non-cancer chronic concentration-in-air-based toxicity factor [1,4,10,11,13,35,40,44-
47]

NonCancer invRfD oral Non-cancer chronic oral dose-based toxicity factor [1,4,10,11,13,40,44,46]
NonCancer invRfD Non-cancer chronic dose-based toxicity factor [1,13,48]
HTP Human Toxicity Potential (cancer and non-cancer combined) [1,28,37,44,49]
Occupational invTLV Threshold Limit Value air concentration [45]
AP Acidification Potential [8,28,50]
AAP Aqueous Acidity Potential [25]
EP Eutrophication potential [8,27]
N-nutri Nitrogen nutriphication potential [8]
AETP (ag soil) Aquatic Ecotoxicity Potential [44]
ECA Ecotoxicological classification factor for aquatic ecosystems [1,25,27,51]
TETP Terrestrial Ecotoxicity Potential [44]
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Unfortunately, most sources of data only provide nominal values without making

quantitative statements on the uncertainties surrounding their data.  In the few cases where the

original source cited an uncertainty range or a coefficient of variation, the information provided

was used to derive probability distributions.  For the rest of the data, uncertainty distributions

were derived on the basis of the scatter of plots of factor values from the source of interest

against factors for the subset of chemicals available also in the source judged to be of highest

quality.  The procedure is illustrated here for the case of the Henry’s law constant97.  Table 9-5

shows a summary of the Henry’s law constant records stored in the EnvEvalTool database.  With

the exception of the review by Staudinger and Roberts [2], none of the sources consulted

provided uncertainty factors for their reported values.  Out of a total of 1785 chemicals with at

least one Henry’s law constant record in the database, only 198 had values and uncertainty

factors published in Staudinger’s review paper.  Figure 9-5 shows an example of the procedure

used to estimate uncertainty factors for the rest of the data sets.  The figure shows a scatter plot

of Henry’s law constant values obtained from the PhysProp database (measured values) vs. the

central estimated published by Staudinger.  The uncertainty factor was computed according to

the formula:

( )opPhysHStaudingerH KKStdDevUF Pr,10,1010 loglog)(log −= (9-1)

The dashed lines on the plot correspond to the curves KH = KH,Staudinger × UF and

KH = KH,Staudinger ÷ UF.  A second example is shown in Figure 9-6 where experimental results

from three different data sets are compared against the predictions of the HENRYWINB

property estimation method.  Not surprisingly, the uncertainty factors around estimated data are

much higher than those associated with experimental data.  Even though the uncertainty

surrounding estimated values is large (several orders of magnitude), the distributions still convey

significant information, since the range of possible values for the Henry’s law constant for all the

chemicals in the database98 is much larger, spanning more than ten orders of magnitude.

                                                
97 A similar example is provided in section 6.3.4 for the case of non-cancer chronic toxicity characterization factors.
98 This would be the prior distribution for the Henry’s law constant in the absence of any information
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Table 9-5: Rank order of sources of Henry's law constant data used in the EnvEvalTool database

Rank Source Code Source of Data Ref
Number
available

Number
useda

UF
usedb comments

1 HgStudy U.S. EPA [12] 1 1 6 assumed

2 Staudinger J. Staudinger and P.V.
Roberts (Stanford U.)

[2] 198 198 provided in ref [2]

3 SRC PhysProp exp www Syracuse Research
Corporation

[3] 18 11 6 assumed

4 EPA96 U.S. Environmental
Protection Agency
(measured data)

[10] 199 104 6 regression vs.
Staudinger

5 SRC PhysProp Syracuse Research
Corporation

[1] 494 367 6 regression vs.
Staudinger

6 LIVECHEM U.S. EPA [10] 5 1 10 assumed (too few
for regression)

7 Pvap/Solub Any source of
experimental solubility
and Pvap data

197 52 10 assumed

8 HENRYWING HENRYWIN Group
Method Prediction
(Syracuse Research
Corporation)

[1] 663 384 325 regression vs.
PhysProp K Henry

9 EPATRI99 U.S. EPA [11] 347 129 975 assumed worst case
(HENRYWIN
Bond method used)

10 HENRYWINB HENRYWIN Bond
Method Prediction
(Syracuse Research
Corporation)

[1] 1296 382 975 regression vs.
PhysProp K Henry

11 SRC PhysProp est www Syracuse Research
Corporation

[3] 18 7 975 assumed

12 ChemFinder ChemProp Pro
estimation functions in
CambrideSoft's
ChemFinder

[9] 1027 137 15000 regression vs.
PhysProp K Henry

13 CHEMEST GSC Corporation [10] 40 12 20000 regression vs.
PhysProp K Henry

a) Number used:  number of chemicals for which the data source is the highest-rank available
b) UF: uncertainty factor.  Lognormal distributions with geometric standard deviation equal to the square root of

the uncertainty factor were used to represent the uncertainty in the data
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Figure 9-5: Scatter plot of PhysProp database experimental Henry's law constant values vs.
experimental values from Staudinger et al.
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Figure 9-6: Scatter plot of Henry’s law constant values estimated using the HENRYWINB bond
contribution  method vs. experimental values from three different sources
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9.4.3 System functions

Two main functions have been implemented in the EnvEvalTool through combinations of

macros and Visual Basic code.  The functions are briefly described in the following paragraphs.

Details are provided in sections B.2 and B.3 in the Appendix.

GENERATION OF TOXICITY INDICATOR DISTRIBUTIONS

Given a list of chemicals (identified by their CAS Numbers), an EnvEvalTool macro can

export uncertainty distributions for all the required physical property and toxicity parameters to

the spreadsheet-based human exposure model.  The model can then be used to generate

distributions of toxicity indicators that take into account not only toxicity, but also the likelihood

of long term exposure to chemicals released to air, water, or soil.  This function was used to

generate the spreadsheets used to carry out the analysis of the Toxic Release Inventory case

study in section 6.5.  It was also used to generate the cancer and non-cancer chronic toxicity

characterization factors used in the chlorine life cycle analysis example in Chapter 7, and in the

generation of unit environmental impact indicators for the solvent recovery case study examples

in chapters 4, 5, and 8.  The macros take advantage of the information stored in the database to

produce a fully documented spreadsheet model, in which every cell containing a probability

distribution has a comment citing the source of the distribution.  The author has found this

feature to be very valuable in sensitivity analysis: whenever a factor was identified to be an

important contributor to either overall valuations or to uncertainty in valuations, it was possible

to quickly identify the data source used to obtain the distribution.  The database would then be

searched to check whether the factor used in the simulation was consistent with distributions for

the same factor obtained from other sources.

GENERATION OF INPUT DATA FOR THE PIO-LCA METHOD

Given a list of products or processes of interest, a specification of market share scenarios,

and a choice of environmental valuation method, an EnvEvalTool macro can create all the input

data spreadsheets for the PIO-LCA method.  The program builds a set of products and processes

recursively, until there are no products in the set for which a process that produces them is not
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included in the set99. It then retrieves all the distributions for the emissions from processes in the

set and for the characterization factors corresponding to the chemicals emitted and the impact

categories included in the valuation method chosen.  As in the case of the macro that feeds the

human exposure model, all the cells that contain probability distributions in the resulting Excel

spreadsheets will contain a comment specifying the source of data used.

OTHER FUNCTIONS

The time spent creating the data model and importing data for it from publicly available

sources more than paid off in time saved in analysis later on.  The relational structure of the

database allows a wide variety of queries to be made.  For example, all the tables in this chapter

were generated using queries within the database (including the automatic placement of

references at the end of this chapter through the use of the EndNote code field in the References

table100).

9.5 Suggested implementation within organizations
Environmental evaluation knowledge management systems such as the EnvEvalTool

described in this chapter have a very important role to play in manufacturing organizations. Such

systems can be used to overcome two of the major barriers to incorporating environmental

performance as an explicit objective of product and process design, namely (i) the lack of readily

accessible data regarding the environmental impact of various products, services, and emissions,

and (ii) the reluctance to use available indicators due to the lack of confidence in their numeric

values.

With regard to the first issue, it is certainly possible for an organization with even modest

resources allocated to environmental management to compile most of the publicly available data

regarding environmentally relevant properties of chemicals.  After all, a single graduate student

(the author) working over a period of about 4 months was able to compile a database with most

of the publicly available information on characterization and exposure factors.  Recent efforts

                                                
99 Depending on how complete the input-output data stored in the Use Factors and Make Factors tables are, there

may be instances of products for which no process that makes them is stored in the database.  A query has been
built to identify such products (see query QIO Products Used but not Made in section B.3.3).

100 EndNote (ISI Research Soft, www.endnote.com) is a software package used to organize and retrieve
bibliographic information.
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undertaken by the Environmental Defense Fund and by the U.S. Environmental Protection

Agency to post data in the internet have reduced the cost of accessing such information.  Most

organizations already have managerial cost databases with most of the input-output coefficients

needed for the PIO-LCA method.  A majority of them should also have decent emission factors

for the processes they operate, since they are required by law to compile annual inventories of

toxic releases. The area with the most difficulty in accessing data is perhaps the input-output

coefficients and emission factors for upstream processes operated by organizations independent

of the organization carrying out the analysis.  Universities and consulting firms, however, are

filling some of those gaps in an effort to provide data for life-cycle assessment software.

The second barrier has been uniquely addressed in this work through the use of

uncertainty analysis. Application of environmental indicators is no longer an exercise based on

faith, but one in which analysts can place confidence bounds on the conclusions derived from the

environmental valuation models. With rapid advances in hardware and software, the

computational cost of carrying out Monte Carlo simulations drops month by month.  Existing

software (e.g. @Risk) is sold with parallel calculation versions that allow the management of

simulations on multiple CPUs over a network.  Most organizations have dozens of personal

computers with CPUs that are idle a significant portion of the time.  Monte Carlo simulations of

PIO-LCA and human exposure and toxicity models with more than 2000 uncertain parameters

have been routinely carried out as part of this dissertation.

Figure 9-7 shows an information flow diagram for the management of environmental

evaluation knowledge and its subsequent application to product and process design.  A group

within an organization would be charged with the responsibility of maintaining the

environmental knowledge base for the organization.  This knowledge base would be interfaced

with the managerial cost accounting systems and with the environmental reporting system for the

acquisition of input-output data and emission factor data for processes operated by the

organization.  Links to outside organizations (e.g. government agencies and academic

institutions) would enable periodic updating of chemical-specific physical properties and

environmental problem characterization factors.  Establishment of standard protocols could make

this updating automatic.  Finally, top decision-makers within the organization would be

consulted to set the valuation factors used by the organization, as well as the appropriate

weighting factors to be used when examining tradeoffs between relative economic and
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environmental performance (e.g. the α value in the utility function introduced in section 4.6.3).

Uncertainty or lack of agreement in arriving at valuation and weighting factors would not be an

impediment to their consideration in decision making using the methods developed in this work.

Sensitivity analysis on important projects would help the managers of the knowledge base to set

priorities for reducing the uncertainty in the most important parameters.
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Figure 9-7: Information flow diagram for the implementation of the an environmental evaluation
knowledge management system within a private organization

Designers would interact with the system by providing it with a list of the raw materials,

services, and emissions that they expect will be part of their design.  A PIO-LCA model would

then be built on demand and run to generate a set of correlated unit environmental impact

indicators.  Designers would then be able to use these unit environmental impact indicator

distributions to generate distributions for the relative environmental impact of alternative designs

relative to a base case alternative using the procedures described in Chapter 4.

Governments and the academic community can greatly contribute to decreasing the

barriers faced by corporations by publishing data electronically in standardized formats.

Uncertainty factors should be provided with every data element published.  Advances in

hardware and software have resulted in a situation where we are more limited by the availability
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of distribution functions for input data than by the cost or time required to carry out uncertainty

analysis.
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Chapter 10 Recommendations for future
work

Many opportunities to further the goal of enabling chemical process designers to

incorporate environmental considerations as part of the design objectives were identified in the

course of this project.  This chapter provides a summary of promising leads.

10.1 Environmentally conscious generation of design alternatives
While this thesis focused on the decision support tools, many opportunities remain to

develop tools that facilitate the generation of alternatives that are likely to have lower

environmental impact.  Research ideas include:

• Increase the integration of process chemistry into the generation of design alternatives

• Develop tools to identify new reaction pathways and catalysts

• Extend alternative generation methods to include non-conventional unit operations

• Develop methods that allow the rapid identification of opportunities to integrate processes

• Develop methods to recognize opportunities to match waste streams with feed streams, and

to prescribe the operations needed to transform a waste stream into a usable feed stream.

10.2 Environmentally conscious process simulation
The decision support tools developed in this project relied on existing capabilities of

process simulators for the generation of input-output process information.  Not all of the process

information needed to assess environmental performance is routinely available from process

simulators, however.  Capabilities that would provide more of the needed information include:

• Predict generation of undesired byproducts

• Improve prediction of reaction rates

• Predict fugitive emissions and emissions from nonroutine operations (e.g. startup)
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• Include waste-treatment unit operations in process simulators

• Increase the ability of process simulators to track dilute species

10.3 Integration of process simulation with environmental
valuation models
The following is a list of ideas for integrating physical models (e.g. process flowsheet

models) with environmental valuation models:

• Further the development of the EnvEvalTool to include a field in the Chemical Information

table with the internal code used to identify individual chemical species in process

simulators.  Modify process simulator graphic interfaces so that important environmental

information for chemicals is displayed when a new chemical is added to a model.

• Compile databases with typical mass and energy balances (including trace components of

environmental significance) for widely used raw materials in the chemical industry, to

facilitate the characterization of upstream processes.

10.4 Environmental valuation methods
The examples in Chapter 5 showed than the uncertainty in weighting factors assigned to

different environmental impact category indicators can be the largest source of decision

uncertainty in the comparison of alternative designs.  It is necessary to develop robust weighting

factor assessment methods with consistency checks, to verify that the predictions of the model

are consistent with the tradeoffs a decision maker would be willing to make.

10.5 Economic valuation methods
The analysis in section 3.2.5 suggested that designers might be routinely designing

equipment that is too small relative to the economic optimum.  This hypothesis needs to be either

confirmed or disproved through collaboration with industrial partners.  Economic models used at

the conceptual design stage should be examined to extract the actual or implied value of the

annualization factor used to resolve operating cost – capital cost tradeoffs. One of the sources of

bias identified was the use of size-independent installation cost factors.  Company data or data

from knowledge bases (such as the Icarus knowledge base) could be use to derive equations for
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size-dependent installation cost factors.  These equations should then be submitted to Chemical

Engineering handbooks for publication,

10.6 Uncertainty propagation and uncertainty analysis
The following are ideas for increasing the range of uncertainty propagation and

uncertainty analysis tools available to process designers:

• Apply partial rank correlation coefficients for uncertainty analysis in models with correlated

input variables

• Carry out an analysis of the amount of information lost when the copula method is applied.

Develop or apply statistical tests to evaluate the goodness of fit of a multivariate copula

distribution. Many different copula families are available. If satisfactory goodness of fit tests

can be made available, then software such as TopRank could be extended to fit multivariate

distributions

• Develop versions of the deterministically equivalent modeling method that are compatible

with Excel and the Decision Tools Suite.

• Develop, through case studies, specific guidance for designers interested in using DEMM to

create spreadsheet metamodels of flowsheet models.  Issues to address include: guidance on

the selection of an acceptable index of agreement, examples of responses for which the

approach does not work, typical transformations that can be used to decrease the number of

terms needed to achieve good approximations, effect of increasing the order of

approximation vs. effect of including higher order cross terms, etc.

10.7 Knowledge management strategies
The value of a tool such as the EnvEvalTool developed for this work will increase

dramatically as the number of people using the tool increases. Some ideas to achieve this

include:

• Launching an international effort (perhaps within the ISO framework) to develop data

representation and storage standards for the uncertain parameters and properties of chemicals

needed as input to environmental valuation models.
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• Defining standards for the exchange of environmental valuation data through the internet

• A major effort should be made by publishers of environmental assessment data to include

quantitative uncertainty estimates with the nominal values they publish.

10.8 Case studies
• The use of the tools needs to be demonstrated in an industrial setting with practicing process

designers.

• More case studies are needed for use in chemical engineering education.



Chapter 11 Conclusions

1. Environmental issues are emerging as one of the major driving forces for change in the

chemical industry. A view of product and process design that sees environment as an

objective and not just as a constraint on operations can lead to the discovery of design

alternatives with improved environmental and economic performance.  An adoption of

environmentally conscious design ideas in academic curricula is perhaps the most significant

leverage point for moving the practice of chemical process design in this direction.

2. A frequently cited objection to the use of quantitative indicators of environmental

performance is that the underlying data are too uncertain for the numbers to have any

meaning.  This thesis demonstrated that explicit incorporation of uncertainties allows bounds

to be established on the confidence of decisions made on the basis of uncertain indicators.

The examples provided showed that large uncertainties in indicators used to assess

environmental performance do not necessarily imply uncertainty in decision-making.

3. There are no major conceptual differences between environmental and economic evaluation

models.  Both types of models contain uncertain parameters and rely on value judgements.

The models differ in the magnitude of the uncertainties, the accessibility of data, and in the

familiarity of users with making the required value judgements.

4. Application of the tools in this thesis should allow designers to anticipate future regulations

on the processes they design, since knowledge about potential environmental impacts is

typically available years before the relevant regulations become enacted.  The tools can also

be used to negotiate multimedia pollution prevention strategies with stakeholders who do not

necessarily share the same values regarding the environment with the company responsible

for the operation of the processes.

5. Current availability of hardware and software is such that the main barrier to propagating

uncertainties in large spreadsheet-based models has shifted from computer resources and

analysis time to the availability of probability distributions for the relevant parameters.  A
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database and uncertainty estimation procedures were developed in this thesis to address this

bottleneck.

6. Proper environmental assessment of products and processes requires a life cycle perspective.

Unfortunately, most life-cycle emission inventories today do not allow users to trace specific

emissions back to the first process that originated them.  In addition, the data are difficult to

maintain as new information becomes available.  Structuring the life-cycle assessment

problem around input-output matrices overcomes these difficulties.

7. The uncertainty and contributions to uncertainty in absolute measures of performance might

be quite different from the uncertainty and contributions to uncertainty in relative measures

of performance used to rank two alternatives.  The use of relative measures of performance

allows the comparison to be made taking full account of correlations between absolute

measures that arise from uncertain parameters common to both alternatives.

8. While the size of problems for which uncertainty propagation can be undertaken through

Monte Carlo simulation continues to increase as computer speeds rise and their costs drop,

many process models used by designers today are too expensive for traditional Monte Carlo

simulation.  In the case of models with smooth and regular output responses to changes in

uncertain input or manipulated variables, it is possible to build inexpensive spreadsheet-

based metamodels through the deterministic equivalent modeling method with a small

number of runs of the expensive flowsheet model.  The application of this technique greatly

expands the universe of flowsheet models for which uncertainty propagation can be routinely

made.

9. The formal framework and methods described in this thesis allow the incorporation of

sophisticated evaluation criteria in routine design activities, even in the presence of

substantial uncertainty.  The ideas presented here are quite general and can be applied to any

decision problem with significant uncertainties in the objective function parameters.

The key conclusion of this thesis is that uncertainty is not the same as ignorance.  In

the ever more competitive business environment of the 21st century, corporations that ignore

existing knowledge regarding the potential impact of their activities do so at their own peril.
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Appendix A Solvent recovery system design
case study

A.1 Problem statement
A manufacturing process produces a waste stream consisting of 1.4 weight percent

methylene chloride (CH2Cl2) dissolved in water.  A steam stripping process is used to recover

most of the methylene chloride before discharging the processed stream into the sewer.  The

current configuration of the process used to effect the recovery is shown in Figure A-1.  The feed

stream is fed to the first tower, where vapor generated as a result of the injection of steam into

the second tower strips methylene chloride from the incoming feed stream.  The aqueous stream

is then directed to the second tower, where the steam injected strips additional solvent.  The

mixture of water and methylene chloride vapor generated in the second tower and enriched in the

first tower is collected from the top of the first tower and condensed.  Upon condensation the

liquid splits into a methylene-chloride-rich stream and a water-rich stream.  A decanter separates

these two phases. The solvent-rich phase is recycled back to the manufacturing process, while

the aqueous stream is joined with the feed to the solvent recovery process.  The effluent leaving

the second tower is discharged to the sewer system.  At the time the system was built,

government standards set a concentration limit of one hundred parts per million (100 ppm)

methylene chloride by weight (i.e. 100 mg/L) in the discharged effluent.  The company operating

this process has recently learned that the local sewer authority is planning to tighten the standard,

possibly to a level as low as 2 ppm. Table A-1 provides key process conditions and process

specifications.
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Figure A-1: Flowsheet for the methylene chloride recovery system

Table A-1: Input data for the methylene chloride recovery optimization problem
Streams:
FEED Mass Flow:                   100,000

lb./hr.
Temperature:                95 °F
Pressure:                       24.7 psi
CH2Cl2 mass fraction:  1.4%

STEAM Saturated, 200 psi
Equipment:
TOWER1 Pressure:         18.70 psi

Heat duty:         0
TOWER2 Pressure:         19.70 psi

Heat duty:         0
COND Pressure:         14.70 psi

Temperature:  75 °F
DECANT Pressure:         14.70 psi

Heat duty:         0
PUMP ∆Pressure:      +5.00 psi
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The key tradeoff in this system involves steam input and solvent losses.  As the amount

of steam fed to the system increases, more methylene chloride is recovered overhead, and less is

lost as discharge to the sewer, thereby reducing its concentration (Figure A-2).  From an

economic perspective, the tradeoff is one between the cost of supplying steam and the cost of

purchasing make-up methylene chloride to replace the amounts lost with the wastewater

discharge (or the cost of the fines assessed if effluent standards are violated).  There are also

tradeoffs from an environmental impact perspective.  The key tradeoff is that between the impact

of the discharged solvent (including the impact of producing the methylene chloride required to

replace what is lost), and the impact of supplying steam (including the impact of producing and

burning the fuel used in the steam boiler).
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Figure A-2: Tradeoffs in the operation of the methylene chloride recovery system
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A.2 Process models
Models of the process shown in Figure A-1 and of two alternative process configurations

were built using version 10.0 of the Aspen Plus process simulator101. The two alternative process

configurations included a heat exchanger to preheat the feed using the effluent stream.  In

addition, the second process alternative replaced the two flash drums (TOWER1 and TOWER2)

by a stripping column with a variable number of theoretical stages.  The Aspen Plus models used

to simulate each unit operation are listed in Table A-2.

Table A-2: Unit operation models used
BLOCK ID MODEL DESIGN SPECS
TOWER1
TOWER2
COND
DECANT
PUMP
HX
STRIPPER

FLASH2
FLASH2
HEATER
FLASH3
PUMP
HEATX
RADFRAC

Pressure, Heat Duty (Adiabatic)
Pressure, Heat Duty (Adiabatic)
Pressure, Temperature
Pressure, Heat Duty (Adiabatic)
∆Pressure
Area
Number of stages

The simulation involved two components: water and methylene chloride.  Physical

properties for both compounds were obtained from the pure components data bank in Aspen

Plus.  The thermodynamic model used for the vapor phase was the Redlich-Kwong equation of

state.  Liquid mixing properties were calculated using the NRTL model. The model is given by:
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Five parameters are needed to calculate the activity coefficients, namely Aij, Aji, Bij, Bji and αij.

In the examples in sections 4.7.1 and 5.4.1 it was assumed that the process performance curves
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were well known.  Those curves were generated using the NRTL parameter values listed in

Table A-3.  In reality, there is quite a bit of uncertainty about the proper values for these

parameters, as evidenced by the four sets of values stored in the Aspen Plus data banks (Table

A-4).  These uncertainties are examined in more detail in section A.4.

Table A-3: Nominal values for the parameters in the NRTL model
Parameter Value

Aij -7.7458
Aij 8.8375
Bij 3144 K
Bji -1493.31 K

αij = αji 0.163

Table A-4: NRTL parameter data sets stored in the Aspen Plus data banks
Data bank VLE-IG VLE-RK VLE-HOC LLE-ASPEN
Aij 0 0.0 0.0 -4.464
Aij 0 0.0 0.0 6.6853
Bij(K) 941.4288 940.1598 945.0139 2269.2642
Bji(K) 1483.8632 1487.481 1488.0809 -839.8907
αij = αji 0.30 .30 .30 .20

A.3 Valuation models
The economic valuation models used in the examples are described in the introduction to

each example.  Depending on the decision context, any of the following three valuation models

were used: Operating Cost, Total Annualized Cost, or Net Present Value.

The PIO-LCA method was used to obtain unit life cycle environmental impact valuations

for steam, methylene chloride discharges, electricity, cooling water, and steel sheet.  The

process-product system used was a superset of the one used in the chlorine LCA example

(Chapter 7).  The system used had 30 products, 35 processes, 114 environmental exchanges, and

10 impact categories.  The list of products and processes in the network is given in Table A-5

                                                                                                                                                            
101 Aspen Technology, Inc., Cambridge, Mass,. www.aspentech.com
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Table A-5: Products and processes in the PIO-LCA model used for the environmental evaluation
of the alternatives in the solvent recovery example
Products and services Processes

Chlorine
Coal
Coke
Cooling water
Diesel fuel
Electricity
Hydrogen
Hydrogen chloride
Iron
Iron ore
Limestone
Mechanical energy from

diesel engines
Methanol
Methyl chloride
Methylene chloride
Methylene chloride

discharge
Natural gas
Oil
Oxygen
Railroad transport

Salt from brine
Sinter pellets
Sodium hydroxide
Steam (200 psia)
Steel
Steel sheet
Thermal energy from coal

furnace
Thermal energy from

industrial gas furnace
Thermal energy from oil

furnace
Thermal energy from

utility gas furnace

Brine pumping
Chloralkali production

(diaphragm cell process)
Chloralkali production

(membrane cell process)
Chloralkali production

(mercury cell process)
Coal furnace
Coal production
Coal-fired power plant
Coke production
Cooling water
Diesel engine
Diesel fuel production
Gas-fired power plant
Hydroelectric plant
Hydrogen chloride

production
Industrial gas furnace
Iron ore mining
Iron production
Limestone production

Methane reforming
Methanol production
Methyl chloride

production
Methylene chloride

discharge
Methylene chloride

production
Natural gas production
Nuclear power plant
Oil furnace
Oil production
Oil-fired power plant
Oxygen production
Railroad transport
Sinter pellet production
Steam generation (200

psia)
Steel production
Steel sheet production
Utility gas furnace

Impact category valuation factors, as well as the sources of data used to download

characterization factors for these impact categories into the EnvEvalTool are listed in Table 3-16.

Human toxicity indicators were calculated using the multimedia fate, transport, and exposure

model described in section 6.3.  Indicators expressed in units of [equivalent lifetime cancer

risk/(kg/km2/day)] were multiplied by a factor of 0.03 to estimate DALYs/kg, according to the

following expression:

kg
DALYs

days 
yr

km
people 

case cancer
DALYs

daykm
kg

yrperson
case cancer 1

unit HTP 03.0
365

15015701 2

2

=×××⋅=
(A-6)

where 70 years is the average life expectancy, 15 DALYs is the average number of years of life

expectancy lost per cancer case, and 50 people/km2 is roughly the population density of the

continental United States.
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A.4 Assessment of uncertainties

A.4.1 Uncertainty in process model parameters

NTRL PARAMETERS

Figure A-3 displays a comparison of experimental data with predictions of the infinite

dilution activity coefficient of methylene chloride in water made with two thermodynamic

models (NRTL or UNIQUAC) using parameter sets stored in the Aspen Plus databank.  The

chart demonstrates that the uncertainty is quite significant.

CH2Cl2 (1) - Water (2) system

100

1000

0 20 40 60 80 100

Temperature (°C)

γ1
inf

UNIQUAC(LLE-LIT)
NRTL (Aspen VLE-IG)
UNIQUAC(VLE-IG)
NRTL (Aspen LLE-Aspen)
UNIQUAC(LLE-Aspen)
Experimental data

Figure A-3: Comparison of experimental data to infinite dilution coefficients calculated using
the parameters stored in the Aspen Plus data banks

In order to estimate uncertainty distributions for the parameters on the basis of the

available data, the maximum likelihood estimate maximization method for systems with

unknown general covariance was used [1].  The method not only provides the user with point

estimates of the parameters, but also with a covariance matrix obtained from the Hessian of the
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maximum likelihood estimator function.  All VLE and LLE data for the methylene chloride-

water system identified through an intensive literature search were incorporated into the

estimation procedure [2-18].  It was found during optimization that the values of the parameter

pairs (A12,B12) and (A21,B21) were very tightly correlated.  This observation allowed the

uncertainty in the thermodynamic model to be represented as a function of three i.i.d unit normal

random variables:
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Propagation of the above parameter uncertainties in the NRTL model yields the

distribution for methylene chloride infinite dilution activity coefficients as a function of

temperature shown in Figure A-4.  Not surprisingly, the model is most accurate in the

temperature range for which the most data are available.  Unfortunately, there is quite a bit of

uncertainty at the temperature in which the steam stripping process operates (~100°C).
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CH2Cl2 (1) - Water (2) system
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Temperature (°C)
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inf

NRTL (nominal)
direct estimates
sep. factor data
Henry's law data
est. from VLE data
est. from solubility data
95% confidence limits
67% confidence limits

Figure A-4: Monte Carlo simulation results for the methylene chloride infinite dilution activity
coefficient in water calculated using the NRTL model and the joint distribution of
parameters given by eq (A-7)

HEAT TRANSFER COEFFICIENT

The installation of a heat exchanger between the effluent and the feed is considered as a

potential retrofit alternative.  The effluent stream is essentially pure water, while the feed stream

is about 98% water by mass.  Hence, heat transfer coefficients between two aqueous streams are

needed.  Design books were consulted for typical values of the overall heat transfer coefficient,

yielding the values listed in Table A-6:  Based on those values, a subjective beta distribution

with parameters (min=70 Btu°F-1ft-2hr-1, max=500 Btu°F-1ft-2hr-1, α1=3.14, and α2=2.86) was

assigned to the heat transfer coefficient.  A plot of this distribution is shown in Table 4-4.
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Table A-6: Overall heat transfer coefficients for heat exchangers transferring heat between two
aqueous streams 

Shell side Tube side
Design U
Btu/(°F ft2 hr) Source

Demineralized water Water 300-500
Jacket water Water 230-300
Water Water 200-250

[19]: Table 10-10

Cooling tower water Cooling tower water 70
Cooling tower water Boiler water 100
Boiler water Boiler water 167

[20]: Table A.7-2

Water Water 250-500 [21]: Table15.6
Water Liquid 150 [22]: Table 9.11

OVERALL TRAY EFFICIENCY

For simulation (column rating in ASPEN PLUS) either the Murphree efficiency or the

vapor efficiency need to be specified.   Calculation of these efficiencies can only be done with

detailed design data.  At this stage of the design, the only practical measure of efficiency is the

overall efficiency.   Given an actual number of trays, the uncertain overall efficiency is used to

calculate the corresponding theoretical number of trays, which in turn is used to estimate the

system performance.

