
Low Power Data-Dependent Transform Video and Still Image Coding

by

Thucydides Xanthopoulos

Bachelor of Science in Electrical Engineering
Massachusetts Institute of Technology, June 1992

Master of Science in Electrical Engineering and Computer Science
Massachusetts Institute of Technology, February 1995

Submitted to the Department of Electrical Engineering and Computer Science in Partial
Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Electrical Engineering and Computer Science

at the

Massachusetts Institute of Technology

February 1999

c 1999 Massachusetts Institute of Technology. All rights reserved.

Signature of Author
Department of Electrical Engineering and Computer Science

February 1, 1999

Certified by
Anantha Chandrakasan, Ph.D.

Associate Professor of Electrical Engineering
Thesis Supervisor

Accepted by
Arthur Clarke Smith, Ph.D.

Professor of Electrical Engineering
Graduate Officer

2

Low Power Data-Dependent Transform Video and Still Image Coding

by

Thucydides Xanthopoulos

Submitted to the Department of Electrical Engineering and Computer Science
on February 1, 1999 in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Electrical Engineering and Computer Science

Abstract

This work introduces the idea of data dependent video coding for low power. Algorithms
for the Discrete Cosine Transform (DCT) and its inverse are introduced which exploit sta-
tistical properties of the input data in both the space and spatial frequency domains in
order to minimize the total number of arithmetic operations. Two VLSI chips have been
built as a proof-of-concept of data dependent processing implementing the DCT and its
inverse (IDCT). The IDCT core processor exploits the presence of a large number of zero-
valued spectral coefficients in the input stream when stimulated with MPEG-compressed
video sequences. A data-driven IDCT computation algorithm along with clock gating tech-
niques are used to reduce the number of arithmetic operations for video inputs. The sec-
ond chip is a DCT core processor that exhibits two innovative techniques for arithmetic
operation reduction in the DCT computation context along with standard voltage scal-
ing techniques such as pipelining and parallelism. The first method reduces the bitwidth
of arithmetic operations in the presence of data spatial correlation. The second method
trades off power dissipation and image compression quality (arithmetic precision.) Both
chips are fully functional and exhibit the lowest switched capacitance per sample among
past DCT/IDCT chips reported in the literature. Their power dissipation profile shows
a strong dependence with certain statistical properties of the data that they operate on,
according to the design goal.

Thesis Supervisor: Anantha Chandrakasan
Title: Associate Professor of Electrical Engineering

3

4

Acknowledgments

I am very grateful to a number of people for help and contributions during my years as a
student.

I would like to thank my thesis advisor and mentor Anantha Chandrakasan for all
his help and support. Anantha has been a constant source of stimulation and new re-
search ideas and his impact on this work is immeasurable. I thank him for treating me as
a peer and not as a subordinate, for providing me with the best possible (and expensive!)
equipment for my work, for sending me to numerous conferences (as far as Hawaii and
Switzerland) and for having a lot of faith in my abilities. Above all I wish to thank him for
the unprecedented amount of time he has devoted to me and my work.

I wish to thank my thesis readers Tayo Akinwande and Ichiro Masaki for their time
and for the very useful comments and suggestions. This work has been greatly improved
because of their time and effort.

I am very grateful to my fellow graduate students in 38-107 for a number of reasons.
Raj Amirtharajah has been a constant source of wit and interesting ideas (in addition to
complaints!) and has been very helpful in clarifying various ideas regarding this work. He
has probably had dinner with me more often in the little round table in 38-107 than he did
with his girlfriend! Tom Simon, the brilliant designer, has been behind all the interesting
circuits of the DCT chip such as the pads and the flip flops. His cerebral sarcasm and
our long discussions about France, Mahler and crazy dictators have been excellent and
fulfilling chip layout breaks! Jim Goodman, in addition to being an incessant source of
coarse Canadian humor, has been instrumental in setting up the technology files and the
libraries for the ADI process. His help during the DCT chip tapeout has been invaluable.
Scott Meninger, fellow Patriot fan, taught me how to throw the football and introduced me
to Mississippi Mud in addition to being an excellent officemate. He is probably the only
one in 38-107 that can match my beer drinking abilities! Wendi Rabiner has been a great
source of comments and suggestions both for my thesis and my area exam. Josh Bretz
introduced me to the humor of the “Onion”, supplied me with great CDs and taught me
never to bet against him especially when money is involved. SeongHwan Cho has been a
great help with my area exam and has graciously added my name to all the VLD papers.
Vadim Gutnik has been a source of interesting discussions and has been very helpful with
Unix problems. Gangs Konduri has graciously agreed to help me with a very useful Perl
script. I also thank him for the late night study breaks. I wish to thank Rex Min for doing a
great job on the DCT/ IDCT demonstration board. I thank Dan McMahill, Don Hitko and

5

Nate Shnidman for stimulating discussions over the past years. Dan has also helped me a
great deal with the Tango PCB software. I did not have much interaction with the newest
members of our group Amit Sinha and Alice Wang due to my grueling schedule during
the past nine months. Yet, I am well aware of their outstanding abilities and I wish them
best of luck in their studies. I wish to thank Elizabeth Chung and Margaret Flaherty who
have been extremely helpful with administrative matters. Tom Lohman, Myron Freeman
and Tom Wingard have been very helpful with the computing infrastructure.

I thank National Semiconductor Corporation for providing me with a fellowship dur-
ing my last two years. I thank Michael Sampogna, Chuck Traylor and Hemant Bheda for
all their help during my summer at National.

I thank SHARP Corporation for their partial financial support for this research. I thank
Yoshifumi Yaoi of SHARP for his help with the DAC paper and with the MPEG compres-
sion standard in general.

I wish to thank Rich Lethin for entrusting me with interesting projects and providing
me with great opportunities.

I thank Larry Dennison for his valuable advice in time of need and for his excellent
SKILL tools that I used extensively throughout the development of the DCT chip.

I would like to thank my Master thesis advisor Bill Dally for his help and support
during my years at the MIT AI Laboratory. I also thank him for pointing me to the FMIDCT
paper.

I wish to thank my uncle John Xanthopoulos and aunt Virginia Xanthopoulos for all
their help and support during my years in the States. Their house has always been open
for me and their love has been unconditional.

I thank my grandmothers Georgia Xanthopoulos and Themelina Kapellas for their love
and support from the day I was born.

I thank my parents Nikos and Maria and my sister Georgia for their love and support.
I know how much you have missed me during the past 10 years because I have missed
you exactly the same if not more. You have made me what I am and for this I am eter-
nally grateful. My trips to Greece and our telephone conversations have been an incessant
source of strength and courage for me to go on. I know that you want me to come back
soon. I promise to you that I will come back sooner than you think.

Finally, I wish to thank my companion Sylvi Dogramatzian for her unconditional love
and support from the day we met. Your love has made me a better person. I thank you for
your patience and all your sacrifices. I promise that I will make up for all the lost ground.
This work is as much yours as it is mine.

I wish to dedicate this work to the memory of both my grandfathers, Thucydides Xan-
thopoulos and Manolis Kapellas.

6

Contents

1 Introduction 17

1.1 A Case for Low Power Hardware Compression/Decompression Macrocells 18

1.2 Low Power Design Methodoloy . 19

1.2.1 Algorithm Optimizations . 19

1.2.2 Architectural Optimizations . 21

1.2.3 Circuit Optimizations . 21

1.3 Thesis Contributions and Overview . 21

2 Background 23

2.1 The Discrete Cosine Transform and its Inverse 23

2.1.1 Fast DCT/IDCT Algorithms . 24

2.2 Distributed Arithmetic . 25

2.2.1 On the Successive Approximation Property of Distributed Arithmetic 27

2.3 Quantization . 29

2.3.1 The Lloyd-Max Optimum Quantizer 29

2.4 Image Quality Measure . 31

2.5 The MPEG Video Compression Standard . 31

3 IDCT Core Processor 33

3.1 Background and Algorithmic Design . 33

3.2 Chip Architecture . 36

3.2.1 Clock Gating . 40

3.3 Circuit Design . 42

3.3.1 Arithmetic Circuits . 42

3.3.2 Flip-Flops . 45

7

8 CONTENTS

3.3.3 I/O Pads . 46

3.4 Power Estimation Methodology . 46

3.4.1 Glitch Power Investigation . 49

3.4.2 Pipeline Power Savings Investigation 49

3.5 Chip I/O Specification and Usage . 52

3.6 Chip Physical Design and Packaging . 53

3.7 Testing . 55

3.7.1 Test Setup . 55

3.7.2 Test Results . 57

3.7.3 Comparison with Past DCT/ IDCT VLSI Implementations 63

3.8 Chapter Summary and Conclusion . 66

4 Adaptive Transform Coding 67

4.1 Early Adaptive Schemes [TW71] [Gim75] . 67

4.2 Chen and Smith Adaptive Coder [CS77] . 68

4.3 Scene Adaptive Coder [CP84] . 70

4.4 Subjectively Adapted Image Coding for Progressive Transmission [Loh84] . 71

4.5 Adaptive DCT in the Perceptual Domain [NLS89] 72

4.6 Adaptive DCT Based on Coefficient Power Distribution Classification [KMO87] 73

4.7 Spectral Entropy-Activity Classification [MF92] 74

4.8 Other Adaptive Methods . 75

4.9 Chapter Summary and Conclusion . 76

5 DCT Core Processor 79

5.1 DCT Algorithm and Chip Architecture . 79

5.1.1 MSB Rejection (MSBR) . 81

5.1.2 Row-Column Classification (RCC) . 83

5.2 Algorithm and Architectural Evaluation . 87

5.2.1 Row/ Column Classification Investigation 90

5.3 Circuit Design . 96

5.3.1 Flip-Flops . 96

5.3.2 Read-Only Memory . 103

5.3.3 Adder . 105

CONTENTS 9

5.3.4 MSB Rejection . 106

5.3.5 I/O Pads . 107

5.4 Power Estimation and Breakdown . 110

5.5 Chip I/O Specification and Usage . 114

5.5.1 JTAG Programming . 114

5.5.2 Chip Regular Operation . 117

5.5.3 Serial Output . 118

5.6 Chip Physical Design and Packaging . 118

5.7 Testing . 122

5.7.1 Test Setup . 122

5.7.2 Test Results . 124

5.8 DCT/ IDCT Demonstration Board . 134

5.9 Chapter Summary and Conclusion . 134

6 Conclusion 135

6.1 Algorithmic Contributions . 135

6.2 Architectural/ Circuit Contributions . 136

6.3 System-level Contributions . 137

Bibliography 139

A Design Tools and Methods 145

A.1 Design Flow . 145

A.2 Functional Chip Model . 147

A.3 Library Development . 147

A.3.1 Magic to Cadence Translation . 148

A.3.2 CMOS Cell Library Generator (layoutGen) 152

A.4 Schematic Entry and Gate-Level Simulation 153

A.5 Schematic Circuit Simulation . 155

A.5.1 Static Net Fanout Checking . 156

A.6 Physical Design . 158

A.6.1 Custom Standard Cell Place and Route Tool 158

A.7 Extracted Layout Simulation . 163

A.7.1 Capacitance Extraction . 165

A.7.2 Netlist Renaming (rnmNetlist) . 166

A.8 Summary and Conclusion . 166

10 CONTENTS

B DCT AC Coefficient Distributions: Test Image PEPPERS 167

C Chip Pinout Information 171

List of Figures

1.1 Histogram of Non-Zero DCT Coefficients in a Sample MPEG Stream 20

2.1 Distributed Arithmetic ROM and Accumulator (RAC) Structure 27

2.2 MPEG Group of Pictures . 32

3.1 2D Chen Separable IDCT Algorithm . 34

3.2 Probabilities of Non-Zero Occurrence for 8�8 DCT Coefficient Blocks . . . 35

3.3 Histogram of Non-Zero DCT Coefficients in Sample MPEG Stream 36

3.4 Number of Operations Comparison Between Chen and Data-Driven IDCT . 37

3.5 IDCT Chip Block Diagram . 37

3.6 Transposition Structure (TRAM) . 38

3.7 Pipelined Multiply-Accumulate (MAC) Structure 39

3.8 Clock Gating Approach in a Pipeline . 41

3.9 Potential Race Conditions in Clock-Gated Pipelines 41

3.10 Hybrid Adder Schematics . 43

3.11 Hspice Simulation of CMOS vs. Hybrid Adder 44

3.12 Mirror Adder Schematics . 44

3.13 Basic TSPC Flop Used in the IDCT Chip . 45

3.14 TSPC Flop with Asynchronous Clear . 46

3.15 IDCT Chip Output Pad . 47

3.16 IDCT Chip Input Pad . 47

3.17 IDCT Chip Pythia Simulation Results . 48

3.18 Stage 1 NZ Coefficients per Block vs. Corresponding Stage 0 NZ Coefficients
for a Typical MPEG Sequence . 50

3.19 Stage 1 Pythia Simulation Results . 51

11

12 LIST OF FIGURES

3.20 Glitch Power Estimation . 51

3.21 Pipeline Power Estimation . 52

3.22 IDCT Chip Timing Diagram . 53

3.23 IDCT Chip Microphotograph . 54

3.24 IDCT Chip Test Board Block Diagram . 56

3.25 IDCT Chip Test Board Photograph . 56

3.26 IDCT Chip Schmoo Plot . 57

3.27 IDCT Chip Measured Power Results at 1.32V, 14 MHz 58

3.28 Power Dissipation per Sequence . 59

3.29 Power Dissipation Profile for 6 MPEG Sequences 60

3.30 Average Block Power Dissipation per MPEG Macroblock Type 61

3.31 Average Power Dissipation per Block Position 62

3.32 Power for Blocks Containing 1 NZ Coefficient of Magnitude � 16 62

3.33 Comparison of Simulated and Experimental Power Results 63

4.1 Chen-Smith Transform Adaptive Coding System [CS77] 69

4.2 Chen-Pratt Scene Adaptive Coder [CP84] . 70

5.1 DCT Core Processor Block Diagram . 80

5.2 DCT ROM and Accumulator (RAC) . 82

5.3 MSB Equality Detection and Sign Extension Detection Example 83

5.4 Traditional vs. Proposed Adaptive Transform Framework 84

5.5 Correlation Between Proposed and Standard Classifier 85

5.6 Image Row/Column Classification Threshold Determination 86

5.7 Row/Column Classifier Implementation . 87

5.8 Images Used for Architectural Experiments 88

5.9 Histogram of Dot Product Operations vs. Bitwidth 89

5.10 Comparison of DCT Additions (no RCC) . 90

5.11 Additive Truncation/Quantization Noise Model 91

5.12 Optimization Algorithm . 94

5.13 Optimization Algorithm Trace . 95

5.14 Optimization Algorithm Traces for all 11 Test Images 97

5.15 Comparison of Image PSNRs . 98

LIST OF FIGURES 13

5.16 Optimization Algorithm Traces With and Without Classification 99

5.17 Edge-Triggered Static D Flip-Flop [Sim99] . 100

5.18 Edge-Triggered Static D Flip-Flop with Clear (Clock Low Only) 101

5.19 Edge-Triggered Static D Flip-Flop with Set (Clock Low Only) 101

5.20 Edge-Triggered Static D Flip-Flop with Clear 102

5.21 Edge-Triggered Static D Flip-Flop with Set 102

5.22 Fully Static Flop . 103

5.23 ROM Schematic . 104

5.24 ROM Access Time vs. Supply Voltage . 104

5.25 20-bit Carry-Bypass Adder . 105

5.26 Full Adder Used in the DCT Chip . 106

5.27 Carry-Bypass Adder Delay vs. Supply Voltage 107

5.28 MSB Rejection Circuit . 108

5.29 Sign Extension Detection Circuit . 109

5.30 Circuit Used to Determine Driver Transistor Sizes 109

5.31 Output Pad Schematic . 111

5.32 Output Pad Hspice Simulation . 111

5.33 Input Pad Schematic . 112

5.34 DCT Chip Power Estimation Results . 113

5.35 DCT Chip Power Estimation Results (No Interconnect) 113

5.36 DCT Chip Stage 0 Power Estimation Results 114

5.37 JTAG Threshold Registers . 116

5.38 CYCLEREGTOPf0,1g Register Bit Fields . 117

5.39 CYCLEREGBOTf0,1g Register Bit Fields . 118

5.40 DCT Chip Timing Diagram . 119

5.41 Input and Output Block Element Sequence 119

5.42 DCT Chip Microphotograph . 121

5.43 DCT Chip Test Board Block Diagram . 122

5.44 DCT Chip Test Board Photograph . 123

5.45 DCT Chip Test Setup Photograph . 124

5.46 DCT Chip Schmoo Plot . 125

5.47 Power Dissipation of 11 Test Images at 1.56V, 14 MHz 126

14 LIST OF FIGURES

5.48 DCT Chip Power vs. Pel Standard Deviation (1) 127

5.49 DCT Chip Power vs. Pel Standard Deviation (2) 128

5.50 DCT Chip Power vs. Block Element Value . 128

5.51 DCT Chip Power Comparison for Different Stimuli 129

5.52 DCT Chip Power vs. Computation Bitwidth 130

5.53 DCT Chip Power vs. Compressed Image Quality 131

5.54 Compressed Image Quality and Power . 132

5.55 DCT Chip Measured vs. Estimated Power . 133

5.56 DCT/ IDCT Demonstration Board . 134

A.1 Design Flow . 146

A.2 Magic Layout Cell Description . 149

A.3 mag2skill Technology File . 150

A.4 Translation of a Magic Via Array to Cadence Layout 151

A.5 SKILL Code Generated by mag2skill . 151

A.6 Translation of a Magic 2-stage Driver . 152

A.7 Standard Cells Produced by layoutGen . 154

A.8 Static Net Fanout Checker Entry Form . 156

A.9 Module Generator SKILL Source Code . 159

A.10 Placement, Routing Channel Identification and Power/ Ground Routing . . 160

A.11 Cell Instantiation Procedure . 161

A.12 Cell Placement Procedure . 162

A.13 Example Wiring Function . 163

A.14 Example Generated Wire Traces . 164

A.15 Automatically Generated Random Logic Block 165

A.16 Wiring Parasitic Capacitance Equivalence . 166

C.1 IDCT Chip Package Footprint . 173

C.2 DCT Chip Package Footprint . 175

List of Tables

2.1 Fast FDCT/IDCT Algorithms . 25

3.1 IEEE Standard 1180-1990 Compliance . 40

3.2 Rise and Fall Delays for Hybrid and CMOS Adders 45

3.3 Process and IDCT Chip Specifications . 55

3.4 MPEG Sequences Used for Testing the IDCT Chip 58

3.5 Mitsubishi Electric DCT/IDCT Processor [UIT+92] 64

3.6 Toshiba 1994 DCT/IDCT Macrocell [MHS+94] 64

3.7 Toshiba 1996 DCT/IDCT Macrocell [KFN+96] 64

3.8 AT&T Bell Labs 1993 IDCT Processor [BH95] 65

3.9 Energy Efficiency Comparison Among DCT/IDCT Chips 65

4.1 Example Classification Using Lohscheller’s Visual Adaptive Scheme [Loh84] 72

4.2 DCT-based Adaptive Coders . 76

5.1 Sample Correlation of Proposed and Standard Classifier 86

5.2 RAC Cycle Upper Limits Per Class . 86

5.3 Average RAC Cycles and Image PSNR . 92

5.4 PSNRs for Conventional DCT plus Quantization 92

5.5 Luminance Quantization Step Matrix . 92

5.6 Chrominance Quantization Step Matrix . 93

5.7 DCT Chip JTAG Data Registers . 115

5.8 DCT Chip JTAG Instruction Register Fields 115

5.9 Class Thresholds Used . 115

5.10 Allowable Clock Mask Values . 117

5.11 Bit Allocation per Coefficient Position . 119

15

16 LIST OF TABLES

5.12 Process and DCT Chip Specifications . 120

5.13 DCT Chip Area Breakdown . 120

5.14 Average Power Dissipation for All Test Images 126

5.15 Energy Efficiency Comparison Among DCT/IDCT Chips 133

C.1 IDCT Chip Pinout . 172

C.2 DCT Chip Pinout . 174

Chapter 1

Introduction

Transform coding has been a dominant method of video and still image compression.
Transform coding works by compacting the energy of spatially correlated picture elements
(pels) into a small number of spatial frequencies. A smaller number of spatial frequencies
is required to describe a still picture or video frame than space domain pels. The reason
for this compaction is the fact that images on average exhibit spatial correlation which
results in high-magnitude low spatial frequency coefficients and low-magnitude high fre-
quency coefficients in the transform domain. Moreover, low-magnitude higher frequency
coefficients may be discarded during the compression process at the expense of virtually
imperceptible visual artifacts.

Since its conception in 1974, the Discrete Cosine Transform (DCT) [ANR74] is the dom-
inant transform of choice for video and still image compression applications. The DCT
uses cosines as basis functions as opposed to complex exponentials used in the Discrete
Fourier Transform (DFT). As a result, it exhibits less computational complexity by almost
a factor of 2 because it performs real as opposed to complex arithmetic. Low computa-
tional complexity is only one advantage of the DCT vs. other transforms. Another most
important advantage is that due to its symmetry the DCT does not have the ringing ar-
tifacts known otherwise as the Gibbs phenomenon when discontinuous signals undergo
transformation and consecutive inverse transformation back to the spatial domain. This
results in much less conspicuous “blocking artifacts” when applied to disjoint n�n image
pixel regions than the DFT for the same compression factor. The final advantage of the
DCT is that it produces virtually optimally decorrelated frequency domain coefficients.
This property is only slightly surpassed by the theoretically optimal and computationally
intensive Karhunen-Loeve Transform. Due to its most desirable properties, the DCT has
been part of virtually every video and still image compression published standard (i.e.
JPEG, MPEG-1, MPEG-2 etc.)

Until recently, dedicated signal processing hardware was necessary for DCT/IDCT
computation in real time video applications. MPEG2 compression/ decompression for a
720�480 frame size at 30 frames per second (fps) 4:2:0 requires approximately 132 MOPS
(Mega Operations Per Second) worst case assuming that a fast computation algorithm is
used. Furthermore, 8�8 2D DCT/IDCT computation algorithms usually exhibit 8-way

17

18 CHAPTER 1. INTRODUCTION

fine grain parallelism due to the lack of data dependencies at each computation stage in
the signal flowgraph. Current 300 MHz microprocessors with instruction sets enhanced
with multimedia extensions (i.e. Intel MMX) are capable of performing multiple instruc-
tions per cycle by partitioning a single 64-bit integer datapath to 2 32-bit, 4 16-bit or 8
8-bit independent integer datapaths operating in parallel. Such instruction sets are ideal
for the implementation of signal processing tasks that involve multiple independent low
precision integer operations. A 300 MHz Intel Pentium II is capable of 1.2 GOPS on 16-bit
media data types. Given the above numbers, we observe that the DCT/IDCT approxi-
mately occupies 11% of the processing resources available in commodity microprocessors
today in a real time video application. The remaining 89 % of the machine resources may
be allocated to other video processing tasks such as motion compensation and entropy
decoding or even graphics computations for updating the display.

The analysis above only involves arithmetic operations as opposed to total machine
instructions and does not include machine cycles consumed by control instructions (such
as conditional and unconditional branches) and data reorganization instructions (register
moves, pack and unpack media instructions as well as memory loads and stores.) As a
result, the resources required by a 2D DCT/IDCT computation are reasonably underesti-
mated. A more accurate analysis regarding the computational requirements of the DCT
on a general purpose machine can be done using the following published facts: Intel has
recently published an application note showcasing the benefits of the MMX technology
that exhibits an MMX implementation of the AAN [AAN88] IDCT algorithm. The ma-
chine code requires 240 cycles per 8� 8 coefficient block. On a 300 MHz Pentium II, an
8�8 block requires 0.8 µsec for processing. To sustain 720�480real time 4:2:0 video at 30
fps, the worst case block processing time (including all other compression/decompression
steps) must not exceed 4.1 µsec. Therefore, the DCT real-time computation requirements
consume about 20% of the machine resources.

1.1 A Case for Low Power Hardware Compression/Decompression
Macrocells

Although the real-time computation requirements of fast DCT/IDCT algorithms do not
pose a challenge to contemporary general purpose microprocessors, the power dissipa-
tion of such a software implementation can be substantial. According to Intel published
specifications [Int98], a Tillamook-class mobile Pentium MMX microprocessor (1.8V, 233
MHz) exhibits about 7 nF of switched capacitance per machine cycle which corresponds
to 5.3 Watts of power dissipation at 1.8V, 233 MHz. The DCT/IDCT software computation
required for a single 720�480 video frame corresponds to 9 mF of switched capacitance
(1.3M machine cycles at 7 nF per cycle). A software application supporting real-time video
at 30 fps will need 0.88 Watts of power just for the transform computation. This power
level is unacceptable for portable battery-powered devices such as mobile video-playback
and videoconferencing terminals, or information appliances with built-in web browsers.

On the other hand, carefully optimized hardware macrocells can exhibit as little as 0.1
mF of switched capacitance per video frame, which amounts to < 5 mWatts of power dissi-

1.2. LOW POWER DESIGN METHODOLOY 19

pation for the real time transform computation. Power savings over a software implemen-
tation (after process feature size normalization) exceed a factor of 200. At current process
feature sizes and supply voltage levels, fixed-function processing units are required for
real-time portable media appliances.

Low power multimedia processing macrocells have non-mobile applications as well.
Current trends in general purpose microprocessor design fueled by the availability of more
and more transistors dictate the integration of various and diverse application-specific
units on the same chip as the CPU. The main motivation is cost and ease of use. An ex-
ample of such a design approach is the new Cyrix/ National Semiconductor MediaGX mi-
croprocessor which includes a graphics accelerator, an Extended Data Out (EDO) DRAM
controller, a display controller with SVGA output and a PCI controller on the same chip
as the x86 compatible CPU. The next generation MediaGX scheduled to be released in the
second half of 1998 will also integrate MMX support, an Accelerated Graphics Port (AGP)
controller, Digital Versatile Disc (DVD) playback and a synchronous DRAM controller. The
MediaGX CPU has pioneered the sub $700 PC which has achieved great popularity in the
consumer market.

Such levels of integration present acute power management problems to system de-
signers and integrators. Excessive power dissipation can prevent function integration due
to heat removal problems or require the use of expensive packaging and cooling mech-
anisms thus raising total system cost. The use of low power macrocells implementing
common and frequently used tasks will help lower the system average and peak power
dissipation and will enable even greater levels of integration and lower implementation
costs.

It is the focus of this resarch to propose ultra low power hardware DCT/IDCT imple-
mentations suitable for use in portable media applications and for integration in future
highly-integrated systems-on-a-chip. This thesis will explore novel methods for power re-
duction that span both the algorithm and architectural design space. The final product
of this work will include a DCT/IDCT chipset exhibiting the lowest reported switched
capacitance requirements per sample, when process parameters are normalized.

1.2 Low Power Design Methodoloy

Our methodology for power reduction involves three main steps:

1.2.1 Algorithm Optimizations

Since the DCT/IDCT macrocells are targetted for video and still image coding, the com-
putation algorithm is optimized for the statistical characteristics of video and image data
both in the spatial and frequency domains.

The main characteristic of spatial image data is spatial correlation. This property can be
used to reduce the number of bits required to describe such a dataset by appropriate level

20 CHAPTER 1. INTRODUCTION

histo.ps
119 � 47 mm

0 16 32 48 64
Number of Non−Zero Coefficients

0

10000

20000

30000

40000

50000

N
um

be
r

of
 B

lo
ck

s

Figure 1.1: Histogram of Non-Zero DCT Coefficients in a Sample MPEG Stream

shifting or other related linear operations. Moreover, adaptive bitwidth computation units
can be designed that exhibit reduced activity in the presence of low-magnitude inputs.
The overall effect will be reduced switching activity within the arithmetic units without
affecting computation precision.

An orthogonal method of reducing activity in the presence of correlated inputs can
be devised on an apriori knowledge of the output data distribution and the correspond-
ing output quantization matrix. Spatially correlated video inputs result in low-magnitude
high spatial frequencies which most often are quantized to zero. Adaptive thresholding
mechanisms can be implemented that power down computation units and feed forward
zeroes at the outputs upon examination and classification of intermediate results, thus re-
sulting in further activity reduction.

Finally, there exists output coefficient precision information embedded within the out-
put quantization matrix. Special hardware control mechanisms can use this apriori infor-
mation and dynamically lower the computation precision of certain output frequencies
resulting in minimal and practically imperceptible PSNR degradation vs. a baseline coder.
Such a technique will also result in reduced switching activity within the arithmetic units.

On the other hand, the inputs to the IDCT unit exhibit rather different statistical prop-
erties. The input sequence is decorrelated but exhinbits a distribution heavily skewed to-
wards zero. An example of a typical MPEG sequence DCT coefficient histogram is shown
in Figure 1.1

An IDCT algorithm has been used that exploits the presence of zero coefficients by
preventing them from entering the computation pipeline. This method has resulted in
activity reduction proportional to the percentage of zero-valued coefficients within the
video block.

The collection of algorithmic optimizations used have reduced the total switching of
the macrocells and is the main source of power savings.

1.3. THESIS CONTRIBUTIONS AND OVERVIEW 21

1.2.2 Architectural Optimizations

Previously proposed architectural-driven voltage scaling techniques [CSB92] [CBB94] have
been adapted and used for power minimization. Deep pipelining has been used to achieve
voltage scaling at real-time data rates. Moreover, extensive clock gating has been used to
capitalize on the adaptive utilization of the arithmetic units.

1.2.3 Circuit Optimizations

Special circuit techniques have been used to implement arithmetic circuits that exhibit
good performance at low voltage given the assymetrical speed degradation of PMOS vs.
NMOS transistors. Moreover, efforts have been made to design common circuits (i.e. flops
and arithmetic circuits) that minimize switched capacitance and thus power dissipation.

1.3 Thesis Contributions and Overview

This dissertation introduces the idea of data-dependent video processing for low power
and proposes two data-driven algorithms for the computation of the DCT and IDCT that
minimize the average number of arithmetic operations required when operating on im-
age or video data. In addition, it presents a proof-of-concept VLSI implementation of a
DCT/IDCT chipset (chapters 3 and 5). The power dissipation profile of both chips de-
pends on some statistical property of the input data according to the design goal.

Throughout the course of this work, a number of custom CAD tools have been devel-
oped and used during the design of the DCT and IDCT chips. Appendix A describes these
tools and documents the design flow.

22 CHAPTER 1. INTRODUCTION

Chapter 2

Background

This chapter provides disjoint condensed treatments of various subjects directly related to
this work to render this document self-contained. First, the mathematical definition of the
discrete cosine transform and its inverse is presented along with a set of fast algorithms
for its computation.

A comprehensive presentation of distributed arithmetic follows. Distributed arith-
metic is a bit serial computation mechanization that is extensively used in the DCT core
processor. We also present a concise definition of quantization along with a a method for
designing optimum quantizers (Lloyd-Max). Quantization is a post-DCT operation that
reduces the precision of less visually significant spectral coefficients for compression pur-
poses. We take advantage of this operation in the design of the DCT chip by folding the
precision reduction inside the DCT computation and saving arithmetic operations.

The chapter concludes with the definition of the peak signal-to-noise ratio (PSNR) as
an image quality measure which is extensively used in the DCT chapter (5) and a brief
description of the MPEG compression standard which is an important application for both
our chips.

2.1 The Discrete Cosine Transform and its Inverse

The Forward Discrete Cosine Transform (FDCT) is the process of decomposing a set of
image samples into a scaled set of discrete cosine basis functions. On the other hand, the
process of reconstructing a set of image samples from a set of scaled discrete cosine basis
functions is called the Inverse Discrete Cosine Transform.

The 8-point 1-Dimensional Forward Discrete Cosine Transform and the 8-point 1- Di-
mensional Inverse Discrete Cosine Transform are defined as follows:

X[u] =
c[u]
2

7

∑
i=0

x[i]cos

�
(2i +1)uπ

16

�
(2.1)

x[i] =
7

∑
u=0

c[u]
2

X[u]cos

�
(2i +1)uπ

16

�
(2.2)

23

24 CHAPTER 2. BACKGROUND

where c[u] = 1=
p

2 if u= 0 and 1 otherwise.

The 64-point 2-D FDCT and 2-D IDCT are defined as follows:

X[u;v] =
c[u]c[v]

4

7

∑
i=0

7

∑
j=0

x[i; j]cos

�
(2i +1)uπ

16

�
cos

�
(2 j +1)vπ

16

�
(2.3)

x[i; j] =
1
4

7

∑
u=0

7

∑
v=0

c[u]c[v]X[u;v]cos

�
(2i +1)uπ

16

�
cos

�
(2 j +1)vπ

16

�
(2.4)

The FDCT/IDCT can also be defined in matrix form [RY90]. Let us define a matrix C
such that:

[C]i j =
1
2

�
c[j]cos

�
(2i +1) jπ

16

��
i; j = 0;1; : : : ;7 (2.5)

Matrix C is referred to in the literature as the DCT-II matrix [RY90]. The 2-Dimensional
FDCT of an 8�8 block of image samples [x]i j can also be defined in block form as:

[X]i j = [C]i j [x]i j [C]Ti j (2.6)

The 2-Dimensional IDCT of an 8�8 block of DCT coefficients is defined as in eq. 2.6 by
replacing [C]i j with [C]Ti j and [X]i j with [x]i j .

Equation 2.6 indicates an important property of any separable transform such as the
DCT, DFT, WHT and HT: A 2D N�N point DCT can be computed by means of 2N N-point
DCTs as follows: First, the 1D N-point DCT of each block row is computed; then the intermediate
result is transposed, and the 1D N-point DCT of each column is computed in an identical fashion.
This property has been widely used in VLSI implementations of such transforms because
of the reduced arithmetic complexity achieved. 2N N-point DCTs require substantially
fewer arithmetic operations than one N2-point DCT (N = 8).

2.1.1 Fast DCT/IDCT Algorithms

Numerous fast algorithms for both FDCT and IDCT have appeared in the literature that at-
tempt to minimize the number of arithmetic operations (multiplications and additions) re-
quired. Blind application of equation 2.6 results in 1024 multiplications and 896 additions
per block. Table 2.1 lists some popular algorithms along with the number of operations
that they require.

Fast algorithms usually rely on symmetry properties of the cosine basis functions, on
similarities with the Fast Discrete Fourier Transform computation and on certain factoriza-
tions of matrix C in eq. 2.6.

Chen’s algorithm [CSF77] has been extensively used in VLSI chips [SCG89] [UIT+92]
[MHS+94] due to its symmetry and direct implementation using Distributed Arithmetic
(section 2.2). Feig’s algorithm is not popular among VLSI implementations due to its awk-
ward data shuffling requirements. The AAN algorithm produces scaled results. The com-
putation of the actual DCT coefficient values can be merged with the subsequent quanti-
zation step that involves scaling anyway.

2.2. DISTRIBUTED ARITHMETIC 25

ALGORITHM MULTIPLICATIONS ADDITIONS

Ligtenberg & Vetterli [LV86] 208 464
Chen [CSF77] 256 416
Feig [FW92] 54 462
Lee [CL92] 112 472
Arai Agui Nakajima (AAN) [AAN88] 80 464

Table 2.1
Fast FDCT/IDCT Algorithms

The algorithms of Table 2.1 have been formulated in a way such that the computation
takes a minimal yet constant number of operations, independent of the input data. McMil-
lan and Westover [MW92] [MW93] [MW94] have proposed a direct realization of the 2D
IDCT that has a number of operations proportional to the number of non-zero DCT coef-
ficients [XCSD96]. The worst case performance of this algorithm varies significantly from
the average performance. The McMillan-Westover Forward-Mapped IDCT (FMIDCT) is
formulated as follows:2

666664

x0;0

x0;1

x0;2
...

x8;8

3
777775= X0;0

2
6666664

c0;0
0

c0;0
1

c0;0
2
...

c0;0
64

3
7777775
+X0;1

2
6666664

c0;1
0

c0;1
1

c0;1
2
...

c0;1
64

3
7777775
+ � � �+X8;8

2
6666664

c8;8
0

c8;8
1

c8;8
2
...

c8;8
64

3
7777775

(2.7)

where xi; j are the reconstructed pels, Xi; j are the input DCT coefficients (mostly zeroes) and
the column vectors [ci; j

k] are constant reconstruction kernels easily derivable from the DCT-
II matrix C (eq. 2.5). It is rather obvious that for compressed image and video streams
exhibiting the frequency distribution of Figure 1.1, eq. 2.7 results in a small number of
operations since multiplication and accumulation with a zero constitutes a NOP.

