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Abstract

This thesis advances the understanding of how autonomous microscopic physical pro-
cesses give rise to macroscopic structure. A unifying theme is the use of physically
motivated microscopic models of discrete systems which incorporate the constraints

of locality, uniformity, and exact conservation laws. The features studied include:
stochastic nonequilibrium 
uctuations; use of pseudorandomness in dynamical simu-
lations; the thermodynamics of pattern formation; recurrence times of �nite discrete

systems; and computation in physical models. I focus primarily on pattern formation:
transitions from a disordered to an ordered macroscopic state.

Using an irreversible stochastic model of pattern formation in an open system
driven by an external source of noise, I study thin �lm growth. I focus on the regimes
of growth and the average properties of the resulting rough surfaces. I also show that

this model couples sensitively to the imperfections of various pseudorandom number
generators, resulting in nonstochastic exploration of the accessible state space.

Using microscopically reversible models, I explicitly model how macroscopic dis-
sipation can arise. In discrete systems with invertible dynamics entropy cannot de-
crease, and most such systems approach fully ergodic. Therefore these systems are

natural candidates for models of thermodynamic behavior. I construct reversible mod-

els of pattern formation by dividing the system in two: the part of primary interest,

and a \heat bath". We can observe the exchange of heat, energy, and entropy between
the two subsystems, and gain insight into the thermodynamics of self-assembly.

I introduce a local, deterministic, microscopically reversible model of cluster growth

via aggregation in a closed two-dimensional system. The model has a realistic ther-

modynamics. When started from a state with low coarse grained entropy the model
exhibits an initial regime of rapid nonequilibrium growth followed by a quasistatic

regime with a well de�ned temperature. The growth clusters generated display a rich

variety of morphologies. I also show how sequences of conditional aggregation events

can be used to implement reusable logic gates and how to simulate any digital logic

circuit with this model.
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Chapter 1

Introduction

1.1 The scope of this thesis

This thesis advances the understanding of how autonomous microscopic physical pro-

cesses give rise to structure|the emergence of macroscopic order from microscopic

growth rules. This is a large issue and a broad array of topics are herein addressed: lo-

cal microscopic growth rules for pattern formation; stochastic 
uctuations of nonequi-

librium processes; use of pseudorandomness in dynamical simulations; emergence of

order from deterministic, reversible microscopic rules; the thermodynamics of pat-

tern formation; recurrence times of �nite state discrete systems; and computation in

discrete lattice systems. These topics overlap the �elds of statistical physics, cellular

automata, computational physics, nonlinear dynamics, and computer science.

A primary aim of this research is to gain insight into how microscopic mechanisms

give rise to macroscopic correlations in both irreversible and reversible microscopic

models. The irreversible stochastic models studied allow us primarily to understand

average properties of growth interfaces, scaling behavior, and dynamic 
uctuations.

The reversible deterministic models studied allow us to gain insight into the ther-

modynamics of pattern formation and self-assembly. Instead of trying to understand

these issues in the broadest context, we restrict our attention to a tractable subclass

23
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of systems: discrete systems on regular spatial lattices.

We are concerned with physically motivated microscopic models. We want to put

in constraints at the microscopic scale consistent with the microscopic properties of

physics which persist at the macroscopic scale, primarily: locality, uniformity, and

conservation laws. To this end we develop microscopic models with local dynamics,

meaning that in a short time the evolution of a part of the system is in
uenced only

by the state within a nearby region of space. The dynamics are also uniform, mean-

ing that the entire system evolves in accord with the same rules. The use of discrete

systems allows for exact conservation laws. We study both irreversible stochastic

dynamics and invertible deterministic dynamics which adhere to these general prin-

ciples. The motivation for studying invertible dynamics is two fold. First, the laws of

physics are microscopically reversible. Second, entropy cannot decrease in reversible

systems (as discussed below). If we coarse grain the system, entropy can increase,

and we can observe the approach to thermodynamic equilibrium. In contrast, the

irreversible models are open systems which allow us to avoid many of the subtleties

attendant in making models conform to microscopic reversibility.

1.2 Types of reversibility

\Reversibility" can have di�erent meanings, with subtle distinctions between them.

The forms of reversibility of interest to us are: thermodynamic reversibility, statistical

reversibility, and exact (or microscopic) reversibility. Thermodynamic reversibility is

a property of a dynamics on the macroscopic states of a system. The other forms

are properties of dynamics on distinct microscopic states of a system. I �rst discuss

irreversibility and then brie
y summarize the categories of reversibility listed above

and their distinctions.

Irreversible dynamics are not backwards deterministic. In general, many distinct

microscopic states may make a transition to the same target state under an irreversible
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dynamics, so each state may not have a unique predecessor. At each point where

two trajectories merge, we lose information about the past. Irreversible dynamics are

characterized by the familiar concepts of �xed points, limit cycles, basins of attraction,

and strange attractors.

A thermodynamically reversible process is one in which the value of the macro-

scopic entropy for a closed system does not change. The macroscopic entropy, pro-

portional to the log of the number of microstates compatible with given macroscopic

properties, is the de�nition of entropy typically used in statistical physics. The macro-

scopic properties are the thermodynamic variables, such as temperature, volume, and

pressure. We can invert the time evolution of the macroscopic thermodynamic prop-

erties of a closed thermodynamically reversible system without addition of external

work.

A statistically reversible dynamics is a probabilistic dynamics with semidetailed

balance. Semidetailed balance means that the sum of the transition probabilities out

of a particular microscopic state is equal to the sum of the transition probabilities

into that same state. A consequence of semidetailed balance is that in equilibrium

all accessible microscopic states are equally likely. Systems with this property can be

used to model thermodynamic behavior.

By exact reversibility we mean the dynamics are exactly invertible. This is a

stronger condition than thermodynamic reversibility or statistical reversibility. Each

microscopic state has a unique predecessor and a unique successor: a complete history

of the system can be generated from any state through which the system progresses.

The probability to make a transition from one microscopic state to any other is

unity for exactly one target state and zero for all others. When initialized with

a particular probability distribution (fpig) of states, the shape of that distribution

cannot change as the system evolves; the probability simply \moves around" between

states. So the Gibbs entropy S = kB
P

i pi ln pi is constant. If we coarse grain the

system, and thus lose information about the microscopic correlations, the entropy can
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increase. Because of this property, we can use exactly reversible systems to model

thermodynamic behavior while retaining microscopic reversibility as a fundamental

principle of our dynamics. For a thorough discussion of entropy, thermodynamics,

and coarse graining see, for example, Ref. [84].

1.3 Stochastic irreversible dynamics

Stochastic processes require a supply of randomness. In almost all standard com-

puter implementations of stochastic processes the randomness is replaced by deter-

ministic \pseudorandomness", traditionally using pseudorandom number generator

algorithms. These algorithms are not physically motivated, nor are they local.

The irreversible models of crystal growth we study allow state transitions in only

one direction: the probability of transitioning back to a state which has already been

visited is zero. Thus there is a clear direction of time. Things grow, they never

shrink. We study irreversible stochastic dynamics: a collection of random variables

determines the evolution of the process. If we had a source of true randomness, and

we wanted to make the process reversible, we would have to keep a complete history

of the system: a running list of the outcomes of all the random events. The source

of randomness is external to the simulated system as is the sink of information (as

explained below). We study a general model of thin �lm growth, focusing on the

regimes of growth and the average properties of the rough surfaces of the growth

structures.

1.4 Physically motivated pseudorandomness

Physical processes at the macroscopic scale appear random and dissipative, but the

laws of physics are microscopically reversible|there is no dissipation of information

at the microscopic scale. Information cannot be destroyed. It can however be trans-
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ferred to degrees of freedom which are not directly tracked and is usually ultimately

transferred to thermal degrees of freedom.

To reconcile macroscopic \randomness" with microscopic determinism, we model

systems which rely on the outcomes of random variables in a physically motivated

way: the randomizing degrees of freedom are explicitly modeled as the outcome

of a local, uniform, invertible process. We accomplish this by dividing the model

into two subsystems: the system of primary interest, and a \heat bath" system

which physically models the randomizing in
uences. The complete system is exactly

reversible. We can observe the exchange of heat, energy, and entropy between these

two subsystems.

1.5 Pattern formation

We wish to understand how local dynamics can give rise to large scale order. The

types of questions which we might try to answer include: How does a growing bacterial

colony organize into an \ordered" fractal? How do aggregating ice crystals grow into

a symmetric branched snow
ake? How does a growing diamond �lm form surface

patterns and ordered facets?

Pattern formation is the transition from a disordered to an ordered macroscopic

state (i.e., a process with a decrease in coarse grained entropy). Thus it is conceptually

di�cult to reconcile exact reversibility, which cannot result in a change of the amount

of information at the microscopic scale, with pattern formation, which requires a

change at the macroscopic scale. To do this we make use of the heat bath technique

introduced above to explicitly model how dissipation arises (i.e., how information


ows between the macroscopic and the microscopic degrees of freedom). We provide

a clear example of how to reconcile the macroscopic irreversibility that gives rise to

patterns with the microscopic reversibility adhered to by physical processes. We see

pattern formation in part of the system accompanied by an increase of entropy in the
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heat bath.

Using reversible dynamics gives us the potential for a realistic thermodynamics.

In addition the dynamics is local|local heat 
ow and the local creation of coarse

grained entropy. Thus we can do more than study simulated structures: We have a

laboratory for studying nonequilibrium thermodynamic behavior. By modeling the

entire process of pattern formation, including the dissipation, we hope to emulate the

essential mechanisms of nature more realistically than do irreversible models.

1.6 Physics and computation

We are concerned with developing models of physics which obey essential constraints

of physics. Physical processes, such as computation, must also operate within these

constraints. The insights which we gain from developing computer models of physics

can help us understand how to build physical models of computers. We show how

some of the reversible models we develop can also be used to simulate digital logic

and thus perform computations with no dissipation. This may help us understand

how to make more e�cient physical devices for information processing and improve

our ability to harness physics for computation.

1.7 Summary of results

In Part I of the thesis I study a well known, stochastic lattice growth rule, Ballistic

Deposition[125], which serves as a paradigm for nonequilibrium lattice growth and

dynamic scaling behavior. An initial detailed numerical implementation of the BD

model manifests anomalous macroscopic properties of the resulting growth interface

that cannot be explained within the accepted theoretical framework: The simulated

interfaces do not obey simple self a�ne scaling relations and those scaling exponents

which can be measured do not agree with any theoretical prediction. In order to
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identify the cause of the anomalies, I conduct an extensive, statistically rigorous

numerical study of the model. This study demonstrates that the model couples to

various pseudorandom number generators, resulting in nonstochastic exploration of

the accessible phase space. Although the BD model has been studied for more than

a decade, there is no consensus in the literature for the value of the scaling exponents

for BD growth clusters. I suggest reasons for this and propose methods for better use

of PRNG's in numerical simulations.

In Part II of this thesis, I focus on invertible dynamics on discrete systems. I

propose a new model for lattice growth which is a thermodynamic extension of the well

known Di�usion Limited Aggregation[129] model. This Reversible Aggregation model

is local, deterministic, microscopically reversible, and has exact energy conservation.

In addition the model has a realistic thermodynamics: We can observe a quasistatic

increase of entropy in a regime with a well de�ned temperature.

The RA model is a model of reversible cluster growth via aggregation in a closed

two-dimensional system. There are three species of particles in the RA model: gas,

heat, and crystal. A di�using gas particle may aggregate at the boundary of a crystal

cluster. Latent heat is released during each aggregation event and is explicitly mod-

eled by introducing a heat particle into a di�using heat bath. Conversely if a heat

particle contacts a singly connected cluster member it may be absorbed and that

crystal particle will \evaporate" from the cluster, becoming a gas particle. When

started with a dilute gas and a single crystal seed particle the model exhibits an

initial regime of rapid nonequilibrium growth followed by a slow quasistatic regime

with a well de�ned temperature. In the �rst regime the crystal rapidly grows, in the

second the crystal slowly anneals. Growth clusters generated by this model display

a rich variety of morphologies. I present a detailed study discussing the formulation

of the model, the implementation, an analytic formulation (including the continuum

limit of the dynamics), the regimes of growth, the scaling behavior of the clusters,

and control of the cluster morphology.
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The aggregation events in the RA model depend conditionally on the state of gas,

heat, and crystal particles within the appropriate interaction range. The interaction

is su�ciently complex that we expect a priori that the system is capable of universal

computation: that universal logic gates can be built out of the aggregation interac-

tions. Showing the RA model is capable of universal computation is not di�cult,

showing it is capable of e�cient computation is more challenging. I show how to

explicitly embed reusable computational primitives into the RA model and thus how

to simulate any digital logic circuit using the RA model. The mobile gas and heat

particles are the logic signals used in the computation. The paths these particles take

are the wires. Sequences of conditional crystallization events are the basis of the logic

gates. I also discuss the relationship of computation in the model to computation in

real physical systems.

Lastly I present a study of general aspects of the dynamics of discrete, reversible

systems, extending earlier work. For a dynamics on a �nite size system, the initial

state must eventually recur. If all states are on the same cycle, the dynamics is

fully ergodic. If not, the dynamics partitions the space into distinct orbits. I study

the random network limit, where any state in the system can map onto any other

state, thus neglecting the constraint of locality. First the ensemble of all invertible

dynamics on a discrete �nite system is established, then the expectation value of the

orbit lengths over the ensemble and the expected number of orbits per dynamics are

established. The orbits for a typical dynamics can be labeled by a conserved quantity

with the same range as an extensive variable, which suggests that dynamics with

extensive conservation laws (such as CA's) are not excluded from the consideration

of typical dynamics. Finally the ergodicity of invertible dynamics is discussed and

contrasted with the ergodicity of unconstrained dynamics (the ensemble of dynamics

which includes noninvertible ones). I show that invertible mappings are approximately

ergodic, in a suitably de�ned statistical sense, whereas unconstrained mappings are

not.
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1.8 Placing the results in context

Of all the topics addressed and results obtained, I believe the most signi�cant are those

which deepen the current understanding of pattern formation in discrete, reversible

systems. This is a �eld where little has been done in the past. By constructing a

thermodynamic extension to a well studied model of crystal growth, we observe a rich

variety of resulting growth morphologies and enable the study of thermodynamics of

nonequilibrium systems.

The results showing that computation in physical models can be accomplished

with exact control of the microscopic degrees of freedom, would be more signi�cant

if we could extend the result to show we can compute with only macroscopic control.

With this type of understanding we might be able to compute with a growing crystal

aggregate, or even an aggregate of growing cells.

This work has been great fun. Collectively it should be taken as a step toward

understanding the nonequilibrium process of pattern formation. At the \meta-level"

this is a small step toward relating microscopic information and computation with

macroscopic physics.

These topics form a deep ocean. I have just begun to skim the surface.
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Irreversible Models
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Chapter 2

Review of stochastic growth

models

2.1 Overview of Part I

2.1.1 Growth of rough surfaces

Spontaneous growth processes are responsible for the structure we observe in the

natural world around us. Many of these processes involve growth of rough surfaces.

Hence understanding rough growth surfaces of clusters and solidi�cation fronts has

become an increasingly relevant issue[42, 53, 91, 5, 56]. Two approaches have tra-

ditionally been taken. The �rst is developing discrete algorithmic models of growth

processes, iterating rules to grow structures from the atomistic scale. The second is

developing analytic continuum models of growth, using stochastic di�erential equa-

tions to represent the key processes responsible for the resulting surface morphologies.

The average properties of the growth surfaces generated with the two approaches can

be directly compared.

Rough growth surfaces can in general be described by concepts of fractal geometry

and most rough surfaces exhibit self-a�ne scaling over a range of length scales (as

35
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discussed in Sec. 2.2.2). Regimes of dynamic scaling have been found in most models

of surface growth. Furthermore, many seemingly unrelated models of growth have

similar scaling exponents, suggesting the existence of universality classes. These

properties of surface growth models make them relevant to those who study modern

statistical physics. These simple models also lend themselves to the study of non-

equilibrium processes in general.

2.1.2 Summary of results presented in Part I

Ballistic Deposition (BD) is a prototypical discrete algorithmic model for interface

growth and for exhibiting dynamic scaling behavior in nonequilibrium systems. It

seems to be an accurate model of thin �lm growth. In BD, an aggregate is grown

on a substrate of �nite size L. Particles are sequentially added at randomly selected

active sites on the surface of the aggregate. Active growth sites are de�ned in relation

to the state of their nearest neighbors: at least one nearest neighbor must already

be an aggregate member. Thus neighboring surface particles are spatially correlated.

The aggregate typically begins as a 
at interface, with no correlations. As particles

are added the roughness of the growth interface, �, increases quickly, scaling with

the time as � � t�. The lateral correlation length, �k, concurrently grows as a power

of time up to the point where the entire surface is correlated, �k � L. Once the

entire surface is correlated, the roughness saturates, reaching its maximum value. In

this steady state regime the roughness 
uctuates but the average value no longer

changes with time, instead it scales with the size of the underlying substrate: � � L�.

The resulting BD growth aggregates are compact clusters with a rough surface. The

surface is expected to be self-a�ne and exhibit dynamic scaling behavior.

BD is typically investigated through computer simulations where randomness is

replaced by use of deterministic Pseudorandom Number Generators (PRNGs). I

implement a model of BD over a range of length and time scales to establish the scaling

behavior of the growth interface. I investigate the initial roughening as a function of
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time, the scaling of the surface roughness with length in the conjectured steady state

regime, and the crossover time between these two behaviors. I am able to establish

clear scaling behavior, yet the results are discrepant with the prevailing paradigm.

First, the value of the roughness scaling exponent, �, obtained is below the value for a

random walk (i.e. � < 1=2). The value � = 1=2 is predicted by the prevailing theory

(KPZ theory) and many models of growth obtain this exponent. Second, height


uctuations of the growing interface appear not to satisfy simple scaling. Third, a

decrease in the surface roughness is observed in a conjectured steady state regime. A

thorough search for corrections to scaling necessitates obtaining better statistics and

the exploration of longer times into the growth. Although none of the corrections

reveal any solutions, the additional statistics obtained make it clear that computer

implementations of BD may be responsible for the discrepancies. Implementing the

model with di�erent PRNGs yields statistically inconsistent results.

The implicit assumption that PRNGs adequately represent true randomness is

tested via a detailed statistical analysis of the width of the BD interface. We study the

width of the interface over time scales orders of magnitude longer than the expected

model relaxation time, yet much smaller than the period of the PRNG, and observe


uctuations which still appear to be correlated. Distinct dynamic behavior is observed

for an implementation with a di�erent PRNG, further indicating a strong coupling

between the model and the PRNGs (even with PRNGs that pass extensive statistical

tests). Thus we demonstrate a breakdown of basic sampling assumptions, and of the

ergodic exploration of phase space. The details of the BD implementation and the

statistical inconsistencies will be explicitly presented.

2.1.3 Organization of Part I

This section of the thesis begins with this review chapter. First I review the well

known algorithmic models of discrete stochastic growth. Then I brie
y review the

concepts relevant to the dynamics of surface growth: roughening; dynamic scaling of
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the growth interface; scaling of the mass of the clusters; correlations and saturation.

I then discuss some continuum models of stochastic growth based on symmetry mo-

tivated di�erential equations. Chapters 3 and 4 contain the details of the numerical

studies yielding the results summarized above.

2.2 Review of stochastic growth

I present here only a brief review of the concepts and models of stochastic growth.

Many comprehensive reviews have recently appeared[124, 91, 74, 5, 56], as well as

many collections of reprinted articles[117, 42, 53]. The growth processes I am studying

are all 1+1 dimensional (growth occurs along the columns of a discrete square lattice

of �nite size). Thus, for simplicity, the discussion below assumes 1 + 1 dimensional

growth unless otherwise explicitly stated.

2.2.1 Lattice models of rough surfaces

Complex disordered patterns resembling those seen in nature can easily be generated

by simple probabilistic algorithms. Thus simple algorithmic models play a central

role in our understanding of surface growth. In the interest of concreteness I will �rst

describe various well known models of discrete stochastic growth.

2.2.1.1 The Eden model

The earliest model of cluster growth is the Eden model, which was introduced in 1958

as a model of bacterial colony or tissue culture growth[33, 34]. A two-dimensional

lattice is initially empty except for one lattice site which is occupied. This site is a seed

particle. The growth process is represented by choosing at random an unoccupied

site which has an occupied nearest neighbor (i.e., a perimeter site), and �lling it in.

This procedure results in a cluster with a compact internal structure but a rough

surface. Here compact means uniform density (note there can be small holes inside
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the bulk aggregate). Note that there are lattice e�ects. We are using a nearest

neighbor growth rule on a square lattice. The growth velocity is slightly greater

along the basis directions than along the diagonal directions, thus the cluster will

asymptotically approach a diamond shape.

Many variants on this model have been introduced for a range of purposes such

as modeling the progress of skin cancer[128], or simulating interface properties by

starting the growth from a single straight line. There are several variants on the

microscopic rules (for example chosing an empty nearest neighbor site of the cluster

at random and �lling it in, versus choosing a perimeter cluster member at random

and then �lling in a empty nearest neighbor site at random). These variants have

di�erent short time behaviors, yet in the long time and large size regime, they exhibit

the same morphology and scaling behaviors[65].

2.2.1.2 Random Deposition

Perhaps simpler than the Eden model is the Random Deposition model (RD) of in-

terface growth. It starts with a single straight line of particles occupying an otherwise

empty two dimensional square lattice. At each update a column in the space is chosen

at random and a particle added to the lowest unoccupied lattice site in that column.

Unlike the Eden model, the columns are independent and uncorrelated. The RD

model generates a completely occupied bulk structure with a rough surface, as shown

in Fig. 2-1. There are no voids in the bulk.

Exact results from atomistic algorithm: Since there are no correlations be-

tween columns, each column grows independently. This makes the RD model easily

amenable to analytic treatment|in fact, the RD model is exactly solvable. The state

of the aggregate can be described completely by specifying the length of the substrate,

L (i.e., the number of columns), and the vertical coordinate of the highest occupied

site in each column at time t into the growth, h(x; t) (i.e., the height of the interface
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Figure 2-1: A typical RD model growth cluster. Note adjacent columns are uncorre-

lated.

in column x).

During each update of the space, every column grows by one unit of height with

a probability p = 1=L. Thus the column heights follow a binomial distribution:

P (h;N) =

0
B@ N

h

1
CA ph(1� p)(N�h); (2.1)

where P (h;N) is the probability that a column has height h after the deposition of

N particles. We de�ne a length independent measure of time, t = N=L, and thus can

easily show the expectation value of the height grows linearly in time:

Ex[h(t)] �
X
h

hP (h; t) = Np =
N

L
= t: (2.2)

The second moment also grows in time:

Ex[h2(t)] �
X
h

h2P (h; t) = Np(1� p) +N2p2 =
N

L

�
1� 1

L

�
+
N2

L2
: (2.3)

The standard deviation, �(t), can serve as a measure of the width of the active growth
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interface. The variance can be exactly determined to be

�2(t) � V ar[h(t)] = Ex[h2(t)]� Ex[h(t)]2 =
N

L

�
1� 1

L

�
� t: (2.4)

Thus we have exactly solved for the average height, Ex[h(t)], and average width of

the growth interface, �(t). The width scales with time, �(t) � t�, with the scal-

ing exponent � = 1=2. Note that in this model the width grows inde�nitely with

time, without saturation. Adjacent columns are independent hence values of adja-

cent heights are uncorrelated. Thus di�erences in height amongst adjacent columns

are unconstrained and grow inde�nitely. The surface is not self similar. The ideas of

scaling and self similarity will be explained in Sec. 2.2.2.

Continuum treatment: The RD model is simple since there are no correlations

between columns, and thus the values of the relevant growth parameters can be

solved for exactly. For other growth models this is not the case, and alternative

approaches must be applied. A useful approach is to begin with continuum stochastic

growth equations. Despite having obtained an exact solution for the RD model, for

pedagogical reasons I illustrate here the stochastic growth equation approach.

We introduce a di�erential equation to represent random deposition. The growth

of the height can be described as

@h(x; t)

@t
= �(x; t); (2.5)

where the 
ux �(x; t) is the number of particles per unit time arriving on the surface

at position x and time t. Since the particle 
ux is random we can decompose the 
ux

into two parts,
@h(x; t)

@t
= F + �(x; t); (2.6)

where F represents the average number and � the 
uctuations of the average number.

The noise � should be random with mean of zero, h�(x; t)i = 0, and without any
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correlations in space or time, meaning the second moment of the distribution should

be of the form

Ex [�(x; t)�(x0; t0)] = 2D�(x� x0)�(t� t0): (2.7)

Two simple distributions that satisfy these conditions are the Gaussian distribution

with probability density function:

� [�(x; t)] =
1p
4�D

exp

"
� �2

4D

#
; (2.8)

(it is independent of x and t; � is independently Gaussian distributed at each site)

and \bounded noise" in which (+1) and (�1) are chosen with equal probability.

Integrating Eq. 2.5 over time we obtain

h(x; t) = Ft+
Z t

0

d��(x; �); (2.9)

and for the expectation value of the height we obtain

Ex[h(t)] = Ft: (2.10)

We can integrate for the expectation of h2(x; t) as well. Noting that h�2(x; t)i = 2D,

we obtain

�2(t) = Ex[h2(t)]� Ex[h(t)]2 = 2Dt: (2.11)

Thus we obtain the same scaling of the growth from the continuum stochastic di�er-

ential equations as from the microscopic algorithm.

2.2.1.3 Ballistic Deposition

Ballistic Deposition (BD) was introduced in 1959 by Vold as a model of growth of

colloidal aggregates by sedimentation[125]. Typically the BD model is initialized with

a single straight line of particles (the substrate) occupying an otherwise empty two
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Figure 2-2: A typical BD model growth cluster. Note this implementation is for a

parallel version of BD, were several particles are allowed to fall at once. The falling
particles are shown as the small spots above the cluster.

dimensional square lattice. The substrate of length L, consists of discrete columns

indexed by integer values x, with 1 � x � L. A particle is placed above the substrate

in a randomly selected column and descends along a straight vertical path until en-

countering a site on the surface of the existing cluster and sticking there. Once that

particle aggregates, another particle is randomly placed and descends. Since particles

stick upon �rst contacting the aggregate, growth can occur laterally (in the direction

parallel to the substrate), resulting in voids and overhangs in the resulting aggregates.

Initial interest in BD focused on the resulting porous bulk aggregate. But with the

introduction of experimental techniques for growing thin crystal �lms, such as molec-

ular beam epitaxy, interest has shifted from the bulk to the surface properties. A

typical BD growth cluster is shown in Fig. 2-2.

The growth interface is de�ned by the maximum height occupied along each col-

umn, h(x; t), where h(x; t) takes on discrete integer values. Starting from a 
at

interface, h(x; t = 0) = 0 for all x, the surface evolves by sequential addition of parti-

cles to randomly chosen columns. The index number of particles deposited is denoted

by t0, and the deposition time by t = t0=L. Each deposition event consists of choosing

a column, x(t0), by a call to a PRNG, and updating the height in that column as
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follows:

h(x(t0); t0 + 1) = max[h(x(t0)� 1; t0); h(x(t0); t0) + 1; h(x(t0) + 1; t0)]: (2.12)

Thus the deposited particle occupies the highest empty site with one or more occupied

nearest neighbor sites; this mimics the process of cluster aggregation. The stochastic

process in this model is the random choosing of successive columns.

While the resulting aggregates are compact, their interface is rough, with 
uc-

tuations that are expected to be self similar at all scales. The width of the growth

interface �L(t), on average increases following a power law behavior until reaching

a steady asymptotic value, the magnitude of which depends on the underlying sub-

strate size L. A good measure of �L(t) is the sample variance of the surface heights
1,

fh(x; t)g,

�2L(t) =
1

L

LX
x=1

�
h(x; t)� h(t)

�2
; (2.13)

where h(t) is the sample mean of the surface heights at time t.

Results presented in this chapter all involve an implementation of the BD model.

The full details of the model and the implementation will be given in Chaps. 3 and 4.

Note that above we have added the subscript L to the width of the growth interface

�. This is a reminder that the roughness is measured across the entire substrate from

x = 1 to x = L. We will study �L, but we will also study �l|how the roughness

scales along the substrate up to length l � L. Simple scaling suggests that �l � l�.

1We use the sample variance as an estimator of the true variance of the distribution. In order to
be an unbiased estimator, the denominator in Eq. 2.13 should be (L�1) instead of L. This subtlety
only makes a di�erence for very short lengths, on the order of L < 10, which are not included in
scaling considerations due to discreteness e�ects. As every reference on surface growth uses the
de�nition given in Eq. 2.13, we stick with the convention.



2.2. REVIEW OF STOCHASTIC GROWTH 45

2.2.1.4 Additional growth models

Countless variations on these models exist. One can alter the microscopic rules or the

initial conditions. One additional growth rule which is relevant to our study is the

Restricted Solid on Solid model[71]. The RSOS model is identical to the BD model,

with the exception that growth events are only accepted if the di�erence in height

between adjacent columns is within some acceptable range (usually the di�erence is

constrained to be �1). Growth events are otherwise rejected. This yields a smoother

growth interface (the rejection of events results in some local averaging). This also

allows one to obtain statistics with tighter error bounds using less simulation time

(i.e., the time to converge upon the asymptotic behavior is reduced over the BD

model).

