
Haptic Interaction with Three-Dimensional

Bitmapped Virtual Environments

by

Jered Floyd

Submitted to the Department of Electrical Engineering and
Computer Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer
Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 1999

c Jered Floyd, MCMXCIX. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis

document in whole or in part.

Author .
Department of Electrical Engineering and Computer Science

May 20, 1999

Certified by .
Norman Margolus

Research Affiliate, MIT Artificial Intelligence Laboratory
Thesis Supervisor

Accepted by .
Arthur C. Smith

Chairman, Department Committee on Graduate Students

2

Haptic Interaction with Three-Dimensional Bitmapped Virtual

Environments

by

Jered Floyd

Submitted to the Department of Electrical Engineering and Computer Science
on May 20, 1999, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

In this thesis, I describe the design and implementation of a system integrating a
force-reflecting haptic interface, the PHANToM, with a high-powered computer
designed to efficiently compute cellular automata, the CAM-8. My goal was to
build a system to allow users to interact with three-dimensional bitmapped simu-
lations running on the CAM. Such simulations are far more computationally com-
plex than can currently be computed on the PHANToM host. This system can also
provide an intuitive user interface for manipulating data within CAM simulations.
Methods for coping with network and computational latencies are described, and
example applications are evaluated to explore the effectiveness of the system.

Thesis Supervisor: Norman Margolus
Title: Research Affiliate, MIT Artificial Intelligence Laboratory

3

4

Acknowledgments

I would like to expresss my gratitude to Norman Margolus; as my advisor he was

always a source of creative ideas, made time to help whenever assistance was

needed, and was willing to let me design and move this project in the direction

that interested me most, even if that direction changed often. He was also a great

help in writing the Forth code that controls the CAM-8.

I would also like to thank Brian Anthony and Mark Ottensmeyer from the Hap-

tics Lab. Brian made space in the lab and found hardware for me to use, and both

he and Mark were willing to help whenever I had questions about the PHANToM.

All of my friends at MIT, too many to name here, have provided everything

from stimulating conversation to whimsical craziness during the five years of my

studies, and have somehow managed to keep me optimistic, open-minded and

sane.

Finally, I wish to thank my parents, who have supported me in all my endeav-

ors no matter how complicated, were prescient enough to buy a home computer

before most of the world knew they existed, and have always let me be myself.

5

6

Contents

1 Introduction 15

1.1 The CAM-8 Computer . 16

1.2 The PHANToM Haptic Interface . 17

2 Basic System Design 19

2.1 Basic Force-Reflecting Operation . 19

2.2 Single Host PHANToM Operation . 21

2.3 Client/Server PHANToM Operation 21

2.4 PHANToM Operation with CAM Simulations 22

2.5 Concerns With This Approach . 22

3 Network and Computational Latency 23

3.1 Client/Server Communication . 23

3.1.1 Direct Serial Connection . 23

3.1.2 Ethernet Connection . 24

3.1.3 Other Communication Options 24

3.2 Stability and Response Issues . 25

3.3 Teleoperation . 26

3.4 Basic Force-Reflecting Teleoperation 27

3.5 Wave-Based Teleoperation . 29

3.6 Teleoperation with Buffer Zones . 31

3.7 Time/Space Tradeoff in Virtual Environments 34

3.7.1 Concerns in Discrete Environments 38

7

3.7.2 Continuous Environments . 42

4 Application Adaptation and Results 43

4.1 Hello, voxel! . 43

4.2 CAM-based Simulations . 44

4.2.1 Static Pieces . 44

4.2.2 Static Piece Improvements . 47

4.2.3 3-D Pieces . 48

4.2.4 Dynamic 3-D Pieces . 49

5 Conclusion 51

5.1 Review of Implementation Issues . 51

5.1.1 CAM-8 Availability . 51

5.1.2 Network Communication . 51

5.1.3 Data Format Reconcilliation . 52

5.2 Review of Goals . 52

5.3 Future Directions . 53

5.3.1 Single-host operation . 53

5.3.2 Effective CAM Usage . 54

5.3.3 PHANToM Thermal Display 54

5.3.4 Time/Space Tradeoff in Continuous-space Teleoperation . . . 55

5.3.5 Reapplication to Teleoperation in Real Environments 55

5.4 Other Applications . 55

5.4.1 Crystallization and Annealing 56

5.4.2 n-body Simulations . 57

5.4.3 Real-Time Video Manipulation 57

5.4.4 Interaction Metaphor . 57

5.4.5 Virtual Instruments, and Other Artistic Endeavors 58

5.5 Conclusion . 59

A voxel client.c 61

8

B cam server.c 69

C pieces-3d.exp 75

9

10

List of Figures

3-1 Teleoperation PD Model . 27

3-2 Basic Force-Reflecting Teleoperation 28

3-3 Wave Based Force-Reflecting Teleoperation 29

3-4 Teleoperation with Buffer Zones . 31

3-5 Problems with Buffer Zones . 33

3-6 Time/Space Tradeoff . 35

3-7 User constraints in a discrete environment 38

3-8 Behavior in a simple constraint model 39

3-9 Behavior in a ghost point constraint model 41

3-10 User constraints in a continuous environment 41

4-1 Images of CAM Simulations . 45

11

12

List of Tables

4.1 Spatial displacement observed for varying latencies 44

13

14

Chapter 1

Introduction

Most computer-generated virtual environments are constructed from polygonal

models of objects. This limits interaction with such systems to rules that may not

accurately model a physical system. With advances in technology, however, it has

become possible to compute three-dimensional bitmapped environments at rates

fast enough for real-time simulations. Systems now exist that can enforce a set of

rules over a large multi-dimensional space, primarily for examining physical sim-

ulations such as lattice-gas or hydrodynamic models. Interactive user interfaces

for real-time manipulation of these new systems, however, have been lacking.

In this thesis, I describe the design and implementation of a system that uti-

lizes a force-reflecting haptic interface to provide a three-dimensional haptic user

interface for real-time simulations running on a cellular automata computer. A

user places their finger in the haptic device, and is able to interact with objects in

the virtual environment of the simulation. This provides a simple and intuitive

interface for interacting with large bitmapped simulations.

Chapter 2 focuses on the design of a basic system for haptic interaction in a

bitmapped environment. Chapter 3 explores coping with issues of network and

computational latency when operating such a system. Chapter 4 evaluates the

performance of the completed system in a number of sample applications. Finally,

Chapter 5 reviews the initial design objectives and concerns, and examines future

directions for associated research.

15

1.1 The CAM-8 Computer

The CAM-8 is a fine-grained parallel supercomputer designed for the efficient

computation of cellular automata, developed by the Information Mechanics Group

at the MIT Laboratory for Computer Science. It consists of an array of low-cost pro-

cessors that subdivide an n-dimensional space. The CAM is designed to take ad-

vantage of good local connectivity in a uniform space to carry out certain kinds of

large parallel computations. At its base, it provides a configurable n-dimensional

cellular automaton which may be programmed with the desired transition rules.

Such an architecture is closely tied to the idea of modelling physical systems. Its

simple, uniform layout provides insight into how in the future computations could

be adapted to be performed by microscopic particles, based on fundamental spa-

tially uniform interactions. Likewise, as a uniform architecture with configurable

fundamental rules, the CAM is well suited for modeling physical interactions.

The CAM-8 has been extensively used for lattice-gas simulations, data visu-

alization, hydrodynamic modelling, statistical mechanics modelling of processes

like annealing and crystallization, and other simulations involving the processing

of data in multi-dimensional bitmapped environments. To be sure, it is not lim-

ited to such simulations; as a general purpose CA machine it can efficiently run

more abstract computations such as Conway’s Game of Life, or digital logic simu-

lations. The CAM is a powerful engine that provides high computing density at a

comparatively low cost.

The CAM-8 connects to a host system via the CAMBus cable and protocol. At

this time, there exists only a SparcStation SBus interface for CAMBus.

The CAM-8 is a remarkable machine that can easily perform real-time presen-

tation and manipulation of three-dimensional bitmapped virtual environments;

however, it suffers from the fact that there are no effective ways for a user to inter-

act with the simulated environment. As a cellular automata machine, it is designed

so that starting data are loaded into the cell matrix, and then the automata rules

are repeatedly applied. The system can provide output data to a video display or

16

back to the host computer, and can accept additional data from a video camera or

the host computer, but there is currently no interface that allows a user to interact

intuitively with objects within a simulated environment.

My goal in integrating a haptic interface with the CAM-8 is to have haptic in-

teractions with the virtual environment simulated within the CAM. This allows for

interfaces to CAM simulations that are easily understood and consistent with the

way a user would expect the environment to react, based on their real-life haptic

experience. Such a system transforms the CAM from an excellent computational

engine to a powerful interactive tool.

The aim here is not to expand the existing technology to allow for new kinds

of computational problems to be handled, but rather to make the existing com-

putations more accessable to the user. Connecting a video monitor to a CAM-8

aids the understanding of a simulation by providing two-dimensional bitmapped

output to the user; this project goes even further by providing a three-dimensional

bitmapped bi-directional interface. Such a system should make understanding of

and interaction with many simulations far more simple and intuitive than existing

interfaces, and allow for a broad range of new applications.

1.2 The PHANToM Haptic Interface

The PHANToM haptic interface, originally developed by Thomas Massie at MIT,

is a convenient, active device that senses the position of a user’s fingertip, and can

exert a precisely controlled force back upon the fingertip. It represents a substan-

tial advance upon previous systems due to its size, simplicity, and accuracy. This

device allows for high fidelity sensing and physical feedback to a user, and hence

facilitates high resolution physical interactions with virtual environments.

The device is currently being used for a wide range of projects, including sys-

tems for computer-based training, medical simulation, and data visualization. It

has been commercially developed by the MIT startup company SensAble Tech-

nologies, and is being successfully marketed while development on the technology

17

continues. Most, if not all, current applications that use the PHANToM to interact

with a virtual environment model their environment in much the same way as

a 3-D graphical representation would be modelled; namely polygonal models of

objects. On a standard workstation such as those the PHANToM is designed to in-

terface with, a high-resolution bitmapped environment would quickly overwhelm

the processing power and memory available. The CAM-8, however, with its high

computing density is ideally suited for such bitmapped simulations.

The PHANToM haptic interface is able to connect to a host PC running Win-

dows NT, or a Silicon Graphics system running Irix. Unfortunately, the PHANToM

cannot be connected directly to a SparcStation, nor can the CAM-8 be connected

to either a PC or SGI system. This restriction complicated my project somewhat,

but also expanded its scope to include exploring topics of teleoperation in remote

virtual environments.

18

Chapter 2

Basic System Design

I will describe basic haptic interactions with bitmapped environments in systems

of increasing levels of complexity, starting from an example with the bitmapped

world existing on the same machine as the PHANToM host and concluding with a

client/server system with the bitmapped world existing on the CAM-8 computer.

The goal is to design a system that will present the user with a realistic interface

to the virtual environment. Interacting with the thimble-gimbal attachment of the

PHANToM, then the user should ideally be presented with an experience indistin-

guishable from one where they are interacting with a real environment though a

thimble. Force responses should be quick and accurate, and the tool with which

the user interacts with the environment should not be larger or less manageable

than a finger.

2.1 Basic Force-Reflecting Operation

The basic design of a haptic system is centered around a closed servo control loop

that must operate at a very high rate. This basic haptic rendering loop consists of

the following steps:

1. Retrieve user’s finger position from haptic interface

2. Detect collisions of user with objects in virtual environment

19

3. Determine appropriate reaction forces for these collisions

4. Send forces to haptic interface for application to user

In traditional continuous environments, the most time-consuming steps are 2

and 3, detecting collisions and calculating restoring forces. To determine what

objects a user has collided with in a continuous environment, it is necessary to

calculate collisions with all objects in the vicinity of the user. In a bitmapped envi-

ronment, however, step 2 is much simpler as it is only necessary to check whether

the cells the user is in are occupied.

Hooke’s law (F = kx) is traditionally used to calculate a restoring force after a

user has intersected an object in the virtual environment. After the user has pene-

trated a surface in a continuous environment, the restoring force is calculated as if

there were a spring between their fingertip and the surface of the object. This force

is thus proportional to the depth the user has penetrated the virtual object, and

perpenducular to the surface. This model works well when individual surfaces are

penetrated, but the superposition of forces when multiple objects are penetrated

can have unexpected results.

