
JET:
An Application of Partial Evaluation in

Dynamic Code Generation for Java

by

Tony Chao

Submitted to the Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science
at the Massachusetts Institute of Technology.

May 26, 2000
Copyright 2000 Tony Chao. All rights reserved.

The author hereby grants to M.I.T. permission to reproduce and
distribute publicly paper and electronic copies of this thesis

and to grant others the right to do so.

Author___
Department of Electrical Engineering and Computer Science

May 17, 2000

Certified by___
M. Frans Kaashoek

Thesis Advisor

Accepted by__
Arthur C. Smith

Chairman, Department Committee on Graduate Theses

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/4384716?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

JET:
An Application of Partial Evaluation in

Dynamic Code Generation for Java

by

Tony Chao

Submitted to the Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science
at the Massachusetts Institute of Technology.

May 26, 2000

Abstract

Java is a popular new language with enormous potential; however, its lack of speed is a
major drawback. Staged compilation and runtime specialization through procedure
cloning are techniques used to improve code generation and execution performance. The
research described in this paper applies these techniques in the design and
implementation of a runtime system to improve Java performance. Analyses indicate that
staged compilation results in a major improvement in performance. In this current
implementation, runtime specialization and constant propagation provides a smaller
incremental benefit, but with more aggressive and new forms of specialization, the
benefits of dynamic specialization will likely increase.

Thesis Supervisor: Robert Morgan
Title: Principal Member of Technical Staff, Compaq Computer Corporation

Thesis Advisor: M. Frans Kaashoek
Title: Associate Professor, MIT Laboratory of Computer Science

2

Table of Contents

1 INTRODUCTION... 4

2 BACKGROUND.. 6

3 MOTIVATION.. 9

4 DESIGN ... 10

4.1 TURBO... 12
4.2 AFTERBURNER .. 12

4.2.1 Parser.. 14
4.2.2 Generator.. 15

4.2.2.1 Scheduler ...16
4.2.2.2 Register Allocation ..16
4.2.2.3 Emitting Code..19

4.2.3 Specializer... 21

5 ANALYSIS... 24

6 CONCLUSION AND FUTURE WORK... 26

APPENDIX A: JET IR SPECIFICATION .. 29

JET .. 29
Method Information... 30
Block Information.. 31
Value Information ... 33
Auxiliary Information.. 36
Bit Vector .. 44
Exception Information... 45
UTF8-String constants .. 45

APPENDIX B: JET OPCODES .. 46

APPENDIX C: JET CALLING STANDARD.. 50

APPENDIX D: REGISTER ALLOCATION... 52

APPENDIX E: CONSTANT PROPAGATION... 56

APPENDIX F: SAMPLE GENERATION AND SPECIALIZATION .. 60

APPENDIX G: PERFORMANCE DATA.. 62

REFERENCES.. 64

3

Table of Figures

Figure 1: JET Stages and Integration ..11

Figure 2: JET Code Generation Process ...13

Figure 2: JET Specialized Generation Process ...15

4

1 Introduction

Staged compilation and runtime specializations are techniques used to improve code

generation and execution performance. This research applies such techniques in a system

designed to improve Java performance. This thesis summarizes the work done in design

and implementation of this architecture. Preliminary performance data and analysis of

design are presented at the end of this paper, and specifications of the implementation as

well as algorithms used are found in the appendices.

Java1 is a programming language developed in recent years by Sun Microsystems. Java

was created as a language for the future: a secure, readily extensible, platform

independent, portable language. Its objected-oriented nature, strong type verification,

automatic memory management, and portability have helped Java spread in popularity.

While originally designed for embedded systems, Java has found overwhelming

acceptance among Web applications. Virtually everything, from e-commerce applications

to traditional standalone applications to computationally intensive numerical analysis

tools, is now being developed in Java. As the world becomes more and more immersed in

the Internet, Java will continue to grow in importance.

1 Java™ is a registered trademark of Sun Microsystems, Inc.

5

Java does, however, have its shortcomings. Current technology is limited, and the very

characteristics that make Java an appealing language for the future are the ones that make

Java slow and intolerable in today’s applications. Java programs are typically compiled

into bytecodes and then interpreted by a virtual machine. Newer Java Virtual Machines

(JVM) incorporate a lightweight compiler that is able to dynamically compile the

bytecodes into machine code to speed up execution. This is known as Just-In-Time

compilation (JIT). Because compilation is performed at execution time, the compilation

overhead must be kept to a minimum. As a result, JIT is usually not capable of intensive

optimizations. Some developments have also been made to allow bytecodes to statically

be compiled into machine code before actual execution takes place. In contrast to JIT,

this is known as Ahead-of-Time compilation (AOT). AOT is very much identical to

traditional compilers except that it is applied to Java. Since compilation time is not part of

performance, AOT is able to perform more intensive optimizations. While AOT is able to

offers faster execution, AOT is limited in its flexibility. Java allows dynamically loaded

classes, and unless the AOT produces code to duplicate JVM functionalities, AOT

programs will be limited in capabilities as well as portability. While JIT and AOT are

both good approaches, neither is entirely satisfactory.

Traditional programs are typically compiled at the end of development. No additional

analysis or compilation is performed at runtime because runtime information cannot be

calculated during static compilation. AOT also follows this process like any other

traditional compiler. On the other hand, JIT is compiled at runtime and has access to

runtime information to allow customization and optimization, but because such analysis

6

can be intensive, JIT generally avoids almost all types of optimization and analysis at

runtime. There are many advantages to runtime code analysis and compilation. If

programs could be analyzed during runtime and modified, programs could be specialized

according to the calling context and offer additional efficiency in execution. When

programs are compiled statically, the compiled programs must be generic, and

optimizations for specialized arguments and calling contexts cannot be incorporated

without assuming a specific application or use. To specialize programs for various calling

contexts, machine codes must be dynamically generated, and some compilation must be

delayed. However, it is not practical to delay all of the compilation until runtime in the

manner of JIT; compilation is a computationally intensive process and incurs significant

performance degradation. Therefore, this research has chosen to stage the compilation.

Programs are statically analyzed and partially evaluated, similar to compilation, but the

actual machine code will not be generated until runtime. By making use of knowledge

learned during static analysis, dynamic runtime code generation can efficiently generate

machine code with little overhead. Java Execution-time Transformations (JET) is an

alternative JVM architecture that allows staged compilation analysis and performs

efficient code generation and specialization through procedure cloning at runtime.

2 Background

In recent years, many research projects have focused on improving Java performance;

JIT’s have been developed on most major architectures and JVM's. The most interesting

JIT approach is Sun's HotSpot. HotSpot dynamically analyzes “hotspots” or critical areas

in the program, and adaptively optimizes the executed code. JET is similar to HotSpot in

7

that optimizations are made automatically and dynamically, but instead of delaying all

analysis and compilation until runtime, JET divides the work into two phases and

minimizes the amount of computation involved at runtime. Although not a JIT, JET

works closely with the JIT to extend the capabilities of the JVM.

AOT’s have also had great success in improving Java performance. Some researchers

approach AOT by translating Java to C (or C++ or Fortran) and then using a robust C

compiler to generate efficient machine code. This includes Java source to C source

translators such as JCC (Shaylor), and Java bytecode to C source converters such as Toba

(Proebsting et al.) and Harissa (Muller et al.). Another approach is to generate machine

code directly from Java bytecodes. Some examples of this approach include Marmot

(Microsoft Research) and TowerJ (Tower Technologies). Since Java programs are able to

dynamically load classes, it is not possible for an AOT to statically analyze all possible

paths of execution and produce a single executable for every program. Some of these

approaches solve the limitations of AOT by providing and linking libraries to provide

JVM functionalities; others simply limit the types of programs that can be compiled or

translated. Unlike AOT’s, JET is an extension to the JVM and does not produce machine

code that can be executed without a JVM.

Compiler research projects involving staged compilation, deferred code generation,

partial evaluation, and runtime specializations are also closely related to this project.

Runtime code generation in the form of self-modifying code was actually widely used in

early systems when memory was expensive. Fast executables could be generated from a

8

compact representation. While portability, complexity, and changing technologies caused

runtime code generation to fall from favor, runtime code generation is still a valuable and

useful technique (Keppel, Eggers, and Henry).

Many staged compilation and runtime code generation architectures have been

developed. To perform dynamic code generation and specialization, a design must be

able to determine which variables and functions to specialize. A popular approach is to

augment the source language with annotations to aid and direct runtime specializations

and code generation. Examples of this declarative approach include Fabius for ML

(Leone and Lee), and Tempo (Consel et al.) and DyC (Grant et al.) for C. Fabius is a

dynamic code generator for a functional subset of ML and is one of the earliest examples

of dynamic code generation. Fabius uses function currying to determine what variables

and functions to specialize. DyC’s code generation process is very similar to the code

generation process of JET. Given an annotated C program as input, DyC produces an

executable program consisting of a static code portion and a generating extensions (GE)

portion. This executable program is the intermediate representation (IR) between the

static analysis and the dynamic generation phase. In the JET system, the IR is not a piece

of machine code. The JET IR is a binary data structure wrapped in a Java classfile

attribute. The GE, DyC’s dynamic specializer, is custom produced for each function and

included in the IR. The JET specializer, on the other hand, is part of the system

architecture and is not generated during static analysis. Both DyC and JET specializers

are invoked during runtime to produce dynamically specialized machine code.

9

Even further on the user involvement spectrum is `C and tcc (Poletto et al.) `C is an

extension of C that was designed specifically for dynamic compilation; tcc is the

compiler for `C (Poletto et al.). `C programmers must explicitly design and declare

functions and variables to be specialized. The biggest distinction between these existing

systems and JET is that JET does not require any form of user specification. All

annotation required by the JET runtime system are generated automatically during static

analysis. Once a classfile has been statically analyzed and appended, the entire code

generation and specialization process is transparent to the user.

3 Motivation

This thesis project is funded by Compaq Computer Corporation as part of the MIT VI-A

internship program. Since the work is funded by a corporate organization, the project

must not only satisfy an academic, research interest but also provide economic value to

the company.

Compaq is interested in this project to help promote sales of its servers. Java is becoming

an important means of developing server applications, and to be able to sell servers,

especially web and e-commerce servers, the servers must be capable of running Java. By

exploring alternative approaches to Java execution and possibly improving speed and

performance of Java programs on its servers, this work can give Compaq an edge in

promoting and marketing their servers.

