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Abstract 

Java is a popular new language with enormous potential; however, its lack of speed is a 
major drawback. Staged compilation and runtime specialization through procedure 
cloning are techniques used to improve code generation and execution performance. The 
research described in this paper applies these techniques in the design and 
implementation of a runtime system to improve Java performance. Analyses indicate that 
staged compilation results in a major improvement in performance. In this current 
implementation, runtime specialization and constant propagation provides a smaller 
incremental benefit, but with more aggressive and new forms of specialization, the 
benefits of dynamic specialization will likely increase. 
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1 Introduction 

Staged compilation and runtime specializations are techniques used to improve code 

generation and execution performance. This research applies such techniques in a system 

designed to improve Java performance. This thesis summarizes the work done in design 

and implementation of this architecture. Preliminary performance data and analysis of 

design are presented at the end of this paper, and specifications of the implementation as 

well as algorithms used are found in the appendices. 

 

Java1 is a programming language developed in recent years by Sun Microsystems. Java 

was created as a language for the future: a secure, readily extensible, platform 

independent, portable language. Its objected-oriented nature, strong type verification, 

automatic memory management, and portability have helped Java spread in popularity. 

While originally designed for embedded systems, Java has found overwhelming 

acceptance among Web applications. Virtually everything, from e-commerce applications 

to traditional standalone applications to computationally intensive numerical analysis 

tools, is now being developed in Java. As the world becomes more and more immersed in 

the Internet, Java will continue to grow in importance. 

 

                                                 
1 Java™ is a registered trademark of Sun Microsystems, Inc. 
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Java does, however, have its shortcomings. Current technology is limited, and the very 

characteristics that make Java an appealing language for the future are the ones that make 

Java slow and intolerable in today’s applications. Java programs are typically compiled 

into bytecodes and then interpreted by a virtual machine. Newer Java Virtual Machines 

(JVM) incorporate a lightweight compiler that is able to dynamically compile the 

bytecodes into machine code to speed up execution. This is known as Just-In-Time 

compilation (JIT). Because compilation is performed at execution time, the compilation 

overhead must be kept to a minimum. As a result, JIT is usually not capable of intensive 

optimizations. Some developments have also been made to allow bytecodes to statically 

be compiled into machine code before actual execution takes place. In contrast to JIT, 

this is known as Ahead-of-Time compilation (AOT). AOT is very much identical to 

traditional compilers except that it is applied to Java. Since compilation time is not part of 

performance, AOT is able to perform more intensive optimizations. While AOT is able to 

offers faster execution, AOT is limited in its flexibility. Java allows dynamically loaded 

classes, and unless the AOT produces code to duplicate JVM functionalities, AOT 

programs will be limited in capabilities as well as portability. While JIT and AOT are 

both good approaches, neither is entirely satisfactory. 

 

Traditional programs are typically compiled at the end of development. No additional 

analysis or compilation is performed at runtime because runtime information cannot be 

calculated during static compilation. AOT also follows this process like any other 

traditional compiler. On the other hand, JIT is compiled at runtime and has access to 

runtime information to allow customization and optimization, but because such analysis 
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can be intensive, JIT generally avoids almost all types of optimization and analysis at 

runtime. There are many advantages to runtime code analysis and compilation. If 

programs could be analyzed during runtime and modified, programs could be specialized 

according to the calling context and offer additional efficiency in execution. When 

programs are compiled statically, the compiled programs must be generic, and 

optimizations for specialized arguments and calling contexts cannot be incorporated 

without assuming a specific application or use. To specialize programs for various calling 

contexts, machine codes must be dynamically generated, and some compilation must be 

delayed. However, it is not practical to delay all of the compilation until runtime in the 

manner of JIT; compilation is a computationally intensive process and incurs significant 

performance degradation. Therefore, this research has chosen to stage the compilation. 

Programs are statically analyzed and partially evaluated, similar to compilation, but the 

actual machine code will not be generated until runtime. By making use of knowledge 

learned during static analysis, dynamic runtime code generation can efficiently generate 

machine code with little overhead. Java Execution-time Transformations (JET) is an 

alternative JVM architecture that allows staged compilation analysis and performs 

efficient code generation and specialization through procedure cloning at runtime. 

 

2 Background 

In recent years, many research projects have focused on improving Java performance; 

JIT’s have been developed on most major architectures and JVM's. The most interesting 

JIT approach is Sun's HotSpot. HotSpot dynamically analyzes “hotspots” or critical areas 

in the program, and adaptively optimizes the executed code. JET is similar to HotSpot in 
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that optimizations are made automatically and dynamically, but instead of delaying all 

analysis and compilation until runtime, JET divides the work into two phases and 

minimizes the amount of computation involved at runtime. Although not a JIT, JET 

works closely with the JIT to extend the capabilities of the JVM. 

 

AOT’s have also had great success in improving Java performance. Some researchers 

approach AOT by translating Java to C (or C++ or Fortran) and then using a robust C 

compiler to generate efficient machine code. This includes Java source to C source 

translators such as JCC (Shaylor), and Java bytecode to C source converters such as Toba 

(Proebsting et al.) and Harissa (Muller et al.). Another approach is to generate machine 

code directly from Java bytecodes. Some examples of this approach include Marmot 

(Microsoft Research) and TowerJ (Tower Technologies). Since Java programs are able to 

dynamically load classes, it is not possible for an AOT to statically analyze all possible 

paths of execution and produce a single executable for every program. Some of these 

approaches solve the limitations of AOT by providing and linking libraries to provide 

JVM functionalities; others simply limit the types of programs that can be compiled or 

translated. Unlike AOT’s, JET is an extension to the JVM and does not produce machine 

code that can be executed without a JVM. 

 

Compiler research projects involving staged compilation, deferred code generation, 

partial evaluation, and runtime specializations are also closely related to this project. 

Runtime code generation in the form of self-modifying code was actually widely used in 

early systems when memory was expensive. Fast executables could be generated from a 
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compact representation. While portability, complexity, and changing technologies caused 

runtime code generation to fall from favor, runtime code generation is still a valuable and 

useful technique (Keppel, Eggers, and Henry). 

 

Many staged compilation and runtime code generation architectures have been 

developed. To perform dynamic code generation and specialization, a design must be 

able to determine which variables and functions to specialize. A popular approach is to 

augment the source language with annotations to aid and direct runtime specializations 

and code generation. Examples of this declarative approach include Fabius for ML 

(Leone and Lee), and Tempo (Consel et al.) and DyC (Grant et al.) for C. Fabius is a 

dynamic code generator for a functional subset of ML and is one of the earliest examples 

of dynamic code generation. Fabius uses function currying to determine what variables 

and functions to specialize. DyC’s code generation process is very similar to the code 

generation process of JET. Given an annotated C program as input, DyC produces an 

executable program consisting of a static code portion and a generating extensions (GE) 

portion. This executable program is the intermediate representation (IR) between the 

static analysis and the dynamic generation phase. In the JET system, the IR is not a piece 

of machine code. The JET IR is a binary data structure wrapped in a Java classfile 

attribute. The GE, DyC’s dynamic specializer, is custom produced for each function and 

included in the IR. The JET specializer, on the other hand, is part of the system 

architecture and is not generated during static analysis. Both DyC and JET specializers 

are invoked during runtime to produce dynamically specialized machine code. 
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Even further on the user involvement spectrum is `C and tcc (Poletto et al.) `C is an 

extension of C that was designed specifically for dynamic compilation; tcc is the 

compiler for `C (Poletto et al.). `C programmers must explicitly design and declare 

functions and variables to be specialized. The biggest distinction between these existing 

systems and JET is that JET does not require any form of user specification. All 

annotation required by the JET runtime system are generated automatically during static 

analysis. Once a classfile has been statically analyzed and appended, the entire code 

generation and specialization process is transparent to the user. 

  

3 Motivation 

This thesis project is funded by Compaq Computer Corporation as part of the MIT VI-A 

internship program. Since the work is funded by a corporate organization, the project 

must not only satisfy an academic, research interest but also provide economic value to 

the company. 

 

Compaq is interested in this project to help promote sales of its servers. Java is becoming 

an important means of developing server applications, and to be able to sell servers, 

especially web and e-commerce servers, the servers must be capable of running Java. By 

exploring alternative approaches to Java execution and possibly improving speed and 

performance of Java programs on its servers, this work can give Compaq an edge in 

promoting and marketing their servers. 
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From an academic perspective, runtime code generation and automatic specialization 

through procedure cloning is an interesting compiler research topic. Ideas and 

understanding gained through this project can help improve general compiler technology. 

When applied to Java, this is especially interesting because it seeks to fully optimize Java 

and allow Java to compete in performance with other classical languages such as C/C++ 

and Fortran. 

 

4 Design 

The goal of this research was to develop a Java environment that is capable of 

dynamically generating and optimizing code. From initial evaluations explained 

previously, the staged compilation approach was chosen. Staged compilation combines 

the best of both worlds. Heavy computation overheads are accounted for during a static 

analysis phase, and the runtime dependent optimizations are performed at runtime to 

allow the fullest range of possible optimizations. In compliance with the JET 

nomenclature, the static analysis phase is known as Turbo, and the runtime optimization 

phase is known as Afterburner. A graphical representation of the design can be found in 

Figure 1. 

 

Once the decision of using staged compilation has been made, the next step is to design a 

means to integrate the two phases. The JVM specifications allow for implementations to 

extend functionality by attaching attributes to the Java classfile. By wrapping the JET 

information in a classfile attribute, the JET system can modularize the phases and allow 

classfiles that have been put through the static analysis phase (classfiles that have been 



 

 

11
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the JET IR can be found in appendix A.  The JET IR extends the classic SSA and CFG 

with the addition of specific optimization information used in JET. 

 

4.1 Turbo 

The static analysis portion of JET is codenamed Turbo. Jeremy Lueck, another student in 

the MIT VI-A program, worked on this portion of JET as his Master of Engineering 

thesis. Turbo was adapted from an AOT currently under development by Compaq’s 

System Research Center called Swift. Turbo takes in Java classfiles, performs analysis, 

and outputs a new Java classfile. The new Java classfile contains a JET classfile attribute 

following the JET IR specifications and containing all the information required to help 

runtime JET optimizations to be performed efficiently and with minimal overhead. 