In a bitmapped environment, it is not possible to collide with multiple objects

at the same point, and thus the superposition of forces is not a concern. Unfortu-

nately, it is somewhat less trivial to determine the restoring force for having pen-

etrated an object. Unless we track the user’s path into occupied space, we cannot

determine the surface normal or depth into the object. Instead, as the user moves

about the environment, we can compute the location of a ’ghost’ point, a point

that unlike the user is strictly constrained by the surfaces of virtual objects [6]. Af-

ter the user has penetrated an object in the environment, the restoring force can

be computed as if there were a spring between the user’s fingertip and the ghost

point.

For an accurate haptic system that provides realistic sensations of touch, it has

been found that the basic haptic rendering loop needs to run at a very high rate,

at least 1 kHz. As the loop drops below this rate, the system provides a lower

fidelity interface to the virtual envionment. Instead of objects that feel solid, with

20

sharp and rapid force responses, objects become soft and unrecognizable. Lower

loop rates can also lead to oscillations as the force responses become increasingly

inaccurate for the current user position, and can even cause violent force responses.

For these reasons, the PHANToM toolkit enforces a 1 kHz rate. If force responses

are not sent at this rate, a watchdog timer disables the system. This provides only

1 ms for all computations to take place, and is the most significant limiting factor

on the complexity of haptic simulations.

2.2 Single Host PHANToM Operation

The simplest system for working with haptics in a bitmapped virtual environment

places the computation of the enviroment on the same computer that is hosting

the haptic interface. The host computer is responsible for computing the physics

for the entire virtual environment as well as the collision and force information for

the user. Unlike algorithmically defined polygon environments, even very small

bitmapped environments incur a huge computational cost. In an active environ-

ment transitions must be computed at each cell for every unit time. In a passive

environment, any user interaction with an occupied cell could require a huge num-

ber of recalculations. This significantly limits the size of a bitmapped environment

that can be simulated on a haptic interface host as the computational complexity of

the environment will rapidly exceed the host’s ability to compute resultant forces

at the required 1 kHz rate.

2.3 Client/Server PHANToM Operation

One step further towards modelling the bitmapped virtual environment on the

CAM is modelling the environment on a a remote server. This model of operation

is much like the basic algorithm for haptic rendering, except that position informa-

tion is sent from the PHANToM host to a seperate machine which computes the

force vector to be returned. Ideally, this model is not significantly different that the

21

previous one, however in the real world this can introduce significant communi-

cation delays into the crucial haptic loop.

2.4 PHANToM Operation with CAM Simulations

Finally, the virtual environment may be modelled on a specialized piece of hard-

ware, such as the CAM. As a cellular automata based machine, the CAM is ideally

suited for modelling bitmapped environments and can quickly compute physical

laws across a large three-dimensional space. This builds upon the previous exam-

ple because the CAM-8 cannot currently be hosted on the same machine as the

PHANToM. The machine with the haptic interface must send the user position

information to the machine hosting the CAM, which then communicates this in-

formation into the CAM simulation, extracts force information and returns this to

the haptic interface host.

2.5 Concerns With This Approach

While in an ideal world this simple approach would work, the communcation and

computation delays make it impossible to provide the 1 kHz haptic response rate

required for a suitable user interface.

The faster the haptic rendering loop can be made, the more accurate the user ex-

perience will be; ideally it should remain purely on the client system. With current

technologies it is not possible to have the closed haptic interface control loop ex-

tend beyond the PHANToM host machine and still maintain an adequate update

rate. It was necessary to find a method to cope with the network and computa-

tional latencies.

22

Chapter 3

Network and Computational Latency

3.1 Client/Server Communication

As the PHANToM and the CAM-8 connect to different host computers, the two

computers need to exchange information for the system to work. At the mini-

mum for closed-loop operation, the PHANToM host needs to send position and

perhaps velocity data to the CAM-8 host, and the CAM-8 host needs to return a

force response. More complex system designs involve even more data interchange.

Communication options were somewhat limited by the available hardware. Sev-

eral possibilities were explored, including serial and Ethernet connections. Each

communication method provided different amounts of bandwidth and latency.

3.1.1 Direct Serial Connection

The first attempt to connect the two machines so that they could communciate

was simply a direct serial connection. The fastest serial rate that both systems sup-

ported was 38400 bps. This quickly proved to be inadequate. The position data

from the haptic interface host consists of 3 IEEE floating point values, one for each

of the dimensions. This is 12 bytes, or 96 bits, per sample not including framing

data. At 38400 bps, this requires a full 2.5 ms just to be sent over the wire. Given an

equal return delay for force data, the communication latency of a direct serial con-

23

nection is 5 ms round trip, and the computational latency of the server must then

be added on top of this. Clearly, this is completely impractical for a 1 kHz control

loop, for which it would be necessary for communications and computation to be

completed within 1 ms.

3.1.2 Ethernet Connection

The other communication interface that both systems share is a 10 Mb/s Ethernet

connection. Given a completely quiescent network, one could expect the on the

wire delay of a 12 byte data sample to be well under a millisecond, naively as

short as 10 microseconds. Such a communication latency has negligible impact on

the haptic control loop.

In practice, however, the latency over an Ethernet connection is much higher

than 10 microseconds. Although we can arrange to have a quiescent network by

connecting the two systems to a private Ethernet, the complexity of the Ethernet

and IP protocols introduces considerable latency. Experimentation showed that

the round trip latency over a UDP connection should be expected to be as high as

1 ms. Thus Ethernet is also unacceptable for closed-loop operation.

3.1.3 Other Communication Options

Additional hardware would likely have afforded lower communication latency. A

high-speed point-to-point link such as HIPPI or FireWire (IEEE 1394) could po-

tentially provide delays small enough such that the client/server communcation

would not itself hinder closed loop operation.

There are a number of reasons that I chose not to explore such other options.

Specifically, any of these options would require further specialized hardware for

both systems, and time spent on that hardware would have been better spent on a

CAM-8 interface for the PC or a PHANToM interface for the SparcStation. Addi-

tionally, working with Ethernet as the communications medium offers a broader

horizon of future applications. Examining methods of using haptics in bitmapped

24

environments over a network leads directly to the possibility of using haptics in

shared or distributed virtual environments. Most importantly, the computational

latency introduced by the CAM outweighs the network latency introduced by Eth-

ernet when interacting with moderately large environments. At the level of delay

due to UDP/IP networking the communcation latency was no longer the limiting

factor to closed-loop operation.

3.2 Stability and Response Issues

Before exploring more complicated options, I first examined the possibility of stan-

dard closed loop operation at a lower response rate. Given Ethernet communica-

tions and the speed of the CAM-8, a loop rate of 100 Hz would not be an unfeasable

goal.

To determine whether or not this was a feasable direction to continue working

towards, I reimplemented the simple “Hello, sphere” program that was included

with the PHANToM’s SDK. This program presents a simple virtual evironment

with no visual feeback. Only two primitives exist in this environment, a sphere

and a floor. I modified this example so that the force computation took place on the

server system. The haptic interface host sent position data at 1 kHz to the server,

which would then compute the resultant force on the user’s finger and send this

data back to the haptic interface host. Computation time for such a simple envi-

ronment was negligible, so this served to test whether or not the network delay

was acceptable for closed loop operation.

Testing revealed two serious problems with this model of operation. First, the

environment presented to the user is of very low fidelity. The stiffness of items

in the enviroment is determined by the stiffness of the haptic interface and the

stiffness of the closed servo loop, of which the latter is the limiting factor with the

PHANToM [5]. With the communication delays present on an otherwise quies-

cent Ethernet, the closed loop delay is long enough that objects in the world have

unacceptably low stiffness, making them virtually unidentifiable.

25

More seriously, the network delay introduced distracting and sometimes vio-

lent instabilities into the force feedback response. The delay between the time at

which the user’s position is sampled and the time when the computed force is de-

livered is large enough such that the force may be completely incorrect from the

force that should be delivered to the user at the current time. From this effect, in-

duced oscillations have been encountered in force feedback teloperation systems

and have been addressed in a number of different ways that I explored as possible

solutions. Several of these methods for coping with delay-induced instabilities are

summarized below.

It is evident that simple closed-loop operation is not possible with this model

of haptic interaction with bitmapped environments, making it necessary to find a

method to cope with the network and computational latencies while presenting a

realistic haptic experience for the user.

3.3 Teleoperation

The same problems that I have encountered with communication and computa-

tional latency have previously been seen when using force feedback devices for

teleoperation. The computational delays are essentially no different from addi-

tional communication delays, so the whole system can be likened to time-delayed

teleoperation in a virtual environment. Existing systems have been designed to

cope with delays at least as large as 1 s [8], which is far greater than my expected

system latency.

The term teleoperation is used to describe systems involving two distant, cou-

pled robots. A human operator moves the master robot, and this motion is mea-

sured and transmitted to the remote slave system. The slave system then attempts

to mimic the master motion in its environment. Some level of feedback, such as

video, is provided to the human operator.

Force feedback is of particular interest in teleoperation as it allows the two

robots to share forces in addition to motion [8]. This allows for much more intri-

26

cate interaction with the remote environment, and in ideal cases allows the human

operator to act as if they were themselves at the remote location.

As with delayed operation in virtual environments, time delays in teleopera-

tion significantly impact the sense of reality that is presented to the user. In tra-

ditional teleoperation without haptic feedback, this is at worst a distraction and

a hinderance to normal operation. When an active force feedback component is

added, however, the closed feedback loop that is created can become dangerous

and cause the entire system to become to unstable for normal operation. Such vio-

lent oscillations that I encountered in my simple assessment of network delay are

common in uncompensated time-delayed teleoperation.

For this reason many thought that haptic feedback was not suitable for time-

delayed systems [8]. Work in the early 1990s, however, demonstrated that it was

possible to integrate haptic feedback in a stable manner. As interacting in time-

delayed computer simulations is functionally quite similar to interacting with time-

delayed remote environments, I evaluated methods used to manage stability in

teleoperation systems to see if they were suitable for my project.

master
inertia

slave
inertia

k

B

Figure 3-1: Teleoperation PD Model

3.4 Basic Force-Reflecting Teleoperation

A basic undelayed teleoperator models the master and slave devices as two inertial

objects connected by a spring and damper system, in essence a P.D. (Proportional

Differential) controller. (Figure 3-1) Such a system clearly consumes more power

than it produces, and so intuitively is resistant to violent undamped oscillations.

Adding the time-delay to this system means that we can no longer compute

27

master
interface

slave
interface

PD
Controller SimulationUser

Position (x)

Force (F)

NETWORK

Figure 3-2: Basic Force-Reflecting Teleoperation

and apply the forces at the master and slave systems simultaneously. Instead we

must either compute forces at one of the endpoints and send this to the other, or

compute forces at both endpoints and only share position and velocity data. The

first method is usually chosen as both have been shown to have similar stability

limits and the former has been found to be more natural to operate. (Figure 3-2)

This method of coping with delay in a teleoperation system is directly applica-

ble to coping with delay in a bitmapped virtual environment. As a teleoperation

master, the PHANToM has extremely low inertia (apparent mass < 100 g), and as a

slave the projected endpoint in the virtual environment has no inertia whatsoever.

The basic closed-loop system for haptics in bitmapped remote environments could

easily be extended to give both master and slave additional effective mass. The ac-

tual user position and projection of this point into the virtual environment could

be coupled in the computer by the P.D. controller. This solution would certainly

improve the erratic operation of the naively designed basic system, however it is

not without its disadvantages.

Even this system is not immune to instability, although with sufficient damp-

ing, this sort of system can be made stable when the time delay is limited to some

upper bound. This is a reasonable restriction for operation on an isolated network,

although if future work involved machines seperated by the public Internet, this

restriction may be excessively limiting.

More problematic is that this solution makes the user excessively aware of the

fact that the system is working around the teleoperation delay. Both master and

28

slave are imbued with a potentially large inertia that may be completely inappro-

priate for the simulation at hand. Operating a time delayed system in this manner

makes interaction with simulations as difficult as handling large and heavy ob-

jects. While this is not a task outside the capabilities of the user, this is not the sort

of interface that is my goal. The system should attempt to present to the user an

interface modelled as closely as feasable to undelayed operation.

Another serious problem is that this system is based on the assumption that the

environment is passive. This is understandably necessary to prevent energy intro-

duced by the environment from driving the feedback loop to instability, however

it is extremely limiting to the scope of simulations that the user may interact with.

