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Subword-based Approaches for Spoken Document Retrieval

by

Kenney Ng

Submitted to the Department of Electrical Engineering and Computer Science
on January 12, 2000, in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Abstract

This thesis explores approaches to the problem of spoken document retrieval (SDR), which is
the task of automatically indexing and then retrieving relevant items from a large collection
of recorded speech messages in response to a user specified natural language text query.
We investigate the use of subword unit representations for SDR as an alternative to words
generated by either keyword spotting or continuous speech recognition. Our investigation is
motivated by the observation that word-based retrieval approaches face the problem of either
having to know the keywords to search for a priori, or requiring a very large recognition
vocabulary in order to cover the contents of growing and diverse message collections. The
use of subword units in the recognizer constrains the size of the vocabulary needed to cover
the language; and the use of subword units as indexing terms allows for the detection of
new user-specified query terms during retrieval.

Four research issues are addressed. First, what are suitable subword units and how well
can they perform? Second, how can these units be reliably extracted from the speech signal?
Third, what is the behavior of the subword units when there are speech recognition errors
and how well do they perform? And fourth, how can the indexing and retrieval methods be
modified to take into account the fact that the speech recognition output will be errorful?

We first explore a range of subword units of varying complexity derived from error-free
phonetic transcriptions and measure their ability to effectively index and retrieve speech
messages. We find that many subword units capture enough information to perform effective
retrieval and that it is possible to achieve performance comparable to that of text-based
word units. Next, we develop a phonetic speech recognizer and process the spoken document
collection to generate phonetic transcriptions. We then measure the ability of subword units
derived from these transcriptions to perform spoken document retrieval and examine the
effects of recognition errors on retrieval performance. Retrieval performance degrades for
all subword units (to 60% of the clean reference), but remains reasonable for some subword
units even without the use of any error compensation techniques. We then investigate a
number of robust methods that take into account the characteristics of the recognition
errors and try to compensate for them in an effort to improve spoken document retrieval
performance when there are speech recognition errors. We study the methods individually
and explore the effects of combining them. Using these robust methods improves retrieval
performance by 23%. We also propose a novel approach to SDR where the speech recognition
and information retrieval components are more tightly integrated. This is accomplished
by developing new recognizer and retrieval models where the interface between the two
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components is better matched and the goals of the two components are consistent with
each other and with the overall goal of the combined system. Using this new integrated
approach improves retrieval performance by 28%. We also detail the development of our
novel probabilistic retrieval model and separately evaluate its performance using standard
text retrieval tasks. Experimental results indicate that our retrieval model is able to achieve
state-of-the-art performance.

In this thesis, we make the following four contributions to research in the area of spoken
document retrieval: 1) an empirical study of the ability of different subword units to per-
form document retrieval and their behavior and performance in the presence of recognition
errors; 2) the development of a number of robust indexing and retrieval methods that can
improve retrieval performance when there are recognition errors; 3) the development of a
novel spoken document retrieval approach with a tighter coupling between the recognition
and retrieval components that results in improved retrieval performance when there are
recognition errors; and 4) the development of a novel probabilistic information retrieval
model that achieves state-of-the-art performance on standardized text retrieval tasks.

Thesis Supervisor: Victor W. Zue
Title: Senior Research Scientist
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Chapter 1

Introduction

With the explosion in the amount of accessible data spurred on by advances in information

technologies including increasingly powerful computers, increased data storage capacity, and

growing international information infrastructures (e.g., the Internet), the need for automatic

methods to process, organize, and analyze this data and present it in human usable form has

become increasingly important. Of particular interest is the problem of efficiently finding

and selecting “interesting” pieces of information from among the rapidly growing streams

and collections of data. This is especially true as more and more people seek to make

effective use of these vast sources of information on a routine basis.

The World Wide Web is a good example of this scenario. There is so much data available

on the Web that the only way someone can even hope to find the information that he or

she is interested in is to rely on automatic methods such as web search engines. Although

these automatic methods are very popular and extremely useful, they are still far from

being perfect. The tasks of automatically indexing, organizing, and retrieving collections

of information items are still open research problems.

Much research has been done, under the headings of document and text retrieval, on

the problem of selecting “relevant” items from a large collection of text documents given a

request from a user (Harman 1997; Rijsbergen 1979; Salton and McGill 1983). Only recently

has there been work addressing the retrieval of information from other media such as images,

audio, video, and speech (Dharanipragada et al. 1998; Foote et al. 1995; Hauptmann and

Wactlar 1997; James 1995; Wechsler and Schauble 1995; Witbrock and Hauptmann 1997).
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This expansion into other media raises new and interesting research issues in information

retrieval, especially in the areas of content representation and performance robustness.

Given that increasingly large portions of the available data contain spoken language

information, such as recorded speech messages, radio broadcasts, and television broadcasts,

the development of automatic methods to index and retrieve spoken documents will become

more important. In addition, the development of these methods will have a significant

impact on the use of speech as a data type because speech is currently a very difficult

medium for people to browse and search efficiently (Schmandt 1994).

In this chapter, we first provide some background by giving an introduction to infor-

mation retrieval. Next, we describe some of the differences between text and speech media

and list some of the issues raised by the change in media. Then, we briefly describe some

speech information processing tasks related to speech retrieval including topic identifica-

tion, spotting, and clustering. We then motivate our research and describe the goals and

contributions of this thesis. Finally, we give a chapter by chapter overview of the thesis.

1.1 Information Retrieval

The term “information retrieval” has been used to describe a wide area of research that

is “concerned with the representation, storage, organization, and accessing of information

items” (Salton and McGill 1983). The typical scenario associated with information retrieval

is that of identifying information items or “documents” within a large collection that best

match a “request” provided by a user to describe his or her information need. The user is

not looking for a specific fact but is interested in a general topic or subject area and wants

to find out more about it. In other words, the request is usually an incomplete specification

of the user’s information need. An example would be requesting articles about “the blizzard

of 1996” from a collection of newspaper articles. The goal is not to return specific facts in

answer to the user’s request but to inform the user of the existence of documents in the

collection that are relevant to his or her request and to return pointers or references to them.

This can also include the degree to which the identified documents match the request.

There is no restriction, in principle, on the type of document that can be handled; it can
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be a text document, an image, an audio recording, or a speech message. In practice, however,

most of the work on automatic information retrieval to date has dealt with collections of

text documents ranging in complexity from bibliographical data and abstracts to complete

articles and books. Only recently has there been work with other types of media. In

the literature, the terms “text retrieval” and “document retrieval” are used to refer to text

media; “image retrieval” and “speech retrieval” are used to refer to image and speech media

respectively; and “multi-media retrieval” is used to refer to mixed media. In this chapter,

we will use the term “document” to refer to items of any media type.

The notion of “best match” and “relevance” is purposely left vague at this point. It

will be discussed in more detail when we examine specific retrieval methods in Section 2.4

and Chapter 6. It is generally assumed, however, that documents that match the request

are those that are about the same or similar “topic” as the request. This means that the

measure of relevance is based, in some way, on the contents of the document and request.

1.1.1 Information Retrieval Components

All information retrieval systems have the following basic component processes which is

illustrated in the system block diagram in Figure 1-1:

• Creating the document representations (indexing),

• Creating the request representation (query formation), and

• Comparing the query and document representations (retrieval).

Each document, upon addition to the collection, needs to be processed to obtain a doc-

ument representation that is stored and used by the retrieval system. This process is known

as indexing. The representation must capture the important information contained in the

original document in a form that allows it to be compared against representations of other

documents and representations of the user requests or queries. Typically, the representation

is more compact than the original document which allows for large collections of documents

to be handled efficiently. Each user request must also be processed to generate a request

representation or “query.” This process is known as query formation. As with the document

representations, the query must be able to capture the important information contained in
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Retrieval

Indexing

Query

"weather forecasts"

Document Collection

Indexed Documents

User Request

List of Documents
Relevance Ranked

Figure 1-1: Block diagram illustrating the major components in an information retrieval
system. The indexing process creates the document representations; the query formation
process turns the user request into a query; and the retrieval component compares the query
and document representations and returns a relevance ranked list of documents.

the original request in a form that allows it to be compared against the document repre-

sentations. The query is the expression of the user’s information need and is used by the

retrieval system to select documents from the collection.

The central process of an information retrieval system is the comparison of the query

representation with the document representations. This is the retrieval process. In general,

a matching function is defined which selects relevant documents from the collection based

on the query and document representations. In principle, each document in the collection

is matched against the query to determine its relevance.

Information retrieval performance can be measured along many dimensions. In real-

world applications, factors such as cost of implementation and maintenance, ease of indexing

new documents, and speed of retrieval are important. By far the most popular performance

criteria is that of retrieval effectiveness which is usually composed of two measures: recall

and precision. Recall is the fraction of all the relevant documents in the entire collection

that are retrieved in response to a query. Precision is the fraction of the retrieved documents

that are relevant. By scanning down the list of ranked documents, a precision-recall curve

can be traced out. This graph indicates the set of possible operating points that can be

obtained by thresholding the list of ranked documents at various points. Recall and precision

generally vary inversely with each other. Section 2.4 presents a more detailed description

of the information retrieval performance measures that we will use in this thesis.
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Information
Process

Goal Documents Queries Training
Data

Information
Retrieval

search for and retrieve documents in
a collection that are relevant to a
user query

static,
unstructured

dynamic,
incomplete

no

Database
Retrieval

search a database of records and
return specific facts or particular
records that answer a user request

static,
structured

dynamic,
complete

no

Information
Filtering

identify relevant documents from in-
coming streams of documents

dynamic,
unstructured

static,
incomplete

yes

Document
Categorization

classify documents into one or more
predefined categories

unstructured no queries,
known
categories

yes

Document
Clustering

automatically discover structure in
a collection of unlabelled documents

static,
unstructured

no queries,
unknown
categories

no

Information
Extraction

automatically find and extract do-
main specific features or facts

unstructured no queries yes

Document
Summarization

automatically derive a concise
meaning representation of the
document

unstructured no queries no

Table 1-1: List of information processes related to information retrieval. A brief description
of their goals and some characteristics regarding the document collection, the topics or
queries, and an indication of the availability of labelled training data are included.

1.1.2 Related Information Processes

There are many information processing tasks that are closely related to information re-

trieval. These include database retrieval, information filtering/routing, document catego-

rization, document clustering, information extraction, and document summarization. These

processes are listed in Table 1-1 along with a brief description of their goals and some char-

acteristics regarding the document collection, the topics or queries, and whether labelled

training data is available. In this section, we briefly describe these processes and mention

their similarities and differences to retrieval.

Recall that in information retrieval the goal is to search for and retrieve documents

in a collection that are relevant to a user’s request. This task is characterized by a dynamic

information need in the sense that user requests can change from session to session and it

is not known a priori what the user will ask. The request is also usually an incomplete

(imprecise) specification of the user’s information need. Another characteristic is that the

collection of documents is relatively static. There may be additions to and deletions from
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the collection but they generally have a very small effect on the entire collection. In addition,

no supervised training data is available during collection creation since it is not known what

the user requests will be and, hence, which documents are relevant and which are not.

In database retrieval, the goal is to search a database of records and return specific

facts or particular records that answer or exactly match a given user request. The structure

of the records is usually well defined (i.e., the records consist of specific fields filled with

particular types of values such as zip codes, dates, etc.) and the request is a complete

(precise) specification of the user’s information need.

In Information filtering/routing, the goal is to identify relevant documents from

incoming streams of documents. The filtering is usually based on descriptions of long-term

information preferences called “profiles” instead of dynamic queries. Documents that match

are then forwarded or routed to the users associated with the profile; those that don’t match

are discarded. Since the information need is relatively static, documents that have been

processed and assessed by the user can serve as training data to improve the profile.

The goal in document categorization is to classify documents into one or more of a

set of predefined categories. The documents can be in a static collection or can arrive in

a data stream (e.g., newswire). There is usually a set of labeled data (document:category

pairs) that can be used to train classifiers for the different categories.

In document clustering, there is no labeled training data and the goal is to auto-

matically discover structure in a collection of unlabelled documents. Clustering has been

used to organize document collections to improve efficiency and performance for information

retrieval (Croft 1980; Lewis 1992; Rijsbergen 1979).

In information extraction, the goal is to automatically find and extract domain spe-

cific features or facts like entities, attributes, and relationships from a document (Chinchor

and Sundheim 1995). Some examples of the types of information usually extracted are

names of organizations, people, locations, and dates.

The goal in document summarization is to automatically derive a representation of

the document that captures it’s important characteristics succinctly. There has been some

work in trying to automatically derive abstracts of text documents for use in information

retrieval (Kupiec et al. 1995).
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1.2 Text vs. Speech Media

There are many differences between text and speech media which raise new research issues

that need to be addressed in order to be able to develop an effective information retrieval

system for speech messages. Similar issues arise when comparing text and image media.

One issue is that speech is a richer and more expressive medium than text (Schmandt

1994); it contains more information than just the words. With speech, information such as

the identity of the spoken language, the identity of the speaker, and the “mood” or “tone”

of the speaker, expressed as prosodic cues, are captured in addition to the spoken words.

This additional information may be useful in extending a retrieval system; it offers new

indexing features. One type of information that remains common to both text and speech

documents is the concept of the topic or subject of the document. In this work, we only

deal with the topic content of the documents; the use of the other acoustic information

contained in the speech signal is beyond the scope of this work.

A second issue is how to accurately extract and represent the contents of a speech

message in a form that can be efficiently stored and searched. Although a similar task

needs to be done with text documents, the change from text to speech adds an additional

layer of complexity and uncertainty. There are many challenges including being able to

handle multiple speakers, noisy speech, conversational or fluent speech, and very large

(even potentially unlimited) vocabularies. In this work, we investigate the use of subword

unit representations as an alternative to word units generated by either keyword spotting

or continuous speech recognition. The subword unit indexing terms are created by post-

processing the output of a phonetic speech recognizer.

A third issue is the robustness of the retrieval models to noise or errors in transcription.

Most of the indexing and retrieval methods that have been developed for text documents

have implicitly assumed error-free transcriptions. With text, the words in the documents

are assumed to be known with certainty. As a result, there is no explicit mechanism in the

models for dealing with errors in the document representations. However, with speech there

are currently no perfect automatic transcription methods and there will likely be errors in

the transcripts generated by the speech recognizer. The use of dictionaries to spell check
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words, thesauri to expand words, and the conflation of words to their stems can all be

thought of as approaches that address the issue of robustness to varying degrees. Modify-

ing the retrieval model by generalizing the matching function to allow for the approximate

matching of indexing terms is another approach to deal with errorful document represen-

tations. In Chapter 5, we investigate a number of robust methods that take into account

the characteristics of the recognition errors and try to compensate for them in an effort to

improve retrieval performance. We also propose, in Chapter 7, a novel retrieval approach

where the recognition and retrieval components are more tightly integrated.

1.3 Related Speech Information Processes

Spoken document retrieval is a relatively new area of work not only in the information

retrieval community but also in the speech recognition community. However, there has been

work done in recent years on the related problems of classifying and sorting speech messages

according to subject or topic. These tasks, known as “topic identification” and “topic

spotting,” are analogous to categorization and routing for text documents. Speech messages,

like text documents, can also be automatically clustered to try to discover structure or

relationships between messages in a collection.

The task in topic identification is the assignment of the correct topic to a speech message

known to be about one of a fixed number of possible topics. This is a “closed set” problem

in the sense that the speech message must belong to one of the prespecified topics. Topic

spotting is the “open set” variant of this problem. In this case, it is possible for the speech

message to not belong to any of the prespecified topics, i.e., it can belong to “none of the

above.” The term “topic spotting,” however, has been used almost exclusively to refer

to the two-class discrimination problem where the task is to decide if a speech message is

about a certain specified topic or not. Two characteristics of the topic identification and

spotting work that make them different from retrieval are the a priori specification of the

topic classes, and the availability of labeled speech messages for training the classifiers and

statistical models used to score the messages. In retrieval, there is no training data and

the user queries (i.e., topics) are not known ahead of time. It is only during the relevance
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feedback stage that labeled messages (relevant or not relevant) are available. In clustering,

there is no labeled training data and the goal is to automatically discover structure in a

collection of unlabelled data. Clustering information may be useful directly to a user (e.g.,

for browsing a document collection) or can be used to improve retrieval system performance

by providing some structural organization to the documents in the collection.

Because of the similarities of topic identification, spotting, and clustering to speech

retrieval, many of the techniques developed for these speech information processing tasks

can be adapted for use in spoken document retrieval. We now briefly review some of the

approaches developed for these related speech information processing tasks.

Topic Identification

In (Rose et al. 1991), a word spotting approach is used to detect keyword events in a 6 topic

speech message classification task. The set of keywords was determined by computing the

mutual information between each word and each topic on a set of training messages labeled

according to topic, and then selecting the top scoring words per topic. These keywords

were input to a neural network based message classifier that takes as input a binary feature

vector representing the presence or absence of each keyword in the message and outputs

a score for each topic class. Topic identification is performed for a given speech message

by finding that topic which maximizes the score. A classification accuracy of 82.4% was

achieved with text transcriptions of the speech messages. When a word spotter was used to

detect the keywords in the speech message, topic classification accuracy dropped to 50%.

Replacing the binary feature vector to the message classifier by a continuous valued vector

consisting of the keyword detection confidence measure improved performance to 62.4%.

In (Rohlicek et al. 1992), a system for extracting information from off-the-air recordings

of air traffic control communications is described. The goal of this “gisting” system is to

identify flights and to determine whether they are “taking off” or “landing.” Two different

methods were used to perform the topic classification. One is based on training a decision

tree classifier (Brieman et al. 1984) to distinguish between the “take off” and “landing”

topics. The input to the classifier consist of binary feature vectors with each element

indicating the presence or absence of the corresponding keyword in the dialog. The second
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method performs topic classification by accumulating likelihood ratio scores of the detected

keywords to produce a topic score. In both approaches, the training data consists of a large

collection of labeled dialogs that have been processed by the recognizer. Performance is

high on this task with correct classification of transmissions and dialogs above 90%.

In (Gillick et al. 1993), a large vocabulary word recognition approach was used on a

10-class topic identification task of recorded telephone conversations from the Switchboard

corpus (Godfrey et al. 1992). To classify a speech message, a large vocabulary, speaker-

independent, speech recognizer is first used to produce an errorful transcription of the speech

message. Then scores for each of the ten topics are generated by evaluating the transcription

on unigram language models that have been trained for each topic. Finally, the message is

assigned to the topic corresponding to the model with the best score. Experiments showed

that even with highly errorful transcriptions produced by the word recognizer (78% word

error), reasonable topic identification performance (74% accuracy) can be achieved.

A comparison of using both word recognition and word spotting on the same 10-class

topic identification task from the Switchboard corpus was done in (McDonough et al. 1994;

McDonough and Gish 1994). In this study, a large vocabulary, speaker-independent, speech

recognizer was run in both recognition mode, to generate the most likely word sequence,

and in word spotting mode, to generate putative word events with an associated poste-

rior probability of occurrence score. Different message representations are created from the

recognition and word spotting outputs. Each element in the recognizer feature vector con-

tains the number of times the corresponding word is seen in the recognition output for the

message. In the word spotting feature vector, each element contains the expected number of

occurrences obtained by summing the probability scores associated with each putative word

hypothesis. These features are used as input to a topic classifier based on a multinomial

model of the keyword occurrences. Experiments show that the word spotter feature vector

(79.2% accuracy) out-performed the recognizer feature vector (74.6% accuracy).

Topic Spotting

In (Carey and Parris 1995), a small vocabulary word spotter was used to detect or spot

weather reports from recorded BBC radio news broadcasts. The set of keywords used in the
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word spotter were selected from labeled training data by computing a “usefulness” measure

based on the mutual information between each word and each topic. Topic spotting is

performed by accumulating, over a window of speech (typically 60 seconds), the usefulness

scores of the detected keywords to produce a topic score for that region of the speech mes-

sage; regions with high scores are then hypothesized to be about the topic. In (Wright et al.

1995) an alternative method of scoring is presented in which the occurrence distribution of

the keyword in topic and non-topic speech is modeled instead of just the occurrence proba-

bilities. These new distributions can each be modeled by a Poisson or a mixture of Poissons.

Also in (Wright et al. 1995), several different topic models such as logistic and log-linear

models that try to capture dependencies between the keywords are examined. Experiments

show that using a carefully chosen log-linear model can give topic spotting performance

that is better than using the basic model that assumes keyword independence.

There have also been subword approaches to topic spotting (Nowell and Moore 1994;

Skilling et al. 1995; Wright et al. 1996). The main motivation in these approaches is to try

to require as little prior knowledge about the domain as possible. In (Nowell and Moore

1994), a dynamic programming approach was used to select variable length phone sequences

generated by a phone recognizer to be used as “keywords” for spotting topics in recorded

military radio broadcasts. This approach was extended to the acoustic level in (Skilling et al.

1995), where sequences of vector-quantized acoustic features, instead of phone sequences, are

used as the “keywords” for topic spotting. In both of these approaches, “keywords” sets are

selected by computing and selecting those with a high “usefulness” measure. Again, topic

spotting is performed by accumulating the usefulness scores of the detected “keywords” over

a window to produce a topic score for that region of the speech message; regions with high

scores are then hypothesized to be about the topic. For the particular task used in these

experiments, both of these subword approaches gave reasonable topic spotting performance.

Topic Clustering

In (Carlson 1996), several approaches to the task of automatic clustering of speech messages

from the Switchboard corpus by topic are investigated. The clustering process has three

main components: tokenization, similarity computation, and clustering. The goal in tok-
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enization is to generate a suitable representation of the speech message which can be used by

the other two components. Examples investigated include words from text transcriptions,

words generated by a word recognizer, and phones generated by a phonetic recognizer. Next,

a measure of similarity needs to be computed between every pair of messages. In this work,

a similarity measure based on the ratio of likelihood scores derived from n-gram models is

used. For each message, an n-gram language model is first computed; then each message is

scored against the language model of the other messages; and finally, these scores are used

to compute the similarity measure between the messages. These similarity scores are then

used in the third stage to perform clustering. Two different clustering methods are investi-

gated: hierarchical tree clustering and nearest neighbor classification. Experimental results

indicate that all methods work well when true transcription texts are used. Performance is

significantly worse when using speech input but still reasonable enough to be useful. The

best speech clustering performance was obtained with word recognition output, unigram

language models, and tree-based clustering.

1.4 Motivation

One approach to the task of spoken document retrieval (SDR) is to perform keyword spot-

ting on the spoken documents to obtain a representation in terms of a small set of key-

words (Foote et al. 1995; Jones et al. 1995a; Rose et al. 1991). In order to process the

speech messages to create the keyword representations ahead of time, the set of keywords

needs to be chosen a priori. This either requires advanced knowledge about the content of

the speech messages or what the possible user queries may be. Alternatively, the keywords

can be determined after the user specifies the query. In this case, however, the user would

need to wait while the entire message collection is searched. Even with faster than real-time

keyword spotting systems, there may be unacceptable delays in the response time.

Another approach is to first transform the spoken documents into text using a large

vocabulary speech recognizer and then use a conventional full-text retrieval system (Haupt-

mann and Wactlar 1997; Johnson et al. 1998; Witbrock and Hauptmann 1997). In this

approach, the main research emphasis is on trying to improve the speech recognition sys-

32



tem so that it can operate efficiently and accurately in a large and diverse domain. This

has been the dominant approach in the recent spoken document retrieval tracks of the

NIST (National Institute of Standards and Technology) sponsored Text REtrieval Confer-

ence (TREC) (Garofolo et al. 1997; Garofolo et al. 1998). Although this approach is

straightforward, it has several drawbacks. One is the decoupling of the speech recognition

and message retrieval processes. Although this leads to modularity, it can also lead to sub-

optimality; the retrieval process is likely to benefit from information about the uncertainty

of the recognized words produced during the recognition process. Another important issue

is the growth of the recognizer vocabulary needed to handle new words from growing and

diverse message collections. With current technology, there is a practical limit on the size

of the recognition vocabulary. There are also the related issues of determining when, how,

and what new words need to be added and whether the entire message collection needs to

be re-indexed when the recognizer vocabulary changes. Yet another issue is the reliance on

large amounts of domain-specific data for training the large vocabulary speech recognition

models.

To illustrate the nature of the vocabulary growth, two years of text data from the

Los Angeles Times newspaper (1989 and 1990) used in the ad-hoc text retrieval task in

TREC-6 (Harman 1997) are analyzed. Figure 1-2 plots the relationship between the size

of the vocabulary versus the size of the data set as the data set size is increased. We start

with a data set consisting of one day’s worth of news stories and continue to add stories

incrementally, in chronological order, until all two years worth of data has been added.

Milestones are indicated as the data set grows to include one day, one week, one month, six

months, one year, and finally two years’ worth of data. We observe that the vocabulary size

grows with the data set size. Even after the data set contains a significant amount of data

(e.g., after the one year mark), new vocabulary words are continually encountered as more

data is added. Many of the new vocabulary words, not surprisingly, are proper names, and,

of course, these are the words that are important for information retrieval purposes.

An alternative approach that has the potential to deal with many of the above problems

is to use subword unit representations for spoken document retrieval. The use of subword

units in the recognizer constrains the size of the vocabulary needed to cover the language
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Figure 1-2: The relationship between the growth of the data set size and the vocabulary
set size. Two years of text data from the Los Angeles Times newspaper (1989 and 1990)
used in the ad-hoc text retrieval task in TREC-6 is used to generate the plot. Milestones
are indicated as the data set grows to include 1 day, 1 week, 1 month, 6 months, 1 year,
and finally 2 years’ worth of data.

and reduces the amount of data needed for training. The reduced training requirements

can facilitate the transition to new application domains and different languages. The use

of subword unit terms for indexing allows for the detection of new query terms specified by

the user during retrieval. Although there is a tradeoff between the size of the subword unit

and its recognition accuracy and discrimination capability, some of this can be mitigated

by an appropriate choice of subword units and the modeling of their sequential constraints.

The effectiveness of relatively simple text retrieval algorithms that essentially match strings

of consecutive text characters (i.e., character n-grams) (Cavnar 1994; Damashek 1995;

Huffman 1995) gives us hope that subword approaches can be successful with spoken doc-
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uments. We should note that subword-based approaches can also be used in combination

with word-based methods to complement them in situations where it is difficult to train a

large vocabulary recognizer or when out-of-vocabulary words occur in the user query.

Several subword based approaches have been proposed in the literature. One makes

use of special syllable-like indexing units derived from text (Glavitsch and Schauble 1992;

Schäuble and Glavitsch 1994) while others use phone sequences (phone n-grams) generated

by post-processing the output of a phonetic speech recognizer (Ng and Zobel 1998; Wechsler

and Schauble 1995). There are also methods that search for the query terms on phonetic

transcriptions or phone lattice representations of the speech messages instead of creating

subword indexing terms (Dharanipragada et al. 1998; James 1995; Jones et al. 1996;

Wechsler et al. 1998). Some of these methods combine subword and large vocabulary

word approaches to address the issue of new words in the queries (James 1995; Jones et al.

1996). However, there have been few studies that explore the space of possible subword

unit representations to determine the complexity of the subword units needed to perform

effective spoken document retrieval and to measure the behavior and sensitivity of different

types of subword units to speech recognition errors.

Although there has been some work in trying to compensate for optical character recog-

nition (OCR) errors introduced into automatically scanned text documents (Marukawa et al.

1997; Zhai et al. 1996), the area of robust methods for dealing with speech recognition er-

rors in the context of spoken document retrieval is still relatively new. There has been some

recent work in this area performed independently and in parallel to the work presented in

this thesis. In (Ng and Zobel 1998), manual correction and string edit distances are used

to try to compensate for phonetic recognition errors. In (Jourlin et al. 1999), a number

of different query expansion techniques are used to try to compensate for word recognition

errors. In (Singhal et al. 1998), noisy document representations are expanded to include

clean words from similar documents obtained from a parallel clean text corpus. In (Wech-

sler et al. 1998), a keyword spotting technique that allows for phone mismatches is used to

detect query terms in the errorful phonetic transcriptions of the spoken documents.

35



1.5 Goals and Contributions

The main goal of this research is to investigate the feasibility of using subword unit rep-

resentations for spoken document retrieval as an alternative to words generated by either

keyword spotting or continuous speech recognition. Four research issues are addressed:

1. What are suitable subword units and how well can they perform?

2. How can these units be reliably extracted from the speech signal?

3. What is the behavior of the subword units when there are speech recognition errors

and how well do they perform?

4. How can the indexing and retrieval methods be modified to take into account the fact

that the speech recognition output will be errorful?

We first explore a range of subword units of varying complexity derived from error-free

phonetic transcriptions and measure their ability to effectively index and retrieve speech

messages (Ng and Zue 1997a; Ng and Zue 1997b). Next, we develop a phonetic speech

recognizer and process the spoken document collection to generate phonetic transcriptions.

We then measure the ability of subword units derived from these transcriptions to per-

form retrieval and examine the effects of recognition errors on retrieval performance (Ng

and Zue 1998). We then investigate a number of robust methods that take into account

the characteristics of the recognition errors and try to compensate for them in an effort

to improve retrieval performance when there are speech recognition errors; we study the

methods individually and explore the effects of combining them (Ng 1998). We also propose

a novel approach to SDR where the speech recognition and information retrieval compo-

nents are more tightly integrated. This is accomplished by developing new recognizer and

retrieval models where the interface between the two components is better matched and the

goals of the two components are consistent with each other and with the overall goal of the

combined system. The novel probabilistic retrieval model that we develop as part of this

effort is evaluated separately on standard TREC text retrieval tasks and is able to achieve

state-of-the-art performance (Ng 1999).
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In this thesis, we make the following contributions to research in the area of spoken

document retrieval:

• An empirical study of the ability of different subword units to perform spoken docu-

ment retrieval and their behavior in the presence of speech recognition errors.

• The development of a number of robust indexing and retrieval methods that can

improve retrieval performance when there are speech recognition errors.