10

From an academic perspective, runtime code generation and automatic specialization

through procedure cloning is an interesting compiler research topic. Ideas and

understanding gained through this project can help improve general compiler technology.

When applied to Java, this is especially interesting because it seeks to fully optimize Java

and allow Java to compete in performance with other classical languages such as C/C++

and Fortran.

4 Design

The goal of this research was to develop a Java environment that is capable of

dynamically generating and optimizing code. From initial evaluations explained

previously, the staged compilation approach was chosen. Staged compilation combines

the best of both worlds. Heavy computation overheads are accounted for during a static

analysis phase, and the runtime dependent optimizations are performed at runtime to

allow the fullest range of possible optimizations. In compliance with the JET

nomenclature, the static analysis phase is known as Turbo, and the runtime optimization

phase is known as Afterburner. A graphical representation of the design can be found in

Figure 1.

Once the decision of using staged compilation has been made, the next step is to design a

means to integrate the two phases. The JVM specifications allow for implementations to

extend functionality by attaching attributes to the Java classfile. By wrapping the JET

information in a classfile attribute, the JET system can modularize the phases and allow

classfiles that have been put through the static analysis phase (classfiles that have been

11

JET-ified) to be usable on JVM environme

System that do support the JET architectur

will be able to make use of the JET infor

approach helps keep the Java classfiles

functionality to include JET optimizations.

In designing the intermediate representatio

JET optimizations, a modified static single

flow graph (CFG) was chosen. The SSA

used in developing classic compilers. The

and sequences that are possible through a p

definition of values that make up the pro

Together the CFG and the SSA help cre

program that allows easy manipulation and

Figure 1 JET Sta

Java
Classfile rpreter

JIT

JET
erburner)

JET
(Turbo)

Java
Classfile

JET attribute

ges and Integration

Inte

(Aft
nts that do not support the JET architecture.

e and have an implementation of Afterburner

mation and provide better performance. This

platform independent while extending the

n to encompass the information required for

 assignment (SSA) value graph and control

and CFG are data representations commonly

CFG seeks to summarize the execution paths

rogram, and the SSA represents the use and

gram and the instructions to be generated.

ate a compact flexible representation of the

 optimizations to happen. A complete view of

12

the JET IR can be found in appendix A. The JET IR extends the classic SSA and CFG

with the addition of specific optimization information used in JET.

4.1 Turbo

The static analysis portion of JET is codenamed Turbo. Jeremy Lueck, another student in

the MIT VI-A program, worked on this portion of JET as his Master of Engineering

thesis. Turbo was adapted from an AOT currently under development by Compaq’s

System Research Center called Swift. Turbo takes in Java classfiles, performs analysis,

and outputs a new Java classfile. The new Java classfile contains a JET classfile attribute

following the JET IR specifications and containing all the information required to help

runtime JET optimizations to be performed efficiently and with minimal overhead.

4.2 Afterburner

The Afterburner represents the dynamic code generation, optimization, and specialization

phase of the JET architecture. Afterburner extends the JVM to support the JET

architecture. Afterburner performs efficient runtime code generation and analyzes

execution of methods in order to perform specialization and optimization where possible.

The Afterburner itself can be broken up into three stages: parser, generator, and

specializer. When the JVM loads classfiles with a JET attribute, the JET parser will be

invoked to load the JET IR. Following successful retrieval, a non-specialized code

generation is created. Future execution of JET generated code will trigger specialization

and optimization analysis. If specialized optimization is possible and worthwhile, a new

13

specialized version of the method will be generated. Figure 2 is a graphical representation

of this architecture.

The Afterburner is designed to be an extension of the basic JVM. Thus, to accomplish the

implementation and design of this system, a working commercial JVM and source code

must be available. As this research is part of the MIT VI-A internship, Compaq was kind

enough to provide this project with Srcjava. Srcjava is a Java 2 compliant JVM (Java 2

SDK Documentation) currently under development by Compaq’s System Research

Center in Palo Alto, California. Srcjava is written in C and Assembly, and is developed

for Compaq’s Tru64 Unix operating system on the Alpha architecture.

Figure 2 JET Code Generation Process

Java
Classfile

JET

attribute

JET IR Parser

Generator

Schedule

Register Allocate

Emit

Machine Code
0100010101101110
0110100101100100

14

4.2.1 Parser

The parser reads in the JET attribute and creates JET objects and METHOD objects. The

JET attribute is a binary file structure that represents the JET IR. The JET attribute was

designed so that it would be easy to load, and the JET IR was designed so that it would be

flexible.

The JET attribute is laid out in a manner that allows the parser to read in the attribute as

an array of bytes and cast the region of memory into a JET structure. The pointers in the

attribute are made so that they are relative offsets from the beginning of the attribute.

After the parser casts the region of memory as a JET structure, it then walks through the

JET IR converting relative pointers to absolute pointers.

While this process allows quick and easy loading, some assumptions are inherent and

should be taken into consideration for future implementations. This implementation was

developed on the Alpha architecture, which uses a little-endian byte-order. The Java

classfiles are written using a big-endian byte order because the Sun architecture is big-

endian. While the choice of big- versus little-endian is not important, consistency is

important. Choosing a byte ordering that is consistent with the underlying processor

architecture will allow the parser to load more efficiently; however, to widely deploy

JET, all implementations must conform to a byte-ordering standard regardless of the

underlying architecture.

15

4.2.2 Generator

Once the JET IR has been created, it is kept for future reference. Copies are made and

passed to the generator and the specializer. The generator and specializer operate by

modifying the JET IR; making copies allows the generator and specializer to modify the

IR as needed without requiring the parser to reload the JET attribute. This specialized

generation process is summarized in figure 3. The generator has to perform three tasks:

code scheduling, register allocation and code emission. The output from the generator is a

standard piece of machine code that can be executed like any other program. The initial

code generation for a method will produce machine code that is not specialized. This

machine code is registered with the JVM in exactly the same manner as JIT generated

machine codes.

Figure 3 JET Specialized Generation Process

JET IR Specializer

Generator

Machine Code
0100010101101110
0110100101100100

Specialized Code
 010001010
 011010010

Specialized
JET IR

16

4.2.2.1 Scheduler

The current implementation implements a dummy no-op scheduler. Turbo, the

preprocessing stage, has performed scheduling prior to this point; thus it is unnecessary to

again perform scheduling during code generation to obtain well-scheduled code. The

design does, however, suggest that a more sophisticated runtime scheduler may further

improve the performance of some types of code. It is not clear at this point, how the trade

off between extra scheduling overhead and further optimized machine code compare.

Runtime scheduling is likely to be most beneficial in code that is specialized heavily. A

specialized code generation will have fewer instructions compared to the non-specialized

code generation, and certain constraints may be removed so that instructions may be

rescheduled and further improved. The time constraints for this project did not allow

design and implementation of a code scheduler.

4.2.2.2 Register Allocation

Register allocation is divided into 2 phases: there are variables that are global to the

entire method and used across code blocks as well as variables that are local to code

blocks. The global variables include variables that must be allocated in designated

locations to comply with calling standards such as arguments to procedure calls and

return values. Local variables without restriction on locations may be allocated in

between global variables or in another free registers. Local variables that do not conflict

with each other can share the same register. The JET system takes advantage of this

distinction between global and local variables by splitting up the allocation so that the

majority of the computationally intensive tasks are performed during the Turbo phase.

17

In general, a two phased register allocation is somewhat inefficient in its use of registers;

however, the JET system is designed so that Turbo performs a Limit phase where Turbo

tries to maintain that the register pressure, the number of live registers needed at any

point in the code, is at or below the number of register available. This property allows

JET to efficiently break up register allocation into a global and a local phase. Turbo is

responsible for allocating the global variables and procedure arguments according to the

JET calling standard. Turbo is also responsible for grouping of local variables that do not

conflict and can potentially share the same register. This is known as symbolic allocation,

where each symbolic register is a color that is assigned to that group of variables.

During the runtime Afterburner phase, these symbolic registers are matched up with real

physical registers. An attempt is first made to match symbolic registers up with physical

registers that were allocated to global variables. This effort reduces the number of free,

unrestricted physical registers needed and is possible if the involved variables are not

used or not live over the same range of instructions. Symbolic registers that were not

matched up with global registers are then allocated into the remaining available physical

registers during the final allocation phase. The final allocation phase, whose name is one-

pass allocation, takes a linear pass over the remaining unallocated variables and assigns

physical registers to these variables.

There is the possibility that not enough physical registers exist to accommodate all the

symbolic registers. In this situation, spill code to write variables into stack or memory

18

locations must be inserted into the generated code to partially relieve the register

pressure. The implementation does not actually insert spill code during the register

allocation phase but instead marks the values to indicate that their assigned location is on

the stack and leaves the spill code insertion for the code emission phase.

The JET IR is designed so that each SSA value node includes a location field. The

location field indicates where in the machine this value is stored. For example, the integer

constant zero has a location of R31. Global variables are assigned physical register

locations during the static phase. The symbolically allocated variables have symbolic

register locations. Values nodes that do not emit instructions have a null location because

they do not require registers to hold its value. When symbolic registers are matched up

with physical registers during register allocation, all value nodes with that symbolic

register get their locations updated from the symbolic register location to the allocated

physical register location. Value nodes may also be allocated to stack slot locations when

the number of available registers have run out.

This division of labor allows runtime register allocation to require only a few passes over

the set of instructions. Register allocation is typically computationally intensive and a

major bottleneck in dynamic compilation. JET is able to limit the amount of computation

necessary at runtime and keep the register allocation overhead to a minimum. A detailed

explanation as well pseudo-code related to the register allocation design can be found in

Appendix D.

19

Some assumptions are inherent in the design of the register allocation process. First of all,

many of the global variables are assigned according to a JET calling convention, which is

the same as the Alpha calling convention. Future implementation of JET will need to also

support the same calling convention within the JET architecture but may use its native

calling convention for code outside the JET architecture. The next assumption is that

there are 32 floating and 32 integer registers available. This is fairly typical among

modern architectures. If more or fewer registers are available, then some form of

emulation will be necessary. While these assumptions make the design somewhat less

generically applicable, some basic assumptions are necessary, and these assumptions are

based on fairly common trends in industry. These limitations and assumptions are

maintained so that a JET classfile can be created once and executed anywhere an

implementation of Afterburner is available.