There are countless other models of growth. One common model, Di�usion Lim-

ited Aggregation[129], will be discussed in Chap. 6.

2.2.2 Roughness, correlations, and scaling behavior

The growth models considered above all share certain fundamental characteristics.

They model irreversible, far from equilibrium growth. They model stochastic rough-

ening: the substrate or interface is initially 
at; particles are added to the aggregate

in random positions according to well speci�ed microscopic rules; the width of the

active growth interface increases as a function of time and the surface of the growth

aggregate goes from being 
at to rough. The surfaces can be described by a single

valued function of position, h(x; t), representing the highest occupied site in each

column of the aggregate. Note that while there can be voids and overhangs in the

bulk structure, all the bulk structures considered are compact (i.e., have a uniform

density). Two important quantities describing the surface are the sample average of
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the surface heights at time t:

h(t) =
LX

x=1

h(x; t)=L; (2.14)

and the sample variance of the surface heights at that time. Eq. 2.13. The variance

gives a measure of the width of the active growth interface. Note if we begin with a

theoretical continuum treatment (as we did for the RD model in Sec. 2.2.1.2), we use

the expectation value and variance of a distribution function to describe the growth

process. If we begin with a numerical treatment, we use the numerically determined

sample mean and sample variance.

The surface initially starts out 
at with zero width. As particles aggregate in

random places, the surface roughens. It has been found that most of these surfaces

are self a�ne|that the statistical properties of the surface are invariant under a scale

transformation (looking at di�erent length scales, the properties of the interface are

equivalent within a rescaling). For example when we increase the length scale by a

factor of b the response increases by a power of b:

F (bx) = b
F (x): (2.15)

Note the distinction between self a�ne and self similar. Self a�ne fractals can be

rescaled by transformations that require di�erent changes in length scales in di�erent

directions (they are not isotropic). Self similar fractals can be rescaled via the same

change of length scales in all directions.

Initially the width of the interface increases as a power of time,2

�(L; t) � t� for t < tx: (2.16)

2Note here we are using the notation �(L; t) rather than �L(t), since we are explicitly discussing
the situation where L can vary.
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However, due to the lateral correlations in surface heights and the �nite size of the

system, the width eventually saturates. The saturated value of the width scales with

a power of the size of the system,

�(L; t) � L� for t > tx: (2.17)

The crossover time, tx, at which the interface crosses over from the behavior of Eq. 2.16

to the behavior of Eq. 2.17 depends on the system size:

tx � Lz: (2.18)

The exponent � is called the roughness exponent; z is the dynamic exponent. It was

pointed out by Family and Viscek[41] that the three exponents, �, �, and z, are not

independent and that the scaling forms for the growth and saturation of the width

of the interface can be described by a scaling ansatz, similar to that applicable to

critical systems;

�(L; t) = L�f(t=Lz); (2.19)

where f(x) � x� for x� 1 and f(x) = const for x� 1. Thus z = �=�. Detailed use

of the scaling function in Eq. 2.19 will be shown in the later sections of this chapter.

We will use the function to collapse data from di�erent length substrates onto one

curve.

The RD model discussed in Sec. 2.2.1.2 can be solved exactly. It is a simple model

where each column grows independently of the others. No information about other

columns ever propagates in the system. In contrast the other models considered have

nearest neighbor interactions. The result of a growth event in one column depends di-

rectly on the state of that column and also on the state of both neighboring columns.

Thus columns are not independent, they are correlated|the surface heights contain

information about neighboring heights. Initially the length over which spatially sep-
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arated columns are correlated is small (this lateral correlation length is denoted by

�k). Yet, as the growth process continues, information about neighboring columns

spreads laterally and �k increases as some power of time. For a �nite length substrate

the entire surface will eventually be correlated: �k � L, where L is the length of

the substrate. Once the correlation length reaches the maximum allowed length, the

width of the growth interface saturates, being unable to increase anymore. Although

the saturation of the width is merely postulated here, the continuum equations pre-

dict this saturation. Note that the perpendicular correlation length is related to the

surface width �.

We have seen that the same general principles apply to many seemingly unrelated

growth models. The growth interface initially roughens as a power of the time. The

parallel correlation length grows initially as a power of time. Once the entire surface is

correlated, both the roughness and the correlation length saturate, their values scale

with the size L of the underlying substrate. We can classify the di�erent stochastic

growth models distinctly by the values obtained for their scaling exponents.

2.2.3 Continuum models of rough surfaces

The Random Deposition model is a simple model with no correlations, and as such

is amenable to exact theoretical treatment both in its discrete algorithmic form and

the continuum di�erential equation form. Other models are not so easy to solve for,

other than by directly simulating them. This has its own complications, as will be seen

throughout the remainder of this chapter. There have been attempts to theoretically

predict growth properties using symmetry motivated di�erential equations. I will

brie
y review these analytic growth models.
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2.2.3.1 General symmetry considerations

We expect to describe the evolution of the surface by a di�erential equation of the

form
@h(x; t)

@t
= G(h; x; t) + �(x; t): (2.20)

Where G(h; x; t) is a general function of height, position, and time. Symmetry con-

siderations will allow us to put restrictions on this function. A basic symmetry we

want the growth equation to posses is (i) translational invariance in the direction per-

pendicular to the growth direction. The growth should not depend in the value of x:

In other words the equation should be invariant under the transformation x! x+�x.

This means G cannot explicitly depend in x. (ii) The rule should be independent

of where we de�ne the value h = 0, and thus invariant under the transformation

h ! h + �h. This means G cannot explicitly depend on h, yet it can depend on a

derivative of h, for example rh. (iii) The rule must be independent of where we

choose the origin of time, thus G cannot explicitly depend on t. (iv) The rule must

have re
ection symmetry about the growth direction: it must be invariant to the

transformation x! �x. Thus G must only depend on terms that have an even num-

ber of derivatives in x. This together with constraint (ii) means G can have terms

of the form (rh)2,r2h, etc. (v) Finally, if growth is allowed only in the direction

perpendicular to the interface (i.e., no lateral growth is allowed) and the interface can

be considered at or near equilibrium, we want the interface 
uctuations to be similar

about the mean interface height. Thus G should be invariant about the transforma-

tion h! �h. Note this �nal constraint excludes the inclusion of a term of the form

(rh)2 in the growth equation: Since the left hand side of Eq. 2.20 has an odd power

of h all the terms on the right hand side must as well. Thus the simplest equation

consistent with the symmetries to describe the 
uctuations of the interface is

@h(x; t)

@t
= �r2h(x; t) + �(x; t): (2.21)
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2.2.3.2 Edwards-Wilkinson equation (i.e., linear theory)

Equation 2.21 was introduced by Edwards and Wilkinson[35]. The Laplacian term

�r2h acts to smooth out the interface. The prefactor � corresponds to the surface

tension: the greater the surface tension, the smoother the interface. The noise term

acts to roughen the interface. Scaling arguments let us exactly determine the scaling

exponents of this model. Note the surface is self a�ne, as de�ned by the scaling

relations de�ned in Eqs. 2.17 and 2.18. If we rescale the horizontal direction x! xb,

then the vertical direction is rescaled as h ! hb�, and time is rescaled as t ! tbz.

We should recover a growth interface which is statistically indistinguishable from

the original interface under this rescaling. Likewise the growth equation should be

indistinguishable under the rescaling. With the rescaling Eq. 2.21 becomes3

b��z
@h

@t
= �b��2r2h+ b�

1

2
�

z
2 �: (2.22)

To rescale the noise term, we have used general properties for the rescaling of delta

functions, �d(a~x) = a�d�(~x). Multiplying both sides of Eq. 2.22 by bz�� we obtain

@h

@t
= �bz�2r2h+ b�

1

2
+ z

2
���: (2.23)

To ensure scale invariance, each side of Eq. 2.23 must be independent of b. Thus for

the Edwards-Wilkinson equation in 1 + 1 dimensions we obtain the exact values of

the scaling exponents4:

z = 2; (2.24)

and

� =
1

2
: (2.25)

3Note, in d dimensions, the noise term scales as �(~x; t)! b�(d+z)=2�(~x; t):
4Note that this scaling argument is almost identical for d dimensional growth, where d is the

dimension of the substrate. The noise term scales as given in the footnote above. The value of the
exponent z = 2 is unchanged. And the general expression for the roughness exponent is � = (2�d)=2.
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These predicted values for the scaling exponents agree with the values obtained

numerically for certain microscopic growth rules, for example Random Deposition

with surface di�usion[40]. In the RD model each particle drops along a single column

until reaching the lowest unoccupied height in that column. To add surface relaxation

the newly fallen particle is allowed to di�use along the surface up to a �nite distance

l, stopping when in the column with the lowest height. This introduces a di�usive

smoothing mechanism. The agreement of the scaling exponents and similarities in the

relaxation mechanisms (the Laplacian smoothing) lead us to believe that the Random

Deposition model with surface di�usion is in the universality class described by the

Edwards-Wilkinson equation, (Eq. 2.21).

2.2.3.3 KPZ equation (�.e., nonlinear theory)

The RD model, even with surface di�usion, is quite simple. Growth always occurs

in the direction perpendicular to the initial 
at substrate. In contrast, models such

as BD allow for lateral growth (which leaves voids in the bulk aggregate) and so

growth can occur in the direction parallel to the initial 
at substrate. In these types

of models, the invariance under the transformation h ! �h is no longer preserved

(symmetry property (v)). Kardar, Parisi, and Zhang were the �rst to notice this,

and they added a term of the form (rh)2 to the Edwards-Wilkinson Equation. Note

that a term of this form was not allowed for the simplest growth equation due to

symmetry considerations. With the exclusion of symmetry property (v), this is the

simplest nonlinear term allowed. Aside from symmetry considerations, there are

physical motivations for including a term of this form, mainly that growth occurs

along the local normal to the interface (i.e., lateral growth). Thus accounting for

lateral growth we get the KPZ equation

@h(x; t)

@t
= �r2h+

�

2
(rh)2 + �(x; t): (2.26)
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As in Eq. 2.21 the Laplacian term results in smoothing of the interface, and the

prefactor � corresponds to the surface tension. The nonlinear term accounts for

lateral coarsening. Again, �(x; t) is noise which accounts for the surface roughening.

The solution of the KPZ equation is more complex than that of the linear theory.

Simple scaling arguments do not allow the determination of the exponents. The scal-

ing exponents of the KPZ equation can be obtained exactly in one dimension by noting

the existence of a Fluctuation-Dissipation theorem[5]. Insights into the behavior of

this equation in other dimensions comes from renormalization group treatments.

Despite the fact that the growth model studied in this chapter (BD) is conjectured

to belong to the KPZ universality class, the derivation of the solution to the KPZ

equation is not relevant to the subsequent discussion. Ideas of scaling are much more

relevant. Hence I gave a detailed derivation of the solution to the linear theory to get

the reader familiar with concepts of scaling. For the solution to the KPZ equation

(including the necessary background on the renormalization group), the reader is

referred to any of the excellent reviews on this topic, for example [5].

The main consequence of the KPZ equation which is important to us is the pre-

dicted values of the scaling exponents for 1+1 dimensional growth: � = 1=2, � = 1=3,

and z = 3=2. We take a numerical approach, using computer simulations to gener-

ate BD clusters, hence we will be able to directly compare the exponents obtained

empirically with those predicted analytically.

2.3 Implementation of stochastic growth models

Stochastic models of surface growth are typically investigated with computer sim-

ulations. Randomness is replaced by use of deterministic Pseudo Random Number

Generators (PRNGs). The remainder of Part I of the thesis focuses on implemen-

tations of BD, and explores the implications of the use of PRNGs. The next two

chapters are reprinted from journal articles. There is limited repetition in the intro-
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duction section of each chapter with the review in this chapter.

Chap. 3 reports on a study of basic scaling properties of the BD model. Several

anomalous results for the properties of the growth interface are obtained. During a

thorough search for corrections to scaling, coupling between the BD model and the

PRNG used in the implementation becomes apparent. Implementations with di�erent

PRNGs yield statistically discrepant results. This work also appears as Ref. [28].

Chap. 4 reports on an extensive, statistically rigorous study of BD. The purpose is

to quantify the coupling between the BD model and PRNGs. We show a breakdown

of basic statistical sampling assumptions, and of the ergodic exploration of phase

space. This work also appears as Ref. [29].
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Chapter 3

Anomalies in simulations of

Ballistic Deposition1

Ballistic Deposition (BD) is a prototypical model for interface growth and for dy-

namic scaling behavior in non-equilibrium systems. BD is typically investigated with

computer simulations where randomness is replaced by use of deterministic Pseudo

Random Number Generators (PRNGs). In this study of BD, several results discrepant

with the prevailing paradigm were observed. First, the value of the roughness expo-

nent, �, obtained is below the value for a random walk (i.e. � < 1=2). The value

� = 1=2 is predicted by the KPZ equation, and many models of growth obtain this

exponent. Second, height 
uctuations of the growing interface appear not to satisfy

simple scaling. Third, a decrease in the surface roughness is observed in a conjectured

steady state regime. Computer implementations of BD may be responsible for the

discrepancies. A coupling between the BD algorithm and a PRNG algorithm is iden-

ti�ed, and statistically discrepant results are obtained for an implementation with a

di�erent PRNG.

1This work is reprinted from J. Mod. Phys. C 8 (4), 941{951 (1997), with references to other
chapters added.
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3.1 Overview

Understanding growth patterns, both of clusters and solidi�cation fronts, has be-

come an increasingly interesting problem, relevant to non-equilibrium processes in

general[42, 53, 91, 5, 56]. Dynamic scaling characterizes many of these processes, and

Ballistic Deposition[125] (BD) is a prototypical model for this class of system, and

for interface growth in general. In the BD model free particles, following ballistic tra-

jectories, encounter the active growth interface of the substrate at which point they

aggregate. The resulting growth patterns are compact clusters with a rough surface,

which may be an accurate model of thin �lm growth. The active growth interface

exhibits dynamic scaling behavior.

BD has been investigated for more than a decade and the �ndings have de�ned

pathways for countless successive studies of growth processes[91, 124, 56]. However

it is disconcerting that a true consensus has never been reached on the value of the

roughness exponent, �. Several anomalies were observed in the implementation of

BD reported in this study, namely a growth surface not described by simple scal-

ing, a roughness exponent below the theoretically predicted value, and a decrease

in the surface roughness in a conjectured steady state regime. Coupling to PRNGs

is observed, which may resolve the anomalies and discrepancies in past work, and

challenges the implicit assumption that randomness can be replaced by deterministic

Pseudo Random Number Generators (PRNGs).

The organization of this chapter is as follows. A brief review of the values for the

scaling exponents obtained in past studies will be presented. The implementation

details and results are then discussed. Pathological situations which may cause long

crossover times or a change in exponents are investigated. For example, long range

spatial and/or temporal correlations in the pseudorandom sequence of numbers em-

ployed are sought for, but no evidence of such two-point correlations is found. Yet

a dynamics in the value of the surface roughness is observed in a conjectured steady

state regime, and a di�erent dynamics is observed for an implementation with a dif-
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ferent PRNG. We thus conclude that the BD model couples sensitively to, as yet

undertermined, non-randomness of pseudorandom sequences, even sequences which

pass all standard statistical tests.

3.2 Review of past results

As discussed in Sec. 2.2.1.3, the surface con�guration for BD is completely described

by the height, h(x; t), along each position, x, of an underlying substrate, with t

denoting the time duration of growth. Throughout this chapter growth on a one-

dimensional substrate (of length L) is considered, for which exact theoretical predic-

tions exist. The surface evolves as follows. A column along the substrate is chosen

at random and a particle is added to the surface of that column at the height:

h(x; t0 + 1) = max[h(x � 1; t0); h(x; t0) + 1; h(x+ 1; t0)]: (3.1)

(The deposited particle occupies the highest empty site with one or more occupied

nearest neighbor sites.) Here t0 is the number of individual deposition events and is

proportional to t (t = t0=L). Beginning with an initially 
at substrate, the width of

the active growth interface, �(L; t), increases from zero to an asymptotic value which

depends on the underlying, �nite size, length scale, L. A measure of �(L; t) is the

standard deviation of the surface heights, fh(x; t)g,

�2(L; t) =
1

L

LX
x=1

(h(x; t)� h(t))2; (3.2)

where h(t) is the mean height of the surface at time t.

It was pointed out by Family and Vicsek[41] that the scaling forms for the growth

and saturation of the width of the interface can be described by a scaling ansatz,
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similar to that applicable to critical systems;

�(L; t) = L�f(t=Lz); (3.3)

where f(x) � x� for x � 1 and f(x) = const for x � 1. For short times, the width

of the interface should increase as � � t�. In the asymptotic regime the width of the

interface should scale as � � L�.

The analytical theory by Kardar, Parisi and Zhang (KPZ) describes the evo-

lution of 
uctuations on growing surfaces using a symmetry motivated di�erential

equation[66]:
@h

@t
= �r2h +

�

2
(rh)2 + �(x; t): (3.4)

Here, � is related to surface relaxations, (�=2)(rh)2 is introduced to account for

lateral coarsening, and �(x; t) is white noise. In 1 + 1 dimensions, the values of the

scaling exponents can be obtained exactly from KPZ theory: � = 1=2 and � = 1=3.

Note that �(L; t) � L1=2 is equivalent to a random walk. While these exponents

agree very well with simulations of several growth models (e.g. Restricted Solid

on Solid (RSOS)[71], discussed further in the conclusions), it is puzzling that the

reported values of the roughness exponent, �, obtained for the BD model have all

been less than the theoretically predicted value. Moreover the reported values of �

have a substantial range (greater than 15% of the lowest value), (for a summary see

Table 3.1).

3.3 Implementation and results

In this study of BD, initially 
at substrates of length varying from L = 127 to L =

2047 are considered. At each update a pseudo random number (PRN) is generated

indicating which site along the substrate will have the next event. A particle is added

to that column at a height described by Eq. 3.1. The source for PRNs is a C library
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Table 3.1: A table of scaling exponents for two growth models, BD and RSOS,

as determined by selected numerical investigations. Error bars are included when

available.
Scaling Exponents from Selected Numerical Simulations

Model Reference � �

BD FV85[41] 0:30� 0:02 0:42� 0:03

MRSB86[92] 0:331� 0:006 0:47
M93[91] 0:33 0:45

HHZ95[56] 0:31 not reported

This study[28] 0:31� 0:02 �loc 0:42� 0:02

�glob 0:455� 0:015

RSOS KK89[71] 0:332� 0:005 0:50

KPZ Theory KPZ86[66] 1=3 1=2

subroutine \random()"[51], which is a non-linear additive feedback PRNG, initialized

with a 256 bit seed, giving a repeat period of 264 numbers. The lowest 20 to 24 bits of

each returned number were shifted o�, leaving only the highest (and least correlated)

bits. Many PRNGs were investigated before this variant of random() was chosen, as

it performed best in initial tests. All of the simulations were carried out on a desktop

workstation, with the runs on the shortest length substrates requiring a few hours,

and the runs on the longest, a few days.

The dynamic scaling exponent, �, is determined using a plot of the width of the

interface, �(L; t), versus time, for all of the substrate lengths L. Note one unit of

time is L particle depositions. Consistent with previous studies (see Table 3.1) the

results are � = 0:29 � 0:01 for times 3 � t < 100, and � = 0:31 � 0:02 for times

100 � t < 2000. We chose to report the value for the longer times, as the scaling

interval is of greater absolute size.

Determination of the asymptotic roughness exponent � is not as straightforward.

The primary complication is that � � L� only in the regime where the correlation

length has reached the full system size (t � Lz), which can be computationally

prohibitive for large substrate lengths. The conservative estimate of time for \relax-

ation", � = 10Lz= 5

3 is employed (which exceeds the expected scaling of z = 3=2).
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This time corresponds to an average surface height �h = 20L
5

3 .

Once in this regime, the local roughness of the surface is investigated by studying

\windows" of length l < L (i.e �(l; t) for l < L). Finite size e�ects (imposed by

periodic boundary conditions) cause a rounding of these curves, restricting the scaling

regime to lengths l < L=2, where self-a�ne scaling suggests �(l; t) � l�. The BD local

surface roughness is compared to that of a random walk. We calculate the expectation

value of the local surface roughness of a random walk over the ensemble of all possible

walks of total length L:

D
�(l; t)2rwalk

E
=

*
1

l

lX
x=1

�
h(x)� hl

�2+
: (3.5)

Here h(x + 1) = h(x) + �x, �x = �1, P(L�1)
x=1 �x = 0 (which implements periodic

boundary conditions), and the correlations between �0xs are assumed uniform. This

yields the scaling relation

D
�(l; t)2rwalk

E
� l

 
1� l

2L

!
; (3.6)

for l; L� 1. The second term in Eq. 3.6 represents a �nite size correction to scaling.

Comparison with our results for BD is shown in Fig. 3-1, where the prefactor for the

random walk in Eq. 3.6 was selected so as to agree with the BD simulations at the

shortest lengths. The two curves are very distinct; Both appear to exhibit scaling

behavior over more than one decade, however the scaling exponents di�er. If the �0xs

are chosen in agreement with the empirically obtained step height distribution of the

BD simulations, no ad hoc prefactor is needed and similar results are obtained.

From curves of �(l; t) in the asymptotic regime, three distinct scaling behaviors

can be identi�ed. For 3 � l < 20 the relation �(l; t) � l�loc0 is obtained, with

�loc0 = 0:35 � 0:01. For 30 < l < 400 the relation �(l; t) � l�loc is obtained, with

�loc = 0:42�0:02. Looking only at the longest length from each substrate the relation

�(L; t) � L�glob is obtained, with �glob = 0:455 � 0:015. The data for all substrate
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Figure 3-1: The width of the growth interface plotted as a function of increasing

window size, for the BD simulations and a theoretical calculation of a random walk
with periodic boundary conditions.
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lengths is shown in Fig. 3-2, along with a comparison to the equivalent data for a

random walk with periodic boundary conditions. For the random walk, only one

scaling relation can be extracted �(l; t) = l1=2, for both l � L=2 and l = L.

1 10 100 1000
l

1

10

ξ(l,t) 1 10 100 1000
l

1

10

ξ(
l)

χ = 0.5

χ = 0.5

χ = 0.35

χ = 0.42

χ = 0.455

Figure 3-2: The width of the growth interface plotted as a function of increasing

window size for the longest times simulated. The data from all �ve substrate lengths
are included. Dependent upon the range of lengths we examine, three apparent

scaling exponents may be obtained, as indicated by the solid lines. The insert is the
corresponding data for a random walk with periodic boundary conditions.

In an attempt to formulate a consistent scaling picture, we collapse the data from

the �ve di�erent length substrates, using Eq. 3.3 (see Fig. 3-3). For �(L; t) collapse is

achieved by plotting �(L; t)=L�glob vs t=Lz, with the exponents �glob = 0:45�0:02 and

z = 1:45� 0:03. For �(l; t), with l = 0:1L, collapse is achieved by plotting �(l; t)=l�loc

vs t=lz, with the exponents �loc = 0:40� 0:02 and z = 1:41� 0:03.
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Figure 3-3: The scaling function, f( t
lz
), determined for data sampled at l = 0:1L and

at l = L. For the data sampled at l = 0:1L collapse is achieved with the exponents

�loc = 0:40�0:02 and z = 1:41�0:03. For data sampled at l = L collapse is achieved

with �glob = 0:45� 0:02 and z = 1:45� 0:03
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Exponents obtained by the collapse are consistent with those obtained by a linear

�t and with those reported in previous studies (see Table 3.1). The measurement

of �loc agrees with the FV85 measurement of �[41]. The measurement of �glob is

consistent with the M93 and the MRSB86 measurements of �[91, 92],. However,

these results are puzzling on three counts. First �loc 6= �glob, i.e., the surface is not

self a�ne. Second, all of the exponents obtained are below the value predicted by the

KPZ theory. Third, the characteristic identity � + z = 2 is not obeyed. These are

not only violations of the KPZ scaling, but also most of its extensions (e.g. Medina,

et al.[93]). Thus we are lead to ask, what kind of continuum model could explain a

decrease in the values of the scaling exponents (i.e. a hypo-rough surface)?

3.4 Possible resolutions

One possibility is that the model su�ers from a long crossover regime. For example

the Wolf-Villain model of growth has a length dependence in the adjacent step height

distribution, which persists for long times (t � 104), and long lengths (L � 256)[108].

The step height distribution for the BD model is a well behaved quantity, which

reaches a steady state, length-independent value within the completion of a few

monolayers. With reference to the work on crossover, it has been suggested that

the structure factor is the only way of accurately determining exponents[110]. The

structure factor is related to the Fourier transform of the height-height correlation

function

S(k; t) =
D
ĥ(k; t)ĥ(�k; t))

E
; (3.7)

with ĥ(k; t) = L�d=2
P

x[h(x; t) � h(t)]eik�x. Crossover behavior is manifested by a

change in the scaling exponent of S(k; t) vs k. There is no evidence of crossover in

S(k; t) for our data, including the longest lengths and longest times simulated. The

exponent obtained is consistent with �glob = 0:45.

A second possibility is an intrinsic width correction[136], as introduced by Kertesz



3.4. POSSIBLE RESOLUTIONS 65

and Wolf to the Eden Model. This correction accounts for voids in the bulk, and

allows for a clear scaling regime to be obtained for the Eden model in 2+1 and 3+1

dimensions[69]. Introducing such a correction to our data destroys the scaling regime.

A third possibility is correlated noise. There has been extensive past theoretical

and numerical work into growth models with positively correlated noise (Medina, et

al., is the �rst study)[93, 91, 56]. For noise with long-range correlations in space

and/or time, the noise term in Eq. 3.4 is of the form h�(x; t)i = 0, with

h�(k; !)�(k0; !)i = 2D(k; !)�d�1(k+ k0)�(! + !0); (3.8)

where the noise spectrum D(k; !) has power-law singularities of the form D(k; !) �

jkj�2�!�2�. For uncorrelated noise, the noise spectrum is a constant.

As shown in the original study, for spatially correlated noise (i.e � > 0; � = 0),

� increases and z decreases, preserving the identity of Galilean invariance, � + z =

2[93]. An extension to anti-correlated noise (i.e. (�; �) < 0) may show a decrease

in the values of the scaling exponents and a breaking of that identity. It is clear

that extreme forms of anti-correlated noise will result in a 
at interface; Consider

sequential updating of a BD growth algorithm, this generates a perfectly 
at interface

at each timestep. Hence it is reasonable that correlations in the noise may change

the roughness of the surface.

We have conducted extensive tests to identify potential long-range spatial and/or

temporal correlations in the PRNs generated by the function call random(). The

PRNs produced pass every mathematical and physically motivated test, including

those directly relevant to the growth algorithm. The Fourier transform of the noise

in each column, and along the columns of the substrate, produce 
at, white-noise

spectra. The number of calls to each column are Poisson distributed (as discussed

below). Waiting times between successive calls to each column are exponentially

distributed. The simulated space was divided into checkerboard sublattices, but no
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discrepancy between events on even or odd numbered sites was found. The autocorre-

lation function for every property of the generated surface tested is a simple decaying

exponential. There is no bias for relevant successive events to be in the same column

or left or right neighboring columns. Other researchers have recently pointed out

some physical models which manifest the pathologies of certain PRNGs[122]. The

PRNs produced by random() pass even those sensitive tests.

Nonetheless, a systematic decrease in the width of the BD growth interface is

observed in the \asymptotic" regime (Fig. 3-4). For the longer lengths simulated,

the decrease occurs even before the strictly de�ned asymptotic regime. In order to

bound the decrease outside of statistical error, 200 independent runs on substrates

of lengths L = 127 and L = 511 are studied. Note that all the data reported so

far were obtained with 20 independent runs on each substrate length, and all error

bars reported are statistical. A plot of �(l; t) vs l, during the four greatest times, on

the L = 127 substrate, is shown in Fig. 3-4. As the time increases, �(l; t) decreases

systematically. The error bars should be noted; The value of �(l; t) for the longest

time is over four standard errors away from the value for the shortest time. This

e�ect may be due to anti-correlation in the system (where system refers to the BD

algorithm coupled to the PRNG algorithm). The e�ect of anti-correlation in the

PRNG on a growth algorithm is illustrated by a simple Poisson process, the Random

Deposition (RD) model. Implementing RD also serves as a check of the BD computer

code.

In the RD model the site �lled by deposition is the next available height in the

active column (not even nearest neighbor interactions exist). No boundary conditions

are needed and hence there is no dependence on L. The surface height values should

theoretically be Poisson distributed: (� � t1=2, for all t). Fig. 3-5 is of �(t) vs t for

an RD algorithm implemented by altering only one line of our BD code (that line

describing Eq. 3.1). Two di�erent PRNGs were used: random() (described earlier),

and rand(), a 16 bit version of the standard C-library subroutine[52]. At the close of
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Figure 3-4: The width of the BD growth interface versus increasing window size,
plotted for di�erent times. It can be seen that as time increases, the width of the

interface decreases systematically. The inset plot is the width of the interface for the
largest window size, l = L, plotted with increasing time. Note the error bars included

on all points.