Given the computational power available on a device such as the CAM and the

goal of interacting with physical simulations, forcing these simulations to be pas-

sive to account for network and computational delay is not an acceptable solution.

master
interface

slave
interface

SimulationUser

Position (x)

Force (F)

NETWORK

wave transformation

Figure 3-3: Wave Based Force-Reflecting Teleoperation

3.5 Wave-Based Teleoperation

In 1996, Gunter Niemeyer extended the traditional teleoperation model with the

introduction of wave variables, single variable combinations of both velocity and

force data. (Figure 3-3) Encoding the data in this wave variable form makes a stan-

dard teleoperation system impervious to instabilities due to communications de-

lay. For large delays, oscillations may result, however these may be accounted

29

for with methods including wave impedance matching, wave filtering, and wave

controllers.

Unlike conventional teleoperation, wave-based teleoperation allows for easy

tuning of the perceived virtual tool with which the user interacts with the remote

environment. The fidelity of interaction is, of course, limited by the closed-loop

bandwidth of the system, but this can be hidden by altering the characteristics of

the virtual tool. Under a lightly delayed system, the user might interact with the

environment with a light pencil, or their finger. As the delay increases, however,

the virtual tool becomes heavier or softer, reducing the bandwidth requirements

of the controller loop. Wave variables allow for easy adjustment of how the virtual

tool under a large delay is perceived, at the extremes a large heavy drill or a soft

sponge, or somewhere in between.

Wave based teleoperation has the advantage of increased stability over conven-

tional teleoperation. It also provides a method of tuning the trade-off of clarity of

haptic feedback with speed of operation, which is less readily determined by the

adjustible components of conventional teleoperation. For the purposes of oper-

ating in a virtual environment, however, it has the same failures as conventional

teleoperation.

While wave based teleoperation provides a level of adjustment in the interface

with which the user interacts with the environment, it still presents a very differ-

ent interface than undelayed operation. For the sort of simulations that I would

like to interact with on the remote system, this is unfortunate. This method adds

quite a bit of complexity over conventional teleoperation, with not much in the

way of gain for my system. Wave-based teleoperation is also like conventional

teleoperation in that it assumes a passive environment, which is not an acceptable

restriction.

30

3.6 Teleoperation with Buffer Zones

All of the methods described above for coping with time-delayed teleoperation

place cumbersome restrictions upon the operator and the environment. Much of

this is due to the fact that these methods were designed to improve the use of

teleoperation in real environments. These methods all assume an unknown and

passive environment. Neither of these assumptions is necessarily true, one reason

why none of these methods are deemed acceptable for this system. When teleop-

erating in a virtual environment, the entire state of the environment is necessarily

known to the remote system. This opens up a huge new realm of options for cop-

ing with delay. Hopefully these options will also provide a solution which does

not require a passive environment.

user point
x

y

0

a) no constraints
b) constraint: object
 occupies cell 1 unit
 in y direction.

object

buffer zone

x

y

0

Figure 3-4: Teleoperation with Buffer Zones

The first obvious new method is to provide the master system with advanced

warning when the teleoperation slave is in danger of a collision in the virtual en-

vironment. In a bitmapped virtual environment, this can be done by estabilishing

a buffer zone around occupied cells in the environment, as in Figure 3-4a. The size

of this buffer zone is dependent on the maximum expected velocity of the opera-

tor and the teleoperation delay; it should be large enough that the largest distance

travelled by the user during one round-trip delay does not exceed the size of the

31

buffer.

This can easily be modelled as an intangible skin around all objects in the vir-

tual environment. While in free space the user moves about unhindered as the

client sends position updates to the computation server. When the user penetrates

one of the buffer cells, the server warns the client of the potentially imminent col-

lision by sending a constraint to the client indicating the direction and distance to

the occupied cell. (Figure 3-4b) The client may then monitor the user for violation

of this constraint, and immediately provide a force response without having to

wait an additional round-trip delay for confirmation of the collision. As the user

moves from cell to cell in the environment, motion constraints are updated by the

server. In a bitmapped world, the client is at most responsible for six user con-

traints at any given time, one for each of the six faces of the open cell the user is

currently in.

This solution is substantially better than the methods described above for cop-

ing with delay, as it provides a much more accurate and realistic response to the

user and is not limited to passive environments. It differs notably from all other

teleoperation methods in that the closed servo loop no longer encompasses the en-

tire system, instead it runs entirely on the local machine. The closed haptic loop

may run at a 1 kHz rate to provide stiffness and resistance to instability. The user

is essentially operating in a frequently updated local model of the remote environ-

ment in which they are interacting.

This method is not without its problems, however. The simple six-constraint

model does not easily account for cells diagonal to occupied cells, only those or-

thogonal to the faces of occupied cells. (Figure 3-5a) Without some changes, the

user can still get arbitrarily close to an occupied cell without the client receiving

any advanced warning, meaning a user could significantly penetrate a surface in

the environment before the client knows to provide a force response. This can

be worked around by having constraints identify what nearby cell is occupied as

opposed to direction and distance, but this adds further complexity. (Figure 3-5b)

When buffer zones extend beyond one unit away from occupied cells, they may

32

x

y

0

a) problem with 6
 constraint model

x

y

0

b) constraint: object
 occupies cell at (4,4)

x

y

0

c) multiple constraints

Figure 3-5: Problems with Buffer Zones

begin to overlap and provide additional constraints for the client to keep track

of. (Figure 3-5c) In a system with substantial delay, the computational load on the

client may become excessive.

This system cannot gracefully deal with variable delay, as wave-based teleoper-

ation does. The upper limit of the delay it can handle is set by the size of the buffer

zones around occupied cells, which are not easily modified while the simulation is

running.

Additionally, this requires significant modifications to existing simluations, forc-

ing the addition of the buffer zones. This may be a significant computational load

upon active evironments, and may consume valuable data bits on the bitmapped

computer.

Finally, while this may provide a reasonable sense of reality for passive, im-

mobile environments, it is unclear whether mobile objects may overreact to user

contact when pushed. The sudden change from penetrating a virtual surface to be-

ing in a buffer zone as an object slides from cell to cell could provide a ratchet-like

feel to the entire environment.

For these and other reasons, buffer zones are not suitable for haptic interaction

in remote bitmapped virtual environments. This method provides a number of

advantages over the conventional teleoperation methods, however it introduces a

33

host of new problems that are not easily resolved.

3.7 Time/Space Tradeoff in Virtual Environments

None of the methods described thus far for coping with latency are sufficient to

meet the system design goals. To meet these goals, it was necessary to formu-

late a new method for coping with latency in virtual teleoperation. For the kind

of high-fidelity force response desired, it is clear that the closed haptic response

loop should not extend beyond the haptic interface host, and should be designed

to operate as quickly as possible based on a local model of the remote virtual en-

vironment. As we relaxed some of the environment requirements, as with buffer

zones, performance improved significantly. By relaxing environmental restrictions

further, we are able to find an acceptable solution to the latency problem.

All of the methods described above make a fundamental assumption about the

nature of the system: There is a direct spatial correspondence between the local

and remote environments. That is to say, if there is a wall five inches from the

neutral starting position in the remote environment, then the user will perceive

it five inches from the neutral starting position with the haptic interface. Fixed

objects in the remote environment are also fixed in a frame of reference about the

haptic interface.

This assumption is understandable when teleoperating in a remote real envi-

ronment. The slave robot physically exists in that remote environment, and when

it collides with an object it encounters natural restoring forces that should be com-

municated back to the master. This is not, however, the case when operating in a

virtual environment. The slave robot exists only inside the computer, and does not

necessarily encounter forces unless we choose to compute them, and these forces

can be computed without affecting the state of the environment. It is free to pen-

etrate solid objects and violate the physics of the virtual universe if we so desire.

In my research, I did not find any other similar systems that took advance of these

properties.

34

This understanding allows us to make a simple trade-off of temporal versus

spatial accuracy. We are able to provide a high-fidelity haptic response at the exact

time the user penetrates an object in the virtual environment by relaxing the spatial

correspondence between the haptic interface workspace and the virtual environ-

ment.

x

y

0

a) user approaches
 surface

x

y

0

b) user penetrates surface,
 client is notified

x

y

0

c) client offsets coordinate
 system, learns constraint
 x < 4

Figure 3-6: Time/Space Tradeoff

A simple example: Consider that the user is moving unimpeded through free

space, and there exists a solid surface some distance in front of the user. (Figure

3-6a) As the user moves towards the surface, at some point they will penetrate

the surface given the current frame of reference of the haptic interface. (Figure 3-

6b) Some delay length later, the computation server will realize that the user has

violated physical constraints of the environment. In a traditional teleoperation

system, it would then compute a force to deliver to the user which by the time

it was delivered would be incorrect, as the user may have moved significantly

during the time it took to compute and communicate this force. Instead, the server

tells the haptic client that the user has penetrated a surface in the environment,

and where that collision occured. The client uses this information to offset the

coordinate system the user is operating in so that instead of having significantly

penetrated the surface the user is merely just within it, computes an appropriate

force response, and caches the constraint implicit in the existance of that surface so

35

that forces to impede further progress in that direction are computed on the client

alone. (Figure 3-6c)

In other words, when a user collides with an object in a remote virtual envi-

ronment, instead of immediately encountering a restoring force they frictionlessly

push the coordinate system (and all objects therein) away from them for the dura-

tion of one round-trip delay. After this delay, the haptic client has learned of the

environmental constraints and can provide force feedback as appropriate.

This solution builds upon the gains that teleoperation with buffer zones pro-

vides, and remedies many of the problems with that method. It provides for accu-

rate and clear response to the user, and is not limited to passive environments. The

closed haptic response loop is confined to the local machine, and needs to compute

relatively few potential forces, so is free to run at a rate sufficient to provide a high

level of stiffness and resistance to instability.

Unlike buffer zones, there is no need to worry about sneaking up on a sur-

face: penetrating a surface with little to no advanced warning because of variable

delay, insufficient buffer zone, or diagonal approach. The user’s position is not

of concern until after they have collided with an object, and so there is no need

for advanced warning. There is no need to modify simulations to allow for buffer

zones. All of the coordinate system offsetting can be done in the software handling

communications between the haptic client and the computation server. As there

are no buffer zones, there is no need to worry about overlapping zones and exces-

sive multiple constraints, and so in a discrete environment the client is limited to

three simultaneous client constraints.

The accuracy of the spatial correspondence between the haptic workspace and

the virtual environment depends on the communication and computational de-

lays, and thus, as with wave variables, variable delay may be handled transpar-

ently. A larger delay simply results in larger spatial offsets.

This method does introduce some new concerns. For example, if a user repeat-

edly poked at a virtual surface, each collision would result in the coordinate sys-

tem being offset slightly further in that direction. It is feasible that the user would

36

be able to push the entire active environment outside of the haptic workspace.

There is a simple solution to this problem; simply have the coordinate system of

the haptic workspace tend to return to its original starting position. This can be

implemented by modelling the effects of a spring between the current coordinate

space origin and its starting position. Such a constraint can easily be figured in to

the force response on the haptic client.

This is still a method for coping with the fact that we have significant communi-

cation and computational latency; it does not mitigate the fact that we have limited

bandwidth between the haptic client and the remote virtual environment. It does,

however, give us a higher level of haptic accuracy – timely and sharp responses to

object collisions, in exchange for inaccuracy as to where these collisions occur in

the haptic workspace.

This is an acceptable trade-off. If the haptic response is inaccurate, this is em-

inently noticable to the user. Objects feel soft or unwieldy, and in worst cases

violent oscillations and instabilities may result. The result of spatial inaccuracy,

however, is far less noticable to the user of a haptic interface. As the user is oper-

ating the haptic interface in free space, they have very little in the way of a spatial

frame of reference beyond their own proprioception. For small coordinate offsets,

the effect is not easily perceptible to the user.

The previous assertion should be qualified somewhat. The result of spatial in-

accuracy is far less noticable than haptic inaccuracy as long as other forms of feedback

match the haptic feedback. It has been shown that when a system provides visual and

haptic feedback, the visual feedback far outweighs the value of haptic feedback to

the user. Thus, in a simulation providing visual feedback that indicates the user’s

current position, the displayed position should correspond to the user’s position

of one time-delay prior, so as to match their haptic feedback.

In the system as described, the client is responsible for the computation of the

restoring forces to be presented to the user. When interacting with simulations

where the cells that make up the environment are rather large, this would ap-

pear to require the objects in the world to have some homogeneous set of surface

37

properties. For such small simulations, this method for coping with delay is lim-

iting and primarily valid for rigid objects. The system could be extended such

that the server provides surface properties that correspond with each directional

constraint, if the computation server keeps track of such information.

As the cells of the simulation shrink to sizes we are more likely to encounter

with large bitmapped environments, however, I theorize that instead of approxi-

mating material interaction by utilizing a set of surface characteristics, the physics

of the environment can create realistic force responses for material properties. Each

individual cell will still act as a rigid body, however the way in which these cells

shift about in the simulation due to physics will give a realistic material response

to the user.