• The development of a novel spoken document retrieval approach with a tighter cou-

pling between the recognition and retrieval components that results in improved re-

trieval performance when there are speech recognition errors.

• The development of a novel probabilistic information retrieval model that achieves

state-of-the-art performance on standardized text retrieval tasks.

1.6 Overview

The thesis is organized as follows. Chapter 2 contains background information for the exper-

imental work presented in this thesis. This includes information about the various speech

and test corpora used in the experiments and descriptions of the summit speech recognition

system and the initial information retrieval model used. In Chapter 3, we explore a range

of subword units of varying complexity derived from error-free phonetic transcriptions and

measure their ability to effectively index and retrieve speech messages. Next, we train and

tune a phonetic recognizer and use it to process the entire spoken document collection to

generate phonetic transcriptions in Chapter 4. We then explore a range of subword unit in-

dexing terms of varying complexity derived from these errorful phonetic transcriptions and

measure their ability to support spoken document retrieval. In Chapter 5, we investigate

a number of robust methods that take into account the characteristics of the recognition

errors and try to compensate for them in an effort to improve spoken document retrieval

performance when there are speech recognition errors. We study the methods individually

and explore the effects of combining them. We take a brief digression from spoken document

retrieval in Chapter 6 where we describe the development of a novel probabilistic retrieval
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model and evaluate its performance using standard text retrieval tasks. This retrieval model

is used in Chapter 7 to develop a novel approach to SDR where the speech recognition and

information retrieval components are more tightly integrated. We develop new recognizer

and retrieval models where the interface between the two components is better matched

and the goals of the two components are consistent with each other and with the overall

goal of the combined system. Finally, in Chapter 8, we summarize the work, draw some

conclusions, and mention some possible directions for future work.
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Chapter 2

Experimental Background

This chapter contains background information for the experimental work presented in this

thesis. This includes information about the various speech and test corpora used in the

experiments and descriptions of the summit speech recognition system and the initial in-

formation retrieval model used.

2.1 NPR Speech Corpus

Many of the spoken document retrieval experiments done in this thesis make use of an

internally collected data set: the NPR speech corpus. This corpus consists of FM radio

broadcasts of the National Public Radio (NPR) “Morning Edition” news program (Spina

and Zue 1996). The data is recorded off the air onto digital audio tape, orthographically

transcribed, and partitioned into separate news stories. Both the word transcription and

story partitioning processes were done manually by professional transcribers. In addition,

the transcribers created a short “topic description” for each story. The data is divided

into two sets, one for training and tuning the speech recognizer and another for use as the

spoken document collection for the information retrieval experiments. Because the speech

data consists of different broadcasts of the same radio show, there will be some recurring

speakers, such as the studio announcers, from one broadcast to another. As a result,

the data should be considered, for speech recognition purposes, as multi-talker instead of

speaker-independent.
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No. of documents 384
No. of topics 50

Min. Mean Max.
Document length (words) 22 325 663
Document length (seconds) 7.4 114.0 586.5
Topic length (words) 2 4.5 11
No. of relevant docs/topic 2 6.2 35

Table 2-1: Statistics for the NPR spoken document collection.

2.1.1 Speech recognition data sets

The speech recognition training set consists of 2.5 hours of “clean” (studio quality, with-

out noise, etc.) speech from five one-hour shows with 156 unique speakers. In related

work (Spina and Zue 1997), it was found that training on speech from all the different noise

conditions in the data (background noise, background music, telephone channel, etc.) does

not significantly improve recognition performance over training on only the clean speech.

As a result, only clean speech is used for training the speech recognizer in our experiments.

The development set, used to tune and test the recognizer, consists of one hour of

data from one show and contains speech from all acoustic conditions. There are 46 unique

speakers in this data set, 12 of whom also occur in the training data.

2.1.2 Spoken document collection

The spoken document collection consists of over 12 hours of speech from 16 one hour

shows partitioned into 384 separate news stories. Filler segments such as commercials and

headline introductions which don’t belong to a single news story are disregarded. Each news

story averages two minutes in duration and typically contains speech from multiple acoustic

conditions. There are 462 unique speakers in this data set, 35 of whom also occur in the

training data. Statistics for the NPR spoken document collection are shown in Table 2-1.

A set of 50 natural language text queries and associated relevance judgments on the

message collection (i.e., the set of relevant documents or “answers”) were created to sup-

port retrieval experiments. The queries, which resemble story headlines, are relatively short,

each averaging 4.5 words. Some example queries are “Whitewater controversy: hearings,
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investigations, and trials,” “IRA bomb explosion in England,” and “Proposal to increase

the minimum wage.” The queries were created using the manually generated “topic de-

scriptions” for each story. First, the topic descriptions for all stories were compiled and

manually categorized into groups that are about the same topic. Then, the 50 topics with

the most relevant documents were selected and, for each topic, a representative topic de-

scription was chosen to be the corresponding query. The topic descriptions are not part

of the document (since they are not in the speech data) and are not indexed or used in

any other way except to create the queries. The binary relevance assessments were done

manually. For each query, every document in the collection was examined to determine if

it was relevant to the query or not. Some documents turned out to be relevant to more

than one query. Each query has on average 6.2 relevant documents in the collection. The

complete set of queries and their relevance judgments are listed in Appendix A.

We note that there is a mismatch between the queries and the documents since the former

is text and the latter speech. However, this is a realistic scenario for applications where the

user is entering text queries on a computer to search for relevant speech messages from an

archived collection. A natural extension, which is beyond the scope of this thesis, is to have

spoken queries so both the documents and queries are speech. One issue with text queries

is that they need to be translated into a representation that is consistent with that used for

the speech documents. With subword unit representations, we need to map the words in

the query to their corresponding subword units. Since our subword units are derived from

phonetic transcriptions (Section 3.2), the primary task in translating the text queries is the

mapping of the words to their corresponding phone sequences. To do this, we make use of

standard pronunciation dictionaries developed for speech recognition (McLemore 1997) and

text-to-phone mapping algorithms developed for speech synthesis (Sproat 1998).

Although 12 hours is a reasonable amount of speech data, the amount of corresponding

transcribed text is relatively small in comparison to the size of experimental text retrieval

collections (Harman 1997) such as the ones described in Section 2.2. One needs to keep this

in mind when generalizing the performance and results from retrieval experiments using

this data set.
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Avg. #
Data Set Size (MB) # Docs Words/Doc
Financial Times (FT) 1991-1994 564 210,158 412.7
Federal Register (FR) 1994 395 55,630 644.7
Congressional Record (CR) 1993 235 27,922 1373.5
Foreign Broadcast Information Service (FBIS) 470 130,471 543.6
L.A. Times (LA) 475 131,896 526.5
TREC-6 (all 5 sources) 2139 556,077 541.9
TREC-7 (4 sources excluding CR) 1904 528,155 497.9
TREC-8 (same as TREC-7) 1904 528,155 497.9

Table 2-2: Statistics for the document collections used in the TREC-6, TREC-7, and TREC-
8 ad hoc text retrieval tasks.

2.2 TREC Ad Hoc Retrieval Text Corpora

To evaluate the new probabilistic retrieval model that we develop in Chapter 6, we use the

standardized document collections from the ad hoc retrieval tasks in the 1997, 1998, and

1999 Text REtreival Conferences (TREC-6, TREC-7, and TREC-8) sponsored by the Na-

tional Institute of Standards and Technology (NIST) (Harman 1997; Harman 1998; Harman

1999). The ad hoc task involves searching a static set of documents using new queries and

returning an ordered list of documents ranked according to their relevance to the query.

The retrieved documents are then evaluated against relevance assessments created for each

query. These document collections consists of text stories from various news and informa-

tion sources. Details of the composition and size of the collections are given in Table 2-2.

The documents in the TREC-7 task are a subset of those in the TREC-6 task (documents

from the Congressional Record are excluded from the TREC-7 collection). The document

collection used in the TREC-8 task is identical to that used in TREC-7. Each collection

contains approximately 2 gigabytes of text from over half a million documents. A sample

document from the L.A. Times is shown in Figure 2-1. The documents are SGML (Standard

Generalized Markup Language) tagged to facilitate parsing.

There are 50 queries (also called “topics”) for each of the TREC-6, TREC-7, and TREC-

8 ad hoc retrieval tasks. Topic numbers 301-350 are used in the TREC-6 task, while 351-400

are used in the TREC-7 task, and 401-450 are used in the TREC-8 task. Each topic consists
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<DOC>
<DOCNO> LA073090-0005 </DOCNO>
<DOCID> 254383 </DOCID>
<DATE>
<P>
July 30, 1990, Monday, Home Edition
</P>
</DATE>
<SECTION>
<P>
Metro; Part B; Page 6; Column 1; Letters Desk
</P>
</SECTION>
<LENGTH>
<P>
34 words
</P>
</LENGTH>
<HEADLINE>
<P>
LOYAL FOLLOWING
</P>
</HEADLINE>
<TEXT>
<P>
Supporters of the insurance initiative, Proposition 103, remind me of
George Bernard Shaw’s comment: "Those who rob Peter to pay Paul will
always have the support of Paul."
</P>
<P>
GARY A. ROBB
</P>
<P>
Los Angeles
</P>
</TEXT>
<TYPE>
<P>
Letter to the Editor
</P>
</TYPE>
</DOC>

Figure 2-1: A sample document from the TREC-6, TREC-7, and TREC-8 ad hoc retrieval
task document collection. This is document number LA073090-0005 from the L.A. Times.
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<num> Number: 332

<title> Income Tax Evasion

<desc> Description:
This query is looking for investigations that have targeted evaders of
U.S. income tax.

<narr> Narrative:
A relevant document would mention investigations either in the U.S. or
abroad of people suspected of evading U.S. income tax laws. Of particular
interest are investigations involving revenue from illegal activities,
as a strategy to bring known or suspected criminals to justice.

Figure 2-2: A sample topic (number 332) from the TREC-6 ad hoc task. Each topic consists
of three sections: a title, a description, and a narrative.

of three sections: a title, a description, and a narrative. A sample topic, number 332 from

the TREC-6 ad hoc task, is shown in Figure 2-2. Statistics regarding the size of the topics

are shown in Table 2-3.

In order to evaluate the performance of a retrieval system, relevance assessments must

be provided for each topic. In other words, for each topic in the test set, the set of the

known relevant documents in the collection needs to be determined. Since there are too

many documents for complete manual inspection, an approximate method, known as the

“pooling method,” is used to find the set of relevant documents (Harman 1998). For each

topic, a pool of possible relevant documents is first created by taking the top 100 documents

retrieved from the various participating systems. Next, each document in this pool is

manually assessed to determine its relevance. Finally, those documents that are judged

relevant become the “answers” for the topic and are used to conduct the performance

evaluations. Summary statistics for the number of relevant documents for the topics in the

TREC-6, TREC-7, and TREC-8 ad hoc tasks are shown in Table 2-4. We note that there is

great variability. Some topics have many relevant documents while other topics have only

a few relevant documents.

In our text retrieval experiments in Chapter 6, we use the TREC-6 task as the “devel-

opment” data set for tuning and optimizing our retrieval model. Most of the contrasting
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# of Words
Data Set (topic #’s) Min Max Avg.
TREC-6 (301-350) 47 156 88.4

title 1 5 2.7
description 5 62 20.4
narrative 17 142 65.3

TREC-7 (351-400) 31 114 57.6
title 1 3 2.5
description 5 34 14.3
narrative 14 92 40.8

TREC-8 (401-450) 23 98 51.3
title 1 4 2.4
description 5 32 13.8
narrative 14 75 35.1

Table 2-3: Statistics for the test topics used in the TREC-6, TREC-7, and TREC-8 ad hoc
text retrieval tasks. There are 50 topics in each retrieval task.

# of Relevant Docs
Data Set (topic #’s) Min Max Avg. Total
TREC-6 (301-350) 3 474 92.2 4611
TREC-7 (351-400) 7 361 93.5 4674
TREC-8 (401-450) 6 347 94.6 4728

Table 2-4: Statistics for the number of relevant documents for the topics in the TREC-6,
TREC-7, and TREC-8 ad hoc text retrieval tasks. There are 50 topics in each retrieval
task.
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experiments will be done on the TREC-6 task. We reserve the TREC-7 task for use as the

“test” data to objectively test our final retrieval model. An official TREC “evaluation” run

was done using the TREC-8 task. Following standard practices, we use the entire topic

statement (consisting of the title, description, and narrative components) in our retrieval

experiments, unless otherwise noted.

2.3 Speech Recognition System

The summit speech recognition system, developed by the MIT Laboratory for Computer

Science’s Spoken Language Systems Group (Glass et al. 1996), is used to perform recog-

nition on the speech messages in the spoken document corpora. The system adopts a

probabilistic segment-based approach that differs from conventional frame-based hidden

Markov model (HMM) approaches (Rabiner 1989). In segment-based approaches, the basic

speech units are variable in length and much longer in comparison to frame-based methods.

Acoustic features extracted from these segmental units have the potential to capture more

of the acoustic-phonetic information encoded in the speech signal, especially those that are

correlated across time, than short duration frame units. To extract these acoustic mea-

surements, explicit segmental start and end times are needed. The summit system uses an

“acoustic segmentation” algorithm (Glass 1988) to produce the segmentation hypotheses.

Segment boundaries are hypothesized at locations of large spectral change. The boundaries

are then fully interconnected to form a network of possible segmentations on which the

recognition search is performed. The size of this network is determined by thresholds on

the acoustic distance metrics.

The recognizer uses context-independent segment and context-dependent boundary (seg-

ment transition) acoustic models. The feature vector used in the segment models has 40

measurements consisting of three sets of Mel-frequency cepstral coefficient (MFCC) averages

computed over segment thirds, two sets of MFCC derivatives computed over a time window

of 40 ms centered at the segment beginning and end, and log duration. The derivatives of

the MFCCs are computed using linear least square error regression. The boundary model

feature vector has 112 dimensions and is made up of 8 sets of MFCC averages computed
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over time windows of 10, 20, and 40 ms at various offsets (±5, ±15, and ±35 ms) around

the segment boundary. Cepstral mean subtraction normalization (Acero and Stern 1990)

and principal components analysis are performed on the acoustic feature vectors in order

to “whiten” the space prior to modeling.

The distribution of the feature vectors is modeled using mixture distributions composed

of multivariate Gaussian probability density functions (PDF). The covariance matrix in

the Gaussian PDF is restricted to be diagonal. Compared with full covariance Gaussians,

diagonal covariance Gaussians have many fewer parameters and allows the use of more

mixture components given the same amount of training data. In addition, the computa-

tional requirements for training and testing are reduced with the simpler distributions. The

number of mixture components varies for each model and is decided automatically based

on the number of available training tokens. The model parameters are trained using a

two step process. First, the K-means algorithm (Duda and Hart 1973) is used to produce

an initial clustering of the data. Next, these clusters are used to initialize the Estimate-

Maximize (EM) algorithm (Dempster et al. 1977; Duda and Hart 1973) which iteratively

estimates the parameters of the mixture distribution to maximize the likelihood of the train-

ing data. Since the EM algorithm is only guaranteed to converge to a local maximum, the

final model parameters are highly dependent on the initial conditions obtained from the

K-means clustering. To improve the performance and robustness of the mixture models,

we used a technique called aggregation (Hazen and Halberstadt 1998), which is described

in Section 4.2.

A two pass search strategy is used during recognition. A forward Viterbi search (Viterbi

1967; Forney 1973) is first performed using a statistical bigram language model. This pass

significantly prunes the possible search space and creates a segment graph. Next, a back-

wards A∗ search (Winston 1992) is performed on the resulting segment graph using higher

order statistical n-gram language models. In addition to applying more complex models,

the second pass search can also be used to generate the N -best recognition hypotheses. In

Section 4.2, we describe the development and application of this speech recognizer for use

in the spoken document retrieval task. In Section 7.2, we modify the recognizer to facilitate

a tighter integration between the speech recognizer and the retrieval model.

47



Speech recognition performance is typically measured in terms of the error rate (in

percent) resulting from the comparison of the recognition hypotheses with the reference

transcriptions. The total error is the sum of three different types of errors: substitutions,

insertions, and deletions. A substitution error occurs when one symbol is confused with

another, an insertion error happens when the hypothesis contains an extra symbol that is

not in the reference, and a deletion error occurs when the hypothesis is missing a symbol

that is in the reference. In this thesis, all speech recognition performance is reported in

terms of error rate.

2.4 Information Retrieval Model

For our initial retrieval experiments, we implemented an information retrieval engine based

on the standard vector space information retrieval (IR) model (Salton and McGill 1983).

We later develop (in Chapter 6) a probabilistic information retrieval model that outperforms

this initial retrieval model, that achieves performance competitive with current state-of-the-

art approaches on text retrieval tasks, and that can be used in the development of a new

spoken document retrieval approach that more tightly integrates the speech recognition and

information retrieval components (Chapter 7).

In the vector space model, the documents and queries are represented as vectors where

each vector component is an indexing term. A term can be a word, word fragment, or, in our

case, a subword unit. Each term has an associated weight based on the term’s occurrence

statistics both within and across documents; the weight reflects the relative discrimination

capability of that term. The weight of term i in the vector for document d is:

d[i] = 1 + log(fd[i]) (2.1)

and the weight of term i in the vector for query q is:

q[i] = (1 + log (fq[i])) · log
(

ND

NDi

)
(2.2)

where fd[i] is the frequency of term i in document d, fq[i] is the frequency of term i in
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query q, NDi is the number of documents containing term i, and ND is the total number

of documents in the collection. The weight in (2.1) is typically called the term frequency

(TF). The second term in (2.2) is the inverse document frequency (IDF) for term i. Terms

that occur in a small number of documents have a higher IDF weight than terms that

occur in many documents. For computational efficiency, the IDF factor is included in the

query terms but not the document terms. This allows the documents to be indexed in

a single pass. Otherwise, a two pass indexing strategy is needed: the first pass to index

the documents and compute the collection statistics (which is needed to compute the IDF

factor) and the second pass to adjust the document term weights to include the IDF factor.

The IDF values are still computed for use in the query term weights. In both document

and query vectors, the weights are computed only for terms that occur one or more times;

terms that do not occur are actually not represented in the vector.

A similarity measure between document and query vectors is computed and used to

score and rank the documents in order to perform retrieval. A simple but effective retrieval

measure is the normalized inner dot product between the document and query vectors

(cosine similarity function) (Salton and McGill 1983):

Se(q,d) =
q · d

||q|| ||d|| =
∑
i∈q

q[i]
||q||

d[i]
||d|| (2.3)

Because the vector space IR model was originally developed for use on text document

collections, there are some limitations of this model when applied to spoken document

retrieval. For example, there is no explicit mechanism for the approximate matching of

indexing terms. With text this has generally not been an issue because the words in the

documents are assumed to be known with certainty. However, with speech there will likely

be errors generated by the recognizer and the need for approximate matching will be more

important. Some amount of approximate matching can be done within the existing frame-

work. For example the set of indexing terms can be expanded to include close alternatives

with appropriate term weights. Alternatively, a new retrieval scoring function may be de-

rived to allow approximate matching of the terms. Both of these methods (and several

others) are examined in Chapter 5 when we explore approaches to improve retrieval perfor-
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Figure 2-3: A precision-recall plot showing information retrieval performance. A single
number performance measure, mean average precision (mAP), is computed by averaging
the precision values at recall points of all relevant documents for each query and then
averaging across all the queries.

mance in the presence of speech recognition errors. We note, however, that the development

of more sophisticated robust indexing and retrieval methods that can make effective use of

additional information available from the speech recognizer (e.g., multiple hypotheses, con-

fidence scores, and recognition lattices) will require more significant changes to existing IR

models. In our efforts to develop an approach to spoken document retrieval where the speech

recognition and information retrieval components are more tightly integrated (Chapter 7),

we find the need to develop a new probabilistic information retrieval model (Chapter 6).

Information retrieval performance is typically measured in terms of a tradeoff between

precision and recall as illustrated in the graph in Figure 2-3. Precision is the number of

relevant documents retrieved over the total number of documents retrieved. Recall is the

number of relevant documents retrieved over the total number of relevant documents in

the collection. If the retrieved documents are rank ordered according to a relevance score,

as is typically the case, then the precision-recall curve can be generated by successively

considering more of the retrieved documents by lowering the threshold on the score. If
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Figure 2-4: A precision-recall plot showing two different performance curves that have the
same mean average precision (mAP) performance measure.

the retrieved documents are not scored, then a single operating point on the precision-

recall graph is obtained. Because it is sometimes cumbersome to compare the performance

of different retrieval systems using precision-recall curves, a single number performance

measure called mean average precision (mAP) is commonly used (Harman 1997). It is

computed by averaging the precision values at the recall points of all relevant documents

for each query and then averaging those across all the queries in the test set. It can be

interpreted as the area under the precision-recall curve. In this thesis, we report retrieval

performance using this mean average precision metric. It is important to note that because

the mAP measure is a single number, a lot of performance information is hidden. It does

not allow analysis on different levels of precision at different levels of recall. For example, it

is possible for two systems with very different precision-recall curves to have the same mAP

measure as illustrated in Figure 2-4. The judgment of which is “better” depends on the

particular application. If higher precision is more important, then the dashed curve (©) is

better. However, if higher recall is more important, then the solid curve (�) is better.
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Chapter 3

Feasibility of Subword Units for

Information Retrieval

In this chapter, we address the issues of what subword units are suitable to use and how well

they can perform in spoken document retrieval (Ng and Zue 1997a; Ng and Zue 1997b).

First, we present some related work on subword representations. Next, we describe the

set of subword unit indexing terms that we explored. Then, we establish a reference re-

trieval performance by using word units derived from error-free text transcriptions of the

speech messages. Finally, using error-free phonetic transcriptions of the speech messages,

we examine whether the various subword units have sufficient representational power to

be used for indexing and retrieval. We find that many different subword units are able to

capture enough information to perform effective retrieval and that it is possible, with the

appropriate choice of subword units, to achieve retrieval performance approaching that of

text-based word units if the underlying phonetic units are recognized correctly.

3.1 Related Work

Several subword based approaches to information retrieval have been proposed in the litera-

ture. For text retrieval, a method known as “character n-grams” has been developed which

uses strings of consecutive text characters as the indexing terms instead of words (Cav-

nar 1994; Damashek 1995; Huffman 1995). For spoken documents, one approach makes
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use of special syllable-like indexing units derived from text (Glavitsch and Schauble 1992;

Schäuble and Glavitsch 1994) while others use phone sequences (phone n-grams) gener-

ated by post-processing the output of a phonetic speech recognizer (Ng and Zobel 1998;

Wechsler and Schauble 1995). There are also methods that search for the query terms on

phonetic transcriptions or phone lattice representations of the speech messages instead of

creating subword indexing terms (Dharanipragada et al. 1998; James 1995; Jones et al.

1996; Wechsler et al. 1998).

In (Cavnar 1994; Huffman 1995), strings of n consecutive characters generated from

the text documents are used as the indexing terms. For example, the word WEATHER has

the following character trigrams (n=3): WEA, EAT, ATH, THE, and HER. These character n-

gram indexing terms are then used in a standard vector space IR model (similar to the

one described in Section 2.4) to perform retrieval. Experiments on the TREC-3 (Cavnar

1994) and TREC-4 (Huffman 1995) ad hoc retrieval tasks show that performance using

character n-grams (n=4) is reasonable but not as good as the best word-based retrieval

systems (Harman 1994; Harman 1995). The method of character n-grams can be viewed as

an alternate technique for word stemming that doesn’t require linguistic knowledge. It maps

words into shorter word fragments instead of semantically meaningful word stems. Since

this method doesn’t require prior knowledge about the contents of the documents or even

its language, porting to a new domain or language is straightforward. However, the n-gram

units have no semantic meaning and are therefore poor representations for concepts and

their relationships. In addition to retrieval, character n-grams have also been successfully

used to cluster text documents according to language and topic (Damashek 1995).

Syllable-like units derived from analyzing text documents are proposed in (Glavitsch

and Schauble 1992; Schäuble and Glavitsch 1994) for use in spoken document retrieval.

These subword units consist of a maximum sequence of consonants enclosed between two

maximum sequences of vowels and are called “VCV-features.” For example, the word

INFORMATION has as its VCV-features: INFO, ORMA, and ATIO. These features are estimated

from text transcriptions of the acoustic training data and then a subset is selected for use

as the indexing terms. There are two criteria for selection: it must occur enough times to

allow robust acoustic model training but not so often that its ability to discriminate between
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different messages is poor. Word spotting is then performed on the speech messages to detect

occurrences of the indexing terms. A standard vector space IR model is then used to perform

retrieval. The indexing terms are weighted using TF×IDF weights (similar to (2.2)) and

scoring is done using the cosine similarity function (2.3). In (Schäuble and Glavitsch 1994),

retrieval experiments were performed using standard text document retrieval collections

with simulated word spotting of the subword indexing features at various performance

(detection and false alarm) levels. The main conclusion was that retrieval using these

subword features is feasible even when the spotting performance is poor.

One major concern with the VCV-feature approach is that since only text transcriptions

are used, acoustic confusability is not taken into account during the term selection process.

A feature that discriminates well based on text may not work well on speech messages;

maybe it cannot be reliably detected or it may have a high false alarm rate. A better

approach may be to perform the feature selection on the acoustic data or on the speech

recognition output. In this way, the recognizer characteristics are taken into account.

In (Ng and Zobel 1998; Wechsler and Schauble 1995), overlapping sequences of n phones

(phone n-grams) generated by post-processing the output of a phonetic speech recognizer

are used as the indexing terms. For example, the word weather, represented phonetically

as w eh dh er, has the phone trigrams (n=3): w eh dh eh dh er. Table 4-1 lists the set

of phone labels used. The phone n-grams are then used in a standard vector space IR

model (with TF×IDF term weights and a cosine similarity function) to perform retrieval.

In (Wechsler and Schauble 1995), phone n-grams of length n=2,3,4 were examined and

experiments indicated that the phone trigrams were optimal. With clean phonetic tran-

scriptions, performance approached that of text word units and even with a high phonetic

recognition error rate, performance was found to be reasonable.

Another set of “subword” approaches also makes use of phonetic representations of the

spoken documents but not for generating indexing terms. Instead, these methods try to

detect occurrences of the query terms by using word spotting techniques to search the pho-

netic representations for the phone sequences corresponding to the query terms. In (Wech-

sler et al. 1998), the query term search is done on a single phone sequence while in (James

1995; Jones et al. 1996) the search is done on a phone lattice which contains multiple phone
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hypotheses. The approaches in (James 1995; Jones et al. 1996) use this “phone lattice

scanning” procedure to complement a word based approach in an attempt to deal with

new (out-of-vocabulary) words in the queries. A different multi-staged search algorithm is

described in (Dharanipragada et al. 1998). A preprocessing stage first creates a phone level

representation of the speech that can be quickly searched. Next, a coarse search, consisting

of phone trigram matching, identifies regions of speech as putative query word occurrences.

Finally a detailed acoustic match is done at these hypothesized locations to make a more

accurate decision. Experiments in (James 1995; Jones et al. 1996; Wechsler et al. 1998)

show that searching for phonetic representations of the query terms can be effective and

that combining words and subwords in a hybrid approach performs better than just using

words alone.

In the subword based approaches discussed above, generally only one type of subword

unit or, at most, a small number of very similar types of subword units are explored and

compared. We were unable to find any studies that explore the space of possible subword

unit representations to measure their behavior and to determine the complexity of the

subword units needed to perform effective spoken document retrieval. We believe that the

experiments in this chapter are a step toward addressing this issue.

3.2 Subword Unit Representations

To explore the space of possible subword unit representations in order to determine the

complexity of the subword units needed to perform effective spoken document retrieval, we

examine a range of subword units of varying complexity derived from phonetic transcrip-

tions. The basic underlying unit of representation is the phone; more and less complex

subword units are derived by varying the complexity of these phonetic units in terms of

their level of detail and sequence length. For level of detail, we look at labels ranging from

specific phone classes to broad phonetic classes. For sequence length, we look at automat-

ically derived fixed- and variable-length sequences ranging from one to five units long. In

addition, sequences with and without overlapping units are also examined. Since it is dif-

ficult to obtain word and sentence boundary information from phonetic transcriptions, all
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Subword Unit Indexing Terms
word weather forecast
phone (n=1) w eh dh er f ow r k ae s t
phone (n=2) w eh eh dh dh er er f f ow ow r r k

k ae ae s s t
phone (n=3) w eh dh eh dh er dh er f er f ow f ow r

ow r k r k ae k ae s ae s t
bclass (c=20, n=4) liquid frntvowel voicefric retroflex

frntvowel voicefric retroflex weakfric
voicefric retroflex weakfric · · ·

mgram (m=4) w eh dh er f ow r k ae s t
sylb w eh dh er f ow r k ae s t

Table 3-1: Examples of indexing terms for different subword units. The reference word
sequence, listed in the first row, is “weather forecast.” The corresponding phonetic tran-
scription is given in the second row labeled “phone (n=1).” Different subword units derived
from the phonetic transcription are shown in the other rows: phone sequences of length n=2
and 3, broad class sequences of length n=4 with c=20 broad class categories, variable-length
multigrams with a maximum length of m=4, and variable-length syllables.

subword units are generated by treating each message/query as a single long phone sequence

with no word or sentence boundary information.

3.2.1 Phone Sequences

The most straightforward subword units that we examine are overlapping, fixed-length,

phonetic sequences (phone) ranging from n=1 to n=5 phones long; a phone inventory of

c=41 classes is used. These phonetic n-gram subword units are derived by successively

concatenating together the appropriate number of phones from the phonetic transcriptions.

Examples of n=1, 2, 3 phone sequence subword units for the phrase “weather forecast” are

given in Table 3-1. Tables 4-1 and 4-4 lists the set of phone labels used. For large enough n,

we see that cross-word constraints can be captured by these units (e.g., dh er f, er f ow).