The O’Connell correlation [23] was used to estimate the overall column efficiency, as

recommended by Douglas [20] and Kister [24]. The data for the original paper were fitted to a

cubic equation that relates the logarithm of O’Connell’s independent variable group to the

logarithm of the overall tray efficiency.

O’Connell’s independent variable group (which involves the Henry’s law constant,

system pressure and liquid viscosity) may be rewritten as:
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where K1 is the equilibrium ratio of methylene chloride (the ratio of the vapor mole fraction to

the liquid mole fraction).

Although the system pressure (P), methylene chloride vapor pressure (P1
vap), average

liquid viscosity (µL), average liquid molecular weight (ML), and average liquid mass density (ρL)
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are quite well determined, the activity coefficient is not (recall Figure A-4), and thus the overall

column efficiency is a strong function of one of the uncertain inputs.

In addition, O’Connell’s correlation is not perfect.  The uncertainty in the prediction was

modeled by multiplying the prediction of the correlation by a correction factor, whose logarithm

is assumed to be normally distributed with mean 0 and standard deviation 0.20.

Figure A-5 shows the correlation used, the experimental data upon which the correlation

is based, and the 67% and 95% confidence limits on the overall column efficiency that are

obtained using the assumed distribution function for the correlation error.
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Figure A-5: O’Conell’s correlation for overall tray efficiency

For the stochastic optimization exercise in section 5.4.3, the overall tray efficiency was

modeled as a subjective beta distribution with minimum=7%, maximum=14%, most likely value

8% and mean 9%.  A plot of the distribution is shown in Table 5-3.

A.4.2 External uncertainties
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UNCERTAINTIES IN PRICES OVER THE LIFE OF THE PROJECT

Uncertainties in future prices of methylene chloride and steam (assumed to be

proportional to the price of natural gas) were simulated using the Markov process described in

section 3.2.4.  The ranges in future prices simulated by this method are shown in Figure 3-2 and

Figure 3-3.

UNCERTAINTY IN REGULATORY ENVIRONMENT

Methylene chloride is considered a toxic pollutant and its discharges to sewers and water

streams are regulated by federal and local authorities. Table A-7 gives a sample of methylene

chloride effluent concentration limits placed by different authorities.

Table A-7: Methylene chloride effluent concentration limits for several U.S. jurisdictions
Source of limit Concentration limit (ppm) Comments
Federal: 40 CFR part 414.100
(Organic chemicals, plastics, and
synthetic fibers industries)

0.040  (maximum monthly average)
0.089  (maximum for any one day)

Direct discharge point sources that use
end-of-pipe biological treatment

Federal: 40 CFR part 414.101
(Organic chemicals, plastics, and
synthetic fibers industries)

0.036  (maximum monthly average)
0.170  (maximum for any one day)

Direct discharge point sources that do
not use end-of-pipe biological
treatment

Federal: 40 CFR part 414.111
(Organic chemicals, plastics, and
synthetic fibers industries)

0.036  (maximum monthly average)
0.170  (maximum for any one day)

Indirect discharge point sources

Federal: 40 CFR part 433
(Metal finishing point source
category)

2.13    (maximum for any 1 day) The limit applies to “total toxic
organics” (TTO), which includes
methylene chloride

East Bay Municipal Utility
District (Berkely, CA)

0.50 Applies to total identifiable
chlorinated hydrocarbons in sewer
discharges

City of Cookeville, TN 2.2 Based on 24-hour composite samples;
applies to industrial wastewater
discharges to the sewer

City of Rochester, MN 1.00 Applies to discharges of wastewater to
the sewer

Massachusetts Water Resources
Authority (360 CMR part 10.000)

1.00 Applies to discharges of wastewater to
the sewer.

For the case study it is assumed that the current limit is 2.0 ppm, but it is also assumed

that the limit might be tightened in the future.  In any year, the limit may be unchanged or

halved.  The probability of tightening is assumed to be 20% in each year. Figure A-6 shows the

distribution of concentration standards resulting from this Markov process. Although there is at

least a 5% probability that the standard will stay at the current level for the next 10 years (the
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assumed service life of the equipment), there is also at least a 5% probability that the standard

could tighten to as much as 0.06 ppm.

Methylene chloride discharge standard
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Figure A-6: Distributions for future effluent concentration standards

A.4.3 Valuation model uncertainties
The uncertainties in economic valuation model parameters are discussed in section 3.2.4.

This section will focus exclusively in the uncertainties in unit indicators derived from the

combined PIO-LCA and multimedia fate, transport and exposure models.

A multivariate normal copula distribution was fit to the results of a Monte Carlo

simulation of the full PIO-LCA + Multimedia exposure model.  The marginal distributions

obtained through the use of the software package BestFit102 are displayed in Table A-8.  The

corresponding matrix of rank correlations, obtained through the method described in section

8.3.3, is given in Table A-9.

                                                
102 Palisade corporation, www.palisade.com
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Table A-8: Marginal distributions for the unit environmental impact of key inputs and outputs in
the solvent recovery case study

log10 (unit environmental impact methylene chloride discharges, in
ELU/lb)

log10 (unit environmental impact of 200 psi steam, in
ELU/lb)

log10 (unit environmental impact of cooling water, in ELU/m3) log10 (unit environmental impact of electricity, in
ELU/kWh)

 log10 (unit
environmental impact of steel sheet, in ELU/lb)

Table A-9: Rank correlation matrix obtained for the solvent recovery case study unit
environmental indicators

Cooling
water

(per m3)
Electricity
(per kWh)

CH2Cl2
discharge
(per lb)

Steam
(per lb)

Steel sheet
(per lb)

Cooling water (per m3) 1 0.938961 0.675747 0.677726 0.801129
Electricity (per kWh) 0.938961 1 0.721461 0.717245 0.849475
CH2Cl2 discharge (per lb) 0.675747 0.721461 1 0.661496 0.662199
Steam (per lb) 0.677726 0.717245 0.661496 1 0.624209
Steel sheet (per lb) 0.801129 0.849475 0.662199 0.624209 1

Contribution sensitivity analysis (see section 7.5.2) was carried out as a check on the

quality on the results.  The results obtained confirm one’s intuition that the toxic effects of

methylene chloride (Figure A-7 and Figure A-8) should be the main drivers of the environmental
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impact of methylene chloride discharges.  In the case of steam, Figure A-9 and Figure A-10

show that the main contribution comes from the global warming potential of carbon dioxide.

The contribution of nitrogen oxides comes second, but mostly due to their contribution to the

formation of nitrate particles, rather than because of their contribution to photochemical smog.  If

decision makers felt that the smog contribution should be comparable or higher than the particle

effects contribution, then this analysis would suggest to them to access the EnvEvalTool

database and update the characterization factors for nitrogen oxides or the magnitude of the

weighting factor assigned to the photochemical oxidants creation potential (PCOP) indicator.

Methylene chloride discharges

-10% 0% 10% 20% 30% 40% 50% 60% 70%

Water: Mercury

Air: Hydrogen sulfide

Water: Hydrochloric acid

Air: trichloromethane

Air: Hydrochloric acid

Air: Mercury

Air: Nickel

Air: Total Suspended Particles

Soil (agricultural): Methylene chloride

Air: Methane

Air: Chloromethane

Air: Cobalt

Air: Carbon tetrachloride

Air: NOx (as NO2)

Air: Carbon dioxide

Air: Sulfur dioxide

Air: PM10

Water: Methylene chloride

Air: Methylene chloride

 Figure A-7: Environmental exchange contributions to the environmental impact indicator of
methylene chloride releases
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Methylene chloride discharges
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Eutrophication (water discharges)

Aquatic ecotoxicity

Terrestrial ecotoxicity

Stratospheric ozone depletion

Eutrophication

Acid deposition

Photochemical oxidants

Human toxicity (noncancer)

Global warming

Particle effects on human health

Human toxicity (cancer)

Figure A-8: Impact category contributions to the environmental impact indicator for methylene
chloride discharges

Steam
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Figure A-9: Environmental exchange contributions to the environmental impact indicator of
steam (with natural gas used as boiler fuel)
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Steam
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Eutrophication (water discharges)
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Stratospheric ozone depletion

Terrestrial ecotoxicity

Photochemical oxidants

Human toxicity (cancer)

Acid deposition

Eutrophication
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Particle effects on human health

Global warming

Figure A-10: Impact category contributions to the environmental impact indicator for steam
(with natural gas used as boiler fuel)
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Appendix B EnvEvalTool database
documentation

B.1 Data Table Structures and Relationships
A summary of the data model used in the EnvEvalTool database was presented in Figure

9-3 and Figure 9-4.  Details on the tables and their relationships are presented in this section.

The following list gives the page number in which detailed information for each table appears in

this Appendix:
Case Studies, 490
Case Studies (products), 491
Case Studies (valuation), 492
CF to CF correlations, 493
CF to VF correlations, 494
Characterization Factors, 495
Chemical Information, 497
Chemical Names, 499
Distributions, 500
Emission factors, 502
Exposure Factor Descriptions, 504
Exposure Factors, 505
Impact Categories, 507
Make coefficients, 508
Market Shares, 510
Prices, 512
Processes, 513
Products, 515
References, 517
Sources of Characterization Factors, 519
Sources of Emission Factors, 521
Sources of Exposure Factors, 522
Sources of Input-Output Data, 524
Use coefficients, 526
Valuation Factors, 528
Valuation Methods, 530
VF to VF correlations, 531
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Table: Case Studies

Properties
Date Created: 6/21/00 11:17:41 AM Def. Updatable: True

Last Updated: 6/21/00 11:19:50 AM OrderByOn: False

RecordCount: 2

 Columns
 Name                                                                                      Type                                                             Size
Case Study Text 50

 Relationships

Case Studies - Case Studies (products)

Case Studies Case Studies (products)

1 ∞
Case Study Case Study

Attributes: Enforced, Cascade Updates

Attributes: One-To-Many

Case Studies - Case Studies (valuation)

Case Studies Case Studies (valuation)

1 ∞
Case Study Case Study

Attributes: Enforced, Cascade Updates

Attributes: One-To-Many

 Table Indexes
Name                                                              Number of Fields                             

PrimaryKey 1

Fields: Case Study, Ascending
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Table: Case Studies (products)

Properties
Date Created: 5/29/00 2:15:39 PM Def. Updatable: True

Last Updated: 6/21/00 11:19:50 AM OrderByOn: False

RecordCount: 11

 Columns
 Name                                                                                      Type                                                             Size
Case Study Text 50

Product Code Text 50

Mkt Share Scenario Text 50

 Relationships

Case Studies (products) - Market Shares

Case Studies (products) Market shares

Product Code

Mkt Share Scenario

Product Code

Mkt Share Scenario

Attributes: Not Enforced

Attributes: Indeterminate

Case Studies - Case Studies (products)

Case Studies Case Studies (products)

1 ∞
Case Study Case Study

Attributes: Enforced, Cascade Updates

Attributes: One-To-Many

Products - Case Studies

Products Case Studies (products)

1 ∞
Product Code Product Code

Attributes: Enforced, Cascade Updates

Attributes: One-To-Many

 Table Indexes
Name                                                              Number of Fields                             

Case Study 1

Fields: Case Study, Ascending
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Table: Case Studies (valuation)

Properties
Date Created: 5/29/00 2:30:48 PM Def. Updatable: True

Last Updated: 6/21/00 11:20:15 AM OrderByOn: False

RecordCount: 2

 Columns
 Name                                                                                      Type                                                             Size
Case Study Text 50

Method Code Text 50

 Relationships

Case Studies - Case Studies (valuation)

Case Studies Case Studies (valuation)

1 ∞
Case Study Case Study

Attributes: Enforced, Cascade Updates

Attributes: One-To-Many

Valuation Methods - Case Studies (valuation)

Valuation Methods Case Studies (valuation)

1 ∞
Method code Method Code

Attributes: Enforced, Cascade Updates

Attributes: One-To-Many

 Table Indexes
Name                                                              Number of Fields                             

Method Code 1

Fields: Method Code, Ascending
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Table: CF to CF correlations

Properties
Date Created: 9/16/99 10:31:52 PM Def. Updatable: True

Last Updated: 5/29/00 11:52:36 AM OrderByOn: False

RecordCount: 208

 Columns
 Name                                                                                      Type                                                             Size
ID Number (Long) 4

Factor_number1 Number (Long) 4

Factor_number2 Number (Long) 4

Correlation_coefficient Number (Double) 8

 Relationships

Characterization Factors - CF to CF correlations

Characterization Factors CF to CF correlations

1 ∞
Factor_number Factor_number1

Attributes: Enforced, Cascade Updates

Attributes: One-To-Many

Characterization Factors - CF to CF correlations_1

Characterization Factors CF to CF correlations_1

1 ∞
Factor_number Factor_number2

Attributes: Enforced, Cascade Updates

Attributes: One-To-Many

 Table Indexes
Name                                                              Number of Fields                             

Factor numbers 2

Fields: Factor_number1, Ascending

PrimaryKey 1

Fields: ID, Ascending



494         APPENDIX B.ENVEVALTOOL DATABASE DOCUMENTATION                                                                                  

Table: CF to VF correlations

Properties
Date Created: 9/16/99 11:30:58 PM Def. Updatable: True

Last Updated: 3/26/00 11:01:18 PM OrderByOn: False

RecordCount: 97

 Columns
 Name                                                                                      Type                                                             Size
ID Number (Long) 4

Charact_factor_number Number (Long) 4

Valuation_factor_number Number (Long) 4

Correlation_coefficient Number (Double) 8

 Relationships

Characterization Factors - CF to VF correlations

Characterization Factors CF to VF correlations

1 ∞
Factor_number Charact_factor_number

Attributes: Enforced, Cascade Updates

Attributes: One-To-Many

Valuation Factors - CF to VF correlations

Valuation Factors CF to VF correlations

1 ∞
Factor_number Valuation_factor_number

Attributes: Enforced, Cascade Updates

Attributes: One-To-Many

 Table Indexes
Name                                                              Number of Fields                             

Factor numbers 2

Fields: Charact_factor_number, Ascending

Valuation_factor_number, Ascending

PrimaryKey 1

Fields: ID, Ascending



                                                                                                     B.1.Data Table Structures and Relationships         495

Table: Characterization Factors

Properties
Date Created: 5/27/99 1:48:50 PM Def. Updatable: True

Last Updated: 6/21/00 12:29:53 PM

OrderBy: [Characterization OrderByOn: False

Factors].[Impact Category Code]

RecordCount: 24206

 Columns
 Name                                                                                      Type                                                             Size
Factor_number Number (Long) 4

CAS Number Text 255

Impact Category Code Text 255

Source Code Text 255

Nominal Value Number (Double) 8

Distribution Code Text 255

Parameter 1 Number (Double) 8

Parameter 2 Number (Double) 8

Date incorporated Date/Time 8

 Relationships

Characterization Factors - CF to CF correlations

Characterization Factors CF to CF correlations

1 ∞
Factor_number Factor_number1

Attributes: Enforced, Cascade Updates

Attributes: One-To-Many

Characterization Factors - CF to CF correlations_1

Characterization Factors CF to CF correlations_1

1 ∞
Factor_number Factor_number2

Attributes: Enforced, Cascade Updates

Attributes: One-To-Many

Characterization Factors - CF to VF correlations

Characterization Factors CF to VF correlations

1 ∞
Factor_number Charact_factor_number

Attributes: Enforced, Cascade Updates

Attributes: One-To-Many
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Chemical Information - Characterization Factors

Chemical Information Characterization Factors

1 ∞
CAS Number CAS Number

Attributes: Enforced, Cascade Updates

Attributes: One-To-Many

Distributions - Characterization Factors

Distributions Characterization Factors

1 ∞
Distribution Code Distribution Code

Attributes: Enforced, Cascade Updates

Attributes: One-To-Many

Sources of Characterization Factors - Characterization Factors

Sources of Characterization Factors Characterization Factors
1 ∞

1 ∞
Impact Category Code

Source Code

Impact Category Code

Source Code

Attributes: Enforced, Cascade Updates

Attributes: One-To-Many

 Table Indexes
Name                                                              Number of Fields                             

PrimaryKey 1

Fields: Factor_number, Ascending

Sources of Characterization 2

Fields: Impact Category Code, Ascending

Source Code, Ascending
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Table: Chemical Information

Properties
Date Created: 5/28/99 12:06:26 PM Def. Updatable: True

 Last Updated: 6/21/00 12:30:13 PM OrderBy: [Chemical Information].[CAS 

OrderByOn: False Number]

RecordCount: 6113

 Columns
 Name                                                                                      Type                                                             Size
Chemical Name Text 255

CAS Number Text 255

Formula Text 50

Molecular Weight Number (Double) 8

Metal Classification Text 3

 Relationships

Chemical Information - Characterization Factors

Chemical Information Characterization Factors

1 ∞
CAS Number CAS Number

Attributes: Enforced, Cascade Updates

Attributes: One-To-Many

Chemical Information - Chemical Names

Chemical Information Chemical Names

1 ∞
CAS Number CAS Number

Attributes: Enforced, Cascade Updates

Attributes: One-To-Many

Chemical Information - Emission factors

Chemical Information Emission factors

1 ∞
CAS Number CAS Number

Attributes: Enforced, Cascade Updates

Attributes: One-To-Many

Chemical Information - Exposure Factors

Chemical Information Exposure Factors

1 ∞
CAS Number CAS Number

Attributes: Enforced, Cascade Updates

Attributes: One-To-Many
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 Table Indexes
Name                                                              Number of Fields                             

ChemicalName 1

Fields: Chemical Name, Ascending

PrimaryKey 1

Fields: CAS Number, Ascending
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Table: Chemical Names

Properties
Date Created: 5/21/99 10:33:10 AM Def. Updatable: True

Last Updated: 6/21/00 12:30:52 PM

OrderBy: [Chemical Names].[Chemical OrderByOn: False

Name]

RecordCount: 7920

 Columns
 Name                                                                                      Type                                                             Size
Chemical Name Text 255

CAS Number Text 255

 Relationships

Chemical Information - Chemical Names

Chemical Information Chemical Names

1 ∞
CAS Number CAS Number

Attributes: Enforced, Cascade Updates

Attributes: One-To-Many

 Table Indexes
Name                                                              Number of Fields                             

PrimaryKey 1

Fields: Chemical Name, Ascending
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Table: Distributions

Properties
Date Created: 5/21/99 12:12:00 PM Def. Updatable: True

Last Updated: 6/21/00 11:30:35 AM OrderByOn: False

RecordCount: 14

 Columns
 Name                                                                                      Type                                                             Size
Distribution Code Text 255

Nominal value definition Text 255

Parameter 1 definition Text 255

Parameter 2 definition Text 255

@Risk Expression Text 100

 Relationships

Distributions - Characterization Factors

Distributions Characterization Factors

1 ∞
Distribution Code Distribution Code

Attributes: Enforced, Cascade Updates

Attributes: One-To-Many

Distributions - Emission factors

Distributions Emission Factors

1 ∞
Distribution Code Distribution Code

Attributes: Enforced, Cascade Updates

Attributes: One-To-Many

Distributions - Exposure Factors

Distributions Exposure Factors

1 ∞
Distribution Code Distribution Code

Attributes: Enforced, Cascade Updates

Attributes: One-To-Many

Distributions - Make coefficients

Distributions Make coefficients

1 ∞
Distribution Code Distribution Code

Attributes: Enforced, Cascade Updates

Attributes: One-To-Many

Distributions - Market Shares
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Distributions Market Shares

1 ∞
Distribution Code Distribution Code

Attributes: Enforced, Cascade Updates

Attributes: One-To-Many

Distributions - Prices

Distributions Prices

1 ∞
Distribution Code Distribution Code

Attributes: Enforced, Cascade Updates

Attributes: One-To-Many

Distributions - Use coefficients

Distributions Use coefficients

1 ∞
Distribution Code Distribution Code

Attributes: Enforced, Cascade Updates

Attributes: One-To-Many

Distributions - Valuation Factors

Distributions Valuation Factors

1 ∞
Distribution Code Distribution Code

Attributes: Enforced, Cascade Updates

Attributes: One-To-Many

 Table Indexes
Name                                                              Number of Fields                             

PrimaryKey 1

Fields: Distribution Code, Ascending
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Table: Emission factors

Properties
Date Created: 9/8/99 10:58:14 AM Def. Updatable: True

Last Updated: 5/29/00 8:01:04 PM OrderBy: [Emission factors].[Release

Medium]

OrderByOn: True RecordCount: 814

 Columns
 Name                                                                                      Type                                                             Size
Factor_number Number (Long) 4

Process code Text 50

Source code Text 50

CAS Number Text 255

Release Medium Text 255

Nominal Value Number (Double) 8

Units Text 50

Distribution Code Text 255

Parameter 1 Number (Double) 8

Parameter 2 Number (Double) 8

Date Incorporated Date/Time 8

 Relationships

Chemical Information - Emission factors

Chemical Information Emission factors

1 ∞
CAS Number CAS Number

Attributes: Enforced, Cascade Updates

Attributes: One-To-Many

Distributions - Emission factors

Distributions Emission factors

1 ∞
Distribution Code Distribution Code

Attributes: Enforced, Cascade Updates

Attributes: One-To-Many

Sources of Emission Factors - Emission factors

Sources of Emission Factors Emission Factors
1 ∞

1 ∞
Process Code

Source Code

Process Code

Source Code

Attributes: Enforced, Cascade Updates

Attributes: One-To-Many
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 Table Indexes
Name                                                              Number of Fields                             

PrimaryKey 1

Fields: Factor_number, Ascending

Sources of Emission Factors 2

Fields: Process code, Ascending

Source code, Ascending

Unique 3

Fields: Process Code, Ascending

Source Code, Ascending

CAS Number, Ascending
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Table: Exposure Factor Descriptions

Properties
Date Created: 5/21/99 2:06:47 PM Def. Updatable: True

Last Updated: 4/3/00 4:49:55 PM OrderByOn: False

RecordCount: 18

 Columns
 Name                                                                                      Type                                                             Size
Exposure Factor Code Text 255

Exposure Factor Name Text 255

Units Text 255

 Relationships

Exposure Factor Descriptions - Sources of Exposure Factors

Exposure Factor Descriptions Sources of Exposure Factors
1 ∞

Distribution Code Distribution Code

Attributes: Enforced, Cascade Updates

Attributes: One-To-Many

 Table Indexes
Name                                                              Number of Fields                             

PrimaryKey 1

Fields: Exposure Factor Code, Ascending
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Table: Exposure Factors

Properties
Date Created: 5/27/99 2:36:39 PM Def. Updatable: True

Last Updated: 6/21/00 12:31:20 PM

OrderBy: [Exposure Factors].[Exposure OrderByOn: False
Factor Code]

RecordCount: 36976

 Columns
 Name                                                                                      Type                                                             Size
Factor_number Number (Long) 4

CAS Number Text 255

Exposure Factor Code Text 255

Source Code Text 255

Nominal Value Number (Double) 8

Distribution Code Text 255

Parameter 1 Number (Double) 8

Parameter 2 Number (Double) 8

Date Incorporated Date/Time 8

 Relationships

Chemical Information - Exposure Factors

Chemical Information Exposure factors

1 ∞
CAS Number CAS Number

Attributes: Enforced, Cascade Updates

Attributes: One-To-Many

Distributions - Exposure Factors

Distributions Exposure factors

1 ∞
Distribution Code Distribution Code

Attributes: Enforced, Cascade Updates

Attributes: One-To-Many

Sources of Exposure Factors - Exposure Factors

Sources of Exposure Factors Exposure Factors
1 ∞

1 ∞
Exposure Factor Code

Source Code

Exposure Factor Code

Source Code

Attributes: Enforced, Cascade Updates

Attributes: One-To-Many
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 Table Indexes
Name                                                              Number of Fields                             

PrimaryKey 1

Fields: Factor_number, Ascending

Sources of Exposure Factors 2

Fields: Exposure Factor Code, Ascending

Source Code, Ascending

Unique 3

Fields: Exposure Factor Code, Ascending

Source Code, Ascending

CAS Number, Ascending
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Table: Impact Categories

Properties
Date Created: 5/21/99 2:32:30 PM Def. Updatable: True

Last Updated: 5/29/00 8:04:36 PM OrderBy: [Impact Categories].[Impact

Category Code]

OrderByOn: True RecordCount: 52

 Columns
 Name                                                                                      Type                                                             Size
Impact Category Code Text 255

Impact Category Name Text 255

Units Text 255

Broad category Text 50

Environmental Medium Text 50

Notes Text 50

Relevant indicator Text 50

 Relationships

Impact Categories - Sources of Characterization Factors

Impact Categories Sources of Characterization Factors

1 ∞
Impact Category Code Impact Category Code

Attributes: Enforced, Cascade Updates

Attributes: One-To-Many

Impact Categories - Valuation Factors

Impact Categories Valuation Factors

1 ∞
Impact Category Code Impact category code

Attributes: Enforced, Cascade Updates

Attributes: One-To-Many

 Table Indexes
Name                                                              Number of Fields                             

PrimaryKey 1

Fields: Impact Category Code, Ascending
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Table: Make coefficients

Properties
Date Created: 5/22/00 12:10:43 PM Def. Updatable: True

Last Updated: 5/22/00 9:33:02 PM OrderByOn: False

RecordCount: 42

 Columns
 Name                                                                                      Type                                                             Size
Process Code Text 50

Product Code Text 50

Source Code Text 50

Nominal Value Number (Double) 8

Distribution Code Text 50

Parameter 1 Number (Double) 8

Parameter 2 Number (Double) 8

Date Incorporated Date/Time 8

 Relationships

Distributions - Make coefficients

Distributions Make coefficients

1 ∞
Distribution Code Distribution Code

Attributes: Enforced, Cascade Updates

Attributes: One-To-Many

Processes - Make coefficients

Processes Make coefficients

1 ∞
Process Code Process Code

Attributes: Enforced, Cascade Updates

Attributes: One-To-Many

Products - Make coefficients

Products Make coefficients

1 ∞
Product Code Product Code

Attributes: Enforced, Cascade Updates

Attributes: One-To-Many



                                                                                                     B.1.Data Table Structures and Relationships         509

Sources of Input-Output Data - Make coefficients

Sources of Input-Output Data Make coefficients
1 ∞

1 ∞
Process Code

Source Code

Process Code

Source Code

Attributes: Enforced, Cascade Updates

Attributes: One-To-Many

 Table Indexes
Name                                                              Number of Fields                             

Primary Key 2

Fields: Process Code, Ascending

Product Code, Ascending

Input-Output Data Source 2

Fields: Process Code, Ascending

Source Code, Ascending
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Table: Market Shares

Properties
Date Created: 5/29/00 2:08:38 PM Def. Updatable: True

Last Updated: 6/21/00 11:23:00 AM OrderByOn: False

RecordCount: 26

 Columns
 Name                                                                                      Type                                                             Size
Product Code Text 50

Mkt Share Scenario Text 50

Process Code Text 50

Nominal Value Number (Double) 8

Distribution Code Text 50

Parameter 1 Number (Double) 8

Parameter 2 Number (Double) 8

Date Incorporated Date/Time 8

 Relationships

Case Studies (products) - Market Shares

Case Studies (products) Market shares

Product Code

Mkt Share Scenario

Product Code

Mkt Share Scenario

Attributes: Not Enforced

Attributes: Indeterminate

Distributions - Market Shares

Distributions Market Shares

1 ∞
Distribution Code Distribution Code

Attributes: Enforced, Cascade Updates

Attributes: One-To-Many

Processes - Market Shares

Processes Market Shares

1 ∞
Process Code Process Code

Attributes: Enforced, Cascade Updates

Attributes: One-To-Many
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Products - Market Shares

Products Market Shares

1 ∞
Product Code Product Code

Attributes: Enforced, Cascade Updates

Attributes: One-To-Many

 Table Indexes
Name                                                              Number of Fields                             

PrimaryKey 3

Fields: Product Code, Ascending

Mkt Share Scenario, Ascending

Process Code, Descending

Product and Mkt Scenario 2

Fields: Product Code, Ascending

Mkt Share Scenario, Ascending
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Table: Prices

Properties
Date Created: 5/29/00 2:06:27 PM Def. Updatable: True

Last Updated: 6/21/00 11:30:35 AM OrderByOn: False

RecordCount: 5

 Columns
 Name                                                                                      Type                                                             Size
Price Entry Number Number (Long) 4

