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Abstract

The determination of molecular structures is of growing importance in modern chemistry

and biology. This thesis presents two practical, systematic algorithms for two structure

determination problems. Both algorithms are branch-and-bound techniques adapted to

their respective domains.

The �rst problem is the determination of structures of multimers given rigid monomer

structures and (potentially ambiguous) intermolecular distance measurements. In other

words, we need to �nd the the transformations to produce the packing interfaces. A sub-

stantial diÆculty results from ambiguities in assigning intermolecular distance measure-

ments (from NMR, for example) to particular intermolecular interfaces in the structure.

We present a rapid and eÆcient method to simultaneously solve the packing and the as-

signment problems. The algorithm, AmbiPack, uses a hierarchical division of the search

space and the branch-and-bound algorithm to eliminate infeasible regions of the space and

focus on the remaining space. The algorithm presented is guaranteed to �nd all solutions

to a pre-determined resolution.

The second problem is building a protein model from the initial three dimensional

electron density distribution (density map) from X-ray crystallography. This problem is

computationally challenging because proteins are extremely exible. Our algorithm, Conf-

Match, solves this \map interpretation" problem by matching a detailed conformation of

the molecule to the density map (conformational matching). This \best match" struc-

ture is de�ned as one which maximizes the sum of the density at atom positions. The

most important idea of ConfMatch is an eÆcient method for computing accurate bounds

for branch-and-bound search. ConfMatch relaxes the conformational matching problem,

a problem which can only be solved in exponential time (NP-hard), into one which can

be solved in polynomial time. The solution to the relaxed problem is a guaranteed upper

bound for the conformational matching problem. In most empirical cases, these bounds

are accurate enough to prune the search space dramatically, enabling ConfMatch to solve

structures with more than 100 free dihedral angles.
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Chapter 1

Introduction

The determination of molecular structures is of growing importance in modern chem-

istry and biology. Advances in biophysical techniques result in data on more ambitious

structures being generated at an ever increasing rate. Yet, �nding structures that are

consistent with this data presents a number of formidable computational problems. A

structure determination problem usually has many degrees of freedom and hence an

extremely large state space. Traditionally, scientists use stochastic algorithms such

as simulated annealing [22] or genetic algorithm [16] to solve these problems. They

usually de�ne an objective function that scores structures more consistent with data

lower than those less consistent. This problem space usually has a large number of

local minima. The goal is either to �nd the global minimum or enumerate all states

where the objective function is below a given threshold. The stochastic methods then

operates to minimize the objective function. The advantage of this approach is that

one can obtain an approximate solution eÆciently because only a small portion of

the state space is explored. The disadvantage is that there is no guarantee that the

result is the global minimum. In practice, the stochastic methods often produce local

minima solutions or fail to enumerate all consistent solutions.

Systematic methods are fundamentally di�erent from stochastic ones. Systematic

algorithms examine the entire state space. They can therefore guarantee to �nd the

globally optimal solution. Unfortunately, eÆcient systematic algorithms for structure

determination problems are hard to develop because they require searching very large

12



AmbiPack ConfMatch
Application area NMR X-ray crystallography
Experimental Ambiguous distance Electron density

data constraints distribution
Input Two rigid substructures Amino acid sequence
Output All satisfying con�gurations A single best-matching

of substructures conformation
Degrees of 3 rotational, 3 translational The number of free dihedral
freedom angles plus 6 rigid degrees of

freedom

Table 1.1: Comparison of the AmbiPack and ConfMatch algorithms.

state spaces. Branch-and-bound is a technique well suited to this type of problem.

The challenges in applying branch-and-bound are intelligent formulation of the prob-

lems and accurate heuristics for searching. Without a good formulation or heuristics,

the search is intractable even for simple problems. On the other hand, if there is an

accurate set of bounds, one can avoid most of the search space and reach the solution

eÆciently.

This thesis presents two practical, systematic algorithms for two structure determi-

nation problems. Table 1.1 summarizes the di�erences between these two algorithms.

1.1 AmbiPack: Packing with Ambiguous Constra-

ints

The �rst problem is the determination of structures of multimers. The structure(s)

of the individual monomers must be found and the transformations to produce the

packing interfaces must be described. A substantial diÆculty results from ambiguities

in assigning intermolecular distance measurements (from NMR, for example) to par-

ticular intermolecular interfaces in the structure. Chapter 2 presents a rapid and eÆ-

cient method to simultaneously solve the packing and the assignment problems given

rigid monomer structures and (potentially ambiguous) intermolecular distance mea-

surements. A potential application of this algorithm is to couple it with a monomer

searching protocol such that each structure for the monomer that is consistent with in-

13



tramolecular constraints can be subsequently input to the current algorithm to check

whether it is consistent with (potentially ambiguous) intermolecular constraints. The

algorithm, AmbiPack, �nds a set of transforms of rigid substructures satisfying the

experimental constraints. Though the problem domain has a modest 6 degrees of

freedom, the computational challenge lies in the ambiguity of the constraints. Each

input constraint has 2 possible interpretations (Figure 2-1). Thus the total number of

interpretations is exponential in the number of constraints. These large number of in-

terpretations present a formidable obstacle to �nding the right structures. AmbiPack

uses a hierarchical division of the search space and the branch-and-bound algorithm

to eliminate infeasible regions of the space. Local search methods are then focused

on the remaining space. The algorithm generally runs faster as more constraints are

included because more regions of the search space can be eliminated. This is not

the case for other methods, for which additional constraints increase the complexity

of the search space. The algorithm presented is guaranteed to �nd all solutions to

a pre-determined resolution. This resolution can be chosen arbitrarily to produce

outputs at various level of detail.

1.2 ConfMatch: Matching Conformations to Elec-

tron Density

The second problem is building a protein model from the initial three dimensional

electron density distribution (density map) from X-ray crystallography (Figure 3-

2). This task is an important step in solving an X-ray structure. The problem

is computationally challenging because proteins are extremely exible. A typical

protein may have several hundred degrees of freedom (free dihedral angles). The

space of possible conformations is astronomical. Chapter 3 presents an algorithm,

ConfMatch, that solves this \map interpretation" problem by matching a detailed

conformation of the molecule to the density map (conformational matching). This

\best match" structure is de�ned as one which maximizes the sum of the density

14



at atom positions. ConfMatch quantizes the continuous conformational space into a

large set of discrete conformations and �nds the best solution within this discrete set

by branch-and-bound search. Because ConfMatch samples the conformational space

very �nely, its solution is usually very close to the globally optimal conformation.

The output of ConfMatch, a chemically feasible conformation, is both detailed and

high quality. It is detailed because it includes all non-hydrogen atoms of the target

molecule. It is high quality because the conformation satis�es various commonly-

accepted chemical constraints such as bond lengths, angles, chirality, etc.

To �nd the \best match" structure, it is necessary to systematically explore a

search tree exponential in the number of degrees of freedom. The most important

idea of ConfMatch is an eÆcient method for computing accurate bounds. ConfMatch

relaxes the conformational matching problem, a problem which can only be solved

exactly in exponential time, into one which can be solved in polynomial time. The

relaxed problem retains all local constraints of conformational matching, but ignores

all non-local ones. The solution to the relaxed problem is a guaranteed upper bound

for the conformational matching problem. When the input data has suÆciently good

quality, the local constraints can lead to accurate bounds. In most empirical cases,

these bounds are accurate enough to prune the search space dramatically, enabling

ConfMatch to solve structures with more than 100 free dihedral angles.

In addition to solving the \map interpretation" problem, ConfMatch is potentially

applicable to rational drug design. Instead of �tting a single structure to the electron

density, ConfMatch can be adapted to �t a family of structures simultaneously to

any kind of stationary �eld (Section 3.4.5). The result would be the best-�t structure

within the family. For example, one may calculate the optimal electrostatic �eld for

binding of a disease causing protein [25]. This optimal �eld speci�es the electrostatic

charges at di�erent regions of space potentially occupied by a ligand. The space may

be partitioned into regions charged positively, negatively, or neutrally. ConfMatch

can at once �t all peptides of a certain length to this �eld. The output structure will

give the best theoretical peptide ligand to this protein, as well as its most favored

conformation.
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Though the problem domains of AmbiPack and ConfMatch are quite di�erent,

both algorithms are systematic techniques based on branch-and-bound searches. They

are the �rst systematic techniques in their respective areas. AmbiPack and ConfMatch

are described in Chapters 2 and 3 of the thesis respectively. Chapter 4 summarizes

the lessons learned while developing these algorithms.
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Chapter 2

AmbiPack: Packing with

Ambiguous Constraints

2.1 Introduction

The determination of structures of multimers presents interesting new challenges. The

structure(s) of the individual monomers must be found and the transformations to

produce the packing interfaces must be described. This chapter presents an eÆcient,

systematic algorithm for the second half of the multimer problem: �nding packings

of rigid predetermined subunit structures that are consistent with ambiguous inter-

molecular distance measurements from NMR experiments.

Whereas X-ray crystallography essentially provides atomic-level information in

absolute coordinates, NMR spectroscopy provides relative distance and orientation

information through chemical shifts, coupling constants, and especially distances es-

timated from magnetization transfer experiments. In NMR spectroscopy, the identity

of an atomic nucleus is indexed by its chemical shift (in 2D experiments) and also that

of its neighbors (in higher dimensional experiments). Thus, two atoms that occupy

exactly the same environment (e.g. symmetry-mates in a symmetric dimer) cannot

generally be distinguished and distances measured to them can be ambiguous. For

instance, in the symmetric dimer case, intra- and intermolecular distances are am-

biguous. This type of ambiguity can generally be removed through isotopic labeling

17
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Figure 2-1: Two ambiguous intermolecular distances can have two di�erent interpre-
tations. The P22 tailspike protein is shown schematically with two di�erent interpre-
tations for the proximity pairs 120{124 and 121{123.

schemes. However, for higher-order multimers, where di�erent types of intermolecular

relationships exist, each intermolecular distance remains ambiguous. Furthermore, in

solid-state NMR experiments [21], one can obtain unambiguous intramolecular dis-

tances but generally only ambiguous intermolecular distances. This kind of problem

is evident with symmetric coiled coils [18], the trimeric P22 tailspike protein [39], and

the �brils formed from fragments of the Alzheimer precursor protein [21].

This type of ambiguity is illustrated in Figure 2-1 with the P22 tailspike protein,

which forms a symmetric homotrimer. The intermolecular distances between residues

120 and 124 are short, as well as those between residues 121 and 123. Arrangement

A assigns the intermolecular distances to the correct pairs of residues. Arrangement

B di�ers from A by switching the assignment of residues 121 and 123. Many exper-

imental techniques cannot distinguish between residues on di�erent subunits. Thus

A and B are both valid interpretations of the experimental data. For every inter-

molecular distance measurement, there are two such possible interpretations. When

multiple ambiguous intermolecular distances are given, one has to solve the \assign-

ment problem" | for each intermolecular distance, assign the residue pair to the

correct subunits such that a structure can be generated to match all the distances.
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One conceivable solution to the assignment problem is enumeration. One could

attempt to enumerate all possible assignments and test each one by trying to gener-

ate a structure. Unfortunately, this is impractical in almost all cases. Consider that

each intermolecular distance measurement may be assigned in two di�erent ways to

any pair of subunits and all combinations of assignments must be explored1. This

means that, given n ambiguous intermolecular distances in a symmetric homomulti-

mer, there are at least 2n�1 assignments. Furthermore, not all measurements need

to hold between all pairs of subunits, that is, there may be more than one type of

\interface" between the subunits of a homomultimer (see Section 2.4.2). This further

increases the number of combinations that need to be explored. Since the number

of assignments to be tested grows exponentially with the number of ambiguities, this

approach is not feasible for realistic numbers of distances. For example, later we will

be dealing with 43 ambiguous measurements for the P22 homotrimer. The size of

this assignment problem is 242, which is approximately 4 � 1012; this is clearly too

many combinations to enumerate.

A di�erent approach is to design a potential function that has the e�ect of per-

forming a logical \OR" over the possible solutions for the ambiguous constraints.

For example, this function can be a sum of terms reecting a penalty for unsatis-

�ed distance measurements. Each term can contribute zero when the corresponding

distance is satis�ed in any way consistent with its labeling ambiguity. The penalty

function may increase monotonically with the magnitude of the distance violation so

that global optimization techniques, such as simulated annealing, may be utilized to

search for solutions. If multiple packed structures exist that are consistent with the

measurements, there would be many minima with a zero potential. Nilges' dynamic

assignment strategy [31, 32] uses a smooth function with these properties for am-

biguous inter- and intramolecular distances. Dynamic assignment has the signi�cant

advantage of not assuming a rigid monomer. Instead, the monomer is assumed to be

exible and restrained by intramolecular distances. O'Donoghue et al. [33] success-

fully applied this technique to the leucine zipper homodimers, where the monomer

1The �rst assignment can be made arbitrarily since all measurements are relative.
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structure is known. Unfortunately, this approach must contend with the multiple

local minima problem; there are many placements of the structures that satisfy only

a subset of the distances but such that all displacements cause an increase in the

potential. As the number of ambiguous distances increases, the minimization takes

longer to �nd valid solutions, due to increasing ruggedness of the potential landscape.

Furthermore, since this approach is a randomized one, it is not guaranteed to generate

all packings satisfying the constraints. Likewise, if no structure can possibly match

all distances, this method will not be able to prove that conclusively.

Yet another approach is to systematically sample rigid transformations, apply

them to the subunit, and then test whether the resulting structures match all dis-

tances. Since a rigid transformation has six parameters (three translations and three

rotations), one needs to test n6 transforms where n is the number of samples for each

transformation parameter. This will take a great deal of computer time even for a

moderate size n, such as 30, since 306 = 729; 000; 000). Furthermore, this approach

may miss solutions that are \between" the sampled transformations [28, 6]. So, to

have a fair degree of con�dence that no solutions have been missed requires very �ne

sampling, that is, a large value of n (generally much greater than 30).

We have developed a new algorithm, AmbiPack, that generates packed structures

from ambiguous (and unambiguous) intermolecular distances. AmbiPack is both

exhaustive and eÆcient. It can �nd all possible packings, at a speci�ed resolution,

that can satisfy all the distance constraints. This resolution can be chosen by the user

to produce packings at any level of detail. It gives a null answer if and only if there

is no solution to the constraints. In our implementation, AmbiPack takes minutes

to run2 on a problem with more than forty ambiguous constraints. Its running time

does not depend signi�cantly on the size of the subunits. Furthermore, while most

other techniques run slower when more constraints are added, AmbiPack generally

runs faster with more constraints because this allows earlier pruning of a greater

number of solutions and requires detailed exploration of a smaller number of solution.

Therefore, it is quite practical to apply AmbiPack to a family of NMR-derived subunit

2All runs were on a Sun Ultra 1 workstation.
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structures to obtain a corresponding family of packed structures. Moreover, it can

be used in tandem with a subunit generating procedure (which satis�es intrasubunit

distances) to �lter out those subunit models incompatible with the set of intersubunit

distances.

2.2 Problem De�nition

We now de�ne the packing problem more precisely; we will start by assuming only

two structures and generalize the de�nition later.

2.2.1 Two Structures

The inputs to the AmbiPack algorithm are:

1. Two rigid structures (S and S 0) that are to be packed. Without loss of general-

ity, we assume that S 0 is �xed in the input con�guration and S has an unknown

rigid transformation relative to S 0. S is the same as S 0 for identical structures,

which is frequently the case.

2. A set of constraints on the intermolecular distances. These constraints specify

the allowed ranges of distances between atoms, e.g. 3 �A< PQ0 <6 �A where P

and Q0 are atoms on S and S 0 respectively. The constraints can be speci�ed

ambiguously, i.e. only one of several bounds needs to be satis�ed. Suppose P

and Q are atoms on S while P 0 and Q0 are correspondingly atoms on S 0. One

ambiguous constraint may be

(PQ0 < 6 �A) OR (QP 0 < 6 �A);

which requires only one of the two distances to be shorter than 6 �A.

In principle, the input constraints to AmbiPack may have many possible forms;

each constraint can be a boolean combination of an arbitrary number of inequalities

which can put limits on any intermolecular distances. In practice, experiments usually
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generate two types of constraints, called positives and negatives. They correspond to

positive and negative results from solution or solid-state NMR. A positive result

means that a pair of atoms is closer than some distance bound. However, due to the

labeling ambiguity present in current experiments of this variety, a positive constraint

has the form (PQ0 < x �A) OR (QP 0 < x �A), which has a two-fold ambiguity. The

constraint also need not be satis�ed at all between a given pair of monomers, which

introduces additional ambiguity.

On the other hand, a negative experimental result means that a pair of atoms

are farther apart than some bound. All such intermolecular pairs must satisfy the

requirement. There are no ambiguous interpretations. A negative constraint has the

form (PQ0 > x �A) AND (QP 0 > x �A).

The output of AmbiPack is a set of rigid transformations. When any of the output

transformations is applied to the structure S, the resulting complex with S 0 satis�es

the speci�ed constraints.

2.2.2 More Than Two Structures

The description above applies to structures with two subunits, but it can be extended

to structures with more than two identical subunits. There are two classes of prob-

lems involving more than two structures, depending on whether all of the distance

constraints hold at all interfaces among monomers or not.

The simpler case is when all of the ambiguous (positive) distance constraints

hold at the interface between any pair of structures. In this situation, there is only

one type of interface between pairs of monomers. This case is quite common; it

is illustrated by the P22 tailspike trimer (Figure 2-1), which is treated in detail in

Section 2.4.1. For such a symmetric trimer, in which there is two-fold ambiguity

between all intermolecular constraints and each intermolecular constraint is satis�ed

at least once between each pair of monomers, the structure of the trimer can be

constructed through successive application of an output transformation (T ) to the

input structure (S). That is,

S; T (S); T 2(S)
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Figure 2-2: Structure of � amyloid �bril proposed by Lansbury et al. [21]

together form a candidate trimer packing. The constraints should also be satis�ed

across the T 2(S) : S interface, which needs to be veri�ed for each candidate T . A

similar approach can be taken for symmetric homomultimers with m subunits, but

only one type of interface.

The more complex case is when the positive distance constraints are not all satis-

�ed between every pair of structures. Figure 2-2 shows the structure of a C-terminal

peptide (�34-42) of the � amyloid protein (�1-42). [21] This in�nitely repeating struc-

ture forms an ordered aggregate. There are two types of interfaces in this structure.

Solid-state 13C NMR experiments have produced 8 positive and 12 negative con-

straints. Either interface satis�es all negative constraints but only a subset of the

positive ones. Together the interfaces satisfy all positive constraints. A direct ap-

proach to this type of problem is to enumerate subsets of the constraints that may

hold between di�erent pairs of structures. AmbiPack can be used to �nd solutions

for each of these subsets of constraints. A valid multimer can be constructed from

combinations of output transformations, applied singly or successively, such that each

constraint is satis�ed at least once in the multimer. This is the strategy illustrated in

Section 2.4.2. This strategy is only feasible when the number of ambiguous constra-

ints is relatively small since the number of constraint subsets also grows exponentially

with the number of ambiguous constraints. A more eÆcient variant of this strategy

that exploits the details of the AmbiPack algorithm is discussed in Section 2.3.4.
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2.3 The AmbiPack Algorithm

We now describe our approach to the packing problem | the AmbiPack algorithm.