68 CHAPTER 3. ANOMALIES IN SIMULATIONS OF BD

one repeat cycle, rand() has sampled all numbers evenly, yielding a 
at surface for

RD. The results using random() agree with theory out to the longest times simulated,

yet a systematic decrease is observed using rand(), as it is for the BD model using

random(). As mentioned, the repeat period of random() is on the order of 1019, almost

ten orders of magnitude greater than the total number of calls made to it.
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Figure 3-5: The width of the growth interface versus the number of function calls

for simulations of RD using two di�erent PRNGs. The solid line corresponds to the
result for ideal random numbers, � / t1=2. The cycle length of rand() is apparent
since the interface width decreases to zero at the end of a cycle.

To quantify that the decrease of the surface roughness is a result of evolving the

system with random() the full BD simulations were run, using the identical code, but a

di�erent PRNG, ran2() (which combines two distinct types of PRNGs in an attempt to

eliminate correlations inherent to each one separately)[101]. The systematic decrease
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was not observed, but several unsystematic 
uctuations in the value of �(l; t), outside

of statistical error bounds, were observed. Selecting individual time samples for each

length substrate, it is possible to construct a scaling curve, with the scaling exponents

�loc = 0:45�0:01, and �glob = 0:51�0:02. Note that these are statistical error bounds,

which do not address the issue of 
uctuations. Constructing the curve with statistical

outliers, changes the values of the exponents. We do not assert that these exponents

are the \true exponents", but instead wish to focus on the fact that di�erent PRNGs

yield di�erent results for an identical system, implemented with the identical code.

The more revealing comparison is between average values obtained by the two

di�erent PRNGs. For example, the average asymptotic values of �(L; t) di�er by

more than three standard errors. A \t-test" comparing these average values fails at

the 99% con�dence level[43]. Statistically discrepant results for average values and a

statistically distinct dynamics for the interface width 
uctuations show a breakdown

of basic sampling assumptions, and moreover, that the observed dynamics is not

inherent to the BD model. Assuming the dynamics does not reside in the PRNGs,

it must reside in a coupling between the BD and PRNG algorithms. This is in line

with the observation that the short time scaling exponent (�) is not e�ected, but the

asymptotic scaling exponent (�) is; The e�ects of coupling may take some time to

accumulate. A detailed statistical analysis quantifying the breakdown of sampling

assumptions and ergodic exploration of phase space is reported in Chap. 4.

3.5 Conclusions and discussion

It is reasonable that the BD algorithm is more sensitive to correlations in PRNs than

standard Monte Carlo (MC) algorithms. In standard MC, comparison to the Boltz-

mann probability causes rejection of some PRNs produced. In BD, all PRNs are used

(in the sequence produced). It should be noted that in restricted models of growth

(where physical constraints cause rejection of PRNs), such as RSOS, the theoretically
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predicted scaling exponents are recovered with great precision in numerical simula-

tions. It may be interesting to implement the BD algorithm with random rejection of

PRNs. In addition, we have been considering the use of massive physical simulations

(run on a special purpose cellular automata machine[87]) which have a vast amount

of initial state, as a source of randomness.

BD is a sensitive physical test for correlations present in pseudorandom sequences,

and it would be desirable to identify the exact nature of the correlations detected.

Discrepancies in the reported values for the roughness exponent �, and anomalies

found in this study, may be attributed to distinct couplings between the BD and

the PRNG algorithms. Disagreement in results generated by two di�erent PRNGs is

strong evidence for this and, more importantly, shows the dynamics observed in the

asymptotic regime are not inherent to the BD model itself. Results from previous

studies of BD have not indicated which PRNG was used, in addition many of these

past simulations utilized power of two substrate lengths (L = 2n), a system size for

which PRNGs manifest their greatest pathologies[73]. As of yet we are not able to

identify the universality class of the BD model. It appears that coupling to the PRNG

algorithms becomes dominant before the steady state regime is achieved.



Chapter 4

Sensitivity of Ballistic Deposition

to pseudorandom number

generators1

Ballistic deposition (BD) serves as a prototype for studies of dynamic scaling phe-

nomena in nonequilibrium growth processes. In BD, particles are sequentially added

to a growing surface at randomly selected positions. The model is typically investi-

gated by computer simulations where randomness is implemented by pseudorandom

number generators (PRNGs). The implicit assumption that PRNGs adequately rep-

resent true randomness is tested in this study via a statistical analysis of the width

of the BD interface. We study the width of the interface over time scales orders of

magnitude longer than the expected model relaxation time, yet much smaller than

the period of the PRNG, and observe 
uctuations which still appear to be correlated.

Distinct dynamic behavior is observed for an implementation with a di�erent PRNG,

further indicating a strong coupling between the model and the PRNGs (even with

PRNGs that pass extensive statistical tests). Thus we demonstrate a breakdown of

1This work is reprinted from Phys. Rev. E 57 (5), 5044{5052 (1998), with references to other
chapters added. My coauthors are Y. Bar-Yam and M. Kardar.

71
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basic sampling assumptions, and of the ergodic exploration of phase space.

4.1 Introduction

Dynamic scaling phenomena in stochastic nonequilibrium systems have attracted in-

creasing attention in recent years[90]. In theoretical models of open systems, the

external in
uences are usually represented by random noise. In computer simulations

of the models pseudorandom numbers (PRNs) implement the stochastic process. The

use of deterministic PRN algorithms necessarily introduces some degree of correlation

in the produced sequence of PRNs[83, 3]. While these correlations are probably irrel-

evant in most applications, they may in principle couple to the underlying dynamics

of the simulated model, resulting in arti�cial behaviors.

A good example of open nonequilibrium behavior is provided by growth of ag-

gregates through random addition of particles. The width of the resulting interface

exhibits dynamic 
uctuations, which have been studied extensively, analytically and

numerically[42, 56, 5, 75]. A particularly simple model for this phenomena is Ballistic

Deposition (BD)[125]: Particles are randomly placed above an aggregate growing on

a substrate, they descend along a straight vertical path until they encounter a site on

the existing cluster and stick there. The random placements of subsequent particles

represents a stochastic process.

We present results of a numerical study of BD in which the potential coupling

to PRNs is examined via statistical tests on the width of the growing interface. A

dynamic change in a conjectured steady-state regime is observed, signaling a break-

down of ergodicity. The breakdown is quanti�ed by demonstration of violations of

the basic sampling assumptions. Statistically relevant inconsistencies occur repeat-

edly in the data. First, 
uctuations statistically inconsistent with the steady-state

distribution are observed (even when the time scale of observation is orders of mag-

nitude greater than the expected relaxation time of the model). Second, values of
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steady-state quantities averaged over di�erent sets of initial seeds are in statistical

disagreement. Third, average values of steady-state quantities, obtained by using two

distinct pseudorandom number generators (PRNGs), are in statistical disagreement.

These results lead to the conclusion that the observed dynamical 
uctuations are not

inherent to BD, but result from a coupling to the PRNG algorithms.

The manuscript is organized as follows. Section 4.2 provides the algorithmic de-

tails of the BD model and its implementation, with emphasis on the role played by

the PRNs. In Sec. 4.3 probability distributions, sampling assumptions, and the con-

struction of the statistical tests are discussed. The statistical inconsistencies of the

numerical data with the basic sampling and ergodicity assumptions are presented in

Sec. 4.4. Potential implications for the use of PRNs, particularly in the context of

growth models, are discussed in the concluding Sec. 4.5.

4.2 Model and implementation

Given that the focus of this work is on the unwanted coupling of PRNGs with the

underlying model, it is necessary to provide details of the numerical simulation in

greater depth than usual. Here we shall review the BD algorithm, and its numerical

implementation with speci�c PRNGs.

4.2.1 Ballistic Deposition

In the BD model of growth, free particles initiated at random positions above a one-

dimensional substrate descend ballistically and stick upon �rst touching the surface of

the growing cluster. The substrate of length L, consists of discrete columns indexed

by integer values x, with 1 � x � L. The growth interface is de�ned by the maximum

occupied site along each column, h(x; t), where h(x; t) also takes on discrete integer

values. Starting from a 
at interface, h(x; t = 0) = 0 for all x, the surface evolves

by sequential addition of particles to randomly chosen columns. The index number
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of particles deposited is denoted by t0, and the deposition time by t = t0=L. Each

deposition event consists of choosing a column, x(t0), by a call to a PRNG, and

updating the height in that column as follows:

h(x(t0); t0 + 1) = max[h(x(t0)� 1; t0); h(x(t0); t0) + 1; h(x(t0) + 1; t0)]: (4.1)

Thus the deposited particle occupies the highest empty site with one or more occupied

nearest neighbor sites; this mimics the process of cluster aggregation. The stochastic

process in this model is the random choosing of successive columns.

While the resulting aggregates are compact, their interface is rough, with 
uc-

tuations that are expected to be self-similar at all scales. The width of the growth

interface �L(t), on average increases following a power law behavior until reaching a

steady asymptotic value, the magnitude of which depends on the underlying substrate

size L. A good measure of �L(t) is the variance of the surface heights, fh(x; t)g,

�2L(t) =
1

L

LX
x=1

�
h(x; t)� h(t)

�2
; (4.2)

where h(t) is the mean height of the surface at time t.

It was originally pointed out by Family and Vicsek[41] that the scaling forms for

the growth and saturation of the width of the growing interface can be described

by a dynamic scaling ansatz, similar to that applicable to critical systems. Kardar,

Parisi and Zhang (KPZ)[66] introduced an analytic theory describing the evolution

of 
uctuations on growing surfaces, which has been successfully applied to several

growth models. One consequence of KPZ theory is that the steady-state behavior

for the interface 
uctuations in one dimension should resemble a random walk; i.e.

�L(t!1) / L1=2.
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4.2.2 Algorithmic details

Substrates of lengths L = 127, 255, 511, 1023, 2047, and 10007 are considered. At

each update, a PRN is generated corresponding to a column along the substrate. A

particle is added to that column at a height described by Eq.(4.1). Periodic boundary

conditions are applied. The only subtlety is in mapping the PRN uniformly to a value

between 0 and L � 1, which is achieved as follows: The least signi�cant bits of the

PRN are shifted o�, leaving a number between 0 and 2n� 1, with n chosen such that

2n is the integer closest to, but greater than L. The PRN is rejected if it falls in the

interval between L and 2n � 1. Variants on this scheme were tested (including use

of all the bits of the PRN), yet similar results were obtained. The scheme described

above was chosen because the algorithms that generate subsequent PRNs involve

algebraic operations which cause carries from lower order bits to higher order bits;

thus the higher order bits are in
uenced by two sources (the algebraic operation and

the carries) and are expected to be less correlated.

As the system evolves, the variance of the surface heights, �2L, is calculated at

selected times. Statistical errors are considered[45], and the associated standard error,

��2 , is also recorded. The values of the surface heights (contained in a 1-dimensional

array of length L) are the only essential data for these calculations.

The onset of the asymptotic regime is estimated by the conservative criterion of

a \relaxation" time � � 10Lz0, with z0 = 1:6. This estimate is conservative since

the exponent employed exceeds the expected value of the dynamic scaling exponent,

z = 3=2, and this time is well beyond a qualitative judgment of the time required

for saturation of �2L. Accounting for the measured growth rate, this relaxation time

corresponds to an average surface height, h(�) = 20Lz0. Exploring the asymptotic

regime requires extensive computer power for the larger lengths investigated. All sim-

ulations were implemented on desktop workstations, with the shortest length systems

requiring a few hours of run time, the longest requiring on the order of �ve days.
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4.2.3 Randomness and PRNGs

PRNGs are algorithms for deterministically generating a string of bits, resembling a

completely uncorrelated, and hence \random" string. Knowing the past and present

values should give no information as to future outcomes of a truly random variable.

Hence \deterministic randomness" is inherently unattainable. PRNGs are at best a

practical substitute, and should be generally tested for the absence of undesired corre-

lations. While two point correlations can be readily examined, there are a multitude

of other subtle e�ects that are not in practice possible to measure. When considering

which tests for correlations to conduct, it is advisable to include both the standard

statistical tests, as well as physically motivated ones directly related to the particular

model being implemented (see the example in the �nal paragraph of this section). It

is also necessary to verify that any observed dynamic behavior is inherent in the sim-

ulated model, and not arti�cially introduced to the system by the PRNGs. Several

physical models have been shown to couple to correlations in PRNGs[44, 122, 109];

we shall provide evidence that BD also belongs to this category.

Preliminary simulations with a simple PRNG resulted in various anomalies which

will not be discussed in detail here, but one example is the occurrence of repeated

patterns of surface con�gurations. Having identi�ed the PRNG as the likely culprit,

we decided to use more sophisticated PRNGs. Several were tested, and two were se-

lected: random(), a Feedback Shift Register, employing a primitive trinomial of degree

64[51] (a \C-library" subroutine call); and ran2() which combines pseudorandomness

produced by two distinct multiplicative congruential generators, and has been shown

to reduce certain serial correlations inherent to each generator separately[101]. The

developers of ran2() are con�dent enough to have o�ered $1000 to anyone who proves

a de�ciency in their PRNG!

Extensive tests for correlations in the PRN sequences were conducted, with em-

phasis on tests directly relevant to the BD growth algorithm. One such test is for any

bias in the next relevant call. If the next growth site in a neighborhood is biased to the
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left- or right-neighboring column of the last added particle, a thiner growth interface

results. If it is biased towards the same column, a wider interface is generated. No

discrepancies were found with any of the tests, a brief summary of which is included

here: (1) Spatial and temporal Fourier transforms of the sequence of PRNs were

consistent with white noise power spectrums, suggesting no two-point correlations.

(2) Measurement of the number of calls to each column, and waiting times between

subsequent calls to the same column, were consistent with Poisson statistics. (3) No

spatial bias for the subsequent calls, as discussed above, was detected. (4) No bias

was detected when the space was partitioned into sublattices. (5) Autocorrelation

functions for natural surface height observables were decaying simple exponentials.

The reader is referred to a previous manuscript for details.[28]

4.3 Probability distributions

We �rst obtain the unique steady-state probability distribution for �2L(t > �): Once

this distribution is known, each independent measurement of �2L(t > �) can be con-

sidered an independent, identically distributed (iid) random variable, drawn with the

associated probability. Using only this general assumption of unbiased sampling, we

construct statistical tests which show that: implementations which are identical, ex-

cept for use of di�erent PRNGs, result in di�erent values for average quantities of the

growth interface; implementations with the PRNG studied most extensively in this

work lack steady-state behavior; data obtained by averaging over several independent

implementations are inconsistent with the underlying distribution.

The tests focus on the width of the growth interface in the steady-state regime

�2L(t > �). We shall discard the time argument in favor of a compact notation, and

henceforth denote this variable by �2L. When it is necessary to deal with shorter

times, the explicit time argument is included. The discussion also focuses on the

L = 127 system size. We were able to explore the asymptotic regime for orders of
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magnitude beyond the conjectured model relaxation time only for this shortest length

investigated due to practical limits on computational resources. For the L = 127

system, adequate statistics could be obtained for times as large as t = 1000� .

4.3.1 The steady-state distribution

There is a unique, steady-state distribution, for the overall width of the growth inter-

face, P (�2L). It is shown in Fig. 4-1, as determined by sampling 350 realizations with

di�erent initial seeds for each PRNG; each realization was evolved to the asymptotic

regime and �2L was measured. Each realization was further evolved for ten autocor-

relation times, and �2L was measured again. This latter step was repeated 200 times.

Hence the histogram shown in Fig. 4-1 was constructed with 7 � 104 data points

for each PRNG. The data obtained by both PRNGs converge to the same empirical

distribution, to well within statistical error. We will denote the average value of this

distribution by �, and its standard deviation by �. For random() the values obtained

are � = 35:87 and � = 20:85. For ran2() the values obtained are � = 35:74 and

� = 20:58. Each independent observation of �2, in the asymptotic regime, should be

an iid random variable sampled from this distribution.

Before proceeding to the statistical tests, we brie
y compare this distribution to

previous ones obtained for growth models. The complete distribution function natu-

rally contains much more information about the system than just the average value of

�2L. The KPZ equation, as well as other exactly solvable models in 1-dimension,[92, 23]

give rise to steady-state distributions which are identical to those of a random walk.

The random walk distribution is expected to describe the BD model as well, assum-

ing that it falls in the KPZ universality class. The theoretical distribution for the

overall width of a random walk, with periodic boundary conditions, was calculated

recently[46] and is shown in Fig. 4-1, overlaying the empirical BD distribution. There

is a slight, but systematic disagreement between the BD histograms and the theoreti-

cal distribution for the random walk. The data for numerical implementations of the
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Figure 4-1: The empirical steady-state distribution function, P (�2L), obtained for
both PRNGs. The solid line corresponds to the theoretical distribution function for a
random walk (� = 1=2), the dashed line to a one parameter �t with � = 0:45, where

� is the roughness exponent, as plotted on (a) a linear scale, (b) a log-log scale.

KPZ equation (and for solid-on-solid growth models) have been successfully �tted to

the random walk distribution[46, 105], con�rming that this distribution does indeed

describe systems in the KPZ universality class.

A better �t is obtained by following a phenomenological approach, introduced by

R�acz and Plischke[105]. The width of the growth interface in the steady-state can

be obtained from the structure factor S(k) =
D
ĥ(k)ĥ(�k)

E
, as �2L = b�1

P
k 6=0 S(k),

where ĥ(k) is the Fourier transform of h(x) (and hence k = 2�m=L, where m is an

integer), and b is a constant with dimensions of inverse width squared. Assuming

that fh(x)g is continuous, and Gaussian distributed with a Kernel given by S(k), the

probability distribution for the width is calculated as[105],

P (�2L) =
Z i1

�i1

d�

2�i
e��

2
Y
k 6=0

bS�1(k)

�+ bS�1(k)
: (4.3)

For self-similar 
uctuations, the power spectrum behaves as S(k) / jkj�
 , where 
 is

related to the standard roughness exponent � by 
 = 2�+d, where d is the dimension

of the substrate.
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Figure 4-1 shows the phenomenological distribution function for the parameter

value of � = 0:45, alongside the random walk distribution function (� = 0:5), and

the numerical data. Figure 4-1(a) shows these functions plotted on a linear scale,

Fig. 4-1(b) on a log-log scale. The phenomenological distribution shown is obtained

by summing the residues of the �rst forty-�ve poles in the contour integral of Eq.(4.3).

The sum of the residues for the �rst eighteen poles converges to the identical distribu-

tion throughout the regime considered, indicating that the result is essentially exact.

The phenomenological distribution captures certain aspects of the numerical data

with more �delity than the random walk distribution. The value of � = 0:45 is

smaller than the KPZ prediction of � = 1=2, but is consistent with previous values

of the roughness exponent reported in numerical studies of BD[75, 41, 28, 92].

In regard to the statistical tests discussed in the remainder of this manuscript,

the relevant result presented in this section is that both PRNGs converge to the same

statistical distribution. The discrepancies with random walk behavior will not be

further considered in this manuscript.

4.3.2 Distribution of averages

We are concerned with the consistency between independent measurements, and in-

troduce the statistical tests that follow in order to test this (or more accurately to eval-

uate the lack of consistency). The tests assume approximately Gaussian distributed

variables. Although a single measurement of the width of the interface (Fig. 4-1) is

not a Gaussian variable, the probability distribution of the average width over many

realizations is Gaussian (via the Central Limit Theorem[43, 14]). In simulations one

typically considers average quantities, which also necessitates knowing the probability

distribution of the average. Our simulations are of N independent realizations, so the

relevant distribution is that of the width of the interface averaged over N independent

samples, �2L =
PN

i=1 �
2
L=N .

We can construct the actual distribution function for the average over N iid sam-
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ples, P (�2L), from its Fourier transform denoted by ~PN(k) (and usually referred to as

the characteristic function). The characteristic function of the average is related to

the characteristic function of the individual samples ( ~P (k)) by: ~PN(k) =
h
~P ( k

N
)
iN
.

The characteristic function is the generator of the cumulants of the distribution, and

the nth cumulant of the distribution P (�2L) is related to the nth cumulant of the

distribution P (�2L) simply by
D
(�2L)

n
E
c
= 1

Nn�1 h(�2L)nic.

Dealing explicitly with the �rst two cumulants of the probability distribution of

the average, D
�2L

E
=

*
NX
i=1

1

N
�2L;i

+
=

NX
i=1

1

N

D
�2L;i

E
= �; (4.4)

D
(�2L)

2
E
c
=

NX
i=1

�
(
1

N
�2L;i)

2

�
c

=
1

N2

NX
i=1

D
(�2L;i)

2
E
c

(4.5)

=
�2

N
� �2:

Thus each independent observation of �2L is a random variable drawn from a distri-

bution with mean � and variance �2=N � �2.

As N increases in value, higher order cumulants go to zero, and the distribution

approaches a Gaussian (as required by the Central Limit theorem [43, 14]). The func-

tion P (�2L) is shown in Fig. 4-2, along with the numerical data for P (�2L) (previously

shown in Fig. 4-1), and a Gaussian distribution with mean � and variance �2, for

N = 20.

4.3.3 The �
2 distribution

Each independent realization of �2L is approximately Gaussian distributed about the

mean, �, of the empirical distribution, with a variance �2 (see Fig. 4-2). Hence

the normalized di�erence
�
�2L � �

�
=� should be a random variable sampled from a

unit normal distribution (i.e. a Gaussian distribution with mean of zero, and unit

variance). The sum of squares of M independently distributed unit normal random
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Figure 4-2: The distribution function for the individual samples, P (�2L), the distribu-

tion for the average over N = 20 samples, P (�2L), and a Gaussian approximation to
the distribution for the average.
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variables, denoted by �2ss;

�2ss =
MX
i=1

�
�2L;i � �

�2
�2

; (4.6)

follows a �2 distribution with M degrees of freedom[43, 14]. If the �2ss statistic is

su�ciently large, it is unlikely that all values in the sum are approximately unit

normal distributed. The �2 test quanti�es how unlikely; the test determines the

probability that a number of value �2ss or greater is drawn from a �2 distribution with

M degrees of freedom. We denote this test as the �2ss test and use it to determine the

probability of the hypothesis that all the values of �2L in the conjectured steady-state

regime were sampled independently from the same underlying distribution (shown in

Fig. 4-2).

When performing a simulation one uses the values of the average and stan-

dard deviation obtained in the simulation as estimates of the average and stan-

dard deviation of the distribution function. In order to use the sample averageD
�2L

E
M

=
�PM

i=1 �
2
L;i

�
=M in place of �, and the weighted variance s2=(N � 1) =PN

i=1(�
2
L;i � �2L)

2= [N(N � 1)] in place of �2=N = �2, we refer to the t test. Note that

these values obtained from our simulations should be unbiased estimators of � and

�2 respectively[43, 14], and represent more accurately the error bars obtained.

4.3.4 The t distribution

`Student'[104] �rst discussed the error introduced by estimating �2 with the sample

standard deviation s2 =
PN

i=1

�
�2L;i � �2L

�2
=N; and suggested the t test as an alter-

native statistical test[104]. Note that s2= (�2=N) = s2=�2 follows a �2 distribution

with N � 1 degrees of freedom (the degrees of freedom are reduced by 1 as there is

one constraint on the random variables: the mean value is equal to �2L). Following

`Student' we can construct a statistic from the ratio of a unit normal distributed

random variable Z to an independently �2 distributed random variable f 2N�1 with



84 CHAPTER 4. SENSITIVITY OF BD TO PRNGS

N � 1 degrees of freedom:

TN�1 =
Zq

f 2N�1=(N � 1)
:

We label this variable TN�1; as its probability density should follow a t distribution

with N � 1 degrees of freedom[43, 14]. The unit normal distributed random variable

we are interested in is Z =
�
�2L � �

�
=�: The �2 distributed random variable is f 2N�1 =

s2=�2: Thus the corresponding t statistic is

TN�1 =

�
�2L � �

�
=�q

s2= [(�2) (N � 1)]
=

�
�2L � �

�
q
s2=(N � 1)

: (4.7)

We likewise de�ne a second t statistic, useful for comparing two independent data

sets. Consider two independent sets ofM iid samples drawn from a probability distri-

bution with mean � and variance �2 (i.e. two independent sets ofM iid realizations of

�2L). There are thus two independent measurements of the average value over the M

iid samples, denoted by
D
�2L

E
M;i

; for i = 1; 2 (as de�ned earlier, but note the additional

index i, used to designate the data set). Likewise there are two independent measure-

ments of the variance over M samples, denoted by S2
i =

PM
j=1

�
�2L;i;j �

D
�2L

E
M;i

�2
=M;

for i = 1; 2: The di�erence between two independent observations of average val-

ues is a random variable which converges to a Gaussian distribution with mean of

zero and variance 2�2=M , in the limit of large M . Hence an approximately unit

normal distributed random variable is Z =

�D
�2L

E
M;1

�
D
�2L

E
M;2

�
=
q
2�2=M: An in-

dependent �2 distributed random variable (with 2(M � 1) degrees of freedom) is

f 22(M�1) = S2
1=(�

2=M)+S2
2=(�

2=M): The t statistic to compare two independent data

sets is thus

T2(M�1) =

�D
�2L

E
M;1

�
D
�2L

E
M;2

�
r
(S2

1 + S2
2 )
�

1

M�1

� : (4.8)

If the t statistic is su�ciently large, it is unlikely that the ratio of the sample mean
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to the sample variance is an accurate estimator of the ratio of the theoretical mean to

the theoretical variance. The \t test" measures the probability that a value the size

of the t statistic or greater is drawn from the appropriate t distribution[43, 14]. In

summary, the TN�1 test using the TN�1 statistic, measures the level of validity for the

hypothesis that each sample in a set was drawn from the same underlying distribution.

The T2(M�1) test using the T2(M�1) statistic, measures the level of validity for the

hypothesis that samples in two distinct sets were drawn independently from the same

underlying distribution. This latter test compares average values generated by the

two distinct sets.

4.3.5 Distribution of extrema

The �nal class of statistical tests employed deals with extreme values found in sets of

iid random variables. The extrema found in our data appear to present the largest

deviation from the theoretical distribution. Of course, when dealing with extrema

there is a selection e�ect, for which one has to correct. The probability of obtaining

a particular value for the minimum in a set of M iid random variables can be readily

calculated as[50]

p(xmin = x) =M � p(�2L = x)�
�Z

1

x
p(�2L)d�

2
L

�M�1

: (4.9)

Likewise the probability for obtaining a particular value for the maximum in a set of

M iid random variables can be readily calculated as[50]

p(xmax = x) =M � p(�2L = x)�
�Z x

�1

p(�2L)d�
2
L

�M�1

: (4.10)

The original probability distribution for the average width, P (�2L), along with the

distributions for the minimum and the the maximum in a set of M = 10 independent

observations, are shown in Fig. 4-3.
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Figure 4-3: The probability distribution for the average width, P (�2L), along with the
distribution for the minimum and the maximum in a set of M = 10 independent

observations of �2L.
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4.4 Results of statistical tests

We applied the statistical tests outlined above to the data obtained from our simu-

lations. Results for the �2 test are reasonable, however the results for the t test and

for the extremal values are highly unreasonable. Thus speci�c simulations may give

highly anomalous results, inconsistent with the theoretical distribution.

4.4.1 Comparison of data at di�erent times (in the asymp-

totic regime)

In the asymptotic regime, the width of the interface should saturate to a steady-state

value. The average over 20 independent samples, �2L, for an implementation with

random(), is recorded at selected subsequent times, and a plot of this data is shown

in Fig. 4-4. All of the values shown should be equal within statistical error, but there

are large di�erences. In fact the greatest di�erence between two values is over four

standard errors in magnitude. To quantify the signi�cance of this di�erence, we apply

the statistical tests discussed in Sec. 4.3, to this data set.

The �2ss statistic, de�ned in Eq.(4.6), is calculated, but is not large enough to

be signi�cant: the probability that the null hypothesis of steady-state behavior is

valid is 24%; as determined by the �2ss test. We denote this as a pass at the 24%

Con�dence Level (CL), or likewise a fail at the 76% CL. In other words an event with

this magnitude is expected to occur one in four times, therefore a pass at the 24%

CL is not an unreasonable result.

The TN�1 test for steady-state behavior however does manifest discrepancies. 8

of the 10 points pass the TN�1 test above the 20% CL. But two points fail at the 94%

CL, with one of these points continuing to fail at the 99:98% CL. An event that fails

at the 99:98% CL is expected to occur only twice in 10; 000 times, we observe it once

in ten times, indicating that the null hypothesis is highly suspect.

To ensure that the data sample shown in Fig. 4-4, is not a statistical 
uke, and to
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Figure 4-4: The average width of the growth interface, �2L, as obtained for 20 indepen-
dent samples using random(), shown at selected subsequent times in the asymptotic

regime. The horizontal line corresponds to the average value
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of the M = 10

data points in this �gure, with the associated error bar plotted at the extreme end
of the line. Note that the expected relaxation time is less than � = 2� 104, and that

the logarithmic scale spans roughly 103� .



4.4. RESULTS OF STATISTICAL TESTS 89

establish the repeatable and consistent absence of steady-state behavior, many more

independent samples were generated. A total of 200 independent realizations were

simulated, and the value of �2L was measured for each realization at all of the times

recorded in Fig. 4-4. The Gaussian distributed random variable �2L is constructed by

splitting the 200 independent realizations into subsets of N = 20 and calculating the

average of each subset. Hence there are ten subsets, each one of the random variable

�2L sampled at the ten times shown in Fig. 4-4, for a total of 100 realizations of �2L in

the conjectured steady-state regime. We refer to each subset as a data set throughout

the remainder of the manuscript. The �2ss test is applied independently to each of

the ten data sets. T2(M�1) test can be applied to any combination of two independent

data sets. The TN�1 test is applied independently to each of the 100 realizations of

�2L. By conducting the statistical tests on the additional data sets we show that the

results obtained for the original data set are systematic, as discussed below.