Product Code Text 50

Year Text 50

Currency Text 10

Nominal Value Number (Double) 8

Distribution Code Text 50

Parameter 1 Number (Double) 8

Parameter 2 Number (Double) 8

Date Incorporated Date/Time 8

 Relationships

Distributions - Prices

Distributions Prices

1 ∞
Distribution Code Distribution Code

Attributes: Enforced, Cascade Updates

Attributes: One-To-Many

Products - Prices

Products Prices

1 ∞
Product Code Product Code

Attributes: Enforced, Cascade Updates

Attributes: One-To-Many

 Table Indexes
Name                                                              Number of Fields                             

PrimaryKey 1

Fields: Price Entry Number, Ascending
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Table: Processes

Properties
Date Created: 9/8/99 11:20:03 AM Def. Updatable: True

Last Updated: 6/21/00 10:36:29 AM OrderByOn: False

RecordCount: 46

 Columns
 Name                                                                                      Type                                                             Size
Process Code Text 50

Throughput basis Text 100

Emission factor units Text 50

Comments Text 200

 Relationships

Processes - Make coefficients

Processes Make coefficients

1 ∞
Process Code Process Code

Attributes: Enforced, Cascade Updates

Attributes: One-To-Many

Processes - Market Shares

Processes Market Shares

1 ∞
Process Code Process Code

Attributes: Enforced, Cascade Updates

Attributes: One-To-Many

Processes - Sources of Emission Factors

Processes Sources of Emission Factors

1 ∞
Process Code Process Code

Attributes: Enforced, Cascade Updates

Attributes: One-To-Many

Processes - Sources of Input-Output Data

Processes Sources of Input-Output Data

1 ∞
Process Code Process Code

Attributes: Enforced, Cascade Updates

Attributes: One-To-Many
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Processes - Use coefficients

Processes Use coefficients

1 ∞
Process Code Process Code

Attributes: Enforced, Cascade Updates

Attributes: One-To-Many

 Table Indexes
Name                                                              Number of Fields                             

PrimaryKey 1

Fields: Process Code, Ascending
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Table: Products

Properties
Date Created: 9/8/99 1:30:14 PM Def. Updatable: True

Last Updated: 6/21/00 11:18:10 AM OrderByOn: False

RecordCount: 30

 Columns
 Name                                                                                      Type                                                             Size
Product code Text 50

Unit of measurment Text 100

Comments Text 200

 Relationships

Products - Case Studies

Products Case Studies (products)

1 ∞
Product Code Product Code

Attributes: Enforced, Cascade Updates

Attributes: One-To-Many

Products - Make coefficients

Products Make coefficients

1 ∞
Product Code Product Code

Attributes: Enforced, Cascade Updates

Attributes: One-To-Many

Products - Market Shares

Products Market Shares

1 ∞
Product Code Product Code

Attributes: Enforced, Cascade Updates

Attributes: One-To-Many

Products - Prices

Products Prices

1 ∞
Product Code Product Code

Attributes: Enforced, Cascade Updates

Attributes: One-To-Many
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Products - Use coefficients

Products Use coefficients

1 ∞
Product Code Product Code

Attributes: Enforced, Cascade Updates

Attributes: One-To-Many

 Table Indexes
Name                                                              Number of Fields                             

PrimaryKey 1

Fields: Product code, Ascending



                                                                                                     B.1.Data Table Structures and Relationships         517

Table: References

Properties
Date Created: 5/27/99 11:16:37 AM Def. Updatable: True

Last Updated: 6/21/00 11:42:23 AM OrderByOn: True

RecordCount: 65

 Columns
 Name                                                                                      Type                                                             Size
Reference Code Text 50

Reference Text 255

Date Published Date/Time 8

Date Downloaded Date/Time 8

EndNote Code Text 50

 Relationships

References - Sources of Characterization Factors

References Sources of Characterization Factors

1 ∞
Reference Code Reference Code

Attributes: Enforced, Cascade Updates

Attributes: One-To-Many

References - Sources of Emission Factors

References Sources of Emission Factors

1 ∞
Reference Code Reference Code

Attributes: Enforced, Cascade Updates

Attributes: One-To-Many

References - Sources of Exposure Factors

References Sources of Exposure Factors

1 ∞
Reference Code Reference Code

Attributes: Enforced, Cascade Updates

Attributes: One-To-Many

References - Sources of Input-Output Data

References Sources of Input-Output Data

1 ∞
Reference Code Reference Code

Attributes: Enforced, Cascade Updates

Attributes: One-To-Many

References - Valuation Methods
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References Valuation Methods
1 ∞

Reference Code Reference Code

Attributes: Enforced, Cascade Updates

Attributes: One-To-Many

 Table Indexes
Name                                                              Number of Fields                             

PrimaryKey 1

Fields: Reference Code, Ascending
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Table: Sources of Characterization Factors

Properties
Date Created: 5/27/99 2:28:45 PM Def. Updatable: True

Last Updated: 6/21/00 12:32:35 PM

 OrderBy: [Sources of Characterization OrderByOn: False

Factors].[Impact Category Code]

RecordCount: 220

 Columns
 Name                                                                                      Type                                                             Size
Impact Category Code Text 255

Source Code Text 255

Priority Number (Long) 4

Source of Data Text 255

Reference Code Text 50

Default Distribution Code Text 50

Default Parameter 1 Text 50

Default Parameter 2 Text 50

Comments Text 255

 Relationships

Impact Categories - Sources of Characterization Factors

Impact Categories Sources of Characterization Factors

1 ∞
Impact Category Code Impact Category Code

Attributes: Enforced, Cascade Updates

Attributes: One-To-Many

References - Sources of Characterization Factors

References Sources of Characterization Factors

1 ∞
Reference Code Reference Code

Attributes: Enforced, Cascade Updates

Attributes: One-To-Many

Sources of Characterization Factors - Characterization Factors

Sources of Characterization Factors Characterization Factors
1 ∞

1 ∞
Impact Category Code

Source Code

Impact Category Code

Source Code

Attributes: Enforced, Cascade Updates

Attributes: One-To-Many
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 Table Indexes
Name                                                              Number of Fields                             

Category+Priority 2

Fields: Impact Category Code, Ascending

Priority, Ascending

PrimaryKey 2

Fields: Impact Category Code, Ascending

Source Code, Ascending
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Table: Sources of Emission Factors

Properties
Date Created: 9/21/99 2:28:45 PM Def. Updatable: True

Last Updated: 3/26/00 11:01:40 PM OrderByOn: False

RecordCount: 55

 Columns
 Name                                                                                      Type                                                             Size
Process Code Text 255

Source Code Text 255

Priority Text 255

Source of Data Text 255

Reference Code Text 50

Comments Text 255

 Relationships

Processes - Sources of Emission Factors

Processes Sources of Emission Factors

1 ∞
Process Code Process Code

Attributes: Enforced, Cascade Updates

Attributes: One-To-Many

References - Sources of Emission Factors

References Sources of Emission Factors

1 ∞
Reference Code Reference Code

Attributes: Enforced, Cascade Updates

Attributes: One-To-Many

Sources of Emission Factors - Emission factors

Sources of Emission Factors Emission Factors
1 ∞

1 ∞
Process Code

Source Code

Process Code

Source Code

Attributes: Enforced, Cascade Updates

Attributes: One-To-Many

 Table Indexes
Name                                                              Number of Fields                             

PrimaryKey 2

Fields: Process Code, Ascending

Source Code, Ascending
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Table: Sources of Exposure Factors

Properties
Date Created: 5/27/99 2:31:39 PM Def. Updatable: True

Last Updated: 6/21/00 12:32:57 PM

OrderBy: [Sources of Exposure OrderByOn: False

Factors].Priority

RecordCount: 113

 Columns
 Name                                                                                      Type                                                             Size
Exposure Factor Code Text 255

Source Code Text 255

Priority Number (Long) 4

Source of Data Text 255

Reference Code Text 50

Comments Text 255

 Relationships

Exposure Factor Descriptions - Sources of Exposure Factors

Exposure Factor Descriptions Sources of Exposure Factors
1 ∞

Distribution Code Distribution Code

Attributes: Enforced, Cascade Updates

Attributes: One-To-Many

References - Sources of Exposure Factors

References Sources of Exposure Factors

1 ∞
Reference Code Reference Code

Attributes: Enforced, Cascade Updates

Attributes: One-To-Many

Sources of Exposure Factors - Exposure Factors

Sources of Exposure Factors Exposure Factors
1 ∞

1 ∞
Exposure Factor Code

Source Code

Exposure Factor Code

Source Code

Attributes: Enforced, Cascade Updates

Attributes: One-To-Many



                                                                                                     B.1.Data Table Structures and Relationships         523

 Table Indexes
Name                                                              Number of Fields                             

PrimaryKey 2

Fields: Exposure Factor Code, Ascending

Source Code, Ascending
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Table: Sources of Input-Output Data

Properties
Date Created: 5/22/00 2:59:39 PM Def. Updatable: True

Last Updated: 5/22/00 10:11:46 PM OrderBy: [Sources of Input-Output

Data].[Process Code]

OrderByOn: True RecordCount: 81

 Columns
 Name                                                                                      Type                                                             Size
Process Code Text 255

Source Code Text 255

Priority Text 255

Source of Data Text 255

Reference Code Text 50

Comments Text 255

 Relationships

Processes - Sources of Input-Output Data

Processes Sources of Input-Output Data

1 ∞
Process Code Process Code

Attributes: Enforced, Cascade Updates

Attributes: One-To-Many

References - Sources of Input-Output Data

References Sources of Input-Output Data

1 ∞
Reference Code Reference Code

Attributes: Enforced, Cascade Updates

Attributes: One-To-Many

Sources of Input-Output Data - Make coefficients

Sources of Input-Output Data Make coefficients
1 ∞

1 ∞
Process Code

Source Code

Process Code

Source Code

Attributes: Enforced, Cascade Updates

Attributes: One-To-Many
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Sources of Input-Output Data - Use coefficients

Sources of Input-Output Data Use coefficients
1 ∞

1 ∞
Process Code

Source Code

Process Code

Source Code

Attributes: Enforced, Cascade Updates

Attributes: One-To-Many

 Table Indexes
Name                                                              Number of Fields                             

PrimaryKey 2

Fields: Process Code, Ascending

Source Code, Ascending
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Table: Use coefficients

Properties
Date Created: 5/22/00 12:10:58 PM Def. Updatable: True

Last Updated: 6/19/00 2:51:21 PM OrderBy: [Use coefficients].[Product

OrderByOn: True RecordCount: 65

 Columns
 Name                                                                                      Type                                                             Size
Process Code Text 50

Product Code Text 50

Source Code Text 50

Nominal Value Number (Double) 8

Distribution Code Text 50

Parameter 1 Number (Double) 8

Parameter 2 Number (Double) 8

Date Incorporated Date/Time 8

 Relationships

Distributions - Use coefficients

Distributions Use coefficients

1 ∞
Distribution Code Distribution Code

Attributes: Enforced, Cascade Updates

Attributes: One-To-Many

Processes - Use coefficients

Processes Use coefficients

1 ∞
Process Code Process Code

Attributes: Enforced, Cascade Updates

Attributes: One-To-Many

Products - Use coefficients

Products Use coefficients

1 ∞
Product Code Product Code

Attributes: Enforced, Cascade Updates

Attributes: One-To-Many
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Sources of Input-Output Data - Use coefficients

Sources of Input-Output Data Use coefficients
1 ∞

1 ∞
Process Code

Source Code

Process Code

Source Code

Attributes: Enforced, Cascade Updates

Attributes: One-To-Many

 Table Indexes
Name                                                              Number of Fields                             

Primary Key 2

Fields: Process Code, Ascending

Product Code, Ascending
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Table: Valuation Factors

Properties
Date Created: 6/1/99 9:48:14 AM Def. Updatable: True

Last Updated: 6/21/00 10:51:28 AM OrderBy: [Valuation Factors].[Method

OrderByOn: True RecordCount: 62

 Columns
 Name                                                                                      Type                                                             Size
Factor_number Number (Long) 4

Method code Text 50

Impact category code Text 50

Nominal Value Number (Double) 8

Distribution Code Text 50

Parameter 1 Number (Double) 8

Parameter 2 Number (Double) 8

Date Incorporated Date/Time 8

 Relationships

Distributions - Valuation Factors

Distributions Valuation Factors

1 ∞
Distribution Code Distribution Code

Attributes: Enforced, Cascade Updates

Attributes: One-To-Many

Impact Categories - Valuation Factors

Impact Categories Valuation Factors

1 ∞
Impact Category Code Impact category code

Attributes: Enforced, Cascade Updates

Attributes: One-To-Many

Valuation Factors - CF to VF correlations

Valuation Factors CF to VF correlations

1 ∞
Factor_number Valuation_factor_number

Attributes: Enforced, Cascade Updates

Attributes: One-To-Many
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Valuation Factors - VF to VF correlations

Valuation Factors VF to VF correlations

1 ∞
Factor_number Factor_number1

Attributes: Enforced, Cascade Updates

Attributes: One-To-Many

Valuation Factors - VF to VF correlations_1

Valuation Factors VF to VF correlations_1

1 ∞
Factor_number Factor_number2

Attributes: Enforced, Cascade Updates

Attributes: One-To-Many

Valuation Methods - Valuation Factors

Valuation Methods Valuation Factors

1 ∞
Method code Method code

Attributes: Enforced, Cascade Updates

Attributes: One-To-Many

 Table Indexes
Name                                                              Number of Fields                             

PrimaryKey 1

Fields: Factor_number, Ascending
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Table: Valuation Methods

Properties
Date Created: 6/21/00 10:40:02 AM Def. Updatable: True

Last Updated: 6/21/00 11:20:15 AM OrderByOn: False

RecordCount: 4

 Columns
 Name                                                                                      Type                                                             Size
Method code Text 50

Method name Text 50

Reference Code Text 50

 Relationships

References - Valuation Methods

References Valuation Methods

1 ∞
Reference Code Reference Code

Attributes: Enforced, Cascade Updates

Attributes: One-To-Many

Valuation Methods - Case Studies (valuation)

Valuation Methods Case Studies (valuation)

1 ∞
Method code Method Code

Attributes: Enforced, Cascade Updates

Attributes: One-To-Many

Valuation Methods - Valuation Factors

Valuation Methods Valuation Factors

1 ∞
Method code Method Code

Attributes: Enforced, Cascade Updates

Attributes: One-To-Many

 Table Indexes
Name                                                              Number of Fields                             

Method code 1

Fields: Method code, Ascending

PrimaryKey 1

Fields: Method code, Ascending

ReferencesValuation Methods 1

Fields: Reference Code, Ascending
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Table: VF to VF correlations

Properties
Date Created: 9/16/99 11:18:09 PM Def. Updatable: True

Last Updated: 5/26/00 7:36:32 PM OrderByOn: False

RecordCount: 227

 Columns
 Name                                                                                      Type                                                             Size
ID Number (Long) 4

Factor_number1 Number (Long) 4

Factor_number2 Number (Long) 4

Correlation_coefficient Number (Double) 8

 Relationships

Valuation Factors - VF to VF correlations

Valuation Factors VF to VF correlations

1 ∞
Factor_number Factor_number1

Attributes: Enforced, Cascade Updates

Attributes: One-To-Many

Valuation Factors - VF to VF correlations_1

Valuation Factors VF to VF correlations_1

1 ∞
Factor_number Factor_number2

Attributes: Enforced, Cascade Updates

Attributes: One-To-Many

 Table Indexes
Name                                                              Number of Fields                             

Factor_numbers 2

Fields: Factor_number1, Ascending

Factor_number2, Ascending

PrimaryKey 1

Fields: ID, Ascending
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B.2 Queries and Visual Basic code used to export data to the
human exposure model

B.2.1 Overview
This section presents the code used to export data from the EnvEvalTool Access database

to the spreadsheet-based fate, transport, and exposure model used to generate probability

distributions for human exposure factors and human toxicity potentials (cancer and non-cancer).

SOFTWARE REQUIRED

The EnvEvalTool database used in this project implemented in Microsoft Access version

97 SR-1.  The fate, transport and exposure model was implemented in version 97 SR-1 of

Microsoft Excel.  Monte Carlo simulations are carried out in Excel using the @Risk Add-on

(Palisade Corporation).  Version 3.5 of @Risk was used in this work.

EXECUTION SEQUENCE

The user first needs to define the list of chemicals to be included in the fate, transport,

and exposure model.  This is done within the EnvEvalTool database through the use of the

auxiliary table Chemical List.  This table has a single column for CAS numbers.  For chemicals

for which a CAS number does not exist, the internal chemical code used as primary key in the

Chemical Information table should be used instead of the CAS number.

After populating the Chemical List table, the user should execute the macro

Export FTT data from within the EnvEvalTool database.  This will generate three temporary

Excel files.

After executing the macro, the user should open the spreadsheet containing the fate and

transport model.  Clicking on the BuildTable button executes the Visual Basic code that loads

the data, including @Risk probability distribution functions and comments on each cell citing the

data source used.  Data are loaded for exposure factors whose internal exposure factor code

coincides with the appropriate column heading in the fate and transport model spreadsheet (see

Figure B-3).



A B C D E F G H I J K L M N

1 INPUTS MW
Metal 
Classification Tm Solub Pvap K Henry Log Kow BCF logKds logKDsed logKDss

2 CAS number Chemical name

Molecular 
mass 
(g/mol)

Melting 
Point (K)

Water 
solubility 
(g/m3)

Vapor 
pressure 
(Pa)

K Henry 
(atm-
m3/mol) Log Kow

Bioconcen
tration 
factor

logKd3 = 
soil-water 
partition 
coefficient

logKd4 = 
sediment-
water 
partition 
coefficient

logKd5=    
suspended 
solids-
water 
partition 
coefficient

3 Air 7440-50-8 Copper 63.546 M 1356.15 897 14000 2.99
4
5

BuildTable

P Q R S T U V W X Y Z AA AB AC AD AE AF AG

1 t_air t_aerobic t_hydrolysist_water t_soil t_sed
Cancer 
CSF oral

Cancer 
UR inh Cancer CSF

NonCancer 
invRfD oral

NonCancer 
invRfC inh

NonCancer 
invRfD

WWTP_
to_air

WWTP_
to_water

WWTP_
to_sludg
e

2
Air half 
life (hr)

Aerobic 
degradatio
n half life 
(hr)

Hydrolysis 
half life 
(hr)

Surface 
Water 
half life 
(hr)

Soil Half 
life (hr)

Sediment 
half life 
(hr)

Oral 
cancer 
slope 
factor [1/ 
(mg/kg/d)]

Inhalation 
Unit Risk 
[1/ 
(ug/m3)]

Cancer 
slope factor 
[1/ 
(mg/kg/d)]

NonCancer 
inverse oral 
reference 
dose [1/ 
(mg/kg/d]

NonCancer 
inverse 
inhalation 
reference 
conc. [1/ 
(mg/m3)]

NonCancer 
inverse 
reference 
dose [1/ 
(mg/kg/d)]

Emission 
to Air 
(kg/h)

Emission 
to Water 

(kg/h)

Emission 
to ground 
soil (kg/h)

3 27.027027 50000 51 0 0.2753 0.7247 1000 0 0
4
5

Emission Scenario

Figure B-1: Layout of the chemical properties data entry of the fate, transport and exposure spreadsheet model
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B.2.2 Visual Basic code implemented within the Access database

Macro: Export FTT data

 Properties
Date Created: 6/21/00 4:42:18 PM Last Updated: 6/21/00 4:42:42 PM

Owner: admin

 Actions
Name           Condition               Action                   Argument                             Value

RunCode Function Name: Export_FTT_data ()

Used to access the function Export_FTT_data()

Module: Export data for fate transport exposure model

 Properties
Date Created: 6/21/00 4:38:08 PM Last Updated: 6/21/00 4:42:02 PM

 Code
1 Attribute VB_Name = "Export data for fate transport exposure model"
2 Option Compare Database
3 Option Explicit
4
5 '------------------------------------------------------------
6 ' Export_FTT_data()
7 '
8 '------------------------------------------------------------
9 Function Export_FTT_data()
10 On Error GoTo Export_FTT_Err
11 Dim PathName As String
12 PathName = "F:\Work in Progress\Environmental Evaluation Tool\Temp\"
13 SetOption "Confirm Action Queries", False
14 Export_query "QFT Chemical Information for spreadsheet", PathName
15 Export_query "QFT Exposure factors for spreadsheet", PathName
16 Export_query "QTI Toxicity Indices for FT spreadsheet", PathName
17 SetOption "Confirm Action Queries", True
18
19 Export_FTT_Exit:
20 Exit Function
21
22 Export_FTT_Err:
23 MsgBox Error$
24 Resume Export_FTT_Exit
25
26 End Function
27
28 Sub Export_query(QueryName As String, PathName As String)
29 DoCmd.OpenQuery QueryName, acNormal, acReadOnly
30 DoCmd.TransferSpreadsheet acExport, 8, QueryName, PathName + QueryName, True
31 DoCmd.Close
32 End Sub
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Module: Uncertainty description functions

 Properties
Date Created: 5/24/99 3:24:23 PM Last Updated: 3/28/00 7:54:53 PM

 Code
1 Attribute VB_Name = "Uncertainty description functions"
2 Option Compare Database
3 Option Explicit
4
5 Function MakeRiskExpression(Mask, NomVal, Param1, Param2)
6 ' This function generates @Risk Expressions for uncertainty
7 ' distributions based on the templates stored in the
8 ' "Distributions" table
9 Dim position, MaskLength, BracketedLength, j As Integer
10
11 ' Substitute "[Nominal Value]" occurrences
12 position = InStr(1, Mask, "[Nominal Value]", vbTextCompare)
13 MaskLength = Len(Mask)
14 BracketedLength = Len("[Nominal Value]")
15 If position > 0 Then
16 Mask = Left(Mask, position - 1) & Format(NomVal, "0.00E+00") _
17 & Right(Mask, MaskLength - BracketedLength - (position - 1))
18 End If
19
20 ' Substitute "[Parameter 1]" occurrences
21 For j = 1 To 2
22 position = InStr(1, Mask, "[Parameter 1]", vbTextCompare)
23 MaskLength = Len(Mask)
24 BracketedLength = Len("[Parameter 1]")
25 If position > 0 Then
26 Mask = Left(Mask, position - 1) & Format(Param1, "0.00E+00") _
27 & Right(Mask, MaskLength - BracketedLength - (position - 1))
28 End If
29 Next j
30
31 ' Substitute "[Parameter 2]" occurrences
32 position = InStr(1, Mask, "[Parameter 2]", vbTextCompare)
33 MaskLength = Len(Mask)
34 BracketedLength = Len("[Parameter 2]")
35 If position > 0 Then
36 Mask = Left(Mask, position - 1) & Format(Param2, "0.00E+00") _
37 & Right(Mask, MaskLength - BracketedLength - (position - 1))
38 End If
39
40 ' Return generated expression
41 MakeRiskExpression = Mask
42
43 End Function
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B.2.3 Queries and auxiliary tables

Table: Chemical List

 Properties
Date Created: 5/24/00 12:09:43 AM Def. Updatable: True
Last Updated: 5/24/00 12:09:43 AM RecordCount: 14

 Columns
 Name                                                                                      Type                                                             Size
CAS Number Text 255

Query: QFT Chemical Information for spreadsheet

 Properties
Date Created: 10/7/99 11:04:19 AM Def. Updatable: True
Last Updated: 3/4/00 11:01:27 PM MaxRecords: 0
ODBCTimeout: 60 OrderByOn: True
Record Locks: No Locks Records Affected: 0
RecordsetType: All Records ReturnsRecords: True
Type: Select

 SQL
SELECT DISTINCT[Chemical Information].[CAS Number],

[Chemical Information].[Chemical Name],
[Chemical Information].[Molecular Weight],
[Chemical Information].[Metal Classification]

FROM ( [Chemical List]
INNER JOIN [Chemical Information]
ON [Chemical List].[CAS Number] = [Chemical Information].[CAS Number]  )

INNER JOIN [Chemical Names] ON [Chemical Information].[CAS Number] = [Chemical Names].[CAS Number]
ORDER BY [Chemical Information].[Molecular Weight] DESC ,

[Chemical Information].[Metal Classification];

 Columns
 Name                                                                                      Type                                                             Size
CAS Number Text 255
Chemical Name Text 255
Molecular Weight Number (Double) 8
Metal Classification Text 3
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Query: QFT Exposure factors for spreadsheet

 Properties
Date Created: 6/6/99 5:42:16 PM Def. Updatable: True
Last Updated: 4/17/00 1:24:50 PM MaxRecords: 0
ODBCTimeout: 60 OrderByOn: False
Record Locks: No Locks Records Affected: 0
RecordsetType: All Records ReturnsRecords: True
Type: Select

 SQL
SELECT DISTINCTROW [Exposure Factors].[Exposure Factor Code],

[Chemical Information].[CAS Number],
[Chemical Information].[Chemical Name],
[Sources of Exposure Factors].Priority,
[Exposure Factors].[Nominal Value],
MakeRiskExpression([Distributions]![@Risk Expression],

[Exposure Factors]![Nominal Value],
[Exposure Factors]![Parameter 1],
[Exposure Factors]![Parameter 2]) AS Expr1,

[Exposure Factor Descriptions].Units,
[Sources of Exposure Factors].[Source Code],
References.[Reference Code]

FROM ([References]
INNER JOIN ([Exposure Factor Descriptions]
INNER JOIN [Sources of Exposure Factors]

ON [Exposure Factor Descriptions].[Exposure Factor Code] =
[Sources of Exposure Factors].[Exposure Factor Code])

ON References.[Reference Code] = [Sources of Exposure Factors].[Reference Code])
INNER JOIN (Distributions
INNER JOIN ((([Chemical List]
INNER JOIN [Chemical Information]

ON [Chemical List].[CAS Number] = [Chemical Information].[CAS Number])
INNER JOIN [Chemical Names]

ON [Chemical Information].[CAS Number] = [Chemical Names].[CAS Number])
INNER JOIN [Exposure Factors]

ON [Chemical Information].[CAS Number] = [Exposure Factors].[CAS Number])
ON Distributions.[Distribution Code] = [Exposure Factors].[Distribution Code])
ON ([Sources of Exposure Factors].[Source Code] = [Exposure Factors].[Source Code])
AND ([Sources of Exposure Factors].[Exposure Factor Code] = [Exposure Factors].[Exposure Factor Code])

ORDER BY [Exposure Factors].[Exposure Factor Code],
[Chemical Information].[CAS Number],
[Sources of Exposure Factors].Priority;

 Columns
 Name                                                                                      Type                                                             Size
Exposure Factor Code Text 255
CAS Number Text 255
Chemical Name Text 255
Priority Number (Long) 4
Nominal Value Number (Double) 8
Expr1 Text 0
Units Text 255
Source Code Text 255
Reference Code Text 50
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Query: QTI Toxicity Indices for FT spreadsheet

 Properties
Date Created: 3/10/00 3:07:48 PM Def. Updatable: True
Last Updated: 3/28/00 8:05:20 PM MaxRecords: 0
ODBCTimeout: 60 OrderBy: [QTI Toxicity Indices for FT

spreadsheet].Expr1
OrderByOn: True Record Locks: No Locks
Records Affected: 0 RecordsetType: All Records
ReturnsRecords: True Type: Select

 SQL
SELECT DISTINCTROW [Characterization Factors].[Impact Category Code],

[Chemical Information].[CAS Number],
[Chemical Information].[Chemical Name],
[Sources of Characterization Factors].Priority,
[Characterization Factors].[Nominal Value],
MakeRiskExpression([Distributions]![@Risk Expression],

[Characterization Factors]![Nominal Value],
[Characterization Factors]![Parameter 1],
[Characterization Factors]![Parameter 2]) AS Expr1,

[Impact Categories].Units,
[Sources of Characterization Factors].[Source Code],
References.[Reference Code]

FROM [References]
INNER JOIN ((Distributions
INNER JOIN ((([Chemical List]
INNER JOIN [Chemical Information]

ON [Chemical List].[CAS Number] = [Chemical Information].[CAS Number])
INNER JOIN ([Characterization Factors]
INNER JOIN [Impact Categories]

ON [Characterization Factors].[Impact Category Code] = [Impact Categories].[Impact Category Code])
ON [Chemical Information].[CAS Number] = [Characterization Factors].[CAS Number])

INNER JOIN [Chemical Names]
ON [Chemical Information].[CAS Number] = [Chemical Names].[CAS Number])
ON Distributions.[Distribution Code] = [Characterization Factors].[Distribution Code])

INNER JOIN [Sources of Characterization Factors]
ON ([Sources of Characterization Factors].[Source Code] = [Characterization Factors].[Source Code])
AND ([Sources of Characterization Factors].[Impact Category Code]

= [Characterization Factors].[Impact Category Code])
AND ([Impact Categories].[Impact Category Code]

= [Sources of Characterization Factors].[Impact Category Code]))
ON References.[Reference Code] = [Sources of Characterization Factors].[Reference Code]

WHERE ((([Characterization Factors].[Impact Category Code]) Like "Cancer UR*"
                        Or ([Characterization Factors].[Impact Category Code]) Like "Cancer CSF*"

Or ([Characterization Factors].[Impact Category Code]) Like "NonCancer inv*"))
ORDER BY [Characterization Factors].[Impact Category Code],

[Chemical Information].[CAS Number],
[Sources of Characterization Factors].Priority;

 Columns
 Name                                                                                      Type                                                             Size
Impact Category Code Text 255
CAS Number Text 255
Chemical Name Text 255
Priority Number (Long) 4
Nominal Value Number (Double) 8
Expr1 Text 0
Units Text 255
Source Code Text 255
Reference Code Text 50
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B.2.4 Visual Basic code implemented within the Excel workbook

' This code is attached to the button in the top-left corner of the model spreadsheet