For ease of exposition, we �rst present a simpli�ed version for solving unambiguous

constraints, i.e. constraints without OR's, and a single interface, i.e. all the con-

straints hold between the given structures. In Section 2.3.4 we will generalize this

description to ambiguous constraints and multiple interfaces.

2.3.1 Algorithm Overview

AmbiPack is based on two key observations:

1. Suppose there are some constraints of the form PQ0 < x �A, where P and Q0

are atoms on S and S 0 respectively. This constraint speci�es the approximate

location of P . Speci�cally, it describes a sphere of radius x �A around Q0 in

which P must be found.

2. If we �x the positions of three non-collinear atoms on S, we have speci�ed a

unique rigid transformation.

These observations suggest that one may approach the problem of �nding a pack-

ing consistent with a given set of (unambiguous) input constraints as follows:

1. Select three (unambiguous) constraints (PiQ
0
i < xi �A, i = 1; 2; 3) from the input

set.

2. For each Pi, uniformly sample its possible positions inside the sphere with radius

xi �A centered on Q0
i.

3. Calculate rigid transformations based on the positions of Pi's. Test whether

these transformations satisfy all the input constraints.

A two dimensional example of this approach is shown in Figure 2-3 A.

Note, however, that this approach is not guaranteed to �nd a legal packing when-

ever one exists. In particular, it misses solutions that would require placing any of
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Figure 2-3: Two approaches to generating transforms (illustrated here in two dimen-
sions, where two points are suÆcient to place a structure): (A) matching points Pi

from S to sampled points in spheres centered on Q0
i, or (B) placing points Pi from S

somewhere within cubes contained in spheres centered on Q0
i. The �rst of these may

miss solutions that require placing the Pi away from the sampled points.
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the Pi away from the sampled points. Of course, by sampling very �nely we can

reduce the chances of such a failure, but this remedy would exacerbate the two other

problems with this approach as it stands. One problem is that the method needs to

test m3 transformations where m is the number of sampled points in each of the three

spheres. Typically we would sample hundreds of points in each sphere and thus mil-

lions of transformations are to be generated and tested. The other, related problem is

that the �ner the sampling, the greater the number of transformations, many nearly

identical, that will be produced, since the constraints seldom de�ne a single solution

exactly. To alleviate these latter problems, we want a relatively coarse sampling.

AmbiPack is similar to the method above but instead of sampling points at a

�xed spacing within the spheres, AmbiPack explores the possible placements of the Pi

within the spheres in a coarse-to-�ne fashion. To achieve the advantages of exploration

using coarse sampling while maintaining a guarantee of not missing solutions, we must

replace the idea of sampling points with that of subdividing the space. Consider

placing the Pi not at �xed points within the spheres but rather somewhere inside

(large) cubes centered on the sampled points (Figure 2-3 B). We can now pose the

following question: \Can we disprove that there exists a solution in which the Pi are

inside the chosen cubes?" If we can, then this combination of cubes can be discarded;

no combination of points within these cubes can lead to a solution. If we cannot

disprove that a solution exists, we can subdivide the cubes into smaller cubes and

try again. Eventually, we can stop when the cubes become small enough. Each of

the surviving assignments of points to cubes represents a family of possible solutions

that we have not been able to rule out. Each of these potential solutions is di�erent

from every other in the sense that that at least one of the Pi's is in a di�erent cube.

We can then check, by sampling transformations or by gradient-based minimization,

which of these possible solutions actually satisfy all the input constraints.

The key to the eÆciency of the algorithm, obtained without sacri�cing exhaus-

tiveness, is the ability to disprove that a solution exists when the three Pi are placed

anywhere within the three given cubes, Ci. Since the Pi's are restricted to the cubes,

the possible locations of other S atoms are also limited. If one can conservatively
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Figure 2-4: The error spheres for points in S when the Pi are constrained to be
somewhere within cubes contained in spheres centered on Q0

i. Illustrated here in two
dimensions.

bound the locations of other atoms, one can use the input constraints to disprove

that a solution can exist. AmbiPack uses error spheres to perform this bounding.

For each atom on S, its error sphere includes all of its possible positions given that

the Pi's lie in Ci's (Figure 2-4). The details of the error sphere computation are given

in Sections 2.3.2 and 2.3.2.

Up to this point we have not dealt with ambiguous constraints. However, we only

need to modify the algorithm slightly to deal with them. Note that once we have a

candidate transformation, checking whether ambiguous constraints are satis�ed is no

more diÆcult than checking unambiguous constraints; it simply requires dealing with

constraints including OR's as well as AND's. So, the only potential diÆculty is if we

cannot select an initial set of three unambiguous constraints in Step 1 of the algorithm.

If the constraints are ambiguous, we cannot tell whether the atoms referred to in the

constraints are drawn from S or S 0. In that case, however, we can enumerate the

possible interpretations of the ambiguous constraints and �nd the solutions for each

one. Assuming that all the distance constraints hold between the given structures
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and since we are dealing with at most three ambiguous measurements, this generally

involves a small number of iterations of the algorithm.

2.3.2 Algorithm Details

AmbiPack is an example of a branch-and-bound tree-search algorithm [1]. During the

search, it prunes away branches that are ruled out by the bound function. Figure 2-5

illustrates the algorithm. Initially, AmbiPack selects three constraints, PiQ
0
i < xi �A,

i = 1; 2; 3. Each node in the search tree corresponds to three cubes in space | C1,

C2, and C3; the position of Pi is limited to be inside Ci. At the root of the tree,

each Ci is centered at Q0
i and has length 2xi in each dimension. Thus, all possible

positions of Pi's satisfying the constraints are covered. At every internal node, each

Ci is subdivided into 8 cubes with half the length on each side. Each child has

three cubes 1=8 the volume of its parent's. Each parent has 512 children because

there are 83 = 512 combinations of the smaller cubes. At each level further down

the search tree, the positions of Pi's are speci�ed at progressively �ner resolution.

If one calculates transformations from all nodes at a certain level of the tree, one

systematically samples all possible solutions to the packing problem at that level's

resolution. The method of computing a transformation for a node is described below.

The very large branching factor (512) of the search tree means that an e�ective

method for discarding (pruning) solutionless branches is required. Otherwise the

number of nodes to be considered will grow quickly | 512d, where d is the depth of

the tree | precluding exploration at �ne resolution. AmbiPack uses two techniques

to rule out branches that cannot possibly satisfy all input constraints.

The �rst technique is to exploit the known distances between the Pi, since the

monomers are predetermined structures. Between any pair of atoms in S, the dis-

tance is �xed because S is a rigid structure. Suppose C1, C2 and C3 are the cubes

corresponding to a tree node. Let max(C1; C2) and min(C1; C2) be the maximum and

minimum separation, respectively, between any point in C1 and any point in C2. A
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Figure 2-5: The AmbiPack algorithm explores a tree of assignments of the three Pi

to three cubes Ci. Illustrated here in two dimensions.

necessary condition for P1 to be in C1 and P2 to be in C2 is

min(C1C2) � P1P2 � max(C1C2):

Similarly, for the other two pairs of atoms, we require min(C2C3) � P2P3 � max(C2C3)

and min(C1C3) � P1P3 � max(C1C3). If any of the three conditions are violated, the

node can be rejected; since the Pi's cannot be simultaneously placed in these cubes.

The second pruning technique makes use of the error spheres mentioned in Sec-

tion 2.3.1. For each atom on S, its error sphere includes all of its possible positions

given that the Pi's lie in the Ci's. Let E and r be the center and radius, respectively,

of the error sphere of an atom located at P on S (the computation of E and r is

discussed below). Since we want to discard nodes which cannot lead to a valid solu-

tion, we want to ensure that no possible position of P (the points within the error

sphere) can satisfy the constraints. We can do this by replacing all input constraints

on P with constraints on E (the center of the error sphere), with the constraints
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\loosened" by the error sphere radius r. Suppose PQ0 < x is an input constraint.

This pruning technique requires that EQ0 < x + r. Similarly, PQ0 > x will translate

into EQ0 > x� r. Given these loosened constraints, we can implement a conservative

method for discarding nodes. We can compute one transformation that maps the Pi

so that they lie in the Ci; any transformation that does this will suÆce. We can then

apply this transform to the centers of the error spheres for all the atoms of S. If any

of the input constraints fail, when tested with these transformed error sphere centers

and loosened by the error sphere radii, then the node can be discarded. Note that

if there are more constraints, this technique will impose more conditions; thus more

nodes will be rejected. This is why AmbiPack is more eÆcient if more constraints are

given.

The key remaining problem is eÆciently �nding the centers and radii of error

spheres for the speci�ed Pi's and Ci's.

Centers of error spheres

We want to make the error spheres as small as possible, since this will give us the

tightest constraints and best pruning. We can think of the center of the error sphere

as de�ned by some \nominal" alignment of the Pi to points with the Ci. The points

within the error sphere are swept out as the Pi are displaced to reach every point

within the Ci. The magnitude of the displacement from the error sphere center

depends on the magnitude of the displacement from the \nominal" alignment. This

suggests that we can keep the error sphere small by choosing a \nominal" alignment

that keeps the displacement of the Pi needed to reach every point in Ci as small

as possible. That is, we want the \nominal" alignment to place the Pi close to the

centers of the Ci.

We �nd the centers of the error spheres by calculating a transformation, T , that

places the Pi's as close as possible to the centers of the Ci's. For every atom P in S,

T (P ) is taken as the center of its error sphere. There are many well-known iterative

algorithms for computing transformations that minimize the sum of distances squared

between two sets of points, e.g. [13]. However, in our case, since we are dealing with
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only three pairs of points, we can use a more eÆcient analytic solution.

The points Pi de�ne a triangle and so do the centers of the Ci. Therefore, we are

looking for a transformation that best matches two rigid triangles in three-dimensional

space. It should be clear that the best (minimal squared distance) solution has the

triangles coplanar, with their centroids coincident. Suppose these two conditions are

met by two triangles x1x2x3 and y1y2y3 whose centroids are at the origin. xi's and

yi's are vectors and each xi is to match yi. Let the yi's be �xed but xi's be movable.

The only unknown parameter is �, the angle of rotation of xi's on the triangles' plane

about the origin (Figure 2-6). The optimal � can be found by writing the positions of

the xi's as a function of �, substituting in the expression for the the sum of squared

distances and di�erentiating with respect to �. The condition for this derivative being

zero is:

tan � =

P
3

i=1
jxi � yijP

3

i=1
xi � yi

:

With � found, the required transformation that matches Pi's to the centers of Ci's is

T = T4R3R2T1

where

� T1 translates the centroid of Pi's to the origin;

� R2 rotates the Pi's about the origin to a plane parallel to that of the centers of

Ci's;

� R3 rotates the Pi's about their centroid by the optimal �;

� T4 translates the Pi's centroid from the origin to the centroid of the Ci's centers.

For every atom P in S, T (P ) is de�ned to be the center of its error sphere.

Radii of error spheres

The radii of error spheres are harder to �nd than the centers. For each sphere, its

radius must be larger than the maximum displacement of an atom from the error
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Figure 2-6: When two triangles are coplanar and their centroids are coincident, there
is only one angle of rotation, �, to determine.

sphere center. The sizes of the spheres depend not only on the Ci's, but also the

locations of atoms on S relative to the Pi. The range of motion of an atom increases

with the dimension of the Ci's, as well as its separation from the Pi's. For eÆciency,

AmbiPack calculates a set of radii for atoms of S depending on the sizes of the Ci's,

but not on the Ci's exact locations. Thus all nodes at the same level of the search

tree share the same set of error sphere radii; it is not necessary to recalculate them

at every node.

Suppose the largest Ci has length d on each side. A sphere of radius
p
3d cen-

tered at any point in the cube will contain it, regardless of the cube's orientation.

Therefore we can restate the problem of �nding error sphere radii as: Given S and

the Pi's where each Pi may have a maximum displacement of
p
3d, �nd the maximum

displacements of all other atoms in S. These displacements will be used as the radii

of the error spheres. There are two possible approaches to this problem | analytical

and numerical. One can calculate an analytical upper bound of the displacement

of each atom, but it is quite diÆcult to derive a tight bound. A loose bound will

result in excessively large error spheres and ine�ective pruning. We choose a sim-

ple randomized numerical technique to �nd the maximum displacements. A large

number (1000) of random transformations, which displace the Pi's by
p
3d or less,

are generated. These transformations are applied to all atoms on S. For each atom,

32



we simply record its maximum displacement among all transformations. Empirically,

this technique converges very quickly on reliable bounds. The performance data in

the next section also shows that the resulting radii are very e�ective in pruning the

search tree.

2.3.3 Algorithm Summary

Figure 2-7 summarizes the basic AmbiPack algorithm. Note that for a problem where

some solutions exist, the search tree is potentially in�nite. There will be a feasible

region in space for each Pi. If we do not limit the depth of the tree, it will explore

these regions and will continuously subdivide them into smaller and smaller cubes.

Thus, we have an issue of choosing a maximum depth for exploration of the tree. On

the other hand, the search tree is �nite if a problem has no solution. As one searches

deeper down the tree, the Ci's and error spheres become smaller. With error sphere

pruning, the conditions on the nodes become more stringent and closer to the input

constraints. Eventually, all nodes at a certain level will be rejected.

The simplest strategy for using the AmbiPack algorithm is:

1. Select a desired resolution for the solutions, which corresponds to a level of the

search tree.

2. Search down to the speci�ed level with pruning.

3. If there are no leaf nodes (that is, if every branch is pruned due to an inability to

satisfy the constraints), there is no solution to the problem. Otherwise, calculate

transformations from the leaf nodes and test against the input constraints. One

would typically use a local optimization technique, such as conjugate gradient,

to adjust the leaf-node transformations so as to minimize any violation of the

input constraints.

4. If some transformations satisfy all constraints, output them. Otherwise, the

resolution chosen in Step 1 may not be �ne enough, or the problem may not
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1. Select three constraints (PiQ
0
i < xi, i = 1; 2; 3) from the constraint set.

2. Construct C1 to be a cube centered at Q0
1
with 2x1 on each side.

Similarly, construct C2 and C3.
3. For all level l in the search tree do
4. For all atom p on S do
5. Calculate r(p; l), the radius of error sphere of atom p at depth l.
6. Call Search(C1,C2,C3,1).

7. Procedure Search(C1,C2,C3; Search level)
8. Calculate transformation T by matching Pi's to Ci's.
9. For all input constraints pq < x do
10. Check T (p)q < x+ r(p; Search level)
11. For all input constraints pq > x do
12. Check T (p)q > x� r(p; Search level)
13. If Search level < Search depth then
14. Split Ci into C

1

i ; C
2

i ; : : : ; C
8

i , i = 1; 2; 3.
15. For j from 1 to 8 do
16. For k from 1 to 8 do

17. If min(Cj
1C

k
2
) � P1P2 � max(Cj

1C
k
2
) then

18. For l from 1 to 8 do
19. If min(Ck

2
C l
3
) � P2P3 � max(Ck

2
C l
3
) and

20. min(Cj
1C

l
3
) � P1P3 � max(Cj

1C
l
3
) then

21. Call Search(Cj
1 ,C

k
2
,C l

3
; Search level + 1).

22. else
23. Output T .

Figure 2-7: The AmbiPack algorithm. Search depth is the limit on the depth of the
tree.
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Figure 2-8: Solutions will generally be clustered into regions (shown shaded) in a
high-dimensional space, characterized by the placements of the Pi. Each leaf of the
search tree maps into some rectangular region in this space whose size is determined
by the resolution. AmbiPack samples one point (or at most a few) for each leaf region
in this solution space. At a coarse resolution, only leaves completely inside the shaded
solution region are guaranteed to produce a solution, e.g. the regions labeled A. As
the resolution is improved, new leaves may lead to solutions, some of them will be
on the boundary of the original solution region containing A, others may come from
new solution regions not sampled earlier.

have any solution. Select a �ner resolution (deeper level in the search tree) and

go to Step 2.

This strategy is generally quite successful in determining whether solutions exist for

a given problem. If solutions exist, it will typically �nd all of them at the speci�ed

resolution, determined by the maximum search depth. However, this strategy is not

completely systematic since it is relying on step 3 to �nd a solution if one exists,

but this is not guaranteed since only one, or at most a few, transformations will be

sampled for each leaf (see Figure 2-8). Our experience is that this works quite well

in practice. Most of the results reported in the next section use this simple strategy.

However, if stronger guarantees are required then a more sophisticated variant

of this strategy can be followed. As we discussed in Section 2.3.1, there are two
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Figure 2-9: Illustration of the search using a critical depth and maximal depth.

meaningful, and conicting, resolution limits in this type of problem. One arises from

the goal of �nding solutions if they exist. There is a minimum resolution determined

by the accuracy of the measurements below which it makes no sense to continue

partitioning space in search of a solution. Therefore, there is a maximal depth in the

tree beyond which we never want to proceed. However, we do not want to expand

all the leaves of the tree to this maximal depth. The other search limit stems from

desire to avoid generating too many nearly identical solutions. This de�nes a critical

depth in the tree beyond which we want to return at most a single transform if one

exists, rather than returning all the transforms corresponding to leaves. Therefore,

we can modify the AmbiPack algorithm so that, below the critical depth and above

the maximal depth, it attempts to �nd a solution (using minimization) for every node

that is not pruned. If a solution is found, it is stored and search resumes with the next

subtree at the critical depth. In this way, at most one solution is stored per subtree

at the critical resolution but the subtree is searched to the maximal resolution.
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2.3.4 Algorithm Extensions

Assume that all the speci�ed constraints must hold between the given structures.

In Section 2.3.1 we outlined how the algorithm above can be extended to cope with

ambiguous constraints. There are two parts of the algorithm in Figure 2-7 that need

to be changed:

Line 1 : Ideally, we select three constraints that have no ambiguity. If all constra-

ints are ambiguous, we select the three least ambiguous ones and enumerate

all possible interpretations of them. This requires adding an outer loop which

runs the search a3 times, where a is the ambiguity in each constraint. Typical

experiments produce constraints with 2-fold ambiguity. They are solved by Am-

biPack eÆciently. However, if each constraint has a large number of ambiguous

interpretations, AmbiPack may not be appropriate.

Lines 9 through 12 : If some constraints are ambiguous, we simply add appropri-

ate OR's to the inequalities derived from those constraints. This modi�cation

does not slow execution.

These extensions mean that we may need to run the search a3 times, which is

usually a small number. If the constraints have some special properties, this number

can be reduced even further. For example, if S is the same as S 0 and all constraints are

either positives or negatives, we need to search only 4 instead of 8 times. The positives

and negatives are symmetrical. If transformation T is a solution satisfying a set of

inequalities, T�1 is also a solution satisfying the complementary set of inequalities.

Making use of this symmetry, we choose the interpretation of one positive constraint

arbitrarily and, therefore, only need to calculate half of the solutions.