The �2ss statistic de�ned by Eq.(4.6) was calculated for each data set. The data

sets all pass this test at greater than the 20% CL. Yet su�ciently many realizations of

�2L fail the TN�1 test, to bring the null hypothesis of a steady-state into question. 14

of the 100 iid realizations of �2L fail the TN�1 test at the 90% CL, which in itself would

not allow us to reach conclusions. However as the CL criteria is tightened beyond

acceptable standards a surprising number of points still fail. At the 99% CL, 5 of the

100 points fail. These 5 points also fail at the 99:8% CL. At the 99:98% CL, 3 points

fail. Finally, at the 99:995% CL, 1 of the 100 points fails. The meaning of the 99:98%

CL is that probability theory predicts the occurrence of 2 such events out of 10; 000.

Instead we observe 3 such events out of 100. Likewise the 99:995% CL corresponds to

5 events out of 100; 000. We observe 1 such event out of 100. Extreme \tail events"

thus occur with a frequency which is more than two orders of magnitude greater than

the laws of probability would indicate.

We now turn to a discussion of the average asymptotic value of each data set

of M = 10 events (i.e. each set consists of the random variable �2L sampled at
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10 consecutive times in the asymptotic regime). The value of
D
�2L

E
M

generated by

each set of data is not consistent with the other sets. The ten values range2 fromD
�2L

E
M
= 33:05�1:31 to 37:39�1:34. Randomly picking pairs of data sets to compare

using a T2(M�1)- test, we �nd several instances where the null hypothesis (that the two

sets of data being compared were sampled independently from the same underlying

distribution) fails at the 96% CL. Thus separate runs of a simulation frequently give

statistically inconsistent results.

When all N = 200 samples are combined into one data set, the average quantities

are consistent with the empirical distribution function shown in Fig. 4-1:
D
�2L;N=200

E
M
=

35:65 � 0:24. In addition, this data set of the average over 200 iid samples, passes

the �2ss test at the 97% CL. However, for the data sets of averages over N = 20 iid

realizations, the disparity in average asymptotic values obtained shows that sampling

a subset of 20 iid samples is not consistent with the empirical distribution. The values

for averages and variances obtained from the subsets are not unbiased estimators of

the empirical distribution function. Furthermore, the statistical tests discussed so far

reject the hypothesis of steady-state behavior, even at time scales orders of magni-

tude greater than the conjectured model relaxation time of � � 10Lz0. Thus there

is no steady-state behavior for the data generated with random(); instead there is an

asymptotic dynamic behavior.

4.4.2 Comparison of extrema with the steady-state distribu-

tion

In the preceding section the occurrence of many extreme tail events was established.

In this present section we show that the occurrence of tail events can skew the average

2Note that the data set plotted in Fig.4-4 is the set with the smallest asymptotic mean (
D
�2L

E
M

=

33:05�1:31). However two additional data sets obtained with random() have asymptotic means below
34:0. We choose to plot the set shown in Fig.4-4 as it was the �rst set obtained, as such we are
consistent in comparing results with ran2(), where only one data set was generated.
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values obtained.

Comparing the data shown in Fig. 4-4 to the expected probability distribution,

shown in Fig. 4-2, it is observed that the data points are skewed to the left side of the

expected distribution. Eight of the ten points are below the mean value, � = 35:87,

and the lowest value, �2Lmin = 25:18, is in the left hand tail with less than 0:32% of

the total area of the probability distribution function. The probability of obtaining

a particular value for the minimum in a set of M iid random variables is described

in Eq.(4.9). Using this formula we calculate the probability that the minimum of

M = 10 iid random variables drawn from the distribution shown in Fig. 4-2 is less

than or equal to �2Lmin
= 25:18 is only p(x � xmin = 25:18) = 3:6%.

Again we wish to determine if the �rst data set is a 
uke event, so a statistical

analysis based on all ten data sets obtained with random() is warranted. We �nd that

three of the ten data sets have minima which come from the extreme left hand tail of

the distribution, and p(x � xmin) < 6% for each. As the probability distribution for

the minimum, p(xmin), is known (see Fig. 4-3), we can construct the probability for

observing three such low probability events (from the left hand tail of the distribution)

out of a total of ten events, and �nd this probability to be 1:7%. As such, we can

state at the 98% CL that such results would not be obtained by random sampling.

A similar analysis can be carried out with respect to the maxima. In line with

the observation that the data in Fig. 4-4 is skewed to the left side of the expected

distribution, we �nd several values for maxima which are questionably low. The

analogous probability for the maximum value in a set of M iid random variables is

given by Eq.(4.10), and plotted in Fig. 4-3. Maximum values for four of the ten data

sets are much smaller than expected, with each having probability p(x � xmax) <

12%. The probability of observing four such low probability events (from the left

hand tail of the distribution) out of a total of ten events is 1:9%. Again we can state

at the 98% CL that such results would not be obtained by random sampling.
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4.4.3 Comparison of data from distinct PRNGs

To determine if the source of the observed asymptotic dynamic behavior resides in the

PRNG random(), results using a second PRNG, ran2(), were also analyzed. ran2() is

substantially slower than random(), hence the comparison is based on 20 independent

samples for each PRNG (i.e. we use only the initial set of data3 for random(), shown

in Fig. 4-4).

For the shortest length scale implemented (L = 127), the time-series data for

ran2() is self-consistent. The data passes the �2 test, the TN�1 test and the tests for

extremal values. However at longer length scales the data for ran2() fails several sta-

tistical tests, making ran2() also suspect in simulations of BD. The tests performed at

the longer length scales were adequate to show statistical inconsistencies[26], however

not with the high level of rigor demonstrated by the tests on the data at the shortest

length scales4

A direct comparison of data generated by the two di�erent PRNGs for L = 127 is

shown in Fig. 4-5. There are 18 sets of points that can be directly compared, including

eight which were sampled at t < � . The T2(M�1) test for consistency between the two

values at each time fails at the 90% level for three out of the eighteen sets of points.

Most striking is the direct comparison of average asymptotic values obtained for each

PRNG,
D
�2L

E
M;random

= 33:05� 1:31 and
D
�2L

E
M;ran2

= 37:06� 0:80. A T2(M�1) test for

the equivalence of the asymptotic averages of the data sets for random() and ran2()

fails at the 99% con�dence level (the exact probability of failure is p = 0:996). Hence

use of di�erent PRNGs can yield statistically distinct values for averages.

3Note that the data set plotted in Fig.4-4 is the set with the smallest asymptotic mean (
D
�2L

E
M

=

33:05�1:31). However two additional data sets obtained with random() have asymptotic means below
34:0. We choose to plot the set shown in Fig.4-4 as it was the �rst set obtained, as such we are
consistent in comparing results with ran2(), where only one data set was generated.

4The theoretical �ts discussed in Sec. 4.3.1 are not precise enough to provide accurate measures
of the cumulants of the empirical distribution function. Hence, the distribution for longer lengths
cannot be assumed to be accurately described by a corresponding theoretical curve. Sampling
su�cient data points to establish the empirical asymptotic distribution for the longer lengths is
beyond the scope and intent of this manuscript.
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Figure 4-5: The average width of the growth interface as obtained by 20 independent
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The statistical tests reject the hypothesis that the two PRNGs sample the same

underlying distribution, despite the fact that the asymptotic distributions shown in

Fig. 4-1 agree. There is a unique steady-state distribution which is obtained in the

limit of large numbers of independent samples. However sampling of this distribution

is nonstochastic, in that each sample average is not an unbiased estimator of the

asymptotic distribution. Likewise the standard error for each sample does not lead

to an unbiased estimator for the standard deviation of the asymptotic distribution.

4.5 Discussion & conclusions

The original impetus for this study was an indepth investigation of BD at long length

and time scales. However, we encountered many features in the data that could not

be easily explained; most notably, non-self-a�ne surface 
uctuations. After searching

for various corrections to scaling, which necessitated obtaining better statistics and

exploration of longer times into the growth, the coupling to PRNGs became apparent,

and motivated the detailed statistical analysis described in this manuscript.

It should be noted that there are discrepancies between values of the scaling

exponents for BD reported in the literature[75, 41, 28, 92]. At this point, we can only

speculate that these discrepancies are due to the di�erences in the implementations

of BD. Conclusions about the scaling exponents can only be reliably reached once

di�culties with PRNs are resolved.

In retrospect, it is not surprising that the BD algorithm is more sensitive to corre-

lations in PRN sequences than standard Monte Carlo (MC) simulations. In standard

MC, comparison to the Boltzmann probability causes rejection of PRNs at pseudoran-

dom points in the sequence; hence a second independent source of pseudorandomness

in
uences the dynamics. In BD, all PRNs are used in the sequence produced (with

the exception of the very few cases discussed in Sec. 4.2.2). Similarly, in restricted

solid-on-solid models of growth (where physical constraints cause rejection of PRNs),
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the scaling exponents and the random walk distribution predicted by KPZ theory are

recovered with great precision in numerical simulations[46, 71].

We have demonstrated that computer implementations of BD can couple to certain

PRNG algorithms. Results statistically inconsistent with general sampling assump-

tions, and with the ergodic exploration of phase space were observed. Exploration

of accessible phase space is not decoupled from the initialization of the PRNG. In

addition, driving the dynamics of the system with di�erent PRNGs results in sam-

pling di�erent areas of phase space. In conclusion, BD is a sensitive physical test of

correlations in pseudorandom sequences. In general, PRNG algorithms can couple

to models of stochastic, nonequilibrium phenomena. One must ensure that observed

dynamical properties are inherent in the non-equilibrium model itself and not an

artifact of coupling to PRNGs.
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Part II

Reversible Models
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Chapter 5

Discrete reversible models of

physics

5.1 Overview

5.1.1 Why study discrete reversible systems?

Discrete systems played a key role in the development of statistical mechanics. The

tools of combinatorics enabled the exact counting of states and measurement of en-

tropy. From the analytic expression for the entropy, the expressions for the other

thermodynamic quantities can be derived as can the conditions for thermodynamic

equilibrium.

Discrete systems still play a key role today in understanding statistical dynamics,

especially since they can be exactly implemented on digital computers. The stochastic

growth models studied in Part I are classic examples of useful computer simulations.

Also, one of the most widely theoretically and numerically studied systems in statis-

tical physics remains the Ising model (a discrete spin system)[9, 10].

We are interested in discrete invertible dynamics, meaning that from any state

in the dynamical evolution of the system we can recover the previous state exactly:
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A complete history of the system can be generated from any state through which

the system progresses. We are interested these invertible models since the laws of

physics are microscopically reversible, and for the study of thermodynamic behavior.

Entropy cannot decrease in reversible systems (as discussed in the Chap. 1). Yet if

we coarse grain the system, entropy can increase, and we can observe the approach

to thermodynamic equilibrium.

5.1.2 Reversibility and microscopic physics

All of the fundamental equations of physics are microscopically reversible. Never-

theless, there is ongoing controversy over the fundamental reversibility of the laws of

physics[103, 79], which has persisted since the time of Boltzmann. Our daily expe-

rience of irreversibility is at the macroscopic scale which necessarily involves coarse

graining and averaging over microscopic degrees of freedom, so we lack intuition about

microscopic dynamics.

Current proponents of the fundamental irreversibility of physics initially based

their arguments on the formation of \dissipative structures"[102]; The formation of

stable structures necessitates the dissipation of information at the macroscopic scale.

Yet this does not necessarily imply dissipation at the microscopic scale. These same

proponents now base their arguments on phenomena not completely understood, such

as nonequilibrium thermodynamics, and require extending the standard constructs

of physics, such as needing to go \outside the Hilbert space" or to anomalous Fock

spaces[103]. Yet the simple explanations for why we observe macroscopic dissipation

in a microscopically reversible world, dating back to Boltzmann, have not been dis-

proven. A guiding principle of scienti�c research remains Occam's razor: the simplest

theory which explains the phenomena should be preferred. Joel Lebowitz is the main

modern day proponent of Boltzmann's views. He has written several eloquent reviews

of Boltzmann's writings (see e.g., Ref. [78, 80, 79]).
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5.1.3 Reversibility and pattern formation

Pattern formation is an intrinsically dissipative process, however it seems that the

laws of physics are microscopically reversible: there is no dissipation of information

at the microscopic scale. Information cannot be destroyed, but it can be transferred

to other degrees of freedom and is usually ultimately transferred to thermal degrees

of freedom. We are interested in simple systems which exhibit pattern formation

through microscopically reversible dynamics. They model how dissipation arises (i.e.,

how information 
ows between the macroscopic and the microscopic degrees of free-

dom), and provide a clear example of how to reconcile the macroscopic irreversibility

inherent in pattern formation with the microscopic reversibility adhered to by phys-

ical processes. By modeling the entire process of pattern formation, including the

dissipation, we hope to emulate the mechanisms of nature more accurately than do

irreversible models. Implementations of reversible microscopic models provide a lab-

oratory in which to probe the thermodynamics of pattern formation.

5.1.4 Reversible dynamics and computation

We are concerned with developing models of physical phenomena which incorporate

basic constraints of physics. Physical processes, such as computation, must also exist

within these constraints. The same insights which help us construct computer models

of physics can help us build physical models of computers.

Such models may have important practical consequences. For example under-

standing the physics of computation may enable computing at the atomic scale. The

relevant fundamental constraint involves heat production and dissipation and necessi-

tates the use of invertible information processing devices[76, 7]. For scaling arguments

establishing the physical limits of dissipative computation see for example Ref. [47].
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5.1.5 Cellular Automata

Cellular Automata (CA's) are fully discrete dynamical lattice systems: space is dis-

crete, time is discrete, and the state at each discrete lattice site can take on only one

of a �xed number of discrete values. Discrete dynamical lattice spin systems, such as

dynamical Ising models[18, 19], are examples of CA's. The cellular automaton (CA)

evolves through the synchronous application of a local deterministic rule; the state

of each site is updated in parallel in accordance with a rule involving the state of

that lattice site and the states of neighboring sites. The rules for the evolution are

typically nonlinear. Since information can only propagate a �nite distance with each

update, we can study the e�ects of locality. CA's are local, nonlinear dynamical sys-

tems useful for investigating how correlations grow with time. They were originally

introduced by von Neumann[126] to study self-reproducing systems.

In the standard language of physics, a cellular automaton is a discrete classical

lattice �eld theory. CA's o�er an alternative to partial di�erential equations for

modeling spatial temporal dependencies and time evolution. In addition since they

are fully discrete systems, the dynamics can have exact conservation laws, exact

discrete symmetries, and exact invertibility.

CA's have been used to model general properties of dynamical systems[3], statisti-

cal physics[123, 131, 118, 112, 18, 21], self-organization[72, 58], chemical reactions[85],

even tra�c jams[96, 37, 130], and computer models of arti�cial \life"[2]. These are

just a few applications, other relevant CA models will be discussed in the remain-

der of this chapter. Note that all the growth models discussed in Chap 2 can be

implemented as CA's. For reviews and collections of the use of CA's in physics see

Refs. [121, 3, 107, 16, 39, 25].
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5.1.6 Overview of remainder of Part II

My motivation for studying discrete reversible systems is to study the thermodynam-

ics of pattern formation. In Chap. 6, I present the formulation, implementation, and

results of a thermodynamic model of the growth of clusters via the aggregation of

particles. In the reminder of this chapter, I review the relevant reversible CA models

of physics, focusing on lattice gas di�usion and hydrodynamics, and spin systems

coupled to heat baths.

In Chap. 7, I show how to simulate digital logic with the RA model and discuss

issues of computation in real physical systems. Finally in Chap. 8, I discuss issues of

ergodicity and recurrence times for invertible discrete dynamics.

5.2 Reversible cellular automata models of physics

The laws of physics and CA's have fundamental similarities. They are local. They

are deterministic. They are uniform. Physics has additional properties, such as

microscopic reversibility and exact conservation laws. We want to put into our models

the constraints at the microscopic scale consistent with the microscopic properties

of physics that persist at the macroscopic scale. Some models of this sort have

been shown to accurately reproduce physical phenomena in the macroscopic limit,

independent of discreteness and lattice e�ects.

CA modeling o�ers some advantages over modeling with partial di�erential equa-

tions. A primary advantage is the ease of dealing with complex boundary conditions.

The interaction at the boundary is included in the de�nition of the CA rule. As an

example consider di�usive 
ow through porous media. The CA dynamics speci�es the

interaction of the di�using particles and the boundary. In contrast using traditional

partial di�erential equation approaches to di�usion requires iterating a �nite di�er-

ence equation, solving a boundary value problem, and repeating this process until we

converge to a solution. The more complicated the boundary, the more di�cult the
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solution. CA models can handle complex boundaries with no increase in the required

computing power.

5.2.1 Qualitative agreement with Physics

5.2.1.1 Conservation of mass: Di�usion

Consider a simple model of particles moving on a lattice. The particles move with

unit velocity along the lattice directions, so that at integer times they occupy a

lattice site. In the case of a two dimensional square lattice there are four possible

transport directions (which we will call channels), corresponding to the four lattice

directions. If we restrict ourselves to one particle per channel per site, then each site

can accommodate up to four particles. Between one \streaming" phase (the portion of

the dynamics when the particles are moving) and the next, the particles are occupying

lattice sites and we allow an \interaction" phase. We want the interaction to conserve

particle number. This will also conserve energy since all particles move with the same

speed and all energy in this model is kinetic.

One of the simplest ways to implement such an interaction is to de�ne particle

\states" for each channel at each site, with the state \0" representing the absence

of a particle and the state \1" the presence. To implement a reversible interaction,

we can permute the states. For instance we can decide at random to rotate the

channels at each site in a clockwise or counterclockwise fashion. Clockwise meaning

the northbound channel becomes the eastbound; the eastbound the southbound; the

southbound the westbound; and the westbound the northbound. After the permuta-

tion, the particles then stream to adjacent lattice sites and again they are permuted.

Since we permute each site individually, the particles undergo simultaneous random

walks along the lattice, while maintaining the exclusion principle (only one particle

per channel per site)1

1Note the individual random walkers do not feel the presence of the other walkers. However, all
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Figure 5-1: Di�usion simulated by a simple CA rule which conserves energy but not

momentum. Particles move along the lattice directions of a two-dimensional square
lattice. At each lattice site, at each update, the velocities of the particles at that
site are permuted. Each site is permuted independently, yet the particles occupying

the same site undergo the same permutation. Starting from an initial uniform block
of particles, as shown in (a), we observe the di�usive behavior shown in (b), which

corresponds to t = 360 complete updates of the lattice.

Such a dynamics conserves mass (no particles are ever destroyed or created), and

thus energy (since particles all move with the same speed). It does not conserve

momentum. Once we average over a few lattice sites, we can recover the exact sta-

tistical properties of di�usion from these particles undergoing random walks along

the lattice. The quantitative behavior will be discussed in detail in Sec. 5.2.2.2. The

qualitative behavior is shown in Fig. 5-1. We start from an initial uniform block of

particles occupying an otherwise vacant lattice, as shown in Fig. 5-1(a). Qualitative

di�usive behavior is apparent. After t = 360 updates of the full lattice we observe

the con�guration shown in Fig. 5-1(b).

Note the decision of whether to permute clockwise or counterclockwise, can be

made by accessing the state of a binary random variable. We can superimpose a

the particles at one site leave that site correlated, as they have all undergone the same permutation.
We initialize the system with up to one particle in each channel, and this constraint is preserved by
the dynamics.
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second lattice on the particle lattice, �lled with random bits, to serve this function.

This superimposed lattice is like a noninteracting heat bath. We use a deterministic,

invertible dynamics on the heat bath bits, thus we can invert the dynamics, and

recover the data used to make the permutations, and thus invert the random walks.

CA models of di�usion will be discussed in more detail in Sec. 5.2.2.2, and reversible

models of di�usion discussed in Chap. 6.

5.2.1.2 Conservation of mass and momentum: Wave phenomena

Let us add one more conservation law, conservation of momentum. For example con-

sider the dynamics described above. Particles stream between the lattice sites. When

they occupy the lattice sites, they interact. Above we considered a simple permu-

tation which conserves mass. We now want to add in conservation of momentum.

The only way to implement a nontrivial interaction of this sort on a square lattice

is to allow two body collisions2: If two particles stream towards each other head on

and occupy the same site, they each leave the interaction site with their velocities

rotated by 90 degrees. The particles now \collide" in a way which conserves the

overall momentum; There is zero net momentum before the collision and zero net

momentum after the collision. We will still observe similar di�usive behavior3. In

addition, we observe wave propagation, as illustrated in Fig 5-2. If we start with a

pressure gradient such as a high density of particles everywhere in the space, but with

a void in the center, we see an onrush of particles into the empty center and a round

wavefront4 of low pressure leaving this region. Thus adding one more relevant conser-

vation results in a CA which supports a wave equation[121]. Note that this dynamics

is exactly invertible: if we invert the particle velocities, while holding positions �xed,

2The only permutation of a single particle which conserves momentum is the identity permutation.
Likewise for three particles on a square lattice only the identity permutation conserves momentum.

3In this case the di�usion coe�cient depends in the density of particles, since it is the collisions
which randomize the velocities. The mean free path is inversely proportional to the particle density.

4There are some artifacts of the square lattice which keep the wavefront from being isotropic.
This will be discussed in Sec. 5.2.2.1.
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Figure 5-2: Wave propagation in a simple CA rule which conserves mass and momen-

tum. (a) An initial density perturbation. The propagation of the wave front is shown

in (b) and (c).

the collisions all happen in the reverse order. Note also that the collisions are their

own inverse (applying the same collision twice in a row to the same particles results

in the identity permutation).

We can also put in too many conservation laws and have \spurious invariants".

Take the simple model which conserves mass and momentum described above (called

the HPP lattice gas[59]). Since all collisions are head on, momentum is conserved

along each row and along each column of the lattice.

5.2.2 Quantitative agreement with Physics

5.2.2.1 Lattice Gas hydrodynamics

Reversible cellular automata have been used to model various physical phenomena.

The most well known are the lattice gas models of hydrodynamics, such as the HPP

lattice gas described above. These models are important due to the ubiquity of hy-

drodynamic 
ow in nature, and because they provide intuition about the multiscale

modeling approach. The macroscopic properties of the 
ow which are the de�ning

characteristics of hydrodynamics are: conservation of mass, conservation of momen-

tum, conservation of energy, and isotropy. The lattice gas approach answers the

question: what is the simplest possible microscopic model which will reproduce these

properties at the macroscopic scale?
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In the lattice gas models discrete particles stream along the lattice and interact

via collisions which conserve mass and momentum. The discrete conservation laws

and the continuity equations for the system can be written exactly. By considering

the average over an ensemble of similar systems the continuous conservation and con-

tinuity equations for the system can be established. With a few approximations, such

as the assumption of molecular chaos and Taylor expansions, the partial di�erential

equations which govern this system in the continuum limit can be ascertained. We

will describe a lattice gas model in detail in Chap. 6. At that point the concepts of

ensemble averaging and continuum descriptions of discrete dynamics will be explicitly

discussed.

The HPP lattice gas has collisions on a square lattice which conserve mass and

momentum. The macroscopic behavior of the lattice gas approximately obeys the

Navier Stokes equation for 
uid 
ow[59]. As mentioned on a square lattice such a

dynamics has spurious invariants (i.e., the momentum is conserved not only globally,

but also along each row and each column of the lattice). Lattice e�ects also introduce

anisotropy into the macroscopic behavior. If instead we use a hexagonal lattice with

three body collisions, which mix momentum along the di�erent lattice directions, are

allowed, and the system can be shown to exactly obey the Navier Stokes equation for


uid 
ow[49].

The lattice gas approach has been applied widely to a variety of systems such as

modeling phase separation of immiscible 
uids[106, 11], modeling 
ow through porous

media[107, 17], and even to the study of discrete forces[134, 135]. In order to ensure

that the model will converge upon the correct thermodynamic equilibrium behavior,

these lattice gas dynamics must obey semidetailed balance (although detailed balance

is preferred). Since reversible dynamics provide a mechanism for transitioning back-

wards (and satisfy semi-detailed balance), there have been some attempts made to

develop reversible algorithms for these extensions to the simple hydrodynamic models.

To date the reversible implementations of complex 
uids remain elusive[13].
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As mentioned, the same constraints that we impose on the CA models to make

them more like physics can help us understand how to make more e�cient physical

devices. A tangible example of the fruits of this approach is the development of a

special purpose cellular automata machine, the CAM8. The CAM8 is based upon

the lattice gas paradigm for modeling physics. The architecture and information 
ow

in the machine directly maps onto that paradigm[87]. The lattice gas paradigm has

been applied to an actual physical computer.

5.2.2.2 Di�usion

Di�usion implementations play an essential role in a variety of physical models. CA's

can not only be used to model di�usion processes very accurately, they o�er some

advantages. The main advantage is the ease in dealing with complex boundary condi-

tions; The interaction at boundary is included in the de�nition of the CA dynamics.

These models can handle complex boundaries with no increase in the required com-

puting power.

One illuminating result of using CA dynamics is that they are local and thus

cannot reproduce exactly Fick's law for di�usion. Fick's law

@�

@t
= Dr2�; (5.1)

is non-local: gradients are sensed instantly everywhere in space. Chopard and Droz

conducted a rigourous and exact study of a CA model for di�usion[15] and showed

how locality alters Eq. 5.1. Instead of Fick's Law they obtain the telegraphist's

equation, which describes a random walk with inertia:

@�

@t
= Dr2�� D

c2
@2�

@t2
; (5.2)

where c / 1=
p
2 is the speed of sound on the lattice. The telegraphist's equation

emerges from the microscopic treatment of di�usion. It re
ects the fact that infor-
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mation cannot travel faster than the actual particles. In this way it is more realistic

than Fick's law, however the di�erence only becomes important when the di�usion

coe�cient, D, is large (i.e., when D� c).

Chopard and Droz model di�usion as synchronous random walks with exclusion

on a two-dimensional lattice. Their model is essentially identical to the one presented

in Sec. 5.2.1. They were the �rst to show how to derive the analytical solution for

the di�usion algorithm. The dynamics is linear and is exactly described by a lin-

ear discrete Boltzmann equation. To extrapolate to the partial di�erential equations

describing the system in the continuum limit requires averaging over an ensemble

of similar systems. Typically the ensemble averaging requires the assumption of

molecular chaos or the truncation of a hierarchy of correlations[12]. For the linear

Boltzmann equation, the averaging can be done exactly. They solve the resulting

equation analytically for certain boundary conditions, and observe true di�usive be-

havior, independent of the artifacts of discrete space and time. Note that details of

ensemble averaging Boltzmann equations will be given in Sec. 6.3.

Along the lines of \spurious invariants" it is interesting to point out that the

Chopard-Droz di�usion algorithm has one obvious one. Consider a checkerboard

parity on the lattice. The four particle states which stream into a site at one time and

interact have all come from one of the checkerboards (say the \red" one). There is no

interaction between the \red" and the \black" checkerboards, so they are simulating

di�usion on two independent lattices. In Fig. 5-1, we started both checkerboards in

the identical state, so this is not apparent. If we had started with one checkerboard

empty, at any point in the dynamics one of the two checkerboards would be empty.

I have developed a reversible di�usion algorithm, the details of which and the

quantitative aggreement between the implementation and the predictions of the dif-

fusion equation (Fick's law) will be discussed in Chap. 6. Our di�usion algorithm is

also linear so it can be solved in the indentical manner. In addition our method is

much more tractable from a computational standpoint and it preserves microscopic
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reversibility.

5.2.2.3 Dynamical spin systems

Another area where reversible CA's have in
uenced our understanding of physics is

the dynamics of spin systems. The Ising model[64] is perhaps the most studied model

in statistical physics. It models a classical spin system on a lattice with nearest

neighbor interactions. The Hamiltonian for the ferromagnetic Ising model is

H = �
X
hi;ji

Jij�i�j �
X
i

H�i; (5.3)

where the �i denote the spins, hi; ji the sum over nearest neighbors, Jij > 0 the cou-

pling between spins, and H an external magnetic �eld. For a two dimensional system,

at high temperatures the entropic contribution to the free energy (F = E � TS)

dominates and the system is disordered. The system undergoes a second order phase

transition as the temperature is lowered. At the critical temperature the energetic

contribution to the free energy becomes prominent and the spins begin to align.

There are various algorithms for generating equilibrium spin con�gurations, but

the Ising model is inherently a static model. A physically motivated dynamics was

introduced to the Ising model by Cruetz[18, 19], and independently discovered by

other researchers[123, 100]. The dynamics is local, invertible, and conserves bond

energy. In Cruetz's original model he considered \heat demons" which are able to

absorb or supply a token of energy and thus allow spins to 
ip while maintaining

the overall energy of the system constant. Since the total energy is constant, it

is a microcanonical system. In the limit where the heat demons have in�nite heat

capacity (and if they move about the lattice) the system transitions continuously from

microcanonical to canonical. The demons undergo a deterministic evolution hence the

overall dynamics is invertible. Cruetz introduced the idea of storing information in a

heat bath. Heat bath techniques have been used on occasion since then to construct
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reversible computer models of physical phenomena[112].