4.2.2.3 Emitting Code

The last component of the generator is the code emitter. The code emitter translates JET

opcodes into actual machine instructions. The spill codes are inserted and the generated

code stubs are registered with the JVM. Most SSA values can be translated directly into

machine instructions; however, flow control instructions that require relative offsets such

as branches must first be emitted with null offsets as the final code positions may not yet

be known. Once all the instructions have been generated, relocations get applied so that

the references and offsets are accurate and correct. The complete list of JET opcodes and

its descriptions may be found in Appendix B.

20

Code is emitted by translating the opcode of the value node into an actual machine

instruction. If the opcode is an instruction that requires additional arguments, the

instruction must be emitted such that the correct registers are used as arguments. These

registers are found by looking up the location of the argument value nodes. The output of

the instruction must also be placed in the correct register by looking up the location of the

current value node. If a value node’s location is on the stack, then spill code must be

generated and a temporary register must be employed. Since an instruction may require at

most two arguments and the output register may reuse one of the input registers, the

worst case, a situation in which both arguments as well as the output reside in stack

locations, will require at most two temporary registers. The JET calling standard always

reserves one temporary register that is not assigned to variables. The other temporary

register is formed by using the return address (RA) register. RA register is used to keep

track of the return address for a particular subroutine call. RA is saved on the stack

whenever a subroutine code segment makes additional, nested subroutine calls. The

scheme of using RA as a temporary register adds the constraint that RA will also need to

be saved on the stack if there exists an instruction that requires two temporary registers.

A detailed explanation of the JET calling standard can be found in Appendix C.

When classfiles are loaded by the JVM, a method table is created to map code stubs to

the methods. This is necessary for the correct inheritance of objects. When methods are

invoked, the actual executed code must first be looked up in the method table. If the

caller method is a piece of generated code, then the process can be streamlined so that the

caller method calls the callee code directly. This is possible if the method being invoked

21

is static or if it is the only one of its type and signature. For example, methods that are not

static but have not yet been known to be overridden can be called directly. This

optimization requires that each call site be registered so that if the generated code

changes or if methods are overridden, these direct call sites can be updated to call the

correct new code. This process allows the JVM to switch easily between interpreted code

and JIT generated code. JET generated machine code behave similarly to JIT generated

code, and must also be registered with the JVM before the JVM can make use of the JET

generated code. Registration of JET generated code can be done using the same process

as for JIT generated code.

4.2.3 Specializer

Upon the first execution of a JET generated call site, the specializer will be invoked

before execution. The call site is set up to call a code stub that executes the specializer

instead of the actual method. The specializer analyzes executed methods and the calling

conditions to see if specialization is possible and worthwhile. If so, the specializer creates

specialized versions of the JET IR and sends the JET IR to the generator. The specializer

also registers the newly created specialized code with JET and updates the specialized

call site.

The generator emits indirect subroutine calls. An intermediate specializer invocation code

stub is called before the subroutine code is executed. The specializer stub determines

whether specialization is possible, and if so, whether a specialized generation of this

instance exists already or a new specialized generation must be created.

22

For each method, Turbo is responsible for determining what input arguments would be

helpful as constants. Turbo also marks certain SSA values as constants if they’re known

as constants. During the specializing phase, the specializer determines which input

arguments are constants for each executed subroutine call. The specializer then computes

the intersection of the set of arguments that the method wants to have as constants and the

ones that actually are constants. IF the resulting set is null then specialization is not

possible and the indirect call through the specializer is replaced with a direct call to the

callee. If the resulting set is not null, then specialization is possible. This intersection set

will be known as specialization set.

Specializations with the same specialization set are considered the same category or type

of specialization, as they will have similar specialization effects. If the specializer

determines that specialization is possible, it searches through a linked list of existing

specialization categories for that method. If one exists, then it continues by looking for a

specialization instance with identical arguments. If such an instance exists, this particular

specialization has been performed in the past and the specialized code can be reused. If

no such instance exists, then a new specialization must be performed. The newly

generated instance is registered under the appropriate category following generation. If

no such specialization category exists, then a new category is created and a new

specialization instance is generated. The categorization makes it easier to determine if a

particular specialization instance exists already. This cataloging and registration process

is similar to the code registration process of the JIT and the JVM.

23

While a number of various optimizations are possible during runtime specialization, this

research focused on constant propagation and procedure cloning. When a call stubs

invokes the specializer and the specializer determines that specializations are possible

and needed, constant propagation is performed. Using an algorithm similar to constant

propagation algorithms in classic compilers, the specializer generates specialized clones

of the procedure being invoked. Because this specialization is performed at runtime, the

system knows the values of the arguments. The specialization category determines which

arguments are considered as constants in the function being specialized. For each

argument that is considered a constant, the specializer propagates the constant by finding

descendent values that use constants as inputs. If all arguments to an instruction are

constants, the output of that instruction is also a constant and its value can be evaluated

and stored as a constant. Constant values do not require code to be emitted unless the

constant values are used by instructions that do not have constant values. Branches in the

code can be eliminated if the condition variable can be determined to be a constant. A

more detailed overview of the constant propagation algorithm used can be found in

Appendix E.

This research limited the effects of specialization to strictly elimination of code. This

limitation was put in place to minimize the complexity of implementation. While

techniques such as loop unrolling are typically used in conjunction with constant

propagation, such techniques were not utilized. In defense of this decision, loop unrolling

is performed during Turbo for loops that benefit from unrolling. Obviously, additional

24

and more precise loop unrolling can be performed during runtime specialization and

should be considered for the next iteration of this design.

Once the specialized code has been generated, the execution must resume seamlessly.

The specializer has already generated the specialized code and registered it as a

specialization instance under the appropriate specialization category. The original call

site has also been patched so that future execution of that call site will no longer invoke

the specializer call stub but instead invoke the appropriate specialized code. The

specializer needs to execute the specialized code and return control to the JVM. Instead

of having the specializer handle the execution and deal with all the possible exception

scenarios, the easiest approach is to modify the call stack return address from the

instruction after the call site to the call site itself. Now the specializer can simply return

control to the JVM and be confident that the JVM will be fooled into re-execution of the

now updated call site. This re-execution will now invoke the newly generated specialized

code, and all will appear normal to the JVM and the user.

5 Analysis

Constant propagation is achieved by disseminating knowledge and assuming certain input

arguments are constants. Computational instructions that do not involve I/O and memory

access benefit from constant propagation because their results can be saved as constants

and do not need to be calculated again in future executions. Appendix F illustrates some

typical code generations and specializations starting from the Java source files.

25

To determine the benefit of JET system, a number of relative performance measurements

were assessed. Factors considered in performance measurements include file size, code

size, and execution speed. A detailed summary of the performance measurements can be

found in Appendix G.

JET classfiles are normal Java classfiles with an added attribute. This JET attribute

contains all the information required to efficiently generate code and perform

specializations. This additional information comes at a price; the JET classfiles are on

average thirty-two times as large as a regular Java classfile. For this reason, JET should

not be implemented on a system that is constrained by disk storage space.

Benchmark performance tests were executed to evaluate JET performance. The

Embedded Caffeine Mark 3.0 benchmark suite was chosen for this purpose. Each

scenario is executed multiple times and the average performance values compared. The

following five scenarios were executed: classic Java JVM using interpretation on normal

classfiles, JIT enabled JVM on normal classfiles, classic Java JVM using interpretation

on JET classfiles, JET enabled JVM with dynamic code generation but no specialization,

and JET enabled JVM with dynamic code generation and specialization.

While JET classfiles are much larger than classic Java classfiles, the size does not affect

the execution performance. In most benchmarks the performance is nearly identical. The

Sieve benchmark actually benefited from a 30% improvement due to the larger JET

classfile. It is not clear why the sieve benchmark benefits from a larger input file size.

26

JIT provide an average 300% performance improvement compared to classic, interpreted

Java. The JET enabled JVM without specializations showed an additional 180%

performance improvement over the JIT, and a 550% improvement over classic,

interpreted Java. This analysis suggests that the larger file sizes of staged compilation

have paid off handsomely in performance improvements. JET with specializations had

only an insignificant advantage over the JET without specializations. In fact, on the

Floating benchmark, JET with specialization was actually slightly worse than the JET

without specialization. All JET performance numbers include dynamic compilation and

specialization overhead.

6 Conclusion and Future Work

It appears that specializations were not extremely effective. A possible explanation is that

the amount of analysis carried out was insufficient or not widely applicable. Perhaps a

more ambitious specialization policy would allow more methods to be specialized and a

broader effect and performance improvement can be observed. Deeper analysis of how

and why programs benefit from specialization will help pave the way to new and more

in-depth types of specialization. Currently, the only specialization performed is constant

propagation. Without dynamic loop unrolling, it is difficult for constant propagation to

produce dramatic performance improvements.

If a more relaxed specialization policy is implemented, more arguments can be treated as

constants and more specialization would possible. This new design could attempt to

27

specialized on variables that are not guaranteed to be constants. If a variable is seen

frequently with the same value, it could be treated as a constant and used to specialize.

This approach allows more specialization to occur but incur the additional complexity

that a verifier code stub must be produced to ensure that a variable that is assumed to be

constant does not change value. While it is not clear that specialization will provide much

more benefit, using a more relaxed specialization policy will allow more specialization to

occur and a more definitive answer on the benefits of specialization can be obtained.

Further constant propagation can be achieved if procedure calls can be eliminated

through constant propagation. This would require support from the static analysis phase.

If a method can be determined to have predictable results given constant arguments, then

that method can be executed during specialization and its result can be stored as a

constant in the caller. Since the analysis to determine if a method is predictable will likely

be highly involved, it is most suited for the Turbo stage. Even without Turbo support,

there exist a few common runtime procedures that are currently known to be predictable

and can be dynamically resolved into constants with only a few minor modifications to

Afterburner.

Another idea for specialization is to eliminate unnecessary synchronization overhead. If a

synchronized object is referenced by only one object, then there is no need to lock the

synchronized object. Only one reference of the synchronized object exists and no

possible race condition exists.

28

Java is a powerful but young language. There is lots of room for improvement. This

research applied new approaches to execution of Java programs. The combination of

static compilation and dynamic optimization combine to make a powerful staged

compilation process that lends itself easily to optimization, specialization, constant

propagation, and procedure cloning. These techniques were united to create JET.

Dynamic code generation through staged compilation proved to be an excellent technique

to improve Java performance; however, the types runtime specialization implemented

were not extensive enough to produce definitive performance improvements. Insights

gained from this experience can help refine the next iteration of JET and perhaps lead to

further increases in performance.