Because AmbiPack needs to select three constraints initially, it is limited to prob-

lems with three or more \less-than" constraints. This is not a severe restriction

because most practical problems have a large number of \less-than" constraints. On

the other hand, the choice of a particular set of three constraints will have a large

impact on eÆciency. Given Ci's of the same size, atoms on S will have smaller dis-

placements if Pi's are farther apart from each other. This will lead to smaller error

37



spheres and more e�ective pruning. In our implementation, we select the constraints

that maximize the area of the triangle P1P2P3.

Now, consider the case where all the constraints need not be satis�ed between the

given structures. This may be due to labeling ambiguity or simply due to measure-

ment error. As we mentioned earlier, one approach to this problem is to enumerate

subsets of the ambiguous constraints and solve them independently. The diÆculty

with this approach is that the number of subsets grows exponentially with the num-

ber of constraints. An alternative approach is, instead of requiring that all input

constraints be satis�ed, to specify a minimum number of constraints that must be

satis�ed.

Once again, it is Line 1 and Lines 9 through 12 that need to be changed. The

easy change is that Lines 9 through 12 can be readily changed from checking that all

constraints are satis�ed into counting the satis�able constraints. We reject a node

if the count is less than the minimum number. If we just make this enhancement,

without changing Line 1, we can use the algorithm to constrain \optional" chemical

properties such as the minimum number of feasible hydrogen bonds or favorable van

der Waal's contacts in a structure.

The more diÆcult problem is what to do when all of the constraints do not need

to hold. If one wants to guarantee that all possible solutions are found, then one

needs to consider all possible triples of constraints in Line 1 instead of just choosing

one initial triple. The number of such triples grows roughly as n3 when there are n

ambiguous constraints. This is a great improvement over the exponential growth in

the number of constraint subsets, but it is still the limiting factor in applying the

AmbiPack algorithm to problems with large numbers of ambiguous constraints and

multiple interfaces.

2.4 Results and Discussions

We have carried out two detailed studies using the AmbiPack algorithm to explore its

performance and illustrate its range of applicability. The �rst study involves a large
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protein (the P22 tailspike protein | a homotrimer involving 544 residues), a large

number (43) of (simulated) ambiguous measurements and a single type of interface

between three subunits. The second study involves a nine-residue peptide from �-

amyloid, a small number (8) of ambiguous measurements and two di�erent interfaces

between an inde�nitely repeating group of subunits.

In all the tests discussed below, the AmbiPack algorithm is implemented in Com-

mon Lisp [20], running on a Sun Ultra 1 workstation. All constraints used involved

carbon{carbon distances because they are commonly measured in solid-state NMR

experiments, rather than distances to hydrogen, which are currently more common

in solution NMR spectroscopy.

2.4.1 P22 Tailspike Protein

The �rst test of the AmbiPack algorithm is the P22 tailspike protein [39] (PDB [3]

code 1TSP). In its crystal structure, the positions of 544 residues are determined. The

protein forms a symmetric homotrimer. Each subunit of the homotrimer contains

a large parallel � helix. We use AmbiPack to �nd the relative orientation of two

subunits; the third subunit can be placed by applying the solution transformation

twice, as discussed in Section 2.2.

First, we measured the intermolecular distances between C� carbons at the inter-

face of the subunits. There were 43 C�-C� distances less than 5.5 �A (a typical upper

bound for distance measurements in some NMR experiments), giving 43 positive con-

straints. To be conservative, we speci�ed each constraint with an upper bound of 6 �A.

For example, one of the constraints was (C120

� C
0
124

� < 6:0 �A) OR (C124

� C
0
120

� < 6:0 �A).

The 43 ambiguous constraints and the two identical subunit structures were given

to the algorithm. The constraints have a total of 242 possible interpretations. Our

program solved this problem in 279 seconds to a maximal resolution where the Ci's

are 2 �A on each side. Most of the computer time was spent in the recursive search

procedure. When the 47 solution transformations were applied to a subunit, the re-

sults had an average RMSD of 0.6078 �A from the X-ray structure. The worst solution

had an RMSD of 2.853 �A. This error is much smaller than the ranges of input con-
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Critical Res. Maximal Res. No. Solutions Avg. RMSD Time (sec)
2.0 2.0 47 0.6078 279
2.0 0.5 743 1.073 3801
2.0 0.25 827 1.033 11497

Table 2.1: Results of AmbiPack running on the P22 tailspike trimer with di�erent
values of the maximal resolution for the search.

straints. The four search trees (arising from exploring the ambiguous assignments of

the �rst three constraints chosen, given identical subunits) had a total size of 57; 425

nodes. The e�ective branching factor is 24.3 instead of the theoretical worst case of

512. The branching factor becomes smaller as we search deeper because the pruning

techniques become more powerful.

We investigated the e�ect of using di�erent values for the maximal resolution

during the search, while leaving the critical resolution at 2 �A (see Section 2.3.3). The

results are shown in Table 2.1. Note that there are many more leaves that lead to

a solution when using �ner critical resolutions. However, we found that there were

no distinctly di�erent solutions introduced, rather one obtains more samples near

the boundary of a single solution region (see Figure 2-10). The gradual increase in

the average RMSD is consistent with the fact that the new solutions obtained with

improved maximal resolution are from the boundary of a relatively large solution

region.

These solutions are obtained without using any steric constraint of the protein.

Following a suggestion of an anonymous reviewer, we �ltered these structures by

steric constraints. Figure 2-11 shows solutions that contain 5 or fewer severe steric

clashes. We de�ne a severe steric clash as having two atoms' van der Waal's spheres

overlapping by 1�A or more. These selected solutions are con�ned to a small region

around the packing of the crystal structure. This shows that steric constraints are

e�ective as a �lter of packing solutions. The user would have the choice of provision-

ally accepting solutions that violate steric and using re�nement methods to relax the

structures while satisfying all constraints or, alternatively, �ltering out such solutions
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Figure 2-10: The translation components of solutions from AmbiPack running on
the P22 tailspike trimer with critical resolution of 2.0�A and maximal resolution of
(A)2.0�A, (B)0.5�A, and (C)0.25�A. The solution from the crystal structure, (0,0,0), is
marked by a cross. The rotation components are mostly identical for all solutions.
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and requiring the monomer generating procedure to provide more accurate structural

models. Presumably data rich problems would be amenable to the latter solution and

data poor problems are more eÆciently solved with the former.

As one would expect, changes in the maximal resolution (and therefore the max-

imal depth of the search tree) have a substantial impact on the running time. Sub-

sequent experiments were done with both the critical and maximal resolution set to

2 �A.

We also used the tailspike protein to investigate the e�ect of quantity and type

of constraints on protein structures. We constructed various sets of constraints and

measured the computational resources required to �nd solutions for each set as well

as the accuracy of structures. Results of the runs are plotted in Figures 2-12 and

2-13. Each data point on the plots is the average over 25 randomly selected sets of

constraints. Initially, we used di�erent subsets of the 43 positive constraints. These

runs produced the uppermost lines on the plots. Figures 2-12 shows the computational

resources approximated by the number of nodes in the search trees. Clearly, the

computer time decreases rapidly as more positive constraints are added. This reects

the e�ectiveness of early pruning in the AmbiPack algorithm. Figure 2-13 shows

the worst RMSD in the solutions. Solutions improved rapidly in quality with more

positive constraints. In general the plots show diminishing returns when adding

positive constraints.

Next we studied the e�ect of negative constraints. In the crystal structure, we

found more than 100,000 pairs of C�'s with distances greater than 7 �A. Thus there

are many more potential negative constraints than positive ones. We speci�ed each

negative constraint with a lower bound of 6 �A, e.g. (C114

� C
0
117

� > 6:0 �A) AND

(C117

� C
0114

� > 6:0 �A). However, we found that these negative constraints had almost

no e�ect on the computer time or solution quality. We believe that most negative

constraints, whose C� pairs are very far apart in the crystal, do not a�ect the packing

solutions. We randomly selected 500 negative constraints whose C� pairs are farther

than 20 �A and added them to the 43 positive constraints. The size of search tree and

resulting solutions were identical to those when using only the positive constraints.
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Figure 2-11: The translation components of solutions from AmbiPack running on the
P22 tailspike trimer, with 5 or fewer severe steric clashes. The critical resolution is
2.0�A and the maximal resolutions are (A)2.0�A, (B)0.5�A, and (C)0.25�A. The solution
from the crystal structure, (0,0,0), is marked by a cross.
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Figure 2-12: Computational resources used by various combinations of positive and
\near-miss" negative constraints.
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Therefore, these negative constraints from far-apart atom pairs do not contain new

information for structure determination.

In order to explore the potential impact of well-chosen negative results, in the later

runs, we used only \near-miss" negative constraints from C� pairs whose actual dis-

tances are just a little above the lower bound. In the P22 tailspike protein, we found

589 \near-misses" from measuring the crystal structure with an upper bound of 10 �A.

These constraints did a�ect the computer time and solution accuracy. The results of

runs with \near-misses" are also shown on Figure 2-12 and 2-13. Computational eÆ-

ciency and solution quality improved as more \near-miss" negative constraints were

added, though their e�ect is not as signi�cant as the same number of positive constra-

ints. In these simulations, positive constraints contain ambiguous information, but

they are more valuable for structure determination than the unambiguous negative

constraints. These results also suggest that experiments should be designed to obtain

negative data close to the boundary of detection, thus maximizing information on

the structure. For example, if a small set of constraints is known, we can use the

triangle inequality to establish upper bounds on other distances[8]. Further experi-

ments can be directed towards measurements with small upper bounds. It should be

noted that in certain circumstances, strategically chosen negative constraints may be

especially useful; the results here suggest that randomly selected negative constraints

are unlikely to be as useful as randomly selected positive constraints.

2.4.2 C-terminal Peptide of � Amyloid Protein

The second test of the AmbiPack algorithm is a nine-residue peptide. This peptide

(�34-42) is from the C-terminus of the � amyloid protein (�1-42). Lansbury, Grif-

�n et al.[21] have applied solid-state 13C NMR to this peptide and measured intra-

and intermolecular 13C-13C distances. Their experiments produced 8 positive and

12 negative intermolecular constraints. A pleated antiparallel � sheet was proposed

as the structure that satis�es all constraints, although the data can only de�ne the

structure to a relatively low resolution. There are two types of interfaces in their

proposed structures. They alternate among the �-strands in the sheet (Figure 2-2).
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Figure 2-13: Quality of structures produced by various combinations of positive and
\near-miss" negative constraints. The RMSD is measured by applying the computed
transforms to one of the P22 tailspike monomers (from the X-ray structure) and
measuring the displacement from this monomer to the nearby monomer in the X-ray
structure.
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Either interface satis�es all negative constraints but only a subset of the positive ones.

Together the interfaces satisfy all positive constraints.

A nine-residue poly-alanine idealized �-strand was energy minimized subject to

the intramolecular backbone carbon{carbon distance restraints and used as the monomer3.

AmbiPack was given the 20 measured constraints and additional constraints that elim-

inate steric clashes. The positive constraints have very lenient upper bounds of 6.5 �A

and the negatives also have lenient lower bounds of 5.5 �A. Still, AmbiPack could

not �nd any solution to this problem, meaning that there is no single packing that

satis�es all the constraints; two or more di�erent packings are required. This result

is consistent with Lansbury et al.'s two-interface structures.

If there are two or more packing interfaces, each one must satisfy a subset of the

positive constraints and together they must satisfy all. We ran our program on all

subsets down to three positive constraints, which is the minimum requirement for

AmbiPack. Because of the symmetry of the constraints, we search only four times

for each subset to a resolution where the Ci are 2 �A on each side. The results are

shown in Table 2.2. There are many subsets with solutions; we investigate only the

largest ones. There is one set with 7 constraints (set A). There are 9 sets with 6

constraints, but 7 of the 9 are subsets of A. We call the other two sets B and C. They

are given in Table 2.3. When given set A plus all negative constraints, our program

found four solutions (Figure 2-14). By symmetry, there are four other solutions due

to the inverse transforms. They are not shown in the �gure. One of the four solutions

is antiparallel to the stationary strand. Three others are tilted with respect to the

stationary one. AmbiPack found three solutions to constraint set B (Figure 2-15).

In this case, one solution is antiparallel and two are tilted. C gives a single tilted

solution (Figure 2-16).

In order to �nd the full structure of the peptide, we need to combine the solutions

from A with those from B or C. A [ B or A [ C gives the complete set of positive

constraints. Lansbury et al. have shown that this peptide forms a noncrystalline,

3Initial experiments had suggested that the monomer was a bent �-strand due to a cis peptide
bond, but more recent evidence is consistent with an all-trans structure.
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Constraint set size Number of sets Sets with solutions Running time per set
(sec)

8 1 0 63
7 8 1 90
6 28 9 92
5 56 29 106
4 70 50 135
3 56 50 201

Table 2.2: Results of AmbiPack running with multiple subsets of positive constraints.

All Positive
Constraints A B C

C37

� ; C
38 C37

� ; C
38 C37

� ; C
38 C37

� ; C
38

C37; C39

� C37; C39

�

C36; C39

� C36; C39

� C36; C39

� C36; C39

�

C36; C40

� C36; C40

� C36; C40

�

C34; C39

� C34; C39

� C34; C39

�

C34; C40

� C34; C40

� C34; C40

� C34; C40

�

C36

� ; C
38 C36

� ; C
38 C36

� ; C
38 C36

� ; C
38

C36

� ; C
39 C36

� ; C
39 C36

� ; C
39

Table 2.3: The complete positive constraints and three subsets.
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Figure 2-14: 4 packing solutions to constraint set A.
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Figure 2-15: 3 packing solutions to constraint set B.
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Figure 2-16: A single solution to constraint set C.
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yet ordered aggregate. The most plausible structure consists of an in�nite number of

subunits which \tile" the space in a regular fashion. Therefore, we try to calculate a

continuous structure with alternating interfaces from A and B or A and C. First, we

focus on A and B. Suppose T1 and T2, two rigid transformations, are solutions to A

and B respectively. Let S be the subunit. Then

S; T1(S); T1T2(S); T1T2T1(S); T1T2T1T2(S); : : :

is the series which forms a continuous structure from T1 and T2. The interface between

S and T1(S) satis�es A, whereas the interface between T1(S) and T1T2(S) satis�es

B, and so forth. There are 4 � 2 � 3 � 2 = 48 such structures possible. Again,

by symmetry of the transformations, we need consider only half of the structures.

22 of the 24 have steric clashes among the subunits. The two structures without

steric clashes are shown in Figure 2-17. Structure 1 is an antiparallel � sheet that

is compatible with the hydrogen-bond pattern of Lansbury et al.'s model. In this

structure the hydrogen-bonding partners of Lansbury et al.'s model are properly

aligned, albeit too distant, for good hydrogen bonds. This structure can be a starting

point for structure re�nement. Structure 2 is a non-sheet structure which does not

form regular hydrogen bonds. Combining solutions from A and C, there are four

solutions, all non-sheet like.

2.5 Conclusions

The AmbiPack algorithm has been developed to pack pre-conformed monomer struc-

tures into multimers using interatomic distance constraints. A novel feature of the

approach taken here is that it eÆciently and accurately deals with the labeling ambi-

guity inherent in symmetric multimers due to a lack of knowledge about which atom

in an intermolecular distance constraint comes from which monomer. The branch-

and-bound method is applied to a search tree de�ned for progressively �ner levels of

resolution in the placement of three points on one of the monomers. EÆcient pruning
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Structure 1

Structure 2

Figure 2-17: Two continuous structures with alternating interfaces satisfying A and
B, but without steric clashes.
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dramatically reduces the branching factor for this tree from a theoretical value of

512 to values typically 20-fold lower. Improved pruning causes the algorithm to run

faster when more constraints are present. While the algorithm is exhaustive at any

desired level of resolution, we have found that it is generally suÆcient to stop the

search at relatively coarse resolution of 2 �A. In our tests, resolutions down to 0.25 �A

did not generate distinct new solutions. Methods based on this algorithm could be

especially useful in instances where it is important to establish the uniqueness of a

packing solution or to �nd all possible solutions for a given set of constraint data.
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Chapter 3

ConfMatch: Matching

Conformations to Electron Density

3.1 Introduction

Determining the structures of proteins is essential to understanding molecular biology

of cells. X-ray crystallography is the \gold standard" for protein structure determi-

nation. Appendix A explains the terminology and summarizes the process of X-ray

crystallography. This chapter describes ConfMatch, a systematic algorithm for an

important step in solving an x-ray structure|building a model from the initial three

dimensional electron density distribution (density map). ConfMatch solves this \map

interpretation" problem by matching a detailed conformation of the molecule to the

density map. This problem is computationally challenging because proteins are ex-

tremely exible. A typical protein may have several hundred degrees of freedom.

The space of possible conformations is astronomical. If one de�nes a function that

evaluates how well a conformation matches the density map, this function will have

many local minima over the space of possible conformations. Any non-systematic

algorithm may produce a local optimum instead of the global optimum. ConfMatch

quantizes the continuous conformational space into a large set of discrete conforma-

tions and �nds the best solution within this discrete set. Because ConfMatch samples

the conformational space very �nely, its solution is usually very close to the globally
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optimal conformation.

ConfMatch's approach is based on �tting a chemically feasible molecular struc-

ture to an imperfect density map. It �nds this \best match" structure by a sys-

tematic branch-and-bound search. The output of ConfMatch, a chemically feasible

conformation, is both detailed and high quality. It is detailed because it includes all

non-hydrogen atoms of the target molecule. It is high quality because the conforma-

tion satis�es various commonly-accepted chemical constraints such as bond lengths,

angles, chirality, etc.

ConfMatch has several important potential applications:

1. When a scientist tries to solve a structure by multiple isomorphous replace-

ment (MIR) or multiple wavelength anomalous dispersion (MAD), he/she must

spend a long time manually �tting and re�ning the molecular structure to the

experimental density map. This manual step can be mostly automated if an

algorithm can �nd a high quality structure matching well to the density map.

Therefore ConfMatch can be a time-saving tool for protein crystallographers.

2. Since the molecular structure found by ConfMatch is chemically reasonable, this

structure can in turn produce an improved density map which takes into account

the chemical constraints. Therefore, our approach is a scheme to optimize

the electron density distribution. If one integrates it with other optimization

methods operating on the phase set (Section B.4), one may be able to develop

a purely computational solution to the phase problem. Therefore ConfMatch

may be a part of a direct method for protein crystallography.

3. Instead of �tting a single structure to the electron density, ConfMatch can be

adapted to �t a family of structures simultaneously to any kind of stationary

�eld (Section 3.4.5). The result would be the best-�t structure within the family.

For example, one may calculate the optimal electrostatic �eld for binding of a

disease causing protein [25]. This optimal �eld speci�es the electrostatic charges

at di�erent regions of space potentially occupied by a ligand. The space may be

partitioned into regions charged positively, negatively, or neutrally. ConfMatch
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can at once �t all peptides of a certain length to this �eld. The output structure

will give the best theoretical peptide ligand to this protein, as well as its most

favored conformation. Therefore ConfMatch can be a useful tool for rational

drug design.

