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ABSTRACT

A method of shaping the open loop structural transfer function from a distributed sensor to
a distributed actuator is developed. The outputs of two sensors of different impedances are
combined electronically with the goal of increasing pole-zero spacing for improved per-
formance in low-authority structural control loops. The concept of a three-element actua-
tor-sensor module capable of adjusting the equivalent actuator and sensor impedances is
presented. The module consists of an actuator, and two sensors for measuring force and
strain. The output of the module is constructed by mixing the force and strain signals using
a mixing coefficient which can be used to tune the apparent sensor impedance for maxi-
mum performance. General shape of zero trajectories as a function of the mixing coeffi-
cient is derived. Mass-spring and beam models are used to further explore the behavior of
the zeroes of the mixed transfer function. Both an approximate beam model derived using
assumed mode method and the exact solution of the beam vibration equation are
employed. A practical implementation of the module is proposed. The design uses a piezo-
electric actuator with a collocated piezoelectric strain sensor and a novel piezoelectric
shear load cell. A test article was built, mounted on a cantilever aluminum beam, and
tested. Experiments verified the ability to increase pole-zero separation of a structural
transfer function by mixing the outputs of displacement and force sensors. At low frequen-
cies the overall shape of experimentally found zero trajectories compared well to the
results of beam models. Non-minimum phase zeroes encountered for certain values of the
mixing coefficient in both the models and the experiments limit the range in which the
mixed transfer function is attractive for feedback control.
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PazpaboraH MeToq u3MeHeHUsI GOpMbI KOHCTPYKIIIOHHOW IepeJaTOUHON QYHKINA OT
pacnpenesieHHOr0 AaTUrKa K pacupenesIeHHoMy npuBody. CUrHaIIBI, HOCTYHAIOIIE OT
OBYX AATUMKOB C Pas3JIMUHbIMU WMIIEJJaHCaMI, CMEIIaHbl 3JIEKTPOHHBIM IIyTEM C
LEJTBI0 YBEJTMUEHNsT PACCTOSTHIST MEZKAy HyJIsSIMU U TIOJTIOCAMI ITepegaTOUHON QyHKIIN,
YTO INPUBOOUT K YJIyulleHuo 3pdPeKTuBHOCTH paboThI crcTeM AKTUBHOIO
OeMIIQUpPOBaHUST KOHCTPYKLWMA. [IpeiiozKeHa cxXeMa Tpex-9JIEMEHTHOro 'MPUBOMA-
OaTumk’ MOMOYyJIsi, CHOCOOHOI'0O M3MEHSTH SKBUBAJICHTHBIC UMIEOAHCHI NPUBOHA U
gaTumga. MoOOyJIb COCTOUT W3 IPUBOgA U ABYX UyBCTBUTEIBHBIX 9JIEMEHTOB,
U3MEePSTONUX CIWTy U AebopManmo. BbIXOQHOW CATHaII U3 MOMYJISI COCTAaBJIEH IIyTeM
KOMOVHAIY CATHAJIOB JaTUNKOB yCwIns U JebopMaray Ipu oMoy KosdpouimeHTa,
KOTOpBII MOZKET ObITh WCIIOJIB30BaH 11 HACTPOMKN SKBHBAJIEHTHONO WMIIEJaHCa
JaTumKa Ha MakKCUMaJIbHYI0 3(ppeKTrBHOCTL paboThl. [lomyueHa ofbmasi ¢dopma
TpaeKToOpuil HyJIel IepeJaTOUHOl (YHKIUM B 3aBACUMOCTI OT CMEMIBAIOIIETO
KospPuimenTa. Mogenm cucTeM W3 MAacC, OPYyZKUH U OaJIOK WMCIOITB30BaHbI [JIs
VICCJIEJOBaHUS TIOBEJeHsI HYyJIEl CMEIIaHoMl ITepegaTouHorn GyHKImn. [IpruMeHeHbl Kak
OpubIN3UTEIbHBIE MOAEIIN 6aJIOK, ITOJIyUeHHbIe MeTofoM Pantesi-PuTiia, Tak 1 TOUHbIE
MOMeJIN, TOJIyUeHHbIe IyTeM pelIeHUsI ypaBHEHUsI NONEpPeuHbIX Kosiebanwmii. IIpes-
JIOZKEH METOJ] HPaKTHUUECKOI'0 BOIUIOLICHUST MOMYJISI, UCIOJIb3YOIUI NHe303JIEK TPI-
YecKHUil NPUBOL C CO-pacnosiozkeHHbIM (collocated) mbe309JIEKTPUUECKNM JaTUNMKOM
OebopMarmy, a TaKzKe OpPUrVMHAJIBHBIN IMHe309JIEKTPUUECKN CABUTOBOI JaTUUK
yerusi. OnbITHBIZ 06pasel 6bUT IIOCTPOEH, YCTAHOBJIEH Ha KOHCOJIBHYIO JTIOMITHIEBYIO
6aJIKy ¥ WCHObITAH. JKCHEPUMEHTBI IOATBEPAWIN BO3MOZKHOCTBb YBEJIMUCHUS
pasaerieHuMs HyJlel 1 IIOJTIOCOB KOHCTPYKIIMOHHOM NepeqaTOUuHOl (QYHKIWN ITyTeM
CMEIMBAHWST BBIXOJHBIX CHUTHAJIOB AATUMKOB fdedopMarum u cwibl. Ha HHU3KUX
yacToTax ofmas ¢opMa SKCHEPUMEHTAJIBHO IIOJIYUEHHBIX TPaeKTOpUil HyJlel
aHaJIOTMUHA pe3yJibTaTaM MaTeMaTHWuecKux Mopesiern. Hyim ¢ HeMUHIMaJIbHOMN
¢dazoii, oOHapyzKEHHbIE IPI HEKOTOPBIX BEJIMUNHAX CMEIIMBAIONIEro KosdpduimeHTa Kak
B MOAEJISIX TakK U B 9KCIHEPHMEHTAaX, Or'PaHNUMBAIOT 00JIACTh, B KOTOPO CMEIIaHHAas
nepegaTouHasi QyHKIMST OpUBIeKaTeJIbHA /151 PEryJIsiun ¢ 06paTHON CBA3LIO.
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Chapter 1

INTRODUCTION

Motivation

Active structural control is often necessary to achieve performance specifications
demanded in the aerospace and, increasingly, other fields. The difficulties encountered in
modeling complex structures manifest themselves in decreasing modeling accuracy at
higher frequencies. Controlled Structures Technologies framework shown in Figure 1.1 is
a road map of design choices, both passive and active, available to engineers for reaching
performance and robustness specifications. The work done in this thesis is applied to local

control which is one of the active measures shown in the diagram.