Private Sub CommandButton1_Click()
BuildTable

End Sub

' The following subroutines and functions are implemented within a VisualBasic Module

Public Sub BuildTable()

' Declare variables
Dim rowLabel As String
Dim columnLabel As String
Dim chemName As String, CASNumber As String
Dim CurrentWorkbook As String
Dim fileName1 As String
Dim fileName2 As String
Dim fileName3 As String

CurrentWorkbook = Application.ActiveWorkbook.Name

' Open files with output from Access database
PathName = "F:\Work in Progress\Environmental Evaluation Tool\Temp\"
fileName2 = "QFT Chemical Information for spreadsheet.xls"
fileName1 = "QFT Exposure factors for spreadsheet.xls"
fileName3 = "QTI Toxicity Indices for FT spreadsheet.xls"
Workbooks.Open (PathName + fileName2)
Workbooks.Open (PathName + fileName1)
Workbooks.Open (PathName + fileName3)

Windows(CurrentWorkbook).Activate

' Assemble table
RowNumber = 2
Do While Workbooks(fileName2).Sheets(1).Cells(RowNumber, 1).Value <> ""

' Get chemical information
CASNumber = Workbooks(fileName2).Sheets(1).Cells(RowNumber, 1).Value
chemName = Workbooks(fileName2).Sheets(1).Cells(RowNumber, 2).Value
molWt = Workbooks(fileName2).Sheets(1).Cells(RowNumber, 3).Value
metalClass = Workbooks(fileName2).Sheets(1).Cells(RowNumber, 4).Value
' Check whether the chemical is already in the table
thisRowNumber = getRowNumber(CurrentWorkbook, CASNumber, chemName, CASNumber)
' Add name, molecular weight and metal classification information
Workbooks(CurrentWorkbook).Sheets(2).Cells(thisRowNumber, 3).Value = chemName
Workbooks(CurrentWorkbook).Sheets(2).Cells(thisRowNumber, 4).Value = molWt
Workbooks(CurrentWorkbook).Sheets(2).Cells(thisRowNumber, 5).Value = metalClass
RowNumber = RowNumber + 1

Loop
Workbooks(fileName2).Close

GetInfo fileName1, CurrentWorkbook
GetInfo fileName3, CurrentWorkbook

End Sub

Sub GetInfo(fileName As String, CurrentWorkbook As String)

Dim rowLabel As String
Dim columnLabel As String
Dim chemName As String, CASNumber As String

RowNumber = 2
Do While Workbooks(fileName).Sheets(1).Cells(RowNumber, 1).Value <> ""

' Get chemical name and check whether it exists in the table
CASNumber = Workbooks(fileName).Sheets(1).Cells(RowNumber, 2).Value
chemName = Workbooks(fileName).Sheets(1).Cells(RowNumber, 3).Value
thisRowNumber = getRowNumber(CurrentWorkbook, CASNumber, chemName, CASNumber)

' Get Exposure factor code and check whether it exists in the table
columnLabel = Workbooks(fileName).Sheets(1).Cells(RowNumber, 1).Value
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ColNumber = getColumnNumber(CurrentWorkbook, columnLabel)

' If a higher priority value has not been entered into the table, enter the factor
' (Table created by Access is sorted by
' Impact Category, Chemical Name, and Priority Level)
If IsEmpty(Workbooks(CurrentWorkbook).Sheets(2).Cells(thisRowNumber, ColNumber)) Then

Workbooks(CurrentWorkbook).Sheets(2).Cells(thisRowNumber, ColNumber).Formula _
= "=" & Workbooks(fileName).Sheets(1).Cells(RowNumber, 5).Value

Workbooks(CurrentWorkbook).Sheets(2).Cells(thisRowNumber, ColNumber).AddComment _
"Source: " & Workbooks(fileName).Sheets(1).Cells(RowNumber, 8).Value

' Check whether a distribution exists
Distribution = Workbooks(fileName).Sheets(1).Cells(RowNumber, 6).Value
If Not IsEmpty(Distribution) Then

Workbooks(CurrentWorkbook).Sheets(2).Cells(thisRowNumber, ColNumber).Formula = _
"=" & Workbooks(CurrentWorkbook).Sheets(2).Cells(thisRowNumber, ColNumber).Value _

& "*" & Distribution
End If

End If
RowNumber = RowNumber + 1

Loop
Workbooks(fileName).Close

End Sub

Function getColumnNumber(CurrentWorkbook As String, columnLabel As String) As Integer
topRow = Workbooks(CurrentWorkbook).Sheets(2).Range("c1:AD1")
On Error Resume Next
getColumnNumber = Application.WorksheetFunction.Match(columnLabel, topRow, 0) + 2
If Err.Number > 0 Then 'display error message

MsgBox "Can't find the column heading " + columnLabel, vbOKOnly, "ERROR!"
getColumnNumber = -1

End If
On Error GoTo 0

End Function

Function getRowNumber(CurrentWorkbook As String, rowLabel As String, _
chemName As String, CASNumber As String) As Integer

labelColumn = Workbooks(CurrentWorkbook).Sheets(2).Range("B" _
& FirstAvailRow & ":B" & MaxRows)

numRows = Application.WorksheetFunction.CountA(labelColumn)

On Error Resume Next
getRowNumber = Application.WorksheetFunction.Match(rowLabel, labelColumn, 0) _

+ FirstAvailRow - 1
If Err.Number > 0 Then 'new row is needed

Workbooks(CurrentWorkbook).Sheets(2).Cells(numRows + FirstAvailRow, 3).Value = chemName
Workbooks(CurrentWorkbook).Sheets(2).Cells(numRows + FirstAvailRow, 2).Formula = _

"'" &
CASNumber

getRowNumber = numRows + FirstAvailRow
End If
On Error GoTo 0

End Function



                                                B.3.Queries and Visual Basic code used to export data to the PIO-LCA model         541

B.3 Queries and Visual Basic code used to export data to the
PIO-LCA model

B.3.1 Overview
This section presents the code used to export data from the EnvEvalTool Access database

to the spreadsheet-based PIO-LCA model.  The actual building of the output vectors and

matrices in the PIO-LCA method is done by the code presented in Appendix C.

SOFTWARE REQUIRED

The EnvEvalTool database used in this project implemented in Microsoft Access version

97 SR-1.  The PIO-LCA model was implemented in version 97 SR-1 of Microsoft Excel.  Monte

Carlo simulations are carried out in Excel using the @Risk Add-on (Palisade Corporation).

Version 3.5 of @Risk was used in this work.

EXECUTION SEQUENCE

A case study is defined by entering its name in the Case Studies table, specifying the

products of interest and market share scenarios in the Case Studies (products) table, and

selecting a valuation method, by entering the name of the case study and valuation method in the

Case Studies (Valuation) table103.

After defining the case study, the user should execute the macro Export to spreadsheet

from within the EnvEvalTool database.  This will generate a set of 11 temporary Excel files.

After executing the macro, the user should open the PIO-LCA excel workbook.  Clicking

on the Load Table button on Sheet1 of the workbook executes the Visual Basic code that loads

the data and arranges them into the appropriate input matrices and vectors of the PIO-LCA

method. The code also incorporates @Risk probability distribution functions and places

comments on each cell citing the data source used.

                                                
103 See section B.1 for information regarding the structure of these tables.
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B.3.2 Visual Basic code implemented within the Access database
Macro: Export to spreadsheet

 Properties
Date Created: 11/23/99 5:40:59 PM Last Updated: 11/23/99 5:40:59 PM

Owner: admin

 Actions
Name           Condition               Action                   Argument                             Value

RunCode Function Name: Export_to_spreadsheet ()

Used to access the function Export_to_spreadsheet()

Module: Converted Macro- Export to spreadsheet

 Properties
Date Created: 9/9/99 10:54:53 AM Last Updated: 5/29/00 3:32:06 PM

Owner: admin

 Code
1 Attribute VB_Name = "Converted Macro- Export to spreadsheet"
2 Option Compare Database
3 Option Explicit
4
5 '------------------------------------------------------------
6 ' Export_to_spreadsheet
7 '
8 '------------------------------------------------------------
9 Function Export_to_spreadsheet()
10 On Error GoTo Export_to_spreadsheet_Err
11 Dim PathName As String
12 PathName = "F:\Work in Progress\Environmental Evaluation Tool\Temp\"
13 SetOption "Confirm Action Queries", False
14 DoCmd.OpenQuery "QIO Select Case Study", acNormal, acReadOnly
15 Generate_List_of_Products
16 Export_query "QIO Products Made", PathName
17 Export_query "QIO Processes", PathName
18 Export_query "QIO Exchanges", PathName
19 Export_query "QIO Prices", PathName
20 Export_query "QIO Market shares", PathName
21 Export_query "Make table factors for spreadsheet", PathName
22 Export_query "Use table factors for spreadsheet", PathName
23 Export_query "Emission factors for spreadsheet", PathName
24 Export_query "Characterization factors for spreadsheet", PathName
25 Export_query "Valuation factors for spreadsheet", PathName
26 SetOption "Confirm Action Queries", False
27 DoCmd.OpenQuery "CF with distributions for spreadsheet", acNormal, acReadOnly
28 DoCmd.OpenQuery "VF with distributions for spreadsheet", acNormal, acReadOnly
29 SetOption "Confirm Action Queries", True
30 Export_query "Correlation coefficients for spreadsheet", PathName
31 DoCmd.DeleteObject acTable, "Temporary CF"
32 DoCmd.DeleteObject acTable, "Temporary VF"
33 DoCmd.DeleteObject acTable, "TEMP Case Study"
34
35
36 Export_to_spreadsheet_Exit:
37 Exit Function
38
39 Export_to_spreadsheet_Err:
40 MsgBox Error$
41 Resume Export_to_spreadsheet_Exit
42
43 End Function
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44
45 Sub Export_query(QueryName As String, PathName As String)
46 DoCmd.OpenQuery QueryName, acNormal, acReadOnly
47 DoCmd.TransferSpreadsheet acExport, 8, QueryName, PathName + QueryName, True
48 DoCmd.Close
49 End Sub

Module: Converted Macro- Generate List of Products

 Properties
Date Created: 5/22/00 7:50:47 PM Last Updated: 5/22/00 9:14:13 PM

Owner: admin

 Code
1 Attribute VB_Name = "Converted Macro- Generate List of Products"
2 Option Compare Database
3 Option Explicit
4
5 '------------------------------------------------------------
6 ' IO_Macro
7 '
8 '------------------------------------------------------------
9 Function Generate_List_of_Products()
10 On Error GoTo IO_Macro_Err
11
12 Dim NumOfProducts, NumOfProductsNew As Integer
13
14 SetOption "Confirm Action Queries", False
15 ' QIO Generate Temporary List of Products
16 DoCmd.DeleteObject acTable, "Temporary List of Products"
17 DoCmd.OpenQuery "QIO Generate Temporary List of Products", acNormal, acEdit
18 ' Get the Number of Records
19 DoCmd.OpenForm "FIO CountOfProducts", acNormal, acEdit
20 NumOfProducts = Forms![FIO CountOfProducts]!NumOfProducts.Value
21 DoCmd.Close acForm, "FIO CountOfProducts"
22 Do While True
23 ' QIO Copy NLofProd into TLofProd2
24 DoCmd.OpenQuery "QIO Copy NLofProd into TLofProd2", acNormal, acEdit
25 DoCmd.DeleteObject acTable, "Temporary List of Products"
26 DoCmd.Rename "Temporary List of Products", acTable, _
27 "Temporary List of Products New"
27 ' Check whether the new list has more records than the old list
28 ' Get the Number of Records
29 DoCmd.OpenForm "FIO CountOfProducts", acNormal, acEdit
30 NumOfProductsNew = Forms![FIO CountOfProducts]!NumOfProducts.Value
31 DoCmd.Close acForm, "FIO CountOfProducts"
32 If NumOfProductsNew > NumOfProducts Then
33 NumOfProducts = NumOfProductsNew
34 Else
35 Exit Do
36 End If
37 Loop
38
39 SetOption "Confirm Action Queries", True
40
41 IO_Macro_Exit:
42 Exit Function
43
44 IO_Macro_Err:
45 MsgBox Error$
46 Resume IO_Macro_Exit
47
48 End Function
49
50
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Module: Uncertainty description functions

 Properties
Date Created: 5/24/99 3:24:23 PM Last Updated: 3/28/00 7:54:53 PM

Owner: admin

 Code
1 Attribute VB_Name = "Uncertainty description functions"
2 Option Compare Database
3 Option Explicit
4
5 Function MakeRiskExpression(Mask, NomVal, Param1, Param2)
6 ' This function generates @Risk Expressions for uncertainty
7 ' distributions based on the templates stored in the
8 ' "Distributions" table
9 Dim position, MaskLength, BracketedLength, j As Integer
10
11 ' Substitute "[Nominal Value]" occurrences
12 position = InStr(1, Mask, "[Nominal Value]", vbTextCompare)
13 MaskLength = Len(Mask)
14 BracketedLength = Len("[Nominal Value]")
15 If position > 0 Then
16 Mask = Left(Mask, position - 1) & Format(NomVal, "0.00E+00") _
17 & Right(Mask, MaskLength - BracketedLength - (position - 1))
18 End If
19
20 ' Substitute "[Parameter 1]" occurrences
21 For j = 1 To 2
22 position = InStr(1, Mask, "[Parameter 1]", vbTextCompare)
23 MaskLength = Len(Mask)
24 BracketedLength = Len("[Parameter 1]")
25 If position > 0 Then
26 Mask = Left(Mask, position - 1) & Format(Param1, "0.00E+00") _
27 & Right(Mask, MaskLength - BracketedLength - (position - 1))
28 End If
29 Next j
30
31 ' Substitute "[Parameter 2]" occurrences
32 position = InStr(1, Mask, "[Parameter 2]", vbTextCompare)
33 MaskLength = Len(Mask)
34 BracketedLength = Len("[Parameter 2]")
35 If position > 0 Then
36 Mask = Left(Mask, position - 1) & Format(Param2, "0.00E+00") _
37 & Right(Mask, MaskLength - BracketedLength - (position - 1))
38 End If
39
40 ' Return generated expression
41 MakeRiskExpression = Mask
42
43 End Function
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B.3.3 Queries, forms, and auxiliary tables
The following list gives the page numbers in which details are given on the different

queries, forms, and auxiliary tables used by the Visual Basic code in section B.3.2.
Form: FIO CountOfProducts, 562
Query: CF with distributions for spreadsheet, 546
Query: Correlation Coefficients for spreadsheet, 549
Query: Emission factors for spreadsheet, 550
Query: Make table factors for spreadsheet, 551
Query: QIO Copy NlofProd INTO TLofProd2, 552
Query: QIO Count Products, 552
Query: QIO Direct Processes, 553
Query: QIO Exchanges, 553
Query: QIO First List of Used Products, 554
Query: QIO Generate Temporary List of Products, 554
Query: QIO Market Shares, 555
Query: QIO New List of Products, 556
Query: QIO Prices, 556
Query: QIO Processes, 557
Query: QIO Products made, 557
Query: QIO Products Used but not Made, 558
Query: QIO Products used by direct processes, 558
Query: QIO Select Case Study, 559
Query: Use table factors for spreadsheet, 560
Query: Valuation factors for spreadsheet, 561
Query: VF with distributions for spreadsheet, 562
Table: TEMP Case Study, 559
Table: Temporary CF, 546
Table: Temporary List of Products, 554
Table: Temporary List of Products New, 552
Table: Temporary VF, 562
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Query: CF with distributions for spreadsheet  (creates Table: Temporary CF)

 Properties
Date Created: 9/17/99 1:05:32 AM Def. Updatable: True
Last Updated: 5/29/00 4:33:39 PM MaxRecords: 0
ODBCTimeout: 60 OrderByOn: False
Record Locks: Edited Record Records Affected: 0
RecordsetType: All Records ReturnsRecords: True
Type: Make-table UseTransaction: False

 SQL
SELECT DISTINCTROW [Characterization factors for spreadsheet].Factor_number,

[Characterization factors for spreadsheet].[Impact Category Code] AS ColumnLabel,
[Characterization factors for spreadsheet].RowLabel,
[Characterization factors for spreadsheet].[Environmental Medium] AS firstRowLabel,
[Characterization factors for spreadsheet].[Chemical Name] AS secondRowLabel,
[Characterization factors for spreadsheet].Priority,
[Characterization factors for spreadsheet].[Source Code],
[Characterization factors for spreadsheet].[Nominal Value],
[Characterization factors for spreadsheet].[@Risk expression]

INTO [Temporary CF]
FROM [Characterization factors for spreadsheet]
INNER JOIN [Select CF distributions for spreadsheet]

ON ([Characterization factors for spreadsheet].Priority =
[Select CF distributions for spreadsheet].MinOfPriority)

AND ([Characterization factors for spreadsheet].[Chemical Name] =
[Select CF distributions for spreadsheet].[Chemical Name])

AND ([Characterization factors for spreadsheet].[Impact Category Code] =
 [Select CF distributions for spreadsheet].[Impact Category Code]);
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Query: Characterization factors for spreadsheet

Properties
Date Created: 9/8/99 12:11:48 PM Def. Updatable: True
Last Updated: 5/29/00 3:19:15 PM MaxRecords: 0
ODBCTimeout: 60 OrderByOn: False
Record Locks: No Locks Records Affected: 0
RecordsetType: All Records ReturnsRecords: True
Type: Select

 SQL
SELECT DISTINCTROW [Impact Categories].[Environmental Medium],

[Characterization Factors].[ImpactCategory Code],
[QIO Exchanges].[Chemical Name],
[Sources of Characterization Factors].Priority,
[Characterization Factors].[Nominal Value],
MakeRiskExpression([Distributions]![@Risk Expression],

[Characterization Factors]![Nominal Value],
[Characterization Factors]![Parameter 1],
[Characterization Factors]![Parameter 2]) AS [@Risk expression],

[Impact Categories].Units,
[Characterization Factors].[Source Code],
References.[Reference Code],
[Characterization Factors].Factor_number,
[Chemical Names].[Chemical Name]+" to "+[Environmental Medium] AS RowLabel,
[Characterization Factors].[Impact Category Code]

                                                                                                                +" ("+[Impact Categories].[Units]+")" AS ColumnLabel
FROM [TEMP Case Study]
INNER JOIN ([References]
INNER JOIN (((Distributions
INNER JOIN ((([Characterization Factors]
INNER JOIN [Chemical Names]

ON [Characterization Factors].[CAS Number] = [Chemical Names].[CAS Number])
INNER JOIN [QIO Exchanges]

ON [Chemical Names].[Chemical Name] = [QIO Exchanges].[Chemical Name])
INNER JOIN [Impact Categories]

ON [QIO Exchanges].[Release Medium] = [Impact Categories].[Environmental Medium])
ON Distributions.[Distribution Code] = [Characterization Factors].[Distribution Code])

INNER JOIN [Sources of Characterization Factors]
ON ([Sources of Characterization Factors].[Source Code] = [Characterization Factors].[Source Code])
AND ([Sources of Characterization Factors].[Impact Category Code]

= [Characterization Factors].[Impact Category Code])
AND ([Impact Categories].[Impact Category Code]

= [Sources of Characterization Factors].[Impact Category Code]))
INNER JOIN ([Case Studies (valuation)]
INNER JOIN [Valuation Factors]

ON [Case Studies (valuation)].[Method Code] = [Valuation Factors].[Method code])
ON [Impact Categories].[Impact Category Code] = [Valuation Factors].[Impact category code])
ON References.[Reference Code] = [Sources of Characterization Factors].[Reference Code])
ON [TEMP Case Study].[Case Study] = [Case Studies (valuation)].[Case Study]

ORDER BY [Impact Categories].[Environmental Medium],
[Characterization Factors].[Impact Category Code],
[QIO Exchanges].[Chemical Name],
[Sources of Characterization Factors].Priority;
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 Columns
 Name                                                                                      Type                                                             Size
Environmental Medium Text 50
Impact Category Code Text 255
Chemical Name Text 255
Priority Number (Long) 4
Nominal Value Number (Double) 8
@Risk expression Text 0
Units Text 255
Source Code Text 255
Reference Code Text 50
Factor_number Number (Long) 4
RowLabel Text 0
ColumnLabel Text 0
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Query: Correlation Coefficients for spreadsheet

Properties
Date Created: 9/20/99 1:11:23 PM Def. Updatable: True
Last Updated: 5/29/00 4:43:02 PM MaxRecords: 0
ODBCTimeout: 60 OrderByOn: False
Record Locks: No Locks Records Affected: 0
RecordsetType: All Records ReturnsRecords: True
Type: Union

 SQL
SELECT [CF_1].FirstRowLabel AS FirstRowLabel1,
               [CF_1].SecondRowLabel AS SecondRowLabel1,
               [CF_1].ColumnLabel AS ColLabel1,
               [CF_2].FirstRowLabel AS FirstRowLabel2,
               [CF_2].SecondRowLabel AS SecondRowLabel2,
               [CF_2].ColumnLabel AS ColLabel2,
               [CF to CF correlations].Correlation_coefficient AS CorrCoeff
FROM [Temporary CF] AS [CF_2]
INNER JOIN ([Temporary CF] AS [CF_1]
INNER JOIN [CF to CF correlations]

ON [CF_1].Factor_number = [CF to CF correlations].Factor_number1)
ON [CF_2].Factor_number = [CF to CF correlations].Factor_number2

UNION

SELECT [CF_1].FirstRowLabel AS FirstRowLabel1,
              [CF_1].SecondRowLabel AS SecondRowLabel1 ,
              [CF_1].ColumnLabel as ColLabel1 ,
              null as firstRowLabel2,
              [VF_1].RowLabel as secondRowLabel2 ,
              [VF_1].ColumnLabel ,
              [CF to VF correlations].Correlation_coefficient
FROM [Temporary VF] AS [VF_1]
INNER JOIN ([Temporary CF] AS [CF_1]
INNER JOIN [CF to VF correlations]

ON [CF_1].Factor_number = [CF to VF correlations].Charact_factor_number)
ON [VF_1].Factor_number = [CF to VF correlations].Valuation_factor_number

UNION

SELECT null As FirstRowLabel1,
              [VF_1].RowLabel As SecondRowLabel ,
          [VF_1].ColumnLabel ,
           null as FirstRowLabel2,
           [VF_2].RowLabel ,
        [VF_2].ColumnLabel ,

[VF to VF correlations].Correlation_coefficient
FROM [Temporary VF] AS [VF_2]
INNER JOIN ([Temporary VF] AS [VF_1]
INNER JOIN [VF to VF correlations]

ON [VF_1].Factor_number = [VF to VF correlations].Factor_number1)
ON [VF_2].Factor_number = [VF to VF correlations].Factor_number2;

 Columns
 Name                                                                                      Type                                                             Size
FirstRowLabel1 Text 0
SecondRowLabel1 Text 0
ColLabel1 Text 0
SecondRowLabel2 Text 0
ColLabel2 Text 0
CorrCoeff Number (Double) 8
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Query: Emission factors for spreadsheet

Properties
Date Created: 9/8/99 11:59:06 AM Def. Updatable: True
Last Updated: 5/22/00 10:15:13 PM MaxRecords: 0
ODBCTimeout: 60 OrderByOn: False
Record Locks: No Locks Records Affected: 0
RecordsetType: All Records ReturnsRecords: True
Type: Select

 SQL
SELECT Processes.[Process Code],

[Emission factors].[Release Medium],
[Chemical Information].[Chemical Name],
[Sources of Emission Factors].Priority,
[Emission factors].[Nominal Value],
MakeRiskExpression([Distributions]![@Risk Expression],

[Emission Factors]![Nominal Value],
[Emission Factors]![Parameter 1],
[Emission Factors]![Parameter 2]) AS Expr1,

[Emission factors].Units,
References.[Reference Code],
[Chemical Name]+" to "+[Release Medium] AS RowLabel,
[Emission Factors].[Process Code]+" ("+[Units]+")" AS ColumnLabel,
[Emission factors].Factor_number

FROM (([References]
INNER JOIN (Processes
INNER JOIN [Sources of Emission Factors]

ON Processes.[Process Code] = [Sources of Emission Factors].[Process Code])
ON References.[Reference Code] = [Sources of Emission Factors].[Reference Code])

INNER JOIN (Distributions
INNER JOIN ([Chemical Information]
INNER JOIN [Emission factors]

ON [Chemical Information].[CAS Number] = [Emission factors].[CAS Number])
ON Distributions.[Distribution Code] = [Emission factors].[Distribution Code])
ON ([Sources of Emission Factors].[Source Code] = [Emission factors].[Source code])
AND ([Sources of Emission Factors].[Process Code] = [Emission factors].[Process code]))

INNER JOIN [QIO Processes]
ON Processes.[Process Code] = [QIO Processes].[Process Code]

ORDER BY Processes.[Process Code],
[Emission factors].[Release Medium],
[Chemical Information].[Chemical Name],
[Sources of Emission Factors].Priority;

 Columns
 Name                                                                                      Type                                                             Size
Process Code Text 50
Release Medium Text 255
Chemical Name Text 255
Priority Text 255
Nominal Value Number (Double) 8
Expr1 Text 0
Units Text 50
Reference Code Text 50
RowLabel Text 0
ColumnLabel Text 0
Factor_number Number (Long) 4
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Query: Make table factors for spreadsheet

Properties
Date Created: 5/22/00 9:17:21 PM Def. Updatable: True
Last Updated: 5/23/00 5:10:28 PM MaxRecords: 0
ODBCTimeout: 60 OrderByOn: False
Record Locks: No Locks Records Affected: 0
RecordsetType: All Records ReturnsRecords: True
Type: Select

 SQL
SELECT Processes.[Process Code],

[QIO Products made].[Product Code],
[Make coefficients].[Source Code],
[Sources of Input-Output Data].Priority,
[Make coefficients].[Nominal Value],
MakeRiskExpression([Distributions]![@Risk Expression],

[Make Coefficients]![Nominal Value],
[Make Coefficients]![Parameter 1],
[Make Coefficients]![Parameter 2]) AS Expr1

FROM ([QIO Products made]
INNER JOIN Products

ON [QIO Products made].[Product Code] = Products.[Product code])
INNER JOIN (((Processes
INNER JOIN [QIO Processes]

ON Processes.[Process Code] = [QIO Processes].[Process Code])
INNER JOIN (Distributions
INNER JOIN [Make coefficients]

ON (Distributions.[Distribution Code] = [Make coefficients].[Distribution Code])
AND (Distributions.[Distribution Code] = [Make coefficients].[Distribution Code]))
ON Processes.[Process Code] = [Make coefficients].[Process Code])

INNER JOIN [Sources of Input-Output Data]
ON ([Sources of Input-Output Data].[Source Code] = [Make coefficients].[Source Code])
AND ([Sources of Input-Output Data].[Process Code] = [Make coefficients].[Process Code])
AND (Processes.[Process Code] = [Sources of Input-Output Data].[Process Code]))
ON Products.[Product code] = [Make coefficients].[Product Code]

ORDER BY Processes.[Process Code],
[QIO Products made].[Product Code],
[Sources of Input-Output Data].Priority;

 Columns
 Name                                                                                      Type                                                             Size
Process Code Text 50
Product Code Text 50
Source Code Text 50
Priority Text 255
Nominal Value Number (Double) 8
Expr1 Text 0
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Query: QIO Copy NlofProd INTO TLofProd2
(creates Table: Temporary List of Products New)

Properties
Date Created: 5/22/00 7:42:29 PM Def. Updatable: True
Last Updated: 5/22/00 7:43:45 PM MaxRecords: 0
ODBCTimeout: 60 Record Locks: Edited Record
Records Affected: 0 ReturnsRecords: True
Type: Make-table UseTransaction: True

 SQL
SELECT [QIO New List of Products].[Product Code]
INTO [Temporary List of Products New]
FROM [QIO New List of Products];

Query: QIO Count Products

 Properties
Date Created: 5/22/00 8:01:49 PM Def. Updatable: True
Last Updated: 5/22/00 8:01:49 PM MaxRecords: 0
ODBCTimeout: 60 OrderByOn: False
Record Locks: No Locks Records Affected: 0
RecordsetType: All Records ReturnsRecords: True
Type: Select

 SQL
SELECT Count([Temporary List of Products].[Product Code]) AS [CountOfProduct Code]
FROM [Temporary List of Products];

 Columns
 Name                                                          Type                                          Size
CountOfProduct Code Number (Long) 4
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Query: QIO Direct Processes

 Properties
Date Created: 5/22/00 7:16:34 PM Def. Updatable: True
Last Updated: 5/29/00 3:21:42 PM MaxRecords: 0
ODBCTimeout: 60 OrderByOn: False
Record Locks: No Locks Records Affected: 0
RecordsetType: All Records ReturnsRecords: True
Type: Select

 SQL
SELECT [Make coefficients].[Process Code]
FROM [TEMP Case Study]
INNER JOIN ([Make coefficients]
INNER JOIN [Case Studies (products)]

ON [Make coefficients].[Product Code] = [Case Studies (products)].[Product Code])
ON [TEMP Case Study].[Case Study] = [Case Studies (products)].[Case Study];

 Columns
 Name                                                          Type                                          Size
Process Code Text 50

Query: QIO Exchanges

Properties
Date Created: 5/23/00 1:44:14 PM Def. Updatable: True
Last Updated: 5/23/00 1:50:03 PM MaxRecords: 0
ODBCTimeout: 60 OrderByOn: False
Record Locks: No Locks Records Affected: 0
RecordsetType: All Records ReturnsRecords: True
Type: Select

 SQL
SELECT DISTINCT [Emission factors].[Release Medium],

[Chemical Information].[Chemical Name],
[Emission factors].Units

FROM [Chemical Information]
INNER JOIN ([QIO Processes]
INNER JOIN [Emission factors]