3.2 Related Work

The process of building a model from the initial electron density map (map inter-

pretation) is an important part of solving an x-ray structure. For small molecules

with high resolution data, the most common method for map interpretation is peak

picking. This algorithm simply �nds the w highest peaks (local maxima) in the map,

where w is the expected number of atoms in a unit cell, and declare them the atom

positions. The identities of di�erent peaks are usually labelled manually. Peak pick-

ing has long been used in small-molecule direct methods because crystals of small

molecules di�ract to very high resolution. Atoms are located at the peaks of den-

sity maps at suÆciently good resolution. However, peak picking becomes ine�ective

with worse than 1.2�A data. At lower resolution, atoms rarely locate at the peaks of

the electron density map. Most macromolecules of interest di�ract to 2.0�A or worse.

Therefore the applicability of peak picking to protein crystallography is limited.

Currently, there is no fully automated solution that can derive a detailed molecular

structure from a density map for protein-size molecules. Much manual intervention is

required to construct such a model. There are several computational approaches that

automate di�erent aspects of this process. Most of these techniques attempt to detect

within the density map certain structural features, which may guide or facilitate the

human model builder.

Skeletonization [17] is a widely used method for building protein models. First,

the map is searched to locate three kinds of features|peaks, ridges, and join points.

Peaks are the same features de�ned in the previous method. A ridge is the highest

density path joining two peaks. A join point is the lowest point on a ridge. In other

words, a join point is the the lowest point on the highest path joining two peaks.
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The output of this method is a set of ridges forming the \skeleton," which may trace

the main and secondary chains of the molecule. Usually, only ridges with high-value

join points are included in the output. Similar to peak picking, the skeleton is an

unlabelled structure. The atom labels are usually added manually to the skeleton,

which is then re�ned.

Molecular scene analysis [26] is a new approach to map interpretation. At medium

(�3�A) resolution, this algorithm searches the map to locate two kinds of features|

peaks and passes. Peaks are de�ned the same way as in the previous methods. A pass

is a saddle point in the map where the three �rst derivatives are zeroes, but only two

out of the three second derivatives are positive. A pass is very similar to a join point

in the previous method. Leherte et al. observed that, at medium resolution, the peaks

correspond to amino acid residues, while the passes correspond to the adjacency of

the residues in the primary sequence. The protein backbone can thus be viewed as

a sequence of alternative peaks and passes. Given the peaks and passes features, the

molecular-scene-analysis method calculates a minimal spanning tree of alternating

peaks and passes. The peaks are declared as the locations of either the residues or

large side chains. The next stage of the algorithm �nds the most plausible way to

superimpose the amino acid sequence onto the spanning tree by protein threading

methods.

Zou and Jones developed an alternative approach to matching a protein sequence

to a model structure [41]. Their method requires the crystallographer to build at

least a polyalanine model through the density map. For each of the 20 residue types,

their program optimizes the �t of the side-chain atoms to the density by pivoting the

side chain around each C� atom. For the best �tting rotamer of each residue type,

a score is calculated which is used as an index of how well that amino-acid type �ts

the density. Once the scores are obtained for every residue type at every position,

Zou and Jones' method calculates how well a sequence of amino acids matches the

backbone model by combining the individual scores. The output of their program

de�nes the placements of subsequences of the protein on the polyalanine structure.

Template convolution [23] is a new approach to detecting large structural features
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in the density map. A template is a set of atoms, usually an ideal, short �-helix or

�-strand. This algorithm rotates the template around a pivot point for each point in

the map, and a score is calculated which reects how well the atoms �t the density

for each orientation at each point. This is equivalent to a six dimensional rigid-body

search. The highest scores indicate the locations and orientations of the templates.

The structural features detected by this method can guide the human model builder

or enhance the electron-density map.

The biggest di�erence between ConfMatch and existing approaches is that Conf-

Match is fully automated. No human guidance is required in constructing a detailed,

high-quality molecular structure. ConfMatch generates its output conformation di-

rectly from the density map. It removes human subjectivity from the map interpre-

tation process.

Unlike most existing techniques, ConfMatch does not use any local features. With-

out the aid of local features, ConfMatch is usually more computationally intensive

than feature-based algorithms. On the other hand, ConfMatch's output achieves a

global property|the entire conformation is a \best match" to the density map. The

use of a global property instead of local features may allow ConfMatch to interpret

less accurate density maps than other algorithms.

3.3 The Conformational Matching Problem

This section describes an approach to interpreting an electron density map by solving

the conformational matching problem|�nding a conformation that best matches the

density. At resolutions typical of protein crystals, the peaks of the density map

usually do not correspond to atom positions, but the high density regions still follow

the main and side chains of the protein. Thus it is quite possible to �nd the correct

conformation from a medium resolution density map. To overcome the inaccuracies

of the density map, we make use of the commonly-accepted chemical constraints

such as bond lengths, angles, chirality, etc. These constraints limit a molecule to its

chemically feasible conformations. The possible distribution of atoms is much more
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restricted if they must obey the basic rules of chemistry. By applying more chemical

constraints, we hope to produce a fully automated solution to electron-density map

interpretation.

The de�nition of the conformational matching problem is: Given an electron den-

sity map and the primary structure of a molecule, assuming �xed bond distances and

angles, �nd a feasible conformation such that the sum of the density at (non-hydrogen)

atom positions is maximized. A feasible conformation is one which satis�es constra-

ints such as cis/trans and planarity of double bonds, chirality, and excluded volume

(Section 3.4). The objective function, the sum of the density at non-hydrogen atom

positions, ignores the di�erent identities of atoms. A carbon atom occupying a posi-

tion is valued the same as if a nitrogen atom occupies it. If all non-hydrogen atoms

have similar atomic numbers, their electron density distributions will be very similar.

This objective function is adequate if the molecule is composed of C, N, O, and H

only. However, if some non-hydrogen atoms have much higher atomic numbers than

others, the objective function may need to be modi�ed. One possible solution (Sec-

tion 3.5.2) is to separate the atoms into two classes: heavy atoms and light atoms.

Each class has its own electron density distribution that the atoms will measure from.

The modi�ed objective function is to maximize the sum of density, measured from

an atom's particular density distribution, at positions of all atoms.

Instead of maximizing the sum of density at atom locations, there are other pos-

sible measures for the best structure. For example, one could minimize the R-factor,

or the electron density unaccounted for by the structure. However, it is diÆcult to

develop an eÆcient algorithm for these objective functions because they are calcu-

lated based on the entire density distribution, not just at the atom positions. The

conformational matching problem as de�ned above strikes a good balance between

computational eÆciency and the accuracy of results.

Conformational matching is a constrained global optimization problem. One can-

not solve this problem by �nding local features in the density map, for a locally

optimal conformation may not be part of the globally optimal solution. This is es-

pecially true in the presence of errors in the density map. In order to �nd the global
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Notation Description Section

p Number of free dihedral angles 3.3
n A node in the fragment tree 3.4.1
j Bond placement 3.4.1

En;j An upper bound of the density sum 3.4.1
of n's sub-fragment-tree,

where n's in-bond is placed at j.
s Number of torsional samples 3.4.1
ein;j The density sum of the i-th sample of fragment n 3.4.1
Si
n;j An upper bound of the density sum 3.4.1

of n's sub-fragment-tree,
provided that sample i is chosen for fragment n.

R A rotational transformation in Cartesian coordinates 3.4.2
�L Sampling interval of torsional angles (pseudo uniform) 3.4.2
t A state in conformational search 3.4.3

f(t) An upper bound of the density sum of the entire 3.4.3
structure given the current partial structure at t

g(t) Density sum of the partial structures at t 3.4.3
h(t) An upper bound of the density sum of 3.4.3

the remaining structure
flim f -value limit for a depth-�rst search 3.4.3
M An upper bound of the density sum of 3.4.3

the entire structure
d The density sum of a solution structure 3.4.4
� The minimal improvement in solution we can accept 3.4.4
C A transformation from fractional into 3.5.2

Cartesian coordinates

Table 3.1: These symbols are de�ned in Chapter 3 and listed in the order of their
appearance.

optimum, some form of global search is required. If one assumes �xed bond angles

and bond lengths, the number of degrees of freedom of a conformation is 6+p, when

p is the number of free dihedral angles. (Table 3.1 lists all symbols de�ned in this

chapter.) The extra 6 degrees of freedom comes from the rigid displacements. Even

for very small proteins, p can run into the hundreds. The number of possible confor-

mations, exponential in p, is astronomical. Exhaustive conformational search, such

as uniform torsional search, is impractical without an intelligent way to vastly reduce

the search space.
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3.4 The ConfMatch Algorithm

ConfMatch is a systematic algorithm for solving the discretized conformational match-

ing problem. The discretization speci�es a 3D grid in space. For ease of implementa-

tion, we require that the 3 axes of the grid follow the axes of the unit cell. The grid

axes are thus orthogonal in fractional space but not necessarily in Cartesian space.

All atoms are required to locate on grid points. This grid will allow us to use discrete

combinatorial techniques. The size of the grid also determines the local quality of the

initial solution structure. Given a �ne grid, the resulting structure is very close to

the continuous solution. However, local constraints such as bond lengths and angles

may be violated slightly as a function of grid size. To improve the local quality and

remedy these violations, one may simply apply local optimization techniques, such as

conjugate gradient in a continuous search space, on the output of ConfMatch. Usu-

ally, we choose 0.5�A as the grid spacing. In the rest of this chapter, all references to

bond lengths, angles, and planarity have some implicit tolerance that permits the use

of the grid.

ConfMatch is a branch-and-bound method with two stages: the bound-preprocessing

stage and the search stage. The bound-preprocessing stage runs in time proportional

to a function polynomial in p, the number of free dihedral angles (polynomial time). It

calculates a table of upper bounds on the possible density sum. These upper bounds

are based on all conformations that have the correct bond lengths and angles, but

may or may not satisfy the excluded volume constraints. This set of bounds will

allow the second stage to avoid most of the search space. The search stage performs

a systematic conformational search of the target molecule. Each torsion angle of a

single bond is searched through a series of possible values, similar to the internal co-

ordinate tree search [28]. However, it is much more eÆcient than internal coordinate

search because of the bounds: At every step of the conformational search, ConfMatch

retrieves from the bounds table an accurate estimate of the remaining density sum. If

the estimate is too low, the particular search direction is terminated. Therefore it can

explore only a small portion of the search space and �nd the solution conformation.
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Like other back-tracking search techniques, this stage can take time proportional to a

function exponential in p (exponential time) in the worst case. Although, in practice,

the search stage may take much less time than the bound-preprocessing stage given

good density data.

Because any molecule must obey the basic rules of chemistry, a molecule's primary

structure translates into a large number of geometric constraints, including:

1. bond angles,

2. bond lengths,

3. cis/trans and planarity of double bonds1,

4. chirality of all chiral centers,

5. intramolecular excluded volume constraints, i.e. any pair of non-bonded atoms

in the same molecule must be apart further than the sum of their hard sphere

radii,

6. intermolecular excluded volume constraints, i.e. any pair of atoms in di�erent

molecules (including symmetry mates) must be apart further than the sum of

their hard sphere radii.

Although the bond angles or lengths do vary a small amount among di�erent mole-

cules, their variation is not nearly as large as the grid spacing. They can be assumed

�xed for the conformational matching problem. We call the above constraints the

full set. The conformational matching problem is equivalent to maximizing the total

density at atom positions while satisfying the full constraints. ConfMatch separates

these geometric constraints into two sets, local and non-local, one for each stage of

the algorithm. (full = local [ non-local) The bound preprocessing stage satis�es

the local set:

1. angles of all bonds except exible-ring-forming ones,

1If it is not known whether a double bond is cis or trans, ConfMatch can calculate the most likely
isomer. Section 3.4.5 describes a simple extension to the algorithm that handles this case.
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2. lengths of all bonds except exible-ring-forming ones,

3. cis/trans and planarity of all double bonds except exible-ring-forming ones,

4. chirality of all chiral centers.

A exible ring must have at least one rotatable bond. For proteins, the exible-

ring-forming bonds refer to disul�de bonds only. In other molecules, we need to

remove one bond from each exible ring. The aromatic rings, such as the phenol

ring, are rigid and not broken apart. If a rigid ring is puckered, such as the one

in proline, but its exact puckering is unknown, ConfMatch can calculate the most

likely one. A simple extension to the algorithm that handles this case is described

in Section 3.4.5. Figure 3-1 shows how a bond is removed from a exible ring of

a complex molecule. Note that the number of atoms remains unchanged and the

molecule is still a connected structure.

The search stage sati�es the remaining constraints, the non-local set:

1. angles, lengths, and planarity of ring-forming bonds,

2. intramolecular excluded volume constraints,

3. intermolecular excluded volume constraints.

3.4.1 The Bound-preprocessing Stage

A molecule without any exible rings has a tree-like structure. In a tree-structured

molecule, the constraints in local do not impose any limit on the dihedral angles be-

cause steric clashes are allowed and there are no rings to close. The key observation

enabling ConfMatch is: Without any constraints on the dihedral angles, the optimiza-

tion of density sum can be solved in time polynomial in the number of dihedrals by

dynamic programming. We will describe the optimization method later in this section.

Because local is a subset of full, this maximized density sum must be an upper bound

on the solution to the complete problem. In fact, the bound-preprocessing stage is

solving a relaxed conformational matching problem because constraints in non-local
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Figure 3-1: A bond is removed from the exible ring of rifamycin SV [2], a macrocyclic
molecule. The smaller rings are rigid and not broken apart. The local constraint set
speci�es the local geometries of the reduced molecule.
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are ignored. Introducing these non-local constraints can never increase the optimal

density, only possibly decrease it.

We are guaranteed that the solution (maximum density sum) to the local set is

an upper bound of the full set. In order to maximize its usefulness, we also want

the upper bound to be as tight as possible. Given a reasonable electron density

distribution, this upper bound from local is likely to be close to the actual value for

the following reasons:

� Most bonds are included in the calculation. The ring forming ones constitute a

small percentage of the bonds in a typical macromolecule.

� All important local geometries, including angles, lengths, planarity, chirality,

are considered in this stage.

� A reasonable density distribution has most of its density near the correct con-

formation. Figure 3-2 shows the crystal structure of a peptide and its density

distribution with substantial error added. Most atoms do not locate at the

peaks of the density map, but the density does tend to coalesce around the

correct structure. This kind of distribution does not tend to induce many steric

clashes even when they are allowed. However, as the quality of the density

data deteriorates, more and more steric clashes will be induced. There will be

more conformations with steric clashes and that have higher density sums than

the best conformation without clashes. As a result, the gap between the upper

bound and the actual value will grow.

Results in Section 3.5 will show that the di�erence between the upper bound and

the solution is usually very small for data with low to medium level of error. This

di�erence is sometimes less than the density of a single atom.

The bound-preprocessing stage uses a bottom-up, dynamic programming ap-

proach to calculate the upper bound. This approach begins with the observation that

all molecules can be viewed as an assembly of small, rigid fragments. For instance,

Figure 3-3 shows how a glycine molecule can be formed from two rigid fragments.
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Scripps Xfit/XtalView plot trp created Fri Jul 23 18:32:53 1999  for wang 

Figure 3-2: A partial structure of Alpha-1 [35], a designed alpha-helical peptide, and
its electron density distribution at 2�A resolution with 50o (standard deviation) phase
error.
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Figure 3-3: A glycine molecule can be separated into 2 rigid fragments. Its fragment
tree has 2 nodes.

Note that all hydrogen atoms are \uni�ed" with their heavier neighbors because we

do not calculate the positions of hydrogens explicitly. Hydrogen atoms are not re-

solvable in typical electron density maps. The bond where the two fragments join

is freely rotatable, giving the molecule an extra degree of freedom. A protein would

have hundreds of these rigid fragments and hence hundreds of degrees of conforma-

tional freedom. For each rigid fragment, we de�ne one bond to be its in-bond and

some other bonds to be its out-bonds. In general, a fragment can have at most one

in-bond and any number of out-bonds. For example, the fragment centered at the

�-carbon of valine would have two out-bonds|one along the protein backbone and

the other along the valine sidechain. Two fragments can be linked if one's in-bond

coincides with the other's out-bond.
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Given the input to ConfMatch|the primary structure of a molecule, the �rst step

of the algorithm removes the ring-forming bonds and divides the rest of the structure

into rigid fragments. If exact coordinates of the fragments are not given, one may use

a library of standard fragments. Each fragment is connected to the others through

in-bond-out-bond relationships. The fragments form a fragment tree that matches

the tree structure of the molecule. The forks in the tree are formed by fragments

with multiple out-bonds. The fragment tree of a protein would have a long stem

corresponding to the main chain, as well as many short branches corresponding to

the sidechains. The structure of fragments and their in-bond-out-bond relationships

assure that the local geometry of the molecule is correct. Thus the local constraint

set is satis�ed by all conformations derived from the fragment tree.

The output of the bound-preprocessing stage is a large table of bounds. Each

entry is written as En;j where n is a particular node in the fragment tree; j is the

position of a pair of grid points (

0
BBBBB@

xj

yj

zj

1
CCCCCA

and

0
BBBBB@

x0j

y0j

z0j

1
CCCCCA
). En;j stores the maximum

density sum (satisfying only the local set) of the sub-fragment-tree of n (Figure 3-4),

where n's in-bond is located at j, that is, the �rst and second atom of the in-bond

are located at

0
BBBBB@

xj

yj

zj

1
CCCCCA
and

0
BBBBB@

x0j

y0j

z0j

1
CCCCCA
respectively. There is an entry for every node in

the fragment tree and every pair of grid points separated by the right bond length.

Because a unit cell's neighbors are exact copies of itself, we need to consider only the

grid points within a single cell. However, for pairs that cross the unit cell boundary,

the out-of-bound point is translated back into the cell. This table's size is equal to

the size of the fragment tree �

the number of pairs of grid points at bonding distance in a unit cell .

The number of fragments in a structure is equal to 1 plus its torsional degrees of

freedom p. A typical bond is between 1 and 2�A, which is quite small compared with

the unit cell of a crystal. Therefore the number of pairs of grid points at bonding
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distance is a small constant2 multiple of the size of the grid. We can rewrite the table

size as

a small constant � (1 + p) � the number of grid points .

It is also the space complexity of the bound-preprocessing phase. This table can take

a large amount of storage if the input molecule has many degrees of freedom and a

large unit cell. For instance, the bounds table has more than 600 million entries for

a short 12-residue peptide with an 11,000�A
3

unit cell. Section 3.4.2 describes several

techniques that reduce the table size by a constant factor while retaining most of the

information.