 

4.2 Afterburner 

The Afterburner represents the dynamic code generation, optimization, and specialization 

phase of the JET architecture. Afterburner extends the JVM to support the JET 

architecture. Afterburner performs efficient runtime code generation and analyzes 

execution of methods in order to perform specialization and optimization where possible. 

The Afterburner itself can be broken up into three stages: parser, generator, and 

specializer. When the JVM loads classfiles with a JET attribute, the JET parser will be 

invoked to load the JET IR. Following successful retrieval, a non-specialized code 

generation is created. Future execution of JET generated code will trigger specialization 

and optimization analysis. If specialized optimization is possible and worthwhile, a new 
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specialized version of the method will be generated. Figure 2 is a graphical representation 

of this architecture. 

 

The Afterburner is designed to be an extension of the basic JVM. Thus, to accomplish the 

implementation and design of this system, a working commercial JVM and source code 

must be available. As this research is part of the MIT VI-A internship, Compaq was kind 

enough to provide this project with Srcjava. Srcjava is a Java 2 compliant JVM (Java 2 

SDK Documentation) currently under development by Compaq’s System Research 

Center in Palo Alto, California. Srcjava is written in C and Assembly, and is developed 

for Compaq’s Tru64 Unix operating system on the Alpha architecture. 
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4.2.1 Parser 

The parser reads in the JET attribute and creates JET objects and METHOD objects. The 

JET attribute is a binary file structure that represents the JET IR. The JET attribute was 

designed so that it would be easy to load, and the JET IR was designed so that it would be 

flexible. 

 

The JET attribute is laid out in a manner that allows the parser to read in the attribute as 

an array of bytes and cast the region of memory into a JET structure. The pointers in the 

attribute are made so that they are relative offsets from the beginning of the attribute. 

After the parser casts the region of memory as a JET structure, it then walks through the 

JET IR converting relative pointers to absolute pointers. 

 

While this process allows quick and easy loading, some assumptions are inherent and 

should be taken into consideration for future implementations. This implementation was 

developed on the Alpha architecture, which uses a little-endian byte-order. The Java 

classfiles are written using a big-endian byte order because the Sun architecture is big-

endian. While the choice of big- versus little-endian is not important, consistency is 

important. Choosing a byte ordering that is consistent with the underlying processor 

architecture will allow the parser to load more efficiently; however, to widely deploy 

JET, all implementations must conform to a byte-ordering standard regardless of the 

underlying architecture.  
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4.2.2 Generator 

Once the JET IR has been created, it is kept for future reference. Copies are made and 

passed to the generator and the specializer. The generator and specializer operate by 

modifying the JET IR; making copies allows the generator and specializer to modify the 

IR as needed without requiring the parser to reload the JET attribute. This specialized 

generation process is summarized in figure 3. The generator has to perform three tasks: 

code scheduling, register allocation and code emission. The output from the generator is a 

standard piece of machine code that can be executed like any other program. The initial 

code generation for a method will produce machine code that is not specialized. This 

machine code is registered with the JVM in exactly the same manner as JIT generated 

machine codes. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3 JET Specialized Generation Process 
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4.2.2.1 Scheduler 

The current implementation implements a dummy no-op scheduler. Turbo, the 

preprocessing stage, has performed scheduling prior to this point; thus it is unnecessary to 

again perform scheduling during code generation to obtain well-scheduled code. The 

design does, however, suggest that a more sophisticated runtime scheduler may further 

improve the performance of some types of code. It is not clear at this point, how the trade 

off between extra scheduling overhead and further optimized machine code compare. 

Runtime scheduling is likely to be most beneficial in code that is specialized heavily. A 

specialized code generation will have fewer instructions compared to the non-specialized 

code generation, and certain constraints may be removed so that instructions may be 

rescheduled and further improved. The time constraints for this project did not allow 

design and implementation of a code scheduler. 

 

4.2.2.2 Register Allocation 

Register allocation is divided into 2 phases: there are variables that are global to the 

entire method and used across code blocks as well as variables that are local to code 

blocks. The global variables include variables that must be allocated in designated 

locations to comply with calling standards such as arguments to procedure calls and 

return values. Local variables without restriction on locations may be allocated in 

between global variables or in another free registers. Local variables that do not conflict 

with each other can share the same register. The JET system takes advantage of this 

distinction between global and local variables by splitting up the allocation so that the 

majority of the computationally intensive tasks are performed during the Turbo phase. 
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In general, a two phased register allocation is somewhat inefficient in its use of registers; 

however, the JET system is designed so that Turbo performs a Limit phase where Turbo 

tries to maintain that the register pressure, the number of live registers needed at any 

point in the code, is at or below the number of register available. This property allows 

JET to efficiently break up register allocation into a global and a local phase. Turbo is 

responsible for allocating the global variables and procedure arguments according to the 

JET calling standard. Turbo is also responsible for grouping of local variables that do not 

conflict and can potentially share the same register. This is known as symbolic allocation, 

where each symbolic register is a color that is assigned to that group of variables. 

 

During the runtime Afterburner phase, these symbolic registers are matched up with real 

physical registers. An attempt is first made to match symbolic registers up with physical 

registers that were allocated to global variables. This effort reduces the number of free, 

unrestricted physical registers needed and is possible if the involved variables are not 

used or  not live over the same range of instructions. Symbolic registers that were not 

matched up with global registers are then allocated into the remaining available physical 

registers during the final allocation phase. The final allocation phase, whose name is one-

pass allocation, takes a linear pass over the remaining unallocated variables and assigns 

physical registers to these variables. 

 

There is the possibility that not enough physical registers exist to accommodate all the 

symbolic registers. In this situation, spill code to write variables into stack or memory 
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locations must be inserted into the generated code to partially relieve the register 

pressure. The implementation does not actually insert spill code during the register 

allocation phase but instead marks the values to indicate that their assigned location is on 

the stack and leaves the spill code insertion for the code emission phase. 

 

The JET IR is designed so that each SSA value node includes a location field. The 

location field indicates where in the machine this value is stored. For example, the integer 

constant zero has a location of R31. Global variables are assigned physical register 

locations during the static phase. The symbolically allocated variables have symbolic 

register locations. Values nodes that do not emit instructions have a null location because 

they do not require registers to hold its value. When symbolic registers are matched up 

with physical registers during register allocation, all value nodes with that symbolic 

register get their locations updated from the symbolic register location to the allocated 

physical register location. Value nodes may also be allocated to stack slot locations when 

the number of available registers have run out. 

 

This division of labor allows runtime register allocation to require only a few passes over 

the set of instructions. Register allocation is typically computationally intensive and a 

major bottleneck in dynamic compilation. JET is able to limit the amount of computation 

necessary at runtime and keep the register allocation overhead to a minimum. A detailed 

explanation as well pseudo-code related to the register allocation design can be found in 

Appendix D. 
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Some assumptions are inherent in the design of the register allocation process. First of all, 

many of the global variables are assigned according to a JET calling convention, which is 

the same as the Alpha calling convention. Future implementation of JET will need to also 

support the same calling convention within the JET architecture but may use its native 

calling convention for code outside the JET architecture.  The next assumption is that 

there are 32 floating and 32 integer registers available. This is fairly typical among 

modern architectures. If more or fewer registers are available, then some form of 

emulation will be necessary. While these assumptions make the design somewhat less 

generically applicable, some basic assumptions are necessary, and these assumptions are 

based on fairly common trends in industry. These limitations and assumptions are 

maintained so that a JET classfile can be created once and executed anywhere an 

implementation of Afterburner is available. 

 

4.2.2.3 Emitting Code 

The last component of the generator is the code emitter. The code emitter translates JET 

opcodes into actual machine instructions. The spill codes are inserted and the generated 

code stubs are registered with the JVM. Most SSA values can be translated directly into 

machine instructions; however, flow control instructions that require relative offsets such 

as branches must first be emitted with null offsets as the final code positions may not yet 

be known. Once all the instructions have been generated, relocations get applied so that 

the references and offsets are accurate and correct. The complete list of JET opcodes and 

its descriptions may be found in Appendix B. 
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Code is emitted by translating the opcode of the value node into an actual machine 

instruction. If the opcode is an instruction that requires additional arguments, the 

instruction must be emitted such that the correct registers are used as arguments. These 

registers are found by looking up the location of the argument value nodes. The output of 

the instruction must also be placed in the correct register by looking up the location of the 

current value node. If a value node’s location is on the stack, then spill code must be 

generated and a temporary register must be employed. Since an instruction may require at 

most two arguments and the output register may reuse one of the input registers, the 

worst case, a situation in which both arguments as well as the output reside in stack 

locations, will require at most two temporary registers. The JET calling standard always 

reserves one temporary register that is not assigned to variables. The other temporary 

register is formed by using the return address (RA) register. RA register is used to keep 

track of the return address for a particular subroutine call. RA is saved on the stack 

whenever a subroutine code segment makes additional, nested subroutine calls. The 

scheme of using RA as a temporary register adds the constraint that RA will also need to 

be saved on the stack if there exists an instruction that requires two temporary registers. 

A detailed explanation of the JET calling standard can be found in Appendix C. 

 

When classfiles are loaded by the JVM, a method table is created to map code stubs to 

the methods. This is necessary for the correct inheritance of objects.  When methods are 

invoked, the actual executed code must first be looked up in the method table. If the 

caller method is a piece of generated code, then the process can be streamlined so that the 

caller method calls the callee code directly. This is possible if the method being invoked 
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is static or if it is the only one of its type and signature. For example, methods that are not 

static but have not yet been known to be overridden can be called directly. This 

optimization requires that each call site be registered so that if the generated code 

changes or if methods are overridden, these direct call sites can be updated to call the 

correct new code.  This process allows the JVM to switch easily between interpreted code 

and JIT generated code. JET generated machine code behave similarly to JIT generated 

code, and must also be registered with the JVM before the JVM can make use of the JET 

generated code. Registration of JET generated code can be done using the same process 

as for JIT generated code. 