For a given length n and number of phonetic classes c, there is a fixed number of

possible unique subword units: cn. The number of units that are actually observed in real

speech data is much less than the maximum number because many phone sequences are

not possible in the language. For example, in the NPR spoken document set, the number
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Figure 3-1: Number of unique terms for each type of subword unit. For each subword
unit type (phone sequences, broad class sequences, multigrams, and syllables), the number
of unique terms for varying sequence lengths (n = 1, . . . , 6) is shown. The subwords are
derived from clean phonetic transcriptions of the spoken documents from the NPR corpus.

of unique phonetic n-grams of length n=3 (derived from clean phonetic transcriptions of

the speech) is 18705 out of a total of 68921 possibilities. The top 100 phonetic trigrams

along with their frequency of occurrence on the NPR collection are tabulated in Table A-2 in

Appendix A. Figure 3-1 plots the number of unique terms for phonetic sequences of varying

lengths n=1, . . . , 6. We see that the number of terms grows approximately exponentially

with the length of the sequence.
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3.2.2 Broad Phonetic Class Sequences

In addition to the original phone classes, we also explore more general groupings of the

phones into broad phonetic classes (bclass) to investigate how the specificity of the phone

labels (level of detail) impacts performance. Broad phonetic classes are interesting for a

number of reasons. First, a lot of phonological constraints are captured with broad classes.

For example, the permissible phone sequences in a language depend on the phonological

characteristics of the sounds involved. The distributions of the phones (i.e., the phono-

tactics) are governed by constraints which refer not to individual sounds but to classes of

sounds that can be identified by the distinctive features shared by members of that class.

Distinctive features, such as high, back, and round, are minimal units in the phonological

dimension that can be used to characterize speech sounds (Chomsky and Halle 1968). For

instance, when three consonants appear at the beginning of a word in English, the first con-

sonant must be an s, the second a voiceless stop (p, t, or k), and the third is constrained

to be a liquid or glide: l, r, w, or y. A second reason is that phonetic classification and

recognition experiments have shown that many of the errors occur between phones that are

within the same broad phonetic class (Halberstadt 1998). In Section 5.2, we see evidence

of this in the confusion matrix used to characterize the errors produced by our phonetic

recognizer.

The broad classes are derived via hierarchical clustering of the 41 original phones using

acoustic measurements derived from the TIMIT corpus (Garofolo et al. 1993). The feature

vector has 61 measurements and consists of three sets of Mel-frequency cepstral coefficient

(MFCC) averages computed over segment thirds, two sets of MFCC derivatives computed

over a time window of 40 ms centered at the segment beginning and end, and log duration;

each MFCC vector has 12 components. The final feature vector for each phone is computed

by averaging the feature vectors from all occurrences of the phone in the TIMIT training set.

The goal of the clustering is to group acoustically similar phones into the same class. We use

standard hierarchical clustering (Hartigan 1975) which is a bottom-up procedure that starts

with the individual data points. At each stage of the process the two ”nearest” clusters are

combined to form one bigger cluster. The process continues to aggregate groups together

until there is just one big group. Depending on the distance metric and the clustering
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Figure 3-2: The hierarchical clustering tree used to generate phonetic broad classes. By
cutting the tree at different heights, we obtain three different sets of broad classes with
c=20, 14, and 8 distinct classes.

method used, several different cluster trees can be created from a single dataset. We use a

simple Euclidean distance measure between the acoustic feature vectors of the phones and

use the “complete linkage” clustering method in which the distance between two clusters is

the largest distance between a point in one cluster and a point in the other cluster. This

method gives rise to more “spherical” or compact clusters than alternative methods such

as “average” (average distance) and “single linkage” (minimum distance).

Hierarchical clustering does not require the a priori specification of the number of desired

clusters unlike other methods such as K-means clustering (Hartigan 1975). The decision

regarding the number of clusters is made after the entire dendrogram tree is created. The

number and membership of the clusters is determined by “cutting” the dendrogram at

appropriate places to create subtrees. A known problem with hierarchical clustering is that

deciding on the appropriate places to cut the dendrogram can be difficult. Figure 3-2 shows

the resulting dendrogram and the “cuts” used to derive three different sets of broad classes

with 20, 14, and 8 distinct classes. In deciding on the dendrogram cuts, we tried to maintain
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one similarity threshold value, but had to change the value at some locations in order to

obtain reasonable classes. For example, in creating the c=8 class set, it was possible to

use a single threshold value (the cut is a straight line). However, with the c=14 and c=20

classes, several different threshold values had to be used. In particular, the threshold had

to be increased in order to include the ay and oy phones in the c=20 class set. Examples

of some broad class subword units (class c=20, length n=4) are given in Table 3-1. For

the NPR spoken document set, the number of unique broad class subword units (c=20,

n=4) derived from clean phonetic transcriptions of the speech is 35265 out of a total of

cn = 204 = 160000 possibilities. The top 100 units along with their frequency of occurrence

on the NPR collection are tabulated in Table A-3 in Appendix A. Figure 3-1 plots the

number of unique terms for broad class sequences with varying number of classes (c=20,

14, and 8) and varying sequence lengths (n=1, . . . , 6).

Alternative methods can also be used to cluster the phones into broad classes. Instead

of acoustic similarity, one can use a measure based on the number of distinctive features the

phones have in common or use a set of rules to map the individual phones into established

broad phonetic class categories such as back vowel, voiced fricative, nasal, etc. (Chomsky

and Halle 1968). However, since we are interested in extracting the phonetic units from the

speech signal, is seems reasonable to use a data driven approach with an acoustic similarity

measure to group confusible phones together rather than using a measure of linguistic

closeness. One difficulty with using a linguistic measure is that a decision needs to be

made as to which linguistic feature is more discriminating when there is a conflict. With

the data driven approach, this is automatically determined. For example, we see that the

voiced/unvoiced distinction is more important than the place distinction when clustering

the stops ([p t k] [b d g]) whereas place is more important for the strong fricatives ([s

z] [sh zh]). It is reassuring that the resulting clusters are consistent with linguistically

established broad phonetic classes.

3.2.3 Phone Multigrams

We also examine non-overlapping, variable-length, phonetic sequences (mgram) discovered

automatically by applying an iterative unsupervised learning algorithm previously used in
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developing “multigram” language models for speech recognition (Deligne and Bimbot 1995).

The multigram model assumes that a phone sequence is composed of a concatenation of

independent, non-overlapping, variable-length, phone subsequences (with some maximum

length m). Given a segmentation of the sequence into subsequences, the likelihood of the

sequence is the product of the likelihood of the individual variable-length subsequences.

Without a segmentation, the likelihood of a sequence is the sum of the likelihoods over all

possible segmentations.

In this model, the parameters are the set of subsequences and their associated prob-

abilities. These parameters are trained with maximum likelihood (ML) estimation from

incomplete data using the iterative expectation-maximization (EM) algorithm (Dempster

et al. 1977): the observed data is the symbol sequence and the unknown data is the segmen-

tation into the variable-length subsequences. At each training iteration, the likelihood of

all possible segmentations is first computed using the current set of parameter values. Then

the probability of each subsequence is re-estimated as the weighted average of the number

of occurrences of that subsequence within each segmentation. Subsequence probabilities

that fall below a certain threshold, p0 = 1 × 10−6, are set to zero except those of length

1 which are assigned a minimum probability of p0. After each iteration, the probabilities

are renormalized so that they sum to 1. The model parameters are initialized with the

relative frequencies of all phone sequences up to length m that occur c0 = 2 or more times

in the training corpus. There is a dynamic programming (DP) algorithm similar to the

hidden Markov model (HMM) forward-backward procedure that makes the EM algorithm

efficient. Given a set of trained model parameters, a Viterbi-type search can then be used to

generate a ML segmentation of an input phone sequence to give the most likely set of non-

overlapping, variable-length, phone subsequences. The multigram model, with m=1,. . . ,5,

was trained on and then used to process the speech message collection. Examples of some

multigram (m=4) subword units are given in Table 3-1.

For a given maximum length m and number of phonetic classes c, there is a fixed

number of possible unique multigram subword units:
∑m

n=1 cn. Like the phonetic n-gram

units, the number of multigram units that are actually observed in real speech data is much

less because many phone sequences are not allowed. In addition, the multigram algorithm
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selects only a subset of the possible units. For the NPR spoken document set, the number

of unique multigrams (m=4) derived from clean phonetic transcriptions of the speech is

8875. The top 100 multigrams (m=4) along with their frequency of occurrence is shown

in Table A-5 in Appendix A. Figure 3-1 plots the number of unique terms for multigrams

with varying maximum lengths m=1, . . . , 6.

3.2.4 Syllable Units

We also consider linguistically motivated syllable units (sylb) composed of non-overlapping,

variable-length, phone sequences generated automatically by rule. The rules take into ac-

count English syllable structure constraints (i.e., syllable-initial and syllable-final consonant

clusters) and allow for ambisyllabicity (Fisher 1996; Kahn 1976). In Section 3.2.2, we men-

tioned that a lot of phonotactic constraint in the English language can be captured at the

broad phonetic class level. In addition, the constraints on the combinations of phonemes

within words can also be expressed by using structural units intermediate between phonemes

and words, i.e., syllables (Chomsky and Halle 1968). Syllabic units were generated for the

speech messages and queries using these rules, treating the message/query as one long phone

sequence with no word boundary information. Examples of some syllabic subword units are

given in Table 3-1. For the NPR spoken document set, the number of unique syllable units

derived from clean phonetic transcriptions of the speech is 5475. This is plotted in Figure 3-

1. The top 100 syllables along with their frequency of occurrence is shown in Table A-6 in

Appendix A.

3.3 Text-Based Word Retrieval Reference

To provide a basis for comparison, we first establish a reference retrieval performance by

using word units derived from error-free text transcriptions of the spoken documents and

queries. This is equivalent to using a perfect word recognizer to transcribe the speech

messages followed by a full-text retrieval system. Two standard IR text preprocessing

techniques are applied (Salton and McGill 1983). The first is the removal of frequently

occurring, non-content words using a list of 570 English “stop” words derived from the
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stop-list used in the Cornell SMART system (Buckley 1985). The second is the collapsing

of word variants using Porter’s stemming algorithm (Porter 1980). Retrieval performance,

measured in mean average precision, is mAP=0.87 (mAP=0.84 without stop word removal

and word stemming). This number is high compared to text retrieval performance using

very large document collections (Harman 1997) and indicates that this task is relatively

straightforward. This is due, in part, to the relatively small number and concise nature of

the speech messages. The text-based word performance (word) is plotted in the performance

figures using a dotted horizontal line.

As an experimental control, we also evaluated the retrieval performance resulting from

a random ordering of the documents in response to each query. Performance ranging from

mAP=0.026 to mAP=0.031 from a number of different random trials are obtained. The

small mAP numbers of the control experiments indicate that the retrieval algorithms are

performing significantly better than chance.

3.4 Subwords From Error-Free Phonetic Transcriptions

Next, we study the feasibility of using subword units for indexing and retrieval. The goal

here is to determine whether subword units have enough representational power to capture

the information needed to perform effective information retrieval. For this experiment, the

subword units are derived from error-free phonetic transcriptions of the speech messages and

queries generated with the aid of a pronunciation dictionary. As a result, these experiments

provide an upper bound on the performance of the different subword units since it assumes

that the underlying phonetic recognition is perfect. It can also be used to eliminate poor

subword units from further consideration.

Retrieval performance for the different subword units, measured in mean average pre-

cision, is shown in Figure 3-3. We can make several observations. First, as the length of

the sequence is increased, performance improves, levels off, and then slowly declines. As

the sequence becomes longer the units capture more lexical information and begin to ap-

proximate words and short phrases which are useful for discriminating between the different

documents. After a certain length, however, the terms become too specific and can’t match
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Figure 3-3: Retrieval performance of different subword units derived from error-free phonetic
transcriptions. For each subword unit type (phone sequences, multigrams, broad class
sequences (c=20), and syllables), performance for varying sequence lengths (n = 1, . . . , 6+)
is shown. Reference retrieval performance using word units derived from clean text is
indicated by the dotted horizontal line.

other terms. Another way to interpret this is that as the subword unit gets longer, the

inventory of possible subword units increases (as we saw in Section 3.2) thereby allowing a

more expressive representation of the document content. Instead of being restricted to se-

lect repeated instances from a small inventory of subword units to represent the document,

a smaller number of more unique units can be used to represent the same information.

The longer units are more discriminating and can better differentiate between the different

documents which leads to improved retrieval performance.

Second, overlapping subword units (phone, n=3, mAP=0.86) perform better than non-

overlapping units (mgram, m=4, mAP=0.81). Units with overlap provide more chances for

partial matches and, as a result, are more robust to variations in the phonetic realization of
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the words. For example, the word “forecast” is represented by two multigram terms: f ow r

and k ae s t but five n=3 phonetic units: f ow r, ow r k, r k ae, k ae s, and ae s t.

A pronunciation variation of the vowel ow would corrupt the first multigram term, leaving

only the second term for matching purposes. With the n=3 phonetic unit representation,

the first two terms would be corrupted, but the last three terms would still be available

for matching. The increased number of subword units due to the overlapping nature of the

generation process provide more chances for term matches. Thus, the impact of phonetic

variations is reduced for overlapping subword units.

Third, between the two non-overlapping subword units (mgram and sylb), the auto-

matically derived multigram units (m=4, mAP=0.81) perform better than the rule-based

syllable units (mAP=0.76) when no word boundary information is used. As described in

Section 3.2.3, the algorithm that generates the multigram units selects the most likely phone

subsequences in the document collection and is designed to find consistent subword units.

The rules that are used to generate the syllable units, on the other hand, only take into

consideration phonotactic constraints to determine the units. There is no explicit guaran-

tee of the consistency of the units in the generation process. Unit consistency comes about

because of natural restrictions on the permissible phone sequences in the language. Since a

syllable boundary always occurs at a word boundary, specification of the word boundaries

simplifies the task of generating syllable units. The word boundaries break up the phone se-

quence into shorter subsequences in which to find the syllable units. More reliable syllables

can be obtained this way. Without word boundaries, the task is more difficult because it is

possible to hypothesize a syllable that spans across a word boundary. If the word bound-

aries are specified, then improved syllabic units are generated and retrieval performance

improves from mAP=0.76 to 0.82 (not plotted). In this case, performance of the syllabic

units reaches that of the multigram units.

Fourth, even after collapsing the number of phones down to 20 broad classes, enough

information is preserved to perform effective retrieval (bclass, c=20, n=4, mAP=0.82).

Figure 3-4 shows the retrieval performance of broad class subword units for a varying

number of broad phonetic classes (c = 41, 20, 14, 8). There is a clear tradeoff between

the number of broad classes and the sequence length required to achieve good performance.
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Figure 3-4: Retrieval performance of broad phonetic class subword units with varying num-
ber of broad phonetic classes (c=41,20,14,8) and sequence lengths (n = 1, . . . , 6). Reference
retrieval performance using word units derived from clean text is indicated by the dotted
horizontal line.

As the number of classes is reduced, the length of the sequence needs to increase to retain

performance. It is interesting to note that with 8 broad classes, only sequences of length

5 or 6 are needed to obtain reasonable retrieval performance. This indicates that there is

a lot of phonotactic constraint in the English language that can be captured at the broad

phonetic class level.

From these experiments, we find that many different subword units are able to capture

enough information to perform effective retrieval. With the appropriate choice of sub-

word units it is possible to achieve retrieval performance approaching that of text-based

word units. For phone sequence subword units of length n=3, the retrieval performance is

mAP=0.86 which is about the same as the performance using word units, mAP=0.87. Al-
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Subword Unit Top N=5 Stop Terms
phone (n=3) ae n d ax n t sh ax n dh ae t f ao r
mgram (m=4) dh ax ae n d ix nx t uw ax n
sylb dh ax t uw ax t ax t iy

Table 3-2: Examples of automatically derived stop terms for different subword units: phone
sequences of length n=3, multigrams with a maximum length of m=4, and syllables. The
stop terms correspond to short function words and common prefixes and suffixes.

though beyond the scope of this thesis, it would be interesting to compare the performance

of character n-grams with phone n-grams since both perform similar conflation of related

words. In the next chapter, Chapter 4, we examine the performance of all of these sub-

word units again, but this time the units are derived from errorful phonetic transcriptions

generated by processing the speech messages with a phonetic speech recognizer.

3.5 Removal of Subword “Stop” Units

A standard IR technique that has been shown to improve performance is to remove fre-

quently occurring, non-content words (“stop words”) from the set of indexing terms (Salton

and McGill 1983). We briefly explored several methods to automatically discover and

remove “stop terms” from the different subword unit representations to try to improve per-

formance. We used both term and inverse document frequencies to rank order and select

the top N = 5, . . . , 200 indexing terms as the “stop terms” to remove. A list of the top five

terms for the phone (n=3), multigram (m=4), and syllable subword units is shown in Ta-

ble 3-2. We see that they mainly consist of short function words and common prefixes and

suffixes. We found that although removing these terms does improve retrieval performance,

the gain was very small (less than 1% in mean average precision). It appears that the term

weights are effective in suppressing the effects of these subword “stop” terms. However, we

should note that the performance gain in using stop-lists can be collection dependent; the

behavior we observe here may be different with another collection. In our subword unit

experiments, “stop term” removal was not used.
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3.6 Summary

In this chapter, we explored a range of subword units of varying complexity derived from

error-free phonetic transcriptions and measured their ability to effectively index and re-

trieve speech messages. These experiments provide an upper bound on the performance of

the different subword units since they assume that the underlying phonetic recognition is

error-free. In particular, we examined overlapping, fixed-length phone sequences and broad

phonetic class sequences, and non-overlapping, variable-length, phone sequences derived

automatically (multigrams) and by rule (syllables). We found that many different subword

units are able to capture enough information to perform effective retrieval. We saw that

overlapping subword units perform better than non-overlapping units. There is also a trade-

off between the number of phonetic class labels and the sequence length required to achieve

good performance. With the appropriate choice of subword units it is possible to achieve

retrieval performance approaching that of text-based word units if the underlying phonetic

units are recognized correctly. Although we were able to automatically derive a meaningful

set of subword “stop” terms, experiments using the stop-list did not result in significant

improvements in retrieval performance.
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Chapter 4

Extracting Subword Units from

Spoken Documents

We now turn to the issues of extracting the subword units from the speech signal and

evaluating the ability of the resulting subword units to perform spoken document retrieval.

A two step procedure is used to generate the subword unit representations used for indexing

and retrieval. First, a speech recognizer is used to create phonetic transcriptions of the

speech messages. Then, the recognized phone units are processed to produce the subword

unit indexing terms.

Aside from the top one hypothesis, additional recognizer outputs can also be used. This

includes the top N (N -best) hypotheses, outputs with associated confidence scores, and

recognition lattices, which, like the N -best output, captures multiple recognition hypothe-

ses. These outputs provide more recognition information which can be used during the

indexing and retrieval process. As we will see in Chapter 5, some of this additional infor-

mation can be useful in the development of approximate term matching and other robust

indexing and retrieval methods. Also, as part of our effort to develop a more integrated SDR

approach in Chapter 7, we modify the speech recognizer to output occurrence probabilities

of the subword unit indexing terms instead of the most likely phone sequence.

In the following sections, we describe the development and application of a phonetic

recognizer for use in the spoken document retrieval task. First, we look at some related work
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on approaches for extracting subword units from the speech signal. Next, we investigate

the use of different acoustic and language models in the speech recognizer in an effort to

improve phonetic recognition performance. We then examine subword unit indexing terms

derived from the errorful phonetic recognition output and measure their ability to perform

effective spoken document retrieval. We also look at the relationship between phonetic

recognition performance and spoken document retrieval performance. We find that in the

presence of phonetic recognition errors, retrieval performance degrades compared to using

error-free phonetic transcriptions or word-level text units. We also observe that phonetic

recognition and retrieval performance are strongly correlated with better recognition leading

to improved retrieval.

4.1 Related Work

In Section 3.1, we described several subword based approaches to information retrieval that

have been proposed in the literature. In this section, we examine how these approaches

generate their subword representations from the speech signal.

The phone n-gram units (overlapping sequences of n phones) used in (Ng and Zobel

1998; Wechsler et al. 1998), are generated by post-processing the output of a phonetic

recognizer. A speaker-independent HMM recognizer is built using the HTK Toolkit (Young

et al. 1997). The acoustic models consist of a set of 40 context-independent phone models

trained on the TIMIT corpus and a larger set of context-dependent biphone acoustic models

trained on the TREC-6 SDR training set (50 hours of speech from television broadcast

news) (Garofolo et al. 1997). A phonetic bigram statistical language model is used to

constrain the search during recognition. The output consists of the single most likely phone

sequence hypothesized by the recognizer. An additional post-processing step of clustering

the 40 phones into a set of 30 broader classes is done to group acoustically similar phones

together. Retrieval experiments on the TREC-6 SDR task (Garofolo et al. 1997) show

that using phone n-grams generated from the errorful phone transcriptions is significantly

worse than using units generated from error-free phonetic transcriptions. Performance is

also worse than using word units generated by large vocabulary speech recognition. It is
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important to note, however, that there is no out-of-vocabulary (OOV) problem in this task

since the recognition vocabulary contains all the words in the test queries. The two stage

approach used here to create the phone n-grams is similar to the method that we use to

generate our subword unit indexing terms from the speech messages.

In (Dharanipragada et al. 1998; James 1995; Jones et al. 1996; Wechsler et al. 1998),

a number of different “subword” representations are generated from the speech messages

and then searched using word spotting techniques in an effort to detect occurrences of

the query words. This is done by looking for the phone sequences corresponding to the

query words in the subword representations. In (Wechsler et al. 1998), the query word

search is done on a single (the most likely) phone sequence hypothesis generated by an

HMM phone recognizer (the system described above). Retrieval experiments on the TREC-

6 SDR task (Garofolo et al. 1997) show that the query word search technique can be

effective although performance only reaches 57% of the reference (using error-free text

word transcriptions). Experiments on a different document collection consisting of recorded

Swiss radio news show that the query word search technique can perform better than using

phonetic trigram indexing units (Wechsler and Schauble 1995). In (James 1995) and (Jones

et al. 1996) the search is done on a “phone lattice” generated by a modified HMM phone

recognizer. The lattice is a connected, directed, acyclical graph where each node represents

a point in time and each edge is labelled with a phone hypothesis and a score representing its

likelihood. The lattice structure allows more flexibility for matching query words than the

single “best sequence” of phones normally generated by a standard recognizer. The lattice

is a much more compact representation of the speech information. It is computationally

much less expensive to perform searches on the lattice than directly on the original speech

waveform. In (James 1995), experiments are done on a corpus of Swiss radio broadcast

news and in (Jones et al. 1996), a corpus of video mail recordings is used. Both sets of

experiments show that using just the phone lattice scanning technique can give reasonable

retrieval performance. However, when it is used in combination with a word based approach

to search for query words that are out of the recognition vocabulary, performance is much

improved and is better than using either method individually. In the multi-staged search

algorithm described in (Dharanipragada et al. 1998), a table of triphones (phone trigrams)
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is used to rapidly search and identify regions of speech as potential query word occurrences.

The triphone table is created by running an HMM phone recognizer on the speech message

and outputting the identities of the top triphone models at regular time intervals during

the recognition search along with their times of occurrence and acoustic scores. Like the

phone lattice, the triphone table allows more flexibility for matching query words than the

single most likely phone sequence hypothesis. This approach was proposed to complement

a word based retrieval approach to deal with out of vocabulary words, but has not yet been

evaluated in a retrieval task.

In recent spoken document retrieval experiments (TREC-7 SDR) (Garofolo et al. 1998)

using large vocabulary speech recognition approaches, retrieval performance was found to

be correlated with speech recognition performance. As expected, decreases in the recog-

nition word error rate result in increases in the retrieval mean average precision. Similar

behavior was observed in word spotting based approaches where improvements in spotting

performance result in better retrieval performance (Jones et al. 1995b). Interestingly, the

interaction between phonetic recognition error rate and retrieval performance using sub-

word units derived from the errorful phonetic transcriptions have not been examined. We

explore this relationship in Section 4.4.

4.2 Phonetic Recognition Experiments

In this section, we perform a series of experiments that explore the effects of using different

acoustic and language models to try to improve phonetic recognition performance on the

NPR speech data (Ng and Zue 1998).

4.2.1 Segment Acoustic Models

The baseline phonetic recognition system, which is based on the SUMMIT recognizer de-

scribed in Section 2.3, uses 61 context-independent segment acoustic models corresponding

to the TIMIT phone labels (Garofolo et al. 1993) and a phonetic bigram statistical lan-

guage model. A list of the 61 phones in the TIMIT corpus with their IPA (international

phonetic alphabet) symbols, TIMIT labels, and example occurrences is shown in Table 4-1.
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The acoustic models are trained using 2.5 hours of “clean” speech from the speech recogni-

tion training set of the NPR corpus (Section 2.1). The language model is trained from the

phonetic transcriptions of the entire training set (not just the “clean” utterances) which

consists of approximately 230,000 phone occurrences. Performance, in terms of phonetic

recognition error rate, is measured on a collapsed set of 39 classes typically used in reporting

phonetic recognition results (Chang and Glass 1997; Halberstadt 1998; Lee 1989; Spina and

Zue 1997). The mapping between the 61 phones and the 39 classes is shown in Table 4-2.

Results on the development set for speech from all acoustic conditions (all) and from only

the clean condition (clean) are shown in Table 4-3 (seg). We see that the acoustically di-

verse speech is considerably more difficult to recognize (43.5% error) than the clean speech

(35.0% error).

4.2.2 Boundary Acoustic Models

Boundary models are context-dependent acoustic models that try to model the transitions

between two adjacent segments. They are used in conjunction with the segment models and

provide more information to the recognizer. Boundary models are trained for all segment

transitions that occur more than once in the training data. For the 2.5 hours acoustic train-

ing set of the NPR corpus (Section 2.1), there is a total of 1900 such boundary models. As

shown in Table 4-3 (+bnd), the addition of boundary acoustic models to the recognizer sig-

nificantly improves phonetic recognition performance from 35.0% to 29.1% on clean speech

and 43.5% to 37.7% on all conditions.

4.2.3 Aggregate Acoustic Models

Since the EM algorithm used to train the acoustic models makes use of random initializations

of the parameter values and only guarantees convergence to a local optimum, different sets of

models can result from different training runs using the same training data. An interesting

question, then, is how to select the “best” set of models resulting from multiple training runs.

It has been shown that aggregating or combining the different models into a single larger

model results in better performance than either using just the set of models that yield the

best performance on a development set or using methods such as cross validation (Hazen
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IPA TIMIT Example IPA TIMIT Example
[�] aa bob [+] ix debit
[æ] ae bat [iy] iy beet
[�] ah but [̌] jh joke
[=] ao bought [k] k key
[�w] aw bout [k ] kcl k closure
[�] ax about [l] l lay
[�h] ax-h potato [m] m mom
[�] axr butter [n] n noon
[�y] ay bite [8] ng sing
[b] b bee [D̃ ] nx winner
[b ] bcl b closure [ow] ow boat
[č] ch choke [oy] oy boy
[d] d day [p] p pea
[d ] dcl d closure [ ] pau pause
[�] dh then [p ] pcl p closure
[D ] dx muddy [b] q glottal stop
[�] eh bet [r] r ray
[lj] el bottle [s] s sea
[mj] em bottom [̌s] sh she
[nj] en button [t] t tea
[8j] eng Washington [t ] tcl t closure
[ ] epi epenthetic silence [S] th thin
[� ] er bird [V] uh book
[ey] ey bait [uw] uw boot
[f] f f in [ü] ux toot
[g] g gay [v] v van
[g ] gcl g closure [w] w way
[h] hh hay [y] y yacht
[$] hv ahead [z] z zone
[*] ih bit [ž] zh azure
- h# utterance initial and final silence

Table 4-1: List of the 61 phones in the TIMIT corpus. The IPA symbol, TIMIT label, and
an example occurrence is shown for each phone.
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aa aa ao ae ae ah ah ax ax-h aw aw
ay ay b b ch ch d d
dx dx dh dh eh eh er er axr
ey ey f f g g hh hh hv
ih ih ix iy iy jh jh k k
l l el m m em n n en nx ng ng eng
ow ow oy oy p p r r
s s sh sh zh t t th th
uh uh uw uw ux v v w w
y y z z CL bcl pcl dcl tcl gcl kcl epi pau h#

Table 4-2: Mapping between the 61 TIMIT phones and the 39 phone classes typically used
in measuring phonetic recognition performance. The glottal stop “q” is ignored.

and Halberstadt 1998). We adopt this aggregation approach and combine five separate

acoustic models trained using different random initializations. The different models are

combined using a simple linear combination with equal weights for each model. We observe

a moderate performance improvement (from 29.1% to 27.9% on clean speech and 37.7% to

36.9% on all conditions) as shown in Table 4-3 (+agg).

4.2.4 Language Models

All of the above recognizers use a statistical bigram language model, trained on the phonetic

transcriptions of the training data, to constrain the forward Viterbi search during decoding.

More detailed knowledge sources, such as higher order n-gram language models, can be

applied by running a second pass, backwards A∗, search. The higher order statistical

language models provide more context and constraint for the recognition search. Using the

same data used to training the bigram language model, we train and use n-grams of order

n=3, 4, and 5 for the second pass and observe that recognition performance improves as n

increases. This can be seen in the last three columns (n=3, n=4, n=5) of Table 4-3.

