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Abstract

This thesis explores the application of multiscale ideas to the areas of state estimation and
control. The work represents a signi…cant departure from the traditional representations in the
time and frequency domains, and provides a novel framework that leads to fast, e¢cient, and
modular estimation algorithms.

Multiscale methods were rediscovered through wavelet theory in the mid-eighties, as a tool
for the geophysics community. Like Fourier theory, it provides a more instructive representation
of data than time series alone, by decomposition into a di¤erent set of orthonormal basis
functions. Multiscale models and data sets exist on multiscale trees of nodes. Each node
represents a place holder corresponding to a time point in a time series. The nodes of a tree form
a structure which may contain measurements, states, inputs, outputs, and uncertainties. Each
level of the tree represents the set of data at a given level of resolution. This dual localization
in time and frequency has bene…ts in the storage of information, since irrelevant data and pure
noise can be identi…ed and discarded. It also preserves time and frequency information in a
way that Fourier theory cannot. Grouping and condensing of important information follows
naturally, which facilitates the making of decisions at a level of detail relevant to the question
being asked.

Multiscale systems theory is a general approach for multiscale model construction on a tree.
This thesis derives the multiscale models corresponding to the Haar transform, which produces
a modi…ed hat transform for input data. Autoregressive models, commonly used in time series
analysis, give rise to multiscale models on the tree. These allow us to construct numerical
algorithms that are e¢cient and parallelizable, and scale logarithmically with the number of
data points, rather than the linear performance typical for similar time-series algorithms. This
multiscale systems theory generalizes easily to other wavelet bases. Multiscale models of the
underlying physics and the measurement model can be combined to construct a cost function
which estimates the underlying physical states from a set of measurements. The resulting set
of normal equations is sparse and contains a specialized structure, leading to a highly e¢cient
solution strategy.

A modi…ed multiscale state estimation algorithm incorporates prior estimates, consistent
with the Kalman …lter, with which it is linked. A constrained multiscale state estimator incor-
porates constraints in the states, and in linear combinations of the states. All incarnations of
the multiscale state estimator provide a framework for the optimal fusion of multiple sets of
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measurements, including those taken at di¤erent levels of resolution. This is particularly useful
in estimation and control problems where measurement data and control strategies occur at
multiple rates. The arbitrary size of the state allows for the use of higher order underlying
physical models, without modi…cation of the estimation algorithm. Finally, the algorithm ac-
commodates an arbitrary speci…cation of the uncertainty estimates at any combination of time
points or level of resolution.

The structure of the solution algorithm is su¢ciently ‡exible to use the same intermediate
variables for all of these modi…cations, leading to considerable reusability, both of code, and of
prior calculations. Thus, the multiscale state estimation algorithm is modular and parallelizable.

An uncertainty analysis of the algorithm represents state estimation error in terms of the
underlying model and measurement uncertainties. Depending on the size of the problem, dif-
ferent techniques should be used to construct the probability distribution functions of the error
estimates. This thesis demonstrates direct integration, propagation of the moments of the mea-
surement and model errors, polynomial chaos expansions, and an approximation using Gaussian
quadrature and Monte Carlo simulation.

A sample of smaller case studies shows the range of uses of the algorithm. Three larger case
studies demonstrate the multiscale state estimator in realistic chemical engineering examples.
The terephthalic acid plant case study successfully incorporates a non-linear model of the …rst
continuously stirred tank reactor into the multiscale state estimator. The paper-rolling case
study compares the multiscale state estimator to the Karhunen-Loeve transform as a means of
state estimation. Finally, the heavy oil fractionator of the Shell Control Problem demonstrates
the multiscale state estimator in a control setting.

Thesis Supervisor: George Stephanopoulos
Title: Arthur D. Little Professor of Chemical Engineering
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Chapter 1

Introduction

1.1 Overview

The multiscale formulation provides an attractive alternative to traditional time and frequency

frameworks, for solving problems in process operations analysis and model predictive control.

The framework originated as an outgrowth of developments in the wavelet decomposition, which

has been used for the analysis of discrete systems. The framework represents process data on

trees, which may be dyadic, or of higher order, where the nodes of the tree represent the process

at multiple levels of resolution, and could contain states, measurements, input variables, and

uncertainties in any of these. The dual localisation provided by this framework is attractive for

many estimation and control problems, since it allows an explicit representation of knowledge

acquired, measurements taken, and, decisions made at di¤erent levels of resolution and over

speci…c …nite windows of time. In addition, the algorithms that make use of the multiscale

framework are considerably more e¢cient than those in the time or frequency domains, due to

the parallelisability of the algorithms, which usually scale by O(log(n)), rather than O(n), for

n data points.

The multiscale state estimation algorithm discussed in this thesis solves a multiscale opti-

misation which formulates the state estimation problem. The multiscale optimisation problem

arises naturally from similar optimisation problems in the time domain. The multiscale state es-

timation algorithm is performed by dividing the optimisation problem into parallelisable steps

up each leg of the tree, which are solved to produce the optimal estimate of all states on a
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multiscale tree for a given cost function. The multiscale state equations are derived directly

from time-domain state equations and a suitable averaging scheme, and this new set of consis-

tent equations is used to constrain the optimisation problem. Alternative constraints on the

measurement and modelling uncertainties may be imposed by physical considerations. The

multiscale state estimation algorithm allows the operator to pose questions at relevant levels

of resolution, rather than those speci…ed by the data. It also allows for the optimal fusion of

sets of data taken over di¤erent time scales. Further, the estimation algorithm can be used to

identify a richer feedback error structure for use in a model predictive control scheme.

1.2 Motivation for multiscale research

In many chemical engineering applications, it is of interest to recognise, model and analyse

phenomena occurring at di¤erent scales, and to utilise this information in process simulation,

design, operations and control. This is particularly important for processes where phenomena

at widely di¤erent time and length scales a¤ect the behaviour of a process or structure, and

need to be explicitly dealt with. Conventional Fourier techniques fail because of their inherent

inability to deal with spatial localisation.

Wavelet transforms decompose signals and processes, both in time (or space), and scale, and

o¤er a potential framework for such analysis, [6], [7], [8], [9], and [14]. The theory of multiscale

representations leads naturally to models of signals on trees, such as those illustrated in Chapter

2. The collection of nodes at each scale represents some process, image or physical structure at

a given resolution. The emphasis of this thesis will be on the interaction of the descriptions of

a process at a given resolution, with a description of the same process at a di¤erent resolution.

The general problems tackled in this thesis are the identi…cation of physical models from

measurements at di¤erent resolutions, the reconciliation of physical models with sets of mea-

surements, the fusion of di¤erent, possibly con‡icting sets of measurements of the same process.

The synthesis of internally consistent or compatible models of processes at di¤erent resolutions

will begin the thesis, and concrete methods will be developed to obtain these models using the

framework of the tree.

The speci…c problems that we tackle are state estimation with and without constraints and
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fusion of sensor data from a process where the sensors sample at multiple rates. An important

application is the state estimation at various scales for model predictive control. In conventional

model predictive control, a subset of the recorded input-output data set is used to construct a

single model at the physical level, or at the resolution of a single sampling interval. This research

advances that by identifying multiple internally compatible models at di¤erent resolutions to

the sampling rate, which may be of di¤erent order to the …nest level model. These models

should produce internally compatible responses in the predicted output values. These problems

are discussed in Chapter 6.

The …rst problem to be explored is the relationship between physical models at various scales,

actual measurements at various scales, or equivalently, numerical approximations of physical

behaviour at various scales, and an optimal reconciliation between these for incomplete data

sets. The motivation for using this approach is the existence of multiscale features in many

chemical processes, and the success of similar algorithms for statistical processes. We show

that the multiscale domain is an e¢cient, versatile and intuitive framework for dealing with

multiscale issues in chemical engineering.

1.3 Philosophical motivations for multiscale aspects in chemical

engineering

There are three distinct ways in which multiscale features can enter a chemical engineering

problem.

Firstly, the phenomenon under investigation may possess features and physically signi…cant

e¤ects at multiple scales. Chemical kinetics can involve very di¤erent time scales in a single

reaction mixture. Spectroscopic images that contain spatially localised features can be thought

of as a superposition of …ne features on a more coarsely varying background. Any process which

exhibits self-similarity falls into this category.

Secondly, the data may be collected either at di¤erent sampling rates, or at di¤erent spatial

resolutions, regardless of whether the physical process has multiscale features or not. Examples

of this type of chemical engineering problem are numerous. A wide range of analytical measure-

ments are made with di¤erent equipment involving resolutions varying by orders of magnitude,
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such as the range of resolutions from electron- to light microscopy. Furthermore, even if a single

sensor type is used, it can often be operated in zoom modes, or at di¤erent sampling rates,

which the scientist or engineer may wish to fuse. Any process in which multiple sampling rates

exist and the information needs to be fused are prime candidates for multiscale analysis.

Thirdly, the algorithm for the data processing can utilise a multiscale structure to increase

computational speed, whether the physical phenomenon or the data have multiscale features or

not. multiscale algorithms often allow the user to specify the level of computational complexity

that is desirable by specifying the desired level of accuracy. A feature of a multiscale algorithm,

such as a multigrid relaxation scheme, is that it utilises an existing coarse solution to solve

the problem at …ner resolutions. This approach typically leads to computational e¢ciency and

‡exibility.

This thesis will focus primarily on the second and third aspects. The case studies all have

to potential for multiple data sets, and for multirate data to be used, while the algorithms

produced are clearly multiscale in nature.

1.3.1 Sensor fusion

State estimation at the time scale is fairly well developed for complete sets of measurements,

collected at a single, regular sampling frequency. Often multiple sensors will exist that take

data at di¤erent sampling frequency or spatial resolution. These independent measurements

may cover the entire space, or only part of the space. They may be from a complete data set,

or a partially damaged or corrupted data set. Multiple data points need to be combined in a

way that produces the most realistic description of the observed process.

The types of problems that motivate the use of multiscale concepts are the following. Two

or more sets of measurements are provided that represent measurements of the same quantity

at di¤erent time scales, or spatial resolutions. The coarser set of measurements is an average,

in some sense, of the …ner sets. Chemical engineering examples of these would be microscopic

measurements of surfaces with di¤erent magni…cations, and thus with more information about

speci…c regions. Composition analysis of di¤erent sample sizes taken from the same general

area will provide similar averaging e¤ect.

Two sets of measurements of the same quantity are provided where the coarser is a decimated
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version of the …rst. An example is a probed system where fewer samples are taken between

one sampling and the next. A digital thermometer with zero response time would be such

an probe, if we obtain the measurements by changing the sampling rate between experiments.

This example becomes less trivial if we imagine an accurate, but slow thermometer working in

collaboration with a cheap, but fast one.

1.3.2 Model predictive control (MPC)

Model predictive control is an optimal control based method which utilises an explicit model of

the plant and set of operational and physical constraints to select the best control inputs. These

inputs are selected to minimise an appropriate cost function, where future values of the system

variables are predicted, based on a good estimate of the present states. Frequency analysis

techniques used to design controllers, which provide guarantees for robustness and stability, fail

because of the hard bounds on control inputs. The global information content of the frequency

domain techniques cannot predict localised phenomena such as bound violations. multiscale

analysis, localised both in time and scale (frequency), provides an advanced, integrated environ-

ment of both time and frequency domains and their corresponding techniques. In this thesis, we

demonstrate how multiscale state estimation can be integrated into the multiscale formulation

of the MPC problem. This results in an environment where measurements at di¤erent scales

(rates) are fused consistently and e¢ciently, and optimal control problems are de…ned with

‡exible design considerations. Parallelisable algorithms are formulated to solve the integrated

estimation and control problem, reducing the complexity drastically, thus giving an opportunity

to solve larger problems faster and with more ‡exibility. The main multiscale model predictive

control algorithm is discussed in the thesis of Orhan Karsligil.

1.4 Historical perspective

Previous work in the multiscale area has concentrated on modelling noise processes with a

known statistical structure. The LIDS research group at MIT produced a series of theses, [4],

[10], [11], [13], which developed and applied a multiscale state estimator for noise processes

such as Brownian motion. The argument was that the wavelet decomposition of the signals
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and images at various resolutions was self-similar, and thus that state estimation could make

use of this by constructing models that recognise the self similarity. Certain aspects of their

work were very appealing, and have provided the motivation for the work in this thesis. Like

us, they begin with a signal split into its wavelet scale components.

A dynamic system, with scale as the independent parameter, relates the values of the nodes

at di¤erent scales. These dynamic systems in scale are used to derive a Kalman …ltering type

algorithm that incorporates measurements taken at di¤erent scales, and produces a maximum-

likelihood estimate of the process at all scales. A bene…t of this algorithm is its ability to

handle sparse data, or missing data, and to reconcile con‡icting data sets at di¤erent scales

in a statistically optimal way. My thesis aims to extend this idea to deal with systems found

in chemical engineering, where the states transform in a deterministic way, coupled with an

uncertainty component that is statistical in nature. This contrasts with the purely statistical

approach found in the LIDS work.

Ken Chou’s doctoral thesis [4] and a series of papers in conjunction with Basseville et al

[1],[2], [3] provide the framework of the analysis and modelling of statistical phenomena at

multiple scales and the e¢cient estimation of signals given noisy or incomplete data sets. The

algorithm they propose is suited to data sets recorded at di¤erent resolutions. This e¢cient

optimal estimation algorithm is a multiscale adaptation of the Rauch-Tung-Striebel smoothing

algorithm, and the Kalman …ltering algorithm. While the Kalman …lter was developed for

processes that proceed in time, this multiscale …ltering algorithm proceeds using scale as the

time-like variable. This requires a dynamic system proceeds in scale, or up and down a tree,

rather than across it. The algorithm presented in [4] uses complete sets of measurements

at a given scale as new information, in the same way that a single new reading arrives for

incorporation into a temporal Kalman …lter.

The standard Rauch-Tung-Striebel Algorithm, is designed for a time series, and involves a

forward Kalman …ltering sweep followed by a backward sweep to compute smoothed estimates

(Rauch et al 1965). The forward sweep incorporates new information as it is received, and

produces state estimates based on a subset of the information, while the backward smoothing

algorithm produces the best state estimates that satisfy the a priori speci…ed model based on

all of the data.
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To initiate their tree-based RTS algorithm, the user speci…es the tree-dynamic system to

be used for the analysis - the A and B matrices at each point on the tree, and the statistics

of the uncertainty variables, or the prior information. The algorithm begins with an upward

sweep, where the measurements are incorporated from the …nest level to the coarsest level in a

process similar to Kalman …ltering, but proceeding in scale rather than time. The …ltered state

estimates are used in a …ne to coarse smoothing step to estimate a maximum likelihood of the

state at each node, as well as the error covariance.

After the …ne-to-coarse, or upwards sweep, we have an optimally smoothed estimate of the

root node (or node at the top of the tree). Chou [4], [5], [5] demonstrates how it is possible to

use this estimate to produce optimal smoothed estimates of all remaining nodes.

Despite the di¤erence of having scale as the independent variable, there are strong similar-

ities between this and the classical Kalman …lter [12]. In both cases, the user inputs a set of

measurements of some process which may not represent a complete set at any scale. Where mea-

surements are missing, or unobtainable, the algorithm uses prior information to predict a best

estimate of the unmeasured states. These measurements may represent a 1- or 2-dimensional

spatial set of measurements sampled at various resolutions or a time series of measurements of

some physical process.

The appealing features of this algorithm are that it is extremely e¢cient and highly par-

allelisable. The completely parallelised algorithm runs in O(M) where M is the depth of the

tree, and thus O(log2N). This makes it ideal for massive data sets. The algorithm incorporates

data at multiple resolutions and provides a maximum likelihood estimate of the states at all

resolutions, thus it is suitable for researchers with data collected using di¤erent spectroscopic

techniques that provide data at multiple resolutions.

The LIDS research has been successfully applied to a variety of problems where there is no

a priori structure to the data being analysed. Applications have been found in the estimation

of the height of the ocean based on the fusion of measurements taken from satellite data,

passing ships, aeroplanes and oil rigs. The ocean is expected to be relatively ‡at, and thus any

observed heights can be modelled as noise. Further applications have included the analysis of

radar data to detect movement, essentially for use in military applications, where an enemy

is to be identi…ed and shot. Again, nothing is expected, thus the goal is to distinguish a real
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object in the view…nder from the surrounding noise.

We were motivated by this research, and decided to adapt it to more structured models, and

in particular those that retain their temporal component, as opposed to the static structure.

First order models describe a substantial body of chemical problems, yet these did not …t into

the statistical description presented by the LIDS group. Further, the error structures observed

by the LIDS group did not seem to be appropriate for noise processes, and exogenous inputs

in chemical processes. Our goal was to construct a state estimation algorithm that was tree-

based, fast, parallelisable, and had the ability to incorporate measurements at many levels. This

required the development of a new set of tree-based …rst order models, and then an adaptation

of this set of models to a multiscale state estimator.

1.5 Outline of the thesis

The structure of the thesis is as follows. Chapter 2 contains the theoretical basis for the work,

the development of wavelet theory and dynamic systems on a tree. These concepts show the

evolution of a noise process on a multiscale tree when it is subjected to the Haar wavelet

transform. The Modi…ed Hat Transform is introduced as a necessary by product of our …rst

order processes and the Haar process. The unconstrained multiscale state estimator is derived

from …rst principles, followed by the constrained state estimator, and the chapter concludes

with a discussion of the relationship between the time-based Kalman …lter and the multiscale

state estimator.

Chapter 3 explores the state estimate error statistics on the tree. An algorithm is constructed

to derive the state error estimates in terms of a model for the measurement and modelling error

processes. This enables a statistical description of the state estimate to be produced in terms

of the moments of the measurement and modelling error processes.

Chapter 4 presents simple numerical case studies to demonstrate the features of the multi-

scale state estimation algorithms, such as the use in higher order processes, sensor fusion, and

the comparison to the Kalman …lter.

Chapter 5 presents the paper rolling case study, where the estimation of paper thickness

is obtained using the Karhunen-Loeve transform and a wavelet description of the coe¢cients
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in time. Chapter 7 presents the terephthalic acid case study, and techniques for dealing with

non-linearities in the dynamic system. Chapter 6 presents the link between the multiscale state

estimator and the multiscale model predictive control algorithm.

Chapter 8 presents conclusions of the work, and some directions for future research in this

area.
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Chapter 2

Theoretical Aspects

2.1 Introductory mathematics

2.1.1 Autoregressive processes

Process models often utilise autoregressive, moving average or state space equations,[15]. The

nth order autoregressive system with …rst-order input dynamics, abbreviated AR(p) has the

form

x[n + 1] = a0x[n] + a1x[n ¡ 1] + : : : + apx[n ¡ p] + b0w[n] + u[n] (2.1)

where x[n] represents some state at time n, which is assumed to be evolving in time and could

be any physical quantity, the nth order derivative of a physical property, or a vector made up of

combinations of these. The a’s and b’s are constants, dependent on degree of discretisation and

physical parameters. w[n] is a noise process at time n, which, unless we specify otherwise, will

be assumed to be white Gaussian noise with unit variance. This noise process collects unknown

disturbances and uncertainties - the parts of the problem over which the user has no control.

u[n] is a user speci…ed signal, and is usually referred to as a control variable. The model shown

is a restriction to …rst-order input dynamics - higher order input dynamics would require the

presence of terms u[n ¡ 1]; :::; u[n ¡ k].
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The moving average process, MA(p) has the form

x[n + 1] = a0x[n] + b0w[n] + b1w[n ¡ 1] + : : : + bp¡1w[n ¡ p + 1] + u[n] (2.2)

The autoregressive and moving average models are general enough to represent a variety

of real chemical processes, and form the basis of a substantial number of models used for

the control of chemical processes. The identi…cation of states and system models is based on

the manipulation of set of measurements in various ways. In all cases there is an implied

measurement model of the form

y[n] = C[n] + v[n] (2.3)

where C is the measurement matrix and v[n] is a measurement noise process. Exact state

measurements have C = 1 and v[n] = 0 for all times. For these cases only, x[n] can be used to

denote the measurement as well as the state.

While these processes have been described as processes varying in time, they could as

easily describe a spatially varying process. For example, the solution of the steady state, one-

dimensional heat equation can be represented as an AR(2) process. These autoregressive

processes form the basis for the dynamic systems of state used in the estimators developed in

this chapter.

2.1.2 Trees and notation

The concept of a tree in multiscale systems theory is parallel to that of the time line in standard

systems theory and dynamic systems. The tree is a collection of nodes that index information

at a given resolution and within a given time period, in the same way that the time line is used

to index information in time.

The multiscale system theory of Benveniste et al. [3] is de…ned on homogenous trees of

order q. These are in…nite, acyclic, undirected, connected graphs such that each node of the

graph is connected by branches to exactly q + 1 nodes. The nodes are indexed by ¿ , which

denotes the position on the tree. Nodes can be used to index many types of variables, such as

images and functions, f(¿), states, x(¿ ), measurements, y(¿ ), noise terms, w(¿), all of which

28



f(0,0) f(0,2) f(0,4) f(0,7)

f(1,0)

f(2,0)

f(3,0)

f(2,1)

f(1,1) f(1,2) f(1,3)

low resolution image 

high resolution image

values connected by 
dynamic systems in scale

Figure 2-1: A Multiscale Tree of Order 2, Containing Process f

may be scalar or vector. The index ¿ can be replaced by a pair of numbers to indicate scale

and position on the tree.

The Haar wavelet tree illustrated in …gure 2-1 is an example of such a tree with q = 2. The

process f can be thought of as some one-dimensional process, or image, being viewed at various

levels of resolution, with the …rst variable indicating the scale, or level of resolution, and the

second the spatial position. The next section will provide details of how these are obtained.

The general framework has an obvious interpretation for the cases q = 2 in 1-D problems,

for example temperature, pressure and concentration pro…les in time, or spatial pro…les that

vary in a single direction only. Trees with q = 4 are used in 2-D problems, and would be used

to describe two-dimensional images, or processes that vary both in space and time. Figure

2-2 contains an example of three levels of such a quadtree. The uppermost level contains a

single node, and is the coarsest description of the image or process. This can be viewed as
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Figure 2-2: A Quadtree (q=4) with a Two Dimensional Process

a global average of the image, or the image perceived from a considerable di¤erence. The

middle level contains three more pieces of information, and thus a more detailed version of the

information, while the lowest level contains the highest resolution. In principle, these levels

extend in…nitely far in all directions - to arbitrarily coarse descriptions of the process up the

tree, and to arbitrarily …ne descriptions down the tree. Note that each node of the quadtree

contains four descendant nodes leading to a …ner description, and a single ascendant node,

leading to a coarser description.

The time line has a simple method of indexing, since there is bijection with the set of

integers, one selects an anchor and enumerates outwardly from it. This anchor, or origin, is

typically some arbitrary t = 0. On the tree, the indexing is more complicated since in addition

to the arbitrary choice of origin, there are also multiple paths from a node. An indexing system

is illustrated in Figure 2-3 .
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Figure 2-3: An Indexing System for a Multiscale Tree of Order q=2

For two nodes ¿1 and ¿2, there is a distance d(¿1; ¿2) which is the number of branches

that must be traversed on the unique path joining ¿1 to ¿2. We can de…ne a point of highest

abstraction, referred to as 1, from which there is a partial ordering of the nodes, ¿ , in terms

of their distance from 1. This corresponds to the arbitrary selection of a zero on the time

line. This partial ordering leads naturally to the equivalence class of horocycles, or points that

are equidistant from 1. These horocycles are referred to (equivalently) as scales, levels of

resolution, levels, and can be thought of as containing all of the information about a variable

at a given level of detail. In the ordered pair technique of indexing, the …rst is assigned to the

level.

Greek letters are used to indicate relationships between the nodes. The single upward

branch of any node, or a movement towards 1; is described by °, and the node ¿°, the node

immediately above node ¿ on the tree, is referred to as the parent node. This is occasionally
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Figure 2-4: Descendant Node Geometry

referred to as the mother node in certain literature. Each descendant node is assigned an

argument ®k, enumerated by de…nition. For q = 2, we de…ne k = 1 as the left node, k = 2 as

the right node, and for simplicity replace them with ® and ¯. One can easily de…ne a similar

scheme for the quadtree, q = 4. For the remainder of the document, ¿® will refer to the

descendant node from the left branch of ¿ while ¿¯ will refer to the descendant node from the

right branch of ¿ as illustrated in Figure 2-4.

All of these index relations can be applied recursively. In Figure 2-3, three nodes s;w

and v are shown, with a parent and grandparent node of s illustrated by two applications of

°, as well as the two descendant nodes. The pair w and v are used to indicate the concept of

lowest common ascendant, indicated by w^v. This is the unique node that is farthest from 1,

and can be described purely by expressions of the form w°kw and v°kv , where the k’s represent

integers.

2.1.3 Wavelet theory

A substantial body of literature now exists on the topic of wavelet decompositions [6], [7], [8],

[9], [14], [17], [11], [20], [1]. This treatment will focus only on topics directly pertinent to this
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research. Further details on the linear algebra aspects of wavelets may be found in Daubechies

[8], the …ltering aspects are dealt with in Mallat [17], and the vector space aspects are discussed

in Strang [20].

The multiscale representation of a continuous function, f(t) 2 L2(R), is a projection of the

function onto a vector space spanned by a set of orthogonal functions called wavelets. Mallat

[17] makes the following observations about the approximation operators:

1. There is a projection operator, A2j, that approximates the signal f(t) at resolution 2J :

It is a linear projection operator onto the space V2j , which is the space of all possible

functions in L2(R) that can be represented in terms of translations of the scaling function

pertinent to that level.

2. Among all possible approximated functions at the resolution 2J , A2jf(t) is the function

which is most similar to f(t):

3. The approximation of a signal at resolution 2J+1 contains all of the information required

to make the approximation at 2J . This leads to a set of nested vector spaces of functions

of increasing resolution V2j ½ V2j+1.

4. Since the approximation operator is similar at all scales, the vector spaces at all scales

should be related by appropriate scaling,

f(x) 2 V2j () f(2x) 2 V2j+1 (2.4)

5. Each vector space, or scale, contains a characteristic length. Translation by a multiple

of this characteristic length is invariant under projection from the original signal to the

approximation.

6. The limits of these vector spaces are the zero function for the coarsest approximation and

L2(R) for the …nest approximation.

Many sets of vector spaces satisfy these conditions, speci…cally any scaling function, Á(x) 2
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L2(R) that satis…es

Á2j(x) = 2jÁ(x) j 2 Z (2.5)

can be used to create a basis from its integer translations,

p
2¡jÁ2j(x ¡ 2¡jn) j; n 2 Z (2.6)

which will span the vector space V2j .

Mallat show how to construct wavelets, Ã; from these scaling functions to span the detail

spaces, D2j : These are de…ned to complement the vector spaces by capturing information lost

in the transition from on vector space to the next. At all levels

D2j ? V2j

V2j © D2j = V2(j+1) (2.7)

For the purposes of this thesis, we are interested in the representation of the signals at the

various resolutions, and thus in the reconstructed versions of the signals that live in the spaces

V2j and D2j: The Haar basis is chosen for its simplicity and computational e¢ciency. The

reconstructions can thus be represented by vectors of sampled data points from the functions

f2j in V2j and ±f2j in D2j . In this thesis, and indeed in most other work on the topic, there is an

abuse of notation that refers to the sampled data points in the two functions as “scaling function

coe¢cients” and “wavelet coe¢cients”, whereas in fact they di¤er by a factor of 1p
2

from the

coe¢cients, and have a considerably more complicated relationship if a di¤erent wavelet is used.

Nevertheless, the notation is now so widespread that it is employed here.

This approach allows an approximation of the function to be represented by a discrete set of

values, that collect the information in such a way that temporal and frequency based information

are preserved. For the purposes of this discussion, the zeroth level contains regularly sampled

data at some frequency, usually determined by physical considerations.

ff (0)(t)g = ff0;0(= f (0)(t0)); f0;1(= f (0)(t1)); : : : ; f0;2k; f0;2k+1g (2.8)
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is a sequence of discrete-time values of f(t) for a given sampling interval.

The simplest example of a scaling- and wavelet function is the Haar function, [2], and

corresponding wavelet [20]. These are used to generate the coarser representations of the

function f(t), by convolving f (0)(t) with h = 1p
2

h
1 1

i
(the Haar scaling …lter) to obtain a

coarser average, and by convolving with g = 1p
2

h
1 ¡1

i
(the Haar wavelet …lter) to obtain

the information lost in the averaging scheme. This approach reduces to the Haar wavelet

decomposition of f(t). It produces the average and di¤erence of a function at a given level

from the average of the function at the scale below. The explicit form is given for the zeroth

level.

f1;k =
1p
2

(f0;2k + f0;2k+1) (2.9)

±f1;k =
1p
2

(f0;2k ¡ f0;2k+1) (2.10)

Subsequent …ltering of f1;k, leads to coarser depictions of f(t). The complete Haar decom-

position of ff(0)(t)g leads to a set of coe¢cients, which can be indexed to correspond to the

nodes of a binary tree, as shown in Figure 2-1.

With the concept of a signal on a tree clearly de…ned, and the means of splitting it into

its frequency bands using wavelet decomposition, it is time to explore more structured signals,

and the additional constraints that are imposed when one uses a model to describe the signal

f: First it is necessary to introduce what is meant by a model on a tree.

2.2 Motivation for the multiscale state estimator

2.2.1 Direct use of the Kalman …lter cost function on the tree

A classical model prediction control algorithm involves a system identi…cation step which re-

quires the solution of an optimisation problem such as the following one.

Problem 1

min
fx̂kg

xeT0j¡1P
¡1
0j¡1x

e
0j¡1 +

X

k=0::n

v̂Tk R¡1
k v̂k + ŵTkQ¡1

k ŵk (2.11)
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subject to

x̂(k + 1) = Ax̂(k) + Bu(k) + ŵ(k)

y(k) = Cx̂(k) + v̂(k)

g
¯

· Gx̂(k) · ¹g

h
¯

· ŵ(k) · ¹h

x̂(k) is the resulting estimate of the state and ŵ(k) the associated modelling error or distur-

bance. The hat notation implies that they are both obtained from the solution to an estimation

problem, as opposed to being true physical values, such as the measurement, y, and the process

input, u:

Using this state estimation, one is able to lump all model uncertainty into a single parameter,

d = x̂kjk¡ x̂kjk¡1, for use in prediction of future state variables. This newly identi…ed variable

will be used to construct a control policy using MPC, which will be discussed in detail in a

later chapter.

A richer model structure than this can be constructed by allowing a more elaborate model

uncertainty structure, speci…cally one based on the richer state dynamics structure of the mul-

tiscale domain. If state identi…cation takes place at multiple scales, we can obtain estimates of

the errors in the models we construct at multiple resolutions, which can be used to produce a

control policy based on a richer summary of our historical data.

To achieve this aim, it is necessary to obtain a deeper understanding of the issues involved in

modelling at multiple scales, and in estimation and identi…cation based on multiscale models.

Although the MPC formulation has motivated much of this research, we will begin with a

development of multiscale mathematical concepts that are suitable for more general applications

of multiscale modelling.

Ideally, the cost function for Problem 1 would be directly applicable for multiscale problems,

by a simple orthogonal transform, such as the Haar transform. Let us consider why this is not

the case. Consider a reduced time based problem of the same form as Problem 1, but with
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R = Q = 1; P¡1 = 0 and no constraints on any of the variables. The problem reduces to:

min
fx̂kg

v̂T v̂ + ŵT ŵ

v̂ = y ¡ Cx̂ (2.12)

ŵ = x̂k+1 ¡ Axk ¡ Buk (2.13)

In performing a wavelet transform, such as the Haar transform, there is an orthonormal

matrix H, that produces a linear transformation from the time space to a wavelet space:

Hx̂k = x̂¿ (2.14)

x̂k = fx̂0; x̂1; x̂2; : : : ; x̂N¡1g (2.15)

x̂k+1 = fx̂1; x̂2; : : : ; x̂Ng (2.16)

x̂¿ = fx̂top; ±x̂top; ±x̂top®; : : : ; ±x̂bottomg (2.17)

Ideally we would like to produce a solution of the type

min
fx̂kg

v̂THTHv̂ + ŵTHTHŵ

Hv̂ = Hy ¡ HCx̂k (2.18)

Hŵ = Hx̂k+1 ¡ HAxk ¡ HBuk (2.19)
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Consider the structure of H for the Haar transform, illustrated here for the eight point

problem, or a tree of depth 3.

H =

2
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(2.20)

The general form for trees of arbitrary depth extends the pattern with a constant top row of
1p
n where n is the number of points at the zeroth level of the tree, and a predictable pattern

of block di¤erences at each row, with each scale di¤ering by a factor of
p

2. The matrix H

follows directly from the Haar decomposition model, 2.9, and is trivially orthonormal. The

measurement term produces no problems since all elements in the measurement equation are

at the same node - the measurement, y, the state, x, and the error, v. The transformation

is straightforward, and since H is orthonormal, the measurement terms in the time based

problem sum to the same value as in the tree based problem. The modelling term, which

describes the state dynamics, would be identical if we were prepared to use a Haar transform

for the modelling error, yet this produces an awkward state description at higher levels. The

reason for this is the term Hx̂k+1 in 2.19. The technique of transforming using Haar fails since

there is incompatibility between the trees being used: the transforms Hx̂k and Hx̂k+1 map

onto di¤erent multiscale spaces, and we have a non-trivial, and therefore useless, relationship

between the state variables that we are trying to …nd.

We must thus seek an alternate formulation of the problem, or an alternate transform. An

alternative is to change the cost function to include a di¤erently weighted set of modelling errors.

Our approach is to introduce the concept of dynamic systems on the tree, and demonstrate the

extent of their equivalence to dynamic systems at the physical level.
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2.3 Dynamic systems and noise processes on trees

2.3.1 multiscale models on trees

The concept of representation of models on binary trees was introduced in [5], [10], [13], [16].

The approach taken by the LIDS group di¤ers signi…cantly from ours, since they were largely

concerned with independent noise processes on trees, and their evolution in time. Our approach

seeks to convert physical models in time to multiscale models on a tree. This section describes

the process for a …rst-order system.

2.3.2 Equivalence of dynamic systems on the tree and dynamic systems in

time

We begin with a zeroth order dynamic system on the time line such as the measurement equation

above.

v̂ = y ¡ Cx̂ (2.21)

The measurement equation transforms trivially into the wavelet domain.

Hv̂ = Hy ¡ HCx̂ (2.22)

The signi…cance of this will become more clear once the …rst-order system has been pre-

sented.

Beginning with a …rst-order dynamic system in time,

xk+1 = Axk + Buk (2.23)

Note that we can restrict our attention to u for the moment - w follows similar dynamics

since it appears as a k term in the formulation, and will thus transform in the same way. We

wish to apply a Haar wavelet transform to the state values, xk, of this system, and investigate

the dynamic system created at higher levels.
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The Haar transform is

x¿ =
1p
2

(x¿® + x¿¯) (2.24)

Choosing initially ¿® = 0, that is a point on the zeroth level, the zeroth order state equation

is

x1 = Ax0 + Bu0 (2.25)

transforming using the Haar decomposition,

x0° =
1p
2

(x0 + x1)

=
1p
2

(x0 + Ax0 + Bu0) (2.26)

=
1p
2

(I + A)x0 +
1p
2
Bu0 (2.27)

For ¿® = 2 on the zeroth level,

x2° =
1p
2

(x2 + x3)

=
1p
2

(x2 + Ax2 + Bu2)

=
1p
2

((I + A) (Ax1 + Bu1) + Bu2)

=
1p
2

((I + A)A(Ax0 + Bu0) + (I + A)Bu1 + Bu2)

x2° = A2x0° +
1p
2

(ABu0 + (I + A)Bu1 + Bu2) (2.28)

The geometry of this relationship is general over the entire zeroth level. This representa-

tion reveals the existence of a …rst-order relationship at the …rst level, with input relations as

observed in the above. This observation allows us to de…ne the Modi…ed Hat Transform as

follows:

B0°u0° =
1p
2

(ABu0 + (I + A)Bu1 + Bu2) (2.29)
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From a …rst-order dynamic system with input dynamics at a given level, it is possible to

construct, using the Haar decomposition, a …rst-order dynamic system at the level immediately

above, with input dynamics that obey the Modi…ed Hat transform. Note that this transfor-

mation is unique - the transformation of the states at the zeroth level to higher levels using

the Haar transform naturally produces the Modi…ed Hat Transform in the input variables, thus

there is no bene…t to seeking a simpler input transform.

It should be noted that it is possible to generate a similar …rst-order relationship between

wavelet coe¢cients at the higher level using a similar construction to the above as follows.

±x2° = A2±x0° +
1p
2

(ABu0 + (I ¡ A)Bu1 ¡ Bu2) (2.30)

thus,

B0°u¤0° =
1p
2

(ABu0 + (I ¡ A)Bu1 ¡ Bu2) (2.31)

A …rst-order di¤erence equation at one level of the tree gives rise to a …rst-order di¤erence

equation at all other levels on the tree, and further, a …rst-order di¤erence equation on one

level gives rise to a …rst-order di¤erence equation between two adjacent levels on the tree.

In a similar way, an nth order system at the physical level can be transformed into an nth

order system at any higher level using the Haar transform, where the input variable will be

de…ned by a generalised modi…ed hat transform of support 2n + 1 nodes. Likewise, one can

construct nth order di¤erence equations up the tree - di¤erence equations linking connected

nodes at n + 1 adjacent levels of the tree.

A Haar wavelet transform is applied to the state variables, from which the following two-

scale model [12] can be created for any node, ¿ .

x¿ =
1p
2

(x¿® + x¿¯) (2.32)

=
1p
2

(I + A)x¿® +
1p
2
Bu¿® (2.33)
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or equivalently, by creating and comparing wavelet and scaling function decompositions,

±x¿ =
1p
2

(x¿® ¡ x¿¯) (2.34)

=
1p
2

(I ¡ A)x¿® ¡ 1p
2
Bu¿® (2.35)

= (I + A)¡1 (I ¡ A)x¿ ¡
p

2 (I + A)¡1 Bu¿® (2.36)

Since the dynamic system at higher levels has the same dynamics as the zeroth level dynamic

system, similar …rst-order models can be generated recursively at all higher levels. In particular,

for any left-node at level-m, the following are the multiscale counterparts of 2.33 and 2.36.

x¿® =
p

2
³
I + A(m)

´¡1
x¿ ¡

p
2
³
I + A(m)

´¡1
B(m)u¿® (2.37)

±x¿ =
³
I + A(m)

´¡1 ³
I ¡ A(m)

´
x¿ ¡

p
2B(m)

³
I + A(m)

´¡1
u¿® (2.38)

where A(m), or A¿ , is A2m and m refers to the scale.

Thus, a discrete-time model, given by equation 2.23, describing process behaviour over 2N

points, transforms to a multiscale model, given by equation 2.37 or 2.38, de…ned over 2N left-

nodes, ¿ , of a binary tree (with N levels, excluding the level of the …nest resolution). Each node

of the binary tree describes process behaviour over localised sections of time and scale (range

of frequencies). Importantly, the information contained in the two representations is identical.

In this section, no distinction has been made between a control input and a modelling

uncertainty, because their form in the state equation is identical, the two terms can be treated

in the same way, and the modi…ed hat transform is appropriate for both.

2.3.3 Di¤erent forms of the …rst-order system between adjacent levels

There are a number of ways to adapt the cost function to create something more computationally

tractable. A …rst step is to recognise that even though the …rst-order system at a given level

gives rise to a …rst-order system at other levels, and a separate …rst-order system between two

adjacent levels, there is more than one such …rst-order system. Clearly some of the relationships

below are trivial, but all of the useful ones can be found - a relationship between a state and

its left descendant state, between a state and its right descendant state, between a state and

42



its wavelet coe¢cient, and between the wavelet states and either of the descendant states. As

shown above, the existence of a zeroth level dynamic system implies the same dynamic system at

higher levels, with predictable parametric modi…cations, thus the equations below are general.

The following discussion demonstrates that a …rst-order dynamic system can be constructed

by choosing any two from the set of the two adjacent points, their scaling function coe¢cient

and their wavelet coe¢cient, and relating them to the input on the left branch of the tree.

Given a …rst-order multiscale dynamic system,

x¿¯ = Ax¿® + Bu¿® (2.39)

…nd suitable coe¢cients to satisfy for any choice of scalars a; b; c, and, d;

ax¿® + bx¿¯ = µ (cx¿® + dx¿¯) + Ãu¿®

ax¿® + b (Ax¿® + Bu¿®) = µ (cx¿® + d (Ax¿® + Bu¿®)) + Ãu¿®

(a + bA ¡ µc ¡ µdA)x¿® = (µdB + Ã ¡ bB)u¿® (2.40)

x¿® and u¿® are independent, so for complete generality, the two quantities within paren-

theses must be zero, thus

µ = (c + dA)¡1 (a + bA) (2.41)

Ã = (c + dA)¡1 B (bc ¡ ad) (2.42)

The …rst-order description thus has many di¤erent forms represented by the following equa-

tion, where any element of the …rst brace can be used in combination with any element of the

second:

8
>>>>>><
>>>>>>:

x¿®

x¿¯

x¿

±x¿

9
>>>>>>=
>>>>>>;

= µ

8
>>>>>><
>>>>>>:

x¿®

x¿¯

x¿

±x¿

9
>>>>>>=
>>>>>>;

+ Ãu¿® (2.43)

The following tables show the explicit values for the 16 possible cases of µ and Ã: The
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c d x¿® x¿¯ x¿ ±x¿
a 1 0 1p

2
1p
2

b 0 1 1p
2

- 1p
2

x¿® 1 0 1 A 1p
2
(I + A) 1p

2
(I ¡ A)

x¿¯ 0 1 A¡1 1 1p
2
(I + A)A¡1 1p

2
(I ¡ A)A¡1

x¿ 1p
2

1p
2

p
2 (I + A)¡1

p
2 (I + A)¡1 A 1 (I + A)¡1 (I ¡ A)

±x¿ 1p
2

- 1p
2

p
2 (I ¡ A)¡1 ¡

p
2 (I ¡ A)¡1 A (I ¡ A)¡1 (I + A) 1

Table 2.1: Table of Phi values for All First Order Equations

c d x¿® x¿¯ x¿ ±x¿
a 1 0 1p

2
1p
2

b 0 1 1p
2

¡ 1p
2

x¿® 1 0 0 B 1p
2
B ¡ 1p

2
B

x¿¯ 0 1 ¡A¡1B 0 ¡ 1p
2
A¡1B ¡ 1p

2
A¡1B

x¿ 1p
2

1p
2

¡ (I + A)¡1 B (I + A)¡1 B 0 ¡ 1p
2
(I + A)¡1 B

±x¿ 1p
2

¡ 1p
2

(I ¡ A)¡1 B (I ¡ A)¡1 B 1p
2
(I ¡ A)¡1 B 0

Table 2.2: Table of Psi values for All First Order Equations

leftside of the equation runs along the top row, the right side down the …rst column, the values

of a; b; c and d are listed, and …nally in the bottom right quadrant the parameter values are

listed.

The utility of this formulation is that it allows us ‡exibility in constructing the cost function.

We can choose to de…ne our model uncertainty in terms of the wavelet formulation, the scaling

function formulation, or some other way related to the two. The importance of this choice

becomes clear if one tries to include both de…nitions of model uncertainty in the cost functions,

and at some point one has to decide which it is to be.

Note though, that the modelling error on the right leg of the tree, u¿¯, has no de…nition

in terms of a …rst-order dynamic system on the tree, and is de…ned in terms of the modi…ed

hat transform between one higher and two adjacent nodes. This raises the question of whether

minimising a set of modelling errors on the tree is equivalent to minimising modelling errors at

the time line. Instead of producing an equally weighted sum of the squares as in the time line

formulation, the modi…ed hat transform gives rise to an unequally weighted sum of squares,

where the weights depend on the magnitude of A, and the number of levels. To zeroth order,
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the ratio of the magnitude of the largest and smallest weight is 1=N where N is the number of

points at the zeroth level. This can be reduced to 1=log2N by weighting the modelling error at

each level by a factor of 2level=2, where level is an integer representing the number of levels above

the zeroth level. This is intuitively comforting, since this factor enhances the importance in the

cost function, of the coarse layers that include the most averaging, and where measurements

should be more reliable.

2.3.4 Correlation structure of the Haar transform

The independent white noise process on the tree produces simple solutions due to its simple

correlation structure.