ON [QIO Processes].[Process Code] = [Emission factors].[Process code])
ON ([Chemical Information].[CAS Number] = [Emission factors].[CAS Number])
AND ([Chemical Information].[CAS Number] = [Emission factors].[CAS Number]);

 Columns
 Name                                                                                      Type                                                             Size
Release Medium Text 255
Chemical Name Text 255
Units Text 50
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Query: QIO First List of Used Products

 Properties
Date Created: 5/22/00 7:22:30 PM Def. Updatable: True
Last Updated: 5/29/00 7:42:30 PM MaxRecords: 0
ODBCTimeout: 60 Record Locks: No Locks
Records Affected: 0 ReturnsRecords: True
Type: Union

 SQL
SELECT [Case Studies (products)].[Product Code]
FROM [TEMP Case Study]
INNER JOIN [Case Studies (products)]

ON [TEMP Case Study].[Case Study]= [Case Studies (products)].[Case Study]

UNION

SELECT [QIO Products used by direct processes].[Product Code]
FROM [QIO Products used by direct processes];

 Columns
 Name                                                          Type                                          Size
Product Code Text 50

Query: QIO Generate Temporary List of Products
(creates Table: Temporary List of Products)

Properties
Date Created: 5/22/00 7:28:18 PM Def. Updatable: True
Last Updated: 5/22/00 7:34:12 PM MaxRecords: 0
ODBCTimeout: 60 Record Locks: Edited Record
Records Affected: 0 ReturnsRecords: True
Type: Make-table UseTransaction: True

 SQL
SELECT [QIO First List of Used Products].[Product Code]
INTO [Temporary List of Products]
FROM [QIO First List of Used Products];
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Query: QIO Market Shares

 Properties
Date Created: 5/29/00 3:15:06 PM Def. Updatable: True
Last Updated: 5/29/00 3:21:20 PM MaxRecords: 0
ODBCTimeout: 60 OrderByOn: False
Record Locks: No Locks Records Affected: 0
RecordsetType: All Records ReturnsRecords: True
Type: Select

 SQL
SELECT DISTINCT [QIO Products made].[Product Code],

[QIO Processes].[Process Code],
[Case Studies (products)].[Mkt Share Scenario],
[Market Shares].[Nominal Value],

MakeRiskExpression([Distributions]![@Risk Expression],
[Market Shares]![Nominal Value],
[Market Shares]![Parameter 1],
[Market Shares]![Parameter 2]) AS Expr1

FROM [TEMP Case Study]
INNER JOIN (Distributions
INNER JOIN (([QIO Products made]
INNER JOIN ([QIO Processes]
INNER JOIN [Market Shares]

ON [QIO Processes].[Process Code] = [Market Shares].[Process Code])
ON [QIO Products made].[Product Code] = [Market Shares].[Product Code])

INNER JOIN [Case Studies (products)]
ON ([Market Shares].[Product Code] = [Case Studies (products)].[Product Code])
AND ([Market Shares].[Mkt Share Scenario] = [Case Studies (products)].[Mkt Share Scenario]))
ON Distributions.[Distribution Code] = [Market Shares].[Distribution Code])
ON [TEMP Case Study].[Case Study] = [Case Studies (products)].[Case Study]

ORDER BY [QIO Products made].[Product Code],
[Market Shares].[Nominal Value] DESC;

 Columns
 Name                                                                                      Type                                                             Size
Product Code Text 50
Process Code Text 50
Mkt Share Scenario Text 50
Nominal Value Number (Double) 8
Expr1 Text 0
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Query: QIO New List of Products

 Properties
Date Created: 5/22/00 7:31:55 PM Def. Updatable: True
Last Updated: 5/22/00 7:37:40 PM MaxRecords: 0
ODBCTimeout: 60 OrderByOn: False
Record Locks: No Locks Records Affected: 0
RecordsetType: All Records ReturnsRecords: True
Type: Union

 SQL
SELECT [Use coefficients].[Product Code]
FROM [QIO Processes]
INNER JOIN [Use coefficients]

ON [QIO Processes].[Process Code] = [Use coefficients].[Process Code]

UNION

SELECT [Temporary List of Products].[Product Code] FROM [Temporary List of Products];

 Columns
 Name                                                          Type                                          Size
Product Code Text 50

Query: QIO Prices

 Properties
Date Created: 5/29/00 3:06:54 PM Def. Updatable: True
Last Updated: 5/29/00 3:34:40 PM MaxRecords: 0
ODBCTimeout: 60 OrderByOn: False
Record Locks: No Locks Records Affected: 0
RecordsetType: All Records ReturnsRecords: True
Type: Select

 SQL
SELECT [QIO Products made].[Product Code],

Prices.[Nominal Value],
MakeRiskExpression([Distributions]![@Risk Expression],

[Prices]![Nominal Value],
[Prices]![Parameter 1],
[Prices]![Parameter 2]) AS Expr1,

Prices.Currency,
[QIO Products made].[Unit of measurment],
Prices.Year

FROM (Distributions
INNER JOIN Prices

ON Distributions.[Distribution Code] = Prices.[Distribution Code])
INNER JOIN [QIO Products made]

ON Prices.[Product Code] = [QIO Products made].[Product Code]

 Columns
 Name                                                                                      Type                                                             Size
Product Code Text 50
Nominal Value Number (Double) 8
Expr1 Text 0
Currency Text 10
Unit of measurment Text 100
Year Text 50
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Query: QIO Processes

 Properties
Date Created: 5/22/00 7:24:18 PM Def. Updatable: True
Last Updated: 5/22/00 7:33:16 PM MaxRecords: 0
ODBCTimeout: 60 Record Locks: No Locks
Records Affected: 0 ReturnsRecords: True
Type: Select

 SQL
SELECT DISTINCT [Make coefficients].[Process Code]
FROM [Temporary List of Products]
INNER JOIN [Make coefficients]

ON [Temporary List of Products].[Product Code] = [Make coefficients].[Product Code];

 Columns
 Name                                                                                      Type                                                             Size
Process Code Text 50

Query: QIO Products made

 Properties
Date Created: 5/22/00 8:58:37 PM Def. Updatable: True
Last Updated: 5/23/00 3:46:03 PM MaxRecords: 0
ODBCTimeout: 60 OrderByOn: False
Record Locks: No Locks Records Affected: 0
RecordsetType: All Records ReturnsRecords: True
Type: Select

 SQL
SELECT DISTINCT[Make coefficients].[Product Code],

Products.[Unit of measurment]
FROM Products
INNER JOIN ([QIO Processes]
INNER JOIN [Make coefficients]

ON [QIO Processes].[Process Code] = [Make coefficients].[Process Code])
ON Products.[Product code] = [Make coefficients].[Product Code];

 Columns
 Name                                                                                      Type                                                             Size
Product Code Text 50
Unit of measurment Text 100
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Query: QIO Products Used but not Made

 Properties
Date Created: 5/22/00 9:07:20 PM Def. Updatable: True
Last Updated: 5/22/00 9:07:20 PM MaxRecords: 0
ODBCTimeout: 60 OrderByOn: False
Record Locks: No Locks Records Affected: 0
RecordsetType: All Records ReturnsRecords: True
Type: Select

 SQL
SELECT [Temporary List of Products].[Product Code]
FROM [Temporary List of Products]
LEFT JOIN [QIO Products made]

ON [Temporary List of Products].[Product Code] = [QIO Products made].[Product Code]
WHERE ((([QIO Products made].[Product Code]) Is Null));

 Columns
 Name                                                          Type                                          Size
Product Code Text 255

Query: QIO Products used by direct processes

 Properties
Date Created: 5/22/00 7:18:13 PM Def. Updatable: True
Last Updated: 5/22/00 7:18:13 PM MaxRecords: 0
ODBCTimeout: 60 Record Locks: No Locks
Records Affected: 0 ReturnsRecords: True
Type: Select

 SQL
SELECT DISTINCT [Use coefficients].[Product Code]
FROM [QIO Direct Processes]
INNER JOIN [Use coefficients]

ON [QIO Direct Processes].[Process Code] = [Use coefficients].[Process Code];

 Columns
 Name                                                          Type                                          Size
Product Code Text 50
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Query: QIO Select Case Study (Creates Table: TEMP Case Study)

 Properties
Date Created: 5/29/00 3:18:05 PM Def. Updatable: True
Last Updated: 5/29/00 3:18:43 PM MaxRecords: 0
ODBCTimeout: 60 Record Locks: Edited Record
Records Affected: 0 ReturnsRecords: True
Type: Make-table UseTransaction: True

 SQL
SELECT DISTINCT [Case Studies (products)].[Case Study]
INTO [TEMP Case Study]
FROM [Case Studies (products)]
WHERE ((([Case Studies (products)].[Case Study])=[Enter Case Study Name:]));

Query Parameters

Name Type
[Enter Case Study Name:] Text
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Query: Use table factors for spreadsheet

 Properties
Date Created: 5/22/00 10:09:41 PM Def. Updatable: True
Last Updated: 5/23/00 5:10:15 PM MaxRecords: 0
ODBCTimeout: 60 OrderByOn: False
Record Locks: No Locks Records Affected: 0
RecordsetType: All Records ReturnsRecords: True
Type: Select

 SQL
SELECT Processes.[Process Code],

[QIO Products made].[Product Code],
[Sources of Input-Output Data].[Source Code],
[Sources of Input-Output Data].Priority,
[Use coefficients].[Nominal Value],
MakeRiskExpression([Distributions]![@Risk Expression],

[Use Coefficients]![Nominal Value],
[Use Coefficients]![Parameter 1],
[Use Coefficients]![Parameter 2]) AS Expr1

FROM (Distributions
INNER JOIN (([QIO Products made]
INNER JOIN Products

ON [QIO Products made].[Product Code] = Products.[Product code])
INNER JOIN ((Processes
INNER JOIN [QIO Processes]

ON Processes.[Process Code] = [QIO Processes].[Process Code])
INNER JOIN [Use coefficients]

ON (Processes.[Process Code] = [Use coefficients].[Process Code])
AND (Processes.[Process Code] = [Use coefficients].[Process Code]))
ON (Products.[Product code] = [Use coefficients].[Product Code])
AND (Products.[Product code] = [Use coefficients].[Product Code]))
ON (Distributions.[Distribution Code] = [Use coefficients].[Distribution Code])
AND (Distributions.[Distribution Code] = [Use coefficients].[Distribution Code]))

INNER JOIN [Sources of Input-Output Data]
ON ([Sources of Input-Output Data].[Source Code] = [Use coefficients].[Source Code])
AND ([Sources of Input-Output Data].[Process Code] = [Use coefficients].[Process Code])
AND (Processes.[Process Code] = [Sources of Input-Output Data].[Process Code])

ORDER BY Processes.[Process Code],
[QIO Products made].[Product Code],
[Sources of Input-Output Data].Priority;

 Columns
 Name                                                                                      Type                                                             Size
Process Code Text 50
Product Code Text 50
Source Code Text 255
Priority Text 255
Nominal Value Number (Double) 8
Expr1 Text 0
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Query: Valuation factors for spreadsheet

 Properties
Date Created: 5/22/00 10:22:14 PM Def. Updatable: True
Last Updated: 5/29/00 3:28:52 PM MaxRecords: 0
ODBCTimeout: 60 OrderByOn: False
Record Locks: No Locks Records Affected: 0
RecordsetType: All Records ReturnsRecords: True
Type: Select

 SQL
SELECT DISTINCT [Valuation Factors].Factor_number,

[Valuation Factors].[Method code],
[Valuation Factors].[Impact category code],
[Valuation Factors].[Nominal Value],
MakeRiskExpression([Distributions]![@Risk Expression],

[Valuation Factors]![Nominal Value],
[Valuation Factors]![Parameter 1],
[Valuation Factors]![Parameter 2]) AS Expr1,

"Valuation factor" AS RowLabel,
[Impact Categories].[Impact Category Code]+" ("+[Impact Categories].[Units]+")" AS ColumnLabel,
[Impact Categories].Units

FROM [QIO Exchanges]
INNER JOIN ([Impact Categories]
INNER JOIN (Distributions
INNER JOIN ([TEMP Case Study]
INNER JOIN ([Valuation Factors]
INNER JOIN [Case Studies (valuation)]

ON [Valuation Factors].[Method code] = [Case Studies (valuation)].[Method Code])
ON [TEMP Case Study].[Case Study] = [Case Studies (valuation)].[Case Study])
ON Distributions.[Distribution Code] = [Valuation Factors].[Distribution Code])
ON [Impact Categories].[Impact Category Code] = [Valuation Factors].[Impact category code])
ON [QIO Exchanges].[Release Medium] = [Impact Categories].[Environmental Medium]

ORDER BY [Valuation Factors].[Method code],
[Valuation Factors].[Impact category code];

 Columns
 Name                                                                                      Type                                                             Size
Factor_number Number (Long) 4
Method code Text 50
Impact category code Text 50
Nominal Value Number (Double) 8
Expr1 Text 0
RowLabel Text 0
ColumnLabel Text 0
Units Text 255
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Query: VF with distributions for spreadsheet (Creates Table: Temporary VF)

 Properties
Date Created: 9/17/99 1:42:48 AM Def. Updatable: True
Last Updated: 5/29/00 4:34:11 PM MaxRecords: 0
ODBCTimeout: 60 OrderByOn: False
Record Locks: Edited Record Records Affected: 0
RecordsetType: All Records ReturnsRecords: True
Type: Make-table UseTransaction: False

 SQL
SELECT [Valuation factors for spreadsheet].Factor_number,

[Valuation factors for spreadsheet].[Method code],
[Valuation factors for spreadsheet].RowLabel, "" AS firstRowLabel,
[Valuation factors for spreadsheet].RowLabel AS secondRowLabel,
[Valuation factors for spreadsheet].[Impact category code] AS ColumnLabel,
[Valuation factors for spreadsheet].[Nominal Value],
[Valuation factors for spreadsheet].Expr1

INTO [Temporary VF]
FROM [Valuation factors for spreadsheet]
WHERE ((([Valuation factors for spreadsheet].Expr1) Is Not Null));

Form: FIO CountOfProducts

 Properties
Date Created: 5/22/00 8:07:59 PM
Last Updated: 5/22/00 8:10:51 PM
Record Source: QIO Count Products

 Objects

Text Box: NumOfProducts
Control Source: CountOfProduct Code
Name: NumOfProducts
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B.3.4 Visual Basic code implemented within the Excel workbook
The following list gives the page numbers in which the various subroutines and functions

used within the Excel workbook to import the data generated by the macro in the Access

database.  The code is launched by clicking on the “Load Data” button on Sheet1 of the PIO-

LCA workbook.
BuildBCmatrix, 568
BuildEMatrix, 569
BuildHMatrix, 569
BuildMktShrMatrix, 571
Buildpvector, 571
BuildSheet1, 564
BuildSheet2, 566
BuildSheet3, 566
BuildSheet4, 567
BuildSheet5, 567
Buildwvector, 570
CommandButton2_Click(), 564
FormatMatrix, 573
FormatVector, 573
getColumnNumber, 572
Getncat, 574
Getnex, 574
Getnproc, 574
Getnprod, 574
getPosition, 573
getRowNumber, 572
getRowNumber2labels, 572
getRowNumber3labels, 573
Global declarations, 564
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Private Sub CommandButton2_Click()
Dim PathName As String
Dim CurrentWorkbook As String

PathName = "F:\Work in Progress\Environmental Evaluation Tool\Temp\"
CurrentWorkbook = Application.ActiveWorkbook.Name

BuildSheet1 CurrentWorkbook, PathName, _
"QIO Processes.xls", _
"QIO Products made.xls", _
"QIO Exchanges.xls", _
"Use table factors for spreadsheet.xls", _
"Make table factors for spreadsheet.xls", _
"Emission factors for spreadsheet.xls"

BuildSheet2 CurrentWorkbook, PathName, _
"QIO Prices.xls"

BuildSheet3 CurrentWorkbook, PathName, _
"Valuation factors for spreadsheet.xls", _
"Characterization factors for spreadsheet.xls"

BuildSheet4 CurrentWorkbook, PathName, _
"QIO Market Shares.xls"

BuildSheet5 CurrentWorkbook, PathName, _
"Correlation coefficients for spreadsheet"

End Sub

' Global declarations

Public nproc As Integer ' number of processes
Public nprod As Integer ' number of products
Public nex As Integer ' number of environmental exchanges
Public ncat As Integer ' number of impact categories

Sub BuildSheet1(CurrentWorkbook As String, PathName As String, _
fileName1 As String, fileName2 As String, _
fileName3 As String, fileName4 As String, _
fileName5 As String, fileName6 As String)

' Open files with output from Access database
Workbooks.Open (PathName + fileName1)
Workbooks.Open (PathName + fileName2)
Workbooks.Open (PathName + fileName3)
Windows(CurrentWorkbook).Activate

' Copy names of processes and count them
nproc = 0
runOutOfProcesses = False
Do While Not runOutOfProcesses

ProcessLabel = Workbooks(fileName1).Sheets(1).Cells(2 + nproc, 1).Value
If ProcessLabel = "" Then

runOutOfProcesses = True
Else

nproc = nproc + 1
Workbooks(CurrentWorkbook).Sheets(1).Cells(1, 4 + nproc).Value = _

ProcessLabel
End If

Loop
' format process labels
Range(Cells(1, 5), Cells(1, 5 + nproc - 1)).Select
With Selection

.Orientation = 90

.ColumnWidth = 5
End With
' close file with process labels
Workbooks(fileName1).Close

' Count the number of products
nprod = 0
runOutOfProducts = False
Do While Not runOutOfProducts

If Workbooks(fileName2).Sheets(1).Cells(2 + nprod, 1).Formula = "" Then
runOutOfProducts = True

Else
nprod = nprod + 1

End If
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Loop

' Make space for Use Matrix
Rows("3:" & nprod + 2).Select
Selection.Insert Shift:=xlDown
Selection.Font.Bold = False
' Copy product labels and units
For i = 1 To nprod

' Copy label
Cells(2 + i, 2).Select
Selection.Value = _

Workbooks(fileName2).Sheets(1).Cells(1 + i, 1).Value
' Copy units
Cells(2 + i, 3).Select
Selection.Value = _

Workbooks(fileName2).Sheets(1).Cells(1 + i, 2).Value
Next i
Workbooks(fileName2).Close
FormatMatrix 3, 5, nprod, nproc

' Make space for Make Matrix
Rows(nprod + 5 & ":" & 2 * nprod + 4).Select
Selection.Insert Shift:=xlDown
Selection.Font.Bold = False
' Insert formulas
Range(Cells(nprod + 5, 2), Cells(2 * nprod + 4, 3)).Select
For i = 1 To nprod

' Copy label
Cells(nprod + 4 + i, 2).Select
Selection.FormulaR1C1 = "=+R[-" & nprod + 2 & "]C"
' Copy units
Cells(nprod + 4 + i, 3).Select
Selection.FormulaR1C1 = "=+R[-" & nprod + 2 & "]C"

Next i
FormatMatrix nprod + 5, 5, nprod, nproc

' Insert Environmental Exchanges Labels
nex = 0
runOutOfExchanges = False
Do While Not runOutOfExchanges

ExchangeLabel = Workbooks(fileName3).Sheets(1).Cells(2 + nex, 2).Value
If ExchangeLabel = "" Then

runOutOfExchanges = True
Else

Cells(2 * nprod + 7 + nex, 2).Value = _
ExchangeLabel

Cells(2 * nprod + 7 + nex, 1) = _
Workbooks(fileName3).Sheets(1).Cells(2 + nex, 1).Value

Cells(2 * nprod + 7 + nex, 3) = _
Workbooks(fileName3).Sheets(1).Cells(2 + nex, 3).Value

nex = nex + 1

End If
Loop
Workbooks(fileName3).Close
FormatMatrix 2 * nprod + 7, 5, nex, nproc

BuildBCmatrix CurrentWorkbook, PathName, fileName4, 3
BuildBCmatrix CurrentWorkbook, PathName, fileName5, 5 + nprod
BuildEMatrix CurrentWorkbook, PathName, fileName6

' Fill B matrix with zeros
For i = 1 To nprod

For j = 1 To nproc
If Cells(2 + i, 4 + j).Value = "" Then Cells(2 + i, 4 + j).Value = 0

Next j
Next i

' Fill C matrix with zeros
For i = 1 To nprod

For j = 1 To nproc
If Cells(4 + nprod + i, 4 + j).Value = "" Then Cells(4 + nprod + i, 4 + j).Value = 0

Next j
Next i

' Fill E matrix with zeros
For i = 1 To nex

For j = 1 To nproc
If Cells(6 + 2 * nprod + i, 4 + j).Value = "" Then _

Cells(6 + 2 * nprod + i, 4 + j).Value = 0
Next j
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Next i
End Sub

Sub BuildSheet2(CurrentWorkbook As String, PathName As String, _
fileName As String)

Dim Units As String

Getnprod
Workbooks(CurrentWorkbook).Sheets(2).Activate
For i = 1 To nprod

Cells(2 + i, 1).Value = Sheets(1).Cells(2 + i, 2).Value
' Enter default price
Cells(2 + i, 3).Value = 999
Units = Sheets(1).Cells(2 + i, 3).Value
Cells(2 + i, 4).Value = "$/" + Units
Cells(2 + i, 8).Value = 0
Cells(2 + i, 9).Value = Units

Next i
FormatMatrix 3, 3, nprod, 2
FormatMatrix 3, 8, nprod, 2

Buildpvector CurrentWorkbook, PathName, fileName
End Sub

Sub BuildSheet3(CurrentWorkbook As String, PathName As String, _
fileName1 As String, fileName2 As String)

' Open files with output from Access database
fileName1 = "Valuation factors for spreadsheet"
Workbooks.Open (PathName + fileName1)
Windows(CurrentWorkbook).Activate
Sheets(3).Activate

' Copy names of impact categories and count them
ncat = 0
runOutOfCategories = False
Do While Not runOutOfCategories

CategoryLabel = Workbooks(fileName1).Sheets(1).Cells(2 + ncat, 3).Value
If CategoryLabel = "" Then

runOutOfCategories = True
Else

Cells(1, 5 + ncat).Value = CategoryLabel
Cells(2, 5 + ncat).Value = Workbooks(fileName1).Sheets(1).Cells(2 + ncat, 8).Value
ncat = ncat + 1

End If
Loop
' format category labels
Range(Cells(1, 5), Cells(2, 5 + ncat - 1)).Select
With Selection

.ColumnWidth = 12

.WrapText = True
End With
' close file with valuation factor labels
Workbooks(fileName1).Close

' Count the number of products and exchanges
Getnprod
Getnex
Sheets(3).Select

' Make space for H Matrix
Rows("4:" & nex + 3).Select
Selection.Insert Shift:=xlDown
Selection.Font.Bold = False
' Copy labels for environmental exchanges
For i = 1 To nex

Cells(3 + i, 1).Value = Sheets(1).Cells(nprod * 2 + 6 + i, 1).Value
Cells(3 + i, 2).Value = Sheets(1).Cells(nprod * 2 + 6 + i, 2).Value
Cells(3 + i, 3).Value = Sheets(1).Cells(nprod * 2 + 6 + i, 3).Value

Next i
FormatMatrix 4, 5, nex, ncat
FormatMatrix nex + 6, 5, 1, ncat

BuildHMatrix CurrentWorkbook, PathName, fileName2
Buildwvector CurrentWorkbook, PathName, fileName1

' Fill H matrix with zeros
For i = 1 To nex
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For j = 1 To ncat
If Cells(3 + i, 4 + j).Value = "" Then Cells(3 + i, 4 + j).Value = 0

Next j
Next i

End Sub

Sub BuildSheet4(CurrentWorkbook As String, PathName As String, _
fileName As String)

' Get matrix size
Getnprod
Getnproc
Workbooks(CurrentWorkbook).Sheets(4).Activate

For i = 1 To nproc
' Copy process labels
Cells(2 + i, 1).Value = Sheets(1).Cells(1, 4 + i).Value
For j = 1 To nprod

' Copy product labels
If i = 1 Then Cells(1, 2 + j).Value = Sheets(1).Cells(2 + j, 2).Value
' Enter default market shares
If Sheets(1).Cells(4 + nprod + j, 4 + i).Value > 0 Then

Cells(2 + i, 2 + j).Formula = "100%"
End If

Next j
Next i
Range(Cells(1, 3), Cells(1, 3 + nprod - 1)).Select
With Selection

.Orientation = 90

.ColumnWidth = 5
End With
FormatMatrix 3, 3, nproc, nprod

BuildMktShrMatrix CurrentWorkbook, PathName, fileName
End Sub

Sub BuildSheet5(CurrentWorkbook As String, PathName As String, _
fileName As String)

Dim firstRowLabel As String
Dim secondRowLabel As String
Dim colLabel As String
Dim firstRowLabel1 As String
Dim secondRowLabel1 As String
Dim colLabel1 As String
Dim firstRowLabel2 As String
Dim secondRowLabel2 As String
Dim colLabel2 As String
Dim numEntries As Integer

' Add matrix of correlation coefficients
Workbooks.Open (PathName + fileName)
Workbooks(CurrentWorkbook).Sheets(5).Activate

' Loop through all the records in the correlation coefficients file
RowNumber = 2
numEntries = 0
Do While Workbooks(fileName).Sheets(1).Cells(RowNumber, 2).Value <> ""

' Get labels for first factor and check whether entries exist in the table
firstRowLabel1 = Workbooks(fileName).Sheets(1).Cells(RowNumber, 1).Value
secondRowLabel1 = Workbooks(fileName).Sheets(1).Cells(RowNumber, 2).Value
colLabel1 = Workbooks(fileName).Sheets(1).Cells(RowNumber, 3).Value
position1 = getPosition(firstRowLabel1, secondRowLabel1, _

colLabel1, numEntries)
If position1 > numEntries Then numEntries = position1

' Get labels for second factor and check whether entries exist in the table
firstRowLabel2 = Workbooks(fileName).Sheets(1).Cells(RowNumber, 4).Value
secondRowLabel2 = Workbooks(fileName).Sheets(1).Cells(RowNumber, 5).Value
colLabel2 = Workbooks(fileName).Sheets(1).Cells(RowNumber, 6).Value
position2 = getPosition(firstRowLabel2, secondRowLabel2, _

colLabel2, numEntries)
If position2 > numEntries Then numEntries = position2

' Get correlation coefficient value and enter it in the matrix
corrCoeff = Workbooks(fileName).Sheets(1).Cells(RowNumber, 7).Value
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Cells(position1 + 3, position2 + 3).Value = corrCoeff
Cells(position2 + 3, position1 + 3).Value = corrCoeff

RowNumber = RowNumber + 1
Loop
Workbooks(fileName).Close
LastCellAddress = Cells(3 + numEntries, 3 + numEntries).Address()
MatrixRangeAddress = "Sheet5!$D$4:" + LastCellAddress

' Insert CorrMat functions
Getnex
Getncat
For i = 1 To numEntries

firstRowLabel = Sheets(5).Cells(i + 3, 1).Value
secondRowLabel = Sheets(5).Cells(i + 3, 2).Value
colLabel = Sheets(5).Cells(i + 3, 3).Value
Sheets(3).Activate
rowNum = getRowNumber2labels(firstRowLabel, secondRowLabel, _

4, nex + 3)
colNum = getColumnNumber(colLabel, 5, ncat)
Formula = Cells(rowNum, colNum).Formula
riskExpLocation = Application.WorksheetFunction.Find("Risk", Formula) - 1
riskExpLength = Len(Formula)
newFormula = Left(Formula, riskExpLocation) + "RiskCorrMat(" + _

MatrixRangeAddress + "," & i & ") + " _
+ Right(Formula, riskExpLength - riskExpLocation)

Cells(rowNum, colNum).Formula = newFormula
Next i

End Sub

Sub BuildBCmatrix(CurrentWorkbook As String, PathName As String, _
fileName As String, firstRow As Integer)

' This code builds the use matrix (B matrix) or the make matrix (C matrix)

Dim ProductLabel As String
Dim ProcessLabel As String

' Open file with output from Access database
Workbooks.Open (PathName + fileName)
Windows(CurrentWorkbook).Activate

' Assemble table
RowNumber = 2
Do While Workbooks(fileName).Sheets(1).Cells(RowNumber, 1).Value <> ""

' Get product name and check whether it exists in the table
ProductLabel = Workbooks(fileName).Sheets(1).Cells(RowNumber, 2).Value
thisRowNumber = getRowNumber(ProductLabel, firstRow, nprod, 2)

' Get Process category code and check whether it exists in the table
ProcessLabel = Workbooks(fileName).Sheets(1).Cells(RowNumber, 1).Value
colNumber = getColumnNumber(ProcessLabel, 5, nproc)

' If a higher priority value has not been entered into the table, enter the factor
' (Table created by Access is sorted by Process, Product, and Priority Level)
If IsEmpty(Workbooks(CurrentWorkbook).Sheets(1).Cells(thisRowNumber, colNumber)) Then

Workbooks(CurrentWorkbook).Sheets(1).Cells(thisRowNumber, colNumber).Formula = _
"=" & Workbooks(fileName).Sheets(1).Cells(RowNumber, 5).Value

Workbooks(CurrentWorkbook).Sheets(1).Cells(thisRowNumber, colNumber).AddComment _
"Source: " & Workbooks(fileName).Sheets(1).Cells(RowNumber, 3).Value

End If

' If a higher priority uncertainty distribution has not been entered into the table,
' append the distribution to the nominal value
If InStr(1, Workbooks(CurrentWorkbook).Sheets(1).Cells(thisRowNumber, _

colNumber).Formula, "Risk", 1) = 0 Then
' Check whether a distribution exists
Distribution = Workbooks(fileName).Sheets(1).Cells(RowNumber, 6).Value
If Not IsEmpty(Distribution) Then