The final phone error rate is 26.2% on the clean speech and 35.0% on the entire devel-

opment set. State of the art phonetic recognition performance on the standardized TIMIT

corpus, which is composed of clean speech, is around 25% (Chang and Glass 1997). We

caution that these two sets of results cannot be compared directly. There are several com-
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Acoustic Model Language Model
Model seg +bnd +agg n=3 n=4 n=5
Dev (clean) 35.0 29.1 27.9 27.3 26.7 26.2
Dev (all) 43.5 37.7 36.9 36.2 35.5 35.0

Table 4-3: Phonetic recognition error rate (%) on the entire development set (all) and
on only the clean portions (clean) using various acoustic and language models. Segment
(seg), boundary (+bnd), and aggregate (+agg) acoustic models and higher order statistical
n-gram language models with n=3,4, and 5 are examined.

plicating factors. First, the characteristics of the speech data is different between the two

corpora. The TIMIT corpus is composed of clean, studio-quality, phonetically balanced

read speech. The NPR corpus, in contrast, contains read and spontaneous speech from

a variety of acoustic and channel conditions. Second, the TIMIT task is designed to be

speaker-independent whereas the NPR data is multi-speaker in nature. As a result, we can

only take the performance numbers to be suggestive. To determine if the performance on

the development set is indicative of the performance on the actual speech document collec-

tion, three hours of the speech messages (out of the 12+ hours total) are processed with the

phonetic recognizer and evaluated against the corresponding manually obtained phonetic

transcriptions. A phone error rate of 36.5% is obtained on this subset of the spoken docu-

ment collection. This result confirms that the speech in the development set is consistent

with the speech in the spoken document collection.

We note that additional work can be done in improving the performance of the phonetic

recognizer, including the use of more training data to improve model robustness and the

use of more complex models to capture more information from the speech signal.

4.3 Subwords From Errorful Phonetic Transcriptions

Next, we examine the retrieval performance of subword unit indexing terms derived from

errorful phonetic transcriptions. These transcriptions are created by running the phonetic

recognizer on the entire spoken document collection and taking the single best recognition

output (later, in Chapter 5, we look at using additional recognizer outputs such as N -best
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aa aa ae ae ah ah ao ao
aw aw ax ax ax-h ay ay b b bcl+b
ch ch d d dcl+d dh dh eh eh
er er axr ey ey f f g g gcl+g
hh hh hv ih ih ix ix iy iy
jh jh k k kcl+k l l el m m em
n n en nx ng ng eng ow ow oy oy
p p pcl+p r r s s sh sh
t t tcl+t dx th th uh uh uw uw ux
v v w w y y z z
zh zh - epi h# pau q

Table 4-4: Mapping between the 41 phones used to create the subword unit indexing terms
and the 61 TIMIT phones generated by the recognizer. Sequences of a stop closure followed
by the stop are replaced by just the stop. In addition, the silence phones are ignored.

hypotheses). Errors are introduced only into the message collection; the text queries are

not corrupted. The phonetic recognition error rate on the message collection, as mentioned

in the previous section, is about 36.5%. The 61 phone labels are collapsed to a set of 41

labels using the mapping shown in Table 4-4. This mapping is slightly different from the one

used to collapse the 61 phones to 39 classes for measuring phonetic recognition performance

(Table 4-2), the primary differences being the treatment of stop closures/releases and in

not collapsing a few phones together. Specifically, sequences of a stop closure followed by

the stop, for example kcl k, are replaced by just the stop phone, k. The phone groups

{ah, ax}, {ih, ix}, {aa, ao}, and {sh, zh} are not collapsed. In addition, the silence

phones are ignored. After the phones are collapsed to this set of 41, the resulting phonetic

transcriptions are then processed using the procedures described in Section 3.2 to generate

the different subword unit indexing terms.

Figure 4-1 shows the retrieval performance, measured in mean average precision, of

the (A) phone, (B) broad class, and (C) multigram subword units derived from error-free

(text) and errorful (rec) phonetic transcriptions. We can make several observations. First,

retrieval performance degrades significantly when errorful phonetic recognition output is

used. The phonetic errors lead to corrupted subword units which then result in indexing

term mismatches. Second, as the sequences get longer, performance falls off faster in the
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errorful case than in the clean case. This is because more errors are being included in the

longer terms which leads to more term mismatches. Finally, in the errorful case, broad class

units are slightly better than phone units when the sequence is long (n=5). Because the

broad class units collapse multiple similar phonetic units into the same class and treat them

as equivalent, these units are more robust to phonetic recognition errors. In Section 5.2,

we will see that most confusions occur between phones that are within the same broad

phonetic class. The collapsed number of classes results in fewer recognition errors: the

broad class (c=20) error rate is 29.0% versus 36.5% for the original set of classes. In

addition to recognition error rate, sequential constraints also play a role. Because of the

improved retrieval performance, it must be the case that enough phonotactic constraint is

being preserved at the broad phonetic class level to maintain the necessary discrimination

capability between indexing terms to differential the documents.

Retrieval performance for the best performing version of the different subword units

(phone, n=3; bclass, c=20, n=4; mgram, m=4; and sylb) derived from error-free (text) and

errorful (rec) phonetic transcriptions is shown in Figure 4-2. We note that the phonetic

and broad class units perform better than the multigram and syllable units when there are

speech recognition errors. There are several contributing factors. One is that the phonetic

and broad class units are overlapping and fixed-length while the multigram and syllable

units are non-overlapping and variable-length. Due to the two stage process we use to

create the subword units from phonetic sequences, overlapping fixed-length units are more

robust to variations and errors in the phone stream than variable-length non-overlapping

units. The overlapping fixed-length units provide more opportunities for partial matching.

More terms are created and the effect of a phonetic recognition error is more localized when

using fixed-length overlapping units. We saw an example of this before in Section 3.4.

Another factor is that the multigram and syllable generation algorithms, which auto-

matically discover their units from the phone stream, are able to find fewer consistent units

when there are phonetic errors. This is evidenced by the larger number of multigram and

syllable units generated when errorful phonetic transcriptions are used: 13708 multigram

(m=4) units and 8335 syllable units. This is compared to 8875 multigrams (m=4) units

and 5475 syllable units when clean phonetic transcriptions are used (see Sections 3.2.3
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Figure 4-1: Performance of (A) phonetic, (B) broad class (with c=20 classes), and (C)
variable-length multigram subword units of varying length (n = 1, . . . , 6) derived from
error-free (text) and errorful (rec) phonetic transcriptions. Reference retrieval performance
using word units derived from clean text is indicated by the dotted horizontal line.
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Figure 4-2: Retrieval performance for selected subword units (phone sequences, n=3; broad
class sequences, c=20, n=4; multigrams, m=4; and syllables) derived from error-free (text)
and errorful (rec) phonetic transcriptions. Reference retrieval performance using word units
derived from clean text is indicated by the dotted horizontal line.

and 3.2.4). Fewer consistent units leads to poorer document representations and worse

retrieval performance. One possible approach to try to make these units more robust to

phonetic recognition errors is to build the multigrams and syllable units based on broad

classes instead of detailed phonetic units. However, as we saw in Section 3.4, there ex-

ists a tradeoff between the number of broad classes and the sequence length required to

achieve good retrieval performance. As the number of classes is reduced, the length of the

sequence needs to increase in order to maintain performance. With multigram units, it

is straightforward to increase the maximum length of the units generated. With syllable

units, however, it is not clear how the length of the units can be increased in a meaningful

way while preserving the notion and meaning of a syllable.
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Figure 4-3: (A) Scatter plot of the retrieval scores of the relevant documents for all queries
in the NPR data set using phonetic subword units of length n=3 derived from error-free
and errorful phonetic transcriptions. (B) Scatter plot of the retrieval scores of the top 10
retrieved documents for all queries in the NPR data set using phonetic subword units of
length n=3 derived from error-free and errorful phonetic transcriptions.

An analysis of the effects of the corrupted document terms caused by the speech recog-

nition errors indicate that the decrease in retrieval performance is caused by false negative

rather than false positive term matches. In other words, the reduced retrieval performance

is the result of fewer query term matches in the relevant documents rather than more query

term matches in the non-relevant documents. This behavior can be observed in Figures 4-

3A and B. Figure 4-3A shows a scatter plot of the retrieval scores of the relevant documents

for all queries using phonetic subword units of length n=3 derived from error-free (text) and

errorful (rec) phonetic transcriptions. We see that the retrieval scores are lower when the

subword units contain errors than when the subword units are error-free. The magnitude

of the score is dependent on the number of query term matches. This means that the rel-

evant documents have fewer query term matches when the document terms are corrupted

than when they are error-free. Figure 4-3B shows a similar scatter plot, but this time the

scores of the top 10 retrieved documents for each query are displayed. Both relevant and

non-relevant documents are included in the top retrieved documents. We see that even

the scores of the top documents are lower when the document terms are noisy than when
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they are clean. This means that fewer query term matches are happening not only for the

relevant documents but also for the non-relevant documents. Thus, the reduced retrieval

performance with noisy document terms is due to relevant documents scoring lower rather

than non-relevant documents scoring higher.

4.4 Recognition vs. Retrieval Performance

Because the subword unit indexing terms are derived from the phonetic recognizer output,

speech recognition performance will have an impact on retrieval performance. To quantify

this effect, we perform a series of retrieval experiments using one type of subword unit

(phone sequences of length n=3) derived from phonetic transcriptions with different pho-

netic recognition error rates. The different outputs are generated by the different recognizers

described in Section 4.2 when we explored the use of different acoustic and language models

to improve phonetic recognition performance.

Figure 4-4 plots the relationship between spoken document retrieval performance, mea-

sured in mean average precision, and phonetic recognition performance, measured in error

rate. As expected, we see that there exists a strong correlation: better phonetic recognition

performance leads to better retrieval performance. It is interesting to note that relatively

small changes in the phonetic recognition error rate result in much larger changes in the

retrieval performance. For example, a decrease in the recognition error from 38% to 35%

has a corresponding improvement in the retrieval performance from 0.435 to 0.525 in mean

average precision. It will be interesting to see how much better retrieval performance can be

with better phonetic recognizers. We should note, however, that accurate phonetic recog-

nition is a very difficult task. The best reported speaker-independent phonetic recognition

error rates (on clean speech) are only in the mid 20’s (Chang and Glass 1997; Halberstadt

1998); with noisy speech data, the error rates will be much higher. The experiments in this

section show that improving the performance of the speech recognizer remains an important

intermediate goal in the development of better SDR systems.
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Figure 4-4: Relationship between spoken document retrieval performance (mean average
precision) and phonetic recognition performance (error rate). The performance of the pho-
netic recognizer changes as different acoustic and language models are used.

4.5 Summary

In this chapter, we trained and tuned a phonetic recognizer to operate on the radio broad-

cast news domain and used it to process the entire spoken document collection to generate

phonetic transcriptions. We then explored a range of subword unit indexing terms of varying

complexity derived from these errorful phonetic transcriptions and measured their ability to

perform spoken document retrieval. We found that in the presence of phonetic recognition

errors, retrieval performance degrades, as expected, compared to using error-free phonetic

transcriptions or word-level text units: performance falls to 60% of the clean reference

performance. However, many subword unit indexing terms can still give reasonable perfor-

mance even without the use of any error compensation techniques. We also observed that

there is a strong correlation between recognition and retrieval performance: better phonetic
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recognition performance leads to improved retrieval performance. The experiments in this

chapter establish a lower bound on the retrieval performance of the different subword units

since no error compensation techniques are used. We know that there are speech recognition

errors, but we are not doing anything about them. Hopefully improving the performance

of the recognizer and developing robust indexing and retrieval methods to deal with the

recognition errors (which is the subject of the next chapter) will help improve retrieval

performance.
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Chapter 5

Robust Indexing and Retrieval

Methods

In this chapter, we address the issue of modifying the indexing and retrieval methods to

take into account the fact that the speech recognition outputs are errorful. We investigate

robust indexing and retrieval methods in an effort to improve retrieval performance when

there are speech recognition errors (Ng 1998). We examine a number of methods that take

into account the characteristics of the recognition errors and try to compensate for them.

In the first approach, the original query representation is modified to include similar or

confusible terms that could match erroneously recognized speech; these terms are deter-

mined using information from the phonetic recognizer’s error confusion matrix. The second

approach is a generalization of the first method and involves developing a new document-

query retrieval measure using approximate term matching designed to be less sensitive to

speech recognition errors. In the third method, the document representation is expanded to

include multiple recognition candidates (e.g., N -best) to increase the chance of capturing

the correct hypothesis. The fourth method modifies the original query using automatic

relevance feedback (Salton and McGill 1983) to include new terms as well as approximate

match terms found in the top ranked documents from an initial retrieval pass. The last

method involves the “fusion” or combination of information from multiple subword unit

representations. We study the different methods individually and then explore the effects
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of combining them. We find that each method is able to improve retrieval performance

and that the gains are additive when the methods are combined. Overall, the robust meth-

ods improve retrieval performance using subword units generated from errorful phonetic

recognition transcriptions by 23%.

In the experiments presented in this chapter, we use one of the better performing sets

of subword units: overlapping, fixed-length, phone sequences ranging from n=2 to n=6 in

length with a phone inventory of 41 classes. As described in Section 3.2.1, these phonetic

n-gram subword units are derived by successively concatenating the appropriate number of

phones from the phonetic transcriptions.

5.1 Related Work

In this section, we review some related work on approaches for dealing with errorful input

in the context of information retrieval. For text documents, there has been work in trying

to compensate for optical character recognition (OCR) errors introduced into automatically

scanned text documents (Marukawa et al. 1997; Zhai et al. 1996). In (Marukawa et al.

1997), two methods are proposed to deal with character recognition errors for Japanese

text documents. One method uses a character error confusion matrix to generate “equiv-

alent” query strings to try to match erroneously recognized text. The other searches a

“non-deterministic text” (represented as a finite state automaton) that contains multiple

candidates for ambiguous recognition results. Experiments using simulated errors show

that both methods can be effective. In (Zhai et al. 1996), two other OCR compensation

methods are presented. One method is a query expansion technique that adds similar word

variants as measured by an edit distance, i.e., the number of character insertions, deletions,

and substitutions that are needed to transform one word to the other (Sankoff and Kruskal

1983). The second method is a word error correction technique that changes an unknown

word (i.e., one not in a standard dictionary) to the most likely known word as predicted by

a statistical word bigram model. Experiments on OCR corrupted English texts show that

expanding the query to include similar words performs better than trying to correct word

errors in the document.
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The area of robust methods for dealing with speech recognition errors in the context

of spoken document retrieval is still relatively new. There has been some recent work in

this area performed independently and in parallel to the work presented in this chapter.

One set of approaches expands the query to include terms that may have a better chance

of matching the errorful terms in the document representation. Another expands the noisy

document representation to include additional clean terms. A third method searches the

errorful document representations for the query terms using approximate matching to allow

for recognition errors. In (Ng and Zobel 1998), terms similar to the original query terms

based on a standard edit distance or determined manually are added to the query. Retrieval

experiments on the TREC-6 SDR task (Garofolo et al. 1997), using phonetic n-gram units

of length n=3 and 4, did not show performance improvements using these methods. A

possible explanation may be that the terms added to the queries were not weighted by their

similarity to the original terms and no information about the characteristics of the speech

recognizer errors was used.

In (Jourlin et al. 1999), a number of different query expansion techniques are used

to try to compensate for word recognition errors. One method expands each geographic

location word in the query with a partially ordered set of geographic location information.

A second method adds hyponyms (members of a class) obtained from WordNet (Fellbaum

1998) for query words that are unambiguous nouns (i.e., nouns with only one possible word

sense). Another method performs automatic (blind) relevance feedback (see Section 5.5)

to expand the original query by including new terms from top ranked documents retrieved

from a first pass. Two variants are explored; one performs the first pass retrieval on the

spoken document collection generated by the speech recognizer and the other uses a parallel

corpus comprised of clean text documents. Retrieval experiments on the TREC-7 SDR

task (Garofolo et al. 1998) show that each method can improve retrieval performance and

when used together results in a gain of over 14%.

In (Singhal et al. 1998), noisy document representations are expanded to include clean

terms from similar documents obtained from a clean parallel text corpus. For each doc-

ument in the spoken document collection, the top recognition word sequence is used to

search a parallel clean text document collection for similar documents by treating the noisy
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document as a query. A limited number of new terms from the top ranked retrieved clean

documents are then added to the noisy speech document. Experiments on the TREC-7

SDR task (Garofolo et al. 1998) show that approach can improve retrieval performance.

In (Wechsler et al. 1998), a word spotting technique that allows for phone mismatches

is used to detect query terms in the errorful phonetic transcriptions of the spoken docu-

ments. The top recognition hypothesis generated by an HMM phone recognizer is searched.

Characteristics of the speech recognition errors are used in weighting phone sequences that

approximately match the query term. As mentioned in Section 4.1, retrieval experiments

on the TREC-6 SDR task (Garofolo et al. 1997) show that the query word search tech-

nique can be effective. Experiments on a spoken document collection consisting of recorded

Swiss radio news show that the query word search approach can perform better than using

phonetic trigram indexing units (Wechsler and Schauble 1995).

5.2 Expanding the Query Representation

Phonetic recognition errors in the spoken messages result in corrupted indexing terms in

the document representation. One way to address this is to modify the query representa-

tion to include errorful variants of the original terms to improve the chance of matching

the corrupted document terms. These “approximate match” terms are determined using

information from the phonetic recognition error confusion matrix (Figure 5-1) obtained

by running the recognizer on the development data set (See Section 2.1). Each confusion

matrix entry, C(r, h), corresponds to a recognition error confusing reference phone r with

hypothesis phone h. The bubble radius shown is linearly proportional to the error. The first

row (r = ∅) and column (h = ∅) correspond to insertion and deletion errors, respectively.

We note that many of the confusion errors occur between phones that are within the same

broad phonetic class (Halberstadt 1998) and that many of the insertion and deletion errors

happen with short phones.

By thresholding the error on the confusion matrix, we obtain a set of phone confusion

pairs which can then be used to generate approximate match terms via substitution into

each original query term. The threshold controls the number of near-miss terms added to
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Figure 5-1: Phonetic recognition error confusion matrix C. The radius of the “bubbles”
in each entry C(r, h) are linearly proportional to the error so entries with large bubbles
indicate more likely phone confusion pairs. The blocks along the diagonal group together
phones that belong to the same broad phonetic category. Aside from insertion and deletion
errors, which happen mainly with the short duration phones, most confusions occur between
phones that are within the same broad phonetic class.
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reference term i near-miss term j similarity s(i, j)
eh dh er eh dh er 1.0000
eh dh er ih dh er 0.8892
eh dh er ae dh er 0.8873
eh dh er eh dh r 0.8733
eh dh er ih dh r 0.7625
eh dh er ae dh r 0.7605

Table 5-1: A list of some automatically generated near miss terms j along with their
similarity scores s(i, j) for a reference term i=eh dh er.

the query. The frequency weight of a new term j is a scaled version of the frequency weight

of the original term i where the scaling factor is a heuristically derived similarity measure

between terms i and j:

fq[j] = s(i, j) fq[i] =
∑n

m=1 C(i[m], j[m])∑n
m=1 C(i[m], i[m])

fq[i] (5.1)

where i[m] is the mth phone in subword unit term i with length n. The measure is normalized

so that exact term matches will have a weight of one. In this approach, we are using

the confusion matrix C as a similarity matrix with the error values as indicators of phone

similarity. Since the confusion matrix entries, C(r, h), are counts of the number of confusions

between phones r and h, the similarity measure is a normalized sum of the number of total

confusions between the phones in terms i and j. Table 5-1 shows an example of some

near-miss terms that are generated along with their similarity scores for the reference term

eh dh er. Terms acoustically close to the original term have a similarity score close to one.

We note that this method of creating near miss terms can only allow for substitution

errors; insertion and deletion errors are not modeled directly. We need to rely on the

partial matching of the terms and the overlapping nature of the subword units to allow for

more matching opportunities to try compensate for this. A more direct approach would

be to develop a more complex model that can explicitly allow for these other types of

errors (Livescu 1999). In our approach to approximate matching (Section 5.3), we develop

a more general (allowing for insertion and deletion errors) and better motivated probabilistic

measure of the similarity between two terms i and j.
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Figure 5-2: Retrieval performance for different length (n = 2, . . . , 6) phonetic subword
units as the query expansion threshold is varied. More terms are added to the query as the
threshold value is lowered.

Figure 5-2 shows retrieval performance, measured in mean average precision, for the

different phonetic subword units (n=2,3,4,5,6) using this query expansion method as the

threshold is lowered to include more approximate match terms. We first note that subword

units of intermediate length (n=3,4) perform better than short (n=2) or long (n=5,6) units;

this is due to a better tradeoff of being too short and matching too many terms versus being

too long and not matching enough terms. As the threshold is lowered and more terms are

added, performance of the short subword unit (n=2) becomes worse. This is due to an

increase in the number of spurious matches caused by the additional terms. Because of the

short length of these subword units and the small number of possible terms (412 = 1681),

the added terms are likely to match terms that occur in many of the documents. The perfor-

mance of the longer subword units (n=4,5,6), however, are much improved with expanded

queries. In this case, the additional query terms are matching corrupted document terms
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Threshold Value
Subword Unit 100 80 60 50 30 20 10

2phn 22.0 24.1 34.6 50.4 62.2 100.2 213.9
3phn 21.0 24.0 41.2 72.7 99.7 202.4 625.6
4phn 20.0 23.9 48.9 104.1 159.8 410.5 1830.1
5phn 19.0 23.8 58.3 150.6 257.3 839.6 5428.5
6phn 18.0 23.6 69.0 217.0 411.5 1704.7 15768.3

Table 5-2: The growth in the average number of terms in the query as the query expansion
threshold is varied. We start with the original query at a threshold value of 100. More
terms are added to the query as the threshold value is lowered.

but the longer subword unit sequence length now makes it more difficult to get spurious

matches. The net effect is positive resulting in performance improvements. Performance for

the length n=3 units stays about the same. In this case, the combined effect of corrupted

term matches and spurious matches result in no net gain.

Table 5-2 shows the growth in the size of the query (in number of terms averaged over

the 50 queries) as the query expansion threshold is varied. At a threshold value of 100, the

query is the original one with no added terms. As the threshold value is lowered, more phone

confusions are considered and more near-miss terms are added to the query. We observe

that the queries for the longer subword units grow faster as the threshold is lowered. At a

threshold of 20, the query growth is almost exponential. In the last column of the table, we

also include the average number of query terms for a threshold value of 10. It is clear that

the number of possible near-miss terms resulting from considering more and more phone

confusions can grow very large.

5.3 Approximate Match Retrieval Measure

Instead of explicitly adding query terms to improve the chance of matching corrupted doc-

ument terms, we can implicitly consider all possible matches between the “clean” query

terms and the “noisy” document terms by generalizing the document-query retrieval metric

to make use of approximate term matching.

In the retrieval measure specified in (2.3), the document vector d contains a weight,
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d[i], for each term i that occurs in that document. The original retrieval model assumes

that these weights are derived from error-free text transcriptions of the documents. With

speech messages, however, the document representation contains errors introduced by the

speech recognizer. The retrieval metric should, therefore, be modified to take these errors

into account. One approach is to estimate the weight of term i in a noisy document as a

weighted sum of the weights of all the observed terms in that document:

d[i] =
∑
j∈d

p(i | j) d[j] (5.2)

where the mixing weight, p(i | j), is the conditional probability that the term is really i given

that we observe term j in the noisy document. This conditional probability models the error

characteristics of the speech recognizer since it estimates the probability of reference term

i given that we observe hypothesis term j. Using this estimate of term weights from noisy

documents, we can formulate a new retrieval measure that allows for approximate matches

between a clean query term i and a noisy document term j as follows:

Sa(q,d) =
∑
i∈q

q[i]
||q||


∑

j∈d

p(i | j)
d[j]
||d∗||




=
∑
i∈q

∑
j∈d

p(i | j)
q[i]
||q||

d[j]
||d∗|| (5.3)

where ||d∗|| is the magnitude of the new document vector described in Equation 5.2. We

observe that the new metric (5.3) reduces to the original metric (2.3) when only exact

matches between terms i and j are allowed:

p(i | j) =

{
1, if j = i

0, otherwise
(5.4)

If we make the simplifying assumption that the phones comprising each subword unit term

are independent, then we can estimate this conditional probability using a dynamic pro-

gramming (DP) procedure:

p(i | j) = A(li, lj) (5.5)
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where li and lj are the lengths of terms i and j, respectively, and A is the li × lj DP matrix

which can be computed recursively:

A(m,n) =




1, m=0, n=0

A(0, n−1) · C̃(∅, j[n−1]), m=0, n>0

A(m−1, 0) · C̃(i[m−1], ∅), m>0, n=0

max




A(m−1, n) · C̃(i[m−1], ∅)

A(m−1, n−1) · C̃(i[m−1], j[n−1])

A(m,n−1) · C̃(∅, j[n−1])

, m>0, n>0

(5.6)

where C̃(r, h) is the probability of reference phone r given that we observe hypothesis phone

h and is obtained by normalizing the error confusion matrix:

C̃(r, h) =
C(r, h)∑

k∈{h} C(r, k)
(5.7)

Thresholds can be placed on p(i | j) to limit the number of approximate term matches that

have to be considered when computing the retrieval score in (5.3). We note that other

probabilistic models such as hidden Markov Models (HMMs) can also be used to estimate

this conditional probability.

It is important to note that the use of this approximate match score can significantly

increase the amount of computation needed to perform retrieval because we have to now

consider all possible matches between the terms in the query and the terms in the documents.

In the original model, only the query terms that occur in the documents needed to be

examined. If there are nq terms in the query and nd terms in the document, we have to,

in principle, consider nq × nd terms for approximate matching whereas only nq terms are

needed for exact matching. Fortunately, the most computationally expensive part of the

processing, the computation of the quantity p(i | j) for all i and j, can be done once (for a

given speech recognizer) off-line and stored in a table for future use during retrieval.

Figure 5-3 shows retrieval performance for the different phonetic subword units using

the new document-query retrieval metric in (5.3) as the threshold on p(i | j) is lowered to

consider more approximate matches. The performance behavior is very similar to that

observed in Figure 5-2 with improvements for the longer subword units and losses for the
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Figure 5-3: Retrieval performance for different length (n = 2, . . . , 6) phonetic subword units
as the approximate match threshold is varied. More term matches are considered in the
scoring process as the threshold value is lowered.

short ones as the threshold is lowered and more approximate match terms are considered.

Again, the short subword units are more susceptible to spurious matches than the longer

subword units.

The overall performance gains are better with approximate matching than with query

expansion by adding “near-miss” terms. For example, using the new document-query met-

ric, performance of the n=3 subword unit improves from mAP=0.52 to mAP=0.57. With

the query expansion approach, however, performance only reaches mAP=0.54. There are

several contributing factors. One is that the approximate match procedure considers all pos-

sible matches between the “clean” query terms and the “noisy” document terms whereas

the “near-miss” terms generated using the query expansion approach generally only cover

a subset of the noisy document terms. Not all terms that occur in the document may be

included in the expanded query because only phone confusions that occur enough times
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(above some threshold) are considered. Lowering the threshold addresses this problem,

but then the number of terms in the query grows exponentially as we saw in Table 5-2.

Generalizing the document-query retrieval metric to include approximate term matching

allows us to consider all possible matches between the query and document terms without

having to explicitly enumerate them a priori or to modify the query. Another factor is that

the similarity measure used in the approximate match approach, p(i | j) (Equation 5.5), is

better than the similarity measure used in the query expansion approach, s(i, j) (Equa-

tion 5.1). The quantity p(i | j) is more general (allowing for insertion and deletion errors)

and is probabilistically motivated whereas s(i, j) is heuristically derived. Overall, imple-

menting approximate match using the new document-query metric is superior to adding

“near-miss” terms to the query.

Another way to view query expansion, approximate matching, and document expansion

is the following. Let q be the original query vector, d a document vector, and A the

matrix containing similarity measures between terms i and j. To get the expanded query,

we are essentially computing qA. And to perform retrieval, we are basically computing

(qA) d to get the similarity score to the document d. Approximate matching can be

interpreted as performing the same basic operations, qAd. The main difference between

query expansion and approximate matching is that the matrix A is different in the two cases.

For query expansion, the values in matrix A are computed using s(i, j) while p(i | j) is used

for approximate matching. Second, the set of non-zero entries in matrix A, which affects

which term pairs i and j actually contribute to the final retrieval score, is different. With

query expansion, the term pairs are determined by the threshold on the confusion matrix

entries. With approximate matching, only the cross product of the query and document

terms are considered. Although these two sets have some overlap, as we discussed above,

they are not usually the same. We can also view a document expansion approach which

adds near miss-terms to the document representation (analogous to query expansion) as

computing the value q (Ad). In this respect, query and document expansion are essentially

equivalent provided A is the same. We point out that our document expansion approach,

described in the next section, is different. It doesn’t add near-miss terms to the document

but rather includes terms that are found in high scoring recognition alternatives.
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5.4 Expanding the Document Representation

A different approach is to modify the speech document representation by including high

scoring recognition alternatives to increase the chance of capturing the correct hypothesis.

This can be done by using the N -best recognition hypotheses, instead of just the single best

one. If a term appears in many of the top N hypotheses, it is more likely to have actually

occurred than if it appears in only a few. As a result, a simple estimate of the frequency

of term i in document d, fd[i], can be obtained by considering the number of times, ni, it

appears in the top N hypotheses:

fd[i] =
ni

N
. (5.8)

We note that other information from the recognizer, such as likelihood and confidence

scores, can also be used to weight our belief in the accuracy of different hypotheses. As-

sociated with each recognition hypothesis is a likelihood score (i.e., the log probability of

the term sequence given the acoustic signal). Each term in the hypothesis contributes a

certain amount of likelihood to the overall score of the utterance. This term likelihood

can be extracted and used, after appropriate normalization, as the weight of the term to

reflect the recognizer’s “belief” in that term hypothesis. Another estimate of the belief in

the correctness of a term hypothesis can be obtained by computing associated confidence

measures (Chase 1997; Siu et al. 1997).