Claim 2 A zero mean, normally distributed, white noise process of known covariance at the

zeroth level

w = [w0; w1; : : : ; wN ] (2.44)

E [w] = 0 (2.45)

E
£
wwT

¤
= IR0 (2.46)

can be converted using the Haar transform to

±w = [wtop; ±wtop; : : : ; ±wbottom] (2.47)

E [±w] = 0 (2.48)

E
£
±w±wT

¤
= IR0 (2.49)

Proof. By level to level construction.

At the …rst level,

E [w¿ ] = E
·

1p
2

(w¿® + w¿¯)
¸

=
1p
2

(E [w¿®] + E [w¿¯])

= 0
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from 2.45.

Similarly

E [±w¿ ] = 0

Further

E
£
w¿wT¿

¤
= E

·
1p
2

(w¿® + w¿¯)
1p
2

(w¿® + w¿¯)T
¸

=
1
2

¡
E

£
w¿®wT¿®

¤
+ E

£
w¿®wT¿¯

¤
+ E

£
w¿¯wT¿®

¤
+ E

£
w¿¯wT¿¯

¤¢

=
1
2

(IR0 + 0 + 0 + IR0)

= IR0 (2.50)

Even further

E
£
±w¿±wT¿

¤
= E

·
1p
2

(w¿® ¡ w¿¯)
1p
2

(w¿® ¡ w¿¯)T
¸

=
1
2

¡
E

£
w¿®wT¿®

¤
¡ E

£
w¿®wT¿¯

¤
¡ E

£
w¿¯wT¿®

¤
+ E

£
w¿¯wT¿¯

¤¢

=
1
2

(IR0 ¡ 0 ¡ 0 + IR0)

= IR0 (2.51)

And even further

E
£
w¿±wT¿

¤
= E

·
1p
2

(w¿® + w¿¯)
1p
2

(w¿® ¡ w¿¯)T
¸

=
1
2

¡
E

£
w¿®wT¿®

¤
¡ E

£
w¿®wT¿¯

¤
+ E

£
w¿¯wT¿®

¤
¡ E

£
w¿¯wT¿¯

¤¢

=
1
2

(IR0 ¡ 0 + 0 ¡ IR0)

= 0 (2.52)

At this point, all levels are indistinguishable, since fw¿g at the …rst level has the same

statistics as the zeroth level, and thus the level to level transformations between higher levels

will produce similar results.
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It remains to show that

E
£
±w¿®±wT¿

¤
= E

·
1p
2
±w¿® (w¿® + w¿¯)T

¸

=
1p
2

¡
E

£
±w¿®wT¿®

¤
+ E

£
±w¿®wT¿¯

¤¢

=
1p
2

(0 + 0)

= 0 (2.53)

A similar argument completes the proof for all levels.

2.3.5 The correlation structure of the modi…ed hat transform

Consider instead the modi…ed hat transform and the expected values due to the new transform.

A constant state dynamic system has been assumed, construction of the general case is trivial

from the proof below, but o¤ers few simpli…cations.

Claim 3 Suppose at the zeroth level,

E [w] = 0

E
£
wwT

¤
= IR0

(by standard abuse of notation, this may refer to a block diagonal matrix with matrix R0

repeated down the diagonal, and similarly for the remainder of the matrices)

At all higher levels, k.

E [w¿ ] = 0

E
£
w¿wT¿

¤
= IRk

E
£
w¿+1wT¿

¤
= IUk

E
£
w¿wT¿+1

¤
= ILk

E
£
w¿wT¿+p

¤
= 0 8 jpj ¸ 2

where Rk; Lk; Uk are linked by the recursion described below.
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Proof. For k = 0 this is true by construction with Rk = R0, Uk = 0, and, Lk = 0. Thus

assume it is true for any level.

For ¿ any higher level, let us begin with the …rst-order statistics.

w¿ =
1p
2

(a¿®w¿® + (1 + a¿®)w¿¯ + w¿¯+1)

E [w¿ ] =
1p
2

(a¿®E [w¿®] + (1 + a¿®)E [w¿¯] + E [w¿¯+1])

= 0 (2.54)

A similar argument holds for the …rst-order statistics at higher levels. The second order

statistics are more complicated. Again assume it is true at level k, and demonstrate that it is

true at level k + 1.

w¿ =
1p
2

(a¿®w¿® + (1 + a¿®)w¿¯ + w¿¯+1)

Rk+1 = E
£
w¿wT¿

¤

E
£
w¿wT¿

¤
=

1
2

¡
a¿®E

£
w¿®wT¿®

¤
aT¿®

¢

+
1
2

³
(1 + a¿®)E

£
w¿®wT¿®

¤
(1 + a¿®)T + E

£
w¿®wT¿®

¤´

+
1
2

³
a¿®E

£
w¿®wT¿®+1

¤
(1 + a¿®)T + (1 + a¿®)E

£
w¿®wT¿®+1

¤´

+
1
2

³
(1 + a¿®)E

£
w¿®+1wT¿®

¤
aT¿® + E

£
w¿®+1wT¿®

¤
(1 + a¿®)T

´

+
1
2
a¿®E

£
w¿®wT¿®+2

¤
+

1
2
E

£
w¿®+2wT¿®

¤
aT¿® (2.55)

=
1
2

³
a¿®RkaT¿® + (1 + a¿®)Rk (1 + a¿®)T + Rk

´

+
1
2

³
a¿®Lk (1 + a¿®)T + (1 + a¿®)Lk

´

+
1
2

³
(1 + a¿®)UkaT¿® + Uk (1 + a¿®)T

´
(2.56)
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For the o¤ diagonal terms,

w¿ =
1p
2

(a¿®w¿® + (1 + a¿®)w¿¯ + w¿¯+1)

Lk+1 = E
£
w¿wT¿+1

¤

E
£
w¿wT¿+1

¤
=

1
2

³
a¿®E

£
w¿®wT¿®+2

¤
aT¿® + (1 + a¿®)E

£
w¿®wT¿®+2

¤
(1 + a¿®)T

´

+
1
2

³
E

£
w¿®wT¿®+2

¤
+ a¿®E

£
w¿®wT¿®+3

¤
(1 + a¿®)T + (1 + a¿®)E

£
w¿®wT¿®+3

¤´

+
1
2

³
(1 + a¿®)E

£
w¿®+1wT¿®+2

¤
aT¿® + E

£
w¿®+1wT¿®+2

¤
(1 + a¿®)T

´

+
1
2
a¿®E

£
w¿®wT¿®+4

¤
+

1
2
E

£
w¿®+2wT¿®+2

¤
aT¿® (2.57)

=
1
2

³
(1 + a¿®)LkaT¿® + Lk (1 + a¿®)T

´
+

1
2
RkaT¿® (2.58)

Similarly for the upper diagonal terms.

Uk+1 = E
£
w¿+1wT¿

¤

=
1
2

³
a¿®Uk (1 + a¿®)T + (1 + a¿®)Uk

´
+

1
2
a¿®Rk (2.59)

And for completion

E
£
w¿wT¿+2

¤
=

1
2

¡
a¿®E

£
w¿®wT¿®+4

¤
aT¿®

¢

+
1
2

³
(1 + a¿®)E

£
w¿®wT¿®+4

¤
(1 + a¿®)T + E

£
w¿®wT¿®+4

¤´

+
1
2

³
a¿®E

£
w¿®wT¿®+5

¤
(1 + a¿®)T + (1 + a¿®)E

£
w¿®wT¿®+5

¤´

+
1
2

³
(1 + a¿®)E

£
w¿®+1wT¿®+4

¤
aT¿® + E

£
w¿®+1wT¿®+4

¤
(1 + a¿®)T

´

+
1
2
a¿®E

£
w¿®wT¿®+6

¤
+

1
2
E

£
w¿®+2wT¿®+4

¤
aT¿® (2.60)

= 0 by the induction assumption. (2.61)
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A similar argument holds for all other distances from the reference point, which completes

the proof with the following recursion

Rk+1 =
1
2

³
a¿®RkaT¿® + (1 + a¿®)Rk (1 + a¿®)T + Rk

´
(2.62)

+
1
2

³
a¿®Lk (1 + a¿®)T + (1 + a¿®)Lk

´
(2.63)

+
1
2

³
(1 + a¿®)UkaT¿® + Uk (1 + a¿®)T

´
(2.64)

Lk+1 =
1
2

³
(1 + a¿®)LkaT¿® + Lk (1 + a¿®)T

´
+

1
2
RkaT¿® (2.65)

Uk+1 =
1
2

³
a¿®Uk (1 + a¿®)T + (1 + a¿®)Uk

´
+

1
2
a¿®Rk (2.66)

Further, it follows that

Lk = UTk

Note that for symmetric A, Lk+1 = Uk+1

2.3.6 Perfect reconstruction using the modi…ed hat transform

While the modi…ed hat transform does not produce an orthonormal transform, the transform

can be performed in O(N) steps where N is the number of points. It is not parallelisable,

since at any level, all points must be solved in sequence, and rely on the solution of one of

the adjacent points. It does, however, produce perfect reconstruction, given the right-most

boundary condition, for which we generally assume zero - the expected value of all future

values of model uncertainty - in the absence of con‡icting information.

2.4 The multiscale state estimation algorithm

The goal of the state estimation algorithm is to produce an optimal state estimate from a set

of measurements. The measurements, y, are of some process described by a dynamic system
dx
dt = f(x; u; w), where x are the states, u are some known inputs, and w are used to describe

any unknown inputs, and unknown dynamics in the process. The measurements y are governed

by a measurement equation y = g(x; v), where v represents the uncertainty in the measurement
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process. This information is used to generate a set of optimal state estimates x̂.

The purpose of the multiscale state estimator is to examine the states, state dynamics, the

measurements, and the uncertainties in all of these, and to project them onto a multiscale tree

so that meaningful state estimates are produced, either in a more e¢cient way than existing

time based algorithms, or in a way that increases the utility of the information.

We begin with the derivation of the multiscale state estimation algorithm for the …rst-order

autoregressive process with model uncertainty, and driven by an input.

x(t + 1) = Ax(t) + Bu(t) + w(t) (2.67)

This is the …rst-order process on the time line that will be used to generate measurements.

2.4.1 Multiscale processes on trees

Processes of this form can be projected onto multiscale trees to produce a number of equivalent

functional forms on the tree as described in Section 2.3.3. For its simplicity and e¢ciency of

solution, choose the functional form relating the wavelet coe¢cients and the scaling function

at the same node.

(I + A¿®) ±x¿ = (I ¡ A¿®)x¿ +
p

2Bu¿® +
p

2w¿® (2.68)

2.4.2 The basis set of states on the tree

The states to be estimated are the set of Haar wavelet coe¢cients of the states at the zeroth

level, ±x̂¿ , and the top scaling function coe¢cient, x̂top. It is convenient to use the other

scaling coe¢cients throughout the algorithm, since they provide a convenient shorthand in the

recursion. With the exception of the top node, the scaling function coe¢cients are not part

of the basis set, since they are a linear combination of the wavelet coe¢cients and the top

scaling function coe¢cient. The dimension of the basis in the time- and tree-based problems is

consistent.
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2.4.3 Inputs on the tree

The u¿® are the input values produced through the modi…ed hat transform of the zeroth level

inputs, ut, consistent with the selection of the dynamic system on the tree. The modelling

uncertainty variables, w¿ , will also be governed by the modi…ed Hat transform. Since the

inputs, ut; are known a priori, their transform can be computed as part of the setup of the

optimisation problem.

The dynamic system matrix A¿ changes from level to level, using the recursion from scale

to scale

A¿ = A¿® ¢ A¿¯ (2.69)

2.4.4 Measurements on the tree

The measurement model on the time line is assumed to take the form

y(t) = Cx(t) + v(t) (2.70)

for some known measurement matrix, C. The measurements, yt, are also propagated onto

the tree, along with the states, to produce a tree-based representation of the variables in time

and scale.

y¿ = Cx¿ + v¿ (2.71)

with measurement uncertainty variable, v¿ . The measurements and states are transformed

using the Haar wavelet decomposition, and from the linearity of the Haar transform operator, it

follows that the measurement uncertainties will be governed by the Haar wavelet decomposition.

2.4.5 Properties of the various uncertainties

The cost function to optimise state estimation will be the minimum of a selected norm of the

various uncertainties. A simple algorithm results from the two-norm, of the measurement error,

weighted by its covariance. The covariance requires computation, described in Section 2.3.4.
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Since one selects a covariance from experience, or past data, the recursion on the second order

statistics can be performed o¤ line, or as part of the start up computations.

The o¤-diagonal elements of the covariance matrix are needed to generate the covariance

matrix recursively, at each level, but they are not used in the cost function itself, since we are

concerned about minimising the sum of the squares of the modelling uncertainties, and not

the value of the cross terms. The choice of modelling error representation is where the cost

functions for the tree- and time-based algorithms di¤er. The two representations with their

di¤erent cost functions will necessarily give di¤erent optimal solutions when fed data containing

any uncertainty. Neither solution is necessarily better, the two solutions simply re‡ect the

somewhat arbitrary nature of the choice of error modelling. While the time based estimation

algorithm weights the uncertainties equally in time, the tree based algorithm attempts to weight

them evenly over time and scale, and this will be dictated by the choice of averaging scheme.

2.4.6 The cost function

Equipped with the necessary dynamic system and second order statistics, the cost function can

be constructed. The cost function, ©; has the following general form:

© =
X

µ²M

((yµtop ¡ Cx̂top)TRµ¡1top (yµtop ¡ Cx̂top) +
X

¿²T

(±yµ¿ ¡ C±x̂¿ )TRµ¡1¿ (±yµ¿ ¡ C±x̂¿ )) +

+
X

¿²T

((1 + A¿®)±x̂¿ ¡ (1 ¡ A¿®)x̂¿ +
p

2B¿®u¿®)T (
p

2B¿®)¡TQ¡1
¿ (

p
2B¿®)¡1 : : :

: : : ((1 + A¿®)±x̂¿ ¡ (1 ¡ A¿®)x̂¿ +
p

2B¿®u¿®) (2.72)

Features of the cost function

The number of measurement sets is arbitrary. On a …rst reading, it is recommended

that the reader ignore the superscript µ, and consider the case of a single set of regularly sampled

measurements, y. There will be no summation over µ, but the remainder of the algorithm will

be identical.

The more general cost function is constructed to receive multiple sets of measurements.

An example of this might be a regular set of concentration measurements inferred from an

online pH measurement, coupled with a less regular set of concentration measurements from
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GC analysis. Each set of measurements is indexed by a µ, and should be equipped with

an estimate of its covariance, Rµ: The superset M contains the indices for the sets, in our

example, M = fpH;GCg. The sets maybe taken using di¤erent measurement techniques - as

in our example, at di¤erent sampling rates. Each set is subject to the Haar transform with

ytop representing the wavelet coe¢cients of the measurement sets. Any number of measurement

sets can be incorporated into the algorithm. The optimal sensor fusion problem is solved by

using one of these indices for each measurement set, as will be shown in the case studies section.

The …rst two summation terms in the cost function represent the inclusion of the various

sets of measurements. The …rst term contains the scaling function at the top node for each

set of measurements, while the second is the contribution from the wavelet coe¢cients. Each

measurement error is weighted by a term R¡1 which is typically chosen to be the covariance of

the measurement error. Further uses are possible - if one wished to suppress contributions to

measurement error within a certain frequency band, one could adjust the R¡1 values for those

nodes accordingly. Sets of measurements with missing or spurious information are easily taken

care of with an in…nite uncertainty on the measurement.

The number of state variables and inputs is arbitrary. The algorithm is designed for

any number of state variables and has been written in vector notation. The MATLAB coded

version of the algorithm given in the appendix allows for states of any speci…ed size. The

speci…cation is done early in the program along with the choice of dynamic system matrix

and input vectors. Since B is speci…ed independently, and u is either speci…ed by the user, or

obtained from measurements of the input variables, the algorithm allows complete speci…cation

of input vectors of arbitrary size. The only requirement is matrices of consistent dimension.

The …rst-order dynamic system is arbitrary. The solution algorithm is written to accept

any matrix A as the state transition matrix, and all higher level versions of A¿ are computed as

part of the initial calculations of the algorithm. The A¿ is never directly inverted, eliminating

the restriction that it should be non-singular, however ay¿ , a subsidiary variable derived from

A¿ ; is inverted frequently during the algorithm, thus it is possible to construct pathological

dynamic systems that will cause the algorithm to fail. This has yet to be a problem with any

of the case studies performed to date.
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Polynomial dynamic systems of arbitrary order can be used. For any function x(t) =

a1x(t¡1)+ ¢ ¢ ¢+anx(t¡n)+bu(t¡1)+w(t¡1), one can use the algorithm in its current form,

by state augmentation. This dramatically increases the range of dynamic systems suitable for

study.

Since B is speci…ed independently, and u is either speci…ed by the user, or obtained from

measurements of the input variables, the algorithm allows complete speci…cation of input vectors

of arbitrary size.

Independent weighting of the measurements, modelling errors or variables at dif-

ferent levels is possible. This would be useful if one wished to produce a state estimate

that suppressed high frequency ‡uctuations in the state, or if one wished to suppress the impact

of measurements taken at some resolution.

2.4.7 Derivation of recursive system for multiscale optimisation on the tree

for measurements at multiple scales

The derivation presented here corresponds to a fairly complicated version of the problem. A

simpler …rst reading can be obtained by ignoring the summation over µ, the multiple sets of

measurements, and the inputs, u¿®, so that we view the undriven case. The derivation begins

by posing a cost function. This leads to the necessary and su¢cient conditions for optimality,

which are a set of linear equations in the basis variables. One equation corresponds to each

node above the zeroth level on the tree, with one extra equation for the scaling function state

at the top of the tree.

These equations are then manipulated to produce a recursive solution strategy. The elim-

ination is performed from the bottom of the tree upwards, level by level. In the presentation

below, this is done explicitly for the …rst three levels to demonstrate the origin of the subsidiary

variables d¤¿ ; d0¿ ; and dy¿ ; and the corresponding intermediates for a, b, and c.

Although the scaling function coe¢cients are not part of the basis, it is convenient to carry

them as subsidiary variables, and use a cost function where the dynamic system on the tree

relates the scaling function and wavelet coe¢cients at the same node. This provides a more

compact algorithm by reducing the number of derivative terms, and hence the computational
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complexity.

De…ne Lm to be the collection of nodes, ¿ , at level m of the tree, with m = 0 the lowest,

zeroth, or physical level of the tree, where the original dynamic system is de…ned. Let the

collection of all nodes, ¿ on the tree be T . ® refers to a down-shift to the left, and ¯ refers to

a down-shift to the right.

The multiscale state estimation problem with measurements at multiple scales has a cost

function of the following form.

min
fx̂top;±x̂¿g

X

µ²M

((yµtop ¡ Cx̂top)TRµ¡1top (yµtop ¡ Cx̂top) +
X

¿²T

(±yµ¿ ¡ C±x̂¿ )TRµ¡1¿ (±yµ¿ ¡ C±x̂¿ )) +

+
X

¿²T

((1 + A¿®)±x̂¿ ¡ (1 ¡ A¿®)x̂¿ +
p

2B¿®u¿®)T (
p

2B¿®)¡TQ¡1
¿ (

p
2B¿®)¡1 : : :

: : : ((1 + A¿®)±x̂¿ ¡ (1 ¡ A¿®)x̂¿ +
p

2B¿®u¿®) (2.73)

Subject to the Haar wavelet decomposition:

±x̂¿ =
1p
2
(x̂¿® ¡ x̂¿¯) (2.74)

x̂¿ =
1p
2
(x̂¿® + x̂¿¯) (2.75)

The derivative conditions

For the unconstrained problem, the necessary and su¢cient conditions for optimality are the

normal equations - the derivatives of the cost function with respect to each basis variable should

be zero. This should be true for the set of x̂top; ±x̂¿ .

d©
dx̂top

= 0 (2.76)

d©
d±x̂¿

= 0 8¿²T (2.77)

For x̂top, this equation reduces to:

d©
dx̂top

= ¡2
X

µ²M

CTRµ¡1top (yµtop ¡ Cx̂top) +
X

¾²T

@©
@x̂¾

@x̂¾
@x̂top

(2.78)

= 0 (2.79)
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For ±x̂¿ :

d©
d±x̂¿

= ¡2
X

µ²M

CTRµ¡1¿ (±yµ¿ ¡ C±x̂¿ ) +
X

¾²T

@©
@x̂¾

@x̂¾
@±x̂¿

(2.80)

+2(1 + A¿®)(
p

2B¿®)¡TQ¡1
¿ (

p
2B¿®)¡1((1 + A¿®)±x̂¿ :::

¡(1 ¡ A¿®)x̂¿ +
p

2B¿®u¿®)

= 0 (2.81)

P
¾²T

@©
@x̂¾

@x̂¾
@±x̂¿ refers to contributions from scaling function terms to the cost function. Since

scaling functions are composite functions of the wavelet coe¢cients in the basis, their contri-

bution to the above equations must be computed using the chain rule.

The scaling function terms contribute terms of the form:

@©
@x̂¿

= ¡2(1 ¡ A¿®)(
p

2B¿®)¡TQ¡1
¿ (

p
2B¿®)¡1((1 + A¿®)±x̂¿ ::: (2.82)

¡(1 ¡ A¿®)x̂¿ +
p

2B¿®u¿®)
d©

d±x̂¿
=

@©
@±x̂¿

+
X

¾²T

@©
@x̂¾

@x̂¾
@±x̂¿

(2.83)

A recursive application of Haar reconstruction produces the following:

@x̂¾
@±x̂¿

= (
p

2)¡m(¾;¿) if ¾²T® + (2.84)

@x̂¾
@±x̂¿

= ¡(
p

2)¡m(¾;¿) if ¾²T¯ + (2.85)

@x̂¾
@±x̂¿

= 0 otherwise (2.86)

T®+ refers to the collection of ¿® and all nodes that descend from it on the tree, and

m(¾; ¿) is the number of levels between ¿ and ¾. Also m(¾; ¿) = m(¾; ¿®) + 1 if ¾²T®+ and

m(¾; ¿) = m(¾; ¿¯) + 1 if ¾²T¯+.

These KKT conditions are a set of n linear equations in the n-dimensional basis fx̂top; ±x̂¿g,

with a special matrix structure. We can use this special structure to solve for the optimal state

estimates e¢ciently. The …rst step is to perform a type of Gaussian elimination to produce

a lower triangular structure, the step of the algorithm that is reminiscent of linear Kalman
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…ltering. This is done successively from level to level, starting at the lowest level of the tree

and moving upwards. The back-substitution step of the algorithm proceeds down the tree, and

is reminiscent to the Rauch-Tung-Striebel smoothing algorithm.

The following development provides a motivation for the subsidiary variables. We eliminate

from 1st to 2nd to 3rd levels until all of the subsidiary variables have been de…ned, then generate

a generic elimination, and thus the e¢cient, parallelisable algorithm.

The solution at the …rst level

Consider node ¿ at the …rst level. Each node corresponds to speci…c basis variable, ±x̂¿ , and

thus a corresponding KKT equation. We perform elimination from the …rst level to the second

level above the zeroth level.

X

µ²M

CTRµ¡1¿ C±x̂¿ + (1 + A¿®)(
p

2B¿®)¡TQ¡1
¿ (

p
2B¿®)¡1((1 + A¿®)±x̂¿ ¡ (1 ¡ A¿®)x̂¿ )

=
X

µ²M

CTRµ¡1¿ ±yµ¿ ¡ (1 + A¿®)(
p

2B¿®)¡TQ¡1
¿ u¿® (2.87)

(
X

µ²M

CTRµ¡1¿ C + (1 + A¿®)(
p

2B¿®)¡TQ¡1
¿ (

p
2B¿®)¡1(1 + A¿®))±x̂¿

¡(1 + A¿®)(
p

2B¿®)¡TQ¡1
¿ (

p
2B¿®)¡1(1 ¡ A¿®)x̂¿

=
X

µ²M

CTRµ¡1¿ ±yµ¿ ¡ (1 + A¿®)(
p

2B¿®)¡TQ¡1
¿ u¿® (2.88)

De…ne a¿ , b¿ and c¿ .

(
X

µ²M

CTRµ¡1¿ C + a¿b¿ )±x̂¿ + a¿c¿ x̂¿ = d¿ (2.89)
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a¿ = (1 + A¿®) (2.90)

b¿ = (
p

2B¿®)¡TQ¡1
¿ (

p
2B¿®)¡1(1 + A¿®) (2.91)

c¿ = ¡(
p

2B¿®)¡TQ¡1
¿ (

p
2B¿®)¡1(1 ¡ A¿®) (2.92)

d¿ =
X

µ²M

CTRµ¡1¿ ±yµ¿ ¡ (1 + A¿®)(
p

2B¿®)¡TQ¡1
¿ u¿® ¡ 1p

2
(u¤¿® ¡ u¤¿¯) (2.93)

At the zeroth level all of the subsidiary variables are zero, as will become clear at higher

levels. This de…nition is included here to avoid duplicate de…nitions of d¿

u¤¿® = u¤¿¯ = 0 (2.94)

The goal of the algorithm is to generate equations of the following form.

ay¿±x̂¿ + cy¿ x̂¿ = dy¿ (2.95)

Equivalently,

±x̂¿ = ay¡1¿ (dy¿ ¡ cy¿ x̂¿ ) (2.96)

(2.96) expresses ±x̂t exclusively in terms of information above it on the tree, since x̂¿ can

be expressed in terms of the top scaling function and higher wavelet coe¢cients, and completes

the Gaussian elimination from the …rst row to the second row.

The goal of the Gaussian elimination recursion on the remainder of the tree is to create

expressions of the form (2.95), by successively incorporating information from lower levels.

The solution at the second level

Consider node ¿ at the second level. Each node corresponds to speci…c basis variable, ±x̂¿ , and

thus a corresponding KKT equation. We perform elimination from the second level to the third

level above the zeroth level.
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X

µ²M

CTRµ¡1¿ C±x̂¿ + (1 + A¿®)(
p

2B¿®)¡TQ¡1
¿ (

p
2B¿®)¡1((1 + A¿®)±x̂¿ ¡ (1 ¡ A¿®)x̂¿ )

¡ 1p
2
(1 ¡ A¿®®)(

p
2B¿®)¡TQ¡1

¿®(
p

2B¿®)¡1((1 + A¿®®)±x̂¿® ¡ (1 ¡ A¿®®)x̂¿®)

+
1p
2
(1 ¡ A¿¯®)(

p
2B¿®)¡TQ¡1

¿¯ (
p

2B¿®)¡1((1 + A¿¯®)±x̂¿¯ ¡ (1 ¡ A¿¯®)x̂¿¯)

=
X

µ²M

CTRµ¡1¿ ±yµ¿ ¡ (1 + A¿®)(
p

2B¿®)¡TQ¡1
¿ u¿® ¡ 1p

2
(u¤¿® ¡ u¤¿¯) (2.97)

De…ning

a0¿ = (1 ¡ A¿®) (2.98)

u¤¿ = +(1 ¡ A¿®)(
p

2B¿®)¡TQ¡1
¿ u¿® +

1p
2
(u¤¿® + u¤¿¯) (2.99)

X

µ²M

CTRµ¡1¿ C±x̂¿ + a¿b¿±x̂¿ + a¿c¿ x̂¿

¡ 1p
2
(a0¿®b¿®±x̂¿® + a0¿®c¿®x̂¿®) +

1p
2
(a0¿¯b¿¯±x̂¿¯ + a0¿¯c¿¯x̂¿¯)

= d¿ (2.100)

Now, substitute (2.96), from the zeroth level for the state estimates of the descendant nodes,

±x̂¿®, and ±x̂¿¯:

X

µ²M

CTRµ¡1¿ C±x̂¿ + a¿b¿±x̂¿ + a¿c¿ x̂¿

+
1p
2
(a0¿®b¿®a

y¡1
¿® cy¿® ¡ a0¿®c¿®)x̂¿® ¡ 1p

2
(a0¿¯b¿¯a

y¡1
¿¯ cy¿¯ ¡ a0¿¯c¿¯)x̂¿¯

= d¿ +
1p
2
(a0¿®b¿®a

y¡1
¿® dy¿® ¡ a0¿¯b¿¯a

y¡1
¿¯ dy¿¯) (2.101)
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Apply a wavelet transform to the descendant variables.

X

µ²M

CTRµ¡1¿ C±x̂¿ + a¿b¿ ±x̂¿ + a¿c¿ x̂¿

+
1
2
(a0¿®b¿®a

y¡1
¿® cy¿® ¡ a0¿®c¿®)(x̂¿ + ±x̂t) ¡ 1

2
(a0¿¯b¿¯a

y¡1
¿¯ cy¿¯ ¡ a0¿¯c¿¯)(x̂¿ ¡ ±x̂t)

= dy¿ (2.102)

And …nally, collect like terms.

(
X

µ²M

CTRµ¡1¿ C + a¿b¿ +
1
2
(a0¿®b¿®a

y¡1
¿® cy¿® ¡ a0¿®c¿®) +

1
2
(a0¿¯b¿¯a

y¡1
¿¯ cy¿¯ ¡ a0¿¯c¿¯))±x̂¿

+(a¿c¿ +
1
2
(a0¿®b¿®a

y¡1
¿® cy¿® ¡ a0¿®c¿®) ¡ 1

2
(a0¿¯b¿¯a

y¡1
¿¯ cy¿¯ ¡ a0¿¯c¿¯))x̂¿

= dy¿ (2.103)

ay¿±x̂¿ + cy¿ x̂¿ = dy¿ (2.104)

where

ay¿ = (
X

µ²M

CTRµ¡1¿ C + a¿b¿ +
1
2
(a0¿®b¿®a

y¡1
¿® cy¿® ¡ a0¿®c¿®)

+
1
2
(a0¿¯b¿¯a

y¡1
¿¯ cy¿¯ ¡ a0¿¯c¿¯)) (2.105)

cy¿ = a¿c¿ +
1
2
(a0¿®b¿®a

y¡1
¿® cy¿® ¡ a0¿®c¿®) ¡ 1

2
(a0¿¯b¿¯a

y¡1
¿¯ cy¿¯ ¡ a0¿¯c¿¯) (2.106)

dy¿ =
X

µ²M

CTRµ¡1¿ ±yµ¿ ¡ (1 + A¿®)(
p

2B¿®)¡TQ¡1
¿ u¿® ¡ 1p

2
(u¤¿® ¡ u¤¿¯) (2.107)

+
1p
2
(a0¿®b¿®a

y¡1
¿® dy¿® ¡ a0¿¯b¿¯a

y¡1
¿¯ dy¿¯) (2.108)

Certain groups of terms appear repeatedly in the treatment, due to the scaling function

terms that feature at all ascendant nodes. We de…ne further subsidiary variables, c0, and d0, to
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simplify the algorithm. From (2.97) and (2.101) above,

(1 ¡ A¿®®)(
p

2B¿®)¡TQ¡1
¿®(

p
2B¿®)¡1((1 + A¿®®)±x̂¿® ¡ (1 ¡ A¿®)x̂¿®)

= a0¿®b¿®±x̂¿® + a0¿®c¿®x̂¿® (2.109)

= ¡ 1p
2
(a0¿®b¿®a

y¡1
¿® cy¿® ¡ a0¿®c¿®) (x̂¿ + ±x̂¿ ) + a0¿®b¿®a

y¡1
¿® dy¿® (2.110)

De…ne

c0¿ = ¡a0¿b¿a
y¡1
¿ cy¿ + a0¿c¿ (2.111)

d0¿ = ¡a0¿b¿a
y¡1
¿ dy¿ (2.112)

Then

a0¿®b¿®±x̂¿® + a0¿®c¿®x̂¿® =
1p
2
c0¿® (x̂¿ + ±x̂¿ ) + d0¿® (2.113)

a0¿¯b¿¯±x̂¿¯ + a0¿¯c¿¯x̂¿¯ =
1p
2
c0¿¯ (x̂¿ ¡ ±x̂¿ ) + d0¿¯ (2.114)

and the …rst level recursion becomes,

ay¿ =
X

µ²M

CTRµ¡1¿ C + a¿b¿ ¡ 1
2
(c0¿® + c0¿¯) (2.115)

cy¿ = a¿c¿ ¡ 1
2
(c0¿® ¡ c0¿¯) (2.116)

dy¿ =
X

µ²M

CTRµ¡1¿ ±yµ¿ ¡ (1 + A¿®)(
p

2B¿®)¡TQ¡1
¿ u¿®

¡ 1p
2
(u¤¿® ¡ u¤¿¯) ¡ 1p

2
(d0¿® ¡ d0¿¯) (2.117)

At the …rst level, de…ne

d¤¿ =
1p
2
(d0¿® + d0¿¯) (2.118)

There is a clear similarity between this and the Haar transform. Essentially the wavelet

portion of d0¿ is deposited at each level with the dy¿ while the scaling function portion is projected

up the tree.
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The solution at the third level

Consider node ¿ at the third level, and perform the elimination.

X

µ²M

CTRµ¡1¿ C±x̂¿ + (1 + A¿®)(
p

2B¿®)¡TQ¡1
¿ (

p
2B¿®)¡1((1 + A¿®)±x̂¿ ¡ (1 ¡ A¿®)x̂¿ )

¡ 1p
2
(a0¿®b¿®±x̂¿® + a0¿®c¿®x̂¿®) +

1p
2
(a0¿¯b¿¯±x̂¿¯ + a0¿¯c¿¯x̂¿¯)

¡1
2
(a0¿®®b¿®®±x̂¿®® + a0¿®®c¿®®x̂¿®®) ¡ 1

2
(a0¿®¯b¿®¯±x̂¿®¯ + a0¿®¯c¿®¯x̂¿®¯)

+
1
2
(a0¿¯®b¿¯®±x̂¿¯® + a0¿¯®c¿¯®x̂¿¯®) +

1
2
(a0¿¯¯b¿¯¯±x̂¿¯¯ + a0¿¯¯c¿¯¯x̂¿¯¯)

=
X

µ²M

CTRµ¡1¿ ±yµ¿ ¡ (1 + A¿®)(
p

2B¿®)¡TQ¡1
¿ u¿® ¡ 1p

2
(u¤¿® ¡ u¤¿¯) (2.119)

Then from (2.110), (2.111) and (2.112), from the two levels below,

a0¿®ib¿®i±x̂¿®i + a0¿®ic¿®i x̂¿®i = ¡(a0¿®ib¿®ia
y¡1
¿®i c

y
¿®i ¡ a0¿®ic¿®i)x̂¿®i

+a0¿®ib¿®ia
y¡1
¿®i d

y
¿®i (2.120)

= c0¿®ix̂¿®i ¡ d0¿®i (2.121)

Substituting this and into (2.119) gives,

X

µ²M

CTRµ¡1¿ C±x̂¿ + a¿b¿±x̂¿ + a¿c¿ x̂¿

¡ 1p
2
(a0¿®b¿®±x̂¿® + a0¿®c¿®x̂¿®) +

1p
2
(a0¿¯b¿¯±x̂¿¯ + a0¿¯c¿¯x̂¿¯)

¡1
2
c0¿®®x̂¿®® ¡ 1

2
c0¿®¯x̂¿®¯ +

1
2
c0¿¯®x̂¿¯® +

1
2
c0¿¯¯x̂¿¯¯

= d¿ ¡ 1
2
d0¿®® ¡ 1

2
d0¿®¯ +

1
2
d0¿¯® +

1
2
d0¿¯¯

= d¿ ¡ 1p
2
(d¤¿® ¡ d¤¿¯) (2.122)
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And a Haar transform gives,

X

µ²M

CTRµ¡1¿ C±x̂¿ + a¿b¿ ±x̂¿ + a¿c¿ x̂¿

¡ 1p
2
(a0¿®b¿® +

1
2
(c0¿®® ¡ c0¿®¯))±x̂¿® ¡ 1p

2
(a0¿®c¿® +

1
2
(c0¿®® + c0¿®¯))x̂¿®

+
1p
2
(a0¿¯b¿¯ +

1
2
(c0¿¯® ¡ c0¿¯¯))±x̂¿¯ +

1p
2
(a0¿¯c¿¯ +

1
2
(c0¿¯® + c0¿¯¯))x̂¿¯

= d¿ ¡ 1p
2
(d¤¿® ¡ d¤¿¯) (2.123)

Note the symmetry, as before, and de…ne

c00¿ = ¡(a0¿b¿ +
1
2
(c0¿® ¡ c0¿¯))a

y¡1
¿ cy¿ + (a0¿c¿ +

1
2
(c0¿® + c0¿¯)) (2.124)

d00¿ = ¡(a0¿b¿ +
1
2
(c0¿® ¡ c0¿¯))a

y¡1
¿ dy¿ (2.125)

Then,

X

µ²M

CTRµ¡1¿ C±x̂¿ + a¿b¿ ±x̂¿ + a¿c¿ x̂¿

¡ 1p
2
(c00¿®x̂¿® ¡ c00¿¯x̂¿¯)

= d¿ ¡ 1p
2
(d¤¿® ¡ d¤¿¯) ¡ 1p

2
(d00¿® ¡ d00¿¯) (2.126)

(
X

µ²M

CTRµ¡1¿ C + a¿b¿ ¡ 1
2
(c00¿® + c00¿¯))±x̂¿ + (a¿c¿ ¡ 1

2
(c00¿® ¡ c00¿¯))x̂¿

= d¿ ¡ 1p
2
(d¤¿® ¡ d¤¿¯) ¡ 1p

2
(d00¿® ¡ d00¿¯) (2.127)

Let

d¤¿ =
1p
2
(d¤¿® + d¤¿¯) +

1p
2
(d00¿® + d00¿¯) (2.128)
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For the third level,

ay¿±x̂¿ + cy¿ x̂¿ = dy¿ (2.129)

with

ay¿ =
X

µ²M

CTRµ¡1¿ C + a¿b¿ ¡ 1
2
(c00¿® + c00¿¯) (2.130)

cy¿ = a¿ c¿ ¡ 1
2
(c00¿® ¡ c00¿¯) (2.131)

dy¿ = d¿ ¡ 1p
2
(d¤¿® ¡ d¤¿¯) ¡ 1p

2
(d00¿® ¡ d00¿¯) (2.132)

The di¤erent number of primes used in the c0, d0, c00 and d00 variables is used in the derivation

to distinguish more easily between the levels, although this distinction is unnecessary. Thus

in this …nal version of the algorithm, they are reduced to a single prime.

The solution at a general level

We begin with a couple of subsidiary results that will enable us to truncate the terms in the

equation. Recall that the scaling function terms contribute to the cost function in the following

way:

0 =
1
2

d©
d±x̂¿

=
1
2

@©
@±x̂¿

+
1
2

X

¾²T

@©
@x̂¾

@x̂¾
@±x̂¿

=
X

µ²M

CTRµ¡1¿ C±x̂¿ + a¿b¿ ±x̂¿ + a¿c¿ x̂¿ ¡ d¿ +
1
2

X

¾²T

@©
@x̂¾

@x̂¾
@±x̂¿

(2.133)

@©
@x̂¿

= ¡a0¿ (B¿®)
¡TQ¡1

¿ (B¿®)¡1((1 + A¿®)±x̂¿ ¡ (1 ¡ A¿®)x̂¿ +
p

2B¿®u¿®) (2.134)

= ¡2a0¿ (b¿±x̂¿ + c¿ x̂¿ ) ¡ 2a0¿ (
p

2B¿®)¡TQ¡1
¿ u¿® (2.135)
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and from the Haar reconstruction equation, applied recursively,

@x̂¾
@±x̂¿

= (
p

2)¡m(¾;¿) if ¾²T® +

@x̂¾
@±x̂¿

= ¡(
p

2)¡m(¾;¿) if ¾²T¯+ (2.136)

where T®+ refers to the collection of ¿® and all nodes that descend from it on the tree, and

m(¾; ¿) is the number of levels between ¿ and ¾. Also m(¾; ¿) = m(¾; ¿®) + 1 if ¾²T®+ and

m(¾; ¿) = m(¾; ¿¯) + 1 if ¾²T¯+.

In the following proofs, I have either abused my notation, or dealt exclusively with the

undriven case. This is without loss of generality, since the terms containing u¿ are all included

in the u¤¿ terms, and thus are dealt with elsewhere in this treatment.

Claim 4 The scaling function term splits into a simple combination of its descendant scaling

function terms

Proof.

X

¾²T

@©
@x̂¾

@x̂¾
@±x̂¿

=
X

¾²T®+

@©
@x̂¾

@x̂¾
@±x̂¿

+
X

¾²T¯+

@©
@x̂¾

@x̂¾
@±x̂¿

=
X

¾²T®+

(
p

2)¡m(¾;¿)
@©
@x̂¾

¡
X

¾²T¯+

(
p

2)¡m(¾;¿) @©
@x̂¾

=
1p
2

0
@ X

¾²T®+

(
p

2)¡m(¾;¿®)
@©
@x̂¾

¡
X

¾²T¯+

(
p

2)¡m(¾;¿¯)
@©
@x̂¾

1
A

=
1p
2

0
@ X

¾²T®+

@©
@x̂¾

¯̄
¯̄ @x̂¾
@±x̂¿®

¯̄
¯̄ ¡

X

¾²T¯+

@©
@x̂¾

¯̄
¯̄ @x̂¾
@±x̂¿¯

¯̄
¯̄
1
A

+
1p
2

@©
@x̂¿®

¡ 1p
2

@©
@x̂¿¯

(2.137)

Claim 5

1
2

X

¾²T

@©
@x̂¾

@x̂¾
@±x̂¿

= ¡ 1
2
(c00¿® + c00¿¯)±x̂¿ ¡ 1

2
(c00¿® ¡ c00¿¯)x̂¿

+
1p
2
(d¤¿® ¡ d¤¿¯) +

1p
2
(d00¿® ¡ d00¿¯) (2.138)
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Proof. By induction. This has been shown to be true at the third level, and likewise, at

the lower levels, even though at these many of the terms are zero. Suppose it is true at an
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arbitrary level.

p
2

2

X

¾²T

@©
@x̂¾

@x̂¾
@±x̂¿

=

0
@1

2

X

¾²T®+

@©
@x̂¾

¯̄
¯̄ @x̂¾
@±x̂¿®

¯̄
¯̄ ¡ 1

2

X

¾²T¯+

@©
@x̂¾

¯̄
¯̄ @x̂¾
@±x̂¿¯

¯̄
¯̄
1
A

+
1
2

@©
@x̂¿®

¡ 1
2

@©
@x̂¿¯

(2.139)

=
1
2

¡
¡2a0¿®b¿®±x̂¿® ¡ 2a0¿®c¿®x̂¿®

¢
+

1
2

¡
2a0¿¯b¿¯±x̂¿¯ + 2a0¿¯c¿¯x̂¿¯

¢

¡1
2
(c0¿®® ¡ c0¿®¯)±x̂¿® ¡ 1

2
(c0¿®® + c0¿®¯)x̂¿®

+
1
2
(c0¿¯® ¡ c0¿¯¯)±x̂¿¯ +

1
2
(c0¿¯® + c0¿¯¯)x̂¿¯

+
1p
2
(d¤¿®® + d¤¿®¯) +

1p
2
(d0¿®® + d0¿®¯)

¡ 1p
2
(d¤¿¯® + d¤¿¯¯) ¡ 1p

2
(d0¿¯® + d0¿¯¯) (2.140)

=
µ

¡a0¿®b¿® ¡ 1
2
(c0¿®® ¡ c0¿®¯)

¶
±x̂¿® +

µ
¡a0¿®c¿® ¡ 1

2
(c0¿®® + c0¿®¯)

¶
x̂¿®

µ
a0¿¯b¿¯ +

1
2
(c0¿¯® ¡ c0¿¯¯)

¶
±x̂¿¯ +

µ
a0¿¯c¿¯ +

1
2
(c0¿¯® + c0¿¯¯)

¶
x̂¿¯

+d¤¿® ¡ d¤¿¯ (2.141)

=
µµ

a0¿®b¿® +
1
2
(c0¿®® ¡ c0¿®¯)

¶
ay¡1¿® cy¿® ¡ a0¿®c¿® ¡ 1

2
(c0¿®® + c0¿®¯)

¶
x̂¿®

+
µ

¡
µ

a0¿¯b¿¯ +
1
2
(c0¿¯® ¡ c0¿¯¯)

¶
ay¡1¿¯ cy¿¯ + a0¿¯c¿¯ +

1
2
(c00¿¯® + c00¿¯¯)

¶
x̂¿¯

+
µ

¡a0¿®b¿® ¡ 1
2
(c0¿®® ¡ c0¿®¯)

¶
ay¡1¿® dy¿®

+
µ

a0¿¯b¿¯ +
1
2
(c0¿¯® ¡ c0¿¯¯)

¶
ay¡1¿¯ dy¿¯

+d¤¿® ¡ d¤¿¯ (2.142)

= ¡c0¿®x̂¿® + c0¿¯x̂¿¯ + d0¿® ¡ d0¿¯ + d¤¿® ¡ d¤¿¯ (2.143)

= ¡c0¿®
1p
2

(±x̂¿ + x̂¿ ) + c0¿¯
1p
2

(x̂¿ ¡ ±x̂¿ ) + d0¿® ¡ d0¿¯ + d¤¿® ¡ d¤¿¯ (2.144)

= ¡ 1p
2

¡¡
c0¿® + c0¿¯

¢
±x̂¿ +

¡
c0¿® ¡ c0¿¯

¢
x̂¿

¢
+ d0¿® ¡ d0¿¯ + d¤¿® ¡ d¤¿¯ (2.145)

1
2

X

¾²T

@©
@x̂¾

@x̂¾
@±x̂¿

= ¡ 1
2

¡
c0¿® + c0¿¯

¢
±x̂¿ ¡ 1

2
¡
c0¿® ¡ c0¿¯

¢
x̂¿

+
1p
2

¡
d0¿® ¡ d0¿¯

¢
+

1p
2

¡
d¤¿® ¡ d¤¿¯

¢
(2.146)
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Claim 6 The general recursion uses the same steps as the third level. It generalises to the

lower levels on the tree.