More standard for CA simulations of the dynamical Ising model is to consider

the microcanonical situation where there are no demons (or equivalently where the

demons cannot accept or supply energy). Consider a two dimensional square lattice.

If a spin is aligned with two of its neighbors and anti-aligned with the other two, the

spin can 
ip without changing the energy. If we apply this dynamics in a checkerboard

fashion, all the spins on the \red" squares can undergo the 
ip decision while those on

the \black" squares stay �xed, leaving the total energy unchanged. Then the \black"

squares update while the \red" are �xed. If we update the same checkerboard twice

in a row, we exactly invert the dynamics. This model can be shown to support simple

harmonic waves, which can be strikingly illustrated when the system is started from

speci�c initial conditions[88].

I will discuss my own implementation of a heat bath system in the following

chapter, Chap. 6, and an extension of microcanonical spin dynamics to the Potts

model in Chap. 9.

5.2.2.4 Other physical models

Aside from the models reviewed above there are many other CA rules of interest for

physical modeling. There is a an invertible one dimensional rule with the same Ising

conservation law discussed above (invented by Bennett, and called the \scarves" rule).

CA's have been used to model electromagnetic �elds[111]. Recent e�cient simulations

of polymer dynamics have been accomplished with CA's[114, 113]. See Ref. [121] for

a collection of other relevant models.



Chapter 6

Reversible Aggregation1

We introduce a lattice gas model of cluster growth via the di�usive aggregation of

particles in a closed system obeying a local, deterministic, microscopically reversible

dynamics. This model roughly corresponds to placing the irreversible Di�usion Lim-

ited Aggregation model (DLA) in contact with a heat bath. Particles release latent

heat when aggregating, while singly connected cluster members can absorb heat and

evaporate. The heat bath is initially empty, hence we observe the 
ow of entropy

from the aggregating gas of particles into the heat bath, which is being populated

by di�using heat tokens. Before the population of the heat bath stabilizes, the clus-

ter morphology (quanti�ed by the fractal dimension) is similar to a standard DLA

cluster. The cluster then gradually anneals, becoming more tenuous, until reach-

ing con�gurational equilibrium when the cluster morphology resembles a quenched

branched random polymer. As the microscopic dynamics is invertible, we can reverse

the evolution, observe the inverse 
ow of heat and entropy, and recover the initial

condition. This simple system provides an explicit example of how macroscopic dissi-

pation and self-organization can result from an underlying microscopically reversible

dynamics.

1This work is reprinted from Phys. Rev. E 60 (1) 264{274 (1999). My coauthor is N. H.
Margolus.
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We present a detailed description of the dynamics for the model, discuss the

macroscopic limit, and give predictions for the equilibrium particle densities obtained

in the mean �eld limit. Empirical results for the growth are then presented, including

the observed equilibrium particle densities, the temperature of the system, the fractal

dimension of the growth clusters, scaling behavior, �nite size e�ects, and the approach

to equilibrium. We pay particular attention to the temporal behavior of the growth

process and show that the relaxation to the maximum entropy state is initially a

rapid non-equilibrium process, then subsequently it is a quasistatic process with a

well de�ned temperature.

6.1 Microscopic reversibility and pattern forma-

tion

Pattern formation is an intrinsically dissipative process[97], however the laws of

physics are microscopically reversible: there is no dissipation at the microscopic scale.

In this paper we describe a simple system which organizes into patterns through mi-

croscopically reversible dynamics, hence it also models how dissipation arises (i.e.,

how information 
ows between the macroscopic and the microscopic degrees of free-

dom). This system provides a clear example of how to reconcile the macroscopic

irreversibility that gives rise to patterns with the microscopic reversibility adhered

to by physical processes. Motivated by the desire to understand this general issue,

we study speci�c details of the model, focusing on transitions in the resulting growth

morphology and the approach to thermodynamic equilibrium.

We have previously observed several examples of reversible cellular automata dy-

namics which produce large scale order through microscopically reversible dynamics[121,

88, 27]. In contrast other research in the �eld of pattern formation has focused on irre-

versible microscopic mechanisms, with examples ranging from crystal growth[125, 71],

to Turing patterns in chemical reactions[99], to patterns formed by growing bacterial
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colonies[38], to kinetic growth problems[33, 34, 129].

Here we model cluster growth by reversible aggregation (RA), generalizing the

irreversible Di�usion Limited Aggregation model (DLA)[129] to include contact with

a heat bath. Particles, which are initially di�using on a two-dimensional lattice, stick

upon �rst contacting a cluster member and release heat which then di�uses about a

superimposed lattice representing the heat bath. The two subsystems exchange only

heat and together form a closed system. The release of heat transfers entropy from

the aggregating system (which is becoming ordered) into the heat bath (which was

initially empty). When the heat bath is nearly empty the model is essentially equiv-

alent to the canonical DLA formulation (analogous to a supercooled gas crystalizing

in a far from equilibrium situation). Hence the RA growth cluster initially resembles

a typical DLA cluster. As the heat bath becomes populated, singly connected cluster

members are able to absorb heat and evaporate. As the e�ect of evaporation becomes

signi�cant the RA and DLA models diverge. The RA dynamics is exactly invertible:

at any point we can invert the dynamics and run backwards, observing the 
ow of

heat from the heat bath back into the gas-crystal system until we recover the exact

initial condition.

The population levels of the heat bath and of the aggregate initially grow linearly

in time, quickly reaching stable values which remain very nearly constant for the

remainder of the evolution. The energy of each subsystem is a function only of the

population levels, independent of the physical con�guration of the particles. Hence,

once the population levels stabilize, the rate of energy exchange (which is entirely in

the form of heat) between the heat bath and the gas-aggregate system becomes so

slow that we can characterize the subsequent dynamics as a quasistatic process, with

a well de�ned temperature at all times.

The aggregate mostly forms while the heat bath is at a lower temperature than in

the quasistatic steady-state. Hence, after the population levels stabilize, the cluster

slowly anneals. The cluster morphology, which initially resembles a DLA cluster,
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gradually becomes more spread out and tortuous, until it ultimately resembles a

branched polymer with quenched randomness. The two timescales that characterize

the growth process are separated by two orders of magnitude. Initially, the population

levels quickly reach a quasistatic steady-state. Subsequently, the aggregate slowly

anneals until reaching the ensemble of con�gurations corresponding to the highest

entropy macrostate (the branched polymer).

Aside from insight into microscopically reversible mechanisms that give rise to

macroscopic patterns, the development of invertible dynamics and algorithms has

technological signi�cance in pushing down the barrier to atomic scale computing.

Each bit of information erased at temperature T releases at least T�S = kBT ln 2

units of heat into the environment[76]. Heat is created in proportion to the volume

of the computer, yet heat leaves the computer only in proportion to the surface area.

Hence, as logic gate density in computers increases, the use of an invertible dynamics

(which does not erase information and hence does not need to produce heat) will be

required to keep the mechanical parts from burning up[8, 47]. From a more pedagog-

ical viewpoint, discrete computer models of reversible microscopic dynamics provide

a laboratory for studying non-equilibrium statistical mechanics and the approach

to equilibrium. These models let us explore physically plausible dynamics for non-

equilibrium systems (i.e., discrete dynamics which are microscopically reversible and

thus automatically obey Liouville's Theorem). A particularly instructive example of

this approach is the formulation of a dynamical Ising model[19, 100, 123]. However,

more widely used in physics are discrete, reversible models of 
uid 
ow such as the

HPP and FHP lattice gases[59, 49]. For a recent discussion of modeling physical

phenomena with reversible computer models see Ref. [88]. For a recent discussion

of macroscopic irreversibility and microscopic reversibility see Ref. [78]. For a recent

discussion of techniques for the explicit construction of reversible models in statistical

mechanics see Ref. [82]; but note that closely related techniques were discussed in the

early 1980's by Fredkin (as discussed in Ref. [86]).
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The initial sections of this manuscript describe our model; the middle contain a

mathematical formulation of the model; the �nal, the empirical results. Speci�cally,

Sec. 6.2 describes the detailed dynamics, including the subtleties of constructing an

invertible dynamical model and implementation issues. In Sec. 6.3 we discuss the

macroscopic limit of an analytic formulation of the model and establish the reaction-

di�usion equations describing the system. In Sec. 6.4 we treat the reaction-di�usion

equations in the mean �eld limit and compare predictions for equilibrium densities

of particles to empirical measurements. Empirical measurements of temperature are

presented in Sec. 6.5.1, with emphasis on the quasistatic nature of the annealing

portion of the growth process. In Sec. 6.5.2 we study the evolution of the fractal

dimension of the clusters and thus quantify the change in growth morphology as

the clusters relax to the maximum entropy state. We conclude with a discussion of

limitations and possible modi�cations of our model.

6.2 Modeling aggregation

6.2.1 Di�usion Limited Aggregation

Di�usion Limited Aggregation (DLA) [129] is a conceptually simple model which

serves as a paradigm for some aspects of kinetic growth phenomena. Several com-

prehensive reviews of DLA have been written. In particular see Ref. [116] for a clear

presentation of the basics, Ref. [77] for details on physical mechanisms, and Ref. [36]

for a review of real-space renormalization group approaches to DLA.

The typical scenario for DLA begins with a vacant two-dimensional lattice initial-

ized with a single stationary seed particle, which is the nucleation site for a growth

cluster. Moving particles are introduced from the edges of the lattice, following ran-

dom walks along the lattice sites. When a moving particle lands on a site adjacent to

a stationary seed particle (an active site) it sticks (i.e., the moving particle aggregates

and becomes a stationary seed particle). The frozen aggregate particles constitute
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the solid (crystal) phase, and the moving particles constitute the gas phase. Aggre-

gation hence consists of a particle undergoing an irreversible transition from gas to

solid. Gas particles are usually introduced in a serial manner: only one gas particle is

di�using at a time. However, to take advantage of parallel computational resources,

parallel models of DLA have been studied in which multiple particles are di�using at

once[127, 95]. In the dilute particle limit these models recover the serial DLA model

exactly.

With the �rst aggregation event the DLA cluster grows from one single to two

adjacent sites. The presence of the second cluster member eliminates certain paths

along which random walkers could approach the �rst, with the e�ect that the proba-

bility of sticking at either end (tip) of the cluster is enhanced, whereas the probability

of sticking along the edge of the cluster is reduced. As particles continue to aggregate

creating new cluster tips and edges, the probability to stick at the tips continually

outweighs the probability to stick along the edges. This leads to branching. A second

in
uence on the growth morphology comes from shadowing: the probability for a

particle to di�use into the center of the growth cluster before encountering an ac-

tive site becomes negligible as the cluster grows in size. Hence the outer tips grow

most rapidly. As a result the growth aggregate rapidly assumes a bushy and branch-

ing, random fractal structure, resembling frost on a window pane, the branching of

neurons, and many other branched structures found in nature.

6.2.2 Reversible Aggregation

Our goal is to introduce a reversible, deterministic model of growth by aggregation,

where reversible means that from any state of our system we can recover the previous

state exactly. We must address the subtleties of making each component step invert-

ible, including steps which realize stochastic processes. As we discuss below, the same

mechanisms that are employed in our model in order to ensure exact conservation of

energy, particle number, and other constraints, also make it easy to incorporate in-
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vertibility. The stochastic component of the model is di�usion, which is modeled as

a sequence of invertible \random walks" based on a deterministic algorithm using an

invertible pseudorandom number generator.

Information about exactly when and where a particle undergoes a phase transi-

tion is stored in the heat particles. The idea of storing information in a heat bath

was introduced by Creutz[19] to explore the connection between the microcanonical

and canonical ensembles for the dynamical Ising model. Heat bath techniques have

been used on occasion since then to construct reversible computer models of physical

phenomena[112].

6.2.2.1 Overview of the model

To construct the reversible aggregation (RA) model we begin with a parallel DLA

system (similar to that described above) and add degrees of freedom at each site,

corresponding to a distributed heat bath. The latent heat released during each ag-

gregation event can then be explicitly represented. In the RA dynamics, whenever a

random walking gas particle lands on a site with exactly one nearest neighbor crystal

particle, it will stick only if there is room locally in the heat bath to accept the latent

heat it will release as the particle transitions from the gas phase to the crystal phase.

The heat is released in quantized units called heat particles, with one heat particle

released for each aggregation event. These heat particles di�use amongst themselves

(i.e., they undergo random walks along the lattice sites, independently of the gas

particles). Explicitly modeling the latent heat released upon aggregating provides a

mechanism for modeling the inverse process: a di�using heat particle which contacts

a susceptible crystal particle (a crystal particle which has only one nearest neighbor

crystal particle) is absorbed while the crystal particle evaporates to become a gas

particle which then di�uses away.

The restriction on the dynamics that aggregation and evaporation events can

occur only when exactly one nearest neighbor is a crystal particle means that only
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one crystal bond is ever formed or broken when a single lattice site is updated. As

each aggregate particle contributes one crystal bond to the aggregate, and there is no

further potential energy contribution, the energy of the aggregate is a function only of

the number of aggregate particles, independent of their con�guration. Moreover this

constraint has two direct implications for the growth morphology. The �rst is that

evaporation can only occur for particles which are singly connected to the growth

cluster, and so the aggregate cannot break o� into disconnected clusters. The second

is that it introduces an excluded volume (i.e., no closed loops can be formed), thus we

might expect the equilibrium cluster con�guration to be similar to that of a polymer.

Note that introduction of an evaporation mechanism in the RA model mitigates the

shadowing e�ect that was important in determining the DLA growth morphology:

crystal particles within the cluster can evaporate, thus introducing gas particles into

the interior of the aggregate.

6.2.2.2 The detailed dynamics

The RA model is constructed with 7-bits of state at each lattice site. One bit, Nc(~x; t),

denotes the presence or absence of a crystal particle at that site (i.e., Nc(~x; t) = 1

indicates presence, Nc(~x; t) = 0 absence). Two bits, N

g (~x; t) where 
 = f1; 2g, denote

the presence or absence of each of two gas particles. Two bits, N

h (~x; t), denote the

presence or absence of each of two heat particles. The �nal 2 bits, �g(~x; t); �h(~x; t),

are independent binary pseudorandom variables. The dynamics of the model consists

of two kinds of steps: di�usion steps alternating with interaction steps.

The same kind of di�usion process is applied to the gas and heat subsystems

simultaneously and independently, while the crystal particles remain unchanged. A

given di�usion step consists of two parts: mixing and transport. During the mixing

portion of the step, a binary random variable is used to determine whether or not the
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two particle bits of that species at the site (~x; t) are interchanged:

N1
i = (1� �i)N

1
i + �iN

2
i

N2
i = (1� �i)N

2
i + �iN

1
i ; (6.1)

where i = g or i = h. During the transport portion of the step, every site replaces

its �rst particle bit (
 = 1) with the �rst particle of its neighbor a distance k away

on one side, and its second particle (
 = 2) with the one from the same distance

neighbor on the opposite side. At even time steps, we use horizontal neighbors (i.e.,

the di�usion moves particles horizontally):

N1
i (~x; t+ 1) = N1

i (~x + kx̂; t)

N2
i (~x; t+ 1) = N2

i (~x� kx̂; t): (6.2)

At odd time steps we use vertical neighbors (i.e., substitute ŷ for x̂ in Eq. (6.2)).

The only di�erences between the gas and heat di�usion are (1) each uses a separate

binary random variable to control its mixing, and (2) the distance of the neighbor

particle to be copied, k, can be chosen separately for each subsystem|this allows us

to independently control the di�usion constants for the heat bath and for the gas (c.f.

[15]).

Di�usion steps alternate with steps in which the two subsystems|gas-crystal and

heat bath|interact allowing aggregation and evaporation. The rule at a single lattice

site during an interaction step is that exactly one particle can aggregate or evaporate

provided that

(a) there is exactly one crystal particle at one of the four nearest neighbor sites

(b) there is room at the site for a crystal particle (for aggregation) or for another

gas particle (for evaporation), and

(c) the heat bits at the site can absorb (for aggregation) or supply (for evaporation)
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one unit of heat.

Since the gas and heat particles will undergo a mixing step before transport, it makes

no di�erence which of the two available gas particle positions a crystal particle is

moved into when it evaporates, or which of the two possible heat particle positions

a unit of heat gets put into. De�ning this precisely will, however, become important

when we discuss invertibility.

The interaction rule described thus far would be su�cient if we updated just one

lattice site at a time. If, however, all sites on the lattice are updated simultaneously,

then the global dynamics no longer obeys the \single bond" constraint|that at any

site where particles aggregate or evaporate exactly one crystal bond is formed or

broken. For example, suppose that the tip of a crystal branch evaporates just as a

gas particle condenses next to it. Each of these events would separately preserve the

constraint, but the two simultaneous events result in the addition of a disconnected

crystal particle which has no other crystal particle immediately adjacent to it. We can

easily avoid this di�culty by holding the values at the adjacent sites �xed during a step

in which we let the subsystems interact at a given lattice site, since the interaction step

has a nearest neighbor range. In other words, we perform a checkerboard updating:

all of the lattice sites in which the x and y lattice coordinates add up to an even

number are updated using our single site interaction rule, while the odd sites are

held �xed, and then vice versa. Since nearest neighbors are held �xed during an

interaction, the constraint is obeyed locally and thus it is also obeyed globally. The

overall dynamical rule is summarized in Table 6.1|the various phases of the rule are

applied consecutively.

Every phase of the rule described in Table 6.1 can be inverted. The transport

portion of the step can be run backwards by simply moving all particles back into

the sites they came from (i.e., inverting the directions of the transport in Eq. 6.2).

The mixing portion of the step is easy to invert, given the same \random" binary

variables that were used to determine which pairs of bits were originally swapped.
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1. interact gas/heat/crystal at

even sites

2. mix gas and mix heat separately

3. transport gas and heat

horizontally

4. interact gas/heat/crystal at odd

sites

5. mix gas and mix heat separately

6. transport gas and heat

vertically

Table 6.1: The various phases of one step of the RA dynamics. Each phase is applied

over the entire lattice simultaneously.

We simply swap exactly those pairs again. The pseudorandom portion of the system

(which supplies the random data) can simply follow some invertible dynamics that

is independent of the rest of the system|the rest of the system looks at the state of

this subsystem but does not a�ect it|so this pseudorandom subsystem can be run

backwards independently of everything else.

Making the interaction steps invertible is also straightforward. When a single

gas particle turns into a crystal particle, we put the heat token that is released into

the corresponding heat bit (i.e., the heat particle with the same value of 
), and

thus we remember which of the two gas particle bits was initially occupied. If the

corresponding heat bit is already occupied, the particle is not allowed to aggregate

(even if the other heat bit is unoccupied). Similarly, a crystal particle is allowed to

evaporate only if it can move into the gas bit with the same value of 
 as the heat

token being absorbed. If there are two gas particles at a site we impose the constraint

that the particle with 
 = 1 attempts to aggregate �rst; likewise if there are two heat

particles at a site, the crystal particle attempts to absorb the 
 = 1 particle �rst.

This does not introduce a bias to the growth since we are mixing the 
 = 1 and


 = 2 variables in an unbiased manner at each time step. With these re�nements,
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our interaction rule applied to a single site is its own inverse: if we apply it twice

(without a di�usion step in between) we get back the state we started with. Since the

interaction rule is applied in a checkerboard fashion, sites are updated independently:

if we apply the rule a second time to the same checkerboard, it will undo the �rst

application at every site.

Thus an inverse step consists of applying the inverses of the rule-phases in the

opposite of the order listed|once one phase is undone, the previous phase can be

undone. Each inverse step undoes one step of the forward time evolution. As we watch

the inverse evolution, we see each heat particle retrace its path, to be in exactly the

right location at the right time to uncrystalize the crystal particle which originally

released it. Particles un-aggregate and un-di�use and un-evaporate in a manner that

exactly retraces their behavior in the forward evolution.

6.2.2.3 Implementation

The RA model was implemented on a special purpose cellular automata machine, the

CAM-8[87], which was designed to e�ciently perform large-scale uniform, spatially

arrayed computations. On this machine, all simulations must be embedded into a

lattice gas framework[59, 49], in which uniform data movement (data-advection) al-

ternates with processing each site independently (site-update). For a 2-dimensional

model such as ours, sheets of bits move coherently during the advection phase: cor-

responding bits at each site all move in the same direction by the same amount. The

boundaries are periodic|bits that shift past the edge of the lattice reappear at the

opposite edge. After moving the bits, we perform the site update phase. During this

phase, the bits that have landed at each lattice site are updated in a single operation

by table lookup: the bits at each lattice site are used as an index into a table that

contains a complete listing of which state should replace each possible original state.

Both the data movement and the lookup table can be freely changed between one

lattice updating step and the next.
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Our model requires 7 bits of state to appear at each site in our L � L lattice.

Using random data generated by a serial computer, the bits which correspond to the

gas particles are initially randomly �lled with a 4% density of particles and the bits

which correspond to the binary random variables with a 50% density of particles. One

crystal particle is placed at the center site of the lattice. The heat bath is initially

empty.

The dynamics on the pseudorandom subsystem is very simple: each of the two

random bit-planes (each consisting of all the �g's or all of the �h's) are simply shifted

by some large amount at each time step. We could choose the amount and direction

of each shift at random for each step of updating, using a reversible random number

generator running on the workstation controlling the simulation. Instead, the simu-

lations discussed here simply shift the bit planes by a large and �xed amount at each

step, making sure that the the x and y components of the two shifts are all mutually

co-prime, as well as being co-prime with the overall dimensions of the lattice. Thus

to run the random subsystem backwards, we just reverse the direction of the shifts.

The checkerboard updating is accommodated by adding an eighth bit to each

lattice site, and �lling these bits with a checkerboard pattern of ones and zeros. In

our rule the various subsystems are allowed to interact only at sites marked with

a one. To change which checkerboard is marked for updating, we simply shift the

checkerboard-marker bit-plane by one position in the +x direction.

The rule described in Table 6.1 turns into two lattice-gas steps on CAM-8. The

�rst three phases listed in Table 6.1 are done during one step, and the next three in

the second step. The data movement is part of each step: note that each of the two

steps uses the same lookup table applied to each lattice site, but slightly di�erent

data movement. To run backwards, we use the inverse lookup table, and the inverse

data movement. Note that in the discussion of experimental results, everything in

Table 6.1 is counted as a single step.

CAM-8's event counting hardware was used to monitor simulation parameters
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while the simulations ran. Including event counting, the 8-processor CAM-8 per-

formed about 108 site update operations per second for this model.

6.3 The macroscopic limit

The dynamics of the RA model, described in detail above, can be succinctly presented

in an analytic framework. We develop this framework �rst in terms of the discrete

space, time, and occupation number variables. We then ensemble average over the

occupation numbers and take the continuum limit of the space and time variables to

establish the reaction-di�usion equations for the system.

As discussed in Sec. 6.2.2.2 there are seven bits of state:

Nc(~x; t); N


g (~x; t); N



h (x; t); �g(x; t); and �h(x; t); where 
 = f1; 2g:

They correspond respectively to one bit of crystal, two bits of gas particles, two bits

of heat particles, and two bits of random data. N

i (~x; t) = 1 indicates the presence

of species i at location ~x and time t, in channel 
, and N

i (~x; t) = 0 indicates the

absence. The absence or presence of a crystal particle is denoted by Nc(~x; t) = f0; 1g

respectively. The total number of particles of species i at time t present on the lattice

is denoted by Ni(t) =
P

~x;
 N


i (~x; t), where the sum is over all of the lattice sites and

the two particle channels.

There are no external sources or sinks for any of the three species represented (the

gas, crystal, and heat species). Energy is only exchanged between the gas-crystal and

the heat bath subsystems. Thus the complete system is isolated. Conservation of the

total number of gas and crystal particles implies that

Ng(t) +Nc(t) = Ng(0) +Nc(0): (6.3)
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Conservation of the total energy of the system implies that

Ng(t)"g +Nc(t)"c +Nh(t)"h = Ng(0)"g +Nc(0)"c +Nh(0)"h; (6.4)

where "i represents the energy (kinetic and potential) per particle of species i (notice

that there is no con�gurational contribution to the energy of the crystal). As discussed

in Sec. 6.2 each aggregation event releases one heat particle (likewise each evaporation

event absorbs one heat particle), thus "h = "g � "c and moreover

Nh(t) = Nc(t)�Nc(0): (6.5)

(Note that Nh(0) = 0 and Nc(0) = 1 in our experiments).

To facilitate the description of the dynamics, we introduce a functional equation

which is +1 at any site where a particle is about to crystalize, �1 at a site where a

particle is about to evaporate, and 0 otherwise. The functional,

F

h
N


g (~x; t); N


h (~x; t); Nc(~x; t); fNc(~x+ êk; t)g

i
;

is evaluated on a neighborhood of lattice sites surrounding some given position ~x at

a given time t (the notation fNc(~x+ êk; t)g refers to the set of values of Nc for the

nearest neighbors of the point ~x).

F
(~x; t) = N

g (~x; t)[1�N


h (~x; t)][1�Nc(~x; t)]
dX

j=1

Nc(~x + êj; t)
Y
k 6=j

[1�Nc(~x+ êk; t)]

� [1�N

g (~x; t)]N



h (~x; t)Nc(~x; t)

dX
j=1

Nc(~x + êj; t)
Y
k 6=j

[1�Nc(~x+ êk; t)] :(6.6)

Here êj and êk are the vector lattice directions of the nearest neighbor cells, and d the

number of distinct lattice directions. For a two dimensional square lattice (i.e., the

lattice used for the present implementation) d = 4 and the vector lattice directions
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are fx̂;�x̂; ŷ;�ŷg.

The �rst term in Eq. (6.6) equals 1 if a gas particle in channel 
 is present at

site ~x and time t, a heat particle in channel 
 is absent at site ~x and time t, there is

no crystal particle already at that site, and only one crystal particle is present at a

nearest neighbor site. It is zero otherwise. The second term equals 1 if there is no gas

particle in channel 
 present at site ~x and time t, there is a heat particle in channel 


present at site ~x and time t, there is a crystal particle present at that site, and only

one crystal particle is present at a nearest neighbor site. It is zero otherwise. The

�rst and second terms are mutually exclusive (a heat particle in channel 
 cannot be

simultaneously present and absent, nor can a gas particle).

The dynamics consists of making the changes indicated by F1 and then F2, then

applying a random permutation to mix 
 = 1 and 
 = 2, and then performing

the streaming step to move the particles. The permutation mixes the N1
i (~x; t) and

N2
i (~x; t) components in an unbiased way, so it is simpler to discuss the dynamics of

a combined variable, Ni(~x; t) = N1
i (~x; t) +N2

i (~x; t). Likewise, if we let

F(~x; t) = [F1(~x; t) + F2(~x; t)][1� F1(~x; t)F2(~x; t)=2];

the interaction portion of the dynamics at a single lattice site can be written

Nc(~x; t+ 1) = Nc(~x; t) + F(~x; t)

Ng(~x; t+ 1) = Ng(~x; t)�F(~x; t) (6.7)

Nh(~x; t+ 1) = Nh(~x; t) + F(~x; t):

The [1 � F1(~x; t)F2(~x; t)=2] factor in the de�nition of F(~x; t) re
ects the fact that

only one transition occurs at a given site, even if two gas or two heat particles are

present.

To construct continuous variables from the discrete ones, we consider the average

short-term behavior of the system over an ensemble of independent realizations which



6.3. THE MACROSCOPIC LIMIT 129

all have the same set of local particle densities. For each discrete variable, we let

ni(~x; t) � hNi(~x; t)i, and denote the average of the functional as hFi. (This technique

of averaging over many independent realizations, i.e., establishing the one particle

density function, is commonly used to derive the lattice Boltzmann equation starting

from discrete particle models of hydrodynamics[12, 62]).

With this notation, the average propagation of the gas and heat particles can be

expressed as

ni(~x; t+ 1) =
1

4
[ni(~x� x̂; t) + ni(~x� ŷ; t) + ni(~x + x̂; t) + ni(~x + ŷ; t)] : (6.8)

To establish the continuum limit, we Taylor expand. The terms involving the �rst

derivatives cancel, leading to the result

ni(~x; t+ 1) = ni(~x; t) +
X
j

j�xj2
4

@2

@x2j
(ni(~x; t)) +O(�x3)

= ni(~x; t) +
j�xj2
4

r2ni(~x; t); (6.9)

where i = g or i = h. Note that to order �t the above equation is the standard

di�usion equation2

@

@t
ni(~x; t) =

j�xj2
4�t

r2ni(~x; t): (6.10)

As discussed in Sec. 6.2.2.2, we can control the length of each di�usion step sepa-

rately for the heat and for the gas particles. The heat particles execute random walks

composed of individual steps of length k, whereas the gas particles execute walks of

step length unity. Thus if the j�xj2 that appears in Eq. (6.9) and in Eq. (6.10) refers

to the gas subsystem, then j�xj2 for the heat subsystem (and hence its di�usion

constant) is a factor of k2 larger.