Retrieval performance for the different subword units as the document representation is

expanded to include the N -best recognition hypotheses is shown in Figure 5-4. Performance

improves slightly for all the subword units as N increases and then levels off after N=5 or

10. It appears that most of the useful term variants occur within the first few hypotheses;

the addition of more recognition hypotheses after this does not help. One danger of using

too many recognition hypotheses is that errorful terms from low scoring hypotheses may

be included in the document representation. This can lead to spurious matches with query

terms resulting in a decrease in retrieval precision. A mitigating factor is that these terms

are likely to have low weights because of their small number of occurrences so their effect

is minimized.
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Figure 5-4: Retrieval performance for different length (n = 2, . . . , 6) phonetic subword units
as the number of N -best recognition hypotheses used for document expansion is increased
from N=1 to 100.

5.5 Query Modification via Automatic Relevance Feedback

The goal in relevance feedback is to iteratively refine a query by modifying it based on

the results from a prior retrieval run. A commonly used query reformulation strategy,

the Rocchio algorithm (Salton and McGill 1983), starts with the original query, q, adds

terms found in the retrieved relevant documents, and removes terms found in the retrieved

non-relevant documents to come up with a new query, q′:

q′ = αq + β


 1

Nr

∑
i∈Dr

di


− γ


 1

Nn

∑
i∈Dn

di


 (5.9)

where Dr is the set of Nr relevant documents, Dn is the set of Nn non-relevant documents,

and α, β, and γ are tunable parameters controlling the relative contribution of the original,

added, and removed terms, respectively. In addition to modifying the set of terms, the
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above method also modifies their weights. The original term weights are scaled by α; the

added terms have a weight that is proportional to their average weight across the set of

Nr relevant documents; and the subtracted terms have a weight that is proportional to

their average weight across the set of Nn non-relevant documents. A threshold can also

be placed on the number of new terms, Nt, that are added to the original query. Since

there is no human user in the loop to label the initially retrieved documents as relevant

and non-relevant, an automatic variation of the above strategy can be implemented by

simply assuming that the top Nr retrieved documents are relevant and the bottom Nn

documents are not relevant. Modifying the query in this way adds new terms from the

top scoring documents from the first retrieval pass. These terms are ones that co-occur

in the same documents with the original query terms. In addition, the query modification

can potentially add approximate match terms that occur in the top ranked documents

as well. We note that other query reformulation methods, such as probabilistic relevance

feedback (Robertson and Jones 1976), can also be used.

Retrieval performance with ( ) and without (4) the use of automatic relevance feedback

is shown in Figure 5-5 for the different subword units. The following empirically derived rel-

evance feedback parameters are used: Nr=1, Nn=10, α=β=γ=1, and Nt=50. Performance

is significantly improved for subword units of length n=3,4,5 but remains about the same

for units of length n=2,6. This illustrates again the tradeoff advantages of intermediate

length units.

Since automatic feedback helps improve performance in the case of noisy subword units,

we also tried using automatic feedback with “clean” subword units derived from error

free phonetic transcriptions and also word units derived from error-free text transcrip-

tions. On clean phonetic subword units of length n=3, retrieval performance improves

from mAP=0.86 to mAP=0.88 with the addition of automatic relevance feedback. With

word-based units derived from error-free text, performance improves from mAP=0.87 (Sec-

tion 3.3) to mAP=0.89 with the use of automatic feedback. Although automatic feedback

improves performance in both cases, the gains are not as large as the ones obtained with

noisy subword units.
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Figure 5-5: Retrieval performance for different length (n = 2, . . . , 6) phonetic subword units
with and without using automatic relevance feedback.

5.6 Fusion of Multiple Subword Representations

Different subword unit representations can capture different types of information. For

example, longer subword units can capture word or phrase information while shorter units

can model word fragments. The tradeoff is that the shorter units are more robust to errors

and word variants than the longer units but the longer units capture more discrimination

information and are less susceptible to false matches. One simple way to try to combine the

different information is to form a new document-query retrieval score by linearly combining

the individual retrieval scores obtained from the separate subword units:

Sf (q,d) =
∑
n

wn Sn(q,d) (5.10)

where Sn(q,d) is the document-query score (2.3) obtained using subword representation

n and wn is a tunable weight parameter. An alternate “fusion” method is to create a
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Figure 5-6: Retrieval performance for different length (n = 2, . . . , 6) phonetic subword units
with and without using combination/fusion of different subword units.

heterogeneous set of indexing terms by pooling together the different subword units and

performing a single retrieval run.

Subword unit combination should help if the separate subword units behave differently

from each other. In particular, if the different subword units make different “errors” (i.e.,

different relevant documents score poorly for different subword units), then combining the

results provides a chance to improve the results since some units are performing well. How-

ever, if all the subword units make the same “errors” (i.e., the same relevant documents

score poorly for all representations), then combination would not expected to be useful.

In addition, combination methods avoid the need to commit a priori to a single subword

unit representation. However, they are more computationally expensive because multiple

retrieval runs need to be performed and/or larger sets of terms need to be considered.

Linearly combining the separate retrieval scores with equal weights (wn=0.2, n=2,3,4,5,6)

results in performance that is slightly worse than just using the best performing subword
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unit (n=3). Changing the weights to favor the better performing units (w3=0.5, w4=0.2,

w2,5,6=0.1) is slightly better than the n=3 subword unit as shown by the solid horizontal

line in Figure 5-6 (mAP=0.536 vs. mAP=0.524). We also tried performing combination

by simply pooling together the different subword units to create a heterogeneous set of

indexing terms. In this case, the indexing terms consist of the union of phonetic subword

units of lengths n=2, 3, 4, and 5. No preferential weighting of the different subword units is

done. This method of combination results in only a very small change in the retrieval per-

formance (mAP=0.526 vs. mAP=0.524). There may be less variability in the errors than

desired for combination to be effective. In other words, the same relevant documents may

be scoring poorly for many representations, in which case the benefit of subword unit com-

bination is reduced. The use of more sophisticated non-linear combination methods such

as bagging (Breiman 1994), boosting (Freund and Schapire 1996), or stacking (Wolpert

1992) might lead to better performance. However, with a more complex method with more

parameters, the danger of over-fitting the training data and having a combination model

that does not generalize well to new previously unseen data becomes more of an issue.

5.7 Combined use of the Robust Methods

Starting with the baseline retrieval performance of the different subword units, we cumu-

latively combine the various robust methods to see how performance improves. As shown

in Figure 5-7, adding automatic relevance feedback (+fdbk) improves performance for the

n=3,4,5 subword units. Using the approximate match retrieval metric (+approx) further

improves performance for all subword units except for n=2. Expanding the documents

using the top N=10 recognition hypotheses (+nbest) improves performance for the longer

subword units. Finally, combining the scores of the different subword units (+combo) gives

performance similar to that of the best performing subword unit (n=3). Since the approx-

imate matching method is a generalization of the query expansion method and has better

performance as we saw in Section 5.3, we only consider the approximate matching method

in this cumulative combination. Table 5-3 lists the performance improvements for the n=3

subword unit using the various various robust methods individually and in combination.
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Figure 5-7: Retrieval performance for different length (n = 2, . . . , 6) phonetic subword units
as the different robust methods are combined. Performance improves from the baseline as
relevance feedback (+fdbk), approximate matching (+approx), N-best document expansion
(+nbest), and combination/fusion of different subword units (+combo) is applied. Perfor-
mance using subwords generated from clean phonetic transcriptions (text) is still better.

Each of the methods used individually is able to improve performance above the baseline.

When combined, many of the performance gains are additive with the automatic relevance

feedback (+fdbk) and the approximate match retrieval metric (+approx) contributing the

most. The final result is that information retrieval performance, measured in mean average

precision, improves from mAP=0.52 (for the initial n=3 subword unit) to mAP=0.64, a gain

of about 23%. There remains, however, a large performance gap when compared to sub-

word units derived from error-free phonetic transcriptions (text). Performance of the clean

subword units with automatic relevance feedback processing is also shown (text+fdbk).
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Mean Average Precision
Condition Individually Combined
baseline 0.524 0.524
+fdbk 0.595 0.595
+approx 0.568 0.639
+nbest 0.535 0.640
+combo 0.536 0.641
text 0.859 0.859
text+fdbk 0.878 0.878

Table 5-3: Information retrieval performance (measured in mean average precision) for the
n=3 phonetic subword unit for the different robust methods used individually and in combi-
nation. Performance improves from the baseline as relevance feedback (+fdbk), approximate
matching (+approx), N-best document expansion (+nbest), and combination/fusion of dif-
ferent subword units (+combo) is applied. Using subwords generated from clean phonetic
transcriptions with (text+fdbk) and without (text) feedback is still better.

5.8 Summary

In this chapter, we investigated a number of robust methods in an effort to improve spo-

ken document retrieval performance when there are speech recognition errors. In the first

approach, the original query is modified to include near-miss terms that could match erro-

neously recognized speech. The second approach involves developing a new document-query

retrieval measure using approximate term matching designed to be less sensitive to speech

recognition errors. In the third method, the document is expanded to include multiple recog-

nition candidates to increase the chance of capturing the correct hypothesis. The fourth

method modifies the original query using automatic relevance feedback to include new terms

as well as approximate match terms. The last method involves combining information from

multiple subword unit representations. We studied the different methods individually and

then explored the effects of combining them. We found that using a new approximate match

retrieval metric, modifying the queries via automatic relevance feedback, and expanding the

documents with N -best recognition hypotheses improved performance; subword unit fusion,

however, resulted in only marginal gains. Combining the approaches resulted in additive

performance improvements. Using these robust methods improved retrieval performance

using subword units generated from errorful phonetic recognition transcriptions by 23%.
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Chapter 6

A Maximum Likelihood Ratio

Information Retrieval Model

In this chapter, we take a brief digression from spoken document retrieval and describe a

novel probabilistic retrieval model that we developed as part of our work (Ng 1999). We also

move from spoken document retrieval to traditional text retrieval in order to benchmark

the performance of our probabilistic retrieval model on standard text retrieval tasks and

to allow a comparative evaluation of our model to other retrieval approaches. We return

to speech retrieval in the next chapter, Chapter 7, when we use this probabilistic retrieval

model to implement an approach to spoken document retrieval where the speech recognition

and information retrieval components are more tightly integrated.

Probabilistic modeling for information retrieval (IR) has a long history (Crestani et al.

1998). Many of these approaches try to evaluate the probability of a document being rel-

evant (R) to a given query Q by estimating p(R |Q,Di) for every document Di in the

collection. These relevance probabilities are then used to rank order the retrieved docu-

ments. However, due to the imprecise definition of the concept of relevance and the lack of

available relevance training data, reliably estimating these probabilities has been a difficult

task. Because of the the nature of the IR task, training data in the form of document-query

pairs labeled with their corresponding relevance judgments is not generally available a pri-

ori. Previously seen queries, for which relevance information can be created, can be used for
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training but their applicability to new queries is not clear. Some relevance information can

be obtained in a multi-pass retrieval strategy by using relevance feedback. However, only

a small number of relevance judgments is typically generated. Many of these probabilistic

methods are better suited for related applications, such as information filtering, where more

relevance training data is available (Harman 1997; Harman 1998).

Instead of the imprecisely defined notion of relevance, we consider the better defined

measure of likelihood. In particular, we examine the relative change in the likelihood of

a document before and after a query is specified, and use that as the metric for scoring

and ranking the documents. The idea is that documents that become more likely after

the query is specified are probably more useful to the user and should score better and be

ranked ahead of those documents whose likelihoods either stay the same or decrease. The

document likelihoods are computed using statistical language modeling techniques and the

model parameters are estimated automatically and dynamically for each query to optimize

well-specified objective functions.

In the following sections, we first discuss some related modeling approaches. Next, we

derive the basic retrieval model, describe the details of the model, and present some exten-

sions to the model including a method to perform automatic feedback. Then, we evaluate

the performance of the retrieval model and present experimental results on the TREC-6

and TREC-7 ad hoc text retrieval tasks. Official evaluation results on the 1999 TREC-8 ad

hoc retrieval task are also reported. Experimental results indicate that the model is able to

achieve performance that is competitive with current state-of-the-art retrieval approaches.

6.1 Related Work

In our retrieval model, we use the relative change in the likelihood of a document Di before

and after the user query Q is specified, expressed as the likelihood ratio of the conditional

and the prior probabilities, p(Di|Q)
p(Di)

, as the metric for scoring and ranking the documents.

A document that becomes more likely after the query is specified is probably more useful

to the user than one that either remains the same or becomes less likely. This score can

be equivalently rewritten as p(Q|Di)
p(Q) . Since we need to estimate p(Q|Di), the probability of
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query Q given document Di, our model is related to several recently proposed IR approaches

which also make use of this probabilistic quantity (Hiemstra and Kraaij 1998; Miller et al.

1998; Ponte and Croft 1998).

In (Ponte and Croft 1998) and (Hiemstra and Kraaij 1998), a language modeling ar-

gument is used to directly posit that p(Q|Di) is an appropriate quantity for scoring doc-

ument Di in response to query Q. Mixture models are then used to compute this quan-

tity. In (Miller et al. 1998), the probability that document Di is relevant given query Q,

p(Di is R|Q), is used to score the documents. This quantity can be rewritten, using Bayes

rule, as p(Q|Di isR) p(Di isR)
p(Q) . A generative hidden Markov model (HMM) is then used to

compute the quantity p(Q|Di is R).

Although our retrieval model shares this commonality with these other approaches, there

are some important differences. First, as described above, our model is derived starting from

a different theoretical justification. Second, different modeling assumptions and estimation

techniques are used to determine the underlying probabilistic quantities. Although we use

the standard technique of mixture models to estimate p(Q|Di) (See Section 6.2.1), the

underlying probabilistic components in our mixture model are different from those used

in (Ponte and Croft 1998) and (Hiemstra and Kraaij 1998). We back-off to the term’s

probability of occurrence in the entire document collection. In (Hiemstra and Kraaij 1998),

the back-off is to the term’s document frequency while in (Ponte and Croft 1998) the

back-off is a scaled version of the term’s mean probability of occurrence in documents

that contain the term. We also automatically estimate the mixture model parameters

dynamically (for each query Q) to maximize the likelihood of the query given a set of top

scoring documents {Di} from the current document collection. This is done by using an

iterative process starting with initial estimates of the mixture model parameters. This

approach is in contrast to the standard approach of determining static, query-independent,

mixture model parameter values by empirically tuning on an old development set. In

addition, we attempt to deal with unobserved query terms in a more principled way by

using Good-Turing techniques to smooth the underlying probability models. Finally, we

develop a new automatic relevance feedback strategy that is specific to our probabilistic

model (See Section 6.2.2). The procedure automatically creates a new query (based on the
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original query and a set of top-ranked documents from a preliminary retrieval pass) that

optimizes a well-specified objective function. In particular, the term selection and the term

weight estimation procedures are designed to maximize the likelihood ratio scores of the set

of documents presumed to be relevant to the query. Hopefully, improving these scores will

lead to improved retrieval performance.

6.2 Information Retrieval Model

Given a collection of n documents, {Di}n
i=1, each document Di has a prior likelihood given

by p(Di). After a query Q is specified by a user, the likelihood of each document changes

and becomes that given by the conditional probability: p(Di|Q). Some documents will

become more likely after the query is specified while others will either remain the same or

become less likely. The documents that become more likely are probably more useful to

the user and should score better and be ranked ahead of those that either stay the same

or become less likely. As a result, we propose to use the relative change in the document

likelihoods, expressed as the likelihood ratio of the conditional and the prior probabilities,

as the metric for scoring and ranking the documents in response to query Q:

S(Di, Q) =
p(Di|Q)
p(Di)

(6.1)

We illustrate the idea with a simple example. Suppose we have two documents in our

collection: D1 ={blue house} and D2 ={magenta house}. If we use a simple unigram

language model for general English, Λ, to compute the document likelihoods, document D1

will be more likely than D2, p(D1 | Λ) > p(D2 | Λ), because the word “blue” occurs more

frequently than “magenta”: p(blue | Λ) > p(magenta | Λ). After a query is specified, the

language model is modified to reflect the contents of the query and becomes Λ′. For example

if the specified query is Q ={magenta}, the general English model will be modified to make

the word “magenta” more likely: p(magenta | Λ′) > p(magenta | Λ). In the new language

model, the probability of the word “blue” will either remain the same or decrease depending

on how Λ is transformed to Λ′: p(blue | Λ′) ≤ p(blue | Λ). As a result, p(D2 | Λ′) > p(D2 | Λ)

and p(D1 | Λ′) ≤ p(D1 | Λ) which means D2 will have a higher score than D1 as a result of
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specifying the query: S(D2, Q) > S(D1, Q).

We can decompose the likelihood ratio score in Equation 6.1 into more easily estimated

components using Bayes’ rule, rewriting it as follows:

S(Di, Q) =
p(Q|Di) p(Di)/p(Q)

p(Di)
=

p(Q|Di)
p(Q)

(6.2)

where p(Q|Di) is the probability of query Q given document Di and p(Q) is the prior

probability of query Q. Each document Di specifies a different language model Λi. We

can view p(Q|Di) as the probability that query Q is generated by Λi, the language model

associated with document Di. This means that our goal during the retrieval process is to

find those documents in the collection that maximize the likelihood of the query. These

documents should be the ones that are most useful to the user who specified query Q.

The p(Q) term represents the probability that query Q is generated from a document

independent (general) language model Λ, and serves as a normalization factor. Since p(Q)

is constant for all documents Di given a specific query Q, it does not affect the ranking

of the documents and can be safely removed from the scoring function. However, this

p(Q) normalization factor is useful if we want a meaningful interpretation of the scores

(as a relative change in the likelihood) and if we want to be able to compare scores across

different queries. In Section 6.3.2, we illustrate the usefulness of p(Q) for these purposes.

In addition, the p(Q) normalization factor is an important part of the automatic feedback

extension to the basic model as we will see in Section 6.2.2. For these reasons, we will keep

the p(Q) term in the scoring function in (6.2).

6.2.1 Retrieval Model Details

In order to compute the score in (6.2), we need to be able to estimate the quantities

p(Q|Di) and p(Q). To do this, we make the assumption that the query Q is drawn from

a multinomial distribution over the set of possible terms in the corpus and document Di

specifies the parameters of the multinomial model. This gives us the following estimates for
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p(Q|Di) and p(Q):

p(Q|Di) =
n!∏k

t=1 ct!

k∏
t=1

p(t|Di)ct (6.3)

p(Q) =
n!∏k

t=1 ct!

k∏
t=1

p(t)ct (6.4)

where ct is the number of times term t occurs in query Q, k is the number of distinct terms

in the corpus, n =
∑k

t=1 ct is the total number of terms in query Q, p(t|Di) is the probability

of query term t occurring in document Di with the constraint
∑k

t=1 p(t|Di) = 1, and p(t)

is the probability of query term t occurring in the document collection with the constraint∑k
t=1 p(t) = 1. Substituting (6.3) and (6.4) into (6.2) and simplifying (noting that ct! = 1

for ct = 0), we have:

S(Di, Q) =
k∏

t=1

(
p(t|Di)

p(t)

)ct

(6.5)

Since x0 = 1 for all x, the product over all k terms can be replaced by a product over only

the terms that occur in the query:

S(Di, Q) =
∏
t∈Q

(
p(t|Di)

p(t)

)ct

(6.6)

To simplify computation and to prevent numerical underflows, we perform the score com-

putation in the log domain:

Sl(Di, Q) = log S(Di, Q) =
∑
t∈Q

ct log
(

p(t|Di)
p(t)

)
(6.7)

We note that since the logarithm is a monotonic transformation, the rank ordering of the

documents using the log score remains the same as that using the original score.

In the original multinomial model, ct is the number of times term t occurs in query Q

and can only take on integral values: ct = 0, 1, . . . , n. We would like to generalize ct so that

it can take on non-negative real values. This will allow more flexible weighting of the query

terms including the use of fractional counts which will be useful in our automatic relevance

feedback extension (Section 6.2.2) and query section weighting (Section 6.3.5). To indicate
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this generalization in the scoring function, we replace ct in (6.7) with q(t), which can be

interpreted as the weight of term t in query Q:

Sl(Di, Q) =
∑
t∈Q

q(t) log
(

p(t|Di)
p(t)

)
(6.8)

This generalization does not affect the ranking of the documents since it is equivalent to

adding a query-dependent constant multiplicative factor, 1/n, to the score in (6.7) to convert

the ct counts to the q(t) numbers. In fact, we can interpret q(t) as p(t|Q), the probability

of term t occurring in query Q, if q(t) = ct/n where n =
∑

t ct.

We note that the scoring function in (6.8) can be related to the Kullback-Leibler dis-

tance (Cover and Thomas 1991), which is an information theoretic measure of the divergence

of two probability distributions p1(x) and p2(x) given by:

KL(p1(x), p2(x)) = −
∑
x

p2(x) log
(

p1(x)
p2(x)

)
(6.9)

To show this relationship, we start by rewriting (6.8) as follows:

Sl(Di, Q) =
∑
t∈Q

q(t) log p(t|Di) −
∑
t∈Q

q(t) log p(t) (6.10)

Next, we add in and subtract out
∑

t∈Q q(t) log q(t) and rearrange terms to get:

Sl(Di, Q) = (6.11)
∑

t∈Q

q(t) log p(t|Di) −
∑
t∈Q

q(t) log q(t)


−


∑

t∈Q

q(t) log p(t) −
∑
t∈Q

q(t) log q(t)




Finally, we collapse the terms in the parentheses to obtain:

Sl(Di, Q) =
∑
t∈Q

q(t) log
(

p(t|Di)
q(t)

)
︸ ︷︷ ︸

−KL(q(t),p(t|Di))

−
∑
t∈Q

q(t) log
(

p(t)
q(t)

)
︸ ︷︷ ︸

+KL(q(t),p(t))

(6.12)

Recall that q(t) can be interpreted as p(t|Q), the probability of term t in query Q, p(t|Di)

is the probability of term t in document Di, and p(t) is the probability of term t in the
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general language (i.e., using a document-independent model). The first term in (6.12) is the

(negative) KL divergence between the term distribution of query Q and document Di. If

the two term distributions are identical, then the divergence will be zero. As the difference

between the query and document distributions becomes greater, the divergence increases,

and the score decreases (because of the negative sign on the term). The second term is

the KL divergence between the term distribution of query Q and a general document-

independent model. Since this term doesn’t depend on the document, it has no effect on

the rankings of the retrieved documents; it only serves as a bias or normalization factor. It

is query-dependent and only comes into play if we compare scores across different queries.

We also note that the scoring function in (6.8) has the form of the standard vector

space model. It consists of the sum over all terms t in the query of the product of a

query dependent factor, q(t), and a document dependent factor, log
(

p(t|Di)
p(t)

)
. It turns

out that many probabilistic models can be expressed in the standard vector space model

format (Crestani et al. 1998; Hiemstra and Kraaij 1998; Salton and McGill 1983). The

models differ in what the query and document factors are and how they are estimated.

Next, we need to estimate the probabilities p(t|Di) and p(t). We start by considering

their maximum likelihood (ML) estimates which are given by:

pml(t|Di) =
di(t)∑k

t=1 di(t)
(6.13)

pml(t) =
∑n

i=1 di(t)∑n
i=1

∑k
t=1 di(t)

(6.14)

where di(t) is the number of occurrences of term t in document Di, k is the number of

distinct terms in the corpus, and n is the number of documents in the collection.

With a large document collection, there is enough data for pml(t) to be robustly esti-

mated. However, this ML estimate will assign a probability of zero to terms that do not

occur in the document collection. To avoid this undesirable property, we can use Good-

Turing (GT) methods to estimate p(t) (Jelinek 1999). GT methods provide probability

estimates for both observed and unobserved terms with the constraint that the total proba-

bility of all terms must sum to one. For unobserved terms, GT methods provide an estimate

of the total probability of these terms. This total probability can then be divided among the
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possible unobserved terms to provide per term probability estimates. For observed terms,

GT methods provide probability estimates for these terms that are consistent with esti-

mating non-zero probabilities for the unobserved terms. This is done by reducing the total

probability of the observed terms to be less than one such that the sum of the probabilities

assigned to all terms, both observed and unobserved, equals one.

Good-Turing methods work as follows. If a certain term t occurs r times in the document

collection, the ML estimate of p(t) is given by:

pml(t) =
r

N
(6.15)

where N is the total number of terms observed in the document collection. With GT

estimation, the count r is replaced by a modified count r∗ which is calculated as:

r∗ = (r + 1)
Nr+1

Nr
(6.16)

where Nr is the number of terms that occurs exactly r times in the document collection.

As a result, the GT estimate of p(t) for observed terms is given by:

pgt(t) = pr =
r∗

N
(6.17)

where N =
∑

r rNr is the total number of terms observed in the document collection. The

GT estimate for the total probability of unobserved terms is given by:

p0 =
N1

N
(6.18)

This total probability is then divided equally among the possible unobserved terms to

provide per term probability estimates. Using the observed Nr values to calculate r∗ in

(6.16) can become problematic if Nr = 0 for some r. As a result, it is necessary to pre-

smooth Nr so that it never equals zero. There are many different possible smoothing

methods and each gives rise to a slightly different GT approach. We use the Simple Good-

Turing (SGT) approach described in (Gale and Sampson 1995). Basically Nr is linearly

smoothed (in the log domain) and a decision rule is used to decide when to switch from
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using the observed Nr values to the smoothed values. Details of the SGT method can be

found in (Gale and Sampson 1995).

Unlike the estimate for p(t), the quantity pml(t|Di) is likely to be poorly estimated

regardless of the size of the document collection because of the limited size of the individual

documents. Many of the terms in the model will have zero probability. There are many

different ways to compensate for this sparse data problem. One approach is to model the

term distributions using parametric distributions such as Beta and Dirichlet distributions.

A standard statistical language modeling approach, and the one we adopt, is to linearly

interpolate the more detailed pml(t|Di) model with a better estimated, but more general

model, for example, pgt(t) (Jelinek 1999):

p(t|Di) = α pml(t|Di) + (1 − α) pgt(t) (6.19)

where α is the mixture weight. The estimate-maximize (EM) algorithm (Dempster et al.

1977) is used to estimate α to maximize the (log) likelihood of query Q given document Di:

α∗ = arg max
α

log (p(Q|Di)) (6.20)

= arg max
α

∑
t∈Q

q(t) log (α pml(t|Di) + (1 − α) pgt(t)) (6.21)

In the above formulation, there is a different α for each document Di. To simplify the

model and to provide more data for parameter estimation, we can “tie” the α weight across

the documents so that there is only a single, document-independent, α for each query Q.

The following iterative procedure can then be used to estimate α:

1. Initialize α to a random estimate between 0 and 1.

2. Update α:

α′ =
1∑

t∈Q

∑
i∈IQ

q(t)

∑
t∈Q

∑
i∈IQ

q(t)
α pml(t|Di)

α pml(t|Di) + (1 − α) pgt(t)

3. If α has converged (i.e., |α′ − α| < δ for some small threshold δ) then stop.

Otherwise, set α = α′ and goto step 2.
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In this procedure, IQ contains the indices of the set of documents used to estimate α

for query Q. We need to decide which documents should be in this set. If we use all the

documents in the collection (i.e., IQ = {1, . . . , n}), the query terms will occur so seldomly

in the entire collection that α will almost always be set to zero. That would not be very

useful. What we want is a reasonable estimate of α for those documents that are likely

to be relevant to the query since they are the ones that we are interested in. Ideally,

we want the set of documents to be those that are relevant to query Q. However, since

this information is not available, we need to use an approximation. One approach is to

borrow the technique used in automatic relevance feedback (Salton and McGill 1983) (see

Section 6.2.2). Basically, we perform a preliminary retrieval run using an initial guess for α

(e.g., α = 0.5) and assume that the top M retrieved documents are relevant to the query.

These M top-scoring documents then become the set we use to estimate the α weight for

query Q. A typical value for the number of documents that we use is M = 5.

Using the approach described above, a separate α is estimated for each query Q. If

desired, one can pool the query terms across all the queries and estimate a single query-

independent α. It is important to note that the above procedure estimates the mixture

parameters dynamically using the current query and the current document collection. This

is in contrast to the standard approach of determining static, query-independent, model

parameter values by empirically tuning on an old development set which typically consists of

a different set of queries and potentially a different collection of documents. In Section 6.3.3,

we explore the effect of different estimated α values on retrieval performance and examine

query-specific and query-independent α’s.

In summary, the final metric used for scoring document Di in response to query Q

is obtained by substituting the estimates for p(t) and p(t|Di) (Equations 6.17 and 6.19,

respectively) into (6.8):

Sl(Di, Q) =
∑
t∈Q

q(t) log

(
α pml(t|Di) + (1 − α) pgt(t)

pgt(t)

)
(6.22)

117



6.2.2 Automatic Relevance Feedback

Automatic relevance feedback is a proven method for improving information retrieval per-

formance (Harman 1997). As we discussed before, the process works in three steps. First,

the original query is used to perform a preliminary retrieval run. Second, information from

these retrieved documents are used to automatically construct a new query. Third, the new

query is used to perform a second retrieval run to generate the final results. A commonly

used query reformulation strategy, the Rocchio algorithm (Salton and McGill 1983), starts

with the original query, Q, then adds terms found in the top Nt retrieved documents and

subtracts terms found in the bottom Nb retrieved documents to come up with a new query,

Q′. Modifying the query in this way adds new terms that occur in documents that are likely

to be relevant to the query and eliminates terms that occur in documents that are proba-

bly non-relevant. The goal is to improve the ability of the query to discriminate between

relevant and non-relevant documents.