The bounds table is calculated node by node. The iteration over n, the node in

the fragment tree, is the outer loop, while the iteration over j, the bond placement,

is the inner loop. This calculation is done in a bottom-up fashion. Initially, the

bounds of the leaf fragments are computed. Since the subtree of a leaf node is the

leaf itself, we only need to calculate the bound of a single rigid fragment. At every

grid-point-pair, we simply do a uniform torsional sampling about the in-bond and

store the maximum density sum. Figure 3-5 shows a torsional sampling of the second

fragment of glycine. Suppose s torsional angles are uniformly sampled for a leaf node

n whose in-bond is located at j. The i-th sample is generated by a rotation of �i =
2�i
s

around n's in-bond. This rotation corresponds to the following rigid transform [7]:

2
666666664

kxkxv�i + c�i kxkyv�i � kzs�i kxkzv�i + kys�i xj

kxkyv�i + kzs�i kykyv�i + c�i kykzv�i � kxs�i yj

kxkzv�i � kys�i kykzv�i + kxs�i kzkzv�i + c�i zj

0 0 0 1

3
777777775

2
666666664

1 0 0 �xj
0 1 0 �yj
0 0 1 �zj
0 0 0 1

3
777777775

2Actually this constant is the number of grid points on a sphere with radius equal to the bond
length. This number is proportional to the square of grid spacing, or 2/3 power of the number of
grid points if we assume uniform grid spacing.
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Figure 3-4: A fragment tree and its entries in the bounds table. Each set of entries
stores the upper bounds of a sub-fragment-tree.
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Figure 3-5: A torsional sampling about the in-bond of the second fragment of glycine.

Where

0
BBBBB@

kx

ky

kz

1
CCCCCA
is the unit vector in the direction of

0
BBBBB@

x0j � xj

y0j � yj

z0j � zj

1
CCCCCA
; c�i = cos �i, s�i =

sin �i, and v�i = 1 � cos �i. Section 3.4.2 describes some techniques which perform

the torsional sampling without using these transformation matrices.

Let ein;j be the density sum of the i-th sample. This value is the density sum of a

single fragment at a particular con�guration. It can be calculated in time proportional

to the number of atoms in the fragment minus 2. To avoid double counting, we do

not include the 2 atoms of the in-bond. These atoms are included in the density sum

of the parent fragment. Then

En;j =
s

max
i=1

ein;j: (3.1)

The inner nodes's bounds can be calculated based on their children's values. Sup-

pose n is an inner node whose children are nodes n1; n2; : : : ; nm. At every grid-

point-pair, we also do a uniform torsional sampling about the in-bond of n. At each

sample, we also �nd the positions of out-bonds 1 to m. Let jil be the position of the

lth out-bond at sample i of node n. Instead of maximizing n's density sum alone, we

maximize the sum plus the bounds of its children:

En;j =
s

max
i=1

(ein;j +
mX
l=1

Enl;j
i
l
) (3.2)
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If we de�ne Si
n;j = ein;j +

Pm
l=1

Enl;j
i
l
,

En;j =
s

max
i=1

Si
n;j:

Si
n;j can be consider the maximum density sum (satisfying only the local set) of n's

sub-fragment-tree, provided that sample i is chosen for fragment n. Since we calculate

the bounds from the leaves up towards the root, we can simply look up Enl;j
i
l
from

the table. Let u be the time required to calculate each entry in the table.

u / s � ( average number of atoms in a fragment { 2 +

average branching factor of the fragment tree ).

The bound-preprocessing stage is �nished after we calculate the bounds of the root

node. One can prove that the entries are indeed the maximal density sum by an

induction on the fragment tree. The running time of this stage is

u � the size of the fragment tree �

the number of pairs of grid points at bonding distance .

3.4.2 Optimizations of the Bound-preprocessing Stage

Although the bound-preprocessing stage is a polynomial time and space method,

it can take days of CPU time and gigabytes of storage for even a small protein.

This section describes several techniques that reduce the space requirement and the

running time by a constant factor. Table 3.2 is a comparison of these optimization

methods. ConfMatch integrates all of them to solve large problems eÆciently.

Common Subtree Elimination

From the semantics of the bounds table, we see that two nodes with identical sub-

fragment-trees would have the same bounds. That is, if the subtree of n is identical

to that of n0, then

En;j = En0;j
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Technique Time Optimization Space Optimization

Common Subtree Elimination Depends on molecular structure
Precomputing Torsional Sampling Some None

Utilizing Crystallographic Symmetry By the number of asymmetric
units in the unit cell

Reducing the Size of None By a factor of 2
Each Table Entry

Table 3.2: Comparison of di�erent optimizations of the bound-preprocessing stage.

n3 n4

n2

n1

n2

n1

n2

n3 n4 n3 n4

Figure 3-6: 3 nodes of a fragment tree are eliminated by common subtree elimination.

for all j. We can avoid redundant calculations if common subtrees can be discovered

and merged. Figure 3-6 shows this operation on the fragment tree graphically. We

call this procedure common subtree elimination, analogous to the common subexpres-

sion elimination technique in compiler optimization. This operation can be applied

repeatedly on the fragment tree to reduce its size. Thus decreasing the size of the

bounds table and the computation time proportionately.

If we apply common subtree elimination to a protein, none of the nodes on the

main chain can be eliminated because each has a unique subtree. However, all

sidechain nodes can be merged according to their amino acid labels. All valines will

be merged into a single branch, all leucines into another, etc. In e�ect, we calculate

the bounds of each amino acid type only once, regardless of the size of the protein.

The advantage of this optimization grows with the level of repetition in the amino

acid sequence. For a large protein, the calculation of sidechain bounds is amortized
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over many residues. Each additional residue usually adds only 2 nodes to the tree,

corresponding to the additional � and  angles on the main chain.

Precomputing Torsional Sampling

Calculating each entry in the bounds table requires a torsional sampling about an

in-bound. With some precomputation, we can avoid the expensive multiplication by a

4�4 transformation matrix at every sample. The precomputation involves a pseudo

uniform rotational sampling using Lattman's method[24]. This method generates

a number of rotational matrices (R1; R2; : : :) that are approximately uniformly dis-

tributed over the space of all rotational transforms. Each rotation di�ers from its ad-

jacent neighbors by a �xed angle �L. After the molecular structure is divided into rigid

fragments, we apply these rotations to each fragment. It gives us a pseudo uniform

sampling of the rotational con�gurations of all fragments. Let N be the initial con-

�guration of a fragment. Its rotational con�gurations are stored as R1(N); R2(N); : : :

These con�gurations are classi�ed based on the orientations of their in-bonds. Let0
BBBBB@

xi

yi

zi

1
CCCCCA
and

0
BBBBB@

x0i

y0i

z0i

1
CCCCCA
be the locations of the two in-bond atoms of Ri(N). Each Ri(N)

is classi�ed according to the vector

0
BBBBB@

x0i � xi

y0i � yi

z0i � zi

1
CCCCCA
. To sample the torsional space of a

particular in-bond, we simply select the subset with the correct in-bond orientation.

For example, if we are to sample an in-bond at

0
BBBBB@

xj

yj

zj

1
CCCCCA

and

0
BBBBB@

x0j

y0j

z0j

1
CCCCCA
, Ri(N) would

be selected if

0
BBBBB@

x0i � xi

y0i � yi

z0i � zi

1
CCCCCA
=

0
BBBBB@

x0j � xj

y0j � yj

z0j � zj

1
CCCCCA
. The required con�guration is generated
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Figure 3-7: A torsional sample of the second fragment of glycine is generated from a
precomputed con�guration.

by translating Ri(N) by

0
BBBBB@

xj � xi

yj � yi

zj � zi

1
CCCCCA
. Figure 3-7 shows an example con�guration

generated by this technique. For every torsional sample, we need to calculate only

a simple translation instead of the full 4�4 transform. These con�gurations sample

each torsional angle at intervals of about �L.

Both �L and the grid spacing can a�ect the sampling of conformations. For most

applications, a �xed �L of about 20o is suÆcient. If one wants to assure that every

possible conformation on the grid is sampled (completeness), one must choose �L

based on the grid spacing and the geometries of fragments: Given a fragment, we �nd

the atom farthest away from the in-bond axis|the axis of rotation (Figure 3-8). Let

D be the distance between this atom and the axis. Let g be the grid spacing. We

need to guarantee that between two adjacent samples, all atoms move by distance g
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atom farthest away
from axis

in-bond

fragment

D

Figure 3-8: To assure completeness, it is necessary to choose �L based on the distance
between the in-bond axis and the atom farthest away from it.

or less:

�LD � g:

We need to choose �L � g=D. Larger fragments usually gives a bigger D value. Using

this scheme thus implies choosing small �L for a �ne grid with large fragments, and

vice versa.

Utilizing Crystallographic Symmetry

If a crystal has rotational or screw symmetry (crystals of all space groups except P1),

its unit cell is composed of several copies of the asymmetric unit. The bounds table

would have the same symmetry as the crystal if we preserve the symmetry property

throughout our calculation. Speci�cally, preserving the symmetry has the following

requirements:

� The electron density distribution has the same symmetry as the crystal. This

is always true with appropriate input data.

� The grid has identical symmetry as the crystal. i.e. the grid is invariant under

symmetry operations of the crystal, as well as translation by one unit cell length

along any of the 3 axes. If the unit cell has 2, 3, 4, or 6 fold axes of rotation, the

grid must have the same axes. This requirement does not reduce the generality

of ConfMatch because one can always �nd an appropriate grid for any kind of

unit cell.
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� The rotational sampling preserves the rotational symmetry of the crystal. This

property, together with the symmetry of the grid, assures that if a particular

con�guration of a fragment is sampled, its symmetric counterparts will also be

sampled.

The bounds table will have identical symmetry as the crystal if all of the above

requirements are ful�lled. We need to calculate and store only the asymmetric unit

of the bounds table, cutting the time and space requirement to a fraction of the

original. For space group P21, this optimization results in a 2-fold reduction in time

and space of the bound preprocessing stage.

Reducing the Size of Each Table Entry

Electron density values are usually stored as oating point numbers, which usually

takes 4 bytes of memory. The only operations on these values by ConfMatch are

additions (for summing density values) and comparisons (for choosing the maximum

sum). If we use �xed point instead of oating point values, these operations only

propagate errors linearly. In other words, the magnitude of the error is proportional

to the number of operations performed. Without loosing much accuracy, we may

use a properly normalized integer representation of density values. ConfMatch uses

2-byte short integers to represent these values as well as entries in the bounds table.

This representation cuts down the size of the bounds table by one half.

3.4.3 The Search Stage

The output of the bound preprocessing stage is a large table of upper bounds. With-

out any search, it is possible to calculate a \greedy" structure that maximizes the

density sum. This \greedy" structure, satisfying local but not non-local, is formed

by tracing the highest density path through the bounds table. First, one �nds the

best location of the in-bond of the root fragment. Let nroot be this root node.

j� = argmaxjEnroot;j is the pair of grid points where the in-bond locates. Then one

�nds argmaxsi=1
Si
nroot;j�

which gives the torsion angle of the in-bond. This provides
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the exact con�guration of the root fragment, from which nroot's out-bonds' positions

can be derived. If one applies this procedure recursively down the fragment tree, all

torsional angles can be selected and the \greedy" structure is found. Unfortunately,

this \greedy" structure may have rings that do not close, or atoms that clash with

one another. Therefore, it is necessary to perform a conformational search to �nd a

structure without any of these violations.

The constraints to be satis�ed in the search stage, the non-local set, are embod-

ied in two distance matrices [8]|one intramolecular and one intermolecular. Each

distance matrix describes a lower and an upper bound of the distance between ev-

ery pair of atoms. Obviously, the diagonal entries of the matrices are zeroes. The

intramolecular and intermolecular matrices represent the intramolecular and inter-

molecular constraints respectively.

The intramolecular distance matrix simply speci�es the ranges of distances within

a single molecule. This matrix is derived from the intramolecular excluded volume

constraints, as well as the local geometries of all bonds (including ring-forming ones).

The excluded volume constraints involve every pair of atoms more than 3 bonds apart

in the structure. The lower bound between a pair of atoms is set to be the sum of

their van der Waal's radii minus a small tolerance. The local geometries, such as

bond lengths and angles, of all bonds become tight upper and lower bounds of the

right atoms in the matrix. We use the triangle inequality to smooth and propagate

the bounds to every entry in the matrix.

The intermolecular distance matrix speci�es the distances between one molecule

and all of its symmetry mates. To verify the compliance of the intermolecular matrix,

it is necessary to calculate and check several copies of the molecule. This matrix is de-

rived from intermolecular excluded volume constraints alone. Unlike the intramolec-

ular constraints, these excluded volume constraints involve all pairs of atoms. The

lower bound between a pair of atoms is set to be the sum of their van der Waal's radii

minus a small tolerance. The intermolecular matrix consists of no upper bounds, only

lower bounds.

The goal of the search stage is to place the root fragment and �nd a set of dihedral
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angles for the fragment tree such that the distance matrices are satis�ed and the

density sum is maximized. Since our problem is discretized, it can be formulated as

one of searching a state space:

� The initial state is the null structure.

� The successor states of the initial state consist of all j pairs which can potentially

be the in-bond of the root fragment.

� Every intermediate state is a partial structure of the molecule with a number of

open out-bonds. These open out-bonds are ones that do not yet have fragments

connected to them. The successor states of an intermediate state consist of

every torsional sampling of every open out-bond.

� The goal states are structures that satisfy the distance matrices and do not have

any open out-bonds. All fragments' positions are speci�ed.

� The value of a state is the sum of density of fragments in the partial structure.

The value is independent of the path taken from the initial state.

The problem for the search stage is to move from the initial state to the goal state

with the highest value (Figure 3-9). Since the value is path independent, the problem

is equivalent to �nding the highest value goal state. This goal state can be reached

through multiple paths which di�er because they order the open out-bonds di�erently.

In fact, all goal states can be reached by any ordering of the open out-bonds. Because

of the path independence property, we simplify this problem from a graph search into

a tree search: Every intermediate state commits to a particular open out-bond and

branches on only its torsional samples. All other open out-bonds are deferred. This

commitment assures that there are no alternative orderings to generate a particular

structure. There is only one path from the initial state to any other state. We have

reduced the graph to a search tree. The heuristic for selecting an open out-bond will

be described in Section 3.4.4.

One possible approach to the problem is to use an informed search method like the

A* algorithm [37]. When A* reaches a state t, it calculates an evaluation function,
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goal states
(all fragments added)

initial state (null structure)

root fragment added

another fragment added

Figure 3-9: Starting from the initial state, the goal of the search stage is to �nd the
highest-value goal state.

f(t), that is the sum of the value of the current state, g(t), and the estimated di�erence

between the current state and the best reachable goal state, h(t). (f(t) = g(t)+h(t))

Here g(t) is the density sum of the partial structure, whereas h(t) is the upper bound

calculated from the bound preprocessing stage. Suppose state t has b open out-bonds,

corresponding to fragments n1; : : : ; nb, whose in-bonds locate at j1; : : : ; jb respectively.

h(t) =
bX

i=1

Eni;ji

h is an admissible heuristic because the upper bounds Eni;ji never underestimates.

From the theory of A*, we are guaranteed that the search is complete, optimal, and

optimally eÆcient3:

Completeness A* is guaranteed to �nd a goal state when there is one.

3Traditionally, A* �nds the lowest cost goal state with an admissible heuristic that never over-

estimates. Here we reverse both the objective and the admissibility property, but the theory still
applies. Because the search tree/graph is acyclic, it is impossible to increase the path value g(t)
inde�nitely. Thus all upper bounds, h(t), are well de�ned.
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Optimality A* �nds the highest-value goal state when there are several di�erent

goal states.

Optimally eÆcient No other optimal algorithm is guaranteed to search fewer states

than A*.

The optimality property implies that the highest density structure would be found.

Unfortunately, A*'s optimal eÆciency requires storing the entire f -value contour|all

intermediate states whose f -value is within a certain range. The f -value contour's

size is exponential in the search depth because our heuristic function, h(t), has large

errors4. The search depth is equal to the size of the fragment tree, 1 + p. A*'s

memory requirement is O(s1+p) where s is the number of torsional samples. On a

large problem, this contour may need more memory than practically available.

Iterative deepening A* (IDA*)[37] is a variant of A* that has the same complete-

ness and optimality properties, but is not optimally eÆcient. ConfMatch uses IDA*

for the conformational search because it can trade more CPU time for using less mem-

ory. IDA* performs multiple iterations of depth-�rst searches. Each iteration uses a

particular f -value limit (flim)|a guess of the best possible value. Each depth-�rst

search determines whether a solution exists above flim. If a solution is found, IDA*

terminates. Otherwise, we reduce the guess, flim, and perform another iteration.

During every depth-�rst search, a state t is expanded only if

flim � g(t) + h(t):

Thus, each iteration expands all nodes inside the contour of the current flim. If flim

can be set to the value of the best goal state, the depth-�rst search will explore exactly

the same nodes as A*. Once the search inside a given contour has been completed, a

4The f -value contour will grow exponentially if the error in the heuristic function grows faster
than the logarithm of the actual value. In mathematical notation, the condition for exponential
growth is that

jh(t)� h�(t)j > O(log h�(t))

where h�(t) is the true di�erence between t and the best reachable goal. Here h(t)'s error is at least
proportional to t's uninstantiated fragments. i.e. jh(t)� h�(t)j � O(h�(t)).
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new iteration is started using a lower flim for the next contour. IDA* terminates if one

iteration �nds some solutions. IDA*'s space requirement is the same as depth-�rst

search. It requires O(s(1 + p)) storage, proportional to the longest path it explores,

which is much less than that of A*.

IDA* explores some states multiple times during di�erent iterations. However,

the time overhead of IDA* over depth-�rst search is rather small [34]. The reason is

that in an exponential search tree, almost all of the nodes are in the bottom level, so

it does not matter that the upper levels are expanded multiple times. IDA* spends

most of the CPU time on the last search tree. If the last flim is close to the best goal

value, depth-�rst search will search a few more nodes than A*. IDA*'s eÆciency will

be close to optimal. However, if the last flim is much smaller than the best goal value,

IDA* will search many more nodes than A*.

ConfMatch uses an ad hoc heuristic for choosing flim's. Since Enroot;j is an upper

bound for the root fragment at a particular in-bond orientation, M = maxjEnroot;j

must be the upper bound for the entire structure. Clearly, flim � M . ConfMatch

selects flim's following the sequence (1 � �)M; (1 � 2�)M; : : :, where � is a small

constant about 0.001.

3.4.4 Optimizations of the Search Stage

Conformational search is intrinsically very expensive in the worst case. With the

bounds table and the IDA* algorithm, it is still very time consuming to solve any large

structure. This section describes several techniques which accelerate the search. None

of these techniques can change the fact that the problem is exponentially complex in

the worst case. However, in practice, the search stage with these optimizations can

take much less time than the bound-preprocessing stage given good density data.

Constraining the Search by the Distance Matrices

From the state space of the search, we notice that every path adds a fragment at

every step. No fragment is ever removed along a valid path. If an intermediate

83



state's partial structure violates some constraints in the distance matrices, it can

never lead to any goal state. It can be safely discarded from the search. Because of

this observation, we check every partial structure against the distance matrices and

terminate a branch if any distance bounds are violated.