2Note there is a more detailed derivation of the continuum limit for the di�usion process[15],

discussed in detail in Sec. 5.2.2.2. For our purposes, keeping the equation to order �t and (�x)
2
is

su�cient.
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To proceed further, we will make the approximation that our average variables

are independent. Then we are allowed to replace the average of a product of variables

by the product of the average for each variable: habi = hai hbi, for a; b independent

variables. This is the assumption of molecular chaos, which is also used to derive the

lattice Boltzmann equation. With this approximation the average of the functional

F
 is simply

hF
i =
n
n
g(~x; t) [1� n



h(~x; t)] [1� nc(~x; t)]�

h
1� n
g(~x; t)

i
n


h(~x; t)nc(~x; t)

o
�

X
j

nc(~x+ êj; t)
Y
k 6=j

[1� nc(~x+ êk; t)] : (6.11)

Similarly, we can write down an expression for hFi.

To obtain the continuum limit of these averaged equations, we again use Taylor

series approximations. In the di�usive regime, �t � (�l)2, so we truncate the ex-

pansions at these appropriate orders. Let ~F be the continuum limit of hFi (which

we won't write out explicitly). Then from Eq. (6.7), we obtain

@

@t
nc(~x; t) =

1

�t
~F ; (6.12)

The other reaction-di�usion equations for our system can be obtained by proceed-

ing as we did in Eq. (6.9). For example, under the full dynamics (which consists of

both the interaction and di�usion phases)

ng(~x; t+ 1) + nc(~x; t+ 1) (6.13)

= nc(~x; t) +
1

4
[ng(~x� x̂; t) + ng(~x� ŷ; t) + ng(~x+ x̂; t) + ng(~x+ ŷ; t)] ;

since any particles present at a site at time t+ 1 were either already there at time t,

or moved there. Expanding this exactly as in Eq. (6.9) and using Eq. (6.12), we get

@

@t
ng(~x; t) =

j�xj2
4�t

r2ng(~x; t)�
@

@t
nc(~x; t); (6.14)
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and similarly,

@

@t
nh(~x; t) =

k2j�xj2
4�t

r2nh(~x; t) +
@

@t
nc(~x; t): (6.15)

Note that if k = 1, and we add the last two equations the variable ng(~x; t)+nh(~x; t)

obeys the di�usion equation, una�ected by the interaction between the subsystems

(i.e. if we remove the distinctions between gas and heat, the combined variable simply

di�uses without interacting).

To test the consistency between the microscopic di�usive dynamics implemented

in our model and macroscopic descriptions given by Eq. (6.14) and Eq. (6.15), we

empirically measured the di�usion coe�cient for gas and for heat particles as they

di�use about the space. Each particle should execute a random walk. The variance

of the distance from the origin in the x̂ or ŷ direction, �2i , is proportional to the

di�usion coe�cient in that direction, Di, where i = g or i = h. The exact relation

is Di = �2i =4p, where p is the number of steps taken. For an unbiased random walk,

the variance of the net displacement from the origin is �2i = k2p, thus Di = k2=4. For

the gas particles (k = 1) we �nd Dg = (0:996� 0:009)=4. For the heat particles, with

k = 3, we �nd Dh = (9:00� 0:08)=4. Thus the ratio of the heat to the gas di�usion

length Dh=Dg = 9:0� 0:1, agreeing with the theoretically predicted value of k2.

6.4 The mean �eld limit

The mean �eld limit corresponds to the \well-stirred reaction," meaning that the re-

acting species are uniformly spread throughout the space, and thus each particle feels

the presence of the mean concentration of each species. For our system in equilib-

rium the gas particles and the heat particles are uniformly distributed throughout the

space; it is only the crystal particles which do not obey this assumption. A uniform

distribution means that there are no concentration gradients (rni(~x; t) = 0 for all ~x

and i), and thus r2ni(~x; t) = 0. Also we can drop the explicit ~x notation from the
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argument of the variables: ni(~x; t) = ni(t).

Once the population level of the heat bath has reached the quasistatic steady-

state, the concentrations of all three species will remain essentially constant and the

systems will have a well de�ned temperature from then on, as discussed in Sec. 6.5.1.

We denote the time to reach the steady-state (i.e. the time for the subsystems to

reach the same temperature) as �T. We can now drop the explicit time notation

from the arguments of the variables in steady-state: ni(t > �T) = ni. In this regime

dni=dt = 0 and likewise dn
i =dt = 0, thus < F
 >= 0:

0 = hF
i

= 4 [ng (1� nh) (1� nc)� (1� ng)nhnc] �
h
nc (1� nc)

3
i
: (6.16)

There are three solutions to Eq. (6.16). Each solution corresponds to �xed point

of the dynamics. Only one is in the regime of interest. The �xed point at nc = 0 cor-

responds to the presence of only gas particles. The �xed point at nc = 1 is not allowed

by the aggregation conditions (the aggregate can not have any closed loops). The

remaining �xed point predicts that the equilibrium condition is ng [1� nh] [1� nc] =

[1� ng]nhnc: Noting that in the mean �eld limit ensemble averages equal spatial av-

erages (i.e., ng(t) = Ng(t)=L
2), the constraints described in Eq. (6.3) and Eq. (6.5)

can be written respectively as ng(t) = Ng(0)=L
2 � nc(t) + 1=L2 � Ng(0)=L

2 � nc(t);

and nc(t) = nh(t) + 1=L2 � nh. After incorporating these relations the equilibrium

condition can be expressed as

nc

1� nc
= Ng(0)

1

L2
+O(n3c): (6.17)

Figure 6-1 is a plot of the equilibrium value nc=(1� nc) versus the initial density of

gas particles, Ng(0)=L
2. The solid line is the mean �eld prediction, Eq. (6.17). The

points were obtained empirically from our simulations of three di�erent system sizes,

L = 128; 256; and 512. The agreement between the three system sizes should be
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noted.
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Figure 6-1: The empirically determined equilibrium value of nc=(1�nc) as a function

of the initial gas density, Ng(0)=L
2, for systems of size L = 128; 256; and 512. The

solid line is the mean �eld prediction. Note that the error bars are the same size as
the points.

The mean �eld approach makes predictions about the overall density of the sys-

tem (hence the equilibrium temperature, as described below), but it does not make

predictions about the growth morphology.
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6.5 Empirical analysis

6.5.1 Temperature

The gas-aggregate subsystem and the heat bath subsystem together form a thermo-

dynamically isolated system. These two subsystems are allowed to exchange energy

only between themselves, and this energy is purely in the form of heat (�Q). As

discussed in Sec. 6.2.2.1 and Sec. 6.3 the energy of the aggregate is a function only

of the number of aggregate particles and is independent of their con�guration. The

total internal energy of the gas and heat particle species also is a function only of the

number of particles of each species. Hence if invariant average population densities

are achieved there is no further net exchange of heat between the subsystems, and

they have by de�nition attained the same temperature.

The standard expression for the temperature of a two-level system[63], such as

the heat bath in the RA model, follows directly from combining the de�nition of tem-

perature (1=T = �S=�EjV ) with the microcanonical de�nition of entropy (�S =

kB ln(
f=
i), where 
 denotes the number of microstates consistent with the macro-

scopic variables):
1

T
= �kB

"h
ln

�
nh

1� nh

�
: (6.18)

Directly computing the temperature of the other subsystem is more di�cult, but we

can infer its temperature from that of the heat bath (note the gas particles are free

to di�use over the crystal, hence there is no change in the accessible volume for the

heat particles as the crystal changes size and conformation: the crystal does no work

on the gas, PdV = 0).

The approach to temperature equilibrium and a closeup of the subsequent 
uctu-

ations in temperature are shown in Fig. 6-2. Figure 6-2(a) plots the mean occupancy

of the heat bath versus the time step into the simulation, with the corresponding

temperature (in units of kBT="h) displayed on the right vertical axis. The initial

growth is linear, with a slope of about 1.8. It then levels o� near the quasistatic
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steady-state density of nh = 0:031 (indicated in the �gure as the dashed horizontal

line). The results are averages over several independent realizations for three dif-

ferent system sizes, L = 128; 256; and 512. Note that the three systems reach the

same steady-state densities and hence the same temperature, but that the time to

equilibrate depends on the system size. The data for the three systems was collapsed

onto one curve by rescaling the time axis by the factor Lz, with z = 1:8. The time

to reach the equilibrium temperature is �T � 10Lz. Note that this scaling behavior

has an exponent which is slightly smaller than the di�usion exponent: the di�usion

time is proportional to L2. As discussed in Sec. 6.5.2 the fractal dimension at time

�T � 1:8: the time seems to scale with the fractal dimensionality instead of the

Euclidean dimensionality of the space.

To study the details of the subsequent 
uctuations we focus on the largest system

size, 512� 512. As mentioned, during the initial period the growth of the heat bath

population (and the size of the aggregate) is linear. It levels o� at about 8270 particles

on average, in a time which is less than 106 steps. The population continues to grow

extremely slowly after this point, rising by an average of 1:8 � 0:1 particles every

1� 107 steps, as determined by a linear regression based on about 8000 data points

taken at equally spaced intervals in the regime where t > �T. The probability that the

slope is actually zero is 3 � 10�8, as determined by a t-statistic comparing the ratio

of the obtained slope to the sum of squares di�erences. Figure 6-2(b) shows a scatter

plot of every third of the 8000 data points, overlayed by a straight line indicating

the results of the linear regression on all 8000 points (only every third point is shown

for visualization purposes: showing all the points results in a dense black cloud).

The actual number of particles in the heat bath is indicated on the left axis, the

corresponding temperature is given on the right. Although the temperature of the

heat bath is not constant, it is very nearly so. Once the population levels stabilize

the subsequent dynamics (i.e., the relaxation to the maximum entropy state for the

crystal) is clearly a quasistatic process. The crystal does continue to exchange heat
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with the heat bath when it anneals, but the net heat exchange is essentially zero (the

net heat exchange rate is � 2� 10�7 particles per update of the space).

We measured also the 
uctuations in population levels of the heat bath for the

L = 256 and 128 systems, in the corresponding regimes. Consistent with the L = 512

system, we �nd the population rises by an average of 2:1� 0:1 particles every 1� 107

steps.
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Figure 6-2: (a) The mean density of heat bath particles as a function of time into the

simulation, plotted for L = 128; 256; and 512. The corresponding temperature is
given on the right vertical axis. The initial growth of the heat bath density is linear,
with a slope of about 1.8. Note that the steady-state density of the heat bath, and

hence the temperature, is equal for all three system sizes, yet the time to equilibrate
scales with the system size as �T � 10L1:8. (b) The actual average values of the
total population of the heat bath as a function of time, for every third time measured

beyond �T. The dashed line is the result of a linear least squares regression on all of
the data. Note the slight drift upward with time, of about 2 particles per 107 steps.

6.5.2 Fractal dimension

The aggregate formed primarily while the heat bath contained less energy than its

equilibrium level. Hence, if we continue running the dynamics, the cluster anneals; it

evolves from a DLA-like cluster to a quenched branched random polymer structure.

To quantify the cluster structure we calculate the fractal dimension of the aggregate
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and speci�cally how the fractal dimension changes as a function of the time into the

simulation.

We measure the fractal dimension using a box-counting procedure which requires

that we �rst establish the center of mass of the growth aggregate (which is typically

not the initial seed particle, as the center of mass di�uses about the space as the

aggregate anneals). An imaginary window box of edge length l is de�ned and centered

on the center of mass. The number of lattice sites within that window that contain a

crystal particle, Nc(l), is tallied. The window size is increased and the count retallied.

This procedure is iterated until the number of crystal particles contained no longer

increases with window size. Before saturation, the number of particles contained

should increase with some power of the window size

Nc(l) / ldf : (6.19)

The exponent df is the fractal dimension.

The RA cluster should initially resemble a parallel, irreversible DLA cluster of

equivalent mass. Figure 6-3(a) shows a typical RA cluster for the L = 512 system

at the time t = �T, which is the time for the mass of the RA cluster to stabilize at

essentially its �nal mass (Nc ' 8270). Figure 6-3(b) shows a typical DLA cluster

of equivalent mass. Both systems were initialized with a 4% density of di�using gas

particles. The gas particles still present at this stage of the evolution are shown as the

small dots in the �gure. Note that for the RA system the gas particles are distributed

throughout the space, yet for the DLA system very few gas particles penetrate the

region de�ned by the edges of the cluster. The RA cluster has experienced enough

annealing by the time t = �T to have a fractal dimension di�erent than that of the

DLA cluster, yet the radii of both clusters are comparable and approximately equal

to a quarter of the length of the system (r � L=4). The RA cluster morphology is

still far from its �nal morphology.
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Figure 6-4 shows the box-counting results obtained for both models in the regime

described above and pictured in Fig. 6-3. The top curve is for DLA, the bottom

for RA. Both models were implemented on a L = 512 size system. The vertical

axis is the mass contained in the window, Nc(l), the horizontal is the window size

l. The curve for the DLA system is the average of 10 independent DLA clusters of

mass Nc ' 8270. The curve for the RA system is the average of ten independent

RA clusters sampled at time t = �T. The slope of the curve corresponds to the

fractal dimension and was determined via a linear least squares �t. Consistent with

past numerical studies of DLA[116, 57], we �nd that the fractal dimension for DLA

clusters is dDLAf = 1:71� 0:01 (for di�culties associated with determining the fractal

dimension of DLA see the detailed discussion in Ref. [36]). For the RA clusters the

fractal dimension is dRAf (t = �T) = 1:81 � 0:03. A line with this slope is shown

overlaying each respective curve.3

The RA cluster is less dense than the DLA cluster in the area immediately sur-

rounding the initial aggregation site, however the radii of both clusters are compara-

ble. Several of the aggregate particles in the RA cluster have annealed away from the

center to occupy the region between the center and the edge of the cluster. Hence,

at the time depicted in Fig. 6-3, the RA cluster has a higher fractal dimension than

the DLA cluster. The only constraints on the cluster are the number of particles and

the connectivity. As there are more ways to have connected clusters of a speci�ed

particle number in an area of larger radius, the RA cluster evolves from the dense,

bushy DLA-like structure shown in Fig. 6-3, to a tenuous structure which occupies

more of the available lattice (with the initial increase in fractal dimension being a

transient behavior). We ultimately expect to observe a di�use structure with just a

few meandering vines which can access more of the available con�guration space.

3Note that in the limit where the cluster size approaches in�nity, a cluster grown via a parallel
implementation of DLA will exhibit a crossover from fractal to two-dimensional. In our simulations
of parallel DLA the initial density of gas particles is dilute enough, and the cluster size small enough,
that we do not see any crossover e�ects and we obtain smooth scaling curves as shown in Fig. 4.
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Figure 6-3: Two growth clusters of the same mass, Nc � 8270. (a) A cluster grown

via the RA model, pictured at time t = �T, where �T is the time for the heat bath
and gas-aggregate system to reach the same temperature. (b) A parallel DLA cluster.
Note the gas particles, which are shown as the small dots. For the RA system the

gas particles are distributed throughout the space, yet for the DLA system very few
gas particles penetrate the region de�ned by the edges of the cluster.
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Figure 6-4: The number of aggregate particles contained in a box of length l, as a

function of l. The slope of the line is the fractal dimension. The top curve is for

parallel DLA clusters of mass Nc ' 8270. The bottom curve is for the RA clusters

sampled at t = �T. Examples of these clusters are pictured in Fig. 6-3.
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As the time into the simulation advances, the density of the growth aggregate

decreases, the radius of the aggregate increases, and hence the fractal dimension de-

creases. Figure 6-5 shows a typical RA growth cluster at the time t = 80�T timesteps.

Note that the structure does resemble meandering vines. Also the radius of the cluster

is comparable to half of the lattice size (r � L=2).

Figure 6-6 is a plot of the average fractal dimension for RA clusters as a function of

time into the simulation, for all three system sizes. The measurements reported below

are averages over 5 independent realizations for the L = 512 system, 10 independent

realizations for the L = 256 system, and 10 for the L = 128 system (i.e., averages

over either 5 or 10 independently generated, large clusters). The data points and

standard errors shown in the plots are the average and standard error over the set of

independent realizations.

The fractal dimension is initially very close to the fractal dimension for DLA. We

then observe a slight increase in the fractal dimension as the cluster center begins to

anneal (an example is the RA cluster shown in Fig. 6-3), then a gradual decrease in

the fractal dimension until it converges upon an equilibrium value. The solid line is

drawn to denote the equilibrium value upon which results for the three system sizes

are converging, df = 1:6. Using Flory-type scaling arguments it has previously been

shown that a quenched branched polymer obeys the scaling relationship N � RdQ ,

with dQ = [2(D + 2)]=5[22]. Here R represents the characteristic end-to-end distance

of a polymer, and D the dimension of the space. R can be taken in direct analogy

to l in Eq. (6.19), which de�nes the end-to-end distance of the window of interest.

For D = 2 the exponent dQ = 1:6. We should note that an exact result was obtained

for quenched polymers in D = 2, dQ = 1:64[98], which is slightly larger. Flory-

type scaling has also been studied for annealed branched polymers and the scaling

exponent determined to be dA = (3D + 4)=7[54]. For D = 2, dA = 1:43. One might

expect to observe a crossover from quenched to annealed behavior for the equilibrium

RA growth clusters as we go from the large to the small system sizes, but we did not
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see this for the system sizes investigated.

Note that the time axis in Fig. 6-6 is rescaled by L1:8 in order to match that of

Fig. 6-2. Neither the fractal dimension nor the equilibrium temperature exhibit �nite

size e�ects as far as we can determine within the precision of our measurements.

Figure 6-5: A growth cluster grown via the RA model, pictured at time t = 80�T.
The fractal dimension for this cluster (df = 1:63 � 0:02) has seemingly reached the

asymptotic value.

6.6 Discussion

We have presented a microscopically reversible model which exhibits macroscopic

pattern formation. In this model, entropy initially grows rapidly with time, and then

subsequently grows exceedingly slowly|the slow relaxation can be characterized as

a quasistatic isothermal process. The morphology of the aggregate formed by this

dynamics changes markedly with time, evolving from a pattern having a conformation

and fractal dimension similar to that of an irreversible DLA system, to a pattern

characteristic of a branched quenched random polymer.

The RA model is an extension of the standard DLA model: we model the latent

heat released when a gas particle aggregates in addition to modeling the gas and
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Figure 6-6: The average fractal dimension of the RA growth clusters as a function of

time into the simulation, for all three system sizes.
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crystal particles. Since the dynamics is local and microscopically reversible, we are

realistically modeling the 
ow of heat and the creation of entropy in this system and

thus we model the thermodynamic behavior of growing clusters.

The model presented is simple and amenable to theoretical analysis. Given the

constraints that we set out, an even simpler model could be constructed with just

a single heat bath particle at each site, and a single gas particle at each site. In

this case, di�usion would be performed by block partitioning[88]. This simpler model

would have two fewer bits of persistent state at each lattice site than the RA model,

and would be slightly easier to analyze theoretically. It would, however, be less

computationally e�cient: for a given lattice size, the volume available to the gas and

heat particles would be reduced, but the computational e�ort required by each step

of the simulation would be unchanged.

There are some simple variants of the RA model which might merit study. For

example, we have only investigated situations in which the temperature is set by the

size of the �nal aggregate. It would be interesting to study morphology in situations

where there is independent control of temperature and aggregate size. It would also

be interesting from a thermodynamic perspective to modify the model by introducing

a gas-crystal exclusion: gas particles would collide with the aggregate, but not di�use

over it. Thus there would be an excluded volume for the gas particles, and the crystal

would do work on the gas as it grew.

6.7 Controlling growth morphology4

We are interested in investigating the relation between the di�usion length of the

heat particles and the branching ratio of the growth aggregate. With control over the

branching ratio one should be able to control many aspects of the growth morphology.

Previous studies have focused on the relative e�ects of noise versus lattice anisotropy

4Note this section does not appear in the Phys. Rev. E 60 (1) 264{274 (1999).
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to gain some control over the growth morphology[116, 55].

Until now we have been discussing a closed two dimensional system with periodic

boundary conditions. If we modify the boundary conditions of the heat bath lattice

from being periodic to open, we essentially place the heat bath in contact with a

reservoir at zero temperature and release the heat particles into this reservoir once

they reach the edges of the heat bath. Note by doing this we give up full reversibility

(i.e., the heat sink is irreversible). We can control the relative time it takes for the

heat particles to reach the heat sink through independent control of the heat and gas

di�usion lengths and thus control the e�ective temperature in which the aggregate

grows. The relative tunability of the two di�usion �elds allows us to observe a rich

variety of growth structures with a continuous transition from structures resembling

uniform growth, through invasion percolation, to classical DLA growth. Figure 6-7

shows the typical resulting growth morphologies. Another parameter which we can

(b)(a) (c)

Figure 6-7: We modify the RA model by implementing a heat bath with open, rather
than periodic, boundary conditions. The independent control of the heat and gas

di�usion lengths allows us to tune the e�ective temperature in which the aggregate

grows. (a) For k = 1 the interior of the aggregate is no longer fractal, but two
dimensional. (b) For k = 10 we observe aggregate morphology resembling invasion
percolation in diamond cells[81]. (c) For k = 100 we recover DLA growth.

control is the initial density of gas particles, Ng(0)=L
2. In Fig. 6-8 we illustrate the

range of growth morphologies possible as we vary both the initial density and the

ratio of the heat to gas di�usion lengths. We show increasing initial gas density along
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the horizontal direction and increasing heat di�usion length along the vertical axes.

k

initial density,  N (0)/ Lg
2

Figure 6-8: A range of RA growth morphologies as the initial gas density is increased
(along the horizontal direction) and the heat di�usion length is increased (shown

along the vertical direction).
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Chapter 7

Simulating digital logic with the

Reversible Aggregation model1

We are concerned with understanding the implicit computation occurring in a physical

model of cluster growth, the Reversible Aggregation model. The RA model is a lattice

gas model of reversible cluster growth in a closed two-dimensional system, which

captures basic properties of physics such as determinism, locality, energy conservation,

and exact microscopic reversibility. There are three species of particles in the RA

model: gas, heat, and cluster. A di�using gas particle may aggregate when contacting

the boundary of a connected cluster. Latent heat is released during each aggregation

event and is explicitly modeled by introducing a heat particle into a di�using heat

bath. Conversely a cluster particle at the boundary of the connected cluster may

absorb a heat particle and evaporate, becoming a di�using gas particle.

Allowing ourselves complete control over all the initial conditions of the model,

we show that the RA model can simulate any logic circuit, and hence perform any

computation. The mobile gas and heat particles are used as logic signals. The paths

1This work will appear in the Proceedings of the Santa Fe Institute workshop on Constructive

Cellular Automata (Oxford University Press), in press. My coauthors are G. E. Homsy and N. H.
Margolus.
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these particles take are the wires. Sequences of conditional aggregation events form

the basis of the logic gates. We show how to embed a universal single use gate into the

dynamics of the model, then show how to construct a reusable universal gate, showing

the system is capable of space-e�cient computation. We show how to build arbitrary

logic circuits by interconnecting gates. This requires steering and routing the signals,

delaying them, and letting them cross. Finally we brie
y discuss the relationship of

computation in the RA model to computation in real physical systems.

7.1 Overview

We examine the computational capabilities of a physical model of cluster growth, the

Reversible Aggregation (RA) model[31], which captures basic properties of physics

such as determinism, locality, energy conservation, and exact microscopic reversibil-

ity. The RA model is a lattice gas model of reversible cluster growth in a closed

two-dimensional system. It was introduced as a microscopically reversible physical

model for studying the thermodynamics of cluster growth and pattern formation. By

microscopically reversible we mean that from any state in the system we can recover

the previous state exactly. There are three species of particles in the RA model:

gas, heat, and cluster. A di�using gas particle may aggregate at the boundary of a

connected cluster; if it lands next to a single nearest neighbor cluster particle, it may

aggregate, becoming a cluster particle and enlarging the connected growth cluster.

Latent heat is released during each aggregation event and is explicitly modeled by

introducing a heat particle into a di�using heat bath. Conversely if a heat parti-

cle contacts a singly connected cluster particle it may be absorbed and that cluster

particle will \evaporate" from the connected cluster, becoming a gas particle. When

started with a dilute gas and a single cluster seed particle the model exhibits an initial

regime of rapid nonequilibrium growth followed by a slow quasistatic regime with a

well de�ned temperature. In the �rst regime a connected cluster rapidly grows, in
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the second the connected cluster slowly anneals.

The present study, showing a construction for computational universality in the

RA cellular automaton seems �tting for these proceedings of a workshop on \Con-

structive Cellular Automata". The mobile gas and heat particles are the logic signals

used in the computation. The paths these particles take are the wires. We show

how to steer and route the signals, how to delay them, and how to allow signals to

cross each other. Aggregation events occur only at sites with one nearest neighbor

which is already a cluster particle. By routing a control signal through a potential

aggregation site we can conditionally create new potential aggregation sites. Such

sequences of conditional aggregation events are the basis of our logic gates. We show

how to embed into the dynamics of the RA model a universal single use gate, and

then how to embed a reusable universal gate. We show how to interconnect gates

and thus how to build arbitrary digital logic circuits, proving that the RA model is

capable of space-e�cient computation.

In this manuscript we take a microscopic perspective; that is we give ourselves

control over all of the microscopic degrees of freedom, namely the initial positions

of all the gas, cluster, and heat particles, and detailed control over the microscopic

parameters controlling the pseudorandom motion of the gas and heat particles. With

microscopic control and synchronous time evolution we can compute with this discrete

lattice system. A more general issue is understanding computation in real physical

systems where we have control only over macroscopic degrees of freedom and where

we cannot depend on perfect synchronization. In the �nal section we will address

issues of whether we have abstracted concepts from our microscopic dynamics which

apply to computation in real physical systems.
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7.2 The Reversible Aggregation model

The RA model is a reversible, deterministic model of cluster growth in a closed two

dimensional lattice system. It extends the canonical Di�usion Limited Aggregation

(DLA) model of cluster growth on a lattice[129]. The DLA model is an irreversible,

deterministic model with two particle species: gas and cluster. The gas particles

follow a pseudorandom walk along the lattice sites, resulting in di�usive behavior at

the scale of several lattice sites. If a di�using gas particle contacts a stationary cluster

member, it aggregates, itself becoming a stationary cluster member. DLA is a serial

model: Only one gas particle di�uses at a time. A few parallel versions of DLA, with

multiple particles di�using at once, have been considered[127, 95, 68, 94]. The parallel

model we will extend begins with a uniform dilute con�guration of gas particles.

They aggregate, but no more are ever added to the system. Before a substantial

fraction of the particles aggregate, this parallel version of DLA is equivalent to the

serial version[127, 95]. When a large cluster has formed, the simulated structure

can be compared to structures found in nature, typically by comparing the fractal

dimensions. DLA is not a thermodynamic model: Particles stick irreversibly, so there

is no notion of detailed or semi-detailed balance.

The RA model extends the DLA model by placing a parallel DLA model in contact

with a heat bath, implemented as a �eld of di�using heat particles, or \tokens", on

a superimposed lattice. Both gas and heat particles di�use throughout the system

independently, each on their own lattice, under pseudorandom dynamics. They di�use

freely over the cluster and through empty space. The gas and heat particles interact

through aggregation and evaporation events along the boundary of the connected

cluster.

A potential aggregation site for a gas particle is a site unoccupied by cluster, with

exactly one nearest neighbor occupied by cluster. Upon reaching such a site a gas

particle will aggregate, becoming a cluster particle and releasing a heat particle, which

represents the latent heat of crystallization. This interaction is contingent on there
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being room locally in the heat bath to accept the heat particle. Explicitly modeling

the latent heat released upon aggregation provides a mechanism for modeling the

inverse process of evaporation. Similarly, a potential evaporation site is a site occupied

only by a singly connected cluster particle. A heat particle arriving at such a site is

absorbed by the cluster particle which evaporates, becoming a gas particle. This is

contingent on there being no gas particle already at that site.

The model is implemented with a two phase rule. Di�usion steps, in which the

particles move, alternate with interaction steps in which the gas, heat, and clus-

ter interact, allowing aggregation and evaporation. The interaction rule is as given

above. The details of the di�usion implementation are given in Sec. 7.4.1. In order

to facilitate a parallel updating of the space, we divide the system into checkerboard

sublattices. Since our interaction range is nearest neighbor, we can update all the

even parity sites while holding the odd parity sites �xed and vice-versa.

In our cluster growth simulations, we begin with an empty heat bath, thus only

aggregation can occur. We observe rapid, nonequilibrium growth of the cluster and

concomitant increase in the population of the heat bath. The occupancy of the

heat bath (hence also the mass of the cluster) quickly reaches steady state, meaning

evaporation and aggregation events are equally likely. At this point the system has

attained a single well de�ned temperature, despite the fact it has not yet reached

thermodynamic equilibrium. During the subsequent slow approach to thermodynamic

equilibrium we observe a quasistatic annealing of the cluster. The cluster morphology,

as quanti�ed by the fractal dimension, undergoes a transition from the typical rami�ed

pattern observed for irreversible models of di�usive cluster growth (resembling frost on

a window pane), to the highest entropy macrostate allowed for a connected cluster in

a �nite volume: a branched polymer. Figure 7-1 shows the typical cluster morphology

in each of the two regimes. The small grey dots also shown are the gas particles.