Local or low authority control (LAC) implies that the control law is based only on infor-
mation from the vicinity of the actuator. Collocated actuators and sensors are typically
used for local control because if the actuator and sensor are collocated and dual (their
product is power) then the input-output transfer function is positive real, with an alternat-
ing pole-zero structure and phase bounded ®§ [Burke, 1991; Fleming, 1991]. If, in
addition, the compensator applied to the structure is strictly positive real then the closed-
loop system is guaranteed to be stable and the compensator will add damping to the struc-

ture.

Stability guarantees of LAC make it a perfect compliment for global or high authority con-

trol (HAC). By providing broadband increase in damping, local controller or controllers

17



18 INTRODUCTION

robustify flexible modes in the roll-off region and improve performance at higher frequen-
cies where HAC is not designed to work [Auburn, 1980; Hall, 1991].

| Redesign
Disturbancé—»| Isolation|— Plant »| Isolation}|—| Performanck
] Y
Damping j
Actuator Sensor
- — — — — B
- Low Authority |«

Local Control

High Authority [«
Global Contro

Figure 1.1 Controlled Structures Technologies (CST) framework.

Good pole-zero spacing in the open-loop transfer function is beneficial for actively adding
damping to the structure [Fanson, 1989; Spangler, 1994]. This property is best visualized
by considering the root locus of a lightly damped structural system with collocated actua-
tor and sensor: for larger pole-zero separation in the plant transfer function the root locus
will travel farther into the left-half plane of the s-plane. The goal of the designer then is to
find the actuator-sensor pair which leads to a transfer function with good pole-zero separa-

tion, which is analogous with good observability and controllability of the modes.

This work focuses on shaping the open loop transfer function from distributed sensors to
distributed actuators with the goal of exercising influence over pole-zero spacing. The
pole-zero structure depends on the choice of the actuator, sensor, and their locations.
Throughout this work the actuator location and its impedance relative to the structure are

assumed to be chosen to maximize actuation efficiency [Anderson, 1993]. For a collocated
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— | actuator
=
q

Y\
[ spectrum
f
[ — | A | sensor
= [ | spectrum
f q f

Figure 1.2 Actuator and sensor spectra [Fleming, 1990]. Sensor impedance is defined as

the output signal content relative to two extremes: a generalized force and a generalized

displacement sensors; also shown are special actuator-sensor pairs: complementary

extremes (arrows), positive compliments (circles), negative compliments (squares), posi-

tive non-compliments (crosses)
actuator-sensor pair, the sensor is placed at the same position as the actuator. The remain-
ing parameter is sensor “impedance” defined as the position of the sensor’s output along
the so-called sensor impedance spectrum shown in Figure 1.2 [Fleming, 1990]. A low
impedance sensor measures deformatjon  whereas a high impedance sensor measures
forcef . The goal is to find a sensor whose impedance can be set in the design stage and

later easily tuned during operation.

One way of building a sensor whose impedance can be set arbitrarily by mixing the out-
puts of two distinct transducers whose individual impedances are near the extremes of the

sensor impedance spectrum.

Objectives
This work pursues three objectives:

* To identify characteristic features of zero trajectories resulting from output
mixing by considering models of simple structures

* To build a piezoelectric shear load cell suitable for distributed actuation of
beams and incorporate it into an actuator-sensor module (ASM)

* To experimentally demonstrate the feasibility of controlling pole-zero sepa-
ration in a piezoelectric-to-piezoelectric transfer function by means of
adjusting the effective sensor impedance of the actuation-sensor module
using output mixing



20 INTRODUCTION

Background

Piezoelectric materials have been used extensively in structural vibration control. Numer-
ous examples exist of their use as both actuators and sensors. The two form factors in wide
use are stacks and thin wafers. Stacks are more commonly used as actuators in so-called
active struts incorporated into trusses [Fanson, 1989; Lurie, 1992]. Thin wafers on beams
have been used as actuators [Burke, 1987; Crawley, 1987; Crawley, 1990; References], as
collocated actuators and sensors [Andersson, 1993; McCain, 1995; Yung, 1996], and as
nearly collocated actuators and sensors [Fanson, 1990]. In the applications above where a
piezoelectric sensor was used, the sensor was placed in parallel with the actuator and mea-
sured mostly strain with a certain amount of force information mixed in due to
feedthrough. A notable exception is simultaneous sensing and actuation discussed sepa-

rately below.

As was already mentioned, well spaced poles and zeroes in the open-loop transfer function
are necessary for effective active damping. For collocated actuators and sensors piezoelec-
tric-to-piezoelectric transfer functions are known to have close pole-zero spacing thus lim-
iting the achievable performance [Fanson, 1990; McCain, 1995; Yung, 1996]. Several

studies aiming at maximizing the active damping performance have been conducted.

A theoretical study of the effects of varying the relative actuator and sensor impedances on
the pole-zero structure was conducted by Fleming [Fleming, 1990; Fleming, 1991]. The
sensor output was defined as a mixture of fictitious displacement and force sensors in a
mass-spring system. Both actuator and sensor impedances were varied through their entire
ranges presented as the actuator and sensor spectra which are reproduced in Figure 1.2.
The analysis of the pole-zero structure of the output transfer function was performed at
discrete points termed complementary extremes, positive compliments, negative compli-
ments, and positive non-compliments. The positions of these configuration on the spectra
are marked in Figure 1.2. It was shown that pole-zero spacing changes as the output mix-

ture is adjusted. Pole-zero cancellation was predicted for certain positive mixtures and
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non-minimum phase (NMP) real-valued zeroes were encountered for negative mixtures. It

was concluded that the appearance of NMP zeroes was not an artifact of modal truncation.

In practice, the impedances of the actuator and the structure are often matched in order to
maximize actuation efficiency meaning that the actuator impedance falls somewhere in the
middle of the actuator spectrum. Because pole-zero separation is maximized by choice of
a sensor of complementary impedance, it is desirable to have a sensor which produces
mixed force-strain signal. Output mixing can accomplish this but the question remains on

how to physically obtain the mixed output.

In one possible approach, simultaneous sensing-actuation accomplishes the task by using
just one sensor [Hagood, 1991; Spangler, 1994]. An electrical circuit incorporating the
piezoelectric element is used to measure both voltage and current at the piezoelectric ter-
minals. It was shown that by tuning the electrical circuit, a signal proportional to strain,

force, and any combination of the two can be obtained.

Another approach is to use outputs of two distinct sensors measuring displacement and
force directly. In the past this approach has been used to improve performance in broad-
band damping augmentation of a space truss [Chen, 1990; Lurie, 1992]. Mechanical-elec-
trical analogy was used to cast the problem as bridge feedback which in communication
engineering refers to feeding back both current and voltage. The experiment used an active
truss member with a built-in eddy current displacement sensor and an externally attached
load cell to obtain independent measurements of displacement and force. Closed loop

experiments were performed to verify the effectiveness of the method.