Proof. In this proof, the same simpli…cation has been made, whereby the u¿ terms in
P
¾²T

@©
@x̂¾

@x̂¾
@±x̂¿ have been included in the u¤¿ terms, which are included in the de…nition of d¿ .

d¿ =
X

µ²M

CTRµ¡1¿ C±x̂¿ + a¿b¿±x̂¿ + a¿c¿ x̂¿ +
1
2

X

¾²T

@©
@x̂¾

@x̂¾
@±x̂¿

(2.147)

=
X

µ²M

CTRµ¡1¿ C±x̂¿ + a¿b¿±x̂¿ + a¿c¿ x̂¿ ¡ 1
2

¡
c0¿® + c0¿¯

¢
±x̂¿

¡1
2

¡
c0¿® ¡ c0¿¯

¢
x̂¿ +

1p
2

¡
d0¿® ¡ d0¿¯

¢
+

1p
2

¡
d¤¿® ¡ d¤¿¯

¢
(2.148)

dy¿ = d¿ ¡ 1p
2
(d¤¿® ¡ d¤¿¯) ¡ 1p

2
(d0¿® ¡ d0¿¯) (2.149)

=
X

µ²M

CTRµ¡1¿ C±x̂¿ + a¿b¿±x̂¿ + a¿c¿ x̂¿ ¡ 1
2

¡
c0¿® + c0¿¯

¢
±x̂¿

¡1
2

¡
c0¿® ¡ c0¿¯

¢
x̂¿ (2.150)

=

ÃX

µ²M

CTRµ¡1¿ C + a¿b¿ ¡ 1
2

¡
c0¿® + c0¿¯

¢
!

±x̂¿

+
µ

a¿c¿ ¡ 1
2

¡
c0¿® ¡ c0¿¯

¢¶
x̂¿ (2.151)

= ay¿ ±x̂¿ + cy¿ x̂¿ (2.152)

ay¿ =
X

µ²M

CTRµ¡1¿ C + a¿b¿ ¡ 1
2
(c0¿® + c0¿¯) (2.153)

cy¿ = a¿c¿ ¡ 1
2
(c0¿® ¡ c0¿¯) (2.154)

The solution at the top level

The …nal equation concerns the top scaling function coe¢cient, which is part of the basis. The

structure of the equation is similar to the wavelet coe¢cient equation at the same level, and is

simpli…ed as follows.
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(2.147) becomes

dtop =
X

µ²M

CTRµ¡1top Cx̂¿ ¡ (a0¿b¿±x̂¿ + a0¿c¿ x̂¿ ) +
1
2

X

¾²T

@©
@x̂¾

@x̂¾
@x̂top

where

1
2

X

¾²T

@©
@x̂¾

@x̂¾
@x̂top

=
1
2

1p
2

0
@ X

¾²T®+

@©
@x̂¾

¯̄
¯̄ @x̂¾
@±x̂¿®

¯̄
¯̄ +

X

¾²T¯+

@©
@x̂¾

¯̄
¯̄ @x̂¾
@±x̂¿¯

¯̄
¯̄
1
A

+
1
2

1p
2

@©
@x̂¿®

+
1
2

1p
2

@©
@x̂¿¯

(2.155)

= ¡1
2

¡
c0¿® ¡ c0¿¯

¢
±x̂¿ ¡ 1

2
¡
c0¿® + c0¿¯

¢
x̂¿

+
1p
2

¡
d0¿® + d0¿¯

¢
+

1p
2

¡
d¤¿® + d¤¿¯

¢
(2.156)

dtop =
X

µ²M

CTRµ¡1top Cx̂¿ ¡ (a0¿b¿±x̂¿ + a0¿c¿ x̂¿ )

¡1
2

¡
c0¿® ¡ c0¿¯

¢
±x̂¿ ¡ 1

2
¡
c0¿® + c0¿¯

¢
x̂¿

+
1p
2

¡
d0¿® + d0¿¯

¢
+

1p
2

¡
d¤¿® + d¤¿¯

¢
(2.157)

dz¿ = dtop ¡ 1p
2
(d¤¿® + d¤¿¯) ¡ 1p

2
(d0¿® + d0¿¯) (2.158)

=
µ

¡a0¿b¿ ¡ 1
2

¡
c0¿® ¡ c0¿¯

¢¶
±x̂top

ÃX

µ²M

CTRµ¡1top C ¡ a0¿c¿ ¡ 1
2

¡
c0¿® + c0¿¯

¢
!

x̂top (2.159)

= az¿±x̂¿ + cz¿ x̂¿ (2.160)

az¿ = ¡a0¿b¿ ¡ 1
2
(c0¿® ¡ c0¿¯) (2.161)

cz¿ =
X

µ²M

CTRµ¡1top C ¡ a0¿c¿ ¡ 1
2
(c0¿® + c0¿¯) (2.162)

Algorithm 7 The complete algorithm for the unconstrained multiscale state estimator for the

driven case with multiple measurement sets is given below. The downsweep involves the com-

putation of the following variables, recursively until the top node of the tree is reached.
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Initial Conditions

c0¿ = d0¿ = d¤¿ = 0 8¿²L0 (2.163)

u¤¿ = 0 8¿²L0 (2.164)

Primary Variables

a¿ = (1 + A¿®) (2.165)

b¿ = (
p

2B¿®)¡TQ¡1
¿ (

p
2B¿®)¡1(1 + A¿®) (2.166)

c¿ = ¡(
p

2B¿®)¡TQ¡1
¿ (

p
2B¿®)¡1(1 ¡ A¿®) (2.167)

d¿ =
X

µ²M

CTRµ¡1¿ ±yµ¿ ¡ (1 + A¿®)(
p

2B¿®)¡TQ¡1
¿ u¿® ¡ 1p

2
(u¤¿® ¡ u¤¿¯) (2.168)

dtop =
X

µ²M

CTRµ¡1¿ yµtop ¡ (1 ¡ A¿®)(
p

2B¿®)¡TQ¡1
¿ u¿® ¡ 1p

2
(u¤¿® + u¤¿¯) (2.169)

Recursive Variables

u¤¿ = ¡(1 ¡ A¿®)(
p

2B¿®)¡TQ¡1
¿ u¿® +

1p
2
(u¤¿® + u¤¿¯) (2.170)

d¤¿ =
1p
2
(d¤¿® + d¤¿¯) +

1p
2
(d0¿® + d0¿¯) (2.171)

ay¿ =
X

µ²M

CTRµ¡1¿ C + a¿b¿ ¡ 1
2
(c0¿® + c0¿¯) (2.172)

cy¿ = a¿c¿ ¡ 1
2
(c0¿® ¡ c0¿¯) (2.173)

dy¿ = d¿ ¡ 1p
2
(d¤¿® ¡ d¤¿¯) ¡ 1p

2
(d0¿® ¡ d0¿¯) (2.174)

a0¿ = (1 ¡ A¿®) (2.175)

c0¿ = ¡(a0¿b¿ +
1
2
(c0¿® ¡ c0¿¯))a

y¡1
¿ cy¿ + (+a0¿ c¿ +

1
2
(c0¿® + c0¿¯)) (2.176)

d0¿ = ¡(a0¿b¿ +
1
2
(c0¿® ¡ c0¿¯))a

y¡1
¿ dy¿ (2.177)
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Scaling Function Variables (usually only used at the top node)

az¿ = ¡a0¿b¿ ¡ 1
2
(c0¿® ¡ c0¿¯) (2.178)

cz¿ =
X

µ²M

CTRµ¡1top C ¡ a0¿c¿ ¡ 1
2
(c0¿® + c0¿¯) (2.179)

dz¿ = dtop ¡ 1p
2
(d¤¿® + d¤¿¯) ¡ 1p

2
(d0¿® + d0¿¯) (2.180)

The top node scaling function and wavelet coe¢cients are solved simultaneously, to obtain,

x̂top and ±x̂top from

aytop±x̂top + cytopx̂top = dytop (2.181)

aztop±x̂top + cztopx̂top = dztop (2.182)

The downsweep involves a wavelet reconstruction from the upper levels for which optimal

state estimates have been computed, followed by a backsubstitution into the dagger equations.

x̂¿® =
1p
2

(x̂¿ + ±x̂¿ ) (2.183)

x̂¿¯ =
1p
2

(x̂¿ ¡ ±x̂¿ ) (2.184)

ay¿±x̂¿ + cy¿ x̂¿ = dy¿ (2.185)

This completes the calculation of the optimal estimates of all state variables on the tree, both

wavelet and scaling function.

2.4.8 Uses of the multiscale state estimator

The current formulation works for any number of sets of measurements at any level on the tree.

Each set of measurements is projected up the tree using the wavelet transform. The algorithm

is e¤ective for single or multiple sets of measurements.

For single sets of measurements, a single theta is in the set M . Multiple sets of measurements

do not change the structure or the complexity of the algorithm, except for the start-up cost of

the wavelet decomposition of each set.

Sparse and missing measurements are treated by setting Rµ¿ = 1, where the missing mea-
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surements would have appeared.

2.4.9 Solution of the unconstrained estimation problem

The unconstrained multiscale state estimation problem can be solved e¢ciently using the al-

gorithm. The e¢ciency is due to the structure of the set of normal equations. The algorithm

involves a sweep up the tree, from the zeroth level to the top node, collecting model and mea-

surement information , and summarising this into three variables per node, ay, the coe¢cient

of the wavelet coe¢cient in the reduced equation, cy, the coe¢cient of the scaling function

coe¢cient, and dy, a collection of the measurement data from all child nodes.

Since information about the measurements and the model is stored in a separate set of

variables, a second estimation using the same model but di¤erent measurements would require

only the d family of variables to be recomputed.

The algorithm is completely parallelisable, and is fast compared to the standard MATLAB

quadratic programming solver, since it makes the most e¢cient use of the sparsity of the system.

In a single upsweep all of the coe¢cients are computed recursively, using only the information

on the subtree from that node. A single downsweep …nds the optimal state estimates from these

coe¢cients. At the top node of the tree, there is an inversion of a square matrix of dimension

twice the state size, since the top node wavelet coe¢cient and scaling function coe¢cient are

coupled and must be solved simultaneously.

2.4.10 Checking the solution

The algorithm was checked for correctness by constructing the complete quadratic program.

This was solved using the standard MATLAB QP solver, and compared to the results from the

multiscale state estimator. For a four state problem, the maximum deviation in the state esti-

mates from the two methods was 10¡13, consistent with the computational error of MATLAB.

The multiscale technique was considerably faster, by a factor of around 100 for a 2 £ 2 system

and a 32 point problem.
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2.4.11 Optimal fusion of multirate measurements

The multiscale estimation algorithm works for multiple sets of measurements. This was mo-

tivated by estimation problems where di¤erent techniques are used to obtain measurements.

These may be at di¤erent rates, or at di¤erent levels of resolution. Speci…cally, one may have a

fast, cheap, but inaccurate means of measuring some process variable frequently, and a more ex-

pensive, but thorough analysis performed less frequently. The multiscale estimation algorithm

fuses these sets optimally, by incorporating both into the state estimate. With multiple sets of

measurements, the estimation of the current state proceeds as for the single rate measurement

algorithm, but with each set of measurements indexed by a µ.

The sets of measurements will appear for the …rst time at the level of the tree that cor-

responds to their sampling frequency. A wavelet transform of each set will propagate the

information at each level to nodes above it. When the multiscale state estimator of this section

reaches the top node of the tree, it generates the optimal estimate at the top node of the tree,

based on all of the available measurements. The downward sweep smooths the information

from the complete set of measurements at all levels of resolution, and incorporates it into the

optimal state estimates at all nodes of the tree.

2.4.12 Further uses for the multiscale state estimation algorithm

The algorithm extends to multivariable dynamic systems, since there is no limit on the number

of state variables. In addition to multi-input-multi-output (MIMO) systems, the approach

allows us to perform estimations for higher order polynomial dynamic systems, since these can

be represented as …rst-order systems with state augmentation. A potential area for future study

is the idea of parametric variation in the model, commonly solved in the time domain using the

extended Kalman …lter.

Another possible direction for further study may be to extend the algorithm to allow for

multiple models, in the same way that it has been extended to deal with multiple sets of

measurements. Of course this makes no sense for two …rst-order dynamic systems with di¤erent

parameters as the solution will be an average of two con‡icting models, …ghting over control of

the data. A more meaningful approach would be to truncate the multiscale state estimation

algorithm at a level where the dynamic system gets lost in the input data dynamics, and thus
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loses its meaning. The user would be able to specify the con…dence in the various models, by

adjusting the Q parameters, or covariances of the modeling errors.

The algorithm provides a natural way to penalise measurement and modelling errors at

various resolutions, since the R and Q values can be speci…ed di¤erently at the various scales.

Choosing small values of R or Q at the higher levels on the tree would force the algorithm to

produce a small error value at these levels, at the expense of higher errors elsewhere on the tree.

This approach should be followed when most of the measurement noise is expected to be high

frequency, or most of the modelling error is known to be within a particular frequency range.

The error values returned give a complete pro…le of the observed model uncertainty at all

levels of resolution. This allows a richer error structure to be used in the dual problem to

estimation - model predictive control.

2.5 The constrained state estimation problem

The extension of the multiscale state estimation problem to the constrained case follows directly

from constructing a Lagrangian from the original cost function and constraints. Each constraint

has an associated ¹, which is appended to the cost function as a product with the constraint.

A byproduct of the way the derivatives are performed is that the Lagrange multiplier terms

separate out, and can be collected in their own set of variables, ¹¿ ; as the measurements are

collected in the d variables.

This provides the same reusability as was observed with the measurements, so di¤erent sets

of constraints can be used with the same set of model equations very e¢ciently. Industrially,

this is useful when a plant switches between a number of di¤erent operating regimes. The model

structure of the problem stays the same, but the set of constraints changes independently of

the remainder of the model.

The ¹¿ variables provide a guarantee of optimal state estimations by way of the Karush-

Kuhn-Tucker conditions, but may produce algorithms that are combinatorial in the worst case

[4]. The linear complimentarity condition is bilinear in the Lagrange multipliers and the state

variables and an algorithm may visit each combination of constraints in turn before …nding the

optimum.
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The multiscale state estimation algorithm allows us to …nd a basic feasible solution relatively

quickly - essentially by grouping sets of constraints together in such a way that if a supercon-

straint is satis…ed, then there exists a feasible solution satisfying the initial constraints. This

provides an upper bound for the cost very quickly. A lower bound for the optimal cost function

can be obtained from the unconstrained optimum state estimates extremely quickly, using an

up-down sweep of the unconstrained algorithm.

2.5.1 Preliminaries

Our development is based on the satisfaction of the Karush-Kuhn-Tucker su¢cient conditions

for optimality [4]. The original optimization problem has the following form.

min
x

©(x) (2.186)

gj(x) · 0 j = 0::r (2.187)

The Lagrangian formulation of the problem can be constructed that introduces a Lagrange

multiplier, ¹j, corresponding to each inequality constraint gj : The cost function is expanded to

include the inequalities so that the Lagrangian is de…ned as follows.

L(x; ¹) = ©(x) +
rX

j=1

¹jgj(x) (2.188)

The minimum value of the Lagrangian is guaranteed to be the minimum of the original cost

function subject to the set of constraints. This is due to the KKT conditions, which guarantee

that the summation term is zero. It is well known that the su¢cient conditions for optimal

solution, (x¤; ¹¤); are the following.

rxL(x¤; ¹¤) = 0 (2.189)

¹¤j ¸ 0 for j²A(x¤); where A(x¤) is the set of active constraints at x¤(2.190)

¹¤j = 0 for j /²A(x¤) (2.191)
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This is alternately represented as the linear complimentarity condition.

¹¤jgj(x
¤) = 0

and

y0r2
xxL(x; ¹)y ¸ 0;8y²V (x¤) (2.192)

where

V (x¤) = fyjrxgj(x¤)0y = 0; j²A(x¤)g

Let us explore each of these in more detail.

2.5.2 The derivative operator

We use as a basis for the problem, the set of
©
x̂top; ±x̂¿

ª
, which is equivalent to the set of states

at the zeroth, or physical, level in the original problem. We use rx to describe the set of those

derivatives.

2.5.3 The …rst KKT condition

The …rst su¢cient condition concerns the derivative of the Lagrangian

rxL(x¤; ¹¤) = 0 (2.193)

where x¤ is a local minimum of the Cost function subject to the inequality constraints.

rxL(x¤; ¹¤) = rx© + ¹Trxg (2.194)

¹ = [¹1; ¹2; ¹3; : : : ; ¹n] (2.195)

For linear constraints, rxg will consist only of constants, and thus ¹¿ ; the manifestation of
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the Lagrange multipliers on the tree, is uniquely de…ned as

¹¿ = ¹Trxg (2.196)

¹¿ =
h
¹top¡sf ; ¹top; ¹top®; : : : ; ¹top¯num¡levels

i
(2.197)

It must be stressed that ¹¿ is not the wavelet decomposition of ¹, since ¹ are linked to

speci…c constraints and not time points. The exception is the special case where there is a single

constraint at each time point. This approach is more general - any number of constraints can

be used and will be converted into a set of
©
¹¿

ª
. There will be the same number of ¹¿ as there

are nodes on the tree.

rxL(x¤; ¹¤) = rx© + ¹¿ (2.198)

Note that for the unconstrained solution, one begins with

rx© = 0

Recall that the unconstrained state estimator solves the following set of equations.

(
X

µ²M

CTRµ¡1¿ C + a¿b¿ )±x̂¿ + a¿c¿ x̂¿ = d¿

The equations for the constrained case have an additional term to account for the constraints.

rx© = ¡¹¿ (2.199)

The constrained state estimator solves the following set of equations.

(
X

µ²M

CTRµ¡1¿ C + a¿b¿ )±x̂¿ + a¿c¿ x̂¿ = d¿¡¹¿ (2.200)

¹¿ has exactly the same behaviour in the recursive solution as ¡d¿ and its subsidiary variables.

There exist analogous subsidiary variables for ¹¿ with de…nitions that parallel those for the d
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variables.

¹0¿ = 0 8¿²L0 (2.201)

¹0¿ = ¡(a0¿ b¿ +
1
2
(c0¿® ¡ c0¿¯))a

y¡1
¿ ¹y¿ (2.202)

¹y¿ = ¹¿ ¡ 1p
2
(¹¤¿® ¡ ¹¤¿¯) ¡ 1p

2
(¹0¿® ¡ ¹0¿¯) (2.203)

¹¤¿ =
1p
2
(¹¤¿® + ¹¤¿¯) +

1p
2
(¹0¿® + ¹0¿¯) (2.204)

The subsidiary variable, ¹¤¿ , should not be confused with the ¹¤ representing the true

optimal solution. Greek subscripts indicate the tree subsidiary variable. There is no change in

the de…nition or recursion of the variables a, c or d, nor in any of their subsidiary variables.

The recursion structure produces an analogous set of equations

ay¿ ±x̂¿ + cy¿ x̂¿ = dy¿ ¡ ¹y¿ (2.205)

and for the top node,

az¿ ±x̂¿ + cz¿ x̂¿ = dz¿ ¡ ¹z¿ (2.206)

Satisfaction of equations 2.205 at all nodes of the tree and 2.206 at the top node only, is

equivalent to satisfaction of the derivative condition, and thus the …rst su¢cient Karush-Kuhn-

Tucker condition. Equality constraints can be incorporated without loss of generality as two

inequality constraints of opposite sign.

2.5.4 The second and subsequent KKT conditions

The second Karush-Kuhn-Tucker condition concerns the Lagrange multipliers themselves. At

the conclusion of any up-down sweep on the tree, one has a set of ¹¿ variables from which

a complete set of ¹ can be computed. These must satisfy the second Karush-Kuhn-Tucker

conditions.

1. ¹¤j ¸ 0 for j²A(x¤), where A(x¤) is the set of active constraints at x¤

2. ¹¤j = 0 for j /²A(x¤)
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The third KKT condition is often referred to as the su¢ciency condition. The cost function,

and the constraints are all twice continuously di¤erentiable, thus we must check

y0r2
xxL(x; ¹)y ¸ 0;8y²V (x¤) (2.207)

where

V (x¤) = fyjrxgj(x¤)0y = 0; j²A(x¤)g (2.208)

We can compute r2
xxL(x; ¹) easily from the cost function. The matrix r2

xxL(x; ¹) is sym-

metric with a “wavelet” or block structure, and like the wavelet decomposition matrix, the

eigenvalues will simply be the diagonal elements (or eigenvalues thereof, if they are matrices).

These can be computed as

X

µ

CTRµ¡1¿ C + (1 + A¿®)T (
p

2B¿®)¡TQ¡1
¿ (

p
2B¿®)¡1(1 + A¿®)

+
X

!(1 ¡ A¿®)T (
p

2B¿®)¡TQ¡1
¿ (

p
2B¿®)¡1(1 ¡ A¿®) (2.209)

where ! is some positive constant from the wavelet transform. For the scalar case, each of the

terms is positive, and thus the total is positive, hence the eigenvalue from this diagonal element

will be positive. For the vector case, each term is symmetric, and one would require that the

individual matrices, Q and R, have positive eigenvalues. Since we specify these matrices as

parameters of the cost function, we are able to guarantee this a priori.

Thus we have produced a Hessian that has positive eigenvalues and is symmetric (by the

commutativity of the partial derivatives), and thus from Strang [20], when an n£ n symmetric

matrix has all eigenvalues positive, the matrix is positive de…nite, which concludes the Karush-

Kuhn-Tucker su¢ciency condition. Simply put, all terms are the squares of constant matrices

or positive de…nite matrices. Since we are dealing with a quadratic program, it is globally

convex.
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2.5.5 Summary of the KKT conditions.

The su¢cient conditions for optimality for the quadratic cost function of the constrained mul-

tiscale state estimator are that at each node,

ay¿ ±x̂¿ + cy¿ x̂¿ = dy¿ ¡ ¹y¿ (2.210)

and at the top node,

az¿ ±x̂¿ + cz¿ x̂¿ = dz¿ ¡ ¹z¿ (2.211)

and the complimentarity conditions

¹¤j ¸ 0 for j²A(x¤); where A(x¤) is the set of active constraints at x¤

¹¤j = 0 for j /²A(x¤) (2.212)

Satisfaction of these constraints de…nes the stopping condition for the algorithm.

2.5.6 The special case of upper and lower bounds on states

The special case of upper and lower bounds on states only produces a simpler structure and a

more intuitive interpretation for the variables ¹¿ :

It will illustrate how the general algorithm proceeds. Suppose we have a system where the

only constraints are the upper and lower bounds on the state variables. Extending the wavelet

decomposition motive, de…ne ¹t to be the Lagrange multiplier associated with the inequality

x ¡ x̂(t) · 0 and ¹t with x̂(t) ¡ x · 0. The wavelet decomposition of these ¹ produces a

surprisingly simple equation for the …rst necessary condition.

For upper and lower bounds only, ¹¿ on the tree are related to the ¹ in a simple way.

¹¿ = ¹¿ + ¹
¿

(2.213)

This is unique since only one of ¹t and ¹t can be non-zero at any solution - it is impossible for

both constraints to be active for x · x:
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2.5.7 Scaling function constraints in the multiscale domain

The inequalities for state upper and lower bounds can be projected onto the tree using the Haar

transformation. The inequality constraints on the states exist at the zeroth level.

x · x̂(t) · x 8t (2.214)

Suppose that t is a node at the zeroth level, and ¿ is a node a the …rst level. Then we can

infer a constraint at the …rst level by applying the Haar decomposition to the inequalities at

the zeroth level.

x · x̂¿® · x (2.215)

x · x̂¿¯ · x (2.216)

Adding the inequalities and multiplying by 1p
2
; according to the Haar decomposition, produces

the new inequality constraint for the scaling function coe¢cient of the states at the …rst level.

1p
2
(2x) · x̂¿ · 1p

2
(2x) (2.217)

This procedure can be repeated up the tree so that for tm an arbitrary node at level m, we can

construct an appropriate inequality.

(
p

2)mx · x̂¿m · (
p

2)mx (2.218)

Clearly one can construct a solution at lower levels that violates lower bound while satisfying

the upper bounds. Thus higher level constraints are necessary but not su¢cient. These higher

level constraints will be referred to as superconstraints later in this thesis.

2.5.8 Wavelet constraints in the multiscale domain

It is possible to construct parallel wavelet constraints on the tree, in a similar manner to the

scaling function constraints. These are included here for completion, although not used in the

algorithm below.
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Suppose we have an x̂¤¿ that satis…es (2.218), we can derive the necessary and su¢cient

condition for the magnitude of ±x̂¿ so that (2.218) holds at the (m ¡ 1)th level.

We can combine constraints from lower levels on the tree.

(
p

2)m¡1x · 1p
2
(x̂¤¿m + ±x̂¿m) · (

p
2)m¡1x (2.219)

(
p

2)m¡1x · 1p
2
(x̂¤¿m ¡ ±x̂¿m) · (

p
2)m¡1x (2.220)

Thus

(
p

2)mx · x̂¤¿m + ±x̂¿m · (
p

2)mx (2.221)

(
p

2)mx · x̂¤¿m ¡ ±x̂¿m · (
p

2)mx (2.222)

The inequalities for the wavelet coe¢cients that guarantee satisfaction of the scaling function

coe¢cients at the level immediately below the current level can be constructed.

(
p

2)mx ¡ x̂¤¿m · ±x̂¿m · (
p

2)mx ¡ x̂¤¿m (2.223)

(
p

2)mx ¡ x̂¤¿m · ¡±x̂¿m · (
p

2)mx ¡ x̂¤¿m (2.224)

These can be represented more compactly in the following non-linear form.

j±x̂¿mj · minfx̂¤¿m ¡ (
p

2)mx; (
p

2)mx ¡ x̂¤¿mg (2.225)

The inequalities form a necessary and su¢cient condition for (2.218) to hold at the (m ¡ 1)th

level, and thus at all lower levels, if we include corresponding wavelet constraints from the

lower levels. This requirement is recursive since it requires knowledge about the upper values,

before the lower values can be computed, and is thus not very useful. They may be useful for

checking the …nal solution, but are no more so than the scaling function constraints in terms

of constructing a …nal solution, or improving the value of the cost function. They do provide

one useful corollary.

Corollary 8 If at any point on the tree, a value of x̂¤¿m in the optimal solution is at an upper

or lower bound, then all values of ±x̂¿ on the inclusive subtree from that node must necessarily
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be zero.

2.5.9 Expanding the set of constraints

The motivation for solving the constrained estimation problem in the multiscale domain is the

reduction in computational complexity in certain cases that are typically found in chemical

engineering control problems. The principle is to solve a sequence of simpler optimisation

subproblems, check for consistency with the original problem, and either conclude optimality

for the original problem, or update the modi…ed subproblem. This can be illustrated with a set

of problems with bounds on a state.

Consider the convex set A0 to be the set de…ned by upper and lower bounds on the state

variables at the zeroth level.

A0 =
©
xjxLo · xj · xL0 ;8xj 2 L0

ª
(2.226)

K0 = fset of constraints at L0g (2.227)

Ka0 = fset of constraints at L0 that are activeg (2.228)

Now suppose that this de…nition holds at higher levels, k, where xj refers to the scaling

function coe¢cients at the various levels computed as illustrated above, using Haar averaging.

Ak =
©
xjxLk · xj · xLk ;8xj 2 Lk

ª
(2.229)

Kk = fset of superconstraints at Lkg (2.230)

Kak = fset of superconstraints at Lk that are activeg (2.231)

Consider two problems, and the associated Karush-Kuhn-Tucker conditions for each.

Problem 9 This is the original formulation

min
xj

©(xj) +
X

k²K0

¸kgk(xj)
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has su¢cient conditions for solution

r©(xj) +
X

k²K0

¸krgk(xj) = 0

¸kgk(xj) = 0 8k 2 Ka0 (2.232)

¸k ¸ 0 8k 2 Ka0

fxjg 2 A0 (2.233)

Problem 10 including constraints at higher levels

min
xj

©(xj) +
X

k²K0

¸kgk(xj)

has su¢cient conditions for solution

r©(xj) +
X

k²K0

¸krgk(xj) +
X

k²K1

¸krgk(xj) = 0

¸kgk(xj) = 0 8k 2 Ka0 [ Ka1 [ : : : [ Kam (2.234)

¸k · 0 8k 2 Ka0 [ Ka1 [ : : : [ Kam

fxjg 2 A0 (2.235)

The above two problems will have the same solutions since the new constraints added are

simply restatements of collections of constraints from the older problem.

2.5.10 The implementation of the KKT conditions in the constrained state

estimation algorithm

This is a description of the algorithm that is currently used for the constrained state estimation

problem. It is summarised at the end of the detailed description.

The …rst step proceeds exactly as for the unconstrained case, with no increase in compu-

tational expense. The initial assumption made is that ¹ = 0, or that all points computed

in the downsweep will be feasible. The upsweep identi…es a complete set of dagger variables,

ay¿ ; c
y
¿ ; d

y
¿ , which remain constant for the remainder of the problem. These variables store all of

the information from the state model, the measurement model and the set of measurements.
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Essentially, this part is the same as computing an unconstrained solution, and is done once for

any problem statement, whereafter the variables are stored until needed.

The …rst step of the downsweep assumes that no constraints are active, thus the assumption

that ¹y¿ = ¹z¿ = 0 is su¢cient to identify the top node solution for the unconstrained minimum,

xu; by solving the top node set of dagger equations simultaneously.

ay¿ ±x̂¿ + cy¿ x̂¿ = dy¿ ¡ ¹y¿ (2.236)

az¿ ±x̂¿ + cz¿ x̂¿ = dz¿ ¡ ¹z¿ (2.237)

The …rst downsweep

The goal in the …rst downsweep is to produce a basic feasible solution that is as close as possible

to the unconstrained minimum. This is achieved by progressing as far down the tree as possible,

while tracking the unconstrained minimum, and deviating only when a constraint violation is

identi…ed. If no constraints are active at the optimum, this step will complete the algorithm,

and there will be no di¤erence between this and the unconstrained algorithm discussed earlier.

Starting with the top node, the current scaling function term x̂¿ is compared to each of the

constraints derived for the node ¿ . If the constraints are satis…ed, the wavelet coe¢cient for

the pertinent node is computed as for the unconstrained algorithm using the dagger equation

for that node.

ay¿ ±x̂¿ + cy¿ x̂¿ = dy¿ ¡ ¹y¿ (2.238)

The pair ±x̂¿ and x̂¿ are combined using Haar reconstruction to produce the descendant

scaling function estimates, x̂¿® and x̂¿¯ . The algorithm then moves down the tree in parallel

as nodes ¿® and ¿¯ become the current nodes down their respective branches. Since x̂¿ is

interior, then we know by construction of the constraints that there is a feasible solution on the

descendant nodes.

Suppose we discover that an upper bound on a state estimate is violated at node ¿ . We

make the solution at this node feasible by projecting it onto the violated constraint. From the

construction of the constraints at higher levels we know that if this value is part of the optimal
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solution, then all descendant nodes will be at the corresponding bound, and thus we choose for

the initial basic feasible solution, the solution on the descendant tree that is at that bound.

All descendant wavelet coe¢cients will be 0. This concludes the computation on the subtree

descending from ¿ .

The parent branch of ¿ , uniquely de…ned as the collection of nodes of which ¿ is a descendant,

must be adjusted to account for our adjustment of x̂¿ in such a way that it does not a¤ect the

value of the computed states on the remainder of the tree. This is useful since it allows us to

localise constraint violations without having them move the whole solution a long way from the

unconstrained minimum. In adjusting the parent branch, we need to make sure that the Haar

wavelet decomposition that de…nes the tree is satis…ed at all nodes.

Suppose x̂¿¯ has a constraint violation for some ¿ , and de…ne ± as the magnitude of the

current violation. Clearly ¿ is an element of the parent tree. We wish to adjust x̂¿¯ without

a¤ecting the value of x̂¿®.

x¿¯ =
1p
2

(x¿ ¡ ±x¿ )

x¿¯ ¡ ± =
1p
2

(x¿ ¡ ±x¿ ) ¡ ±

=
1p
2

µµ
x¿ ¡ 1p

2
±
¶

¡
µ

±x¿ +
1p
2
±
¶¶

(2.239)

x¿® =
1p
2

(x¿ + ±x¿ )

=
1p
2

µµ
x¿ ¡ 1p

2
±
¶

+
µ

±x¿ +
1p
2
±
¶¶

(2.240)

This shows that we can adjust the parent nodes without a¤ecting the remainder of the

tree. The parent scaling function, x̂¿ , is decreased by 1p
2
± for upper bound violations, and

increased by the same amount for lower constraint violations. The parent wavelet function,

±x̂¿ , is decreased by 1p
2
± for upper bound violations in x̂¿¯ or lower bound violations in x̂¿® ,

but increased by 1p
2
± for lower bound violations in x̂¿¯ and for upper bound violations in x̂¿® .

This step is performed for all nodes on the parent branch. Construction of the parent node

constraints guarantees that the new values will fall within the bounds of the parent nodes and
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thus that the solution remains feasible. The dagger equations

ay¿ ±x̂¿ + cy¿ x̂¿ = dy¿ ¡ ¹y¿ (2.241)

will remain satis…ed when we adjust the set of ¹y¿ , which when non-zero indicate the presence

of a constraint violation on the subtree from that node.

This approach is repeated in parallel at all nodes on the tree until the zeroth level is reached.

At this point we have a set of violated constraints V and a basic feasible solution fx̂¿ bfs; ±x̂¿ bfsg.

Note that lower bounds can be dealt with in a similar way, simply reversing the signs where

necessary.

The ¹ Conversion

For any basic feasible solution, fx̂¿ bfs; ±x̂¿ bfsg there is a unique set of
n
¹y¿ ; ¹

z
top

o
that will satisfy

the set of dagger equations. These are easily computed from the following since all coe¢cients

have been stored from the problem setup.

¹y¿ = ay¿ ±x̂¿ + cy¿ x̂¿ ¡ dy¿ (2.242)

For any set of
n
¹y¿ ; ¹

z
top

o
there is a unique set of

©
¹¿ ; ¹top

ª
which can be computed in a

single upsweep from the following intermediates. This is clear since the following non-singular

equations represent a linear transform. The only non-zero ¹y¿ variables will be those on the

parent branch of an identi…ed constraint, or on the subtree of such a constraint.

¹¤¿ = ¹0¿ = 0 8¿²L0 (2.243)

¹¤¿ =
1p
2
(¹¤¿® + ¹¤¿¯) +

1p
2
(¹0¿® + ¹0¿¯) (2.244)

¹¿ = ¹y¿ +
1p
2
(¹¤¿® ¡ ¹¤¿¯) +

1p
2
(¹0¿® ¡ ¹0¿¯) (2.245)

¹0¿ = ¡(a0¿ b¿ +
1
2
(c0¿® ¡ c0¿¯))a

y¡1
¿ ¹y¿ (2.246)

¹top = ¹ztop +
1p
2
(¹¤¿® + ¹¤¿¯) +

1p
2
(¹0¿® + ¹0¿¯) (2.247)
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Recall the de…nition of ¹¿ .

¹¿ = ¹Trxg (2.248)

A unique feature of this approach is that we have not speci…ed thus far what set of constraints

we are using. The bene…t is that we can eliminate any constraints known to be absent from

the active set immediately, thus reducing computational complexity. Suppose we choose the set

of constraints de…ned in the original problem - thus we ignore for the moment the constraints

higher on the tree that have been used to construct the basic feasible solution. We can eliminate

those corresponding to variables not on their bounds and can now convert the arti…cial tree

variables into a set of Lagrange multipliers in the traditional sense.

¹¿ = ¹Trxg ) ¹T = ¹¿rTx g
¡
rxgrTx g

¢¡1 (2.249)

The matrix inversion can be done in advance for the complete set of original constraints, or

stored for certain common or large groupings. Note that in an iterative procedure, a pivoting

scheme would be more appropriate, and faster Often a solution will initially …nd an active

constraint at a node high up on the tree, which corresponds to a large collection of nodes lower

on the tree. A library of high level nodes could be stored for computational e¢ciency. In

practice, the size of the matrix can be reduced considerably since the basic feasible solution

indicates which constraints are inactive, and these can be eliminated from the set.

Identi…cation of the new set of constraints

The computed ¹T provides a set of Lagrange multipliers that indicate where improvements

can be made to the cost function by relaxing a constraint. If these Lagrange multipliers are

all positive, then the optimum has been found and the algorithm terminates. Further, if a

group of positive Lagrange multipliers can be identi…ed, this suggests that the super-constraint

constructed from the corresponding constraints is active, and that the lower level constraints

can be replaced with this single super-constraint. The identi…cation of these groups leads to

a set of nodes corresponding to the set of super-constraints, and sundry individual constraints

that form the new set of active constraints.
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Any negative Lagrange multiplier suggests the existence of a constraint that needs to be

relaxed to reduce the value of the cost function. Constraints corresponding to negative Lagrange

multipliers are thus discarded for the purposes of …nding the next basic feasible solution.

Identi…cation of further feasible solutions

We have a new set of active constraints - and let us suppose there are p of them - and can

de…ne an unknown vector ¹T , and a vector rxg corresponding to these constraints. rxg for

the active constraints will be non-zero only on the nodes of the parent branch of a active

constraint, which leads to a computational reduction. rxg provides a set of coe¢cients for the

unknown ¹T , which can be transformed in an upsweep on the parent part of the tree to a set of

dagger coe¢cients so that at all ¿; a constant matrix c can be computed so that the following

equation is satis…ed.

¹y¿ = ¹T c (2.250)

The next basic feasible solution is computed from three types of equations. The p active

constraints provide p equations that set the constrained nodes to their speci…ed bounds.

x¿¯ =
1p
2

(x¿ ¡ ±x¿ ) (2.251)

or x¿® =
1p
2

(x¿ + ±x¿ ) (2.252)

Each node on the parent branches of the active constraint nodes provides two equations.

The top node provides the two equations

ay¿ ±x̂¿ + cy¿ x̂¿ = dy¿ ¡ ¹y¿ (2.253)

and az¿ ±x̂¿ + cz¿ x̂¿ = dz¿ ¡ ¹z¿ (2.254)
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with ¹y¿ and ¹z¿ computed from 2.250. Each other node provides two equations.

ay¿ ±x̂¿ + cy¿ x̂¿ = dy¿ ¡ ¹y¿ (2.255)

and x¿¯ =
1p
2

(x¿ ¡ ±x¿ ) (2.256)

or x¿® =
1p
2

(x¿ + ±x¿ ) (2.257)

This is an n equations in n unknowns set of linear equations, since for every active node

there is one equation and one unknown, a element of ¹T . For every node on the parent tree,

which by implication is non-active, there are two equations, and two unknowns, x¿ and ±x¿ .

The solution of this system provides a new set of ¹T ; and a corresponding basic feasible

solution, which can be used to determine where improvements can be made to the cost function.

Updating the constraint set

The presence of positive elements in ¹T indicates constraints that can be relaxed. Supercon-

straints that need to leave the basis are split into their two component constraints, and further

¹T computed. This is repeated until a level on the tree is reached where active constraints are

identi…ed. Once the zeroth level is reached, the constraint can be deleted from the active set

and the feasible state value accepted.

Stopping condition

The algorithm continues, moving down the tree until the …nal set of active constraints is identi-

…ed, and all KKT necessary and su¢cient conditions have been satis…ed. This includes checking

the ¹T constructed from the constraints in the original problem for the …nal set of constraints,

since satisfaction of the superconstraints does not indicate satisfaction of the zeroth level con-

straints.

Here follows a summary of the approach.

Algorithm 11 The constrained multiscale state estimator.

1. Begin at the base of the tree and compute the coe¢cients ay¿ ; c
y
¿ ; and dy¿ in an upsweep

similar to the unconstrained multiscale estimator.
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2. Solve the equations for the top nodes simultaneously for x̂top and ±x̂top:

3. If the scaling function is within bounds, compute the descendant nodes scaling functions

using the Haar reconstruction.

4. For each node:

(a) Check state estimation constraints for the scaling functions.

(b) If they are satis…ed

i. Compute the wavelet coe¢cient values for the nodes, using the coe¢cients com-

puted during the upsweep.

ii. Compute the scaling functions for the descendant nodes using Haar reconstruc-

tion.

(c) If they are not satis…ed:

i. Force them to the appropriate bound, e.g. upper bound if there is an upper bound

violation

ii. Adjust the parent nodes so that the sibling scaling function values are una¤ected.

iii. Mark the node as an active bound for later computation.

iv. Set all descendant scaling functions to the corresponding bound to the active

node.

v. Set all descendant wavelet coe¢cients to zero.

(d) Repeat (4) for descendant nodes until the zeroth level is reached.

5. Construct a set of Lagrange multipliers corresponding to this basic feasible solution.

6. Identify nodes at which superconstraints can be used to simplify the representation.

7. Improve the cost function of the basic feasible solution by relaxing constraints with positive

Lagrange multipliers, and compute a new basis feasible solution.

8. Repeat 5-7 by moving down the tree until the set of constraints remains unchanged and

all KKT are satis…ed and an optimal basic feasible solution is found.
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2.5.11 Comments on the constrained multiscale estimator

The upsweep of the algorithm is identical to the unconstrained case, as is the initial downsweep

to identify the unconstrained solution. The algorithm begins with a small set of superconstraints

and increases the set by moving down the tree until a solution is identi…ed that satis…es the

Karush-Kuhn-Tucker conditions. At this point the algorithm terminates. The third su¢ciency

condition is automatically satis…ed for the quadratic cost function chosen, as has been shown

above.

The algorithm will not improve solution time in all cases, since in the worst case, it will be

necessary to solve the problem using the entire set of constraints from the worst possible point

in the search space. This corresponds to solutions where there are rapid ‡uctuations around a

constraint.

The algorithm is intended to improve average solution time in the general case. The algo-

rithm is designed for problems where large areas of contiguous active constraints exist - such as

an active input constraint for a considerable length of time. The large number of constraints

at these time points can be replaced by a single constraint covering the time period.

The solution is guaranteed to converge since it is lower bounded by the unconstrained

minimum, always feasible, and thus a monotonically decreasing sequence is created by the

reduction in cost function at each constraint replacement. The …nite number of constraints

guarantees a …nite number of steps. There may be problems with cycling, which have not been

observed, and these would be dealt with using Bland’s rule.