The IDCT chip presented in chapter 3 utilizes a similar algorithm redesigned for a row-
column approach that results in minimal average activity for MPEG-compressed input
data. On the other hand, the DCT chip discussed in chapter 5 cannot use a zero-dependent
algorithm simply because pel data does not exhibit a skewed-toward-zero distribution. A
version of Chen’s algorithm will be used enhanced with adaptation techniques that mini-
mize the total number of operations in the presence of a highly correlated input sequence.

2.2 Distributed Arithmetic

Distributed Arithmetic (DA) [PL74] [Whi89] is a bit-serial operation that computes the
inner product of two vectors (one of which is a constant) in parallel. Its main advantage
is the efficiency of mechanization and the fact that no multiply operations are necessary.
DA has an inherent bit-serial nature, but this disadvantage can be completely hidden if

26 CHAPTER 2. BACKGROUND

the number of bits in each variable vector coefficient is equal or similar to the number of
elements in each vector.

As an example of DA mechanization let us consider the computation of the following
inner (dot) product of M-dimensional vectors a and x, where a is a constant vector:

y=
M�1

∑
k=0

akxk (2.8)

Let us further assume that each vector element xk is an N-bit two’s complement binary
number and can be represented as

xk =�bk(N�1)2
N�1+

N�2

∑
n=0

bkn2
n (2.9)

where bki 2 f0;1g is the ith bit of vector element xk. Please note that bk0 is the least signifi-
cant bit (LSB) of xk and bk(N�1) is the sign bit.

Substituting eq. 2.9 in eq. 2.8 yields:

y =
M�1

∑
k=0

ak[�bk(N�1)2
N�1+

N�2

∑
n=0

bkn2
n] (2.10)

y = �
M�1

∑
k=0

akbk(N�1)2
N�1+

M�1

∑
k=0

ak

N�2

∑
n=0

bkn2
n (2.11)

y = �
M�1

∑
k=0

akbk(N�1)2
N�1+

N�2

∑
n=0

[
M�1

∑
k=0

akbkn]2
n (2.12)

The interchange of the order of summations in eq. 2.12 is the crucial step which yields a
distributed arithmetic computation. Let us consider the term in brackets:

qn =
M�1

∑
k=0

akbkn (2.13)

Because bkn 2 f0;1g, qn has only 2M possible values. Such values can be precomputed and
stored in a ROM of size 2M. The bit serial input data (fb0i ;b1i ;b2i ; : : : ;bkig for i = 0;1; : : : ;N�
1) is used to form the ROM address, and the ROM contents can be placed in an accumula-
tor structure to form the outer sum of eq. 2.12. Successive scalings with powers of 2 can be
achieved with an arithmetic shifter in the accumulator feedback path. The first term of eq.
2.12 (∑M�1

k=0 akbk(N�1)) is also stored in the ROM at address fb0(N�1);b1(N�1);b2(N�1); : : : ;bk(N�1)g.
Some extra control circuitry is necessary to ensure that the accumulator subtracts (as op-
posed to adding) the partial sum to the total result at sign bit time. After N cycles (as a
reminder N is the bitwidth of the xk vector elements) the final result y has converged to its
final value within the accumulator.

Figure 2.1 shows a detailed example of a Distributed Arithmetic computation. The
structure shown computes the dot product of a 4-element vector X and a constant vector

2.2. DISTRIBUTED ARITHMETIC 27

rac.ps
98 � 89 mm

0

A1
A0

A1+A0
A2

A2+A0
A2+A1

A2+A1+A0
A3

A3+A0

A3+A1+A0
A3+A1

A3+A2+A1+A0

A3+A2
A3+A2+A0
A3+A2+A1

RESULT

x2
+

X0X0X0X0

X1X1X1X1

X2X2X2X2

X3X3X3X3

3

3

3

3

2

2

2

2

1

1

1

1

0

0

0

0

4x
16

 A
d

d
re

ss
 D

ec
o

d
er

+/-
Ts

Figure 2.1: Distributed Arithmetic ROM and Accumulator (RAC) Structure

A. All 16 possible linear combinations of the constant vector elements (Ai) are stored in a
ROM. The variable vector X is repackaged to form the ROM address most significant bit
first. We have assumed that the Xi elements are 4-bits 2’s complement (bit 3 is the sign bit.)
Every clock cycle twice the value of the RESULT register (which is initially reset to zero)
is being added to the current ROM contents. The sum is placed back into the RESULT
register. Moreover, each cycle the 4 registers that hold the four elements of the X vector are
shifted to the right. The sign timing pulse Ts is activated when the ROM is addressed by bit
3 of the vector elements (sign). In this case the adder subtracts the current ROM contents
from the accumulator state. After four cycles (bitwidth of the Xi elements) the dot product
has been produced within the RESULT register.

2.2.1 On the Successive Approximation Property of Distributed Arithmetic

The DCT core processor of chapter 5 exploits a significant property of Distributed Arith-
metic for power minimization. This property is developed in the present section.

When the Distributed Arithmetic operation is performed MSB first, it exhibits stochas-
tically monotonic successive approximation properties. In other words, each successive
intermediate value is closer to the final value in a stochastic sense. An analytical deriva-
tion follows:

28 CHAPTER 2. BACKGROUND

The ith intermediate result of an MSB-first DA computation (i > 0) is:

yi =�q(N�1)+
N�2

∑
n=N�1�i

qn2n (2.14)

where

qn =
M�1

∑
k=0

akbkn (2.15)

Please note that when i = N�1, eq. 2.14 yields eq. 2.12.

Let us define an error term ei , i = 0;1; : : : ;N�1 as the difference between each interme-
diate value yi and the final value y:

ei = y�yi (2.16)

ei =
N�2�i

∑
n=0

qn2n (2.17)

We model qn as experimental values of a discrete random variable q. The underlying
stochastic experiment is random accesses of the DA coefficient ROM in the presence of
random inputs. The experimental values of q are the DA ROM contents. The first and
second order statistics of the error term ei are:

E[ei] = E[q]
N�2�i

∑
n=0

2n (2.18)

= E[bkn]
M�1

∑
k=0

ak

N�2�i

∑
n=0

2n (2.19)

=
2N�1�i �1

2

M�1

∑
k=0

ak (2.20)

σ2
ei

= σ2
q(1+4+ � � �+22(N�2�i)) (2.21)

=
22(N�1�i)�1

3
σ2

q (2.22)

=
22(N�1�i)�1

3
Var

"
M�1

∑
k=0

akbkn

#
(2.23)

=
22(N�1�i)�1

3

M�1

∑
k=0

a2
kσ2

bkn
(2.24)

=
22(N�1�i)�1

12

M�1

∑
k=0

a2
k (2.25)

where equations 2.20 and 2.25 have been computed under the assumption that the least
significant bits bkn (i large) are independent identically distributed random variables uni-
formly distributed between 0 and 1 (E[bkn] =1=2; σ2

bkn
=1=4). This is a valid assumption for

input DSP data [LR95]. The fact that equations 2.20 and 2.25 are monotonically decreasing
functions of i (RAC cycles) shows the successive approximation property (in probabilistic
terms) of the Distributed Arithmetic mechanization.

2.3. QUANTIZATION 29

2.3 Quantization

The process of scaling the DCT coefficients and truncating them to integer values is called
quantization. The process of rescaling to restore approximately the original coefficient
magnitude is called inverse quantization. In the image and motion picture coding con-
text, quantization is invariably uniform: The decision and the reconstruction intervals are
identical and equal to the quantizer step size ∆. Such quantization and subsequent inverse
quantization can be described with the following operation:

x̂= bx+0:5∆
∆

c∆ (2.26)

where x is the input value, x̂ is the quantized output value and ∆ is the quantizer step
size. Uniform quantization is not necessarily optimum in terms of minimizing some mea-
sure of the quantization error. The following section describes an important method of
designing minimum distortion quantizers given knowledge of the statistical properties of
the input data. This method is referenced widely in chapter 4 and we present it here for
completeness.

2.3.1 The Lloyd-Max Optimum Quantizer

Max [Max60] and Lloyd [Llo82] have independently derived methodologies of construct-
ing minimum distortion quantizers given a fixed number of quantization intervals and a
probability distribution for the input signal.

Max has derived a framework for optimum quantization given any distortion criterion
(where distortion D is defined as the expected value of any monotonically increasing func-
tion of the difference between the quantizer input and output) whereas Lloyd has limited
his treatment to minimizing the mean square error (MSE). Both arrive at the same results
when D= MSE.

The problem of optimum quantization in the mean square error sense can be stated as
follows:

A quantization scheme consists of a class of sets fQ1;Q2; � � � ;QNg and a set of quanta
fq1;q2; � � � ;qNg. The ranges fQag are disjoint and cover a continuous axis in its entirety. The
quanta fqag are any N finite discrete values. Let x (the input to the quantizer) be a random
variable (sample of a stationary stochastic process) with a probability density function
fx(x0). The output of the quantizer must be a quantum qa such that the quantization noise
N given by the following equation is minimized:

N =
N

∑
a=1

Z
Qa

(qa�x)2 fx(x)dx (2.27)

The problem of optimum quantization given a fixed number of ranges and quanta N
and a fixed PDF fx(x0) is reduced to finding 2N�1 numbers

q1 < x1 < q2 < x2 < � � �< qN�1 < xN�1 < qN; (2.28)

30 CHAPTER 2. BACKGROUND

where the fxag are the endpoints of the fQag intervals and fqag are the corresponding
quanta such that the following expression (mean square quantization error) is minimized:Z x1

�∞
(q1�x)2 fx(x)dx+

Z x2

x1

(q2�x)2 fx(x)dx+ � � �+
Z ∞

xN�1

(qN�x)2 fx(x)dx (2.29)

Both Max and Lloyd prove that two necessary but not sufficient conditions for mini-
mizing expression 2.29 are:

qa =

R
Qa

x fx(x)dxR
Qa

fx(x)dx
; a= 1;2; � � � ;N (2.30)

xa =
qa+qa+1

2
; a= 1;2; � � � ;N�1 (2.31)

Equations 2.30 and 2.31 are known as the Lloyd-Max equations and they exhibit intu-
itive sense: Eq. 2.30 implies that each quantum qa must be the “center of mass” of each
range Qa. This is a classical result attributed to the minimization of The “moment of in-
ertia” in elementary mechanics. Eq. 2.31 says that the interval endpoints must bisect the
distances between quanta. This is also an intuitive result.

Equations 2.30 and 2.31 suggest a trial and error iterative method for finding local noise
minima. We choose a value for q1 (q1 <

R ∞
�∞ x fx(x)dx according to Lloyd [Llo82]) and then

solve the following equation for x1 under the condition that q1 is the center of mass of Q1:

q1 =

R x1
�∞ x fx(x)dxR x1
�∞ fx(x)dx

(2.32)

Eq. 2.31 then suggests that q2 can be determined as

q2 = 2x1�q1 (2.33)

If q2 lies to the right of the center of mass of the interval (x1;∞) then the process stops and
starts over again with a different trial value q1. Otherwise x2 is computed and the process
continues:

q2 =

R x2
x1

x fx(x)dxR x2
x1

fx(x)dx
(2.34)

q3 = 2x2�q2 (2.35)
...

qN = 2xN�1�qN�1 (2.36)

If at the and of this process qN ends up being the center of mass of interval (xN�1;∞)

qN =

R ∞
xN�1

x fx(x)dxR ∞
xN�1

fx(x)dx
(2.37)

then y1 has been chosen appropriately and points qa;xa constitute a local noise minimum.
However, in general eq. 2.37 won’t be satisfied and the process must be restarted with a
different starting value until the discrepancy is reduced to zero. Solutions of the Lloyd-
Max equations are carried exclusively on fast electronic computers. Improved methods
for fast convergence of this algorithm have been suggested [NL86].

2.4. IMAGE QUALITY MEASURE 31

2.4 Image Quality Measure

A very common measure of processed (i.e. compressed) image quality vs. the original
image is the peak SNR (PSNR) defined below:

PSNR=�10log10

�
∑i=N

i=1 (q[i]�q0[i])2

(2n�1)2�N

�
(2.38)

where N is the total number of picture elements in the image (pels), q[i] is the ith pel of the
original image, q0[i] is the ith pel of the processed image, and n is the pel bitwidth.

Although the PSNR is not perfectly correlated with visual image quality, it is the most
widely accepted arithmetic measure and will be used extensively in this work. The best
measure of image quality is human subject evaluation under well defined viewing condi-
tions (distance, angle and lighting.)

2.5 The MPEG Video Compression Standard

The MPEG [ISO94][LeG91][MPFL97] video compression standard combines two of the
methods described in this chapter (DCT and quantization) along with motion estimation
and entropy (Huffman [Huf52]) coding. The DCT removes the spatial redundancy present
in motion pictures and motion compensation removes the temporal redundancy. Quanti-
zation introduces extra compression due to precision and minimal quality reduction. Fi-
nally, entropy coding introduces a final step of additional lossless compression.

A video sequence is divided into one or more groups of pictures (GOPs) and each GOP
is composed of one or more pictures of three different types (I, P, and B). An I picture (intra-
coded) is coded independently without any reference to any other adjacent pictures. A P
picture (predictive-coded) is compressed by coding the differences between the present
picture and the I or P picture which temporally precedes it. A B-picture (bidirectionally
predictive-coded) is compressed by coding the differences between the present picture and
the nearest preceding and/or upcoming I or P picture in the sequence. Disjoint regions of
B pictures can use different predictors from previous and/or future pictures. Since the
compression algorithm may sometimes use prediction information from future pictures,
the coding order is not the same as the display order. An example group of pictures along
with prediction dependencies is illustrated in Figure 2.2.

The basic unit of an MPEG picture is the macroblock. It is the unit where motion es-
timation/ compensation is performed. It consists of a 16�16 array (4 8�8 blocks) of lu-
minance samples (Y) plus 2 8�8 blocks of chrominance samples (Cr, Cb). The entire mac-
roblock represents a 16�16 array of pels within a single picture. The 8�8 block (either Y,
Cr or Cb) is the unit where the DCT/quantization is performed. It is this basic unit that
the chips of chapters 3 and 5 operate on.

Motion-compensated prediction exploits the temporal redundancy of video sequences.
The assumption is that the current picture can be locally modelled as a translation of a

32 CHAPTER 2. BACKGROUND

gop.ps
110 � 63 mm

PI B B B B B P

Bidirectional Interpolation

Forward Prediction

Figure 2.2: MPEG Group of Pictures. Figure reproduced from [ISO94]

previous or future picture. Each macroblock in the MPEG bitstream carries a motion vector
which is a horizontal and vertical index of a particular 16�16 pel array (not necessarily
on a macroblock boundary) in a past or future I or P image (P-coded pictures may only
reference past I, P pictures.) The macroblock data is differentially coded and added to the
predictor as the final frame reconstruction step.

Chapter 3

IDCT Core Processor

In this chapter, we present the design of an IDCT macrocell suited for mobile applications
[XC98] [XC99]. We present the inverse transform computation first, because the implemen-
tation of the IDCT chip predated the implementation of the DCT processor. Section 3.1 re-
iterates some general background information and presents the IDCT algorithm used. Sec-
tion 3.2 summarizes the chip architecture. Section 3.3 presents some interesting aspects of
the IDCT chip circuit design. Section 3.4 discusses power estimation methodology issues
and results. Sections 3.5 and 3.6 discuss chip usage and packaging. Section 3.7 presents
laboratory test results. Finally, section 3.8 summarizes and concludes the chapter.

Our strategy for reducing the chip power was two-fold: First, we selected an IDCT al-
gorithm that minimizes activity by exploiting the relative occurrence of zero-valued DCT
coefficients in compressed video. Past IDCT chips (e.g. [MHS+94], [BH95], [KFN+96])
have relied on conventional fast IDCT algorithms that perform a constant number of oper-
ations per block independent of the data distribution. Our selected algorithm described in
section 3.1 performs a variable number of operations that depends on the statistical prop-
erties of the input data. We implemented this algorithm in hardware through the use of
extensive clock gating that minimized the average switched capacitance per sample.

Second, previously proposed architectural-driven voltage scaling techniques [CSB92]
[CBB94] have been adapted and used for power minimization. Deep pipelining and ap-
propriate circuit techniques have been employed so that the chip could produce 14 Msam-
ples/sec (640x480, 30 fps, 4:2:0) at 1.3V (3.3V process) and meet the requirement for MPEG2
MP@ML.

3.1 Background and Algorithmic Design

For convenience, we briefly repeat the IDCT definition that has appeared in chapter 2
The 8-point 1-D Inverse DCT [ANR74] of a coefficient vector X is given by the following
equation:

x[n] =
7

∑
k=0

c[k]
2

X[k]cos(
(2n+1)kπ

16
) (3.1)

33

34 CHAPTER 3. IDCT CORE PROCESSOR

chen2didct.ps
133 � 87 mm

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

������������������������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������

����������������

������������������������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������

����������������

��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������

����������������

����������������

����������������

����������������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������

x7

x6

x5

x4

x3

x2

x1

x0

X7

X3

X5

X1

X6

X2

X4

X0

G

E -D

F -F
E

D
G

A

A A

B -B
C
1/2

-A
C

1/2 1/2
-1/2
-1/2

1/2 1/2
1/2

1/2

1/2
1/2

1/2 1/2

-1/2

-1/2
1/2

-A

A A

A

-1

-1

-1

-1

1D IDCT1D IDCT
on

Rows
Transpose on

Columns
Image
8x8

Data
DCT
8x8

Data

Figure 3.1: 2D Chen Separable IDCT Algorithm

where c[k] = 1=
p

2 if k= 0 and 1 otherwise. Since the DCT is a separable transform, the 2-D
IDCT of an 8�8 coefficient block can be computed by applying equation 3.1 on each block
row, transposing the intermediate result and reapplying equation 3.1 on each column.

There have been numerous fast IDCT algorithms that minimize the number of mul-
tiplications and additions implied by equation 3.1 [CSF77] [FW92]. A popular algorithm
which has been embedded in various VLSI implementations [SCG89] [UIT+92] is the Chen
algorithm [CSF77] depicted in Figure 3.1. The Chen algorithm is based on a sparse matrix
factorization of the matrix form of equation 3.1. Letters A�G represent constant values
and each dot in the flowgraph represents a dual multiply-and-sum operation. The Chen
algorithm requires a constant number of operations per block: 256 multiplications and 416
additions.

The statistical distribution of the input DCT coefficients possesses unique properties
that may affect IDCT algorithm design. Previous work [RG83] [SR96] [NH95] has estab-
lished that AC (non-zero spatial frequency) DCT coefficients of compressed images and
video exhibit zero-mean Laplacian distribution:

f (x) =
λ
2

e�λjxj λ =

p
2

σx
(3.2)

Muller [Mul93] has proposed a slightly different statistical model based on Kolmogorov-
Smirnov (KS) and χ2 fitness tests [KS67]:

f (x) =
να(ν)

2σΓ(1
ν)

e�[α(ν)j x
σ j]

ν
(3.3)

3.1. BACKGROUND AND ALGORITHMIC DESIGN 35

prob3d2annot.ps
98 � 88 mm

0
1

2
3

4
5

6
7

0
1

2
3

4
5

6
7

0

0.2

0.4

0.6

0.8

Block Row [i]

Block Column [j]

P
ro

b
ab

ili
ty

 x
[i

][
j]

 n
o

t
ze

ro

Figure 3.2: Probabilities of Non-Zero Occurrence for 8�8 DCT Coefficient Blocks

α(ν) =

s
Γ(3=ν)
Γ(1=ν)

(3.4)

where Γ(:) denotes the gamma function and ν and σ are positive constants. Equation
3.3 denotes a generalized Gaussian distribution. Choice of parameter ν transforms equa-
tion 3.3 into a Laplacian or a Gaussian (ν = 1 or ν = 2 respectively). Lee et. al [LKRR93]
have also concluded that the generalized Gaussian distribution (3.3) is valid for a class of
medical images. Appendix B contains a complete set of histograms for all 63 AC DCT co-
efficients of the natural image PEPPERS plotted along with the corresponding zero-mean
dual-sided Laplacian distribution of equal variance.

Sharp zero-centered dual-sided Laplacian distributions for 63 out of 64 spectral coef-
ficients implies a large number of zero-valued coefficients per 8�8 block for image and
video data. Typically, DCT blocks of MPEG-compressed video sequences have only 5-6
non-zero coefficients, mainly located in the low spatial frequency positions. The three-
dimensional histogram of Figure 3.2 plots the probability of occurrence of a non-zero spa-
tial frequency for each block position for a typical video sequence. Higher probabilities
are concentrated in the low spatial frequency range and this is consistent with the spatial
low pass characteristics of video sequences. The histogram of Figure 3.3 shows the fre-
quency of block occurrence plotted vs. the number of non-zero coefficient content for a
typical MPEG sequence. The mode of such distributions is invariably blocks with a single
non-zero spectral coefficient (typically the DC.)

Based on the information above on the statistical distribution of DCT coefficients, we

36 CHAPTER 3. IDCT CORE PROCESSOR

histo.ps
139 � 55 mm

0 16 32 48 64
Number of Non−Zero Coefficients

0

10000

20000

30000

40000

50000
N

um
be

r
of

 B
lo

ck
s

Figure 3.3: Histogram of Non-Zero DCT Coefficients in Sample MPEG Stream

decided to depart radically from conventional IDCT algorithms that perform a fixed num-
ber of operations per block. Given such input data statistics, we observe that direct applica-
tion of equation 3.1 will result in a small average number of operations since multiplication
and accumulation with a zero-valued X[k] coefficient may constitute a NOP. Appropriate
implementation of equation 3.1 can result in an algorithm with a variable number of op-
erations per block as opposed to standard fast algorithms that cannot exploit data proper-
ties. This idea of a coefficient-by-coefficient IDCT algorithm has originated with McMillan
and Westover [MW92] in the context of a software implementation. The McMillan and
Westover forward-mapped IDCT (FMIDCT) algorithm is described in section 2.1.1. The
IDCT chip presented here consists of two 1-D IDCT units implementing equation 3.1 and
a transposition memory structure in between. On the other hand, conventional architec-
tures perform a constant number of operations per sample and do not exploit data proper-
ties. Butterfly-style operations absorb the zero-valued coefficients early in the signal path
without affecting average switched capacitance. Figure 3.4 shows the instantaneous and
average number of multiplications and additions required by the data-driven algorithm
of equation 3.1 for 1000 blocks extracted from an MPEG video sequence. We observe that
the data-driven algorithm requires a smaller number of operations per block compared to
the conventional Chen algorithm. The potential for a low power implementation of this
algorithm is evident due to the small arithmetic operation requirements.

3.2 Chip Architecture

A block diagram of the IDCT chip is shown in Figure 3.5. Incoming coefficients are scaled
by a maximum of four constants at a time for a maximum of seven different constant scal-
ings (C0-C6) due to the symmetry of the cosine basis functions. The scaled values are
being added or subtracted to the state of 8 accumulators attached to the scaling multipliers
through a full crossbar switch. The scaling constants and the crossbar setting are deter-
mined by the index k of each coefficient X[k] within the 8-point vector X. Every 8 cycles, the

3.2. CHIP ARCHITECTURE 37

addmults.ps
144 � 58 mm

0 200 400 600 800 1000
0

200

400

600

800

1000

0 200 400 600 800 1000
0

100

200

300

Time (Block Sequence Number)

Average
Chen

A
d

d
it

io
n

s
/ B

lo
ck

Time (Block Sequence Number)

Chen

Average

M
u

lt
ip

lic
at

io
n

s
/ B

lo
ck

Figure 3.4: Number of Operations Comparison Between Chen and Data-Driven IDCT

2didct.ps
148 � 61 mm

��
��
��
��

����
��
�
�
�
�

����
��
��
��
��

�
�
�
�

��

����
��
��
��
��

�
�
�
�

��

����
����
�
�
�
�

��

����
����
��
�
�
�
�

��
��
��
��

��
��
��
��

��
�
�
�
�

��
��
��
��

�
�
�
�

��

��
��
��
��

��
��
��
��

��
��
��
��
��
��

����
�
�
�
�

�
�
�
�

����

����
�
�
�
�

�
�
�
�

����

����
��
�
�
�
�

����

����
��
��
��
��
��
��

��
��
��
��

�
�
�
�

��
��
��
��
��

��
��
��
��

��
��
��
��

��

�
�
�
�

x[n]

MULT1

ACCUM0

ACCUM1

ACCUM2

ACCUM3

ACCUM4

ACCUM5

ACCUM6

ACCUM7

T
R

A
N

SP
O

SI
T

IO
N

SE
R

IA
L

IZ
E

R
MULT0MULT0

MULT2

MULT3

MULT1

MULT2

MULT3

ACCUM0

ACCUM1

ACCUM2

ACCUM3

ACCUM4

ACCUM5

ACCUM6

ACCUM7

X[k]

C0
C1

C2
C3

C4
C5

C6

C2
C3

C4

C0
C1

C5

C6

Figure 3.5: IDCT Chip Block Diagram

38 CHAPTER 3. IDCT CORE PROCESSOR

tram2.ps
140 � 90 mm

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Figure 3.6: Transposition Structure (TRAM). Data is Transposed On-The-Fly by Changing
the Shifting Direction (T ! B or L ! R.) This scheme eliminates the need for ping-pong
buffering.

1-D IDCT of a block row has converged within the 8 accumulators. The intermediate result
is fed into the transposition structure (TRAM) of Figure 3.6. This structure is a 2-D array
of shift registers that can shift data from left to right and top to bottom. The TRAM per-
forms transposition on-the-fly and eliminates the need for double buffering which would
have been necessary had a static dual-addressed RAM been used. The second 1-D stage is
identical to the first except for a change in the precision of the scaling constants.

The chip input spectral coefficients are 12-bit 2’s complement integers. Before the
multiply-accumulates of the first stage, the data is converted to 12-bit sign magnitude rep-
resentation. The scaling constants are 14-bit sign-magnitude. After the completion of the
first stage computation, the intermediate data is 16-bit 2’s complement. Before entering
the second state the data is shifted and rounded to 14 bits and converted to sign magni-
tude. The scaling constants of the second stage are 13-bit sign magnitude. The final result
is rounded to 10-bit 2’s complement representation before being shipped off-chip.

In order to meet the bandwidth requirement of 14 Msamples/sec at VDD=1.3V using
a high VT process, the multiply-accumulate operations must be pipelined by a factor of
4. Figure 3.7 shows the multiply-accumulate (MAC) structure used. For simplicity, the
diagram does not show the crossbar switch between the multiplier and the adder struc-
tures. The Figure depicts a 5�4 unit as opposed to the full 14�14 structure used. The
level of pipelining is identical. The multiplier is a standard carry-save array multiplier.

3.2. CHIP ARCHITECTURE 39

mac2.ps
142 � 139 mm

+

�
�
�
�

��
��
��
��

+

��
��
��
��

��
��
��
��

+

�
�
�
�

�
�
�
�

��
��

�
�
�
�

�
�
�
�

��
����

����
����

+

��
����

+

����
����

��
��

��
��

����

+

��
��
��
��

+

����

+

��
��

++

�
�
�
�

+

��
��
��
��

+

��
��
��
��

�
�
�
�

+ ++ +

+
+

+
+

+++++

+ + + +

+ + + +

+ + + +

+ + + +

+

+

+

+

+ + + + +

A4 A3 A2 A1 A0

���� �� ��

Y0

Y1

Y2

Y3

Y4Y5Y6Y8 Y7

B1

B2

B3

B0

Figure 3.7: Pipelined Multiply-Accumulate (MAC) Structure

40 CHAPTER 3. IDCT CORE PROCESSOR

Dataset PMSE OMSE PME OME
<0.16 <0.02 <0.015 <0.0015

[�256;255] 0.015800 0.013597 0.002500 0.000153
[�5;5] 0.011000 0.009136 -0.002400 -0.000005
[�300;300] 0.014100 0.011886 0.002700 0.000180
�[�256;255] 0.016000 0.013578 -0.002500 -0.000122
�[�5;5] 0.011000 0.009156 0.002500 0.000016
�[�300;300] 0.014000 0.011878 -0.002900 -0.000122

Table 3.1
IEEE Standard 1180-1990 Compliance

The accumulator structure is a simple ripple carry adder. The accumulator adds a single
full adder delay to the critical path due to the coincident carry propagation with the avail-
ability of product bits of the multiplier. Although pipelining increases the total switched
capacitance of the computation unit, it has the side benefit of reducing the propagation of
spurious transitions within the MAC structure.

The datapath width of the arithmetic units have been optimized to meet IEEE Standard
1180-1990 for IDCT precision by a comfortable margin but at the same time discard unnec-
essary precision bits that would increase the power dissipation. Table 3.1 summarizes our
fixed point precision deviations. All datasets pass the pixel peak error requirement. The
zero-input requirement is also passed.

3.2.1 Clock Gating

The presence of many zero-valued coefficients must be exploited in order to reduce the
switching activity and reap the low power benefits of this particular algorithm. If the MAC
structure of Figure 3.7 was not pipelined, conditional gating of the accumulator clock based
on whether the incoming coefficient is zero or not would substantially reduce the switch-
ing activity and still produce the correct result. Pipelining though makes clock gating
more complicated. If all pipeline stages are clocked with a single clock net, clock gating
becomes impossible since different pipeline stages are processing different and possibly
non-zero DCT coefficients. Powering down all the stages will produce erroneous results.
Clock gating can be implemented if each pipeline stage uses a separate clock net gated by
an appropriate qualifying pulse. The qualifying pulse propagates from stage to stage along
with the non-zero coefficient that requires processing. If a zero-valued coefficient enters
the pipeline, only the stage that corresponds to the zero is powered down. The other up-
stream and downstream stages remain unaffected. Our clock gating scheme is graphically
depicted in Figure 3.8. The IDCT chip features ten separate clock nets in addition to the
master clock for fully qualifying all steps of the entire pipeline formed by both 1-D stages.

A clock-gated pipeline presents certain physical design challenges in order to avoid
common race conditions. Race conditions may arise in the following situation which is
depicted in Figure 3.9(a): Let us assume that CLK0 arrives at the clocked element of stage 0

3.2. CHIP ARCHITECTURE 41

clockgate.ps
139 � 88 mm

O

I
C

L

G
O
L

G
I

C

O
L

G
I

C

008C 003F 51

CLK3

CLK2

CLK1

CLK0

DATAIN

CLOCK GENERATOR

DATAIN DATAOUT

C
L

K
0

C
L

K
1

C
L

K
2

C
L

K
3

Figure 3.8: Clock Gating Approach in a Pipeline

race.ps
124 � 82 mm

����

����

t0 t1

tpd

t0 t1

tpd

(b) No Race Condition

(a) Potential Race Condition

Qualifying Pulse 1

Qualifying Pulse 0
Master Clock

Qualifying Pulse 1

Qualifying Pulse 0
Master Clock

E

clk0

clk1

clk1

clk0

COMB LOGIC

Figure 3.9: Potential Race Conditions in Clock-Gated Pipelines

42 CHAPTER 3. IDCT CORE PROCESSOR

at time t0 and CLK1 arrives at time t1. If t1� t0 > tCLK!Q+ tpd� thold, the wrong data will be
sampled at stage 1. The expected value of ∆t = t1� t0 can be greater than typical clock skew
values because the clock nets are physically separate and are affected by more mismatch
phenomena than distributed RC delays on a nominally equipotential surface. Moreover,
in the IDCT chip all gated clock nets are global spanning all the pipelines formed by the
accumulators. The gate load seen by each clock net is quite different due to data skewing
(Figure 3.7) in addition to different physical wire loading. This problem becomes very
important when the intermediate combinational logic is minimal or non-existent (i.e. back-
to-back shift registers) and tpd ! 0.

We solved this problem by careful buffering and physical design of the clock nets and
multiple simulation iterations with accurate extracted parasitics. In cases of small timing
margins (i.e. shift registers and least significant bits of adder stages), a negative level-
sensitive latch was inserted clocked by the upstream pipeline clock as shown in Figure
3.9(b). This ensured functional correctness with a minimal penalty (<2%) in terms of
power dissipation and no effect on the system critical path.

3.3 Circuit Design

This section presents interesting aspects of the IDCT chip circuit design.

3.3.1 Arithmetic Circuits

The greatest circuit challenge presented was the design of the pipelined multiply-accumulate
unit shown in Figure 3.7 given VGS�VT =0.4V for PMOS devices and 0.6V for NMOS de-
vices. The critical path for this operation is 7 full adder delays given a 14�14 pipelined
multiplier. We imposed the following requirements on the full adder design used in the
multipliers (Figure 3.10): First, since the sum output (S) propagation delay is also critical
(in addition to the COUT) we wanted S to be computed using a single gate, as a function
of A, B and CIN. A second gate delay would increase the critical path substantially and
would force us to raise the power supply above 1.3V. Second, the S gate should not em-
ploy more than 2 series PMOS pullup devices in the signal path. PMOS transistors see at
maximum 0.4V above threshold across their gate and source terminals and their mobil-
ity is three times smaller than that of the NMOS devices. Given these facts, we observed
that more than two series PMOS devices in the sum circuit would be considerably slow in
pulling up the sum output unless substantially oversized, which would considerably in-
crease the total cell switched capacitance. Finally, we wanted the sum gate to be fully static.
Although a dynamic implementation would remove weak PMOS devices from the signal
path, the non-monotonicity of the Sgate would introduce extra design complications and
circuit overhead.

Given all the constraints above, we decided to use the hybrid full adder circuit of Fig-
ure 3.10. In this circuit, COUT is derived in a static CMOS fashion but S is derived using
Cascade Voltage Switch Logic (CVSL). The advantage of using this logic family for the sum

3.3. CIRCUIT DESIGN 43

hybrid.ps
155 � 83 mm

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

A

B B

CIN CIN

S

12/2
12/2 12/2

12/2

12/2
12/212/2

12/2 12/2

12/2

10/2 10/2

 CIN

 B B

 A

 S

 CIN

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

��

A

B

CIN

8/2 8/2

8/28/2

8/2

18/2

18/2

18/2

18/2

18/2

COUT

 COUT

Figure 3.10: Hybrid Adder Schematics (sizes in λ = 0:35µ)

output is that S is pulled high indirectly through a stack of NMOS transistors overpower-
ing a weak PMOS cross-coupled pair as opposed to a stack of PMOS devices pulling high.
The main disadvantages are that proper ratioing is needed for different supplies, the fact
that the complementary NMOS switch structures require complementary inputs and the
presence of small crossover currents. Since these full adders are used within an array mul-
tiplier, one of the complementary inputs is the Soutput of the previous row adder which
is already in complementary form. Only COUT needs to be complemented in order to be
used as an input in the next row of adders. It must be noted that the total device count
has not been increased from the popular 24-transistor inverting full static CMOS adder
implementation (“mirror adder” [WE93]). Although CVSL can result in inefficient imple-
mentations of native sum-of-products expressions, it is ideally suited for multiple-input
XOR functions such as a sum computation.

Figure3.11 shows an Hspice simulation (Ssum output) of both the mirror and the hy-
brid adder for typical load conditions at VDD=1.3V. The mirror adder employs a stack of
3 PMOS devices pulling S high when all three inputs are low. The circuit simulated is
shown in Figure 3.12. Table 3.2 summarizes the simulated rise and fall delays. The small
discrepancy between the rise and fall delay of the hybrid adder output is attributed to
slight mismatches in the arrivals of the A and A inputs in our simulation setup. The hybrid
adder exhibits a slower fall delay because the NMOS pulldown stack needs to overpower
the PMOS pullup. On the other hand, the rise time is faster as expected for a total worst
case speedup of 37%. At the same time the transistor sizes are much smaller in the hybrid
adder for additional area and power savings. The use of the hybrid adder of Figure 3.10
helped us achieve real-time performance at 1.3V.