Workbooks(CurrentWorkbook).Sheets(1).Cells(thisRowNumber, _
colNumber).Formula = "=" & _

Workbooks(CurrentWorkbook).Sheets(1).Cells(thisRowNumber, colNumber).Value & _
"*" & Distribution

End If
End If
RowNumber = RowNumber + 1

Loop
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Workbooks(fileName).Close
End Sub

Sub BuildEMatrix(CurrentWorkbook As String, PathName As String, _
fileName As String)

' This code builds the exchanges matrix (E matrix)

Dim ProcessLabel As String
Dim relMedium As String
Dim chemName As String
Dim relUnits As String

' Open file with output from Access database
Workbooks.Open (PathName + fileName)
Windows(CurrentWorkbook).Activate

' Assemble table
RowNumber = 2
Do While Workbooks(fileName).Sheets(1).Cells(RowNumber, 1).Value <> ""

' Get chemical name and release medium and check whether it exists in the table
relMedium = Workbooks(fileName).Sheets(1).Cells(RowNumber, 2).Value
chemName = Workbooks(fileName).Sheets(1).Cells(RowNumber, 3).Value
relUnits = Workbooks(fileName).Sheets(1).Cells(RowNumber, 7).Value
thisRowNumber = getRowNumber3labels(relMedium, chemName, relUnits, nprod * 2 + 7, nex)

' Get Process category code and check whether it exists in the table
ProcessLabel = Workbooks(fileName).Sheets(1).Cells(RowNumber, 1).Value
colNumber = getColumnNumber(ProcessLabel, 5, nproc)

' If a higher priority value has not been entered into the table, enter the factor
' (Table created by Access is sorted by Impact Category, Chemical Name,
' and Priority Level)
If IsEmpty(Workbooks(CurrentWorkbook).Sheets(1).Cells(thisRowNumber, colNumber)) Then

Workbooks(CurrentWorkbook).Sheets(1).Cells(thisRowNumber, _
colNumber).Formula = "=" & _

Workbooks(fileName).Sheets(1).Cells(RowNumber, 5).Value
Workbooks(CurrentWorkbook).Sheets(1).Cells(thisRowNumber, colNumber).AddComment _

"Source: " & Workbooks(fileName).Sheets(1).Cells(RowNumber, 8).Value
End If

' If a higher priority uncertainty distribution has not been entered into the table,
' append the distribution to the nominal value
If InStr(1, Workbooks(CurrentWorkbook).Sheets(1).Cells(thisRowNumber, _

colNumber).Formula, "Risk", 1) = 0 Then
' Check whether a distribution exists
Distribution = Workbooks(fileName).Sheets(1).Cells(RowNumber, 6).Value
If Not IsEmpty(Distribution) Then

Workbooks(CurrentWorkbook).Sheets(1).Cells(thisRowNumber, _
colNumber).Formula = "=" & _

Workbooks(CurrentWorkbook).Sheets(1).Cells(thisRowNumber, _
colNumber).Value & "*" & _

Distribution
End If

End If

RowNumber = RowNumber + 1
Loop

Workbooks(fileName).Close

End Sub

Sub BuildHMatrix(CurrentWorkbook As String, PathName As String, _
fileName As String)

' This code builds the characterization factor matrix (H matrix)

Dim CategoryLabel As String
Dim relMedium As String
Dim chemName As String
Dim relUnits As String

' Open file with output from Access database
Workbooks.Open (PathName + fileName)
Windows(CurrentWorkbook).Activate
Sheets(3).Activate
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' Assemble table
RowNumber = 2
Do While Workbooks(fileName).Sheets(1).Cells(RowNumber, 1).Value <> ""

' Get chemical name and release medium and check whether it exists in the table
relMedium = Workbooks(fileName).Sheets(1).Cells(RowNumber, 1).Value
chemName = Workbooks(fileName).Sheets(1).Cells(RowNumber, 3).Value
thisRowNumber = getRowNumber2labels(relMedium, chemName, 4, nex)

' Get Impact category code and check whether it exists in the table
CategoryLabel = Workbooks(fileName).Sheets(1).Cells(RowNumber, 2).Value
colNumber = getColumnNumber(CategoryLabel, 5, ncat)

' If a higher priority value has not been entered into the table, enter the factor
' (Table created by Access is sorted by Impact Category, Chemical Name,
' and Priority Level)
If IsEmpty(Cells(thisRowNumber, colNumber)) Then

Cells(thisRowNumber, colNumber).Formula = "=" & _
Workbooks(fileName).Sheets(1).Cells(RowNumber, 5).Value

Cells(thisRowNumber, colNumber).AddComment _
"Source: " & Workbooks(fileName).Sheets(1).Cells(RowNumber, 8).Value

End If

' If a higher priority uncertainty distribution has not been entered into the table,
' append the distribution to the nominal value
If InStr(1, Cells(thisRowNumber, colNumber).Formula, "Risk", 1) = 0 Then

' Check whether a distribution exists
Distribution = Workbooks(fileName).Sheets(1).Cells(RowNumber, 6).Value
If Not IsEmpty(Distribution) Then

Cells(thisRowNumber, colNumber).Formula = "=" & _
Cells(thisRowNumber, colNumber).Value & "*" & _
Distribution

End If
End If

RowNumber = RowNumber + 1
Loop
Workbooks(fileName).Close

End Sub

Sub Buildwvector(CurrentWorkbook As String, PathName As String, _
fileName As String)

' This code builds the valuation factor vector (w vector)

Dim CategoryLabel As String

' Open file with output from Access database
Workbooks.Open (PathName + fileName)
Windows(CurrentWorkbook).Activate
Sheets(3).Select

thisRowNumber = nex + 6

' Assemble table
RowNumber = 2
Do While Workbooks(fileName).Sheets(1).Cells(RowNumber, 1).Value <> ""

' Get Impact category code and check whether it exists in the table
CategoryLabel = Workbooks(fileName).Sheets(1).Cells(RowNumber, 3).Value
colNumber = getColumnNumber(CategoryLabel, 5, ncat)

' If a higher priority value has not been entered into the table, enter the factor
If IsEmpty(Cells(thisRowNumber, colNumber)) Then

Cells(thisRowNumber, colNumber).Formula = "=" & _
Workbooks(fileName).Sheets(1).Cells(RowNumber, 4).Value

Cells(thisRowNumber, colNumber).AddComment _
"Source: " & Workbooks(fileName).Sheets(1).Cells(RowNumber, 8).Value

End If

' If a higher priority uncertainty distribution has not been entered into the table,
' append the distribution to the nominal value
If InStr(1, Cells(thisRowNumber, colNumber).Formula, "Risk", 1) = 0 Then

' Check whether a distribution exists
Distribution = Workbooks(fileName).Sheets(1).Cells(RowNumber, 5).Value
If Not IsEmpty(Distribution) Then

Cells(thisRowNumber, colNumber).Formula = "=" & _
Cells(thisRowNumber, colNumber).Value & "*" & _
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Distribution
End If

End If

RowNumber = RowNumber + 1
Loop
Workbooks(fileName).Close

End Sub

Sub Buildpvector(CurrentWorkbook As String, PathName As String, _
fileName As String)

' This code builds the price vector (p vector)

Dim ProductLabel As String

' Open file with output from Access database
Workbooks.Open (PathName + fileName)
Windows(CurrentWorkbook).Activate
Sheets(2).Activate

colNumber = 3

' Assemble table
RowNumber = 2
Do While Workbooks(fileName).Sheets(1).Cells(RowNumber, 1).Value <> ""

' Get product code and check whether it exists in the table
ProductLabel = Workbooks(fileName).Sheets(1).Cells(RowNumber, 1).Value
thisRowNumber = getRowNumber(ProductLabel, 3, nprod, 1)

Cells(thisRowNumber, colNumber).Formula = "=" & _
Workbooks(fileName).Sheets(1).Cells(RowNumber, 2).Value

Cells(thisRowNumber, colNumber).AddComment _
Workbooks(fileName).Sheets(1).Cells(RowNumber, 6).Value _
& " " & Workbooks(fileName).Sheets(1).Cells(RowNumber, 4)

' If a higher priority uncertainty distribution has not been entered into the table,
' append the distribution to the nominal value
If InStr(1, Cells(thisRowNumber, colNumber).Formula, "Risk", 1) = 0 Then

' Check whether a distribution exists
Distribution = Workbooks(fileName).Sheets(1).Cells(RowNumber, 3).Value
If Not IsEmpty(Distribution) Then

Cells(thisRowNumber, colNumber).Formula = "=" & _
Cells(thisRowNumber, colNumber).Value & "*" & _
Distribution

End If
End If

RowNumber = RowNumber + 1
Loop

Workbooks(fileName).Close

End Sub

Sub BuildMktShrMatrix(CurrentWorkbook As String, PathName As String, _
fileName As String)

Dim ProductLabel As String
Dim ProcessLabel As String

' Open file with output from Access database
Workbooks.Open (PathName + fileName)
Windows(CurrentWorkbook).Activate
Sheets(4).Activate

' Assemble table
RowNumber = 2
Do While Workbooks(fileName).Sheets(1).Cells(RowNumber, 1).Value <> ""

' Get process name and check whether it exists in the table
ProcessLabel = Workbooks(fileName).Sheets(1).Cells(RowNumber, 2).Value
thisRowNumber = getRowNumber(ProcessLabel, 3, nproc, 1)

' Get Product code and check whether it exists in the table
ProductLabel = Workbooks(fileName).Sheets(1).Cells(RowNumber, 1).Value
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colNumber = getColumnNumber(ProductLabel, 3, nprod)

Cells(thisRowNumber, colNumber).Formula = "=" & _
Workbooks(fileName).Sheets(1).Cells(RowNumber, 4).Value

Cells(thisRowNumber, colNumber).AddComment " " & _
Workbooks(fileName).Sheets(1).Cells(RowNumber, 3).Value & _
" market share"

' If a higher priority uncertainty distribution has not been entered into the table,
' append the distribution to the nominal value
If InStr(1, Cells(thisRowNumber, colNumber).Formula, "Risk", 1) = 0 Then

' Check whether a distribution exists
Distribution = Workbooks(fileName).Sheets(1).Cells(RowNumber, 5).Value
If Not IsEmpty(Distribution) Then

Cells(thisRowNumber, colNumber).Formula = "=" & _
Cells(thisRowNumber, colNumber).Value & "*" & _

Distribution
End If

End If

RowNumber = RowNumber + 1
Loop

Workbooks(fileName).Close

End Sub

Function getColumnNumber(columnLabel As String, _
firstCol As Integer, numCols As Integer) As Integer

Dim thisLabel As String

i = 1
Do While i < numCols + 1

thisLabel = Cells(1, firstCol + i - 1).Value
If thisLabel = columnLabel Then

getColumnNumber = firstCol + i - 1
i = numCols + 1

Else
i = i + 1

End If
Loop

End Function

Function getRowNumber(rowLabel As String, _
firstRow As Integer, numRows As Integer, _
labelCol As Integer) As Integer

i = 1
Do While i < numRows + 1

thisLabel = Cells(firstRow + i - 1, labelCol).Value
If thisLabel = rowLabel Then

getRowNumber = firstRow + i - 1
i = numRows + 1

Else
i = i + 1

End If
Loop

End Function

Function getRowNumber2labels(Label1 As String, _
Label2 As String, firstRow As Integer, _
numRows As Integer) As Integer

i = 1
Do While i < numRows + 1

thisLabel1 = Cells(firstRow + i - 1, 1).Value
thislabel2 = Cells(firstRow + i - 1, 2).Value
If thisLabel1 = Label1 And thislabel2 = Label2 Then

getRowNumber2labels = firstRow + i - 1
i = numRows + 1

Else
i = i + 1

End If
Loop

End Function
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Function getRowNumber3labels(Label1 As String, _
Label2 As String, Label3 As String, firstRow As Integer, _
numRows As Integer) As Integer

i = 1
Do While i < numRows + 1

thisLabel1 = Cells(firstRow + i - 1, 1).Value
thislabel2 = Cells(firstRow + i - 1, 2).Value
thislabel3 = Cells(firstRow + i - 1, 3).Value
If thisLabel1 = Label1 And thislabel2 = Label2 And thislabel3 = Label3 Then

getRowNumber3labels = firstRow + i - 1
i = numRows + 1

Else
i = i + 1

End If
Loop

End Function

Function getPosition(firstRowLabel As String, _
secondRowLabel As String, colLabel As String, _
numEntries As Integer) As Integer

getPosition = 0
offset = 0

rowNum = getRowNumber3labels(firstRowLabel, _
secondRowLabel, colLabel, 4, numEntries)

If rowNum = 0 Then ' rowlabels were not found
' new row and column are needed
Sheets(5).Cells(1, 3 + numEntries + 1).Value = firstRowLabel
Sheets(5).Cells(2, 3 + numEntries + 1).Value = secondRowLabel
Sheets(5).Cells(3, 3 + numEntries + 1).Value = colLabel
Sheets(5).Cells(3 + numEntries + 1, 1).Value = firstRowLabel
Sheets(5).Cells(3 + numEntries + 1, 2).Value = secondRowLabel
Sheets(5).Cells(3 + numEntries + 1, 3).Value = colLabel
' Enter diagonal element
Sheets(5).Cells(3 + numEntries + 1, 3 + numEntries + 1).Value = 1
getPosition = numEntries + 1
Exit Function

Else
getPosition = rowNum - 3

End If

End Function

Sub FormatVector(intStartRow As Integer, intVectorCol As Integer, _
intVectorLength As Integer, intLabelRow As Integer, _
sngColWidth As Single)

Cells(intStartRow, intVectorCol).Select
Selection.ColumnWidth = sngColWidth
' add brackets
InsertBracket intVectorCol - 1, _

intStartRow, intStartRow + intVectorLength - 1, "Left"
InsertBracket intVectorCol + 1, _

intStartRow, intStartRow + intVectorLength - 1, "Right"
' format label area
Range(Cells(intLabelRow, intVectorCol - 1), _

Cells(intLabelRow, intVectorCol + 1)).Select
With Selection

.HorizontalAlignment = xlCenter

.WrapText = True

.MergeCells = True

.Font.Bold = True
End With

End Sub

Sub FormatMatrix(intStartRow As Integer, intStartCol As Integer, _
intNumRows As Integer, intNumCols As Integer)

' Format label area
Range(Cells(intStartRow - 1, intStartCol), _

Cells(intStartRow - 1, intStartCol + intNumCols - 1)).Select
With Selection

.WrapText = True

.MergeCells = True
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.Font.Bold = True
End With

' Insert Brackets
InsertBracket intStartCol - 1, intStartRow, intStartRow + intNumRows - 1, "Left"
InsertBracket intStartCol + intNumCols, intStartRow, intStartRow + intNumRows - 1, "Right"

End Sub

Sub Getnproc()
' Count the number of processes
Sheets("Sheet1").Select
nproc = 0
runOutOfProcesses = False
Do While Not runOutOfProcesses

If Cells(1, 5 + nproc).Formula = "" Then
runOutOfProcesses = True

Else
nproc = nproc + 1

End If
Loop

End Sub

Sub Getnprod()
' Count the number of products
Sheets("Sheet1").Select
nprod = 0
runOutOfProducts = False
Do While Not runOutOfProducts

If Cells(3 + nprod, 2).Formula = "" Then
runOutOfProducts = True

Else
nprod = nprod + 1

End If
Loop

End Sub

Sub Getnex()
' Count the number of environmental exchanges
Sheets("Sheet1").Select
nex = 0
Getnprod
runOutOfExchanges = False
Do While Not runOutOfExchanges

If Cells(2 * nprod + 7 + nex, 2).Formula = "" Then
runOutOfExchanges = True

Else
nex = nex + 1

End If
Loop

End Sub
Sub Getncat()

' Count the number of impact categories
Sheets("Sheet3").Select
ncat = 0
runOutOfCategories = False
Do While Not runOutOfCategories

If Cells(1, 5 + ncat).Formula = "" Then
runOutOfCategories = True

Else
ncat = ncat + 1

End If
Loo

End Sub
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Appendix C PIO-LCA method spreadsheet
implementation

This Appendix contains the Visual Basic code needed to generate all the vectors and

matrices in the PIO-LCA method (Chapter 7)104.  The code listed here was written for Microsoft

Excel 97.  The required inputs are organized into four spreadsheets with the default names

“Sheet1”, “Sheet2”, “Sheet3” and “Sheet4”, as shown in the figures in the next few pages.

C.1  Input requirements
Sheet1 contains the button to which the first subroutine listed in this Appendix is linked.

It also contains data for the use, make, and environmental exchanges matrices (matrices B, C,

and E according to the nomenclature used in Chapter 7).  As many rows and columns as needed

can be used, subject to the limitation of the number of columns in the version of Excel used.  It is

very important that the rows of the C matrix be entered in the same order as the rows in the B

matrix. This is the reason why the cells used for the product names and units of the C matrix

shown in Figure C-1 are not shaded (shading is used to emphasize optional inputs).  It is very

important that a value of zero be entered for each matrix or vector element for which no

other data are available.  Excel will enter a #VALUE error in cells containing formulas

involving matrices with blank elements.

Sheet2 is used to store information on product prices and demands.  As explained in

Chapter 7, prices are only required for products made in multiproduct processes.  For all other

products a default value of 999 (or any other nonzero value) may be used.  For consistency it is

recommended that the product names and units be copied from Sheet1 through the use of Excel

formulas.

 Characterization and valuation factors for the environmental valuation model are entered

in Sheet3. The type, name, and units for the environmental exchanges should be copied via

formula from Sheet1.

                                                
104 To obtain a working spreadsheet with the Visual Basic code listed here contact the author at

alexcano@alum.mit.edu
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Sheet4 is used to store market share information.  The product and process names are

copied via formula from Sheet1 (the matrix function =TRANPOSE(Range) can be used to

facilitate the copying from row labels to column labels and vice versa).

A fifth spreadsheet (“Sheet5”) is left blank.  This sheet is used to store rank correlation

coefficients when the PIO-LCA is run in stochastic mode using the @Risk add-in.  No other

spreadsheets should be present in the workbook used to implement this code prior to clicking the

“Build PIO-LCA tables” button.
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2 PRODUCT INPUTS UNITS B = [use matrix]
3 Salt from brine kg 1.65 1.65 1.65 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 coal kg 0 0 0 0 0 0 0 0 0.34 0 0 0 0 0 0 0 34.82 0 0
5 oil kg 0 0 0 0 0 0 0 1 0 0.24 0 0 0 0 0 0 0 23.24 0
6 diesel kg 0 0 0 0 0 0 0 0 0 0 0 0 0 0.024 0 0 0 0 0
7 Natural gas kg 0 0 0 0 0 0 0 0 0 0 0.22 0 0 0 2.25 0 0 0 19.5
8 electricity MJ 10.8 11 11.7 0.36 0.052 0.124 0.142 0.144 0 0 0 0 0 0 0 0 0 0 0
9 mechanical energy diesel engines MJ 0 0 0 0 2.53 0 0 0 0 0 0 0 0 0 0 0.269 0 0 0

10 Chlorine kg 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 NaOH kg 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 H2 kg 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 Railroad transport kg-km 0 0 0 0 0 0 0 0 158.8 0 0 0 0 0 0 0 0 0 0
14 Thermal energy from coal MJ 0 0 0 0 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 Thermal energy from oil MJ 0 0 0 0 0 0.027 0.064 0.545 0 0 0 0 0 0 0 0 0 0 0
16 Thermal energy from gas MJ 9 1.35 0 0 0 1.271 0.53 1.839 0 0 0 0 0 0 84.97 0 0 0 0
17
18 PRODUCT OUTPUTS UNITS C = [make matrix]
19 Salt from brine kg 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20 coal kg 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
21 oil kg 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
22 diesel kg 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
23 Natural gas kg 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
24 electricity MJ 0 0 0 0 0 0 0 0 3.6 3.6 3.6 3.6 3.6 0 0 0 0 0 0
25 mechanical energy diesel engines MJ 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
26 Chlorine kg 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
27 NaOH kg 1.12 1.12 1.12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
28 H2 kg 0.028 0.028 0.028 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
29 Railroad transport kg-km 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1000 0 0 0
30 Thermal energy from coal MJ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1055 0 0
31 Thermal energy from oil MJ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1055 0
32 Thermal energy from gas MJ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1055
33
34 EXCHANGE TYPE ENVIRONMENTAL EXCHANGE UNITS E = [Environmental exchanges matrix]
35 Emission to air CFC-21 kg 2E-05 2E-05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
36 Emission to air Dichloromethane kg 0 0 4E-05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
37 Emission to air Tetrachloromethane kg 6E-06 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
38 Emission to air Chlorine kg 1E-06 2E-06 3E-05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
39 Emission to air Hydrogen kg 0.001 0.001 1E-04 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
40 Emission to air Mercury kg 0 0 3E-06 0 0 0 0 0 8E-09 7E-10 2E-12 0 0 0 0 0 0 0 0
41 Emission to air Carbon dioxide kg 0 0 0 0 0 0 0 0 1.071 0.94 0.667 6E-05 0 0.075 5.5 0 103.5 88.08 60.84
42 Emission to air Sulfur dioxide kg 0 0 0 0 0 0 0 0 0.01 0.005 5E-04 6E-04 0 5E-05 0 0 1.13 0.158 0.043
43 Emission to air Nitrogen oxides kg 0 0 0 0 0 0 0 0 0.005 0.002 0.003 2E-04 0 9E-04 0 0 0.432 0.084 0.077
44 Emission to air Carbon monoxide kg 0 0 0 0 0 0 0 0 0.002 3E-04 3E-04 0 0 9E-04 0 0 0.238 0.031 0.028
45 Emission to air Hydrocarbons kg 0 0 0 0 0 0.008 0 0 2E-04 0.002 0.007 0 0 6E-04 0.25 0 0.021 0.22 0.631
46 Emission to air Particulates kg 0 0 0 0 0 0 0 0 0.002 3E-04 4E-05 2E-04 0 4E-04 0 0 0.221 0.012 0.004
47 Solid waste Total mass kg 0 0 0 0 0 0 0 0 0.139 0.003 8E-04 0.028 0 0 0 0 12.85 0.271 0.077
48 Discharge to water Dissolved solids kg 0 0 0 0 0 0 0 0 2E-05 0.004 5E-05 0 0 0 0 0 0.002 0.336 0.005
49 Discharge to water Sulfuric acid kg 0 0 0 0 0 0 0 0 9E-04 1E-05 5E-06 0 0 0 0 0 0.085 0.001 5E-04
50

Build PIO-LCA tables

Figure C-1: Layout of Sheet1 in the PIO-LCA workbook
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A B C D E F G H I J K

1
2 PRODUCT
3 Salt from brine 6.7200$    /kg 0 kg
4 coal 0.0300$   /kg 0 kg
5 oil 999 /kg 0 kg
6 diesel 999 /kg 0 kg
7 Natural gas 999 /kg 0 kg
8 electricity 0.0167$   /MJ 0 MJ
9 mechanical energy diesel engines 999 /MJ 0 MJ

10 Chlorine 0.4000$   /kg 1000 kg
11 NaOH 0.2000$   /kg 0 kg
12 H2 0.0001$   /kg 0 kg
13 Railroad transport 999 /kg-km 0 kg-km
14 Thermal energy from coal 999 /MJ 0 MJ
15 Thermal energy from oil 999 /MJ 0 MJ
16 Thermal energy from gas 999 /MJ 0 MJ
17

d = demand 
vectorp = price vector

Figure C-2: Layout of Sheet2 in the PIO-LCA workbook
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adjusted life 
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H = [Characterization factor matrix]3 EXCHANGE TYPE ENVIRONMENTAL EXCHANGE
4 Emission to air CFC-21 kg 0 0.04 0 0
5 Emission to air Dichloromethane kg 9 0 11 1.4E-08
6 Emission to air Tetrachloromethane kg 0 1.1 480 0
7 Emission to air Chlorine kg 0 0 0.02 0
8 Emission to air Hydrogen kg 0 0 0 0
9 Emission to air Mercury kg 0 0 29000 0
10 Emission to air Carbon dioxide kg 1 0 0 0
11 Emission to air Sulfur dioxide kg 0 0 0.16 0.00006
12 Emission to air Nitrogen oxides kg 0 0 0.26 0.000077
13 Emission to air Carbon monoxide kg 0 0 0.012 0.00000073
14 Emission to air Hydrocarbons kg 0 0 0 0.0000013
15 Emission to air Particulates kg 0 0 0 0.00011
16 Solid waste Total mass kg 0 0 0 0
17 Discharge to water Dissolved solids kg 0 0 0 0
18 Discharge to water Sulfuric acid kg 0 0 0 0
19
20
21 Valuation factors $ 0.0136 50 3.3 50000
22
23
24

H = [Characterization factor matrix]

w' = Transpose of valuation factor vector

Figure C-3: Layout of Sheet3 in the PIO-LCA workbook
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2 PROCESS F = [market share matirx]
3 diaphragm chloralkali 0 0 0 0 0 0 0 78% 78% 7.8% 0 0 0 0
4 membrane chloralkali 0 0 0 0 0 0 0 6% 6% 0.6% 0 0 0 0
5 mercury chloralkali 0 0 0 0 0 0 0 16% 16% 1.6% 0 0 0 0
6 Brine pumping 100% 0 0 0 0 0 0 0 0 0 0 0 0 0
7 coal production 0 100% 0 0 0 0 0 0 0 0 0 0 0 0
8 natural gas production 0 0 0 0 100% 0 0 0 0 0 0 0 0 0
9 oil production 0 0 100% 0 0 0 0 0 0 0 0 0 0 0
10 diesel production 0 0 0 100% 0 0 0 0 0 0 0 0 0 0
11 coal-fired plant 0 0 0 0 0 57% 0 0 0 0 0 0 0 0
12 oil-fired plant 0 0 0 0 0 3% 0 0 0 0 0 0 0 0
13 gas-fired plant 0 0 0 0 0 9% 0 0 0 0 0 0 0 0
14 nuclear plant 0 0 0 0 0 20% 0 0 0 0 0 0 0 0
15 hydroelectric plant 0 0 0 0 0 11% 0 0 0 0 0 0 0 0
16 diesel engine 0 0 0 0 0 0 100% 0 0 0 0 0 0 0
17 methane reforming 0 0 0 0 0 0 0 0 0 90% 0 0 0 0
18 Railroad 0 0 0 0 0 0 0 0 0 0 100% 0 0 0
19 coal-fired boiler 0 0 0 0 0 0 0 0 0 0 0 100% 0 0
20 oil-fired boiler 0 0 0 0 0 0 0 0 0 0 0 0 100% 0
21 gas-fired boiler 0 0 0 0 0 0 0 0 0 0 0 0 0 100%
22
23

Figure C-4: Layout of Sheet4 in the PIO-LCA workbook
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C.2 Visual Basic Code

The following list gives the page number in which the different subroutines used by the

Build PIO-LCA Tables program are listed:

AddLabels, 594
BuildAproc, 581
BuildAprod, 581
buildD, 581
BuildDiagMatrix, 596
BuildDinvAprod, 582
BuildEDinvAprod, 584
BuildEinvAproc, 584
buildG, 580
BuildI, 582
BuildInvAproc, 582
BuildInvAprod, 582
BuildInventory, 584
BuildInvProcContrib, 585
BuildProcUnitValContrib, 591
BuildProdOutputs, 583
BuildProdUnitValContrib, 593
buildThroughputs, 582
BuildUnitImpacts, 588
BuildValExchContrib, 586
BuildValProcContrib, 587
buildw, 586
CommandButton1_Click(), 580
FormatMatrix, 597
FormatVector, 597
GetMatrixSizes, 598
Getncat, 598
Getnex, 597
Getnproc, 597
Getnprod, 597
Global Declarations, 580
InsertBracket, 594
SelectSheet, 596
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Private Sub CommandButton1_Click()
GetMatrixSizes
buildG
buildD
BuildAprod
BuildAproc
BuildI
BuildInvAprod
BuildInvAproc
BuildDinvAprod
buildThroughputs
BuildProdOutputs
BuildEDinvAprod
BuildEinvAproc
BuildInventory
BuildInvProcContrib
buildw
BuildValExchContrib
BuildValProcContrib
BuildUnitImpacts
BuildProcUnitValContrib
BuildProdUnitValContrib

End Sub

' Global Declarations

Public nproc As Integer ' number of processes
Public nprod As Integer ' number of products
Public nex As Integer ' number of environmental exchanges
Public ncat As Integer ' number of impact categories

Public coords_ProcProc_matrix As String
Public coords_ProcProd_matrix As String
Public coords_ProcIcat_matrix As String
Public coords_ProdProc_matrix As String
Public coords_ProdProd_matrix As String
Public coords_ProdIcat_matrix As String
Public coords_ExchProc_matrix As String
Public coords_ExchProd_matrix As String
Public coords_ExchIcat_matrix As String

Public range_B_matrix As String
Public range_C_matrix As String
Public range_E_matrix As String
Public range_d_vector As String
Public range_H_matrix As String
Public range_wtranspose As String
Public range_D_matrix As String
Public range_w_vector As String
Public range_Diagw As String
Public range_x_vector As String
Public range_Diagx As String
Public range_e_vector As String
Public range_Diage As String

Sub buildG()
'
' buildG Macro
' Macro recorded 11/16/99 by Alejandro Cano
' Macro builds the allocation matrix (matrix "G")
'

' first build G transpose matrix
SelectSheet 6, "G transpose", "Transpose of allocation matrix"
AddLabels "Row", "Product", 0, True, "per ", ""
AddLabels "Column", "Process", 0, False, "", ""
' if C(i,j) > 0, G(i,j) = p(i)/C(i',j)*SUM(p(i')
Cells(3, 3).Select
ActiveCell.FormulaR1C1 = _