The Most-constrained-variable Heuristic

During the search, every intermediate state must select an open out-bond to instan-

tiate. This selection has a drastic e�ect on the eÆciency of search. We found that

the most-constrained-variable heuristic [37] is the most eÆcient one among several

candidates. At every state, we count how many options are still available for each

open out-bond, given the choices made so far. We keep track of the options allowed

by the f -value limit and the distance matrices. Suppose state t has b open out-bonds,

corresponding to fragments n1; : : : ; nb, whose in-bonds locate at j1; : : : ; jb respectively.

A torsional sample l is an available option of an open out-bond ni at ji if it does not

have any distance violations with the existing structure, and satis�es the condition

g(t) + Sl
ni;ji

+
X
k 6=i

Enk;jk � flim:

g(t) is the density of the current partial structure. Sl
ni;ji

is the upper bound of ni's

sub-fragment-tree if sample l is chosen.
P

k 6=iEnk;jk is the upper bound of all other

open out-bonds. The sum of the 3 terms is an upper bound of the solution density if l

is chosen at t. This inequality ensures that sample l can potentially lead to a solution

better than flim. At each point in the search, the open out-bond with the fewest such

options is chosen to have its fragment assigned. In this way, the branching factor in

the search tends to be minimized. Intuitively, this heuristic selectively instantiates

the fragment with many close previously-placed neighbors and little conformational

freedom.
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Utilizing Crystallographic Symmetry

Just like in the previous stage, the search stage can be accelerated by exploiting

crystallographic symmetry. If a structural solution exists, its symmetry mates are

also solutions with identical density sums. We can limit the root fragment to be in

one of the asymmetric units, instead of the entire unit cell. The search is reduced by

a factor equal to the number of asymmetric units in the unit cell.

Improving the Bounds Table by Memoization

The technique of memoization speeds up programs by saving the results of compu-

tation and retrieving them when needed later. During the conformational search, all

of the dead ends are caused by violations of the distance matrix constraints. Many

dead end structures may share a common \core" where the violations occur. If we

can extract some knowledge from every dead end, much of the search may be avoided.

This \learning" is achieved by updating the bounds table by memoization. During

a single depth-�rst search, some entries in the bounds-table may be read multiple

time. Many paths in the search tree may have the same open out-bond placement

and hence require the same upper bound5. If an entry can be lowered after the �rst

access, subsequent reads will obtain a more accurate value and may avoid some dead

ends.

Recall that an entry in the bounds table, En;j, stores the greedy maximal sum of

the sub-fragment-tree of n, where n's in-bond is located at j. Memoization de�nes a

slightly di�erent El
n;j to be the upper bound of the density sum of the sub-fragment-

tree of n, satisfying the distance matrices, where n's in-bond is located at j, i.e. El
n;j is

an upper bound of valid solutions of the sub-fragment-tree. This change in semantics

does not a�ect other parts of the search, but allows a tighter upper bound. We

maintain the invariant that El
n;j � En;j for all n; j.

5The search tree's size is exponential in the number of fragments, but the bounds table's size is
only linear. As the number of fragments increases, the ratio between the two sizes will grow rapidly.
Therefore, on average, every entry in the table will be accessed more and more times as the size of
molecule increases.
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Initially, El
n;j = En;j for all n; j. IDA* performs depth-�rst searches with di�erent

f -value limits (flim). During the search, suppose a particular state t has b open

out-bonds, corresponding to fragments n1; : : : ; nb, whose in-bonds locate at j1; : : : ; jb

respectively. We focus on the sub-search-tree of t. If the precondition

flim � g(t) +
bX

i=1

El
ni;ji

(3.3)

is satis�ed, the sub-search-tree will be explored depth-�rst.

Without loss of generality, we assume n1 is selected for instantiation. During the

search, if a structural solution is found with density d, this solution is recorded and

flim is immediately raised to d+ � where � is the smallest improvement in solution we

accept. While traversing the sub-search-tree, we record every pair of fragments that

are involved in violations of the distance matrices.

After searching the sub-search-tree, flim is raised above all solutions. If we were

to perform the search again with the updated flim, no solution would be found. If

all violations of the distance matrices occur within the sub-fragment-tree of n1, the

sub-fragment-tree is the \core" of violations. Other parts of the fragment-tree have

not had any violations and their bounds shall not be changed. We may lower El
n1;j1

to

the level that Equation 3.3 will not be satis�ed with the updated flim. This requires

En1;j1 � flim � g(t)�Pb
i=2

El
ni;ji

.

ConfMatch uses the following rules to update the bounds table after searching the

sub-search-tree of t.

1. If all violations of the distance matrices occur within the sub-fragment-tree of

n1, E
l
n1;j1

is updated to be

min( flim � g(t)�Pb
i=2

El
ni;ji

;

El
n1;j1

;

maxsi=1
Si
n1;j1

):

(3.4)

2. If some violations involve fragments outside of the sub-fragment-tree of n1, E
l
n1;j1
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is updated to be

min( El
n1;j1

;

maxsi=1
Si
n1;j1

):
(3.5)

The updated entries are always upper bounds of valid solutions. The term El
n1;j1

ensures that the bounds are monotonically decreasing. The term maxsi=1
Si
n1;j1

follows

Equation 3.2. These terms are necessary for the consistency of the bounds table.

Appendix C gives a rigorous correctness proof of these update rules.

Memoization lowers the upper bounds continually during the search. The better

bounds means Equation 3.3 is satis�ed less frequently. IDA* is able to avoid many

dead ends it would otherwise need to explore. On large molecules, memoization

sometimes results in speedup of an order of magnitude.

3.4.5 Algorithm Extension

Sometimes details of a molecule's local covalent structure is not know perfectly before

its crystal structure is solved. There may be some ambiguities in parts of the molecule.

For example, a double bond can be either cis or trans; a rigid ring can pucker in one of

several ways. ConfMatch can resolve these ambiguities by incorporating the di�erent

isomers into a single search. The output of ConfMatch will be the \best matching"

isomer at its \best matching" conformation.

We illustrate this extension by a simple example. Suppose it is not known whether

a fragment n is a cis or trans double bond (Figure 3-10). Obviously, we could have

run ConfMatch twice, once with n �xed to the cis con�guration and once to trans.

Then we simply pick from the two solutions the one with the higher sum of density.

Let us assume the cis conformation has a higher sum of density.

The exact same solution will be found by an extension of ConfMatch, but it will

use only a little more resources than a single run of the algorithm. We call the cis and

trans con�gurations ncis and ntrans respectively. Their entries in the bounds table,

Encis;j and Entrans;j, are calculated separately. The bounds of their parent fragment,

nparent, are calculated from the maximum of ncis's and ntrans's bounds. Without
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ncis ntrans

Figure 3-10: A fragment is ambiguously de�ned as either a cis or a trans double bond.

loss of generality, we assume that n is the only child of nparent in the fragment tree.

Following Equation 3.2, the bounds of nparent are calculated by

Enparent;j =
s

max
i=1

(einparent;j +max(Encis;ji; Entrans;ji))

Thus Enparent;j stores the upper bound of both cis and trans fragments. The extra

time and space required for the bounds preprocessing stage is equivalent to adding a

single fragment.

The search stage is little changed. When ConfMatch needs to �nd the torsional

angle of the in-bond of n, it simply searches the torsional angles of both ncis and

ntrans. It appears as if n has twice as many samples as other fragments. However, if

we have good density data, the cis solution is likely to have much higher density sum

than the trans solution. The bounds of the best ncis samples will be much higher than

those of ntrans. Thus the ntrans options will not be explored. The time spent on the

search stage will increase only a little. In fact, the conformational search will probably

explore a few more nodes than the search with n �xed to the cis con�guration, but

their solutions are exactly the same. The worst case scenario occurs when the cis and

trans solutions have identical density sums, in which case we must explore both sets

of options. The search stage will take time equal to searching for the two solutions

separately.

Similarly, we can generalize this extension to molecules with multiple ambigu-

ous fragments. An entire sub-fragment-tree may also be ambiguously de�ned. For

instance, we may specify a sidechain as one of several possible amino acids. Further-
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more, we can specify only the length of a peptide, but leave all sidechains ambiguous.

The output will be the \best matching" peptide at its most favored conformation.

This application may be a useful tool for rational drug design (Section 3.1).

3.5 Results and Discussion

We have carried out two detailed studies using the ConfMatch algorithm to explore

its performance and illustrate its range of applicability. The �rst study involves a

designed alpha-helical peptide. The second study involves a small protein (crambin).

The ConfMatch algorithm is implemented using 3000 lines of C and the XtalView

crystallography library [30]. The results given below were run on a 533MHz Digital

Alpha 21164PC processor with 512MB of RAM.

3.5.1 Alpha-1: A Designed Alpha-helical Peptide

The �rst test of the ConfMatch algorithm is a designed alpha-helical peptide|Alpha-

1 [35] (PDB [3] code 1BYZ). This peptide has 12 residues:

Ac-GLU-LEU-LEU-LYS-LYS-LEU-LEU-GLU-GLU-LEU-LYS-GLY

The N terminus of the peptide is acetylated. Alpha-1's native structure is a 4-helix

bundle. The crystal of Alpha-1 di�racts to 0.9�A resolution with 23681 structure

factors. The space group of the crystal is P1. The unit cell dimensions are jaj =
20:846�A, jbj = 20:909�A, jcj = 27:057�A with angles � = 102:40o, � = 95:33o, and

 = 119:62o. There is a single bundle with 4 chains in each unit cell.

Since the 4 chains are mostly identical, ConfMatch tries to determine only one of

them. It simply chooses the chain with the highest density sum. This target molecule

has 102 non-hydrogen atoms, 55 free dihedral angles, and 61 degrees of freedom total.

Alpha-1 has no exible rings and therefore no ring-forming bonds. We use a set of

fragments with standard geometries, as well as standard van der Waal's radii for inter

and intramolecular excluded volume constraints. Before common subtree elimination,

the fragment tree has 56 fragments. After the elimination, only 34 fragments are left.
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Common subtree elimination has reduced the time and space of the �rst stage by

39%. Unfortunately, the crystal's P1 symmetry means that its asymmetric unit is

the entire unit cell. We are unable to use the crystal's symmetry to reduce the size

of the bounds table further.

A grid of 42� 42� 55 was selected for the Alpha-1 unit cell. The grid spacing is

approximately 0.5�A in every dimension. We use Lattman's method to generate 3686

rotational transforms for each fragment. The spacing of the rotations, �L, is 16:36
o.

The size of the bounds table of each fragment ranges from 13,291,740 to 20,956,320

entries. The total size of the table is 608,121,360 entries, taking 1.216G bytes of

storage.

We tested ConfMatch with di�raction data at 2.0�A. The density distribution is

generated from 2548 structure factors with their published phases. This input is

merely 10.8% of the data at 0.9�A. Using these ideal phases means that we are match-

ing a conformation to the perfect density, but with the high frequency information

removed. The bound preprocessing stage and the search stage takes 14,700 and 17

seconds of CPU time respectively. The overwhelming majority of the running time

is spent on the �rst stage. Figure 3-11 shows the solution structure from ConfMatch

superimposed with the published 0.9�A structure. ConfMatch's result has an RMSD

(root-mean-squared-deviation) of 0.812�A from the target structure. The di�erence

between the global upper bound from the �rst stage, M , and the density of the solu-

tion structure is very small. It is equivalent to just 0.32 of the average density of an

atom.

We investigated the e�ect of using data at various resolutions, while keeping all

other parameters unchanged. In doing so, we try to �nd the minimum amount of

experimental data necessary to calculate a useful structure. The results are shown

in Table 3.3. In general, all performance measures worsen with the data resolution,

because less information is available in the density map. The running time of the

bound preprocessing stage is constant for all resolutions, but that of the search stage

varies with the diÆculty of the conformational search. However, the bound prepro-

cessing stage always dominates the search stage in CPU time. The quality of the
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Figure 3-11: ConfMatch's solution structure (in black) of Alpha-1 from 2.0�A resolu-
tion data and the published 0.9�A structure (in yellow). The thicker portions are the
backbones of the structures.
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Resolution Number RMSD Search Stage Last DIFF
(�A) of Reec- (�A) Iteration Time

tions (sec)
2.0 2548 0.812 17 0.32
2.1 2190 0.759 20 0.03
2.2 1925 0.817 14 0.18
2.3 1669 0.960 20 0.18
2.4 1475 0.964 20 0.0
2.5 1309 0.968 15 0.16
2.6 1144 0.939 14 0.38
2.7 1036 0.866 20 0.07
2.8 933 0.831 15 0.0
2.9 831 0.827 20 0.0
3.0 740 1.003 25 0.81
3.1 691 1.030 42 1.15
3.2 629 1.386 20 1.23
3.3 566 1.979 704 2.04
3.4 515 5.774 253 2.82

Table 3.3: Alpha-1's conformation is matched to data at various resolutions with ideal
phases. The running time of the last iteration of the search stage is close to that of
the entire stage because IDA* is dominated by the last depth-�rst search. DIFF: Dif-
ference between the global upper bound, M , and solution density (equivalent number
of atoms).

solution structure (as measured by RMSD to the correct solution) and the bounds

table (as measured by the di�erence between the global upper bound, M , and the

actual solution density) both deteriorate with worse resolution of the data. There is

a big jump in RMSD from 3.3 to 3.4�A. Figure 3-12 shows the 3.4�A solution structure

superimposed with the target structure. The backbones of those two structures are

signi�cantly di�erent. For Alpha-1, 3.3�A seems to be the resolution limit where Conf-

Match can calculate an accurate structure. This limit is suÆciently generous because

it includes almost every set of published data. The number of structure factors at

3.3�A is merely 2.39% of the original experimental data. It may also be the limit of

chemical constraints in the full set. To push this boundary further, an algorithm

needs to acquire more chemical and biological knowledge about the molecule.
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Figure 3-12: ConfMatch's solution structure (in black) of Alpha-1 from 3.4�A resolu-
tion data and the published 0.9�A structure (in yellow). The thicker portions are the
backbones of the structures.
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Phase Error RMSD Search Stage DIFF
(degree standard (�A) Last Iteration
deviation) Time (sec)
0 0.812 17 0.32
5 0.702 20 0.38
10 0.793 20 0.62
15 0.806 25 0.27
20 0.841 20 0.23
25 0.718 100 0.48
30 1.002 310 0.88
35 1.322 15 0.72
40 0.951 21 0.30
45 1.013 980 7.12
50 1.416 67 1.18
55 11.370 21240 7.16

Table 3.4: Alpha-1's conformation is matched to phases with various level of error
using 2�A resolution data. DIFF: Di�erence between the global upper bound, M , and
solution density (equivalent number of atoms).

We have also investigated the e�ect of phase error on ConfMatch. Both experimen-

tal and direct methods for structure determination generate phases with substantial

errors. Being able to tolerate phase error is essential for ConfMatch's practical ap-

plications. We model these errors by adding random Gaussian noise to the perfect

phases6. By varying the standard deviation of the Gaussian distribution, we can

measure ConfMatch's tolerance. The results from 2�A resolution data are shown in

Table 3.4. As expected, all performance measures worsen with increasing phase er-

ror. The RMSD generally increases with phase error. There is a big increase in both

RMSD and search time from 50 to 55o. At 55o phase error, the search tree of the

last iteration has 161,828,154 nodes. The search stage uses more CPU time than the

bound-preprocessing stage, but can only �nd a low quality structure. 50o may be the

limit of ConfMatch's error tolerance of Alpha-1 at 2�A. We expect this tolerance to

improve with higher resolution data, and shrink with worse data.

6Following a suggestion of William M. Wells III, the Gaussian distribution is approximated by
summing 3 uniform random variables within the range [��; �], where � is the desired standard
deviation of the Gaussian distribution.
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From Tables 3.3 and 3.4, we observe a positive correlation between RMSD and

DIFF|the di�erence between M and solution density. In other words, the quality

of the solution correlates with the quality of the bounds table. The only exception

occurs at 45o phase error, where DIFF is quite large, but the answer is tolerable. This

suggests a possible use of DIFF as a con�dence measure: If we apply ConfMatch on

a real crystallography project, we cannot calculate the RMSD because the target

structure is not known. Similarly, we have no knowledge of the amount of error in

the phase set. Under this circumstance, DIFF may be substituted as a measure of

con�dence in the solution conformation. The smaller the DIFF, the more con�dent

we are in the solution, and vice versa.

3.5.2 Crambin

The second test of the ConfMatch algorithm is crambin [40] (PDB code 1AB1),

a small, 46 residue protein. The crystal of crambin di�racts to 0.89�A resolution

with 19803 structure factors. The space group of the crystal is P21. The unit cell

dimensions are jaj = 40:759�A, jbj = 18:404�A, jcj = 22:273�A with angles � = 90:00o,

� = 90:70o, and  = 90:00o. This molecule has 326 non-hydrogen atoms, 141 free

dihedral angles, and 147 degrees of freedom total.

Modifying the Objective Function of Conformational Matching

Crambin has 6 cysteine residues which form 3 disul�de bonds. Sulphur has a higher

electron density than N, C, or O, because it has a larger atomic number than the

others. The overall density distribution has several large peaks corresponding to the

sulphur positions. Figure 3-13 plots the density of the highest peaks of a typical

crambin distribution. There is a signi�cant gap between the 6th highest peak and

the 7th one because of the di�erence between the 6 sulphur atoms and others. If

we use the simple objective function, the sum of density at atom locations, and

ignore the di�erent identities of atoms, the sulphur locations will become strong

\attractors" of all other atoms. Consequently, the bound preprocessing stage will
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Figure 3-13: The highest peaks in crambin's 2.0�A resolution density distribution.

place multiple atoms at the sulphur positions and the upper bounds in the bounds

table will be very loose. This problem can be overcome by a small modi�cation to

the objective function: We separate the atoms into di�erent classes according to their

atomic numbers. Each class has its own electron density distribution that the atoms

will measure from. These di�erent distributions are biased toward their respective

classes of atoms. The new objective of conformational matching is to maximize the

sum of density, measured from an atom's particular density distribution, at positions

of all atoms. The ConfMatch algorithm can accommodate this modi�cation without

any major change.

In the case of crambin, the atoms are separated into 2 classes: (1) sulphur atoms

and (2) all other non-hydrogen atoms. The sulphur atoms, using the original density

distribution, will preferably locate at the highest density regions. All atoms other

than sulphur use a density distribution modi�ed from the original one. This modi�ed

distribution is more uniform than the original because it has the highest density

regions suppressed: First, we �nd the 7 highest peaks of the original distribution,
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one more than the number of sulphur atoms. Let P1; : : : ; P7 be the densities of the

7 peaks. The di�erence between Pi and P7 is a measure of our con�dence that the

i-th peak shall be occupied by sulphur. We suppress the i-th peak by subtracting a

typical sulfur-atom density distribution, scaled to height 2(Pi�P7), from the original

distribution. After the 6 highest peaks are suppressed, we have removed much of

the inuence of the sulfur atoms. This modi�cation is robust in spite of low data

resolution or phase errors. For instance, several neighboring peaks of heavier atoms

often merge together at low resolution. It appears as if there are fewer heavy atoms

than expected. If these or other errors in the density distribution cause a wrong

peak i to be chosen, it is very unlikely that Pi � P7 will be large. Therefore our

miscalculation will have only a minor impact on the density distribution.