2.6 Prior information and Kalman …lters

2.6.1 Multiscale estimator with prior information

The basic version of the multiscale estimator does not use the initial estimate of the left-most

node, since it is an unwieldy complication to the algorithm. This is a common approach in state

estimation problems [15], [18], [19]. .This section explains how to incorporate prior information

into the estimation algorithm, and the computational cost involved in doing so.
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The multiscale state estimator cost function becomes:

©P = ©orig + ©p (2.258)

=
X

µ²M

((yµtop ¡ Cx̂top)TRµ¡1top (yµtop ¡ Cx̂top)

+
X

¿²T

(±yµ¿ ¡ C±x̂¿ )TRµ¡1¿ (±yµ¿ ¡ C±x̂¿ )) +

+
X

¿²T

((1 + A¿®)±x̂¿ ¡ (1 ¡ A¿®)x̂¿ +
p

2B¿®u¿®)T (
p

2B¿®)¡TQ¡1
¿ (

p
2B¿®)¡1 : : :

: : : ((1 + A¿®)±x̂¿ ¡ (1 ¡ A¿®)x̂¿ +
p

2B¿®u¿®)

+
¡
x0j¡1 ¡ bx0

¢T P¡1
0j¡1

¡
x0j¡1 ¡ bx0

¢
(2.259)

The unconstrained Multiscale State Estimator must be modi…ed for this extra term. For

the unconstrained problem, the necessary and su¢cient conditions for optimality are:

d©P
dx̂top

= 0 (2.260)

d©P
d±x̂¿

= 0 8¿²T (2.261)

For x̂top, this equation reduces to:

d©P
dx̂top

= ¡2
X

µ²M

CTRµ¡1top (yµtop ¡ Cx̂top) +
X

¾²T

@©orig
@x̂¾

@x̂¾
@x̂top

+
@©p
@x̂0

@x̂0
@x̂top

= 0 (2.262)

and for ±x̂¿

d©P
d±x̂¿

= ¡2
X

µ²M

CTRµ¡1¿ (±yµ¿ ¡ C±x̂¿ ) +
X

¾²T

@©orig
@x̂¾

@x̂¾
@±x̂¿

+
@©p
@x̂0

@x̂0
@±x̂top

(2.263)

+2(1 + A¿®)(
p

2B¿®)¡TQ¡1
¿ (

p
2B¿®)¡1((1 + A¿®)±x̂¿ ¡ (1 ¡ A¿®)x̂¿ +

p
2B¿®u¿®) = 0

Thus the additional term to be included is

@©P
@x̂0

= ¡ 2P¡1
0j¡1

¡
x0j¡1 ¡ bx0

¢
(2.264)
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Note the complication of including this term in the original formulation of the estimator -

the term x̂0 includes a contribution from nodes on the left branch of the tree makes the matrix

dense, rather than lower block diagonal. An e¢cient solution to this problem is to construct

the smallest dense matrix possible, which must be inverted, and use this as the starting point

for the sparse section of the algorithm. At each level we retain the bx0 term and store it with

its own set of coe¢cients, p¿ which behave in a similar manner to the d¿ family of variables

The new algorithm is as follows.

De…ne a¿ , b¿ and c¿ so that:

(
X

µ²M

CTRµ¡1¿ C + a¿b¿ )±x̂¿ + a¿c¿ x̂¿ = d¿ + p¿ x̂0 (2.265)

for the parent tree of x̂0 only, using the original equation for the remaining nodes.

a¿ = (1 + A¿®) (2.266)

b¿ = (
p

2B¿®)¡TQ¡1
¿ (

p
2B¿®)¡1(1 + A¿®) (2.267)

c¿ = ¡(
p

2B¿®)¡TQ¡1
¿ (

p
2B¿®)¡1(1 ¡ A¿®) (2.268)

d¿ =
X

µ²M

CTRµ¡1¿ ±yµ¿ ¡ (1 + A¿®)(
p

2B¿®)¡TQ¡1
¿ u¿®

¡1=
p

2(u¤¿® ¡ u¤¿¯) +
p

2mP¡1
0j¡1x0j¡1 (2.269)

p¿ = ¡
p

2mP¡1
0j¡1 if ¿ 2 parent tree of x0

= 0 otherwise (2.270)

where m = number of levels between the zeroth level and ¿ , and the modi…ed de…nitions are

valid on the parent tree of node 0. The remaining nodes use the de…nitions of the original

estimation algorithm.
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De…ning

a0¿ = (1 ¡ A¿®) (2.271)

u¤¿ = ¡(1 ¡ A¿®)(
p

2B¿®)¡TQ¡1
¿ u¿® + 1=

p
2(u¤¿® + u¤¿¯) (2.272)

ay¿±x̂¿ + cy¿ x̂¿ = dy¿ + py¿ x̂0 (2.273)

c0¿ = d0¿ = p0¿ = 0 8¿²L0 (2.274)

c0¿ = ¡(a0¿b¿ +
1
2
(c0¿® ¡ c0¿¯))a

y¡1
¿ cy¿ + (+a0¿ c¿ +

1
2
(c0¿® + c0¿¯)) (2.275)

d0¿ = ¡(a0¿b¿ +
1
2
(c0¿® ¡ c0¿¯))a

y¡1
¿ dy¿ (2.276)

p0¿ bx0 = ¡(a0¿b¿ +
1
2
(c0¿® ¡ c0¿¯))a

y¡1
¿ x̂0 (2.277)

ay¿ =
X

µ²M

CTRµ¡1¿ C + a¿b¿ ¡ 1
2
(c0¿® + c0¿¯) (2.278)

cy¿ = a¿c¿ ¡ 1
2
(c0¿® ¡ c0¿¯) (2.279)

dy¿ = d¿ ¡ 1p
2
(d¤¿® ¡ d¤¿¯) ¡ 1p

2
(d0¿® ¡ d0¿¯) (2.280)

py¿ = p¿ ¡ 1p
2
(p¤¿® ¡ p¤¿¯) ¡ 1p

2
(p0¿® ¡ p0¿¯) (2.281)

d¤¿ =
1p
2
(d¤¿® + d¤¿¯) +

1p
2
(d0¿® + d0¿¯) (2.282)

p¤¿ =
1p
2
(p¤¿® + p¤¿¯) +

1p
2
(p0¿® + p0¿¯) (2.283)

where the right descendant coe¢cients will typically be zero. For the top node, the only

addition is,

pz¿ = ptop ¡ 1p
2
(p¤¿® + p¤¿¯) ¡ 1p

2
(p0¿® + p0¿¯) (2.284)

This produces a simultaneous system for solution once the upsweep has been completed,

and corresponds to the simultaneous solution of the top nodes’ scaling function and wavelet

coe¢cient. The matrix equation for a tree of depth 3 is given, but systems of di¤erent size can
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be constructed in an identical manner.

2
66666666666666664

az cz ¡pz

aytop cytop ¡pytop

aytop® cytop® ¡pytop®
1p
2

1p
2

¡1

aytop®® cytop®® ¡pytop®®
1p
2

1p
2

¡1
1p
2

1p
2

¡1

3
77777777777777775

2
6666666666666664

c±xtop
bxtop

c±xtop®
bxtop®

c±xtop®®
bxtop®®

bx0

3
7777777777777775

=

2
6666666666666664

dz

dytop

dytop®

0

dytop®®

0

0

3
7777777777777775

(2.285)

This system can be solved by matrix inversion, and the remainder of the tree can be com-

puted as in the basic algorithm using the equations

ay¿±x̂¿ + cy¿ x̂¿ = dy¿ (2.286)

with the wavelet reconstruction. This concludes the state estimation algorithm with prior

information.

2.6.2 The Kalman …lter and the multiscale state estimator

The Kalman Filter for the unconstrained estimation problem provides the motivation for the

unconstrained Multiscale State Estimator, in particular in the way of algorithm design.

The Kalman …lter can be viewed as the solution to the following estimation problem:

min
fx̂jg

¡
x0j¡1 ¡ x̂0

¢T P¡1
0j¡1

¡
x0j¡1 ¡ x̂0

¢
+

X

j=0::n

(yj ¡ Cx̂j)TR¡1
j (yj ¡ Cx̂j) +

X

j=0::n¡1
(x̂j+1 ¡ Ajx̂j ¡ Bjuj)TQ¡1

j (x̂j+1 ¡ Ajx̂j ¡ Bjuj) (2.287)

The solution is obtained using a basis of fx̂0:::x̂ng by setting derivatives with respect to

each of the variables to zero. This produces a tridiagonal set of (n + 1) linear equations in

(n + 1) unknowns. The solution of these equations is obtained using Gaussian elimination

to produce the Kalman …ltered estimate at the nth point. Back-substitution produces the

Rauch-Tung-Striebel smoothed estimate for all of the intermediate points.
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The solution is

@©
@bxk

= 0 8k (2.288)

For k = 0 this is

P¡1
0j¡1

¡
x0j¡1 ¡ x̂0

¢
+ CTR¡1

0 (y0 ¡ Cx̂0) + AT0 Q¡1
0 (x̂1 ¡ A0x̂0 ¡ B0u0) = 0 (2.289)

alternately,

(a0 + e0) x̂0 + b0x̂1 = d0 + f0 (2.290)

ak = CTR¡1
k C + P¡1

0j¡1 (2.291)

bk = ¡ATkQ
¡1
k (2.292)

dk = CTR¡1
k yk + P¡1

0j¡1x0j¡1 (2.293)

ek = ATkQ
¡1
k Ak (2.294)

fk = ATkQ
¡1
k Bkuk (2.295)

For 0 < k < n this is

CTR¡1
k (yk ¡ Cx̂k) + ATkQ

¡1
k (x̂k+1 ¡ Akx̂k ¡ Bkuk) ¡ Q¡1

k¡1(x̂k ¡ Ak¡1x̂k¡1 ¡ Bk¡1uk¡1) = 0

(2.296)

alternately,

ckx̂k¡1 + (ak + ek) x̂k + bkx̂k+1 = dk + fk (2.297)
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where

ak = CTR¡1
k C + Q¡1

k¡1 (2.298)

bk = ¡ATkQ
¡1
k (2.299)

ck = ¡Q¡1
k¡1Ak¡1 (2.300)

dk = CTR¡1
k yk + Q¡1

k¡1Bk¡1uk¡1 (2.301)

ek = ATkQ
¡1
k Ak (2.302)

fk = ¡ATkQ
¡1
k Bkuk (2.303)

for k = n this is

CTR¡1
n (yn ¡ Cx̂n) ¡ Q¡1

n¡1(x̂n ¡ An¡1x̂n¡1 ¡ Bn¡1un¡1) = 0 (2.304)

alternately

cnx̂n¡1 + anx̂n = dn (2.305)

de…ned as for the general k but with

bn = ek = fk = 0 (2.306)

Gaussian elimination from node 0 to node 1 gives

c1x̂0 + (a1 + e1) x̂1 + b1x̂2¡c1a¡10 (a0x̂0 + b0x̂1) = d1 + f1 ¡ c1a¡10 d0
³
ay1 + e1

´
x̂1 + by1x̂2 = dy1 + f1 (2.307)
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Gaussian elimination from node k to node k + 1

ck+1x̂k + (ak+1 + ek+1) x̂k+1 + bk+1x̂k+2

¡ck+1

³
ayk + ek

´¡1 ³³
ayk + ek

´
x̂k + bykx̂k+1

´
(2.308)

= dk+1 + fk+1 ¡ ck+1a
y¡1
k

³
dyk + fk

´
(2.309)

³
ayk+1 + ek+1

´
x̂k+1 + byk+1x̂k+2 = dyk+1 + fk+1 (2.310)

The algorithm has the form

ayk+1 = ak+1¡ck+1

³
ayk + ek

´¡1
byk

byk+1 = bk+1

dyk+1 = dk+1 ¡ ck+1a
y¡1
k

³
dyk + fk

´
(2.311)

with initial conditions

ay0 = a0

by0 = b0

dy0 = d0 (2.312)

At the nth node

bn = 0

aynx̂n = dyn (2.313)

which is the …rst step of the back substitution algorithm which gives rise to the complete set

of optimal estimates.

This turns out to be identical to the traditional linear Kalman …lter in all respects, although

the variables used in the Kalman …lter need to be teased out of the subsidiary variables.

Gaussian elimination from level 0 to level 1 gives rise to two intermediate variables, x0j0;and

100



P¡1
0j0 .

x0j0 =
³
CTR¡1

0 C + P¡1
0j¡1

´¡1 ³
CTR¡1

0 y0 + P¡1
0j¡1x0j¡1

´
(2.314)

For comparison to the Kalman …lter, let us begin with the standard form of the Ricatti equation

for the discrete time Kalman …lter:

Ptjt = Ptjt¡1 ¡ Ptjt¡1CTt
¡
CtPtjt¡1CTt + Rt

¢¡1 CtPtjt¡1 (2.315)

Pt+1jt = AtPtjtATt + Qt (2.316)

and the update and prediction steps for the state estimate:

x̂tjt = x̂tjt¡1 + Ptjt¡1CTt
¡
CtPtjt¡1CTt + Rt

¢¡1 ¡
yt ¡ Ctx̂tjt¡1

¢
(2.317)

x̂t+1jt = Atx̂tjt + Btut (2.318)

A useful quantity is the gain matrix:

Kt = Ptjt¡1CTt
¡
CtPtjt¡1CTt + Rt

¢¡1 (2.319)

=
³
CTt R¡1

t Ct + P¡1
tjt¡1

´¡1
CTt R¡1

t (2.320)

Lemma 12

³
P¡1
kjk + ATkQ

¡1
k Ak

´¡1
= Pkjk

³
Pkjk + A¡1

k QkA
¡T
k

´¡1
A¡1
k QkA

¡T
k (2.321)
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Proof. Assuming all relevant matrices are invertible

I + A¡1
k QkA

¡T
k P¡1

kjk = A¡1
k QkA

¡T
k P¡1

kjk + I (2.322)

PkjkP
¡1
kjk + A¡1

k QkA
¡T
k P¡1

kjk = A¡1
k QkA

¡T
k P¡1

kjk + A¡1
k QkA

¡T
k ATkQ

¡1
k Ak (2.323)

³
Pkjk + A¡1

k QkA
¡T
k

´
P¡1
kjk = A¡1

k QkA
¡T
k

³
P¡1
kjk + ATkQ

¡1
k Ak

´
(2.324)

³
Pkjk + A¡1

k QkA
¡T
k

´
P¡1
kjk = A¡1

k QkA
¡T
k

³
P¡1
kjk + ATkQ

¡1
k Ak

´
(2.325)

P¡1
kjk

³
P¡1
kjk + ATkQ

¡1
k Ak

´¡1
=

³
Pkjk + A¡1

k QkA
¡T
k

´¡1
A¡1
k QkA

¡T
k (2.326)

³
P¡1
kjk + ATkQ

¡1
k Ak

´¡1
= Pkjk

³
Pkjk + A¡1

k QkA
¡T
k

´¡1
A¡1
k QkA

¡T
k (2.327)

Claim 13

ay¡1k = Pkjk (2.328)

i.e. the recursions are equivalent.

Proof. by induction. Firstly, it is true for k=0

ay¡10 = a¡10 (2.329)

=
³
CTR¡1

0 C + P¡1
0j¡1

´¡1
(2.330)

=
³
CTR¡1

0 C + P¡1
0j¡1

´¡1
P¡1
0j¡1P0j¡1 (2.331)

=
µ

I ¡
³
CTR¡1

0 C + P¡1
0j¡1

´¡1
CTR¡1

0 C
¶

P0j¡1 (2.332)

= (I ¡ K0C)P0j¡1 (2.333)

= P0j0 (2.334)
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Proof. Suppose it is true for k, show that it is true for k + 1

ayk+1 = ak+1¡ck+1

³
ayk + ek

´¡1
byk (2.335)

= CTR¡1
k+1C + Q¡1

k ¡
¡
¡Q¡1

k Ak
¢ ³

P¡1
kjk + ATkQ

¡1
k Ak

´¡1 ¡
¡ATkQ

¡1
k

¢
(2.336)

= CTR¡1
k+1C + Q¡1

k

¡Q¡1
k AkPkjk

³
Pkjk + A¡1

k QkA
¡T
k

´¡1
A¡1
k QkA

¡T
k ATkQ

¡1
k (2.337)

= CTR¡1
k+1C + Q¡1

k ¡ Q¡1
k AkPkjk

³
Pkjk + A¡1

k QkA
¡T
k

´¡1
A¡1
k (2.338)

= CTR¡1
k+1C + Q¡1

k ¡ Q¡1
k AkPkjkA

T
k

³
AkPkjkA

T
k + Qk

´¡1
AkA¡1

k (2.339)

= CTR¡1
k+1C + Q¡1

k ¡ Q¡1
k AkPkjkA

T
k P

¡1
k+1jk (2.340)

= CTR¡1
k+1C + Q¡1

k ¡ Q¡1
k

³
Pk+1jk ¡ Qk

´
P¡1
k+1jk (2.341)

= CTR¡1
k+1C + Q¡1

k ¡ Q¡1
k + P¡1

k+1jk (2.342)

= CTR¡1
k+1C+P¡1

k+1jk (2.343)

ay¡1k =
³
CTR¡1

k+1C+P¡1
k+1jk

´¡1
(2.344)

=
³
CTR¡1

k+1C + P¡1
k+1jk

´¡1
P¡1
k+1jkPk+1jk (2.345)

=
µ

I ¡
³
CTR¡1

k+1C + P¡1
k+1jk

´¡1
CTR¡1

k+1C
¶

Pk+1jk (2.346)

= (I ¡ KkC)Pk+1jk (2.347)

= Pk+1jk+1 (2.348)

This demonstrates that the recursions in ayk and Pkjk are identical.

Lemma 14

P¡1
kjk = CTR¡1C + P¡1

kjk¡1

103



Proof.

I = I

= I + [CTR¡1 ¡ CTR¡1]CPkjk¡1 (2.349)

= I + [CTR¡1 ¡ CTR¡1 ¡
R + CPkjk¡1CT

¢ ¡
CPkjk¡1CT + R

¢¡1]CPkjk¡1 (2.350)

= I ¡ CT
¡
CPkjk¡1CT + R

¢¡1 CPkjk¡1 + CTR¡1CPkjk¡1

¡CTR¡1CPkjk¡1CT
¡
CPkjk¡1CT + R

¢¡1 CPkjk¡1 (2.351)

=
³
CTR¡1C + P¡1

kjk¡1

´³
Pkjk¡1 ¡ Pkjk¡1CT

¡
CPkjk¡1CT + R

¢¡1 CPkjk¡1
´
(2.352)

=
³
CTR¡1C + P¡1

kjk¡1

´
Pkjk (2.353)

P¡1
kjk = CTR¡1C + P¡1

kjk¡1 (2.354)

Claim 15 Intermediate estimates for the states can be computed from the equation:

aykxkjk = dyk (2.355)

Proof. by induction

x0j0 = x̂0j¡1 + P0j¡1CT
¡
CP0j¡1CT + R0

¢¡1 ¡
y0 ¡ Cx̂0j0¡1

¢
(2.356)

= x̂0j¡1 +
³
CTt R¡1

t Ct + P¡1
tjt¡1

´¡1
CTt R¡1

t
¡
y0 ¡ Ctx̂0j0¡1

¢
(2.357)

=
³
CTR¡1

0 C + P¡1
0j¡1

´¡1
CTR¡1

0 y0

+
³
CTR¡1

0 C + P¡1
0j¡1

´¡1 ¡
I ¡ CTt R¡1

t Ctx̂0j0¡1
¢

(2.358)

=
³
CTR¡1

0 C + P¡1
0j¡1

´¡1
CTR¡1

0 y0 +
³
CTR¡1

0 C + P¡1
0j¡1

´¡1
P¡1
0j¡1x̂0j0¡1 (2.359)

=
³
CTR¡1

0 C + P¡1
0j¡1

´¡1 ³
CTR¡1

0 y0 + P¡1
0j¡1x0j¡1

´
(2.360)

= ay¡10 dy0 (2.361)
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xkjk = x̂kjk¡1 + Pkjk¡1CT
¡
CPkjk¡1CT + Rk

¢¡1 ¡
yk ¡ Ctx̂kjk¡1

¢
(2.362)

=
³
CTR¡1

k C + P¡1
kjk¡1

´¡1 ³
CTR¡1

k yk + P¡1
kjk¡1xkjk¡1

´
(2.363)

= ay¡1k
³
CTR¡1

k yk + P¡1
kjk¡1xkjk¡1

´
(2.364)

= ay¡1k
³
CTR¡1

k yk + P¡1
kjk¡1

¡
Ak¡1xk¡1jk¡1 + Bk¡1uk¡1

¢´
(2.365)

= ay¡1k

0
@ CTR¡1

k yk
+

¡
Ak¡1Pk¡1jk¡1ATk¡1 + Qk¡1

¢¡1 ¡
Ak¡1xk¡1jk¡1 + Bk¡1uk¡1

¢

1
A(2.366)

= ay¡1k

0
@ CTR¡1

k yk + Q¡1
k¡1

³
A¡T
k¡1P

¡1
k¡1jk¡1A

¡1
k¡1 + Q¡1

k¡1
´¡1

A¡T
k¡1P

¡1
k¡1jk¡1A

¡1
k¡1

¡
Ak¡1xk¡1jk¡1 + Bk¡1uk¡1

¢

1
A (2.367)

= ay¡1k

0
@ CTR¡1

k yk + Q¡1
k¡1Ak¡1

³
P¡1
k¡1jk¡1 + ATk¡1Q

¡1
k¡1Ak¡1

´¡1
³
P¡1
k¡1jk¡1

¡
xk¡1jk¡1 + A¡1

k¡1Bk¡1uk¡1
¢´

1
A (2.368)

= ay¡1k

0
BBB@

CTR¡1
k yk + Q¡1

k¡1Ak¡1
³
P¡1
k¡1jk¡1 + ATk¡1Q

¡1
k¡1Ak¡1

´¡1
0
@ P¡1

k¡1jk¡1
¡
xk¡1jk¡1 + A¡1

k¡1Bk¡1uk¡1
¢

¡ATk¡1Q
¡1
k¡1Bk¡1uk¡1 + ATk¡1Q

¡1
k¡1Bk¡1uk¡1

1
A

1
CCCA (2.369)

= ay¡1k

0
BBB@

CTR¡1
k yk + Q¡1

k¡1Ak¡1
³
P¡1
k¡1jk¡1 + ATk¡1Q

¡1
k¡1Ak¡1

´¡1
0
@ P¡1

k¡1jk¡1xk¡1jk¡1 ¡ ATk¡1Q
¡1
k¡1Bk¡1uk¡1

+
³
P¡1
k¡1jk¡1 + ATk¡1Q

¡1
k¡1Ak¡1

´
A¡1
k¡1Qk¡1Q

¡1
k¡1Bk¡1uk¡1

1
A

1
CCCA(2.370)

= ay¡1k

0
BBB@

CTR¡1
k yk + Q¡1

k¡1Bk¡1uk¡1

+Q¡1
k¡1Ak¡1

³
P¡1
k¡1jk¡1 + ATk¡1Q

¡1
k¡1Ak¡1

´¡1
³
P¡1
k¡1jk¡1xk¡1jk¡1 ¡ ATk¡1Q

¡1
k¡1Bk¡1uk¡1

´

1
CCCA (2.371)

= ay¡1k

µ
dk ¡ ck

³
ayk¡1 + ek¡1

´¡1 ³
dyk¡1 + fk¡1

´¶
(2.372)

= ay¡1k dyk

The smoothing step for the algorithm is obtained by back-substitution of equations

aynx̂n = dyn³
ayk + ek

´
x̂k + bykx̂k+1 = dyk + fk
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where at each step it is assumed that x̂k+1 has been computed at the previous step. Substituting

this gives the following.

Claim 16 The back-substitution is equivalent to the Rauch-Tung-Striebel smoother

aynx̂n = dyn (2.373)
³
ayk + ek

´
x̂k + bykx̂k+1 = dyk + fk (2.374)

´

x̂k = A¡1
k x̂k+1 ¡ A¡1

k Bkuk ¡ A¡1
k QkP

¡1
k+1jk

¡
x̂k+1 ¡ xk+1jk

¢
(2.375)
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Proof.

³
P¡1
kjk + ATkQ

¡1
k Ak

´
x̂k = ATkQ

¡1
k x̂k+1 + P¡1

kjkxkjk ¡ ATkQ
¡1
k Bkuk (2.376)

= ATkQ
¡1
k x̂k+1 + P¡1

kjkA
¡1
k

¡
xk+1jk ¡ Bkuk

¢
¡ ATkQ

¡1
k Bkuk (2.377)

= ATkQ
¡1
k x̂k+1 + P¡1

kjkA
¡1
k xk+1jk

¡P¡1
kjkA

¡1
k Bkuk ¡ ATkQ

¡1
k Bkuk (2.378)

= ATk
³
A¡T
k P¡1

kjkA
¡1
k + Q¡1

k

´³
A¡T
k P¡1

kjkA
¡1
k + Q¡1

k

´¡1

0
@ Q¡1

k x̂k+1 + A¡T
k P¡1

kjkA
¡1
k xk+1jk

¡A¡T
k P¡1

kjkA
¡1
k Bkuk ¡ Q¡1

k Bkuk

1
A (2.379)

=
³
P¡1
kjk + ATkQ

¡1
k Ak

´
A¡1
k

³
A¡T
k P¡1

kjkA
¡1
k + Q¡1

k

´¡1

0
BBB@

A¡T
k P¡1

kjkA
¡1
k x̂k+1 + Q¡1

k x̂k+1

¡A¡T
k P¡1

kjkA
¡1
k Bkuk ¡ Q¡1

k Bkuk

¡A¡T
k P¡1

kjkA
¡1
k

¡
x̂k+1 ¡ xk+1jk

¢

1
CCCA (2.380)

³
P¡1
kjk + ATkQ

¡1
k Ak

´
x̂k =

³
P¡1
kjk + ATkQ

¡1
k Ak

´
A¡1
k (2.381)

0
@ x̂k+1 ¡ Bkuk

¡
³
A¡T
k P¡1

kjkA
¡1
k + Q¡1

k

´¡1
A¡T
k P¡1

kjkA
¡1
k

¡
x̂k+1 ¡ xk+1jk

¢

1
A

x̂k = A¡1
k x̂k+1 ¡ A¡1

k Bkuk (2.382)

¡A¡1
k

³
A¡T
k P¡1

kjkA
¡1
k + Q¡1

k

´¡1
A¡T
k P¡1

kjkA
¡1
k

¡
x̂k+1 ¡ xk+1jk

¢

= A¡1
k x̂k+1 ¡ A¡1

k Bkuk

¡A¡1
k Qk

¡
AkPkjkATk + Qk

¢¡1 ¡
x̂k+1 ¡ xk+1jk

¢
(2.383)

x̂k = A¡1
k x̂k+1 ¡ A¡1

k Bkuk ¡ A¡1
k QkP

¡1
k+1jk

¡
x̂k+1 ¡ xk+1jk

¢
(2.384)

This is the standard form of the discrete Rauch-Tung-Striebel backwards smoother.

This demonstrates that the Kalman …lter and the proposed algorithm solve the same op-

timization problem, and that all Kalman …lter estimates can be easily generated from the

intermediate variables from the algorithm.

Since the Kalman …ltered estimate is the solution to an optimisation problem, we can
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compare it to the multiscale state estimator in terms of the cost functions, and speed of solution.

It is meaningless to use ”correctness of solution” since the Kalman …ltered solution will be

suboptimal for the cost function of the multiscale estimator and vice versa.

2.6.3 Comparison of Kalman …lter and multiscale state estimator cost func-

tions

The Multiscale State Estimator cost function is

©P =
X

µ²M

((yµtop ¡ Cx̂top)TRµ¡1top (yµtop ¡ Cx̂top) +
X

¿²T

(±yµ¿ ¡ C±x̂¿ )TRµ¡1¿ (±yµ¿ ¡ C±x̂¿ )) +

+
X

¿²T

((1 + A¿®)±x̂¿ ¡ (1 ¡ A¿®)x̂¿ +
p

2B¿®u¿®)T (
p

2B¿®)¡TQ¡1
¿ (

p
2B¿®)¡1 : : :

: : : ((1 + A¿®)±x̂¿ ¡ (1 ¡ A¿®)x̂¿ +
p

2B¿®u¿®)

+
¡
x0j¡1 ¡ x̂0

¢T P¡1
0j¡1

¡
x0j¡1 ¡ x̂0

¢
(2.385)

and the Kalman …lter cost function is

©K =
¡
x0j¡1 ¡ x̂0

¢T P¡1
0j¡1

¡
x0j¡1 ¡ x̂0

¢
+

X

µ²M

X

j=0::n

(yµj ¡ Cx̂j)TRµ¡1j (yµj ¡ Cx̂j) +

X

j=0::n¡1
(x̂j+1 ¡ Aj x̂j ¡ Bjuj)TQ¡1

j (x̂j+1 ¡ Aj x̂j ¡ Bjuj) (2.386)

The measurement terms and the prior information terms are identical in both cost functions,

thus the only di¤erence is in the term containing the error in the dynamic system

x̂j+1 ¡ Aj x̂j ¡ Bjuj = wj (2.387)

(1 + A¿®)±x̂¿ ¡ (1 ¡ A¿®)x̂¿ +
p

2B¿®u¿® = w¿® (2.388)
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Thus the di¤erence in the cost functions is

X

j=0::n¡1
wTj Q¡1

j w
j
¡

X

¿²T

wT¿®Q
¡1
¿ w¿®

= wTJQ¡1
J wJ ¡ wTJMTQ¡1

¿ MwJ

= wTJ
¡
Q¡1
J ¡MTQ¡1

¿ M
¢
wJ (2.389)

where wJ is the vector of modelling errors at the zeroth level, Q¡1
J the block diagonal matrix of

inverse covariances of the modelling errors, Q¡1
¿ the block diagonal matrix of inverse covariances

of the modelling errors on the tree and M , the modi…ed hat transform matrix.

The two solutions will be identical for very small problems. For a single node the prob-

lems are identical since there is no state transition model and consequently no state transition

modelling error. For a two node problem, the cost functions are also identical, with the state

transition error in both cases being wT0 Q¡1
0 w0. For the four node problem (for Q=1), the two

cost functions diverge:

KF = w2
0 + w2

1 + w2
2 (2.390)

MSE = w2
0 + w2

2 + wT0=2Q
¡1
0=2w0=2

= w2
0 + w2

2 + (Aw0 + (1 + A)w1 + w2)T

(2(1 + A)T (1 + A) ¡ 2A)¡1 (Aw0 + (1 + A)w1 + w2) (2.391)

t w2
0(1 + (1 + A¡1)¡1(1 + A¡1)¡T ) + w2

2 (2.392)

+
1
2
(1 ¡ 2(1 + A¡1)¡1(1 + A¡1)¡T )w2

1 (2.393)

There will be cross terms, but in this approximation, we can ignore them since E[wjwk] =

±jk. It turns out that higher up the tree, the even terms from the zeroth level are more heavily

weighted, but the weight is spread out evenly over each level - there is no weight given to earlier

or later points. The multiscale state estimator tries to spread the energy evenly over all levels

of the tree by weighting each the same way. If this assumption is incorrect, then Q should be

chosen to include any additional information we have on the problem.
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Chapter 3

Uncertainty Aspects

3.1 Introduction

In this chapter, we develop the uncertainty analysis associated with the state estimates gener-

ated by the algorithm in Chapter 2. An uncertainty analysis cannot be done without making

some assumptions about the structure of the uncertainty. In this context, the uncertainty that

we estimate in the state estimate is only as accurate as our assumptions about the underlying

model. We begin by de…ning the error in the state estimate (subsequently abbreviated to esti-

mation error) in terms of the state estimate itself, and in the assumed underlying process. The

unconstrained algorithm is rewritten in terms of the estimation errors which are represented

explicitly in terms of the underlying uncertainties in the model. If we provide a model for the

underlying uncertainties in terms of probability distribution functions, then this is su¢cient

information to produce a probability distribution function in terms of the estimation error

itself.

We explore three di¤erent approaches to the construction of probability functions in this

chapter. We investigate (a), the approach of polynomial chaos expansions, (b), the approach of

direct integration of the underlying probability distribution functions, and (c), a Monte Carlo

approach for the generation of the distributions. The chapter concludes with an illustration of

these approaches using a …fth Rayleigh distribution, primarily to illustrate the distribution of

uncertainty on the tree, but also to illustrate the propagation of a di¤erent distribution through
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the Haar wavelet transform.

Further approaches to eliminate outliers involve median based estimators, such as those

presented by Huber, [2]. These provide an increase in robustness for parameter estimation

algorithms, and are useful for small numbers of parameters, however for the state estimation

problem, they become computationally intractable quickly.

3.2 Modifying the multiscale state estimation algorithm

The state estimation algorithm derived in Chapter 2 shows how measurements, y, are used to

generate a set of optimal state estimates x̂. The state, x, is governed by a process equation

x = f(x; u; w), where u are the known inputs, and w are used to describe any unknown inputs,

or unknown dynamics in the process. The measurements, y, are governed by a measurement

equation y = g(x; v), where v represents the uncertainty in the measurement process.

The uncertainties in the states, and consequently the measurements, can be computed

in a similar way if we have access to an assumed model for the two underlying uncertainty

processes, v and w. The multiscale state estimator makes no assumptions about the probability

distribution functions of the underlying uncertainties - it simply provides a weight for each

variable in the cost function. Because of this, we can compute error statistics for a far larger

family of probability distributions.

For the purposes of this chapter, it is assumed that the underlying physical process consists

of the following …rst order autoregressive process, with model uncertainty, and exogenous input.

x(t + 1) = Ax(t) + Bu(t) + w(t) (3.1)

Clearly, we do not have access to these underlying states, only measurements of them, and thus

the state, x, must be kept distinct from the estimation of this state, x̂. The following section

will derive the estimation error form of the algorithm, that corresponds to the solution of the

multiscale state estimator. Ultimately, we will need to incorporate prior information about

these measurements, however the bulk of this derivation is independent of this restriction.
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3.3 Estimation error on the multiscale tree

The state estimation error is de…ned as the di¤erence between the true, underlying state and

the optimal state estimate.

et = xt ¡ x̂t (3.2)

Clearly the wavelet transforms of the estimation error will be identical, since the Haar transform

is linear.

e¿ = x¿ ¡ x̂¿ (3.3)

±e¿ = ±x¿ ¡ ±x̂¿ (3.4)

The measurement and modelling equations transform from a basis of state estimates to one of

estimation errors. The state transition equation in tree form is:

(I + A¿®) (±x¿ ) = (I ¡ A¿®)x¿ ¡
p

2Bu¿® ¡
p

2w¿® (3.5)

The state transition equation is written in error form by substitution.

(I + A¿®) (±e¿ + ±x̂¿ ) = (I ¡ A¿®) (e¿ + x̂¿ ) ¡
p

2Bu¿® ¡
p

2w¿®

(I + A¿®) ±x̂¿ ¡ (I ¡ A¿®) x̂¿ +
p

2Bu¿® = ¡ (I + A¿®) ±e¿ + (I ¡ A¿®) e¿ ¡
p

2w¿®(3.6)

The measurement equation transforms similarly

y¿ = Cx¿ + v¿

= C (e¿ + x̂¿ ) + v¿

y¿ ¡ Cx̂¿ = Ce¿ + v¿ (3.7)

in wavelet terms ±y¿ ¡ C±x̂¿ = C±e¿ + ±v¿ (3.8)

The multiscale estimation algorithm can be rewritten in terms of the estimation errors of the

multiscale state estimates. The goal of this approach is to …nd the optimal estimation errors.
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We begin at the point where the derivative of the following cost function is about to be taken.

min
fx̂top;±x̂¿g

X

µ²M

((yµtop ¡ Cx̂top)TRµ¡1top (yµtop ¡ Cx̂top) +
X

¿²T

(±yµ¿ ¡ C±x̂¿ )TRµ¡1¿ (±yµ¿ ¡ C±x̂¿ )) +

+
X

¿²T

((1 + A¿®)±x̂¿ ¡ (1 ¡ A¿®)x̂¿ +
p

2B¿®u¿®)T (
p

2B¿®)¡TQ¡1
¿ (

p
2B¿®)¡1 : : :

: : : ((1 + A¿®)±x̂¿ ¡ (1 ¡ A¿®)x̂¿ +
p

2B¿®u¿®) (3.9)

3.3.1 The derivative conditions

For the unconstrained problem, the necessary and su¢cient conditions for optimality are the

derivatives with respect to each basis variable, the set of x̂top; ±x̂¿ , set equal to zero.

d©
dx̂top

= 0 (3.10)

d©
d±x̂¿

= 0 8¿²T (3.11)

For x̂top, this equation can be rewritten in terms of estimation errors.

d©
dx̂top

= ¡2
X

µ²M

CTRµ¡1top (yµtop ¡ Cx̂top) +
X

¾²T

@©
@x̂¾

@x̂¾
@x̂top

(3.12)

= ¡2
X

µ²M

CTRµ¡1top (vµtop + Cetop) +
X

¾²T

@©
@x̂¾

@x̂¾
@x̂top

(3.13)

= 0 (3.14)

and for ±x̂¿ , the substitution is as follows.

d©
d±x̂¿

= ¡2
X

µ²M

CTRµ¡1¿ (±yµ¿ ¡ C±x̂¿ ) +
X

¾²T

@©
@x̂¾

@x̂¾
@±x̂¿

(3.15)

+2(1 + A¿®)(
p

2B¿®)¡TQ¡1
¿ (

p
2B¿®)¡1((1 + A¿®)±x̂¿ ¡ (1 ¡ A¿®)x̂¿ +

p
2B¿®u¿®)

= ¡2
X

µ²M

CTRµ¡1¿ (±vµ¿ + C±e¿ ) +
X

¾²T

@©
@x̂¾

@x̂¾
@±x̂¿

(3.16)

+2(1 + A¿®)(
p

2B¿®)¡TQ¡1
¿ (

p
2B¿®)¡1(¡ (I + A¿®) ±e¿ + (I ¡ A¿®) e¿ ¡

p
2w¿®)

= 0 (3.17)
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The scaling function terms contribute terms of the form:

@©
@x̂¿

= ¡2(1 ¡ A¿®)(
p

2B¿®)¡TQ¡1
¿ (

p
2B¿®)¡1(¡ (I + A¿®) ±e¿ + (I ¡ A¿®) e¿ ¡

p
2w¿®)

(3.18)

The system of equations in terms of estimation error is structurally identical to the system

for the state equations. It follows that the estimation errors corresponding to the optimal

state estimate can be obtained from an iterative algorithm that is structurally identical to

the algorithm for the optimal state estimates. Everywhere that x̂ appears in the original

formulation, there is a ¡e in the …nal formulation. The same holds for (u; w) and (y; v) pairs.

Thus iteration will proceed in an identical manner with the following recursion.

The following three substitutions are necessary.

x̂ ¡! ¡e (3.19)

u ¡! ¡w (3.20)

y ¡! v (3.21)

Algorithm 17 The complete algorithm for the error in the unconstrained multiscale state es-

timator for the driven case with multiple measurement sets is given below. The downsweep

involves the computation of the following variables, recursively until the top node of the tree is

reached.

Initial Conditions

c0¿ = d0¿ = d¤¿ = 0 8¿²L0 (3.22)

w¤
¿ = 0 8¿²L0 (3.23)
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Primary Variables

a¿ = (1 + A¿®) (3.24)

b¿ = (
p

2B¿®)¡TQ¡1
¿ (

p
2B¿®)¡1(1 + A¿®) (3.25)

c¿ = ¡(
p

2B¿®)¡TQ¡1
¿ (

p
2B¿®)¡1(1 ¡ A¿®) (3.26)

d¿ =
X

µ²M

CTRµ¡1¿ ±vµ¿ ¡ (1 + A¿®)(
p

2B¿®)¡TQ¡1
¿ w¿® ¡ 1p

2
(w¤
¿® ¡ w¤

¿¯) (3.27)

dtop =
X

µ²M

CTRµ¡1¿ vµtop ¡ (1 ¡ A¿®)(
p

2B¿®)¡TQ¡1
¿ w¿® ¡ 1p

2
(w¤
¿® + w¤

¿¯) (3.28)

Recursive Variables

w¤
¿ = ¡(1 ¡ A¿®)(

p
2B¿®)¡TQ¡1

¿ w¿® +
1p
2
(w¤
¿® + w¤

¿¯) (3.29)

d¤¿ =
1p
2
(d¤¿® + d¤¿¯) +

1p
2
(d0¿® + d0¿¯) (3.30)

ay¿ =
X

µ²M

CTRµ¡1¿ C + a¿b¿ ¡ 1
2
(c0¿® + c0¿¯) (3.31)

cy¿ = a¿c¿ ¡ 1
2
(c0¿® ¡ c0¿¯) (3.32)

dy¿ = d¿ ¡ 1p
2
(d¤¿® ¡ d¤¿¯) ¡ 1p

2
(d0¿® ¡ d0¿¯) (3.33)

a0¿ = (1 ¡ A¿®) (3.34)

c0¿ = ¡(a0¿ b¿ +
1
2
(c0¿® ¡ c0¿¯))a

y¡1
¿ cy¿ + (+a0¿c¿ +

1
2
(c0¿® + c0¿¯)) (3.35)

d0¿ = ¡(a0¿ b¿ +
1
2
(c0¿® ¡ c0¿¯))a

y¡1
¿ dy¿ (3.36)

Scaling Function Variables (usually only used at the top node)

az¿ = ¡a0¿b¿ ¡ 1
2
(c0¿® ¡ c0¿¯) (3.37)

cz¿ =
X

µ²M

CTRµ¡1top C ¡ a0¿c¿ ¡ 1
2
(c0¿® + c0¿¯) (3.38)

dz¿ = dtop ¡ 1p
2
(d¤¿® + d¤¿¯) ¡ 1p

2
(d0¿® + d0¿¯) (3.39)

The top node error scaling function and error wavelet coe¢cients are solved simultaneously, to
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obtain, etop and ±etop from

aytop±etop + cytopetop = dytop (3.40)

aztop±etop + cztopetop = dztop (3.41)

The downsweep involves a wavelet reconstruction from the upper levels for which optimal state

estimates have been computed, followed by a backsubstitution into the dagger equations.

e¿® =
1p
2

(e¿ + ±e¿ )

e¿¯ =
1p
2

(e¿ ¡ ±e¿ )

ay¿±e¿ + cy¿e¿ = dy¿ (3.42)

This completes the calculation of the estimation error in all state variables on the tree,

both wavelet and scaling functions, in terms of d, which we will show implies that they can be

expressed in terms of the complete set of fwkg and fvkg at the zeroth level. At this point, no

assumptions have been made about the structure of the uncertainty distributions.

3.4 Calculation of error statistics at the top node

We can assume that all model uncertainty is included in w and v. This is equivalent to assuming

that the model parameters, a, b, c, are either known exactly, or that their uncertainty can be

expressed as a probability distribution function in the w parameter, and that the R and Q, are

meaningfully speci…ed. The state uncertainty at the top nodes is an a¢ne function of dytop and

dztop. Explicitly,

2
4 etop

±etop

3
5 =

2
4 cytop aytop

cztop aztop

3
5
¡1 2

4 dytop

dztop

3
5 (3.43)

= eA¡1

2
4 dytop

dztop

3
5 (3.44)

and since the matrix is constant, the function is a¢ne.
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Now consider dytop and dztop as functions of w and v. This point will be expanded upon later.

3.5 Propagation of uncertainty down the tree.

Claim 18 etop = dTw;topsc;ew + dTv;topsc;e;v where dw and dv are known constant matrices.

Since we know that the uncertainty in the top node can be expressed as a linear combination

of the uncertainties at the zeroth level, we can compute similar coe¢cients for lower nodes on

the tree.

etop = dTww + dTv v

±e¿ = ay¡1¿
³
dy¿ ¡ cy¿e¿

´

±etop = ay¡1top
³
dytop ¡ cytopetop

´

but dytop = dTw;top;dw + dTv;top;dv (3.45)

so ±etop = ay¡1top
³
dTw;top;dw + dTv;top;dv ¡ cytop

¡
dTw;topsc;ew + dTv;topsc;ev

¢´

dTw;top;±e = ay¡1top dTw;top;d ¡ ay¡1top cytopd
T
w;topsc;e (3.46)

dTv;top;±e = ay¡1top dTv;top;d ¡ ay¡1top cytopd
T
v;topsc;e (3.47)

This pattern continues down the tree in a similar manner.

e¿® =
1p
2

(e¿ + ±e¿ )

=
1p
2

¡
dTw;¿;ew + dTv;¿;ev + dTw;¿;±ew + dTv;¿;±ev

¢

dTw;¿®;e =
1p
2

¡
dTw;¿;e + dTw;¿;±e

¢
(3.48)

dTw;¿¯;e =
1p
2

¡
dTw;¿;e ¡ dTw;¿;±e

¢
(3.49)

dTw;¿;±e = ay¡1¿ dTw;¿;d ¡ ay¡1¿ cy¿d
T
w;¿;e (3.50)

A similar recursion exists for the coe¢cients of the measurement error.

At this point, we have a complete set of
n
dTw;¿;±e; d

T
v;¿;±e; d

T
w;¿;e; dTv;¿;e

o
for all nodes on the

tree, where v and w at the zeroth level form a set of independent random variables with assumed

statistics. This implies that every e and ±e can be expressed in terms of the uncertainty variables
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at the zeroth level as

e¿ =
X

dTw;¿;ew + dTv;¿;ev

±e¿ =
X

dTw;¿;±ew + dTv;¿;±ev

As an aside, if the w and v are correlated, the approach will still work, although one

would need to construct a correlation matrix, and thus uncover the underlying independent

process that drives the uncertainty. The moments of the errors in the state estimates can be

computed using the formula calculated in the following sections for propagation of moment

information, and all that remains is to …nd suitable moments for the assumed probability

distribution function. We can reformulate this to represent all estimation errors explicitly in

terms of w and v at the zeroth level.