We extend our basic retrieval model to include an automatic relevance feedback pro-

cessing stage by developing a new query reformulation algorithm that is specific to our

probabilistic model. Recall that in our retrieval model, we score document Di in response

to query Q using the likelihood ratio score (6.2):

S(Di, Q) =
p(Q|Di)

p(Q)
(6.23)

Since the documents are ranked based on descending values of this score, we can view the

goal of the automatic feedback procedure as trying to create a new query Q′ (based on the

original query Q and the documents retrieved from the preliminary retrieval pass) such that

the score using the new query is better than the score using the original query for those

documents Di that are relevant to the query:

p(Q′|Di)
p(Q′)

≥ p(Q|Di)
p(Q)

for i ∈ IQ (6.24)

Because IQ, the set of relevant documents for query Q, is not known, we use an approxi-

mation and assume that the top scoring documents from a preliminary retrieval run using
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the original query are relevant. There are many different ways to decide which of the top

scoring documents to select. One approach is to simply select a fixed number, M , of the

top scoring documents. One concern with this approach is that the selected documents

can have very disparate scores. There can be a big score difference between the first and

the M th document. Another approach is to use an absolute score threshold, θ, so only

documents with scores above θ are selected. With this approach, it is possible to not have

any documents that score above the threshold. A different approach, and the one we adopt,

is to use a relative score threshold, γ ≤ 1, so documents that score within a factor of γ of

the top scoring document are selected:

select Di if
S(Di, Q)

max
Di

S(Di, Q)
≤ γ (6.25)

This results in a variable number of documents for each query, but the selected documents

are guaranteed to have similar scores. A typical threshold value is γ = 0.75.

Since we want to improve the score for all the documents in the set IQ simultaneously,

we need to deal with the set of documents jointly. One way to do this is to create a new

joint document D′ by pooling together all the documents in the set IQ so the number of

occurrences of term t in the joint document D′ is given by:

d′(t) =
∑
i∈IQ

di(t) (6.26)

Another variation is to weight the contribution of each document, Di, by its preliminary

retrieval score, S(Di, Q), so documents that score better have more impact:

d′(t) =
∑
i∈IQ

S(Di, Q) di(t) (6.27)

Using this new joint document, D′, the inequality in (6.24) becomes:

p(Q′|D′)
p(Q′)

≥ p(Q|D′)
p(Q)

(6.28)

Substituting our models for the conditional and prior probabilities and working in the log
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domain (Equation 6.8), we have:

∑
t∈Q′

q′(t) log
(

p(t|D′)
p(t)

)
≥
∑
t∈Q

q(t) log
(

p(t|D′)
p(t)

)
(6.29)

Let us consider the creation of the new query Q′ in two steps. First, let us examine

which terms should be removed from the original query Q in order to improve the score.

Second, we can then examine which terms from the joint document D′ should be added to

the query to further improve the score.

Starting with the original query Q, we consider each query term t and determine whether

it should be included or excluded from the new query Q′. Since the query term weights q(t)

are constrained to be greater than zero, the only way that a query term t can decrease the

score is if p(t|D′)
p(t) < 1. Therefore, if we exclude such terms from the new query Q′ (while

keeping the term weights the same, i.e., q′(t) = q(t)), we can be assured that the inequality

in (6.29) is satisfied. This selection criteria makes intuitive sense since it basically states

that query terms that occur more frequently in the general collection than in the pooled

document D′ (which is created from assumed relevant documents) should not be used.

Next, we consider which terms from the joint document D′ should be included to the

query Q′ in order to further improve the score. Following the same arguments as those used

above, and noting that q′(t) > 0, we see that only terms t for which p(t|D′)
p(t) > 1 can increase

the score. As a result, we will only add those terms from D′ that satisfy this property.

Using this term selection criteria, we maintain the inequality in (6.29) with each newly

included term. Substituting the estimates for p(t) and p(t|Di) (Equations 6.17 and 6.19,

respectively), the term selection criteria becomes:

p(t|D′)
p(t)

> 1 (6.30)

α pml(t|D′) + (1 − α) pgt(t)
pgt(t)

> 1

α
pml(t|D′)

pgt(t)
+ (1 − α) > 1

pml(t|D′)
pgt(t)

> 1 (6.31)
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Therefore, we can equivalently use pml(t|D′)
pgt(t)

> 1 or log
(

pml(t|D′)
pgt(t)

)
> 0 to perform the term

selection.

The only issue that remains is the estimation of appropriate values for the weights q′(t)

of the newly included query terms. Since the value of the score can be increased arbitrarily

by using increasingly larger values of q′(t), we need to constrain the aggregate value of the

weights. One reasonable constraint is that the magnitude of the query weights be unity:

||Q′|| =
√∑

t∈Q′
q′(t)2 = 1 (6.32)

Adopting this constraint, we can use the technique of Lagrange multipliers (Bertsekas 1982)

to find the set of query term weights, {q′(t)}, that maximizes the score:

∑
t∈Q′

q′(t) log
(

p(t|D′)
p(t)

)
(6.33)

The corresponding Lagrangian function is given by:

 L(Q′, λ) =
∑
t∈Q′

q′(t) log
(

p(t|D′)
p(t)

)
+ λ


√∑

t∈Q′
q′(t)2 − 1


 (6.34)

Taking the partial derivative of (6.34) with respect to λ and setting it to zero, we get back

the constraint equation:

∂

∂λ
 L(Q′, λ) = 0 (6.35)√∑

t∈Q′
q′(t)2 = 1 (6.36)

Taking the partial derivative of (6.34) with respect to the query term weight q′(t) and

setting it to zero, we get

∂

∂q′(t)
 L(Q′, λ) = 0 (6.37)

log
(

p(t|D′)
p(t)

)
+ λ

q′(t)√∑
t∈Q′ q′(t)2

= 0 (6.38)
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Taking the second derivative, we get

∂2

∂q′(t)2
 L(Q′, λ) = λ

(
1 − q′(t)2

)
(6.39)

For the score to be maximized, we need this second derivative to be less than zero. Since

0 < q′(t) < 1, we must have λ < 0 in order for (6.39) to be negative.

Combining equations (6.36) and (6.38) and solving for q′(t), we get

q′(t) = − 1
λ

log
(

p(t|D′)
p(t)

)
(6.40)

Since we require λ < 0, we see that the appropriate query weights simply have to be

proportional to their score contribution:

q′(t) ∝ log
(

p(t|D′)
p(t)

)
(6.41)

This weighting scheme makes intuitive sense since we want to emphasize terms that con-

tribute more to the score. If desired, we can determine the exact value of the proportionality

factor by substituting (6.40) back into (6.36) and solving for λ. Doing this, we find that:

λ = −
√√√√∑

t∈Q′

(
log

(
p(t|D′)

p(t)

))2

(6.42)

Our description of the automatic relevance feedback procedure is now complete. We

have a procedure that automatically creates a new query Q′ based on the original query Q

and a set of top-ranked documents retrieved from a preliminary retrieval pass. The goal

of the procedure is to increase the likelihood ratio scores of the top-ranked documents by

removing certain terms from the original query and adding new terms from the top-ranked

documents with appropriate term weights. Hopefully, improving the scores will lead to

improved information retrieval performance.

In comparing our query reformulation process to the standard Rocchio algorithm, we

note the following similarities and differences. First, both methods add to the query new

terms that occur in the top scoring documents from the initial retrieval pass; the Rocchio
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algorithm adds all terms while in our approach, only terms that contribute positively to the

final score are added. Second, both approaches deemphasize certain terms in the original

query; in our approach, we remove terms that contribute negatively to the final score while

the Rocchio algorithm subtracts terms that occur in the poor scoring retrieved documents.

Third, both methods modify the weights of the terms in the new query; the Rocchio algo-

rithm weights the added and subtracted terms by their average weight in the documents

while in our approach, the terms in the new query are weighted by their likelihood ratio

scores.

We note that our automatic feedback procedure can significantly increase the number

of terms in the query since many of the terms in the joint document D′ will satisfy the

selection criteria (6.30). We can limit the number of additional terms by modifying this

term selection criteria so only terms with scores greater than some threshold φ ≥ 1 will be

included:

add term t if
p(t|D′)

p(t)
> φ (6.43)

The use of the threshold to restrict the number of terms with small score contributions is

similar in spirit to robust estimation techniques used in statistics that limit the effect of

outliers (Huber 1981). In Section 6.3.4, we examine the ability of the automatic relevance

feedback procedure to improve retrieval performance and explore the effects of limiting the

number of new query terms by increasing the value of φ in (6.43).

6.3 Information Retrieval Experiments

Our information retrieval model is evaluated on the TREC-6 and TREC-7 ad hoc text

retrieval tasks (Harman 1997; Harman 1998). Official evaluation results on the 1999 TREC-

8 ad hoc text retrieval task are also reported. The ad hoc task involves searching a static

set of documents using new queries and returning an ordered list of documents ranked

according to their relevance to the query. The retrieved documents are then evaluated

against relevance assessments created for each query.

The data sets for these three text retrieval tasks are described in Section 2.2. We

note that this data is different from the data used in previous chapters. Specifically, the
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documents are now text instead of speech and the size of the document collection is much

larger. Also, word-based indexing units are used in the query and document representations

instead of subword-based units. As we previously mentioned, one of the goals in this chapter

is to benchmark our probabilistic retrieval model on standard text retrieval tasks and to

perform a comparative evaluation of our model to other retrieval approaches. We also note

that the large size of the document collection makes the retrieval task in this chapter more

difficult than the one we have been using for spoken document retrieval. This is reflected

in the lower mean average precision (mAP) retrieval score.

In the following sections, we briefly mention the text preprocessing that was done, and

then present several retrieval experiments. In these experiments, we explore the usefulness

of the p(Q) normalization in the scoring, the effect of using different mixture weights in the

probability model, the use of the automatic relevance feedback processing, and section-based

weighting of the query terms.

6.3.1 Text Preprocessing

Before a document is indexed, it undergoes a relatively standard set of text preprocessing

steps. First, the text is normalized to remove non-alphanumeric characters like punctuation

and to collapse case. Next, sequences of individual characters are automatically grouped

to create single terms in an “automatic acronym aggregation” stage. For example, the

text string “U. S. A.” would be converted to “u s a” after normalization and then to

“usa” after acronym aggregation. Stop words, derived from a list of 600 words, are then

removed from the document. In addition to standard English function words, certain words

frequently used in past TREC topics such as “document,” “relevant,” and “irrelevant” are

also included in the list. Finally, the remaining words are conflated to collapse word vari-

ants using an implementation of Porter’s stemming algorithm (Porter 1980). To maintain

consistency, each topic description also undergoes the exact same text preprocessing steps

before it is indexed and used to retrieve documents from the collection.
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Figure 6-1: Distribution of scores for the relevant documents for topics 301-350 in the
TREC-6 task. The likelihood scores have a very wide distribution across queries while the
likelihood ratio scores are more tightly clustered.

6.3.2 p(Q) Normalization

As discussed in Section 6.2.1, the p(Q) normalization factor in the scoring function (6.2)

does not affect the ranking of the documents because it is constant for all documents Di

given a specific topic Q. However, we choose to keep this factor because it helps to provide a

meaningful interpretation of the scores as a relative change in the likelihood and allows the

document scores to be more comparable across different topics. In addition, as we’ve seen

in Section 6.2.2, the p(Q) normalization factor plays an important role in the term selection

and weighting stages of the automatic relevance feedback procedure (Equation 6.30).

To illustrate the difference between the (unnormalized) likelihood score (p(Q|Di)) and

the (normalized) likelihood ratio score (p(Q|Di)
p(Q) ), Figure 6-1 plots the distribution of these
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Figure 6-2: Precision-Recall curve and mean average precision (mAP) score on the TREC-6
ad hoc task using a mixture weight of α = 0.5. Both likelihood and likelihood ratio scoring
will give identical performance results since the document scores are not compared across
the different topics.

two scores for the subset of relevant documents for the 50 topics (topics 301-350) in the

TREC-6 task. The likelihood scores have a very wide distribution (relative to variance)

across queries while the likelihood ratio scores are more tightly clustered. Box plots are

used to indicate the score distributions. The center line in the box indicates the mean

value while the lower and upper edges of the box indicate, respectively, the lower and upper

quartiles. The vertical lines extending below and above the box show the entire range

of the scores. From Figure 6-1, we observe that the document likelihood scores can differ

drastically depending on the topic. Across topics, the scores for relevant documents may not

even overlap. The best score for some topics (e.g., 309 and 316) can be worse than the lowest

scores for other topics (e.g., 315 and 339). Scoring the documents using the likelihood ratio,

however, puts the scores for the different topics on a much more comparable range; there is

much more overlap across different topics. In addition, these scores can be interpreted as

how much more likely the document has become after the topic is specified than before.
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Figure 6-3: Precision-Recall curves resulting from using a single threshold across all topics
on the TREC-6 data. This evaluation technique measures the ability of the different scoring
methods to handle across topic comparisons.

In the computation of the standard information retrieval measures of recall, precision,

and mean average precision (mAP), each topic is treated independently. Precision-recall

curves are generated for each topic separately using individual thresholds. These separate

curves are then combined to create an aggregate precision-recall curve and the single number

mAP measure. Since document scores are not compared across the different topics in the

computation of these standard information retrieval measures, they will be identical for both

the likelihood and likelihood ratio scores. In Figure 6-2, we plot the resulting aggregate

precision-recall curve and mean average precision (mAP) measure on the TREC-6 ad hoc

task for the 50 topics (301-350). This is the baseline performance of our retrieval model

using the preliminary retrieval run and a fixed topic-independent mixture weight of α = 0.5.

A performance of mAP=0.273 is achieved.

There are certain related applications, however, such as document clustering and topic
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Figure 6-4: (A) Retrieval performance in mean average precision (mAP) on the TREC-6 ad
hoc task as a function of the value of the mixture weight α. (B) Scatter plot of mAP versus
the normalized average score of the top documents for each of the different α weights.

detection, where it is important to be able to compare document scores across different

“topics.” To quantify how much the likelihood ratio score can help in these situations, we

can generate a precision-recall curve that results from using a single threshold across all the

different topics. In this way, we can measure the ability of the different scoring methods to

handle across topic score comparisons. In Figure 6-3, we show such recall-precision curves

and the associated mAP measure for the 50 topics on the TREC-6 ad hoc data using three

different scoring methods. As expected, the raw likelihood score performs poorly when cross

topic score are compared. A normalized likelihood score (normalized by the number of the

terms in the topic) gives slightly better results. However, the likelihood ratio score, which

is not only normalized by the number of terms in the topic but also by the prior likelihoods

of the terms, gives even better performance.

6.3.3 Mixture Weights

In this section, we explore the effect of different α mixture weight estimates on retrieval

performance and examine topic-specific and topic-independent α’s.

To quantify the sensitivity of the model to the mixture weight α, we explore a range

of possible weight values and measure the resulting retrieval performance. In Figure 6-4A,
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Mixture Weight Estimate mAP
Fixed (α = 0.5) 0.273
Topic-Independent (α = 0.434) 0.275
Topic-Dependent (variable α) 0.278

Table 6-1: Retrieval performance in mean average precision (mAP) on the TREC-6 ad hoc
task using different estimates of the mixture weight α: a fixed value of α for all topics, an
automatically estimated topic-independent value of α, and automatically estimated topic-
dependent values of α.

we plot retrieval performance in mean average precision (mAP) on the TREC-6 ad hoc

task as a function of the value of the mixture weight α. We see that although retrieval

performance does vary with the value of α, there is a relatively large range of stable and

good performance.

A scatter plot of mAP versus the normalized average score of the top retrieved doc-

uments for each of the different α weights is shown in Figure 6-4B. The plot shows that

retrieval performance is well correlated (ρ = 0.96) with the document scores. This means

that we can use the document scores to find an appropriate value of α that can be expected

to give reasonably good retrieval performance. In fact, the automatic α parameter estima-

tion procedure that we described in Section 6.2.1 tries to maximize the likelihood of topic Q

given document Di, p(Q|Di), which is the numerator of the document score (6.2). Since the

denominator of the score, p(Q), remains unchanged, this is equivalent to maximizing the

entire document score. As shown in Table 6-1, running the preliminary retrieval pass using

a fixed weight of α = 0.5 results in a retrieval performance of mAP=0.273. Performance im-

proves slightly to mAP=0.275 when we use the automatically estimated topic-independent

weight of α = 0.434.

Since topic statements can be very different from one another, we can expect that using

the same α weight for every topic is probably suboptimal. This is indeed the case as

illustrated in Figure 6-5, which plots retrieval performance in average precision (AP) for

three different topics (327, 342, and 350) from the TREC-6 ad hoc task as a function of the

value of the mixture weight α. We see that the optimal value of α for each topic can be

very different. To address this issue, we can estimate topic-dependent α’s, as discussed in

129



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

Mixture Weight α

A
ve

ra
ge

 P
re

ci
si

on
 (

A
P

)

Topic 327
Topic 342
Topic 350

Figure 6-5: Retrieval performance in average precision (AP) for topics 327, 342, and 350
from the TREC-6 ad hoc task as a function of the value of the mixture weight α. Each
topic has a different optimal value of α.

Section 6.2.1. In Figure 6-6, we plot the distribution of the automatically estimated topic-

dependent α mixture weights for the 50 topics (301-350) in the TREC-6 task. Many of the

weights are centered around the topic-independent estimated value of α = 0.434 but there

are several topics that have weights at the extreme ends of the range. Using these topic-

dependent α mixture weights, retrieval performance is further improved to mAP=0.278 as

shown in the last row of Table 6-1.

6.3.4 Automatic Feedback

In this section, we evaluate the automatic relevance feedback procedure described in Sec-

tion 6.2.2 and examine its ability to improve retrieval performance.

Recall that during the feedback process, a new topic Q′ is created by removing certain

terms from the original topic Q and adding new terms (with appropriate term weights)

from the top scoring documents obtained from a preliminary retrieval run. The number of
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Figure 6-6: Distribution of the automatically estimated topic-dependent α mixture weights
for topics 301-350 in the TREC-6 task. The pooled α estimate is 0.434 while the average α
value is 0.432.

new terms added to Q′ can be controlled by changing the threshold φ in the term selection

criteria (6.43). Lowering the value of φ adds more terms. Note that new query terms are

added in order of decreasing contribution to the total score; terms that contribute most to

improving the score are added first.

Retrieval performance, measured in mean average precision (mAP), on the TREC-6 ad

hoc task as the number of terms in the new topic Q′ is varied is plotted in Figure 6-7.

The same information is presented in tabular form in Table 6-2. Running the preliminary

retrieval pass using the original topics, which average 27 unique terms each, gives a perfor-

mance measure of mAP=0.273. Using automatic feedback to modify the topic results in

significant performance improvements as illustrated in Figure 6-7 and Table 6-2. As more

terms are included in the new topic Q′, performance improves sharply, reaches a maximum

at around 250-300 terms, declines slightly, and then levels off. The retrieval performance

peaks at mAP=0.317 for approximately 243 terms.

It is interesting to note that performance is relatively stable over a wide range of topic
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Figure 6-7: Retrieval performance in mean average precision (mAP) on the TREC-6 ad hoc
task using the automatic feedback procedure as the number of terms in the new topic Q′

is varied. By lowering the threshold φ in the term selection criteria (6.43), more terms are
included in the new topic.

sizes spanning 200 to 700 terms. By significantly increasing the number of terms in the

topic, one may expect that the topic specification may become too broad and, as a result,

the retrieval performance will be adversely affected. However, this does not happen in our

case because the terms added to the new topic Q′ are weighted proportionally to their score

contribution as specified in (6.41). As a result, many of the additional terms will only have

a small effect on the total score.

In terms of determining an appropriate φ threshold to use, one possibility is to simply

set φ = 1.0 so all terms that contribute positively to the score will be included. This

corresponds to adding the maximum number of terms allowed by our procedure. Using this

threshold value on the TREC-6 ad hoc task, the average number of unique terms in the

new query Q′ grows to 724.2. However, from the behavior shown in Figure 6-7, the same

or even slightly better performance can be achieved by using many fewer terms. We find

empirically that a reasonable threshold to use is φ = 0.25×Smax(Di, Q), where Smax(Di, Q)
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Avg # Unique
Retrieval Pass Topic Terms mAP
Preliminary 27.0 0.278

57.9 0.284
81.8 0.304
124.8 0.312
194.6 0.314

Automatic 243.3 0.317
Feedback 305.2 0.316

384.6 0.315
481.0 0.313
595.6 0.314
697.5 0.314
724.2 0.314

Table 6-2: Retrieval performance in mean average precision (mAP) on the TREC-6 ad hoc
task using the automatic relevance feedback procedure as the number of terms in the new
topic Q′ is varied. This table corresponds to the plot in Figure 6-7.

is the score of the top retrieved document Di for topic Q. This relative threshold value puts

us in the stable performance region without adding too many terms to the new topic Q′.

We conclude that incorporating the automatic feedback processing stage into the re-

trieval system significantly improves retrieval performance. Large gains of 0.035 to 0.04 in

absolute mean average precision (from mAP=0.278 to 0.317) are obtained.

6.3.5 Topic Section Weighting

As described in Section 2.2, the queries or topics statements for the retrieval tasks consist

of three different sections: a title, a description, and a narrative. We can expect that

the different sections contain different amounts of useful information. To quantify how

useful each section is in finding the relevant documents for the topic, we can evaluate

the retrieval performance resulting from using each topic section individually. In Table 6-

3, we show retrieval performance in mean average precision (mAP) on the TREC-6 ad

hoc task using the different topic sections. We examine the use of the title, description,

and narrative sections individually, the title and description sections combined (T+D),

and all three sections together (T+D+N). Retrieval performance after the preliminary and
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Topic Avg # Unique mAP
Section Topic Terms Preliminary Feedback
Title (T) 2.5 0.225 0.230
Description (D) 8.8 0.178 0.221
Narrative (N) 21.7 0.218 0.253
T+D 9.5 0.247 0.296
T+D+N (All) 27.0 0.278 0.317

Table 6-3: Retrieval performance in mean average precision (mAP) on the TREC-6 ad hoc
task using different sections of the topics: title, description, and narrative individually, title
and description combined (T+D), and all three sections together (T+D+N). The second
column shows the average number of unique terms in each section. The third and fourth
columns show performance after the preliminary and feedback retrieval stages, respectively.

feedback retrieval stages are shown along with the average number of unique terms in each

topic section. We can make several observations. First, the different topic sections vary

greatly in their size. The title, description, and narrative sections average 2.5, 8.8, and

21.7 unique terms, respectively. Second, even though the title section contains the fewest

terms, its preliminary retrieval performance is better than that of the other two sections.

This implies that the terms from the title section are more useful than those from the other

sections. Third, using multiple topic sections results in better performance. Combining the

title and description (T+D) gives performance that is better than any of the individual

sections, and using all three (T+D+N) gives even better performance. Fourth, automatic

feedback improves performance in all cases but is more effective when there are more terms

in the topic statement. In particular, the gain for the title section is small compared to the

gains for the other sections.

In the above experiments, when we combined the different topic sections, we weighted

each section equally. This means that in the T+D+N case which combines all three sections,

the title section only contributes, on average, 2.5 terms to the combined topic while the

narrative section contributes 21.7 terms. From the performance of the individual topic

sections in Table 6-3, it is clear that the terms in the title section are more useful than

those in the narrative section. Maybe emphasizing terms from some sections (e.g., the title),

more than terms from other sections (e.g., the narrative) in the formation of the combined
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mAP
Topic Section Preliminary Feedback
T+D 0.247 0.296
T+D (weighted) 0.260 0.297
T+D+N 0.278 0.317
T+D+N (weighted) 0.303 0.325

Table 6-4: Retrieval performance in mean average precision (mAP) on the TREC-6 ad hoc
task with and without topic section weighting. Performance is shown for two different topic
configurations: title and description combined (T+D), and all three sections (title, descrip-
tion, and narrative) together (T+D+N). Performance after the preliminary and feedback
retrieval stages are shown.

topic will result in better performance than just equally weighting all the sections. This is

indeed the case. In (Miller et al. 1998), they found that weighting the topic terms based on

what section they are in improved retrieval performance. In (Robertson et al. 1998), the

output from several retrieval runs using the individual topic sections are combined to give

improved performance.

We can adopt a similar approach of weighting terms based on their topic section mem-

bership to try to further improve retrieval performance. One method is to weight the terms

from each topic section in proportion to the average score of the top documents retrieved

using that section. The idea is that topic sections that give higher document scores should

be emphasized more than those that give lower scores. We are basically using the document

score as a predictor of retrieval performance which is consistent with our retrieval model

which ranks documents based on descending values of the document scores. Because the

scores are normalized (likelihood ratios), we are able to compare them across different topic

statements (consisting of different topic sections) to determine which topic formulation is

better. Basically, we run three retrieval passes using the title, description, and narrative

sections individually, compute the average score of the top retrieved documents from each

run, and then use those scores in weighting the terms from the different topic sections.

The process used to select the set of top scoring documents is the same as the one used

in the automatic feedback procedure (6.25). For each new task, this procedure is used to

automatically determine the appropriate section weights. Using this topic section weighting
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scheme on the TREC-6 ad hoc task, we get section weights of 4.2 for the title, 1.8 for the

description, and 1.0 for the narrative. This weighting emphasizes the title section the most,

then the description section, and finally the narrative section.

Weighting the topic sections in this way results in a small but consistent performance

improvement over weighting each section equally, as shown in Table 6-4. Retrieval perfor-

mance in mean average precision (mAP) on the TREC-6 ad hoc task with and without topic

section weighting is shown for two different topic configurations: title and description com-

bined (T+D), and all three sections (title, description, and narrative) together (T+D+N).

The effect of the topic section weighting is greater on the preliminary retrieval pass than

on the automatic feedback pass. Recall that the feedback process already includes term

selection and term weighting. As a result, some of the gains from the section weighting may

already be accounted for in the feedback processing.

6.4 Information Retrieval Performance

All of the above experiments were conducted on the TREC-6 ad hoc text retrieval task.

These development experiments were used to configure the system and to tune some system

parameters. Specifically, the final retrieval system has the following configuration:

• Dynamic (for each query) and automatic estimation of the mixture parameter α using

the procedure described in Section 6.2.1 with the following parameter: M=5.

• Use of the second pass automatic relevance feedback procedure described in Sec-

tion 6.2.2 with the following parameters: γ=0.75 (Equation 6.25) and φ = 0.25 ×
Smax(Di, Q) (Equation 6.43), where Smax(Di, Q) is the score of the top retrieved doc-

ument Di for topic Q.

• Use of the query section weighting procedure described in Section 6.3.5 with the

following parameter: γ=0.75 (Equation 6.25). The section weights are automatically

determined for each new set of test queries.

Now that the system configuration is set, we need to evaluate the performance of the final

retrieval system on a new set of held-out test data. We use the TREC-7 and TREC-8 ad

hoc retrieval tasks, described in Section 2.2 for this purpose.
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Figure 6-8: Precision-Recall curves for the TREC-6 ad hoc task. Performance for the top
5 systems (out of 57) that participated in the official TREC-6 ad hoc task are shown. Also
plotted is the precision-recall curve corresponding to our retrieval model.

6.4.1 Retrieval Performance on the Development Set

We first review the performance of the retrieval system on the TREC-6 ad hoc text retrieval

task. Figure 6-8 plots the precision-recall curves for the top 5 systems (out of 57) that

participated in the official TREC-6 ad hoc retrieval task (Harman 1997). Also plotted

is the precision-recall curve corresponding to our retrieval model. Our system achieves a

mAP=0.325 which is significantly better than the other systems (the top official system

had a mAP=0.260). This performance comparison is, of course, unfair since we used this

data as our development set to tune system parameters. As a result, the performance will

be unrealistically high. In the next two sections, we objectively evaluate the performance

of our retrieval system using new held-out test data: the TREC-7 and TREC-8 ad hoc

retrieval tasks.
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mAP
Topic Section Preliminary Feedback
T+D 0.212 0.243
T+D+N 0.250 0.284

Table 6-5: Retrieval performance in mean average precision (mAP) on the TREC-7 ad
hoc task using different topic specifications: title and description combined (T+D), and all
three sections together (T+D+N). Performance for the preliminary and automatic feedback
retrieval stages are shown.

6.4.2 Retrieval Performance on the Test Set

In Table 6-5, we show the performance (in mAP) of our system on the TREC-7 ad hoc task.

Retrieval is done using two types of topics: one consisting of the title and description sections

only (T+D) and the other consisting of all three (title, description, and narrative) sections

(T+D+N). Performance is shown for the preliminary retrieval pass and the automatic

feedback pass. We observe that automatic feedback significantly improves performance

for all conditions and that using longer topic statements is better. Figure 6-9 plots the

precision-recall curves for the top 5 systems (out of 36) that participated in the official

TREC-7 ad hoc retrieval task using the full topic description (T+D+N) (Harman 1998).

Also plotted is the precision-recall curve corresponding to our retrieval model. Our system

achieves a mAP=0.284 which ranks third on the list behind the two top systems which both

had a mAP=0.296. The fourth ranked system had a mAP=0.282. On this task, we see that

our system is very competitive with current state-of-the-art retrieval systems.

6.4.3 Retrieval Performance on the Evaluation Set

We participated in the 1999 TREC-8 ad hoc text retrieval evaluation (Harman 1999). Per-

formance on the official TREC-8 ad hoc task using our probabilistic retrieval model is

shown in Figure 6-10. Two retrieval runs were submitted: one consisting of the title and

description sections only (T+D) and the other consisting of all three (title, description, and

narrative) sections (T+D+N). A performance of mAP=0.298 is achieved using the shorter

topics while the full topics gave a mAP=0.323. Out of the 55 participating systems that

used the short topic description, our system ranked sixth behind systems that had mAPs
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Figure 6-9: Precision-Recall curves for the TREC-7 ad hoc task. Performance for the top 5
systems (out of 36) that participated in the official TREC-7 ad hoc task using the full topic
description (T+D+N) are shown. Also plotted is the precision-recall curve corresponding
to our retrieval model.

of 0.321, 0.317, 0.317, 0.306, and 0.301. Out of the 37 participating systems that used the

entire topic description, our system ranked fourth behind systems that had mAPs of 0.330,

0.324, and 0.324. Difference in mAP from the median performance for each of the 50 topics

for the full topic run (T+D+N) are shown in Figure 6-11. Of the 50 topics, 40 scored at or

above the median level and seven achieved the maximum score. On this task, we again see

that our retrieval model is very competitive with current state-of-the-art retrieval systems.