29

Appendix A: JET IR Specification

The following document contains the specification for the current version of the JET
internal representation binary output (JET IR).

JET files are essentially Java class files with an added class attribute. This attribute is
called "JET" and contains the JET structure that will be described below.

JET attributes can be outputted in either little-endian or big-endian order. Since the initial
implementation was development on the Alpha architecture, and the Alpha architecture is
little-endian, the little-endian byte-order was chosen. The choice is not important;
however consistency across various implementations is important.

The bytes in a JET IR are laid out in an order that is very similar to how these structs
would be laid out in program memory using a memory-manipulation language such as C.
This should look exactly like the automatic memory alignment for structs that is
performed by the C compiler. A relative "pointer" in a JET attribute is the file offset of
the structure within the file.

The process for reading in a JET attribute:

1. Find the JET attribute from the class file parser in the JVM.
2. Grab the offset to the beginning of the JET attribute
3. Iterate through the different structures of the JET attribute casting file offsets into

the structs and fixing pointers.

Since relative pointers are file offsets, they have to be converted into absolute
pointers using the following calculation:

ptr = (T *)((long)starting_memory_location + (long)ptr)

T* is a pointer to some JET structure type and starting_memory_location is the
memory address of the beginning to the JET structure (or the pointer address of the
malloc-ed memory in step 2 above). The long data type is used for pointer calculations
since the Alpha architecture uses 64-bit addressing.

JET

Each JET attribute contains the following structure:

JET {
u2 methodCount;
methodInfo[] methods;

}

30

The items in the JET structure are as follows:

methodCount

This item holds the number of methods that are contained within this JET
attribute. Should be the same as the number of methods contained in the classfile.

methods

The method item is a table of methods that contain the intermediate
representations (IR’s). The format of a method and its IR are defined by the
methodInfo structure. The size of this table is defined by methodCount item.

Method Information

Every method has an intermediate representation structure contained within JET. This IR
consists of two separate structures with pointers between them. The first structure is the
control flow graph (CFG) and the second is the value graph generated for static single
assignment (SSA) form. The CFG is made up of basic blocks connected by successor and
predecessor pointers. The SSA form is made up of value nodes that represent instructions
and connected by pointers to other value nodes that make up the parameters of that
instruction.

Each methodInfo item must have the following structure:

methodInfo {
u2 blocksCount;
u2 valueCount;
u2 paramCount;
value** params;
bitvec* rtConstArgs;
blockInfo[] blocks;
valueInfo[] values;

}

The items in the methodInfo structure are as follows:

blocksCount

This item contains the number of basic blocks contained within the CFG for this
method.

valueCount

31

This item contains the number of individual values that make up the SSA value
graph for this method.

paramCount

This item contains the number of parameters to this method. This number
includes the object references for instance methods (pointer to this object).

params

This item contains a list of values that are the parameters to this method. The
length of this list is specified by the paramCount item.

rtConstArgs

This item contains a bitvec of size equal to the number of arguments to this
method. Item n in rtConstArgs will be set if knowing that the n-th argument to
this method is a runtime constant will help in specializing this method.

NOTE: The size of this set will be equal to paramCount. This includes
the instance object for instance methods. The size of this set will not be
the same as the number of inputs to a method call value.

blocks

The blocks item contains a table of basic block information for a CFG. The
format of these blocks is defined by the blockInfo structure. The length of this
table is established by the blockCount item. The blocks array is ordered in the
way that they should be written out during code generation.

values

The values item contains a table of values within the SSA value graph. The
format of these values is defined by the valueInfo structure. The length of this
table is established by the valueCount item.

Block Information
Each basic block within the CFG contains information regarding the type of control
within the block, the successor blocks, pointers to values used in this block, and liveness
information to aid in the allocation of registers. Some block types need special added
information in order to generate code for that block. Thus, there are three types of block
output: blockInfo, excBlockInfo, and multiBlockInfo. The default basic block
follows this structure:

32

blocksInfo {

u1 type;
u1 controlType;
u2 valueCount;
u2 predecessorCount;
u2 successorCount;
u2 index;
u1 isLoopHead;
valueInfo* valueRoot;
valueInfo** values;
blockInfo** predecessors;
blockInfo** successors;
bitvec* liveOut;
bitvec* liveStart;
bitvec* liveEnd;
bitvec* liveThrough;
bitvec* liveTransparent;
auxInfo* aux;

}

The items in the blockInfo structure are as follows:

type/control_type

The type and control_type items contain two sets of type information. This
information is created when the CFG is created inside of the Swift compiler.

The tags for the type and the controlType of the block are listed in the
following table:

 Type Value ControlType Value
NORMAL 0 SIMPLE 0
HANDLER 1 IF 1
EXTRA 2 SWITCH 2
ENTRY 3 THROW 3
NORM_EXIT 4 FAULT 4
EXC_EXIT 5 JSR 5
GRAPH_EXIT 6 RET 6

valueCount

This item contains the number of values that make up the instructions for this
basic block.

index

This is the numerical identifier of this blockInfo among the blocks[] of the
methodInfo that holds this blockInfo.

33

valueRoot

This item contains a pointer to the value that decides the control flow out of this
block.

values

This item contains a table of pointers to pointer to the values from the SSA value
graph used in this basic block. The size of this table is determined by the
valueCount item.

successorsCount

This item contains the number of successor blocks to this block within the CFG.

successors

This item contains a table of pointers to successors to this block. This table
consists of a list of pointers to blockInfo structures that contain the basic block
successors. The size of this table is determined by the succesorCount item.

NOTE: In the case of IF blocks, the successors are ordered such that the
fall-through block is the first successor, and the branch-to block is the
second successor.

liveOut / liveStart / liveEnd / liveThrough / liveTransparent

These items contain bit vectors that represent the values that are live in the
various categories for a block.

Value Information
Each node in the value graph represents an operation and a value. Nodes are connected if
a node if used as parameters in another node. Each method contains an array of values.
The structures of these values have the following format:

valueInfo {
u1 op;
u1 type;
u2 pc;
u2 index;
u2 paramCount;
u2 useCount;
u1 locationType;
u1 locationFlags;
u2 location;
u1 isSpilled;
u1 isRTConst;
bitvec* unavailRegs;
valueInfo** uses;

34

valueInfo** params;
blockInfo* container;
auxInfo* aux;

}

The items in the valueInfo structure are as follows:

op

The op item contains a number that represents a particular operation within an IR
stage. These ops are defined in Appendix B.

type

The type item contains a number that represents a type for a value. These types
are listed in the table below.

type value
VOID 0
CC 1
FCC 2
TUPLE 3
BOOLEAN 4
BYTE 5
CHAR 6
SHORT 7
INT 8
LONG 9
FLOAT 10
DOUBLE 11
ARRAY 12
STORE 13
NULL 14
OBJECT 15

pc

The pc item contains the program counter for this particular instruction. This
information is saved for use by the exception handling mechanism.

index

This is the numerical identifier of this valueInfo within the values[] item of the
methodInfo that holds this valueInfo.

locationType

35

The locationType item contains place where the memory for this value should
live. The following table describes the different locationTypes.

locationType value
VOID_LOCATION 255
INT_REG 0
FLOAT_REG 1
STACK_TMP 2
STACK_IN_ARG 3

locationFlags

Contains added information about the memory location of this value, such as
whether it is assigned to a symbolic or physical register. The following table
describes the different locationFlags. The value of a locationFlags item is a
bit mask of the values in the table.

locationFlags value
IS_REGISTER 1
IS_CALLEE_SAVE 2
IS_RESERVED 4
IS_SYMBOLIC 8
IS_LOCAL 0

location

The number associated with the physical register, or symbolic register, or the
stack location that holds this value. This item along with locationType and
locationFlags gives all the possible memory locations for a value within a
method.

isSpilled

This item is set to 1 if this variable is spilled during global or local allocation and
needs to be stored to a stack location after its definition and loaded from the stack
before every use.

isRTConst

This item is set to 1 if this variable is a runtime constant. This information can be
used to specialize a method.

36

unavailRegs

This item contains a set of registers should not be assigned to this value because it
somehow conflicts with the lifetime of this value. This set could include the
scratch registers, if the value is live across a method call, or other physical
registers which have been assigned to values and conflict with this value.

useCount

The useCount item contains the number of values that use this value as an input
argument.

uses

The uses item contains a list of pointers to valueInfo structures that contain the
values that use this value as an input argument. The length of this list is defined
by the useCount item.

paramCount

The paramCount item contains the number of argument values to the operations
described within this value.

params

The params item contains a list of pointers to valueInfo structures that contain
the arguments to the operation described within this value. The length of this list
is defined by the paramCount item.

container

The container item contains the blockInfo that holds this value. Thus, the
values item of this container will also contain a pointer back to this valueInfo.

aux

The aux item contains any auxiliary information for a value that cannot be stored
within the params. This information includes constants, field and method
references, and argument numbers. This item is of variable length and depends
upon the type tag that is defined by the auxInfo structure.

Auxiliary Information
Every valueInfo and blockInfo structure contains an auxiliary item for holding any
extra information. This information includes constants, field and method references, and
argument numbers. This item is of variable length and depends upon the tag.

37

NOTE: Auxiliary information structs are shared amongst all of the
methods in the JET file, much like the constants in the constant pool.
When relocating pointers, make sure to relocate them once instead of
numerous times which may happen if you relocate them on each encounter
through the values arrays.

The basic form of all the auxInfo structures is the following:

auxInfo {

u2 tag;
u1 isResolved;
u1[] info;

}

The items in the auxInfo structure are as follows:

tag

The tag item contains a number that represents the type of information stored
within the auxInfo structure. This tag also gives information as to the length of the
info array.

The following table describes the possible tags for an auxInfo structure. The
length column tells the length of the info array that can be expected.

Tag Value Length
VAL_Void 0 4
VAL_Integer 1 8
VAL_Float 2 8
VAL_Long 3 16
VAL_Double 4 16
VAL_String 5 16
VAL_Fref 6 32
VAL_Mref 7 32
VAL_BlockVec 8 16
VAL_RuntimeProc 9 16
VAL_RefType 10 16
VAL_FrefOffset 11 32
VAL_JumpTable 12 32
BLOCK_ExcLabel 13 16
BLOCK_IntLabel 14 16

isResolved

Since auxInfos are shared between different values, a space is left available in
the auxInfo struct for determining whether this auxInfo has been resolved
during the read-in process.