Utilizing Crambin's Crystal Symmetry

The crambin crystal's P21 symmetry means that there are 2 asymmetric units per

unit cell. This allows us to reduce the time and space requirement of our program

by 50% if the conditions outlined in Section 3.4.2 can be satis�ed. The P21 space

group has a 2-fold screw axis parallel to b (Figure A-3). If a particle is located

at fractional coordinates

0
BBBBB@

u

v

w

1
CCCCCA
, there must be an identical particle symmetrically

located at

0
BBBBB@

�u
v + 1=2

�w

1
CCCCCA
. The symmetry operation can be represented by the matrix

2
666666664

�1 0 0 0

0 1 0 1=2

0 0 �1 0

0 0 0 1

3
777777775
. This symmetry places a restriction on the dimension of the

grid. Let b be the number of grid points in the b direction. The grid spacing in the

b direction is 1=b in fractional coordinates. Since the symmetry operation includes

a translation of 1/2 in the b direction, 1=2 must be divisible by 1=b in order for the
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grid to be invariant. Therefore b must be an even number. We selected a grid of

83 � 38 � 45 for the crambin unit cell (b = 38), with grid spacing approximately

0.5�A in every dimension. The unit cell can be separated into 2 asymmetric units by

dividing along u = 1=2. We perform all of our calculations on the asymmetric unit

where u 2 [0; 1=2]. The grid within this asymmetric unit is 42� 38� 45, about half

the size of the original grid.

The other condition of utilizing the crystal symmetry is that the rotational sam-

pling preserves the rotational symmetry. Extracted from the symmetry operations,

the rotational symmetry can be represented as S =

2
666664

�1 0 0

0 1 0

0 0 �1

3
777775
. If we are given

a rotational transform R in Cartesian coordinates, its symmetric transform will be

CSC�1R. For crambin, C�1 =

2
666664

0:024534 0 0:0003

0 0:054336 0

0 0 0:044901

3
777775
, which implies

CSC�1 = S. Thus R's symmetric transform is simply SR. This property is true for

all P21 unit cells, but it remains to be proven for other space groups.

Initially, we use Lattman's method to generate 2062 rotational transforms, with

�L = 20:0o. (The branching factor of conformational search is around 18.) Each

transform then generates a symmetry mate by the equation above. A total of 4124

rotational transforms are generated. Note that these transforms are no longer uni-

formly distributed, but are twice as dense around b than around other axes. Rao

et al. [36] have described a method which generates the rotational transforms more

uniformly for various space groups.

Crambin Results

In a typical x-ray experiment, the exact disul�de-bonding residue pairs are not know

beforehand. This knowledge is usually obtained from the density map. We have

modeled this lack of knowledge by removing all of crambin's disul�de bonds from the

intramolecular distance matrix, but allowing any cysteine-pairs to form such bonds:
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We reduce the intramolecular lower bounds among all cysteine sulphur atoms to the

bond length of a typical disul�de bond. The upper bounds, on the other hand, are

not set. Thus, any cysteine pair can form or not form a disul�de bond.

With the modi�cations above, we tested our program on crambin. After removing

the disul�de bonds, crambin does not have any exible-ring-forming bonds. Before

and after common subtree elimination, the fragment tree has 142 and 111 fragments,

respectively. Common subtree elimination reduces the time and space of the �rst

stage by 22%. The crystal's P21 symmetry reduces the time and space by another

factor of 2. The size of the bounds table of each fragment ranges from 7,756,560 to

13,933,080 entries. The total size of the table is 1,380,954,960 entries, taking 2.762G

bytes of storage.

As in the previous experiment, we tested ConfMatch with di�raction data at 2.0�A.

The density distribution is generated from 2360 structure factors with their published

phases. This input is merely 11.9% of the data at 0.89�A. The bound preprocessing

and the search stage takes 42,900 and 34 seconds of CPU time respectively. Again,

the vast majority of the running time is spent on the �rst stage. The last iteration

of IDA* explored a search tree with 46,453 nodes to reach the solution. The e�ective

branching factor of the search tree is only 1.08, which is much smaller than the worst

case branching factor of 18. This is mostly due to the accuracy of the upper bounds.

Figure 3-14 shows the solution structure from ConfMatch superimposed with the

published 0.89�A structure. ConfMatch's result has an RMSD of 0.588�A from the

target structure. The di�erence between the global upper bound, M , (calculated

from the bound-preprocessing stage) and the density of the solution conformation is

equivalent to 0.73 of the average density of a single carbon atom.

As the previous experiment, we investigated the e�ect of using data at various

resolutions, while keeping all other parameters unchanged. The results are shown

in Table 3.5. The running time of the bound preprocessing stage is constant for

all resolutions, but that of the search stage varies greatly. In general, all perfor-

mance measures worsen with the data resolution. ConfMatch was able to calculate

an accurate structure at 2.6�A resolution. At 2.7�A, however, ConfMatch could not
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Figure 3-14: ConfMatch's solution structure (in black) of crambin from 2.0�A resolu-
tion data and the published 0.89�A structure (in yellow). The thicker portions are the
backbones of the structures.
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Reso- Number RMSD Search Stage Last Search E�ective DIFF
lution of Reec- (�A) Last Iteration Tree Size Branching
(�A) tions Time (sec) Factor
2.0 2360 0.588 34 46453 1.08 0.73
2.1 2049 0.611 16 6724 1.06 0.46
2.2 1783 0.724 1176 2507739 1.11 1.71
2.3 1565 0.774 21 21660 1.07 1.80
2.4 1378 0.677 1695 4763224 1.11 2.04
2.5 1228 0.707 1580 4207880 1.11 1.05
2.6 1102 0.794 5926 17764058 1.12 2.04
2.7 987 unknown > 176369 > 463342204 > 1:15 > 2:11

Table 3.5: Crambin's conformation is matched to data at various resolutions with
ideal phases. The running time of the last iteration of the search stage is close to
that of the entire stage because IDA* is dominated by the last depth-�rst search.
DIFF: Di�erence between the global upper bound, M , and solution density (equiva-
lent number of atoms).

�nd a solution. In this case, ConfMatch is not limited by the chemical constraints,

but by the available computational resources|the search stage requires more CPU

time than we can a�ord. After spending 176,369 CPU seconds (2.04 CPU days)

on the last iteration of IDA*, no solution was found. There were too many struc-

tures with steric clashes and had higher density than the best solution. At 2.7�A, the

exponential-time search stage requires far more resources than the polynomial-time

bound-preprocessing stage. Finding a solution at 2.7�A will require more computa-

tional resources for searching, or a more eÆcient algorithm.

We have also investigated the e�ect of phase error on ConfMatch. We model these

errors by adding varying degree of random Gaussian noise to the perfect phases. The

results from 2�A resolution data are shown in Table 3.6. ConfMatch was able to

calculate an accurate conformation with 15o phase error. However, ConfMatch could

not �nd a solution with 20o phase error. After spending 105,998 CPU seconds (1.23

CPU days) on the last iteration of IDA*, no solution was found. Once again, we are

limited by the computational resources, not by the chemical constraints.

While measuring the error within ConfMatch's output, we notice that the 3 as-

paragine sidechains usually have larger RMSD than others. It points out a limitation
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Phase Error RMSD Search Stage Last Search E�ective DIFF
(degree standard (�A) Last Iteration Tree Size Branching
deviation) Time (sec) Factor
0 0.588 34 46453 1.08 0.73
5 0.588 580 735865 1.10 1.20
10 0.631 470 153694 1.08 1.08
15 0.681 23 2726 1.06 0.18
20 unknown > 105998 > 310132939 > 1:14 > 1:42

Table 3.6: Crambin's conformation is matched to phases with various level of error
using 2�A resolution data. DIFF: Di�erence between the global upper bound, M , and
solution density (equivalent number of atoms).

of our geometric constraints: The atoms at the end of asparagine, OD1 and ND2,

are very di�erent chemically but nearly identical geometrically. Their positions are

often swapped by ConfMatch. The same problem will occur in proteins containing

glutamine or histidine sidechains. In order to solve this problem, it will be neces-

sary to introduce more chemical knowledge such as electrostatics or hydrogen bond

donor/acceptor geometries into our algorithm.

3.6 Conclusions and Future Work

We have demonstrated that ConfMatch, a branch-and-bound algorithm, can �nd the

globally optimal solution of a problem (discretized conformational matching) that has

more than 100 degrees of freedom. The solution space of this problem includes the

grid-based conformations generated from sampling all free dihedral angles, as well as

the 6 rigid degrees of freedom. (To ensure that ConfMatch covers all possible confor-

mations on the grid, one may follow the sampling scheme in Figure 3-8.) To reach

the global optimum, it is necessary to systematically explore a search tree exponen-

tial in the number of degrees of freedom. The most important idea of ConfMatch

is an eÆcient method for computing accurate bounds. ConfMatch relaxes the con-

formational matching problem, a problem which can only be solved in exponential

time (NP-hard [14]), into one which can be solved in polynomial time. The relaxed
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problem retains all local constraints of conformational matching, but ignores all non-

local ones. The solution to the relaxed problem is a guaranteed upper bound for

the conformational matching problem. When the input data is of suÆciently good

quality, the local constraints can lead to accurate bounds. In most empirical cases,

these bounds are accurate enough to prune the search space dramatically, making

ConfMatch a practical algorithm for the NP-hard problem.

On the practical side, ConfMatch is the �rst algorithm to fully automate the

interpretation of electron density maps. This important task normally requires much

interactive �tting and re�ning of the molecular structure. Now ConfMatch may be

able to transfer part of the workload from the crystallographer to computers. This

may remove human subjectivity from map interpretation and accelerate the crystal

structure solution process. This technology may have particular impact in protein

structure solution e�orts.

Presently, ConfMatch can solve the conformation of a 40-50 residue protein with

moderate error in the phase set. If one needs to solve the structure of a larger protein

or to use a density map with larger error, one may need to provide some guidance

to the program. One possible technique is to split a large protein into smaller, 20-30

residue peptides and solve each segment independently. This e�ectively converts the

global optimization problem into several sub-problems. If the density distribution

has good quality, the various segments may merge at appropriate positions and form

a good conformation overall. In other words, the solutions of the sub-problems can

combine to be an approximate solution to the global problem. Our results with Alpha-

1 using suÆciently high quality data support this possibility. Searching density for 4

chains with a single chain correctly identi�ed a single, connected chain in the density.

A di�erent kind of human assistance can be incorporated using ConfMatch through

seeding the structure or restricting the locations of some parts of the conformation.

Traditionally, crystallographers initiate the map interpretation process by locating

large, distinct sidechains such as tryptophan, then gradually �lling in the rest of the

structure. The same kind of information can greatly improve the eÆciency of Conf-

Match by accelerating the search stage. For example, if a user speci�es some positions
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and orientations of tryptophans, ConfMatch can assign some small regions of the unit

cell to tryptophans only. Within these special regions, the tryptophan fragments will

have their density boosted, but all other fragments will have very low values. This

modi�cation creates a big gap (in density sum) between those conformations that

place tryptophans at the speci�ed locations and those that do not. This gap will be

reected in the bounds table. Most conformations that do not place tryptophans at

the speci�ed locations are eliminated by the bounds. As a result, the conformational

search will explore far fewer conformations than the naive approach.

Obviously, the best approach to solving large proteins or data sets with big errors is

to improve fundamentally the computational eÆciency of ConfMatch. One promising

technique is to extract more information from the density map. Obtaining more

information has e�ects similar to improving the resolution of the density map. It will

automatically lead to better overall performance. Speci�cally, the current objective

function of ConfMatch evaluates the density of an atom at a single point|the center

of the atom. If we measure the density within a local neighborhood of the atom, we

may detect a more accurate signal. For example, Jones et al. [19] developed the real-

space R factor which measures the di�erence between the expected and the observed

density distribution within a region. The real space R factor is de�ned as

P j�obs � �calcjP j�obs + �calcj

where �obs and �calc are the observed and expected density, respectively, at various

grid points. The sum is over all grid points within an envelope. For ConfMatch, every

fragment has a unique density distribution. An appropriate envelope can be de�ned

for each fragment. A small real-space R factor will imply that the fragment is likely

to be at the center of the envelope, and vice versa. ConfMatch can be modi�ed to

minimize the sum of real-space R factor over all fragments. If the real-space R factor

or other measures is a more accurate detector than the density at atom centers, it

will automatically lead to better bounds and more eÆcient searches. ConfMatch may

then be able to solve bigger and harder problems.
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Chapter 4

Discussions and Conclusions

We have presented two systematic algorithms, AmbiPack and ConfMatch, for two

very di�erent structure determination problems. They are both based on branch-

and-bound search, but with di�erent problem formulations and heuristics. From the

experience of developing these algorithms, we may learn some lessons for investiga-

tions into other problems.

The goal of AmbiPack is �nding all satisfying solutions to the packing problem.

There are no objective functions to optimize for. Thus there are no bounds to cal-

culate. The focus is on making the search more eÆcient by using the ambiguous

distance constraints early. There are many ways to formulate the search. The ob-

vious one is branching on the alternative interpretations of ambiguous constraints,

i.e. at every node, one selects an ambiguous constraint and specify its interpretation.

If the current set of interpretations become inconsistent, one can rule out a branch

of the search tree. If the constraints have very narrow ranges and the monomers

are quite large, this may be a good approach because most interpretations will be

inconsistent. One can use the simple triangle inequality to prune most of the search

space. Unfortunately, in practice, the distance constraints have very large ranges

relative to the monomer size. Thus almost no interpretation can be ruled out by the

triangle inequality. This approach will explore almost every node in the search tree

and be every ineÆcient. The key observation in the development of AmbiPack is

that one can �x a rigid structure by specifying the positions of only 3 atoms. Once
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the con�guration of the substructures are �xed, one can simply check the ambiguous

constraints. It is unnecessary to enumerate the numerous alternative interpretations.

Therefore, it becomes natural to search base on the placement of 3 atoms. Using a

hierarchical division of the physical space, the constraints can eliminate large sets of

placement early in the search. This approach makes AmbiPack an eÆcient algorithm.

The goal of ConfMatch is �nding a single optimal conformation. With more than

100 degrees of freedom, it initially seems impossible to develop a practical systematic

algorithm. For any branch-and-bound algorithm, the bounds must be very accurate

to rule out most of the search space early. Otherwise, the search will be hopelessly

ineÆcient. We design the objective function, the sum of density at atom positions,

because it is simple and intuitive. The key insight of ConfMatch is that one can

calculate a set of upper bounds of this objective function in polynomial time using

dynamic programming. These bounds obey the local geometrical constraints but not

the non-local ones. To our pleasant surprise, these bounds are quite accurate given

good density data. In addition, the optimal conformation based on our objective

function is indeed quite close to the published structure. The accurate bounds enable

ConfMatch to prune the search space dramatically. Thus ConfMatch is able to solve

several large structures in reasonable time.

Structure determination problems are computationally challenging because of

their enormous search space. However, our experience shows that it is still possi-

ble to develop practical systematic algorithms to solve them. Branch-and-bound is

usually a good approach for these problems. It is often necessary to extensively cus-

tomize the algorithm for the speci�c type of problem and input data. Given enough

e�ort by the scientists, systematic algorithms can be competitive with stochastic ones

in this application domain.
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Appendix A

Outline of Protein Structure

Determination by X-ray

Crystallography

In order to determine the structure of a protein [12], one needs to �rst grow a crystal

of the material. A crystal of organic material is a three-dimensional periodic arrange-

ment of molecules. In the regular packing of the molecules three repeating vectors

a, b and c can be recognized with the angles �, �, and  between them. These

three vectors de�ne a unit cell in the crystal lattice (Figure A-1). The crystal can be

regarded as a three-dimensional stack of unit cells with their edges forming a lattice

(Figure A-2). The regular packing of molecules in a crystal lattice often leads to a

symmetric relationship between the molecules. One characteristic of a crystal is that

it has three-dimensional translational symmetry, corresponding to the repetition of

the unit cells. Often, additional symmetry within the unit cell such as 2- or 3-fold

(screw) rotation is encountered. For a biological macromolecule, there are 65 di�erent

ways to combine the symmetry operations in a crystal, leading to 65 space groups.

These space groups are named P1, P2, P21, C2, P222, etc. For instance, the P21 space

group has a 2-fold screw symmetry with the screw axis parallel to b. The symmetry

operation of P21 is a rotation by � radian about the b axis and then a translation

along the b axis by jbj

2
. Figure A-3 illustrates the screw axis of P21.
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Figure A-1: One unit cell in the crystal lattice.
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Figure A-2: A crystal lattice is a three-dimensional stack of unit cells.
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Figure A-3: The 2-fold screw axis of the P21 space group in 2 dimensions. The c
vector projects into the plane. The asymmetric unit is half of the unit cell, divided
along u = 1=2.
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In all space groups except P1, each particle in the cell will be repeated a number

of times as a consequence of the symmetry operations. For example in space group

P21 one can always expect at least two equal particles in the unit cell related by

the symmetry operations. This unit cell is comprised of two equivalent asymmetric

units. An asymmetric unit is a fraction of the unit cell but contains all of the cell's

information. One can regenerate the unit cell from its asymmetric unit by simply

applying the symmetry operations. The asymmetric unit of P21 is also illustrated in

Figure A-3.

The position of a point P in the unit cell is given by its position vector

0
BBBBB@

x

y

z

1
CCCCCA
.

In terms of its fractional coordinates u, v, and w with respect to the crystal axes a,

b, and c, P 's position is given by

0
BBBBB@

x

y

z

1
CCCCCA
= au+ bv + cw:

The position of P can thus be described by its \fractional" coordinates

0
BBBBB@

u

v

w

1
CCCCCA
, with

0 � u; v; w � 1. The 3�3 matrix [ a b c ], denoted as C, transforms a vector from

fractional into Cartesian coordinates. Conversely, C�1 transforms from Cartesian into

fractional coordinates. In the rest of the chapter, u, v, and w will denote fractional

coordinates, whereas all other symbols will denote Cartesian coordinates.

After a crystal is produced, it is placed in a beam of x-rays to record di�raction

data (Figure A-4). The di�racted x-rays emerge from the crystal at di�erent angles

and have di�erent intensities. The angles and intensities can be recorded on a piece

of photographic �lm. Each di�racted x-ray makes a spot or \reection" where it

intersects the x-ray �lm. The entire pattern of di�raction can be thought of as

a three-dimensional lattice of spots. Crystallographers refer to this lattice as the
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Incident x-rays

Crystal in sealed capillary

k = 2

k = 1
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Diffracted x-rays

h

l

Figure A-4: Recording of x-ray data. A beam of x-rays is incident on a crystal.
Di�racted x-rays emerge and can be detected on photographic �lm. Each spot or
\reection" on the �lm arises from the intersection of a di�racted ray with the �lm.
The pattern of di�raction spots may be thought of as a three-dimensional lattice.

reciprocal lattice.