44 CHAPTER 3. IDCT CORE PROCESSOR

addercompannotate.ps
116 � 86 mm

0 5 10 15 20 25 30
Time (ns)

0.0

0.5

1.0

1.5

V
o

lta
g

e
 (

V
)

A INPUT

SUM (HYBRID)

SUM (MIRROR)

Figure 3.11: Hspice Simulation of CMOS vs. Hybrid Adder

mirror.ps
119 � 92 mm

����

���� ���� �� ��

��

����

��

����

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

��

����

��
��
��
��

����

����

������

A

B

CIN

8/2 8/2

8/2

8/2

8/2

8/2

8/2

8/2

8/2

18/2

18/2

18/2

18/2 18/2

18/2

18/2

18/2 18/2

24/2

12/2

12/2

12/2

24/2

24/2

COUT

S

Figure 3.12: Mirror Adder Schematics (sizes in λ = 0:35µ)

3.3. CIRCUIT DESIGN 45

Circuit Fall Delay (ns) Rise Delay (ns)
Static CMOS 0.9 2.93
Hybrid 1.53 1.85

Table 3.2
Rise and Fall Delays for Hybrid and CMOS Adders

tspc.ps
132 � 53 mm

q

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

����

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

����

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
�� ��

��
��
��

d

clk
q

P0
4/2

4/2

4/2 4/2

4/2

4/2

4/2

4/2

P1

P2 P3
P4 P521/2

15/2

5/2

3/3

3/7N0 N1

N2

N3

N4

N5 N6

NET0

Figure 3.13: Basic TSPC Flop Used in the IDCT Chip (sizes in λ = 0:35µ).

3.3.2 Flip-Flops

The basic static edge-triggered flip-flop used in the IDCT chip is a version of the true single
phase clock (TSPC) flops presented in [YS89]. It is shown in Figure 3.13. Its basic advantage
for low power is the fact that a clock complement is not necessary.

When clock is low, transistors N0, P0, P1 form a transparent inverting latch and node
NET0 is precharged. When clock goes high, if data had been high, then node NET0 stays
precharged and the logic one propagates to the output q. If data had been low, node NET0
is discharged through N2, N1 and a logic 0 propagates to the output. Weak transistors P5
and N6 staticise the output node. Transistor P3 is made large enough to overpower the
weak staticizer even at low supply voltages.

This flop has an internal race condition and care should be exercised before it is ported
to different processes. When d is low and clock goes from low to high, the following
race condition may occur: Transistors N4 and N3 are both active at the same time and
start pulling node q low. Then, transistors N2 and N1 (which are both active too) start
discharging node NET0 which brings node q back to logic one. The overall effect is a 0-
1-0 glitch at the flip flop output on the rising edge of clock when d is low. To avoid the
glitch, the N2, N1 pulldown path must be made faster than the N4, N3 pulldown path by
increasing the sizes of the N2, N1 transistors. In Figure 3.13 we avoid the glitch partly due
to the staticizer which slows down considerably the N4, N3 discharge path.

Figure 3.14 shows a TSPC with asynchronous clear used in the chip. Transistors P6 and

46 CHAPTER 3. IDCT CORE PROCESSOR

tspcc.ps
132 � 62 mm

q

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
�� ��

��
��
��

��
��
��
��

��
��
��
��

d

clk
q

P0
4/2

4/2

4/2 4/2

4/2 4/2

4/2

P1

P3
P4 P521/2

15/2

5/2

3/3

3/7N0 N1

N2

N3

N4

N5 N6

NET0

clr

6/2

6/2

3/2

P6

N7

P2

Figure 3.14: TSPC Flop with Asynchronous Clear (sizes in λ = 0:35µ).

N7 add the capability to set the staticised output to logic zero on assertion of the clr signal
(active high).

3.3.3 I/O Pads

Figure 3.15 shows the level-converting output pad used in the IDCT chip. This design
(both schematic and layout) has been adapted from [Gea96]. Two differential-amplifier-
style level converters are used [CBB94] to raise the voltage from VDD (1.1-2.2V) to VHH
(5V). A split-output exponential buffer drives the output bonding pad.

Figure 3.16 shows the level-converting input pad. Primary ESD protection is provided
by bipolar diodes D1 (N-diffusion to P-substrate), D2 (P-diffusion to N-well) and N-well
resistor R. Diodes D1, D2 protect the input of the sensing inverter from straying more than
0.6V (either direction) from its specified range (0-VHH).

3.4 Power Estimation Methodology

The IDCT chip is a reasonably large system (160K transistors) and needs to be simulated
for a large number of cycles so that conclusions regarding correlation of power dissipation
vs. processing load can be drawn. Circuit simulators (i.e. Hspice, Powermill) would
be slow to run and provide insufficient information. For this purpose, the authors have
developed Pythia [XYC97], a fast and accurate power estimation tool that works with a
structural Verilog description. Pythia uses a collection of Verilog-PLI access and utility
routines to traverse circuit hierarchy, extract user-provided parameters and monitor signal
transitions. Each net in the design is annotated with four different capacitance values:

1. A gate capacitance value indicating the total gate capacitance attached to the net.

3.4. POWER ESTIMATION METHODOLOGY 47

outpadidct.ps
148 � 97 mm

�� ���� ��

��

��

��

12/212/2

36/2

36/2

24/2

12/2

144/2

36/2

VHH
VHH VHH

�
�
�
�

�
�
�
�

�
�
�
�

VDD

�� ��

VDD

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��

�
�
�
�

��

�
�
�
�

��

12/212/2

36/2

36/2

24/2

12/2

144/2

36/2

VHH
VHH VHH

960/3

480/3

VHH

12/2

12/2

12/2

12/2

IN

OUT

Figure 3.15: IDCT Chip Output Pad (sizes in λ = 0:35µ).

inpadidct.ps
126 � 40 mm�

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

��
��
��
��

VDDVHH

R

IN OUT

D1

D2

VHH

24/4

12/4

50/2

24/2

Figure 3.16: IDCT Chip Input Pad (sizes in λ = 0:35µ).

48 CHAPTER 3. IDCT CORE PROCESSOR

idctpieannot.ps
93 � 79 mm

4.22 mW
53%

MCLK BUFFER
1.44 mW

18%

STAGE 0
1.32 mW

17%

STAGE 1

0.38 mW
CONTROL MISC

0.299 mW
4%

TRAM
0.33 mW

4% 5%

Figure 3.17: IDCT Chip Pythia Simulation Results

2. An NMOS drain capacitance value indicating the total n-drain to p-substrate or p-
well junction capacitance attached to the net.

3. A PMOS drain capacitance value indicating the total p-drain to n-substrate or n-well
junction capacitance attached to the net.

4. A routing capacitance indicating the total metal wiring capacitance of the net.

During each net transition, there is a different energy contribution from each particular
capacitive component. Pythia performs numerical integration in order to account for the
fact that gate capacitances are a function of voltage. Moreover, it uses the depletion ap-
proximation and a first order analytical solution for the CV integral in the case of junction
capacitances. Process parameter information is provided in the form of spice model files.
Finally, Pythia expands cell internal capacitive nodes that are collapsed in a Verilog gate-
level simulation so that every circuit capacitive node is accounted for. Pythia is very fast
(5-7 times slower than Verilog) and reasonably accurate (typically within 5% from Hspice
and Powermill). Feedback is provided in the form of a report with energy and power
information for each hierarchical block in the design.

Power library generation has been automated within the Cadence Design Framework.
Each library cell requires two phases of annotation. During the first phase, cell terminal
capacitances are added to the cell Verilog functional view. In the second phase, an internal
model is generated which identifies the internal nodes (non-terminals) of each cell and
describes the switching state of such nodes for each input state. In this way, all capacitive
nodes are included in the power estimation.

3.4. POWER ESTIMATION METHODOLOGY 49

Figure 3.17 shows the IDCT chip power estimation results partitioned among the toplevel
modules of the design. The data was obtained by feeding the chip 1000 random blocks
from the MPEG sequence Cheerleader (a more complete description of the test sequences
used appears in section 3.7.) The simulated clock frequency and power supply are 14 MHz
and 1.3V respectively. The software tool includes an elementary interconnect capacitance
estimation mechanism based on first order process parameters and net fanout. Approxi-
mately 30% of the total chip power of 7.95 mW is attributed to interconnect capacitance.

Stage 0 and Stage 1 which are the main computation stages dissipate the bulk of the
power (70%). The clock buffer of the master clock dissipates a substantial 18% of the total.
This is the globally distributed clock that produces all derivative pipeline clocks. The
final inverter of this exponential driver has a total gate width of 56 µm(W=L ratio of 93.3).
Although the TRAM contains a large number of flip-flops, its duty cycle is low (clocked
once every 8 cycles) and only requires 4% of the total power. Global control circuitry
requires 5% of the power with the remaining 4% attributed to miscalleneous circuitry for
block I/0 and glue logic between stages. We note that stage 1 requires a lot more power
than stage 0. This happens because more non-zero coefficients are processed on average
by stage 1 due to the nature of equation 3.1. Figure 3.18 plots the number of non-zero
coefficients per block encountered at stage 1 of the IDCT chip vs. the number of non-zero
coefficients encountered at stage 0.

Figure 3.19 shows the distribution of power within the stage 1 computational block.
We observe that a substantial portion of the power (27%) is used for the clock generator
(and buffer) for all pipeline stages. The rest is mainly computational power.

3.4.1 Glitch Power Investigation

Pythia can report the power due to spurious transitions (glitches). This is accomplished
by keeping track of each signal pulse width and reporting separately pulses that have a
width less that half the master clock period. Figure 3.20 shows the percentage of power
due to glitches for a number of blocks in the design. The accumulators in the design are
the most glitch-prone blocks because all three inputs (A;B;CIN) of each full adder become
valid at different times. The multipliers exhibit a smaller percentage of spurious transitions
because our gate model assumes equal delays between the sum and carry outputs of our
full adders. As a result, two out of three inputs of each full adder in the Braun array
(Figure 3.7) become valid simultaneously and glitching is reduced. We tried to equalize
these two delays in the actual full adder circuit design (Figure 3.10) for this purpose. The
total simulated chip power due to glitching is 1.16 mW (14.59%.)

3.4.2 Pipeline Power Savings Investigation

The IDCT chip employs a substantial level of pipelining for the sole purpose of lowering
the power supply at real-time video sample rates; it is not required for algorithm function-
ality. We wanted to identify the total power savings attributed to pipelining by assessing

50 CHAPTER 3. IDCT CORE PROCESSOR

st0vsst1.ps
101 � 102 mm

0 8 16 24 32 40 48 56 64
Number of NZ Coefficients Stage 0

0

8

16

24

32

40

48

56

64

N
um

be
r

of
 N

Z
 C

oe
ffi

ci
en

ts
 S

ta
ge

 1

Figure 3.18: Stage 1 NZ Coefficients per Block vs. Corresponding Stage 0 NZ Coefficients
for a Typical MPEG Sequence

3.4. POWER ESTIMATION METHODOLOGY 51

stage1pieannot.ps
102 � 80 mm

1.1 mW
26%

MISC
0.56 mW

13%

CLOCK GEN
1.15 mW

27%

MULTIPLIERS

33%
1.4 mW

ACCUMULATORS

Figure 3.19: Stage 1 Pythia Simulation Results

glitchidct.ps
89 � 67 mm

0

5

10

15

20

25

30

35

40

P
er

ce
nt

 o
f P

ow
er

 d
ue

 to
 G

lit
ch

in
g

S
T

A
G

E
1

M
U

L
T

IP
L

IE
R

S
T

A
G

E
0

C
H

IP

A
C

C
U

M
U

L
A

T
O

R

Figure 3.20: Glitch Power Estimation

52 CHAPTER 3. IDCT CORE PROCESSOR

pipelineidct.ps
89 � 67 mm

0

10

20

30

40

50

60

P
er

ce
nt

 o
f P

ow
er

 d
ue

 to
 P

ip
el

in
in

g

A
C

C
U

M
U

L
A

T
O

R

M
U

L
T

IP
L

IE
R

S
T

A
G

E
 1

S
T

A
G

E
 0

C
H

IP

Figure 3.21: Pipeline Power Estimation

the overhead required and adjusting for a higher supply voltage to maintain the sample
rate.

Figure 3.21 shows the percentage of power for major chip blocks which is attributed
to pipelining. This power includes the two main pipeline clock generators (one for each
stage) in addition to all the pipeline flip-flops in the signal path. The 33% percent as a total
power cost of pipelining is exaggerated because a significant percentage of the pipeline
flip-flops serve as the state registers of the accumulators which would still be present
(along with their appropriate clock buffer) in the absence of pipelining. If we perform
this adjustment, we estimate the actual cost of pipelining to about 20% of the total power.

In the absence of pipelining, the chip critical path grows by a factor of four. Testing the
chip at various clock frequencies (section 3.7) indicated that the supply voltage should be
raised to 2.2V in order to maintain a sample rate of 14 MS/sec. Subtracting the overhead
and accounting for the increased supply, we estimate that the chip total average power
would have been about 10 mW. Pipeline therefore accounts for more than 50% of power
savings.

3.5 Chip I/O Specification and Usage

The user provides the chip with DCT spectral coefficients values on the rising edge of clock.
The beginning of a new coefficient block is indicated with the assertion of the StartBlockIn
pulse when coefficient (0,0) is present on the input bus. After a delay of 90 cycles, the pel
values start to come out of the chip output pins. The start of a block is indicated by the
assertion of the StartBlockOut pulse when output pel block element (0,0) is present on the
output bus. Figure 3.22 presents a timing diagram that summarizes the chip operation. We

3.6. CHIP PHYSICAL DESIGN AND PACKAGING 53

idcttiming.ps
142 � 68 mm(0,1) (0,2) (0,3) (0,4) (0,5) (0,6) (0,7)

clk

StartBlockIn

(1,0) (2,0) (3,0)

StartBlockOut

(0,0)
DCT DCT DCT DCT DCT DCT DCT DCT

(0,0)
PEL PEL PEL PEL

90 cycles

din[11:0]

dout[9:0]

sampling edge

Figure 3.22: IDCT Chip Timing Diagram

note that the output block comes out in transposed form. Figure 5.41 in the corresponding
section of the next chapter shows the sequence that the DCT coefficients must be presented
to the chip and the sequence that the video pels are being produced by the chip. The
negative clock edge is used for sampling the input data and the StartBlockIn strobe on the
chip so that the edges are sufficiently spread apart and there is sufficient setup and hold
time if the data edge occurs close to the positive clock edge (in either direction.)

3.6 Chip Physical Design and Packaging

The chip has been laid out using the Cadence Design Framework. Details about the design
flow and methodology are presented in appendix A. It has been fabricated in the Hewlett-
Packard AMOS14TB Triple-Metal Single-Poly 0.5 µm 3.3V process available through the
MOSIS Design Service. The MOSIS scalable design rules have been used (SCMOS with λ =
0:35µm) and as a result the minimum drawn device length is 0.7 µm. The annotated chip
microphotograph is shown in Figure 3.23. The core area of the DCT chip (not including
the I/O pad frame) measures 20.7 mm2 and includes approximately 160K transistors. The
chip specifications are summarized in Table 3.3.

The chip package is a ceramic PGA (11x11 grid, 84-pin) available through MOSIS (PGA84M,
350mil cavity). The chip pinout appears in Table C.1 (Appendix C). The VHH supply is a
TTL-compatible 5V supply for the pads and VDD is the core supply at 1.1-2.2V. VLL is the
pad ground and may be shorted to GND on the board. The package PCB footprint (top
view) is shown in Figure C.1 (Appendix C).

54 CHAPTER 3. IDCT CORE PROCESSOR

idctphoto.ps
133 � 168 mm

1-D IDCT

TRAM

1-D IDCT

Figure 3.23: IDCT Chip Microphotograph

3.7. TESTING 55

Process 0.5µmCMOS (0.7µmdrawn), 3ML 3.3V
VTN 0.66V
VTP -0.92V
TOX 9.6 nm
Supply 1.1-1.9 V
Frequency 5-43 MHz
Power 4.65 mWatts @ 1.32 V, 14 MHz
Area 20.7 mm2

Transistors 160K

Table 3.3
Process and IDCT Chip Specifications

3.7 Testing

3.7.1 Test Setup

A printed circuit board has been built for testing and measurement. A dedicated PC inter-
face through a standard ISA National Instruments 32-bit digital I/O card has been used for
providing stimuli and reading results from the board under software control. The board
contains SRAM buffers and control finite state machines to permit high-speed testing in
spite of the slow PC ISA interface. Moreover, the IDCT chip core uses separate supply
lines to permit accurate current measurements.

The board block diagram is shown in Figure 3.24. A photograph of the board is shown
in Figure 3.25. The output of the DIO32F connector has been terminated with 470-Ohm
resistors to ground and has been passed through two inverting CMOS Schmitt triggers
(74HC14) for additional conditioning. The board operates as follows: The user uploads
256 64-element DCT blocks into the input dual port memory (Cypress CY7C006) and the
input FSM (implemented in a Lattice GAL 22v10) is triggered. The input FSM produces
appropriate control signals to read the blocks from the SRAM and stimulate the IDCT chip.
The 256 blocks are cycled through the chip continuously so that power measurements can
be obtained while the chip is being continuously stimulated. On the other hand, the output
FSM captures the 256 output blocks in the output SRAM only once: The SRAM is activated
only when the first batch of 256 pel blocks are being output from the chip. It is deactivated
for the remainder of the chip operation. The user can upload the results on the PC from
the second SRAM and can check the chip output for correctness.

In addition to the test structures described above, the board contains two more sec-
tions: One section contains an IDCT chip directly attached to the DIO32F connector so that
the user has direct access to all chip terminals through the PC. The user has access to a
mechanical multiplexer (set of 32 jumpers) to direct the single DIO32F connector to the
fast or slow test section of the board. This section has been used for preliminary slow-
speed functionality-only testing. The final section simply contains an IDCT chip with all
relevant terminals brought out to vertical headers for last resort testing using pattern gen-
erators and logic analyzers. The IDCT test board has a single rather annoying bug: The

56 CHAPTER 3. IDCT CORE PROCESSOR

idctboardblock.ps
139 � 65 mm

DUAL PORT
SRAM

DUAL PORT
SRAM

INPUT
FSM FSM

OUTPUT

NATIONAL INSTRUMENTS DIO32F DIGITAL I/O PC INTERFACE

IDCT CHIP

Figure 3.24: IDCT Chip Test Board Block Diagram

idctboardphoto.ps
137 � 101 mm

Figure 3.25: IDCT Chip Test Board Photograph

3.7. TESTING 57

schmoo.ps
112 � 78 mm

1.15
1.20
1.25
1.30
1.35
1.40
1.45
1.50
1.55
1.60
1.65
1.70
1.75
1.80
1.85
1.90

1.10

...*

......................................****

...................................*******

.................................*********

................................**********

..............................************

...........................***************

........................******************

......................********************

....................**********************

.................*************************

...............***************************

............******************************

..........********************************

........**********************************

....**************************************

......************************************
S
u
p
p
l
y

(
V
)

. = PASS * = FAIL

Frequency (MHz) 43.02.0

Figure 3.26: IDCT Chip Schmoo Plot

VLL signal was not shorted to GND as was the original intention but has accidentally been
left floating. The problem has been fixed with the addition of several wires on the board
solder side.

3.7.2 Test Results

The chip is functional over a wide range of frequencies and power supplies as indicated
by the Schmoo plot of Figure 3.26. Operation at frequencies above 50 MHz at <2.5V has
been observed using high-speed digital pattern generators.

Over 2.8 million separate power measurements have been taken during several weeks
while the chip was stimulated from 6 different MPEG compressed sequences ranging
from 1 MB/sec-5 MB/sec and having rather different content (Table 3.4). The entire chip
pipeline was filled with data from a single 8�8 coefficient block repeated multiple times
during each one of the measurements. The results of these measurements are plotted in
Figure 3.27 vs. the number of non-zero coefficients within each DCT block. On the same
graph the block non-zero content histogram is also shown. The average, as well as the 95%
confidence interval is plotted for each data point. Figure 3.28 shows the average power
dissipation for each one of the sequences of Table 3.4 along with the corresponding aver-
age number of non-zero coefficients per block. As expected, sequence FLOWER dissipates
the most power because it contains global movement and a lot of high-frequency details.
Figure 3.29 shows the detailed power dissipation profile for all 6 test sequences.

Figure 3.30 shows the average block power dissipation per MPEG macroblock type
[MPFL97] and predictive picture type (I, P, B) for sequence SUSI. A brief description of I,

58 CHAPTER 3. IDCT CORE PROCESSOR

Sequence Resolution Bitrate Content
BALLET 704x480 5M Foreground movement

panning, scene change
BICYCLE 704x480 5M Background movement,

zooming
CHEERLEADER 704x480 5M Foreground movement
FLOWER 352x240 1.5M Panning
SUSI 352x288 1.5M Head and shoulders,

little foreground movement
TIGER 352x240 1M Foreground/Background movement,

panning, scene change

Table 3.4
MPEG Sequences Used for Testing the IDCT Chip

idctresultsannot.ps
130 � 83 mm

0 16 32 48 64
0.0

4.0

8.0

12.0

16.0

0.0e+00

2.0e+05

4.0e+05

6.0e+05

8.0e+05

Average = 4.65 mWP
o

w
er

 (
m

W
)

N
u

m
b

er
 o

f
B

lo
ck

s

Number of Non-Zero Coefficients

Figure 3.27: IDCT Chip Measured Power Results at 1.32V, 14 MHz. This plot represents
over 2.8 million separate power measurements.

3.7. TESTING 59

mpegseqsannot.ps
112 � 65 mm

0

1

2

3

4

5

6

P
ow

er
 (

m
W

)

0

1

2

3

4

5

6

7

8

9

A
vg N

um
ber of N

Z
 C

oeffs

S
u

si

T
ig

er

F
lo

w
er

C
h

ee
rl

ea
d

er

B
ic

yc
le

B
al

le
t

Power

NZ Coeffs

Figure 3.28: IDCT Chip Measured Power Results at 1.32V, 14 MHz. Average Power Dissi-
pation per Sequence.

P, and B pictures in an MPEG sequence has been presented in section 2.5. We observe that
intra-coded macroblocks dissipate the most power. This is expected since intra blocks have
on average more non-zero coefficients due to lack of differential coding. We note that intra
macroblocks may appear in all three types of pictures with the constraint that I pictures
may only contain intra macroblocks. On the other hand, bidirectionally coded macroblocks
dissipate the least power: Such macroblocks have the most freedom in predictor picture
usage (both past and present) so that they are typically coded most efficiently and exhibit
a large number of zero-valued coefficients per block.

Our power measurements have indicated that blocks with the same number of non-
zero coefficients can exhibit a range of power dissipation. We have investigated this vari-
ation in power measurements by exercising the chip with blocks that contained a single
non-zero coefficient exhaustively spanning the entire position-value space (218 measure-
ments.) Figure 3.31 shows the average power dissipation among all possible 12-bit values
for each position within the 8�8 spectral block. We observe a maximum of 60% variation
from position to position. This is mainly due to a different number of multiplications re-
quired for each spectral position within the block. The surface plot of Figure 3.32 shows
power variation with respect to both block position and coefficient value. The two position
axes of Figure 3.31 have been collapsed to a single 64-position axis. We observe a slight re-
duction in power with decreasing magnitude. This is due to the fact that all multipliers in
the chip implement sign-magnitude arithmetic and exhibit reduced activity for small mag-
nitude numbers. Along the zero-value axis there is an abrupt reduction in power because
the arithmetic units are not active at all and power is only due to master clock distribution,
transposition memory operation and global control.

Turning our focus back to Figure 3.27 we observe that power dissipation shows strong
correlation vs. the non-zero coefficients because of the data-dependent processing algo-

60 CHAPTER 3. IDCT CORE PROCESSOR

allmpegs.ps
154 � 155 mm

0 16 32 48 64
Number of NZ Coefficients

0.0

5.0

10.0

15.0

P
ow

er
 (

m
W

at
ts

)

0.0e+00

5.0e+04

1.0e+05

1.5e+05

2.0e+05

N
um

ber of B
locks

0 16 32 48 64
Number of NZ Coefficients

0.0

5.0

10.0

15.0

P
ow

er
 (

m
W

at
ts

)

0.0e+00

5.0e+04

1.0e+05

1.5e+05

2.0e+05

N
um

ber of B
locks

0 16 32 48 64
Number of NZ Coefficients

0.0

5.0

10.0

15.0

P
ow

er
 (

m
W

at
ts

)

0.0e+00

5.0e+04

1.0e+05

1.5e+05

2.0e+05
N

um
ber of B

locks

0 16 32 48 64
Number of NZ Coefficients

0.0

5.0

10.0

15.0
P

ow
er

 (
m

W
at

ts
)

0.0e+00

5.0e+04

1.0e+05

1.5e+05

2.0e+05

N
um

ber of B
locks

0 16 32 48 64
Number of NZ Coefficients

0.0

5.0

10.0

15.0

P
ow

er
 (

m
W

at
ts

)

0.0e+00

5.0e+04

1.0e+05

1.5e+05

2.0e+05

N
um

ber of B
locks

0 16 32 48 64
Number of NZ Coefficients

0.0

5.0

10.0

15.0

P
ow

er
 (

m
W

at
ts

)

0.0e+00

5.0e+04

1.0e+05

1.5e+05

2.0e+05

N
um

ber of B
locks

Ballet Bicycle

Cheerleader

Average= 5.75 mW

Flower

Susi Tiger

Average= 4.66 mW Average= 4.57 mW

Average= 4.08 mW

Average= 4.65 mW

Average= 4.44 mW

Figure 3.29: Power Dissipation Profile for 6 MPEG Sequences. IDCT Chip Measured
Power Results at 1.32V, 14 MHz.

3.7. TESTING 61

macroblocks.ps
131 � 175 mm

0.0e+00 5.0e+04 1.0e+05 1.5e+05 2.0e+05
Number of Blocks

0 1 2 3 4 5 6 7 8 9 10

Power (mW)

0.0e+00 1.0e+04 2.0e+04 3.0e+04 4.0e+04 5.0e+04
Number of Blocks

0 1 2 3 4 5 6 7

Power (mW)

Macroblocks (I, B, P Pics)

Coded Macroblocks (B Pics)
Blocks in Bidirectionally-

Blocks in Backward-Coded
Macroblocks (B Pics)

Blocks in Forward-Coded
Macroblocks (P, B Pics)

Macroblocks (B, P Pics)
Blocks in No Motion-Compensated

Macroblocks (I, B, P Pics)

Coded Macroblocks (B Pics)
Blocks in Bidirectionally-

Blocks in Backward-Coded
Macroblocks (B Pics)

Blocks in Intra-Coded

Macroblocks (P, B Pics)

Blocks in No Motion-Compensated
Macroblocks (B, P Pics)

Blocks in Intra-Coded

Blocks in Forward-Coded

Chrominance Blocks

Luminance Blocks

Power

Number of Blocks

Power

Number of Blocks

Figure 3.30: Average Block Power Dissipation per MPEG Macroblock Type (Sequence
SUSI)

62 CHAPTER 3. IDCT CORE PROCESSOR

pavg.epsi
99 � 86 mm

0
1

2
3

4
5

6
7

0
1

2
3

4
5

6
7

0

0.5

1

1.5

Block Column [j]
Block Row [i]

P
ow

er
 (

m
W

)

Figure 3.31: IDCT Chip Measured Power Results at 1.32V, 14 MHz: Average Power Dis-
sipation per Block Position Across all Possible 12-bit DCT coefficient Values (1 NZ Coeffi-
cient per Block)

surfpower.ps
111 � 84 mm

−16
−8

0
8

16

0

16

32

48

64

1.6

1.8

2

2.2

2.4

2.6

2.8

Coefficient Value

Coefficient Position

P
ow

er
 (

m
W

)

Figure 3.32: IDCT Chip Measured Power Results at 1.32V, 14 MHz: Blocks Containing 1
NZ Coefficient of Magnitude � 16

3.7. TESTING 63

veripowercompare.ps
108 � 72 mm

0 10 20 30
Number of NZ Coefficients

0

2

4

6

8

10

12

14

P
ow

er
 D

is
si

pa
tio

n
(m

W
)

Pythia No Interconnect

Pythia+Interconnect

Measured Avg Power

Figure 3.33: Comparison of Simulated and Experimental Power Results

rithm. The average power dissipation for this data set is 4.65 mWatts at 1.32 V, 14 MHz.
The power savings exhibit diminishing returns as the number of non-zero coefficients in-
creases. This happens because the first 1-D IDCT stage produces a lot more non-zeroes at
its output as mentioned in section 3.4. As we move along the x-axis in Figure 3.27 most of
the gains come from the stage 0 only; the gains from the second stage become less signifi-
cant. At the average workload value though of 5.68 non-zero coefficients for this dataset,
power savings from both stages are significant.

Figure 3.33 compares the results obtained from our Pythia simulator for a set of 300
random blocks from the Cheerleader sequence with the corresponding measured averages
of Figure 3.27. Two sets of simulation results are shown: One set includes interconnect
capacitance estimation and the second set was obtained with interconnect estimation off.

3.7.3 Comparison with Past DCT/ IDCT VLSI Implementations

There have been numerous VLSI DCT/IDCT implementations in the literature. Tables 3.5-
3.7 summarize the specifications of recent high performance DCT/IDCT chips that use
distributed arithmetic and have no significant architectural differences.

The 1996 Toshiba macrocell [KFN+96] (Table 3.7) has very impressive power dissipa-
tion characteristics (10 mW @ 0.9V, 150 MHz). There are two reasons for the low power
dissipation: First, it is implemented in a much smaller feature size process (0.3 µm) than
the other two chips. Second, it is implemented in a triple-well low VT process which
permits aggressive voltage scaling to 0.9V. Moreover, the triple-well permits control over
the threshold voltage value (through the source-to-bulk potential). Such control is used to
raise the VT in idle periods and reduce standby leakage current. The authors maintain that

64 CHAPTER 3. IDCT CORE PROCESSOR

Area 21 mm2, 0.8 µm 2ML process
Supply Voltage 5V
Transistors 102K
Clock Rate/ Sample Rate 100 MHz/ 100 Msamples/sec
Power Dissipation N/A

Table 3.5
Mitsubishi Electric DCT/IDCT Processor [UIT+92]

Area 13.3 mm2, 0.6 µm 2ML process
Supply Voltage 2V/3.3V
Transistors 120K
Clock Rate/ Sample Rate 200 MHz @ 3.3V, 100 MHz @ 2V
Power Dissipation 0.35W @ 3.3V, 200 MHz / 0.15W @ 2V, 100 MHz

Table 3.6
Toshiba 1994 DCT/IDCT Macrocell [MHS+94]

Area 4 mm2, 0.3 µm 2ML process, triple well
Supply Voltage 0.9V (VT= 0.15V �0.1V)
Transistors 120K
Clock Rate/ Sample Rate 150 MHz / 150 Msamples/sec
Power Dissipation 10 mW @ 0.9V, 150 MHz

Table 3.7
Toshiba 1996 DCT/IDCT Macrocell [KFN+96]

3.7. TESTING 65

Area 7 mm2, 0.5 µm process
Supply Voltage 3V
Transistors 69K
Clock Rate/ Sample Rate 58 MHz / 58 Msamples/sec
Power Dissipation 250 mW @ 3V, 58 MHz

Table 3.8
AT&T Bell Labs 1993 IDCT Processor [BH95]

Chip Sw-Cap/sample
Matsui et al. [MHS+94] 375 pF
Bhattacharya et al. [BH95] 479 pF
Kuroda et al. [KFN+96] (scaled to same feature size) 417 pF
Present Work 190 pF

Table 3.9
Energy Efficiency Comparison Among DCT/IDCT Chips

if the process VT was 0.5V, the chip supply would increase to 1.7V and the power dissipa-
tion to 40 mW in order to maintain performance at 150 MHz. This macrocell is far more
interesting in terms of circuit design and implementation rather than architecture. In fact,
examination of the microphotographs of chips [MHS+94] and [KFN+96] reveals that they
are remarkably similar. Both of these chips will demonstrate similar switched-capacitance
per sample metrics after process normalization.

The final reference that we will examine is an AT&T Bell Labs IDCT processor [BH95]
that has a very different implementation from the previously described chips. Its specifi-
cations are listed in Table 3.8. It uses seven hardwired multipliers and exploits regularity
in the IDCT matrix after some row/column reordering. This design has been used in an
AT&T MPEG video decoder chip.

Table 3.9 shows the energy and the switched capacitance per sample for past IDCT
chips summarized above and compares the results with the current work. The specifica-
tion for [KFN+96] has been scaled up to account for a much smaller process feature size
(0:3µm) and threshold voltage (VT = 0:1�0:15V). The present work exhibits lower switched
capacitance requirements per sample than previous implementations by a factor of 2. The
switched-capacitance per sample metric takes into account only algorithmic and high level
architectural design decisions that reduce the total activity; it factors out parameters such
as clock frequency and supply voltage. It must be noted that the present chip employs
a higher degree of pipelining than the other ones for the sole purpose of reducing the
power supply and the switched capacitance metric penalizes such a design choice. Our
algorithmic choice has therefore been justified given that all past chips employ standard
algorithms performing a fixed number of operations per block.

Our final observation is that Figure 3.27 indicates that the power dissipation of the
IDCT chip improves significantly at lower bitrates (coarser quantization). This makes our

66 CHAPTER 3. IDCT CORE PROCESSOR

approach ideal for emerging quality-on-demand compression protocols. At low rates, the
present chip will exhibit a lot more efficiency vs. other implementations than Table 3.9
indicates.

3.8 Chapter Summary and Conclusion

We have demonstrated an ultra low power IDCT chip designed in a widely available
0:7µm high VT process. The chip demonstrates the lowest switched capacitance per sam-
ple among past IDCT chips presented in the literature. Low power operation has been
achieved through selection of a data-dependent algorithm, aggressive voltage scaling,
deep pipelining, extensive clock-gating and appropriate transistor-level circuit techniques.
The chip is fully functional and has undergone extensive testing. It dissipates 4.65 mW at
1.32V, 14 MHz.

Chapter 4

Adaptive Transform Coding

The input data of the DCT chip has very different statistical properties from the spectral co-
efficients that the IDCT chip operates on. In order to reduce the duty cycle of the DCT core
processor we have resorted to original adaptation techniques based on ideas suggested by
previous investigators.

Before proceeding with the description of the DCT core processor (chapter 5) we ex-
amine previous work in adaptive transform image and motion picture coding and survey
various proposed image classifiers and adaptation techniques. A number of important
ideas from this chapter have been embedded in the DCT processor design (i.e. classifica-
tion and adaptive precision) for power minimization.

4.1 Early Adaptive Schemes [TW71] [Gim75]

As early as 1971, Tasto and Wintz [TW71] had proposed an image compression strategy
based on an adaptive block quantizer. They classify each block into one of L categories and
they apply a different Karhunen-Loeve Transform with different precision and quantiza-
tion rules for each category. Their classification scheme defines three subimage categories:

1. Subpictures with much detail.

2. Subpictures with little detail and darker than average.

3. Subpictures with little detail and lighter than average.

This scheme is quite complicated because of the different transformations for each cat-
egory. A much simpler scheme based on activity classes was proposed by Gimlett [Gim75]
targetted to Fourier, Hadamard, Haar, Slant and Karhunen-Loeve transforms. Gimlett sug-
gests the following activity index to serve as a measure of the “busyness” of a subpicture
of N pels:

A=
N

∑
i=1

ai j Fi j (4.1)

67

68 CHAPTER 4. ADAPTIVE TRANSFORM CODING

or

A=
N

∑
i=1

aiF
2
i (4.2)

The Fi are the transform coefficients and the ai are weighting factors (i.e. unity, or in-
versely proportional to the variances of the Fi .) Gimlett refrains from suggesting a specific
coding scheme, but uses as an example a classification on the 25, 50 and 75 percent ordi-
nates of the cumulative distribution of A and subsequent use of adaptive quantization and
zonal sampling.