38

info

The info item contains the actual data for an auxInfo structure. This array is of
variable length, and its size is determined by its tag. The different types of info
are described in the next sections.

VAL_Void
VAL_Void {

u2 tag;
u2 isResolved;

}

A VAL_Void info structure contains nothing other than the header of the auxInfo
structure.

VAL_Integer, VAL_Float
VAL_Integer, VAL_Float {

u2 tag;
u2 isResolved
i4 val;

}

VAL_Integer and VAL_Float info structures have four bytes for the value of the
number. VAL_Float values are encoded using the Float.floatToIntBits() method.
Numbers are encoded in little-endian byte order.

VAL_Long, VAL_Double
VAL_Long, VAL_Double {

u2 tag;
u2 isResolved;
i8 val;

}

VAL_Long and VAL_Double info structures have eight bytes for the value of the
number. VAL_Double values are encoded using the Double.doubleToLongBits()
method. Numbers are encoded in little-endian byte order.

VAL_String
VAL_String {

u2 tag;
u2 isResolved
utf8* string;

}

VAL_String info structures contains a pointer to a null-terminated character array
which is the utf-encoded version of a Java string

39

VAL_Fref, VAL_Mref

VAL_Fref, VAL_Mref {
u2 tag;
u2 isResolved;
utf8* class;
utf8* name;
utf8* signature;

}

The items in a VAL_Fref or VAL_Mref info structure are as follows:

class

The class item contains a pointer into the cpool table for the name of the
owner class that contains this field/method.

name

The name item contains the name of this field/method.

signature

The signature item contains the Java signature of this field/method.

VAL_BlockVec
VAL_BlockVec {

u2 tag;
u2 isResolved;
u2 blockCount;
BlockInfo** blocks;

}

The items in a VAL_BlockVec structure are as follows:

blockCount

The blockCount item contains the number of blocks within this
BlockVec.

blocks

The blocks item is an array of block numbers that make up this
BlockVec. These block numbers are also the offset into the blocks table
used to create the CFG.

40

VAL_RuntimeProc
VAL_RuntimeProc {

u2 tag;
u2 isResolved;
u2 type;
auxInfo* aux;

}

The items in a VAL_RuntimeProc structure are as follows:

type

The type item contains the unique numerical identifier of a runtime
procedure. The list of types can be found the table below with their aux
types.

aux

The aux item contains any extra information needed by the RuntimeProc.
This is a VAL_Integer in the case of creating a new array, otherwise it is a
VAL_String that contains the name of a class.

The following table contains all of the possible RuntimeProcs as well as
their associated values and the types of their aux fields:

type value aux type
SYNC_ENTER 1 VAL_Void
SYNC_EXIT 2 VAL_Void
NEW 3 VAL_String
FCMPL 4 VAL_Void
FCMPG 5 VAL_Void
DCMPL 6 VAL_Void
DCMPG 7 VAL_Void
NEWARRAY 8 VAL_Integer
ANEWARRAY 9 VAL_String
MULTIANEWARRAY 10 VAL_Void
INSTANCEOF 11 VAL_String
CAST_CK 12 VAL_Void
IDIV 13 VAL_Void
IREM 14 VAL_Void
LDIV 15 VAL_Void
LREM 16 VAL_Void
FREM 17 VAL_Void
DREM 18 VAL_Void
THROW 19 VAL_Void
INIT_CK 20 VAL_String
D2I 21 VAL_Void

41

D2L 22 VAL_Void
AASTORE 23 VAL_Void
SYNC_EXIT_RET 24 VAL_Void

VAL_RefType
VAL_RefType {

u2 tag;
u2 isResolved
utf8* name;

}

The items in a VAL_RefType info structure are as follows:

name

The name item contains the name of the class that this value is referencing.

VAL_FrefOffset
VAL_FrefOffset {

u2 tag;
u2 isResolved;
u2 offset;
utf8* class;
utf8* name;
utf8* signature;

}

The items in a VAL_FrefOffset info structure are as follows:

offset

The offset item contains the byte offset of this field reference from the
beginning of the object it references in memory.

class

The class item contains the name of the owner class which this field.

name

The name item contains the name of this field.

signature

The signature item contains the Java signature of this field.

42

VAL_JumpTable
VAL_JumpTable {

u2 tag;
u2 isResolved;
u2 type;
u2 baseIndex;
u2 tableOffset;
i4 min;
i4 max;
u4 nonDefaultEntries;
blockInfo* block;

}

The items in a VAL_JumpTable structure are as follows:

type

This is the type of the Jump Table. The type item contains a value of 0
for a LOOKUPSWITCH type and a value of 1 for a TABLESWITCH type.

baseIndex

Index of the instruction that gets the base pointer

tableOffset

Offset of the emitted table from the baseIndex instruction

min

The minimum value for a label in the jump table

max

The maximum value for a label in the jump table

nonDefaultEntries

The number of non-default labels in the jump table.

block

This item is a pointer to the block that holds the switch statement
responsible for this Jump Table.

BLOCK_ExcLabel
BLOCK_ExcLabel {

u2 tag;
u2 isResolved;
u2 excCount;
excLabel* exceptions;

}

43

excLabel {
utf8* excName;
blockInfo* handler;

}

The items in a BLOCK_ExcLabel info structure are as follows:

excCount

The item contains the number of exceptions that can be raised within this
block.

exceptions

The item contains a table of excLabels that hold the information on
which exceptions can be thrown in a block and the blocks that contain the
handler information.

The items in an excLabel structure are the following:

excName

This item contains a pointer to the class name for an exception thrown by
this block. If a faulting instruction returns to this block with an exception
of excName type, it jumps to the handler block. If the handler catches all
exception, excName will contain the empty string.

handler

This item contains a pointer to the blockInfo that holds the handler code
for a caught exception of excName type.

BLOCK_IntLabel
BLOCK_IntLabel {

u2 tag;
u2 isResolved;
u2 labelCount;
intLabel* labels;

}
intLabel {

i4 label;
blockInfo* destination;

}

The items in a BLOCK_IntLabel structure are as follows:

labelCount

This item contains the number of labels that can be used to transfer control
in this block.

44

labels

The item contains a table of intLabel labels that are the branch
determining values. Each successor has an intLabel, but the number of
labels associated with a successor may be greater than one. The size of
this table is determined by the labelCount item.

The items in an intLabel structure are as follows:

label

This item contains the integer that is the label for a switch statement. The
successor to branch to for this label is described in the destination item.

destination

This item contains the block in the successors array that should be the
destination block of a switch statement if the result of the switch is the
value in label.

Bit Vector
Each block in the CFG also contains helpful information about the liveness of the
variables as execution proceeds through the block. This liveness information is
calculated in a final phase of the Swift compiler and passed along into the binary output.
The representation chosen to represent these sets is bit vectors. Each value in the set is
represented by the integer from the values' index field.

bitvec {
u8 length;
u8* set;

}

The items in a bitvec structure are the following:

length

This item contains the maximum magnitude of integers represented in this set. It
is also the number of values in the method containing this set.

set

This item contains a list of quadwords that form the bit vector representation of
this set.

45

Exception Information
Each block that can throw an exception must contain a list of excLabels. These labels
contain the type of the exception, by class name, and a pointer to the block that holds
handler for that particular exception. This information is gathered from the exception
table in the classfile and passed down with the IR.

excLabel {
utf8* excName;
blockInfo* handler;

}
The items in an excLabel structure are the following:

excName

This item contains a pointer to the class name for an exception thrown by this
block. If a faulting instruction returns to this block with an exception of excName
type, it jumps to the handler block. If the handler catches all exception, excName
will contain the empty string.

handler

This item contains a pointer to the blockInfo that holds the handler code for a
caught exception of excName type.

UTF8-String constants
An UTF8-String contains a list of one-byte utf-encoded Unicode characters followed by a
null-terminating character. One can consider the utf8 type to be the same as an u1 or a
char.

46

Appendix B: JET Opcodes

IN_ARG 1

Input argument to subroutine

SELECT 2

Abstract value representing the
result of a memory operation.

COPY 3

NOP 4

PIN 5

Used as a fake input to
operations that need to be pinned
within a certain region of the
CFG.

SPILL 6

Store to stack location (used for
spilling)

RESTORE 7

Load from stack location (used
for spilling)

ADD 8
SUB 9
MUL 10
DIV 11

AND 16
OR 17
XOR 18

NEG 19

Arithmetic negation
NOT 26

Logical not

PHI 31
Abstract value representing a
node whose value differs
depending on the instruction path
executed to reach this node.

IF 32

Abstract value representing flow
control.

REAL_RETURN 33

SWITCH 34

tableswitch or lookupswitch

NULL_CK 35

Null check.

LENGTH 37

Array length.

GET_FIELD_ADDR 45

Get object field address

INVOKE_VIRTUAL 46
INVOKE_SPECIAL 47
INVOKE_INTERFACE 48
INVOKE_STATIC 49
INVOKE_DIRECT 50

INSTANCEOF 51

Object type verification.

RT_CALL 59

Generic call to a runtime routine

EXCOBJ 61

Object for exception handler

PUT_MT 62

Store method table of object.

47

PUT_SIZE 63
Store size of object.

ALPHA_LITERAL 64

Immediate constant (0…255)
Value stored in auxiliary field.

ALPHA_IZERO 65

Integer register r31
ALPHA_FZERO 66

Floating-point register f31

ALPHA_LDA 67

Load 16-bit constant.
ALPHA_LDAH 68

Load 16-bit constant high. (Use
in combination with LDA to load
32-bit constant.)