The intensities of reections are the primary data of x-ray crystallography. Each

reection is identi�ed by three indices, h; k, and l, that specify its place in the recip-

rocal lattice. From each reection, the structure-factor magnitude, jF (h; k; l)j, can be

measured. jF (h; k; l)j, a scalar, is the magnitude of the complex number F (h; k; l).

One of the end products of a crystallographic analysis of molecular structure is

a plot of the electron density, �(u; v; w), of one unit cell of the crystal as a function

of the three coordinate axes of the unit cell. One must also identify each feature of

the electron-density plot with a chemical group, e�ectively assigning a position for

every atom in the unit cell through �tting the electron density. Once this process of

identi�cation is complete, the structure has been determined.

Unfortunately, the structure-factor magnitudes, jF (h; k; l)j, actually comprise only
part of the information needed to determine �(u; v; w). The other, more important

part consists of a \phase" for each reection, which is denoted �(h; k; l). �(h; k; l)

is the phase angle of F (h; k; l). The jF (h; k; l)js and �(h; k; l)s can be thought of

respectively as the amplitudes and phases of component waves that are summed to
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describe the crystal structure. The structure factor equation

F (h; k; l) =
Z

1

0

Z
1

0

Z
1

0

�(u; v; w) exp[2�i(hu+ kv + lw)]dudvdw

relates by Fourier transform the electron density of the crystal, �(u; v; w), with the

amplitudes and phases of the di�raction, F (h; k; l). Conversely, �(u; v; w) can be

calculated from F (h; k; l) by an inverse Fourier transform. The di�raction pattern of

a crystal gives the amplitudes of the Fourier transform of the crystal content, but the

phase angles are lost. It is because the magnitude of a particular di�raction spot,

jF (h; k; l)j, can be measured but its phase, �(h; k; l), cannot.

Deriving a structure from its X-ray di�raction pattern is a hard inverse prob-

lem (Figure A-5): It is easy to check a structure's correctness by computing its

Fourier transform and matching the amplitudes, but it is very hard to �nd the cor-

rect structure from amplitudes alone. Since amplitudes and phase angles are both

necessary to determine a structure, a key step in protein crystallography is solving

the phase problem1|recovering the phase angles of the reections.

For small molecules the phases often can be determined from information within

the jF (h; k; l)js. In principle, given the covalent structure of a molecule and enough

unique di�raction amplitudes, its three dimensional structure is overdetermined. Small

molecules sometimes have a number of unique di�ractions that is more than 100 times

the number of atoms. Because of this tremendous overdeterminacy, purely computa-

tional techniques for solving the phase problem (direct methods) have long existed for

small molecule crystallography [15]. As the molecule's size increases, the accuracy of

experiments generally deteriorate. Since the number of di�raction measurements de-

creases rapidly with worsening experimental resolution, the level of overdeterminacy

also decreases as the size of the molecule increases. These classical direct methods

require measurement accuracies that are currently not achievable for macromolecules

1The phase problem has an analogous counterpart in image processing [27]. There the problem is
to reconstruct a two dimensional image from its Fourier transform magnitudes. Unfortunately, this
is also an extremely hard inverse problem. None of the algorithms developed to date are capable of
solving any image of reasonable size.
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Figure A-5: Solving crystal structure is an inverse problem from Fourier transform
magnitudes to the 3-dimensional molecular structure.

and therefore they cannot solve structures with more than 2-300 atoms [15].

Solving the phase problem for larger proteins requires additional experimental in-

formation. In protein crystallography, the phase problem is currently solved by three

methods [11]: multiple isomorphous replacement (MIR), multiple wavelength anoma-

lous dispersion (MAD), and molecular replacement (MR). MIR requires binding an

atom of high atomic number to each protein molecule within the crystal and mea-

suring a set of jF (h; k; l)js for the modi�ed crystal. This derivative crystal produces

a slightly di�erent set of magnitudes because of the heavy atoms. By combining the

jF (h; k; l)js from several modi�ed crystals with the original jF (h; k; l)js, the rough

phase of each reection, hence the electron density, can be determined. MAD also re-

quires placing one or more anomalously scattering atoms (usually Selenium) into the

protein. Without anomalous scattering, jF (h; k; l)j = jF (�h;�k;�l)j, the magnitude
of a di�raction is identical to that of its Friedel mate. Anomalous scattering breaks

this equivalence. Phases can be derived from the small di�erence between jF (h; k; l)j
and jF (�h;�k;�l)j. Due to experimental uncertainties, MIR and MAD both gener-

ate phases with large errors. If one uses these phases to compute an electron density

distribution, the resulting density map has large discrepancies with the actual den-

113



sity. Months of tedious labor may be required to �t and re�ne a molecular structure

to the experimental density map. On the other hand, MR is a purely computational

method. It however requires knowledge of the protein's approximate structure, which

is usually not available. Any computational progress in any approach to the phase

problem can make a big di�erence for protein crystallography.

Often the structure of a protein is solved in stages of increasing resolution. The

resolution of the structure is the minimum separation of two groups in the electron-

density plot that can be distinguished from one another. Thus, as the �neness of

resolution increases, �ner detail can be seen in the electron-density plot. At 3�A

resolution the path of the polypeptide backbone of a protein usually can be traced

in an electron-density map. At 2�A resolution most amino acid side chains can be

positioned accurately. And at 1.5�A resolution (achieved so far for only a few proteins)

many resolved atoms can be seen. It is the available jF (h; k; l)js and �(h; k; l)s that
determines the resolution of the electron density: as terms of with increasing values

of h; k; and l are added, the resolution increases. In the crystal structure analysis of

the protein myoglobin, which has a molecular weight of 17,800, about 400 reections

exist in the reciprocal lattice out to 6�A resolution, 9,600 out to 2�A resolution, and

more than 25,000 out to 1.4�A resolution.

The correctness of a solution to a particular crystal is usually measured by the

R-factor, which compares the experimentally observed magnitude, jF (h; k; l)j, with
the magnitude calculated from the structure, jF (h; k; l)calcj:

R�factor =
P

h;k;l jjF (h; k; l)j � kjF (h; k; l)calcjjP
h;k;l jF (h; k; l)j

where k is a scaling constant which minimizes the R-factor by normalizing computed

intensities. The smaller the R-factor, the closer the agreement between the relative

intensities computed from the structural model and measured from the crystal; this

closer agreement of intensities is generally accepted as representing closer agreement

between the model and actual structures.
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Appendix B

Direct Methods to the Phase

Problem

As many other inverse problems, the phase problem may be solved by a generate-

and-test approach. Exhaustive search of the conformational space and testing by R-

factor can identify the correct structure if the sampling is suÆciently �ne. However,

assuming rigid bond lengths and angles, a typical macromolecule still has hundreds or

thousands of free dihedral angles. It is computationally impractical to systematically

search that many degrees of freedom.

B.1 The Low-Resolution Envelope Approach

Recently, several new techniques for solving the phase problem have been proposed.

The �rst technique attempts to �nd a rough outline of the structure by trial and

error. The target structure is either represented as a collection of points [9] or a

few spheres with uniform or Gaussian-distributed density [29]. Finding the structure

then becomes a global optimization problem|calculate the placement of points or

spheres that maximizes the correlation of the computed structure factors with the

very low resolution portion of experimental data. Subbiah's point representation

ignores the intricate primary structure of a protein. All points are free to move while

avoiding collisions. This simple representation allows the use of simulated annealing
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as the randomized search method. Similarly, Lunin et al.'s \few atoms" representation

allows the use of systematic or randomized search methods in placing these identical,

unrelated spheres. Unfortunately, these types of low-resolution techniques are unable

to produce a high-quality envelope of the structure. Their results still cannot be used

for solving high-resolution structures.

Other new techniques for solving the phase problem are based on the classical

direct method for small molecules [15]. The following section is a brief summary of

the classical method.

B.2 Classical Direct Method

The classical direct method (which works successfully for small molecules) has three

fundamental assumptions:

1. The electron density is always positive in the unit cell.

2. The unit cell consists of discrete atoms.

3. The atomic positions are random variables with uniform distribution throughout

the unit cell.

The method attempts to calculate the phases directly from the magnitudes of nor-

malized structure factors, jEj. The normalized structure factors idealize the atoms

as point scatters in order to make the phase problem mathematically tractable. In

an actual unit cell, the electron density is distributed around atom centers. If an

atom's electron density were concentrated at the center of the atom, a di�raction

pattern with the normalized structure factors would result. The magnitudes of the

normalized structure factors, jEhj, can be calculated from the measured di�raction

magnitude, jFhj, by the following equation:

jEhj =
jFhjq

< jF j2 >
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where < jF j2 > is the average magnitude over a narrow range of resolution around

Fh.

Another important mathematical tool of the classical direct method is the struc-

ture invariants. Let �hi 2 [0; 2�) be the phase of a structure factor Fhi . While jFhij
depends on the content of the crystal alone, �hi depends on both the content and

the choice of origin of the unit cell. However, it can be proven that if
Pm

i=0
hi = 0,

Pm
i=0

�hi = � does not vary with respect to the choice of origin and depends on the

content alone. Therefore � is a structure invariant. When m = 3, the invariants,

called triplet invariants, are especially important for direct methods.

Most atoms in a protein have similar numbers of electrons. It is customary to

treat all atoms as the same in direct methods. Let h and k be two arbitrary indices

of the reciprocal lattice. �hk = �h + ��k + ��h+k is a triplet invariant. Assuming

a random distribution of equal atoms, the probability distribution of the invariant,

P (�hk), is given by

P (�hk) = (1=L) exp(Ghk cos �hk)

where L is a normalization constant;

Ghk = (2=
p
N)jEhEkEh�kj

where N is the number of atoms in the unit cell. (jEhEkEh�kj = jEhjjEkjjEh�kj)
P (�hk) is a so-called von Mises distribution. It is maximal when � = 0 and decreases

as � deviates further from 0. P (�hk = 0) increases as jEhEkEh�kj increases and
N decreases. Each reection is involved in multiple invariants and hence multiple

probability distributions. The tangent formula

tan�h =

Pr
j=1

Ghkj sin(�kj + �h�kj )Pr
j=1

Ghkj cos(�kj + �h�kj)

combines these distributions and assigns the most probable phase of h given other

phase angles. Most classical direct methods use the probability distributions or the

tangent formula to generate phases with high overall probability. For small mole-
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cules, these phases can usually produce a good density map as the basis of structure

re�nement.

As the number of atoms, N , increases, the probability distribution attens. One

of the reasons that the classical direct method fails for molecules with more than

200 atoms is because it becomes much harder to predict the phases when P (�hk) is

almost the same for all values of �hk. Additionally, there are many fewer reections

per atom for macromolecules than for small molecules. The next two approaches

attempt to overcome these diÆculties and extend the classical method to proteins.

B.3 The Maximum Entropy Approach

A new approach to the phase problem is based on information entropy maximization

and likelihood ranking [4, 5]. It di�ers from the traditional method in not always

assuming a uniform distribution of atoms. Instead, the distributions of random atomic

positions are updated whenever phase assumptions are made so as to retain maximum

entropy under the constraints embodied in these assumptions. One of the results is

that the distribution of �hk depends on the phase assumptions of reections other

than h, k, and h-k. This modi�cation leads to a search tree where the space of

hypothetical phase sets is explored hierarchically. Each trial phase set is ranked

according to the log-likelihood gain or the Bayesian score which acts as a heuristic

function in guiding the growth of the tree. Unfortunately, attempts based on the

maximum entropy principle have not yet been successful on macromolecules.

B.4 The Real/Reciprocal Space Approach

The most recent approach to the phase problem combines optimization in both real

and reciprocal space. ConfMatch is directly applicable to this approach. Starting

from a random structure or a random set of phases, re�nements in real and reciprocal

space are applied alternatively (Figure B-1). The solution structure is found if a low
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Figure B-1: The real/reciprocal space approach integrates re�nement in both do-
mains.

R-factor is obtained in the forward Fourier transform1. In real space, a molecular

structure is subject to constraints like atomicity, positivity, bond lengths and angles,

etc. By applying these constraints, an electron density map can be improved. In re-

ciprocal space, the phases are also subject to constraints like the distribution of triplet

and quartet invariant phase sums. Phases can be improved by these constraints as

well. In Sheldrick and Gould's method [38], phase re�nement is achieved by apply-

ing the tangent formula repeatedly. Density re�nement is achieved by a \peaklist

optimization" scheme where the highest 1:3N peaks in the density map are selected

as potential atoms. A peak is eliminated if doing so improves the correlation of the

structure factor with the experimental data, otherwise it is retained. The elimina-

tion is applied repeatedly until convergence. Their method is reported to have solved

structures with 4-500 atoms. An important limitation of their method is that the

resolution of the data must be 1.2�A or better, so atoms will have distinct density

peaks.

Detitta et al. [10] proposed a similar method, called \Shake-and-bake," in which

density re�nement involves simply picking the N highest peaks in the density map.

These peaks are assumed to be the location of atoms. Phase re�nement is achieved

1For convenience, jEj's are used instead of jF j's in calculating the R-factor.
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by optimizing the minimal function

R( ) =
1P

h;kGhk

X
h;k

Ghk(cos �hk � thk)
2

where thk is the expected value of cos �hk. R( ) is minimized when the cosines of the

invariant phases match their expected values. Ghk weights the error terms higher if

cos �hk has a smaller standard deviation, and vice versa. Therefore minimizing R( )

generally improves the consistency of the phase set. Detitta et al. have found that

R( ) is relatively small when the phases are correct. Their technique is reported to

have solved structures with more than 300 atoms. However, it also requires di�raction

data with at least 1.2�A resolution.

Very few crystals di�ract to 1.2�A. Most macromolecules of interest di�ract to 2.0�A

or worse. Therefore the applicability of the methods above is limited. ConfMatch

may be able to extend direct methods to data at more realistic resolutions. We can

improve the real/reciprocal space approach by applying chemical constraints on the

density re�nement process. In the past, phase re�nement has been the focus of most

research. Its techniques are much more developed than density re�nement. New

algorithms for real-space re�nement are likely to advance the state of the art of direct

methods.

Previous methods failed on low resolution data because peak picking was inef-

fective with lower than 1.2�A data. At low resolution, atoms rarely locate at the

peaks of electron density map. Peak picking ignores all chemical constraints on a

molecule except atomicity and positivity. Applying all commonly-accepted chemical

constraints such as bond lengths, angles, chirality, etc., is equivalent to limiting the

molecule to its chemically feasible conformations. The possible distribution of atoms

is much more restricted if they must obey the basic rules of chemistry. Thus density

re�nement can be turned into a conformational matching problem where one �nds

a conformation that matches the density best. When the peaks of a density map

do not correspond to atom positions, this method is more likely to identify the so-

lution structure than peak picking. The solution conformation will in turn produce
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a more chemically reasonable density map for the next stage of phase re�nement.

By applying more chemical constraints on density re�nement, we may overcome the

shortcoming of earlier methods on low resolution data.
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Appendix C

Correctness of Bounds Table

Memoization

This appendix explains the correctness of the updates to the bounds table. It shows

that the entries are always upper bounds of valid solutions.

We know that a structural solution is accepted only if its density d is greater than

or equal to flim. flim is raised to d + � after �nding the solution. During a single

depth-�rst search, flim is monotonically increasing. All entries in the bounds table

are updated by Equations 3.4 and 3.5. The bounds are monotonically decreasing.

After a depth-�rst traversal of a sub-search-tree, if we perform the search again with

the updated flim and bounds, Equation 3.3 will be satis�ed less often. The new search

would explore only a subspace of the earlier one. Since we have raised flim to be above

any solution in the sub-search-tree, we can safely say no solution would be found in

the new search.

Invariant 1 For all n; j, before and after n's sub-fragment-tree is searched,

El
n;j �

s
max
i=1

Si
n;j:

We prove this invariant by induction:
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Base case Initially, El
n;j = En;j for all n; j. Because the bounds table was built by

Equations 3.1 and 3.2. The invariant holds.

Inductive case After searching n's sub-fragment-tree, the bounds table is updated

by Equations 3.4 and 3.5. The invariant holds because both equations contain

the term maxsi=1
Si
n;j.

A sub-conformational search is a search involving only a portion of the fragment

tree. Suppose we start a sub-conformational search with just the sub-fragment-tree of

node n whose in-bond locates at j. We de�ne f ln;j(t) to be the f -value (g(t)+h(t)) of

a state t in the sub-conformational search. At the initial state tinit, f
l
n;j(tinit) = El

n;j.

In the search tree, there is a \greedy" path which selects argmaxsi=1
Si
n;j at every

branch. Because of invariant 1, f ln;j(t) is increasing on this path. Therefore, on the

\greedy" path of the sub-conformational search, f ln;j(t) � El
n;j for all states t.

Invariant 2 For all n; j, El
n;j is always a valid upper bound.

This invariant means that all entries in the bounds table are always upper bounds.

If n's inbond is located at j, there is no structural solution (without any violations

of the distance matrices) for the sub-fragment-tree of n with density sum above El
n;j.

Again, we prove this invariant by induction:

Base case Initially, El
n;j = En;j for all n; j. Because En;j is an upper bound of all

possible structures, the invariant holds.

Inductive case Assuming all El
n;j are valid at state t, we need to prove that the

update rules preserve the upper bound property of El
n1;j1

. In other words, we

need to show that all terms in Equations 3.4 and 3.5 are valid upper bounds.

1. By the inductive assumption, the original value El
n1;j1

is an upper bound.

2. By the inductive assumption and the construction of Equation 3.2, maxsi=1
Si
n1;j1

is an upper bound.

3. We now prove by contradiction that flim � g(t) � Pb
i=2

El
ni;ji

is a valid

upper bound if all violations of the distance matrices occur within the
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sub-fragment-tree of n1: Suppose there is a valid structure x for the sub-

fragment-tree of n1 with g(x) > flim � g(t) � Pb
i=2

El
ni;ji

. As we have

explained earlier, no solution would be found if we perform a new search

from t with flim (without changing flim or any El). Let t0 be a descen-

dant state of t. t0 can be partitioned into the partial structure of t, and

the partial structures from the sub-conformational search of n1; : : : ; nb.

Therefore,

f(t0) = g(t) +
bX

i=1

f lni;ji(t
0):

Consider a particular dead end state t� which follows x, as well as the

\greedy" paths of n2; : : : ; nb (Figure C-1). t� has no violations because

x is a valid structure. It must be terminated by condition 3.3. Thus

f(t�) < flim. Since t
� is in the subtree of t,

f(t�) = g(t) +
bX

i=1

f lni;ji(t
�):

We know that for i 2 [2; : : : ; b], f lni;ji(t
0) � Eni;ji because of the \greedy"

paths. From the inductive assumption, f ln1;ji(t
�) � g(x) > flim � g(t) �

Pb
i=2

El
ni;ji

. Therefore,

f(t�) > g(t) +
bX

i=2

El
ni;ji

+ flim � g(t)�
bX

i=2

El
ni;ji

which means

f(t�) > flim:

We have reached a contradiction.

Since all terms of the update rules are correct, they must preserve the upper

bound property.
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terminated by flimf ln1;j1(t
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f lnb;jb(t
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Figure C-1: An impossible dead end state whose f -value is greater than flim and that
does not have any violations.
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