Current haptic systems compute restoring forces as if the user had penetrated

some hollow object and a mechanical system is trying to return them to the surface.

Bitmapped virtual environments should allow restoring forces to be based on the

physics of a finite element analysis of the actual solid objects.

user point

a) User point in cubic cell b)User point violating three cell boundaries

Figure 3-7: User constraints in a discrete environment

3.7.1 Concerns in Discrete Environments

There are a very limited number of user constraints when operating in a discrete

environment, such as a bitmapped virtual environment, as the user is always

38

within a cubic cell with six boundaries. At any given time, the user could po-

tentially violate at most three of these boundaries, and thus there are at most three

constraints on the user at any given time, as shown in Figure 3-7. The exact meth-

ods for handling these constraints as the user moves from cell to cell are less than

trivial.

user point
x

y

0

a) no constraints

x

y

0

b) constraint: y < 2

t=0 t=1

x

y

0

d) constraint: y < 2
 (user pushed through
 object)

t=2

x

y

0

c) no constraints
 (user returned to
 original cell)

t=2

x

y

0

t=2

f) constraint: y < 2
 (but user has cleared
 obstacle!)

y

0

e) constraint: y < 2
 (but user has cleared
 obstacle!)

t=3

Figure 3-8: Behavior in a simple constraint model

The simplest case is when the user is in a free (unoccupied) cell. In this case,

there are no constraints on the user. (Figure 3-8a) Now, suppose the user moves

from a free cell into an occupied cell. In two dimensions, assume the user has

moved from a cell based at (1, 1) into an occupied cell at (1, 2). This sets the con-

straint y < 2. (Figure 3-8b) Similar constraints would be set moving from a free cell

into an occupied cell in any dimension.

Now imagine that the user returns to cell (1, 1) on their own accord, or due to

the restoring force. The constraint y < 2 is no longer violated, and so there are no

39

constraints on the user. (Figure 3-8c)

This, however, is not the end of the story. As the user is not interacting with

actual objects but instead with a force feedback device of limited response power

and stiffness, they may pass entirely through virtual objects in the environment.

Consider the case where the user has encountered the constraint y < 2, and then

pushes on to the cell (1, 3). (Figure 3-8d) This cell is not occupied; the user has

completely penetrated the virtual surface. Although the cell (1, 3) is unoccupied,

the constraint y < 2 is still valid for the user.

One way of implemeting this would be to not relax constraints until they have

been satisfied; that is to say, enforce the constraint y < 2 until the user has returned

to a cell with a y coordinate less than 2. This is not entirely valid. Consider the

examples in figures 3-8e and 3-8f. In each of these cases, there should be no further

constraints on the user because they have cleared the obstacle by motion in other

dimensions, however with our naive implementation above, there would still be

the now bogus y constraint.

A solution to this problem is to use the sort of constraint-based God-objects

that Zilles and Salisbury described in 1995 [16]. Instead of just tracking constraints

and the current user position, we also keep track of where the user would actually

be if they were not able to penetrate virtual objects, and calculate constraints for

restoring forces to that point. This God-object, or ’ghost point’ as Massie calls it, is

strictly constrained by the calculated constraints.

As the user moves in free space, their ghost point tracks their actual position

exactly. When they penetrate an object, however, it remains strictly constrainted to

the surface. As user motion drags the ghost point around in unconstrained direc-

tions, user constraints are re-evaluated whenever the ghost point enters a new cell.

In figure 3-9c, for instance, as soon as the user moves to cell (0, 3), the ghost point

is dragged to cell (0, 0), constraints are re-evaluated, and the y < 1 constraint is

lifted. Figure 3-9 demonstrates the effectiveness of this method in two dimensions.

Is it trivial to extend this to three (or more) dimensions.

40

user point
x

y

0

a) no constraints

x

y

0

b) constraint: y < 2

t=0 t=1

x

y

0

d) constraint: y < 2

t=1

x

y

0

c) no constraints
 (ghost point returns to
 user point unimpeded)

t=2

x

y

0

t=3

f) constraints:
 y < 2, x < 3

y

0

e) constraint: y < 2

t=2

ghost point

Figure 3-9: Behavior in a ghost point constraint model

user motion

constrained direction
(v)

ghost point

unimpeded motion

Figure 3-10: User constraints in a continuous environment

41

3.7.2 Continuous Environments

Though not applicable to bitmapped virtual environments, I find it useful to point

out that this sort of constraint-based teleoperation is also applicable to traditional

continuous environments. Upon intersecting a virtual object, constraints can be set

to impede user progress in the ~v direction that is the inverse surface normal of the

penetrated object, as in Figure 3-10. On the server, the calculations necessary are

essentially those of a local simulation with constraint-based ghost points, so this is

only useful for a particularly powerful remote compute server for physics in an ac-

tive environment, or for shared virtual environments. The number of constraints is

not limited to the three provided in discrete environments, and so communication

and calculation requirements may go up dramatically in such a system.

42

Chapter 4

Application Adaptation and Results

4.1 Hello, voxel!

To validate the method for coping with computational and network latency de-

scribed in the previous chapter, I first implemented a simple client/server haptics

system with a three-dimensional bitmapped environment computed on the remote

SparcStation, without using the CAM. I constructed a remote environment consist-

ing of 3 by 3 by 3 cells, each 30 mm on a side. This fits nicely within the 5” cube

within the PHANToM’s workspace, and allows for some additional buffer space

for offsets.

This example is very much like Thomas Massie’s first ’box’ example program,

implemented in a discrete space as opposed to a continuous one [5]. All cells ex-

cept the center cell are occupied; the user starts in the center cell. Exploring this

environment, the user should get the impression that their finger is confined to

the space within a small cubic box. To explore the effects of larger latencies, the

main loop of the server was designed to allow an arbitrary delay to be added to

the computations.

I explored interacting with the simulation at various computation delays. The

average spatial displacement upon encountering obstacles, and the computed av-

erage velocity based on this, are detailed in Table 4.1 for a number of latencies. At

the observed average velocity of 0.2 m/s, a delay of 200 ms represents the upper

43

Table 4.1: Spatial displacement observed for varying latencies

Approx. Update Avg. Spatial Average
Latency Rate Offset Velocity

1 ms (1000 Hz) <0.5 mm
20 ms (50 Hz) 4 mm 0.20 m/s
50 ms (20 Hz) 12 mm 0.24 m/s

100 ms (10 Hz) 23 mm 0.23 m/s
200 ms (5 Hz) 40 mm 0.20 m/s
500 ms (2 Hz) (full range)

end of the range where this method is reasonable for interacting with remote sim-

ulations. A larger workspace and slower user movements could conceivably make

this method usable for up to one second delays.

At low latencies, up to approximately 50 ms, the user experience is very sharp

and precise. It is difficult, if not impossible, to tell that there is a significant delay in

the computation of new user constraints. As the latency increases, the workspace

and objects within it appear to stretch out over more space, particularly when the

user makes quick motions. Objects in the environment remain in the same loca-

tions with respect to one another, however bouncing quickly between two opposite

sides of the box may make the box feel larger than it is in the remote environment.

I extended this simulation to allow for larger remote environments, and found,

as expected, that performance did not degrade for static environments as large

as 64 by 64 by 64 cells. The SparcStation server does not have the computational

power to update 256,000 cells per cycle at any appreciable rate, so this system is

restricted to purely static simulations where the user is the only moving object.

4.2 CAM-based Simulations

4.2.1 Static Pieces

Having verified that the system as designed could cope with quite large compu-

tational latencies, I moved on to have the virtual environments simulated on the

44

Figure 4-1: Images of CAM Simulations

45

CAM-8 instead of the SparcStation. The first CAM-based simulation was a modi-

fication of an existing demo application.

The original application consists of a 512 by 512 by 1 space in which there exist

up to 63 solid pieces. At any given time, one of these pieces may be selected, and

moved in any of the eight cardinal directions. Whenever there is an overlap of the

selected piece with any of the other pieces, the number of overlapped cells is noted.

This simulation is controlled by an external C program that attempts to randomly

move the pieces apart until they can all be moved independently.

To adapt this for use as a haptics simulation, it was necessary to make a num-

ber of changes to the application. Ideally the server would obtain the new user

position from the client, and ask the CAM to attempt to move the piece to the new

position. The server would then return new boundaries based on whether or not

it was possible to make the desired move. Unfortunately, this would not allow for

ghost point tracking as described in Chapter 3, and so the user could potentially

tunnel through small objects, or have difficulty sliding along surfaces. Instead,

the server software keeps track of the location of the user ghost point, and asks

the CAM to attempt to move the current selected piece to the new position. The

CAM steps a cell at a time, moving the selected piece and checking for overlap

with other pieces. The CAM returns to the server the actual distance moved, from

which boundaries can be computed and returned to the client.

In the completed simulation, the PHANToM endpoint exists as a single cell

’grasp point’. This grasp point attempts to track the PHANToM’s motion, and

with it the user may explore the environment and feel the pieces therein. When

in contact with a piece in the environment, the user may choose to select it. At

this point, the user controls the motion of the selected piece in the environment.

The selected piece can be moved about, restricted in motion by the other pieces

in the environment, and dropped in any open space. Figure 4-1a shows the ini-

tial configuration of the pieces, and Figure 4-1b shows the simulation with pieces

reorganized and one selected.

Experimentation with this simulation yielded an average spatial offset of 50 mm.

46

Given the 0.2 m/s average velocity estimated by the ’Hello, Voxel!’ program, this

corresponds to a 250 ms delay, or an update rate of 4 Hz, on a half-populated CAM-

8. As expected from the previous results, this system is quite usable, although

distances often feel somewhat larger than they actually are in the simulation.

There are a number of things that account for this slow update rate. Most im-

portantly, this program makes terribly inefficient use of the CAM. The routines

that attempt to move the grasp point to the desired position make use of the CAM

in a serial manner, moving the grasp point only one cell per computation update

of the entire simulation space. Additionally, the manner in which collision with

the environment is detected is rather inefficient – it involves a transition at each

cell and the summing of overlap information across the entire space, as well as the

manipulation of this data on the host computer. This particular simulation is also

not a particularly impressive use of the CAM, as the pieces in the simulation are

completely static, so most cells have no interesting computation occuring. Addi-

tionally, the CAM-8 that this simulation ran on was only half-populated, with 4

processor boards. With an additional 4 processor boards, a times two speed im-

provement should be expected.

Later experimentation with a fully-populated CAM showed the expected speed

improvement. An average spatial offset of 25 mm was measured, which corre-

sponds to a 125 ms delay or an update rate of 8 Hz.

4.2.2 Static Piece Improvements

I was able to make a number of improvements to the above simulation that yielded

a much faster update rate. Instead of attempting to move the grasp point one cell

at a time, the simulation was modified so that the CAM attempts to move the grasp

point four cells ahead. If this attempt fails, it does a binary search to determine the

furthest the piece may be moved. This improvement alone should lend a nearly

times four speed improvement, but it imposes the restriction that all pieces must

be at least four cells thick.

47

The simulation was also modified to update the display less often. When up-

dating the display, the CAM waits for the next video frame boundary, which is on

average 33 ms away. By updating the display after every seven position updates,

previously lost time is saved while still maintaining accurate video feedback to the

user.

With these improvements, the average spatial offset fell to 7 mm, which corre-

sponds to a 35 ms latency (29 Hz update rate) on a fully-populated machine. This

provides a very solid and usable simulation. Another factor that contributes to the

accuracy of this simulation is that the average spatial offset is a somewhat mislead-

ing value. Offsets are usually larger when the user is moving about in free space

searching for an object. When exploring an object in detail motions are smaller;

thus offsets are smaller and the simulation is more accurate.

As mentioned before, tracking the user motion in the simulation is unfortu-

nately a serial operation, and as such is very time consuming. In the 512 by 512

by 1 simulation described above, cells were approximately 0.2 mm on a side in

the x and y dimensions. Even small motions result in the CAM tracking the user

through a large number of cells. In three-dimensional simulations, for example a

64 by 64 by 64 environment, cells are larger. User motions involve far fewer cell

transitions, and so the update rate is further improved.