 

4.2.3 Specializer 

Upon the first execution of a JET generated call site, the specializer will be invoked 

before execution. The call site is set up to call a code stub that executes the specializer 

instead of the actual method. The specializer analyzes executed methods and the calling 

conditions to see if specialization is possible and worthwhile. If so, the specializer creates 

specialized versions of the JET IR and sends the JET IR to the generator. The specializer 

also registers the newly created specialized code with JET and updates the specialized 

call site. 

 

The generator emits indirect subroutine calls. An intermediate specializer invocation code 

stub is called before the subroutine code is executed. The specializer stub determines 

whether specialization is possible, and if so, whether a specialized generation of this 

instance exists already or a new specialized generation must be created. 



 

 

22

 

For each method, Turbo is responsible for determining what input arguments would be 

helpful as constants. Turbo also marks certain SSA values as constants if they’re known 

as constants. During the specializing phase, the specializer determines which input 

arguments are constants for each executed subroutine call. The specializer then computes 

the intersection of the set of arguments that the method wants to have as constants and the 

ones that actually are constants. IF the resulting set is null then specialization is not 

possible and the indirect call through the specializer is replaced with a direct call to the 

callee. If the resulting set is not null, then specialization is possible. This intersection set 

will be known as specialization set. 

 

Specializations with the same specialization set are considered the same category or type 

of specialization, as they will have similar specialization effects. If the specializer 

determines that specialization is possible, it searches through a linked list of existing 

specialization categories for that method. If one exists, then it continues by looking for a 

specialization instance with identical arguments. If such an instance exists, this particular 

specialization has been performed in the past and the specialized code can be reused. If 

no such instance exists, then a new specialization must be performed. The newly 

generated instance is registered under the appropriate category following generation. If 

no such specialization category exists, then a new category is created and a new 

specialization instance is generated. The categorization makes it easier to determine if a 

particular specialization instance exists already. This cataloging and registration process 

is similar to the code registration process of the JIT and the JVM. 
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While a number of various optimizations are possible during runtime specialization, this 

research focused on constant propagation and procedure cloning. When a call stubs 

invokes the specializer and the specializer determines that specializations are possible 

and needed, constant propagation is performed. Using an algorithm similar to constant 

propagation algorithms in classic compilers, the specializer generates specialized clones 

of the procedure being invoked. Because this specialization is performed at runtime, the 

system knows the values of the arguments. The specialization category determines which 

arguments are considered as constants in the function being specialized. For each 

argument that is considered a constant, the specializer propagates the constant by finding 

descendent values that use constants as inputs. If all arguments to an instruction are 

constants, the output of that instruction is also a constant and its value can be evaluated 

and stored as a constant. Constant values do not require code to be emitted unless the 

constant values are used by instructions that do not have constant values. Branches in the 

code can be eliminated if the condition variable can be determined to be a constant. A 

more detailed overview of the constant propagation algorithm used can be found in 

Appendix E. 

 

This research limited the effects of specialization to strictly elimination of code. This 

limitation was put in place to minimize the complexity of implementation. While 

techniques such as loop unrolling are typically used in conjunction with constant 

propagation, such techniques were not utilized. In defense of this decision, loop unrolling 

is performed during Turbo for loops that benefit from unrolling. Obviously, additional 
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and more precise loop unrolling can be performed during runtime specialization and 

should be considered for the next iteration of this design. 

 

Once the specialized code has been generated, the execution must resume seamlessly. 

The specializer has already generated the specialized code and registered it as a 

specialization instance under the appropriate specialization category. The original call 

site has also been patched so that future execution of that call site will no longer invoke 

the specializer call stub but instead invoke the appropriate specialized code. The 

specializer needs to execute the specialized code and return control to the JVM. Instead 

of having the specializer handle the execution and deal with all the possible exception 

scenarios, the easiest approach is to modify the call stack return address from the 

instruction after the call site to the call site itself. Now the specializer can simply return 

control to the JVM and be confident that the JVM will be fooled into re-execution of the 

now updated call site. This re-execution will now invoke the newly generated specialized 

code, and all will appear normal to the JVM and the user. 

 

5 Analysis 

Constant propagation is achieved by disseminating knowledge and assuming certain input 

arguments are constants. Computational instructions that do not involve I/O and memory 

access benefit from constant propagation because their results can be saved as constants 

and do not need to be calculated again in future executions. Appendix F illustrates some 

typical code generations and specializations starting from the Java source files. 
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To determine the benefit of JET system, a number of relative performance measurements 

were assessed. Factors considered in performance measurements include file size, code 

size, and execution speed. A detailed summary of the performance measurements can be 

found in Appendix G. 

 

JET classfiles are normal Java classfiles with an added attribute. This JET attribute 

contains all the information required to efficiently generate code and perform 

specializations. This additional information comes at a price; the JET classfiles are on 

average thirty-two times as large as a regular Java classfile. For this reason, JET should 

not be implemented on a system that is constrained by disk storage space. 

 

Benchmark performance tests were executed to evaluate JET performance. The 

Embedded Caffeine Mark 3.0 benchmark suite was chosen for this purpose. Each 

scenario is executed multiple times and the average performance values compared. The 

following five scenarios were executed: classic Java JVM using interpretation on normal 

classfiles, JIT enabled JVM on normal classfiles, classic Java JVM using interpretation 

on JET classfiles, JET enabled JVM with dynamic code generation but no specialization, 

and JET enabled JVM with dynamic code generation and specialization. 

 

While JET classfiles are much larger than classic Java classfiles, the size does not affect 

the execution performance. In most benchmarks the performance is nearly identical. The 

Sieve benchmark actually benefited from a 30% improvement due to the larger JET 

classfile. It is not clear why the sieve benchmark benefits from a larger input file size. 
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JIT provide an average 300% performance improvement compared to classic, interpreted 

Java. The JET enabled JVM without specializations showed an additional 180% 

performance improvement over the JIT, and a 550% improvement over classic, 

interpreted Java. This analysis suggests that the larger file sizes of staged compilation 

have paid off handsomely in performance improvements. JET with specializations had 

only an insignificant advantage over the JET without specializations. In fact, on the 

Floating benchmark, JET with specialization was actually slightly worse than the JET 

without specialization. All JET performance numbers include dynamic compilation and 

specialization overhead. 

 

6 Conclusion and Future Work 

It appears that specializations were not extremely effective. A possible explanation is that 

the amount of analysis carried out was insufficient or not widely applicable. Perhaps a 

more ambitious specialization policy would allow more methods to be specialized and a 

broader effect and performance improvement can be observed. Deeper analysis of how 

and why programs benefit from specialization will help pave the way to new and more 

in-depth types of specialization. Currently, the only specialization performed is constant 

propagation. Without dynamic loop unrolling, it is difficult for constant propagation to 

produce dramatic performance improvements. 

 

If a more relaxed specialization policy is implemented, more arguments can be treated as 

constants and more specialization would possible. This new design could attempt to 
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specialized on variables that are not guaranteed to be constants. If a variable is seen 

frequently with the same value, it could be treated as a constant and used to specialize. 

This approach allows more specialization to occur but incur the additional complexity 

that a verifier code stub must be produced to ensure that a variable that is assumed to be 

constant does not change value. While it is not clear that specialization will provide much 

more benefit, using a more relaxed specialization policy will allow more specialization to 

occur and a more definitive answer on the benefits of specialization can be obtained. 

 

Further constant propagation can be achieved if procedure calls can be eliminated 

through constant propagation. This would require support from the static analysis phase. 

If a method can be determined to have predictable results given constant arguments, then 

that method can be executed during specialization and its result can be stored as a 

constant in the caller. Since the analysis to determine if a method is predictable will likely 

be highly involved, it is most suited for the Turbo stage. Even without Turbo support, 

there exist a few common runtime procedures that are currently known to be predictable 

and can be dynamically resolved into constants with only a few minor modifications to 

Afterburner. 

 

Another idea for specialization is to eliminate unnecessary synchronization overhead. If a 

synchronized object is referenced by only one object, then there is no need to lock the 

synchronized object. Only one reference of the synchronized object exists and no 

possible race condition exists. 
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Java is a powerful but young language. There is lots of room for improvement. This 

research applied new approaches to execution of Java programs. The combination of 

static compilation and dynamic optimization combine to make a powerful staged 

compilation process that lends itself easily to optimization, specialization, constant 

propagation, and procedure cloning. These techniques were united to create JET. 

Dynamic code generation through staged compilation proved to be an excellent technique 

to improve Java performance; however, the types runtime specialization implemented 

were not extensive enough to produce definitive performance improvements. Insights 

gained from this experience can help refine the next iteration of JET and perhaps lead to 

further increases in performance. 
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Appendix A: JET IR Specification 

The following document contains the specification for the current version of the JET 
internal representation binary output (JET IR). 
 
JET files are essentially Java class files with an added class attribute. This attribute is 
called "JET" and contains the JET structure that will be described below. 
 
JET attributes can be outputted in either little-endian or big-endian order. Since the initial 
implementation was development on the Alpha architecture, and the Alpha architecture is 
little-endian, the little-endian byte-order was chosen. The choice is not important; 
however consistency across various implementations is important. 
 
The bytes in a JET IR are laid out in an order that is very similar to how these structs 
would be laid out in program memory using a memory-manipulation language such as C.  
This should look exactly like the automatic memory alignment for structs that is 
performed by the C compiler. A relative "pointer" in a JET attribute is the file offset of 
the structure within the file. 
 

The process for reading in a JET attribute:  
 
1. Find the JET attribute from the class file parser in the JVM. 
2. Grab the offset to the beginning of the JET attribute 
3. Iterate through the different structures of the JET attribute casting file offsets into 

the structs and fixing pointers. 
 