This thesis focuses on applying the idea of mixed feedback to distributed sensing and actu-
ation of beams. The design uses a piezoelectric actuator with a collocated piezoelectric
strain sensor and a novel piezoelectric shear load cell. The possibility of changing the

pole-zero spacing in beam transfer functions is explored on models and in experiments.
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Approach

In Chapter 2 the mixed output approach is explored on models of simple structures. Short-
comings of single-sensor setups in adjusting the sensor “impedance” are demonstrated
first. A concept of a three-element actuator-sensor module (ASM) is presented which

incorporates an actuator and two sensors of different sensor impedance. A simple static
model of the ASM is constructed and its features independent of the underlying structure
are investigated. The shape of the zero trajectory is drawn as a function of the output mix-
ing coefficient and the internal relative stiffnesses. The expected zero trajectory shows
strong dependence on the mixing coefficient. It also predicts real-valued non-minimum

phase (NMP) zeroes for a range of negative values of the mixing coefficient.

The ASM is then integrated into models of a lumped parameter and continuous systems to
verify the general properties of the ASM and to develop additional insights into the effects
of sensor “impedance” on the pole-zero structure of the open loop transfer function. Both
exact and approximate models of beams are employed. The partial differential equation of
beam in vibration is solved directly to obtain the exact input-output transfer functions,
poles, and zeroes. Assumed mode method is used to find an approximate finite-dimen-

sional representation of the beam structure.

Chapter 3 covers practical implementation of an ASM capable of distributed actuation and
sensing on a beam. As a stepping stone to building the ASM, feasibility of building a
piezoelectric shear load cell is demonstrated. The test article consisting of the ASM and a
cantilever aluminum beam is described. Design and manufacturing issues encountered in

building the test article are reported.

Chapter 4 presents experimental results. Two individual sensor transfer functions and
hardware-mixed transfer functions were measured. In the low frequencies the appearance
of the experimental zero trajectory plot is found similar to the shape derived from the
static ASM model. Some features of zero transfer functions not encountered in models are

highlighted, e.g. NMP complex zeroes.
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Conclusions and recommendations for future work are found in Chapter 5.

The scope of this work does not include the implications of the presence of real-valued
zeroes in the plant transfer function for local control. Also left unaddressed is an important
issue of actuator efficiency raised by the specific actuator-sensor module design described

in Chapter 3 and tested in Chapter 4.
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Chapter 2

MODELING SYSTEMS WITH FORCE
AND STRAIN SENSORS

In this chapter the concept of using mixed force and strain feedback for affecting the rela-
tive pole and zero spacing is explored on simple analytical models of lumped-parameter
and distributed systems. The objective of this chapter is to demonstrate that, at least in the-
ory, mixing the outputs of the force and strain sensors is an efficient way of changing the

position of the transfer function zeroes.

The first section motivates the use of output mixing and introduces a three-element active
device which acts as a collocated actuator-sensor pair and achieves an arbitrary sensor
impedance value by mixing the outputs of two sensors of different impedance. This device
is termed actuator-sensor module (ASM). A simple static model of the ASM is derived and
an analytical input-output relationship is obtained. Based on the static model, properties of
the zeroes of the mixed transfer function independent of the underlying structure are

derived.

The following three sections integrate the actuator-sensor module into representative
structural systems. A simple mass and spring system is modeled first. Next a cantilever
beam is modeled using an approximate and an exact solution methods. Two actuator con-
figurations in which the ASM applies force and moment are considered for each solution

method.

25
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Finally, the results obtained using different modeling technics are compared and conclu-
sions are presented. Special attention is given to the presence of non-minimum phase
(NMP) zeroes in the mixed transfer function for a range of negative values of the mixing
coefficient. The preliminary conclusion states that the NMP zeroes are indicative of true

NMP response of the system and are not a result of modal truncation.

2.1 Actuator-Sensor Module

In this section the concept of output mixing is motivated by limitations of typical strain
and force sensors. These limitations can be overcome and greater control of zero locations
can be achieved by using two sensors of different “impedance” whose output can be com-
bined into a signal which can be considered the output of a virtual sensor. A general form
of a three-element actuator-sensor module (ASM) designed for output mixing is proposed.
A static lumped-parameter model of an ASM is constructed and its input-output relation-
ship is derived. The model does not incorporate any information on a specific implementa-
tion of the ASM components. Important properties of output mixing are derived which do
not depend on the details of the structure to which the ASM is attached. The method of

integrating an ASM into the structure used later in the chapter is outlined.

2.1.1 Concept

It is generally excepted that the zeroes of a transfer function are influenced greatly by the
relative impedance of the actuator to the structure and the relative impedance of the sensor
to the structure. The relative mechanical impedance of an actuator can be easily modified
by simply adjusting its stiffness or by changing its position on the structure so that the
driving point impedance of the structure is changed. For example, an actuator which is
much stiffer than the structure commands nearly pure displacement. On the other hand, a
very soft actuator placed at the same location on the same structure commands nearly pure

force.
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Figure 2.1 Typical sensor applications: (a) strain sensor placed in parallel with a structural stiffness and, in
this case, an actuator; and (b) force sensor placed in series with an actuator.

The situation is different with sensors. Two common sensor configurations are shown in
Figure 2.1 and discussed in turn below. A transducer placpdratlel with an actuator

and a structural stiffness (see Figure 2.1a) produces an output proportional to the deforma-
tion in the structure regardless of its own stiffness. Therefore its sensor “impedance” as
illustrated in Figure 1.2 can not be modified by changing its mechanical impedance. A
similar argument can be made about a transducer placti@swith an actuator (see
Figure 2.1b) and whose output is proportional to the deformation across its length. The
measured output is exactly the force acting through the actuator on the structure regardless

of the mechanical of the sensor stiffness.

The conclusion from these arguments is that, at least in the simple cases described above,
the sensor “impedance” of a transducer is dictated by its placement on the structure rela-
tive to the actuator and cannot be modified by adjusting its mechanical impedance (stiff-

ness).

As was pointed out in Chapter 1, it is often desirable to be able to measure a mixture of
force and displacement in order to maximize power dissipation in the control loop. The
two classical sensor configurations in Figure 2.1 lead to strain and force measurements. If
both sensors are installed then their outputs can be combined to obtained the desired mix-

ture of strain and force information.
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ASM Concept

The conceptual diagram of a three-element actuator-sensor module is shown in Figure 2.2.
At least three active element are necessary to implement such a device: an actuator, a low
“impedance” sensor in parallel with the actuator, and a high “impedance” sensor in series
with the first two. The actuator is driven by a control signal and the output of the module is

a linear combination of the signals from the two sensors.

Virtual
sensor
Mixing output
coefficient

Actuator
input

Figure 2.2 A conceptual representation of a three-element actuator-

sensor module (ASM) does not imply any modeling technique or practi-
cal implementation.