4.2.3 3-D Pieces

Now that I had shown that it was possible to interact effictively with two-dimensional

simulations on the CAM, the next step was to extend the simulation to three di-

mensions. The static piece simulation was modified to represent a space 64 by 64

by 64 cells in size; this has the same number of cells as the 512 by 512 by 1 space

and thus should run at the same rate. The routines that calculate user and piece

motion were extended to support the third spatial dimension which was a simple

modification as the as the z dimension is not functionally different from the first

two. Appendices A through C include the source code for this project. Appendix

48

A, voxel client.c , contains the source code for the client program that runs

on the PHANToM host. Appendix B, cam server.c , includes the server-side

routines responsible for network communication and latency management. These

routines are run-time linked into the Forth code that controls the CAM-8, included

in Appendix C.

The existing 3-D display renderers only supported displaying all surfaces as a

single color. While this is sufficient for many simulations, this display mode made

it difficult to differentiate between pieces in this simulation. With the assistance

of my advisor, Norman Margolus, we were able to extend the display routines to

support three bits of color information for surfaces. This new display mode works

extremely well for the 3-D pieces simulation.

This completed simulation demonstrates the success of my system. Exploring

the environment and grasping pieces within it with the PHANToM are intuitive

tasks, and the haptic and visual displays provide consistent feedback to the user.

Figure 4-1c shows a configuation with three unselected pieces, with the grasp point

in the upper right of the screen. Overlapping pieces in the projection and the shad-

ows created by the rendering routine both provide depth information visually to

the user. Figure 4-1d shows the smaller piece selected and moving about in front

of the other objects.

4.2.4 Dynamic 3-D Pieces

The three-dimensional pieces experiment is an impressive simulation, but this ex-

periment still does not make very effective use of the CAM processor power. As

a simple demonstration of what more complex simulations are possible, this ex-

periment was extended to include some additional dynamics, namely diffusion.

When a piece is selected in this new simulation, it starts to send particles out into

the environment. It behaves as if it were perhaps a frozen object being grasped by

the user with hot tongs; particles steam off from it and then diffuse away.

This behavior can be seen in figure 4-1e. The piece in the upper left of the

49

screen is currently selected, and so is surrounded by a cloud of randomly diffusing

particles. The next image displays the system immediately after a large piece has

been selected and then deleted; this allows the mass of particles to be seen before

they diffuse entirely away.

50

Chapter 5

Conclusion

5.1 Review of Implementation Issues

I initially expected that a fair amount of work will be required to integrate the

PHANToM haptic interface and the CAM-8 system. Here are the main issues I

defined that would require significant research and decisions to be made.

5.1.1 CAM-8 Availability

When I started, there were only 3 assembled CAM-8 systems at MIT, all of which

were under constant use. For my research, I needed a CAM-8 available for my use

a great deal of the time. There are a large number of CAM-8 parts at the AI Lab,

enough to construct at least several more working systems. I worked with Norm

Margolus over the summer and fall to assemble additional machines. This work

was fairly uneventful. We encountered some small bugs in the newest revision of

the CAM-8 interface board, but were able to fix them.

5.1.2 Network Communication

Unfortunately, the CAM-8 system connects only to Sun SparcStations, while the

PHANToM haptic interface does not. The PHANToM primary supported envi-

ronment is Microsoft Windows NT. To handle this problem, a network protocol

51

needed to be devised for passing the necessary information for physical interac-

tions between a client system running Windows NT and a SparcStation server act-

ing as the CAM-8 host.

This issue grew to encompass the bulk of my project. The simplest solution

would have the NT machine acting as a thin client, doing little processing on its

own and passing all data to the SparcStation, however as I describe in depth in

Chapter 3 this was not sufficient. I explored a number of different options for

handling the issues introduced by network and computational latency, and settled

upon the constraint-oriented time/space tradeoff described above.

5.1.3 Data Format Reconcilliation

The GHOST toolkit provided for interfacing the the PHANToM is primarily based

on high-level primitives such as polyhedral objects and polygon meshes. I was in-

tially concerned as to how easily that could be reconciled with the pure bitmapped

environment within the CAM. The Basic I/O library for the PHANToM provided

me with a more amenable interface, allowing me to extract position data and re-

turn force data directly to the PHANToM.

5.2 Review of Goals

My goal in this project was to design a system to provide for intuitive user in-

terfaces to bitmapped simulations. I hoped that this system would make under-

standing and interaction with many simulations far more simple than existing in-

terfaces. I believe that the system as implemented achieves these goals, but this it

is not without room for improvement. The current hardware puts this project just

on the edge of possibility, where a proof-of-concept system was feasable and more

complex systems will be possible soon.

The single point interface that the PHANToM provides is somewhat limiting in

that it does not entirely allow users to interact with simulations the same way they

52

interact with the world. The user is restricted to poking and tracing around the

environment, and the inability to grasp objects with multiple fingers is distracting.

The lack of tactile, in addition to haptic, feedback provides an interface different

from what the user is familiar with, although it is a close approximation to inter-

acting with the environment through a thimble. These issues can be addressed by

more complex haptic interface hardware, and future advances in technology.

My goal of a general purpose interface to bitmapped simulations was not as

simple as I first expected. It is often necessary to craft the haptic interface to the

simulation at hand, because of the properties of the different simulations. For

example, it was trivial to interact with the block-based simulations described in

Chapter 4 because the pieces all had smooth surfaces and could slide past one an-

other frictionlessly. If the pieces were more complex, however, it might not be easy

for the user to manipulate the pieces effectively, particularly if the surfaces have

interlocking boundaries. Such a simulation would require more complex rules for

haptic interaction.

Additionally, the CAM-8 is a powerful machine, but it is still rather limited

when it comes to real time simulations such as those described in Chapter 4. Real-

istically, a 64 by 64 by 64 simulation is the largest that is feasable with the current

generation of CAM hardware, as the update rate demanded by haptic interaction

is much higher than previous applications. The next generation CAM system cur-

rently being designed should be several orders of magnitude faster, and thus allow

for substantially more complex simulations.

5.3 Future Directions

5.3.1 Single-host operation

For convenience, cost, and reliablity reasons, it would be desirable to have the

PHANToM and CAM-8 both hosted on the same machine. This would reduce

the need for expensive, under-utilized hardware, and obviate the need for coping

53

with network latency and reliability. As the network latency is far outweighed by

computational latency in current systems, this is not necessarily a high priority. As

SBus is no longer a supported bus type for Sun hardware, and the Solaris drivers

for the CAM exist only for SunOS 4, it would be best to build a PCI interface card

for the CAM. Such a card could be used in modern SparcStations, as well in PC

systems that host the PHANToM. On the PC, I would suggest future work take

place on a more developer-friendly operating system than Windows NT, namely

Linux or a BSD variant.

5.3.2 Effective CAM Usage

The current method for tracking the user within the simulation space is terribly

inefficient due to the serial manner in which it makes use of the CAM. It may be

possible to move the user through the simulation with a method other than ghost

point tracking, though this may have the tradeoff of being able to tunnel through

thin surfaces. Other methods should be explored to see how they effect simulation

performance. Additionally, not all of the information from the simulation is cur-

rently used. When detecting collisions, the CAM returns to the server software not

only if a collision occured, but also the number of cells that have overlapped. This

information could potentially be used to aid the calculation of restoring forces.

5.3.3 PHANToM Thermal Display

A device to present thermal stimuli to a user of the PHANToM haptic interface

has been developed at the MIT AI Lab [9]. A small stylus attached to the end

of the PHANToM arm contains a thermo-electric heat pump and a water-cooled

heat sink, and is able to present temperatures over the entire range of comfort-

able sensation. This device allows for the presentation of another dimension to

the PHANToM user, which could be useful for interacting with CAM simulations.

For example, many physics-based simulations on the CAM involve the concept of

temperature, and this information could be passed along to the user through the

54

thermal display.

5.3.4 Time/Space Tradeoff in Continuous-space Teleoperation

As described in section 3.7.2, the sort of constraint-based teleoperation I have used

to reduce the effects of network and computational latency is also applicable to

traditional continuous environments. The computations required on the server

are very similar to the existing computations required for single-host operation. It

would be interesting to explore this further, as it easily enables simulations involv-

ing multiple users on seperate systems interacting with a shared remote virtual

environment.

5.3.5 Reapplication to Teleoperation in Real Environments

Coping with communucation delays has always been a serious concern with tele-

operation systems, and new methods for compensating are constantly being ex-

plored. Although this current implementation of the time/space tradeoff method

is somewhat odd in that it only shares position information between the master

and slave systems, it should be possible to extend the system to share force infor-

mation as well. If this were done, this method for coping with latency could be

reapplied to teleoperation in real environments, providing a new tool for stabiliz-

ing force-reflecting teleoperation systems with significant delay.

5.4 Other Applications

Beyond the applications that the PHANToM haptic device is already being used

for, facilitating physical interactions with a bitmapped environment such as that

provided by the CAM-8 greatly expands the scope of environments that can be

haptically manipulated. Simulations that were once unavailable due to the sheer

computational complexity of providing real-time information on the environment

would now be possible. Instead of just virtual environments with coarse-grained

55

physics simulated at the object level, users would have the option of interacting

with virtual environments simulating the physics of the environment at a much

finer-grained particle level. Some potential applications of this technology would

allow haptic interactions with material crystallization simulations, manipulation

of large-scale molecular simulations, and other interactions with environments

modelled with finer-grained physics allowing for more accurate simulations.

Besides such physics simulations, the CAM-8 supercomputer is very effective

at computing the progress of a wide range of cellular automata in a large number

of dimensions. Physical metaphors could be developed for haptic interactions with

two-dimensional computations, such as Conway’s Game of Life, or for simulations

in four or more dimensions. The opportunity to physically manipulate a four-

dimensional object, accounting for the still unavailable dimension in some manner,

might provide a more intuitive visualization method for introductory purposes.

Not all of these example applications may be realizable with the computational

power in the current CAM systems; howevern with the interface now developed,

it should be straightforward to adapt it to work with future CAM systems with

far greater computational power than the CAM-8. The possible applications of the

PHANToM/CAM pairing are virtually endless.

5.4.1 Crystallization and Annealing

The CAM-8 has been used extensively for large statisical simulations such as those

used to model annealing and crystallization. As the simulation runs, the CAM also

provides a ray-traced display of the progress of the material system. Like most

CAM simulations, however, there is not a clear way to interact with the virtual

environment as the simulation is running. By inserting the user into the virtual

environment by use of the PHANToM device, however, the user could touch the

simulated crystals, poke holes in structures with their finger tip, and examine the

haptic properties of the virtual surfaces.

56

5.4.2 n-body Simulations

As the CAM provides such a high computational density, it is able to accurately

and quickly compute the interactions of large n-body problems, as might be found

in a lattice-gas simulation, a model of the forces involved in molecular interactions,

or any other similar problem. Such problems are computationally intractable for

real-time work on the platforms with which the PHANToM can currently interact.

With the linked PHANToM and CAM, however, users would be able to reach into

such simulations and feel the forces at work. For example, with the appropriate

CA rules one could take a simulation of a protein molecule and examine the forces

that occur as it interacts with other molecules, or is folded.

5.4.3 Real-Time Video Manipulation

The CAM-8 has an integral video input which can feed data directly into a simula-

tion. The video data can then propagate through the system as determined by the

rules of the CA. Many optical effects can be easily simulated in real time with this

facility – arbitrary lens effects, for example. In another example, the video data

could appear in the CAM on a simulated flexible membrane stretched across the

field of simulation. With the PHANToM, a user could deform this membrane and

instantly see the visual effects of that deformation.

5.4.4 Interaction Metaphor

It remains to be decided exactly how the user will interact with certain kinds

of simulated environments. Overall design for three-dimension environments is

quite clear, inserting the user’s finger point into the simulated environment and

monitoring the forces on those cells is appropriate for most simulations. Interac-

tions with environments with greater than three dimensions are more puzzling.

Obviously it is necessary to give the user an n-dimensional finger so that they can

meaningfully interact with the simulation, but how do we then reconcile the re-

sults with the PHANToM’s ’mere’ 3-D interface? Haptic interaction with greater

57

than three-dimensional simulated spaces is an intriguing topic for future research.

5.4.5 Virtual Instruments, and Other Artistic Endeavors

Perhaps a more fanciful example of what should be possible in the future, would

be physically simulating a musical instrument within a CAM-like supercomputer.

Given a stringed instrument such as a guitar or a zither, the effects of the vibra-

tions of plucked or strummed strings upon sounding board, surrounding air, and

adjacent strings could be simulated in such a way that a resulting audio output

could be produced based only on the simulated physical interactions of the com-

ponents and not on higher level approximations of instrument sounds. Using the

haptic interface, a user could play such a virtual instrument as if it were a real one.