"=IF(Sheet1!R[" & nprod + 2 & "]C[2]>0,Sheet2!RC3" & _
"/SUMPRODUCT(Sheet1!R" & nprod + 5 & "C[2]:R" & 2 * nprod + 4 & _
"C[2],Sheet2!R3C3:R" & nprod + 2 & "C3),0)"

Selection.Copy
Range(Cells(3, 3), Cells(nprod + 2, nproc + 2)).Select
ActiveSheet.Paste
FormatMatrix 3, 3, nprod, nproc
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' now build matrix G
SelectSheet 7, "G", "Allocation matrix"
AddLabels "Row", "Process", 0, False, "", ""
AddLabels "Column", "Product", 0, True, "per ", ""
' G = transpose(G transpose)
Range(Cells(3, 3), Cells(2 + nproc, 2 + nprod)).Select
Selection.FormulaArray = _

"=TRANSPOSE('G transpose'!" & coords_ProdProc_matrix & ")"
FormatMatrix 3, 3, nproc, nprod

End Sub

Sub buildD()
'
' buildD Macro
' Macro written on 11/16/99 by Alejandro Cano
'
'

SelectSheet 8, "D", _
"Process by product throughput matrix"

AddLabels "Row", "Process", 0, False, "", ""
AddLabels "Column", "Product", 0, True, "per ", ""
Cells(3, 3).Select
' Dij = Fij * Gij
ActiveCell.FormulaR1C1 = "=Sheet4!RC*G!RC"
Selection.Copy
Range(Cells(3, 3), Cells(nproc + 2, nprod + 2)).Select
ActiveSheet.Paste
FormatMatrix 3, 3, nproc, nprod

End Sub

Sub BuildAprod()
'
' BuildAprod Macro
' Macro recorded 11/16/99 by Alejandro Cano
'
'

SelectSheet 9, "Aprod", _
"Product by product direct requirements matrix"

AddLabels "Row", "Product", 0, True, "", ""
AddLabels "Column", "Product", 0, True, "per ", ""
' Aprod = BD
Range(Cells(3, 3), Cells(2 + nprod, 2 + nprod)).Select
Selection.FormulaArray = "=MMULT(" & range_B_matrix & "," & _

range_D_matrix & ")"
FormatMatrix 3, 3, nprod, nprod

End Sub

Sub BuildAproc()
'
' BuildAproc Macro
' Macro recorded 11/16/99 by Alejandro Cano
'
'

SelectSheet 10, "Aproc", _
"Process by process direct requirements matrix"

AddLabels "Row", "Process", 0, False, "", ""
AddLabels "Column", "Process", 0, False, "", ""
' Aproc = DB
Range(Cells(3, 3), Cells(2 + nproc, 2 + nproc)).Select
Selection.FormulaArray = "=MMULT(" & range_D_matrix & "," & _

range_B_matrix & ")"
FormatMatrix 3, 3, nproc, nproc

End Sub
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Sub BuildI()
'
' BuildI Macro
' Macro recorded 11/16/99 by Alejandro Cano
' Builds identity matrix large enough to use in process or
' product requirement matrix inversions
'

Dim intSize As Integer

SelectSheet 11, "I", ""
intSize = Application.WorksheetFunction.Max(nproc, nprod, nex, ncat)
Range(Cells(3, 3), Cells(2 + intSize, _

2 + intSize)).Select
Selection.FormulaR1C1 = "=IF(column(RC)=row(RC),1,0)"
Selection.ColumnWidth = 1.5
FormatMatrix 3, 3, intSize, intSize

End Sub

Sub BuildInvAprod()
'
' BuildInvAprod Macro
' Macro recorded 11/16/99 by Alejandro Cano
'
'

SelectSheet 12, "Inv(I-Aprod)", _
"Product by product total requirements matrix"

AddLabels "Row", "Product", 0, True, "", ""
AddLabels "Column", "Product", 0, True, "per ", ""
Range(Cells(3, 3), Cells(2 + nprod, 2 + nprod)).Select
Selection.FormulaArray = "=MINVERSE(I!" & coords_ProdProd_matrix & _

"-Aprod!" & coords_ProdProd_matrix & ")"
FormatMatrix 3, 3, nprod, nprod

End Sub

Sub BuildInvAproc()
'
' BuildInvAproc Macro
' Macro recorded 11/16/99 by Alejandro Cano
'
'

SelectSheet 13, "inv(I-Aproc)", _
"Process by process total requirements matrix"

AddLabels "Row", "Process", 0, False, "", ""
AddLabels "Column", "Process", 0, False, "", ""
Range(Cells(3, 3), Cells(2 + nproc, 2 + nproc)).Select
Selection.FormulaArray = "=MINVERSE(I!" & coords_ProcProc_matrix & _

"-Aproc!" & coords_ProcProc_matrix & ")"
FormatMatrix 3, 3, nproc, nproc

End Sub

Sub BuildDinvAprod()
'
' BuildDinvAprod Macro
' Macro recorded 11/16/99 by Alejandro Cano
'
'

SelectSheet 14, "Dinv(I-Aprod)", _
"Process by product direct requirements matrix"

AddLabels "Row", "Process", 0, False, "", ""
AddLabels "Column", "Product", 0, True, "per ", ""
Range(Cells(3, 3), Cells(2 + nproc, 2 + nprod)).Select
Selection.FormulaArray = "=MMULT(" & range_D_matrix & _

",'inv(I-Aprod)'!" & coords_ProdProd_matrix & ")"
FormatMatrix 3, 3, nproc, nprod

End Sub

Sub buildThroughputs()
'
' buildThroughputs Macro
' Macro recorded 11/16/99 by Alejandro Cano
'
'

SelectSheet 15, "Process throughputs", ""
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' insert process labels
AddLabels "Row", "Process", 0, False, "", ""

' build vector of direct process requirements
Range(Cells(3, 3), Cells(2 + nproc, 3)).Select
' xdirect = Dd
Selection.FormulaArray = "=MMULT(" & range_D_matrix & "," & _

range_d_vector & ")"
FormatVector 3, 3, nproc, 1, 12
Range("C1").Select
ActiveCell.FormulaR1C1 = _

"xdirect = vector of direct process throughput requirements"
ActiveCell.Characters(Start:=2, Length:=6).Font.Subscript = True

' build vector of total process requirements
Range(Cells(3, 7), Cells(2 + nproc, 7)).Select
' x = Dinv(I-Aprod)d
Selection.FormulaArray = "=MMULT('Dinv(I-Aprod)'!" & _

coords_ProcProd_matrix & _
"," & range_d_vector & ")"

FormatVector 3, 7, nproc, 1, 12
Range("G1").Select
ActiveCell.FormulaR1C1 = _

"x = vector of total process throughput requirements"

' build diag(x) matrix
BuildDiagMatrix 3, 7, nproc, True
Cells(2, 11).Select
ActiveCell.FormulaR1C1 = "Diag(x)"

Rows("1:1").RowHeight = 63.75

End Sub

Sub BuildProdOutputs()
'
' BuildProdOutputs Macro
' Macro recorded 11/16/99 by Alejandro Cano-Ruiz
'

SelectSheet 16, "Product Outputs", ""

' insert product labels
AddLabels "Row", "Product", 0, True, "", ""

' copy d vector
Range(Cells(3, 3), Cells(2 + nprod, 3)).Select
Selection.FormulaArray = "=" & range_d_vector
FormatVector 3, 3, nprod, 1, 8.43
Range("C1").Select
ActiveCell.FormulaR1C1 = "d = product demand vector"

' calculate qdirect vector
Range(Cells(3, 7), Cells(2 + nprod, 7)).Select
' qdirect = (I+Aprod)d
Selection.FormulaArray = _

"=+MMULT(I!" & coords_ProdProd_matrix & _
"+Aprod!" & coords_ProdProd_matrix & "," & _

range_d_vector & ")"
FormatVector 3, 7, nprod, 1, 12
Range("G1").Select
ActiveCell.FormulaR1C1 = "qdirect = direct product requirements vector"
ActiveCell.Characters(Start:=2, Length:=6).Font.Subscript = True

' calculate q vector
Range(Cells(3, 11), Cells(2 + nprod, 11)).Select
' q = inv(I+Aprod)d
Selection.FormulaArray = _

"=+MMULT('inv(I-Aprod)'!" & coords_ProdProd_matrix & _
"," & range_d_vector & ")"

FormatVector 3, 11, nprod, 1, 12
Range("K1").Select
ActiveCell.FormulaR1C1 = "q = total product requirements vector"

' calculate Cxdirect vector
Range(Cells(3, 15), Cells(2 + nprod, 15)).Select
Selection.FormulaArray = _

"=+MMULT(" & range_C_matrix & "," & _
"'Process throughputs'!R3C3:R" & nproc + 2 & "C3)"
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FormatVector 3, 15, nprod, 1, 10
Range("O1").Select
ActiveCell.FormulaR1C1 = "Cxdirect = equivalent direct production vector"
ActiveCell.Characters(Start:=3, Length:=6).Font.Subscript = True

' calculate Cx vector
Range(Cells(3, 19), Cells(2 + nprod, 19)).Select
Selection.FormulaArray = _

"=+MMULT(" & range_C_matrix & "," & _
range_x_vector & ")"

FormatVector 3, 19, nprod, 1, 10
Range("S1").Select
ActiveCell.FormulaR1C1 = "Cx = equivalent total production vector"

Rows("1:1").RowHeight = 63.75
End Sub

Sub BuildEDinvAprod()
'
' BuildEDinvAprod Macro
' Macro recorded 11/16/99 by Alejandro Cano
'
'

SelectSheet 17, "EDinv(I-Aprod)", _
"Life cycle environmental exchanges by product matrix"

AddLabels "Row", "Exchange", 0, True, "", ""
AddLabels "Column", "Product", 0, True, "per ", ""
Range(Cells(3, 3), Cells(2 + nex, 2 + nprod)).Select
Selection.FormulaArray = "=MMULT(" & range_E_matrix & _

",'Dinv(I-Aprod)'!" & coords_ProcProd_matrix & ")"
FormatMatrix 3, 3, nex, nprod

End Sub

Sub BuildEinvAproc()
'
' BuildEinvAprod Macro
' Macro recorded 11/16/99 by Alejandro Cano
'
'

SelectSheet 18, "Einv(I-Aproc)", _
"Life cycle environmental exchanges by process matrix"

AddLabels "Row", "Exchange", 0, True, "", ""
AddLabels "Column", "Process", 0, False, "", ""
Range(Cells(3, 3), Cells(2 + nex, 2 + nproc)).Select
Selection.FormulaArray = "=MMULT(" & range_E_matrix & _

",'inv(I-Aproc)'!" & coords_ProcProc_matrix & ")"
FormatMatrix 3, 3, nex, nproc

End Sub

Sub BuildInventory()
'
' BuildInventory Macro
' Macro recorded 11/16/99 by Alejandro Cano-Ruiz
'
'

SelectSheet 19, "Inventory", ""

' add labels
AddLabels "Row", "Exchange", 0, True, "", ""

' compute e vector
Range(Cells(3, 3), Cells(2 + nex, 3)).Select
' e = EDinv(I-Aprod)d
Selection.FormulaArray = _

"=+MMULT('EDinv(I-Aprod)'!" & coords_ExchProd_matrix & _
"," & range_d_vector & ")"

FormatVector 3, 3, nex, 1, 14
Range("C1").Select
ActiveCell.FormulaR1C1 = _

"e = life cycle environmental exchanges inventory vector"

' Build Diag(e) matrix
BuildDiagMatrix 3, 3, nex, True
Cells(2, 7).Select
ActiveCell.FormulaR1C1 = "Diag(e)"
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Rows("1:1").RowHeight = 89.25

End Sub

Sub BuildInvProcContrib()
'
' BuildInvProcContrib Macro
' Macro recorded 11/16/99 by Alejandro Cano-Ruiz
' Builds matrices of process contributions to the
' life-cycle environmental exchanges inventory

'
SelectSheet 20, "Process contrib to inv", _

"Process contributions to life-cycle environmental exchanges"

' build matrix of direct process contributions
' add matrix labels
AddLabels "Row", "Exchange", 0, True, "", ""
AddLabels "Column", "Process", 0, False, "", ""
' process contributions = E Diag(x)
Range(Cells(3, 3), Cells(2 + nex, 2 + nproc)).Select
Selection.FormulaArray = _

"=+MMULT(" & range_E_matrix & "," & _
range_Diagx & ")"

FormatMatrix 3, 3, nex, nproc
Cells(2, 3).Select
ActiveCell.FormulaR1C1 = _

"Direct Process Contributions"

' copy life cycle environmental exchanges vector
Range(Cells(3, nproc + 6), Cells(2 + nex, nproc + 6)).Select
Selection.FormulaArray = "=" & range_e_vector
FormatVector 3, nproc + 6, nex, 1, 14
Cells(1, nproc + 6).Select
ActiveCell.FormulaR1C1 = _

"e = life cycle environmental exchanges inventory vector"

' build matrix of direct process contributions (in relative terms)
Cells(5 + nex, 3).Select
Selection.FormulaR1C1 = "=R[-" & nex + 2 & "]C/R[-" & nex + 2 & _

"]C" & nproc + 6
Selection.NumberFormat = "0%;0%;"
Selection.Copy
Range(Cells(5 + nex, 3), Cells(4 + 2 * nex, 2 + nproc)).Select
ActiveSheet.Paste
FormatMatrix 5 + nex, 3, nex, nproc
AddLabels "Row", "Exchange", nex + 2, True, "", ""
Cells(4 + nex, 3).Select
ActiveCell.FormulaR1C1 = _

"Direct Process Contributions, relative to total inventory"

' build matrix of total process contributions
' direct + indirect process contributions = Einv(I-Aproc) Diag(x)
Range(Cells(7 + 2 * nex, 3), Cells(6 + 3 * nex, 2 + nproc)).Select
Selection.FormulaArray = _

"=+MMULT('Einv(I-Aproc)'!" & coords_ExchProc_matrix & _
"," & range_Diagx & ")"

FormatMatrix 7 + 2 * nex, 3, nex, nproc
Cells(6 + 2 * nex, 3).Select
ActiveCell.FormulaR1C1 = _

"Total (direct + indirect) process contributions"

' build matrix of total process contributions (in relative terms)
Cells(3 * nex + 9, 3).Select
Selection.FormulaR1C1 = "=R[-" & nex + 2 & "]C/R[-" & 3 * (nex + 2) & _

"]C" & nproc + 6
Selection.NumberFormat = "0%;0%;"
Selection.Copy
Range(Cells(3 * nex + 9, 3), Cells(8 + 4 * nex, 2 + nproc)).Select
ActiveSheet.Paste
FormatMatrix 3 * nex + 9, 3, nex, nproc
AddLabels "Row", "Exchange", 3 * (nex + 2), True, "", ""
Cells(8 + 3 * nex, 3).Select
ActiveCell.FormulaR1C1 = _

"Total (direct + indirect) process contributions, relative to total inventory"

End Sub
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Sub buildw()
'
' buildw Macro
' Macro recorded 11/17/99 by Alejandro Cano
'

'
SelectSheet 21, "w", ""

' insert impact category labels
AddLabels "Row", "Category", 0, True, "", "Both"

' untranspose valuation vector
Range(Cells(3, 3), Cells(2 + ncat, 3)).Select
Selection.FormulaArray = "=TRANSPOSE(" & range_wtranspose & ")"
FormatVector 3, 3, ncat, 1, 8
Range("C1").Select
ActiveCell.FormulaR1C1 = _

"w = vector of valuation factors"

' Build Diag(w) matrix
BuildDiagMatrix 3, 3, ncat, True
Cells(2, 7).Select
ActiveCell.FormulaR1C1 = "Diag(w)"

Rows("1:1").RowHeight = 63.75

End Sub

Sub BuildValExchContrib()
'
' BuildValExchContrib Macro
' Macro recorded 11/17/99 by Alejandro Cano-Ruiz
' Builds matrices of environmental exchange contributions
' to the environmental impact valuation

SelectSheet 22, "Valuation by exchange", _
"Environmental Impact Valuation " + _
"with Environmental Exchange Contributions"

' build matrix of exchange contributions by impact category indicator
' add matrix labels
AddLabels "Row", "Exchange", 0, False, "", ""
AddLabels "Column", "Category", 0, True, "", "Category"
Range(Cells(3, 3), Cells(2 + nex, 2 + ncat)).Select
' exchange contributions = Diag(e) H
Selection.FormulaArray = _

"=+MMULT(" & range_Diage & "," & range_H_matrix & ")"
FormatMatrix 3, 3, nex, ncat
Cells(2, 3).FormulaR1C1 = "Impact Category Indicators"

' build matrix of exchange contributions by impact category valuation
' add matrix labels
AddLabels "Column", "Category", ncat + 3, True, "", "Valuation"
Range(Cells(3, ncat + 6), Cells(2 + nex, 2 * ncat + 5)).Select
' exchange contributions to category valuation = Diag(e) H Diag(w)
Selection.FormulaArray = "=+MMULT(" & coords_ExchIcat_matrix & _

"," & range_Diagw & ")"
FormatMatrix 3, ncat + 6, nex, ncat
Cells(2, ncat + 6).FormulaR1C1 = "Impact Category Valuations"

' build vector of exchange contributions to overall valuation
Range(Cells(3, 2 * ncat + 9), Cells(2 + nex, 2 * ncat + 9)).Select
' exchange contributions to category valuation = Diag(e) H w
Selection.FormulaArray = "=+MMULT(" & coords_ExchIcat_matrix & _

"," & range_w_vector & ")"
FormatVector 3, 2 * ncat + 9, nex, 1, 14
Cells(1, 2 * ncat + 8).FormulaR1C1 = "=Concatenate(" + Chr(34) + _

"life-cycle environmental impact valuation (" + Chr(34) + _
",Sheet3!R" & nex + 6 & "C3," + Chr(34) + ")" + Chr(34) + ")"

' add row label
Cells(nex + 5, 1).Select
Selection.FormulaR1C1 = "System Total"
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Selection.Font.Bold = True

' add impact category indicator totals
Range(Cells(nex + 5, 3), Cells(nex + 5, ncat + 2)).Select
' indicator totals = e' H
Selection.FormulaArray = _

"=+MMULT(TRANSPOSE(" & range_e_vector & ")," & _
range_H_matrix & ")"

FormatMatrix nex + 5, 3, 1, ncat
Cells(nex + 4, 3).Select
ActiveCell.FormulaR1C1 = _

"Y = Vector of impact category indicators"
ActiveCell.Characters(Start:=1, Length:=1).Font.Name = "Symbol"

' add impact category valuation totals
Range(Cells(nex + 5, ncat + 6), Cells(nex + 5, 2 * ncat + 5)).Select
' indicator totals = e' H Diag(w)
Selection.FormulaArray = "=+MMULT(RC3:RC" & ncat + 2 & "," _

& range_Diagw & ")"
FormatMatrix nex + 5, ncat + 6, 1, ncat

' add overall valuation (scalar)
Cells(nex + 5, 2 * ncat + 9).Select
' overall valuation = e' Hw
Selection.FormulaR1C1 = "=+MMULT(RC3:RC" & ncat + 2 & "," _

& range_w_vector & ")"
' Insert label
Cells(nex + 4, 2 * ncat + 9).Select
ActiveCell.FormulaR1C1 = "W"
Selection.Font.Name = "Symbol"
Selection.HorizontalAlignment = xlCenter

' add vector of exchange relative contributions
Range(Cells(3, 2 * ncat + 13), Cells(2 + nex, 2 * ncat + 13)).Select
Selection.FormulaR1C1 = "=+RC[-4]/R" & nex + 5 & "C[-4]"
Selection.NumberFormat = "0%"
FormatVector 3, 2 * ncat + 13, nex, 1, 12
Cells(1, 2 * ncat + 12).FormulaR1C1 = "% contribution"

' add vector of impact category relative contributions
Range(Cells(nex + 7, ncat + 6), Cells(nex + 7, 2 * ncat + 5)).Select
Selection.FormulaR1C1 = "=+R[-2]C/R[-2]C" & 2 * ncat + 9
Selection.NumberFormat = "0%"
FormatMatrix nex + 7, ncat + 6, 1, ncat
Cells(nex + 7, 1).Select
ActiveCell.FormulaR1C1 = "% contribution"
Selection.Font.Bold = True

End Sub

Sub BuildValProcContrib()
'
' BuildValProcContrib Macro
' Macro recorded 11/17/99 by Alejandro Cano-Ruiz
' Builds matrices of process contributions
' to the environmental impact valuation

SelectSheet 23, "Valuation by process", _
"Environmental Impact Valuation with Process Contributions"

' build matrix of process contributions by impact category indicator
' add matrix labels
AddLabels "Row", "Process", 0, False, "", ""
AddLabels "Column", "Category", 0, True, "", "Category"
Range(Cells(3, 3), Cells(2 + nproc, 2 + ncat)).Select
' exchange contributions = Diag(x) E' H
Selection.FormulaArray = _

"=+MMULT(" & range_Diagx & _
",MMULT(TRANSPOSE(" & range_E_matrix & ")," & _

range_H_matrix & "))"
FormatMatrix 3, 3, nproc, ncat
Cells(2, 3).FormulaR1C1 = "Impact Category Indicators"

' build matrix of process contributions by impact category valuation
' add matrix labels
AddLabels "Column", "Category", ncat + 3, True, "", "Valuation"
Range(Cells(3, ncat + 6), Cells(2 + nproc, 2 * ncat + 5)).Select
' exchange contributions to category valuation = Diag(x) E' H Diag(w)
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Selection.FormulaArray = "=+MMULT(" & coords_ProcIcat_matrix & _
"," & range_Diagw & ")"

FormatMatrix 3, ncat + 6, nproc, ncat
Cells(2, ncat + 6).FormulaR1C1 = "Impact Category Valuations"

' build vector of process contributions to overall valuation
Range(Cells(3, 2 * ncat + 9), Cells(2 + nproc, 2 * ncat + 9)).Select
' exchange contributions to category valuation = Diag(x) E' H w
Selection.FormulaArray = "=+MMULT(" & coords_ProcIcat_matrix & _

"," & range_w_vector & ")"
FormatVector 3, 2 * ncat + 9, nproc, 1, 14
Cells(1, 2 * ncat + 8).FormulaR1C1 = "=Concatenate(" + Chr(34) + _

"life-cycle environmental impact valuation (" + Chr(34) + _
",Sheet3!R" & nex + 6 & "C3," + Chr(34) + ")" + Chr(34) + ")"

' add row label
Cells(nproc + 5, 1).Select
Selection.FormulaR1C1 = "System Total"
Selection.Font.Bold = True

' add impact category indicator totals
Range(Cells(nproc + 5, 3), Cells(nproc + 5, ncat + 2)).Select
' indicator totals = x' E' H
Selection.FormulaArray = _

"=+MMULT(TRANSPOSE(" & range_x_vector & _
"),MMULT(TRANSPOSE(" & range_E_matrix & _
")," & range_H_matrix & "))"

FormatMatrix nproc + 5, 3, 1, ncat
Cells(nproc + 4, 3).Select
ActiveCell.FormulaR1C1 = _

"Y = Vector of impact category indicators"
ActiveCell.Characters(Start:=1, Length:=1).Font.Name = "Symbol"

' add impact category valuation totals
Range(Cells(nproc + 5, ncat + 6), Cells(nproc + 5, 2 * ncat + 5)).Select
' indicator totals = x' E' H Diag(w)
Selection.FormulaArray = "=+MMULT(RC3:RC" & ncat + 2 & "," & _

range_Diagw & ")"
FormatMatrix nproc + 5, ncat + 6, 1, ncat

' add overall valuation (scalar)
Cells(nproc + 5, 2 * ncat + 9).Select
' overall valuation = x' E' Hw
Selection.FormulaArray = "=+MMULT(RC3:RC" & ncat + 2 & "," & _

range_w_vector & ")"
' Insert label
Cells(nproc + 4, 2 * ncat + 9).Select
ActiveCell.FormulaR1C1 = "W"
Selection.Font.Name = "Symbol"
Selection.HorizontalAlignment = xlCenter

' add vector of process relative contributions
Range(Cells(3, 2 * ncat + 13), Cells(2 + nproc, 2 * ncat + 13)).Select
Selection.FormulaR1C1 = "=+RC[-4]/R" & nproc + 5 & "C[-4]"
Selection.NumberFormat = "0%"
FormatVector 3, 2 * ncat + 13, nproc, 1, 12
Cells(1, 2 * ncat + 12).FormulaR1C1 = "% contribution"

' add vector of impact category relative contributions
Range(Cells(nproc + 7, ncat + 6), Cells(nproc + 7, 2 * ncat + 5)).Select
Selection.FormulaR1C1 = "=+R[-2]C/R[-2]C" & 2 * ncat + 9
Selection.NumberFormat = "0%"
FormatMatrix nproc + 7, ncat + 6, 1, ncat
Cells(nproc + 7, 1).Select
ActiveCell.FormulaR1C1 = "% contribution"
Selection.Font.Bold = True

End Sub

Sub BuildUnitImpacts()
'
' BuildUnitImpacts Macro
' Macro recorded 11/17/99 by Alejandro Cano-Ruiz
' Builds matrices of process contributions
' to the environmental impact valuation

SelectSheet 24, "Unit Impacts", _
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"Unit Impact Environmental Impact Indicators and Valuations"

' build matrix of product unit environmental impact indicators
' add matrix labels
AddLabels "Row", "Product", 0, True, "per ", ""
AddLabels "Column", "Category", 0, True, "", "Category"
Range(Cells(3, 3), Cells(2 + nprod, 2 + ncat)).Select
' product unit indicators = (EDinv(I-Aprod))' H
Selection.FormulaArray = _

"=+MMULT(TRANSPOSE('EDinv(I-Aprod)'!" & coords_ExchProd_matrix & _
")," & range_H_matrix & ")"

FormatMatrix 3, 3, nprod, ncat
Cells(2, 3).Select
With Selection

.FormulaR1C1 = _
"Yd = Matrix of environmental impact indicators per unit of " _
+ "product demand"

.Characters(Start:=1, Length:=1).Font.Name = "Symbol"

.Characters(Start:=2, Length:=1).Font.Subscript = "True"

.Font.Size = 8

.Characters(Start:=1, Length:=2).Font.Size = 10
End With

' build matrix of product unit impact category valuation
' add matrix labels
AddLabels "Column", "Category", ncat + 3, True, "", "Valuation"
Range(Cells(3, ncat + 6), Cells(2 + nprod, 2 * ncat + 5)).Select
' product unit impact category valuations = (EDinv(I-Aprod))' H Diag(w)
Selection.FormulaArray = "=+MMULT(" & coords_ProdIcat_matrix & _

"," & range_Diagw & ")"
FormatMatrix 3, ncat + 6, nprod, ncat
Cells(2, ncat + 6).Select
Selection.FormulaR1C1 = _

"Matrix of impact category valuations per unit of product demand"
Selection.Font.Size = 8

' build vector of product unit environmental impact valuations
Range(Cells(3, 2 * ncat + 9), Cells(2 + nprod, 2 * ncat + 9)).Select
' product unit valuations = (EDinv(I-Aprod))' H w
Selection.FormulaArray = "=+MMULT(" & coords_ProdIcat_matrix & _

"," & range_w_vector & ")"
FormatVector 3, 2 * ncat + 9, nprod, 2, 14
Cells(2, 2 * ncat + 9).Select
ActiveCell.FormulaR1C1 = "Wd = vector of environmental impact " + _

"valuations per unit of product demand"
With ActiveCell

.Characters(Start:=1, Length:=1).Font.Name = "Symbol"

.Characters(Start:=2, Length:=1).Font.Subscript = "True"

.Font.Size = 8

.Characters(Start:=1, Length:=2).Font.Size = 10

.RowHeight = 70
End With

Cells(1, 2 * ncat + 9).Select
ActiveCell.FormulaR1C1 = "=Concatenate(" + Chr(34) + _

"Overall valuation (" + Chr(34) + _
",Sheet3!R" & nex + 6 & "C3," + Chr(34) + ")" + Chr(34) + ")"

With Selection
.HorizontalAlignment = xlGeneral
.VerticalAlignment = xlBottom
.WrapText = False
.Orientation = 90
.RowHeight = 150

End With

' generate Diag(Omegad) matrix
BuildDiagMatrix 3, 2 * ncat + 9, nprod, False
Cells(2, 2 * ncat + 13).Select
ActiveCell.FormulaR1C1 = "Diag(Wd)"
ActiveCell.Characters(Start:=6, Length:=1).Font.Name = "Symbol"
ActiveCell.Characters(Start:=7, Length:=1).Font.Subscript = "True"

' build matrix of process direct unit environmental impact indicators
' add matrix labels
AddLabels "Row", "Process", nprod + 2, False, "", ""
Range(Cells(nprod + 5, 3), Cells(nprod + nproc + 4, 2 + ncat)).Select
' process direct unit indicators = E'H
Selection.FormulaArray = _

"=+MMULT(TRANSPOSE(" & range_E_matrix & ")," & _
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range_H_matrix & ")"
FormatMatrix nprod + 5, 3, nproc, ncat
Cells(nprod + 4, 3).Select
ActiveCell.FormulaR1C1 = _

"Yxdirect = Matrix of direct environmental impact indicators " + _
"per unit of process throughput"

ActiveCell.Characters(Start:=1, Length:=1).Font.Name = "Symbol"
ActiveCell.Characters(Start:=2, Length:=7).Font.Subscript = "True"
ActiveCell.Font.Size = 8
ActiveCell.Characters(Start:=1, Length:=8).Font.Size = 10

' build matrix of direct process unit impact category valuation
Range(Cells(nprod + 5, ncat + 6), _