ALPHA_SRA 69
Shift right arithmetic

ALPHA_SLL 70
Shift left logical

ALPHA_SRL 71
Shift right logical

ALPHA_S4SUB 72

Scaled by 4 subtract
ALPHA_S4ADD 73

Scaled by 4 add
ALPHA_S8SUB 74

Scaled by 8 subtract
ALPHA_S8ADD 75

Scaled by 4 add

ALPHA_BITCOMP 76

Bit-wise negation

ALPHA_BEQ 77

Branch if register equal to zero
ALPHA_BGE 78
ALPHA_BGT 79
ALPHA_BLE 80
ALPHA_BLT 81
ALPHA_BNE 82
ALPHA_BLBS 83

Branch if register low bit is set

ALPHA_BLBC 84
Branch if register low bit is clear

ALPHA_CMPEQ 85

Compare signed equal
ALPHA_CMPLE 86
ALPHA_CMPLT 87

Compare signed less than
ALPHA_CMPULT 88

Compare unsigned less than
ALPHA_CMPULE 89

ALPHA_CMOVEQ 90
ALPHA_CMOVGE 91
ALPHA_CMOVGT 92
ALPHA_CMOVLE 93
ALPHA_CMOVLT 94
ALPHA_CMOVNE 95

Conditional move if register not
equal to zero

ALPHA_ZAPNOT 96

Zero out Ra bytes not specified
in Rb

ALPHA_SEXTB 97

Sign extend byte
ALPHA_SEXTW 98

Sign extend word
ALPHA_EXTQH 99

Extract quadword high
ALPHA_EXTBL 100

Extract byte low
ALPHA_EXTWL 101

Extract word low
ALPHA_INSBL 102

Insert byte low
ALPHA_INSWL 103

Insert byte low
ALPHA_MSKBL 104

Mask byte low
ALPHA_MSKWL 105

Mask word low
ALPHA_SEXTL 106

Sign extend longword.

48

ALPHA_STB 107
Store byte

ALPHA_STW 108
Store word

ALPHA_STL 109
Store longword

ALPHA_STQ 110
Store quadword

ALPHA_STS 111
Store longword floating

ALPHA_STT 112
Store quadword floating

ALPHA_STQ_U 113
Store unaligned quadword

ALPHA_LDBU 114

Load unaligned byte
ALPHA_LDWU 115

Load unaligned word
ALPHA_LDL 116

Load longword
ALPHA_LDQ 117

Load quadword
ALPHA_LDS 118

Load longword floating
ALPHA_LDT 119

Load quadword floating
ALPHA_LDQ_U 120

Load unaligned quadword

ALPHA_ITOFT 121

Convert integer to floating
ALPHA_CVTQS 122

Convert quadword integer to
longword floating

ALPHA_CVTQT 123
Convert quadword integer to
quadword floating

ALPHA_CVTTSSU 124
Convert quadword float to
longword floating

ALPHA_CVTSTS 125
Convert longword float to
quadword floating

ALPHA_CVT_STORE 126
Store to stack for conversion

ALPHA_CVT_LOAD 127
Load from stack for conversion

ALPHA_CVT_STS 128
Store to stack for conversion

ALPHA_CVT_LDL 129
Load from stack for conversion

ALPHA_LOAD_MT 130

Load method table pointer
ALPHA_LOAD_VTABLE 131

Load proc pointer from vtable
ALPHA_LOAD_ITABLE 132

Load proc pointer from itable

ALPHA_LOAD_IID_LOW 133

Load low bits of interface
method id

ALPHA_LOAD_IID_HIGH 134
Load high bits of interface
method id

ALPHA_GLOBAL_HIGH 135

Operation for getting the high 16
bit displacement in preparation
for accessing global data

ALPHA_GLOBAL_LOW4 136
ALPHA_GLOBAL_LOW8 137

Operation for loading a global
constant. Takes as input the
corresponding GLOBAL_HIGH
value.

ALPHA_PUT_STATIC4 138
ALPHA_PUT_STATIC8 139
ALPHA_GET_STATIC4 140
ALPHA_GET_STATIC8 141

Operations for loading/storing
global variables. Takes as input
the corresponding GLOBAL_HIGH
value, and have an FREF as its
auxiliary field.

49

ALPHA_FLOAD1 142
ALPHA_FLOAD2 143
ALPHA_FLOAD4 144
ALPHA_FLOAD8 145

Simple field load

ALPHA_FSTORE1 146
ALPHA_FSTORE2 147
ALPHA_FSTORE4 148
ALPHA_FSTORE8 149

Simple field store

ALPHA_FLOAD_BASE 150

Load from rounddown(offset, 4)
ALPHA_FSTORE_BASE 151

Store to rounddown(offset, 4)
ALPHA_FIELD_SLL 152

Shift left for sign-extension
ALPHA_FIELD_EXTBL 153
ALPHA_FIELD_EXTWL 154

Extract field bits into right place
ALPHA_FIELD_INSBL 155
ALPHA_FIELD_INSWL 156

Insert field bits into right place
ALPHA_FIELD_MSKBL 157
ALPHA_FIELD_MSKWL 158

Mask out all except field bits

ALPHA_LOAD_STKARRAY 159
Load pointer to temp array on
stack

ALPHA_BOUNDS_TRUE 162

Raise bounds if input is true

ALPHA_TRAPB 163

Trap instruction for catching
exceptions

ALPHA_JMP 164

Indirect jump

ALPHA_BRNEXT 165

Branch to next instruction: note
that this instruction is not really a
control instruction. It is just used
to capture the address of the next
instruction.

ALPHA_LD_JT 166

Load entry from jump table

50

Appendix C: JET Calling Standard2

Register Usage Conventions
Integer Registers

Register Description

$0 Function value register. In a standard call that returns a non-floating-point
function result in a register, the result must be returned in this register. In a
standard call, this register can be modified by the called procedure without
being saved and restored.

$1 - $8 Conventional scratch registers. In a standard call, these registers can be
modified by the called procedure without being saved and restored.

$9 - $14 Conventional saved registers. If a standard-conforming procedure modifies
one of these registers, it must save and restore it.

$15 Stack frame base (FP) register. For procedures with a run-time variable
amount of stack, this register is used to point at the base of the stack frame
(fixed part of the stack). For all other procedures, this register has no special
significance. If a standard-conforming procedure modifies this register, it
must save and restore it.

$16 - $21 Argument registers. In a standard call, up to six non-floating-point items of
the argument list are passed in these registers. In a standard call, these
registers can be modified by the called procedure without being saved and
restored. Additional arguments must be passed through the stack.

$22 - $25 Conventional scratch registers. In a standard call, these registers can be
modified by the called procedure without being saved and restored.

$26 Return address (RA) register. In a standard call, the return address must be
passed and returned in this register.

$27 Procedure value (PV) register. In a standard call, the procedure value of the
procedure being called is passed in this register. In a standard call, this register
can be modified by the called procedure without being saved and restored.

$28 Volatile scratch register. The contents of this register are always unpredictable
after any external transfer of control to or from a procedure. This
unpredictable nature applies to both standard and nonstandard calls. This
register can be used by the operating system for external call fixing, auto
loading, and exit sequences.

$29 Global pointer (GP) register. For a standard-conforming procedure, this
register must contain the calling procedure's global offset table (GOT)
segment pointer value at the time of a call and must contain the calling
procedure's GOT segment pointer value or the called procedure's GOT
segment pointer value upon return. This register must be treated as scratch by
the calling procedure.

2 JET calling standard is the same as the Alpha calling standard

51

$30 Stack pointer (SP) register. This register contains a pointer to the top of the
current operating stack. Aspects of its usage and alignment are defined by the
hardware architecture.

$31 ReadAsZero/Sink register. This register is defined to be binary zero as a
source operand or sink (no effect) as a result operand.

Floating-Point Registers

Register Description

$f0 Floating-point function value register. In a standard call that returns a
floating-point result in a register, this register is used to return the real part
of the result. In a standard call, this register can be modified by the called
procedure without being saved and restored.

$f1 Floating-point function value register. In a standard call that returns a
complex floating-point result in registers, this register is used to return the
imaginary part of the result. In a standard call, this register can be modified
by the called procedure without being saved and restored.

$f2 - $f9 Conventional saved registers. If a standard-conforming procedure modifies
one of these registers, it must save and restore it.

$f10 - $f15 Conventional scratch registers. In a standard call, these registers can be
modified by the called procedure without being saved and restored.

$f16 - $f21 Argument registers. In a standard call, up to six floating-point arguments
can be passed by value in these registers. In a standard call, these registers
can be modified by the called procedure without being saved and restored.
Additional arguments must be passed through the stack.

$f22 - $f30 Conventional scratch registers. In a standard call, these registers can be
modified by the called procedure without being saved and restored.

$f31 ReadAsZero/Sink register. This register is defined to be binary zero as a
source operand or sink (no effect) as a result operand.

52

Appendix D: Register Allocation

The register allocation algorithms used in this research are adapted from classic compiler
register allocation algorithms and may be found in Morgan’s Building An Optimizing
Compiler. The two major algorithms that accomplish local register allocation are the FAT
algorithm by Hendron and the One-Pass Allocation algorithm. Below is the pseudo-code
that describes how these algorithms work:

struct LALLOC {

startTime = 0
endTime = 0
numRegister = 0

}

procedure local_allocate(METHOD *m) {
info = new LALLOC

for each block b in m {
build_local_conflict_graph(info, b)

while set of values in livestart_set is not null {
t = a value from livestart_set
remove t from livestart_set

try_allocate_with_global(info, b, t)
}

one_pass_allocate(info, b)
}

}

A generic local allocation algorithm would typically begin by classifying each value in
the method and determine the various liveness sets. This calculation was done in Turbo
and is not necessary in Afterburner. This algorithm allocates registers for values one
block at a time. The first step is to build a local conflict graph that contains liveness
ranges for each value node in the block. The live start set is the set of values that are live
or in use at the beginning of the block. The values in the live set are global variables.
Local allocation attempts to allocate local variables in the same register as these global
variables if the liveness ranges of the local variables do not conflict with the liveness
ranges of these global variables. Finally, a linear one-pass allocation algorithm is called
on the block to allocate the remaining local variables.

Typically local allocation would also have to reduce the register pressure before the
algorithm begins, but since Turbo maintains that the maximum register pressure is not
larger than the number of register available, a register spilling and pressure reducing step
is unnecessary. While this property states that the maximum register pressure is no
greater than the number of registers available, this does not imply register spilling is

53

entirely avoidable. One-pass allocation will still encounter situations where it is too
difficult or impossible to allocate all the variables and spill code will have to be emitted.

procedure build_local_conflict_graph (LALLOC *info, BLOCK *b) {
timeCount = 0
live_set = liveout_set
endTime[] = int[number of values in method]
startTime[] = int[number of values in method]
pressure = 0

for each value v in the method that contains this block {
endTime[v] = timeCount

}

for each value v in block b in reverse order {
timeCount++
startTime[v] = timeCount
remove v from live_set

timeCount++
for each input p to value v {

if p is not in live_set {
endTime[p] = timeCount
insert p into live_set

}
}
cnt = number of elements in live_set
if (cnt > pressure) {

pressure = cnt
}

}
timeCount++
for each value v in live_set {

startTime[v] = timeCount;
}

info->startTime = startTime
info->endTime = endTime
info->numRegister = pressure

}

Build_local_conflict_graph is responsible for figuring out the range over which each
variable is live within a particular block. This is accomplished by determining the first
and last times a variable is used. This range is the liveness range of the variable. This
calculation begins by initializing all end times for each variable to zero. The algorithm
then steps through each value in the block in reverse execution order. Time is measured
as relative displacement from the end of the block. Each instruction contributes 2 units of
time, one unit for write and one for read. The live set starts out as the set of values that
are live at the end of the block. As the algorithm marches through the values, values are
inserted into the set of live values if they are read and are not already in the live set. If
values are written to then the values are removed from the live set. Start time is set to be
the first time that the value is written, and end time is the last time that the value is read.