Since the instrument only exists within the computational world of the CAM, it

could have properties not possible in the real world. One could experiment with

the musical effects of using materials in instrument construction not available in

the real world, or even with the effects of playing the instrument in a universe with

different fundamental laws.

This is just one example from a huge field of artistic and entertainment related

possibilities for the linked PHANToM/CAM system. Others include simulated

sculpting with realistic interactions, new concepts in ’fingerpainting’, and interac-

tive virtual artwork. While realistically the expense of such a system would pre-

vent it from being widely used for such endeavors in the near future, the commod-

ity component design of the CAM and the mass-market appeal of the PHANToM,

now being sold commercially by SensAble Technologies, make such a tool not en-

tirely out of reach for a great many users. While some might consider the research

value in such a system dubious, this is just one possible application of the system,

and it is vital to remember that such creative and whimsical ideas are integral to

the learning process.

58

5.5 Conclusion

The PHANToM haptic interface and the CAM-8 supercomputer are both innova-

tive devices that complement each other well; the CAM-8 is a powerful processing

system without a real-time interactive user interface for the physical simulations

at which it excels, and the PHANToM is a unique interface for interacting with

such simluations. This system in which the PHANToM can interact with three-

dimensional bitmapped virtual environments has a large number of exciting ap-

plications, and advances the accessibility of both technologies.

59

60

Appendix A

voxel client.c

#define WIN32 LEAN AND MEAN
#include <winsock2.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <math.h>

=� phantom includes �=
#include "phantom.h"
#include "os_extender.h" 10

=� constants �=
#define DEFAULT PORT 5001
#define DEFAULT SERVER "watt.ai.mit.edu"

=� stiffness of voxels in N=mm �=
#define STIFFNESS 0.8
#define DAMPING 0.01
#define COORD SPRING (float)0.05

20

=� hysteresis in spatial offsetting, to prevent ’jitter’ between cells.
When a user penetrates an occupied cell and the coordinate system
is shifted, how far into the occupied cell do they remain? �=

#define HYSTERESIS (float)0.5

#ifndef TRUE
#define TRUE 1
#define FALSE 0
#endif

30

float constraint[3];
float adjpos[3];
unsigned char constdir, oldconstdir;

61

CRITICAL SECTION PositionCriticalSection, ConstraintCriticalSection;

=��������
��
�� local function headers
��
��������= 40
SCHEDULER CALLBACK servoLoopCallback(void �userData);

void Usage(char �progname) f
fprintf(stderr,"Usage:\n%s [-h] [-s server] [-p port]\n" ,progname);
fprintf(stderr,"Where:\n\t-h displays this usage message\n");
fprintf(stderr,"\tserver is the IP address or name of the server\n");
fprintf(stderr,"\tport is the UDP port to communicate on\n");
WSACleanup();
exit(1);

g 50

=� Main
Initializes OSExtender and PHANToM. Resets PHANToM. Starts servo loop
and waits for user to hit key to end program.

�=
void main(int argc, char�� argv)
f

char �server name = DEFAULT SERVER;
unsigned short port = DEFAULT PORT;
unsigned int addr; 60
struct sockaddr in server;
struct hostent �hp;
WSADATA wsaData;
SOCKET conn socket;
char buffer[256];
long �lptr = (long �)buffer;
float �fptr= (float�)buffer;
int i, retval, phantom id;
float position[3];
long �longptr; 70

=� start OS Extender (must be done first) �=
initOSExtender();

=� Process command line arguments �=
for (i=1; i<argc; i++) f

if ((argv[i][0] == '-') j j (argv[i][0] == '/')) f
switch (tolower(argv[i][1])) f
case 'h' :

Usage(argv[0]); 80
break;

case 's' :
if ((i+1) < argc)

server name = argv[++i];
else Usage(argv[0]);
break;

62

case 'p' :
if ((i+1) < argc) 90

port = atoi(argv[++i]);
else Usage(argv[0]);
if (port == 0)

Usage(argv[0]);
break;

default:
Usage(argv[0]);
break;

g 100
g

g

=� Initialize the phantom �=
phantom id = init phantom("phantom.ini");
if (phantom id < 0) f

printf("Error initializing PHANToM\n");
getchar();
exit(1);

g 110

=� Tell user to hold phantom in reset position �=
printf("Hold PHANToM in neutral position and press enter\n");
printf("Do not use reset arm on PHANToM model 3.0\n");
getchar();

=� reset the phantom - this calibrates the sensors on the PHANToM.
It must be done before reading position or writing forces. This function
must be called while the PHANToM is in the reset position otherwise the
positions read from the PHANToM will be incorrect. �= 120

if (phantom reset(phantom id)) f
disable phantom(phantom id);
printf("Error reseting PHANToM\n");
getchar();
exit(1);

g

=� Initialize the network �=
if (WSAStartup(0x202, &wsaData) == SOCKET ERROR) f

fprintf(stderr, "WSAStartup failed with error %d\n" , WSAGetLastError()); 130
disable phantom(phantom id);
WSACleanup();
exit(1);

g
=� Get host address �=
if (isalpha(server name[0])) f

hp = gethostbyname(server name);
g else f

addr = inet addr(server name);
hp = gethostbyaddr((char �)&addr,4,AF INET); 140

g

63

if (hp == NULL) f
fprintf(stderr,"Client: Cannot resolve address [%s]: Error %d\n" ,

server name,WSAGetLastError());
disable phantom(phantom id);
WSACleanup();
exit(1);

g

=� Build sockaddr in structure �= 150
memset(&server,0,sizeof(server));
memcpy(&(server.sin addr), hp�>h addr, hp�>h length);
server.sin family = hp�>h addrtype;
server.sin port = htons(port);

=� Open the socket �=
conn socket = socket(AF INET, SOCK DGRAM, 0);
if (conn socket < 0) f

fprintf(stderr,"Client: Error Opening Socket: Error %d\n" ,
WSAGetLastError()); 160

disable phantom(phantom id);
WSACleanup();
exit(1);

g

=� Associate a connection with this socket �=
if (connect(conn socket, (struct sockaddr�)&server, sizeof(server))

== SOCKET ERROR) f
fprintf(stderr,"connect() failed: %d\n" ,WSAGetLastError());
disable phantom(phantom id); 170
WSACleanup();
exit(1);

g

=� Handshake with server maybe? �=
fprintf(stderr,"Contacting CAM server. . .\n");

=� Intialize mutexes �=
InitializeCriticalSection(&PositionCriticalSection);
InitializeCriticalSection(&ConstraintCriticalSection); 180

=� start the servo loop - it does all the work:
updates phantom, calculates reaction forces
and sends forces to the phantom. We use os extender
function startServoLoop so that this will run in real time.
Pass startServoLoop phantom id as user data
it will need for other iolib functions. �=

startServoLoop(servoLoopCallback, (void �) &phantom id);

=� while servo loop is running we wait for user to hit retrun to exit �= 190
printf("Interact with the remote environment.\n");
printf("Hit enter to exit.\n");

while (1) f
=� Acquire position mutex �=

64

EnterCriticalSection(&PositionCriticalSection);
=� Get the position from memory �=
memcpy(position, adjpos, 12);
=� Release position mutex �=
LeaveCriticalSection(&PositionCriticalSection); 200

=� Send the position over the to the CAM host �=
=� These are floating point values. Luckily, both x86 and Sparc use
� the IEEE floating point representation, modulo endianess. This is
� NOT NECESSARILY THE CASE for other platforms! If this is ported to
� some other platform, it may be necessary to use xdr or some sane
� standard float representation.
�=

longptr = (long �)position;
for (i=0; i<3; i++) 210

longptr[i] = htonl(longptr[i]);
retval = send(conn socket, (const void �) position, 12, 0);
if (retval == SOCKET ERROR) f

fprintf(stderr,"send() failed: error %d\n" ,WSAGetLastError());
disable phantom(phantom id);
WSACleanup();
exit(1);

g

=� Receive new constraints �= 220
retval = recv(conn socket, buffer, sizeof(buffer), 0);
if (retval == SOCKET ERROR) f

fprintf(stderr,"recv() failed: error %d\n" ,WSAGetLastError());
closesocket(conn socket);
WSACleanup();
exit(1);

g
if (retval != 13) f

fprintf(stderr, "Weird packet. . .size %d\n" ,retval);
continue; 230

g

=� Acquire constraints mutex �=
EnterCriticalSection(&ConstraintCriticalSection);

for (i=0; i<3; i++) f
lptr[i] = ntohl(lptr[i]);
constraint[i] = fptr[i];

g
constdir = buffer[12];

240
=� Release constraints mutex �=

LeaveCriticalSection(&ConstraintCriticalSection);

=� TODO - Check for user interrupt �=
g
getchar();

=� user has exited stop the servo loop, disable the phantom and quit �=
stopServoLoop();

65

disable phantom(phantom id); 250
closesocket(conn socket);
WSACleanup();

g

=� servoLoopCallback
� Called at 1khz by the OS Extender to read phantom position and
� set phantom forces. Calculates intersections of phantom point
� with objects in the scene and sets appropriate forces.
�=
SCHEDULER CALLBACK servoLoopCallback(void �userData) f 260

int phantom id = �((int �) userData);
int error;
unsigned char newv;
float position[3], vel[3], force[3];
static float offset[3];
static int first time = TRUE, dcount = 0;

=� the time first through the loop we need to enable the PHANToM forces.
We don’t do this before starting the servo loop because the
hardware timeout circuit will disable the forces before the servo loop 270
begins. �=

if (first time) f
if (error = enable phantom forces(phantom id)) f

disable phantom(phantom id);
printf("Error enabling PHANToM forces\n");
getchar();
exit(1);

g
first time = FALSE;
zero vector(force); 280
zero vector(offset);
zero vector(constraint);
constdir = 0; oldconstdir = 0;

g

=� Acquire position mutex �=
EnterCriticalSection(&PositionCriticalSection);

=� Update the PHANToM
This updates the current state (position, velocity etc. . .) 290
of the PHANToM. Must be called once and only once every servo loop
otherwise values returned by get phantom pos, get phantom vel, etc. .
will not be correct �=

if (update phantom(phantom id)) f
disable phantom(phantom id);
printf("Error updating PHANToM\n");
getchar();
exit(1);

g
300

=� Get the position from memory �=
get phantom pos(phantom id, position);

get phantom vel(phantom id, vel);

66

=� Calculate adjusted position �=
adjpos[0] = position[0] + offset[0];
adjpos[1] = position[1] + offset[1];
adjpos[2] = position[2] + offset[2];
=� Release position mutex �=
LeaveCriticalSection(&PositionCriticalSection); 310

=� Acquire constraints mutex �=
EnterCriticalSection(&ConstraintCriticalSection);

=� Offset new boundary violations if > hysteresis �=
newv = constdir � (constdir & oldconstdir);
oldconstdir = constdir;
if (((newv & 0x01) && (adjpos[0] > constraint[0] + HYSTERESIS)) j j

((newv & 0x02) && (adjpos[0] + HYSTERESIS < constraint[0]))) 320
offset[0] = constraint[0] � position[0] + HYSTERESIS;

if (((newv & 0x04) && (adjpos[1] > constraint[1] + HYSTERESIS)) j j
((newv & 0x08) && (adjpos[1] + HYSTERESIS < constraint[1])))
offset[1] = constraint[1] � position[1] + HYSTERESIS;

if (((newv & 0x10) && (adjpos[2] > constraint[2] + HYSTERESIS)) j j
((newv & 0x20) && (adjpos[2] + HYSTERESIS < constraint[2])))
offset[2] = constraint[2] � position[2] + HYSTERESIS;

330
=� Calculate adjusted position �=
adjpos[0] = position[0] + offset[0];
adjpos[1] = position[1] + offset[1];
adjpos[2] = position[2] + offset[2];

=� Calculate phantom forces based on constraints �=
zero vector(force);
if (((constdir & 0x01) && (adjpos[0] > constraint[0])) j j

((constdir & 0x02) && (adjpos[0] < constraint[0])))
force[0] += (float) STIFFNESS � (constraint[0] � adjpos[0]) 340

� (float) DAMPING � vel[0]
+ (float) COORD SPRING � offset[0];

if (((constdir & 0x04) && (adjpos[1] > constraint[1])) j j
((constdir & 0x08) && (adjpos[1] < constraint[1])))

force[1] += (float) STIFFNESS � (constraint[1] � adjpos[1])
� (float) DAMPING � vel[1]

+ (float) COORD SPRING � offset[1];

if (((constdir & 0x10) && (adjpos[2] > constraint[2])) j j 350
((constdir & 0x20) && (adjpos[2] < constraint[2])))

force[2] += (float) STIFFNESS � (constraint[2] � adjpos[2])
� (float) DAMPING � vel[2]