The output of the module can be regarded as the output of a virtual sensor whose content
is adjusted with a mixing coefficieyt . When attached to a structure, an ASM produces
the actuation forc& ., . For better visualization, Figure 2.2 shows an ASM with two dis-
crete attachment points markéd d@d . However, as will be seen in Chapter 3, distrib-

uted actuation and sensing is certainly possible.

In the context of local control both sensors are assumed to be collocated with the actuator.
The only other requirement is that the two sensors have impedances such that they are lin-

early independent.

Note that the two active elements intended to be used as sensors ares@aigleohd
forcesensordased on common practice and the lack of a better term. The analysis in this

section will show that the signals produced by the two sensors are not necessarily pure
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strain and force. Extra care will be taken to distinguish the outputs of the strain and force

sensors from pure strain and force measurements.

A high-fidelity model of the device in Figure 2.2 is dependent on the particular implemen-
tation of the device’s components. Some important properties of output mixing can be

derived from the most basic model of the ASM.

2.1.2 Static Model

The simplest way to represent the actuator and sensors in Figure 2.2 is to model them as
springs with stiffnessek, for the actuatqr, for the strain sensok;and  for the force
sensor (see Figure 2.3). This modeling approach leads to a static lumped-parameter model

of the actuator-sensor module.

. U I
N Y
a qi a2
(a)
-
ks(d; —dy)
> <
Kk —q
<_‘ f(qz ql) kf(qz_qi) Fasm
ka(qi - ql) - kaqa
3 q
q; 2
(b) (c)

Figure 2.3 Static lumped-parameter model of an actuator-sensor
module (ASM): (a) diagram; (b) force balance at spring juncture; (c)
force balance at the juncture between the load cell and the structure.

In the spring model of the ASM the inertias of all active elements are ignored. This is

equivalent to making the assumption that the internal dynamics of the actuator and sensors
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lie outside the bandwidth of interest and the device is operated quasi-statically. Internal

frequencies of a practical ASM design are discussed in Chapter 3.

To facilitate a parameter study, both sensor stiffnesses are normalized by the actuator stiff-

nessk, leading to the normalized strain sensor stiffness,

— kS 2 1
a = k_a (2.1)
and the normalized force sensor stiffness,
_ ki 29
B = K (2.2)
The equivalent stiffness of the entire module can be calculated as follows,
Ke(k, + K

0" ky+ks+k

After rewriting the expression above in terms of the normalized sensor stiffnesses and nor-
malizing the result by the actuator stiffnégs , the equivalent normalized ASM stiffness is

found.

_ko _ (1+a)B
K=k ™ 1+a+pB (2:4)

a

Note that for a stiff load cell, i.g» (1 +a) , the normalized equivalent ASM stiffress
is equal to(1+ a) . If, in addition, a soft strain sensor is usedaisel , the normalized
equivalent stiffness approaches unity, which means that the stiffness of the entire module

is dominated by the actuator stiffness.

Actuation

In the derivation of the actuation equation, certain simplifying assumptions about the

geometry and material properties are made. All three active elements are assumed to be of
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prismatic shape and their mechanical and electrical properties are assumed to be uniform
throughout the material. With these assumptions, the axial stiffness of the actuator can be

found as

k, = -2.2 (2.5)

where E, is the modulus of elasticity of the active material, whje  land are the

cross-sectional area and the length of the active element respectively.

Actuation and sensing can be based on any one of the known mechanisms that convert
electrical energy into mechanical and back. The piezoelectric effect is a notable example

in this category.

Thetotal strain in the actuatar, consists of thechanicaktrain equab,/E, and the
actuationstrain A . For a piezoelectric actuator the actuation strain is a function of the

voltage applied at the actuator electrodes.

£, = 22+ A 2.6
a - Ea ( - )
Substitutinge, = (q;—0,)/L, , the internal forcé, = o,A, created by the actuator
can be found as
Fa = Ka(Gi—0y) K054 (2.7)
wherek, is the stiffness of a prismatic actuator gnd- L A is the actuator deforma-
tion. Note that for an actuator fixed between two rigid constraintsg;i-eq; = 0 , the

actuation force equals the so-calleommanded forcéalso known as clamped force)
defined as the product of the actuator stiffness and its deformation under free-free condi-
tions. Also note that the opposite signs for the fdfge ~ and the actuator deforgation

are explained by negative (compressive) stresses generated in the actuator when the actua-

tor is constrained and positive elongation is induced. The foyce  therefore must be inter-
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preted as the reaction force applied to the actuator. After performing force balance at the

internal spring junction (see Figure 2.3b), the spring junction displacegpent is found.

0 = Trapl(+ @+ Bo + (2.8)

Because of the static nature of the problem, the same result for the displacement of the
spring junction can be obtained by using the mechanical equivalent of the voltage divider
rule according to whicly, —q; = g, + R—S—fa(qz—ql) , Which leads to (2.8). This exer-
cise is useful to clarify that the relative stiffness ratios found in (2.8) and later in the chap-

ter are nothing but indicators of stiffness distribution in the components of the ASM.

Another force balance is performed at the ASM/structure junction (see Figure 2.3c) to find
the force applied by the ASM onto the structure as,

o = 2

asm~ 11 q +B[_(1+G)qasm+ 0] (2.9)

where q,,, = d,—0; Iis the deformation across the ASM. The force supplied by the

ASM can also be written in terms of the equivalent stiffigss

1
Fasm = kOE_ qasm+ 1+ qug (210)

From the expression in (2.9) in order to have high actuation effectiveness the device has to

have a stiff load cell and a soft strain sensor.

Sensor Outputs

The signal produced by the active element connectguhiallel with the actuator is

assumed to be proportional to its own deformation.
Ys = ¢(G;—dy) (2.11)

where the coefficient; is determined by the geometry and the material properties of the

sensor. Substituting the expression for the displacement of the internajnode  from (2.8)
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c

Ys = T3 q3E 5 (Bdasm* a) (2.12)
The output signal in (2.12) is proportional to the deformation across the ASM, but it also
contains a feedthrough term from the actuator deformafion . To make this point more
clear, the strain sensor outpyt  is rearranged as a sum of the ASM deformation and
force,

Ys 1

— = Oasm™ [3_kaFasm (2.13)

Cs

When the sensor in series with the actuator is stiffer than the rest of the ASM components,
i.e.B»(1+0a), the feedthrough term in (2.12) becomes relatively small and the output of
the sensor in parallel with the actuator is proportional only to the ASM defornegtign
Because of this limiting property and for lack of a better term, the sensor placed in parallel
with the actuator is referred to as 8tmin sensoalthough it is important to keep in mind

that for the case of finite sensor stiffness the output of the strain sensor also contains force

information.