6.5 Summary

In this chapter, we presented a novel probabilistic information retrieval model and demon-

strated its capability to achieve state-of-the-art performance on large standardized text

collections. The retrieval model scores documents based on the relative change in the doc-

ument likelihoods, expressed as the ratio of the conditional probability of the document

given the query and the prior probability of the document before the query is specified.
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Figure 6-10: Precision-Recall curves for the TREC-8 ad hoc task. Performance using topics
consisting of title and description (T+D), and full topics consisting of the title, description,
and narrative sections (T+D+N) are shown.

Statistical language modeling techniques are used to compute the document likelihoods

and the model parameters are estimated automatically and dynamically for each query to

optimize well-specified maximum likelihood objective functions. An automatic relevance

feedback strategy that is specific to the probabilistic model was also developed. The proce-

dure automatically creates a new query (based on the original query and a set of top-ranked

documents from a preliminary retrieval pass) by selecting and weighting query terms so as

to maximize the likelihood ratio scores of the set of documents presumed to be relevant to

the query. To benchmark the performance of the new retrieval model, we used the standard

ad hoc text retrieval tasks from the TREC-6 and TREC-7 text retrieval conferences. Offi-

cial evaluation results on the 1999 TREC-8 ad hoc text retrieval task were also reported.

Experimental results indicated that the model is able to achieve performance that is com-

petitive with current state-of-the-art retrieval approaches. In the next chapter, Chapter 7,

this retrieval model is used to implement a more integrated approach to spoken document

retrieval.
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Figure 6-11: Difference (in mean average precision) from the median for each of the 50 topics
in the TREC-8 ad hoc task. Full topics consisting of the title, description, and narrative
sections are used.
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Chapter 7

Integrated Speech Recognition and

Information Retrieval

In Chapter 5, we explored a number of methods that take into account the characteristics

of the speech recognition errors and try to compensate for them. These methods try to

incorporate the error information into the indexing and retrieval process while maintaining

the existing framework of the traditional vector space retrieval model. This is accomplished

by making slight modifications to various components of the vector space model. In par-

ticular, near-miss terms generated using the recognition error confusion matrix and terms

determined by automatic relevance feedback are added to the system by appropriately ex-

panding the query vector. Similarly, information about likely alternative (N -best) speech

recognition hypotheses are incorporated into the system by adding additional terms to the

document vector. Also, approximate term matching capability is added to the model by

modifying the scoring function used to compute the similarity between the document and

query vectors. As indicated in Equation 5.3, the change is relatively straightforward and

only involves the addition of a new factor that measures the similarity between query and

document terms when they are not identical; the rest of the score remains the same.

In addition to operating within the framework of the traditional retrieval model, these

methods also try to maintain the architecture of having a cascade of independently operating

speech recognition and information retrieval components. This cascade approach has the
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advantage of being modular in that different speech recognizers and retrieval models can

be easily combined. However, there are some shortcomings. First, there is an input-output

mismatch between the two components. The speech recognizer outputs errorful recognition

hypotheses while the retrieval model expects error-free text representations of the documents

as input. In Section 4.3, we saw that ignoring this mismatch results in a significant drop

in retrieval performance. We investigated, in Chapter 5, several ways to try to compensate

for the errors and were able to achieve some performance improvements.

Second, the two components have decoupled objectives. The two systems were origi-

nally designed to solve different problems and therefore have different objectives and make

different assumptions. There is no guarantee that the goals of the two components will

be consistent with each other or with the overall goal of the combined system. One issue

is that speech recognizers are usually designed to output the most likely symbol sequence

(i.e., string of words or phones depending on the vocabulary) corresponding to a given set

of acoustic observations. High scoring alternative recognition hypotheses are typically not

accounted for. The availability of additional hypotheses may not be important for pure

speech recognition purposes. However, it could be useful for information retrieval since it

offers the potential of including terms that would otherwise be missed. Another issue is that

recognizers are usually trained to try to minimize the error rate of the most likely symbol

sequence. Although retrieval performance is correlated with recognition performance (as we

saw in Section 4.4), it is not clear that minimizing the error rate is the best thing to do for

retrieval purposes. One reason is related to the point mentioned above: error rate is only

computed using the single best recognition hypothesis; likely alternatives are not consid-

ered. Another reason is that all symbols are treated equally in computing the recognition

error rate. This means that in a word based system, for example, function words are just

as important as content words. In information retrieval, all words are not created equal. In

fact, the removal of commonly occurring function words (“stop words”) has generally been

shown to improve retrieval performance (Salton and McGill 1983).

Text-based retrieval systems are usually designed to index a collection of text documents

and to perform term matching to find relevant documents in response to user-specified

queries. Because the retrieval model is originally developed for use on text document col-
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lections where the words are assumed to be known with certainty, there is no explicit mech-

anism for dealing with errors in the document representations. With spoken documents, the

speech recognizer output will likely contain errors and the need for error tolerant retrieval

methods will be more important. Also, conventional text retrieval models generally do not

make use of additional information that can be generated from the recognizer such as like-

lihood and confidence scores. These scores can be used to weight our belief in the accuracy

of different recognition hypotheses which is important when we are dealing with errorful

transcriptions. This type of information should be useful for spoken document retrieval.

In this chapter, we propose a different approach to spoken document retrieval where

the speech recognition and information retrieval components are more tightly integrated.

This new approach represents a step towards moving away from the conventional method of

simply cascading the two components: using the speech recognizer to transform the speech

into text transcriptions and then feeding those directly into a full-text retrieval system. We

do this by developing new recognizer and retrieval models where the interface between the

two components is better matched and the goals of the two components are consistent with

the overall goal of the combined system.

First, we need a retrieval model that makes direct use of information that can be com-

puted by the speech recognizer. For this, we use the novel probabilistic information retrieval

model described in Chapter 6. Recall that the model scores documents based on the rela-

tive change in the document likelihoods, expressed as the likelihood ratio of the conditional

probability of the document given the query and the prior probability of the document

before the query is specified. The idea is that documents that become more likely after

the query is specified are probably more useful to the user and should score better and be

ranked ahead of those documents whose likelihoods either stay the same or decrease. The

document likelihoods are computed using statistical language modeling techniques which

eventually make use of the probabilistic quantity p(t|Di), the probability that term t occurs

in spoken document Di. It is this quantity that will serve as the interface between the two

components.

Second, we need to have a speech recognizer that can estimate and output these p(t|Di)

probabilities given the speech waveform for spoken document Di. To do this, we modify the
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objective of the speech recognizer to compute these term occurrence probabilities instead

of finding the most likely symbol sequence given the acoustic observations. In this way,

the interfaces of the speech recognition and retrieval components are now better matched:

the recognizer outputs term occurrence probabilities which the retrieval model expects as

input. In addition, the goals of the two components are now consistent with the overall goal

of the combined system. The goal of the total system is, of course, to automatically index

and retrieve spoken documents. This is consistent with the goal of the retrieval component.

The retrieval model makes use of probabilistic quantities that need to be estimated from

the spoken documents. This is what the modified speech recognizer now does. Thus the

goal of the recognizer is now consistent with the retrieval component and with the goal of

the overall system.

In the following sections, we describe the integrated SDR approach in detail and present

some experimental results. First, we describe some related work on the use of additional

information from the speech recognizer such as likelihoods and confidence measures for

spoken document retrieval and topic classification of speech messages. Next, we describe

several ways to compute the desired term probabilities including modifying the speech

recognizer to enable it to output the occurrence probabilities directly. Finally, we evaluate

the performance of the integrated approach and compare it to the performance of the robust

methods developed in Chapter 5. We find that the integrated approach performs better

than the robust methods and is able to improve retrieval performance by over 28% from

the baseline.

In the experiments presented in this chapter, we again use phonetic subword units

which are overlapping, fixed-length, phone sequences ranging from n=2 to n=6 in length

with a phone inventory of 41 classes. These phonetic n-gram subword units, as described in

Section 3.2.1, are derived by successively concatenating the appropriate number of phones

from the phonetic transcriptions.
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7.1 Related Work

In (Siegler et al. 1998; Siegler et al. 1997), the use of word confidence scores and word

occurrence probabilities for spoken document retrieval are investigated. In (Siegler et al.

1997), confidence annotations are used to estimate the correctness of each word in the most

likely word sequence hypothesized by a large vocabulary speech recognizer. The confidence

scores are computed using a decision tree classifier with the following features: acoustic score

from the recognizer, trigram language model score from the recognizer, word duration, and

N -best homogeneity (proportion of the N hypotheses in which the word appears). The

confidence scores are incorporated into the retrieval model (a standard vector space IR

model using TF×IDF weights) by computing expected term frequency (ETF) and expected

inverse document frequency (EIDF) in place of the normal TF and IDF values. The ETF

for a word is computed by summing the probability of correctness (confidence score) over all

occurrences of the word. The EIDF for a word is computed by summing over all documents

the probability that the word occurs in each document and then dividing by the total

number of documents. Retrieval experiments on the TREC-6 SDR task (Garofolo et al.

1997) show that if the confidence annotations are accurate, retrieval performance can be

significantly improved. However, using actual confidence estimates resulted in only small

performance gains.

In (Siegler et al. 1998), occurrence probability estimates are computed for each word

in the most likely word sequence hypothesized by the large vocabulary speech recognizer.

These word probabilities are estimated from the word lattices created during the recogni-

tion search. Specifically, the word probability is a function of the number of competing

word hypotheses in the lattice that have overlapping times (i.e., the lattice occupation den-

sity). The larger the number of alternative word hypotheses, the less certain we are about

the occurrence of that word. A standard vector space IR model using TF×IDF weights

is used for retrieval but the weighting is reinterpreted in a probabilistic light to allow the

word probability estimates to be directly incorporated into the retrieval model. In partic-

ular, they generalize the TF weights to allow non-integral word counts (expressed as word

probabilities) and show that the IDF weight can be viewed as variant of mutual informa-

tion (which makes use of word probabilities). Retrieval experiments on the TREC-7 SDR
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task (Garofolo et al. 1998) show that using word probabilities can help improve retrieval

performance. It should be noted that in both of these approaches only the words in the

most likely (top one) recognition hypothesis are annotated with either confidence scores or

occurrence probabilities; additional word hypotheses are not proposed or scored.

In (McDonough et al. 1994), word occurrence probabilities computed by an HMM-based

word spotting system are used to perform topic classification of speech messages. The word

spotting system processes each speech message and outputs keyword hypotheses with an

associated posterior probability of occurrence score. This p(w, t) score estimates the prob-

ability that keyword w ended at time t, and is computed using the Baum-Welch algorithm

during the recognition search (Rohlicek et al. 1989). An expected number of occurrences

for each keyword is obtained by summing up the posterior probability score associated with

each putative keyword occurrence in the message. A feature vector consisting of the ex-

pected number of occurrences for each keyword is formed and then used as input to a topic

classifier which is based on a multinomial model of the keyword occurrences. This feature

vector is compared to a recognizer-based feature vector where each component contains the

number of times the corresponding keyword appears in the most likely (top one) recogni-

tion hypothesis. Topic classification experiments on the Switchboard corpus (Godfrey et al.

1992) show that using word occurrence probabilities can improve performance: classification

is better for the wordspotting-based feature vector than the recognizer-based one.

7.2 Computing Term Occurrence Probabilities

In this section, we describe several methods for estimating p(t|Di), the probability that

term t occurs in spoken document Di. This includes using the top one recognition hypoth-

esis, using the N -best recognition hypotheses, using an expanded term set approach, and

modifying the recognizer to compute the term occurrence probabilities directly. These term

occurrence probabilities are used directly by the probabilistic retrieval model.

The simplest approach is to just use the top one recognition hypothesis. In this case,

the phonetic recognizer outputs the most likely phone sequence for each document. The

appropriate phonetic subword unit indexing terms are generated from the phonetic tran-
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scription. And the term counts in each document are used to estimate the term occurrence

probabilities:

p1(t|Di) =
ci(t)∑
τ ci(τ)

(7.1)

where ci(t) is the number of times term t occurs in document Di.

A potentially better estimate of the term occurrence probabilities may be obtained

by including additional recognition hypotheses. This can be done by using the N -best

recognition hypotheses, instead of just the top one hypothesis. In this case, the phonetic

recognizer outputs the top N=100 phone sequences for each document. For each of the N

hypothesized phonetic transcriptions, the appropriate phonetic subword unit indexing terms

are generated. The term counts in this “expanded” document are then used to estimate

the term occurrence probabilities:

p2(t|Di) =
∑N

n=1 cn
i (t)∑N

n=1
∑

τ cn
i (τ)

(7.2)

where cn
i (t) is the number of times term t occurs in the nth transcription for document Di.

This probability estimate reflects the belief that if a term appears in many of the top N

hypotheses, it is more likely to have actually occurred than if it appears in only a few. We

note that in (7.1) and (7.2), a probability of zero is assigned to terms that are not observed.

Another way to estimate the term occurrence probability is to incorporate near-miss or

approximate match terms. This can be done by first expanding the term t to a larger set of

possible realizations of the term {t∗} and then summing, over all members of this expanded

set, the probability that t can be realized as t∗. The occurrence probability of term t in

document Di, p(t|Di), can therefore be computed according to:

p3(t|Di) =
∑
t∗

p(t, t∗ |Di) =
∑
t∗

p(t | t∗,Di) p(t∗|Di) (7.3)

where p(t | t∗,Di) is an appropriate measure of the probability that t can be realized as t∗

in document Di, and the summation is over all possible realizations, t∗, of term t. The

occurrence probability of term t∗, p(t∗|Di), can be estimated using either p1(t|Di) (7.1) or

p2(t|Di) (7.2) described above. In addition to errors in the document transcriptions, this
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approach also enables us to deal with the use of synonyms (in a word based system, for

example) in a principled way by summing over an appropriately expanded set of possible

equivalents, t∗, for each original term, t. We note that this “expanded term set” approach is

very similar to the approximate matching procedure described in Section 5.3. In fact, we use

the same method for estimating p(t | t∗,Di) as we did for estimating p(i | j) (Equations 5.5

and 5.6) in Section 5.3. Recall that p(i | j) is the conditional probability that the term

is really i given that we observe term j in the noisy document, and it is estimated using

information about the error characteristics of the speech recognizer (i.e., the recognition

error confusion matrix). As in Section 5.3, thresholds can be placed on p(t | t∗,Di) to limit

the size of the expanded term set. For the experiments in this chapter, we use a relatively

small threshold value of 1e-5 to allow a large term set.

Finally, we can modify the speech recognizer so that it can output the p4(t|Di) proba-

bilities directly. This can be accomplished by changing the objective of the recognizer to

compute occurrence probabilities of the indexing terms given the acoustic observations of

the spoken documents instead of finding the most likely phone sequence. We first review

what is done in the standard phonetic recognizer. Let A be a sequence of acoustic obser-

vations, W be a sequence of phonetic units, and S be a sequence of speech segments. The

conventional phonetic recognizer finds the most likely phone sequence by searching for the

W ∗ = {w1, w2, . . . , wN} that has the highest probability p(W |A):

W ∗ = arg max
W

p(W |A) = arg max
W

∑
S

p(W,S|A) (7.4)

= arg max
W

∑
S

p(A|W,S) p(S|W ) p(W )
p(A)

(7.5)

The summation is over all possible segmentations S of the speech utterance for a particular

phonetic sequence W and gives the total probability of that phone sequence. However,

in the recognition search the sum is approximated with a maximization to simplify the

computation. The total probability of the phone sequence is therefore approximated by the

probability of the single sequence with the best segmentation:

W ∗ = arg max
W,S

p(A|W,S) p(S|W ) p(W )
p(A)

(7.6)
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The prior probability of the acoustics p(A) is constant for a given utterance and can be

safely ignored since it doesn’t affect the maximization. p(A|W,S) is the acoustic score

corresponding to the specified phone sequence and segmentation and is computed by the

acoustic models. p(S|W ) is the duration score and is modeled by a simple segment transition

weight that balances segment insertions and deletions. Finally, p(W ) is the language model

score and is computed by a statistical n-gram (typically bigram) language model.

The Viterbi search algorithm (Viterbi 1967; Forney 1973) is typically used to solve the

maximization problem described above. The search essentially finds the best path through

a lattice that connects lexical nodes (i.e., phone labels) across time. An example lattice for a

segment-based search is shown in Figure 7-1. The x-axis represents time and is marked with

possible segment boundaries. The y-axis represents a set of lexical nodes. A vertex in the

lattice represents a boundary between two phones. One possible path through the lattice

is illustrated by the solid line connecting a set of vertices across time. To find the optimal

path, the Viterbi search considers segment boundaries b in a time-synchronous manner. For

each node p at the current boundary, the active lexical nodes from the previous boundaries

are retrieved. A path from each of these active nodes is extended to the current node if

the path is allowed by the pronunciation network. For each extended path, the appropriate

acoustic, duration, and language model scores are computed and added to the path score

δb(p). Only the best arriving path to each node is kept (this is the maximization step). If

the scores from the arriving paths are summed, we have a Baum-Welch search (Rabiner

1989) instead of a Viterbi search. The Viterbi maximization is illustrated at node (b4, p3) in

Figure 7-1. There are five paths entering the node. The path with the best score, denoted

with the solid line, comes from node (b2, p1). As a result, only a pointer back to node

(b2, p1) is kept at node (b4, p3). When all the boundaries have been processed, the resulting

lattice contains the best path, along with its associated score, from the initial node at the

beginning of the lattice to every node in the lattice. To recover the overall best path, we

look for the node with the best score at the ending boundary (in this example, (b5, p2)) and

then perform a backtrace following the back-pointers stored at each node. The sequence

of phones along this best path (in this example, p4 p1 p3 p2) is the most likely phonetic

sequence hypothesized by the recognizer. To reduce computation and memory requirements,
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Figure 7-1: An example segment-based Viterbi search lattice. The x-axis represents time
and is marked with possible segment boundaries. The y-axis represents a set of lexical nodes
(phone labels). A vertex in the lattice represents a boundary between two phones. At each
node, only the best arriving path is kept. The search finds the most likely phone sequence
by finding the optimal path through the lattice.

beam pruning is usually done after each boundary has been processed. Paths that don’t

score within a fixed threshold of the maximum scoring path at the current boundary become

inactive and can no longer be extended to future boundaries.

Instead of the most likely phonetic sequence, we want the recognizer to output estimates

of the probability that indexing term t occurred in the given speech message Di, i.e., p(t|Di).

Ideally, we would like to compute this quantity by considering all possible phonetic sequences

W of the document Di, finding all occurrences of the term t in each sequence W , determining

the probability of each of these occurrences of t, summing these probabilities to get the

expected number of times term t occurred in the document, and then normalizing it by the

total number of term occurrences in the document to obtain p(t|Di).
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However, because we cannot consider the exponential number of possible sequences

W , we need to make some approximations. First, we limit the number of possible phone

sequences by considering only those retained in the phone lattice created by the Viterbi

recognition search. An example phone lattice is shown in Figure 7-2. The lattice is a

connected acyclical graph where each node corresponds to a phone hypothesis and has

associated with it a phone label p for the segment s, the start time bs(s) of the segment,

the end time be(s) of the segment, a score δbe(p) representing the likelihood of the best

path from the beginning of the utterance to the current phone (node), and links (arcs) to

possible following phones (nodes). The δ score is computed by the Viterbi search algorithm

described above. The x-axis represents time and is marked with possible segment boundary

times (b1, b2, b3, . . .). Boundaries are locations in time where the phonetic segments sj are

allowed to start and end. A second approximation is that instead of considering the term

occurrences on all phone sequences represented in the lattice (which is still a very large

number), we only consider term occurrences on the locally most likely phone sequences. For

each possible segment boundary, we consider all possible phones that can terminate at that

boundary. And for each phone, we find the term along the most likely phone sequence that

terminates at that phone. A third approximation is in the computation of the probability of

the term occurrence. We consider the likelihood score of the phone sequence corresponding

to the term occurrence and then normalize it estimate the term occurrence probability.

To generate the phonetic subword unit indexing terms and to estimate the associated

occurrence probabilities p(t|Di) we use the following procedure:

1. Create the set of possible indexing terms:

let n be the length of the phonetic subword units of interest

for each boundary bk in the speech message

for each segment sj that terminates at boundary bk

for each possible phonetic label pi for segment sj

let w[0, . . . , n] be the array of phone labels of length n + 1

corresponding to the phone sequence resulting from

a partial Viterbi backtrace starting from phonetic segment pi

let t = w[1, . . . , n] be the label of the subword unit indexing term

let be(t) be the ending boundary of term t
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let bs(t) be the start boundary of term t

let S(t) = exp(log δbe(t)(w[n]) − log δbs(t)(w[0])) be the score for term t.

store the tuple {t, be(t), bs(t), S(t)}
end

end

end

2. Estimate the occurrence probability p(t) of each term t in the set of tuples by appropriately

normalizing its score:

for each ending boundary bk in the set of tuples

for each term label t that has ending boundary bk

let c(t) += S(t)/
∑

τ S(τ)

end

end

for each term label t in the set of tuples

let p(t) = c(t)/
∑

τ c(τ)

end

We can illustrate the above procedure using the phone lattice in Figure 7-2. The first

step is to generate the set of possible indexing terms. This is done by running local back-

traces from all possible phonetic segments from all possible boundaries. For example, a

backtrace of length n=3 starting at boundary b5 and segment s5 with phone label p9 re-

sults in the following phone sequence: [p2, p3, p5, p9] (shaded in the figure) and the following

tuple: {p3 p5 p9, b2, b5, exp(log δb5(p9) − log δb2(p2))}. The δb5(p9) score corresponds to the

likelihood of the best path from the beginning of the utterance to segment s5 ending at

boundary b5 with phone label p9. This best path is equivalent to the best path from the

beginning of the utterance to segment s2 ending at boundary b2 with phone label p2 plus

the following path: (s3, p3) → (s4, p5) → (s5, p9). To determine a score corresponding just

to the indexing term of interest, i.e., the phone sequence p3 p5 p9, we can take the differ-

ence in the log scores between δb5(p9) and δb2(p2) and then exponentiate the result. In the

second step, the term scores are appropriately normalized to estimate the term occurrence

probability: p(t|Di). First, the scores are normalized over ending boundaries so that the

scores of all terms that end at a specified boundary bk sum to one. Next, the scores are nor-
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Figure 7-2: An example segment-based phone lattice. The x-axis represents time and is
marked with potential segment boundary locations. Each node corresponds to a phone
hypothesis and has associated with it a phone label p for the segment s, the start time bs(s)
of the segment, the end time be(s) of the segment, a score δbe(p) representing the likelihood
of the best path from the beginning of the utterance to the current phone (node), and links
(arcs) to possible following phones (nodes).

malized over all the terms that occur in the document to come up with the final occurrence

probability p4(t|Di) for term t.

7.3 Spoken Document Retrieval Experiments

In this section, we use the NPR corpus to evaluate the performance of the new probabilistic

retrieval model and the performance of the integrated spoken document retrieval approach.

First, we perform retrieval using the new probabilistic retrieval model and compare its

performance to that of the initial vector space retrieval model (Section 2.4) that we have

been using up until now. We then measure the retrieval performance of the integrated

approach as we evaluate the different methods discussed above for estimating the term
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Figure 7-3: Retrieval performance (in mAP) for different length (n = 2, . . . , 6) phonetic
subword units generated from clean phonetic transcriptions. Performance for three differ-
ent retrieval systems is shown: the baseline vector space retrieval model (base), the new
probabilistic retrieval model (ProbIR), and the probabilistic retrieval model with the second
stage automatic feedback (ProbIR+fdbk).

occurrence probabilities p(t|Di). We will also compare the performance of the integrated

approach to that of the robust methods described in Chapter 5.

Figure 7-3 shows retrieval performance (in mean average precision) for different length

(n = 2, . . . , 6) phonetic subword units generated from error-free phonetic transcriptions.

Performance for three different retrieval systems is shown. The first system is the baseline

vector space retrieval model (base), described in Section 2.4, that we have been using up

until now. The second system is the new probabilistic retrieval model (ProbIR) that we

described in Chapter 6. The third system is the probabilistic retrieval model again, but this

time including the second stage automatic relevance feedback procedure (ProbIR+fdbk).

Comparing the baseline retrieval model with the new probabilistic retrieval model, we see

that retrieval performance for subword units of all lengths is slightly better with the prob-

abilistic model. Including the second pass automatic relevance feedback procedure results
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Figure 7-4: Retrieval performance (in mAP) for different length (n = 2, . . . , 6) phonetic
subword units generated from errorful phonetic recognizer output. Performance for three
different retrieval systems is shown: the baseline vector space retrieval model (base), the
new probabilistic retrieval model (ProbIR), and the probabilistic retrieval model with the
second stage automatic feedback (ProbIR+fdbk).

in a significant and consistent performance improvement. For the length n=3 phonetic

subword unit, retrieval performance improves from mAP=0.860 to mAP=0.910. We note

that using the automatic relevance feedback procedure designed for the vector space model

(i.e., the Rocchio method) described in Section 5.5 also improves performance over the

baseline system. However, performance is not as good as using the the probabilistic model

with automatic feedback. For example, with the length n=3 phonetic subword unit, re-

trieval performance improves to mAP=0.893 using the vector space model with Rocchio

automatic relevance feedback.

Figure 7-4 shows retrieval performance (in mAP) for different length (n = 2, . . . , 6) pho-

netic subword units generated from noisy phonetic transcriptions generated by a phonetic

recognizer. Only the most likely (top one) recognition hypothesis is used. Again, per-

formance for three different retrieval systems is shown: the baseline vector space retrieval
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Subword Unit
Condition 2phn 3phn 4phn 5phn 6phn
base 0.385 0.525 0.491 0.386 0.300
probIR 0.386 0.546 0.510 0.411 0.345
probIR+fdbk 0.416 0.572 0.563 0.444 0.394
top1 0.416 0.572 0.563 0.444 0.394
nbest 0.434 0.583 0.580 0.446 0.403
expand 0.408 0.623 0.647 0.633 0.578
termprob 0.394 0.629 0.673 0.643 0.590
text (base) 0.713 0.860 0.839 0.814 0.787
text (probIR) 0.728 0.870 0.849 0.825 0.810
text (probIR+fdbk) 0.773 0.910 0.877 0.858 0.828

Table 7-1: Retrieval performance (in mAP) for different length (n = 2, . . . , 6) phonetic sub-
word units generated from errorful phonetic recognizer output. Performance of the baseline
vector space retrieval model (base) and the probabilistic retrieval model with (probIR+fdbk)
and without (probIR) automatic feedback is shown. Performance is also shown for several
different methods for estimating p(t|Di): using the top one recognition hypothesis to esti-
mate p1(t|Di) (top 1), using the N=100 N -best recognition hypotheses to estimate p2(t|Di)
(nbest), using the expanded term set approach to compute p3(t|Di) (expand), and using
term occurrence probabilities, p4(t|Di), computed directly by the recognizer (termprob).
Reference performance using subword units generated from clean phonetic transcriptions
(text) is also shown for the baseline retrieval model (base) and the probabilistic retrieval
model with (probIR+fdbk) and without (probIR) automatic feedback.

model (base), the new probabilistic retrieval model (ProbIR), and the probabilistic retrieval

model with automatic feedback (ProbIR+fdbk). As in the case of the clean phonetic tran-

scriptions, retrieval performance using the probabilistic model is slightly better than using

the baseline retrieval model. The addition of automatic relevance feedback again results in a

significant and consistent performance improvement. For the length n=3 phonetic subword

unit, retrieval performance improves from mAP=0.525 with the baseline retrieval model to

mAP=0.546 with the probabilistic retrieval model and finally to mAP=0.572 with the addi-

tion of automatic feedback. In the remaining experiments in this chapter, the probabilistic

retrieval model with the second stage automatic relevance feedback procedure will be used.

We now evaluate the performance of the integrated spoken document retrieval approach.

We examine the four different methods for estimating the term occurrence probabilities,

p(t|Di), described in Section 7.2. Figure 7-5 plots the retrieval performance (in mAP) for
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Figure 7-5: Retrieval performance (in mAP) for different length (n = 2, . . . , 6) phonetic
subword units generated from errorful phonetic recognizer output. First, performance of
the baseline vector space retrieval model (base) is shown. Next, performance using the
probabilistic retrieval model with automatic feedback is shown for several different methods
for estimating the term occurrence probabilities, p(t|Di): using the top one recognition
hypothesis to estimate p1(t|Di) (top 1), using the N=100 N -best recognition hypotheses
to estimate p2(t|Di) (nbest), using the expanded term set approach to compute p3(t|Di)
(expand), and using term occurrence probabilities, p4(t|Di), computed directly by the recog-
nizer (termprob). The reference performance uses the baseline retrieval model with subword
units generated from clean phonetic transcriptions (text). The dotted line shows the refer-
ence performance (mAP=0.87) using word units derived from error-free text transcriptions
of the spoken documents.
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different length (n = 2, . . . , 6) phonetic subword units and Table 7-1 lists the corresponding

performance numbers.

First, the performance of the baseline vector space retrieval model (base) is plotted. This

is the same baseline that was used in Chapter 5. Next, the performance of the probabilistic

retrieval model with automatic feedback using the top one recognition hypothesis to estimate

the term occurrence probabilities p1(t|Di) (7.1) is plotted (top1). As we saw previously in

Figure 7-4, performance of the probabilistic retrieval model with automatic feedback is

significantly better than the baseline retrieval model.

Performance using the N -best (N=100) recognition hypotheses to estimate p2(t|Di)

(7.2) is plotted next (nbest). Performance is slightly but consistently improved over that of

using just the top one recognition hypothesis. The use of alternative recognition hypotheses

allows additional terms to be included in the document representation and increases the

chance of capturing the correct terms. The use of multiple hypotheses also permits a

better estimate of the occurrence probability of the hypothesized terms: the more often

a term appears in the top N hypotheses, the more likely it is to have actually occurred.