+ (float) COORD SPRING � offset[2];

=� Attempt to restore coordinate system �=
=� Really should merge this with previous, since conditions are same �=

67

=� if not blocked, move back small amount; otherwise
� add restoring force �=

if ((dcount % 10) == 0) f 360
if (((constdir & 0x01) && (adjpos[0] > constraint[0])) j j

((constdir & 0x02) && (adjpos[0] < constraint[0])))
=� Coordinate spring contribution moved above �=;

else if (fabs(offset[0]) > 4 � HYSTERESIS)
offset[0] �= (HYSTERESIS = 2) � ((offset[0] > 0) ? 1 : �1);

if (((constdir & 0x04) && (adjpos[1] > constraint[1])) j j
((constdir & 0x08) && (adjpos[1] < constraint[1])))
=� Coordinate spring contribution moved above �=;

else if (fabs(offset[1]) > 4 � HYSTERESIS) 370
offset[1] �= (HYSTERESIS = 2) � ((offset[1] > 0) ? 1 : �1);

if (((constdir & 0x10) && (adjpos[2] > constraint[2])) j j
((constdir & 0x20) && (adjpos[2] < constraint[2])))
=� Coordinate spring contribution moved above �=;

else if (fabs(offset[2]) > 4 � HYSTERESIS)
offset[2] �= (HYSTERESIS = 2) � ((offset[2] > 0) ? 1 : �1);

g

=� Release constraints mutex �= 380
LeaveCriticalSection(&ConstraintCriticalSection);

dcount++;
if ((dcount % 100) == 0)

printf("%X Force: %f %f %f Offset: %f %f %f\n" ,constdir,
force[0], force[1], force[2],
offset[0], offset[1], offset[2]);

=� Send the latest force information to the PHANToM and error check �=
if (send phantom force(phantom id, force)) f

disable phantom(phantom id); 390
printf("Error sending PHANToM forces\n");
getchar();
exit(1);

g
g

68

Appendix B

cam server.c

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <sys=types.h>
#include <sys=socket.h>
#include <netinet=in.h>
#include <errno.h>

#define DEFAULT PORT 5001
10

=� haptic workspace size in mm�=
#define X WORKSPACE 90.0
#define Y WORKSPACE 90.0
#define Z WORKSPACE 90.0

=� Axis indices �=
#define X 0
#define Y 1
#define Z 2

20

=� Globals �=
int DIM X, DIM Y, DIM Z;
float LEN X, LEN Y, LEN Z;
int user[3], ghost[3], offset[3];
struct sockaddr in from;
int fromlen;
int msgsock;

=� cam startup – Intialize interface to CAM simulation
� 30

� Called from Forth at entry into simulation loop
�
� Accepts: ints containing x, y, z dimensions of simulation

69

�=
void cam startup(int xdim, int ydim, int zdim,

int sx, int sy, int sz) f
char �interface= NULL;
struct sockaddr in local;
int listen socket;

40
=� Intialize simulation size �=
DIM X = xdim; LEN X = X WORKSPACE = DIM X;
DIM Y = ydim; LEN Y = Y WORKSPACE = DIM Y;
DIM Z = zdim; LEN Z = Z WORKSPACE = DIM Z;

=� hmm, but Phantom starts at center of workspace. . . �=
user[X] = ghost[X] = DIM X � sx;
user[Y] = ghost[Y] = DIM Y � sy;
user[Z] = ghost[Z] = DIM Z � sz;

50
local.sin family = AF INET;
local.sin addr.s addr = (!interface)?INADDR ANY:inet addr(interface);
local.sin port = htons(DEFAULT PORT);

listen socket = socket(AF INET, SOCK DGRAM, 0);
if (listen socket == �1)f

fprintf(stderr, "socket() failed with error %d\n" , errno);
exit(1);

g
if (bind(listen socket, (struct sockaddr�)&local, sizeof(local)) == �1) f 60

fprintf(stderr, "bind() failed with error %d\n" , errno);
exit(1);

g

msgsock = listen socket;
fromlen = sizeof(from);

g

void cam shutdown() f 70
close(msgsock);

g

=� get desired offset – Wait for next position update from client
� and return desired offset from current position
�
� Called from Forth in main event loop
�
� Returns: Pointer to array of int containting x, y, z offsets 80
�
� Modifies: user, offset
�=

int �get desired offset() f
char Buffer[128];
long �longptr = (long �)Buffer;
float �position = (float �)Buffer;

70

int retval, i;

retval = 0; 90
=� wait for properly formed packet �=
while (retval != 12) f

retval = recvfrom(msgsock, Buffer, sizeof(Buffer), 0,
(struct sockaddr �)&from, &fromlen);

if (retval == �1)
fprintf(stderr, "recvfrom() failed: error %d\n" , errno);

=� Is this a properly formed packet? �=
if (retval != 12) 100

fprintf(stderr, "Malformed packet!\n");
g

=� Convert from network byte order �=
for (i=0; i<3; i++)

longptr[i] = ntohl(longptr[i]);

=� User position (mm) in position[] �=
=� Find user’s cell �=
user[X] = (position[X] + LEN X � DIM X = 2) = LEN X; 110
user[Y] = (position[Y] + LEN Y � DIM Y = 2) = LEN Y;
user[Z] = (position[Z] + LEN Z � DIM Z = 2) = LEN Z;

=� Check for out-of-range cells �=
if (user[X] < 0) user[X] = 0;
if (user[Y] < 0) user[Y] = 0;
if (user[Z] < 0) user[Z] = 0;
if (user[X] > (DIM X � 1)) user[X] = DIM X � 1;
if (user[Y] > (DIM Y � 1)) user[Y] = DIM Y � 1;
if (user[Z] > (DIM Z � 1)) user[Z] = DIM Z � 1; 120

=� Calculate offset for simulation �=
offset[X] = user[X] � ghost[X];
offset[Y] = user[Y] � ghost[Y];
offset[Z] = user[Z] � ghost[Z];

return offset;
g

130
=� calculate constraints – Calculate what constraints are active on the
� ghost point given it and the user’s current
� positions.
�
� This function calculates the X, Y and Z constraints now active on the
� ghost point. It must be called after move ghost to user() or the results
� may be incorrect.
�
� Accepts: pointer to user triplet
� pointer to ghost triplet 140
� pointer to constraint triplet

71

� pointer to constraint direction triplet
�
� Modifies: constraint triplet
� constraint direction triplet
�=

void calculate constraints(int �user, int �ghost, int �constraint,
int �constdir) f

=� X direction �=
if (ghost[X] < user[X]) f 150

constraint[X] = ghost[X]+1;
constdir[X] = �1; =� less than �=

g else if (ghost[X] > user[X]) f
constraint[X] = ghost[X];
constdir[X] = 1; =� greater than �=

g else
constdir[X] = 0; =� no constraint �=

=� Y direction �=
if (ghost[Y] < user[Y]) f 160

constraint[Y] = ghost[Y]+1;
constdir[Y] = �1; =� less than �=

g else if (ghost[Y] > user[Y]) f
constraint[Y] = ghost[Y];
constdir[Y] = 1; =� greater than �=

g else
constdir[Y] = 0; =� no constraint �=

=� Z direction �=
if (ghost[Z] < user[Z]) f 170

constraint[Z] = ghost[Z]+1;
constdir[Z] = �1; =� less than �=

g else if (ghost[Z] > user[Z]) f
constraint[Z] = ghost[Z];
constdir[Z] = 1; =� greater than �=

g else
constdir[Z] = 0; =� no constraint �=

g

180
=� set actual offset – Set actual offset user could move, calculate
� constraints, and inform client
�
� Called from Forth in main event loop
�
� Accepts: ints containing x, y, z offsets
�
� Modifies:
�=

void set actual offset(int actualx, int actualy, int actualz) f 190
int constraint[3];
static int constdir[3] = f0, 0, 0g;
unsigned char cdir;
char Buffer[128];
long �longptr = (long �)Buffer;

72

float �fconst = (float �)Buffer;
int retval, i;

=� Move ghost to user �=
ghost[X] += actualx; 200
ghost[Y] += actualy;
ghost[Z] += actualz;

calculate constraints(user, ghost, constraint, constdir);

fconst[X] = constraint[X] � LEN X � LEN X � DIM X = 2;
fconst[Y] = constraint[Y] � LEN Y � LEN Y � DIM Y = 2;
fconst[Z] = constraint[Z] � LEN Z � LEN Z � DIM Z = 2;

cdir = (constdir[X] < 0) j 210
(constdir[X] > 0) << 1 j
(constdir[Y] < 0) << 2 j
(constdir[Y] > 0) << 3 j
(constdir[Z] < 0) << 4 j
(constdir[Z] > 0) << 5;

=� Send constraints back to client �=
for (i=0; i<3; i++) f

longptr[i] = htonl(longptr[i]);
g 220
Buffer[12] = cdir;
retval = sendto(msgsock, Buffer, 13, 0,

(struct sockaddr �)&from, fromlen);
if (retval == �1)

fprintf(stderr,"sendto() failed: error %d\n" , errno);
g

73

74

Appendix C

pieces-3d.exp

n 3�D haptic blocks

n� We allow objects with up to 63 component parts, numbered 1 to 63.
A part is selected, and that part is copied into the " moving�part"
plane, and the " origin" plane. The original is then erased. The
moving body is then shifted around as desired, with the amount of
overlap with other parts returned after each motion. When the moving
body is released, if it overlaps anything, it is moved back to it' s
origin position. If it doesn' t overlap, it' s copied to it' s new
position. �n 10

new�experiment 64 by 64 by 64 space load step�rend�color.fth

n �����������������������
n Definition of cell bits
n �����������������������

1 2 == moving�part n 1 = part of shifting bitmap 20
1 1 == moving�shape
2 2 == grasp�point

3 3 == overlap n 1 where moving body overlaps other parts
4 9 == part# n up to 63 parts (0 = background)

10 15 == select# n external input used to select a part
10 15 == show# n bits shown by 3D display

63 constant max�part#
30

n �����������������������
n Part Manipulation Rules
n �����������������������

75

n� To grasp a part, the grasp point must overlap the part. The part
number will be copied into the select# at that point, 0 goes into
select# elsewhere. When select# is non�zero, we' ve selected a part. �n

: grasp�part�rule
40

grasp�point 0<>
if

part# �> select#
else

0 �> select#
then

;
create�lut grasp�part�table
?rule>table grasp�part�rule grasp�part�table

50

n� When we select a part, we mark its position in the " moving�shape"
plane, and erase it from the " part#" planes. " select#" is a given
external parameter which is set in all cells. �n

: show�part
part# �> show#
moving�shape 0<> if max�part# �> show# then

;
60

: select�part�rule

select# part# =
if

1 �> moving�shape 0 �> part#
else

0 �> moving�shape
then

show�part
; 70
create�lut select�part�table
?rule>table select�part�rule select�part�table

n� We can later deposit the " moving�shape" back into the " part#" planes in
it' s new position. �n

: deposit�part�rule

grasp�point �> moving�shape 80
moving�shape if select# �> part# then
show�part

;
create�lut deposit�part�table
?rule>table deposit�part�rule deposit�part�table

76

n� While the part is moving, we monitor the overlap. �n

: overlap�rule 90

part# 0<> moving�shape 0<> and �> overlap
show�part

;
create�lut overlap�table
?rule>table overlap�rule overlap�table

n ��������������������
n Running the dynamics 100
n ��������������������

n� We normally run using the " overlap�rule" . Whenever we run a step
with another rule, we' ll reset the table to continue with the
" overlap�rule" . �n

: init�tables

site�src lut
lut�src site 110
lut�data overlap�table
switch�luts
step

;
this is when�starting

: run�table

kick
run new�table n run with a new table and then 120
switch�luts n switch back to old table,
lut�src site n and leave lut�src set to site

;

define�step grasp�part�step

lut�data grasp�part�table
run�table

end�step
130

: select�part�step (s part# --)

lut�data select�part�table
lut�src site

select# field fix
run�table
step

;
140

: deposit�part�step (s part# --)

77

lut�data deposit�part�table
lut�src site

select# field fix
run�table
step

;