Since relative pointers are file offsets, they have to be converted into absolute 
pointers using the following calculation: 

 
ptr = (T *)((long)starting_memory_location + (long)ptr) 

 
T* is a pointer to some JET structure type and starting_memory_location is the 
memory address of the beginning to the JET structure (or the pointer address of the 
malloc-ed memory in step 2 above). The long data type is used for pointer calculations 
since the Alpha architecture uses 64-bit addressing.  
 
 

JET 
 
Each JET attribute contains the following structure:  
 

JET {
u2 methodCount;
methodInfo[] methods;

}
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The items in the JET structure are as follows:  
 

methodCount 

This item holds the number of methods that are contained within this JET 
attribute. Should be the same as the number of methods contained in the classfile. 

methods  

The method item is a table of methods that contain the intermediate 
representations (IR’s). The format of a method and its IR are defined by the 
methodInfo structure. The size of this table is defined by methodCount item. 

 
 

Method Information 
 
Every method has an intermediate representation structure contained within JET. This IR 
consists of two separate structures with pointers between them. The first structure is the 
control flow graph (CFG) and the second is the value graph generated for static single 
assignment (SSA) form. The CFG is made up of basic blocks connected by successor and 
predecessor pointers. The SSA form is made up of value nodes that represent instructions 
and connected by pointers to other value nodes that make up the parameters of that 
instruction. 
 
Each methodInfo item must have the following structure:  
 

methodInfo {
u2 blocksCount;
u2 valueCount;
u2 paramCount;
value** params;
bitvec* rtConstArgs;
blockInfo[] blocks;
valueInfo[] values;

}

 
The items in the methodInfo structure are as follows:  

blocksCount  

This item contains the number of basic blocks contained within the CFG for this 
method.  

valueCount  
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This item contains the number of individual values that make up the SSA value 
graph for this method.  

paramCount  

This item contains the number of parameters to this method. This number 
includes the object references for instance methods (pointer to this object).  

params  

This item contains a list of values that are the parameters to this method.  The 
length of this list is specified by the paramCount item.  

rtConstArgs  

This item contains a bitvec of size equal to the number of arguments to this 
method. Item n in rtConstArgs will be set if knowing that the n-th argument to 
this method is a runtime constant will help in specializing this method.  

NOTE:  The size of this set will be equal to paramCount. This includes 
the instance object for instance methods.  The size of this set will not be 
the same as the number of inputs to a method call value.  

blocks  

The blocks item contains a table of basic block information for a CFG. The 
format of these blocks is defined by the blockInfo structure. The length of this 
table is established by the blockCount item. The blocks array is ordered in the 
way that they should be written out during code generation.  

values  

The values item contains a table of values within the SSA value graph. The 
format of these values is defined by the valueInfo structure. The length of this 
table is established by the valueCount item. 

 
 
 

Block Information 
Each basic block within the CFG contains information regarding the type of control 
within the block, the successor blocks, pointers to values used in this block, and liveness 
information to aid in the allocation of registers.  Some block types need special added 
information in order to generate code for that block.  Thus, there are three types of block 
output: blockInfo, excBlockInfo, and multiBlockInfo.  The default basic block 
follows this structure:  
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blocksInfo {

u1 type;
u1 controlType;
u2 valueCount;
u2 predecessorCount;
u2 successorCount;
u2 index;
u1 isLoopHead;
valueInfo* valueRoot;
valueInfo** values;
blockInfo** predecessors;
blockInfo** successors;
bitvec* liveOut;
bitvec* liveStart;
bitvec* liveEnd;
bitvec* liveThrough;
bitvec* liveTransparent;
auxInfo* aux;

}

 
The items in the blockInfo structure are as follows:  

type/control_type  

The type and control_type items contain two sets of type information. This 
information is created when the CFG is created inside of the Swift compiler.  

The tags for the type and the controlType of the block are listed in the 
following table:  

  Type Value ControlType Value 
NORMAL 0 SIMPLE 0 
HANDLER 1 IF 1 
EXTRA 2 SWITCH 2 
ENTRY 3 THROW 3 
NORM_EXIT 4 FAULT 4 
EXC_EXIT 5 JSR 5 
GRAPH_EXIT 6 RET 6 

 

valueCount  

This item contains the number of values that make up the instructions for this 
basic block.  

index  

This is the numerical identifier of this blockInfo among the blocks[] of the 
methodInfo that holds this blockInfo.  
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valueRoot  

This item contains a pointer to the value that decides the control flow out of this 
block.  

values  

This item contains a table of pointers to pointer to the values from the SSA value 
graph used in this basic block. The size of this table is determined by the 
valueCount item.  

successorsCount  

This item contains the number of successor blocks to this block within the CFG.  

successors  

This item contains a table of pointers to successors to this block. This table 
consists of a list of pointers to blockInfo structures that contain the basic block 
successors. The size of this table is determined by the succesorCount item.  

NOTE: In the case of IF blocks, the successors are ordered such that the 
fall-through block is the first successor, and the branch-to block is the 
second successor.  

liveOut / liveStart / liveEnd / liveThrough / liveTransparent  

These items contain bit vectors that represent the values that are live in the 
various categories for a block. 

 

Value Information 
Each node in the value graph represents an operation and a value. Nodes are connected if 
a node if used as parameters in another node. Each method contains an array of values. 
The structures of these values have the following format:  
 

valueInfo {
u1 op;
u1 type;
u2 pc;
u2 index;
u2 paramCount;
u2 useCount;
u1 locationType;
u1 locationFlags;
u2 location;
u1 isSpilled;
u1 isRTConst;
bitvec* unavailRegs;
valueInfo** uses;
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valueInfo** params;
blockInfo* container;
auxInfo* aux;

}

 
The items in the valueInfo structure are as follows:  

op  

The op item contains a number that represents a particular operation within an IR 
stage. These ops are defined in Appendix B.  

type  

The type item contains a number that represents a type for a value. These types 
are listed in the table below.  

type value 
VOID 0 
CC 1 
FCC 2 
TUPLE 3 
BOOLEAN 4 
BYTE 5 
CHAR 6 
SHORT 7 
INT 8 
LONG 9 
FLOAT 10 
DOUBLE 11 
ARRAY 12 
STORE 13 
NULL 14 
OBJECT 15 

 

pc  

The pc item contains the program counter for this particular instruction. This 
information is saved for use by the exception handling mechanism.  

index  

This is the numerical identifier of this valueInfo within the values[] item of the 
methodInfo that holds this valueInfo.  

locationType  
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The locationType item contains place where the memory for this value should 
live.  The following table describes the different locationTypes.  

 

locationType value 
VOID_LOCATION 255 
INT_REG 0 
FLOAT_REG 1 
STACK_TMP 2 
STACK_IN_ARG 3 

 

locationFlags  

Contains added information about the memory location of this value, such as 
whether it is assigned to a symbolic or physical register.  The following table 
describes the different locationFlags.  The value of a locationFlags item is a 
bit mask of the values in the table.  

locationFlags value 
IS_REGISTER 1 
IS_CALLEE_SAVE 2 
IS_RESERVED 4  
IS_SYMBOLIC 8  
IS_LOCAL 0  

 

location  

The number associated with the physical register, or symbolic register, or the 
stack location that holds this value.  This item along with locationType and 
locationFlags gives all the possible memory locations for a value within a 
method.  

isSpilled  

This item is set to 1 if this variable is spilled during global or local allocation and 
needs to be stored to a stack location after its definition and loaded from the stack 
before every use.  

isRTConst  

This item is set to 1 if this variable is a runtime constant.  This information can be 
used to specialize a method.  
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unavailRegs  

This item contains a set of registers should not be assigned to this value because it 
somehow conflicts with the lifetime of this value.  This set could include the 
scratch registers, if the value is live across a method call, or other physical 
registers which have been assigned to values and conflict with this value.  

useCount  

The useCount item contains the number of values that use this value as an input 
argument.  

uses  

The uses item contains a list of pointers to valueInfo structures that contain the 
values that use this value as an input argument. The length of this list is defined 
by the useCount item.  

paramCount  

The paramCount item contains the number of argument values to the operations 
described within this value.  

params  

The params item contains a list of pointers to valueInfo structures that contain 
the arguments to the operation described within this value. The length of this list 
is defined by the paramCount item.  

container  

The container item contains the blockInfo that holds this value.  Thus, the 
values item of this container will also contain a pointer back to this valueInfo.  

aux  

The aux item contains any auxiliary information for a value that cannot be stored 
within the params. This information includes constants, field and method 
references, and argument numbers. This item is of variable length and depends 
upon the type tag that is defined by the auxInfo structure. 

 
 

Auxiliary Information 
Every valueInfo and blockInfo structure contains an auxiliary item for holding any 
extra information. This information includes constants, field and method references, and 
argument numbers. This item is of variable length and depends upon the tag.  
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NOTE: Auxiliary information structs are shared amongst all of the 
methods in the JET file, much like the constants in the constant pool. 
When relocating pointers, make sure to relocate them once instead of 
numerous times which may happen if you relocate them on each encounter 
through the values arrays.  

The basic form of all the auxInfo structures is the following:  
 
auxInfo {

u2 tag;
u1 isResolved;
u1[] info;

}

 
The items in the auxInfo structure are as follows:  

tag  

The tag item contains a number that represents the type of information stored 
within the auxInfo structure. This tag also gives information as to the length of the 
info array.  

The following table describes the possible tags for an auxInfo structure. The 
length column tells the length of the info array that can be expected. 

Tag Value Length 
VAL_Void 0 4 
VAL_Integer 1 8 
VAL_Float 2 8 
VAL_Long 3 16 
VAL_Double 4 16 
VAL_String 5 16 
VAL_Fref 6 32 
VAL_Mref 7 32 
VAL_BlockVec 8 16 
VAL_RuntimeProc 9 16 
VAL_RefType 10 16 
VAL_FrefOffset 11  32  
VAL_JumpTable 12  32  
BLOCK_ExcLabel 13 16 
BLOCK_IntLabel 14 16 

 

isResolved  

Since auxInfos are shared between different values, a space is left available in 
the auxInfo struct for determining whether this auxInfo has been resolved 
during the read-in process.  
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info  

The info item contains the actual data for an auxInfo structure. This array is of 
variable length, and its size is determined by its tag. The different types of info 
are described in the next sections.  