4.2 Chen and Smith Adaptive Coder [CS77]

Chen and Smith [CS77] have reinvented Gimlett’s results [Gim75] and presented a com-
plete methodology for designing an adaptive image coder based on a simple statistical
model of cosine transform samples. Although this work uses exactly the same classifier
as [Gim75] (eq. 4.2 with ai = 1), it enjoys seminal status in the adaptive image coding
literature and has been widely referenced.

Chen and Smith assume that each image pixel f (j;k) is a sample of a random process
with mean m. Thus, the mean and variance of the transform coefficients F(u;v) can be
computed as follows:

E[F(u;v)] =
4mc(u)c(v)

N2

N�1

∑
j=0

N�1

∑
k=0

cos
(2 j +1)uπ

2N
cos

(2k+1)vπ
2N

(4.3)

c(u) = 1=
p

2 if u= 0 and 1 otherwise (4.4)

E[F(0;0)] = 2m (4.5)

E[F(u;v)] = 0; (u;v) 6= (0;0) (4.6)

σ2
F(0;0) = E[F2(0;0)]�4m2 (4.7)

σ2
F(u;v) = E[F2(u;v)]; (u;v) 6= (0;0) (4.8)

The authors justify an invocation of the central limit theorem because each DCT coef-
ficient is a weighted sum of all the pixels in the original image. They conclude that the
probability density functions for the DC and AC coefficients separately can be modelled
by Gaussian PDFs:

pF(0;0)(x) =
1p

2πσF(0;0)

exp[�(x�2m)2

2σ2
F(0;0)

] (4.9)

pF(u;v)(x) =
1p

2πσF(u;v)

exp[� x2

2σ2
F(u;v)

]; (u;v) 6= (0;0) (4.10)

Given such a statistical model for the DCT coefficients, adaptivity lies in the assign-
ment of more bits to the higher variance subblocks and fewer bits to the lower variance

4.2. CHEN AND SMITH ADAPTIVE CODER [CS77] 69

chensmith.ps
141 � 59 mm

NORM

NORM
COEFF

DCT

VAR
MATRIX

BIT

BLOCK
CLASS
MAP

ALLOC
MATRIX

CODE

ENERGY
AC

FACTOR
NORM

CHANNEL

R(D)

CDF

1 BIT

MAXIMUM STDDEV

O
V

E
R

H
E

A
D

 IN
F

O
R

M
A

T
IO

N

IMAGE

QUANT
MAX

LLOYD

ALLOC

DECODE
QUANT

INV
NORM
INV IDCT

COEFF
NORMNORM

FACTOR

BIT

MATRIX

BLOCK
CLASS
MAP

IMAGE

Figure 4.1: Chen-Smith Transform Adaptive Coding System [CS77]

subblocks. This amounts to adaptive quantization (or normalization according to the au-
thors’ terminology.) Eq. 4.8 links the AC coefficient variance to a sum-of-squares of AC
DCT coefficients. Thus the classifier is defined as the AC energy in the (m; l)th subblock
(assuming 16�16 subblocks):

Em;l =
15

∑
u=0

15

∑
v=0

F2
m;l (u;v)�F2

m;l (0;0) (4.11)

Note that eq. 4.11 is equivalent to the Gimlett classifier (eq. 4.2) with ai = 1.

The real-time adaptive image coder works in two passes: During the first pass the
AC energy (eq. 4.11) of each subblock is computed and a cumulative distribution of the
classifier is constructed. Next, each transform block is classified in one of four equally
populated groups. The collective variance of the AC samples in each class is computed
(σ2

k;F(u;v);k2 f0;1;2;3g;(u;v) 6= (0;0)) and the bit assignment NBk(u;v) is determined using a
well known relation from Rate Distortion Theory [Dav72] [CT91] [NH95]:

NBk(u;v) =
1
2

log2

σ2
k;F(u;v)

D
; k2 f0;1;2;3g; (u;v) 6= (0;0) (4.12)

Equation 4.12 is the rate-distortion function R(D) for a Gaussian source given a fixed dis-
tortion D which in this particular case is the mean-square error between source data and
binary representation. This function computes the minimum bit assignment NBk(u;v) for
a fixed MSE distortion criterion and is used to determine bit allocation matrices for each
subblock class. Distortion D is initialized and the sum of all bit assignments NBk(u;v) is
iteratively computed until the desired bitrate for the image is achieved. DC coefficients
are assigned to 8 bits in each one of the four classes. The final step of the first pass is to
compute a common normalization factor to be applied before quantization. The authors
use the maximum standard deviation of those elements that were assigned to one bit using
eq. 4.12.

70 CHAPTER 4. ADAPTIVE TRANSFORM CODING

sac.ps
160 � 20 mmF (u,v)

T
F (u,v)
TN

F (u,v)
TN

^

CODE
RATE

DCT THR NORM QUANT
BUFFER

FIXED RATE

TO CHANNELIMAGE F(u,v)

T D

Figure 4.2: Chen-Pratt Scene Adaptive Coder [CP84]

During the second pass, the coefficient samples are multiplied by the normalization
factor and are optimally quantized using Max’s scheme (section 2.3.1). Then the data is
entropy-coded and overhead information is added to the bitstream. A block diagram of
the Chen-Smith coder is shown in Figure 4.1. The authors report very good results at 1
bit/pixel compression ration for two test images (PSNRs of 33 and 36 dB).

4.3 Scene Adaptive Coder [CP84]

In 1984, Chen and Pratt [CP84] attempted to remove the complexity of the previous two-
pass scheme and propose a very simple single-pass coder that still maintains a level of
adaptivity. The Scene Adaptive Coder is shown in Figure 4.2.

First, the input image undergoes a 16�16 two-dimensional DCT. The transform coef-
ficients F(u;v) undergo a thresholding process except for the DC F(0;0) as follows:

FT(u;v) =

�
F(u;v)�T if F(u;v)> T
0 if F(u;v)� T

(4.13)

The authors demonstrate two test pictures with 90% of their DCT coefficient magnitudes
below T = 3. The thresholding process (eq. 4.13) sets a major portion of the coefficients
to zero and limits the portion of the coefficients to be quantized and transmitted. The
threshold parameter T may vary with the global desired bitrate or it can be varied locally
on a subblock basis.

The processed coefficients FT(u;v) are then scaled by a feedback normalization factor D
that reflects the state of the rate buffer:

FTN(u;v) =
FT(u;v)

D
(4.14)

Quantization is simply a floating-point to integer conversion. Essentially the entire
normalization/ quantization process can be thought of as uniform quantization with a
variable stepsize D. No decision and reconstruction levels are required:

F̂TN(u;v) = bFTN(u;v)+0:5c (4.15)

The quantization process (4.15) will transform all the coefficients of fractional value to
zero and leave only a limited number of significant coefficients to be Huffman-coded and

4.4. SUBJECTIVELY ADAPTED IMAGE CODING FOR PROGRESSIVE TRANSMISSION [Loh84] 71

transmitted. The authors report PSNRs of 34.45 dB and 32.85 dB for lena and plane at 0.4
bits per pel.

The Scene Adaptive Coder can be thought of as similar to [CS77] with slightly different
normalization/quantization techniques and a time-shifted and averaged classifier: The
state of the rate buffer can be thought of as a measure of the AC coefficient energy in the
previously coded blocks. As a result the Scene Adaptive Coder must exhibit lower PSNRs
at the same bitrate given that the classifier does not depend on the currently coded block.
No such comparison is performed by the authors. The main advantage of this scheme is
that only one pass through the image is necessary.

4.4 Subjectively Adapted Image Coding for Progressive Trans-
mission [Loh84]

Lohscheller [Loh84] has suggested an adaptive image communication system using a clas-
sification algorithm adapted to the visual threshold performance of the human eye. This
communication scheme is not applied to image compression but rather to progressive im-
age transmission. The target of this research is to reduce average image transmission rates
by incorporating human interaction for selection of specific areas for buildup or rejection
of additional image sharpening.

Under this scheme, the image receiver is provided with a recognizable image using as
few bits as possible. The image buildup from stage to stage is realized without transmis-
sion of redundant information and the final image quality has no visual artifacts compared
to the original. Such goals are achieved through class-oriented determination of the num-
ber and sequence of the spectral coefficients to be transmitted.

Lohscheller defines the visibility threshold γuv of a spectral coefficient F(u;v) as the co-
efficient amplitude that results (after inverse transformation) in a just-visible stimulus for
the human eye. Comprehensive results of extensive psychovisual experiments are cited
to justify a certain set of minimum values for γuv. Then the block classifier is based on the
frequency distribution for the threshold exceedings of spectral coefficients. Lohscheller’s
classification scheme has no influence on the quantization of the DCT coefficients (no
adaptive quantization is performed as in [CS77] [CP84]). It only affects DCT coefficient
transmission control, i.e. the number and transmission sequence of the coefficients. More
specifically, the number and identity of spectral coefficients transmitted is determined us-
ing visibility threshold exceeding frequency distributions. On the other hand, transmis-
sion sequence is determined using coefficient variance information. An example 8-way
classification scheme computed for a set of 17 images is shown in Table 4.1.

To quantify the superiority of this algorithm, the author plots MSE vs. image transmis-
sion time for both visually adapted progressive DCT and “standard” DCT. As expected,
the MSE rolls off much more quickly in the progressive DCT. This comparison is of little
value since there are no means for rate control of the “standard” DCT. Lohscheller es-
sentially compares a progressively transmitted image with an incomplete non-progressive

72 CHAPTER 4. ADAPTIVE TRANSFORM CODING

Class Coeff. Number Transmission Sequence Transmission Bits
K1 1 1,1 10
K2 2 1,1 / 1,2 17
K3 3 1,1 / 1,2 / 2,1 23
K4 4 1,1 / 1,2 / 2,1 / 1,3 28
K5 6 1,1 / 1,2 / 2,1 / 2,2 36

1,3 / 3,1
K6 8 1,1 / 2,1 / 1,2 / 2,2 43

1,3 / 2,3 / 3,2 / 3,1
K7 12 1,1 / 2,1 / 2,2 / 3,1 56

3,2 / 1,2 / 1,3 / 4,1
2,3 / 3,3 / 1,4 / 1,5

K8 16 1,1 / 1,2 / 2,1 / 1,3 67
2,2 / 3,1 / 1,4 / 2,3
3,2 / 4,1 / 1,5 / 2,4
3,3 / 4,2 / 3,4 / 4,3

Table 4.1
Example Classification Using Lohscheller’s Visual Adaptive Scheme [Loh84]

image. A comparison of the visually progressive vs. some other progressive DCT (i.e. AC
coefficient magnitude prioritization [HDG92]) would have been much more effective.

4.5 Adaptive DCT in the Perceptual Domain [NLS89]

Ngan, Leong and Singh [NLS89]have proposed an adaptive cosine transform coding scheme
which incorporates human visual system (HVS) properties and employs adaptive quanti-
zation and block distortion equalization.

The authors exploit two aspects of the HVS in the design of the image coder. The first,
is the spatial bandpass characteristic of human vision. A generalized model of the HVS
can be represented by a function

H(ω) = (a+bω)e�cω (4.16)

where ω is the radial spatial frequency in cycles per degree of angle subtended by the
viewer, and a;b and c are modelling parameters, determining the shape of the HVS radial
frequency response.

Nill [Nil85] has posed the problem of the frequency domain physical significance of the
DCT and the intuitive meaning of its convolution-multiplication property. The use of the
DCT in image coding assumes an even extension if the original scene (section 2.1). This
causes loss of physical significance of the image representation in the DCT domain because
such altered scene is not viewable to the human observer. To overcome this problem, Nill
introduces a correction function A(ω) [Nil85]. The modified HVS function now becomes:

Ĥ(ω) =j A(ω) j H(ω) (4.17)

4.6. ADAPTIVE DCT BASED ON COEFFICIENT POWER DISTRIBUTION CLASSIFICATION [KMO87] 73

A two-dimensional circularly symmetric version the HVS can be defined as:

H̃(u;v) = Ĥ(ω) (4.18)

ω =
p

u2+v2

It is H̃(u;v) that is used to weigh the DCT coefficients in the perceptual domain:

F̂(u;v) = H̃(u;v)F(u;v) (4.19)

The second aspect of the HVS exploited is visual spatial masking. This effect causes
noise to be less perceptible in regions of high activity than in regions of low activity. The
authors estimate the activity C(m;n) of the (m;n)th block as the sum of the AC coefficients:

C(m;n) =
1

255

"
15

∑
u=0

15

∑
v=0

F̂m;n(u;v)
2

!
� F̂m;n(0;0)

2

#1=2

(4.20)

where F̂m;n(0;0) is the DC coefficient and F̂m;n(u;v) are the AC coefficients of the (m;n)th
block respectively. The activity C(m;n) is used to control an adaptive quantizer. Although
C(m;n) is very similar to previous classifiers [Gim75] [CS77], the authors use it in the op-
posite fashion than previous investigators. Blocks that exhibit a high activity index are
more coarsely quantized than blocks that exhibit a low activity. The authors attribute this
implementation decision to the effect of visual spatial masking.

Results are presented for LENA and PEPPERS. These images exhibit a 33.5 and 32.5 dB
at 0.4 bpp. No details are given as to how the SNR is measured (before or after weighting in
the perceptual domain.) Moreover, it is expected that the classification method employed
by the authors (coarse quantization in blocks of high activity as opposed to blocks of low
activity) will actually decrease the SNR value as opposed to a traditional scheme. No treat-
ment of this issue is offered. The authors’ conclusion is that given a certain compression
ratio, their visually weighted scheme produces subjectively superior results.

4.6 Adaptive DCT Based on Coefficient Power Distribution Clas-
sification [KMO87]

Kato, Mukawa and Okubo [KMO87] have proposed an adaptive DCT encoding method
based on coefficient power distribution (CPD) borrowing ideas form Vector Quantization
image compression [NH95]. Their particular classifier attempts to capture two major char-
acteristics of the DCT-coded subblocks:

� Positions of significant coefficients in the subblock.

� Power of significant coefficients.

74 CHAPTER 4. ADAPTIVE TRANSFORM CODING

Previous investigators up to this point have only been concerned with a single attribute
(power of AC coefficients.) The authors claim that a multi-dimensional classification can
produce increased coding efficiency.

First, the power distribution for the input DCT subblock is computed:

S(u;v) = F2(u;v) (4.21)

where F(u;v) denotes the (u;v) element of the input DCT subblock. S(u;v) represents the
coefficient power distribution (CPD). A certain number of predetermined CPDs is at hand
(Si) and each subblock is assigned a category index i based on the closest match between S
and Si for all i. The matching criterion Ji is defined as follows:

Ji = ∑
u

∑
v
[gfS(u;v)g�gfSi (u;v)g]2 (4.22)

g(z) =

� 1
2 log2z+a z> 1
0 z� 1

(4.23)

where Si(u;v) represents the ith predetermined CPD. Function g(z) has been determined
experimentally and is introduced on the grounds that the classification must be based
on the entropy of signals with variance z. The predetermined CPDs are designed from
a test sequence in a method similar to the LBG vector quantization codebook design al-
gorithm [LBG80]. The adaptivity is provided by adaptive assignment of variable length
codes (VLCs) based on the classification index i. The authors refrain from using adap-
tive quantization and bit allocation because a larger-value quantization error is introduced
when the statistical characteristics of DCT coefficients are different from the coefficients
used when the bit allocation matrices were initially calculated.

The authors present simulation results comparing a 65-class motion picture encoding
system with a system based on the Scene Adaptive Coder [CP84]. Their results indicate a
0.5-1.0 dB higher SNR than the Scene Adaptive Coder for the same bitrate. No information
is provided about the training set used for calculation of the 65 predetermined CPDs.

The main disadvantage of this adaptive scheme is that the determination of the clas-
sification index is a very computationally intensive operation and that the quality of the
compressed stream is highly dependent on the training set and the predetermined CPDs.

4.7 Spectral Entropy-Activity Classification [MF92]

Mester and Franke [MF92] introduce a two-dimensional feature space for classification of
image transform subblocks. The first feature is the block activity as suggested by Gimlett:

A=
N�1

∑
u=0

N�1

∑
v=0

j F(u;v) j; (u;v) 6= (0;0) (4.24)

Activity A is a measure of contrast and detail within a block. Yet, the authors maintain that
adaptation of an image transform coding system on A alone is not sufficient. Although

4.8. OTHER ADAPTIVE METHODS 75

in most transform block spectra only a small number of AC coefficients contain most of
the total AC energy and have relatively large magnitudes compared to the rest, this effect
is only guaranteed on average. There may be blocks where the AC energy is partitioned
among a large number of coefficients. Adaptive coding schemes based on activity alone
will produce significant distortions for such blocks that exhibit non-average behavior. The
distribution of the AC energy must also be considered by measuring the actual degree of
spectral energy compaction. For this purpose, the authors introduce the spectral entropy, a
quantity equivalent to the entropy of a discrete random variable [CT91] which measures
the degree to which its probability mass function is equally distributed among the experi-
mental values:

A = �
N�1

∑
u=0

N�1

∑
v=0

a(u;v) ln(a(u;v)); (u;v) 6= (0;0) (4.25)

a(u;v) =
j F(u;v) j

A
(4.26)

where A has been defined in eq. 4.24. Mester and Franke maintain that the spectral entropy
E is an excellent measure of energy compaction achieved by the transform. Low entropy
values occur if the energy is distributed among only a few coefficients and vice versa.

The authors have designed a 100-rectangular region 2D feature classification space for
10 separate values of A and E. The adaptive coder variable is threshold control equivalent
to [CP84]. Through subjective measurements, a threshold function t(A;E) has been deter-
mined. Threshold values grow with increasing activity A (visual masking in the presence
of high frequencies [NLS89]) and declining spectral entropy E.

In order to study the performance of this scheme, the authors coded (with no quanti-
zation) a set of 17 images using adaptive thresholding. Resulting images were reported
to be of very high quality when observed under standard viewing conditions. In this set
of images, the number of supra-threshold DCT coefficients varied between 2 and 7.5 with
an average of four. No quantitative image quality results (in terms of PSNR or MSE) are
reported.

4.8 Other Adaptive Methods

Similar treatment of high-magnitude DCT coefficients appears in [HDG92]. The authors
have proposed a prioritized DCT for compression and progressive transmission of im-
ages (PDCT). Images are DCT coded and the resulting coefficients are partially prioritized
in a decreasing magnitude order. The number of passes as well as the magnitude parti-
tion ranges are parametrised. Coded position information is also embedded with minimal
overhead. The authors show that this scheme results in steep PSNR vs. bitrate curves
which confirms the large perceptual significance of high-magnitude DCT coefficients.

76 CHAPTER 4. ADAPTIVE TRANSFORM CODING

WORK CLASSIFIER ADAPTATION TECHNIQUE

[Gim75] AC Energy Adaptive Quantization
[CS77] AC Energy Adaptive Quantization
[CP84] Rate Buffer Status Adaptive Threshold Control

[AC Energy of Previous Blocks] Adaptive Quantization
[Loh84] Frequency Distribution of Coefficient Transmission Control

Spectral Threshold Exceedings
[NLS89] Visually Weighted Sum of Adaptive Quantization

AC Coefficients & Rate Buffer Status
[KMO87] Coefficient Power Distribution VLC Assignment
[MF92] AC Energy & Spectral Entropy Adaptive Threshold Control

Table 4.2
DCT-based Adaptive Coders

4.9 Chapter Summary and Conclusion

Table 4.2 summarizes the adaptive schemes presented so far in terms of the classifier and
the adaptation technique used. References [Gim75][CS77][NLS89] and [MF92] agree that
the AC Energy captures an important characteristic of the DCT subblock and use it as a
classifier to modify compression parameters. Interestingly, previous investigators use the
AC Energy in a very different fashion. [Gim75][CS77] allocate more bits to high-energy
blocks and less bits to low-energy blocks in order to minimize mean square error. On the
other hand, [NLS89] and [MF92] do exactly the opposite. They are not interested in mini-
mizing MSE because it is not always a good indicator of compressed image quality. They
take into account human visual system properties, one of which is visual masking. Visual
masking results in much higher error tolerance in regions of high activity. For this reason,
less bits are allocated for high-energy subblocks. The other feature used to characterize im-
age subblocks is information about the position of the high-magnitude coefficients within
the block. References [Loh84] [KMO87] and [MF92] have proposed different classifiers to
capture the energy distribution within a DCT subblock.

The most popular adaption technique is adaptive quantization employed by [Gim75]
[CS77] [CP84] and [NLS89]. On the other hand, references [KMO87] and [MF92] use adap-
tive VLC assignment and adaptive threshold control respectively. One disadvantage of
adaptive quantization is that it can produce large quantization errors for subblocks that
have substantially different statistical characteristics from the training set used to derive
the bit allocation matrices. Advantages include simplicity, low overhead and probably
better compression ratio.

We observe that all classifiers examined use spectral domain information. Moreover,
all adaptation techniques operate on post-DCT computation data. For a power-conscious
image coding system it would be highly desirable to use classification information in or-
der to save on energy-consuming arithmetic operations during the transformation proce-
dure itself. One of the problems addressed in this thesis is the selection of an appropriate

4.9. CHAPTER SUMMARY AND CONCLUSION 77

pel-domain classifier and adaptation technique to reduce arithmetic operations during the
actual DCT computation. This is the subject of the next chapter.

78 CHAPTER 4. ADAPTIVE TRANSFORM CODING

Chapter 5

DCT Core Processor

This chapter describes the design, implementation and testing of a low power DCT core
processor targetted to low power video (MPEG2 MP@ML) and still image (JPEG [Wal91])
applications. The chip exhibits two innovative techniques for arithmetic operation reduc-
tion in the DCT computation context along with standard voltage scaling techniques such
as pipelining and parallelism. The first method exploits the fact that image pixels are lo-
cally well correlated and exhibit a certain number of common most significant bits. These
bits constitute a common mode DC offset that only affects the computation of the DC
DCT coefficient and is irrelevant for the computation of the higher spectral coefficients.
This observation follows directly from the linearity of the transform. The DCT chip has
adaptive-bitwidth distributed-arithmetic computation units that reject common most sig-
nificant bits for all AC coefficient computations, resulting in arithmetic operations with
reduced bitwidth operands thus reducing switching activity. We call this method MSB
rejection (MSBR).

The second method exploits the fact that in image and video compression applications,
DCT is always followed by a quantization step which essentially reduces the precision of
the visually insignificant higher frequencies. The DCT chip allows the user to program the
desired precision of each spectral coefficient on a row-by-row basis so that no unnecessary
computation is performed if the precision will be lost anyway due to quantization. Ad-
ditional adaptation in computation precision is provided by a row-column peak-to-peak
detector that classifies each block row and column into one of four classes of computation
precision for maximizing image peak SNR (PSNR) and minimizing the number of arith-
metic operations. We call this method row-column classification (RCC). The chip user can
define precisely all four classes in addition to the desired precision per coefficient per class.

5.1 DCT Algorithm and Chip Architecture

Our DCT unit implements a row-column Distributed Arithmetic version of the Chen [CSF77]
fast DCT algorithm enhanced with the activity-reduction methods outlined above namely
MSB rejection and row classification.

79

80 CHAPTER 5. DCT CORE PROCESSOR

dctblockdiagram2.ps
153 � 92 mm

+

+

+

+

-

-

-

-

RAC0

RAC1

RAC2

RAC3

RAC4

RAC5

RAC6

RAC7

+

+

+

+

-

-

-

-

RAC0

RAC1

RAC2

RAC3

RAC4

RAC5

RAC6

RAC7

MSB
REJECTION

REJECTION
MSB

CLASSIFIER

ROW

T
R

A
N

S
P

O
S

IT
IO

N
MSB

REJECTION

REJECTION
MSB

CLASSIFIER
COLUMN

IMAGE

DATA

IN
DCT

DATA

OUT

D0

D1

D2

D3

D4

D5

D6

D7

D0

D1

D2

D3

D4

D5

D6

D7

Sign Extension Detection

MSB Equality Detection

Figure 5.1: DCT Core Processor Block Diagram

The first step of the Chen algorithm is essentially a factorization of the DCT-II [RY90]
matrix such that the subsequent computation of the even coefficients is fully separated
from the computation of the odd coefficients. The 8-point 1-Dimensional DCT can be ex-
pressed as follows:

2
664

X0

X2

X4

X6

3
775 =

1
2

2
664

A A A A
B C �C �B
A �A �A A
C �B B �C

3
775 �
2
664

x0+x7

x1+x6

x2+x5

x3+x4

3
775 (5.1)

2
664

X1

X3

X5

X7

3
775 =

1
2

2
664

D E F G
E �G �D �F
F �D G E
G �F E �D

3
775 �
2
664

x0�x7

x1�x6

x2�x5

x3�x4

3
775 (5.2)

where

A= cos
π
4
; B= cos

π
8
; C = sin

π
8
; D = cos

π
16

; E = cos
3π
16

; F = sin
3π
16

; G= sin
π
16

(5.3)

Figure 5.1 shows a block diagram of the system architecture. It consists of two 8-point
1D DCT stages with a transposition memory structure in between. The transposition mem-
ory used is identical to the one used in the IDCT chip (Figure 3.6).

5.1. DCT ALGORITHM AND CHIP ARCHITECTURE 81

We will first concentrate on the basic functionality of this subsystem, ignoring for the
moment the row and column classifiers that reduce the computation precision and the control
blocks named MSB rejection that implement a sliding computation window that rejects
common most significant bits and sign extension bits for the core computations.

Input pels are shifted into registers D0 through D7 of the first stage at a rate of one
sample per clock. The subsequent column of adders and subtractors perform the first
“butterfly” step contained in the last column vectors of equations 5.1 and 5.2. Data is then
loaded into 8 shift registers that repackage the data into two 4-bit addresses that serially
feed the ROM and ACcumulators (RAC0-RAC7) MSB first. Each RAC is a distributed
arithmetic structure (Figure 2.1) that implements the dot product of the 4-element even
(odd) processed pel vector and a row of the 4�4 coefficient matrix in eq. 5.1 (5.2). The
ROM within each RAC contains linear combinations of the coefficient matrices row vector
elements as eq. 2.13 suggests. Once every 8 cycles (given that pel sums and differences are
rounded to 8 bits) the 8 dot products have assumed their final values within each RAC.
The ROM within each RAC is a 16 by 10-bit wide structure, whereas the adder is 20-bit
wide to accommodate continuously increasing operands due to the left logical shift in
the accumulator feedback path. We should mention that there is no standard that defines
minimum arithmetic precision requirements for the DCT (as opposed to the IDCT) and the
implementation details are entirely left to the designer. Our choice of internal arithmetic
bitwidths yields transformed images of very high quality with PSNRs typically in excess
of 45 dBs. A detailed diagram of the DCT RACs in Figure 5.1 is shown in Figure 5.2. The
ROM contents are labelled as follows: If the row vector [A0 A1 A2 A3] is replaced with a row
of either constant matrix in equations 5.1 and 5.2, the resulting RAC computes the vector
element in the same row position as the matrix row on the left-hand side of equations 5.1
and 5.2. We defer the discussion of the “Qualifying Pulse” until section 5.1.1.

Subsequent processing involves loading the results of the 8 distributed arithmetic com-
putations in a transposition structure (1st stage) or loading in an 8-wide parallel-to-serial
register that will output the coefficient stream at a rate of one sample per clock (2nd stage.)

Incoming pels are 8-bit wide unsigned integers. The result of the butterfly step is 9-bit
2’s complement and is rounded to 8 bits. The results of the 1st stage 8 distributed arith-
metic computations are 20-bit 2’s complement and are rounded to 11-bit 2’s complement
before being passed to the second stage. The result of the second stage butterfly stage is
12-bit 2’s complement rounded to 11-bit 2’s complement. Second stage RACs 1-7 use only
8 significant bits of those 11 (using a sliding computation window as explained in section
5.1.1). RAC0 though uses the full 11 bits due to its high visual significance. The results of
all RACs are 20-bit 2’s complement rounded to 12-bit 2’s complement before being shifted
out of the chip.

5.1.1 MSB Rejection (MSBR)

We now focus on the mechanics of MSB rejection. Let us focus on the top half of the
block diagram (both stages) in Figure 5.1. Due to spatial correlation in natural images,
pel sums x0+ x7;x1+ x6;x2+ x5;x3+ x4 (equation 5.1) are likely to have a number of equal

82 CHAPTER 5. DCT CORE PROCESSOR

racdct.ps
121 � 93 mm

x2
RESULT

0 1 3 4 5 6 7X3 X3 X3 X3 X3 X3 X3

0 1 2 3 4 5 6 7X1 X1 X1 X1 X1 X1

0 1 2 3 4 5 6 7X0 X0 X0 X0 X0 X0 X0 X0

0 1 2 3 4 5 6 7X2 X2 X2 X2 X2 X2 X2

2X3

X1 X1

X2

0

A1
A0

A1+A0
A2

A2+A0
A2+A1

A2+A1+A0
A3

A3+A0

A3+A1+A0
A3+A1

A3+A2+A1+A0

A3+A2
A3+A2+A0
A3+A2+A1

+

4x
16

 A
d

d
re

ss
 D

ec
o

d
er

+/-
Ts

0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
0x0A
0x0B
0x0C
0x0D
0x0E
0x0F

Qualified CLK

ROM ADDRESS

Qualifying Pulse

CLK

MUX

ACCUMULATOR

ADDRESS SHIFT REGISTERS

ROM

(sign timing signal)

Figure 5.2: DCT ROM and Accumulator (RAC)

most significant bits. This statement will be quantified in section 5.2 where we evaluate the
performance of this scheme. By definition (eq. 2.13) all Distributed Arithmetic ROMs store
zero at address zero. Moreover, the ROMs within RAC1, RAC2, and RAC3 also store a zero
at location 15 (0xF). Let us recall that location 0xF in a Distributed Arithmetic ROM stores
the sum of all elements of the constant vector (eq. 2.13 with bkn = 1). We observe from eq.
5.1 that all the rows of the 4�4 coefficient matrix except for the top row have elements
that sum up to zero. Therefore, locations 0xF within those corresponding 3 ROMs store
a zero. To summarize our observation, we have just shown that locations 0x0 and 0xF
within RAC1, RAC2 and RAC3 contain the value zero. This observation implies that equal
most significant bits among pel sums have no effect on the total outcome of RAC1-RAC3 and can
therefore be discarded from the computation. The boxes labelled MSB Equality Detection detects
the first different bit among pel sums starting from the most significant bit position. This
information is used to produce the Qualifying Pulse of Figure 5.2 and only enable RACs
1-3 when the address at the corresponding ROM inputs refers to a non-zero-valued ROM
location. An example of MSB rejection is shown in Figure 5.3(a).

RACs 1-3 therefore need less than 8 cycles on average to compute their corresponding
dot products. This reduced duty cycle is exploited with the mechanism outlined in Figure
5.2 that disables the RACs in question in the presence of irrelevant inputs. We note that
RAC0 has nonzero content at location 0xF (4A according to eq. 5.1) and therefore does not
participate in this scheme. It is always clocked.

5.1. DCT ALGORITHM AND CHIP ARCHITECTURE 83

msbrexample.ps
73 � 52 mm

11010111
11011010
11011001
11010001

11110111
11110011
11110110
11110101

these bits
RACs 1-3 only see

these bits
RACs 4-7 only see

Rejected Bits Rejected Bits

(a) (b)

LSBMSB MSB LSB

Figure 5.3: MSB Equality Detection and Sign Extension Detection Example

A similar method (but not 100% equivalent) has been applied to the pel differences
x0� x7;x1� x6;x2� x5;x3� x4 (equation 5.2) at the bottom half of Figure 5.1 (both stages).
Equation 5.2 implies that RACs 4-7 do not store zeroes at locations 0xF because the rows
of the corresponding coefficient matrix do not sum to zero. Yet, another important obser-
vation implies that MSB rejection can be applied. Differences of highly correlated samples
are very likely to result in small positive or negative values. Obviously, sign extension bits
(either 0 for positive or 1 for negative values) do not affect the Distributed Arithmetic final
results. The boxes labelled Sign Extension Detection detect the first different non-sign exten-
sion bit among the four pel differences. This information is used to reduce the duty cycle
of RACs 4-7 in a fashion equivalent to the method applied to the pel sums. An example of
sign extension detection is shown in Figure 5.3(b).

MSB rejection can be applied to all RACs on a row and column basis except for RAC0
(in both stages) which computes the DC coefficient among parts of other coefficients as
well. Simulation experiments indicate that this method can reduce the duty cycles of the
RAC units by a factor of 2 with no loss in arithmetic precision. This statement will be
quantified in section 5.2.

5.1.2 Row-Column Classification (RCC)

As opposed to MSBR, Row-Column classification (RCC) reduces the overall signal activity
by introducing a small error in the arithmetic computation. RCC sets an upper bound on
the number of clocks that each RAC in Figure 5.1 will use to compute its corresponding dot
product. As described in section 2.2.1, the DA operation (MSB first) can be thought of as a
successive approximation operation where each cycle an extra bit from each element of the
data vector is used to refine the final result. The RAC cycle upper bounds are implemented
by user-programmable state registers within the chip and coupling to the preexistent (for
MSBR) accumulator clock gating mechanism. The state registers store a clock mask which
is ANDed with the clock mask generated by the MSB rejection mechanism. We should note
that the cycle upper bounds refer to the maximum number of clock cycles a RAC is being

84 CHAPTER 5. DCT CORE PROCESSOR

class.ps
146 � 43 mm

DCT DCT

CLASSIFIER CLASSIFIER

ADAPTIVE

QUANTIZER

TRADITIONAL ADAPTIVE TRANSFORM FRAMEWORK

AC ENERGY

FIXED

QUANTIZER

PROPOSED ADAPTIVE TRANSFORM FRAMEWORK

??

Figure 5.4: Traditional vs. Proposed Adaptive Transform Framework

clocked after MSB rejection has eliminated common most significant bits from the serial
address registers. The user has serial access to the state registers through an IEEE Standard
1149.1-1990 Test Access Port (TAP) [IEE90b]. When the maximum number of cycles for
a particular RAC has been reached and there are still data bits that await processing, the
RAC simply powers down and uses its current dot product as an approximation of the final
result. Please note that due to our MSB-first implementation of the Distributed Arithmetic
Unit (Figure 5.2) stopping a RAC before it reaches its final value introduces scaling by a
factor 2�n where n is the number of remaining cycles required to complete the computation
using full precision. An additional shift-only feedback path has been provided in each
RAC (Figure 5.2) which does not engage neither the ROM nor the adder in order to undo
this scaling.

We wish to provide additional adaptivity in the variable precision mechanism for fur-
ther power and/or quality gains. In order to minimize the truncation noise introduced by
the cycle upper bounds described above, we employ a row classifier for the first 1D stage
and a column classifier in the second 1D stage. The idea is to have increased cycle upper
bounds for rows (columns) that exhibit high “activity” (low correlation) and decreased
bounds for rows (columns) exhibiting low activity (high correlation). We have verified
that such a scheme will reduce the mean square error introduced for constant average
RAC duty cycle. Quantitative simulation results will be presented in section 5.2.

Block classifiers proposed in the literature ([Gim75] [CS77] [MF92] etc.) cannot be ap-
plied in the present case because they all assume the availability of AC DCT coefficients.
Figure 5.4 illustrates the difference between previously proposed classification schemes
and the current requirements. The difference stems form the fact that we wish to use
classification as a means to reduce computation while keeping quantization parameters
constant as opposed to using classification for adapting the quantization matrix. We have
considered using a block classifier based on the spectral coefficients of the previous block.
This option is not attractive because the previous block may have rather different content
than the present one. An additional problem is that such a scheme would cause bubbles
in the pipelined structure of the system, since the classifier would not be available in time
for the next pipelined block.

5.1. DCT ALGORITHM AND CHIP ARCHITECTURE 85

peppersacst0.ps
74 � 52 mm

0

20000

40000

60000

80000

100000

120000

0 50 100 150 200 250

A
bs

ol
ut

e
S

um
 o

f A
C

 D
C

T
 C

oe
ffs

Peak-To-Peak Pixel Amplitude

Image PEPPERS Stage 0

peppersacst1.ps
74 � 52 mm

0

50000

100000

150000

200000

250000

300000

0 50 100 150 200 250300 350 400 450 500

A
bs

ol
ut

e
S

um
 o

f A
C

 D
C

T
 C

oe
ffs

Peak-To-Peak Pixel Amplitude

Image PEPPERS Stage 1

Figure 5.5: Correlation Between Proposed and Standard Classifier

Our requirements for an appropriate classifier geared to DCT computation reduction
are:

� The classifier must be a function of the space domain pels and not a function of the
transform domain coefficients.