Cells(nprod + nproc + 4, 2 * ncat + 5)).Select
' direct process unit impact category valuations = E' H Diag(w)
Selection.FormulaArray = "=+MMULT(" & coords_ProcIcat_matrix & _

"," & range_Diagw & ")"
FormatMatrix nprod + 5, ncat + 6, nproc, ncat
Cells(nprod + 4, ncat + 6).Select
ActiveCell.FormulaR1C1 = _

"Matrix of direct impact category valuations per unit of " + _
"process throughput"

Selection.Font.Size = 8

' build vector of direct process unit environmental impact valuations
Range(Cells(nprod + 5, 2 * ncat + 9), _

Cells(nprod + nproc + 4, 2 * ncat + 9)).Select
' direct process unit valuations = E'H w
Selection.FormulaArray = "=+MMULT(" & coords_ProcIcat_matrix & _

"," & range_w_vector & ")"
FormatVector nprod + 5, 2 * ncat + 9, nproc, nprod + 4, 12
Cells(nprod + 4, 2 * ncat + 9).Select
ActiveCell.FormulaR1C1 = "Wxdirect = vector of direct " + _

"environmental impact valuations per unit of process throughput "
With Selection

.Characters(Start:=1, Length:=1).Font.Name = "Symbol"

.Characters(Start:=2, Length:=7).Font.Subscript = "True"

.Font.Size = 8

.Characters(Start:=1, Length:=8).Font.Size = 10

.RowHeight = 70
End With

' generate Diag(Omegaxdirect) matrix
BuildDiagMatrix nprod + 5, 2 * ncat + 9, nproc, False
Cells(nprod + 4, 2 * ncat + 13).Select
ActiveCell.FormulaR1C1 = "Diag(Wxdirect)"
ActiveCell.Characters(Start:=6, Length:=1).Font.Name = "Symbol"
ActiveCell.Characters(Start:=7, Length:=7).Font.Subscript = "True"

' build matrix of total process unit environmental impact indicators
' add matrix labels
AddLabels "Row", "Process", nprod + nproc + 4, False, "", ""
Range(Cells(nprod + nproc + 7, 3), _

Cells(nprod + 2 * nproc + 6, 2 + ncat)).Select
' total process unit indicators = (Einv(I-Aproc))'H
Selection.FormulaArray = _

"=+MMULT(TRANSPOSE('Einv(I-Aproc)'!" & coords_ExchProc_matrix & _
")," & range_H_matrix & ")"

FormatMatrix nprod + nproc + 7, 3, nproc, ncat
Cells(nprod + nproc + 6, 3).Select
ActiveCell.FormulaR1C1 = _

"Yx = Matrix of total (direct + indirect) environmental " + _
"impact indicators per unit of process throughput"

ActiveCell.Characters(Start:=1, Length:=1).Font.Name = "Symbol"
ActiveCell.Characters(Start:=2, Length:=2).Font.Subscript = "True"
ActiveCell.Font.Size = 8
ActiveCell.Characters(Start:=1, Length:=2).Font.Size = 10

' build matrix of total process unit impact category valuations
Range(Cells(nprod + nproc + 7, ncat + 6), _

Cells(nprod + 2 * nproc + 6, 2 * ncat + 5)).Select
' total process unit impact category valuations =
' (Einv(I-Aproc))' H Diag(w)
Selection.FormulaArray = "=+MMULT(" & coords_ProcIcat_matrix & _

"," & range_Diagw & ")"
FormatMatrix nprod + nproc + 7, ncat + 6, nproc, ncat
Cells(nprod + nproc + 6, ncat + 6).Select
ActiveCell.FormulaR1C1 = _

"Matrix of total (direct + indirect) impact category " + _
"valuations per unit of process throughput"

Selection.Font.Size = 8
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' build vector of total process unit environmental impact valuations
Range(Cells(nprod + nproc + 7, 2 * ncat + 9), _

Cells(nprod + 2 * nproc + 6, 2 * ncat + 9)).Select
' total process unit valuations = (Einv(I-Aproc))' H w
Selection.FormulaArray = "=+MMULT(" & coords_ProcIcat_matrix & _

"," & range_w_vector & ")"
FormatVector nprod + nproc + 7, 2 * ncat + 9, _

nproc, nprod + nproc + 6, 12
Cells(nprod + nproc + 6, 2 * ncat + 9).Select
ActiveCell.FormulaR1C1 = "Wx = vector of total (direct + indirect) " + _

"environmental impact valuations per unit of process throughput"
With Selection

.Characters(Start:=1, Length:=1).Font.Name = "Symbol"

.Characters(Start:=2, Length:=1).Font.Subscript = "True"

.Font.Size = 8

.Characters(Start:=1, Length:=2).Font.Size = 10

.RowHeight = 70
End With

' build matrix of environmental exchange impact category valuations
' add matrix labels
AddLabels "Row", "Exchange", nprod + 2 * nproc + 6, True, "per ", ""
Range(Cells(nprod + 2 * nproc + 9, ncat + 6), _

Cells(nprod + 2 * nproc + nex + 8, 2 * ncat + 5)).Select
' exchange impact category valuations = H Diag(w)
Selection.FormulaArray = _

"=+MMULT(" & range_H_matrix & "," & range_Diagw & ")"
FormatMatrix nprod + 2 * nproc + 9, ncat + 6, nex, ncat
Cells(nprod + 2 * nproc + 8, ncat + 6).Select
ActiveCell.FormulaR1C1 = _

"Matrix of impact category " + _
"valuations per unit of environmental exchange"

Selection.Font.Size = 8

' build vector of env exchange unit environmental impact valuations
Range(Cells(nprod + 2 * nproc + 9, 2 * ncat + 9), _

Cells(nprod + 2 * nproc + nex + 8, 2 * ncat + 9)).Select
' env exchange unit valuations = Hw
Selection.FormulaArray = _

"=+MMULT(" & range_H_matrix & "," & range_w_vector & ")"
FormatVector nprod + 2 * nproc + 9, 2 * ncat + 9, _

nex, nprod + 2 * nproc + 8, 12
Cells(nprod + 2 * nproc + 8, 2 * ncat + 9).Select
ActiveCell.FormulaR1C1 = "We = vector of " + _

"environmental impact valuations per unit of environmental exchange"
With Selection

.Characters(Start:=1, Length:=1).Font.Name = "Symbol"

.Characters(Start:=2, Length:=1).Font.Subscript = "True"

.Font.Size = 8

.Characters(Start:=1, Length:=2).Font.Size = 10

.RowHeight = 70
End With

' generate Diag(Omegae) matrix
BuildDiagMatrix nprod + 2 * nproc + 9, 2 * ncat + 9, nex, False
Cells(nprod + 2 * nproc + 8, 2 * ncat + 13).Select
ActiveCell.FormulaR1C1 = "Diag(We)"
ActiveCell.Characters(Start:=6, Length:=1).Font.Name = "Symbol"
ActiveCell.Characters(Start:=7, Length:=1).Font.Subscript = "True"

End Sub

Sub BuildProcUnitValContrib()
'
' BuildProcUnitValContrib Macro
' Macro recorded 11/17/99 by Alejandro Cano-Ruiz
' Builds matrices of contributions
' to the process unit environmental impact valuation

SelectSheet 25, "Proc unit valuation contrib", _
"Contributions to environmental " + _
"impact valuations per unit of process throughput"

' add matrix labels
AddLabels "Column", "Process", 0, False, "", ""
AddLabels "Column", "Process", nproc + 3, False, "", ""
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AddLabels "Row", "Exchange", 0, False, "", ""
Cells(nex + 3, 1).FormulaR1C1 = "Direct environmental exchanges"
AddLabels "Row", "Product", nex + 1, False, "", ""
Cells(nex + nprod + 4, 1).FormulaR1C1 = _

"Total valuation, including indirect exchanges"

' fill contributions from direct exchanges
Range(Cells(3, 3), Cells(2 + nex, 2 + nproc)).Select
' contributions = Diag(Omegae)E
Selection.FormulaArray = _

"=+MMULT('Unit Impacts'!R" & nprod + 2 * nproc + 9 & _
"C" & 2 * ncat + 13 & ":R" & nprod + 2 * nproc + nex + 8 _
& "C" & 2 * ncat + nex + 12 & "," & range_E_matrix & ")"

' copy direct unit process valuations (transpose(Omegaxdirect))
Range(Cells(nex + 3, 3), Cells(nex + 3, 2 + nproc)).Select
Selection.FormulaArray = _

"=TRANSPOSE('Unit Impacts'!R" & nprod + 5 & _
"C" & 2 * ncat + 9 & ":R" & nprod + nproc + 4 & _
"C" & 2 * ncat + 9 & ")"

' fill contributions from product inputs to processes
Range(Cells(nex + 4, 3), Cells(nex + nprod + 3, 2 + nproc)).Select
' contributions = Diag(Omegad)B
Selection.FormulaArray = _

"=+MMULT('Unit Impacts'!R" & 3 & _
"C" & 2 * ncat + 13 & ":R" & nprod + 2 & _
"C" & 2 * ncat + nprod + 12 & "," & range_B_matrix & ")"

' copy total unit process valuations (transpose(Omegax))
Range(Cells(nex + nprod + 4, 3), _

Cells(nex + nprod + 4, 2 + nproc)).Select
Selection.FormulaArray = _

"=TRANSPOSE('Unit Impacts'!R" & nprod + nproc + 7 & _
"C" & 2 * ncat + 9 & ":R" & nprod + 2 * nproc + 6 & _
"C" & 2 * ncat + 9 & ")"

' compute relative contributions
Range(Cells(3, nproc + 6), _

Cells(nex + nprod + 4, 2 * nproc + 5)).Select
Selection.FormulaR1C1 = "=if(R" & nex + nprod + 4 _

& "C[-" & nproc + 3 & "]>0,RC[-" & nproc + 3 & "]/R" & _
nex + nprod + 4 & "C[-" & nproc + 3 & "],0)"

Selection.NumberFormat = "0%;0%;"

' Insert brackets and formatting
InsertBracket 2, 3, nprod + nex + 4, "Left"
InsertBracket nproc + 3, 3, nprod + nex + 4, "Right"
InsertBracket nproc + 5, 3, nprod + nex + 4, "Left"
InsertBracket 2 * nproc + 6, 3, nprod + nex + 4, "Right"
Columns("A:A").EntireColumn.AutoFit
Range(Cells(nex + 2, 3), Cells(nex + 2, nproc + 2)).Select
With Selection.Borders(xlEdgeBottom)

.LineStyle = xlContinuous

.Weight = xlThin

.ColorIndex = xlAutomatic
End With
Range(Cells(nex + 2, nproc + 6), _

Cells(nex + 2, 2 * nproc + 5)).Select
With Selection.Borders(xlEdgeBottom)

.LineStyle = xlContinuous

.Weight = xlThin

.ColorIndex = xlAutomatic
End With
Range(Cells(nex + nprod + 3, 3), _

Cells(nex + nprod + 3, nproc + 2)).Select
With Selection.Borders(xlEdgeBottom)

.LineStyle = xlDouble

.Weight = xlThick

.ColorIndex = xlAutomatic
End With
Range(Cells(nex + nprod + 3, nproc + 6), _

Cells(nex + nprod + 3, 2 * nproc + 5)).Select
With Selection.Borders(xlEdgeBottom)

.LineStyle = xlDouble

.Weight = xlThick

.ColorIndex = xlAutomatic
End With

End Sub
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Sub BuildProdUnitValContrib()
'
' BuildProdUnitValContrib Macro
' Macro recorded 11/17/99 by Alejandro Cano-Ruiz
' Builds matrices of contributions
' to the product unit environmental impact valuation

SelectSheet 26, "Prod unit valuation contrib", _
"Contributions to environmental " + _
"impact valuations per unit of product demand"

' add matrix labels
AddLabels "Column", "Product", 0, True, "per ", ""
AddLabels "Column", "Product", nprod + 3, True, "per ", " "
AddLabels "Row", "Process", 0, False, "", ""
Cells(nproc + 3, 1).FormulaR1C1 = "Total valuation"
AddLabels "Row", "Exchange", nproc + 2, False, "", ""
Cells(nex + nproc + 5, 1).FormulaR1C1 = "Total valuation"

' fill contributions from processes
Range(Cells(3, 3), Cells(2 + nproc, 2 + nprod)).Select
' contributions = Diag(Omegaxdirect)Dinv(I-Aprod)
Selection.FormulaArray = _

"=+MMULT('Unit Impacts'!R" & nprod + 5 & _
"C" & 2 * ncat + 13 & ":R" & nprod + nproc + 4 _
& "C" & 2 * ncat + nproc + 12 & _
",'Dinv(I-Aprod)'!" & coords_ProcProd_matrix & ")"

' copy unit product valuations (transpose(Omegad))
Range(Cells(nproc + 3, 3), Cells(nproc + 3, 2 + nprod)).Select
Selection.FormulaArray = "=TRANSPOSE('Unit Impacts'!R3C" & _

2 * ncat + 9 & ":R" & nprod + 2 & _
"C" & 2 * ncat + 9 & ")"

' fill contributions from env exchanges to products
Range(Cells(nproc + 5, 3), Cells(nex + nproc + 4, 2 + nprod)).Select
' contributions = Diag(Omegae)EDinv(I-Aprod)
Selection.FormulaArray = _

"=+MMULT('Unit Impacts'!R" & nprod + 2 * nproc + 9 & _
"C" & 2 * ncat + 13 & ":R" & nprod + 2 * nproc + nex + 8 & _
"C" & 2 * ncat + nex + 12 & _
",'EDinv(I-Aprod)'!" & coords_ExchProd_matrix & ")"

' copy unit product valuations (transpose(Omegad))
Range(Cells(nex + nproc + 5, 3), _

Cells(nex + nproc + 5, 2 + nprod)).Select
Selection.FormulaArray = "=TRANSPOSE('Unit Impacts'!R3C" & _

2 * ncat + 9 & ":R" & nprod + 2 & _
"C" & 2 * ncat + 9 & ")"

' compute relative contributions
Range(Cells(3, nprod + 6), _

Cells(nex + nproc + 5, 2 * nprod + 5)).Select
Selection.FormulaR1C1 = "=if(R" & nex + nproc + 5 _

& "C[-" & nprod + 3 & "]>0,RC[-" & nprod + 3 & "]/R" & _
nex + nproc + 5 & "C[-" & nprod + 3 & "],0)"

Selection.NumberFormat = "0%;0%;"
Range(Cells(nproc + 4, nprod + 6), _

Cells(nproc + 4, 2 * nprod + 5)).Clear

' Insert brackets and formatting
InsertBracket 2, 3, nproc + 3, "Left"
InsertBracket nprod + 3, 3, nproc + 3, "Right"
InsertBracket 2, nproc + 5, nproc + nex + 5, "Left"
InsertBracket nprod + 3, nproc + 5, nproc + nex + 5, "Right"
InsertBracket nprod + 5, 3, nproc + 3, "Left"
InsertBracket 2 * nprod + 6, 3, nproc + 3, "Right"
InsertBracket nprod + 5, nproc + 5, nproc + nex + 5, "Left"
InsertBracket 2 * nprod + 6, nproc + 5, nproc + nex + 5, "Right"
Columns("A:A").EntireColumn.AutoFit

' Insert separation lines
Range(Cells(nproc + 2, 3), Cells(nproc + 2, nprod + 2)).Select
With Selection.Borders(xlEdgeBottom)

.LineStyle = xlDouble

.Weight = xlThick

.ColorIndex = xlAutomatic
End With
Range(Cells(nex + nproc + 4, 3), Cells(nex + nproc + 4, nprod + 2)).Select
With Selection.Borders(xlEdgeBottom)

.LineStyle = xlDouble

.Weight = xlThick

.ColorIndex = xlAutomatic
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End With
Range(Cells(nproc + 2, nprod + 6), _

Cells(nproc + 2, 2 * nprod + 5)).Select
With Selection.Borders(xlEdgeBottom)

.LineStyle = xlDouble

.Weight = xlThick

.ColorIndex = xlAutomatic
End With
Range(Cells(nex + nproc + 4, nprod + 6), _

Cells(nex + nproc + 4, 2 * nprod + 5)).Select
With Selection.Borders(xlEdgeBottom)

.LineStyle = xlDouble

.Weight = xlThick

.ColorIndex = xlAutomatic
End With

End Sub

Sub InsertBracket(colNumber, topRowNumber, bottomRowNumber, bracketType)
Range(Cells(topRowNumber, colNumber), _

Cells(bottomRowNumber, colNumber)).Select
Selection.Borders(xlDiagonalDown).LineStyle = xlNone
Selection.Borders(xlDiagonalUp).LineStyle = xlNone
Selection.Borders(xlInsideHorizontal).LineStyle = xlNone
With Selection.Borders(xlEdgeTop)

.LineStyle = xlContinuous

.Weight = xlThick

.ColorIndex = xlAutomatic
End With
With Selection.Borders(xlEdgeBottom)

.LineStyle = xlContinuous

.Weight = xlThick

.ColorIndex = xlAutomatic
End With
If bracketType = "Left" Then

Selection.Borders(xlEdgeRight).LineStyle = xlNone
With Selection.Borders(xlEdgeLeft)

.LineStyle = xlContinuous

.Weight = xlThick

.ColorIndex = xlAutomatic
End With

ElseIf bracketType = "Right" Then
Selection.Borders(xlEdgeLeft).LineStyle = xlNone
With Selection.Borders(xlEdgeRight)

.LineStyle = xlContinuous

.Weight = xlThick

.ColorIndex = xlAutomatic
End With

End If
Cells(topRowNumber, colNumber).ColumnWidth = 0.67

End Sub

Sub AddLabels(LabelType As String, DataType As String, _
offset As Integer, _
IncludeUnits As Boolean, UnitsPrefix As String, _
UnitType As String)

' Procedure created on 11/17/99 by Alejandro Cano
' Parameters:
' LabelType: "Row" or "Column"
' DataType: "Process", "Product", "Exchange", or "Category"
' Offset: Number of cells by which first label is offset from
' the standard R3 or C3 position
' IncludeUnits: True or False. If True text processing is used
' to add units to the label
' UnitsPrefix: Text to be added before the units
' (e.g. "per " as used in column product labels
' UnitType: "Category", "Valuation", or "Both". This is only
' used for the "Category" data type. If UnitType =
' "Category", the units for the impact category are used;
' If UnitType = "Valuation", the valuation units are used;
' If UnitType = "Both", the units are valuation units/
' impact category unit

If LabelType = "Row" Then
If DataType = "Process" Then
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Range(Cells(3 + offset, 1), _
Cells(2 + nproc + offset, 1)).Select

Selection.FormulaArray = _
"=TRANSPOSE(Sheet1!R1C5:R1C[" & nproc + 4 & "])"

ElseIf DataType = "Product" Then
For i = 1 To nprod

Cells(2 + i + offset, 1).Select
If IncludeUnits Then

Selection.FormulaR1C1 = "=Concatenate(Sheet1!R" & _
2 + i & "C2," + Chr(34) + " (" + _
UnitsPrefix + Chr(34) + ",Sheet1!R" & _
2 + i & "C3," + Chr(34) + ")" + _
Chr(34) + ")"

Else
Selection.FormulaR1C1 = "=Sheet1!R" & 2 + i & "C2"

End If
Next i

ElseIf DataType = "Exchange" Then
For i = 1 To nex

Cells(2 + i + offset, 1).Select
If IncludeUnits Then

Selection.FormulaR1C1 = "=Concatenate(Sheet3!R" & _
3 + i & "C1," & Chr(34) & ": " & Chr(34) & _
",Sheet3!R" & _
3 + i & "C2," & Chr(34) & " (" & UnitsPrefix _
& Chr(34) & ",Sheet3!R" & 3 + i & "C3," & _
Chr(34) & ")" & Chr(34) & ")"

Else
Selection.FormulaR1C1 = "=Concatenate(Sheet3!R" & _

3 + i & "C1," & Chr(34) & ": " & Chr(34) & _
",Sheet3!R" & 3 + i & "C2)"

End If
Next i

ElseIf DataType = "Category" Then
For i = 1 To ncat

Cells(2 + i + offset, 1).Select
If IncludeUnits Then

If UnitType = "Both" Then
Selection.FormulaR1C1 = "=Concatenate(Sheet3!R1C" _
& 4 + i & "," & Chr(34) & " (" & Chr(34) & _
",Sheet3!R" & nex + 6 & "C3," & Chr(34) & "/" _
& Chr(34) & ",Sheet3!R2C" & 4 + i & "," & _
Chr(34) & ")" & Chr(34) & ")"

End If
Else

Selection.FormulaR1C1 = "=Sheet3!R1C" & 4 + i
End If

Next i
End If
Cells(1, 1).EntireColumn.AutoFit

ElseIf LabelType = "Column" Then
If DataType = "Process" Then

Range(Cells(1, 3 + offset), _
Cells(1, 2 + nproc + offset)).Select

Selection.FormulaArray = "=Sheet1!R1C5:R1C" & nproc + 4
ElseIf DataType = "Product" Then

If IncludeUnits Then
For i = 1 To nprod

Cells(1, 2 + i + offset).Select
Selection.FormulaR1C1 = "=Concatenate(Sheet1!R" & _
2 + i & "C2," & Chr(34) & " (" & UnitsPrefix & _
Chr(34) & ",Sheet1!R" & 2 + i & "C3," & Chr(34) & _
")" & Chr(34) & ")"

Next i
Range(Cells(1, 3 + offset), _

Cells(1, 2 + nprod + offset)).Select
Else

Range(Cells(1, 3 + offset), _
Cells(1, 2 + nprod + offset)).Select

Selection.FormulaArray = _
"=TRANSPOSE(Sheet1!R3C2:R[" & nprod + 2 & "]C2)"

End If
ElseIf DataType = "Category" Then

If IncludeUnits Then
For i = 1 To ncat

Cells(1, 2 + i + offset).Select
If UnitType = "Category" Then

Selection.FormulaR1C1 = "=Concatenate(Sheet3!R1C" _
& 4 + i & "," & Chr(34) & " (" & Chr(34) & _
",Sheet3!R2C" & 4 + i & "," & Chr(34) & _
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")" & Chr(34) & ")"
ElseIf UnitType = "Valuation" Then

Selection.FormulaR1C1 = "=Concatenate(Sheet3!R1C" _
& 4 + i & "," & Chr(34) & " (" & Chr(34) & _
",Sheet3!R" & nex + 6 & "C3" & "," _
& Chr(34) & ")" & Chr(34) & ")"

End If
Next i
Range(Cells(1, 3 + offset), _

Cells(1, 2 + ncat + offset)).Select
Else

Range(Cells(1, 3 + offset), _
Cells(1, 2 + ncat + offset)).Select

Selection.FormulaArray = "=Sheet3!R1C4:R1C" & ncat + 3
End If

End If
With Selection

.HorizontalAlignment = xlGeneral

.VerticalAlignment = xlBottom

.WrapText = True

.Orientation = 90

.ColumnWidth = 5.2

.RowHeight = 150
End With

End If
End Sub

Sub BuildDiagMatrix(intStartRow, intVectorCol, intVectorLength, _
blnFullRightBracket As Boolean)

Cells(intStartRow, intVectorCol + 4).Select
ActiveCell.FormulaR1C1 = "=IF(ROW(RC)=COLUMN(RC)+(" & _

intStartRow - (intVectorCol + 4) & "),RC" & intVectorCol & ",0)"
Selection.Copy
Range(Cells(intStartRow, intVectorCol + 4), _

Cells(intStartRow + intVectorLength - 1, _
intVectorCol + intVectorLength + 3)).Select

ActiveSheet.Paste
Selection.ColumnWidth = 5.2

' add brackets
InsertBracket intVectorCol + 3, _

intStartRow, intStartRow + intVectorLength - 1, "Left"

If blnFullRightBracket Then
InsertBracket intVectorCol + intVectorLength + 4, _

intStartRow, intStartRow + intVectorLength - 1, "Right"
End If
' formal label area
Range(Cells(intStartRow - 1, intVectorCol + 4), _

Cells(intStartRow - 1, _
intVectorCol + intVectorLength + 3)).Select

With Selection
.MergeCells = True
.Font.Bold = True

End With
End Sub

Sub SelectSheet(SheetNumber, SheetName, SheetTitle)
numberOfSheets = Sheets.Count
If numberOfSheets < SheetNumber Then

Sheets.Add
Application.ActiveSheet.Move After:=Sheets(SheetNumber)

End If
Sheets(SheetNumber).Select
Application.ActiveSheet.Name = SheetName
Cells.Select
Selection.Delete Shift:=xlUp
Range("A1").Select
ActiveCell.FormulaR1C1 = SheetTitle
Selection.Font.Bold = True
Selection.WrapText = True
Range("B2").Select
ActiveWindow.FreezePanes = True

End Sub
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Sub FormatVector(intStartRow As Integer, intVectorCol As Integer, _
intVectorLength As Integer, intLabelRow As Integer, _
sngColWidth As Single)

Cells(intStartRow, intVectorCol).Select
Selection.ColumnWidth = sngColWidth
' add brackets
InsertBracket intVectorCol - 1, _

intStartRow, intStartRow + intVectorLength - 1, "Left"
InsertBracket intVectorCol + 1, _

intStartRow, intStartRow + intVectorLength - 1, "Right"
' format label area
Range(Cells(intLabelRow, intVectorCol - 1), _

Cells(intLabelRow, intVectorCol + 1)).Select
With Selection

.HorizontalAlignment = xlCenter

.WrapText = True

.MergeCells = True

.Font.Bold = True
End With

End Sub

Sub FormatMatrix(intStartRow As Integer, intStartCol As Integer, _
intNumRows As Integer, intNumCols As Integer)

' Format label area
Range(Cells(intStartRow - 1, intStartCol), _

Cells(intStartRow - 1, intStartCol + intNumCols - 1)).Select
With Selection

.WrapText = True

.MergeCells = True

.Font.Bold = True
End With

' Insert Brackets
InsertBracket intStartCol - 1, intStartRow, intStartRow + intNumRows - 1, "Left"
InsertBracket intStartCol + intNumCols, intStartRow, intStartRow + intNumRows - 1, "Right"

End Sub

Sub Getnproc()
' Count the number of processes
Sheets("Sheet1").Select
nproc = 0
runOutOfProcesses = False
Do While Not runOutOfProcesses

If Cells(1, 5 + nproc).Formula = "" Then
runOutOfProcesses = True

Else
nproc = nproc + 1

End If
Loop

End Sub

Sub Getnprod()
' Count the number of products
Sheets("Sheet1").Select
nprod = 0
runOutOfProducts = False
Do While Not runOutOfProducts

If Cells(3 + nprod, 2).Formula = "" Then
runOutOfProducts = True

Else
nprod = nprod + 1

End If
Loop

End Sub

Sub Getnex()
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' Count the number of environmental exchanges
Sheets("Sheet1").Select
nex = 0
Getnprod
runOutOfExchanges = False
Do While Not runOutOfExchanges

If Cells(2 * nprod + 7 + nex, 2).Formula = "" Then
runOutOfExchanges = True

Else
nex = nex + 1

End If
Loop

End Sub

Sub Getncat()
' Count the number of impact categories
Sheets("Sheet3").Select
ncat = 0
runOutOfCategories = False
Do While Not runOutOfCategories

If Cells(1, 5 + ncat).Formula = "" Then
runOutOfCategories = True

Else
ncat = ncat + 1

End If
Loop

End Sub

Sub GetMatrixSizes()

Getnproc
Getnprod
Getnex
Getncat

' generate strings with matrix and vector locations

coords_ProcProc_matrix = "R3C3:R" & 2 + nproc & "C" & 2 + nproc
coords_ProcProd_matrix = "R3C3:R" & 2 + nproc & "C" & 2 + nprod
coords_ProcIcat_matrix = "RC3:R[" & nproc - 1 & "]C" & 2 + ncat
coords_ProdProc_matrix = "R3C3:R" & 2 + nprod & "C" & 2 + nproc
coords_ProdProd_matrix = "R3C3:R" & 2 + nprod & "C" & 2 + nprod
coords_ProdIcat_matrix = "RC3:R[" & nprod - 1 & "]C" & 2 + ncat
coords_ExchProc_matrix = "R3C3:R" & 2 + nex & "C" & 2 + nproc
coords_ExchProd_matrix = "R3C3:R" & 2 + nex & "C" & 2 + nprod
coords_ExchIcat_matrix = "RC3:R[" & nex - 1 & "]C" & 2 + ncat

range_B_matrix = "Sheet1!R3C5:R" & nprod + 2 & "C" & nproc + 4
range_C_matrix = "Sheet1!R" & nprod + 5 & "C5:R" _

& (2 * nprod) + 4 & "C" & nproc + 4
range_E_matrix = "Sheet1!R" & 2 * nprod + 7 & "C5:R" _

& 2 * nprod + nex + 6 & "C" & nproc + 4
range_d_vector = "Sheet2!RC8:R" & nprod + 2 & "C8"
range_H_matrix = "Sheet3!R4C5:R" & nex + 3 & "C" & ncat + 4
range_wtranspose = "Sheet3!R" & nex + 6 & _

"C5:R" & nex + 6 & "C" & ncat + 4

range_D_matrix = "D!" & coords_ProcProd_matrix

range_w_vector = "w!R3C3:R" & ncat + 2 & "C3"
range_Diagw = "w!R3C7:R" & ncat + 2 & "C" & ncat + 6

range_x_vector = "'Process throughputs'!R3C7:R" & nproc + 2 & "C7"
range_Diagx = "'Process throughputs'!R3C11:R" & _

nproc + 2 & "C" & nproc + 10

range_e_vector = "Inventory!R3C3:R" & nex + 2 & "C3"
range_Diage = "Inventory!R3C7:R" & nex + 2 & "C" & nex + 6

End Sub
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