3.6 Calculation of coe¢cients of w and v in the error variables

Coe¢cients in the error variables can be constructed in an iterative process from level to level.

We need to go through a series of transformations to obtain expressions in terms of variables

for which we have statistics. w and v are related to their tree variables using the modi…ed Hat
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and the Haar transform respectively.

dy¿ =
X

k

@dy¿
@vk

vk +
X

k

@dy¿
@wk

wk (3.51)

@dy¿
@vk

=
X

¾2T

@dy¿
@v¾

@v¾
@vk

(3.52)

@dy¿
@v¾

=
@

@v¾

µ
d¿ ¡ 1p

2
(d¤¿® ¡ d¤¿¯) ¡ 1p

2
(d0¿® ¡ d0¿¯)

¶
(3.53)

note that down at least one of the branches, the

derivative will always be zero.
@d¿
@v¾

=
X

µ²M

CTRµ¡1¿ for ¿ = ¾ (3.54)

= 0 otherwise (3.55)
@d¤¿
@v¾

=
1p
2

@
@v¾

¡
d¤¿®k + d0¿®k

¢
(3.56)

@d0¿
@v¾

= ¡(a0¿b¿ +
1
2
(c0¿® ¡ c0¿¯))a

y¡1
¿

@dy¿
@v¾

(3.57)

Thus, starting from the bottom of the tree, there is a recursive, parallelisable formula for

the coe¢cients of v¿ as functions of the all of the estimation error wavelet coe¢cients. A similar

recursion exists for w¿ .

@dy¿
@wk

=
X

¾2T

@dy¿
@w¾

@w¾
@wk

(3.58)

@dy¿
@w¾

=
@

@w¾

µ
d¿ ¡ 1p

2
(d¤¿® ¡ d¤¿¯) ¡ 1p

2
(d0¿® ¡ d0¿¯)

¶
(3.59)

@d¿
@w¾

= (1 + A¿®)(
p

2B¿®)¡TQ¡1
¿ +

1p
2

@
@w¾

(w¤
¿® ¡ w¤

¿¯) for ¿® = ¾ (3.60)

=
1p
2

@
@w¾

(w¤
¿® ¡ w¤

¿¯) otherwise (3.61)

@d¤¿
@w¾

=
1p
2

@
@w¾

¡
d¤¿®k + d0¿®k

¢
(3.62)

@d0¿
@w¾

= ¡(a0¿b¿ +
1
2
(c0¿® ¡ c0¿¯))a

y¡1
¿

@dy¿
@w¾

(3.63)
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Finally, for the top node,

dtop =
X

µ²M

CTRµ¡1¿ vµtop ¡ (1 ¡ A¿®)(
p

2B¿®)¡TQ¡1
¿ w¿® ¡ 1p

2
(w¤
¿® + w¤

¿¯) (3.64)

@dz¿
@v¾

=
@

@v¾

µ
dtop ¡ 1p

2
(d¤¿® + d¤¿¯) ¡ 1p

2
(d0¿® + d0¿¯)

¶
(3.65)

@dtop
@v¾

=
X

µ²M

CTRµ¡1¿ ¾ = top scaling function only (3.66)

= 0 otherwise
@dz¿
@w¾

=
@

@w¾

µ
dtop ¡ 1p

2
(d¤¿® + d¤¿¯) ¡ 1p

2
(d0¿® + d0¿¯)

¶
(3.67)

@dtop
@w¾

= (1 ¡ A¿®)(
p

2B¿®)¡TQ¡1
¿ +

1p
2
(w¤
¿® + w¤

¿¯) ¾ = top scaling only (3.68)

=
1p
2
(w¤
¿® + w¤

¿¯) otherwise (3.69)

At this point it is clear that all d, and thus all dz¿ can be written explicitly as a linear combination

of fwkg and fvkg at the zeroth level.

3.7 Higher order statistical calculations

Then the moments of the top node error process are de…ned, [1]

E [etop] = dTwE [w] + dTvE [v] (3.70)

¾2
e = E

£
etope

T
top

¤
¡ E [etop]E [etop]T (3.71)

= E
h¡

dTww + dTv v
¢ ¡

dTww + dTv v
¢T i ¡ E [etop]E [etop]T (3.72)

and E
£
vwT

¤
= E [v]E [w]T since w and v are independent,

¾2
e = dTwE

£
wwT

¤
dw + dTvE

£
vvT

¤
dv + dTvE [v] E [w]T dw + dTwE [w]E [v]T dv

¡dTwE [w]E [w]T dw ¡ dTvE [v] E [v]T dv

¡dTwE [w]E [v]T dv ¡ dTvE [v] E [w]T dw (3.73)

¾2
e = dTw¾2

wdw + dTv ¾
2
vdv (3.74)

and higher order moments follow in a similar manner. It follows that the moments of

estimation errors to arbitrary order can be computed at each node. A similar scheme using the
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coe¢cients for the error in the top node wavelet coe¢cient can be constructed, and thus we

have a full set of moments (or as high as we care to calculate) for the top nodes.

3.7.1 Propagation of third order statistics

¹3 = E
h
(X ¡ ¹)3

i
(3.75)

= ¹03 ¡ 3¹¾2 ¡ ¹3 (3.76)

So for e

e = dww + dvv (3.77)

¹e3 = E
h
(e ¡ ¹e)

3
i

(3.78)

= ¹0e3 ¡ 3¹e¾
2
e ¡ ¹3

e (3.79)

= d3w¹0w3 ¡ 3dw¹wd
2
w¾

2
w ¡ d3w¹3

w + d3v¹
0
v3 ¡ 3dv¹vd

2
v¾

2
v ¡ d3v¹

3
v

+3E
£
d2ww

2dvv
¤
+ 3E

£
dwwd2vv

2¤ ¡ 3dw¹wd2v¾
2
v ¡ 3dv¹vd

2
w¾

2
w

¡3d2w¹2
wdv¹v ¡ 3dw¹wd2v¹

2
v (3.80)

but since u and v are independent,

= d3w¹w3 + d3v¹v3 + 3d2w¹
0
w2dv¹v + 3dw¹wd

2
v¹

0
v2 (3.81)

¡3dw¹wd
2
v¾

2
v ¡ 3dv¹vd

2
w¾2
w ¡ 3d2w¹

2
wdv¹v ¡ 3dw¹wd

2
v¹

2
v

but ¾2 = ¹02 ¡ ¹2 (3.82)

¹e3 = d3w¹w3 + d3v¹v3 (3.83)

3.7.2 Propagation of fourth order statistics

¹4 = E
h
(X ¡ ¹)4

i
(3.84)

= ¹04 ¡ 4¹03¹ + 6¹02¹
2 ¡ 4¹4 + ¹4 (3.85)

= ¹04 ¡ 4¹¹03 ¡ 6¹2¾2 ¡ ¹4 (3.86)
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and similarly at the fourth level for e

e = dww + dvv (3.87)

¹e4 = E
h
(e ¡ ¹e)

4
i

(3.88)

= ¹0e4 ¡ 4¹e¹
0
e3 + 6¹0e2¹

2
e ¡ 3¹4

e (3.89)

= d4w¹w4 + d4v¹v4 + 6d2wd
2
v¾

2
w¾

2
v (3.90)

The appendix contains more details of the above computations. At this point, we have an

explicit form for the estimation errors, both scaling and wavelet coe¢cients, in terms of the

probability distribution functions of the underlying uncertainties. This translates to knowing

the moments of the uncertainty in the estimation error.

3.8 Approaches to explicit computation of estimation error

The preceding paragraphs show how to generate an explicit representation of the estimation

error in terms of the uncertain variables in the original formulation. Since these uncertain

variables are not known - indeed at best a probability distribution approximation will be known,

we need to convert this information into an explicit error estimation. The three approaches

listed here serve to demonstrate how one would produce meaningful numbers from the given

probability distribution functions.

3.8.1 The polynomial chaos expansion coe¢cients approach

The principle behind the polynomial chaos expansion is to reduce computational complexity by

the generation of an approximation to the original probability distribution, in terms of a well

known, and computationally e¢cient basis function. Much of the following can be found in the

theses of Tatang, Wang and Engel, [3].

The argument used is that an exact probability distribution is often excessive for the pur-

poses of the computation, or the question that we want answered, and a good approximation

will give use a reasonable answer. Since the moments to arbitrary high order of the normal

distribution are well known, it is common to approximate random variables in terms of func-
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tions of normal distributions. Suppose we have a random variable, µ, with an approximation

for its probability distribution, and the knowledge that it shares some features with the normal

distribution, such as being unimodal, two-tailed, and relatively smooth. We can expand this

random variables, either in terms of multiple normally distributed functions, or in terms of

orthogonal functions of a single normally distributed random variable, which for the purposes

of this discussion we shall call ». The set of Hermite polynomials gives a set of mutually or-

thogonal polynomials to order n. The following represents our variable in terms of the …rst four

Hermite polynomials with four undetermined coe¢cients

µ = µ0 + µ1» + µ2
¡
»2 ¡ 1

¢
+ µ3

¡
»3 ¡ 3»

¢
(3.91)

The selection of these coe¢cients requires some goodness of …t test, so that the resulting

probability distribution function looks like the underlying distribution. The choice made by

Tatang et al, [3], was the matching of the …rst four moments, the justi…cation for this is

that the …rst four moments of a probability distribution function are well known statistical

quantities. Clearly one could add more orthogonal polynomials to the expression and increase

the accuracy, however the goal of the approach is to reduce the computational complexity of a

numerical integral, and a large number of terms. A large number of terms suggests that a better

selection of polynomials, or of underlying distributions may produce better results. We begin

by computing the …rst four moments of the new random variable in terms of its parameters.

E
h
»k

i
= 0 8k odd (3.92)

E [»] = 1 (3.93)

E
h
»k

i
= (k ¡ 1)E

h
»k¡2

i
(3.94)
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µ = µ0 + µ1» + µ2
¡
»2 ¡ 1

¢
+ µ3

¡
»3 ¡ 3»

¢
(3.95)

E
h
(µ ¡ µ0)2

i
= µ21 + 2µ22 + 6µ23 (3.96)

E
h
(µ ¡ µ0)3

i
= 6µ21µ2 + 108µ2µ23 + 8µ32 + 36µ1µ2µ3 (3.97)

E
h
(µ ¡ µ0)4

i
= 3µ41 + 60µ42 + 3348µ43 + 576µ1µ22µ3 + 24µ31µ3

+60µ21µ
2
2 + 252µ21µ

2
3 + 1296µ1µ33 + 2232µ22µ

2
3 (3.98)

These coe¢cients allow us to match previously known moments of a probability distribution

function. Note that the expression above is fourth order for the four parameter expansion, and

it should not be surprising that the exact matching problem may have no solution, or one that

is multi-valued, and thus dependent on the initial guess used in a numerical algorithm.

The approach suggested by Tatang is to solve the minimisation problem

min
X

i

(mi;observed ¡ mi;calculated)2 (3.99)

where mi represents the ith moment of the distribution f(µ), de…ned

mi =
Z 1

¡1
µif (µ) dµ (3.100)

Again, this may be non-convex, and thus a true minimum may be hard to …nd.

3.9 Computation of upper and lower error bars

We assume at this stage that the probability distribution is completely described by the four

moments - i.e. that the higher order moments have a negligible e¤ect on the shape of the

function.

To generate the probability distribution function of the derived variable, we can make use

of knowledge of the statistics of the underlying random variable, and propagate these through
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an integral equation.

µ = µ0 + µ1» + µ2
¡
»2 ¡ 1

¢
+ µ3

¡
»3 ¡ 3»

¢
(3.101)

The function µ is cubic in ». Consider the limiting behaviour for µ3 > 0, without loss of

generality since µ3 < 0 requires the signs to be reversed. µ3 = 0 can be treated as a special case

with one of the in…nities treated as a turning point.

The turning points of this polynomial satisfy the following relation, with notation de…ned

in Figure 3-1.

dµ
d»

=
d
d»

¡
µ0 + µ1» + µ2

¡
»2 ¡ 1

¢
+ µ3

¡
»3 ¡ 3»

¢¢
(3.102)

= µ1 + 2µ2» + 3µ3
¡
»2 ¡ 1

¢
(3.103)

= 0 (3.104)

»TP =
¡µ2 §

q
µ22 ¡ 3µ3 (µ1 ¡ 3µ3)

µ3
(3.105)

µU = µ (»R) = µ (»LP ) (3.106)

µL = µ (»L) = µ (»RP ) (3.107)

The region of non-montonicity is de…ned by fµ² [µL; µU ] ; »² [»L; »R]g.

0 = µ ¡ µL = (» ¡ »L) (» ¡ »RP )2 (3.108)

= (» ¡ »L)
µ

µ3» + µ2 +
q

µ22 ¡ 3µ3 (µ1 ¡ 3µ3)
¶2

(3.109)

= (» ¡ »L)

0
@ µ23»

2 + 2µ2µ3» + µ22

+2 (µ3» + µ2)
q

µ22 ¡ 3µ3 (µ1 ¡ 3µ3) + µ22 ¡ 3µ3 (µ1 ¡ 3µ3)

1
A (3.110)

= (» ¡ »L)

0
@ µ3»

2 + 2µ2» + 2µ22=µ3

+2 (» + µ2=µ3)
q

µ22 ¡ 3µ3 (µ1 ¡ 3µ3) ¡ 3 (µ1 ¡ 3µ3)

1
A (3.111)
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Equating the constant terms in the above expression gives

µ0 ¡ µL = ¡»L

µ
2µ22=µ3 + 2(µ2=µ3)

q
µ22 ¡ 3µ3 (µ1 ¡ 3µ3) ¡ 3 (µ1 ¡ 3µ3)

¶
(3.112)

»L = (µU ¡ µ0) =
µ

2µ22=µ3 + 2 (µ2=µ3)
q

µ22 ¡ 3µ3 (µ1 ¡ 3µ3) ¡ 3 (µ1 ¡ 3µ3)
¶
(3.113)

»R = (µL ¡ µ0) =
µ

2µ22=µ3 ¡ 2 (µ2=µ3)
q

µ22 ¡ 3µ3 (µ1 ¡ 3µ3) ¡ 3 (µ1 ¡ 3µ3)
¶
(3.114)

From this we can produce a probability distribution function for µ.

P (µ (») < µ (»k)) = P (» < »k) for µ < µL; µ > µR (3.115)

P (µ (») < µ) = P (» < »k1) ¡ P (» < »k2) + P (» < »k3) for µL < µ < µR (3.116)

where k1; k2 and k3 are the roots of µ (») = µ.

This expression illustrates the problem with the approach. There is a bifurcation point at

µL and µR, such that f (µ) has an in…nite derivative at these bifurcation points. To elaborate

further, suppose that the underlying probability distribution in » is peaked around »LP , and

negligible near »R. The probability of µ > µU will be negligible, but will increase sharply im-

mediately after µU with an in…nite derivative at the bifurcation point. When one is doing a

numerical derivative, spurious peaks appear around these bifurcation points, due to approxima-

tion of the in…nite integrals. Since the derivative is in…nite, one cannot overcome this problem

by reducing interval, indeed it will make the problem worse.

For the purposes of the approximation of the underlying probability distribution function,

it would not matter if the signi…cant values of the underlying probability distribution function

were far from the turning points in the µ ¡ » graph, however in many cases, the approximation

works because we are using these points.

A way around this problem is to solve the problem requiring that the bifurcation points do

not exist.

»TP =
¡µ2 §

q
µ22 ¡ 3µ3 (µ1 ¡ 3µ3)

µ3
(3.117)
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Figure 3-1: Relevant points on an arbitrary cubic function

Θ
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Figure 3-2: The roots of an arbitrary cubic function
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Figure 3-3: Rayleigh 5 regenerated from its moments featuring bifurcation problems

This is equivalent to requiring that no real turning points exist in the cubic function, alter-

nately

µ22 ¡ 3µ3 (µ1 ¡ 3µ3) < 0 (3.118)

This restriction provides us with a minimisation problem with a quadratic constraint, and

a non-convex surface. While the problem may produce good solutions in certain classes of

problems, experience with the moments obtained from the multiscale state estimation problem

has shown that the solution to the optimisation problem is highly dependent on the initial

guess, suggesting that the non-convexity of the cost surface causes signi…cant problems for the

solver.

The conclusion drawn is that the technique is useful if an approximation to the probability

distribution function is sought, and we are not concerned about numerical aberrations around

the bifurcation points, and in any case, the mass contained in these aberrations should be mea-

sured to determine that they do not contain a signi…cant fraction of the mass of the probability

distribution function. There will be probability distribution functions for which the technique

of density function generation from moments is very e¤ective, and the technique will be numer-
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ically e¢cient for these. This does not appear to be the case for the combinations of Rayleigh

distribution tested.

An illustration of this problem is included in …gure 3-3 which demonstrates a probability

density function with the correct moments, but containing ”batman ears” due to numerical

approximations at the bifurcation points. The illustration was demonstrated using the following

set of coe¢cients.

µ0 = 6:259

µ1 = 3:214

µ2 = 0:382

µ3 = ¡0:070

3.9.1 Direct convolution approach

A second approach that was considered was the brute force approach of directly evaluating the

desired intervals[3], .

Suppose that we want to evaluate the probability of e which is a function of a set of random

variables fwkg. Suppose that the functional form of e is known to be

e =
nX

k=1

dkwk (3.119)

The probability density function of e can be computed as

p(e) =
Z

¢ ¢ ¢
Z 1

¡1

n¡1Y

k=1

p (wk) p

Ã
1
dn

Ã
e ¡

n¡1X

k=1

dkwk

!!
dw1 : : : dwn (3.120)

This integral can be evaluated reasonably accurately using Gaussian quadrature, however we

must use more than one point for each integral, and using three means that the number of

multiplications required for the integral is 3n. Since our state estimation calculations typically

contain a support of upwards of 32 points, we rapidly reach computational intractability if we

wish to compute error statistics for every point. For small numbers of points, such as parameter

estimation problems with fewer than ten parameters, or cases where the integrands reduce to
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analytic expressions, such as the normal distribution, the direct convolution approach would

be highly appropriate. For the general case of an unspeci…ed distribution, the approach is

inadequate for fast computation.

3.9.2 Monte Carlo simulation approach

Once all technically interesting avenues have been exhausted, we too resort to a fast, reliable

approach to discovering the region of interest in our probability density function. The plots

illustrated below are generated using the expressions of the form

e¿ =
nX

k=1

dw¿kwk + dv¿kvk (3.121)

A probability distribution function is speci…ed for the fwkg and fvkg at the zeroth levels and

these are used to generate a typical value of e by using a uniform random number generator,

speci…cally ran1 in Numerical Recipes, creating the appropriate fwkg and fvkg. For n values of

fwkg and fvkg, the computational complexity is mn where m is the number of points computed

during the simulation. Note that in all cases there is some numerical noise from the number of

points used - this is due to the trade o¤ between computational accuracy and simulation time.

The speci…c plots here are generated by identifying a useful range for binning from the …rst

100 points, then using 100 equally sized bins for the remainder of the simulation. Occasionally

there will be no outliers in the …rst few points, in which case the tails will be more aggressively

truncated. The tails are omitted from the plots since a relatively small number of points is

generated, which makes the uncertainty comparable to the value of the function. The tails

could be generated if desired, simply by increasing the number of bins from the original set.

For each plot, the vertical lines illustrate the equivalent of ¾ and 2¾ for the normal dis-

tribution, although any speci…ed con…dence interval could be selected and plotted from the
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probability distribution functions. The points that correspond to

p(µ < µk) = 0:0228

p(µ < µk) = 0:1587

p(µ < µk) = 0:8413

p(µ < µk) = 0:9772 (3.122)

The ¾ lines would be used as representative error bars for a computation. The example

used was a data set where the fwkg and fvkg are generated by a Rayleigh 5 distribution, and

state estimation is done for the case study number three in Chapter 4. The Rayleigh …ve

distribution was selected since it is non zero mean, and is positively skewed. A number of plots

are illustrated here.

Plots 3-4 to 3-8 show the scaling functions of n equally weighted Rayleigh-5 error distri-

butions moving up the tree. These are plotted from the physical level to the highest scaling

function node on the tree. In all cases, the distributions are skewed towards positive in…nity,

consistent with the original Rayleigh distribution function. Note that as we move up the tree,

they tend towards a normal distribution. This is due to relative infrequency of the points in the

tail of the underlying distribution, and their correspondingly small contribution, in particular

when we are summing ten distributions together. Note too that the spread increases as we

move up the tree, however the relative spread decreases, since the orthonormality of the Haar

transform causes larger numbers to appear at higher scales.

These plots should be compared to the normal distribution passing through the Haar trans-

form, where a normal distribution at the zeroth level implies a normal distribution at any level

of the tree, with the same standard deviation, ¾, skewness, 0, and kurtosis, 3¾. The second

group of plots is …gure 3-4 and 3-9, the distribution of the …rst wavelet coe¢cient of two equally

weighted Rayleigh-5 variables. Not that the skewness is completely gone as there is an equal

contribution of tails from both sides - one term will have a positive tail and the other a negative

tail. Compare this to the lowest order scaling function, where the positive skewness from the

two distributions a¤ects the sum with the same sign. Plots 3-10 to 3-15 show the estimation er-

ror distribution from a multiscale state estimation. Qualitatively, the plots are similar to those
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Figure 3-4: Error distribution in scaling function coe¢cients at the …rst level for equally
weighted Rayleigh-5 distributions
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Figure 3-5: Error distribution in scaling function coe¢cient at the 2nd level for equally weighted
Rayleigh-5 distributions
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Figure 3-6: Error distribution in scaling function at the 3rd level for equally weighted Rayleigh-5
distributions
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Figure 3-7: Error distribution in scaling function coe¢cient at the 4th level for equally weighted
Rayleigh-5 distributions
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Figure 3-8: Error distribution in scaling function coe¢cient at the 5th level for equally weighted
Rayleigh-5 distributions
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Figure 3-9: Error distribution in wavelet coe¢cient at the …rst level for equally weighted
Rayleigh-5 distributions
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Figure 3-10: Error distribution in state estimate - topmost node

generated by a pure Rayleigh distribution - more signi…cant skewing lower on the tree, and a

tendency towards a normal distribution at the top of the tree. Quantitatively, there is more of

a di¤erence, and the absolute spread remains roughly constant at a ¾ of about 6 at all levels of

the tree. This suggests that the uncertainty is spread evenly over all levels of the tree - or over

all frequency bands. The …nal batch of plots, …gure 3-15 to 3-20 represent a sample of plots

across the zeroth level, speci…cally the left-most node of each right-most subtree of 2n points.

The zeroth level spans points 33 to 64, and thus 49 is just past the midpoint, 57 just past the

3/4 point. All plots look roughly the same, suggesting that there is no signi…cant di¤erence,

despite the fact that the w variables are weighted very di¤erently moving from left to right on

the tree. This suggests that the multiscale state estimation algorithm provides a reasonable

smoothing of uncertainty over all zeroth level points, which is the point of an estimator and

smoother.

3.10 Conclusions

In this chapter we have derived an explicit form for the estimation error variables in the multi-

scale state estimation algorithm. The error is explicitly represented in terms of the measurement
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Figure 3-11: Error distribution in state estimate at leftmost node - level 4
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Figure 3-12: Error distribution in state estimate at leftmost node - level 3
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Figure 3-13: Error distribution in state estimate at leftmost node - level 2
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Figure 3-14: Error distribution in state estimate at leftmost node - level 1
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Figure 3-15: Error distribution in state estimate at leftmost node - level 0
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Figure 3-16: Error distribution in state estimate at node 49
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Figure 3-17: Error distribution in state estimate at node 57
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Figure 3-18: Error distribution in state estimate at node 61
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Figure 3-19: Error distribution in state estimate at node 63

-18 -16 -14 -12 -10 -8 -6 -4 -2 0
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

random variable e

pd
f

pdf            
1 std dev equiv
2 std dev equiv

Figure 3-20: Error distribution in state estimate at node 64
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Figure 3-21: Error distribution in state estimate at node 64 - rightmost node

and modelling error variables, at every point on the tree. We have produced an algorithm to

generate this estimate recursively and in a parallelisable manner on the multiscale tree. We

have derived recursion formulae for the moments of these error variables. These moments can

be used as they are as a measure of uncertainty, however this means that we are discarding

information which may be useful. Thus we have shown how a probability distribution function

can be generated.

We have examined three di¤erent approaches for the generation of probability distribution

functions, and a measure of error that is comparable to the standard deviation for the normal

distribution. The polynomial chaos expansion can be used to generate an approximation to the

probability distribution function in a short period of time, but it is sensitive to initial guesses and

causes spurious results for many underlying probability distribution functions. The complete

integral approach using convolution of the underlying probability distribution functions will give

complete and accurate probability density functions, but the amount of computation required

for a meaningful answer makes it suitable for small problems only. Since the state estimates

from the multiscale state estimation algorithm are dependent on a large number of underlying

uncertainty variables, this approach is unsuitable in our case. Finally we have shown how a

probability distribution function can always be generated using Monte Carlo simulation, and

143



will converge reasonably quickly. It provides estimates to error bounds quickly, and should

be used in the most general cases, where the underlying probability density functions are not

susceptible to analytical integration, and the integrals cannot be accurately represented by a

polynomial chaos expansion.

This suggests that the Monte Carlo approach is by far the safest, and should be used in any

automatic implementation.

3.11 Appendix

3.11.1 Higher order statistical calculations in graphic detail

Then the moments of the top node error process are as follows

E [etop] = dTwE [w] + dTvE [v] (3.123)

¾2
e = E

£
etope

T
top

¤
¡ E [etop]E [etop]T (3.124)

= E
h¡

dTww + dTv v
¢ ¡

dTww + dTv v
¢T i ¡ E [etop]E [etop]T (3.125)

and E
£
vwT

¤
= E [v]E [w]T since w and v are independent,

¾2
e = dTwE

£
wwT

¤
dw + dTvE

£
vvT

¤
dv + dTvE [v] E [w]T dw + dTwE [w]E [v]T dv

¡dTwE [w]E [w]T dw ¡ dTvE [v] E [v]T dv

¡dTwE [w]E [v]T dv ¡ dTvE [v] E [w]T dw (3.126)

¾2
e = dTw¾2

wdw + dTv ¾
2
vdv (3.127)

and higher order moments follow in a similar manner. It follows that the moments of

estimation errors to arbitrary order can be computed at each node. A similar scheme using the

coe¢cients for the error in the top node wavelet coe¢cient can be constructed, and thus we

have a full set of moments (or as high as we care to calculate) for the top nodes.
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Propagation of third order statistics

¹3 = E
h
(X ¡ ¹)3

i

= E
£
X3 ¡ 3X2¹ + 3X¹2 ¡ ¹3¤

= ¹03 ¡ 3¹02¹ + 3¹3 ¡ ¹3

= ¹03 ¡ 3¹¾2 ¡ ¹3

So for e

e = dww + dvv

¹e3 = E
h
(e ¡ ¹e)

3
i

= ¹0e3 ¡ 3¹e¾
2
e ¡ ¹3

e

= E
£
d3ww

3¤ + 3E
£
d2ww2dvv

¤
+ 3E

£
dwwd2vv

2¤ + E
£
d3vv

3¤

¡3 (dw¹w + dv¹v)
¡
d2w¾2

w + d2v¾
2
v
¢

¡d3w¹
3
w ¡ 3d2w¹

0
w2dv¹v ¡ 3dw¹wd2v¹

0
v2 ¡ d3v¹

3
v

= d3w¹0w3 ¡ 3dw¹wd
2
w¾

2
w ¡ d3w¹3

w + d3v¹
0
v3 ¡ 3dv¹vd

2
v¾

2
v ¡ d3v¹

3
v

+3E
£
d2ww

2dvv
¤
+ 3E

£
dwwd2vv

2¤ ¡ 3dw¹wd2v¾
2
v ¡ 3dv¹vd

2
w¾

2
w

¡3d2w¹2
wdv¹v ¡ 3dw¹wd2v¹

2
v

but since u and v are independent,

= d3w¹w3 + d3v¹v3 + 3d2w¹
0
w2dv¹v + 3dw¹wd

2
v¹

0
v2

¡3dw¹wd
2
v¾

2
v ¡ 3dv¹vd

2
w¾2
w ¡ 3d2w¹

2
wdv¹v ¡ 3dw¹wd

2
v¹

2
v

but ¾2 = ¹02 ¡ ¹2

¹e3 = d3w¹w3 + d3v¹v3
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Propagation of fourth order statistics

¹4 = E
h
(X ¡ ¹)4

i
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v4 ¡ 4d4v¹v¹3v ¡ 6d4v¹

2
v¾

2
v ¡ d4v¹

4
v
¢

+6d2w¹0w2d
2
v¹

0
v2 ¡ 6d2w¹2

wd
2
v¾

2
v ¡ 6d2v¹

2
vd

2
w¾2
w ¡ 6d2w¹

2
wd2v¹

2
v

= d4w¹w4 + d4v¹v4 + 6d2wd2v
¡
¹2
w + ¾2

w
¢ ¡

¹2
v + ¾2

v
¢

¡ 6d2w¹2
wd

2
v¾

2
v ¡ 6d2v¹

2
vd

2
w¾2
w ¡ 6d2w¹2

wd
2
v¹

2
v

= d4w¹w4 + d4v¹v4 + 6d2wd2v¾
2
w¾2
v
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3.11.2 Construction of polynomial chaos expansion coe¢cients

µ = µ0 + µ1» + µ2
¡
»2 ¡ 1

¢
+ µ3

¡
»3 ¡ 3»

¢
(3.128)

(µ ¡ µ0)2 =
¡
µ1» + µ2

¡
»2 ¡ 1

¢
+ µ3

¡
»3 ¡ 3»

¢¢2

= 6µ2µ3» + 2µ1»3µ2 + 2µ1»4µ3 ¡ 6µ1»2µ3 + 2µ2»5µ3

¡8µ2»3µ3 ¡ 2µ1»µ2 + µ21»
2 + µ22»

4 ¡ 2µ22»
2 + µ22

+µ23»
6 ¡ 6µ23»

4 + 9µ23»
2 (3.129)

(µ ¡ µ0)3 =
¡
µ1» + µ2

¡
»2 ¡ 1

¢
+ µ3

¡
»3 ¡ 3»

¢¢3

= 3µ21»
4µ2 + 3µ21»

5µ3 ¡ 9µ21»
3µ3 ¡ 3µ21»

2µ2 + 3µ1»5µ22

¡6µ1»3µ22 + 3µ1»µ22 + 3µ1»7µ23 ¡ 18µ1»5µ23 + 27µ1»3µ23

+21µ22»
3µ3 + 3µ22»

7µ3 ¡ 15µ22»
5µ3 + 3µ2»8µ23 ¡ 21µ2»6µ23

+45µ2»4µ23 ¡ 9µ22µ3» + µ31»
3 + µ32»

6 ¡ 3µ32»
4 + 3µ32»

2 + µ33»
9

¡9µ33»
7 + 27µ33»

5 ¡ 27µ33»
3 ¡ µ32 + 18µ1»2µ2µ3 + 6µ1»6µ2µ3

¡24µ1»4µ2µ3 ¡ 27µ2µ23»
2 (3.130)

(µ ¡ µ0)4 =
¡
µ1» + µ2

¡
»2 ¡ 1

¢
+ µ3

¡
»3 ¡ 3»

¢¢4

µ41»
4 + µ42»

8 ¡ 4µ42»
6 + 6µ42»

4 ¡ 4µ42»
2 + µ43»

12 ¡ 12µ43»
10 + 54µ43»

8

¡108µ43»
6 + 81µ43»

4 + µ42 + 84µ1»4µ22µ3 + 12µ1»8µ22µ3

¡60µ1»6µ22µ3 + 12µ1»9µ2µ23 ¡ 84µ1»7µ2µ23 + 180µ1»5µ2µ23

¡36µ1»2µ22µ3 + 36µ21»
3µ2µ3 + 4µ31»

5µ2 + 4µ31»
6µ3 ¡ 12µ31»

4µ3

¡4µ31»
3µ2 + 6µ21»

6µ22 ¡ 12µ21»
4µ22 + 6µ21»

2µ22 + 6µ21»
8µ23 ¡ 36µ21»

6µ23

+54µ21»
4µ23 + 4µ1»7µ32 ¡ 12µ1»5µ32 + 12µ1»3µ32 + 4µ1»10µ33

¡36µ1»8µ33 + 108µ1»6µ33 ¡ 108µ1»4µ33 ¡ 4µ1»µ32 + 48µ32»
5µ3

+4µ32»
9µ3 ¡ 24µ32»

7µ3 + 6µ22»
10µ23 ¡ 48µ22»

8µ23 + 132µ22»
6µ23

¡40µ32»
3µ3 + 4µ2»11µ33 ¡ 40µ2»9µ33 + 144µ2»7µ33 ¡ 216µ2»5µ33

+12µ21»
7µ2µ3 ¡ 48µ21»

5µ2µ3 ¡ 108µ1»3µ2µ23 ¡ 144µ22»
4µ23 + 12µ32µ3»

+54µ22µ
2
3»

2 + 108µ2µ33»
3 (3.131)
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Now eliminate odd powers of » :

µ = µ0 + µ1» + µ2
¡
»2 ¡ 1

¢
+ µ3

¡
»3 ¡ 3»

¢
(3.132)

E
h
(µ ¡ µ0)2

i
= E

h¡
µ1» + µ2

¡
»2 ¡ 1

¢
+ µ3

¡
»3 ¡ 3»

¢¢2i

= E[2µ1»4µ3 ¡ 6µ1»2µ3 + µ21»
2 + µ22»

4 ¡ 2µ22»
2

+µ22 + µ23»
6 ¡ 6µ23»

4 + 9µ23»
2] (3.133)

E
h
(µ ¡ µ0)3

i
= E

h¡
µ1» + µ2

¡
»2 ¡ 1

¢
+ µ3

¡
»3 ¡ 3»

¢¢3i

= E[3µ21»
4µ2 ¡ 3µ21»

2µ2 + 3µ2»8µ23 ¡ 21µ2»6µ23

+45µ2»4µ23 + µ32»
6 ¡ 3µ32»

4 + 3µ32»
2

¡µ32 + 18µ1»2µ2µ3 + 6µ1»6µ2µ3 ¡ 24µ1»4µ2µ3 ¡ 27µ2µ23»
2] (3.134)

E
h
(µ ¡ µ0)4

i
= E

h¡
µ1» + µ2

¡
»2 ¡ 1

¢
+ µ3

¡
»3 ¡ 3»

¢¢4i

= E[µ41»
4 + µ42»

8 ¡ 4µ42»
6 + 6µ42»

4 ¡ 4µ42»
2 + µ43»

12 ¡ 12µ43»
10 + 54µ43»

8

¡108µ43»
6 + 81µ43»

4 + µ42 + 84µ1»4µ22µ3 + 12µ1»8µ22µ3 ¡ 60µ1»6µ22µ3

¡36µ1»2µ22µ3 + 4µ31»
6µ3 ¡ 12µ31»

4µ3 + 6µ21»
6µ22 ¡ 12µ21»

4µ22

+6µ21»
2µ22 + 6µ21»

8µ23 ¡ 36µ21»
6µ23 + 54µ21»

4µ23 + 4µ1»10µ33

¡36µ1»8µ33 + 108µ1»6µ33 ¡ 108µ1»4µ33 + 6µ22»
10µ23 ¡ 48µ22»

8µ23

+132µ22»
6µ23 ¡ 144µ22»

4µ23 + 54µ22µ
2
3»

2] (3.135)

Substituting
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E
h
»k

i
= 0 8k odd (3.136)

E
h
»k

i
= (k ¡ 1)E

h
»k¡2

i
(3.137)

E
£
»0

¤
= 1 (3.138)

E
£
»2

¤
= 1 (3.139)

E
£
»4

¤
= 3 (3.140)

E
£
»6

¤
= 15 (3.141)

E
£
»8

¤
= 105 (3.142)

E
£
»10

¤
= 945 (3.143)

E
£
»12

¤
= 10395 (3.144)

E
£
»14

¤
= 135135 (3.145)

E
£
»16

¤
= 2027025 (3.146)

E
£
»18

¤
= 34459425 (3.147)

E
£
»20

¤
= 654729075 (3.148)

Gives:
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µ = µ0 + µ1» + µ2
¡
»2 ¡ 1

¢
+ µ3

¡
»3 ¡ 3»

¢
(3.149)

E
h
(µ ¡ µ0)2

i
= 6µ1µ3 ¡ 6µ1µ3 + µ21 + 3µ22 ¡ 2µ22 + µ22 + 15µ23 ¡ 18µ23 + 9µ23

= µ21 + 2µ22 + 6µ23 (3.150)

E
h
(µ ¡ µ0)3

i
= 9µ21µ2 ¡ 3µ21µ2 + 105 ¤ 3µ2µ23 ¡ 15 ¤ 21µ2µ23

+3 ¤ 45µ2µ23 + 15 ¤ µ32 ¡ 3 ¤ 3µ32 + 3µ32 (3.151)

= ¡µ32 + 18µ1µ2µ3 + 15 ¤ 6µ1µ2µ3 ¡ 3 ¤ 24µ1µ2µ3 ¡ 27µ2µ23

= 6µ21µ2 + 108µ2µ23 + 8µ32 + 36µ1µ2µ3 (3.152)

E
h
(µ ¡ µ0)4

i
= E

h¡
µ1» + µ2

¡
»2 ¡ 1

¢
+ µ3

¡
»3 ¡ 3»

¢¢4i

= E[3µ41 + 105µ42 ¡ 15 ¤ 4µ42 + 18µ42 ¡ 4µ42 + 10395µ43 ¡ 945 ¤ 12µ43 + 105 ¤ 54µ43

¡15 ¤ 108µ43 + 3 ¤ 81µ43 + µ42 + 3 ¤ 84µ1µ22µ3 + 105 ¤ 12µ1µ22µ3 ¡ 15 ¤ 60µ1µ22µ3

¡36µ1µ22µ3 + 15 ¤ 4µ31µ3 ¡ 3 ¤ 12µ31µ3 + 15 ¤ 6µ21µ
2
2 ¡ 3 ¤ 12µ21µ

2
2

+6µ21µ
2
2 + 105 ¤ 6µ21µ

2
3 ¡ 15 ¤ 36µ21µ

2
3 + 3 ¤ 54µ21µ

2
3 + 945 ¤ 4µ1µ33

¡105 ¤ 36µ1µ33 + 15 ¤ 108µ1µ33 ¡ 3 ¤ 108µ1µ33 + 945 ¤ 6µ22µ
2
3 ¡ 105 ¤ 48µ22µ

2
3

+15 ¤ 132µ22µ
2
3 ¡ 3 ¤ 144µ22µ

2
3 + 54µ22µ

2
3]

= 3µ41 + 60µ42 + 3348µ43 + 576µ1µ22µ3 + 24µ31µ3

+60µ21µ
2
2 + 252µ21µ

2
3 + 1296µ1µ33 + 2232µ22µ

2
3 (3.153)

These coe¢cients allow us to match previously known moments of a probability distribution

function.
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Chapter 4

Various Uses of the Multiscale State

Estimator

4.1 Introduction

In this chapter, we demonstrate the main features of the multiscale state estimation algorithm.

We show how the algorithm can be adapted to solve the control problem, how it works for

various multiple measurement sets. The algorithm contains two weighting variables, R, and Q,

and we discuss the e¤ects of choosing these poorly, and how to identify when they have been

chosen poorly. We discuss how to adapt the algorithm for higher order autoregressive processes.

We demonstrate the types of solution produces by the constrained state estimator. We discuss

how prior estimates can be used in moving horizon estimators to reduce computation and the

avoid problems unreliable measurements. We make a comparison with the celebrated Kalman

…lter and the Rauch-Tung-Striebel smoother, as a classical example of a state estimator.

4.2 Alternative interpretations of the cost function

The cost function derived in Chapter 2 is designed for the state estimation problem, whereby

a set of measurements is used to generate a set of underlying states that satis…es a certain

dynamic system. A certain class of control problems has a cost function that is structurally

identical, where instead of …tting to a set of measurements, we would like the outputs of the
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system to track a previously speci…ed reference path.

Recall the cost function

min
fbxtop;±bx¿g

X

µ²M

((yµtop ¡ Cx̂top)TRµ¡1top (yµtop ¡ Cx̂top) +
X

¿²T

(±yµ¿ ¡ C±x̂¿ )TRµ¡1¿ (±yµ¿ ¡ C±x̂¿ )) +

+
X

¿²T

((1 + A¿®)±x̂¿ ¡ (1 ¡ A¿®)x̂¿ +
p

2B¿®u¿®)T (
p

2B¿®)¡TQ¡1
¿ (

p
2B¿®)¡1 : : :

: : : ((1 + A¿®)±x̂¿ ¡ (1 ¡ A¿®)x̂¿ +
p

2B¿®u¿®) +
¡
x0j¡1 ¡ bx0

¢T P¡1
0j¡1

¡
x0j¡1 ¡ bx0

¢
(4.1)

Suppose we change the de…nition of y from being a set of measurements of the states to

y ´ Cx (4.2)

where y is some set of output variables of the plant described by the states, x. We would like

these outputs to track some reference path R. There will be a steady state set of inputs, u;

around which there will be a ‡uctuation, w; so that the input to be used for the plant is (u + w).

w can be de…ned from the dynamic system.

w¿® ´ (1 + A¿®)±x̂¿ ¡ (1 ¡ A¿®)x̂¿ +
p

2B¿®u¿® (4.3)

This interpretation allows the multiscale state estimation algorithm, complete with prior

estimate, to be used directly for the control problem, where both an initial condition and a

model are known, and a reference path is provided for the plant output to track. The goal is

to produce a set of inputs from the optimisation problem. The cost function has the following

equivalent form.

min
fbxtop;±bx¿g

(rtop ¡ Cx̂top)TRtop(rtop ¡ Cx̂top) +
X

¿²T

(±r¿ ¡ C±x̂¿ )TR¿ (±r¿ ¡ C±x̂¿ ) +

+
X

¿²T

(wT¿®(
p

2B¿®)¡TQ¡1
¿ (

p
2B¿®)¡1w¿® +

¡
x0j¡1 ¡ bx0

¢T P¡1
0j¡1

¡
x0j¡1 ¡ bx0

¢
(4.4)

The solution algorithm will be identical to the one derived in Chapter 2, and can be equipped

with the same constraint handling mechanisms, and all other features of the original algorithm.
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4.3 Optimal fusion of multiple measurement sets

Optimal fusion deals with the appropriate weighting of various sets of measurements to produce

an optimal state estimate. Since every measurement technique is subject to its own uncertainty,

a better state estimate can be produced by acknowledging the di¤erences in con…dence that we

have in the various measurements. The multiscale state estimator makes it possible to specify

the uncertainties in each measurement explicitly.

Within the cost function, each individual measurement is described by a subscript indicating

its position in the tree, and a superscript, µ, denoting the set of measurements to which it

belongs.

min
fbxtop;±bx¿g

X

µ²M

((yµtop ¡ Cx̂top)TRµ¡1top (yµtop ¡ Cx̂top) +
X

¿²T

(±yµ¿ ¡ C±x̂¿ )TRµ¡1¿ (±yµ¿ ¡ C±x̂¿ )) +

+
X

¿²T

((1 + A¿®)±x̂¿ ¡ (1 ¡ A¿®)x̂¿ +
p

2B¿®u¿®)T (
p

2B¿®)¡TQ¡1
¿ (

p
2B¿®)¡1 : : :

: : : ((1 + A¿®)±x̂¿ ¡ (1 ¡ A¿®)x̂¿ +
p

2B¿®u¿®) +
¡
x0j¡1 ¡ bx0

¢T P¡1
0j¡1

¡
x0j¡1 ¡ bx0

¢
(4.5)

The physical motivation for this is that we may have sets of measurements taken using

di¤erent techniques, with di¤erent uncertainties. These sets of measurements may be complete,

in the case of continuously sampled variables, or incomplete, such as a more accurate set of

measurements taken in a region in which we have a particular interest. This is re‡ected in the

choice of Rµ¿ for each measurement. Rµ¿ is typically chosen to be the standard deviation of the

set of measurements, based on the Bayesian least squares estimate of a normally distributed

measurement error. In many cases, it will provide a reasonable estimate of the magnitude of

the error, and thus weight it appropriately in the cost function, although care should be taken

when the uncertainty in the measurements di¤ers considerably from the normal distribution.