Also note, that the amount of pure strain and force information mixed into the strain sen-
sor output depends on the normalized force sensor stiffness. It appears at first that this
dependence makes possible to change the strain sensor “impedance” without using output
mixing. However, two consideration limit the usefulness of this approach. First, the degree
to which the content of the output can be varied is limited by the penalty on the actuator
effectiveness imposed by reducing the force sensor stiffness located in the load path
between the actuator and the structure. Second, only positive values of the strain and force
mixture are realizable because the natural “mixing coefficient” in this case is set by the

ratio of stiffnesses which can only be positive.

The output of the sensor serieswith the actuator is also assumed to be proportional to its

own deformation.
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Yi = C¢(Q;—dy) (2.14)

where the measurement coefficiemt is determined by the geometry and the material
properties of the sensor and is most likely different from the strain sensor coefficient
Substituting the expression for the middle node displacemqent  from (2.8), the force out-
put expression is expanded as,
Ct
Yi = mé(—(1 +0)Uasmt da) (2.15)
By comparing the result with equation (2.9), it is apparent that the output of the sensor

placed in series with actuator is proportional only to the force exerted by the ASM onto the

structure. For this reason, this sensor is calledotfce sensopr the load cell.

Ye _ 1

C_f = [3_kaFasm (2.16)

A special note is warranted on the signs implicit in the sensor output definitions in (2.12)
and (2.15). For a stiff load cell, i.B» (1+a) , and a positive strain sensor coeffigient
the strain sensor output is positive when the strain sensor is in tension. For a positive force
sensor coefficient; , the force sensor output is positive when the force sensor is in com-
pression. This corresponds to both sensors producing positive signal when the ASM

pushes against two rigid constraints.

Implementing the ideas presented at the beginning of the section, the output of a virtual
sensor of arbitrary impedance is constructed by combining the outputs of the force and the
strain sensors using a mixing coefficignt and the output matching coefﬁg}ient . The
output produced according to (2.17) will be calledrfiged outputeferring to the mix-

ture of signals put out by the strain and force sensors.

ym = ys+ ynyf (217)
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Both y and Xy are scalar design parameters. A separate “pre-mixing” coefﬁgient is
introduced in order to equalize the contributions from the force and strain sensors before
combining them withy . This step is convenient in light of the practical implementation

discussed in Chapter 4.

The exact meaning of output equalizing is open for interpretation. Since the outputs of
both strain and force sensors are functions of frequency they can be matched either at a
specific frequency (including at DC) or in the integral sense over the bandwidth of interest.
Both of these approaches can be applied to the model of a specific structure or directly to

experimental data.

Substituting the strain and force output expressions (2.12, 2.15) and dividing through by

Cs, the mixed output is rewritten as,

__ S Xy Cs Xy
ym = m%—yz(l+d)%qasm+ I:-CX—-I-B%L-FV)—(;DC{& (218)
wherey, = C—S is the sensor output gain ratio. The expression above can be rearranged to

f
show explicitly how the mixing coefficient adjusts the ratio of strain and force information

in the mixed output.

Ym _ 1 Xy
o I A %L + yX—CDFasm (2.19)

The expression for the mixed output can be simplified by adopting a reasonable choice for
the output matching coefficiep_(g, . The sensor sigpals yand  were defined to be equal
to products of the sensor gaies and with the appropriate sensor deformations.
Therefore the difference in the two output levels, at least according to this model, is due
solely to these two factors. By making the output matching coefficient proportional to the

ratio of the sensor gains and inversely proportional to the sensor stiffness ratio, the two
sensor signals are equalized. The specific value of the output matching coefficient is desig-

natedyy .
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Xy = B Xe (2.20)

Substituting)_(y into the general expression for the mixed output and setting the strain sen-
sor output gairc,  to unity for simplicity, the mixed output expression specialized for the

case of simple output matching is obtained.

o - BA-y) 1+a+py
Ym = 1ra+plesn @ro)(1ra+p) e (2.21)

The form of the measurement equation (2.21) is more revealing and is particularly conve-
nient in the modeling of simple structures later in this chapter, but the output equalization
relies on the knowledge of the ASM component stiffnesses which, as will be seen in
Chapters 3 and 4, are not always easy to measure or even estimate. Therefore, the more

general form of the measurement equation (2.18) will also be found useful.

For brevity, the measurement equation (2.21) will be referred to as,

Ym = Cmqasm+ qua (2-22)

with the gainsC, and@®_, defined below.

m

_ BA-y)

D = 1+a+py
T (l+o)(1+a+p)

(2.24)

The static lumped parameter model of the ASM can also be expressed in the form conve-
nient for the ASM-structure integration performed by means of feedback as described later

in this section.

- 1+a+By
!me _ —1+§+B —T+q_ PA-V) !qaj (2.25)
Fas Bk, —(1+0a)pk,[[Yas
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Special Values of the Mixing Coefficient

Five special values of the mixing coefficient can be identified by considering the measure-
ment equations (2.18) and (2.21). These special valugs of correspond to the instances of
the mixed transfer function which are of interest either by definition or because of the
properties of their zeroes. These special mixtures discussed in turn below are (1) measured
strain output, (2) measured force output, (3) pure strain output, (4) pure commanded force

output, and (5) zero steady state response output.

Measured Strain Output. Fory, = 0 the mixed transfer function includes no contribu-
tion from the force sensor and the virtual sensor measures the mixture of strain and force
information naturally produced by the strain sensor as given by (2.12). The zeroes of the

mixed transfer function are the zeroes of the strain sensor transfer function.

Measured Force Output. For |y0°| » 1 the signal from the force sensor given in (2.15)
dominates the mixed output with the sign determined by the sign of the mixing coefficient.
The zeroes of the mixed transfer function approach the zeroes of the force sensor transfer

function as the magnitude of the mixing coefficient approaches infinity

Pure Strain Output. Pure strain is measured when the mixed transfer function does not
contain any feedthrough from the actuator deformatign . The corresponding mixing
coefficient is found by setting the term in front of the actuator deformation in (2.18) equal

to zero.

Yg = —=° (2.26)

The subscript iryg  stands fetrain. Substituting)_(y from (2.20) a more telling valye

is found for the case of explicit strain and force sensor output matching.

Vs = =3 (2.27)
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In the limit, when the stiffness of the load cell is large compared to the rest of the module,
i.e.B»1+a,ys approaches zero. This draws attention to the fact that for an ASM with a
stiff load cell, the strain sensor measures nearly pure strain, and little contribution from the
force sensor is necessary to cancel out the feedthrough term normally present in the strain
sensor output. Substituting = yg  into (2.18), the expression for the mixed output is

found.

ym|yS = Uasm (2.28)

Note that substituting = ys into (2.21) leads to the same result.

Pure Commanded Force Output. Pure feedthrough from the actuator deformatign  is
measured when the structural modes become unobservable through the virtual sensor. To
find the corresponding mixing gai.  the coefficient in front of ASM deformation term

J.sm IS Set equal to zero.