The dynamics of the RA model captures a number of properties of realistic micro-

scopic physical dynamics such as locality, conservation of energy, determinism, and
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microscopic reversibility. Since aggregation and evaporation are both allowed and

heat is explicitly modeled, any transition between two states may occur in either di-

rection. This gives us a realistic thermodynamics: When started from a low entropy

state (e.g., with an empty heat bath), entropy increases and the system approaches

a state of detailed balance, or thermodynamic equilibrium. Since we realistically

model thermodynamic variables|local heat 
ow and the creation of entropy|we

can do more than study simulated structures: We have a laboratory for studying

nonequilibrium thermodynamic behavior of growing clusters of particles. For a de-

tailed discussion of the thermodynamics, the temperature, and the evolution of the

growth morphology see Ref. [31].

Until now we have been discussing a closed two dimensional system with periodic

boundary conditions. If we modify the boundary conditions of the heat bath lattice

from being periodic to open, we essentially place the heat bath in contact with a

reservoir at zero temperature and release the heat particles into this reservoir once

they reach the edges of the heat bath. We can control the relative speed with which

this happens through independent control of the heat and gas di�usion lengths and

thus control the e�ective temperature in which the aggregate grows. The relative

tunability of the two di�usion �elds allows us to observe a rich variety of growth

structures with a continuous transition from structures resembling uniform growth,

through invasion percolation, to classical DLA growth.

7.3 Computation in reversible systems

Computation was long considered to be an inherently dissipative process, requir-

ing the \decision of a two-way alternative and elementary transmittal of one unit

of information" (von Neumann as quoted in Ref. [7]). A quantitative understand-

ing of the mechanism of dissipation came with Landauer's work on erasing a bit of

information[76]. Erasure requires the transfer of information from computational to
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Figure 7-1: (a) An RA cluster of approximately 8270 particles, pictured at the time

t = �T, which is when the heat bath and the gas-aggregate system �rst reach the
same temperature. Note the grey dots represent the di�using gas particles. (b) An
RA cluster with the same number of particles pictured at time t = 80�T. The fractal

dimension for this cluster (df = 1:63� 0:02) has apparently reached the asymptotic
value, and is equivalent to the fractal dimension for a quenched branched polymer.

other degrees of freedom and normally ultimately to thermal degrees of freedom. The

lower bound on the heat produced by erasing one bit is kT ln 2. More than a decade

later Bennett showed that erasure is not necessary: Computation can in principle be

performed with no dissipation (i.e., no loss of information)[7]. Bennett's proof was

based on an abstract Turing machine. He suggested RNA transcription (in the limit

where the rate of transcription approaches zero), as a possible example of a dissi-

pationless digital process. Interest in physical models of computation began around

this same time, focusing on prototype Brownian motion computers such as Bennett's

RNA model[70, 7].

After yet another decade, Fredkin introduced the concept of conservative logic

and introduced a universal conservative logic gate[48]. His goal was to formulate laws

of computation more like the laws of microscopic physics, with particular emphasis

on microscopic reversibility and exact conservation laws. Conservative logic gates are

reversible, and the total number of one's on the wires of a closed system is conserved.
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The output of each gate is a permutation of its inputs. The Fredkin gate is a three

input, three output conservative logic gate which implements a conditional swap. A

schematic is shown in Fig. 7-2. The standard logical primitives (\and",\not", and

\fanout") can easily be built out of a Fredkin gate by supplying some constant inputs.

The existence of a universal, reversible logic gate means it is possible to implement any

digital computation out of these gates without ever erasing information. Moreover

it makes reversible computation and circuit design look very similar to conventional

computation and circuit design (but using di�erent primitive logic elements).

C

A

B

C

AC + BC

BC + AC

Figure 7-2: The Fredkin gate: a conservative logic gate which performs a conditional

swap. If the value of the signal C is true, signals A and B are interchanged; otherwise
A and B go straight through. This is a reversible operation which conserves ones: the
number of ones entering and leaving the gate is the same.

Fredkin was also interested in embedding his conservative logic computations into

realistic physical systems. In Fredkin's Billiard Ball Model (BBM) of computation[48],

�nite diameter moving balls are the signals. Collisions between balls implement logic

gates. The trajectories of the balls are the wires. Strategically placed mirrors re
ect

the balls, implementing bends in the wires. The initial positions of the mirrors and

the balls must be carefully chosen to allow for precise control and synchronization

of signals. The BBM Cellular Automaton (BBMCA) is a universal, reversible CA

modeled after the BBM[86]. It uses pairs of particles as the \balls", with the spacing

between particles corresponding to the �nite diameter of the balls.
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7.4 Computation in the RA model

The scheme proposed for computation in the RA model is similar to that for the

Billiard Ball Model. They both use conserved particles as signals and timing and

synchronization are crucial. The conditional aggregation events in the RA model

are su�ciently complicated that we expect a priori that the model is capable of

computation. We can show this capability if we allow ourselves to explicitly specify

the initial state of all the microscopic degrees of freedom of the system. We must

specify the initial positions of all of the gas, cluster, and heat particles, the positions

of the \mirrors" which control the di�usion (as discussed below), and the parameters

controlling the motion of these mirrors (as discussed in Sec. 7.4.3.6).

We will �rst show how to implement wires and delays, and how to route signals.

Using these elements and the RA model interaction we show the structure of a simple

one-time-use logic gate, and thus prove the system is capable of computing combina-

torial logic functions. However, we are interested in more general circuits: those with

reusable gates, feedback, and memory elements. To this end we introduce a more

complicated dyadic signaling implementation and describe a reusable universal logic

gate. We then discuss issues of interconnection and signal crossing. With these in

hand, we can build a simulator for any digital logic computer. We demonstrate the

construction technique for a simple example circuit.

7.4.1 Signal routing and delay

In the RA model the gas and heat particles undergo pseudorandom walks, imple-

mented using a lattice gas transport algorithm. For each particle species (gas and

heat), there are two transport channels moving in opposite directions along one of

the principle lattice directions. At consecutive updates of the system, we alternate

between lattice directions (i.e., transport is along the +x̂ and �x̂ directions on odd

time steps and along the +ŷ and �ŷ directions on even time steps). This scheme
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can be extended to arbitrary dimensions by introducing additional substeps along

each additional lattice direction. A particle remaining in one channel exclusively will

follow a diagonal path through the lattice as shown in Fig. 7-3(a).

To simulate di�usion we cause the particle to switch between the two channels at

random. We include a pseudorandom number �eld: a \random" binary variable at

each site at each time �(~x; t). If �(~x; t) = 1 the particle switches channels. At the

end of each update we spatially permute the � values in a deterministic and invertible

manner so as to have fresh random bits at each site, while maintaining constant the

probability that � = 1. The permutation must be deterministic, so we can invert the

dynamics when running the model in reverse. This allows us to recover the data used

to make switching decisions so we can unswitch the particles and invert the \random"

walks. If we use the identity permutation, the � values remain �xed and so does the

particle motion (which depends on these values).

If the pseudorandom bit �elds are initially �lled randomly or pseudorandomly with

ones and zeros, the gas and heat particles switch between channels in an unbiased

manner and simulate large scale di�usion (c.f. Ref. [31] for a quantitative discussion

of di�usion coe�cients and a comparison of theoretical and empirical results). If

instead, the �(~x; t) bits and their motion are precisely controlled, the one bits act as

deliberately placed mirrors, switching the gas and heat particles between transport

channels at determined locations. An example with �xed mirrors is shown in Fig. 7-

3(b). Between encounters with mirrors, the particles \stream" along a given channel

uninterrupted. The gas and heat particles are controlled by separate � bits, so the

gas and heat particles are re
ected by separate mirrors.

Timing and synchronization are crucial to our logic scheme. To adjust timing,

we can use delay loops. A delay loop can be constructed from a collection of mir-

rors, placed to implement a sequence of re
ections. Using the transport algorithm

described above, each particle takes a step in the horizontal and then the vertical

directions. Since it takes at least four steps for a particle to return to its original
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location, delays must be a multiple of four. Figure 7-3(c) shows a delay loop of eight

time steps.

(a) (b) (c)

Figure 7-3: (a) Streaming in channel 1 and channel 2. (b) A mirror. (c) A delay loop

of eight time steps.

7.4.2 Universality: a simple gate

Consider a simple gate, as shown in Fig. 7-4. If we count only gas and heat particles

entering and exiting at A, B, C, and D (i.e. not counting cluster particles), this gate

conserves particle number. The shaded squares represent cluster, and positions of the

mirrors are implied by the particle paths. Signal A must precede B in time. This

gate has the following truth table:

A B C D

gas gas heat heat

gas heat heat gas

heat gas gas heat

heat heat gas heat

If we take the signal convention that a gas particle represents one logical truth

value, and a heat particle the other, then clearly this gate is universal. Say, for

instance, gas represents true and heat represents false. Then C = �A, and D = A �B.
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So, if we can build arbitrary networks of gates such as this, then we can build arbitrary

logic circuits.

C

D

X1

X2

A

B

X0

Figure 7-4: A simple, non-reusable, universal logic gate. Cluster is shown by shaded
squares. Signal paths are shown as wiggly arrows. Mirror locations are implied by

the paths. A and B enter as shown, with A preceding B in time. If A is gas it
aggregates at X1, releasing heat. If A is heat it evaporates X0, becoming gas. If
A has aggregated at X1, then if B is gas it aggregates at X2, yielding heat, and if

B is heat it re-evaporates X1, yielding gas. If A has evaporated X0 and B is gas,
B re-aggregates X0 yielding heat, and if B is heat, it does not interact and remains

heat. Recall both gas and heat particles di�use freely over the cluster.

There is a subtlety here, however. This gate is universal, yet it is not reusable. So

in fact we may only build combinatorial logic circuits, and not those with feedback.

If we wish to simulate the operation of a universal Turing machine, we must \unroll"

the operation of the TM. That is, we simulate the time evolution of the machine's

state by computing each state combinatorially from the previous state. This spreads

the time progress of the computation out spatially, requiring more logic levels for each

step we wish the machine to execute. So with a polynomial amount of space, we may

simulate the machine's action for a polynomial number of steps.

We can go further, though. We wish to simulate normal reusable digital logic, so

that we can build arbitrary logic circuits, with feedback, memory, etc. To this end,

we propose a scheme for reusing gates which utilizes matched pairs of aggregation

and evaporation events. It is a dyadic signaling scheme in which pairs of particles,

appropriately delayed, are routed through the same gate so as to clean up after the

computation (i.e., remove the state from the gate) leaving the gate ready for reuse.



7.4. COMPUTATION IN THE RA MODEL 159

7.4.3 A reusable gate, gate interconnection, and circuits

The gate we choose to implement is the \switch gate": a two input, three output

conservative logic gate which is universal [48]. It has a control input, which we will

call B, and a switched input, which we will call A. The B input passes through the

gate unchanged. The A input is routed to one of two outputs, conditional on the

state of B. A schematic is shown in Fig. 7-5.

AB

AB

B

A

B

Figure 7-5: The schematic diagram of a switch gate. If the input B is true, the signal
A exits the top output. If B is false, A exits the middle output.

7.4.3.1 Summary of the gate implementation

Our �rst consideration in implementing such a gate is that the gate must be reusable,

or stateless, as mentioned above. To realize this, we adopt a dyadic signaling con-

vention, in which the presence of a \one" is represented not by arrival of a single

particle, but by a gas particle followed four time steps later by a heat particle. This

allows us to use aggregation events to implement interactions without leaving per-

manent changes in the structure of the gate: If a gas particle enters an input and

leaves a cluster bit behind, then the corresponding heat particle follows, cleaning up

the aggregation event, and leaving the gate in its original state.

We implement a switch gate in the RA model as follows. We �rst set up an initial

condition with a few cluster bits forming a simple aggregate, with only one potential

aggregation site, X1. A second site, X2, will become a potential aggregation site if

and only if X1 becomes occupied by cluster. There are input paths for signals A and

B. The path for signal B is routed through X1, and that for A through X2.
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The action of the gate is as follows: We route the gas particle of B through X1,

and delay the heat particle of B for now. If B is true (that is, the gas and heat

portions of B are indeed present), the gas aggregate at X1, and X2 now becomes a

potential aggregation site. If B is false, nothing happens and X2 is not a potential

aggregation site. Now we arrange, by appropriate choice of delays, for both particles

of A to pass through X2 while X1 is (in the B = 1 case) occupied by cluster. If B

is false, A passes through X2 unchanged (i.e. with its heat portion following its gas

portion). If B is true, the gas portion of A aggregates at X2 yielding heat, and the

heat portion of A evaporates the cluster particle at X2, yielding gas again. Thus, B

being true essentially reverses the order of gas and heat particles exiting X2. When

both the gas and heat portions of A have had a chance to interact at X2, we send the

heat portion of the B signal through X1. If B is a one, the heat signal encounters the

cluster particle at X1 and evaporates it, thus restoring the connected cluster to its

original state and leaving the gate ready for reuse. Note if B is false nothing happens,

which also leaves the gate ready for reuse.

The particles for A exit X2 in the same direction regardless of the state of B, but in

di�erent temporal orders. To obtain the two outputs A �B and AB on di�erent spatial

paths, we use � �elds which change with time to switch the gas and heat particles

onto two di�erent paths according to their timing. We then delay the heat on the

AB output path, to conform with our dyadic signaling convention that heat follows

gas. A schematic diagram of this interdependence of events is shown in Fig. 7-6.

7.4.3.2 Interconnect and parity

There are some subtleties involved in being able to route any output of any gate to

any input of any other gate. In particular, there is a parity de�ned on particles:

Since they are constrained to move alternately vertically and horizontally, we may

draw a checkerboard on our lattice and separate the particles into those starting

at time zero on a red square (\red" particles), and those starting on a black square
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X1

X2
AB

AB
AB

AB

B
BB

B

A
A
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4

4

47

4
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5

17

6
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Figure 7-6: A schematic representation of the switch gate. Arrows indicate signal
paths for heat and gas particles, with delays annotated. Signals A and B enter
simultaneously from the left at time zero. The heat particle for each signal trails the

gas particle by four time steps. If B is true, X1 is occupied from time three through
time 11. In this case, A aggregates and evaporates from site X2 at times six and

ten respectively. The signal paths are indicated by the top two lines in X2. If B is
false, X1 is never occupied. In this case, both A and its cleanup signal pass through
without interacting, and exit at the appropriate times on a di�erent path. The signal

paths in this case are indicated by the bottom two lines in X2. Output delays are
chosen to place the signals at the gate outputs at a time independent of input values

and signal path. Note that all paths have an identical length of 20.
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(\black" particles)2. Since the �rst move is horizontal for all particles, any red particle

will move horizontally o� its red square, and will always move horizontally o� any

red square. Similarly any black particle will always move horizontally o� a black

square. These types of particles cannot be interconverted, and a path followed by one

type cannot be followed by the other. Each gate input follows a speci�c path, thus

requiring a particular color particle. Likewise, each gate output produces a particular

color particle. So if we had a gate output producing a black particle and another

gate's input expecting a red particle, there would be no way of directly connecting

that input to that output. To solve this, we constrain all our inputs and outputs to

be on black squares of the checkerboard.

Even with all inputs and outputs on black squares, we have a synchronization

problem: Our gates require synchronous signal arrivals, so sometimes we need to delay

individual signals to satisfy this requirement. Note delay loops are only available in

multiples of four time steps (see Fig. 7-3). Consider any two input signals to our

circuit. If they are ever to interact in any gate, they must not only start on the same

color square, but they must also be routable to each other in a multiple of four time

steps; otherwise they will never be able reach the inputs of the gate simultaneously.

So we introduce an additional constraint that all inputs to our circuit be routable

to each other in multiples of four time steps. This constraint can be met simply by

placing all inputs at time zero on a sublattice of a checkerboard: a square sublattice

with separation distance two (see Fig. 7-7). All inputs are now separated by paths

whose lengths are multiples of four, and in fact particles can travel from one site of

the sublattice to an adjacent one in exactly four time steps. This also guarantees

that all outputs of our circuit will be routable to each other in multiples of four time

steps (since gate departure times as well as arrival times are synchronous). Note that

by restricting our inputs to be on this sublattice, we have somewhat reduced the

usable volume of space. This simpli�es our discussion, however, and introduces only

2Note, this discussion is independent of the checkerboard updating scheme discussed in Sec. 7.2.
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a constant factor slowdown and size increase.

Figure 7-7: The RA lattice, with the circuit input/output sublattice shown in shaded

squares. A particle is shown traveling from one sublattice site to an adjacent one in
four time steps.

7.4.3.3 Details of the switch gate implementation

The details of the RA model switch gate are shown in Fig. 7-8, which depicts the

initial state of the lattice and the paths taken by the signals. As mentioned above

we set up an initial condition with a few cluster bits forming a simple aggregate.

X1 and X2 are indicated by heavy dashed lines. One can see that X1 is initially a

potential aggregation site, whereas X2 is a potential aggregation site if and only if

X1 is occupied by cluster. The \extra" cluster bits prevent spurious aggregation at

undesired locations.

The paths taken by the particles are shown as the wavy lines, and are determined

by the placement of mirrors (indicated by the various shades of gray as shown in the

legend). At the left are the two input signal paths; at the right are the three outputs.

Note that all inputs and outputs lie on the sublattice described in Sec. 7.4.3.2, thus

guaranteeing routability.

One can verify by \walking through" the paths by hand, that the actual delay

times are as speci�ed in Fig. 7-6. If B is true, X1 is occupied between times three

and 11. In this case, if A is also true, a heat particle exits X2 at time six, and a gas

at time ten. If B is false and A is true, a gas particle exits X2 at time six and a heat

at time ten. The gas and the heat so produced travel to a toggling mirror, arriving
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at times ten and 14 respectively. The toggling mirror begins by de
ecting gas in the

down direction and heat in the up direction at time zero, and toggling gas and heat

directions every four steps thereafter. Hence, if B is true and a heat arrives at time

ten and a gas at time 14, they are both de
ected in the up direction, since the mirror

toggles in between them at time 12. Conversely, if B is false, the gas arriving at

time ten and the heat arriving at time 14 are both de
ected downward, again since

the mirror toggles at time 12. The extra eight steps of heat delay in the upper exit

path are to delay the heat so that it follows the gas, in accordance with our signaling

convention.

The longest path through the gate requires sixteen time steps, so we have imposed

extra delay on some signal paths so that the propagation delay through the gate is

exactly sixteen on all paths. This will be convenient when building more complex

circuits, since we will not have to worry about delaying signals to compensate for

di�erences in gate delay. The paths in the �gure are longer than the gate propagation

time so that both the gas and heat particles can be shown entering and exiting the

gate.

7.4.3.4 The reverse switch gate

In order to build general logic circuits we will need to use switch gates in both the

forward and reverse directions[48]. The switch gate used in reverse is a three input

two output gate which performs the inverse logic operation. The three inputs must

of course be appropriately correlated for this to be possible. Since the dynamics

of the RA model is reversible, we can build the reverse gate by sending the signals

through the outputs of the original gate, but with the opposite signaling convention:

heat preceding gas. Converting between forward and reverse signaling conventions

is simple: We need only impose an extra delay of eight steps on the gas so that it

follows the heat by four time steps. We may convert back to the forward signaling

convention by similarly delaying the heat.
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Figure 7-8: A detailed picture of an RA switch gate. Signal entry and exit times are
given in parentheses after the signal name.

7.4.3.5 Crossing wires

We showed above that, observing parity constraints in gate placement, any output

can be connected to any input. However we have yet to show that signals can cross|a

necessary detail for connecting any output to any input. Consider two signals, one

traveling in a diagonal downward and to the right, the other traveling in a diagonal

upward and to the right. The �rst signal will travel purely in one channel (channel 1

in Fig. 7-3(a)), encountering no mirrors. The second signal must 
ip channels at each

time step and thus encounter a mirror at every site. Thus for these signals to cross

there must both be mirrors and be no mirrors at the two lattice sites they will both

encounter. A way to implement this is to delay one signal by four time steps, allowing

the �rst signal to propagate past the relevant two sites, then toggle the mirrors. The

second signal now encounters the correct mirror con�guration when it occupies the

relevant two sites. A \cross gate" so constructed is shown in Fig. 7-9. The shaded
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sites are the ones where the mirrors are toggled. Note that we have delayed the �rst

signal by four time steps after its encounter with the toggling sites, so that both

signals leave the cross gate synchronously.

A

B

A

B

Figure 7-9: A \cross gate". The signal traveling upward is delayed by four time steps
while the signal traveling downward passes through the two shaded lattice sites. The

mirrors at the shaded sites are then toggled. The upward signal now encounters the
correct mirror con�guration to pass through as indicated. The �rst signal is delayed

by four steps after passing through the shaded sites so that both signals leave this
gate synchronously.

7.4.3.6 A sample circuit

The RA model has been implemented on a special purpose cellular automata machine,

the CAM8[87]. A detailed description of this implementation can be found in Ref. [31].

For constructing the logic gates we have discussed in this paper, we use the CAM8

implementation of the RA model, but with the modi�cation that the initial state

and the dynamics of the pseudorandom bits are precisely speci�ed. In the original

model the permutation of the � bit �elds was simply a displacement (shift) in x̂ and

ŷ by a prespeci�ed amount at each update step. Here, where we wish to exercise

detailed control over the microscopic dynamics, we choose the displacements more

restrictively. We displace the � bit �elds for both gas and heat by half the size of

the space in the horizontal direction only. Further, this displacement occurs only on

every fourth time step. This allows us to implement the toggling mirrors easily. We

place all the circuitry and one set of mirrors in the left half of the space and place
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a second set of mirrors, with the toggling mirrors complemented, in the right half.

Note that since the shifts of the pseudorandom bit planes are speci�ed as part of the

initial condition, we are still just manipulating our initial condition in order to e�ect

computation in the RA model.

To see the detailed action in the CAM8 simulation, consider a single switch gate.

The operation of this gate in three of the four input cases is shown in Fig. 7-10. Note

that A takes the topmost output path if and only if B = 1.

Figure 7-10: Three cases in the operation of a switch gate. Left: A = 0, B = 1.

Center: A = 1, B = 0. Right: A = 1, B = 1. Particles are heavily shaded, cluster
is black, and paths are lightly shaded. The path shading is only for every alternate
time step, to make it simpler to resolve distinct paths by eye. The null case, A = 0,

B = 0 is omitted.

We have shown how to implement a reusable, universal logic gate, how to route

and delay signals, and how to let signals cross so that output from any can serve as

input to any other gate. Thus we can build any Boolean logic circuit we wish. As

a simple example of connecting gates together we construct an identity circuit from

two back to back switch gates, the second running in reverse, followed by a cross

gate. The schematic of the circuit is shown in Fig. 7-11. The CAM8 implementation

is pictured in Fig. 7-12. The black squares are the stationary cluster bits. The lightly

shaded squares mark the trace of where the signals have traveled (the wires). The

signals (heavily shaded squares) exit the gate at the right. Note that in the space

between the two switch gates, the gas particles are delayed by eight so the signals

enter the reverse gate with the opposite signal convention. In order not to clutter the
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�gure we did not reinvert the signals, so they leave with the inverse signal convention

of heat �rst.

A

B

A

B

Figure 7-11: A circuit composed of two switch gates|one forward, one reverse|

followed by a signal crossover.

Figure 7-12: A CAM8 implementation of an identity gate (composed of two switch
gates back to back) and a crossover. The shaded squares are the wires, visualized

every other time step. The signals have exited the circuit at the right.

7.5 Discussion and conclusions

7.5.1 Summary

We have investigated the computational capabilities of a speci�c physical model of

cluster growth, where we have control over all of the microscopic degrees of freedom.

The dynamics can compute any sequence of digital logic operations if the system is

initialized to a precisely speci�ed state. Thus the RA model can simulate any other

digital dynamics.

The moving particles are the logic signals, the paths they take are the wires.

Synchronization of signal arrival times at speci�c sites requires careful layout of mir-
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rors which route and delay signals. By routing particles through speci�ed interaction

sites, we can build logic gates from conditional aggregation and evaporation events.

These constructs are relatively straightforward to implement, allowing us to build a

simple logic gate as shown in Sec. 7.4.2. This gate is changed by the interaction|it

can be used only once. Showing that the RA model can support reusable gates adds

complication. We have many degrees of freedom; choosing an appropriate signaling

convention is crucial. We choose a dyadic signaling convention which allows us to

construct reusable logic gates, as discussed in Sec. 7.4.3.3.

7.5.2 Computation in real physical systems

We have exhibited computations in a discrete lattice system that depend on exactly

synchronous updating and complete control of all microscopic degrees of freedom.

Have we abstracted anything useful for computation in real physical systems?

The RA model captures some essential aspects of real cluster growth. Perhaps

the most relevant to computation is the conditional nature of aggregation (i.e., the

presence of nucleation sites only at the perimeter of a growing cluster along with the

absence of heat in the local environment). This conditional interaction allows us to

build logical primitives that do not depend on exact synchronization.

Computation in the RA model can be accomplished with exact control of the mi-

croscopic degrees of freedom. However, in real physical systems, including electronic

computers, we typically have control only of the macroscopic degrees of freedom.

For the macroscopic dynamics of a system to be universal, the microscopic dynamics

must necessarily be universal: If we cannot compute with complete control over the

system, we cannot hope to compute with less control. Thus we can consider the

construction given in this paper as a \warmup" for addressing the \larger" issue of

macroscopic universality. The analogy to thermodynamics is straightforward. A gas

can do mechanical work moving a piston despite the fact we know nothing of the

individual gas particles; We know only aggregate quantities. The question then is,
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can we get computational work out of a system with control only of the macroscopic

degrees of freedom? With this type of understanding we might be able to compute

with a growing bacterial colony or a growing crystal aggregate, and exert detailed

control over the structures produced[1].

A �rst step in understanding macroscopic computation in the RA model is to test

the robustness of the system's ability to compute when it is subjected to an actual

stochastic dynamics. For instance we can study the situation where the particles

follow truly random walks or where the interactions are probabilistic, yet we maintain

control over the other degrees of freedom. If we replace each single gas and heat

particle with a dilute cloud of particles we may be able to conditionally aggregate

and evaporate with high probability. Directing the macroscopic motion of clouds of

particles may require us to add momentum conservation to the RA model, making

it even more realistic. Even so, restoring the gates and signals to their starting

state would require some dissipative cleanup process. This would entail a constant

throughput of \power" (i.e., the addition and removal of particles).



Chapter 8

Orbit structures of discrete

invertible dynamics

We are interested in the general theory of discrete dynamical systems with exact

symmetries and conservation laws (as will be discussed brie
y in \Directions for

future work", Sec. 9.2.4). In the previous sections we studied speci�c examples of

such physically motivated microscopic models which emulate macroscopic physical

behavior. We used these models to study aspects of dynamic scaling and growth

phenomena, and thermodynamics. A property of a dynamics important for the study

of thermodynamics is ergodicity (i.e., the property that all states are actually visited

during the evolution of the system).

As a �rst step toward a general theoretical treatment of ergodicity, we study the

cycle structures of invertible dynamics on systems with a �nite number of discrete

states. Invertible dynamics are a subclass of all dynamics. They permit only one-

to-one mappings of the set of states onto itself. We examine the random network

limit where any state can map onto any other state, and thus ignore the constraint of

locality. This general case is amenable to theoretical treatment and it includes CA's

as a special case.

We present some general results for the structure of the ensemble of allowed dy-

171
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namics, the expected cycle time for a point chosen uniformly at random from that

ensemble, and the expected number of distinct cycles for a dynamics. We also present

results for the expected ergodicity of the dynamics. The results are summarized in

detail in Sec. 8.2.

8.1 General cycle structures

Consider a discrete state space consisting of M bits. This system has N = 2M

distinct states. As a speci�c example, consider a lattice of M sites, where each

site Mi takes on one of two values (for instance Mi = f0; 1g, or equivalently Mi =

f�1;+1g). Now consider an arbitrary deterministic dynamics on this state space.

We can describe the dynamics fully by specifying the successor of every state. In

an unconstrained dynamics, a state may have more than one predecessor. But for a

invertible dynamics there must exist a unique inverse, so each state must have one

and only one predecessor (i.e., the dynamics is a one-to-one and onto mapping). An

invertible dynamics necessarily divides the state-space into distinct cycles, or orbits.

To see this, start with an arbitrary state Si and enumerate the temporal sequence

of successive states. The state Si must recur, since the state space is �nite and the

dynamics is one-to-one and onto. As soon as it does, we reach a cycle, forming a closed

orbit for that portion of the state space. One extreme possibility is for all states to

be on one orbit, corresponding to a fully ergodic system. At the other extreme, each

state is on an orbit which includes only itself, corresponding to the identity mapping.

For an unconstrained deterministic dynamics the cycle structure is quite di�erent

and involves many familiar concepts from the �eld of nonlinear dynamics: �xed points,

limit cycles, basins of attraction, strange attractors, etc. The generic diagram of

trajectories through state space for one basin of attraction looks like a network of

branches leading into a single closed loop, see for example Fig. 8-1. Unless a state

is located on the closed loop (i.e., the limit cycle), once it is visited it will never be
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Figure 8-1: An example of trajectories through state space for one basin of attraction.
This looks like a network of branches leading into a single limit cycle. Note this �gure
is reprinted from Ref. [133].

revisited. Hence, until a limit cycle is reached, there is a contraction in the number

of accessible states with each step of the evolution.

The cycle structure for an invertible deterministic dynamics consists of a collection

of simple closed loops (i.e., a collection of simple orbits). The orbits are distinct.