� The classifier must be substantially correlated to prior proven classifiers such as the
absolute sum of AC coefficients.

� The classifier must be a simple and easily computed function of the space domain
pels. It should not add substantially to the total computational load otherwise energy
savings won’t be achieved.

We found that the peak-to-peak pixel amplitude per each row (PPA) has the potential
to meet all three requirements. It is a function of the space domain pels (max(xi)-min(xi))
and is easy to compute. Furthermore, it exhibits substantial correlation with a widely used
classifier:

N

∑
i=0

j Xi j (5.4)

Figure 5.5 shows a scatter plot for the natural image PEPPERS that indicates substantial
correlation between the proposed and standard classifier for both DCT stages. Table 5.1
lists the sample correlation between the two classifiers for a set of 11 test images. Figure
5.6 shows the cumulative distribution function for the PPA classifier for both DCT stages.
The data has been collected from the set of 11 images listed in Table 5.1. We choose to
divide all rows into four different classes defined by the 25, 50 and 75% ordinates of the
distribution in agreement with [CS77]. Such classification results in equally populated
classes. The PPA thresholds for each class are 6,15,37 for stage 0 and 5,12,29 for stage 1.
The cycle bounds used for an initial design iteration are listed in Table 5.2. RAC0 in both
stages has no cycle limit whatsoever and always carries its computation to full precision.
Section 5.2.1 describes a systematic procedure for computing acceptable cycle bounds.

86 CHAPTER 5. DCT CORE PROCESSOR

Image Stage 0 Stage 1
CATHEDRAL 0.98763 0.98656
COUPLE 0.98429 0.98490
EUROPE 0.98423 0.98438
FLOWER 0.98123 0.97977
GIRL 0.97998 0.98307
LENA 0.98016 0.97932
MANDRILL 0.97808 0.98540
PEPPERS 0.97921 0.97519
PLANE 0.98647 0.98457
VAN GOGH 0.98624 0.98731
WATER 0.98431 0.98930

Table 5.1
Sample Correlation of PPA vs. AC DCT Coefficient Sum Classifier for 11 Test Images

classes.ps
161 � 57 mm

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n

Classifier (PPA)

Stage 0

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n

Classifier (PPA)

Stage 1

CLASS 3

CLASS 2

CLASS 1

CLASS 0

CLASS 3

CLASS 2

CLASS 1

CLASS 0

Figure 5.6: Image Row/Column Classification Threshold Determination

RAC1 RAC2 RAC3 RAC4 RAC5 RAC6 RAC7
Class 0 8 6 6 4 4 3 2
Class 1 8 6 6 4 4 0 0
Class 2 6 4 4 0 0 0 0
Class 3 4 0 0 0 0 0 0

Table 5.2
RAC Cycle Upper Limits Per Class

5.2. ALGORITHM AND ARCHITECTURAL EVALUATION 87

classifier.ps
120 � 51 mm

E

E

COMPA

B
A>B

COMPA

B
A>B

SUB

B

A
A-B

PEL DATA IN

CLK

D1

D0

ROW/COLUMN MAX

ROW/COLUMN MIN
PPA

CLASSIFIER

Figure 5.7: Row/Column Classifier Implementation

RCC is a simple and elegant way of trading off power dissipation and image quality
with minimal circuit overhead (monitoring and clock gating mechanisms) and minimal
image quality degradation in the mean square error sense. The PPA classifier is computed
at each stage on a row (stage 0) or column (stage 1) basis using the circuit of Figure 5.7.
This subsystem is contained within the row/column classifier blocks of Figure 5.1. The
two comparators ensure that register D0 holds the row (column) maximum element and
D1 holds the row (column) minimum element. The subtractor computes the maximum
absolute difference (PPA classifier). The classifier is compared downstream with three
user-supplied thresholds and the row (column) class identifier (0-3) is computed. The class
identifier is used to select the appropriate set of RAC cycle upper limits for the distributed
arithmetic computations.

5.2 Algorithm and Architectural Evaluation

A C model has been written that simulates the exact bitlevel behavior of the DCT processor
before the design was committed to schematics. This high-level model has been used as
a testbed in order to quantify the effect of the original methods in this work. This section
summarizes architectural level simulation results. The 11 test images of Figure 5.8 have
been used as an input to the simulator.

The first priority was to verify that there is indeed spatial correlation in typical images
at the block row/column level and that the MSB rejection method would be capable of
reducing the average number of operations (RAC accumulations) by a significant amount.
Figure 5.9 displays histograms of RAC dot product computations vs. arithmetic bitwidth
separately for each DCT stage. An arithmetic bitwidth of n indicates that a RAC unit has
been clocked n cycles and thus has performed n ROM lookups and accumulations. This
is equivalent to saying that the RAC in question has performed a dot product where the
bitwidth of each element of the first (variable) vector was n bits.

In the absence of MSB rejection we would not have observed variable-bitwidth dot

88 CHAPTER 5. DCT CORE PROCESSOR

allpicts.ps
134 � 197 mm

WATER

FLOWER GIRL LENA

MANDRILL PEPPERS PLANE

VAN_GOGH

CATHEDRAL COUPLE EUROPE

Figure 5.8: Images Used for Architectural Experiments

5.2. ALGORITHM AND ARCHITECTURAL EVALUATION 89

dctbitwidthhisto.ps
112 � 69 mm

0 1 2 3 4 5 6 7 8 9 10 11
Arithmetic Bitwidth

0e+00

2e+05

4e+05

6e+05

8e+05

N
um

be
r

of
 O

pe
ra

tio
ns

Stage 0
Stage 1

Figure 5.9: Histogram of Dot Product Operations vs. Bitwidth of Variable Vector in the
Presence of MSB Rejection

product operations as the histograms indicate. The average dot product bitwidth would
be 8 for stage 0 and 8.375 for stage 1. At this point, let us recall that RAC0 of stage 1 is
always clocked 11 cycles (as opposed to 8) to achieve higher image quality. For this reason,
the average for stage 1 is higher than 8 cycles. On the other hand, MSB rejection reduces the
averages to 4.668 and 4.536 for stages 0 and 1 respectively. We conclude that MSB rejection
can yield 40% savings in the number of operations required (RAC accumulations) and has
the potential of being an interesting technique for power savings. The expected overhead
is low: The duty cycle of the MSB detection mechanism is one out of 8 cycles, every time a
new row (column) is loaded into stage 0 (stage 1) of the chip.

We now compare the total number of operations (additions) per block required by our
DCT algorithm with that of the conventional Chen algorithm (distributed arithmetic im-
plementation) that performs a constant number of operations per block. Figure 5.10 dis-
plays the number of additions per block required for the first 1000 blocks of image PEP-
PERS (Figure 5.8). The results plotted do not include computation savings due to RCC
which has been disabled for this simulation. The graph also displays the number of ad-
ditions required for the distributed arithmetic version of the Chen algorithm [CSF77] (Ta-
ble 2.1). We observe that our MSBR-enhanced DCT algorithm requires about 40% fewer
additions than the standard Chen algorithm implemented in a number of VLSI chips
[SCG89][UIT+92][MHS+94]. We note that both computation algorithms displayed in Fig-
ure 5.10 include an equal number of ROM accesses in addition to the required arithmetic
operations. MSBR also results in reduced ROM accesses by the same percentage (40%).

The quantitative results of Figures 5.9 and 5.10 indicate that the MSBR enhanced Chen
DCT has substantial potential for low power and performs a smaller number of arithmetic
operations when operating on image data than the most efficient DCT algorithms that

90 CHAPTER 5. DCT CORE PROCESSOR

dctops2annot.ps
117 � 76 mm

0 200 400 600 800 1000
Time (Block Sequence Number)

0

500

1000

1500

N
um

be
r

of
 A

dd
iti

on
s

Chen (Conventional DA)

Proposed Average
Proposed Instantaneous

Figure 5.10: Comparison of DCT Additions (no RCC)

have been reported in the literature. The idea behind the algorithmic efficiency is identical
to the one developed in chapter 3: We opt for algorithms that perform a variable number
of operations per block depending on data statistical properties and result in an average
lower than the most efficient fast algorithm that is not optimized for the the particular
input data distribution.

Having established the potential of MSBR, we proceed to investigate the row/ column
classification method.

5.2.1 Row/ Column Classification Investigation

It is important to realize that MSB rejection does not reduce the arithmetic precision of
the computation, but the row/column classification does. RCC essentially imposes a trun-
cation on the input data in both 1D IDCT stages. We can model the loss in precision as
two additive truncation noise sources, one per stage. These sources appear as t0[n] and
t1[n] in Figure 5.11(a). In a typical DCT-based compression system, the DCT computation
is followed by quantization. The quantization process applies large thresholds to the vi-
sually less significant higher spatial frequencies and produces a lot of zeroes at its output
for purposes of compression. The process of quantization and inverse quantization at the
image receiver can be modelled as an additive noise source q[n] (Figure 5.11(b)) that results
in image degradation (lossy compression). The main motivation for the RCC method is
the fact that in almost all DCT applications, images incur quantization noise q[n]. If we
could fold this process inside the computation and take advantage of the mandatory loss
in precision, we could save computation and power while not affecting image quality. The
quantization in a system such as the one in Figure 5.11(a) can be simply implemented as a

5.2. ALGORITHM AND ARCHITECTURAL EVALUATION 91

qnoise2.ps
124 � 71 mm

X[n]

X[n]+ TRANSPOSITION + 1D DCT1D DCT

TRANSPOSITION 1D DCT +1D DCT

q[n]

x[n]

t0[n] t1[n]

x[n]

(a)

(b)

Figure 5.11: Additive Truncation/Quantization Noise Model

right shift of the data to get rid of the zeroes that have replaced the least significant bits of
the computed coefficients due to premature computation inhibition.

The question we wish to answer at this point is what are the optimal cycle bounds
for every row/column class so that the number of cycles that each RAC unit is clocked is
minimized and the image PSNR (eq. 2.38) is maximized. The DCT chip has 56 individual
degrees of freedom (2 stages � 4 classes � 7 cycle bounds per class). An additional ques-
tion is what are the savings that we obtain (in terms of reduced cycles and increased PSNR)
by having four separate classes instead of not classifying the rows and columns at all but
simply imposing the same computation inhibition limits on all block rows and columns.
We should note that we use the terms “computation inhibition limits”, “cycle bounds” and
“cycle limits” interchangeably.

The starting point for our investigation was the computation inhibition limits of Table
5.2 which were determined by trial and error and visual inspection of the resulting com-
pressed images. Table 5.3 list the average RAC cycles and PSNR that have been obtained
from our simulator implementing MSBR and RCC with the cycle limits of Table 5.2 (same
limits for both stages). As a reminder, RAC0 of both stages is clocked to completion and
its computation is never inhibited.

The compressed images of Table 5.3 are quite acceptable visually. RCC has produced
images of good quality (similar to ones produced by a full precision DCT followed by
quantization) at an additional 35-40% savings in arithmetic operations. For comparison
purposes, in Table 5.4 we list the PSNRs obtained for our 11 test images when compressed
with a conventional high precision DCT algorithm and quantized with one-half and one
times the step size of the matrices of Table 5.5 and 5.6 respectively. Quantization matrices
in Tables 5.5 and 5.6 are listed as example luminance and chrominance matrices in the
JPEG compression standard [PM92].

92 CHAPTER 5. DCT CORE PROCESSOR

Image Cycles PSNR (dB) Cycles (No RCC) PSNR (dB) (No RCC)
CATHEDRAL 2.70 34.837 4.15 45.133
COUPLE 2.67 37.701 4.14 45.463
EUROPE 2.98 35.294 4.33 45.152
FLOWER 3.65 33.315 5.15 44.719
GIRL 2.86 36.326 4.38 44.976
LENA 2.93 35.853 4.49 44.807
MANDRILL 3.90 32.604 5.47 44.441
PEPPERS 3.07 34.476 4.63 44.857
PLANE 2.67 34.929 4.23 45.063
VAN GOGH 3.92 30.641 5.56 44.594
WATER 2.36 39.653 3.54 45.489

Table 5.3
Average RAC Cycles and Image PSNR for the Cycle Limits of Table 5.2

Image PSNR (dB) (0.5 step) PSNR (dB) (1 step)
CATHEDRAL 35.811 33.508
COUPLE 37.516 35.722
EUROPE 39.734 31.776
FLOWER 32.390 30.242
GIRL 36.269 34.762
LENA 36.809 35.290
MANDRILL 32.082 29.183
PEPPERS 35.263 33.927
PLANE 37.410 35.578
VAN GOGH 30.613 26.111
WATER 42.169 40.378

Table 5.4
PSNRs for Conventional DCT plus Quantization

16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99

Table 5.5
Luminance Quantization Step Matrix

5.2. ALGORITHM AND ARCHITECTURAL EVALUATION 93

17 18 24 47 99 99 99 99
18 21 26 66 99 99 99 99
26 26 56 99 99 99 99 99
47 66 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99

Table 5.6
Chrominance Quantization Step Matrix

Although the cycle limits (Table 5.2) that have been picked with trial and error perform
very well, we should be able to do better with a systematic optimization procedure. An
exhaustive (per image) search is computationally intractable since it requires 956 iterations
(56 variables taking values from 0 to 8) which we estimate to take 4:3446 years on a Sparc
Ultra 60.

A fast algorithm has been devised to compute cycle limits that minimize PSNR degra-
dation. Our algorithm is illustrated in Figure 5.12. It begins by assigning all 56 cycle limits
the maximum value (8). Each iteration reduces one-by-one each one of the 56 cycle lim-
its by one and recomputes the image PSNR. When all limit decrements have been tried
and evaluated, the algorithm picks the decrement that reduced image PSNR by the least
amount and commits it. The next iteration follows the same procedure, but from a dif-
ferent starting point. The algorithm finishes after 448 iterations when all 56 variable cycle
limits are zero and returns the resulting average RAC cycles and PSNR per iteration. The
chip user can use this table to figure out how the chip should be programmed given a
minimum tolerable PSNR or given a maximum number of average RAC cycles. We ob-
serve that each one of the iterations is locally optimal, in the sense that the algorithm takes
the best possible step at each point. We can make no claim however that at each point
this particular algorithm maximizes PSNR and minimizes cycles. It is not always the case
that a collection of consecutive optimal steps reaches a globally optimum point. Never-
theless, the present optimization algorithm has on average produced better results (higher
PSNR given the same average computation cycles per RAC) than what we have achieved
manually and provides good insight into the capabilities of the DCT chip.

Figure 5.13 shows the path that the algorithm traces while reducing the average num-
ber of RAC cycles for image PEPPERS. The fact that the PSNR is not a monotonic function
of the number of iterations is attributed to finite precision in both the DCT and corre-
sponding IDCT procedure necessary for the PSNR calculation between the original and
processed image. The two bottom contour plots indicate the RAC cycle limits (for RACs
1-7) for all algorithmic iterations for both transform stages.

Figure 5.14 plots the achievable points that the optimization algorithm has yielded for
all 11 test images. The optimization algorithm has produced better results than our intel-
ligent guess for 8 out of 11 images. For images COUPLE, GIRL and LENA our intelligent

94 CHAPTER 5. DCT CORE PROCESSOR

optalgorithm.ps
72 � 199 mm

Decrement C0

Set C0-C55 to 8 (maximum)

Increment C0
Decrement C1

Increment C1
Decrement C2

Increment C54
Decrement C55

iter ++

Compute and

Compute and

Compute and

Compute and

store PSNR0

store PSNR1

store PSNR2

store PSNR55

PSNRi= max{PSNR0-55}

Decrement Ci

iter > 448 ?

No

Yes

END

Figure 5.12: Optimization Algorithm for Computation Inhibition Cycle Limits

5.2. ALGORITHM AND ARCHITECTURAL EVALUATION 95

algotraceannot2.ps
152 � 156 mm

1 2 3 4 5 6 7

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7

50

100

150

200

250

300

350

400

0 100 200 300 400 500
Algorithm Iteration

1

2

3

4

5
A

ve
ra

ge
 C

yc
le

s
P

er
 R

A
C

20

30

40

50

P
S

N
R

 (dB
)

CYCLE LIMITS STAGE 0

A
lg

o
ri

th
m

 It
er

at
io

n

A
lg

o
ri

th
m

 It
er

at
io

n

RAC Identifier RAC Identifier

6

5

4

3

7

4

2

5

8

2 1

3

6

7

8

CYCLE LIMITS STAGE 1

1

Test Image
PEPPERS

PSNR

Cycles

Figure 5.13: Optimization Algorithm Trace

96 CHAPTER 5. DCT CORE PROCESSOR

guess has produced slightly better PSNRS than the optimization procedure, confirming
our claim that this algorithm is not globally optimal. Figure 5.15 compares the PSNRs
achieved by both procedures for the exact same number of cycles and specifically the cycle
limits listed in Table 5.3.

The final question we wish to answer is what is the benefit of having four separate
classes of computation inhibition cycle limits. Does it really yield higher PSNRs as was
our initial guess? We have answered this question by running the optimization algorithm
described above with the restriction that there are no four classes of cycle limits and there
are only 14 free variables (2 stages � 7 limits per stage) and compared the results with the
traces of Figure 5.14. The results for 6 test images are plotted in Figure 5.16 along with
the corresponding 4-class traces. We observe that classification can increase the PSNR by
as much as 100% and therefore is clearly justified. The reader should note that in certain
images (i.e. PEPPERS and LENA) the two curves cross. This is another indication that our
optimization algorithm for the 4 classes does not always yield globally optimal results. We
note that more than four classes would introduce substantial complexity in the chip and
would require substantial additional area. On the other hand, the adaptivity provided by
less than four classes would reduce considerably the range of experiments we wished to
perform.

5.3 Circuit Design

This section presents aspects of the DCT chip circuit design.

5.3.1 Flip-Flops

The core flip-flop design used in this chip is attributed to Thomas Simon [Sim99]. The
author has made some small modifications to the original to add some extra functionality
when needed. Figure 5.17 shows the basic flop.

Transistors P0, N0 form the master transparent latch. The slave latch is formed by
transistors P1, P2, N1, N2. The output transistors P3, P4, P5, N3, N4, N5, invert the output
and staticise the slave latch. This flop is static (slave only) and has no ratioed circuits. The
staticizer feedback is broken when the slave latch is transparent. Since the slave latch is
the only one staticised, it is only safe to gate the clock low. The clock inverter (P6, N6) can
be amortized over multiple parallel flops although extreme care must be exercised by the
designer: The master latch is non-inverting and therefore this flop is susceptible to skew
between clock and its inverse: When both clock and its inverse are high for a brief period
of time, a logic one in the data input d may propagate all the way to the output through
transistors N0, N1 and N2. The same scenario can occur when both clock and its inverse
are low and d is low. A local inverter (N6, P6) inside the cell minimizes such skew and
guarantees correctness.

The present flop does not have any significant advantage for low power. On the con-
trary, it presents a considerable gate capacitance load to the clock (5 transistors.) We have

5.3. CIRCUIT DESIGN 97

images-opt0.ps
152 � 152 mm

1 2 3 4
Cycles per RAC Unit

20

25

30

35

40

45

50

P
S

N
R

 (
dB

)

1 2 3 4
Cycles per RAC Unit

20

25

30

35

40

45

50

P
S

N
R

 (
dB

)

1 2 3 4 5
Cycles per RAC Unit

20

25

30

35

40

45

50

P
S

N
R

 (
dB

)

1 2 3 4
Cycles per RAC Unit

20

25

30

35

40

45

50

P
S

N
R

 (
dB

)

1 2 3 4
Cycles per RAC Unit

20

25

30

35

40

45

50

P
S

N
R

 (
dB

)

1 2 3 4 5
Cycles per RAC Unit

20

25

30

35

40

45

50

P
S

N
R

 (
dB

)

1 2 3 4 5
Cycles per RAC Unit

20

25

30

35

40

45

50

P
S

N
R

 (
dB

)

1 2 3 4
Cycles per RAC Unit

20

25

30

35

40

45

50
P

S
N

R
 (

dB
)

1 2 3 4 5
Cycles per RAC Unit

20

25

30

35

40

45

50

P
S

N
R

 (
dB

)

1 2 3 4 5 6
Cycles per RAC Unit

20

25

30

35

40

45

50

P
S

N
R

 (
dB

)

1 2 3 4
Cycles per RAC Unit

20

25

30

35

40

45

50

P
S

N
R

 (
dB

)

CATHEDRAL COUPLE

GIRLFLOWER

MANDRILL PEPPERS

LENA

EUROPE

PLANE

WATERVAN GOGH

Figure 5.14: Optimization Algorithm Traces for all 11 Test Images

98 CHAPTER 5. DCT CORE PROCESSOR

psnrcomparisonannot.ps
120 � 98 mm

30

31

32

33

34

35

36

37

38

39

40

P
S

N
R

 (
dB

)

Intelligent Guess
Optimization Program

C
A

T
H

E
D

R
A

L

C
O

U
P

L
E

E
U

R
O

P
E

F
L

O
W

E
R

G
IR

L

P
E

P
P

E
R

S

P
L

A
N

E

V
A

N
 G

O
G

H

W
A

T
E

R

M
A

N
D

R
IL

L

L
E

N
A

Figure 5.15: Comparison of Image PSNRs

5.3. CIRCUIT DESIGN 99

images-opt.ps
155 � 178 mm

1 2 3 4
Cycles per RAC Unit

20

25

30

35

40

45

50

P
S

N
R

 (
dB

)

1 2 3 4
Cycles per RAC Unit

20

25

30

35

40

45

50

P
S

N
R

 (
dB

)

1 2 3 4
Cycles per RAC Unit

20

25

30

35

40

45

50
P

S
N

R
 (

dB
)

1 2 3 4 5
Cycles per RAC Unit

20

25

30

35

40

45

50

P
S

N
R

 (
dB

)

1 2 3 4
Cycles per RAC Unit

20

25

30

35

40

45

50

P
S

N
R

 (
dB

)

1 2 3 4 5
Cycles per RAC Unit

20

25

30

35

40

45

50

P
S

N
R

 (
dB

)

4 Classes

No ClassificationNo Classification

4 Classes

No Classification

4 Classes

No Classification

4 Classes

No Classification

4 Classes

No Classification

4 Classes

PEPPERS COUPLE

MANDRILL LENA

PLANEGIRL

Figure 5.16: Optimization Algorithm Traces With and Without Classification

100 CHAPTER 5. DCT CORE PROCESSOR

tsimonflop.ps
133 � 71 mm

��
��
��
��

����

��

��

��

�� ��

����

����

�
�
�
�

�
�
�
�

������ ��

clk

d q

1.4/0.6

1.4/0.6

1.4/0.6

1.4/0.6

1.4/0.6

1.4/0.6

1.4/0.6

1.4/0.6

1.4/0.6

1.4/0.6

2.8/0.6

2.8/0.6

2.8/0.6

2.8/0.6
P0

P1

P2

P3

P4

P6

N6

N0

N1

N2

N3

N4

N5

P5

Figure 5.17: Edge-Triggered Static D Flip-Flop [Sim99]

used it because its functionality is guaranteed over process variations, supply voltages and
small deviations in transistor sizing. There are no transistor fights and transistor sizing is
not of critical importance.

Figures 5.18 and 5.19 show flops with clear and set control signals respectively. The
clear and set signals can only be active though when clock is low. If clock is high while the
clear or set strobe is active, both flops experience contention and their state may be cor-
rupted: In Figure 5.18 if clock is high, clear is low and data had been high while clock was
low, the input of the output inverter is simultaneously driven high and low by transistors
P7, N1 and N2 respectively. The same is true in Figure 5.19. This time the fight is between
N7 and the series combination of P1 and P2.

In the DCT chip where clock gating is abundant, such flops are widely used. In the
rare occasion where a flip-flop must be preset and does not have a gated clock, the flops
of Figures 5.20 and 5.21 are used. Transistors N8 (Figure 5.20) and P8 (Figure 5.21) ensure
that contention never occurs when the preset pulse is active no matter what the value of
the clock is. Although the last flops only contain a single extra transistor from the flops of
Figures 5.18 and 5.19, this extra device makes a considerable difference in the flop layout
and makes the clock-to-q propagation delay slower because it lies in the critical path.

The final type of flip-flop used in the DCT chip is a fully static one (both master and
slave latch staticised) used in the JTAG instruction and data registers. This flop is shown in
Figure 5.22. It has been constructed by cascading two static slave latches from the original
flop of Figure 5.17. Both latches have been staticised to guarantee operation even at the
slowest possible serial interface clocks (TCK).

5.3. CIRCUIT DESIGN 101

flopclr.ps
145 � 80 mm

��
��
��
��

����

��

��

������

�
�
�
�

�
�
�
�

������ �� �� ��������

��

clk

d

1.4/0.6

1.4/0.6

1.4/0.6

1.4/0.6

1.4/0.6

2.8/0.6

2.8/0.6

2.8/0.6

P0

P1

P2

P6

N6

N0

N1

N2
q

1.4/0.6

1.4/0.6

1.4/0.6

1.4/0.6

1.4/0.6

2.8/0.6

P3

P4

N3

N4

N5

P5

clr 1.4/0.6

1.4/0.6
P7

N7

Figure 5.18: Edge-Triggered Static D Flip-Flop with Clear (Clock Low Only)

flopset.ps
143 � 81 mm

��
��
��
��

��
��
��
��

��

��

������

��
��
��
��

�
�
�
�

�������� �� ���� �� ������

��

clk

d

1.4/0.6

1.4/0.6

1.4/0.6

1.4/0.6

1.4/0.6

2.8/0.6

2.8/0.6

2.8/0.6

P0

P1

P2

P6

N6

N0

N1

N2
q

1.4/0.6

1.4/0.6

1.4/0.6

1.4/0.6

1.4/0.6

2.8/0.6

P3

P4

N3

N4

N5

P5

1.4/0.6

1.4/0.6

N7

P7

set

Figure 5.19: Edge-Triggered Static D Flip-Flop with Set (Clock Low Only)

102 CHAPTER 5. DCT CORE PROCESSOR

flopclr2.ps
145 � 80 mm

clr

��
��
��
��

����

��

��

������

�
�
�
�

�
�
�
�

������ �� �� ��������

��

clk

d

1.4/0.6

1.4/0.6

1.4/0.6

1.4/0.6

1.4/0.6

2.8/0.6

2.8/0.6

2.8/0.6

P0

P1

P2

P6

N6

N0

N1

N2
q

1.4/0.6

1.4/0.6

1.4/0.6

1.4/0.6

1.4/0.6

2.8/0.6

P3

P4

N3

N4

N5

P5

1.4/0.6

1.4/0.6
P7

N7N8

1.4/0.6

Figure 5.20: Edge-Triggered Static D Flip-Flop with Clear

flopset2.ps
143 � 81 mm

��
��
��
��

��
��
��
��

��

��

������

��
��
��
��

�
�
�
�

�������� �� ���� �� ������

��

�
�
�
�

clk

d

1.4/0.6

1.4/0.6

1.4/0.6

1.4/0.6

1.4/0.6

2.8/0.6

2.8/0.6

2.8/0.6

P0

P1

P2

P6

N6

N0

N1

N2
q

1.4/0.6

1.4/0.6

1.4/0.6

1.4/0.6

1.4/0.6

2.8/0.6

P3

P4

N3

N4

N5

P5

1.4/0.6

1.4/0.6

N7

P7

set

2.8/0.6
P8

Figure 5.21: Edge-Triggered Static D Flip-Flop with Set

5.3. CIRCUIT DESIGN 103

jtagflop.ps
151 � 85 mm

d

clk

clk

clk

�� �� ������ �� �� ������

�
�
�
�

�
�
�
�

����

����

1.4/0.6

1.4/0.6

1.4/0.6

1.4/0.6

1.4/0.6

1.4/0.6

1.4/0.6

2.8/0.6

2.8/0.6

2.8/0.6

q

1.4/0.6

1.4/0.6

1.4/0.6

1.4/0.6

1.4/0.6

1.4/0.6

1.4/0.6

2.8/0.6

2.8/0.6

2.8/0.6

1.4/0.6

2.8/0.6

clk

clk

clk

Figure 5.22: Fully Static Flop Used in JTAG Instruction and Data Registers

5.3.2 Read-Only Memory

A total of 17 separate 16x10 ROMs are used in the chip as part of the RAC units. The ROM
circuit is shown in Figure 5.23. The 4x16 address decoder is implemented using 4-input
NAND gates. As can be seen from the figure, the ROM is fully static (non-precharged).
Bitlines are fully driven to the supply voltages through a 2.1/0.6 PMOS transistor and are
driven to ground through a 1.4/0.6 NMOS. This fully static scheme is rather fast and per-
forms very well at low supplies but has the additional overhead of requiring two wordlines
(true and complement) for each row. Simulation has indicated that the average power dis-
sipated on the wordlines is 7-10% of the total ROM power (depending on ROM contents)
while the rest is dissipated by the bitlines. Therefore the additional overhead of dual word-
lines is rather low at less than 5% of the total ROM power.

The main reason that a non-precharged ROM was selected was the fact that it is part
of the RAC unit which has fully gated clocks. The generation of a precharge pulse would
require considerable design overhead and would increase the overall switching activity of
the unit.

Figure 5.24 shows a plot of ROM access time vs. supply voltage. The data has been
obtained from Hspice simulations using extracted layout (wiring parasitic capacitances
included.)

104 CHAPTER 5. DCT CORE PROCESSOR

rom.ps
156 � 108 mm

�
�
�
�

��

�
�
�
�

�
�
�
�

�
�
�
� �� ��

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�� ��

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
����� ��

�� �� �� �� �� �� ���� ���� �� ��

A3
A2

A1
A0

A3
A2

A1
A0

A3
A2

A1
A0

A3
A2

A1
A0

Y9 Y8 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0

Figure 5.23: ROM Schematic

romdelayannot.ps
108 � 74 mm

1.0 1.5 2.0 2.5 3.0
Supply Voltage (V)

0

10

20

30

40

50
%

−
50

%
 D

el
ay

 (
ns

)

FALL DELAY

RISE DELAY

Figure 5.24: ROM Access Time vs. Supply Voltage

5.3. CIRCUIT DESIGN 105

bypassadder.ps
139 � 96 mm

A B

Ci Co

PS

A B

Ci Co

PS

A B

Ci Co

PS

A B

Ci Co

PS

1

0
A B

Ci Co

PS

A B

Ci Co

PS

A B

Ci Co

PS

A B

Ci Co

PS

1

0

A B

Ci Co

PS

A B

Ci Co

PS

A B

Ci Co

PS

A B

Ci Co

PS

1

0
A B

Ci Co

PS

A B

Ci Co

PS

A B

Ci Co

PS

A B

Ci Co

PS

A B

Ci Co

PS

A B

Ci Co

PS

A B

Ci Co

PS

A B

Ci Co

PS

1

0

1

0

Ci

Co

B1 A2 B2 A3 B3 A4 B4 A5 B5 A6

B9 A12

A16

S19

B16 A17 B17 A18 B18 A19 B19

S18S17S16

S8 S9 S10 S11

A8 B8 A9 A10 B10 A11 B11

S12 S13 S14 S15

B15A15B14A14B13A13B12

S4 S5 S6 S7

B7A7B6

S0 S1 S2 S3

A1B0A0

Figure 5.25: 20-bit Carry-Bypass Adder

5.3.3 Adder

The adders used throughout the DCT chip are the same as the carry-bypass adder shown
in Figure 5.25. The figure shows a 20-bit adder which is the same one used in the RAC
units (Figure 5.2). The bypass adder has been chosen because it has a short critical path
at the expense of only a small increase in area. Its operation is very simple. The full
adders are divided among cascaded groups of four. Although in a carry-bypass adder
minimum delay is obtained when the adder groups have gradually increasing numbers of
full adders, we decided not implement this idea mainly for layout considerations. When
all the propagate signals within a certain full adder group are high, then the carry from
the previous group is forwarded instead of the locally generated one without any change
in I/O behavior. The critical path of the adder in Figure 5.25 is exercised when a carry is
generated within the (A0, B0, S0) full adder and propagated all the way to the (A19, B19,
S19) full adder. This critical path is approximately 8 full adder plus 4 multiplexer delays.
The addition of 4 more extra bits of arithmetic bitwidth add a single multiplexer delay to
the critical path.

The full adder used is shown in Figure 5.26. It has been selected because the propagate
(P) signal necessary for the carry-bypass operation is computed explicitly, and due to its
very small carry-in to carry-out delay. While cascading the full adders to form the 20-bit
adder of Figure 5.25 we exploit the fact that a full adder is fully complementary (input

106 CHAPTER 5. DCT CORE PROCESSOR

fulladderdct.ps
146 � 73 mm

�
�
�
�

�
�
�
�
��
��
��
��

��

��

�� ������

��

SUM

����

�� ��

����

��

�
�
�
�

COUT

�
�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

��

�
�
�
�

�
�
�
�

�
�
�
�

A
B

G

P

CIN

Figure 5.26: Full Adder Used in the DCT Chip

complements produce output complements) to avoid unnecessary inversions in the carry
propagation path. Figure 5.27 plots the maximum propagation delay of the 20-bit adder in
Figure 5.25 vs. supply voltage.

5.3.4 MSB Rejection

Figure 5.28 shows the circuit that detects common most significant bits and computes a
clock mask that is used to disable RAC units 1, 2 and 3 of each stage when the ROM
address inputs do not affect the computation. This circuit operates on the 4 sums (A7-0,
B7-0, C7-0, D7-0) of the “butterfly” additions of each stage (Figure 5.1.) Transistors N1,
N2, N3, N4 and N5, N6, N7, N8 detect the presence of all ones or all zeroes at the input
respectively. The cascading of the outputs through the NAND gates and inverters activate
all the remaining downstream mask bits as soon as the first bit position is found where
8-bit wide inputs A, B, C, D have different bits. The computed clock mask (CLKMASK)
bits indicate when the RAC units 1 through 3 should be clocked (1 in the corresponding
bit position) and when not (0 in the corresponding bit position.)

Figure 5.29 shows the sign extension detection circuit that operates on the 4 differences
after the “butterfly” subtraction step of both stages (Figure 5.1). This circuit produces
a clock mask (MASK) that controls the clock of RAC units 4-7. The daisy-chained XNOR
gates of Figure 5.29 detect the first non-sign bit of each one of the four inputs. The cascaded
AND gates activate all downstream partial mask bits from the position of the first non-sign
bit. Then, the results of the four individual computations are merged with 4-input NAND
gates to compute the first bit position that all four inputs do not contain sign extension bits.
Both circuits of Figures 5.28 and 5.29 have a low duty cycle because the inputs change once

5.3. CIRCUIT DESIGN 107

adderdelayannot.ps
108 � 74 mm

1.0 1.5 2.0 2.5 3.0
Supply Voltage (V)

0

20

40

60

80

50
%

−
50

%
 D

el
ay

 (
ns

)

RISE DELAY

FALL DELAY

Figure 5.27: Carry-Bypass Adder Delay vs. Supply Voltage

every eight cycles (the time required to bring a new row on the chip). As a result they are
responsible for a small percentage of the total power (section 5.4.)

5.3.5 I/O Pads

The entire pad design (schematic and layout) was done by Thomas Simon [Sim99]. The au-
thor’s contribution was the determination of the pad driver transistor sizes and simulation
and verification of the entire pad circuit. Both input and output pads are level converting
(core voltage can be 1-3V while output voltage is TTL compatible at 5V).

Determining Driver Transistor Sizes for the Output Pad

The circuit used to determine driver transistor sizes is shown in Figure 5.30. The worst
case capacitance and inductance values for the PGA package traces have been obtained
from MOSIS package documentation available online at www.mosis.com. The rise time of
the OUT signal must be fast enough to accommodate the speed which we wish to clock
the chip but at the same time be slow enough to minimize L(di=dt) ringing noise on the
supply rails. The transistor sizes indicated in Figure 5.30 result in rise and fall times on the
order of 2-3 ns which was deemed appropriate for our application. An Hspice simulation
of the entire output pad will be presented in the following section.