Missing measurements are easily dealt with since they have no expected value, and in…nite

uncertainty. Setting Rµ¿ = 1 is an appropriate way to represent this uncertainty, and thus

removes all terms containing this measurement from the cost function.

Measurements taken at a slower frequency than the fastest set can be considered to have

incomplete measurements at the fastest sampling frequency.

The following two diagrams illustrate a rather extreme form of sensor fusion. The plot in
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Figure 4-1: Generation of Multiple Measurement Sets

…gure 4-1 shows the state, which was generated from a …rst order driven model using MATLAB.

The state is measured using two measurement techniques - one a reliable sensor that is expensive

to use, and thus used infrequently. This is represented by the * points. The second provides a

coarser measurement, and captures rapid changes e¢ciently, but is subject to a drift. In this

case study, a linear drift has been applied to the data.

The state estimator weights these measurements appropriately, with uncertainty estimates

based on previous observations, and the result of the state estimation is illustrated in …gure 4-2.

The state estimate tracks the accurate measurements well, but contains jumps about halfway

between each of the accurate measurements. The estimator is trying to …t to the local shape of

the coarser measurements, while being forced to pass through the more accurate measurements,

weighted by their smaller Rµ¿ . The blockiness is due to the nature of the Haar transform. The

Haar basis functions have a span equal to the powers of two, thus, at the border between two

basis functions, it is common to see an edge e¤ect. This is pronounced in extreme cases, where

there is an unmodelled disturbance such as the linear drift term.

The state estimator still manages to produce a reasonable approximation of the states, even

though the coarse measurement set violates the assumption that the measurement error is zero

mean white noise.
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Figure 4-2: Estimation from Multiple Measurement Sets

4.4 The e¤ect of di¤erent weighting functions

The weights Rµ¿ and Q¿ used in the cost functions are determined physically based on prior

knowledge of the uncertainties associated with the measurement technique, and the uncertainty

in the underlying model of the dynamic system. The following case study demonstrates the

importance of this by using the same set of data to generate the state estimates, but with these

di¤erent tuning parameters in the cost function.

The data in …gures 4-3, 4-4 and 4-5 were generated using the following procedure.

The physical data was generated according to the …rst order model

xk+1 = Axk + Buk + wk (4.6)

with A = 0:95, uk, measured and known, and wk a zero mean white noise process with covariance

of Qreal = 5, which represents to any uncertainty in the inputs or the model. The true states

that were generated by simulation are represented by plus signs in the plots. These are described

in the legend as the physical results. Measurements of the process were generated by applying

a zero mean white noise process with Rreal = 100 to the simulated states. The measurements
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are represented by x’s in the plots. These measurements were used to produce optimal state

estimates using the multiscale state estimator. The state estimates are represented by the solid

line in all of the plots. Figure 4-3 shows the state estimate produced using the true values of R

and Q.

The two plots that follow illustrate the e¤ect of poor choices of R and Q. The ratio of R

and Q is the key issue here rather than the absolute values, since they will scale in the cost

function. Plot 4-4 demonstrates the e¤ect of a large R on the state estimator. Since R¡1 is

used to weight the measurements in the state estimator, the presence of a reasonably small

R = 5 £ 10¡4 has the unsurprising e¤ect of tracking the measurements very carefully with

little regard to the underlying dynamics. An extreme value for R has been used to illustrate

the point, clearly the estimate will vary continuously with R, for any function with continuous

derivatives.

Plot 4-5 shows the e¤ect of a large R = 500 on the state estimate. Note in comparison

to …gure 4-4 that a di¤erence of only two orders of magnitude is su¢cient to render the state

estimate virtually useless - the measurements are essentially ignored, and the goal becomes

to produce a small estimate of modelling uncertainty. The set of modelling uncertainties is

de…ned in the multiscale sense and thus the left nodes on the tree dominate the state estimation

algorithm, since we no longer have the weighting e¤ect of the measurement at the right-most

node. This e¤ect is clearly seen in …gure 4-5 with the large values of the state estimates at time

points 64 and 128. The modi…ed hat transform weights the left-most nodes on the tree more

than the right nodes, and thus the more right nodes in the ancestry of a node, then that node

will receive less weight the modelling uncertainty at the zeroth level.

The uncertainty estimates are essentially tuning parameters in the state estimation algo-

rithm. The conclusion to be drawn from this case study is that reasonably accurate estimates

of the uncertainties are required for meaningful state estimates, but also that incorrect esti-

mates produce predictable behaviour, and thus can be identi…ed from a comparison with the

measurements.
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Figure 4-3: The e¤ect of using matched R and Q on state estimation
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Figure 4-4: The e¤ect of using a large R on state estimation
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Figure 4-5: The e¤ect of using a large Q on state estimation

4.5 Higher order polynomial systems

The multiscale state estimator deals equally well with higher order autoregressive processes.

The case study presented in …gure 4-6 shows the state estimate, measurements and underlying

process for a fourth order polynomial system with a known input.

In this case study, data was generated using an initial condition of the origin, and the state

dynamic equation

xk = 0:95xk¡1 ¡ 0:4xk¡2 ¡ 0:1xk¡3 ¡ 0:05xk¡4 + Buk + wk (4.7)

The dynamic system is converted by augmenting the state to produce the following aug-

mented system.

2
6666664

xk

xk¡1

xk¡2

xk¡3

3
7777775

=

2
6666664

0:95 ¡0:4 ¡0:1 ¡0:05

1 0 0 0

0 1 0 0

0 0 1 0

3
7777775

2
6666664

xk¡1

xk¡2

xk¡3

xk¡4

3
7777775

+

2
6666664

B

0

0

0

3
7777775

uk +

2
6666664

wk

0

0

0

3
7777775

(4.8)

This …ts the standard form for state estimation for the multiscale state estimator. for this
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Figure 4-6: A higher order polynomial system using the multiscale state estimator

case study, Q = 1 and R = 10 were used to generate the data, and for the state estimation and

a successful state estimation is illustrated in …gure 4-6.

4.6 The constrained multiscale optimiser

Figure 4-7 illustrates the use of the constrained multiscale state estimator in a useful context.

The crosses represent a state trajectory speci…ed by the controller or some other external

consideration. The state is constrained by an upper bound of 100, and the optimisation problem

takes the following form.

min
fbxtop;±bx¿g

(rtop ¡ Cx̂top)TRtop(rtop ¡ Cx̂top) +
X

¿²T

(±r¿ ¡ C±x̂¿ )TR¿ (±r¿ ¡ C±x̂¿ ) +

+
X

¿²T

(uT¿®(
p

2B¿®)¡TQ¡1
¿ (

p
2B¿®)¡1u¿® +

¡
x0j¡1 ¡ bx0

¢T P¡1
0j¡1

¡
x0j¡1 ¡ bx0

¢
(4.9)

where

x̂t < 100 (4.10)

(1 + A¿®)±x̂¿ ¡ (1 ¡ A¿®)x̂¿ +
p

2B¿®u¿® = w¿® (4.11)
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Figure 4-7: The constrained multiscale state estimator

Suppose we know the expected value of u, we can solve for a trajectory, x, and hence obtain

a set of w - the set control variables. The notation presented in this case study is consistent

with the multiscale state estimator, but not with the traditional control literature, where u

and w have di¤erent interpretations. The solution presented in …g 4-7 contains the …nal two

passes of the iteratively obtained solution. The multiscale state estimator initially generates

the unconstrained minimum and moving down the tree until it reaches a constraint at the node

that spans points 17-32. This intermediate solution is illustrated as pass one by one of the

solid lines. A downsweep in lambda identi…es that improvement can be made by relaxing the

constraint at nodes 17 and 18. These are added to the basis, and a second solution is computed,

which turns out to be optimal. Optimality can be shown since the KKT conditions are satis…ed.

4.7 The use of prior estimates

Prior estimates are an extremely useful addition to the multiscale state estimator in many

problem formulations.

Prior estimates allow the incorporation of additional information, including state estimates

from earlier computations, [1], [2]. A major computational reduction can be achieved by using
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this in a moving horizon. This is particularly useful for systems where we wish to use a constant

model of the estimation horizon, but modify it between estimations.

The left-most node of the tree is particularly sensitive to the values of u predicted by the

state estimator, as illustrated in …gure 4-5. A problem arises when the measurements are

unreliable, and much of the energy in the cost function goes into the modelling uncertainty.

The solution that minimises the cost function in the absence of a prior estimate will often

choose a set of u’s that produces a reasonable estimate everywhere except the left-most node.

This node is directly a¤ected by the largest set of input variables. The solution is considerably

improved by increasing the weight of the …rst measurement, or by using a prior estimate from

a previous estimation problem.

4.8 Comparison with the Kalman …lter

A …nal demonstration compares the state estimate from the multiscale state estimator with

the estimate provided by a Kalman …lter and Rauch-Tung-Striebel smoother. This case study

illustrated in …gure 4-3 is used and the reader is referred to section 4.4 for details of the original

case study. Plotting the Kalman …lter state estimate is relatively uninformative since the

lines essentially overlap. Deviation variables from the physical value are used to illustrate the

di¤erence between the methods. The measurement deviation predictably ‡uctuates randomly

around a mean of zero since this was the distribution chosen to generate the measurement

data. The Kalman …lter and the multiscale state estimates are essentially indistinguishable

from one another, as one would expect from the claim that minor changes in the shape of the

cost function, and in the weighting parameters should not a¤ect the quality of the estimate.

When there is an outlier in the measurement error, both the Kalman …lter and the multiscale

state estimator will tend to underestimate the measurement error, meaning that the estimate

regresses towards the mean for outliers. Neither algorithm directly rejects outliers, which can

cause problems in the case of extreme failures in the measurement techniques. The problem can

be corrected with more robust state estimators such as median based estimators, and Huber’s

estimator, although these are considerably slower than two norm based state estimators, since

they typically rely on cost functions that are only piecewise continuous and not di¤erentiable,
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and thus cannot make use of gradient information reliably. They typically use some version of

bisection.

4.9 Summary

The multiscale state estimation algorithm can be adapted to solve the control problem by

noting the structural similarity between the state estimation and control optimisation problems.

Multiple measurement sets can be incorporated by direct addition to the cost function, and

missing measurements can be dealt with by using in…nite uncertainty variables. R, and Q,

the estimation algorithm tuning parameters behave in a predictably way, where if R is to

dominant, the estimate will track the measurements too closely, while if Q is dominant, the

estimate will largely ignore the measurements, and attempt to weight sections of the tree

that have low weights. Higher order autoregressive processes can be estimated using state

augmentation. Prior estimates are a useful addition since moving horizon estimators can be used

to reduce computation, and to avoid the problems unreliable measurements. The multiscale

state estimator produces a qualitatively similar solution to the Kalman …lter and the Rauch-

Tung-Striebel smoother, since it is essentially the same thing, with warps in its cost function.
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Chapter 5

The Paper Rolling Case Study

5.1 Introduction

The goal of this section is to demonstrate the di¤erences between a multiscale state estimator

and the classical Karhunen-Loeve transform as a means of state estimation. The speci…c class

of problems under investigation is the class of continuous sheet forming processes, where a

sheet with a spatial dimension is produced subject to some uniformity speci…cation. Common

industrial examples of this would be sheet metal production, aluminium foil, or can production,

polymer …lm extrusion. A common uniformity requirement is to produce a sheet of constant

thickness. In sheet dyeing processes such as those found in the textile industries, the uniform

feature would typically be colour or shade variation, while in the paper rolling industry, which

inspired the speci…c case study that will be discussed in this chapter, the uniformity speci…cation

is constant basis weight, caliper or moisture content. The assumption that we will make is that

there is a measurement technique available that produces a correlation with the desired property

- a light sensor could be used to measure colour or shade variations, while an array of height

sensors would be used to measure thickness.

The industrial objective is to produce a uniform sheet in the presence of upstream production

uncertainties, to identify when the sheet is within speci…cation, and to suggest what to do

when it is not. There is a strong economic motivation for this problem since improvements

in production quality in these large scale industries will reduce raw material and energy costs

signi…cantly.
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Measurement sets from these processes will typically contain a spatial component - usually

from an array of sensors spaced across the sheet, or from a single sensor that sweeps from

side to side across the sheet. This is referred to as the cross direction. Since production is

continuous, there will be a temporal component to the data, corresponding directly to a second

perpendicular spatial variable. This is referred to as the machine direction.

The goal of this case study is to identify a disturbance model from the full pro…le of data.

5.2 The Karhunen Loeve Transform

The Karhunen Loeve Transform, or principal component analysis was developed in 1963 by

Karhunen and Loeve, [6], as a means of identifying a non-parametric model of random processes

based on experimental data. It has been used successfully in a wide range of applications -

including the currently blossoming …eld of bioinformatics.

The goal of the Karhunen-Loeve transform is to identify an optimal orthonormal basis,

based on empirical data, with which to represent some random …eld. This orthonormal basis

is frequently used to transform the data into a new set of coordinates, in which it is evident

that many of the axes contain useless or inconclusive data, and can thus be ignored. This is

particularly useful for identifying useful features, and numbers of degrees of freedom, in very

large data sets[2].

Suppose we begin with a set of measurements zw(x; t), that represent the realization of

some random vector …eld, where x refers to the spatial component and t to the temporal, in the

general sense. The measurements may be a true samples of a continuous spatial and temporal

domain, but may also be a set of time series of spatially unrelated data, such as temperature

and pressure measurements in a plant, or may be various samples of spatial data, such as

gene expression data from various parts of the body. In this case study, we are dealing with a

truly continuous process in space and time, although it will be discretised in space by the …xed

number of spatial sensors, and in time by the sampling frequency of the sensors.

We can de…ne h²i an ensemble average of any quantity over the observed realizations. For
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a discrete set this is

hfi =
1
n

nX

k=1

fn (5.1)

and for continuous systems

hfi =
Z


fd (5.2)

This can be updated constantly as new information becomes available.

With the ensemble average, one can de…ne a deviation

z = z(x; t) = zw(x; t) ¡ hzw(x; t)iw (5.3)

from this we are able to generate the principal components which represent the most e¢cient

basis for the representation of the data.

The following treatment follows that of Tatang [4] fairly closely. The general form of the

transform can be written as

z(x; t) =
1X

n=1

cn®n(t)¯n(x) (5.4)

where cn is the coe¢cient of the nth term and ®n(t) is the nth temporal orthonormal function

de…ned on the range of times (0; T ). ¯n(x) denotes the nth uncorrelated spatial random variable

de…ned by

Z T

0
z(x; t)®n(t)dt = cn¯n(x) (5.5)

Since we can always subtract the expected value of z(x; t), we can assume that it is a zero mean

random process, with covariance denoted C(t; s). Multiplying by z(s; x) gives

Z T

0
z(s; x)z(x; t)®n(t)dt = z(s; x)cn¯n(x) (5.6)
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And taking the expected value gives:

Z T

0
C(t; s)®n(t)dt = c2n®n(s) (5.7)

This integral equation is an eigenvalue problem with respect to the covariance kernel, which

can be solved using a singular value decomposition and thus ®n(t) and c2n can be obtained,

while ¯n(x) are obtained from equation 5.5.

Suppose now that we have an empirical realization of this random variable E(x; t), again

with realization in space and time. The Karhunen-Loeve expansion of this will be take the form

E(x; t) =
NX

n=1

cn®n(t)¯n(x) (5.8)

Since there is a symmetry in the treatment of time and space, we can choose to generate a set

of spatial eigenfunctions, and then generate temporal eigenfunctions from these, or the other

way around. Thus covariance matrices can be constructed

C(t; s) =
Z

E(x; t)E(x; s)dx (5.9)

K(x; y) =
Z

E(x; t)E(y; t)dt (5.10)

For large spatial dimensions, the …rst equation is preferable, for large temporal dimensions,

the second. In the paper rolling problem with 20 sensors and a considerable set of temporal

data, we elect to solve the second of these equations. K(x; y) is computed empirically

K(x; y) =
1
N

tNX

t=t1

E(x; t)E(y; t) (5.11)

The singular value decomposition is

K(x; y) = UWV T (5.12)

W = diagfc2ng (5.13)

where U is an orthogonal matrix containing the values of the eigenfunctions, or principal com-
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ponents, based on the …rst N points. The temporal eigenfunctions can be calculated from the

spatial eigenfunctions as

®n(t) =
1
cn

Z
E(x; t)¯n(x)dx (5.14)

And from the de…nition of these eigenvalues, they will be self-normalised. Further theoretical

details are provided in a number of sources, speci…cally that error does goes to zero as we increase

the number of terms.

5.3 The paper rolling case study

The practical example used here is taken from a 1996 case study by Rigopoulos and Arkun, [3].

Since their sponsor was in the pulp and paper industry we can use this to obtain a picture of

the process. The plant produces sheets of paper at a constant rate by producing wet paper from

a headbox, which then forms a sheet, which passes below an array of twenty sensors arranged

across the sheet, perpendicular to the motion of the paper. These sensors send a signal to our

control centre, which tries to identify when faults are occurring, and thus when product needs

to be discarded, or recycled. The concern in this case study is the identi…cation of the problems.

They deal with a sheet forming process, with a uniformity requirement, and an unknown

uncertainty structure. Thus there is no a priori model for the uncertainty, only, possibly for the

measurement process - since means and standard deviations of the measurement process could

be obtained by moving sensors around, and repeating experiments. The maximum entropy

representation for a known mean and standard deviation is the normal distribution, which is

the assumption we will make for any measurement noise, although as shown in Chapter four,

we could develop additional statistics with a more detailed description of the measurement

uncertainty.

The measurement data are constructed using the disturbance pro…le composed of sinusoids,

although of course any pro…le could be used. The variations presented are regarded as typical

of inconsistencies that arise from pulp ‡owrate and chemistry coming out of the headbox. The

model for the underlying paper structure is given in terms of sensor number, n, for a time
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Figure 5-1: Actual pattern on the paper surface

horizon, T .

µn =
(n ¡ 1)¼
2(N ¡ 1)

(5.15)

E1(n; t) = 0:5 sin
µ

20¼k
K

+ µn
¶

(5.16)

E2(n; t) = 0:5 sin
µ

(20 ¡ 0:05 ¤ b(k ¡ 499) =2c)¼
K

+ µn
¶

(5.17)

This data is converted to measurement data by adding a Gaussian zero mean, white noise,

with standard deviation of 0.1, and the data is then analysed.

5.4 The case study results

The case study is generated using the algorithm above. The original data, which is assumed to

be the pro…le coming out of the headbox, and thus what we are trying to measure, is illustrated

in Figure 5-1. The measurement data has the white noise added to it, and a reasonable amount

to test the power of the methods. This data is illustrated in Figure 5-2.

Principal components are identi…ed using the Karhunen-Loeve expansion. It turns out

that a substantial fraction of the energy of the signals is captured in the …rst three principal
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Figure 5-2: Raw measurements of paper rolling case study

components. The …rst three spatial eigenfunctions are illustrated in Figure 5-3. Note that the

third spatial eigenvalue is beginning to look like a white noise process, and thus it seems that

most of the important information has been captured in the …rst two principal components, or

that the white noise is covering any further information.

The magnitude of the principal component coe¢cients are plotted as a function of sensor

number in Figure 5-4. Not visible in this view is the alternation between components 1 and 2,

which is illustrated more clearly in Figure 5-10.

This data can be viewed from a di¤erent point of view to illustrate the temporal variation

in Figure 5-5. Note that the white noise gives rise to a sprinkling of non-zero components

spread over the remaining principal components. The principal components of a white noise

process turn out to be the Haar wavelet decomposition, and the energy is evenly spread over

all components. thus the presence of two real components suggests more structure than white

noise.

The data can be reconstructed using the …rst three principal components to give a reasonable

resemblance to the underlying data. This is illustrated in Figure 5-6.

There is a clear di¤erence in the nature of the underlying process in the …rst and second

parts. Suppose principal components are generated using the second half alone. Figure 5-7
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Figure 5-3: First three principal components for the paper rolling data
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Figure 5-5: Magnitude of the principal component coe¢cients
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Figure 5-6: State estimation from measurements based on …rst three principal components only
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Figure 5-7: Principal components computed using the second half of the process

represents the coe¢cient structure based on principal components from the second half. Note

that most of the structure is captured in the mean, and the principal components essentially

capture and model the white noise.

The temporal coe¢cients are plotted in Figure 5-8. Note the signi…cant di¤erence between

this plot and Figure 5-5, where we are decomposing using eigenfunctions from the …rst part

of the data, where there is signi…cant structure, and from the second part of the data, where

there is considerably less. The …rst set of eigenfunctions describes the second set of data

reasonably, but the converse is not true. The modelling of white noise is illustrated by the

roughly even distribution of coe¢cients across the coe¢cient space for the second, or front, half

of the data, while the back data, or …rst half, has a number of important components, but not

concentrated at the low end of the principal component set. This illustrates the danger of using

an inappropriate set of principal components to decompose the data, and suggests a measure for

the detection of changes, where other coe¢cients of the principal component analysis become

excited above a speci…ed threshold. This would suggest that the most recent data needs to be

used to generate a new set of principal components.

These principal components can be used to construct the data, again using the most signif-

icant components, which is illustrated in Figure 5-9. Unsurprisingly, the second half, for which
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Figure 5-8: Coe¢cients of the principal components computed from the second half of the data

the principal components have been designed - note that the second half is well represented,

while the …rst half fails fairly dramatically, due to the low concentration of energy in the …rst

three components, evident from Figure 5-8 .

We can plot the trajectory of the state estimate in coe¢cient space, illustrate in Figure

5-10. This illustrates the linked cyclic nature of the …rst two components for the …rst half of

the time period, followed by the random noise apparent in the second half in this coordinate

system.

Finally, the same estimation problem is solved using the multiscale state estimator, the

state estimation comparable to the Karhunen-Loeve approach is illustrated in Figure 5-11.

This should be directly compared to the data in Figure 5-2, from which the state estimation is

made. Note that denoising, and feature identi…cation is successful, while the solution retains

more of the noise that the Karhunen-Loeve chopping does, illustrated in …gure 5-6.

The multiscale state estimator produces a solution that is more hierarchical in nature and

can be stopped at any level of resolution. The solution at eight levels of resolution is illustrated

in …gures 5-11 to 5-18. The levels retain a decreasing amount of detail, corresponding to

various frequency bands. Once the level is passed corresponding to the frequency of the sine-like
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Figure 5-9: State estimation using principal components from the second half of the data.
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Figure 5-11: Multiscale state estimate of paper rolling measurements - most detailed level 8.

waves, there is little qualitative di¤erence between levels, suggesting that further computation is

pointless. This suggests that the multiscale state estimator would be very useful for identifying

coherent structures within a speci…ed frequency band - incorporating all the data from a time

series, and summarising it in an optimal way. The wavelet decomposition used to generate these

state estimates is indeed the Karhunen Loeve expansion for an integrated white noise process,

as shown by Wornell, [5].

5.5 Conclusions

The Karhunen Loeve transform and the multiscale state estimator provide two di¤erent ap-

proaches to the generation of state estimates. The Karhunen Loeve transform aims to reduce

computation by identifying the optimal basis with which to represent the data, and thus to

eliminate unimportant information in the irrelevant part of the space, while the multiscale

state estimator reduces computation in a hierarchical way, by identifying a level of interest, and

halting computation once that level is reached.

Both approaches provide reasonable state estimates of the underlying data, and they reduce

to each other in the event of pure white noise, for which the Haar decomposition is the Karhunen
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Figure 5-12: Multiscale state estimate of paper rolling measurements at level 7
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Figure 5-13: Multiscale state estimate of paper rolling measurements - level 6
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Figure 5-14: Multiscale state estimate of paper rolling measurements - level 5
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Figure 5-15: Multiscale state estimate of paper rolling measurements - level 4
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Figure 5-16: Multiscale state estimate of paper rolling measurements - level 3
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Figure 5-17: Multiscale state estimate of paper rolling measurements - level 2
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Figure 5-18: Multiscale state estimate of paper rolling measurements - top level

Loeve basis set, [1], [5].
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Chapter 6

Model Predictive Control with

Multiscale State Estimation

6.1 Introduction

Model predictive control is a well established optimisation-based technique for the control of

chemical processes [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], and [17]. The basic structure

of the algorithm is that at each time point, an open-loop optimal control problem is solved

using a model of the process. The control strategy obtained as the solution to this problem is

implemented until further measurements become available. The model itself is constructed from

prior information. In many cases, direct state measurements are not available and it becomes

necessary to perform state estimation using the prior measurements, in order to produce useful

information for the controller.

Since the construction of the control policy is optimisation based, there is a natural way to

incorporate inequality constraints - a major bene…t of the model predictive control approach.

Rao and Rawlings, [16], make the point that in many industrial situations, the desire for

maximum pro…t regularly causes one or more of the process constraints to be active at the

optimal operation point. Therefore it seems that the operation at constraints should be regarded

as the normal mode of operation rather than as an exception in chemical engineering.

Most industrial processes are motivated purely by pro…t, but constrained by the physical

equipment such as in this example. Production rates of exothermic chemical processes are
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usually dependent on the ‡owrate of raw materials, and these are usually constrained by the

heat duty that can be removed by the cooling system. Operating at maximum production

rate is typically done at the heat duty constraint. Many disturbances may enter the process,

suggesting that a control strategy incorporating this constraint would be useful.

Previous work in Model Predictive Control has recognised that stabilizibilty of the closed

loop problem may not be guaranteed by a number of control algorithms, and the problem is

usually dealt with by invoking an in…nite horizon argument in the controller. The use of the

multiscale model predictive controller as a stabilizing closed loop control is discussed at length

in the Ph.D. thesis of Orhan Karsligil, [6].

6.2 The Shell Standard Control Problem

In December 1986, Shell Development, describing themselves as “a leader in Process Control”,

brought together some of the leading academic and industrial researchers in process control

[14], [15]. The Shell Process Control Workshop provided a standard control problem that

incorporated su¢cient modelling detail to test various control design methodologies.

The column has a gaseous feed stream which carries all of the heat required by the column.

There are three intermediate re‡ux loops which are used to remove heat from the column to

produce the desired product purity. Since these heat exchangers are used to heat other parts

of the plant, the heat that they remove is variable. The bottom heat duty is controlled by the

production of steam, which can be speci…ed, thus bottom heat duty is a manipulated variable,

while the other two heat duties are regarded as disturbances. There are three draws, of which

the top and intermediate are controlled for product purity, and the bottom has unspeci…ed

product.

The problem itself contains considerable complexity, and in this case study, we will be

dealing with a reduced set of complexity, for the purposes of illustrating the working of the

estimator and model predictive controller.

The original standard control problem has the following control objectives:

1. Top and side product draws must be kept at speci…cation of 0:0 § 0:005 at steady state.

2. The heat removal in the bottom circulating re‡ux is to be maximised, thereby maximising
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Figure 6-1: Heavy Oil Fractionator for the Shell Standard Control Problem
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the amount of steam produced by the process. In the formulation given, heat duty

represents heat input to the system, thus one must minimize heat duty to the bottom

re‡ux.

3. Unmeasured re‡ux disturbances should be rejected. These enter the column through the

top and intermediate columns and are the result of disturbances in the heat duty require-

ments of other columns. The disturbances are assumed to be in the range [¡0:5; 0:5], and

it is desired that disturbances be rejected even when one or both end point analyzers fail.

Further, the Shell standard control problem is equipped with constraints and a set of

inputs and outputs.

All draws must be within [¡0:5; 0:5] :

4. The bottom re‡ux heat duty must be [¡0:5; 0:5] :

5. All derivatives of manipulated variables must have a maximum of 0.05/minute.

6. The fastest sampling time is 1 minute.

7. The bottom re‡ux draw has a lower bound of -0.5.

8. The top endpoint must lie [¡0:5; 0:5] :

The case study that we will be performing utilises all of these constraints, and concentrates

on objectives 1 and 3 from the original control objectives. We have not concentrated on the

maximisation of steam production since the goal of this case study is to demonstrate the state

estimator.

The process models for the plant are described as transfer functions of …rst order processes

with dead time of the standard form:

G =
Ke¡µs

¿s + 1
(6.1)

The inputs for this system are the top draw, the side draw, and the three re‡ux duties. The

complete set of outputs is the top end point, the side end point, and the temperatures of the

top draw, the upper re‡ux, the side draw, the intermediate re‡ux and the bottom draw. The

complete set of inputs and outputs is given in Prett and Morari’s workshop proceedings.
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Re‡ux Duties
Output Top Draw Side Draw Bottom Intermediate Upper
Top End Point 4:05e¡27s

50s+1
1:77e¡28s
60s+1

5:88e¡27s
50s+1

1:20e¡27s
45s+1

1:44e¡27s
40s+1

Side End Point 5:39e¡18s
50s+1

5:72e¡14s
60s+1

6:90e¡15s
40s+1

1:52e¡15s
25s+1

1:83e¡15s
20s+1

Bottoms Re‡ux T 4:38e¡20s
33s+1

4:42e¡22s
44s+1

7:20
19s+1

1:14
27s+1

1:26
32s+1

Table 6.1: Table Process Model Parameters for the Shell Heavy Fractionator

Re‡ux Duties
Output Top Draw Side Draw Bottom Intermediate Upper
Top End Point 4:05 + 2:11"1 1:77 + 0:39"2 5:88 + 0:59"3 1:20 + 0:12"4 1:44 + 0:16"5
Side End Point 5:39 + 3:29"1 5:72 + 0:57"2 6:90 + 0:89"3 1:52 + 0:13"4 1:83 + 0:13"5
Bottoms Re‡ux T 4:38 + 3:11"1 4:42 + 0:73"2 7:20 + 1:33"3 1:14 + 0:18"4 1:26 + 0:18"5

Table 6.2: Table Uncertainty in the Gains for the Shell Heavy Fractionator

In our case study, we will focus on a reduced set of outputs - speci…cally, the top end point,

the side end point and the bottoms re‡ux temperature, and our transfer functions will re‡ect

this.

The parameters for the various transfer functions are listed in Table 6.1.

In addition to this model, the standard problem contains estimates for the gain of the models

as shown in Table 6.2.

In all cases, "k is in the range [¡1; 1].

The …ve prototype test cases from the workshop are listed below.

Demonstrate through simulation that the proposed controller satis…es the control objec-

tives without violating the control constraints for the following plants within the uncertainty

set. Assume that all inputs and outputs are initially at zero, magnitudes for the upper and

intermediate re‡ux duty step changes are indicated below.

1. "k = 0: Upper re‡ux duty = 0.5. Intermediate re‡ux duty = 0.5.

2. "1 = "2 = "3 = ¡1; "4 = "5 = 1: Upper re‡ux duty = -0.5. Intermediate re‡ux

duty=-0.5.

3. "1 = "3 = "4 = "5 = 1; "2 = ¡1: Upper re‡ux duty = -0.5. Intermediate re‡ux

duty=-0.5.

4. "1 = "2 = "3 = "4 = "5 = 1: Upper re‡ux duty = -0.5. Intermediate re‡ux duty = -0.5.

5. "1 = ¡1; "2 = 1; "3 = "4 = "5 = 0: Upper re‡ux duty = 0.5. Intermediate re‡ux duty
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= -0.5.

6.3 The multiscale approach

The original presentation of the problem has all of the models in transfer function form. The

multiscale state estimator, and multiscale model predictive controller require that the models

be in state space format, that is the dynamic system should have the form

xt+1 = Axt + But + wt (6.2)

yt = Cxt + Dut (6.3)

The formulation provided has a steady state at the origin, suggesting that deviation variables are

used. These are useful since the steady state behaviour is separated from the dynamic elements

of the system. Once the dynamic system has been transformed, the constraints, inputs and

outputs will be in a form suitable for the multiscale state estimation algorithm .

Rawlings and Rao [16] make a number of points about the structure of the constraints

in their paper. They note that the incorporation of constraints can produce problems in the

presence of large disturbances. In a disturbance rejection control problem with constrained

input variables, one can always …nd a disturbance large enough so that the inputs cannot reject

it without violating constraints. Thus care must be taken to check for problems that become

inherently infeasible.

In the Shell control problem, the origin is always feasible and is the steady state solution

for the undistrubed plant, due to the use of deviation variables. Steady state disturbances in

the uncontrolled inputs may mean that the range of the plant shifts from its centre around

the origin, or that it is necessary to have a non-zero control variable to reject these external

unmodelled distrubances. Input constraints may make the plant uncontrollable for a given set

of disturbances. This aspect should be addressed by identifying a stable feasible solution by

simulation, before implementing the controller on a live plant.

Our case study begins by converting the input-output models to state space, by approxi-
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mating each of the time delay elements by the Pade approximation.

e¡µs ¼ 1 ¡ µs (6.4)

These transfer functions are multiplied by the numerators of the relevant transfer functions.

A set of matrices (A;B;C;D) is de…ned to be a realisation of the transfer function H(s) if

H(s) = C(sI ¡ A)¡1B + D (6.5)

The transformation from the Laplace domain to state space is non-unique, and our selection

has been the minimum realisation, the realisation that has (A; B) reachable and (A; C) observ-

able. The procedure is automated in MATLAB, and the reader is referred to the source code,

or a book on linear systems theory full detailed descriptions on the generation of realisations.

It is taken directly from a set of notes by Dahleh

Here follows a brief description of Gilbert’s realization, a technique for generating a minimal

realisation for MIMO systems. It is taken directly from a set of notes by Dahleh.

Suppose we have a matrix transfer function and we factor out the least common denominator

polynomial d(s). If it has no repeated roots then it is possible to construct a minimal realization.

If we apply a partial fraction expansion to each of the elements of H(s) and collect residues for

each distinct pole, then the transfer function can be written in the following form:

H(s) =
kX

i=1

1
s ¡ si

Hi (6.6)

where Hi is p£m, for p outputs and m inputs. Hi has rank ri where ri is the minimum number

of independent poles with location si required to realize H(s). It follows from the rank of Hi

that it can be decomposed as te product of two matrices with full column and full row rank

respectively:

Hi = CiBi (6.7)

The elements of each Hi are just the residues of the termwise partial fraction expansion of H(s)
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at each pole si.

A =

2
6666666664

s1Ir1 0 0 0 0

0 s2Ir2 0 0 0

0 0 s3Ir3 0 0

0 0 0
. . . 0

0 0 0 0 skIrk

3
7777777775

(6.8)

B =
h

B1 B2 B3 ¢ ¢ ¢ Bk
iT

(6.9)

C =
h

C1 C2 C3 ¢ ¢ ¢ Ck
i

(6.10)

Ix = identity matrix of dimension x (6.11)

Further minimal realisations can be constructed using similarity matrices.

The resulting matrix may be poorly conditioned - which produces condition number prob-

lems in the state estimation algorithm, particularly in the computation of top level nodes, which

rely on the inversion of the state matrix raised to a large power. Thus we try to eliminate small

states by choosing a tolerance for the size of state that we regard as relevant, and eliminate

these. Note that the full system can still be used for simulation, but the reduced system is

more robust for estimation since some function of it must be inverted.

The actual model produced in this simulation has sixteen states, which are automatically

reduced to fourteen by MATLAB, due to small singular values. Since the matrix is large, and

barely invertible, which we need for the state estimation. we thus eliminate the next six states

by setting their derivatives to zero, and solving the resulting system for the remaining state

equations. The reduced system is used for the estimation, and in the control algorithm, and it

has three outputs, three inputs and eight states. With this dynamic system, the matrices are

ready to be used in the multiscale state estimator algorithm.

The states in this system represent the model outputs and various derivatives of these

outputs, and combinations of these. This becomes clear if one inspects the structure of the A

matrix of the minimal realisation, which is block diagonal except for the bottom few rows. This

is typical for higher order systems reduced to …rst order using state augmentation, with higher

order states representing various derivatives.
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The origin is known to be a steady state solution to the dynamic system, and this is used

as an initial condition, from which all state estimation and control will be done. In practice,

one would have historical data from previous operations, such as the moving horizon approach

discussed in Section 3.7, from the start up or from experiments. In the theoretical world, this

must be created before the algorithm can commence. Alternately a steady state assumption

can be made up for start up. Typically one would need a number of points equal to 2n where

n is the number of levels on the tree.

The uncertainty parameters in the model arise from the uncertainty in the gain matrix, as

well as from the presence of unmodelled disturbances. These are lumped into the w variables

in the state estimation algorithm. Further, it is assumed that measurements will be subject to

some measurement uncertainty, the order of magnitude of which can be estimated from prior

experiments, or from knowledge about the equipment.

We construct the tree dynamic system for the model, and produce a set of simulated data

to initialise the state estimator. At each point after this, the most recent measurement is

received, and the multiscale state estimator is used to produce an optimal state estimation of

data from a …xed moving horizon in the past. The …rst point in the state estimation uses a prior

estimate with uncertainty, obtained from previous state estimation calculations. The details of

this section of the algorithm can be found in Section 2-6 This allows for changes in the plant to

occur without adversely a¤ecting state estimates for long periods of time. Clearly, the length

of this horizon will be a tuning parameter, and we choose it to be comparable to the length of

the control horizon.

Results of the state estimator are illustrted in Figure6-2. The dotted lines present the state

estimates, while the solid lines represent the true state generated through simulation. The

o¤sets are due to the modelling errors. The state estimation produces a set of uncertainties in

the model that will be used in the prediction estimates in the controller. The uncertainties and

the state estimates are sent to the controller, which returns a set of inputs to be implemented

before the next measurement is available. This procedure is repeated at each time step.
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Figure 6-2: Successful state estimation by the multiscale state estimator
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6.4 The multiscale model predictive controller

This controller was designed as part of a larger project within the LISPE group, to develop

multiscale tools for chemical engineering problems [6], [2], [1]. The model predictive controller

in multiscale is presented in toto in the Ph.D. thesis of Orhan Karsligil. A brief description of

the process is given here.

It is assumed that a state estimate at the current point is available, as well as a set of

prediction errors at all points on the tree. These are provided by the state estimator. The

controller has a target path - the reference path - which the state trajectories aim to track,

either due to set point changes or due to unmodelled disturbances in the plant. Note that the

state trajectory may be expressed in terms of the output variables - in this case we want the

output variables to follow some trajectory, not the states. This requires some recasting of the

control algorithm.

A feature of the multiscale model predictive control algorithm is the construction of a

reference path that is smooth so that constraints on the input variables will be satis…ed in the

absence of disturbances.

The model predictive controller selects an optimal length for the controller horizon in an

iterative way. At each level of the multiscale tree from the zeroth level, a simple, blocked input

strategy is sought that satis…es the input constraints, and achieves the desired control objective

in the absence of future disturbances. If this cannot be achieved at the current level, another

level is added, until a level on the tree is reached, where a feasible solution exists. At this

level, referred to as the variable horizon level, the complete quadratic program is solved for the

optimal open loop control strategy. This strategy is sent to the real plant (or simulator) and

implemented until another measurement becomes available.

The blocked solution, which will generally be suboptimal, is characterised by repeated input

variables of the same value, simply to reduce computation time by reducing the number of

variables, purely for this variable horizon computation which is not required accurately..

The thesis examines this problem in considerably greater detail and provides stability ar-

guments.
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Figure 6-3: Shell Standard Case Study One Outputs

6.5 Case studies

The …ve cases studies presented here represent the cases suggested by the Shell Process Control

team as a representative set of problems, where pertinent problems for controllers would be

expected to show up.

The models used to drive the case studies were constructed using the minimal realisations

discussed above. The full set of states was used for simulation, while the control algorithm uses

a reduced number of states for its system. Further, the Standard Control problem suggests

uncertainties for the plant. Again, the controller would be unaware of plant uncertainty, but

would be required to deal with it, so real plant data uses the model with the nominal uncertainty,

while the controller assumes the steady state, or model, version of the plant.

The strategy in all cases was to simulate 20 minutes at steady state, the to apply the step

change in the relevant input variable, and then to use model predictive control every minute to

reject the disturbance, in the presence of plant uncertainty..

Figures 6-4 and 6-3 show the …rst case study original plant with perfect plant model, and

positive disturbances in both the upper and intermediate re‡ux duties. The outputs produce an
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Figure 6-4: Shell Standard Case Study One Inputs

inverse response initially, but this settles to a steady state in roughly 200 minutes, and possibly

shorter if we follow the design spec of 0.005 at steady state.

Case study two is illustrated in …gures 6-5 and 6-6. This time there is some uncertainty in

all of the plant variables, leading to a slightly longer decay than for the perfectly known model.

Nevertheless the disturbance is almost completely rejected within about 200 minutes.

Figures 6-7 and 6-8 illustrate the rejection of the same disturbance, but with di¤erent model

uncertainties. The plots are qualitatively the same as 6-5 and 6-6 suggesting that the model

uncertainty is being correctly captured by the model predictive control algorithm. Figures 6-9

and 6-10 show a slightly di¤erent feature, where the disturbances to be rejected are of opposite

sign, and thus cancel out some of the e¤ect of each other. Note however that the outputs

exhibit a clear oscillatory behaviour for the …rst time in the sequence. Nevertheless, there is

a good rejection of the disturbance.Figures 6-11 and 6-12 return to re‡ux disturbances in the

same direction, but with a reduced set of model uncertainties restricted to the top and the side

draw. This gives slightly improved performance over case studies 2 and 3, where all models

were uncertain.
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Figure 6-5: Shell Standard Case Study Two Outputs
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Figure 6-6: Shell Standard Case Study Two Inputs
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Figure 6-7: Shell Standard Case Study Three Outputs
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Figure 6-8: Shell Standard Case Study Three Inputs
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Figure 6-9: Shell Standard Case Study Four Outputs
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Figure 6-10: Shell Standard Case Study Four Inputs
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Figure 6-11: Shell Standard Case Study Five Outputs
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Figure 6-12: Shell Standard Case Study Five Inputs
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6.6 Summary

In this chapter we have discussed the use of the multiscale state estimator in a model predictive

control algorithm. There is little di¤erence between the results obtained for the various di¤erent

model uncertainty variables. The multiscale state estimator has been used to assist a model

predictive control algorithm applied to a state space implementation of the Shell Standard

Control Problem - all …ve parts of the problem. In all cases, steady state was successfully

reached roughly 200 minutes after the application of the step change disturbances. Since these

disturbances were at the maximum allowed bounds by the physical constraints imposed on the

problem, it seems reasonable to expect this to be an upper bound for any disturbance. Case

study 4, despite its relatively uncertain plants compared to 1 and 5, produced the smallest

response to the disturbances.
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Chapter 7

The Terephthalic Acid Plant Case

Study

7.1 Introduction

The motivation for this case study was to …nd a chemically relevant use of the multiscale state

estimator, that went further than the initial linear assumption of the state dynamic model in

the construction of the estimator. In this case study, the primary reactor in a continuous tereph-

thalic acid plant is initially described by a nonlinear model, due to products of composition

and functions of temperature, all of which are changing continuously. A further complication

is the nonlinear nature of the phase equilibrium calculation, which a¤ects the mass and energy

balances, and must be inferred from indirect measurements.

7.2 Overview of the terephthalic acid plant

The plant is designed to produce the terephthalic acid monomer continuously, using the plant

represented in Figure 7-1, [1]. The reaction is occurs as a series of three oxidation reactions

that use a platinum catalyst in an acetic acid medium. The primary chemical species are listed

in Table The three reactions occur in an initial reactor, at high pressure. The high temperature

in this reactor is due to the highly exothermic nature of the reactions, and cooling is used

to prevent unwanted side reactions that occur above 225±C. The reaction is followed by a
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Figure 7-1: Schematic of Terephthalic Acid Plant

‡ash tank, a separation system to remove the monomer from the euent, a series of distillation

columns to remove the unwanted heavies and the unused catalyst, and to concentrate the acetic

acid for recycling back to the reactor. This case study will focus on the …rst reactor.

The model we are using consists of a reactor in which the three oxidation reactions occur

in series. The liquid feed stream consists of a combination of pure xylene, and a recycle stream

from the separations section of the plant consisting of acetic acid with traces of water and toluic

acid, the byproducts and intermediates from the oxidation reaction. Essentially all of the acetic

acid is recycled for economic reasons. The gas feed stream consists of high pressure air from

a multistage compressor, fed from below through a sparger. There is an overhead condenser

which is used to recycle the acetic acid and water back to the reactor, and to separate it from

the inert nitrogen and unused oxygen. These leave to a stripper which removes further acetic

acid, before atmospheric release. The condenser is a countercurrent heat exchanger that uses
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AA acetic acid
TA toluic acid
CBA carboxybebzaldehyde
TPA terephthalic acid
XY xylene
H2O water
O2 oxygen
N2 nitrogen

Table 7.1: Names of the Principle Components

Reaction A(min¡1) E(kJ=mol) k(min¡1) ¢Hrxn(kJ=mol)
1 1.03£106 61.1 0.403 -691
2 3.31£105 61.1 0.129 -377
3 3.47£1017 168 0.965 -295

Table 7.2: Reaction Constants

cooling water at 40±C and returns it at a maximum of 50±C.