 
 

VAL_Void 
VAL_Void {

u2 tag;
u2 isResolved;

}

A VAL_Void info structure contains nothing other than the header of the auxInfo 
structure.  

 
 

VAL_Integer, VAL_Float 
VAL_Integer, VAL_Float {

u2 tag;
u2 isResolved
i4 val;

}

VAL_Integer and VAL_Float info structures have four bytes for the value of the 
number. VAL_Float values are encoded using the Float.floatToIntBits() method. 
Numbers are encoded in little-endian byte order.  

 

VAL_Long, VAL_Double 
VAL_Long, VAL_Double {

u2 tag;
u2 isResolved;
i8 val;

}

VAL_Long and VAL_Double info structures have eight bytes for the value of the 
number. VAL_Double values are encoded using the Double.doubleToLongBits() 
method. Numbers are encoded in little-endian byte order.  

 
 

VAL_String 
VAL_String {

u2 tag;
u2 isResolved
utf8* string;

}

VAL_String info structures contains a pointer to a null-terminated character array 
which is the utf-encoded version of a Java string  
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VAL_Fref, VAL_Mref 

VAL_Fref, VAL_Mref {
u2 tag;
u2 isResolved;
utf8* class;
utf8* name;
utf8* signature;

}

The items in a VAL_Fref or VAL_Mref info structure are as follows:  

class  

The class item contains a pointer into the cpool table for the name of the 
owner class that contains this field/method.  

name  

The name item contains the name of this field/method.  

signature  

The signature item contains the Java signature of this field/method. 
 
 

VAL_BlockVec 
VAL_BlockVec {

u2 tag;
u2 isResolved;
u2 blockCount;
BlockInfo** blocks;

}

 

The items in a VAL_BlockVec structure are as follows:  

blockCount  

The blockCount item contains the number of blocks within this 
BlockVec.  

blocks  

The blocks item is an array of block numbers that make up this 
BlockVec. These block numbers are also the offset into the blocks table 
used to create the CFG. 
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VAL_RuntimeProc 
VAL_RuntimeProc {

u2 tag;
u2 isResolved;
u2 type;
auxInfo* aux;

}

The items in a VAL_RuntimeProc structure are as follows:  

type  

The type item contains the unique numerical identifier of a runtime 
procedure. The list of types can be found the table below with their aux 
types. 

aux  

The aux item contains any extra information needed by the RuntimeProc.  
This is a VAL_Integer in the case of creating a new array, otherwise it is a 
VAL_String that contains the name of a class.  

The following table contains all of the possible RuntimeProcs as well as 
their associated values and the types of their aux fields: 

 
type value aux type  
SYNC_ENTER 1 VAL_Void  
SYNC_EXIT 2 VAL_Void 
NEW 3 VAL_String 
FCMPL 4 VAL_Void 
FCMPG 5 VAL_Void 
DCMPL 6 VAL_Void 
DCMPG 7 VAL_Void 
NEWARRAY 8 VAL_Integer 
ANEWARRAY 9 VAL_String 
MULTIANEWARRAY 10 VAL_Void 
INSTANCEOF 11 VAL_String 
CAST_CK 12 VAL_Void 
IDIV 13 VAL_Void 
IREM 14 VAL_Void 
LDIV 15 VAL_Void 
LREM 16 VAL_Void 
FREM 17 VAL_Void 
DREM 18 VAL_Void 
THROW 19 VAL_Void 
INIT_CK 20 VAL_String 
D2I 21 VAL_Void 
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D2L 22 VAL_Void 
AASTORE 23 VAL_Void 
SYNC_EXIT_RET 24 VAL_Void 

 
 

VAL_RefType 
VAL_RefType {

u2 tag;
u2 isResolved
utf8* name;

}

The items in a VAL_RefType info structure are as follows: 

name  

The name item contains the name of the class that this value is referencing. 
 
 

VAL_FrefOffset 
VAL_FrefOffset {

u2 tag;
u2 isResolved;
u2 offset;
utf8* class;
utf8* name;
utf8* signature;

}

The items in a VAL_FrefOffset info structure are as follows:  

offset  

The offset item contains the byte offset of this field reference from the 
beginning of the object it references in memory.  

class  

The class item contains the name of the owner class which this field.  

name  

The name item contains the name of this field.  

signature  

The signature item contains the Java signature of this field. 
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VAL_JumpTable 
VAL_JumpTable {

u2 tag;
u2 isResolved;
u2 type;
u2 baseIndex;
u2 tableOffset;
i4 min;
i4 max;
u4 nonDefaultEntries;
blockInfo* block;

}

The items in a VAL_JumpTable structure are as follows:  

type  

This is the type of the Jump Table.  The type item contains a value of 0 
for a LOOKUPSWITCH type and a value of 1 for a TABLESWITCH type.  

baseIndex  

Index of the instruction that gets the base pointer  

tableOffset  

Offset of the emitted table from the baseIndex instruction  

min  

The minimum value for a label in the jump table  

max  

The maximum value for a label in the jump table  

nonDefaultEntries  

The number of non-default labels in the jump table.  

block  

This item is a pointer to the block that holds the switch statement 
responsible for this Jump Table.  

 

BLOCK_ExcLabel 
BLOCK_ExcLabel {

u2 tag;
u2 isResolved;
u2 excCount;
excLabel* exceptions;

}
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excLabel {
utf8* excName;
blockInfo* handler;

}

The items in a BLOCK_ExcLabel info structure are as follows:  

excCount  

The item contains the number of exceptions that can be raised within this 
block.  

exceptions  

The item contains a table of excLabels that hold the information on 
which exceptions can be thrown in a block and the blocks that contain the 
handler information. 

The items in an excLabel structure are the following:  

excName  

This item contains a pointer to the class name for an exception thrown by 
this block.  If a faulting instruction returns to this block with an exception 
of excName type, it jumps to the handler block.  If the handler catches all 
exception, excName will contain the empty string.  

handler  

This item contains a pointer to the blockInfo that holds the handler code 
for a caught exception of excName type. 

 
 

BLOCK_IntLabel 
BLOCK_IntLabel {

u2 tag;
u2 isResolved;
u2 labelCount;
intLabel* labels;

}
intLabel {

i4 label;
blockInfo* destination;

}

The items in a BLOCK_IntLabel structure are as follows:  

labelCount  

This item contains the number of labels that can be used to transfer control 
in this block.  
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labels  

The item contains a table of intLabel labels that are the branch 
determining values.  Each successor has an intLabel, but the number of 
labels associated with a successor may be greater than one.  The size of 
this table is determined by the labelCount item. 

The items in an intLabel structure are as follows:  

label  

This item contains the integer that is the label for a switch statement.  The 
successor to branch to for this label is described in the destination item.  

destination  

This item contains the block in the successors array that should be the 
destination block of a switch statement if the result of the switch is the 
value in label. 

 
 
 

Bit Vector 
Each block in the CFG also contains helpful information about the liveness of the 
variables as execution proceeds through the block.  This liveness information is 
calculated in a final phase of the Swift compiler and passed along into the binary output.  
The representation chosen to represent these sets is bit vectors.  Each value in the set is 
represented by the integer from the values' index field. 
 

bitvec {
u8 length;
u8* set;

}

 
The items in a bitvec structure are the following:  

length  

This item contains the maximum magnitude of integers represented in this set.  It 
is also the number of values in the method containing this set.  

set  

This item contains a list of quadwords that form the bit vector representation of 
this set. 
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Exception Information 
Each block that can throw an exception must contain a list of excLabels.   These labels 
contain the type of the exception, by class name, and a pointer to the block that holds 
handler for that particular exception.  This information is gathered from the exception 
table in the classfile and passed down with the IR. 
 

excLabel {
utf8* excName;
blockInfo* handler;

} 
The items in an excLabel structure are the following: 
 

excName  

This item contains a pointer to the class name for an exception thrown by this 
block.  If a faulting instruction returns to this block with an exception of excName 
type, it jumps to the handler block. If the handler catches all exception, excName 
will contain the empty string. 

handler  

This item contains a pointer to the blockInfo that holds the handler code for a 
caught exception of excName type. 

 
 

UTF8-String constants 
An UTF8-String contains a list of one-byte utf-encoded Unicode characters followed by a 
null-terminating character.  One can consider the utf8 type to be the same as an u1 or a 
char.  
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Appendix B: JET Opcodes 

 
IN_ARG    1 

Input argument to subroutine 
 
SELECT    2 

Abstract value representing the 
result of a memory operation. 

 
COPY     3 
 
NOP     4 
 
PIN     5 

Used as a fake input to 
operations that need to be pinned 
within a certain region of the 
CFG. 

 
SPILL     6 

Store to stack location (used for 
spilling) 

 
RESTORE    7 

Load from stack location (used 
for spilling) 

 
ADD     8 
SUB     9 
MUL     10 
DIV     11 
 
AND     16 
OR     17 
XOR     18 
 
NEG     19 

Arithmetic negation 
NOT     26 

Logical not 
 
 
 
 

PHI     31 
Abstract value representing a 
node whose value differs 
depending on the instruction path 
executed to reach this node. 

 
IF     32 

Abstract value representing flow 
control. 

 
REAL_RETURN   33 
 
SWITCH    34 

tableswitch or lookupswitch 
 
NULL_CK    35 

Null check. 
 
LENGTH    37 

Array length. 
 
GET_FIELD_ADDR   45 

Get object field address 
 
INVOKE_VIRTUAL   46 
INVOKE_SPECIAL   47 
INVOKE_INTERFACE  48 
INVOKE_STATIC   49 
INVOKE_DIRECT   50 
       
INSTANCEOF   51 

Object type verification. 
 
RT_CALL    59 

Generic call to a runtime routine 
 
EXCOBJ    61 

Object for exception handler 
 
PUT_MT    62 

Store method table of object. 
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PUT_SIZE    63 
Store size of object. 