54

Some values are live at the beginning of the block and have start time set equal to the
beginning of the block.

procedure try_allocate_with_global (LALLOC *info, BLOCK *b, VALUE *g) {

/* this is the FAT algorithm */
beginTime = info->endTime[g]
finishTime = 0
for each value v in block b in reverse order {

if v has the same type and color as g {
finishTime = info->startTime[v]

}
}

for each value v in block b in reverse order {
if v has the same type as g and v has not been colored {

/* if liveness of g and v do not overlap */
if (info->endTime[v] >= finishTime and

info->startTime[v] < beginTime) {
v->location = g->location
finishTime = info->startTime[v]

}
}

}
}

Local variables can be allocated with global variables if their liveness ranges do not
overlap. This algorithm is called once for every global variable. During its execution, it
calculates the liveness range for the register used by the global variable by concatenating
liveness ranges of all variables that share the same register. Next, it assigns local
variables to the same register as the global variable if the liveness ranges of the local
variable do not overlap the liveness range of the register.

procedure one_pass_allocate (LALLOC *info, BLOCK *b) {
/* Initialize the free register sets */
free_regs = set of available registers

/* Initialize the global register sets */
for each value v in livestart and livethru sets for block b {

insert v->location into global_regs
}

/* delete liveEnd from freereg set and copy into live set */
live_set = new set
for each value v in liveend set {

remove v->location from free_regs
insert v into live_set

}

free_regs = free_regs – global_regs

f_set = new set
for each value v in block b in reverse execution order {

remove v from live_set

55

if (v requires a location and
v->location is not on stack and
v->location is not in global_regs) {

insert v->location into free_regs
}

for each parameter p of value v {
if (p requires a location and

p is not in live_set) {
insert p into live_set

if (p->location is symbolic and
p->location is not on stack) {

f_set = free_regs – v->unavailRegs
if f_set is empty {

set p->spill SPILL_OUT flag
p->location.type = STACK_TMP
p->location = new stack_tmp slot

} else {
s = a register from f_set
remove s from free_regs
p->location = s

}
}

}
} /* end for each parameter */

} /* end for each value */
}

One-pass allocation is a linear algorithm that allocates all the remaining local variables.
The algorithm determines the set of free registers by subtracting the registers occupied by
global variables from the set of available registers. The algorithm then iterates over each
value in the current block in reverse execution order. Each time a read occurs, the value is
inserted into the live set; each time a write occurs the value is removed from the live set.
When a value is removed from the live set, its registers are put back into the free register
set. When a value is added to the live set, a register is chosen from the intersection of the
set of free registers and the set of registers that are available to that variable. This is
because some variables can only be assigned to certain registers, while other variables are
less restrictive. Once one-pass allocation completes, all variables should have been
allocated.

56

Appendix E: Constant Propagation

The constant propagation algorithm employed is an adaptation of the classic compiler
constant propagation algorithm by Wegman and Zadeck. These algorithms may be found
in Morgan’s Building An Optimizing Compiler. The following is pseudo code and
detailed descriptions of the algorithm:

procedure constant_propagation (METHOD *m, JSP_TYPE *jsp_type) {

rtconsts = set of arguments that are constants for jsp_type

worklist = new FIFO queue
blocklist = new FIFO queue

/* initializations */
add entry block of m to blocklist
for each value v in m {

set v->state.status = TOP
if v is a phi node {

v->state.count = 1;
} else {

v->state.count = v->paramCount + 1;
}

}
for each argument value v in rtconsts {

v->state.value = actual value of corresponding argument
}

while (worklist is not empty or blocklist is not empty) {
while blocklist is not empty {

b = remove next block from blocklist
if b is marked reachable {

skip
}
mark b as reachable
for each value v in b {

if (--v->state.count <= 0) {
/* all inputs are initialized */
add v to worklist

}
}
if b is not a conditional block {

add each successor block of b to block list
}

}
while worklist is not empty {

v = remove next value from worklist
oldstatus = v->state.status
if (oldstatus == BOT) {

skip
}

eval_state(v)

57

if v->state.status != oldstatus {
if v is a conditional branch {

if v->state.status = CONST {
determine which branch’s successor

block will be executed and add
that block to blocklist

} else { /* status = BOT */
add all successor blocks to

blocklist
}

} /* end if v is conditional branch */
for each value u that uses v {

if (u->state.count <= 0) {
add u to worklist

}
}

} /* end if new status != old status */
}

}

/* update m to use new constants and remove excess code */
update(m)

}

The main concept in this constant propagation algorithm is that each value node can be in
any of 3 status states, TOP, CONST, or BOT. Status states can only transition from TOP
towards BOT. Specifically, once a status reaches BOT it can never transition to CONST
or TOP. TOP indicates a node is un-initialized or not yet executed. CONST indicates a
node is assumed to have constant value. BOT signifies a node has variable value and
cannot be transformed into a constant. The constant propagation algorithm uses a block
FIFO queue and a value FIFO queue. The algorithm begins with only entry block in the
block queue. The algorithm continues until both the block and the value queues are
empty. If a block being examined is not a conditional block, its successor blocks are
placed on the block queue. Blocks that are conditional must wait until its corresponding
branch instruction has been examined before the algorithm can determine which
successor block to add. Values whose inputs have all been examined at least once are
potential candidates for evaluation and are added to the value queue. When a value is
examined, its state is evaluated. If the value’s new state differs from its old state, then
users of this value need to be updated and are added to the value queue. If the value that
was evaluated is a conditional branch then its appropriate target blocks need to be added
to the block queue. Once all reachable blocks and values are examined and no further
updates are necessary, the algorithm completes.

procedure eval_state(VALUE *v) {
switch (v) {
case v is input argument:

if v is an argument marked as constant by the jsp_type {
v->state.status = CONST
v->state.value = argument value

else {
v->state.statis = BOT

}

58

case v is a constant:
v->state.status = CONST

case v is a phi node:
if (all inputs to v whose state.status != TOP have the same

state.value) {
v->state.status = CONST
v->state.value = state.value of v’s inputs

else {
v->state.statis = BOT

}
}
case v is a node that can be propagated:

if any param of v has state.status = BOT {
v->state.statis = BOT

} else if any param of v has state.status = TOP {
v->state.statis = TOP

} else {
v->state.status = CONST
v->state.value = value of operation given constant

params
}

default:
v->state.statis = BOT

}

This algorithm determines the state for a give value node. A node’s state is determined by
examining the inputs to that value. There are roughly three categories of nodes, constant,
phi, and normal. If a node is a constant node or an input argument that is classified as a
constant by the specialization category, its state is set to CONST and its value set
accordingly. A phi node is a value node with multiple inputs. The output value of a phi
node equals the value of one its input. The selection of which input differs depending on
the flow of execution taken to reach the phi node. This is used typically when a variable
is set to different values in different branches. A phi node can be marked as a constant if
all of the input nodes that are initialized have the same value. This approach is known as
optimistic because it assumes that phi nodes will usually be constants and corrects the
assumption once the algorithm determines that the phi node is actually not a constant.
This optimistic approach allow more values to potentially become constants. Normal
(non-phi and non-constant) nodes are marked as BOT if any of that node’s inputs are
BOT. Nodes are marked as TOP if any of that node’s inputs are TOP. If all inputs to a
node are CONST, then that node can be evaluated and marked as a constant. Certain
nodes have operations that cannot be transformed into a constant and are marked as BOT.

procedure update(METHOD *m) {
const_set = set of values in m whose state.status = CONST
needed_set = set of values in const_set that are used by values

whose state.status = BOT
remove_set = (const_set – needed_set) + set of values in m whose

state.status = TOP

delete from m all values in remove_set
modify all values in needed_set so that the node is an

appropriate constant

59

remove from m all blocks that are not marked as reachable
}

The update phase of the constant propagation algorithm makes use of all the information
gained during constant propagation. Nodes that are not initialized are not executed and
can be removed from the JET IR. Blocks that are not reached are also not executed and
can also be removed from the JET IR. Constant nodes need to remain only if the constant
node is used as input to a non-constant node. All other constant nodes can be removed.
Constant nodes that are used by non-constant nodes need to be modified into a JET IR
constant. The output of the process is a specialized and reduced JET IR that will be
passed to the generator. The generator will use the specialized JET IR to generated
specialized code.