__B X
Ve = Tuiay, (2.29)

The subscript iy  stands for pole-zemncellation When the force and strain signals
are matched usingiy the pole-zero cancellation occurs when the mixing coefficient

equals one.
ye = 1 (2.30)

The output of the virtual sensor in this case can be interpreted as a specially balanced sum

of the force and strain measurements and is found as.

1
Ymly. = T4 Y% (2.31)

Same expression is obtained fgx ~ WitlF yc
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Zero Steady State Response OutputThe fifth special mixture is defined as the virtual
sensor which produces zero steady-state response to a step input. Equivalently in fre-
guency domain, the transfer function to this output has a zero DC gain. The mixing coeffi-
cientyg corresponding to this signal is found by applying the finite value theorem to the
expression for the mixed output in (2.18) and setting steady-state value to zero. The sub-

script inyg  stands fdiinal value.

The final value of the mixed output depends on the final value of the transfer function from
the commanded actuator deformatmpp  to the deformation across the ASM. This means
thatyg unlike the other special valuesyof can not be found by considering the ASM by

itself, the information about the structure is also necessary.

Sym(s) Xy . qasn{s) Xﬂ
2 = —v.=2(1+ [ +d+y-—2==0 2.32
57 050,(9) BS VFXC( G)Es'in 0 0,(S) % Yex D (2:32)

S
The DC value of the dynamic transfer functiqegi’;ff%‘(g)—2 is simply the static deformation
across the ASM due to the actuation load Wheaﬁ the ASM is connected to a structure. The

stiffness of a generic structure is characterize y which is the equivalent static stiff-

ness seen by the actuator-sensor module. The deformation across the ASM is then calcu-
asm
kStI’ . . .

from (2.10), the DC value of the transfer function to the ASM deformation is found as,

lated asqgscm = . Substituting the expression for the force produced by the module

DC
Oasm _ Xk 1

q, 1+xl+a

(2.33)

wherey, is a non-dimensional stiffness parameter defined as the ratio of the ASM equiva-

lent stiffness to the static driving-point stiffness of the structure.

kO
Xk = — (2.34)
Kstr

More specific expressions fgg,  will be found for the structures modeled in the following

sections. Substituting (2.33) into (2.32), a more general foryp of  is obtained.
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Xc + 1+a+p0

Ve = 5 3 X Tag O (2.35)

As before the result is specialized for the case of explicit output matching by substituting
Xy from (2.20).

Ve = —%[1+a FX(1+a+B)] (2.36)

Because the sign gf-  is negative, this mixture may be interpreted as the bdiffaced

enceof the strain and force measurements. In the limit, when the force sensor is stiff, i.e.

B» 1, and the strain sensor is soft, te«1 , the mixing gain approaghes A in
addition, the impedances of the module and the structure are matchgg, +.el , the
zero-steady-state mixture is obtained with the mixing coefficieyt of —1 . The mixed

transfer function for this case is found as follows.

_ Xk _ Xk
ym|yF - qasm_k_OFasm = (14 X Yasm* mqa (2.37)

All five special values of are summarized in the Table 2.1. Two forms of mixing coeffi-
cients, with and without output matching, are included. In addition, limiting values for the

cases of stiff load cell and soft strain sensors are listed.

Structure / ASM Integration

A common procedure is used in the following sections to integrate an actuator-sensor
module (ASM) into a specific structure. An important first step in to select an appropriate

actuator stiffness. To achieve good strain energy efficiency, the actuator impedance must
be matched to some representative stiffness of the structure [Anderson, 1993]. For sim-

plicity, static impedance matching is performed.

After the actuator stiffness is chosen, the structural model of the system is augmented with
the equivalent stiffness of the ASM given in (2.4). The ASM force given in (2.10) is

applied at the actuation points. The structural response at the mounting points of the ASM
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TABLE 2.1 Special values of the mixing coefficiept  with and without output matching, limiting values for
stiff force sensor and soft strain sensor, and the interpretation of the transfer functions corresponding to the
mixing coefficients.

Case Mixing Coefficients Transfer
Function

: lim vy lim y lim y Interpretation
Xy = Xy aaoy Bﬂooy aaoy p

B>

y Y=V

Strain sensor TF
mixture of strain
and force.

Force sensor TF
pure force
Veo +oo +o0 +00 +o0 +o0 applied by the
ASM onto struc-
ture.

Pure

B Xc feedthrough, all
1+ax, poles and zeroes
are cancelled.

Ys

U7

Pure strain

measurement.
Ve Xe _Ll+a _[13 0 0

Zero steady-state
1+0+B7| 1l+a _ l+a+P 1 1+ step response,

Tea )| Tp B zero DC gain of
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is found next. The mixed transfer function is calculated according to (2.17). Finally, the

effect of the mixing coefficieny on the zeroes of the transfer function is investigated.

The process of incorporating of an ASM into a structure described in the preceding para-
graph can be represented as a feedback problem illustrated in Figure 2.4. A static model of
the ASM which can be used in the ASM block was given in (2.25).
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qa ym(y)
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Figure 2.4 ASM/structure integration can be cast as a feedback problem.

The feedback point of view offers insight into the motion of the poles and zeroes of the

closed loop system shown in Figure 2.4. The structure is represented in transfer function

-— X - - — — — — — —D— — — -
Travel range
for a zero
of the mixed
transfer function
K
-— —X - — = — — — — — —D— — — -
Uninstrumented' Structure -
structure instrumented with ASM

Figure 2.5 An illustration of the relationship between the poles of the original uninstru-
mented structure, the zeroes of the force transfer function and the travel range for the
zeroes of the mixed transfer function.

form asGg,, = Ng, /D¢, andthe ASM is described by a transfer function matrix,

Ym | — _1 [Ny Np| dq

Fas Dasm N3 N4 an

(2.38)

It can be seen from Table 2.1 that the zeroes of the mixed transfer function are bounded

from above and below by the zeroes of the force transfer function. More information can



Actuator-Sensor Module 43

be obtained about the force transfer function by considering the numerator of the closed-
loop transfer function from the ASM inpuj, to the forée,, . It is equal to
NeoDasnPs, indicating that the zeroes of this transfer function are equal to or, for the
case of a dynamic ASM model, include the poles of the original structure. This fact is
illustrated Figure 2.5 where the zeroes of the force transfer function (circles) are located
on the same horizontal line as the poles of the original structure (crosses). Therefore the
bounds on zeroes of the mixed transfer function are set by the poles of the uninstrumented

structure.

2.1.3 Zero Trajectory Plot

Since the objective of building the ASM is to gain control of the mixed transfer function
zeroes it is useful to construct a plot of the behavior of these zeroes versus the primary
controllable parameter . A simplified sketch of such a trajectory is shown in Figure 2.6.
The sketch is a summary of the information gathered so far from examining the static

model of the actuator-sensor module (ASM).