 
ALPHA_LITERAL   64 

Immediate constant (0…255) 
Value stored in auxiliary field. 

 
ALPHA_IZERO   65 

Integer register r31 
ALPHA_FZERO   66 

Floating-point register f31 
 
ALPHA_LDA    67 

Load 16-bit constant. 
ALPHA_LDAH   68 

Load 16-bit constant high. (Use 
in combination with LDA to load 
32-bit constant.) 

ALPHA_SRA    69 
Shift right arithmetic 

ALPHA_SLL    70 
Shift left logical 

ALPHA_SRL    71 
Shift right logical 

 
ALPHA_S4SUB   72 

Scaled by 4 subtract 
ALPHA_S4ADD   73 

Scaled by 4 add 
ALPHA_S8SUB   74 

Scaled by 8 subtract 
ALPHA_S8ADD   75 

Scaled by 4 add 
 
ALPHA_BITCOMP   76 

Bit-wise negation 
 
ALPHA_BEQ    77 

Branch if register equal to zero 
ALPHA_BGE    78 
ALPHA_BGT    79 
ALPHA_BLE    80 
ALPHA_BLT    81 
ALPHA_BNE    82 
ALPHA_BLBS   83 

Branch if register low bit is set 

ALPHA_BLBC   84 
Branch if register low bit is clear 

 
ALPHA_CMPEQ   85 

Compare signed equal 
ALPHA_CMPLE   86 
ALPHA_CMPLT   87 

Compare signed less than 
ALPHA_CMPULT   88 

Compare unsigned less than 
ALPHA_CMPULE   89 
 
ALPHA_CMOVEQ   90 
ALPHA_CMOVGE   91 
ALPHA_CMOVGT   92 
ALPHA_CMOVLE   93 
ALPHA_CMOVLT   94 
ALPHA_CMOVNE   95 

Conditional move if register not 
equal to zero 

 
ALPHA_ZAPNOT   96 

Zero out Ra bytes not specified 
in Rb 

 
ALPHA_SEXTB   97 

Sign extend byte 
ALPHA_SEXTW   98 

Sign extend word 
ALPHA_EXTQH   99 

Extract quadword high 
ALPHA_EXTBL   100 

Extract byte low 
ALPHA_EXTWL   101 

Extract word low 
ALPHA_INSBL   102 

Insert byte low 
ALPHA_INSWL   103 

Insert byte low 
ALPHA_MSKBL   104 

Mask byte low 
ALPHA_MSKWL   105 

Mask word low 
ALPHA_SEXTL   106 

Sign extend longword. 
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ALPHA_STB    107 
Store byte 

ALPHA_STW    108 
Store word 

ALPHA_STL    109 
Store longword 

ALPHA_STQ    110 
Store quadword 

ALPHA_STS    111 
Store longword floating 

ALPHA_STT    112 
Store quadword floating 

ALPHA_STQ_U   113 
Store unaligned quadword 

 
ALPHA_LDBU   114 

Load unaligned byte 
ALPHA_LDWU   115 

Load unaligned word 
ALPHA_LDL    116 

Load longword 
ALPHA_LDQ    117 

Load quadword 
ALPHA_LDS    118 

Load longword floating 
ALPHA_LDT    119 

Load quadword floating 
ALPHA_LDQ_U   120 

Load unaligned quadword 
 
ALPHA_ITOFT   121 

Convert integer to floating 
ALPHA_CVTQS   122 

Convert quadword integer to 
longword floating 

ALPHA_CVTQT   123 
Convert quadword integer to 
quadword floating 

ALPHA_CVTTSSU   124 
Convert quadword float to 
longword floating 

ALPHA_CVTSTS   125 
Convert longword float to 
quadword floating 

 
 

ALPHA_CVT_STORE  126 
Store to stack for conversion 

ALPHA_CVT_LOAD  127 
Load from stack for conversion 

ALPHA_CVT_STS   128 
Store to stack for conversion 

ALPHA_CVT_LDL   129 
Load from stack for conversion 

 
ALPHA_LOAD_MT   130 

Load method table pointer 
ALPHA_LOAD_VTABLE  131 

Load proc pointer from vtable 
ALPHA_LOAD_ITABLE  132 

Load proc pointer from itable 
 
ALPHA_LOAD_IID_LOW  133 

Load low bits of interface 
method id 

ALPHA_LOAD_IID_HIGH  134 
Load high bits of interface 
method id 

 
ALPHA_GLOBAL_HIGH  135 

Operation for getting the high 16 
bit displacement in preparation 
for accessing global data 

ALPHA_GLOBAL_LOW4  136 
ALPHA_GLOBAL_LOW8  137 

Operation for loading a global 
constant.  Takes as input the 
corresponding GLOBAL_HIGH 
value. 

 
ALPHA_PUT_STATIC4  138 
ALPHA_PUT_STATIC8  139 
ALPHA_GET_STATIC4  140 
ALPHA_GET_STATIC8  141 

Operations for loading/storing 
global variables. Takes as input 
the corresponding GLOBAL_HIGH 
value, and have an FREF as its 
auxiliary field. 
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ALPHA_FLOAD1   142 
ALPHA_FLOAD2   143 
ALPHA_FLOAD4   144 
ALPHA_FLOAD8   145 

Simple field load 
 
ALPHA_FSTORE1   146 
ALPHA_FSTORE2   147 
ALPHA_FSTORE4   148 
ALPHA_FSTORE8   149 

Simple field store 
 
ALPHA_FLOAD_BASE  150 

Load from rounddown(offset, 4) 
ALPHA_FSTORE_BASE  151 

Store to rounddown(offset, 4) 
ALPHA_FIELD_SLL   152 

Shift left for sign-extension 
ALPHA_FIELD_EXTBL  153 
ALPHA_FIELD_EXTWL  154 

Extract field bits into right place 
ALPHA_FIELD_INSBL  155 
ALPHA_FIELD_INSWL  156 

Insert field bits into right place 
ALPHA_FIELD_MSKBL  157 
ALPHA_FIELD_MSKWL  158 

Mask out all except field bits 
 

ALPHA_LOAD_STKARRAY 159 
Load pointer to temp array on 
stack 

        
ALPHA_BOUNDS_TRUE  162 

Raise bounds if input is true 
 
ALPHA_TRAPB   163 

Trap instruction for catching 
exceptions 

 
ALPHA_JMP    164 

Indirect jump 
 
ALPHA_BRNEXT   165 

Branch to next instruction: note 
that this instruction is not really a 
control instruction.  It is just used 
to capture the address of the next 
instruction. 

 
ALPHA_LD_JT   166 

Load entry from jump table 
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Appendix C: JET Calling Standard2 

Register Usage Conventions 
Integer Registers 

Register Description 

$0 Function value register. In a standard call that returns a non-floating-point 
function result in a register, the result must be returned in this register. In a 
standard call, this register can be modified by the called procedure without 
being saved and restored.  

$1 - $8 Conventional scratch registers. In a standard call, these registers can be 
modified by the called procedure without being saved and restored.  

$9 - $14 Conventional saved registers. If a standard-conforming procedure modifies 
one of these registers, it must save and restore it.  

$15 Stack frame base (FP) register. For procedures with a run-time variable 
amount of stack, this register is used to point at the base of the stack frame 
(fixed part of the stack). For all other procedures, this register has no special 
significance. If a standard-conforming procedure modifies this register, it 
must save and restore it.  

$16 - $21 Argument registers. In a standard call, up to six non-floating-point items of 
the argument list are passed in these registers. In a standard call, these 
registers can be modified by the called procedure without being saved and 
restored. Additional arguments must be passed through the stack. 

$22 - $25 Conventional scratch registers. In a standard call, these registers can be 
modified by the called procedure without being saved and restored.  

$26 Return address (RA) register. In a standard call, the return address must be 
passed and returned in this register.  

$27 Procedure value (PV) register. In a standard call, the procedure value of the 
procedure being called is passed in this register. In a standard call, this register 
can be modified by the called procedure without being saved and restored. 

$28 Volatile scratch register. The contents of this register are always unpredictable 
after any external transfer of control to or from a procedure. This 
unpredictable nature applies to both standard and nonstandard calls. This 
register can be used by the operating system for external call fixing, auto 
loading, and exit sequences.  

$29 Global pointer (GP) register. For a standard-conforming procedure, this 
register must contain the calling procedure's global offset table  (GOT) 
segment pointer value at the time of a call and must contain the calling 
procedure's GOT segment pointer value or the called procedure's GOT 
segment pointer value upon return. This register must be treated as scratch by 
the calling procedure. 

                                                 
2 JET calling standard is the same as the Alpha calling standard 
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$30 Stack pointer (SP) register. This register contains a pointer to the top of the 
current operating stack. Aspects of its usage and alignment are defined by the 
hardware architecture. 

$31 ReadAsZero/Sink register. This register is defined to be binary zero as a 
source operand or sink (no effect) as a result operand.  

 
Floating-Point Registers 

Register Description 

$f0 Floating-point function value register. In a standard call that returns a 
floating-point result in a register, this register is used to return the real part 
of the result. In a standard call, this register can be modified by the called 
procedure without being saved and restored.  

$f1 Floating-point function value register. In a standard call that returns a 
complex floating-point result in registers, this register is used to return the 
imaginary part of the result. In a standard call, this register can be modified 
by the called procedure without being saved and restored. 

$f2 - $f9 Conventional saved registers. If a standard-conforming procedure modifies 
one of these registers, it must save and restore it. 

$f10 - $f15 Conventional scratch registers. In a standard call, these registers can be 
modified by the called procedure without being saved and restored.  

$f16 - $f21 Argument registers. In a standard call, up to six floating-point arguments 
can be passed by value in these registers. In a standard call, these registers 
can be modified by the called procedure without being saved and restored. 
Additional arguments must be passed through the stack. 

$f22 - $f30 Conventional scratch registers. In a standard call, these registers can be 
modified by the called procedure without being saved and restored.  