There is no merging of trajectories. Once started on a speci�c orbit, the system

remains on that orbit. Using the language of nonlinear dynamics, we note that the

orbits are not only the basins of attraction, they are the limit cycles, and that the

only �xed points are orbits of length one. All the states on an orbit remain accessible

throughout the evolution of the system so there is no contraction in the number of

accessible states.

8.2 Summary of results

We present some exact results for the structure of the ensemble of allowed dynamics,

showing �rst how to count the number of invertible dynamics for a discrete system of
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�nite size. If a particular state from this ensemble of dynamics is chosen at random,

the expectation value of the length of the orbit on which that state is located can be

exactly calculated. Also exactly countable is the number of orbits in the ensemble of

dynamics and the number of orbits of each speci�ed length. We will then consider the

ensemble average over the set of all possible dynamics to derive the expected number

of orbits for a dynamics chosen uniformly at random. This analysis will suggest that

each orbit of a typical dynamics can be characterized by an extensive quantity which

is conserved during the time evolution of the system. Finally we discuss issues of

ergodicity and speci�c ergodicity. We compare all these results to the equivalent

results for unconstrained random mappings. We show that invertible mappings are

approximately ergodic, in a suitably de�ned statistical sense, whereas unconstrained

mappings are not. The average trajectory for an invertible dynamics tends to visit

half of all possible states before cycling. The average trajectory for an unconstrained

dynamics tends to visit the square root of the number of possible states.

Most of the results presented in this chapter have been known for some time to dis-

tinct communities of scientists. Mathematicians have been interested in both uncon-

strained and invertible discrete mappings, primarily due to their interesting probabil-

ity distributions and the variety of quantities which are not self averaging1[43, 60, 61].

The random number generator community has been interested in invertible discrete

mappings due to their long cycle times[73]. The physics community has been inter-

ested in unconstrained mappings. The random network limit of an unconstrained

map is equivalent to a fully connected Boolean network[67], and the probability dis-

tributions of random networks, particularly the distribution of basins of attraction,

relate directly to properties of spin glasses[24, 6]. To date physicists have not focused

on invertible random maps, other than some interest in discrete versus continuous

Hamiltonian maps[32]. Invertible random maps should be of interest as they are mi-

1One quantity which is not self averaging is the average cycle time which increases inde�nitely
with the size of the state space.
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croscopically reversible, they have longer evolution times, and they approach fully

ergodic in the asymptotic limit.

Here we bring together some of the known results in a novel context, and we

present a new result for the expected speci�c ergodicity of a randomly chosen uncon-

strained dynamics. Our interpretation of results is novel. We note that even though

CA's have extensive conserved quantities, this fact alone is not enough to distinguish

them from typical invertible dynamics. We also show that for invertible dynamics the

distribution of values for the speci�c ergodicity is peaked at the limiting value. Thus

an overwhelming fraction of invertible dynamics have speci�c ergodicities close to this

limiting value and approach fully ergodic. We conjecture that most reversible CA's

are close to ergodic since they are members of the set of invertible dynamics, and our

empirical observations are in agreement with this. In contrast the distribution of the

speci�c ergodicity for unconstrained dynamics has an intermediate average value, so

we get no information about the width and shape of the distribution.

8.3 Ensemble of dynamics and average cycle times

Let us assign arbitrary indices to the states S ranging from S1 to SN . We can specify a

mapping by specifying the successor of each state. The collection of distinct mappings

forms the ensemble space of dynamics. Figure 8-2 depicts the ensemble space for the

set of invertible dynamics (as will be discussed below in Sec. 8.3.1).

Consider a state Sj;k chosen uniformly at random from the ensemble of dynamics

(i.e., state Sj subject to dynamics dk). We de�ne �j;k to be the number of distinct

successor states of Sj;k. If the dynamics is invertible, �j;k represents the number

of points on the orbit containing state Sj;k. If the dynamics is unconstrained, �j;k

represents the number of distinct states on the trajectory starting at state Sj;k. We

are interested in the quantity �j which is the average over all dynamics of �j;k. It can

be regarded as a random variable over states, representing the number of successors
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of state Sj averaged over all dynamics.

8.3.1 Invertible dynamics

Note that for an invertible mapping each successor must be unique. If we start

from an arbitrary state selected at random, there are N possible successors. N � 1

possible successors remain for the next state to be mapped, and so on until only one

possible successor remains for the Nth state selected to be mapped. One-to-one and

onto mappings on a �nite state space are permutations. Thus there exist a total of

D = N ! invertible discrete dynamics on a state space of size N .

Figure 8-2 depicts the ensemble space of all possible dynamics. A few of the

dynamics are explicitly enumerated, including how the permutation breaks the state-

space up into distinct orbits (note that we are using the �xed set of arbitrary state

labels). The �rst dynamics, where each element is mapped onto itself, is the identity.

Each element is on an orbit of length one. In contrast for the second dynamics

illustrated (which we call \shift-right") all of the states are contained on one orbit.

This dynamics is fully ergodic. The third dynamics (\shift-right by two") partitions

the space into two distinct orbits, each of length N=2, where one orbit contains all

even labeled states, the other contains all odd labeled states. Note that the orbit

structures as drawn are meant to be abstractions indicating the length the orbits and

topology of the state space. Any dynamics with an identical topology is represented

by the same orbit structure (i.e., the orbit structures de�ne an equivalence class for

the dynamics).

We can calculate average quantities for the ensemble of dynamics. Consider again

a state Sj;k chosen uniformly at random from the ensemble of dynamics (i.e., the

state Sj subject to dynamics dk). The probability that Sj;k is mapped onto itself

under dynamics dk is 1=N . The probability it is mapped onto a state other than

itself is (N � 1)=N . The probability that Sj;k is mapped onto itself at the second

iteration is the probability it is not mapped onto itself on the �rst iteration times the
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Figure 8-2: The ensemble space of invertible dynamics and allowed orbits. The state
labels are listed across the top of the table shown on the left hand side. Note the

state labels are arbitrary but consistent|they are assigned once and persist. The
state onto which state Sj is mapped by dynamics dk is shown in line k and column j

of the table. Each dynamics partitions the space into orbits. The orbit lengths and
topology of the state space are shown on the right hand side of the �gure. Orbits of

one point are drawn as solid circles. Longer orbits are drawn as a line through open

circles. Even though not explicitly drawn, the two endpoints of such a line connected.
Note the state labels along the orbits are not explicitly speci�ed.
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conditional probability it is mapped onto itself on the second iteration: [(N � 1)=N ] �

[1=(N � 1)] = 1=N . Note that the �rst state we encounter on an orbit remains a valid

successor state, subsequent states do not|the dynamics must �rst revisit the original

point on the orbit before revisiting any subsequent points. The probability that Sj;k
is not mapped onto itself at the second iteration is [(N � 1)=N ] � [(N � 2)=(N � 1)] =

(N � 2)=N . Table 8.1 shows the probabilities of both outcomes as a function of

number of iterations. The probability that Sj;k will map onto itself at iteration t, and

thus close the orbit (meaning �j = t), is uniformly distributed with respect to t:

p�j (�) = 1=N: (8.1)

Thus the randomly chosen state Sj;k is just as likely to be on an orbit of any length

between �j = 1 and �j = N . The expected length of the orbit containing an arbitrary

initial state (chosen uniformly at random from the ensemble of dynamics), averaged

over all states in the ensemble is

h�j;ki =
1

ND

DX
k=1

NX
j=1

�j;k: (8.2)

Since the number of states with �j;k equal to some particular value t is given by

(ND) p�j (t), we can regroup the sum as follows:

h�j;ki =
1

ND

NX
t=1

(ND) p�j (t) � t

=
NX
t=1

p�j (t) � t: (8.3)

Using the expression in Eq. 8.1,

h�j;ki =
1

N

NX
t=1

t =
1

N
� N(N + 1)

2
=

N + 1

2
: (8.4)
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Table 8.1: Probability that a cycle will be reached, or will not be reached, as a

function of the number of iterations, for both invertible and unconstrained dynamics.

Invertible Unconstrained

Iteration Probability orbit Probability orbit Probability trajec- Probability trajec-

number, closes, does not close, tory cycles, tory does not cycle,

t p�j (t) q�j (t) pu�j (t) qu�j (t)

1 1

N
N�1

N
1

N
N�1

N

2 N�1

N
� 1

N�1
= 1

N
N�1

N
� N�2

N�1
= N�2

N
N�1

N
� 2

N
N�1

N
� N�2

N

3 N�2

N
� 1

N�2
= 1

N
N�2

N
� N�3

N�2
= N�3

N
N�1

N
� N�2

N
� 3

N
N�1

N
� N�2

N
� N�3

N

. . . . .

. . . . .

. . . . .

n 1

N
N�n
N

(N�1)!

(N�n)!
� n
Nn

(N�1)!

(N�n�1)!
� 1

Nn

. . . . .

. . . . .

. . . . .

N 1

N
N�N
N

= 0 (N � 1)!N�(N�1) N�N
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8.3.2 Unconstrained dynamics

Invertible dynamics are a subclass of all possible dynamics. Arguments analogous to

those made in Sec. 8.3.1 can be made for the ensemble of unconstrained dynamics.

Since states do not need to be mapped uniquely, there are always N choices for the

successor of any state, thus there are Du = NN possible dynamics. If a state recurs,

a limit cycle is reached. The probability over all dynamics that there are t elements

in the set of distinct successor states for a point Sj;k chosen uniformly at random

from the ensemble of unconstrained dynamics proceeds as did the analysis for the

invertible dynamics. It is outlined in Table 8.1, and results in

pu�j (t) =
(N � 1)!

(N � t)!
� t

N t
: (8.5)

The asymptotics of this distribution can be established. Using Stirling's approxima-

tion (N ! � (2�N)
1

2 � NN � e�N) and some algebra it can be shown that in the limit

where N is large,

pu�j (t) �
t

N
exp

 
� t2

2N

!
: (8.6)

Thus the expectation value of the time to reach a closed cycle starting from a point

chosen uniformly at random from the ensemble of unconstrained dynamics can be

calculated. In the limit where N is large

D
�uj;k

E
�

Z N

1
t � pu�j (t) � dt =

1

N

Z N

1
t2 � exp

 
� t2

2N

!
� dt

=

�
�N

2

� 1

2

: (8.7)

Comparing this with the expected time to reach a closed cycle for the invertible case

(Eq. 8.4) we see a randomly chosen state subject to an invertible dynamics will have

a much longer cycle time than a randomly chosen state subject to an unconstrained

dynamics.
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When many-to-one mappings are allowed the orbit will close whenever a state

previously visited is revisited. The cycle structures consist primarily of \wispy tails"

leading to short limit cycles (a network of branches leading into a single closed loop).

The structures are visually striking to the point where an \atlas" of cycle structures

for unconstrained dynamics has been chronicled [132].

8.4 Structure of orbits for invertible dynamics

Recall that there are D = N ! possible invertible dynamics on a discrete state space

of N points. Each dynamics must account for all N points. Thus there are N � N !

total points in the collection of dynamics, as shown in Fig. 8-2. From this we can

deduce O(�), the total number of orbits of length � , and the total number of orbits,

O =
P

� 0 O(� 0). Consider the number of points which are on an orbit of length � .

The following are equivalent: (1) the number of orbits of length � times the number

of points on each orbit, O(�) � � ; (2) the number of total points times the probability

that a point is on an orbit of length � : N � N ! � p�j (�). Recall that in the invertible

case �j is a random variable representing the average over all dynamics of the length

of the orbit containing state Sj, and that the probability p�j (�) was determined in

Eq. (8.1). Equating the two expressions,

O(�) � � = N �N ! � p�j(�) = N �N ! � 1
N
: (8.8)

Thus the total number of orbits of length � ,

O(�) = N !

�
: (8.9)

The total number of orbits, in all dynamics,

O =
NX

� 0=1

O(� 0) = N !
NX

� 0=1

1

� 0
� N ! (lnN + 
E) � N ! lnN: (8.10)
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Note 
E = 0:5772::: is Euler's constant, which by de�nition is the di�erence between

the discrete and continuous \integration" of the natural logarithm in the limit where

N approaches in�nity[115]. We can now compute the probability density function for

the length of an orbit chosen uniformly at random from the entire ensemble:

p� (t) =
O(t)
O � N !

t
� 1

N ! lnN
=

1

t lnN
: (8.11)

So, averaged over all orbits (which we denote as h�i
O
), the expected length of a

randomly chosen orbit is

h�i
O
=

NX
t=1

t � p� (t) �
NX
t=1

t � 1

t lnN
=

N

lnN
: (8.12)

Note the distinction between the expected length of a uniformly chosen orbit h�i,

Eq. (8.12), and the expected length for the orbit of a uniformly chosen point h�j;ki,

Eq. (8.3).

We can calculate the expected number of orbits per dynamics, h!i, for a dynamics

chosen uniformly at random,

h!i = O
D
� N ! lnN +N !
E

N !
= lnN + 
E: (8.13)

We can distinguish the orbits by labeling each one with a numerical index. That

value of the index will be the same for all points on that orbit (it is conserved). The

expected number of distinct indices is h!i � lnN . Note that a natural extensive

quantity of such a system is the sum of all the bits,
P

iMi, a number which ranges

between zero andM = log2N�1, and has log2N distinct values. Hence the expected

number of orbits grows as the number of bits in the system: log2N � lnN .

CA's have extensive conserved quantities, thus we would expect this extra struc-

ture would distinguish CA's from typical invertible dynamics. Yet the size range of

conserved quantities in CA's is of the order of the size range of the number of orbits
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N!/(N-1) = 840

N!/N = 720

N!/(N-2)2 = 504

N!/(N-2)2! = 504

N!/(N-3)3! = 210

N!/(N-4)(N-4)2! = 280

N!/N! = 1

N!/(N-5)5! = 21

N!/(N-5)(N-5)2!3! = 105

N!/(N-5)(N-5)(N-5)3! = 105

N!/(N-4)4! = 70

N!/(N-3)3 = 420

N!/(N-3)2 = 630

N!/(N-4)(2)(2)2! = 210

N!/(N-4)(2)2! = 420

Figure 8-3: Left: The orbit structures for invertible dynamics on a state space of size

N = 7. Note the structures de�ne an equivalence relation on dynamics: two dynamics

with the same number and length of the orbits (and hence the same topology of the

state space) are in the same class. Right: The number of dynamics in the equivalence
class with the speci�ed orbit structure.
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for arbitrary invertible dynamics. Thus, against our initial intuitions, the existence

of extensive conserved quantities is not su�cient to distinguish CA's from typical

invertible dynamics.

8.5 Ergodicity

A fully ergodic dynamics is one which visits every state in the state-space before

cycling; it has only one orbit of length � = N . As illustrated in Fig. 8-3 the number

of fully ergodic dynamics equals the number of orbits of length N : O(N) = (N � 1)!.

The fraction of invertible dynamics which are fully ergodic is thus

(N � 1)!=N ! = 1=N: (8.14)

In the limit where the state-space becomes very large (N ! 1) this fraction ap-

proaches zero. Consider however a less restrictive measure, the speci�c ergodicity,

which is an intensive measure of how e�ciently a given dynamics explores the state

space.

The entropy of the state space is proportional to the natural logarithm of the

number of states. For convenience we de�ne the constant of proportionality to be

unity (instead of Boltzmann's constant, kB). So the total entropy of the state space for

each dynamics is Stot = lnN . This is the amount of information necessary to specify

a particular state Sj from the collection of N states. The entropy associated with

the set of successors of state Sj subject to dynamics dk is Sphase = ln �j;k. Consider

the expectation value of this quantity over all the states in the dynamics2, Ek(ln �j;k),

which gives the average value of Sphase for this dynamics. We de�ne speci�c ergodicity

2Note, the expectation value over the ensemble of dynamics is denoted by h�i, as is the expectation
value over all points in the dynamics (which one is intended can easily be determined from context).
The expectation value over all states in a speci�c dynamics is denoted by Ek(�).
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for a dynamics dk as the ratio of the two entropies:

�k =
Ek (Sphase)

Stot
=

Ek (ln �j;k)

lnN
: (8.15)

Clearly, 0 � �k � 1. In the case where dk is invertible this reduces to the de�nition

of speci�c ergodicity introduced by To�oli[119, 120] as a measure of how e�ciently a

system can \count". His motivation was to �nd an intensive measure of the amount

of computation performed by a dynamics.

We are interested in the expectation value of the speci�c ergodicity over the en-

semble of dynamics, h�i:

h�i = hEk (ln �j;k)i
lnN

; (8.16)

where the brackets indicate an average over the ensemble of all dynamics. Note that

the average over the ensemble of dynamics of the average over all points in each

dynamics is the same as the average over all points, Sj;k, in the ensemble space:

hEk (ln �j;k)i =
1

DN

DX
k=1

NX
j=1

ln �j;k =
1

DN

NX
t=1

(DN) p�j (t) ln t =
NX
t=1

p�j (t) ln t; (8.17)

where we have again written the double sum as in Sec. 8.3.1. The �nal expression is

the ensemble average over all the points, just as in Eqs. 8.3 and 8.7. Thus

h�i = hln �j;ki
lnN

: (8.18)

8.5.1 Invertible dynamics

For an invertible dynamics �j is a random variable representing the average over all

dynamics of the number of distinct states on the orbit containing Sj. In Eq. 8.1 we

found that the probability a point in the ensemble is on an orbit of any length is

uniformly distributed with respect to the orbit length, which ranges from 1 to N .
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Thus:

h�i = hln �j;ki
lnN

=

PN
t=1 p�j (t) ln t

lnN
=

PN
t=1 ln t

N lnN
=

lnN !

N lnN
: (8.19)

Taking the asymptotic limit and using Stirling's approximation for the logarithm,

lim
N!1

h�i = lim
N!1

N lnN �N

N lnN
= 1: (8.20)

Thus in the limit where the size of the state space is large, knowing on which orbit

a point is located gives almost no reduction in the uncertainty for locating a speci�c

of the N total points. Since the average value of the speci�c ergodicity approaches

the limiting value of unity, the distribution of values must become sharply peaked for

large N . That is, an overwhelming fraction of invertible dynamics must have � � 1.

Therefore, in the limiting case where N is large, any dynamics in the ensemble of

possible dynamics will approach fully ergodic with high probability.

8.5.2 Unconstrained dynamics

We can also calculate the expected speci�c ergodicity of an unconstrained dynamics.

Since we are interested in how e�ectively the system can \count" we are interested

in knowing how many distinct states are visited by a trajectory. If we choose a point

at random from the ensemble of possible dynamics, the probability to form a cycle

at iteration t for large N is given by Eq. 8.6. Thus for an unconstrained dynamics

lim
N!1

h�ui = lim
N!1

hln �j;ki
lnN

= lim
N!1

1

lnN

Z N

1

(ln t) pu�j (t)dt

= lim
N!1

1

lnN

Z N

1

t

N
(ln t) exp

�
�t2=2N

�
dt

= lim
N!1

1

lnN

�
1

2
(lnN + ln 2� 
E)

�

=
1

2
: (8.21)
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Thus in the limit where the state space is large, knowing the trajectory on which

a state is located reduces the uncertainty in locating the speci�c state. Since the

average trajectory for an unconstrained dynamics visits on the order of the square

root of the total number of states (Eq. 8.7), if we use an unconstrained trajectory as

a counter we make use of only about half of the available bits.

Recall that in the invertible case the distribution of values for the speci�c ergodic-

ity is sharply peaked at the limiting value. In contrast, for unconstrained dynamics,

the average value of the speci�c ergodicity is equal to an intermediate value (actually

the middle value). This gives us no information about the width and shape of the

distribution function for the �u's.

We summarize the results for unconstrained and reversible dynamics in Table 8.2.

Most of the results summarized have been known to various communities for several

years. The de�nition and calculation of the speci�c ergodicity for an unconstrained

dynamics is an original contribution. Note on the table we have an additional quan-

tity, lj. This is the length of the limit cycle on which point Sj subject to dynamics

k is located. For invertible dynamics the limit cycles are exactly the orbits. For un-

constrained dynamics the average length of the limit cycle is one half of the average

trajectory length.

8.6 Extensions of these general considerations

The random network limit considered here neglects the property of locality, so we

would expect this treatment not to apply speci�cally to CA's. In addition CA's have

extensive conserved quantities. We would expect this extra structure to divide the

state space into more orbits than typical. However we have shown that the expected

number of orbits for a typical dynamics has the same range as the values of the

extensive conserved quantities. Furthermore we can label each orbit and that label

is conserved by the dynamics. Thus the existence of extensive conservation laws in
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Table 8.2: Comparison of invertible and unconstrained random mappings.

Invertible Unconstrained

D = N ! Du = NN

p�j (t) =
1

N
pu�j (t) =

(N�1)!

(N�t)!
t
Nt

plj (t) =
1

N
pulj(t) =

PN
k=t

(N�1)!

(N�k)!Nk

h�j;ki = N+1

2

D
�uj;k

E
=
�
�N
2

�1

2

hlj;ki = h�j;ki = N+1

2

D
luj;k

E
= 1

2

D
�uj;k

E
=
�
�N
8

�1

2

h!i = lnN + 
E h!ui = 1

2
lnN +O(1)

limN!1 h�i = 1 limN!1 h�ui = 1

2
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reversible CA's does not a priori preclude them from being typical. Moreover, since

the distribution of values for the speci�c ergodicity is peaked at the limiting value, an

overwhelming fraction of invertible mappings approach fully ergodic. We conjecture

that most reversible CA's approach fully ergodic.

Our empirical observations for CA's with small neighborhoods of interaction also

suggest that reversible CA's are typical members of the ensemble of all invertible

discrete dynamics, while irreversible CA's are not typical members of the ensemble

of all unconstrained discrete dynamics. Reversible CA's with small neighborhoods on

average have cycle times longer than we could ever observe. In contrast, irreversible

CA's with small neighborhoods of interaction tend to quickly reach a quiescent state,

and increasing the size of the space does little to increase the amount of time before

the system becomes quiescent.
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Chapter 9

Conclusions

9.1 Discussion and conclusions

I have examined issues that lie at the foundations of statistical mechanics: how to

reconcile macroscopic dissipation with microscopic reversibility; fair and unbiased

sampling of state space for a system driven by an external pseudorandom number

generator; the increase of course grained entropy and the approach to equilibrium; and

ergodicity of deterministic dynamics on discrete systems. I have gained some insights

into the mechanisms of pattern formation and computation in physical systems, and

an understanding of how to develop computational models of physics.

These models may help make the statistical physics community aware of the inter-

est of information preserving dynamics. Just as discrete models played a key role in

the development and understanding of statistical mechanics, information preserving

dynamics may play a key role in the development and understanding of the informa-

tional underpinnings of physics.

191



192 CHAPTER 9. CONCLUSIONS

9.2 Directions for future work

The work presented in this thesis consists primarily of complete articles published

in journals. Along the way I have explored several ideas which have yet to be fully

developed, and I have implemented models which have yet to be fully understood

analytically. I present some of these here, and also ideas for future research. Note

that some ideas for the extension of the work described in this thesis can also be

found in Secs. 6.6 and 7.5.

9.2.1 Stochastic growth models

We have begun to study an extension of the BD model[4], which incorporates the se-

lective etching and the subsequent redeposition of particles. The \multiple regrowth"

model was formulated as an attempt to simulate diamond �lm growth via the bal-

listic deposition of carbon in a hydrogen plasma. There are two species of particles:

sticking and etching. The sticking particles are analogous to the carbon particles,

the etching, analogous to the hydrogen. Both species fall ballistically and stick upon

�rst contacting the growth surface (just as in the BD model). The etching particles

however immediately evaporate taking with them singly bonded sticking particles.

Based on the ratio of etching to sticking particles we observe a smooth transition in

growth morphology from dendritic, to columnar, to crystalline. We have conducted

a preliminary study on the scaling properties of the three regimes, but, as of yet,

have no conclusions for the values of the scaling exponents. It would be good to

have the issues with coupling of ballistic growth models to PRNGs straightened out

before proceeding with a detailed numerical study. Sample morphologies for the three

regimes are shown in Fig. 9-1.

The BD model appears to be especially sensitive to correlations in PRNGs. It

couples to PRNGs that have not been shown to be problematic in the past, despite

being used extensively. A reasonable conjecture is that the BD model coupling to the
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Figure 9-1: Examples of the three regimes of growth: (a) Dendritic growth, (b)

columnar growth, (c) smooth growth.

PRNGs depends upon it using every number produced in the sequence it in which

it is produced. It would be interesting to introduce a mechanism for the rejection

of PRNs at pseudorandom points in the sequence. One approach would be to use a

second PRNG as a �lter for rejecting PRNs generated by the �rst, and thus a second

independent source of pseudorandomness would in
uence the dynamics. But note,

combining generators is a process with many caveats[73].

9.2.2 Reversible Aggregation

We discuss possible extensions to the RA model in Sec. 6.6, such as implementing a

model with independent control of temperature and aggregate size, or a model with

an excluded volume for the gas particles (requiring the crystal to do work on the gas

as it grows). Introducing a variant which included surface tension of the aggregate

may connect the RA model more directly to the standard models of growth, such

as DLA and interface growth. An obvious avenue of study is to implement a three-

dimensional version of the RA model. These are but a few of the wide range of

modi�cations to the basic RA model which may prove interesting.

9.2.3 Exact versus statistical reversibility

In collaboration with Norman Margolus, we have begun to investigate the di�erences

between exact microscopic reversibility and statistical reversibility, primarily noting



194 CHAPTER 9. CONCLUSIONS

the e�ects on macroscopic behavior. One way to do this is to take a reversible cellular

automata rule which has a long time evolution and interesting macroscopic behav-

ior and modify the rule from being microscopically reversible to being statistically

reversible. For example with the RA model, we could use a noninvertible di�usion

algorithm. In this case, it would be very surprising to �nd di�erences. More illumi-

nating would be to consider asynchronous updating of the space (i.e., selecting lattice

sites at random to be updated). An interesting system in which to test this approach

is the spin system discussed below (the \SAME" ball) which forms a stable three

dimensional structure.

We would also like to develop simple CA models of standard thermodynamic

systems, such as a gas of particles pushing on a piston. Explicit microscopically

reversible models of these systems could illuminate details of quasistatic processes.

9.2.4 The SAME CA

Studying dynamical spin systems may lead to an understanding of discrete dynamical

equations of motion. We would like be able to derive these equations based on discrete

symmetries, conservation laws, and constraints. An interesting system deserving of

further study is the SAME cellular automaton[88]. This is an Ising-like model. There

is one bit of state at each lattice site and each site has a bond with each of its nearest

neighbors. If the state at the site and the state of all of the neighbors are the \same"

(i.e., they are all 0's or all 1's), then the state at that site is complemented. We

apply the dynamics in a checkerboard fashion, so all the sites on the \red" squares

are updated simultaneously while the \black" squares are held �xed, and vice versa.

By using the checkerboard updating scheme, we never modify nearest neighbors while

sites are updated and we preserve exact reversibility (applying the rule twice in a row

to the same sublattice inverts the dynamics).

When started from a small block of randomness in a lattice otherwise uniformly

�lled with all 0's or 1's, the system evolves initially by sending o� uniform wave
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Figure 9-2: The \SAME" rule implemented on a three dimensional square lattice of
size 256�256�256. When started from a small block of random bits in an otherwise
uniformly �lled lattice the systems evolves to a stable structure resembling a pyra-

mid embedded in 
uctuating concentric shells. A rendering of the three dimensional
structure is shown (a) from the outside, and (b) with the front half of the structure
removed.

fronts originating from the random block. The fronts from the opposite sides of the

wave collide at the edges of the space and destroy the order, allowing interior waves

to 
uctuate. In two dimensions this process continues until all the wave fronts have

\peeled away", and the system is completely disordered. In three-dimensions the long

time behavior is strikingly di�erent. Initially the waves collide and annihilate, but

there is a \surface tension" which keeps waves within a certain radius of the origin

from 
uctuating out to the edge of the lattice. These waves experience microscopic


uctuations, but stay macroscopically ordered. The resulting structure resembles

a pyramid embedded in 
uctuating concentric shells, as shown in Fig. 9-2. There

are small microscopic 
uctuations, but the stable macroscopic structure will persist

inde�nitely.

Note that a few distinct CA rules produce this identical stable structure. These

rules must have similar constraints, conservation laws, and symmetries. A conserva-

tion of the dynamics discussed above is, for example, if we label half of the bonds at
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each site ferromagnetic and half of the bonds antiferromagnetic, then the bond en-

ergy is conserved by the \
ip if same" dynamics. We have observed that constraints

and conservation laws can maintain the system in an ordered, metastable state, for

a prolonged time. Although there is no current theory for the dynamics of CA's

with conservation laws, some work was done more than a decade ago on identifying

invariants in CA's[100, 89]. Ref. [88] also contains discussion of invariants in CA's.

Other researchers have developed a \computational mechanics" approach[20, 58], at-

tempting to use the concept of regular languages (borrowed from automata theory in

computer science) to classify patterns produced by CA's.

Aside from being useful for studying conservation laws, this may be an ideal

system to use for testing the di�erence between exact and statistical reversibility. It

has also been suggested that this system could be an example of a statistical system

with non-extensive entropy.

Very small, but lively.

|James Clerk Maxwell, describing his demon.
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