Using this method can significantly increase the number of terms added to the document

representations. This is illustrated in Figure 7-6 which plots the number of unique indexing

terms for the entire document collection for different length (n = 2, . . . , 6) phonetic subword

units. Comparing the plots for the top one recognition hypothesis (top1) and the N -best

recognition hypotheses (nbest), we see that the number of terms grows with the length of

the subword units. The number of terms can almost triple using the N -best outputs.

Next, performance using the expanded term set approach to compute term occurrence

probabilities p3(t|Di) (7.3) is shown (expand). Performance of the short subword unit (n=2)

gets worse. This is due to an increase in the number of spurious matches caused by the

expanded set of terms. The additional terms are likely to match terms that occur in many

of the documents due to the short length of the units and the small number of possible

terms (412 = 1681). The performance of the longer subword units (n=3,4,5,6), however,

are significantly improved. In this case, the expanded set of terms are allowing matches

between the clean query terms and the noisy document terms but the longer subword unit

sequence length makes it more difficult to get spurious matches. We saw similar behavior
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Figure 7-6: The number of unique indexing terms for the document collection for different
length (n = 2, . . . , 6) phonetic subword units. Three different methods for determining
the indexing terms are shown: using the top one recognition hypothesis (top1), using the
N=100 N -best recognition hypotheses (nbest), and using the term occurrence probabilities
computed directly by the recognizer (termprob).

with the use of approximate term matching in Section 5.3. We note that the length n=4

subword units now outperform the length n=3 units. Also, the performance of the longer

subword units (n=5,6) are now much closer to the medium length units (n=3,4) than

before. Previously performance dropped off rapidly as the subword units got longer (e.g.,

the baseline or top1 curves). This is no longer the case. With the expanded set of terms,

the issue of longer subword units being too specific and not matching enough terms has

become less of an issue.

Finally, the use of term occurrence probabilities, p4(t|Di), computed directly by the

recognizer is shown (termprob). Performance of the short subword unit (n=2) is poor

and is actually worse than using expanded term sets. The problem of spurious matches

is magnified in this case because even more term possibilities are created using the term
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probability approach. The performance of the other subword units (n=3,4,5,6), however,

are all improved and are better than using the expanded term set approach. Similar to the

behavior we saw above with expanded term sets, the additional document terms generated

by the term probability approach are allowing more matches with the clean query terms

but the longer subword unit sequence length is reducing the number of spurious matches

resulting in a net positive effect. Even more terms are generated by the term probability

approach than with the N -best approach. Again, this is illustrated in Figure 7-6 which

plots the number of unique indexing terms for the document collection for different length

(n = 2, . . . , 6) phonetic subword units. Comparing the plots, we see that the number

of terms associated with the term probability approach (termprob) is much larger than

the number of terms from using either the N -best (nbest) or top one (top1) recognition

hypotheses. The number of terms can increase almost four-fold over using the one best

recognition output.

Overall, we see that spoken document retrieval performance improves as more sophis-

ticated estimates of the term occurrence probabilities are used. The combined factors of

more term hypotheses and improved probability of occurrence estimates to appropriately

weight the additional terms lead to better retrieval performance. The best performance is

obtained using term occurrence probabilities computed directly from the speech recognizer:

p4(t|Di). The integrated approach improves spoken document retrieval performance using

subword units by over 28% from the baseline: mAP=0.52 to mAP=0.67. This improvement

is better than the 23% gain (mAP=0.52 to mAP=0.64) obtained using the robust methods

described in Chapter 5.

7.4 Summary

In this chapter, we presented a novel approach to spoken document retrieval where the

speech recognition and information retrieval components are more tightly integrated. This

was accomplished by developing new recognizer and retrieval models where the interface

between the two components is better matched and the goals of the two components are

consistent with each other and with the overall goal of the combined system. We presented
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a new probabilistic retrieval model which makes direct use of term occurrence probabilities

that can be computed by the recognizer. We then described several ways to compute the

desired term probabilities including using the top one recognition hypothesis, using N -best

recognition hypotheses, expanding the term set to include approximate match terms, and

modifying the speech recognizer to enable it to output the term occurrence probabilities

directly. We evaluated the performance of the integrated approach using the NPR corpus.

We found that the probabilistic model performs slightly better than the baseline vector space

retrieval model and the addition of automatic relevance feedback resulted in a significant

performance improvement. We then measured the retrieval performance of the integrated

approach as different methods for estimating the term occurrence probabilities are used.

We found that retrieval performance improves as more sophisticated estimates are used.

The best performance was obtained using term occurrence probabilities computed directly

from the speech recognizer. The integrated approach improved retrieval performance by

over 28% from the baseline. This is compared to an improvement of 23% using the robust

methods described in Chapter 5.
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Chapter 8

Summary and Future Work

This thesis explored approaches to the problem of spoken document retrieval (SDR), which

is the task of automatically indexing and then retrieving relevant items from a large collec-

tion of recorded speech messages in response to a user specified natural language text query.

We investigated the use of subword unit representations for SDR as an alternative to words

generated by either keyword spotting or continuous speech recognition. Our investigation

is motivated by the observation that word-based retrieval approaches face the problem of

either having to know the keywords to search for a priori, or requiring a very large recogni-

tion vocabulary in order to cover the contents of growing and diverse message collections.

The use of subword units in the recognizer constrains the size of the vocabulary needed to

cover the language; and the use of subword units as indexing terms allows for the detection

of new user-specified query terms during retrieval. Four research issues were addressed:

1. What are suitable subword units and how well can they perform?

2. How can these units be reliably extracted from the speech signal?

3. What is the behavior of the subword units when there are speech recognition errors

and how well do they perform?

4. How can the indexing and retrieval methods be modified to take into account the fact

that the speech recognition output will be errorful?

In this thesis, we made the following contributions to research in the area of spoken

document retrieval:
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• An empirical study of the ability of different subword units to perform spoken docu-

ment retrieval and their behavior in the presence of speech recognition errors.

• The development of a number of robust indexing and retrieval methods that can

improve retrieval performance when there are speech recognition errors.

• The development of a novel spoken document retrieval approach with a tighter cou-

pling between the recognition and retrieval components that results in improved re-

trieval performance when there are speech recognition errors.

• The development of a novel probabilistic information retrieval model that achieves

state-of-the-art performance on standardized text retrieval tasks.

The main goal of this research was to investigate the feasibility of using subword unit

representations for spoken document retrieval as an alternative to word units generated

by either keyword spotting or continuous speech recognition. We mentioned some word-

based approaches to spoken document retrieval, but we did not report on their performance

levels and did not directly compare the performance of word-based methods to subword

based methods. Here we briefly describe the performance of state-of-the-art word-based

approaches to spoken document retrieval on the TREC-7 SDR task (Garofolo et al. 1998).

The predominate word-based approach is to first transform the spoken documents into text

using a large vocabulary speech recognizer and then to use a conventional full-text retrieval

system to perform retrieval. With word recognition error rates (in percent) in the mid to

high 20’s, the best speech retrieval performance reaches 90% of the performance of clean

text transcriptions. Compared to subword units, the degradation due to speech recognition

errors with word units is much less. However, these performance results cannot be directly

compared because of a number of factors. First, the systems are evaluated on different

spoken document collections. Second, the number of parameters in the speech recognition

systems (i.e., system complexity) and the amount of data used to train them are very

different. The large vocabulary systems contain recognition vocabularies on the order of

70,000 words, and use close to one hundred hours of transcribed speech for acoustic model

training and hundreds of millions of words from text documents for language model training.

The subword phonetic recognizer, in contrast, only has a vocabulary of 61 phones and uses
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only 5 hours of speech for training the acoustic models and hundreds of thousands of phone

occurrences for training the language models. It is also important to note that in the large

vocabulary methods, almost all of the words in the test queries happen to be included in the

recognition vocabulary. This means that there are essentially no out-of-vocabulary (OOV)

query words in the test. It is precisely this issue of new query words that can be problematic

for the large vocabulary word-based approach. In these experiments, the OOV problem is

not being tested and the effects of OOV query words on retrieval performance are not being

explored. Both word-based and subword-based approaches to SDR have advantages and

disadvantages. Exploring methods to effectively combine both approaches is an interesting

area for future research.

In the following sections, we give a brief summary of the main chapters in this thesis

and finally close by mentioning some possible directions for future work.

8.1 Feasibility of Subword Units for Information Retrieval

We explored a range of subword units of varying complexity derived from error-free phonetic

transcriptions and measured their ability to effectively index and retrieve speech messages.

These experiments provide an upper bound on the performance of the different subword units

since they assume that the underlying phonetic recognition is error-free. In particular, we

examined overlapping, fixed-length phone sequences and broad phonetic class sequences,

and non-overlapping, variable-length, phone sequences derived automatically (multigrams)

and by rule (syllables). We found that many different subword units are able to capture

enough information to perform effective retrieval. We saw that overlapping subword units

perform better than non-overlapping units. There is also a tradeoff between the number

of phonetic class labels and the sequence length required to achieve good performance.

With the appropriate choice of subword units it is possible to achieve retrieval performance

approaching that of text-based word units if the underlying phonetic units are recognized

correctly. Although we were able to automatically derive a meaningful set of subword “stop”

terms, experiments using the stop-list did not result in significant improvements in retrieval

performance.
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8.2 Extracting Subword Units from Spoken Documents

We trained and tuned a phonetic recognizer to operate on the radio broadcast news do-

main and used it to process the entire spoken document collection to generate phonetic

transcriptions. We then explored a range of subword unit indexing terms of varying com-

plexity derived from these errorful phonetic transcriptions and measured their ability to

perform spoken document retrieval. We found that in the presence of phonetic recognition

errors, retrieval performance degrades, as expected, compared to using error-free phonetic

transcriptions or word-level text units: performance falls to 60% of the clean reference

performance. However, many subword unit indexing terms are still give reasonable perfor-

mance even without the use of any error compensation techniques. We also observed that

there is a strong correlation between recognition and retrieval performance: better pho-

netic recognition performance leads to improved retrieval performance. These experiments

establish a lower bound on the retrieval performance of the different subword units since

no error compensation techniques are used. We know that there are speech recognition

errors, but we are not doing anything about them. Hopefully improving the performance

of the recognizer and developing robust indexing and retrieval methods to deal with the

recognition errors will help improve retrieval performance.

8.3 Robust Indexing and Retrieval Methods

We investigated a number of robust methods in an effort to improve spoken document re-

trieval performance when there are speech recognition errors. In the first approach, the

original query is modified to include near-miss terms that could match erroneously recog-

nized speech. The second approach involves developing a new document-query retrieval

measure using approximate term matching designed to be less sensitive to speech recogni-

tion errors. In the third method, the document is expanded to include multiple recognition

candidates to increase the chance of capturing the correct hypothesis. The fourth method

modifies the original query using automatic relevance feedback to include new terms as well

as approximate match terms. The last method involves combining information from multi-

ple subword unit representations. We studied the different methods individually and then
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explored the effects of combining them. We found that using a new approximate match

retrieval metric, modifying the queries via automatic relevance feedback, and expanding the

documents with N -best recognition hypotheses improved performance; subword unit fusion,

however, resulted in only marginal gains. Combining the approaches resulted in additive

performance improvements. Using these robust methods improved retrieval performance

using subword units generated from errorful phonetic recognition transcriptions by 23%.

8.4 Probabilistic Information Retrieval Model

We presented a novel probabilistic information retrieval model and demonstrated its capa-

bility to achieve state-of-the-art performance on large standardized text collections. The

retrieval model scores documents based on the relative change in the document likelihoods,

expressed as the ratio of the conditional probability of the document given the query and

the prior probability of the document before the query is specified. Statistical language

modeling techniques are used to compute the document likelihoods and the model parame-

ters are estimated automatically and dynamically for each query to optimize well-specified

maximum likelihood objective functions. An automatic relevance feedback strategy that is

specific to the probabilistic model was also developed. The procedure automatically cre-

ates a new query (based on the original query and a set of top-ranked documents from a

preliminary retrieval pass) by selecting and weighting query terms so as to maximize the

likelihood ratio scores of the set of documents presumed to be relevant to the query. To

benchmark the performance of the new retrieval model, we used the standard ad hoc text

retrieval tasks from the TREC-6 and TREC-7 text retrieval conferences. Official evaluation

results on the 1999 TREC-8 ad hoc text retrieval task were also reported. Experimental

results indicated that the model is able to achieve performance that is competitive with

current state-of-the-art retrieval approaches.

8.5 Integrated Recognition and Retrieval

We presented a novel approach to spoken document retrieval where the speech recognition

and information retrieval components are more tightly integrated. This was accomplished
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by developing new recognizer and retrieval models where the interface between the two

components is better matched and the goals of the two components are consistent with

each other and with the overall goal of the combined system. We presented a new proba-

bilistic retrieval model which makes direct use of term occurrence probabilities that can be

computed by the recognizer. We then described several ways to compute the desired term

probabilities including using the top one recognition hypothesis, using N -best recognition

hypotheses, expanding the term set to include approximate match terms, and modifying

the speech recognizer to enable it to output the term occurrence probabilities directly. We

evaluated the performance of the integrated approach using the NPR corpus. We found

that the probabilistic model performs slightly better than the baseline vector space retrieval

model and the addition of automatic relevance feedback resulted in a significant performance

improvement. We then measured the retrieval performance of the integrated approach as

different methods for estimating the term occurrence probabilities are used. We found that

retrieval performance improves as more sophisticated estimates are used. The best perfor-

mance was obtained using term occurrence probabilities computed directly from the speech

recognizer. The integrated approach improved retrieval performance by over 28% from the

baseline. This is compared to an improvement of 23% using the robust methods described

in Chapter 5.

8.6 Future Directions

The experimental results presented in this thesis demonstrate that subword-based ap-

proaches to spoken document retrieval are feasible and merit further research. There are a

large number of areas for extension of this work. In this section, we mention some of these

possible directions for future work.

One area is to improve the performance of the extraction of the subword units from

the speech signal. Although we investigated the use of different acoustic and language

models in the speech recognizer in an effort to improve phonetic recognition performance

in Section 4.2, much additional work can be done. For example, more training data can be

used to improve model robustness and more detailed and complex models can be used to try
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to capture more information from the speech signal. Another approach would be to modify

the speech recognizer to recognize the subword units, e.g., broad class units, syllables, or

other multi-phone sequences, directly from the speech, rather than constructing them from

a phonetic string. An advantage of this approach is that the recognizer can be optimized

specifically for the subword units of interest instead of for an intermediate set of phonetic

units. In addition, the recognition units are larger and should be easier to recognize. A

disadvantage is that the vocabulary size is significantly increased. The key tradeoff that

needs to be considered is the selection of an inventory of subword units that is both restricted

in size but can still provide good coverage for the application domain. In Section 7.2, we

described one method of modifying the speech recognizer to estimate probabilities of term

occurrence. Alternate methods for computing this type of quantity, such as the scoring

functions used in traditional wordspotting systems (Rohlicek et al. 1989; Rose and Paul

1990), should also be examined.

Another area of work is to improve the probabilistic information retrieval model. In

the current implementation of our retrieval model described in Chapter 6, simple unigram

language models are used to estimate the probabilistic quantities p(Q|Di) and p(Q). More

sophisticated models such as higher order statistical n-gram language models can also be

used. Although these models make fewer assumptions about word independence and can

capture longer range context such as phrases, they impose increased demands on the quan-

tity of training data needed for parameter estimation. As mentioned in Section 6.2.1,

alternative smoothing techniques for the probability models can also be explored. In addi-

tion to the use of more complex models mentioned above, another extension is to increase

the flexibility of the model by allowing “approximate” term matching. For example, the

occurrence probability of term t in document Di, p(t|Di), can be computed according to

(7.3):

p(t|Di) =
∑
t∗

p(t | t∗,Di) p(t∗|Di)

where p(t | t∗,Di) is an appropriate measure of the similarity between terms t and t∗, and

the summation is over all possible approximate matches, t∗, for term t. This extension was

used in Section 7.2 to deal with transcription errors in the documents by summing over an

appropriately expanded set of terms, t∗, for each original term, t. This extension can also
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allow the retrieval model to deal with the use of synonyms in a principled way. The proba-

bility of a term t is computed by summing over appropriately weighted probabilities of its

synonyms {t∗}. Similarly, this extension can also be applied to cross language retrieval (the

document collection is in one language and the query is in another language) by capturing

the mapping of terms from one language to the other. In Section 7.2, we used a simple

model based on the phonetic recognition error confusion matrix to compute p(t | t∗,Di), the

probability that term t can be recognized as term t∗. Other more complex models of the

relationship between terms t and t∗ remains to be explored.

Another interesting and potentially profitable area of research is on information fusion

methods for spoken document retrieval. In Section 5.6, we briefly looked at some simple

methods for combining multiple subword unit representations. Although the performance

improvements we obtained were small, the method of information combination still holds

promise. As we mentioned before, maybe the use of more sophisticated non-linear combi-

nation methods such as bagging (Breiman 1994), boosting (Freund and Schapire 1996), or

stacking (Wolpert 1992) will lead to better performance. In addition to multiple subword

units, other types of information can also be combined. For example, multiple recognition

hypotheses from different automatic speech recognizers can be combined or subword units

can be combined with word units.

Since subword-based approaches to spoken document retrieval have reduced demands on

the amount of required training data, it should be easier and faster to port subword-based

SDR approaches to new application domains and new languages. This hypothesis should

be verified by trying to bring up SDR systems in different domains and languages. It will

also be interesting to explore the use of subword-based approaches on multi-lingual speech

message collections.

Finally, the methods presented in this thesis should be evaluated on larger sets of data.

This includes both the spoken document collection and the training set for the speech

recognizer. More data will allow us to build more robust models and to further test the

scalability and behavior of our systems.
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Appendix A

Details of the NPR Speech Corpus

A.1 Description of the Query Set

Table A-1 list the 50 queries in the NPR Corpus. The query identification number, the text

of the query, and the number of relevant documents is shown for each query.

A.2 Subword Unit Frequency Statistics

This section contains tables of the 100 most frequent subword units and their frequency of

occurrence counts. The subword units are generated from clean phonetic transcriptions of

the NPR corpus.

Table A-2 lists the 100 most frequent phonetic trigram (n=3) subword units. A descrip-

tion of the phone labels used can be found in Tables 4-1 and 4-4. Table A-3 list the broad

class subword units (c=20, n=4). The mapping of the 41 phone labels to the 20 broad

classes is shown in Table A-4. The mapping is determined by hierarchical clustering based

on acoustic similarity as described in Section 3.2.2 and illustrated in Figure 3-2. Table A-5

lists the automatically derived multigram (m=4) subword units. Finally, Table A-6 lists

the most frequent syllable subword units.
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Id Query # Rel. Docs
1 Commuter traffic updates and reports 35
2 Weather forecast 27
3 Sports news 10
4 Bob Dole’s campaign for the presidency 24
5 Republican presidential primaries 21
6 Conflict in Bosnia 12
7 Business and financial news 12
8 Whitewater controversy hearings investigations and trials 10
9 Israel and the Palestinians 12
10 Space shuttle 8
11 Politics in Russia: the Russian presidential election 6
12 Military actions in Iraq 7
13 Dayton peace agreement 7
14 Auto workers’ strike at General Motors 6
15 Temporary spending bill 5
16 Immigration reform bill 4
17 Terrorism is condemned by world leaders at a summit in Egypt 5
18 GOP republican national convention in San Diego 5
19 Boston Red Sox baseball team 5
20 Capital gains tax 4
21 Drug traffic from Mexico 2
22 Hearings on the branch Davidians and Waco 4
23 Occupied territories on the West Bank and Ghaza Strip 5
24 Remedial education courses 4
25 John Salvi trial 4
26 Bank of Boston announcement 3
27 The United States and China avoid trade war over copyright violations 3
28 Human rights in China 2
29 Governor William Weld 4
30 Boston oil spill 3
31 Tensions between China and Taiwan 4
32 IRA bomb explosion in England 3
33 Doctor assisted suicide ruling 3
34 University of Massachusetts 3
35 US Supreme Court 3
36 Health insurance programs 3
37 Telecommunications bill 3
38 Proposal to increase the minimum wage 2
39 F. Lee Bailey jail term 2
40 Cuba shoots down civilian plane 2
41 Britain’s sale of weapons to Iraq 1
42 Airplanes forced to land 2
43 Bosnian war crimes tribunal 3
44 Ban on assault weapons 2
45 Welfare reform bill 2
46 Massachusetts board of education 2
47 Fiscal ninety seven federal budget proposal 2
48 Mad cow disease 2
49 Treatment for AIDS 2
50 Deregulation of public utility companies 3

Table A-1: Table of the 50 queries in the NPR Corpus.
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Term Freq. Term Freq. Term Freq.
ae n d 3593 ih t s 667 uw dh ax 515
ax n t 2475 n d dh 652 p ao r 515

sh ax n 2178 ao r t 650 s eh n 514
dh ae t 1869 t ix ng 623 ah n d 513
f ao r 1517 d dh ax 622 n s t 497

m ax n 1261 ax n d 621 p r eh 490
n dh ax 1244 ax n ax 619 n t uw 490
k ax n 1160 s t r 617 w eh n 488
ax n s 1030 p ax l 611 z ax n 487
t ax n 1025 ix ng t 611 eh n d 485

ah v dh 1005 z ae n 610 ax t iy 480
ey sh ax 979 eh s t 606 s ah m 476
t ax d 966 w aa z 605 z t uw 475
ax n z 954 f ow r 601 ax l iy 471
t dh ax 940 z dh ax 600 ix k s 468
dh eh r 935 aa r t 597 n ix ng 467
eh n t 883 eh r iy 591 z ah v 465

v dh ax 875 ae t dh 591 n d ix 465
dh ax s 865 f r ah 590 v ax n 463
dh ih s 850 t ah v 589 b ax l 460
ix n dh 781 dh ax p 588 p r ax 457
hh ae v 766 m ao r 582 ax d ax 453
s t ax 751 n aa t 580 n t r 451

w ih dh 748 r ah m 572 n ay n 450
ax k ax 747 d t uw 569 t ix n 448

n t s 716 n t ax 568 ax d ey 448
d ax n 711 t t uw 563 dh ax m 445
ax s t 692 n ax l 551 dh ax f 445

dh ax k 686 ix ng dh 548 eh k t 440
n t iy 679 hh ae z 548 t ae n 439

w ah n 674 z ix n 541 y uw n 437
b ah t 672 w ih l 537 p aa r 434
n d ax 669 s t ey 536
k ae n 667 t uw dh 520

Table A-2: Table of the 100 most frequent phonetic trigram (n=3) subword units generated
from clean phonetic transcriptions of the NPR corpus.
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Term Freq. Term Freq. Term Freq.
flx nsl ust blx 1104 vfr blx ust rtr 410 liq flx nsl ust 318
flx nsl vfr blx 1016 flx nsl ust rtr 407 blx nsl sfr ust 317
eyy pfr blx nsl 972 lbv nsl vst ust 406 lfv vst liq blx 317
sfr lbv nsl vst 914 ust pfr blx nsl 396 ust wfr ooo rtr 314
nsl blx nsl ust 815 nsl frt blx nsl 394 blx ust blx liq 312
lfv vfr vfr blx 809 rtr low sfr blx 393 ust blx vst eyy 309
ust lbv nsl vst 752 ust lfv vst liq 389 vfr blx ust lfv 309
nsl ust blx nsl 690 blx nsl blx liq 381 blx ust lbv nsl 309
ust blx nsl sfr 670 flx sfr ust rtr 375 blx vst low nsl 308
ust ooo rtr ust 656 lbv ust vfr blx 374 liq lfv nsl ust 308
ust blx nsl ust 652 sfr flx ust sfr 373 ust flx nsl vfr 308
sfr ust blx nsl 629 wfr ooo rtr nsl 372 flx nsl flx nsl 307
blx ust blx nsl 607 nsl vfr blx ust 371 blx nsl lfv vfr 307
wfr rtr lfv nsl 589 flx pfr blx nsl 371 sfr wfr ooo rtr 306
lfv nsl vst rtr 562 ust ust blx vst 370 sfr flx nsl ust 305
vst blx nsl ust 558 low nsl ust frt 367 lfv nsl ust rtr 305
flx ust sfr ust 539 vfr lbv ust vfr 365 nsl vst flx nsl 302
pfr blx nsl sfr 538 nsl ust blx vst 361 blx nsl ust blx 300
ust lfv rtr ust 535 nsl wfr ooo rtr 359 afr lfv sfr ust 300
nsl lbv nsl vst 530 low sfr blx vst 353 lbv nsl vst liq 299
blx vst blx nsl 523 blx ust lfv nsl 351 vst flx sfr ust 296
lbv nsl vst vfr 514 rtr nsl blx nsl 347 lbv nsl vst flx 295
blx vst lfv ust 501 nsl dip nsl ust 341 vst lfv vfr rtr 294
ust blx vfr blx 475 frt ust blx liq 340 sfr flx nsl vfr 293
sfr vfr lbv ust 469 pfr blx nsl blx 333 nsl vst blx vst 291
ust lfv nsl ust 468 nsl vst rtr blx 333 ust lfv nsl sfr 290
blx nsl ust sfr 464 ust blx ust blx 331 ust vfr lbv ust 290
lfv nsl vfr blx 456 wfr ooo rtr vfr 330 vst lbv nsl vst 288
sfr ust blx vst 455 blx nsl lbv nsl 327 nsl vfr lbv ust 288
ust rtr low sfr 453 ust flx nsl ust 326 vfr blx sfr ust 284
sfr ust eyy ust 442 dip nsl ust frt 326 liq low nsl ust 282
ust frt ust blx 437 lbv nsl vst blx 323 ust lbv nsl ust 281
sfr low nsl ust 418 nsl vst vfr blx 322
sfr blx vst blx 416 wfr ooo rtr ust 320

Table A-3: Table of the 100 most frequent broad class subword units (c=20, n=4) generated
from clean phonetic transcriptions of the NPR corpus.
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Class Phones Class Phones Class Phones Class Phones
afr ch jh blx ax uh uw dip ay oy eyy ey
flx ih ix frt iy y hhh hh lbv ae
lfv aa ah aw liq l w low eh nsl m n ng
ooo ao ow pfr sh zh rtr er r sfr s z
ust k p t vfr dh v vst b d g wfr f th

Table A-4: Mapping of the 41 phone labels to the 20 broad classes. The mapping is
determined by hierarchical clustering based on acoustic similarity.
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Term Freq. Term Freq. Term Freq.
dh ax 3789 w ih l 432 s eh z 267
ae n d 2652 aa r 425 ax n z 266
ix ng 1961 er 402 ax d 266
t uw 1900 d 395 aa n dh ax 258
ax n 1835 sh ax n 383 b ay 256
ix n 1557 dh ey 382 s t 254

dh ae t 1546 s ah m 379 ax d ax n 252
s 1544 s t ey t 370 t s 251

ax l 1527 m ao r 368 ix ng dh ax 245
ah v 1331 ax b aw t 367 z ae n d 244

t 1136 r iy 366 w iy 244
f ao r 1054 aa n 365 t ax d ey 242

z 954 f ow r 362 g ah v er 241
ih z 918 p aa r t 360 ix k s 240
ax 847 hh ih z 355 n ay n t 237

ey sh ax n 811 p ao r t 351 ow v er 236
dh ih s 789 p r eh z 342 m ow s t 232
dh eh r 784 k ax n 326 ax n t s 227

ah v dh ax 741 y uw 320 s ow 226
m ax n t 673 ax s 320 ix ng t uw 226

ix n dh ax 617 t uw dh ax 317 t iy 225
w ih dh 591 w ah t 304 k ah m 224
w ah n 581 iy 303 t uw b iy 222
hh ae v 575 jh ah s t 300 n ow 216
b ah t 567 er z 297 ax t 216

l iy 561 b iy 297 ao l s ow 214
ax n t 559 ao l 295 ae t 211

f r ah m 556 ah dh er 290 l ae s t 210
ih t s 535 w uh d 284 hh ih r 210
n aa t 532 s eh n t 284 g eh t 210
w aa z 529 ax n s 283 ax k ax n 210

ih t 506 b ih n 281 n ax l 208
hh iy 469 ae z 275

hh ae z 459 t ax d 270

Table A-5: Table of the 100 most frequent multigram (m=4) subword units generated from
clean phonetic transcriptions of the NPR corpus.
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Term Freq. Term Freq. Term Freq.
dh ax 7761 dh ae 726 k ae 440
t uw 3949 r ix 724 p r ax 432
ax 2084 m eh 723 m ao r 429

t ax 1883 p iy 703 t ih 427
t iy 1799 dh ih 699 hh ae z 424
n ax 1751 p ax 684 t ax d 423
l iy 1696 hh iy 681 m ey 420
r iy 1565 dh ey 676 t ax n 419
s ax 1501 b ix 661 s t ax 418
t er 1316 s ow 651 n uw 417
z ax 1288 v ax 646 p ah 415

dh ae t 1151 dh eh r 634 m ax n t 408
d ix 1117 s iy 615 s ey 401
d ax 1082 hh ae 577 w er 399
r ax 1054 hh ae v 565 hh uw 394
b iy 1042 b ay 561 n ay n 392

sh ax n 1040 t ix ng 554 b ah t 391
sh ax 1012 n ow 551 p r eh 390
n iy 1006 dh er 551 ih 388
v er 988 g ow 533 f r ah m 387

f ao r 971 f ow r 511 ow 386
l ax 870 m ih 499 t ah v 384

k ax n 864 eh 484 n aa 384
m ax 860 p er 479 b ah 383
ix ng 854 ey 475 d uw 382
k ax 852 l ih 472 r eh 379
y uw 824 ah v 472 ix 377
ix n 820 ae n d 469 k ey 370
s eh 794 z ix n 466 b er 369
d ey 778 d ih 459 ae 365
d iy 747 m ax n 457 z ah v 363
er 746 t eh 456 w ih dh 361

s ih 739 n ix ng 455
d er 730 s er 444

Table A-6: Table of the 100 most frequent syllable subword units generated from clean
phonetic transcriptions of the NPR corpus.
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