$f31 ReadAsZero/Sink register. This register is defined to be binary zero as a 
source operand or sink (no effect) as a result operand. 
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Appendix D: Register Allocation 

The register allocation algorithms used in this research are adapted from classic compiler 
register allocation algorithms and may be found in Morgan’s Building An Optimizing 
Compiler. The two major algorithms that accomplish local register allocation are the FAT 
algorithm by Hendron and the One-Pass Allocation algorithm. Below is the pseudo-code 
that describes how these algorithms work: 
 
struct LALLOC {

startTime = 0
endTime = 0
numRegister = 0

}

procedure local_allocate(METHOD *m) {
info = new LALLOC

for each block b in m {
build_local_conflict_graph(info, b)

while set of values in livestart_set is not null {
t = a value from livestart_set
remove t from livestart_set

try_allocate_with_global(info, b, t)
}

one_pass_allocate(info, b)
}

}

 
A generic local allocation algorithm would typically begin by classifying each value in 
the method and determine the various liveness sets. This calculation was done in Turbo 
and is not necessary in Afterburner. This algorithm allocates registers for values one 
block at a time. The first step is to build a local conflict graph that contains liveness 
ranges for each value node in the block. The live start set is the set of values that are live 
or in use at the beginning of the block. The values in the live set are global variables. 
Local allocation attempts to allocate local variables in the same register as these global 
variables if the liveness ranges of the local variables do not conflict with the liveness 
ranges of these global variables. Finally, a linear one-pass allocation algorithm is called 
on the block to allocate the remaining local variables. 
 
Typically local allocation would also have to reduce the register pressure before the 
algorithm begins, but since Turbo maintains that the maximum register pressure is not 
larger than the number of register available, a register spilling and pressure reducing step 
is unnecessary. While this property states that the maximum register pressure is no 
greater than the number of registers available, this does not imply register spilling is 
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entirely avoidable. One-pass allocation will still encounter situations where it is too 
difficult or impossible to allocate all the variables and spill code will have to be emitted. 
 

procedure build_local_conflict_graph (LALLOC *info, BLOCK *b) {
timeCount = 0
live_set = liveout_set
endTime[] = int[number of values in method]
startTime[] = int[number of values in method]
pressure = 0

for each value v in the method that contains this block {
endTime[v] = timeCount

}

for each value v in block b in reverse order {
timeCount++
startTime[v] = timeCount
remove v from live_set

timeCount++
for each input p to value v {

if p is not in live_set {
endTime[p] = timeCount
insert p into live_set

}
}
cnt = number of elements in live_set
if (cnt > pressure) {

pressure = cnt
}

}
timeCount++
for each value v in live_set {

startTime[v] = timeCount;
}

info->startTime = startTime
info->endTime = endTime
info->numRegister = pressure

}

 
Build_local_conflict_graph is responsible for figuring out the range over which each 
variable is live within a particular block. This is accomplished by determining the first 
and last times a variable is used. This range is the liveness range of the variable. This 
calculation begins by initializing all end times for each variable to zero. The algorithm 
then steps through each value in the block in reverse execution order. Time is measured 
as relative displacement from the end of the block. Each instruction contributes 2 units of 
time, one unit for write and one for read. The live set starts out as the set of values that 
are live at the end of the block. As the algorithm marches through the values, values are 
inserted into the set of live values if they are read and are not already in the live set. If 
values are written to then the values are removed from the live set. Start time is set to be 
the first time that the value is written, and end time is the last time that the value is read. 
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Some values are live at the beginning of the block and have start time set equal to the 
beginning of the block. 
 
 
procedure try_allocate_with_global (LALLOC *info, BLOCK *b, VALUE *g) {

/* this is the FAT algorithm */
beginTime = info->endTime[g]
finishTime = 0
for each value v in block b in reverse order {

if v has the same type and color as g {
finishTime = info->startTime[v]

}
}

for each value v in block b in reverse order {
if v has the same type as g and v has not been colored {

/* if liveness of g and v do not overlap */
if (info->endTime[v] >= finishTime and

info->startTime[v] < beginTime) {
v->location = g->location
finishTime = info->startTime[v]

}
}

}
}

Local variables can be allocated with global variables if their liveness ranges do not 
overlap. This algorithm is called once for every global variable.  During its execution, it 
calculates the liveness range for the register used by the global variable by concatenating 
liveness ranges of all variables that share the same register. Next, it assigns local 
variables to the same register as the global variable if the liveness ranges of the local 
variable do not overlap the liveness range of the register. 

procedure one_pass_allocate (LALLOC *info, BLOCK *b) {
/* Initialize the free register sets */
free_regs = set of available registers

/* Initialize the global register sets */
for each value v in livestart and livethru sets for block b {

insert v->location into global_regs
}

/* delete liveEnd from freereg set and copy into live set */
live_set = new set
for each value v in liveend set {

remove v->location from free_regs
insert v into live_set

}

free_regs = free_regs – global_regs

f_set = new set
for each value v in block b in reverse execution order {

remove v from live_set
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if (v requires a location and
v->location is not on stack and
v->location is not in global_regs) {

insert v->location into free_regs
}

for each parameter p of value v {
if (p requires a location and

p is not in live_set) {
insert p into live_set

if (p->location is symbolic and
p->location is not on stack) {

f_set = free_regs – v->unavailRegs
if f_set is empty {

set p->spill SPILL_OUT flag
p->location.type = STACK_TMP
p->location = new stack_tmp slot

} else {
s = a register from f_set
remove s from free_regs
p->location = s

}
}

}
} /* end for each parameter */

} /* end for each value */
}

 
One-pass allocation is a linear algorithm that allocates all the remaining local variables. 
The algorithm determines the set of free registers by subtracting the registers occupied by 
global variables from the set of available registers. The algorithm then iterates over each 
value in the current block in reverse execution order. Each time a read occurs, the value is 
inserted into the live set; each time a write occurs the value is removed from the live set. 
When a value is removed from the live set, its registers are put back into the free register 
set. When a value is added to the live set, a register is chosen from the intersection of the 
set of free registers and the set of registers that are available to that variable. This is 
because some variables can only be assigned to certain registers, while other variables are 
less restrictive. Once one-pass allocation completes, all variables should have been 
allocated. 
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Appendix E: Constant Propagation 

The constant propagation algorithm employed is an adaptation of the classic compiler 
constant propagation algorithm by Wegman and Zadeck. These algorithms may be found 
in Morgan’s Building An Optimizing Compiler. The following is pseudo code and 
detailed descriptions of the algorithm: 
 
procedure constant_propagation (METHOD *m, JSP_TYPE *jsp_type) {

rtconsts = set of arguments that are constants for jsp_type

worklist = new FIFO queue
blocklist = new FIFO queue

/* initializations */
add entry block of m to blocklist
for each value v in m {

set v->state.status = TOP
if v is a phi node {

v->state.count = 1;
} else {

v->state.count = v->paramCount + 1;
}

}
for each argument value v in rtconsts {

v->state.value = actual value of corresponding argument
}

while (worklist is not empty or blocklist is not empty) {
while blocklist is not empty {

b = remove next block from blocklist
if b is marked reachable {

skip
}
mark b as reachable
for each value v in b {

if (--v->state.count <= 0) {
/* all inputs are initialized */
add v to worklist

}
}
if b is not a conditional block {

add each successor block of b to block list
}

}
while worklist is not empty {

v = remove next value from worklist
oldstatus = v->state.status
if (oldstatus == BOT) {

skip
}

eval_state(v)
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if v->state.status != oldstatus {
if v is a conditional branch {

if v->state.status = CONST {
determine which branch’s successor

block will be executed and add
that block to blocklist

} else { /* status = BOT */
add all successor blocks to

blocklist
}

} /* end if v is conditional branch */
for each value u that uses v {

if (u->state.count <= 0) {
add u to worklist

}
}

} /* end if new status != old status */
}

}

/* update m to use new constants and remove excess code */
update(m)

}

The main concept in this constant propagation algorithm is that each value node can be in 
any of 3 status states, TOP, CONST, or BOT. Status states can only transition from TOP 
towards BOT. Specifically, once a status reaches BOT it can never transition to CONST 
or TOP. TOP indicates a node is un-initialized or not yet executed. CONST indicates a 
node is assumed to have constant value. BOT signifies a node has variable value and 
cannot be transformed into a constant. The constant propagation algorithm uses a block 
FIFO queue and a value FIFO queue. The algorithm begins with only entry block in the 
block queue. The algorithm continues until both the block and the value queues are 
empty. If a block being examined is not a conditional block, its successor blocks are 
placed on the block queue. Blocks that are conditional must wait until its corresponding 
branch instruction has been examined before the algorithm can determine which 
successor block to add. Values whose inputs have all been examined at least once are 
potential candidates for evaluation and are added to the value queue. When a value is 
examined, its state is evaluated. If the value’s new state differs from its old state, then 
users of this value need to be updated and are added to the value queue. If the value that 
was evaluated is a conditional branch then its appropriate target blocks need to be added 
to the block queue. Once all reachable blocks and values are examined and no further 
updates are necessary, the algorithm completes. 

procedure eval_state(VALUE *v) {
switch (v) {
case v is input argument:

if v is an argument marked as constant by the jsp_type {
v->state.status = CONST
v->state.value = argument value

else {
v->state.statis = BOT

}



 

 