108 CHAPTER 5. DCT CORE PROCESSOR

msbreject.ps
151 � 134 mm

A
B
C
D

MASK
A
B
C
D

MASK
A
B
C
D

MASK
A
B
C
D

MASK

A
B
C
D

MASK
A
B
C
D

MASK
A
B
C
D

MASK
A
B
C
D

MASK

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

A0
B0
C0
D0

A

B

C

D

A C
B D

����

��������

����

���� ���� ��������

��

��

��

5.6/0.6

5.6/0.6

5.6/0.6

5.6/0.6

5.6/0.6

5.6/0.6

5.6/0.6

5.6/0.6

5.6/0.6

5.6/0.6

5.6/0.6

5.6/0.6

5.6/0.6

5.6/0.6

5.6/0.6

5.6/0.6

A

B

C

D

A
B

C
D

MASK
N1

N2

N3

N4

N5

N6

N7

N8

P1

P2

P3

P4

P5

P6

P7

P8

��
��
��
��

�
�
�
�

CLKMASK0

CLKMASK1CLKMASK2CLKMASK3

CLKMASK4CLKMASK5CLKMASK6
CLKMASK7

A1
B1

D1
C1

A2
B2
C2
D2

A3
B3
C3
D3

A7
B7
C7
D7

A6
B6
C6
D6

A5
B5

D5
C5

A4
B4
C4
D4

Figure 5.28: MSB Rejection Circuit

5.3. CIRCUIT DESIGN 109

sexdetect.ps
139 � 126 mm

A[7:0] SMASK[7:0]

A[7:0] SMASK[7:0]

A[7:0] SMASK[7:0]

A[7:0] SMASK[7:0]

A[7:0]

B[7:0]

C[7:0]

D[7:0]

MASK[7:0]

SMASK0

SMASK1

SMASK6
SMASK7

SMASK5
SMASK4
SMASK3
SMASK2

A3

A7

A6

A5

A4

A2

A1

A0

Figure 5.29: Sign Extension Detection Circuit

pinmodel.ps
149 � 51 mm

L1
6.23 nH

1 pF
C1

2 nH
L2 L3

4.65 nH

C2
2.84 pF 0.8 pF

C3

10 pF
C4

10 pF
C5

PGA Package

Chip Input (Memory)

Bonding Pad

Bond Wire

PCB Trace Commercial

5V

OUT

400/0.8

200/0.8

Figure 5.30: Circuit Used to Determine Driver Transistor Sizes

110 CHAPTER 5. DCT CORE PROCESSOR

Output Pad

The entire schematic of the output level converting pad is shown in Figure 5.31. Devices
P0 through P4, N0 through N4 and P9, N9 constitute a level converter from the chip core
VDD (1.2V-3.0V) to the TTL-level output VHH (5V). The remaining transistors constitute
an exponential driver that connects to the bonding pad. To understand the operation of
the level converter, let us assume that the pad drives a zero, so that nodes IN, and NET2
are at zero, nodes NET1 and NET4 are at VHH and node NET3 is at VDD. Let us now
assume that IN is driven to VDD. The series combination of N0 and N1 overpower the
weak transistor P1 and start driving node NET4 to ground. P2 drives node NET2 to VHH
which turns competing transistor P1 off. At this point, the one propagates all the way to the
pad output. At the same time, NET1 becomes low and NET4 is driven to VHH preparing
for the next input transition. When IN is driven back to ground, NET2 becomes zero and
propagates to the output. The feedback path will guarantee that nodes NET1 and NET4
will become consistent with the new state and be prepared for the next input transition.
From the preceding discussion, it is evident that special attention should be exercised in
the relative sizings of transistors P1 and N0, N1 in addition to the sizing of transistors
P4 and N2, N3. The NMOS pairs N0, N1 and N2, N3 must always be large enough to
overpower P1 and P2 respectively given the VHH-VDD difference in their gate-to-source
voltages. The author sees no particular advantage in the level converter of Figure 5.31
compared to the level converter of Figure 3.15.

Figure 5.32 shows an Hspice simulation of the output pad driving the load of Figure
5.30 at VDD= 1.3V and VHH= 5V. The rise and fall times are 1.73 ns and 1.42 ns respec-
tively. The delay through the circuit is 7.9 ns.

Input Pad

The circuit diagram of the input pad is shown in Figure 5.33. Primary electrostatic dis-
charge (ESD) protection is provided by bipolar diode D and resistor R. Bipolar diode D is
an N-diffusion to P-substrate explicit diode. It protects the IN node from going lower than
-0.6V or higher than its reverse breakdown voltage limit. Resistor R is approximately 3K
Ohms and is formed by three squares of lightly doped N-well. Its purpose is to attenuate
the off-chip signal before it reaches the gate of the sensing inverter (N1, P1). Transistor
N0 is a large device providing secondary ESD protection as a second set of diodes that do
not allow node IN to stray too much from its expected voltage range (0-5V). The diode
to ground is formed by the source-to-P-substrate junction of transistor N0. The diode to
VHH is the diode-connected MOS transistor itself. Voltage conversion is performed be-
tween inverters (N1, P1) and (N2, P2) which have separate supply voltages.

5.4 Power Estimation and Breakdown

We have used the Pythia [XYC97] power estimator to calculate the power dissipation of
the DCT chip. A brief overview of the power estimation tool has been given in section 3.4.

5.4. POWER ESTIMATION AND BREAKDOWN 111

outpad.ps
158 � 101 mm

VHHVHHVHHVHHVHH

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��

�
�
�
�

�� ��

�
�
�
�

��
��
��
��

������

��

�
�
�
�

��
��
��
��

VHH

VDD

VHH

IN
OUT

N0

N1

N2

N3 N5 N6 N7 N8

N9

P0 P1 P2

P3

N4

P4

P5 P6 P7 P8

P9

1.4/0.6

2.6/0.6

2.6/0.6 2.6/0.6

5/0.6

5/0.6 5/0.6

5/0.6

1.4/0.6

1.4/0.6

1.4/0.6

2.6/0.6

8/0.6

4/0.6

32/0.6

16/0.6

116/0.6

58/0.6

VHH

NET3

NET4

NET2

NET1

400/0.8

200/0.8

Figure 5.31: Output Pad Schematic

outpadspiceannot.ps
124 � 81 mm

0 20 40 60 80 100
Time (ns)

−1

0

1

2

3

4

5

V
ol

ta
ge

 (
V

)

PAD OUTPUT

PAD INPUT

Figure 5.32: Output Pad Hspice Simulation

112 CHAPTER 5. DCT CORE PROCESSOR

inpad.ps
126 � 40 mm��

��
��
��

��
��
��
��

��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

VDDVHHVHH

R

N0

N1 N2

P1 P2

IN OUT

D 8/0.6

16/0.64/0.6

2/0.6

60/0.6

Figure 5.33: Input Pad Schematic

Figure 5.34 shows the power dissipated by the DCT chip partitioned among the toplevel
design modules. The chip has been stimulated with the first 1000 blocks of test image PEP-
PERS using the cycle bounds of Table 5.2. The simulation includes estimated interconnect
capacitance. The total power estimated for this particular data set is 7.4 mW at 1.56V, 14
MHz.

We observe that according to the power estimation results, the main clock buffer dis-
sipates most of the chip power (almost 37%). Part of the reason why this power is so
high is the fact that the Pythia interconnect estimation mechanism penalizes considerably
nets with high fanout. Pythia assumes a square law dependence between net interconnect
(wiring) capacitance and net fanout. As a result, the clock net which has the highest fanout
is allocated a large value of total wiring capacitance. Almost 60% of the total clock buffer
power is due to wiring parasitics. Figure 5.35 shows the same power breakdown data ob-
tained by Pythia with power estimation turned off. We observe that the total clock buffer
power has decreased to about 21% of the total. In addition to simulation artifacts, the clock
buffer power is high due to the large inverters used to buffer long wires and the high duty
cycle of the circuit. The last inverter of the driver chain has a 1.45 mm PMOS width and a
0.728 mm NMOS width.

The chip pure computation power (stages 0 and 1) are estimated at about 42% of the to-
tal (Figure 5.34). The charts of Figures 5.34 and 5.35 provide an additional very useful and
relevant piece of information: They quantify the additional power cost of the power sav-
ing techniques employed (MSB rejection and computation inhibition plus classification.)
We observe that the cost of the MSB rejection control logic is approximately 3-4% of the to-
tal (about half of the MSBR+Inhibition control sector) whereas the computation inhibition
plus row/column classification is at 5-6% of the total (about half of the MSBR+Inhibition
control sector plus the row/column classifiers.) We will use this result in section 5.7 where
we will quantify the power savings obtained by these methods.

Finally, Figure 5.36 shows the power dissipation allocation within stage 0 of the DCT
chip. The ROM and Accumulator Units are responsible for most of the power dissipation
(78%) whereas the input shift registers, RAC address shift registers and “butterfly” adders
and subtractors (Figure 5.1) dissipate the rest of the power.

5.4. POWER ESTIMATION AND BREAKDOWN 113

dctpieintannot.ps
135 � 79 mm

2.71 mW

CLOCK

36.57%

STAGE1
1.64 mW

22.22%

BUFFER

1.42 mW
19.18%

STAGE0

0.309 mW 4.17%

MSBR+INHIBITION CONTROL
0.53 mW 7.16%

GLOBAL CONTROL

0.349 mW 4.7%

CLASSIFIERS
0.172 mW 2.32 %

RAC CLOCK BUFFERING

TRAM 0.27 mW 3.66%

Figure 5.34: DCT Chip Power Estimation Results

dctpieannot.ps
130 � 78 mm

1.58 mW
27.65%

STAGE 0
1.34 mW

23.5%

CLOCK BUFFER
1.18 mW 20.73%

STAGE 1
0.285 mW 5%

MSBR+INHIBITION CONTROL
0.519 mW 9.1%

RAC CLOCK BUFFERS

GLOBAL CONTROL

CLASSIFIERS
0.177 mW 3.09%

0.346 mW 6.07%

TRAM 0.276 mW 4.85%

Figure 5.35: DCT Chip Power Estimation Results (No Interconnect)

114 CHAPTER 5. DCT CORE PROCESSOR

dctstage0annot.ps
118 � 80 mm

1.1 mW
78%

BUTTERFLY ADDERS+
SUBTRACTORS
0.019 mW 1.3%

RAC ADDRESS REGISTERS
0.13 mW 9.28%

INPUT REGISTERS

RACS0-7

MISC

2.65%
0.037 mW 0.12 mW 8.77%

Figure 5.36: DCT Chip Stage 0 Power Estimation Results

5.5 Chip I/O Specification and Usage

The DCT chip is very easy to use in a PC board environment. It can be directly interfaced
with 5V CMOS and TTL parts because its I/O pads are level converting. Three supply
voltages are required: A ground connection (GND), a 5V pad supply connection (VHH)
and a 1.2-3V core connection (VDD).

5.5.1 JTAG Programming

Before normal operation begins, the user needs to program a total of 6 internal chip JTAG
registers. These registers are summarized in Table 5.7.

Access to the internal data registers is enabled after shifting in the address shown in the
third column of Table 5.7 into the JTAG instruction register LSB-first. The instruction reg-
ister (IR) consists of 10-bits and their significance is summarized in Table 5.8. The on-chip
TAP controller enables the user to access the IR or the data register (Table 5.7) whose ad-
dress is currently loaded in the IR through specified sequences of the TCK, TDI, and TMS
pins. These sequences are standardized and documented in great detail in IEEE Standard
1149.1-1990 [IEE90b].

Figure 5.37 shows the bit field arrangement of both threshold data registers. Data is
shifted serially LSB-first through the TDI pin. All of our experimental results have been
obtained using the thresholds of Table 5.9. These values result in approximately equally
populated classes as shown in Figure 5.6 for our 11 test images.

5.5. CHIP I/O SPECIFICATION AND USAGE 115

Name Length IR Address Description
THRESHOLDS0 24 0x004 Stage 0 Classification Thresholds

(Three 8-bit unsigned integers)
THRESHOLDS1 33 0x020 Stage 1 Classification Thresholds

(Three 11-bit 2’s complement integers)
CYCLESTOP0 128 0x008 Cycle Limits for Stage 0 RACS0-3

(16 8-bit clock masks)
CYCLESTOP1 128 0x040 Cycle Limits for Stage 1 RACS0-3

(16 8-bit clock masks)
CYCLESBOT0 128 0x010 Cycle Limits for Stage 0 RACS4-7

(16 8-bit clock masks)
CYCLESBOT1 128 0x080 Cycle Limits for Stage 1 RACS4-7

(16 8-bit clock masks)

Table 5.7
DCT Chip JTAG Data Registers

Bit Description
0 Must always be at zero
1 Serial Compressed Output Enable (1 active, 0 inactive)
2 Data Register THRESHOLDS0
3 Data Register CYCLESTOP0
4 Data Register CYCLESBOT0
5 Data Register THRESHOLDS1
6 Data Register CYCLESTOP1
7 Data Register CYCLESBOT1
8 Reserved
9 Reserved

Table 5.8
DCT Chip JTAG Instruction Register Fields

T0 6
Stage 0 T1 15

T2 37
T0 5

Stage 1 T1 12
T2 29

Table 5.9
Class Thresholds Used

116 CHAPTER 5. DCT CORE PROCESSOR

thresholds.ps
121 � 113 mm

T2: Class 2, Class 3 Threshold
T1: Class 1, Class 2 Threshold
T0: Class 0, Class 1 Threshold

0 1 2 3 4 5 6 7 8 9 10
T2 bit

T2

0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10

T1 T0

T1 bit T0 bit

212232 1011 0

THRESHOLDS1 Bit Position

0 1 2 3 4 5 6 7

T2

T2 bit

23 16

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

T1 T0

T1 bit T0 bit

8 7 015

THRESHOLDS0 Bit Position

T2: Class 2, Class 3 Threshold
T1: Class 1, Class 2 Threshold
T0: Class 0, Class 1 Threshold

}

}

Stage 0

Stage 1

Figure 5.37: JTAG Threshold Registers

5.5. CHIP I/O SPECIFICATION AND USAGE 117

cycleregtop.ps
125 � 66 mm

CMASK00[7:0] CMASK10[7:0] CMASK20[7:0] CMASK30[7:0]

CMASK31[0:7] CMASK21[0:7] CMASK11[0:7] CMASK01[0:7]

CMASK02[7:0] CMASK12[7:0] CMASK22[7:0] CMASK32[7:0]

CMASK33[0:7] CMASK23[0:7] CMASK13[0:7] CMASK03[0:7]

23

475663

0782431 1516

3239404855

6471727980878895

96103104111112119120127

CMASKXY: Clock Mask for RACX, Class Y

Figure 5.38: CYCLEREGTOPf0,1g Register Bit Fields

Figures 5.38 and 5.39 show the various fields of the CYCLESTOP and CYCLESBOT
registers of both stages. Each CMASK field contains an 8-bit register clock mask that indi-
cates the maximum number of cycles that the corresponding RAC will be clocked. The 9
allowable values that such an 8-bit mask may take are listed in Table 5.10. The behavior of
the DCT chip is unspecified and undocumented for all other mask values.

5.5.2 Chip Regular Operation

After the 6 JTAG data registers have been programmed with appropriate class threshold
and cycle limit values, chip normal operation can be initiated. The user provides the chip
with image pel values on the rising edge of clock. The beginning of a new block is indicated

Mask Value Chip Action
00000000 RAC is clocked a maximum of 0 cycles
10000000 RAC is clocked a maximum of 1 cycles
11000000 RAC is clocked a maximum of 2 cycles
11100000 RAC is clocked a maximum of 3 cycles
11110000 RAC is clocked a maximum of 4 cycles
11111000 RAC is clocked a maximum of 5 cycles
11111100 RAC is clocked a maximum of 6 cycles
11111110 RAC is clocked a maximum of 7 cycles
11111111 RAC is clocked a maximum of 8 cycles

Table 5.10
Clock Mask Values

118 CHAPTER 5. DCT CORE PROCESSOR

cycleregbot.ps
125 � 66 mm

23

475663

0782431 1516

3239404855

6471727980878895

96103104111112119120127

CMASKXY: Clock Mask for RACX, Class Y

CMASK40[7:0] CMASK50[7:0] CMASK60[7:0] CMASK70[7:0]

CMASK71[0:7] CMASK61[0:7] CMASK51[0:7] CMASK41[0:7]

CMASK42[7:0] CMASK52[7:0] CMASK62[7:0] CMASK72[7:0]

CMASK73[0:7] CMASK63[0:7] CMASK53[0:7] CMASK43[0:7]

Figure 5.39: CYCLEREGBOTf0,1g Register Bit Fields

with the assertion of the StartBlockIn pulse when block element (0,0) is present on the input
bus. After a delay of 97 cycles, the DCT coefficients start to come out of the chip output
pins. The start of a block is indicated by the assertion of the StartBlockOut pulse when
output block element (0,0) is present on the output bus. Figure 5.40 presents a timing
diagram that summarizes the chip operation. We note that the output block comes out
in transposed form. Figure 5.41 shows the sequence that block pels must be presented to
the chip and the sequence that the DCT coefficients are being produced by the chip. The
negative clock edge is used for sampling the input data and the StartBlockIn strobe on the
chip so that the edges are sufficiently spread apart and there is sufficient setup and hold
time if the data edge occurs close to the positive clock edge (in either direction.)

5.5.3 Serial Output

The DCT chip contains a serial output (LPEout) that produces compressed blocks at 1 bit
per pixel (8:1 compression). The serial output is enabled when IR bit 1 is set to logic one.
The timing of the LPEout output is identical to the dout[7:0] timing of Figure 5.40. Com-
pression is performed by selecting 64 bits out of the 64-element compressed block accord-
ing to bit allocation matrix of Table 5.11. Images of acceptable quality can be produced
by reconstructing and dithering the DCT information provided by the serial output and
computing the resulting IDCT using the available information.

5.6 Chip Physical Design and Packaging

The chip has been laid out using the Cadence Design Framework. Details about the design
flow and methodology are presented in appendix A. It has been fabricated in the Analog

5.6. CHIP PHYSICAL DESIGN AND PACKAGING 119

dcttiming.ps
142 � 68 mm

PEL
(0,0)

(0,0)
DCT

PEL PEL PEL PEL PEL PEL PEL
(0,1) (0,2) (0,3) (0,4) (0,5) (0,6) (0,7)

clk

StartBlockIn

DCT DCT DCT
(1,0) (2,0) (3,0)dout[10:0]

StartBlockOut

din[7:0]

97 cycles

sampling edge

Figure 5.40: DCT Chip Timing Diagram

ioblock.ps
89 � 49 mm

0

7

0 7
0

7

0 7

Element Sequence Element Sequence

Output Block Input Block

Figure 5.41: Input and Output Block Element Sequence

8 8 8 0 0 0 0 0
8 8 8 0 0 0 0 0
8 8 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Table 5.11
Bit Allocation per Coefficient Position for Producing the Serial Output

120 CHAPTER 5. DCT CORE PROCESSOR

Process 0.6µmCMOS (0.6µmdrawn), 3ML 5V
VTN 0.75V
VTP -0.82V
TOX 14.8 nm
Supply 1.1-3 V
Frequency 2-43 MHz
Power 4.38 mWatts @ 1.56 V, 14 MHz
Area 14.5 mm2

Transistors 120K

Table 5.12
Process and DCT Chip Specifications

Block Area (mm2) Percentage
Stage 0 2 13.8
Stage 1 4.075 27.6
TRAM + wiring 1.62 11.2
MSBR Control 1 6.9
Classification 1.49 10.27
TAP Controller 0.4 2.75
VDD/ GND routing, wiring, bypass capacitors etc. 3.9 27

Table 5.13
DCT Chip Area Breakdown

Devices (ADI) Dual-Poly Triple-Metal (DPTM) 0.6 µm 5V CMOS process. The annotated
chip microphotograph is shown in Figure 5.42. The blocks labelled “MSB rejection” and
“sign detection” in addition to the circuits of Figures 5.28 and 5.29 they include distributed
control circuits and clock generators and buffers for the RAC units of both stages. More-
over, each contains a 128-bit JTAG register (visible as a dark rectangular box within each
block) that stores cycle thresholds (four per class per block). These registers are all ac-
cessible through the IEEE 1149.1-1990 Test Access Port (TAP). The block labelled “JTAG”
contains the IEEE 1149.1 Instruction Register and the finite state machine (TAP controller)
which controls serial access to all JTAG-accessible registers. The core area of the DCT chip
(not including the I/O pad frame) measures 14.5 mm2 and includes approximately 120K
transistors. The chip specifications are summarized in Table 5.12.

A chip area breakdown is shown in Table 5.13. The area penalty of the MSB rejection
control is approximately 7% of the total chip area. This number includes buffering for all
gated RAC clocks. The classification area penalty is shown to be higher at 10.27%. This
high area percentage is entirely due to large JTAG registers required to store RAC cycle
limits and class thresholds. Had a less convenient way been chosen to store this state (i.e.
SRAM) the area penalty would have been much less.

The chip package is a Kyocera ceramic PGA (13x13 grid, 100-pin) available through
Analog Devices. The chip pinout appears in Table C.2 (Appendix C). The VHH supply
is a TTL-compatible 5V supply for the pads and VDD is the core supply at 1.2-3.0V. The

5.6. CHIP PHYSICAL DESIGN AND PACKAGING 121

dctphotoannot.ps
146 � 126 mm

C
O

N
T

R
O

L

M
S

B
 R

E
JE

C
T

S
IG

N
 D

E
T

E
C

T

JT
A

G

STAGE 0

TRAM

STAGE 1

R
E

JE
C

T
M

S
B

S
IG

N
D

E
T

E
C

T

3.
75

4
m

m

5.954 mm

Figure 5.42: DCT Chip Microphotograph

122 CHAPTER 5. DCT CORE PROCESSOR

dctboardblock.ps
139 � 65 mm

DUAL PORT
SRAM

DUAL PORT
SRAM

INPUT
FSM FSM

OUTPUT

DCT CHIP

NATIONAL INSTRUMENTS DIO32F DIGITAL I/O PC INTERFACE

P
R

O
G

R
A

M
M

IN
G

JT
A

G

Figure 5.43: DCT Chip Test Board Block Diagram

package PCB footprint (top view) is shown in Figure C.2 (Appendix C).

5.7 Testing

5.7.1 Test Setup

A printed circuit board has been designed and built to test the DCT chip. The test struc-
tures are almost identical to the board built for the IDCT chip (section 3.7). The board block
diagram is shown in Figure 5.43.

The board operates as follows: First, the user accesses the internal chip JTAG registers
directly through the PC interface to shift in the class thresholds and the class cycle lim-
its. Then, four 64-element blocks are uploaded into the input dual port memory (Cypress
CY7C006) and the input FSM (implemented in a Lattice GAL 22v10) is triggered. The
input FSM produces appropriate control signals to read the blocks from the SRAM and
stimulate the DCT chip. The four blocks are cycled through the chip continuously so that
power measurements can be obtained while the chip is being continuously stimulated. On
the other hand, the output FSM captures the four output blocks in the output SRAM only
once: The SRAM is activated only when the first four blocks are being output from the
chip. It is deactivated for the remainder of the chip operation. The user can upload the
results on the PC from the second SRAM and can check the chip output for correctness.

In addition to the test structures described above, the board contains two more sections:
One section contains a DCT chip directly attached to a DIO32F connector so that the user
has direct access to all chip terminals through the PC. This section has been used for pre-
liminary slow-speed functionality-only testing. The final section simply contains a DCT
chip with all relevant terminals brought out to vertical headers for last resort testing using

5.7. TESTING 123

dctboardphoto.ps
144 � 108 mm

Figure 5.44: DCT Chip Test Board Photograph

pattern generators and logic analyzers. This section was never used. A photograph of the
DCT test board is shown in Figure 5.44. The output of the DIO32F connectors has been
terminated with 470-Ohm resistors to ground and has been passed through two inverting
CMOS Schmitt triggers (74HC14) for additional conditioning.

The DCT test setup shown in Figure 5.45 consists of the DCT test board, a PC run-
ning the Linux operating system, a Keithley 2400 sourcemeter for providing the supply
and measuring the current of the DCT chip core, a Tektronix HFS 9003 high-speed digital
waveform generator for providing a variable clock to the board, and a Tektronix power
supply for providing a TTL supply for the board. Both the Keithley 2400 and the Tektronix
HFS 9003 have an RS-232 interface for remote operation. Both instruments are under soft-
ware control through the PC so that supply and clock frequency can be changed through
C program instructions and current measurements can be read from the instrument under
program control.

124 CHAPTER 5. DCT CORE PROCESSOR

dctsetupphoto.ps
108 � 81 mm

Figure 5.45: DCT Chip Test Setup Photograph

5.7.2 Test Results

The DCT chip is functional over a wide range of frequencies and power supplies as can be
seen from the Schmoo plot of Figure 5.46. Over 150,000 separate power measurements on
a block-by-block basis have been taken using the test images of Figure 5.8 in addition to
artificially generated data in order to fully characterize the chip power dissipation.

We begin by presenting the power dissipation results for each one of the 11 test images
for three sets of cycle limit thresholds. The power results are plotted in Figure 5.47. The
measurements have been taken at 1.56V, 14 MHz. The first set of bars are power measure-
ments for maximum cycle limits (8) per RAC unit (no computation inhibition). This is the
setting for maximum PSNR and power. The second and third set of bars are for the cycle
limits of Table 5.2 and the cycle limits computed by our optimization program yielding
the PSNRs of Figure 5.15 respectively. As expected, more power is dissipated when the
cycle limits are at their maximum value since the chip executes a larger number of op-
erations to compute the DCT using the highest possible precision. We also observe that
our initial intelligent guess dissipates less power than the cycle limits computed by our
optimization program although Figure 5.15 implies that both sets of cycle limits result in
equal cycles per RAC. The explanation for this effect is a bit involved: The cycle limits of
Table 5.2 have zeroes that are concentrated together in the high spatial frequency area. As
a result, the first stage produces intermediate blocks that contain columns with a number
of zero-valued elements. The second stage MSB rejection and sign extension mechanisms
therefore will see correlated data and reduce the effective bitwidth of the number that the
RAC units operate on. As a result, the reduced cycles per RAC are a result of increased

5.7. TESTING 125

schmoodct.ps
114 � 88 mm

1.10

2.0

1.20
1.30
1.40
1.50
1.60
1.70
1.80
1.90
2.00
2.10
2.20
2.30
2.40
2.50
2.60
2.70
2.80
2.90
3.00

S
u
p
p
l
y

(
V
)

.**

...**

.....**************************************

........***********************************

...........********************************

..*

44.0

..............*****************************

................***************************

...................************************

.....................**********************

.......................********************

..........................*****************

............................***************

.............................**************

...............................************

.................................**********

...................................********

.....................................******

.......................................****

..***

. = PASS * = FAIL

Frequency (MHz)

Figure 5.46: DCT Chip Schmoo Plot

MSB and sign extension detection in addition to computation inhibition. On the other
hand, the cycle limits that have been computed by the optimization program do not con-
tain so many zeroes close together, but the reduction in the cycle limit numbers is spread
more evenly. As a result, the reduced cycles are due to computation inhibition rather than
increased MSB/sign rejection. We ask the reader to recall from section 5.1.2 that stopping a
RAC before it reaches its final value introduces scaling by a factor 2�n where n is the num-
ber of remaining cycles required to complete the computation using full precision. In order
to account for this scaling, the shift-only feedback path of Figure 5.2 must be activated for
the n remaining cycles. This shift is not necessary in the MSB rejection case and it is this
additional clocking that accounts for the increased power in the third set of bars in Figure
5.47.

The average power dissipation for all 11 images is shown in Table 5.14. We quote 4.38
mW for the chip power dissipation at 1.56V, 14 MHz because at this supply and clock
frequency the chip can produce compressed images of high quality and at a rate high
enough for MPEG2 640x480 4:2:0 video compression.

A final observation from Figure 5.47 is that the more “busy” images FLOWER, MAN-
DRILL and VAN GOGH produce the highest power dissipation. This is expected because
according to Table 5.3 these three images require the most cycles per RAC unit. This is
attributed to reduced MSB and sign extension rejection due to reduced correlation among
pel values. On the other hand, image WATER which consists of mostly blue pels of constant
intensity demands the least power from the DCT processor.

126 CHAPTER 5. DCT CORE PROCESSOR

powerimagesannot.ps
117 � 110 mm

0

1

2

3

4

5

6

P
ow

er
 (

m
W

)
No comp inhibition
Intelligent guess
Optimization program

C
A

T
H

E
D

R
A

L

C
O

U
P

L
E

E
U

R
O

P
E

F
L

O
W

E
R

G
IR

L

L
E

N
A

M
A

N
D

R
IL

L

P
E

P
P

E
R

S

P
L

A
N

E

V
A

N
 G

O
G

H

W
A

T
E

R

Figure 5.47: Power Dissipation of 11 Test Images at 1.56V, 14 MHz

Power (mW)
No computation Inhibition 5.08
Intelligent Guess 4.38
Optimization Program 4.63

Table 5.14
Average Power Dissipation for All Test Images

5.7. TESTING 127

dctpowervariancefullannot.ps
120 � 83 mm

0 20 40 60 80 100
Block Std. Deviation

2

3

4

5

6

7

P
ow

er
 (

m
W

)

0

2000

4000

6000

N
um

ber of B
locks

Average= 5.08 mW

Number of Blocks

Power

Figure 5.48: DCT Chip Power vs. Pel Standard Deviation. Chip Measured Power at 1.56V,
14 MHz. The cycle limits used are set at the maximum possible value (computation per-
formed to full precision). This plot includes all blocks of all 11 test images.

We wish to investigate more the relationship between image pel correlation and power
dissipation. The results of our power measurements (average � 1 standard deviation)
on a 64-element block basis are plotted in Figures 5.48 and 5.49 vs. the sample standard
deviation of the 64 block elements. The image block frequency histogram vs. standard
deviation is also shown on the same plot. We observe that according to the design goal,
power dissipation shows strong dependence with data correlation (more MSB rejection
and less arithmetic activity). To stress this dependence even more, we have measured the
chip power while operating on blocks that have zero variance and consist of 64 occurrences
of the same 8-bit value (0-255). The results of these measurements are plotted in Figure 5.50
vs. the block value. We observe that the average power dissipated is much lower (2.86
mW and 2.91 mW with and without computation inhibition respectively) than the average
power we obtain when the chip is stimulated with image data (4.38 mW). Moreover, we
observe that the power dissipation does not depend on the actual block value, since hardly
any computation is performed and the power is mainly due to control, clock distribution
and the TRAM.

Figure 5.51 compares the average power of the DCT chip for different types of stimuli
ranging from fully correlated (constant) blocks to random blocks with maximum variance.
The “IMAGE BLOCKS” bars are power averages when the chip is stimulated from all 11
test images. We observe that MSB rejection itself can be responsible for up to 55% power
savings with 22% being more typical for image data. The savings figure will be increased
for differential video data (i.e. MPEG) due to increased correlation (more zeroes and small

128 CHAPTER 5. DCT CORE PROCESSOR

dctpowervarianceannot1.ps
120 � 83 mm

0 20 40 60 80 100
Block Std. Deviation

2

3

4

5

6

7

P
ow

er
 (

m
W

)

0

2000

4000

6000

N
um

ber of B
locks

Average= 4.38 mW

Power

Number of Blocks

Figure 5.49: DCT Chip Power vs. Pel Standard Deviation. Chip Measured Power at 1.56V,
14 MHz. The cycle limits used are shown in Table 5.2. This plot includes all blocks of all
11 test images.

corrpowerannot.ps
107 � 74 mm

0 32 64 96 128 160 192 224 256
Block Value

0

1

2

3

4

5

P
ow

er
 (

m
W

)

Max Cycle Limits

Initial Intelligent Guess
Cycle Limits of

Figure 5.50: DCT Chip Power vs. Block Element Value. Chip Measured Power at 1.56V,
14 MHz. This plot contains measurements for blocks where all 64 elements have the same
value.

5.7. TESTING 129

comparepowerboth.ps
144 � 79 mm

RANDOM
BLOCKS

IMAGE
BLOCKS

CONSTANT
BLOCKS

RANDOM
BLOCKS

IMAGE
BLOCKS

CONSTANT
BLOCKS

0 2 4 6 8
Average Power (mW)

0 2 4 6 8
Average Power (mW)

REDUCED PRECISION FULL PRECISION

Figure 5.51: DCT Chip Average Power Comparison for Different Stimuli. Chip Measured
Power at 1.56V, 14 MHz.

magnitude numbers present.) Our power estimation results (section 5.4) indicate that the
power cost of the additional control logic required to implement MSB rejection is approx-
imately 3-4% of the chip total. Therefore, MSB rejection produces net power gains on the
order of 18-19% for typical image data and up to 52% for fully correlated data.

In addition to establishing the strong dependence between chip power and block sam-
ple correlation, we also wish to establish the obvious relationship between chip power dis-
sipation and the average number each RAC unit must be clocked per block row/column
for the DCT computation (computation bitwidth.) We remind the reader that each RAC is
clocked a maximum of 8 times except for RAC0 of stage 0 which is always clocked 8 times
and RAC0 of stage 1 which is always clocked 11 times. Figure 5.52 plots our measurement
data (averages only) vs. the computation bitwidth along with the corresponding average
block PSNR. Plots (a) and (c) show power and PSNR vs. bitwidth with row-column clas-
sification disabled (no premature computation inhibition is performed.) We observe that
PSNR stays constant at well above 40 dB while power increases with bitwidth as expected.
Plots (b) and (d) show power and PSNR in the presence of reduced precision selected
according to row-column maximum absolute element difference. We observe that PSNR
drops as the average bitwidth increases due to the approximation performed by the RAC
units. This approximation is more coarse for higher bitwidth inputs and therefore PSNR
drops with increased bitwidth.

Finally, we wish to establish the relationship between power and quality of image cod-
ing. We used the PEPPERS image PSNR trace (Figure 5.13) and we picked 11 sets of cycle
limits than span the entire PSNR range for this image (23.99 dB to 44.84 dB). We determined

130 CHAPTER 5. DCT CORE PROCESSOR

powerpsnrannot1.ps
116 � 83 mm

0 1 2 3 4 5 6 7 8
Computation Bitwidth

2

3

4

5

6

7

P
ow

er
 (

m
W

)

0

10

20

30

40

50

60

P
S

N
R

 (dB
)

(a) Power full precision

(d) PSNR reduced

(c) PSNR full precision

precision
(b) Power reduced

precision

Figure 5.52: DCT Chip Power and Block PSNR vs. Computation Bitwidth. Chip Measured
Power at 1.56V, 14 MHz.

the specific cycle limits from the contour plots of Figure 5.13. We measured the power that
image PEPPERS dissipates for each one of the 11 limit sets and plotted the results vs. PSNR
in Figure 5.53.

Figure 5.54 displays the actual compressed images for each (power, PSNR) datapoint
of Figure 5.53. Figures 5.53 and 5.54 establish our claim that the present chip trades-off
image quality and power dissipation.

Finally, we wish to compare the experimental power results with the ones obtained
from Pythia to validate the estimation results of section 5.4. Figure 5.55 plots experimental
measurements with Pythia estimated power for the first 12 blocks of test image CATHE-
DRAL. Pythia results with and without interconnect estimation are shown. Matching is
remarkably good and we claim that the estimated results of section 5.4 are rather accurate.

We can summarize our conclusions from the experimental results as follows: We have
observed that power savings due to MSBR can be as high as 55% (random blocks vs. fully
correlated blocks) with 22% being more typical for still images. The additional power cost
of MSBR is 3-4% of the total chip power. Differential video will result in higher savings
due to the increased presence of zero-valued data. RCC adds an additional 15% of power
savings for minimal PSNR degradation at the expense of 5-6% more power in additional
control logic (section 5.4). Much higher power savings can be achieved if we are willing
to tolerate more image degradation. Both MSBR and and RCC account for about 40% of
power savings for still images at an additional combined overhead of 10% for a net power
reduction of 30%. We expect higher power savings for differential video coding.