The reactor itself is assumed to be a continuously stirred tank reactor, thus the concentration

throughout the reactor and in the exiting liquid stream is assumed constant. The oxygen is

assumed to be well distributed through the tank, and is in excess.

7.2.1 Physical data

The three reactions in series are the oxidation of xylene to toluic acid, toluic acid to carboxyben-

zaldehyde, and carboxybenzaldehyde to terephthalic acid. For the remainder of the discussion

they will be numbered 1 to 3. The reactions occur in an acetic acid solution, with a platinum

catalyst, assumed to be in constant concentration, and continuously fed with the feed xylene.

The oxidation reactions satisfy the following equations, with physical constants given in the

accompanying tables.

XY +
3
2
O2

1¡! TA + H2O (7.1)

TA + O2
2¡! CBA + H2O (7.2)

CBA +
1
2
O2

3¡! TPA (7.3)
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Compound AA XY TA CBA TPA Water N2 O2
Heat Capacity (J=molK) 123 182 169 175 199 75 31 31
Heat of Vaporisation (kJ=mol) 23.70 35.67 - - - 40.65 - -

Table 7.3: Chemical Properties

7.3 Setting up the mass balance equations

The reactor is assumed to be continuously stirred and thus the output ‡ow is identical in

composition to the contents of the reactor. Thus molar balances over the reactor for each

component can be constructed. NXY is the number of moles in the reactor of component XY .

k1, k2, and k3 are the reaction rates of the three series reactions. FOUT , in units of =hr, is the

‡owrate out of the reactor, normalised by the number of moles of liquid in the reactor. FOUT

is a function of the composition, the densities of each component, the volume of liquid in the

reactor. The reactor is assumed to be well stirred, thus the mole fractions in the ‡uid within

the reactor are the same as those in the exit stream. FG is the ‡owrate in moles=hr of the gas

stream leaving in overhead to the condenser, with composition given by yi. FC is the ‡owrate

in moles=hr of the stream returning from the condenser, with composition xi;C .

Accumulation = In ¡ Out + Generation ¡ Depletion (7.4)
d
dt

NXY = NXY;IN ¡ FOUTNXY ¡ k1NXY (7.5)

d
dt

NTA = NTA;IN ¡ FOUTNTA + k1NXY ¡ k2NTA (7.6)

d
dt

NCBA = ¡FOUTNCBA + k2NTA ¡ k3NCBA (7.7)

d
dt

NTPA = ¡FOUTNTPA + k3NCBA (7.8)

d
dt

NH2O = ¡FOUTNH2O + k1NXY + k2NTA ¡ FGyH2O + FCxH2O;C (7.9)

d
dt

NAA = NAA;IN ¡ FOUTNAA ¡ FGyAA + FCxAA;C (7.10)

The energy balance uses molar heat capacities, Cpi in J=molK, temperature of the reactor,
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T in K, heats of reaction, ¢Hrxn, in J=mol, and heats of vaporisation, ¢Hvap, also in J=mol.

Accumulation = In ¡ Out + Generation ¡ Depletion
d
dt

³X
NiCpiT

´
R

= (TIN ¡ TREF )
X

Ni;INCpi

¡ (TOUT ¡ TREF )FOUT
X

Ni;OUTCpi

+FOUT
X

Ni;OUT¢Hrxn (TREF )

¡FG
X

yi;G¢Hvap (7.11)

The reaction rates, k, are non-linear in temperature, and appear in product terms with the

number of moles in the reactor. Since a steady state operating region exists, it is possible to

linearise around the operating temperature, T0 and operating compositions, N0.

k(T ) = A exp(¡Ei=RT )

k(T )N ¼
µ

k(T0) + (T ¡ T0)
@k
@T

jT0
¶

(N0 + ¢N)

¼ k(T0)N + N0(T ¡ T0)
@k
@T

jT0 (7.12)

= k(T0)N + N0(T ¡ T0)k(T0)
Ei

RT 2
0

= k(T0)N + N0k(T0)
Ei

RT 2
0

T ¡ N0k(T0)
Ei

RT0
(7.13)

Now construct this as a dynamic system
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d
dt

x = Ax + Bu + w

d
dt

2
6666666666666664

(
P

NiCpi)R T

NXY

NTA

NCBA

NTPA

NH2O

NAA

3
7777777777777775

= A

2
6666666666666664

T

NXY

NTA

NCBA

NTPA

NH2O

NAA

3
7777777777777775

+

2
6666666666666664

¡FG
P

yi;G¢Hvap

0

0

0

0

¡FGyH2O + FCxH2O;C

¡FGyAA + FCxAA;C

3
7777777777777775

+

2
6666666666666664

P
¢HIN;i

NXY;IN

NTA;IN

0

0

0

NAA;IN

3
7777777777777775

¡

2
6666666666666664

TREFFOUT
P

Ni;0Cpi

¡NXY;0k1(T0) E1RT0
NXY;0k1(T0) E1RT0 ¡ NTA;0k2(T0) E2RT0
NTA;0k2(T0) E2RT0 ¡ NCBA;0k3(T0) E3RT0

NCBA;0k3(T0) E3RT0
NXY;0k1(T0) E1RT0 + NTA;0k2(T0) E2RT0

0

3
7777777777777775

¢HIN;i ´ (TIN ¡ TREF )NIN;iCpi

¢HOUT;i ´ ¡ (TOUT ¡ TREF )FOUTCpi
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where

A =

2
66666666666666666664

¡FOUT
P

Ni;0Cpi ¢HOUT;XY
¢HOUT;TA

+FOUT¢HrxnTREF
¡NXY;0k1(T0) E1RT 20

¡FOUT ¡ k1(T0) 0

NXY;0k1(T0) E1RT 20
¡ NTA;0k2(T0) E2RT 20

k1(T0) ¡FOUT ¡ k2(T0)

NTA;0k2(T0) E2RT 20
¡ NCBA;0k3(T0) E3RT 20

0 k2(T0)

NCBA;0k3(T0) E3RT 20
0 0

NXY;0k1(T0) E1RT 20
+ NTA;0k2(T0) E2RT 20

k1(T0) k2(T0)

0 0 0

¢ ¢ ¢

3
77777777777777777775

2
66666666666666666664

¢ ¢ ¢

¢HOUT;CBA

+FOUT¢HrxnTREF

¢HOUT;TPA

+FOUT¢HrxnTREF
¢HOUT;H2O ¢HOUT;AA

0 0 0 0

0 0 0 0

¡FOUT ¡ k3(T0) 0 0 0

k3(T0) ¡FOUT 0 0

0 0 ¡FOUT 0

0 0 0 ¡FOUT

3
77777777777777777775

The next step is to deal with the non-linearity between temperature and composition in the

energy balance. Again, we can linearise around our selected steady state to obtain the following

linearised energy balance.

d
dt

³X
NiCpiT

´
R

=
³X

NiCpi
´
0

dT
dt

+
µX

CpiT0
dNi
dt

¶

R
dT
dt

=
³X

NiCpi
´¡1
0

µ
d
dt

³X
NiCpiT

´
R

¡
µX

CpiT0
dNi
dt

¶

R

¶
(7.14)

All of the parameters on the right hand of the equation are obtained from the matrix A, and

the …rst row of both A and the input vectors are replaced by linear combinations of the original

entries, according to this linearised energy balance.

The input vectors are assumed to be ‡uctuating around a known steady state. The ‡owrates
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into the reactor are assumed constant, but in reality ‡uctuate according to decisions upstream.

We specify a set point for the input ‡owrate of the xylene monomer and top-up acetic acid,

consistent with our desired production rate, and the expected loss of acetic acid from the

system through the waste and product streams. We are unable to control the ‡owrate from

the separations unit. This stream consists largely of acetic acid, and is essentially equal to the

amount of acetic acid leaving the reactor with come amount lost through the product and liquid

and vapour waste streams. We can thus predict a steady state value for this stream.

The control inputs consist of the ‡owrates to and from the overhead condenser, the oper-

ation of which is de…ned by the temperature and pressure selected for the steady state. The

pressure can be controlled directly, by adjusting the pressure of the entering gases, while the

temperature can be adjusted by altering the ‡owrate of coolant through the condenser, and thus

the temperature of the returned stream. We are thus able to control the ‡owrates through the

condenser. The following section describes this in more detail, since the relationship between

the quantities is non-linear.

7.4 The vapour-liquid equilibrium

Assume that the ‡owrate of the overhead gas is unknown, temperature of the liquid stream

from the condenser is measured. Rotameters and thermocouples may be used for the ‡owrate

and temperature, while the composition, which is expected to be a predominantly water and

acetic acid could be measured using conductivity.

The physics of the evaporation, condensation, and described sequentially. The Antoine

Equation provides vapour pressure in atmospheres as a function of temperature. This equation

is valid in the reactor, where the operating point is P = 30atm, T = 225±C, and at the end

point of the condenser. In the reactor:
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lnP vapAA (T ) = A ¡ B
T + C

= 11:8359 ¡ 4457:86
T (C) + 258:451

(7.15)

= 2:61 at 225±C (7.16)

P vapAA (T ) = 13:6atm (7.17)

lnP vapH2O(T ) = A ¡ B
T + C

= 11:9517 ¡ 3984:95
T (C) + 233:426

(7.18)

= 3:259 at 225±C (7.19)

P vapH2O(T ) = 26: 0atm (7.20)

The liquid mole fractions in the reactor are either obtained from the state estimator for

previous points if these are available, or are set to the steady state under the current operating

conditions. These will be periodically measured, and would be updated whenever a discrepancy

was detected.

xAA = 0:60 (7.21)

xH2O = 0:25 (7.22)

The Margules Equation is used to determine the activity coe¢cients of the volatile compo-

nents.

ln°AA = x2H2O
£
AAA=H2O + 2

¡
AH2O=AA ¡ AAA=H2O

¢
xAA

¤
(7.23)

= (0:25)2 [0:9960 + 2(0:4552 ¡ 0:9660)(0:6)] (7.24)

= 0:02394 (7.25)

°AA = exp(0:02394) = 1: 024 2 (7.26)

ln °H2O = x2AA
£
AH2O=AA + 2

¡
AAA=H2O ¡ AH2O=AA

¢
xH2O

¤
(7.27)

= (0:6)2 [0:4552 + 2(0:9660 ¡ 0:4552)(0:25)] (7.28)

= 0:2558 (7.29)

°H2O = exp (0:2558) = 1: 291 5 (7.30)
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Modi…ed Raoult’s Law gives the vapour mole fractions in equilibrium with the liquid mole

fractions within the reactor. Since the overhead gas leaves to the condenser, this is assumed to

be the composition of the gas stream that goes to the condenser.

yAA =
°AAxAAP vapAA (T )

Ptot
=

(1: 024 2) (0:60) (13:6)
30

(7.31)

= 0:279 (7.32)

yH2O =
°H2OxH2OP vapH2O(T )

Ptot
=

(1: 291 5) (0:25) (26:0)
30

(7.33)

= 0:280 (7.34)

The components of this stream will be surplus oxygen, inert nitrogen and all of the compo-

nents of the liquid phase, although the vapour pressures of most of these are considerably lower

that of acetic acid and water, or in such small quantities in the liquid phase, that they can

essentially be ignored in this calculation. The input of oxygen is selected to be in molar ratio

of 5:1 with the incoming xylene, since air is the source, we can predict the ‡owrate of nitrogen

into the system. We can estimate the amount of oxygen that reacts, and hence the output of

the nitrogen and oxygen. Here is a sample calculation that would be changed if there was a

change in the xylene ‡owrate.

FG = FO2 + FN2 + FAA + FH2O + FTA + FXY (7.35)

=
FO2 + FN2

1 ¡ (yAA + yH2O + yTA + yXY )
(7.36)

=
(133 + 1290) kmol=h

1 ¡ (0:279 + 0:280 + small)
= 3226kmol=h

We can compute the amount of AA and H2O lost from the top of the condenser by computing

the vapour liquid equilibrium between oxygen, nitrogen and the acetic acid and water. Assume

most of the acetic acid and water condenses to 50±C, the liquid fractions are in roughly the
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same mole fractions as in the entering stream to the condenser, which is approximately 50%.

lnP vapAA (50) = 11:8359 ¡ 4457:86
50 + 258:451

(7.37)

P vapAA (50) = 0:073atm (7.38)

lnP vapH2O(50) = 11:9517 ¡ 3984:95
50 + 233:426

(7.39)

P vapH2O(T ) = 0:122atm (7.40)

ln°AA = x2H2O
£
AAA=H2O + 2

¡
AH2O=AA ¡ AAA=H2O

¢
xAA

¤
(7.41)

= (0:5)2 [0:9960 + 2(0:4552 ¡ 0:9660)(0:5)] (7.42)

= 0:1213 (7.43)

°AA = exp(0:1213) = 1: 129 (7.44)

ln °H2O = x2AA
£
AH2O=AA + 2

¡
AAA=H2O ¡ AH2O=AA

¢
xH2O

¤
(7.45)

= (0:5)2 [0:4552 + 2(0:9660 ¡ 0:4552)(0:5)] (7.46)

= 0:2415 (7.47)

°H2O = exp (0:2415) = 1: 273 (7.48)

yAA =
°AAxAAP vapAA (T )

Ptot
=

(1: 129) (0:50) (0:073)
30

(7.49)

= 0:0014 (7.50)

yH2O =
°H2OxH2OP vapH2O(T )

Ptot
=

(1: 273) (0:5) (0:122)
30

(7.51)

= 0:0026 (7.52)

FEX = FO2 + FN2 + FAA + FH2O (7.53)

=
FO2 + FN2

1 ¡ (yAA + yH2O)
(7.54)

=
(133 + 1290) kmol=h

1 ¡ 0:004
= 1429kmol=h
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of which 6: 56kmol=h is AA and H2O, in a molar ratio of roughly 1:2.

This gives us enough information to compute the input vector, since ¡FGyH2O+FCxH2O;C ¼
4: 3kmol=h and ¡FGyAA + FCxAA;C ¼ 2:3kmol=h.

¡FG
P

yi;G¢Hvap comes from the above values, and the values of ¢Hvap in the tables of

physical data.

7.5 The case study

An implementation of the above plant has been coded and run using MATLAB. A simulator for

the plant was constructed using the model equations given above. Initially, a set of operating

parameters was selected - a …xed ‡owrate of the monomer, a desired operating temperature

and pressure, and a functional steady state was selected. The plant was simulated at steady

state to produce a set of molar compositions within the reactor, speci…c to this set of operating

conditions.

The simulator was used to generate a set of plant data under non-steady state conditions.

The state data - temperatures and number of moles within the reactor were generated using the

“true” plant, with actual reactor temperature, and actual compositions used for the transition

equations. This state data was measured according to a selected model, and recorded. The

case study has been built with a number of ‡exible parameters. It was assumed that the input

‡owrate of the monomer was varying, uncontrolled and measured, that the input temperature

was varying, uncontrolled and measured, and that the exit temperature from the condenser is

variable - consistent with the physical reality that cooling water has a ‡uctuating temperature.

The measured data were stored and sent to the multiscale state estimator to recover the

underlying state variables from the measurements.

The estimation of the plant from measurement data su¤ers from the fact that the model is

inherently non-linear - and linearised around the selected operating point.

The original intention was to recover the concentration pro…le from a measurement of tem-

perature only. The problem with this is the observability of the system - the observability
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has rank of …ve instead of the seven that is required for complete ob-

servability. It is clear then that we need some concentration data. A reasonable approximation

can be made by assuming that the concentrations are close to their steady state values, and

performing state observation using these “measurements” to perform the state estimation.

There is a problem with dealing with large systems of data in multidimensional systems.

Since the matrix A is inverted high up on the tree, we are concerned about the condition

number of this matrix. It turns out that the condition number roughly squares with each level,

as illustrated in the plot of condition number with level. this provides us with a natural upper

limit on the number of points we wish to use for the state estimation.
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The plots from the case studies illustrate a number of features of the state estimator, and

how we have dealt with the di¢culties confronting us. The …rst plot shows the input variables

used. These are plotted as normalised variables around their steady states. The amount of

xylene ‡owing into the reactor was assumed to be ‡uctuating in a measurable way, and this

has been modeled with the pro…le below. The temperature of the input stream depends on the

upstream processes and the length of time it has been stored, so it is assumed to be varying

in a measurable way. The condenser temperature is dependent on the control system used, the

temperature of the coolant, and is assumed to be measurable and varying as shown in Figure

7-3.

A base case for comparison of the other plots is illustrated in Figure 7-4. In all cases, we

are plotting the state variables normalised by their steady state values, and then plotted on the

same scale as temperature, which is set around 485K. Temperature ‡uctuates around 485K,
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and is bundled together with the acetic acid, TPA and water reactor masses. The mass of toluic

acid rises initially, while of the lower curves, xylene is closer to 500 than the concentration of

CBA. In all of the plots, the true state value from the simulation is represented by a a solid line

for each species, while the measurements are represented by crosses, and the state estimates by

dots.

We have performed a simulation, and state estimation using noise free measurements. Ini-

tially, there were problems due to the free estimate of the left most node in time. These have

not been illustrated, but essentially the initial point was very large compared to all other points,

suggesting that most of the energy in the cost function was concentrated in the initial point.

The reason for this is that the left node is not dependent on any inputs, and thus has less e¤ect

on the surrounding points than any other nodes on the tree. Hence, the entire left-most branch

of the tree will be unconstrained by inputs from the left, and consequently the leftmost point

is free to ‡oat. This can be resolved by applying a prior estimate to the left-most node of the

tree, using the technique discussed at length in Chapter 2.

The plot in Figure 7-5 shows a more realistic case study. Here we have used the same

simulation data as for the case study without noise, but assumed that all measurements contain

measurement noise. This data is used to produce the state estimates, and plotted here as

described above for Figure 7-4.

The case study in Figure 7-6 illustrates a di¤erent scenario. Here, the simulation proceeds

as for the previous case studies, but the estimation only has access to some of the concentration

data. In this case study, the remaining data is assumed to be at the steady state values. The

estimator performs less well since the measurements are inconsistent with the state model.

As would be expected, the measured states are estimated better than the unmeasured states,

but with three concentrations measured, and the remaining three estimated, it is possible to

produce a full set of state estimates.

7.6 Summary

The terephthalic acid plant provides a chemical engineering example of a process that can be

analysed using the multiscale state estimator. The original system of equations is non-linear and
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Figure 7-4: State Estimation with Noise-free Measurements
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Figure 7-5: State Estimation using Complete Sets of Measurements
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Figure 7-6: State Estimation using Steady States as Estimates
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has been linearised successfully around a given steady state, which is used as the plant model.

In the absence of complete information, the speci…ed steady state can be used as a measurement

subject to a large estimate of measurement error. In this case a good prior estimate is useful,

since the large measurement errors cause spurious values at the …rst point, as discussed in

chapter four.
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Chapter 8

Conclusions and Suggestions for

Future Work

This chapter discusses the contributions of this thesis and suggests directions for future work.

The state of knowledge at the outset of this project was an absence of multiscale models

with a physical basis. The …eld of wavelet theory had developed to deal e¤ectively with image

compression, and signal decomposition, but there was no attempt to describe models at the

di¤erent levels of representation. Within this context, the original direction of the work was to

develop a meaningful and useful concept of a multiscale model, and its relation to a physical

model, to explore ways in which this could be used within estimation, optimisation and control

problems, and …nally to explore physical and chemical applications where these tools may be

useful.

8.1 Thesis contributions

There are two main aspects in which the multiscale state estimator di¤ers qualitatively from

the time based state estimator. The …rst is the shape of the cost space. The introduction of

multiscale models produces a cost function with a di¤erent minimum to the standard two norm

minimiser in time. This suggests that the error structure is somewhat arbitrary, yet in the

absence of perfect state information, it is impossible to say which estimator produces the better

estimate - it is a function of the accuracy of the error models used to generate the two state
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estimators. It follows that a system for which multiscale knowledge exists should bene…t from

the richer, multiscale description of error used in the multiscale state estimator.

The thesis presents the development of multiscale models in an e¢cient way for use in state

estimation algorithms. Multiscale models are developed by applying the Haar transform to

polynomial order autoregressive systems in time. The modi…ed hat transform is the natural

consequence of this approach, and is the correct data structure for representing inputs and

modelling uncertainty on the multiscale tree. Various representations of multiscale model are

presented - those that describe relationships between states at the same level, those describing

the relationship between states at adjacent levels, and those describing the relationship between

wavelet and scaling functions of the same quantity. These representations are summarised in a

compact form.

We have successfully produced a state estimator that follows the spirit of the Kalman

…lter and Rauch-Tung-Striebel smoother. The matrix equations obtained are highly structured

due to the nature of the wavelet transform, and the localised relationship between nodes and

their subtrees. This is allows the development of a sequential algorithm that makes maximum

use of the sparse structure of the matrix equations. The algorithm has been developed to

include varying levels of complexity. The algorithm has the feature that the model part is

separate from the measurement part, meaning that the model part is reusable for di¤erent

sets of measurements. Similarly, prior state estimates can be included using a separable set of

coe¢cients. The relationship between the Kalman …lter and the Rauch-Tung-Striebel estimator

is demonstrated by deriving the Kalman …lter equations using the same procedure as for the

multiscale state estimation algorithm.

We have successfully demonstrated the extension of this algorithm to include linear con-

straints on the states, and on linear combinations of the states - thus estimates in the mea-

surement and modelling errors. The algorithm is also designed so that the constraint related

coe¢cients are separable from the model and measurement coe¢cients. The constrained mul-

tiscale state estimator is an iterative parallelisable algorithm that works well when the solution

contains large contiguous areas of active constraints that can be lumped together, thereby re-

ducing computational complexity considerably. Like its counterpart in the time domain, there

are problems for which a combinatorial search will be necessary, and the multiscale problem
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will typically inherit this property from the time domain problem.

The multiscale estimators have been derived to deal with an arbitrary number of states,

although algorithmic speed will scale with the number of states, an arbitrary number of mea-

surements, and measurements sets, although only the startup cost of computation will scale

with the number of measurement sets. The ability to use multiple measurement sets implies

that multirate input and state data can be fused in an optimal and transparent way. The simple

version of the algorithm is for …rst order state and input dynamics, although polynomial order

multiscale systems can be dealt with easily.

The state estimation algorithms are computationally e¢cient, and parallelisable, scaling

as O(log(N)) for N points, compared to O(N) for time based algorithms. While a parallel

implementation of the code has not been written, it will clearly be faster than the current

single processor code, and will have fewer serial operations than a time based estimator. They

are thus suited to real-time implementations. For systems where a righer description of the

underlying error processes is available, this can be incorporated easily, and more importantly,

knowledge about both frequency and temporal aspects of the uncertainty can be incorporated

using the uncertainty parameters at the various levels of the tree.

The multiscale models have been analysed for the propagation of error up and down the

tree. This is performed completely for the normal distribution, and then extended using the

polynomial chaos expansion to include systems with non-normal error distributions. One needs

to provide the algorithm with estimates of the moments to arbitrary order, but four works well,

and one obtains estimates for the error in the state estimates, and the moments of this error to

the number speci…ed a priori. Speci…cally, this approach provides a considerable improvement

to systems where the in…nite tail assumption of the normal distribution is problematic.

These concepts have been demonstrated using a collection of case studies - numerical experi-

ments to demonstrate data fusion, the use of higher order dynamic systems, and the comparison

with the Kalman …lter; and chemically based examples, the paper rolling case study, the tereph-

thalic acid reactor, and …nally the heavy oil fractionator. The …nal case study demonstrates the

link between the multiscale state estimator and the corresponding multiscale model predictive

control algorithm, which forms the intellectual other half to this work, and is discussed at length

in the soon-to-be-published thesis of Orhan Karsligil.
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Theoretically, the algorithm inherits its stability and solvability aspects from quadratic

programming and linear algebra theories. It is possible to construct systems for which matrices

will be singular, and for which no minima will exist. A quadratic programming problem which

has no solution in the time domain will not have one in the wavelet domain, and vice versa,

since the time domain and the wavelet domain are linked by an orthonormal transform.

In conclusion, multiscale state estimation is most suitable for very large estimation problems,

in particular those for which estimates are required at a level of resolution coarser than that

at which measurements are taken. If access to a parallel machine exists, then considerable

reductions in the time to state estimation will be achieved.

8.2 Suggestions for future work

The primary thrust of future work should be to search widely and thoroughly for physical,

chemical, environmental or other processes that contain multiscale features that could be used

naturally in a wavelet based algorithm. While a collection of case studies has been collected

for this work, the multiscale element has been in the algorithmic treatment, rather than in the

underlying process. Wavelet techniques have been successful for compression based technologies,

where a reduction of computation follows from the elimination of redundant data.

A parameter estimation algorithm speci…c to the relevant model should be investigated using

the tree framework. Simultaneous state and parameter estimation is necessarily a non-linear

problem, and thus the multiscale tree may provide a computational advantage by eliminating

repeated calculations on certain sections of the tree that are not changing. The problem that is

likely is that the non-linear nature of the problem convolves the frequency components, meaning

that no section of the tree is likely to settle faster than any other. Nevertheless, there may be

certain non-linear systems may be more conducive to tree-based approaches than others.

The parallel nature of the code has never been demonstrated, due to the lack of access to a

parallel processor. This could be demonstrated using a suitably interesting problem.

The algorithm has been developed for the Haar wavelet, since it is the most computationally

e¢cient, having the smallest support. There could be improvements by adapting the algorithm

for other special types of wavelets, where there are recognisable structures that are better
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modelled using a di¤erent wavelet. The Poisson wavelet is an example of such a wavelet,

derived for, and extremely good at modelling systems with exponential decay. Essentially the

…nal exponential decay is reduced to a single wavelet, while the Haar domain requires truncation

and approximation, and a large number of terms.
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Appendix A

Supporting MATLAB Code

The appendix contains code for the various tasks.

A.1 Utility Programs

A.1.1 wt.m

% wt receives a vector of arbitrary length, pads it with zeros and returns the

% wavelet transform, packed with scaling function at the top,

% and wavelets after.

% Modified for multidimensional vectors

function w = wt(y)

flag = 0;

if(size(y,1)<size(y,2))

disp(’Problem with geometry of matrix in wavelet transform, make it a ...

column vector’)

y = y’;

flag = 1;

end
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yorig = y;

lly = log(length(y))/log(2);

% pad with zeros

if floor(lly)~=lly

lly = ceil(lly);

lyo = length(y);

ly = 2^lly;

y(ly,:) = 0;

y((lyo+1):ly,:) = 0*y(1:ly-lyo,:);

end

% y = y(:);

waveletfilter = -[1/sqrt(2) -1/sqrt(2)];

scalingfilter = [1/sqrt(2) +1/sqrt(2)];

w=[];

for counter2 = 1:size(y,2)

W = [];

y = y(:,counter2);

for counter1 = 1:lly

waveletdecomposition = filter(waveletfilter,1,y);

waveletdecomposition = waveletdecomposition(2:2:length(waveletdecomposition));

scalingfunction = filter(scalingfilter,1,y);

scalingfunction = scalingfunction(2:2:length(scalingfunction));

W = [ waveletdecomposition; W];

y = scalingfunction;

end;

w = [w [scalingfunction; W]];
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y = yorig;

end;

if flag==1

w = w’;

end;

flag = 0;

A.1.2 mwt.m

% wt receives a vector of arbitrary length, pads it with zeros and

% returns the modified wavelet transform, packed with scaling function

% at the top, and wavelets after.

% Matrix A is used for the transform.

% Modified for multidimensional vectors

function w = mwt(y,A)

r2 = sqrt(2);

flag = 0;

if(size(y,1)<size(y,2))

disp(’Problem with geometry of matrix in MWT wavelet transform, make it a

column vector’)

y = y’;

flag = 1;

end
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yorig = y;

lly = log(length(y))/log(2);

% pad with zeros

if floor(lly)~=lly

y(length(y)+1:exp(ceil(lly))) = 0*(1:exp(ceil(lly))-length(y));

end

% y = y(:);

Aorig = A;

scalingfilter = 1/sqrt(2)*[eye(size(A)) eye(size(A))+A A];

z = zeros(1,size(y,2));

w=[];

W = [];

leftnodes = y(1:2:size((y),1),:);

for counter1 = 1:lly

scalingfunction=[y;z;z]*eye(size(A))’+[z;y;z]*(eye(size(A))+A)’+[z;z;y]*A’;

scalingfunction = 1/r2*scalingfunction(3:2:size((scalingfunction),1),:);

A = A*A;

W = [scalingfunction;W];

y = scalingfunction;

leftnodes = [scalingfunction(1:2:size((scalingfunction),1),:); leftnodes];

end;

A = Aorig;

w = [w; leftnodes];

y = yorig;

if flag==1
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w = w’;

end;

flag = 0;

A.1.3 iwt.m

% iwt is the inverse wavelet transform for a multidimensional vector,

% and replaces the original 1-D iwt.m

% iwt receives a vector of arbitrary length, packed with scaling function at

% the top, and wavelets sorted by scale and returns the inverse Haar wavelet

% transform

function w = iwt(y)

flag = 0;

if(size(y,1)<size(y,2))

disp(’Problem with geometry of matrix in inverse wavelet transform, make ...

it a column vector’)

y = y’;

flag =1;

end

r2 = sqrt(2);

yorig = y;

lly = log(length(y))/log(2);

% pad with zeros

if floor(lly)~=lly

y(length(y)+1:exp(ceil(lly))) = 0*(1:exp(ceil(lly))-length(y));

end

% y = y(:);
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w = [];

for counter2 = 1:size(yorig,2)

y = y(:,counter2);

sf = y(1);

a = sf;

wf = y(2);

y = y(2:length(y));

while(length(y)>0);

la = length(a);

wf = y(1:la);

y = y(la+1:length(y));

a(1:2:2*la) = 1/r2*(sf+wf);

a(2:2:2*la) = 1/r2*(sf-wf);

sf = a’;

end;

w = [w sf];

y = yorig;

counter2;

end;

if flag==1

w = w’;

end;

A.1.4 sf.m

% sf receives a vector of arbitrary length, pads it with zeros and returns the

% wavelet transform, packed with scaling function coefficients by scale.

% Modified for multidimensional vectors
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% Returns scaling functions

function s = sf(y)

flag = 0;

if(size(y,1)<size(y,2))

disp(’Problem with geometry of matrix in wavelet transform, make it a ...

column vector’)

y = y’;

flag = 1;

end

yorig = y;

lly = log(length(y))/log(2);

% pad with zeros

if floor(lly)~=lly

y(length(y)+1:exp(ceil(lly))) = 0*(1:exp(ceil(lly))-length(y));

end

% y = y(:);

waveletfilter = -[1/sqrt(2) -1/sqrt(2)];

scalingfilter = [1/sqrt(2) +1/sqrt(2)];

w=[];

s = [];

for counter2 = 1:size(y,2)

S = [];

y = y(:,counter2);

for counter1 = 1:lly
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waveletdecomposition = filter(waveletfilter,1,y);

waveletdecomposition = waveletdecomposition(2:2:length(waveletdecomposition));

scalingfunction = filter(scalingfilter,1,y);

scalingfunction = scalingfunction(2:2:length(scalingfunction));

S = [scalingfunction; S];

y = scalingfunction;

end;

s = [s [scalingfunction; S]];

S = [ scalingfunction; S];

y = yorig;

end;

if flag==1

s = s’;

end;

A.1.5 mkhaar.m

% mkhaar.m returns a Haar matrix, H, of specified size, so that w=Hx returns

% wavelet transform of vector x.

function [mk] = mkhaar(n);

H = zeros(n,n);

numlevels = log(n)/log(2);

temp = 1;

level = n;

for j = numlevels:-1:1

temp = 1/sqrt(2)*[abs(temp) -abs(temp)];
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for k = n-length(temp)+1:-length(temp):1

H(level,k:k+length(temp)-1) = temp;

level = level-1;

end;

end;

H(1, :) = abs(temp);

mk = H;

A.1.6 mkmhat.m

% mkhaar returns the modified hat transform matrix M, so that w=Mx returns

%\ the modifed hat transform of vector x.

function [mk] = mkmhat(n,A);

r2 = sqrt(2);

H = eye(n);

H = [H; 0*H];

bigG = H(1:2:n,:);

numlevels = log(n)/log(2);

temp = 1;

nl = n;

for j = 1:numlevels-1

G = 1/r2*(A*H(1:2:nl,:) + (1+A)*H(2:2:nl+1,:) + H(3:2:nl+2,:));

H = [ G; 0*G];

G = G(1:2:nl/2,:);

bigG = [G; bigG];

nl = nl/2;

A = A*A;

end;
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mk = bigG;

A.1.7 par…nd.m

% parfind find the parents of a set of nodes

function pall = parfind(actives,pN)

j = 1;

pall = [];

for k = 1:length(actives);

p = actives(k);

ptest = 6;

while((ptest>1)&(j<1000))

ptest = pN(p(1));

p = [ptest; p];

j = j+1;

end;

pall = [pall; p(1:length(p)-1)];

end;

if(j>998)

disp(’loop in parfind terminated prermaturely’)

end

pall = sort(pall);

pall = deldups(pall); % deletes the duplicates

A.1.8 parsign.m

% Produces a sign matrix - + for left nodes, - for rights

% This is used when constraint violations are identified
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function parsign=parsign(p,pN,rN)

pp = parfind(p,pN);

prn = rN(pp);

ppones = diag(ones(length(pp)));

pch = [pp(2:length(pp)); p];

ii = find(prn==pch’);

ppones(ii) = -1*diag(ones(length(ii)));

parsign = ppones;

A.1.9 subtree.m

% subtree(n)

% This returns the nodes on the subtree of node n

function s = subtree(n,lN,rN)

if(n>0.5*rN(length(rN))) % This checks for zeroth level nodes

s = [n];

else

s = [n];

k = 1;

steam = 1; % Escape valve

while (k<99999&steam<1000)

t = [lN(s(k)) rN(s(k))];

s = [s t];

if(t(1)>0.5*rN(length(rN))) % Note this is changed to be consistent with

% new lN, rN vectors that fill with zeroth.

k = 99999;

else
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k = k+1;

end;

steam = steam +1;

end; % while

s = s(1:length(s)-2); % And we don’t want zeroth level nodes here.

end; % if

A.2 The unconstrained multiscale state estimator

A.2.1 motmmain.m

% Calculates unconstrained multiscale state estimation

% Main driving program for motmseries

% This is the setup program that defines the model, and generates the simulated

% data.

motmsp;

% This converts the model parameters into parameters relevant for use on the

% tree.

motmparm;

% This performs the up sweep.

motmup;

% This performs the down sweep.

motmdown;

A.2.2 motmsp.m

% A sample program to setup the model and parameters.
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% Multiple measurements and constraints

% B=1 throughout - other B’s must be incorporated into U’s.

% Define problem parameters

% This version is for multiple states

r2 = sqrt(2);

numlevels = 5; % number of levels

N = 2^numlevels; % number of points

% Arrange all vectors {xtop, dx_top, dx_topa ...}

% store things for bookkeeping purposes

xdim = 1; % state size

ydim = 1; % measurement size

A = 0.95; % A at the zeroth level - a few to choose from.

%A = [0.95 -0.4 -0.1 -0.05; 1 0 0 0; 0 1 0 0; 0 0 1 0];

% A = [0.95 0.1 0 0; 0 0.95 0 0 ; 0 0 0.95 0; 0 0 -0.1 0.95];

% A = [0.95 0 ; 0 0.95 ];

B = eye(xdim); % Input dynamics

% B = diag([1 0.1 0.01 0.001]);

Q = 5*eye(xdim); % Plant input covariance (assumed)

U = randn(N,xdim)*sqrt(Q); % Unmeasured plant inputs for simulation

% U(:,2:4) = 0*U(:,2:4); For non first order systems

% Measured inputs specified here.

BU = ones(N,xdim)*diag([10 ]);

BU(10:15,1) = (10:5/5:15)’;
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BU(16:20,1) = ones(5,1)*15;

BU(21:26,1) = (-3:-2/5:-5)’;

BU(27:32,1) = ones(6,1)*(-5);

C = eye(xdim); % Measurement Model

% C = [1 0 0 0]; % 0 0 0 0; 0 0 0 0; 0 0 0 0];

R1 = 5*eye(ydim);

% Measurement covariance for first set (assumed)

R1inv=inv(R1);

R2 = 10^89*eye(ydim); % Measurement covariance for second set.

R2inv=inv(R2);

Qinv = inv(Q);

% Constraints

xubar = 100*[1;1];

xlbar = -100*[1;1];

% Upper and lower constraints at the zeroth level

Atemp = A; % Construct tree dynamic system, A first.

for counter2 = 1:numlevels % Matrices stored as vectors

Alevels(counter2,:) = reshape(Atemp’,1,xdim*xdim);

Atemp = Atemp*Atemp;

end;

% Construct higher level constraints

xubar(1:numlevels) = r2.^(0:numlevels-1)*xubar(1);

xlbar(1:numlevels) = r2.^(0:numlevels-1)*xlbar(1);
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% Getting the multiscale Q right takes a bit of effort

% through a recursion

QRM = [];

QRM(1,:) = reshape(Q,1,xdim*xdim);

QDM(1,:) = 0* QRM;

QRold = Q;

QDold = 0*Q;

for counter = 2:numlevels+1

QA = reshape(Alevels(counter-1,:),xdim,xdim)’;

QR = 0.5*(QA*QRold*QA’+(eye(xdim)+QA)*QRold*(eye(xdim)+QA)’+QRold + ...

QA*QDold*(eye(xdim)+QA)’ + (eye(xdim)+QA)*QDold + ...

(eye(xdim)+QA)*QDold’*QA’ + QDold’*(eye(xdim)+QA)’);

QR = 0.5*(QR+QR’);

QD = 0.5*QRold*QA’ + 0.5*((QA+eye(xdim))*QDold*QA’+QDold*(QA+eye(xdim))’);

QRM(counter,:) = reshape(QR,1,xdim*xdim);

QDM(counter,:) = reshape(QD,1,xdim*xdim);

QRold = QR;

QDold = QD;

end;

% Simulate data

[y,x] = dlsim(A,B,C,0*C,BU+U);

% Discrete simulation, measurements y, states x

% Note these assume a diagonal structure for R1, R2 since off diags are not

% stored.

% This could be changed if necessary by coding an alternative noise structure.
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V1 = randn(N,ydim)*sqrt(R1); % Construct zeroth level measurement noise

% V1 = V1 + [1.5*(1:N)’ , -0.5*(1:N)’]; adding sensor drift for 2-D

wV1 = wt(V1); % Take wavelet transform of measurements

Rm1 = ones(size(V1))*R1; % Setting uncertainties for measurements

% Note this is where you would insert varying measurement uncertainty

% accross the tree.

V2 = randn(N/16,ydim)*sqrt(R2); % Measurement noise for second set of

% measurements

wV2 = wt(V2); % For this set, I introduce a fake uncertainty for

wV2(N,:) = zeros(1,ydim); % points with no measurement.

Rm2real = ones(size(V2))*R2;

Rm2 = ones(size(V1))*10^89;

Rm2(1:N/16,:) = Rm2real; % [Rm2 ; 10^89*Rm2 ; 10^89*Rm2; 10^89*Rm2];

% Replace this with R2factor for verstility - R2factor*R2inv

R2factor = 0*wV2;

R2factor(1:N/16,:) = ones(N/16,ydim);

xw = wt(x); % wavelet transform of true state data

yw1 = wt(y) +wV1; % and the measurements

% wt returns the wavelet transform of the functions

yw2 = R2factor.*(wt(y) +wV2);

Uw = mwt(BU,A); % modified hat transform of control inputs

lN = [3,3,5:2:N-1, (N+1)*ones(1,N/2), N+1];

% This vector contains the left descendant node of each

rN = [4,4,6:2:N, (N+1)*ones(1,N/2), N+1]; % likewise right descendant

pN = [(2:N) ; (2:N)]; % and the parent nodes

pN = [0; 1; pN(:)];

243



% This section sets up parameters following the notation of thesis

% motmsetup defines the parameters and does some preliminary calcs

% Derivation of Recursion System for Multiscale Optimisation on the

% Tree for Measurements at Multiple Scales by Matthew Dyer, LISPE, MIT, 1998

% Note these are operations on the 3-D matrices a and Qtree, performed in 2-D

% This leads to some reshaping of vectors.

% The goal here is to produce a unique A, Q and upper and lower constraint

% at each point. For this example, they are constant across a level, but

% this is where they would be changed if they varied in time.

% Start with the top level, scaling function, then wavelet coefficient.

a = [Alevels(numlevels,:) ; Alevels(numlevels,:)];

Qtree = [QRM(numlevels,:) ; QRM(numlevels,:)];

Xubar = [xubar(numlevels) ; xubar(numlevels)];

Xlbar = [xlbar(numlevels) ; xlbar(numlevels)];

% And continue down the tree, adding to the matrix from below.

for counter = numlevels-1:-1:1

a = [a; ones(size(a,1),1)*Alevels(counter,:)];

Qtree = [Qtree; ones(size(Qtree,1),1)*QRM(counter,:)];

Xubar = [Xubar; xubar(counter)*ones(length(Xubar),1)];

Xlbar = [Xlbar; xlbar(counter)*ones(length(Xlbar),1)];

end;

% Finally a layer for the zeroth level is included.
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xubar(counter) = r2*xubar(counter);

xlbar(counter) = r2*xlbar(counter);

Xubar = [Xubar; xubar(counter)*ones(length(Xubar),1)];

Xlbar = [Xlbar; xlbar(counter)*ones(length(Xlbar),1)];

a(size(a,1)+1,:) = zeros(1,xdim*xdim);

Qtree(size(Qtree,1)+1,:) = zeros(1,xdim*xdim);

% Taking transform for data consistency.

Xubar = Xubar’;

Xlbar = Xlbar’;

A.2.3 motmparm.m

% This program constructs further parameters in preparation for the upsweep.

% motmparm

% First we construct an a and aprime at each node on the tree.

aprime = -a;

for counter = 1:xdim

a(1:size(a,1)-1,xdim*(counter-1)+counter) = ...

a(1:size(a,1)-1,xdim*(counter-1)+counter)+1;

aprime(1:size(a,1)-1,xdim*(counter-1)+counter) = ...

1+aprime(1:size(a,1)-1,xdim*(counter-1)+counter);

end;

b = 0*a; c = 0*a;

% Find modified hat transform of the known inputs
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Uw = mwt(BU,A);

% The contribution of the known inputs is stored in DU, the contribution

% of u to d.

DU(N+1,:) = zeros(1,xdim);

% DU requires u-stars as intermediate variables

Ustar(N+1,:) = zeros(1,xdim);

% b and c are constructed at each level, and then stored as vectors.

% They are model parameters, independent of measurements.

for counter = N:-1:1 % Must go up the tree for recursion

ib = 1/r2*inv(B’)*inv(reshape(Qtree(counter,:),xdim,xdim)’)*1/r2*inv(B);

ic = -ib;

DU(counter,:) = -r2*Uw(counter,:)*ic’*reshape(a(counter,:),xdim,xdim) -

1/r2*(Ustar(lN(counter),:)-Ustar(rN(counter),:));

Ustar(counter,:) = r2*Uw(counter,:)*ib’*reshape(aprime(counter,:),xdim,xdim)+

1/r2*(Ustar(lN(counter),:)+Ustar(rN(counter),:));

ib = ib*reshape(a(counter,:),xdim,xdim)’;

ic = ic*reshape(aprime(counter,:),xdim,xdim)’;

b(counter,:) = reshape(ib’,1,xdim*xdim);

c(counter,:) = reshape(ic’,1,xdim*xdim);

end;

% DU is computed for the top node.

DU(1,:) =

-r2*Uw(2,:)*(1/r2*inv(B’)*inv(reshape(Qtree(1,:),xdim,xdim)’)*1/r2*inv(B))’*...

(2*eye(xdim)-reshape(a(2,:),xdim,xdim)) - 1/r2*(Ustar(lN(1),:)+Ustar(rN(1),:));
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clear ic ib counter

% final values

% This must be modified here for non-diagonal R’s and multiple C’s

d = (yw1*R1inv)*C + R2factor.*yw2*R2inv*C - DU(1:N,:);

% Initialisation of remaining variables.

cprime = 0*a;

dprime = zeros(N+N,xdim);

dstar = zeros(N+N,xdim);

% These appear for reusability with the constrained case.

muprime = zeros(N+N,xdim);

mustar = zeros(N+N,xdim);

mu = zeros(N+N,xdim);

A.2.4 motmup.m

% motmup

% This file is the engine of the upsweep, and follows the equations in

% the thesis carefully.