58

case v is a constant:
v->state.status = CONST

case v is a phi node:
if (all inputs to v whose state.status != TOP have the same

state.value) {
v->state.status = CONST
v->state.value = state.value of v’s inputs

else {
v->state.statis = BOT

}
}
case v is a node that can be propagated:

if any param of v has state.status = BOT {
v->state.statis = BOT

} else if any param of v has state.status = TOP {
v->state.statis = TOP

} else {
v->state.status = CONST
v->state.value = value of operation given constant

params
}

default:
v->state.statis = BOT

}

This algorithm determines the state for a give value node. A node’s state is determined by 
examining the inputs to that value. There are roughly three categories of nodes, constant, 
phi, and normal. If a node is a constant node or an input argument that is classified as a 
constant by the specialization category, its state is set to CONST and its value set 
accordingly. A phi node is a value node with multiple inputs. The output value of a phi 
node equals the value of one its input. The selection of which input differs depending on 
the flow of execution taken to reach the phi node. This is used typically when a variable 
is set to different values in different branches. A phi node can be marked as a constant if 
all of the input nodes that are initialized have the same value. This approach is known as 
optimistic because it assumes that phi nodes will usually be constants and corrects the 
assumption once the algorithm determines that the phi node is actually not a constant. 
This optimistic approach allow more values to potentially become constants. Normal 
(non-phi and non-constant) nodes are marked as BOT if any of that node’s inputs are 
BOT. Nodes are marked as TOP if any of that node’s inputs are TOP. If all inputs to a 
node are CONST, then that node can be evaluated and marked as a constant. Certain 
nodes have operations that cannot be transformed into a constant and are marked as BOT. 

procedure update(METHOD *m) {
const_set = set of values in m whose state.status = CONST
needed_set = set of values in const_set that are used by values

whose state.status = BOT
remove_set = (const_set – needed_set) + set of values in m whose

state.status = TOP

delete from m all values in remove_set
modify all values in needed_set so that the node is an

appropriate constant
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remove from m all blocks that are not marked as reachable
}

The update phase of the constant propagation algorithm makes use of all the information 
gained during constant propagation. Nodes that are not initialized are not executed and 
can be removed from the JET IR. Blocks that are not reached are also not executed and 
can also be removed from the JET IR. Constant nodes need to remain only if the constant 
node is used as input to a non-constant node. All other constant nodes can be removed. 
Constant nodes that are used by non-constant nodes need to be modified into a JET IR 
constant. The output of the process is a specialized and reduced JET IR that will be 
passed to the generator. The generator will use the specialized JET IR to generated 
specialized code. 
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Appendix F: Sample Generation and Specialization 

Java Source 
public static int Test(int a, int b) {

int r = a+b;
int x = 5;
int y = 9;
int z = 234;

if (a > b) {
r += a;
r *= y;
r %= x;

}
else {

r %= x;
r += a;
r /= x;
r += z;

}
return r;

}

 
Non-Specialized Generation 

0x20021b40 Test [exp 1.60, cum 3.08]
0x20021b40 lda sp, -16(sp)
0x20021b44 stq ra, 0(sp)
0x20021b48 bis a0, a0, t1
0x20021b4c addl a0, a1, a0 ; r = a+b
0x20021b50 lda t2, 5(zero) ; x = 5
0x20021b54 cmple t1, a1, v0
0x20021b58 bne v0, 0x20021b60
0x20021b5c br zero, 0x20021b7c
0x20021b60 bis t2, t2, a1 ; else {
0x20021b64 bsr ra, 0x203f5cd4 ; r %= x;
0x20021b68 addl v0, t1, a0 ; r += a
0x20021b6c bis t2, t2, a1
0x20021b70 bsr ra, 0x203f5d4c ; r /= x
0x20021b74 addl v0, 0xea, v0 ; r += z
0x20021b78 br zero, 0x20021b8c ; } if (a > b) {
0x20021b7c addl a0, t1, v0 ; r += a
0x20021b80 s8addl v0, v0, a0 ; r *= y
0x20021b84 bis t2, t2, a1
0x20021b88 bsr ra, 0x203f5cd4 ; r %= x
0x20021b8c ldq ra, 0(sp)
0x20021b90 lda sp, 16(sp)
0x20021b94 ret zero, (ra), 1
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Specialization 
Test(a=76, b=77) {

int r = a+b = 76+77 = 153;
int x = 5;
int z = 234;

if ((a > b) = false) {
}
else {

r %= x;
r += 76;
r /= x;
r += 234;

}
return r;

}
0x20021b50 Test [exp 0.87, cum 3.04]

0x20021b50 lda sp, -16(sp)
0x20021b54 stq ra, 0(sp)
0x20021b58 lda a0, 153(zero) ; r = 153
0x20021b5c lda a1, 5(zero) ; x = 5
0x20021b60 bsr ra, 0x203f5cd4 ; r %= x
0x20021b64 addl v0, 0x4c, a0 ; r += 76
0x20021b68 lda a1, 5(zero)
0x20021b6c bsr ra, 0x203f5d4c ; r /= x
0x20021b70 addl v0, 0xea, v0 ; r += 234
0x20021b74 ldq ra, 0(sp)
0x20021b78 lda sp, 16(sp)
0x20021b7c ret zero, (ra), 1

 
 

Test(a=77, b=76) {
int r = a+b = 77+76 = 153;
int x = 5;

if ((a > b) = true) {
r = 230; /* r += 77; */
r = 2070; /* r *= 9; */
r %= x;

}
return r;

}
0x20022e80 Test [exp 0.58, cum 3.07]

0x20022e80 lda sp, -16(sp)
0x20022e84 stq ra, 0(sp)
0x20022e88 lda a0, 2070(zero) ; r = 2070
0x20022e8c lda a1, 5(zero) ; x = 5
0x20022e90 bsr ra, 0x203f5cd4 ; r %= x
0x20022e94 ldq ra, 0(sp)
0x20022e98 lda sp, 16(sp)
0x20022e9c ret zero, (ra), 1
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Appendix G: Performance Data 

Classfile Size Comparison 
 
File Java (KB) JET (KB) JET / Java 
cmark3.0/AboutDialog.class 1231 23155 18.81 
cmark3.0/BenchmarkAtom.class 331 695 2.10 
cmark3.0/BenchmarkMonitor.class 174 250 1.44 
cmark3.0/BenchmarkUnit.class 1322 52677 39.85 
cmark3.0/CaffeineMarkApp.class 506 7425 14.67 
cmark3.0/CaffeineMarkApplet.class 914 22373 24.48 
cmark3.0/CaffeineMarkBenchmark.class 3382 208553 61.67 
cmark3.0/CaffeineMarkEmbeddedApp.class 1049 43554 41.52 
cmark3.0/CaffeineMarkEmbeddedBenchmark.class 2858 156695 54.83 
cmark3.0/CaffeineMarkFrame.class 6406 413572 64.56 
cmark3.0/DialogAtom.class 1641 61985 37.77 
cmark3.0/FloatAtom.class 1184 60434 51.04 
cmark3.0/GraphicsAtom.class 2179 118903 54.57 
cmark3.0/ImageAtom.class 2811 101285 36.03 
cmark3.0/LogicAtom.class 1261 19639 15.57 
cmark3.0/LoopAtom.class 940 26685 28.39 
cmark3.0/MethodAtom.class 934 26775 28.67 
cmark3.0/SieveAtom.class 817 24620 30.13 
cmark3.0/StopWatch.class 638 19942 31.26 
cmark3.0/StringAtom.class 1121 27819 24.82 
cmark3.0/TestDialog.class 1159 31483 27.16 
cmark3.0/TestWindow.class 467 7234 15.49 
Average   32.04 
 
 
 
 
Caffeine Mark Performance Ratios 
 

Overall Ratios Java JIT Java on JET JET w/o SP JET w/ SP
Java 1 3.085985 1.046884 5.514781 5.517856
JIT 0.324046 1 0.339238 1.787041 1.788037
Java on JET 0.955216 2.947782 1 5.267806 5.270743
JETw/o SP 0.181331 0.559584 0.189832 1 1.000558
JET w/ SP 0.18123 0.559272 0.189727 0.999443 1
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Caffeine Mark Performance Data 
 These benchmarks were run on a 4 SMP EV-56 Alpha machine. 
 

Sieve Loop Logic String Float Method Overall 
Java 1854 4662 11368 3182 3107 1105 3199 
Java 1854 4662 11357 3202 2943 1110 3176 
Java 1854 4660 11369 3198 3102 1109 3203 
Java 1854 4661 11361 3196 3063 1110 3196 
Java 1854 4662 11334 3222 2813 1121 3159 
Average 1854 4661.4 11357.8 3200 3005.6 1111 3186.6 

    
    

Sieve Loop Logic String Float Method Overall 
JIT 5146 10170 33745 10730 5306 8894 9815 
JIT 5146 10166 33733 10542 5307 8915 9789 
JIT 5147 10164 33904 10815 5307 8917 9839 
JIT 5143 10160 33938 10972 5304 8908 9860 
JIT 5148 10166 33980 10957 5307 8920 9866 
Average 5146 10165.2 33860 10803.2 5306.2 8910.8 9833.8 

    
    

Sieve Loop Logic String Float Method Overall 
Java on JET classfiles 2434 4663 11372 3236 2950 1081 3317 
Java on JET classfiles 2434 4663 11361 3256 3097 1084 3348 
Java on JET classfiles 2434 4461 11396 3260 2964 1084 3326 
Java on JET classfiles 2434 4661 11364 3265 3099 1076 3346 
Java on JET classfiles 2434 4662 11349 3237 3102 1081 3343 
Average 2434 4622 11368.4 3250.8 3042.4 1081.2 3336 

    
    

Sieve Loop Logic String Float Method Overall 
JET without Specialization 6211 26835 140178 10525 10836 11146 17597 
JET without Specialization 6229 26821 140145 10524 10751 11142 17579 
JET without Specialization 6233 26830 140189 10516 10796 11146 17594 
JET without Specialization 6220 26814 140100 10209 10824 11138 17503 
JET without Specialization 6229 26810 140109 10589 10741 11146 17594 
Average 6224.4 26822 140144.2 10472.6 10789.6 11143.6 17573.4 

    
    

Sieve Loop Logic String Float Method Overall 
JET with Specialization 6238 26826 140192 10511 10738 11142 17578 
JET with Specialization 6238 26817 140205 10577 10707 11150 17589 
JET with Specialization 6228 26826 140170 10497 10821 11146 17592 
JET with Specialization 6238 26833 140153 10490 10746 11146 17575 
JET with Specialization 6235 26820 140184 10522 10746 11146 17582 
Average 6235.4 26824.4 140180.8 10519.4 10751.6 11146 17583.2 
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