5.7. TESTING 131

powerquality.ps
137 � 92 mm

20 25 30 35 40 45 50
PSNR (dB)

3.0

3.5

4.0

4.5

5.0

5.5

6.0

P
ow

er
 (

m
W

)

Figure 5.53: DCT Chip Average Power vs. Compressed Image Quality. Chip Measured
Power at 1.56V, 14 MHz. The power measurements are for test image PEPPERS.

132 CHAPTER 5. DCT CORE PROCESSOR

allpeppers.ps
143 � 211 mm

23.99 dB 3.07 mW 26.74 dB 3.16 mW 28.33 dB 4.07 mW

30.36 dB 4.08 mW 32.46 dB 4.30 mW 34.57 dB 4.65 mW

36.73 dB 4.75 mW 38.78 dB 4.91 mW 40.80 dB 4.94 mW

42.78 dB 5.02 mW 44.84 dB 5.11 mW

Figure 5.54: Compressed Image Quality and Power. The displayed images constitute the
data points of Figure 5.53.

5.7. TESTING 133

powercompdctannot.ps
106 � 75 mm

0 2 4 6 8 10 12
Block Sequence Number

2

3

4

5

6

P
ow

er
 (

m
W

)

Pythia No Interconnect

Pythia + Interconnect

Measured Power @ 1,56V, 14MHz

Figure 5.55: DCT Chip Measured vs. Estimated Power

Chip Sw-Cap/sample
Matsui et al. [MHS+94] 375 pF
Bhattacharya et al. [BH95] 479 pF
Kuroda et al. [KFN+96] (scaled to same feature size) 417 pF
IDCT chip (chapter 3) 190 pF
Present DCT chip 128 pF

Table 5.15
Energy Efficiency Comparison Among DCT/IDCT Chips

The DCT chip exhibits less switched capacitance per operation than the IDCT chip of
chapter 3 (128 pF vs. 190 pF) and is much more energy efficient than similar chips that
have appeared in the literature from a switched capacitance perspective. In Table 5.15 we
reproduce the switched capacitance data that has appeared in Table 3.9 along with an ex-
tra entry for the present DCT chip. We observe that the present chip exhibits less switched
capacitance by a factor of three when compared to past DCT processors. The activity re-
duction methods account for a significant portion of this reduction. The remaining sav-
ings are attributed to optimised internal arithmetic bitwidths, additional clock gating and
adder/subtractor input shielding in the “butterfly” stages. Additional energy savings are
reaped from reduced on-chip latency. Chips [MHS+94] and [KFN+96] impose 112 cycles
of latency from chip input to chip output. The latency of the present DCT chip is 97 cycles.

134 CHAPTER 5. DCT CORE PROCESSOR

demoboard.ps
85 � 82 mm

Figure 5.56: DCT/ IDCT Demonstration Board

5.8 DCT/ IDCT Demonstration Board

Rex Min [Min99] has built a board that demonstrates the functionality of the DCT and
IDCT chips working together in a still image coding/ decoding environment. The board
contains a DCT and IDCT chip directly connected to each other and supporting circuitry
that stimulates the DCT chip with still images and displays the output of the IDCT chip
on a grayscale LCD display. A photograph of the demonstration board is shown in Figure
5.56.

A new demonstration board is being designed which will be capable of digitizing
NTSC motion video, code it through the DCT chip, decode it through the IDCT chip and
display it on the LCD screen at 30 frames per second.

5.9 Chapter Summary and Conclusion

This chapter has presented the design, implementation and testing of the DCT core proces-
sor. The chip is targetted to low power video (MPEG2 MP@ML) and still image (JPEG) ap-
plications. It exhibits two innovative techniques for arithmetic operation reduction in the
DCT computation context along with standard voltage scaling techniques such as pipelin-
ing and parallelism. The first method reduces the bitwidth of arithmetic operations in the
presence of data spatial correlation. The second method trades off power dissipation and
image compression quality (arithmetic precision.) The chip dissipates 4.38 mW at 14 MHz,
1.56V.

Chapter 6

Conclusion

The contributions of this work can be classified in three categories:

� Algorithmic Contributions

� Architecture/ Circuit Contributions

� System-level Contributions

6.1 Algorithmic Contributions

This work has introduced the idea of designing ad hoc DSP algorithms whose number of
arithmetic operations depends on some statistical property of the input data. Such algo-
rithmic design can result in a small number of operations for the average case (but not for
the worst case) and lead to very low power implementations.

A data-dependent algorithm for the computation of the IDCT has been introduced.
This algorithm requires a variable number of additions and multiplications per block de-
pending on the number of zeroes present in the input data stream. When operating on
MPEG-compressed video data, the data-dependent algorithm requires a smaller average
number of operations per block than previously published fast algorithms. A similar
forward-mapped IDCT algorithm has been proposed by McMillan and Westover [MW92]
and has been the basis for our own implementation. As opposed to the McMillan-Westover
FMIDCT, the present algorithm is a row-column implementation and is more suitable for
low-area VLSI implementations.

This work has also proposed an algorithm for the computation of the DCT. The Chen
[CSF77] algorithm has been the basis for this implementation. We have made the simple
observation that for the DCT computation (and other frequency-domain transforms such
as the DFT), the DC offset of the input data is only relevant for the computation of the DC
coefficient and does not alter the higher spectral coefficients. This can reduce substantially

135

136 CHAPTER 6. CONCLUSION

the input bitwidth in the presence of correlated inputs and result in a considerable reduc-
tion in the number of arithmetic operations without loss in precision. An additional ex-
tension is an adaptive method for further operation reduction with minimal visual image
quality degradation. There has been a substantial body of work in adaptive video coding
using classification based on post DCT spectral information (chapter 4). Most previous
investigators suggest variable quantization as the adaptation parameter. On the contrary,
the present work demonstrates the use of a pre-DCT classifier (row/column peak-to-peak
pel amplitude) to reduce arithmetic operations during the actual DCT computation.

6.2 Architectural/ Circuit Contributions

The VLSI implementation of the IDCT chip has demonstrated that clock gating can be
taken to the limits. Clock gating can be implemented in a pipelined data path by having
separate qualified clock nets for each pipeline stage. Skew problems can be dealt with at a
small cost in terms of power and practically zero hit in performance.

The VLSI implementation of the DCT chip has demonstrated the suitability of dis-
tributed arithmetic structures for low power. Past researchers have attempted to design
arithmetic structures that can adapt to the dynamic range of the input data: Nielsen and
Sparso [NS96] [NS98] have proposed a sliced data path for a digital hearing aid filter bank
that exploits small magnitude arithmetic inputs for low power. The arithmetic data path
has been partitioned in an MSB and an LSB slice. The MSB slice is only enabled when the
input bitwidth requires it. Activation of the slices is performed by using special data tags
that indicate the presence of sign extension bits in the MSB input slice. Additional circuit
overhead is required for the computation and update of tags. Moreover, dynamic bitwidth
adaptation is very coarse and can only be performed on a slice basis. On the other hand,
the distributed arithmetic structures used in the DCT chip can reject sign extension bits
in a very elegant fashion using minimal control overhead and at a very fine granularity
(chapter 5).

An additional desirable property of distributed arithmetic structures is based on the
successive approximation property (section 2.2.1). Recently, a number of researchers have
resorted to approximate processing as a method for reducing average system power: Lud-
wig et. al [LNC96] have demonstrated an approximate filtering technique which dynami-
cally reduces the filter order based on the input data characteristics. More specifically, the
number of taps of a frequency-selective FIR filter is dynamically varied based on the esti-
mated stopband energy of the input signal. The resulting stopband energy of the output
signal is always kept under a predefined threshold. This technique results in power sav-
ings of a factor of 6 for speech inputs. Larsson and Nikol [LN97] [NLAO97] have demon-
strated an an adaptive scheme for dynamically reducing the input amplitude of a Booth-
encoded multiplier to the lowest acceptable precision level in an adaptive digital equalizer.
Their scheme simply involves an arithmetic shift (multiplication/ division by a power of
2) of the multiplier input depending on the value of the error at the equalizer output. They
report power savings of 20%.

6.3. SYSTEM-LEVEL CONTRIBUTIONS 137

The ROM and accumulator arithmetic units can be used in an approximate processing
framework with minimum extra hardware control overhead. Simply stopping the clock of
a RAC before it completes its dot product computation produces an approximation of its
final result with almost linear power savings. The DCT chip has demonstrated this prop-
erty by producing approximate results for non-visually significant spectral coefficients and
for low activity input data.

6.3 System-level Contributions

One of the author’s main motivations to embark on this research is the strong belief that
the next step in computer architecture is billion-transistor chips which will substantially
deviate from the general purpose microprocessors of our times. Such complex chips will
contain special-purpose macrocells for common tasks (i.e. DCT/IDCT) and large complex
macroinstructions in addition to standard general purpose ALUs and instruction sets. Mi-
gration of common computation tasks from software to specialized hardware will lower
substantially the average chip power dissipation and will enable portability and higher
levels of integration. This work has provided the future system-level integrator with two
such low power macrocells for two very frequently used tasks.

138 CHAPTER 6. CONCLUSION

Bibliography

[AAN88] Y. Arai, T. Agui, and M. Nakajima. A fast DCT-SQ scheme for images. Transac-
tions of the IEICE, E71(11):1095–1097, November 1988.

[ANR74] N. Ahmed, T. Natarajan, and K.R. Rao. Discrete cosine transform. IEEE Transac-
tions on Computers, C-23(1):90–93, January 1974.

[BH95] A. K. Bhattacharya and S. S. Haider. A VLSI implementation of the inverse dis-
crete cosine transform. International Journal of Pattern Recognition and Artificial
Intelligence, 9(2):303–314, 1995.

[Bur94] T. Burd. Low-power CMOS library design methodology. Master’s thesis, UC
Berkeley, 1994.

[CBB94] A.P. Chandrakasan, A. Burstein, and R.W. Brodersen. A low-power chipset
for a portable multimedia I/O terminal. IEEE Journal of Solid State Circuits,
29(12):1415–1428, December 1994.

[Cho96] P.L. Chou. Low power ROM generation. Master’s thesis, Massachusetts Institute
of Technology, 1996.

[CL92] N. Cho and S. Lee. A fast 4x4 DCT algorithm for the recursive 2-D DCT. IEEE
Transactions on Signal Processing, 40(9):2166–2172, September 1992.

[CP84] W. H. Chen and W. Pratt. Scene adaptive coder. IEEE Transactions on Communi-
cations, COM-32(3):225–232, March 1984.

[CS77] W. H. Chen and H. Smith. Adaptive coding of monochrome and color images.
IEEE Transactions on Communications, COM-25(11):1285–1292, November 1977.

[CSB92] A.P. Chandrakasan, C. Sheng, and R.W. Brodersen. Low-power CMOS digital
design. IEEE Journal of Solid State Circuits, 27(4):473–484, April 1992.

[CSF77] W. H. Chen, C. H. Smith, and S.C. Fralick. A fast computational algorithm for
the discrete cosine transform. IEEE Transactions on Communications, COM-25(9),
September 1977.

[CT91] T.M. Cover and J.A. Thomas. Elements of Information Theory. J. Wiley, 1991.

139

140 BIBLIOGRAPHY

[Dan96] A.P. Dancy. Power supplies for ultra low power applications. Master’s thesis,
Massachusetts Institute of Technology, 1996.

[Dav72] L.D. Davisson. Rate-distortion theory and application. Proceedings of the IEEE,
60(2):800–808, July 1972.

[Den95] L. Dennison. The Reliable Router : An architecture for fault tolerant interconnect. PhD
thesis, Massachusetts Institute of Technology, 1995.

[FW92] E. Feig and S. Winograd. Fast algorithms for the discrete cosine transform. IEEE
Transactions on Signal Processing, 40(9):2174–2193, September 1992.

[Gea96] J. Gealow. An Integrated Computing Structure for Pixel-Parallel Image Processing.
PhD thesis, Massachusetts Institute of Technology, 1996.

[Gim75] J. Gimlett. Use of ”activity” classes in adaptive transform image coding. IEEE
Transactions on Communications, COM-23(7):785–786, July 1975.

[HDG92] Y. Huang, H. Dreizen, and N. Galatsanos. Prioritized DCT for compression
and progressive transmission of images. IEEE Transactions on Image Processing,
1(4):477–487, October 1992.

[Huf52] D.A. Huffman. A method for the construction of minimum redundancy codes.
Proc. IRE, 40(9):1098–1102, September 1952.

[IEE90a] Standards Committee IEEE. IEEE standard specifications for the implementation
of 8x8 inverse discrete cosine transform. IEEE Standard 1180-1990, 1990.

[IEE90b] Standards Committee IEEE. IEEE standard test access port and boundary scan
architecture. IEEE Standard 1149.1-1990, 1990.

[Int98] Intel Corp. Mobile Pentium Processor with MMX[tm] Technology on .25
micron. http://developer.intel.com/design/mobile/datashts/243468.htm, Jan-
uary 1998.

[ISO94] International Organization for Standardisation ISO. Generic coding of moving
pictures and associated audio, Reccomendation H.262. ISO/IEC 13818-2 Draft
International Standard, 1994.

[KFN+96] T. Kuroda, T. Fujita, T. Nagamatu, S. Yoshioka, F. Sano, M. Norishima,
M. Murota, M. Kako, M. Kinugawa, M. Kakumu, and T. Sakurai. A 0.9V, 150-
MHz, 10-mW, 4mm2, 2-D discrete cosine transform core processor with variable-
threshold-voltage (VT) scheme. IEEE Journal of Solid State Circuits, 31(11):1770–
1777, November 1996.

[KMO87] Y. Kato, N. Mukawa, and S. Okubo. A motion picture coding algorithm us-
ing adaptive DCT encoding based on coefficient power distribution classifica-
tion. IEEE Journal on Selected Areas in Communication, SAC-5(7):1090–1099, Au-
gust 1987.

BIBLIOGRAPHY 141

[KS67] M.G. Kendall and A. Stuart. The Advanced Theory of Statistics. Charles Griffin,
London, 1967.

[LBG80] Y. Linde, A. Buzo, and R.M. Gray. An algorithm for vector quantizer design.
IEEE Transactions on Communications, COM-28(1):84–95, January 1980.

[LeG91] Didier LeGall. MPEG: a video compression standard for multimedia applica-
tions. Communications of the ACM, 34(4):46–58, April 1991.

[LKRR93] H. Lee, Y. Kim, A.H. Rowberg, and E.A. Riskin. Statistical distributions of DCT
coefficients and their application to an interframe compression algorithm for 3-d
medical images. IEEE Transactions on Medical Imaging, 12(3):478–485, September
1993.

[Llo82] S.P. Lloyd. Least squares quantization in PCM. IEEE Transactions on Information
Theory, IT-28(2):129–137, March 1982.

[LN97] P. Larsson and C.J. Nikol. Self-adjusting bit precision for low-power digital fil-
ters. In Symposium on VLSI Circuits, pages 123–124, June 1997.

[LNC96] J.T. Ludwig, S.H. Nawab, and A. Chandrakasan. Low-power digital filtering
using approximate processing. IEEE Journal of Solid State Circuits, 31(3):395–400,
March 1996.

[Loh84] H. Lohscheller. A subjectively adapted image communication system. IEEE
Transactions on Communications, COM-32(12):1316–1322, December 1984.

[LR95] P.E. Landman and J.M Rabaey. Architectural power analysis: The dual bit type
method. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 3(2):173–
187, June 1995.

[LV86] A. Ligtenberg and M. Vetterli. A discrete fourier cosine transform chip. IEEE
Journal on Selected Areas in Communication, SAC-4(1):49–61, January 1986.

[Max60] J. Max. Quantizing for minimum distortion. IRE Transactions on Information The-
ory, pages 7–12, March 1960.

[MF92] R. Mester and U. Franke. Spectral entropy-activity classification in adaptive
transform coding. IEEE Journal on Selected Areas in Communication, 10(5):913–917,
June 1992.

[MHS+94] M. Matsui, H. Hara, K. Seta, Y. Uetani, L. Kim, T. Nagamatsu, T. Shimazawa,
S. Mita, G. Otomo, T. Oto, Y. Watanabe, F. Sano, A. Chiba, K. Matsuda, and
T. Sakurai. 200 MHz video compression macrocells using low-swing differential
logic. In IEEE International Solid-State Circuits Conference, pages 76–77, February
1994.

[Min99] R. Min. Demonstration system for a low-power video coder and decoder. Mas-
ter’s thesis, Massachusetts Institute of Technology, In Preparation, 1999.

142 BIBLIOGRAPHY

[MPFL97] J.L. Mitchell, W.B Pennebaker, C.E. Fogg, and D.J. LeGall. MPEG Video Com-
pression Standard. Chapman & Hall, New York, 1997.

[Mul93] F. Muller. Distribution shape of two-dimensional DCT coefficients of natural
images. Electronic Letters, 29(22):1935–1936, October 1993.

[MW92] L. McMillan and L. A. Westover. A forward-mapping realization of the inverse
discrete cosine transform. In Proceedings of the Data Compression Conference (DCC
‘92), pages 219–228. IEEE Computer Society Press, March 1992.

[MW93] L. McMillan and L. A. Westover. Method and apparatus for fast implementation
of inverse discrete cosine transform in a digital image processing system using
optimized lookup tables. United States Patent No. 5,224,062, June 1993.

[MW94] L. McMillan and L. A. Westover. Method and apparatus for fast implementation
of inverse discrete cosine transform in a digital image processing system using
low cost accumulators. United States Patent No. 5,301,136, April 1994.

[NH95] A.N. Netravali and B.G. Haskell. Digital Pictures: Representation, Compression and
Standards, Sec. Ed. Plenum, 1995.

[Nil85] N.B. Nill. A visual model weighted cosine transform for image compression and
quality assessment. IEEE Transactions on Communications, COM-33(6):551–557,
June 1985.

[NL86] K.N. Ngan and K.S. Leong. A fast convergence method for Lloyd-Max quantizer
design. Electronic Letters, 22:944–946, July 1986.

[NLAO97] C.J. Nikol, P. Larsson, K. Azadet, and N.H. O’Neill. A low-power 128-tap digi-
tal adaptive equalizer for broadband modems. IEEE Journal of Solid State Circuits,
32(11):1777–1789, November 1997.

[NLS89] K. N. Ngan, K. S. Leong, and H. Singh. Adaptive cosine transform coding of
images in perceptual domain. IEEE Transactions on Acourstics, Speech and Signal
Processing, 37(11):1743–1749, November 1989.

[NS96] L. Nielsen and J. Sparso. A low-power asynchronous data-path for an FIR filter
bank. In Second International Symposium on Advanced Research in Asynchronous
Circuits and Systems, pages 197–207, March 1996.

[NS98] L. Nielsen and J. Sparso. An 85 µW asynchronous filter bank for a digital hearing
aid. In IEEE International Solid-State Circuits Conference, pages 108–109, February
1998.

[OHM+84] J.K. Ousterhout, G.T. Hamachi, R.N. Mayo, W.S. Scott, and G.S. Taylor. Magic:
A VLSI layout system. In Proceedings of the 21st Design Automation Conference
(DAC ’84), pages 152–159, June 1984.

[PL74] A. Peled and B. Liu. A new hardware realization of digital filters. IEEE Transac-
tions on Acoustics Speech and Signal Processing, ASSP-22, December 1974.

BIBLIOGRAPHY 143

[PM92] W.B Pennebaker and J.L Mitchell. JPEG: Still Image Data Compression Standard.
Van Nostrand Reinhold, 1992.

[RG83] R.C. Reininger and J.D. Gibson. Distributions of the two-dimensional DCT co-
efficients for images. IEEE Transactions on Communications, COM-31(6):835–839,
June 1983.

[RY90] K. R. Rao and P. Yip. Discrete Cosine Transform: Algorithms, Advantages, Applica-
tions. Academic Press, 1990.

[SCG89] M. T. Sun, T. C. Chen, and A. M. Gottlieb. VLSI implementation of a 16 � 16
discrete cosine transform. IEEE Transactions on Circuits and Systems, 36(4), April
1989.

[Sim99] T. Simon. A Low Power Video Compression Chip for Portable Applications. PhD thesis,
Massachusetts Institute of Technology, In Preparation, 1999.

[SR96] S.R. Smoot and L.A. Rowe. Study of DCT coefficient distributions. In Proceedings
of the SPIE - The International Society for Optical Engineering, volume 2657, pages
403–411, January 1996.

[TW71] M. Tasto and P. Wintz. Image coding by adaptive block quantization. IEEE Trans-
actions Communication Technology, COM-19(3):957–972, May 1971.

[UIT+92] S. Uramoto, Y. Inoue, A. Takabatake, J. Takeda, Y. Yamashita, H. Terane, and
M. Yoshimoto. A 100 MHz 2-D discrete cosine transform core processor. IEEE
Journal of Solid State Circuits, 36(4), April 1992.

[Wal91] G.K. Wallace. The JPEG still picture compression standard. Communications of
the ACM, 34(4):30–44, April 1991.

[WE93] N. Weste and K. Eshraghian. Principles of CMOS VLSI Design, Sec. Ed. Addison-
Wesley, 1993.

[Whi89] Stanley A. White. Applications of distributed arithmetic to digital signal pro-
cessing: A tutorial review. IEEE ASSP Magazine, July 1989.

[XC98] Thucydides Xanthopoulos and Anantha Chandrakasan. A low-power IDCT
macrocell for MPEG2 MP@ML exploiting data distribution properties for min-
imal activity. In 1998 Symposium on VLSI Circuits Digest of Technical Papers, pages
38–39, June 1998.

[XC99] Thucydides Xanthopoulos and Anantha Chandrakasan. A low-power IDCT
macrocell for MPEG2 MP@ML exploiting data distribution properties for min-
imal activity. IEEE Journal of Solid State Circuits, 34(4), To Appear: April 1999.

[XCSD96] Thucydides Xanthopoulos, Anantha Chandrakasan, Charles G. Sodini, and
William J. Dally. A data-driven IDCT architecture for low power video appli-
cations. In European Solid State Circuits Conference (ESSCIRC), September 1996.

144 BIBLIOGRAPHY

[XYC97] Thucydides Xanthopoulos, Yoshifumi Yaoi, and Anantha Chandrakasan. Archi-
tectural exploration using Verilog-based power estimation: A case study of the
IDCT. In Proceedings of the 34th Design Automation Conference (DAC ’97), pages
415–420, June 1997.

[YS89] J. Yuan and C. Svensson. High-speed CMOS circuit technique. IEEE Journal of
Solid State Circuits, 24(1):62–70, February 1989.

Appendix A

Design Tools and Methods

This appendix describes the tools and methodologies used for the physical design of the
IDCT and DCT core processors of chapters 3 and 5 respectively. The design flow includes
a number of custom tools developed by the author for library development, netlist pro-
cessing, standard cell place and route etc. This appendix is meant to serve as a source of
documentation for such tools so that the expertise developed over the course of the last
four years can be passed on to new students.

A.1 Design Flow

Figure A.1 illustrated the flow followed during the design and implementation of the DCT
and IDCT chips of the previous chapters. This design flow skips some standard steps
(i.e. Verilog behavioral modelling) but has been followed by the author over the course of
two reasonably large designs (120K and 160K transistors) and has been found to produce
working chips within a reasonable amount of time (approximately 6-8 months per chip
starting from a blank sheet of paper.)

At the top of the flow is the chip functional modelling using a high level systems lan-
guage (i.e. C/C++). This step is essential for a proof-of-concept chip implementation in a
short time and also as a “live” chip specification used to produce input/output vectors for
subsequent verification steps. We proceed by entering gate-level schematics using stan-
dard cells from a previously developed library. Schematics are simulated using gate-level
Verilog and verified against the C/C++ chip model. Before proceeding to chip physical
design, schematics are simulated at the transistor level using circuit simulators such as
Hspice and Timemill/Powermill. The next step is the system physical design (layout) in
two dimensions. The final two steps are comparison of the schematic and extracted layout
netlist (LVS) and circuit simulation of the extracted layout netlist which includes extracted
wiring parasitic capacitances. This last step is essential for correct chip operation at the
specified supply voltage and clock frequency. After the completion of this step, manufac-
turing output (ASCII CIF or gdsII binary stream) is produced for the fabrication house.

145

146 APPENDIX A. DESIGN TOOLS AND METHODS

desflow.ps
137 � 173 mm

Functional Model
(C, C++)

Schematic Entry
(Cadence Composer)

Gate-Level Simulation
(Verilog-XL)

Circuit Simulation
(Hspice, Timemill)

Physical Design
(Cadence Virtuoso)

Schematic/Layout Comparison
(Cadence LVS)

Circuit Simulation + interconnect
(Hspice, Timemill)

Manufacturing Output
(CIF, gdsII)

Chip Fabrication

Library Development

(Cadence Design Env)

Schematic Cells

Layout Cells

Vectors

netlist

n
et

lis
t

Vectors+Timing

V
ec

to
rs

+T
im

in
g

Figure A.1: Design Flow

A.2. FUNCTIONAL CHIP MODEL 147

A.2 Functional Chip Model

A chip functional model using a high level system language is essential for three main
reasons: First, it provides a quick proof-of-concept implementation of the system under
consideration and it is also an excellent form of documentation for the intended chip func-
tionality. Second, it is a source of stimuli and verification vectors (digital inputs and out-
puts) that will be used in subsequent flow steps (Figure A.1). Third, due to the execution
speed of a system language, the functional model can be used as a testbed for implement-
ing and evaluating design alternatives (i.e. bitwidth of arithmetic units.)

The functional model has a notion of all the system functional blocks (usually imple-
mented as separate function calls) and should produce bit-equivalent results at each func-
tional block boundary. Exact timing information is not embedded in the code, but a high-
level task sequence must be present and must be equivalent to the sequence of tasks that
will be performed by the actual chip.

Two separate functional models in C have been developed for both the DCT and the
IDCT processor. Both have been used to determine the optimum arithmetic unit bitwidth
for minimum power and acceptable precision [IEE90a]. Both have been combined to pro-
duce a rudimentary still image compression software package (tcode) emulating the be-
havior of the DCT/IDCT core chipset. The functional models have been appropriately
instrumented so that a number of intermediate outputs can be extracted for purposes of
incremental debugging.

A.3 Library Development

A standard cell library complete with cell symbol, functional (Verilog), schematic (transistor-
level) and layout views is essential for speedy design entry. The author has developed two
such libraries during the course of the chip designs, one for the HP CMOS14 (0.5 µm) pro-
cess available through MOSIS using SCMOS parametrised (λ-based, λ =0.35 µm) design
rules, and one for the Analog Devices (ADI) 0.6 µm DPTM process using micron-based
design rules. Raj Amirtharajah and Tom Simon have also made substantial contributions
for the completion of the ADI library.

In the Cadence design framework a standard cell has 4 required views:

Symbol The symbol view is created manually by the designer or copied from a template
library provided by the CAD vendor. The symbol view is the main cell placeholder
within a schematic drawing.

Functional The functional view is a Verilog module (preferably primitive) which func-
tionally describes the cell. This view is also manually created by the designer and is
used for Verilog gate-level simulations.

Schematic This view contains the transistor-level schematic of the cell along with transis-
tor size information. This schematic is entered manually by the designer.

148 APPENDIX A. DESIGN TOOLS AND METHODS

Layout This view contains the layout polygons. This view can be generated in one of three
ways within our CAD framework:

1. The layout can be generated manually by the designer (an activity otherwise
known as “polygon pushing”!). This is the most common form of layout design
entry and the only available method for complex cells such as flip-flops and
XOR gates.

2. A number of standard cell libraries (some of them of dubious quality) are freely
available among the academic community (i.e. Berkeley low-power standard
cell library [Bur94]). Invariably, all these libraries are available in Magic [OHM+84]
format. The author has developed a software package (mag2skill) which con-
verts such cells in Cadence layout given simple configuration information.

3. A layout generation package for simple static CMOS cell generation from schemat-
ics is also available. This package (layoutGen) was originally developed by
Larry Dennison [Den95] but has been substantially modified and parametrised
by the author and Raj Amirtharajah to produce high quality layout with en-
forceable parametrised rules. This package reads a cell schematic along with
design rule information and cell dimensional specifications (i.e. cell height and
width of power and ground rails) and produces layout of quite acceptable qual-
ity complete with substrate and well contacts obeying all furnished design rules.

Layout generation techniques 2 and 3 are expanded upon in the following sections.

A.3.1 Magic to Cadence Translation

The present location of the mag2skill package is under /jake/mag2skill. It has been writ-
ten entirely in the C programming language. The program operates on .mag cell files.
A section from such a layout description is reproduced in Figure A.2. The double angle
brackets specify a layer change, whereas the “rect” declarations specify a rectangle in-
stance. The following 4 integers specify the x and y coordinates of the rectangle diagonal.

Before running the executable, a technology file is necessary. A sample technology
file included in the mag2skill distribution is reproduced in Figure A.3. This file provides
certain design rule information necessary to translate Magic contacts and contact arrays to
Cadence raw contact cuts and contact cut arrays. In addition to design rule information,
the file provides a correspondence between the layer names assumed by each separate
layout editor.

The DERIVE SELECT flag should be set to one if the translator is to derive the N-select
and P-select layers. Such derivation is performed by expanding the N-diffusion and P-
diffusion layers by one SELECT OVERLAP unit (3 λ in this example).

Magic has a unique way of representing contacts (poly-metal, diffusion-metal and
vias). All three physical layers (top contact layer, bottom contact layer and contact cut
including contact surround) are represented with a single rectangle on the corresponding

A.3. LIBRARY DEVELOPMENT 149

.

.

.
<< nwell >>
rect -3 24 51 58
<< polysilicon >>
rect 11 54 29 56
rect 7 50 9 52
rect 11 50 13 54
.
.
.

Figure A.2: Magic Layout Cell Description

contact layer. Only during the extraction of manufacturing output are the underlying lay-
ers derived. As a result, the translation to a standard layout editor (Cadence Virtuoso)
should perform this physical layer derivation. Figure A.4 demonstrates the translation
of a Magic via array to a Cadence via array. The reader should note that the technology
file in Figure A.3 specifies three separate cadence layers for each Magic contact layer (e.g.
“polycontact” translates to “poly”, “metal1” and “cont” in Cadence).

Except for all the contacts and the two transistor devices (poly overlapping diffusion)
all the other rectangles undergo a one-to-one translation. The mag2skill executable pro-
duces a SKILL source code file (SKILL is an interpreted LISP-like dialect that implements
the procedural interface of the Cadence CAD package) which when run in the Cadence
Command Interpreter Window (CIW) produces a cell layout view. Figure A.5 contains the
section of the generated SKILL code that produces the Magic rectangles of Figure A.2.

An Example

In this section, a sample magic cell from the Berkeley low power library (drif301.mag, 2-
stage driver) is translated to Cadence format. The following steps are followed:

1. The technology file (/jake/mag2skill/tech/m2s.tech, also shown in Figure A.3) must
be copied in the present directory at the same level as the cell to be translated (drif301.mag).

2. The following commands must be typed at the Unix prompt: “m2s drif301 stdcells”.
Note that the .mag extension is omitted. The second command line argument (“std-
cells”) is the name of the Cadence library where the user wishes to place the newly
translated cell.

3. After the previous step, a file called “drif301.il” has been created in the present di-
rectory. This file contains SKILL code that when run generates all the shapes that

150 APPENDIX A. DESIGN TOOLS AND METHODS

magic2skill Technology File
D. Xanthopoulos 1996

this must be set to 1 if the select mask must be included
DERIVE_SELECT 1

Necessary Design Rules
CONTACT_SIZE 2
CONTACT_SPACING 2
CONTACT_OVERLAP 1
VIA_SIZE 2
VIA_SPACING 2
VIA_OVERLAP 1
SELECT_OVERLAP 3

#Local Name Magic layer Cadence layer(s)
PW pwell none
NW nwell nwell
POLY polysilicon poly
NDIFF ndiffusion ndiff
PDIFF pdiffusion pdiff
M1 metal1 metal1
M2 metal2 metal2
M3 metal3 metal3
NT ntransistor ndiff poly
PT ptransistor pdiff poly
PSUB psubstratepdiff psub
NSUB nsubstratendiff nsub
GLASS glass overgla
VERY IMPORTANT!!!!
Contacts must be specified as layer1 layer2 contact_cut
#
PC polycontact poly metal1 cont
NDC ndcontact ndiff metal1 cont_aa
PDC pdcontact pdiff metal1 cont_aa
M2C m2contact metal1 metal2 via
PSC psubstratepcontact psub metal1 cont_aa
NSC nsubstratencontact nsub metal1 cont_aa
end

Figure A.3: mag2skill Technology File. All integers represent λ units (MOSIS SCMOS
design rules).

A.3. LIBRARY DEVELOPMENT 151

magiccontacts.ps
150 � 70 mm

MAGIC CONTACT ARRAY CADENCE CONTACT ARRAY

mag2skill TRANSLATION

m2contact metal1, metal2 via

VIA_SIZE

VIA_SPACING

VIA_OVERLAP

Figure A.4: Translation of a Magic Via Array to Cadence Layout

.

.

.
(dbCreateRect cv (list "nwell" "drawing")

(list (list -3 24) (list 51 58)))
(dbCreateRect cv (list "poly" "drawing")

(list (list 11 54) (list 29 56)))
(dbCreateRect cv (list "poly" "drawing")

(list (list 7 50) (list 9 52)))
(dbCreateRect cv (list "poly" "drawing")

(list (list 11 50) (list 13 54)))
.
.
.

Figure A.5: SKILL Code Generated by mag2skill Corresponding to the Rectangles of Fig-
ure A.2

152 APPENDIX A. DESIGN TOOLS AND METHODS

drif301.ps
152 � 61 mm

111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111

m2s

CADENCE LAYOUT CELLMAGIC LAYOUT CELL

Figure A.6: Translation of a Magic 2-stage Driver to Cadence Format

comprise the buffer. The user should type “load “drif301.il”” in the Cadence CIW
window.

4. The user should create a Cadence cell named “drif301” within the “stdcells” Cadence
library.

5. Finally, the user should type “lg” (Layout Generate) in the CIW. Under cell drif301,
a layout view has been created that contains the same shapes (with appropriately
translated contacts and contact arrays) as the Magic layout. The Magic cell and the
newly generated Cadence cell appear in Figure A.6. The reader’s attention is directed
to the translation of contacts in the figure.

The author has used certain Berkeley cells (TSPC flops) in the design of the IDCT pro-
cessor which had been translated using m2s. Paul Chou [Cho96] used m2s extensively to
develop a low power ROM generator in the Cadence environment using Berkeley Magic
cell blocks. Abram Dancy [Dan96] extended m2s to enforce micron-based design rules. He
used the translator to convert Berkeley Magic cells in the Cadence environment obeying
ADI 0.6 µm micron-based rules.

A.3.2 CMOS Cell Library Generator (layoutGen)

A SKILL packaged originally developed by Larry Dennison [Den95] for MOSIS scalable
CMOS (SCMOS) rules has been adapted by the author and Raj Amirtharajah for use with
programmable design rules. The program (layoutGen) can produce very usable layout for
basic static CMOS structures (inverters, and/nand/or/nor gates) by reading device sizes
and connectivity from schematics.

Usage is very simple: After the designer has finished entering the schematics for a
standard cell, he/she needs to load the layoutGen package in the Cadence CIW window:

A.4. SCHEMATIC ENTRY AND GATE-LEVEL SIMULATION 153

CIW> load ‘‘layoutGen.il’’

Then, he/she proceeds to create the cell layout:

CIW> (layoutGen ‘‘libname’’ ‘‘cellname’’)

After the execution of the layoutGen command, a layout cellview for the corresponding
cell will have been created. Specification of design rules along with other cell parameters
(i.e. cell height, with of supply rails) appears in a separate file (“layoutGlobals.il”) which
is read at runtime by layoutGen.

The layout generation program first places all transistors using an ad-hoc procedure
to maximise contact sharing. Then the supply rails are drawn along with internal connec-
tivity wires. Finally, the cell is scanned for possible places for well and substrate contacts,
and the maximum possible contacts are placed. During the last step, the cell terminals are
also placed.