% Progression up the tree is done level by level, which would be split up if

% parallel processors were available.

% The computation begins at the lowest level of the tree, and moves up,

% halving the number of nodes at each level.

Nlevel = N;
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for counter = 1:numlevels

Nlevel = Nlevel/2; % number of nodes at each level

node = [(Nlevel+1):Nlevel*2]; % vector positions of these nodes

% Matlab allows us to do the nodes as a batch

% The variable names follow those used in the thesis, a,b,c,d and mu (for the

% constrained case), modified with primes, daggers and stars.

% Where an intermediate matrix is computed, it is stored with a at as in

% cdaggert is the precursor to cdagger, but has not been stored as a vector.

for counter2 = node(1):node(length(node))

R1inv = diag(1./Rm1(counter2,:));

R2inv = diag(1./Rm2(counter2,:));

R2inv = R2factor(counter2)*R2inv;

ab = reshape(a(counter2,:),xdim,xdim)’*reshape(b(counter2,:),xdim,xdim)’;

ac = reshape(a(counter2,:),xdim,xdim)’*reshape(c(counter2,:),xdim,xdim)’;

aprimeb = reshape(aprime(counter2,:),xdim,xdim)’*reshape(b(counter2,:),...

xdim,xdim)’;

aprimec = reshape(aprime(counter2,:),xdim,xdim)’*reshape(c(counter2,:),...

xdim,xdim)’;

adaggert = C’*R1inv*C + C’*R2inv*C+ab -

0.5*reshape((cprime(lN(counter2),:)+cprime(rN(counter2),:)),xdim,xdim)’;

cdaggert = ac -

0.5*reshape((cprime(lN(counter2),:)-cprime(rN(counter2),:)),xdim,xdim)’;

ddagger(counter2,:) = d(counter2,:) -

inv(r2)*(dstar(lN(counter2),:)-dstar(rN(counter2),:)) -

inv(r2)*(dprime(lN(counter2),:)-dprime(rN(counter2),:));

mudagger(counter2,:) = mu(counter2,:) -

inv(r2)*(mustar(lN(counter2),:)-mustar(rN(counter2),:)) -

inv(r2)*(muprime(lN(counter2),:)-muprime(rN(counter2),:));
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invadaggercdagger =inv(adaggert)*cdaggert;

invadaggerddagger(counter2,:) =(inv(adaggert)*ddagger(counter2,:)’)’;

invadaggermudagger(counter2,:) =(inv(adaggert)*mudagger(counter2,:)’)’;

dstar(counter2,:) = inv(r2)*(dstar(lN(counter2),:)+dstar(rN(counter2),:)) +

inv(r2)*(dprime(lN(counter2),:)+dprime(rN(counter2),:));

mustar(counter2,:) =inv(r2)*(mustar(lN(counter2),:)+mustar(rN(counter2),:))+

inv(r2)*(muprime(lN(counter2),:)+muprime(rN(counter2),:));

cprimet = -(aprimeb +0.5*reshape((cprime(lN(counter2),:)...

-cprime(rN(counter2),:)),xdim,xdim)’) *invadaggercdagger...

+(aprimec+0.5*reshape((cprime(lN(counter2),:)...

+cprime(rN(counter2),:)),xdim,xdim)’);

dprime(counter2,:) = (-(aprimeb +

0.5*reshape((cprime(lN(counter2),:)-cprime(rN(counter2),:)),xdim,xdim)’)

*invadaggerddagger(counter2,:)’)’;

muprime(counter2,:) = (-(aprimeb +

0.5*reshape((cprime(lN(counter2),:)-cprime(rN(counter2),:)),xdim,xdim)’)

*invadaggermudagger(counter2,:)’)’;

% And now the necessary storage from the temporary variables

cprime(counter2,:) = reshape(cprimet’,1,xdim*xdim);

adagger(counter2,:) = reshape(adaggert’,1,xdim*xdim);

cdagger(counter2,:) = reshape(cdaggert’,1,xdim*xdim);

end;

end;

% The scaling function variables must be computed for the top level.

% In the thesis, these are represented by double daggers
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counter2 = 1; % Node number for the scaling function equation

aprimeb = reshape(aprime(counter2,:),xdim,xdim)’*reshape(b(counter2,:),...

xdim,xdim)’;

aprimec = reshape(aprime(counter2,:),xdim,xdim)’*reshape(c(counter2,:),...

xdim,xdim)’;

cdaggert = C’*R1inv*C + R2factor(counter2)*C’*R2inv*C-aprimec -

0.5*reshape((cprime(lN(counter2),:)+cprime(rN(counter2),:)),xdim,xdim)’;

adaggert = -aprimeb -

0.5*reshape((cprime(lN(counter2),:)-cprime(rN(counter2),:)),xdim,xdim)’;

ddagger(counter2,:) = d(counter2,:) -

inv(r2)*(dstar(lN(counter2),:)+dstar(rN(counter2),:)) -

inv(r2)*(dprime(lN(counter2),:)+dprime(rN(counter2),:));

mudagger(counter2,:) = mu(counter2,:) -

inv(r2)*(mustar(lN(counter2),:)+mustar(rN(counter2),:)) -

inv(r2)*(muprime(lN(counter2),:)+muprime(rN(counter2),:));

adagger(counter2,:) = reshape(adaggert’,1,xdim*xdim);

cdagger(counter2,:) = reshape(cdaggert’,1,xdim*xdim);

A.2.5 motmdown.m

% motmdown

% This program is the engine of the down sweep, where the measurements are

% used to produce optimal estimates at each point.

% Zeroing

xest = 0*ones(1,xdim); dxest = xest;
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% Now solve for the scaling function and wavelet coefficient state estimates

% as a 2x2 system at the top

TSA = [reshape(cdagger(2,:),xdim,xdim)’ reshape(adagger(2,:),xdim,xdim)’ ;

reshape(cdagger(1,:),xdim,xdim)’ reshape(adagger(1,:),xdim,xdim)’];

TSD = [ddagger(2,:)’+mudagger(2,:)’ ; ddagger(1,:)’+mudagger(1,:)’];

xpair = inv(TSA)*TSD ; % The pairwise solution of the top node.

% Note this is where condition number problems typically cause

% problems where present.

% The estimates for the top node estimates are stored.

xest(2,:) = xpair(1:xdim)’;

dxest(2,:) = xpair((xdim+1):(xdim+xdim))’ ;

dxest(1,:) = xest(2,:);

% The child nodes are computed using wavelet reconstruction.

xpair = 1/r2*[(dxest(2,:))+(xest(2,:)); -(dxest(2,:))+(xest(2,:))];

xest(3:4,:) = xpair;

% The downsweep continues recursively until the bottom of the tree is reached.

Nlevel = 1;

counter2 = 3; % Starting parent node

counter3 = 5; % Starting child node

while(counter2<N+1)
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dxest(counter2,:) = ( inv( reshape(adagger(counter2,:),xdim,xdim)’ )

*(ddagger(counter2,:)’+mudagger(counter2,:)’...

-reshape(cdagger(counter2,:),xdim,xdim)’*(xest(counter2,:))’))’;

xpair = 1/r2*[dxest(counter2,:)+xest(counter2,:); -dxest(counter2,:)...

+xest(counter2,:)];

xest(counter3:counter3+1,:) = xpair;

counter2 = counter2 +1; % Move to next parent node

counter3 = counter3+2; % Each parent has two child nodes

end;

clear counter2 counter3

A.3 The constrained multiscale state estimator

In most cases, the “mg”-series tracks the “motm”-series, with a parallel naming system. Pro-

grams that di¤er signi…cantly are listed here.

A.3.1 mg.m

% mg series - for constrained case based on an identification of violations

% on the way down the tree.

% Strategy

xestrec= [];

% Set up constants

mgsafetyvalve = 0; % Checks that we don’t have too many iterations

mgsp;

mgparm;

mmurec = zeros(1,20);

motmup;
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% Adjust for constraints

mglam;

xorig = xest(N+1:N+N);

xestrec = xest(N+1:N+N);

disp(’Original set of constraints activated’)

counter4 % This is a vector listing the currently active constraints,

%by node number.

% get x-> lambda conversion

mgcon;

mgwtbch;

A.3.2 mglam.m

% mglam - part of the mg series that converts the counter4 matrix to

% the initial xest soln.

disp(’Running mglam’)

% Incoporates and adapts old mgdown.

% motmdown

xest = 0*ones(1,xdim); dxest = xest;

TSA = [reshape(cdagger(2,:),xdim,xdim)’ reshape(adagger(2,:),xdim,xdim)’ ;...

reshape(cdagger(1,:),xdim,xdim)’ reshape(adagger(1,:),xdim,xdim)’];

TSD = [ddagger(2,:)’+mudagger(2,:)’ ; ddagger(1,:)’+mudagger(1,:)’];

xpair = inv(TSA)*TSD ; % The pairwise solution of the top node.

xest(2,:) = xpair(1:xdim)’;

dxest(1,:) = xest(2,:);
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% Now for the downsweep - this is modified since we identify constraint

% violations while looking for optimal solutions

% dataset contains all constraints to be checked - with 99999 as a

% place holder for the last.

% counter4 is the set of violated constraints.

Nlevel = 1;

counter4 = [];

dataset = [2:N 99999];

dsindex = 1;

counter2 = dataset(dsindex);

counter3 = lN(counter2);

% Eliminate the trivial solution first

if min(Xubar(2)*diag(ones(xdim))-xest(2,:)<1e-15)

disp(’top node is currently on bound’)

% Sp we set the top node to it’s bound, set all remaining wavelet coefficients

% to zero

xest(2,:) = Xubar(2)*diag(ones(xdim));

dxest(2,:) = 0*Xubar(2)*diag(ones(xdim));

counter4 = [counter4; 2]; % Storing node two as a violated constraint

st = subtree(2,lN,rN); % Identifying all nodes on the subtree

% below node two

for counter6 = 1:length(st)

xest(st(counter6),:) = ones(1,xdim)*Xubar(st(counter6));

dxest(st(counter6),:) = zeros(1,xdim);

ff = find(dataset==st(counter6));

if isempty(ff)

disp(’Zeroth node found in counter6 loop 1’)

else
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dataset = [dataset(1:ff-1) dataset(ff+1:length(dataset))];

end;

end;

dataset

end

while(dsindex<length(dataset))

counter2 = dataset(dsindex); % moving to the next node without a violation

counter3 = lN(counter2); % identifying the next child node to be computed

dxest(counter2,:) = ... % solving for the next wavelet coefficient

( inv( reshape(adagger(counter2,:),xdim,xdim)’ )*(ddagger(counter2,:)’...

+mudagger(counter2,:)’-reshape(cdagger(counter2,:),xdim,xdim)’...

*(xest(counter2,:))’))’;

xpair = 1/r2*[dxest(counter2,:)+xest(counter2,:); -dxest(counter2,:)+...

xest(counter2,:)]

% Using wavelet reconstruction to identify apparently optimal scaling function

% When a constraint violation is identified we must

% - correct the sibling point

% - set all values on subtree to the bound

% - add violating point to constraint set

% - delete subtree from search set

if min(Xubar(counter3)*diag(ones(xdim))-xpair(1,:)<1e-15)

% ie upper constraint is violated for the left node

counter4 = [counter4; counter3];

st = subtree(counter3,lN,rN); % Identify potentially active subtree

% And set the subtree to its bound
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for counter6 = 1:length(st)

xest(st(counter6),:) = ones(1,xdim)*Xubar(st(counter6));

dxest(st(counter6),:) = zeros(1,xdim);

ff = find(dataset==st(counter6));

if isempty(ff)

disp(’Zeroth level node in counter6 loop 2’)

else

dataset = [dataset(1:ff-1) dataset(ff+1:length(dataset))];

end;

end;

xpairdiffn = 1;

xpairdiff = xpair(1,:)-ones(1,xdim)*Xubar(counter3);

mgcp; % This changes the values of the parent nodes to adjust

% for the change

xpair(1,:) = ones(1,xdim)*Xubar(counter3);

elseif max(Xlbar(counter3)*diag(ones(xdim))-xpair(1,:)>0)

counter4 = [counter4; -counter3];

disp(’Lower constraint violation identified’)

% And reverse all of the signs and replace upper with lower bounds

end

% Then the argument is repeated for the right node

if min(Xubar(counter3+1)*diag(ones(xdim))-xpair(2,:)<1e-15)

counter4 = [counter4; counter3+1];

st = subtree(counter3+1,lN,rN);

for counter6 = 1:length(st)

xest(st(counter6),:) = ones(1,xdim)*Xubar(st(counter6));

dxest(st(counter6),:) = zeros(1,xdim);

ff = find(dataset==st(counter6));
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if isempty(ff)

disp(’Zeroth level node found in counter6 loop 3’)

else

dataset = [dataset(1:ff-1) dataset(ff+1:length(dataset))];

end;

end;

xpairdiffn = 2;

xpairdiff = xpair(2,:)-ones(1,xdim)*Xubar(counter3+1);

mgcp; % This changes the values of the parent nodes to adjust

% for the change

xpair(2,:) = ones(1,xdim)*Xubar(counter3+1);

elseif max(Xlbar(counter3+1)*diag(ones(xdim))-xpair(2,:)>0)

counter4 = [counter4; -counter3-1];

disp(’Lower constraint violation identified’)

end

% Finally we have the correct state estimates

xest(counter3:counter3+1,:) = xpair;

% And are ready to move onto the next node for consideration

dsindex = dsindex +1;

end; % while

% At the bottom of the tree, the zeroth level can be computed without

% rigorous checking

counter2 = N/2+1;

counter3 = N+1;

while(counter2<N+1)

xpair = 1/r2*[dxest(counter2,:)+xest(counter2,:);...

257



-dxest(counter2,:)+xest(counter2,:)];

xest(counter3:counter3+1,:) = xpair;

counter2 = counter2 +1;

counter3 = counter3+2;

end;

clear counter2 counter3

% counter4 contains a list of all constraint violations, from which a

% constraint tree can be constructed.

% positive if it is an upper bound violation, negative if lower.

counter4 = [counter4 ; 99999];

disp(’Finished mglam’)

A.3.3 mgcp.m

% mgcp - part of the mglam series, changes the parent nodes in response to

% a constraint violation.

% The parent branch of the tree must be adjusted so that no other nodes on

% the tree are affected, ie increasing co-nodar wavelet and scaling function

% estimates simultaneously

tempnode = counter3-1+xpairdiffn; % coutner3 for lN, ..+1for rN

tempnodep = pN(counter3);

xpairdiff = 1/r2*xpairdiff;

while(tempnodep>1)

if(rem(tempnode,2)==0)
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signnode = -1; % Right node

else

signnode=1; % Left node

end

xest(tempnodep,:) = xest(tempnodep,:)-xpairdiff;

dxest(tempnodep,:) = dxest(tempnodep,:)-signnode*xpairdiff;

tp = tempnodep;

tempnodep = pN(tempnode);

tempnode = tp;

xpairdiff = 1/r2*xpairdiff;

end;

clear tempnode tempnodep signnode tp

A.3.4 mgcon.m

% mgcon.m converts a set of x’s to a set of lambdas

% File converts unconstrained state estimate to first round of constrained

% state estimate and constraints to produce the closest feasible solution

% and then checks to see whether constraints are satisfied.

% Program needs motmmain and motmqpc run before

% Receive solution

% since constraints are in terms of zeroth level data, use these.

xuc = xest(N+1:N+N,:);

xucwt = wt(xuc);

xucsf = sf(xuc);

259



% Now since we have dagger equations precomputed, we can obtain mudagger’s

% Equation to be solved is adag*dx + cdag*x = ddag+mudag

% Transform is xuc -> mudaguc

% This is a modified form of motmdown, essentially just for the mu variables

mudag = 0*ones(1,xdim);

counter2 = 1;

mudag(counter2,:) = ( reshape(adagger(counter2,:),xdim,xdim)’...

*(xucwt(counter2+1,:))’ -ddagger(counter2,:)’ +reshape(cdagger(counter2,:),...

xdim,xdim)’*(xucsf(counter2+1,:))’)’;

counter2 = counter2+1;

while(counter2<N+1)

mudag(counter2,:) = ( reshape(adagger(counter2,:),xdim,xdim)’...

*(xucwt(counter2,:))’-ddagger(counter2,:)’...

+reshape(cdagger(counter2,:),xdim,xdim)’*(xucsf(counter2,:))’)’;

counter2 = counter2 +1;

end;

clear counter2

% End of motmdown.

% The mudag need to be converted into mustars and mus

% This is from motmup, modified to compute only the mu variables

mustarint = mustar;

muprimeint = muprime;

Nlevel = N;

for counter = 1:numlevels

Nlevel = Nlevel/2; % number of nodes at each level

node = [(Nlevel+1):Nlevel*2]; % vector positions of these nodes
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for counter2 = node(1):node(length(node))

R1inv = diag(1./Rm1(counter2,:));

R2inv = diag(1./Rm2(counter2,:));

R2inv = R2factor(counter2)*R2inv;

ab = reshape(a(counter2,:),xdim,xdim)’*reshape(b(counter2,:),xdim,xdim)’;

aprimeb = reshape(aprime(counter2,:),xdim,xdim)’*reshape(b(counter2,:),...

xdim,xdim)’;

adaggert = C’*R1inv*C + C’*R2inv*C+ab...

-0.5*reshape((cprime(lN(counter2),:)+cprime(rN(counter2),:)),xdim,xdim)’;

muint(counter2,:)=mudag(counter2,:)+inv(r2)*(mustarint(lN(counter2),:)...

-mustarint(rN(counter2),:)) +inv(r2)*(muprimeint(lN(counter2),:)...

-muprimeint(rN(counter2),:));

invadaggermudagger(counter2,:) =(inv(adaggert)*mudag(counter2,:)’)’;

mustarint(counter2,:) = inv(r2)*(mustarint(lN(counter2),:)...

+mustarint(rN(counter2),:)) +inv(r2)*(muprimeint(lN(counter2),:)...

+muprimeint(rN(counter2),:));

muprimeint(counter2,:) = (-(aprimeb + 0.5*reshape((cprime(lN(counter2),:)...

-cprime(rN(counter2),:)),xdim,xdim)’) *invadaggermudagger(counter2,:)’)’;

end;

end;

% And mus for the top nodes represented by double daggers

counter2 = 1; % For the scaling function equation

muint(counter2,:) = mudag(counter2,:) + inv(r2)*(mustarint(lN(counter2),:) ...

+mustarint(rN(counter2),:)) +inv(r2)*(muprimeint(lN(counter2),:)...

+muprimeint(rN(counter2),:));

% End of motmup - modified
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% So here, muint is the set of lagrangian variables

% These are reconstructed to form a set of mu at the zeroth level

muinttim = iwt(muint);

muintsf = sf(muinttim);

% Then all that remains is to check whether KKT are satisfied, ie,

A.3.5 mgwtbch.m

% mgwtbch converts the counter4 vector to a new counter4 vector by inspecting

% the child nodes and the computed mu’s into real mu’s

% It essentially checks for constraint violations identified at upper levels,

% that the level has been identified correctly, and that lagrangeans all have

% the correct sign on the subtree.

% based on mu_tau = mu’*div_x(g)

numconstr = length(counter4)-1;

basis = zeros(1,N)’;

delg = [];

counter4new = [];

for k = 1:numconstr

if(counter4(k)<N+1)

st = subtree(counter4(k), lN, rN);

st = sort([lN(st((length(st)+1)/2:length(st)))...

rN(st((length(st)+1)/2:length(st)))] );
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else

st = counter4(k);

end;

for j = 1:length(st)

node = st(j);

if(node<N+1)

if(node==2)

basisnode = basis;

basisnode(1) = 1;

else

basisnode = basis;

basisnode(node) = 1;

basisnode = sf2wt(basisnode);

end;

else

basisnode = basis;

basisnode(node-N) = 1;

basisnode = wt(basisnode);

end;

delg = [delg ; basisnode’];

counter4new = [counter4new ; st(j)];

end;

end;

% This creates a set of lagrangean variables in terms of the zeroth level

% variables.

mufinal = inv(delg*delg’)*delg*muint

% These must be negative for the supernode to be active.
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% Now sort the list to find the highest node on the tree where all in

% subtree are negative.

[cci, ccj] = find(mufinal<1e-15);

counter4new = sort(counter4new(cci)); % keep only the negatives)

counter4new = [counter4new; 99999];

for j = 1:numlevels

k = 1;

while(counter4new(k)~=99999)

if(rem(counter4new(k),2)==1)

if(counter4new(k)+1==counter4new(k+1))

counter4new = [counter4new(1:k-1) ; pN(counter4new(k)) ; ...

counter4new(k+2:length(counter4new))];

end;

end;

k = k+1;

end;

counter4new = sort(counter4new);

end;

counter4new

counter4 = counter4new;

% And insert an artificial set of lagrangeans to continue the algorithm.

mufinal = -diag(eye(length(counter4)-1));

clear st cc1 cc2 counter4new

A.3.6 mmu.m

%Mmu
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% Mmu comes straight from delg

% counter4 gives the raw list of previously tried mu

if(counter4(length(counter4))==99999)

counter4 = counter4(1:length(counter4)-1); % Kill that 99999

end

% Note counter4 not mufinal

negs = find(mufinal<0); %satisfied constraints

numnegs = length(negs);

% Choose set of constraints to be satisfied, then set appropriate

% counter4 for next iteration.

% Strategy:

% Find constraints with positive mu

% For the set of constraints there are various options

% Assume we bound right node first, (arbitrary, based on approach

% to a steady state at a bound)

% 1. try bounding right node - success -> stop

% left node violation -> try bounding left node

% mu still positive -> repeat, going deeper

% 2. try bounding left node - success -> stop

% right node violation -> problem with cycling

% (can we prove this won’t happen)

% mu still positive -> repeat, going deeper
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% We can prove that left node and right node cannot both be bounded,

% but we can’t prove that the non bounded node has lam=0, since

% child nodes may have bound violations to be discovered. This

% is ok though, and will show up in a later iteration.

% find constraints

actives = [counter4(negs)];

mmucomp

% We’ve computed the right nodes at this point. Find all of the right nodes

%\ that are unsatisfied.

mufinal = mmusol(length(mmusol)-length(actives)+1:length(mmusol))

negls = find(mufinal<0); %satisfied constraints

posls = find(mufinal>1e-16); % need to be sat

% Find which appear twice and move down the tree

counter4 = [counter4; 99999];

newactives = [];

newmus = [];

% First check initially satisfied constraints.

c1=1;

while(c1<length(negs)+1)

if(mufinal(c1)>0) % Then constraint satisified at least once

% constraint not satisified for node, relax
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if(actives(c1)<N+1)

% change to left node

actives(c1) = lN(actives(c1));

% and add right node

newactives = [newactives; rN(actives(c1))];

newmus = [newmus; mufinal(c1)];

else % we’re at the bottom of the tree - just delete it from set

actives = [actives(1:c1-1); actives(c1+1:length(actives))];

mufinal = [mufinal(1:c1-1); mufinal(c1+1:length(mufinal))];

negs = negs(1:length(negs)-1)

end;

end;

c1=c1+1;

end;

% Parents will not cause problems.

mgsafetyvalve = mgsafetyvalve+1;

counter4 = [actives ; newactives]

mufinal = [mufinal; newmus];

[counter4, iii] = sort(counter4);

mufinal = mufinal(iii);

if(max(mufinal)>0)

mmurec(size(mmurec,1)+1,1:length(counter4)) = counter4’;

mmu;

end;
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% Next step is the stopping condition. Having found the final set of

% constraints, check to produce the final set of values before proceding to

% the final solution.

% This is necessary because even though the active constraints have been

% identified, haven’t computed all state values using these constraints yet.

% counter4 gives the raw list of previously tried mu

if(counter4(length(counter4))==99999)

counter4 = counter4(1:length(counter4)-1); % Kill that 99999

end

actives = counter4;

mmucomp

mufinal = mmusol(length(mmusol)-length(actives)+1:length(mmusol))

if(mufinal<0)

% find final solution

mglam2; % This will go down the tree and compute the next iteration

else

% Try again

counter4 = [counter4; 99999];

mmu

end;

A.3.7 mglam2.m

% mglam - part of the mg series that converts the counter4 matrix to an

% updated xest soln.

disp(’Running mglam2’)
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% This is run after we have identified a new set of active constraints, with

% upper levels of the tree taken care of. Strategy is to begin at sibling

% nodes to the constraints and move down the tree. The key then is that the

% starting set is set to the siblings of the active nodes.

if(counter4(length(counter4))==99999)

counter4old = counter4(1:length(counter4)-1);

else

counter4old = counter4;

end;

mufinalold = mufinal;

dxest(parents(2:lp),:) = mmusol(1:2:2*length(parents)-2);

xest(parents(2:lp),:) = mmusol(2:2:2*length(parents)-2);

% All is fine if we compute the correct mudaggers

numconstr = length(counter4);

basis = zeros(1,N)’;

delg = [];

for j = 1:numconstr

node = counter4(j);

if(node<N+1)

basisnode = basis;

basisnode(node) = 1;

basisnode = sf2wt(basisnode);

else

basisnode = basis;

basisnode(node-N) = 1;

basisnode = wt(basisnode);
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end;

delg = [delg ; basisnode’];

end;

mu = delg’*mufinal;

% And now convert to mudaggers

% from motmup

Nlevel = N;

for counter = 1:numlevels

Nlevel = Nlevel/2; % number of nodes at each level

node = [(Nlevel+1):Nlevel*2]; % vector positions of these nodes

for counter2 = node(1):node(length(node))

R1inv = diag(1./Rm1(counter2,:));

R2inv = diag(1./Rm2(counter2,:));

R2inv = R2factor(counter2)*R2inv;

ab = reshape(a(counter2,:),xdim,xdim)’*reshape(b(counter2,:),xdim,xdim)’;

aprimeb = reshape(aprime(counter2,:),xdim,xdim)’*reshape(b(counter2,:),...

xdim,xdim)’;

adaggert = C’*R1inv*C+C’*R2inv*C+ab-0.5*reshape((cprime(lN(counter2),:)...

+cprime(rN(counter2),:)),xdim,xdim)’;

mudagger(counter2,:) = mu(counter2,:) - inv(r2)*(mustar(lN(counter2),:)...

-mustar(rN(counter2),:)) - inv(r2)*(muprime(lN(counter2),:)...

-muprime(rN(counter2),:));

invadaggermudagger(counter2,:) =(inv(adaggert)*mudagger(counter2,:)’)’;

mustar(counter2,:)=inv(r2)*(mustar(lN(counter2),:)+mustar(rN(counter2),:))...

+inv(r2)*(muprime(lN(counter2),:)+muprime(rN(counter2),:));

muprime(counter2,:) = (-(aprimeb + 0.5*reshape((cprime(lN(counter2),:)...
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-cprime(rN(counter2),:)),xdim,xdim)’)*invadaggermudagger(counter2,:)’)’;

end;

end;

% In the reports, these are represented by double daggers

counter2 = 1; % For the scaling function equation

aprimeb = reshape(aprime(counter2,:),xdim,xdim)’*reshape(b(counter2,:),...

xdim,xdim)’;

adaggert = -aprimeb - 0.5*reshape((cprime(lN(counter2),:)...

-cprime(rN(counter2),:)),xdim,xdim)’;

mudagger(counter2,:) = mu(counter2,:) - inv(r2)*(mustar(lN(counter2),:)...

+mustar(rN(counter2),:)) - inv(r2)*(muprime(lN(counter2),:)...

+muprime(rN(counter2),:));

% Incoporates and adapts old mgdown.

% Now for the downsweep

Nlevel = 1;

counter4 = [];

dataset = [2:N 99999];

dsindex = 1;

counter2 = dataset(dsindex);

counter3 = lN(counter2);

while(dsindex<length(dataset))

counter2 = dataset(dsindex);

counter3 = lN(counter2);
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dxest(counter2,:) = ( inv( reshape(adagger(counter2,:),xdim,xdim)’ ) ...

*(ddagger(counter2,:)’+mudagger(counter2,:)’-reshape(cdagger(counter2,:),...

xdim,xdim)’*(xest(counter2,:))’))’;

xpair = 1/r2*[dxest(counter2,:)+xest(counter2,:); ...

-dxest(counter2,:)+xest(counter2,:)];

% When a constraint violation is identified we must

% - correct the sibling point

% - set all values on subtree to the bound

% - add violating point to constraint set

% - delete subtree from search set

if min(Xubar(counter3)*diag(ones(xdim))-xpair(1,:)<1e-15)

counter4 = [counter4; counter3];

st = subtree(counter3,lN,rN);

for counter6 = 1:length(st)

xest(st(counter6),:) = ones(1,xdim)*Xubar(st(counter6));

dxest(st(counter6),:) = zeros(1,xdim);

ff = find(dataset==st(counter6));

if ff==[]

disp(’Zeroth node in counter6 loop 1’)

else

dataset = [dataset(1:ff-1) dataset(ff+1:length(dataset))];

end;

end;

xpairdiffn = 1;

xpairdiff = xpair(1,:)-ones(1,xdim)*Xubar(counter3);

mgcp; % This changes the values of the parent nodes to adjust for
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% the change

xpair(1,:) = ones(1,xdim)*Xubar(counter3);

elseif max(Xlbar(counter3)*diag(ones(xdim))-xpair(1,:)>0)

counter4 = [counter4; -counter3];

disp(’Lower constraint hit’)

end

if min(Xubar(counter3+1)*diag(ones(xdim))-xpair(2,:)<1e-15)

counter4 = [counter4; counter3+1];

st = subtree(counter3+1,lN,rN);

for counter6 = 1:length(st)

xest(st(counter6),:) = ones(1,xdim)*Xubar(st(counter6));

dxest(st(counter6),:) = zeros(1,xdim);

ff = find(dataset==st(counter6));

if ff==[]

disp(’Zeroth node found in counter6 loop 2’)

else

dataset = [dataset(1:ff-1) dataset(ff+1:length(dataset))];

end;

end;

xpairdiffn = 2;

xpairdiff = xpair(2,:)-ones(1,xdim)*Xubar(counter3+1);

mgcp; % This changes the values of the parent nodes to adjust for

% the change

xpair(2,:) = ones(1,xdim)*Xubar(counter3+1);

elseif max(Xlbar(counter3+1)*diag(ones(xdim))-xpair(2,:)>0)

counter4 = [counter4; -counter3-1];

disp(’Lower constraint hit’)
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end

xest(counter3:counter3+1,:) = xpair;

dxest(counter2,:) = 1/r2*(xpair(1,:)-xpair(2,:));

dsindex = dsindex +1;

end;

counter2 = N/2+1;

counter3 = N+1;

while(counter2<N+1)

xpair = 1/r2*[dxest(counter2,:)+xest(counter2,:); -dxest(counter2,:)...

+xest(counter2,:)];

xest(counter3:counter3+1,:) = xpair;

counter2 = counter2 +1;

counter3 = counter3+2;

end;

xestrec = [xestrec xest(N+1:N+N)];

clear counter2 counter3

% counter4 arrives the first time with a list of all constraint violations.

% negative if it is an upper bound violation, positive if lower.

counter4 = [counter4 ; 99999];

mgcon;

mgwtbch;

counter4 = counter4(1:length(counter4)-1);

% At this point ready to going mmu again if necessary
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if(length(counter4)==length(counter4old))

if(counter4==counter4old)

disp(’the solution has converged’)

end;

else

disp(’The solution has not converged’)

disp(’Old and new constraint sets’)

[counter4; counter4old]

counter4 = [counter4 ; 99999];

mmu;

end;

% At this point ready to going mmu again if necessary

A.3.8 mmucomp.m

% mmucomp.m

% This is a subprog of mmu - it takes a set of active nodes and returns the

% state and lagrangean solution for the given set.

disp(’computing solution with basis’)

actives’

parents = parfind(actives,pN);

lp = length(parents);

% Construct a delg - see mgwtb

numconstr = length(actives);

basis = zeros(1,N)’;
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delg = [];

for j = 1:numconstr

node = actives(j);

if(node<N+1)

basisnode = basis;

basisnode(node) = 1;

basisnode = sf2wt(basisnode);

else

basisnode = basis;

basisnode(node-N) = 1;

basisnode = wt(basisnode); % This is for actives at zeroth level

end;

delg = [delg ; basisnode’];

end;

% delgp = delg(:,parents)’;

d2mudag;

% delgp needs to be converted to mu doubledaggers

mmuA = [adagger(1) cdagger(1) ; adagger(2) cdagger(2)];

mmub = [ddagger(1) ; ddagger(2)];

for k = 3:length(parents)

lmmuA = size(mmuA,1);

mmuA = [mmuA zeros(lmmuA,2*xdim) ; ...

zeros(xdim,size(mmuA,2)) adagger(parents(k)) cdagger(parents(k))];

mmub = [mmub; ddagger(parents(k))];

end
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mmuA = [mmuA -delgp];

% And now put the wavelet transforms at the bottom

mmuwt = zeros(length(parents)-1,size(mmuA,2));

mmuwtb = zeros(length(parents)-1,1);

k = 1;

for j = 2:length(parents)

[mmui] = find(parents(2:lp)==lN(parents(j)));

if(mmui~=[])

mmuwt(k,2*(j-1)-1:2*(j-1)) = 1/r2*[1 1];

mmuwt(k,2*(mmui)) = -1;

k = k+1;

end

[mmui] = find(parents(2:lp)==rN(parents(j)));

if(mmui~=[])

mmuwt(k,2*(j-1)-1:2*(j-1)) = 1/r2*[-1 1];

mmuwt(k,2*(mmui)) = -1;

k = k+1;

end

end;

for j = 1:length(actives)

[mmui] = find(lN(parents(2:lp))==actives(j));

if(mmui~=[])

mmuwt(k,2*(mmui)-1:2*(mmui)) = 1/r2*[1 1];

mmuwtb(k) = Xubar(actives(j));

k = k+1;

end

[mmui] = find(rN(parents(2:lp))==actives(j));

if(mmui~=[])
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mmuwt(k,2*(mmui)-1:2*(mmui)) = 1/r2*[-1 1];

mmuwtb(k) = Xubar(actives(j));

k = k+1;

end

end;

mmuA = [mmuA; mmuwt];

mmub = [mmub; mmuwtb];

mmusol = inv(mmuA)*mmub

mmubranch = mmusol(1:length(mmusol)-length(actives));

mmubranch = 1/r2*[mmubranch(1:2:length(mmubranch)-1)...

+ mmubranch(2:2:length(mmubranch)),-mmubranch(1:2:length(mmubranch)-1)...

+ mmubranch(2:2:length(mmubranch)), r2*parents(2:lp)]

xubar

A.3.9 d2mudag.m

% d2mudag

% This program takes the delg produced in mmu.m, used as mu and converts it

% to a set of mudag

% The delg is of the form mu(tau) = delg*mu(t)

% For each mu(t), we need to construct mudagger(tau), then we can concatenate.

delgp = [];

delgold = delg;

for munum = 1:size(delg,1)
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mustar = 0*xest;

muprime = 0*xest;

mu = delg(munum,:)’;

Nlevel = N;

for counter = 1:numlevels

Nlevel = Nlevel/2; % number of nodes at each level

node = [(Nlevel+1):Nlevel*2]; % vector positions of these nodes

for counter2 = node(1):node(length(node))

R1inv = diag(1./Rm1(counter2,:));

R2inv = diag(1./Rm2(counter2,:));

R2inv = R2factor(counter2)*R2inv;

ab = reshape(a(counter2,:),xdim,xdim)’*reshape(b(counter2,:),xdim,xdim)’;

aprimeb = reshape(aprime(counter2,:),xdim,xdim)’*reshape(b(counter2,:)...

,xdim,xdim)’;

mudagger(counter2,:) = mu(counter2,:) - inv(r2)*(mustar(lN(counter2),:)...

-mustar(rN(counter2),:)) - inv(r2)*(muprime(lN(counter2),:)...

-muprime(rN(counter2),:));

mustar(counter2,:) = inv(r2)*(mustar(lN(counter2),:)+mustar(rN(counter2),:))...

+inv(r2)*(muprime(lN(counter2),:)+muprime(rN(counter2),:));

adaggert = C’*R1inv*C + C’*R2inv*C+ab - 0.5*reshape((cprime(lN(counter2),:)...

+cprime(rN(counter2),:)),xdim,xdim)’;

invadaggermudagger(counter2,:) =(inv(adaggert)*mudagger(counter2,:)’)’;

muprime(counter2,:) = (-(aprimeb + 0.5*reshape((cprime(lN(counter2),:)...

-cprime(rN(counter2),:)),xdim,xdim)’) *invadaggermudagger(counter2,:)’)’;

end;

end;
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% In the reports, these are represented by double daggers

counter2 = 1; % For the scaling function equation

mudagger(counter2,:) = mu(counter2,:) - inv(r2)*(mustar(lN(counter2),:)...

+mustar(rN(counter2),:)) - inv(r2)*(muprime(lN(counter2),:)...

+muprime(rN(counter2),:));

delgp = [delgp mudagger];

end;

delgp = delgp(parents,:);

A.4 Direct solving programs

A.4.1 mpcqp.m

% mpcqp.m

% this program produces the full quadratic program solution

% and constructs the full matrix by utilising the wavelet structure.

% convenient for looking at the matrix explicitly, and checking small problems.

% considerably slower than up-down type approaches.

% Requires parameter set up programs to be run first.

% xqp = [dxest(top), xest(top), dxest(topalpha) etc]

% Ax<=b are the wavelet decompositions

lev = [];

lev = [numlevels; numlevels];

for counter = numlevels-1:-1:1
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lev = [lev; counter*ones(2^(1+numlevels-counter),1)];

end;

% node references back to original program numbering scheme.

node = [2:N ; 2:N];

node = node(:);

Hqp = zeros(2*N-2);

for counter = 1:2:(2*N-3)

matrixpos = xdim*(counter-1)+1:xdim*counter;

R1inv = diag(1./Rm1(node(counter),:));

R2inv = diag(1./Rm2(node(counter),:));

R2inv = R2factor(node(counter))*R2inv;

qpa = reshape(Alevels(lev(counter),:),xdim,xdim);

qpbu = Uw(node(counter),:);

midbit = 0.5*inv(B’)*inv(reshape(QRM(lev(counter),:),xdim,xdim))*inv(B);

Hqp(matrixpos,matrixpos) =2*(eye(xdim)+qpa)’*midbit*(eye(xdim)+qpa) +

2*C’*R1inv*C+2*C’*R2inv*C;

Hqp(matrixpos+xdim,matrixpos+xdim) = 2*(eye(xdim)-qpa)’*midbit*...

(eye(xdim)-qpa);

Hqp(matrixpos,matrixpos+xdim) =

-(eye(xdim)-qpa)’*midbit*(eye(xdim)+qpa)-(eye(xdim)+qpa)’*midbit*(eye(xdim)-qpa);

Hqp(matrixpos+xdim,matrixpos) = Hqp(matrixpos,matrixpos+xdim)’;

fqp(matrixpos) = (-2*yw1(node(counter),:)*R1inv*C ...

-2*yw2(node(counter),:)*R2inv*C)’+2*r2*(eye(xdim)+qpa)*midbit*qpbu’;

fqp = fqp(:);

fqp(matrixpos+xdim) = 0*fqp(matrixpos)-2*r2*(eye(xdim)-qpa)*midbit*qpbu’;

end;

% Getting top node things right.

counter = 2;
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R1inv = diag(1./Rm1(node(counter),:));

R2inv = diag(1./Rm2(node(counter),:));

R2inv = R2factor(node(counter))*R2inv;

qpa = reshape(Alevels(lev(counter),:),xdim,xdim);

qpbu = Uw(node(counter),:);

Hqp(xdim+1:2*xdim,xdim+1:2*xdim) = Hqp(xdim+1:2*xdim,xdim+1:2*xdim) +

2*C’*diag(1./Rm1(2,:))*C + 2*C’*diag(1./Rm2(2,:))*C;

fqp(xdim+1:2*xdim) =fqp(xdim+1:2*xdim) +(-2*yw1(1,:)*R1inv*C...

-2*yw2(1,:)*R2inv*C)’;

% Now we need to add prior information to control first point

if(isempty(ixmqpc))

Po1 = 1e-10*eye(xdim);

Po1x = inv(Po1)*0.001*ones(xdim,1);

else

Po1 = 1e-10*Q;

Po1x = inv(Po1)*ixmqpc(1,:)’;

end;

% LEft node sf and wt are N-3 and N-4

% Hqp = 0*Hqp; For testing purposes, must be commented out.

Hqp((xdim*(N-1)-xdim+1):(xdim*(N-1)),(xdim*(N-1)-xdim+1):(xdim*(N-1))) =

Hqp((xdim*(N-1)-xdim+1):(xdim*(N-1)),(xdim*(N-1)-xdim+1):(xdim*(N-1)))...

+ inv(Po1);

Hqp((xdim*(N)-xdim+1):(xdim*(N)),(xdim*(N-1)-xdim+1):(xdim*(N-1))) =

Hqp((xdim*(N)-xdim+1):(xdim*(N)),(xdim*(N-1)-xdim+1):(xdim*(N-1))) + inv(Po1);

Hqp((xdim*(N-1)-xdim+1):(xdim*(N-1)),(xdim*(N)-xdim+1):(xdim*(N))) =
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Hqp((xdim*(N-1)-xdim+1):(xdim*(N-1)),(xdim*(N)-xdim+1):(xdim*(N))) + inv(Po1);

Hqp((xdim*(N)-xdim+1):(xdim*(N)),(xdim*(N)-xdim+1):(xdim*(N))) =

Hqp((xdim*(N)-xdim+1):(xdim*(N)),(xdim*(N)-xdim+1):(xdim*(N))) + inv(Po1);

fqp((xdim*(N-1)-xdim+1):(xdim*(N-1))) = fqp((xdim*(N-1)-xdim+1):(xdim*(N-1)))...

-r2*Po1x;

fqp((xdim*(N)-xdim+1):(xdim*(N))) = fqp((xdim*(N)-xdim+1):(xdim*(N)))-r2*Po1x;

% This section eliminates the scaling function coefficients except the top one

H = Hqp;

f = fqp;

counterpar = N-2;

counterch = 2*N-4;

while(counterpar>1)

par = xdim*(counterpar-1)+1:xdim*counterpar;

chL = xdim*(counterch-1)+1:xdim*(counterch);

counterchR = counterch + 2;

chR = xdim*(counterchR-1)+1:xdim*(counterchR);

H(:,par) = H(:,par)+1/r2*(H(:,chL)+H(:,chR));

H(:,par-xdim) = H(:,par-xdim)+1/r2*(H(:,chL)-H(:,chR));

H = [H(:,1:chL(1)-1) H(:,chL(xdim)+1:chR(1)-1) H(:,chR(xdim)+1:size(H,2))];

H(par,:) = H(par,:)+1/r2*(H(chL,:)+H(chR,:));

H(par-xdim,:) = H(par-xdim,:)+1/r2*(H(chL,:)-H(chR,:));

f(par) = f(par)+1/r2*(f(chL)+f(chR));

f(par-xdim) = f(par-xdim)+1/r2*(f(chL)-f(chR));

counterch = counterch -4;

counterpar = counterpar -2;

H = [H(1:chL(1)-1,:); H(chL(xdim)+1:chR(1)-1,:); H(chR(xdim)+1:size(H,1),:)];
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f = [f(1:chL(1)-1); f(chL(xdim)+1:chR(1)-1); f(chR(xdim)+1:length(f))];

end;

H = 0.5*(H+H’);

clear qpparent qpchild

% Now to set up the constraints that are the wavelet decomps

% xqp = QP(Hqp, fqp, Aqp, bqp,1e12*ones(2*(N-1)*xdim,1),-1e12*ones(2*(N-1)*xdim,1),

0*ones(2*(N-1)*xdim,1), (N-2)*xdim);

% Can constrain begin point.

xqp = QP(H,f, [], []);

%tqp = etime(clock, t0);

xqpoutput = xqp;

%disp(’done with qp’)

% Now to reshape appropriately

xmqp = -inv(H)*f;

xmqpq = reshape(xmqp,xdim,N);

xmqpq = xmqpq’;

temp = xmqpq(2,:);

xmqpq(2,:) = xmqpq(1,:);

xmqpq(1,:) = temp ;

ixmqpq = iwt(xmqpq);
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% These two prove the correctness of the Hqp->H decimation

% Checked for f too.

xmqpc = reshape(xqp,xdim,N);

xmqpc = xmqpc’;

temp = xmqpc(2,:);

xmqpc(2,:) = xmqpc(1,:);

xmqpc(1,:) = temp ;

ixmqpc = iwt(xmqpc);
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