The following parameters which influence the mixed output have been identified thus far:
(i) the mixing coefficienty , (ii) the normalized strain sensor stiffreess , (iii) the normal-
ized force sensor stiffnegs , and (iv) the non-dimensional stiffness parggpeter  charac-
terizing the relative stiffness of the ASM and the structure and defined in (2.34). Out of
these four parameter only the mixing coefficignt is a variable intended to be used as the
control knob for adjusting the zeroes of the mixed transfer function. The rest of the param-

eters are fixed once the structure and the ASM are mechanically designed.

The poles of the uninstrumented structure are shown as dashed horizontal lines. Obvi-
ously, their frequencies are unaffected by any variations in the ASM and the ends of the
dashed lines are shown “fixed” symbolizing independence from the four parameters listed
above. The poles of the structure with the ASM mounted are shown as solid horizontal
lines. The structure can only be stiffened as a result of adding the ASM, therefore the nat-

ural frequencies of the instrumented structure are shown above the original ones. The
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Figure 2.6 Expected shape of the zero trajectory for one mode of the mixed transfer function, monotonic
change in zero frequency is assumed; also shown are the interpretations of the special values of the mixing
coefficient in terms of the mixed transfer functions they produce.
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increase in natural frequencies depends only on the stiffness parggpeter . The depen-
dence of the poles of the instrumented structure on at least one of the system parameters

(other thany ) is illustrated by the “rollers” attached to the tips of the solid lines.

It was shown in the previous section that the poles of the uninstrumented structure become
the zeroes of the measured force transfer function after an ASM is attached, which in turn
serve as bounds on the zeroes of the mixed transfer function. Therefore the dashed hori-
zontal lines also mark the region of possible vertical motion of the zeroes of the mixed
transfer function. Next, the special values of the mixing coefficient summarized in
Table 2.1 are located on the plot. The special values for the case of balanced output are
used {r ys Yc ) because they offer better insight into zero frequency dependencies. In
practical application, however, the unbalanced form, also given in Table 2.1, is more likely

to be used as is done in Chapter 4.

The intersection of the zero trajectory with thes 0 axis is known to occur at the zero of
the measured strain sensor transfer function. From (2.12) it is clear that the strain sensor
zero depends on the load ceII stiffn@ss . Also, the presence of the feedthrough term and
the fact that the poles of th@— transfer function depend on the relative stiffness param-
eterx, mean that the zeroes of the measured strain sensor transfer function dggend on

as well. Thereforeo,, = w, (B, X,) as shown on the right hand side of the plot.

For large positive and negative valueyof , the zero trajectory approaches the values of the
zeroes of the force transfer function. As was shown previously, the zeroes of the measured
force transfer function are equal to the poles of the uninstrumented structure and serve as

bounds for the zeroes of the mixed transfer function.

Pole-zero cancellation occurs @t= yc = 1 irrespective of all the parameters listed
above. Note that this applies to all modes of the system and so all poles and zeroes are
expected to cancel at the same time. Consequently, the alternating pole-zero pattern
assumed for the individual strain and force transfer functions is preserved in the mixed

transfer function. A pole-zero-pole pattern of the strain sensor transfer function transitions
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through a pole-zero cancellation into a zero-pole-zero pattern of the force transfer func-
tion. This observation supports the intuitive notion that a linear combination of two collo-

cated transfer functions should itself be collocated [Fleming, 1990].

Fory = ys the mixed transfer function measures pure strain and contains no feedthrough.
Turning the argument in the previous paragraph around, the zeroes of the pure strain trans-
fer function do not depend on any of the parameters under consideration because of the
absence of the feedthrough term. The mixing coefficient for which the pure strain signal is

achieved depends onthe dhd according to (2.27).

The mixing coefficienyr by definition corresponds to the transfer function with a zero at
DC which is shown on the plot. Note that the two poles in the plot do not necessarily cor-
respond to the first and the second mode, and the vertical axes are considered discontinu-
ous below the frequency of the lower pole. Note also yhat is the only special mixing
gain which depends on the relative structure-ASM stiffness paramgter according to
(2.36).

Once the zeroes for all the special valueg of are marked on the plot, they were connected
with a smooth curve. In doing so it wassumedhat between the known points the zero
trajectory varies monotonically. While this result was not proven in general, for the struc-

tures considered later in this chapter this assumption is validated.

Small transfer function cartoons are shown at the bottom of Figure 2.6 as reminders of the
physical meaning of the special values of the mixing coefficients. The transfer functions in
the sketches represent a typical 2-DOF system. The transfer functiop-with has a zero at

DC, yg eliminates the feedthrough term, and is just a static feedthrough.

Fleming, who considered a mass-spring system which can be put into a form consistent
with the present ASM approach, reported non-minimum phase (NMP) zeroes for a range
of negative mixtures [Fleming, 1990]. At this point, physical arguments will be given to

help identify the range of the mixing coefficients which may lead to transfer functions
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with NMP behavior. Because NMP zeroes are an important (and undesirable) feature of
any plant, special attention will be given to their presence while modeling sample struc-

tures later in this chapter.

The tell-tale sign of non-minimum behavior in a system is the difference between the signs
or directions of the initial response and the steady-state value. In steady state (or statically)
the module acts against the stiffness of the structure putting the strain sensor in tension and
the force sensor in compression. The signs for both sensors were chosen such that the out-
put signals are positive for static actuation. The sings of the sensor signals in initial
response are also positive because at first the module acts against the inertia of the mass

and the sensor deformations are same as above.

Since all signs of the initial and final response for both sensors are positive, no positive
mixing coefficient can lead to NMP behavior. For negative mixing coefficients a possibil-
ity of sign mismatch exists. An important observation is that the force signal always leads
pure strain signal, because the force is the cause of deformation and the deformation lags
behind due to inertial effects. The onset of NMP behavior, at least for finite-dimensional
systems, occurs at the point of pure strain outputyi®e. yg . For the mixing coefficients
just to the left fromyg the initial response of the mixed transfer function is negative but
the final value is still positive because in finite amount of time the structural mass catches

up to the commanded displacement and the mixed signal returns to positive.

The region of NMP behavior ends at the point where the steady-state value of the mixed
transfer function becomes negative as well. At the transition point is the mixture whose
output in steady state is zero. The corresponding mixing gain was designated earlier as
Y . It was pointed out by Fleming that if the mixed output is used for feedback control,

the sign of the controller has to be reversed when crossing ovgf the point.

To summarize, the valueg ayg mark the boundaries outside of which the force
transfer function dominates the mix. In particular, the sign of the steady-state value of the

step response of the system with mixing coefficient outside the bounds is equal to the sign
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of the mixing coefficient. The region betwegn  ard s characterized by the force sig-

nal dominating initially and the strain sensor signal overtaking in finite amount of time.