When a complex cell is given to layoutGen, the generator attempts a best effort layout
(device placement always completes) and exits after producing a cell with incomplete con-
nectivity. The produced cell is usually an excellent starting point for hand layout. Figure
A.7 shows example cell layouts produced by layoutGen for the ADI 0.6 µm process. All
the displayed layouts have been produced by software only with no intervention from the
designer. All layouts pass the ADI design rules.

Substantial thought has been put to a number of layout details. As an example, note
how the generator does not center the N-diffusion and P-diffusion islands for the 2-input
and the 4-input NAND gates but does so for the 5-input AND so that the “jogged” input
gate polysilicon still fits within the specified cell height.

Two optional command line options are available for layoutGen. They are invoked as
follows:

CIW> (layoutGen ‘‘libname’’ ‘‘cellname’’ ?splitTrans t ?inv t)

The command line option “splitTrans” directs layoutGen to split large transistors and
draw them with multiple fingers. If this option is not set, large transistors will be drawn
with a single gate finger and the cell height will possibly exceed the spacing between sup-
ply rails. The “inv” option should be used when a multiple-finger inverter is to be gen-
erated. It directs layoutGen to short all gate poly fingers from one end of the cell to the
other.

A.4 Schematic Entry and Gate-Level Simulation

Schematic entry has been the basic form of design entry during the development of both
the DCT and IDCT chips. The reader will note that HDL-level modelling (i.e. behavioral
Verilog/VHDL) is notoriously absent from this design flow. There are two main reasons
that we concluded that this step can be skipped:

154 APPENDIX A. DESIGN TOOLS AND METHODS

lgenannot.ps
153 � 183 mm

11111111111111111111111111111111
11111111111111111111111111111111
11111111111111111111111111111111
11111111111111111111111111111111
11111111111111111111111111111111
11111111111111111111111111111111
11111111111111111111111111111111
11111111111111111111111111111111
11111111111111111111111111111111
11111111111111111111111111111111
11111111111111111111111111111111
11111111111111111111111111111111
11111111111111111111111111111111
11111111111111111111111111111111
11111111111111111111111111111111
11111111111111111111111111111111
11111111111111111111111111111111

111111111111111111111111
111111111111111111111111
111111111111111111111111
111111111111111111111111
111111111111111111111111
111111111111111111111111
111111111111111111111111
111111111111111111111111
111111111111111111111111
111111111111111111111111
111111111111111111111111
111111111111111111111111
111111111111111111111111
111111111111111111111111
111111111111111111111111
111111111111111111111111

111111111111111111111111
111111111111111111111111
111111111111111111111111
111111111111111111111111
111111111111111111111111
111111111111111111111111
111111111111111111111111
111111111111111111111111
111111111111111111111111
111111111111111111111111
111111111111111111111111
111111111111111111111111
111111111111111111111111
111111111111111111111111
111111111111111111111111
111111111111111111111111
111111111111111111111111
111111111111111111111111

11111111111111111
11111111111111111
11111111111111111
11111111111111111
11111111111111111
11111111111111111
11111111111111111
11111111111111111
11111111111111111
11111111111111111
11111111111111111
11111111111111111
11111111111111111
11111111111111111
11111111111111111
11111111111111111

NAND4 AND5

OR3NAND2

Figure A.7: Standard Cells Produced by layoutGen

A.5. SCHEMATIC CIRCUIT SIMULATION 155

1. The C-level functional model has already provided a proof-of-concept system im-
plementation without detailed timing information. Yet, detailed circuit design may
easily introduce new constraints which will affect the timing structure assumed dur-
ing the behavioral modelling. In many cases, gate-level schematic entry can render
behavioral modelling quite obsolete. On the other hand, the C-level model provides
enough information for the designer to proceed directly to gate-level schematic entry.
A time-consuming step can thus be saved.

2. Debugging at the HDL behavioral modelling can be quite time consuming for a num-
ber of reasons. Hardware description languages are essentially parallel and deviate
substantially from the sequential execution model of most programming languages.
Moreover, the event-triggered character of such languages can lead to erroneous
event loops which are difficult to identify by looking at textual program listings.
On the other hand, schematic printouts provide very effective visual information
that can easily summarize dependencies and timing and render debugging far more
effective and less time consuming.

Every library cell is backed by a Verilog textual view that encapsulates its functional-
ity. A schematic can be netlisted into a hierarchical Verilog circuit description. The Verilog
netlist is simulated using logic vectors generated from the C-level model. When I/O equiv-
alence is achieved for a large number of vectors, the chip schematic is considered validated
at the gate level.

A.5 Schematic Circuit Simulation

The Verilog simulation guarantees logical correctness but cannot catch circuit-level bugs
such as underdriven nets, charge sharing problems, race conditions, setup/hold time vi-
olations etc. A circuit simulator such as Hspice and Timemill/Powermill is necessary for
this step.

Hspice is a high quality circuit simulator but it cannot handle large circuits effectively.
Hspice is ideal for things such as simulating individual cells, and identifying the criti-
cal path but it cannot handle an entire chip such as the DCT and IDCT chips. On the
other hand, Timemill is capable of handling large systems at the expense of a lower-quality
event-triggered simulation. The author has found that Timemill may produce erroneous
results at low voltages (<1.5V) especially for non-static CMOS circuit styles. Nevertheless,
it is currently the only tool in the market than can simulate large netlists at the circuit level.
Powermill is essentially the same simulation engine with more precision and the ability to
monitor supply currents for power measurements.

Both DCT and IDCT chips have undergone extensive Timemill simulations and have
been validated at the circuit schematic level.

156 APPENDIX A. DESIGN TOOLS AND METHODS

fanoutform.ps
112 � 81 mm

Figure A.8: Static Net Fanout Checker Entry Form

A.5.1 Static Net Fanout Checking

An additional step that should come before the circuit simulation that can save a lot of de-
bugging time is the static net fanout checking. The author has developed a fanout checker
than can descend into a hierarchical circuit, compute the total gate load on each circuit
node, trace the driving transistors and report nets that are underdriven and will have large
rise and fall times. The checker can identify such problematic nodes within a few seconds
and save hours of erroneous circuit simulations.

The checker is very easy to use and has been fully integrated within the Cadence de-
sign framework. It has been added under a “Custom Tools” Menu in the Cadence CIW
Window. Selection of the corresponding menu entry brings up the form of Figure A.8. A
brief description of the form fields follows:

Run Directory Specifies the directory where the resulting file will be placed.

Library Name Library Name of the hierarchical cell on which we wish to run the checker.

Cell Name Cell Name of the cell in question.

pmos/nmos Device Cell Names Names of PMOS and NMOS transistor library elements
in the schematic. These are the stopping cells in the hierarchical check.

Skip Libraries Cells that belong to these libraries are also treated as stopping cells so that
the output and run time of the program can be pruned. As an example, we typically

A.5. SCHEMATIC CIRCUIT SIMULATION 157

do not wish for the checker to descend all the way into logic gates and check the
fanout of local interconnect.

Driving Factor This number specifies what the desirable driving strength multiplicative
factor is. Any net whose load-to-driving-strength ratio is less than this number is
reported as being underdriven.

Minimum Inverter VDD/ GND Drive Size in microns of minimum inverter PMOS and
NMOS width. This field is used to determine an appropriate driving inverter for the
loaded net. This inverter is suggested to the user as the minimum acceptable driver
for any net that is found to be underdriven.

Collapse Buses? This option reports vector nets (buses) together if they share the same
load-to-driving-strength ratio instead of individually. This option reduces the textual
output and produces fewer and more useful warning messages.

Skip Cells The checker does not descend into the cells that are listed in this field. This
option can be useful if the schematic design is not in its final form and contains
empty cells that are not backed by schematic views. Such cells should be listed in
this field.

Execution of the fanout checker brings up a text window that contains a list of warnings
about underdriven nodes. An example entry is shown below:

--
Cell: msbrclass_ctrl_bot0 Library: dct

--
Nets that are 100% underdriven:

Net ldmaskb is underdriven to Vdd (load = 222.60 drive= 33.60)
Consider inv13.2x

Net ldmaskb is underdriven to Gnd (load = 222.60 drive= 16.80)
Consider inv13.2x

Net mask is underdriven to Vdd (load = 207.20 drive= 33.60)
Consider inv12.3x

Net mask is underdriven to Gnd (load = 207.20 drive= 16.80)
Consider inv12.3x

Net zero_mask is underdriven to Gnd (load = 28.00 drive= 1.40)
Consider inv1.7x

The drive reported is the gate width of the transistor pulling the node towards the VDD
or GND supply. The load reported is the total gate width of all transistors whose gate is
directly attached to the net. The checker does not take into account source/ drain junction
capacitances.

158 APPENDIX A. DESIGN TOOLS AND METHODS

A.6 Physical Design

The physical design (layout) is by far the most time-consuming part of the design process.
Both the DCT and IDCT chips have a large number of full custom layout blocks. Yet, the
DCT chip has large random-logic control blocks that have been automatically generated
using an internal standard cell place and route tool. This tool is described in the next
section.

A.6.1 Custom Standard Cell Place and Route Tool

The place and route tool has been originally developed by Larry Dennison [Den95]. The
author has rewritten a number of sections in order to parametrise the design rules and ren-
der it process independent. Moreover, the router has been completely rewritten to allow
more routing freedom and efficiency.

The tool has been written entirely in SKILL. While describing the tool, we will use the
terms “function” and “procedure” interchangeably to describe SKILL language functions.
The starting point is a gate-level schematic. In the beginning, the user creates a piece
of SKILL source code that encapsulates the entire layout generation. We call this SKILL
program, the “generator”. Then, the user edits the generator, records his/hers preferred
standard cell placement, and makes some adjustments to the wiring. Then the generator
is run, and the layout is produced.

First, the user must load the relevant SKILL packages within the Cadence environment.
The following must be typed in the Cadence CIW:

CIW> load ‘‘mgg3.il’’
CIW> load ‘‘std.il’’

Both skill files are located in the main SKILL repository on /yoda. The generator is
created when the user types the following command in the Cadence CIW:

(mgg ‘‘libname’’ ‘‘cellname’’)

where “libname” and “cellname” are the library name and cell name of the schematic cell
which we wish to generate layout for. The mgg program (the name stands for module
generator generator) produces a SKILL source code file ([cellname].il) in the current work-
ing directory. This file contains the definition of the generator procedure.

The generator starts by defining a toplevel SKILL function (mg) that encapsulates the
entire layout process. The structure of the generator function is shown in Figure A.9. First,
the layout cellview is created and bound to the local variable cv. Then, we proceed by
performing the leaf cell instantiation in the current cellview (call to the “instantiate” pro-
cedure). Then the “placement” procedure is called which places all the previously instan-
tiated cells. After the placement is done, the “channelHorzFind” procedure is called which

A.6. PHYSICAL DESIGN 159

(defun mg (@key (report_length 300.0))
(let (

<local variables>
)

(setq cv (dbOpenCellViewByType <libname> <cellname>
"layout" "maskLayout" "w"))

(instantiate)
(placement)
(setq channels (channelHorzFind cv

?westExtend 13.2
?eastExtend 13.2
?topChannelHeight 50.0
?botChannelHeight 50.0
))

(wireVddGnd cv channels)

(wire_clk)
(wire_reset)
(wire_net0)
.
.
.
.
(wire_net1000)

))

Figure A.9: Module Generator SKILL Source Code

identifies all the rectangular routing channels given the placement that has just been per-
formed. This procedure returns an array of rectangles (channels[]) that correspond to the
channels available for routing tracks between cell rows (Figure A.10). The arguments to
“channelHorzFind” are also illustrated in Figure A.10. The next function call (“wireVd-
dGnd”) draws the power and ground rails (horizontal metal1 and vertical metal2) that
shorts the supply inputs of all the cells together and produces a power/ ground grid (Fig-
ure A.10). All the procedure calls that follow draw individual wires among the cells. There
is one procedure call for each wire in the block.

The “instantiate”, “placement” and all the wiring procedures are also defined in the
same file that the generator function (mg) is found. All other functions (i.e. “channel-
HorzFind”) are part of the place and route package and they have been defined after the
execution of the first two “load” statements.

160 APPENDIX A. DESIGN TOOLS AND METHODS

mggtemplate.ps
134 � 109 mm

N
A

N
D

2

N
A

N
D

2

N
O

R
2

N
O

R
2

O
R

2

O
R

2

A
N

D
4

N
A

N
D

4

N
A

N
D

4

N
O

R
4

A
N

D
4

A
N

D
4

A
N

D
3

N
O

R
3

N
O

R
3

N
O

R
4

O
R

3

O
R

2

O
R

3

V
D

D

G
N

D

V
D

D

G
N

D

metal2

metal1

channels[1]

channels[0]

channels[2]

channels[3]

?westExtend ?eastExtend

?topChannelHeight

?botChannelHeight

Figure A.10: Placement, Routing Channel Identification and Power/ Ground Routing

A.6. PHYSICAL DESIGN 161

(defun instantiate ()
(let (

nand2
nor2
inv2x
inv
and2

)

(setq nand2 (dbOpenCellViewByType "stdcells" "nand2"
"layout" nil "r"))

(setq nor2 (dbOpenCellViewByType "stdcells" "nor2"
"layout" nil "r"))

(setq inv2x (dbOpenCellViewByType "stdcells" "inv2x"
"layout" nil "r"))

(setq inv (dbOpenCellViewByType "stdcells" "inv"
"layout" nil "r"))

(setq and2 (dbOpenCellViewByType "stdcells" "and2"
"layout" nil "r"))

I158 = (dbCreateInst cv and2 "I158" (list 0.0 0.0) "R0")
I189 = (dbCreateInst cv nor2 "I189" (list 0.0 0.0) "R0")
I64 = (dbCreateInst cv nand2 "I64" (list 0.0 0.0) "R0")
I167 = (dbCreateInst cv inv2x "I167" (list 0.0 0.0) "R0")
I193 = (dbCreateInst cv inv "I193" (list 0.0 0.0) "R0")
))

Figure A.11: Cell Instantiation Procedure

Before describing placement and routing, we note that the mg procedure may take
a single optional argument (report length [number]). This argument causes the wiring
functions to report any routed net that is longer than [number] microns. This functionality
is very useful in order to determine long wires where more buffering may be necessary.

Cell Instantiation

Figure A.11 shows the structure of an example “instantiate” procedure. The first 5 SKILL
assignments open the master layout cells and bind them to local variables. The second set
of 5 statements instantiates the master cells in the current cellview (cv) using the primitive
SKILL dbCreateInst procedure. The “instantiate” function is always generated automati-
cally by mgg and there is never any need for designer input. We should note that this
procedure preserves instance names from schematic to layout.

162 APPENDIX A. DESIGN TOOLS AND METHODS

(defun placement ()
(let ()

(instsPlaceRow (list
I149
I150
I151
I193
I192
I194

)
0.0 0.0)

))

Figure A.12: Cell Placement Procedure

Cell Placement

The “placement” procedure is where most of the user input is concentrated. Initially, mgg
produces a blank placement procedure. The easiest way to specify cell placement, is by
using the predefined “instsPlaceRow” procedure. This is illustrated in Figure A.12. This
procedure needs three arguments: a list of instances, an x-coordinate and a y-coordinate.
The procedure places all standard cell instances in a row at the specified coordinates. Mul-
tiple calls to “instsPlaceRow” produces multiple rows of standard cells as shown in Figure
A.10.

Cell placement is the most important design decision as far as this phase is concerned
and has a great impact on the subsequent wiring steps.

Routing

Figure A.13 shows an example net wiring function. The “wireMultiChannel” procedure
draws the wiring trace when given the following arguments:

� Current layout cellview

� Routing channel array (computed by “channelHorzFind”)

� Number of routing channels (size of channel array.)

� List of output terminals connected by the current wire (each list item is another two
element list. The first element is the cell instance identifier and the second element is
the cell terminal name.)

� List of input terminals connected by the current wire (same format as above)

A.7. EXTRACTED LAYOUT SIMULATION 163

(defun wire_net101 ()
(let ()

(wireMultiChannel cv channels num_channels
(list

(list I4 "q")
)

(list
(list I24 "A")
(list I5 "A0")

)
?netName "net101"
)

))

Figure A.13: Example Wiring Function

Optional arguments include the net name and flags indicating whether the particular
net is a toplevel terminal. If this is true, “wireMultiChannel” places a pin on the net. If all
the cell terminals are found in the same wiring channel (wire0 in Figure A.14), the “wire-
MultiChannel” procedure finds an empty horizontal metal1 track in the channel using a
greedy search, draws it and also draws the relevant vertical metal2 or poly stubs to con-
nect the cell terminals to the horizontal track. If on the other hand the cell terminals span
multiple routing channels, the net is broken into multiple subnets that are connected to-
gether with vertical metal2 jumpers routed over the cells (wire1 in Figure A.14). The tool
guarantees that the vertical metal2 jumpers never interfere with underlying metal2 inside
the cells and all relevant design rules are judiciously enforced.

The routing algorithm implemented is rather simple. It is 100% greedy in the sense
that when a wiring function is called, the best location for the trace is found and the trace
is placed. The algorithm does not have a global view of all nets and does not try to produce
a globally optimal trace allocation. Changing the order that the wiring functions are called
can change the total number of traces required per routing channel. We have found that a
few iterations of changing cell placement and wiring order can produce quite acceptable
results.

Figure A.15 shows an example standard cell logic block generated using the process
described. The block shown is part of the MSB rejection control logic of the DCT chip. The
block of Figure A.15 was generated by a 3700-line SKILL program.

A.7 Extracted Layout Simulation

The final simulation phase before layout is a transistor-level simulation including wiring
parasitic capacitances. This is necessary to ensure that all nets have appropriate driv-

164
A

PPE
N

D
IX

A
.

D
E

SIG
N

TO
O

L
S

A
N

D
M

E
T

H
O

D
S

w
iring.ps

98
�

114
m

m

NAND2

NAND2

NOR2 NOR2

OR2

OR2

AND4

NAND4

NAND4

NOR4 AND4

AND4

AND3

NOR3

NOR3

NOR4

OR3

OR2

OR3

VDD

GND

VDD

GND

w
ire1

w
ire0

Figu
re

A
.14:E

xam
ple

G
enerated

W
ire

Traces

A.7. EXTRACTED LAYOUT SIMULATION 165

ctrltop.ps
142 � 80 mm

Figure A.15: Automatically Generated Random Logic Block

ing strength to meet the timing requirements when the layout wiring capacitances are
accounted as well.

A.7.1 Capacitance Extraction

The Cadence design framework contains a sophisticated layout extraction tool that can
calculate all possible parasitic capacitances among layout wires when given appropriate
rules. The author has found that the best strategy for fastest simulation is to refer all
wiring parasitic capacitances to ground. Figure A.16(a) shows the cross section of two
parallel wires forming capacitors C1, C2, and C3. Figure A.16(b) shows the equivalent
circuit used for simulation. Capacitor C2 is no longer a line-to-line capacitor but has been
referred to ground with a Miller multiplicative factor of 2 to account for the worst case
when the two lines move in opposite directions. The reason that we do not want line-
to-line capacitances in circuit simulations is that capacitor loops (Figure A.16(a)) impose
additional circuit constraints and they slow down the simulation, sometimes causing con-
vergence problems. It must be noted that an equivalent circuit such as the one shown in
Figure A.16(b) cannot catch errors that occur due to line-to-line coupling (i.e. glitching due
to coupling on a net that must be glitch free.) The designer must identify sensitive wires
(i.e. clocks, asynchronous resets etc.) and make sure that they are laid out appropriately,
minimizing line-to-line coupling with adjacent nets.

166 APPENDIX A. DESIGN TOOLS AND METHODS

cap.ps
135 � 38 mm

C1 2C2 2C2 C3

C2

C1 C3

(a) (b)

Figure A.16: Wiring Parasitic Capacitance Equivalence

A.7.2 Netlist Renaming (rnmNetlist)

Layout extraction produces a flat transistor-level netlist without preserving the net names
of the corresponding schematic view. This net renaming is rather inconvenient when the
designer simulates extracted layout because net monitoring and error tracking becomes a
problem. We have solved this problem by writing a perl script that reinstalls the schematic
net names in an extracted layout Hspice netlist. The script (“rnmNetlist”) has been devel-
oped by Gangadhar Konduri with minor additions and modifications by the author.

The script works as follows: The Layout-Versus-Schematics (LVS) verification pro-
cedure produces a net cross-reference table after successfully matching the layout and
schematic netlists net-by-net and device-by-device. The script utilizes this information
to produce an Hspice netlist that has the connectivity of extracted layout and the original
net names of the schematic view.

Usage is as follows:

unix> rnmNetlist schem_netlist lay_netlist xref.out hsp_netlist

where schem netlist and lay netlist are the schematic and layout LVS netlists, xref.out is
the cross-reference file produced by LVS and hsp netlist is the Hspice netlist produced
from extracted layout that contains the random net names we wish to replace. The script
produces the renamed Hspice netlist in the standard output.

A.8 Summary and Conclusion

This appendix has described the design flow followed during the development of the DCT
and IDCT chips. A number of custom tools have been developed to aid in the process.
These tools include a Magic-to-Cadence cell translator, a standard cell layout generator,
a net fanout checker, a custom standard cell place and route tool and a netlist processor.
Short tutorials on the usage of these tools have been presented.

Appendix B

DCT AC Coefficient Distributions:
Test Image PEPPERS

dct1.ps
47 � 33 mm

0

0.005

0.01

0.015

0.02

0.025

-300 -200 -100 0 100 200 300

peppers DCT Coefficient 1

dct2.ps
47 � 33 mm

0

0.01

0.02

0.03

0.04

0.05

0.06

-150 -100 -50 0 50 100 150

peppers DCT Coefficient 2

dct3.ps
47 � 33 mm

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

-80 -60 -40 -20 0 20 40 60 80

peppers DCT Coefficient 3

dct4.ps
47 � 33 mm

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

-60 -40 -20 0 20 40 60

peppers DCT Coefficient 4

dct5.ps
47 � 33 mm

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

-40 -20 0 20 40

peppers DCT Coefficient 5

dct6.ps
47 � 33 mm

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

-30 -20 -10 0 10 20 30

peppers DCT Coefficient 6

dct7.ps
47 � 33 mm

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

-20 -10 0 10 20

peppers DCT Coefficient 7

dct8.ps
47 � 33 mm

0

0.005

0.01

0.015

0.02

0.025

0.03

-200 -100 0 100 200

peppers DCT Coefficient 8

dct9.ps
47 � 33 mm

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

-100 -50 0 50 100

peppers DCT Coefficient 9

dct10.ps
47 � 33 mm

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

-80 -60 -40 -20 0 20 40 60 80

peppers DCT Coefficient 10

dct11.ps
47 � 33 mm

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

-40 -30 -20 -10 0 10 20 30 40

peppers DCT Coefficient 11

dct12.ps
47 � 33 mm

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

-30 -20 -10 0 10 20 30

peppers DCT Coefficient 12

167

168 APPENDIX B. DCT AC COEFFICIENT DISTRIBUTIONS: TEST IMAGE PEPPERS

dct13.ps
47 � 33 mm

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

-30 -20 -10 0 10 20 30

peppers DCT Coefficient 13

dct14.ps
47 � 33 mm

0

0.02

0.04

0.06

0.08

0.1

0.12

-20 -10 0 10 20

peppers DCT Coefficient 14

dct15.ps
47 � 33 mm

0

0.02

0.04

0.06

0.08

0.1

0.12

-20 -15 -10 -5 0 5 10 15 20

peppers DCT Coefficient 15

dct16.ps
47 � 33 mm

0

0.01

0.02

0.03

0.04

0.05

0.06

-100 -50 0 50 100

peppers DCT Coefficient 16

dct17.ps
47 � 33 mm

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

-80 -60 -40 -20 0 20 40 60 80

peppers DCT Coefficient 17

dct18.ps
47 � 33 mm

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

-40 -20 0 20 40

peppers DCT Coefficient 18

dct19.ps
47 � 33 mm

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

-30 -20 -10 0 10 20 30

peppers DCT Coefficient 19

dct20.ps
47 � 33 mm

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

-30 -20 -10 0 10 20 30

peppers DCT Coefficient 20

dct21.ps
47 � 33 mm

0

0.02

0.04

0.06

0.08

0.1

0.12

-20 -10 0 10 20

peppers DCT Coefficient 21

dct22.ps
47 � 33 mm

0

0.02

0.04

0.06

0.08

0.1

0.12

-25 -20 -15 -10 -5 0 5 10 15 20 25

peppers DCT Coefficient 22

dct23.ps
47 � 33 mm

0

0.02

0.04

0.06

0.08

0.1

0.12

-20 -15 -10 -5 0 5 10 15 20

peppers DCT Coefficient 23

dct24.ps
47 � 33 mm

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

-80 -60 -40 -20 0 20 40 60 80

peppers DCT Coefficient 24

dct25.ps
47 � 33 mm

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

-40 -20 0 20 40

peppers DCT Coefficient 25

dct26.ps
47 � 33 mm

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

-40 -30 -20 -10 0 10 20 30 40

peppers DCT Coefficient 26

dct27.ps
47 � 33 mm

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

-30 -20 -10 0 10 20 30

peppers DCT Coefficient 27

dct28.ps
47 � 33 mm

0

0.02

0.04

0.06

0.08

0.1

0.12

-20 -10 0 10 20

peppers DCT Coefficient 28

dct29.ps
47 � 33 mm

0

0.02

0.04

0.06

0.08

0.1

0.12

-25 -20 -15 -10 -5 0 5 10 15 20 25

peppers DCT Coefficient 29

dct30.ps
47 � 33 mm

0

0.02

0.04

0.06

0.08

0.1

0.12

-20 -10 0 10 20

peppers DCT Coefficient 30

169

dct31.ps
47 � 33 mm

0

0.02

0.04

0.06

0.08

0.1

0.12

-25 -20 -15 -10 -5 0 5 10 15 20 25

peppers DCT Coefficient 31

dct32.ps
47 � 33 mm

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

-60 -40 -20 0 20 40 60

peppers DCT Coefficient 32

dct33.ps
47 � 33 mm

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

-30 -20 -10 0 10 20 30

peppers DCT Coefficient 33

dct34.ps
47 � 33 mm

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

-30 -20 -10 0 10 20 30

peppers DCT Coefficient 34

dct35.ps
47 � 33 mm

0

0.02

0.04

0.06

0.08

0.1

0.12

-20 -10 0 10 20

peppers DCT Coefficient 35

dct36.ps
47 � 33 mm

0

0.02

0.04

0.06

0.08

0.1

0.12

-20 -10 0 10 20

peppers DCT Coefficient 36

dct37.ps
47 � 33 mm

0

0.02

0.04

0.06

0.08

0.1

0.12

-20 -15 -10 -5 0 5 10 15 20

peppers DCT Coefficient 37

dct38.ps
47 � 33 mm

0

0.02

0.04

0.06

0.08

0.1

0.12

-20 -10 0 10 20

peppers DCT Coefficient 38

dct39.ps
47 � 33 mm

0

0.02

0.04

0.06

0.08

0.1

0.12

-25 -20 -15 -10 -5 0 5 10 15 20 25

peppers DCT Coefficient 39

dct40.ps
47 � 33 mm

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

-40 -20 0 20 40

peppers DCT Coefficient 40

dct41.ps
47 � 33 mm

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

-30 -20 -10 0 10 20 30

peppers DCT Coefficient 41

dct42.ps
47 � 33 mm

0

0.02

0.04

0.06

0.08

0.1

0.12

-20 -10 0 10 20

peppers DCT Coefficient 42

dct43.ps
47 � 33 mm

0

0.02

0.04

0.06

0.08

0.1

0.12

-20 -10 0 10 20

peppers DCT Coefficient 43

dct44.ps
47 � 33 mm

0

0.02

0.04

0.06

0.08

0.1

0.12

-20 -15 -10 -5 0 5 10 15 20

peppers DCT Coefficient 44

dct45.ps
47 � 33 mm

0

0.02

0.04

0.06

0.08

0.1

0.12

-20 -15 -10 -5 0 5 10 15 20

peppers DCT Coefficient 45

dct46.ps
47 � 33 mm

0

0.02

0.04

0.06

0.08

0.1

0.12

-20 -10 0 10 20

peppers DCT Coefficient 46

dct47.ps
47 � 33 mm

0

0.02

0.04

0.06

0.08

0.1

0.12

-25 -20 -15 -10 -5 0 5 10 15 20 25

peppers DCT Coefficient 47

dct48.ps
47 � 33 mm

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

-30 -20 -10 0 10 20 30

peppers DCT Coefficient 48

170 APPENDIX B. DCT AC COEFFICIENT DISTRIBUTIONS: TEST IMAGE PEPPERS

dct49.ps
47 � 33 mm

0

0.02

0.04

0.06

0.08

0.1

0.12

-20 -10 0 10 20

peppers DCT Coefficient 49

dct50.ps
47 � 33 mm

0

0.02

0.04

0.06

0.08

0.1

0.12

-25 -20 -15 -10 -5 0 5 10 15 20 25

peppers DCT Coefficient 50

dct51.ps
47 � 33 mm

0

0.02

0.04

0.06

0.08

0.1

0.12

-20 -15 -10 -5 0 5 10 15 20

peppers DCT Coefficient 51

dct52.ps
47 � 33 mm

0

0.02

0.04

0.06

0.08

0.1

0.12

-25 -20 -15 -10 -5 0 5 10 15 20 25

peppers DCT Coefficient 52

dct53.ps
47 � 33 mm

0

0.02

0.04

0.06

0.08

0.1

0.12

-20 -15 -10 -5 0 5 10 15 20

peppers DCT Coefficient 53

dct54.ps
47 � 33 mm

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

-30 -20 -10 0 10 20 30

peppers DCT Coefficient 54

dct55.ps
47 � 33 mm

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

-30 -20 -10 0 10 20 30

peppers DCT Coefficient 55

dct56.ps
47 � 33 mm

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

-20 -10 0 10 20

peppers DCT Coefficient 56

dct57.ps
47 � 33 mm

0

0.02

0.04

0.06

0.08

0.1

0.12

-20 -15 -10 -5 0 5 10 15 20

peppers DCT Coefficient 57

dct58.ps
47 � 33 mm

0

0.02

0.04

0.06

0.08

0.1

0.12

-20 -15 -10 -5 0 5 10 15 20

peppers DCT Coefficient 58

dct59.ps
47 � 33 mm

0

0.02

0.04

0.06

0.08

0.1

0.12

-20 -15 -10 -5 0 5 10 15 20

peppers DCT Coefficient 59

dct60.ps
47 � 33 mm

0

0.02

0.04

0.06

0.08

0.1

0.12

-25 -20 -15 -10 -5 0 5 10 15 20 25

peppers DCT Coefficient 60

dct61.ps
47 � 33 mm

0

0.02

0.04

0.06

0.08

0.1

0.12

-20 -15 -10 -5 0 5 10 15 20

peppers DCT Coefficient 61

dct62.ps
47 � 33 mm

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

-30 -20 -10 0 10 20 30

peppers DCT Coefficient 62

dct63.ps
47 � 33 mm

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

-30 -20 -10 0 10 20 30

peppers DCT Coefficient 63

Appendix C

Chip Pinout Information

171

172 APPENDIX C. CHIP PINOUT INFORMATION

Pin Type Signal Name Pin Type Signal Name Pin Type Signal Name
1 - NC 29 Supply VLL 57 Supply VDD
2 Supply VLL 30 Supply VDD 58 Supply GND
3 - NC 31 Supply GND 59 Input din7
4 Supply VHH 32 Supply VHH 60 Supply VHH
5 Output clkout 33 Supply VLL 61 - NC
6 Supply GND 34 Supply VDD 62 Supply VLL
7 Supply VDD 35 Supply GND 63 - NC
8 Output dout9 36 Supply VHH 64 - NC
9 Output dout8 37 Supply VLL 65 Input din8

10 Output dout7 38 Supply VDD 66 - NC
11 Output dout6 39 Supply GND 67 Input clkin
12 Supply VLL 40 - NC 68 Input din9
13 Supply VHH 41 Input StartBlockIn 69 Input din10
14 Output dout5 42 - NC 70 Supply GND
15 Output dout4 43 - NC 71 Supply VDD
16 Output dout3 44 Supply VDD 72 Input din11
17 Output dout2 45 - NC 73 Supply VLL
18 Supply GND 46 Supply GND 74 Supply VHH
19 - NC 47 Input reset 75 Supply GND
20 Supply VDD 48 Input din0 76 Supply VDD
21 - NC 49 Input din1 77 Output StartBlockOut
22 - NC 50 Input din2 78 Supply GND
23 Output dout1 51 Supply VHH 79 Supply VDD
24 - NC 52 Supply VLL 80 Supply VLL
25 Output dout0 53 Input din3 81 Supply VHH
26 Supply VDD 54 Input din4 82 - NC
27 Supply GND 55 Input din5 83 Supply GND
28 Supply VHH 56 Input din6 84 - NC

Table C.1
IDCT Chip Pinout

173

84pga.ps
109 � 106 mm

L

K

J

H

G

F

E

D

C

B

1 2 3 4 5 6 7 8 9 10

A

11

TOP VIEW

17

14

7

79

75

52

84

3

4

6

9

12

13

16

18

19

21 24

22

20

8

5

2

1

82 81

83

10

11

15

23

25

26

27 30

29

31

77

76

80

78

73

74

32

28

33

72

71

70

36

35

34

38

37

69

68

67

65

54

53

49

41

39

66

64

62

59

56

50

47

44

43

40

63

61

60

58

55

57

51

48

46

45

42

Figure C.1: IDCT Chip Package Footprint

174 APPENDIX C. CHIP PINOUT INFORMATION

Pin Type Signal Name Pin Type Signal Name Pin Type Signal Name
1 Supply GND 35 Supply GND 69 Supply GND
2 Supply VDD 36 Supply VDD 70 Supply VDD
3 Supply GND 37 Supply GND 71 Supply GND
4 Supply VHH 38 Input TDI 72 Input StartBlockIn
5 Supply GND 39 Input TCK 73 Supply GND
6 Supply VDD 40 Input TMS 74 Supply VDD
7 Output LPEout 41 Input TRST 75 Supply GND
8 Output dout0 42 Supply VHH 76 - NC
9 Output dout1 43 Supply GND 77 - NC

10 Output dout2 44 Supply VDD 78 - NC
11 Output dout3 45 Output TDO 79 - NC
12 Output dout4 46 - NC 80 - NC
13 Output dout5 47 - NC 81 Input clk
14 Output dout6 48 - NC 82 Input reset
15 Output dout7 49 - NC 83 Output StartBlockOut
16 Supply GND 50 - NC 84 Supply GND
17 Supply VHH 51 Supply VDD 85 Supply VHH
18 Output dout8 52 Supply GND 86 Supply GND
19 Output dout9 53 Supply GND 87 Supply VDD
20 Output dout10 54 Supply VHH 88 Supply GND
21 Output dout11 55 Supply GND 89 Supply VHH
22 Supply GND 56 Supply VDD 90 Supply GND
23 Supply VHH 57 Supply GND 91 Supply VDD
24 Supply GND 58 Input din0 92 Supply GND
25 Supply VDD 59 Input din1 93 Supply VDD
26 - NC 60 Input din2 94 Supply VDD
27 - NC 61 Input din3 95 - NC
28 - NC 62 Input din4 96 - NC
29 - NC 63 Input din5 97 - NC
30 - NC 64 Input din6 98 - NC
31 - NC 65 Input din7 99 - NC
32 Supply VHH 66 Supply VDD 100 - NC
33 Supply GND 67 Supply GND
34 Supply VDD 68 Supply VHH

Table C.2
DCT Chip Pinout

175

100pga.ps
107 � 103 mm

100

2 1

4 3

6 5

8 7

11 10 9

14 12 13

171615

18 19

20 21

22 24

23 26

25 27

28

29

30

31

32

33

35

36

34 38 42

37

39

41

40

44

43

46

45

49

47 48 50

51 52

5453

55 56

5857

59 60 61

646263

67 66 65

6869

71 70

7274

76 73

757779

7880

81

82

83

84

85

86

87

88

8990

91

92

94

9395

96

9798

99

TOP VIEW

N

M

L

K

J

H

G

F

E

D

C

B

1 2 3 4 5 6 7 8 9 10 11 12 13

A

Figure C.2: DCT Chip Package Footprint