150
: shift�part (s x y z --)

kick moving�part field z y x
run

;

define�step shift00step 0 0 0 shift�part end�step
define�step shiftx+step 1 0 0 shift�part end�step
define�step shiftx�step �1 0 0 shift�part end�step 160
define�step shifty+step 0 1 0 shift�part end�step
define�step shifty�step 0 �1 0 shift�part end�step
define�step shiftz+step 0 0 1 shift�part end�step
define�step shiftz�step 0 0 �1 shift�part end�step

define�step 2shift00step 0 0 0 shift�part end�step
define�step 2shiftx+step 2 0 0 shift�part end�step
define�step 2shiftx�step �2 0 0 shift�part end�step
define�step 2shifty+step 0 2 0 shift�part end�step
define�step 2shifty�step 0 �2 0 shift�part end�step 170
define�step 2shiftz+step 0 0 2 shift�part end�step
define�step 2shiftz�step 0 0 �2 shift�part end�step

define�step 4shift00step 0 0 0 shift�part end�step
define�step 4shiftx+step 4 0 0 shift�part end�step
define�step 4shiftx�step �4 0 0 shift�part end�step
define�step 4shifty+step 0 4 0 shift�part end�step
define�step 4shifty�step 0 �4 0 shift�part end�step
define�step 4shiftz+step 0 0 4 shift�part end�step
define�step 4shiftz�step 0 0 �4 shift�part end�step 180

n ��������������������������
n Initialization and control
n ��������������������������

: Initial.test.pattern

"" pieces�3d�shifted.pat file>cam show
;
press I " Initialize test pattern." 190

: overlap�count (s -- overlap#) �count� overlap field count�field
;

78

: .overlap overlap�count . cr ;

n� Given desired move, go as far as possible without overlap �n
200

0 constant actualx
0 constant actualy
0 constant actualz

0 constant desirex
0 constant desirey
0 constant desirez

false constant free�motion?
210

: move1x
desirex actualx <>

if
desirex 0< abs ff shiftx�step shiftx+step gg

then
;

: move1y
desirey actualy <>

if 220
desirey 0< abs ff shifty�step shifty+step gg

then
;

: move1z
desirez actualz <>

if
desirez 0< abs ff shiftz�step shiftz+step gg

then
; 230

n This function creates the requirement that all objects must be at
n least 4 cells in each direction!
: ?move4x (s -- flag)

n Try moving part 4 cells
desirex 0< abs ff 4shiftx�step 4shiftx+step gg

overlap�count 0<>
if 240

n If overlapping, move back 2 cells
desirex 0< abs ff 2shiftx+step 2shiftx�step gg

overlap�count 0<>
if

n If still overlapping, move back 1 cell
desirex 0< abs ff shiftx+step shiftx�step gg

overlap�count 0<>

79

if 250
n If still overlapping, move back to original cell
desirex 0< abs ff shiftx+step shiftx�step gg false

else
desirex sig actualx + is actualx true

then
else

n Free, try moving forward 1 cell
desirex 0< abs ff shiftx�step shiftx+step gg

overlap�count 0<> 260
if

n Overlapping, moving back one
desirex 0< abs ff shiftx+step shiftx�step gg
desirex sig 2� actualx + is actualx true

else
desirex sig 3 � actualx + is actualx true

then
then

else
desirex sig 4� actualx + is actualx true 270

then
;

n This function creates the requirement that all objects must be at
n least 4 cells in each direction!
: ?move4y (s -- flag)

n Try moving part 4 cells
desirey 0< abs ff 4shifty�step 4shifty+step gg

280
overlap�count 0<>

if
n If overlapping, move back 2 cells
desirey 0< abs ff 2shifty+step 2shifty�step gg

overlap�count 0<>
if

n If still overlapping, move back 1 cell
desirey 0< abs ff shifty+step shifty�step gg

290
overlap�count 0<>

if
n If still overlapping, move back to original cell
desirey 0< abs ff shifty+step shifty�step gg false

else
desirey sig actualy + is actualy true

then
else

n Free, try moving forward 1 cell
desirey 0< abs ff shifty�step shifty+step gg 300

overlap�count 0<>
if

80

n Overlapping, moving back one
desirey 0< abs ff shifty+step shifty�step gg
desirey sig 2� actualy + is actualy true

else
desirey sig 3 � actualy + is actualy true

then
then 310

else
desirey sig 4� actualy + is actualy true

then
;

n This function creates the requirement that all objects must be at
n least 4 cells in each direction!
: ?move4z (s -- flag)

n Try moving part 4 cells 320
desirez 0< abs ff 4shiftz�step 4shiftz+step gg

overlap�count 0<>
if

n If overlapping, move back 2 cells
desirez 0< abs ff 2shiftz+step 2shiftz�step gg

overlap�count 0<>
if

n If still overlapping, move back 1 cell 330
desirez 0< abs ff shiftz+step shiftz�step gg

overlap�count 0<>
if

n If still overlapping, move back to original cell
desirez 0< abs ff shiftz+step shiftz�step gg false

else
desirez sig actualz + is actualz true

then
else 340

n Free, try moving forward 1 cell
desirez 0< abs ff shiftz�step shiftz+step gg

overlap�count 0<>
if

n Overlapping, moving back one
desirez 0< abs ff shiftz+step shiftz�step gg
desirez sig 2� actualz + is actualz true

else
desirez sig 3 � actualz + is actualz true 350

then
then

else
desirez sig 4� actualz + is actualz true

then
;

81

: ?move1x (s -- flag)

desirex actualx <> 360
if

desirex 0< abs ff shiftx�step shiftx+step gg

overlap�count 0<>
if

desirex 0< abs ff shiftx+step shiftx�step gg false
else

desirex sig actualx + is actualx true
then

else 370
false

then
;

: ?move1y (s -- flag)

desirey actualy <>

if
desirey 0< abs ff shifty�step shifty+step gg

380
overlap�count 0<>

if
desirey 0< abs ff shifty+step shifty�step gg false

else
desirey sig actualy + is actualy true

then
else

false
then

; 390

: ?move1z (s -- flag)

desirez actualz <>

if
desirez 0< abs ff shiftz�step shiftz+step gg

overlap�count 0<>
if

desirez 0< abs ff shiftz+step shiftz�step gg false 400
else

desirez sig actualz + is actualz true
then

else
false

then
;

: ?movex (s -- flag)
410

desirex actualx � abs 4 >=

82

if
?move4x

else
?move1x

then
;

: ?movey (s -- flag)
420

desirey actualy � abs 4 >=
if

?move4y
else

?move1y
then

;

: ?movez (s -- flag)
430

desirez actualz � abs 4 >=
if

?move4z
else

?move1z
then

;

0 constant show�counter
7 constant show�ratio 440

: move�xyz (dx dy dz -- dx' dy' dz')

is desirez is desirey is desirex
0 is actualz 0 is actualy 0 is actualx

free�motion?
if

0 desirex �
0 desirey � 450
0 desirez �
kick moving�part field z y x
run
step

desirex is actualx
desirey is actualy
desirez is actualz

else
begin 460
begin ?movex not until
begin ?movey not until
begin ?move1z not until
?move1x ?move1y ?move1z or or not until

then

83

show�counter 1+ is show�counter
show�counter show�ratio mod 0=

if
show 470

then
actualx actualy actualz

;

false constant part�selected?

0 constant last�selected�part#

: pick�up�part
480

move1x move1y move1z

grasp�part�step �count�
select# field count�field

dup 0=
if

." Nothing there! " cr drop
else

dup is last�selected�part# 490
select�part�step show
true is part�selected?

then
;

: deposit�part

shift00step overlap�count 0<>
if

." No room! " cr 500
else

last�selected�part#
deposit�part�step show
false is part�selected?

then
;

: Delete�part

part�selected? 510
if

0
deposit�part�step show
false is part�selected?

else
." No part selected! " cr

then
;
press D " Delete selected part."

84

520
: Select=Drop

part�selected?
if

deposit�part
else

pick�up�part
then

shift00step show
; 530
press S " Select or drop a part."

: Free�toggle

free�motion? not is free�motion?
;
press F " Free motion (objects are insubstantial) toggle"

n : Single�step�alias Single�step
n ; 540
n press S "(Space is rebound)"

n ������������������������
n Optimized control from C
n ������������������������

n� You can use precompiled shifts in a loop with occasional display to
get desired shifts, or you can try using " shift�part" with variable
arguments to perform dynamic shifts. In this case you might 550
precompile a selection of small shifts for efficiency. �n

"" cam server.o clink

: phantom startup (s xdim ydim zdim sx sy sz --)
6 reverse cam startup 3drop 3drop ;

: phantom shutdown cam shutdown ;
: phantom get desired offset get desired offset ;
: phantom set offset (s ax ay az --) 3 reverse set actual offset 3drop ;

560
33 constant user x
33 constant user y
33 constant user z

false constant phantom�initialized?

: Start�phantom

phantom�initialized? not
if 570

X Y Z user x user y user z phantom startup
true is phantom�initialized?
." Please start the phantom client. "

85

then
;
press A " Start the Phantom server."

: Stop�phantom

phantom�initialized? 580
if

phantom shutdown
false is phantom�initialized?

then
;
press Z " Shutdown the Phantom server."

: phantom�bye Stop�phantom cam�bye ; this is bye

590
: dx offset @ ;
: dy offset la1+ @ ;
: dz offset 2 la+ @ ;

: phantom�server

phantom�initialized? not if exit then

phantom get desired offset
dx dy dz move�xyz (dx' dy' dz') 600
phantom set offset

;
this is while�stopped

n Start�phantom
init�tables
Initial.test.pattern
when�starting

610

86

Bibliography

[1] Hans D. Hoeg. Development of virtual objects of arbitary shape. SB thesis,

Massachusetts Institute of Technology, Department of Mechanical Engineer-

ing, May 1994.

[2] Norman Margolus. A bridge of bits. In PhysComp ’92, pages 253 – 257. IEEE

Press, 1993.

[3] Norman Margolus. CAM-8: a computer architecture based on cellular au-

tomata. In Lawriczak and Kapral, editors, Pattern Formation and Lattice-Gas

Automata. Addison-Wesley, 1996.

[4] Norman Margolus. Crystalline computation. In Feynman and Computation.

Addison-Wesley, 1998.

[5] Thomas H. Massie. Design of a three degree of freedom force-reflecting haptic

interface. SB thesis, Massachusetts Institute of Technology, Department of

Electrical Engineering and Computer Science, May 1993.

[6] Thomas H. Massie. Initial haptic explorations with the phantom: Virtual

touch through point interaction. MS thesis, Massachusetts Institute of Tech-

nology, Department of Mechanical Engineering, February 1996.

[7] Thomas H. Massie and J. Kenneth Salisbury. The PHANToM haptic inter-

face: A device for probing virtual objects. In ASME International Mechanical

Engineering Exposition and Congress, Chicago, November 1994.

87

[8] Gunter Niemeyer. Using Wave Variables in Time Delayed Force Reflecting Tele-

operation. PhD thesis, Massachusetts Institute of Technology, Department of

Aeronautics and Astronautics, September 1996.

[9] Mark P. Ottensmeyer and J. Kenneth Salisbury. Hot and cold running vr:

adding thermal stimuli to the haptic experience. In Proceedings of the Second

PHANToM Users Group Workshop, A.I. Technical Report No.1617, Massachusetts

Institute of Technology, December 1997.

[10] K. Salisbury, D. Brock, T. Massie, N. Swarup, and C. Zilles. Haptic rendering:

Programming touch interaction with virtual objects. In Proceedings of the 1995

Symposium on Interactive 3D Graphics, Monterey, California, 1995.

[11] K. Salisbury and T. Massie. The PHANToM haptic interface. In Proceedings of

the AAAI Spring Symposium Series: Toward Physical Interaction and Manipulation,

Working Notes, Stanford University, March 1994.

[12] K. Salisbury and M. Srinivasan. Phantom-based haptic interactions with vir-

tual objects. IEEE Computer Graphics and Applications, pages 6–10, September-

October 1997.

[13] Adam Seeger, Jun Chen, and Russell M. Taylor II. Controlling force feedback

over a network. In Proceedings of the Second PHANToM Users Group Workshop,

A.I. Technical Report No.1617, Massachusetts Institute of Technology, Decem-

ber 1997.

[14] SensAble Technologies, Inc., Cambridge. Basic I/O Programming Library for the

PHANToM Haptic Interface, 1997.

[15] Tommaso Toffoli. Fine-grained parallel supercomputer. Final Report PL-TR-

95-2013 7, Step Research, Step Research, Cambridge, MA, July-October 1984.

[16] C. B. Zilles and J. K. Salisbury. A constraint-based god-object method for

haptic display. In Proceedings of the 1995 IEEE/RSJ International Conference on

Intelligent Robots and Systems, Pittsburgh, August 1995.

88