60

Appendix F: Sample Generation and Specialization

Java Source
public static int Test(int a, int b) {

int r = a+b;
int x = 5;
int y = 9;
int z = 234;

if (a > b) {
r += a;
r *= y;
r %= x;

}
else {

r %= x;
r += a;
r /= x;
r += z;

}
return r;

}

Non-Specialized Generation

0x20021b40 Test [exp 1.60, cum 3.08]
0x20021b40 lda sp, -16(sp)
0x20021b44 stq ra, 0(sp)
0x20021b48 bis a0, a0, t1
0x20021b4c addl a0, a1, a0 ; r = a+b
0x20021b50 lda t2, 5(zero) ; x = 5
0x20021b54 cmple t1, a1, v0
0x20021b58 bne v0, 0x20021b60
0x20021b5c br zero, 0x20021b7c
0x20021b60 bis t2, t2, a1 ; else {
0x20021b64 bsr ra, 0x203f5cd4 ; r %= x;
0x20021b68 addl v0, t1, a0 ; r += a
0x20021b6c bis t2, t2, a1
0x20021b70 bsr ra, 0x203f5d4c ; r /= x
0x20021b74 addl v0, 0xea, v0 ; r += z
0x20021b78 br zero, 0x20021b8c ; } if (a > b) {
0x20021b7c addl a0, t1, v0 ; r += a
0x20021b80 s8addl v0, v0, a0 ; r *= y
0x20021b84 bis t2, t2, a1
0x20021b88 bsr ra, 0x203f5cd4 ; r %= x
0x20021b8c ldq ra, 0(sp)
0x20021b90 lda sp, 16(sp)
0x20021b94 ret zero, (ra), 1

61

Specialization
Test(a=76, b=77) {

int r = a+b = 76+77 = 153;
int x = 5;
int z = 234;

if ((a > b) = false) {
}
else {

r %= x;
r += 76;
r /= x;
r += 234;

}
return r;

}
0x20021b50 Test [exp 0.87, cum 3.04]

0x20021b50 lda sp, -16(sp)
0x20021b54 stq ra, 0(sp)
0x20021b58 lda a0, 153(zero) ; r = 153
0x20021b5c lda a1, 5(zero) ; x = 5
0x20021b60 bsr ra, 0x203f5cd4 ; r %= x
0x20021b64 addl v0, 0x4c, a0 ; r += 76
0x20021b68 lda a1, 5(zero)
0x20021b6c bsr ra, 0x203f5d4c ; r /= x
0x20021b70 addl v0, 0xea, v0 ; r += 234
0x20021b74 ldq ra, 0(sp)
0x20021b78 lda sp, 16(sp)
0x20021b7c ret zero, (ra), 1

Test(a=77, b=76) {
int r = a+b = 77+76 = 153;
int x = 5;

if ((a > b) = true) {
r = 230; /* r += 77; */
r = 2070; /* r *= 9; */
r %= x;

}
return r;

}
0x20022e80 Test [exp 0.58, cum 3.07]

0x20022e80 lda sp, -16(sp)
0x20022e84 stq ra, 0(sp)
0x20022e88 lda a0, 2070(zero) ; r = 2070
0x20022e8c lda a1, 5(zero) ; x = 5
0x20022e90 bsr ra, 0x203f5cd4 ; r %= x
0x20022e94 ldq ra, 0(sp)
0x20022e98 lda sp, 16(sp)
0x20022e9c ret zero, (ra), 1

62

Appendix G: Performance Data

Classfile Size Comparison

File Java (KB) JET (KB) JET / Java
cmark3.0/AboutDialog.class 1231 23155 18.81
cmark3.0/BenchmarkAtom.class 331 695 2.10
cmark3.0/BenchmarkMonitor.class 174 250 1.44
cmark3.0/BenchmarkUnit.class 1322 52677 39.85
cmark3.0/CaffeineMarkApp.class 506 7425 14.67
cmark3.0/CaffeineMarkApplet.class 914 22373 24.48
cmark3.0/CaffeineMarkBenchmark.class 3382 208553 61.67
cmark3.0/CaffeineMarkEmbeddedApp.class 1049 43554 41.52
cmark3.0/CaffeineMarkEmbeddedBenchmark.class 2858 156695 54.83
cmark3.0/CaffeineMarkFrame.class 6406 413572 64.56
cmark3.0/DialogAtom.class 1641 61985 37.77
cmark3.0/FloatAtom.class 1184 60434 51.04
cmark3.0/GraphicsAtom.class 2179 118903 54.57
cmark3.0/ImageAtom.class 2811 101285 36.03
cmark3.0/LogicAtom.class 1261 19639 15.57
cmark3.0/LoopAtom.class 940 26685 28.39
cmark3.0/MethodAtom.class 934 26775 28.67
cmark3.0/SieveAtom.class 817 24620 30.13
cmark3.0/StopWatch.class 638 19942 31.26
cmark3.0/StringAtom.class 1121 27819 24.82
cmark3.0/TestDialog.class 1159 31483 27.16
cmark3.0/TestWindow.class 467 7234 15.49
Average 32.04

Caffeine Mark Performance Ratios

Overall Ratios Java JIT Java on JET JET w/o SP JET w/ SP
Java 1 3.085985 1.046884 5.514781 5.517856
JIT 0.324046 1 0.339238 1.787041 1.788037
Java on JET 0.955216 2.947782 1 5.267806 5.270743
JETw/o SP 0.181331 0.559584 0.189832 1 1.000558
JET w/ SP 0.18123 0.559272 0.189727 0.999443 1

63

Caffeine Mark Performance Data
 These benchmarks were run on a 4 SMP EV-56 Alpha machine.

Sieve Loop Logic String Float Method Overall
Java 1854 4662 11368 3182 3107 1105 3199
Java 1854 4662 11357 3202 2943 1110 3176
Java 1854 4660 11369 3198 3102 1109 3203
Java 1854 4661 11361 3196 3063 1110 3196
Java 1854 4662 11334 3222 2813 1121 3159
Average 1854 4661.4 11357.8 3200 3005.6 1111 3186.6

Sieve Loop Logic String Float Method Overall
JIT 5146 10170 33745 10730 5306 8894 9815
JIT 5146 10166 33733 10542 5307 8915 9789
JIT 5147 10164 33904 10815 5307 8917 9839
JIT 5143 10160 33938 10972 5304 8908 9860
JIT 5148 10166 33980 10957 5307 8920 9866
Average 5146 10165.2 33860 10803.2 5306.2 8910.8 9833.8

Sieve Loop Logic String Float Method Overall
Java on JET classfiles 2434 4663 11372 3236 2950 1081 3317
Java on JET classfiles 2434 4663 11361 3256 3097 1084 3348
Java on JET classfiles 2434 4461 11396 3260 2964 1084 3326
Java on JET classfiles 2434 4661 11364 3265 3099 1076 3346
Java on JET classfiles 2434 4662 11349 3237 3102 1081 3343
Average 2434 4622 11368.4 3250.8 3042.4 1081.2 3336

Sieve Loop Logic String Float Method Overall
JET without Specialization 6211 26835 140178 10525 10836 11146 17597
JET without Specialization 6229 26821 140145 10524 10751 11142 17579
JET without Specialization 6233 26830 140189 10516 10796 11146 17594
JET without Specialization 6220 26814 140100 10209 10824 11138 17503
JET without Specialization 6229 26810 140109 10589 10741 11146 17594
Average 6224.4 26822 140144.2 10472.6 10789.6 11143.6 17573.4

Sieve Loop Logic String Float Method Overall
JET with Specialization 6238 26826 140192 10511 10738 11142 17578
JET with Specialization 6238 26817 140205 10577 10707 11150 17589
JET with Specialization 6228 26826 140170 10497 10821 11146 17592
JET with Specialization 6238 26833 140153 10490 10746 11146 17575
JET with Specialization 6235 26820 140184 10522 10746 11146 17582
Average 6235.4 26824.4 140180.8 10519.4 10751.6 11146 17583.2

64

References

1. Arnold, Ken and James Gosling. The Java Programming Language. 2nd ed.

Reading, Massachusetts: Addison-Wesley, 1998.

2. Cooper, Keith D., Mary W. Hall, and Ken Kennedy. “Procedure Cloning.”

Proceedings of 1992 IEEE International Conference on Computer Languages

(1992): 96-105.

3. Consel, C., L. Hornof, R. Marlet, G. Muller, S. Thibault, E.-N. Volanschi, J.

Lawall, and J. Noyé. “Tempo: Specializing Systems Applications and Beyond.”

ACM Computing Surveys, Symposium on Partial Evaluation (1998).

4. Fitzgerald, Robert, Todd B. Knoblock, Erik Ruf, Bjarne Steensgaard, and David

Tarditi. Marmot: An Optimizing Compiler for Java. Technical Report MSR-TR-99-

33, Microsoft Research, June 1999.

5. Gosling, James, Bill Joy, and Guy Steele. The Java Language Specification.

Reading, Massachusetts: Addison-Wesley, 1996.

6. Grant, Brian, Markus Mock, Matthai Philipose, Craig Chambers, and Susan Eggers.

“DyC: An Expressive Annotation-Directed Run-Time Specializations in C.” To

appear in Theoretical Computer Science.

7. Hendron, L.J., G. R. Gao, E. Altman, and C. Mukerji. Register Allocation Using

Cyclic Interval Graphs: A New Approach to an Old Problem. (Technical Report.)

McGill University, 1993.

8. Keppel, David, Susan J. Eggers, and Robert R. Henry. “A Case for Runtime Code

Generation.” Technical Report 91-11-04. University of Washington, 1991.

65

9. Lindholm, Tim and Frank Yelling. The Java Virtual Machine Specification.

Reading, Massachusetts: Addison-Wesley, 1997.

10. Morgan, Robert. Building an Optimizing Compiler. Boston: Digital Press, 1998.

11. Muller, Gilles, Bárbara Moura, Fabrice Bellard, and Charles Consel. “Harissa: A

Flexible and Efficient Java Environment Mixing Bytecode and Compiled Code.”

Proceedings of the Third Conference on Object-Oriented Technologies and Systems

(1997).

12. Poletto, Massimiliano, Wilson C. Hsieh, Dawson R. Engler, and M. Frans

Kaashoek. “`C and tcc: A Language and Compiler for Dynamic Code Generation.”

ACM Trans. Prog. Lang. Sys. 21(2): 324-369 (1999).

13. Proebsting, Todd, Gregg Townsend, Patrick Bridges, John H. Hartman, Tim

Newsham, and Scott A. Watterson. “Toba: Java For Applications: A Way Ahead of

Time (WAT) Compiler.” Proceedings of the Third Conference on Object-Oriented

Technologies and Systems (1997).

14. Shaylor, Nik. JCC – A Java to C Converter. 8 May 1997

<http://www.geocities.com/CapeCanaveral/Hangar/4040/jcc.html>.

15. Stoltz, Eric, Michael Wolfe, and Michael A. Gerlek. “Demand-Driven Constant

Propagation.” Technical Report 93-023. Oregon Graduate Institute of Science and

Technology, 1994.

16. Sun Microsystems. Java 2 SDK Documentation.

<http://java.sun.com/products/jdk/1.2/docs>

17. Sun Microsystems. Java HotSpot Performance Engine.

<http://www.javasoft.com/products/hotspot/index.html>.

66

18. Tower Technologies. A High Performance Deployment Solution for Java Server

Applications (Native Java Compiler and Runtime Environment).

<http://www.towerj.com>.

19. Wegman, M. N., and F. K. Zadeck. “Constant Propagation with Conditional

Branches.” Conference Proceedings of Principals of Programming Languages XII,

1985. 291-299.

	Introduction
	Background
	Motivation
	Design
	Turbo
	Afterburner
	Parser
	Generator
	Scheduler
	Register Allocation
	Emitting Code

	Specializer

	Analysis
	Conclusion and Future Work