Summary

In this section a general form of the actuator-sensor module (ASM) with provisions for
obtaining arbitrary actuator and sensor impedances was proposed. When compared to typ-
ical single-sensor configurations, the two-sensor approach makes it possible to adjust the
apparent sensor impedance of the virtual sensor created by combining the outputs of two
sensors. A simple static model of the ASM was constructed which captures important rela-
tionships between relative actuator and sensor stiffnesses, mixing gain and the transfer

function characteristics. Several special values of the mixing coefficient were identified.

A general strategy of integrating an ASM into a structure was outlined. In the next three
sections this strategy will be applied to representative lumped and distributed systems. It
was shown that the bounds on the travel of the zeroes of the mixed transfer function are set

by the poles of the uninstrumented structure.

ASM output properties derived from the static model were summarized in a sketch of the
expected shape of the zero trajectory. This important sketch in Figure 2.6 will be com-
pared to the zero trajectory plots for the structures modeled later in this chapter and to the

experimental results presented in Chapter 4.

2.2 Lumped Parameter System

In this section the actuator-sensor module (ASM) described and modeled in the preceding
section is connected to a simple mass and spring system. The simplicity of the structural
system allows to calculate analytical transfer functions, and the transfer function poles and
zeroes. The goal of this section is to verify the features of the mixed zero trajectories pre-
dicted in the previous section. The qualitative results of the previous section on the depen-

dence of pole/zero spacing of the strain sensor transfer function are quantified by
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considering a specific structure. The interaction between the effects of output mixing and

the ASM design parameters is explored.

Model

A lumped-parameter system under consideration is shown in Figure 2.7a. It includes two
structural stiffnesses modeled as springs and two masses. An ASM is attached in parallel
with one of the structural springs with one end attached to the rigid constraint. Similar sys-
tems were analyzed in the past by [Fanson, 1989] in relation to the problem of active isola-
tion applied to a truss structure and by [Fleming, 1990] in the investigation of the effects

of actuator and sensor impedances on the pole-zero patterns.
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Figure 2.7 Mass-spring system with an actuator-sensor mod-
ule (ASM): (a) schematic; (b) free-body diagrams.

Free body diagrams are shown in Figure 2.7b. Note that because of the simplicity of this
problem the ASM stiffness is directly integrated into the system equations. Alternatively,
the feedback approach combining the model of the structure and the ASM model

described in Section 2.1 can be employed. Recognizing the ASM deformation for this sys-
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tem asq;Ism = X, and substituting it into the expression for the force produced by the

ASM F given in (2.10), the system dynamics equations are found as,

asm

" L 1 L
{1 O} Al 4 2| O+ 180 =B ) = 2| T[] (2.39)
0 6m X2 _6k 6|( X2 0
k
where w2 = —= is a characteristic frequency of the structure,)@&nd is a non-dimen-

L
sional stiffness parameter characterizing the relative stiffness of the ASM and the struc-
ture. The superscript stands famped.This is the same parameter introduced in (2.34)
specialized for this particular lumped parameter system.

L k0
k

X

Input-Output Transfer Functions

The measurement equations for the strain, force, and virtual sensors (2.12, 2.15, 2.21) are
modified by substitutingq;Sm . The transfer function from the ASM input to the virtual

sensor output is given as an example.

Ym = 1[3-(#10(_4\-/[)3 Xt (1 +10(-; (0(1-:ExV+ B)qa (2.41)
Analytical transfer functions from the ASM input to the mass displacemgnts x,and
are found by taking the Laplace transform of the second order differential equations (2.39)
and solving the resulting linear algebraic system. The expressions are simplified if all
structural stiffnesses and masses are set to be the sae 5.6. ., antl . The ana-
lytical transfer function from the ASM input to the displacement of the first mass is substi-

tuted into the measurement equations for the strain and force sensors.

1+a+f7 oo 1+a+p] 4
v o 1 D54+[3+XK T7 g }ws +[1+XK T7 g }oo

au(s) Hi+a+pd S+ [3+ X Jw2s? +[1+X, w4

(2.42)
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The force sensor transfer function is adjusted by pre-multiplying it by the output matching

coefficientxy from (2.20).

yt(s) _ - ¥i(S) _ B [ st + 3w?2s? + w?
0a(s)  Vau(s)  HI+a)(L+a+B)st+[3+x,Jw2s2 +[1+),]w4

(2.43)

Notice that the denominator of the transfer function depends on the stiffness parameter
Xk- The numerator of the strain sensor transfer function also depengs on  and on the
load cell stiffnes§3 . In addition, it depends on the strain samsor  which could not be

seen from the preliminary analysis in the Section 2.1.3. As expected the numerator of the

force transfer function does not change.

Because the main focus of this work is the modification of the sensor impedance, the actu-
ator impedance is eliminated from the list of design variables by matching the equivalent
ASM stiffness to the static driving point impedance of the structure, in this case simply the
spring in parallel with the ASM, i.%'; = )‘(t =1 , Wheiéf is a special value of the rel-
ative stiffness coefficienxt corresponding to the case of the ASM stiffness matched to

the stiffness of the structure.

Transfer functions from the actuator input to the outputs of the strain and force sensors as
described in (2.42, 2.43) with impedance matching performed are plotted in Figure 2.8 for
typical values of the strain and force sensor stiffnesses. Notice that the magnitudes of the

two transfer functions are approximately equal due to the output matching coej_ﬂpient

Following the same procedure, the analytical transfer function from the ASM input to the

mixed output for the impedance-matched module and structure is found as,

Ym(S) _ 0 _1+a+By pst+(d+nw?sf+(2+1w?
da(s) Hi+a)(1+a+p)Y A+ 40?s? + 2w

(2.44)

whereT = % . The polynomials in the numerator and the denominator of the

transfer function are of the same order in the Laplace varsble due to a nonzero
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10 10" 10°

Frequency (non-dimensional)

Figure 2.8 Sample strain (solid) and force (dashed) transfer functions for an ASM con-
nected to a mass-spring systems 0.7 and 2.5
feedthrough term in (2.41). Note also that, as expected, the numerator of (2.44) depends

on the mixing coefficieny , while the denominator does not.

A typical plot of zero trajectories is shown in Figure 2.9. The plot closely follows the form

of the sketch in Figure 2.6 constructed on the basis of general ASM properties. The zeroes
of the mixed transfer function are plotted as dots. Zero trajectory branches corresponding
to individual modes are easily identifiable. The imaginary and real parts of poles and
zeroes are plotted separately. In this example the structure is undamped, so only the real-
valued zeroes of the mixed transfer function are visible in the bottom plot. The assumption
regarding monotonic zero motion holds for the case of a lumped-parameter system. Obser-

vation from the plot specific to the lumped parameter system are discussed below.

Note that for the mixing coefficients to the left from (and to the right fyem ) the
mixed transfer function display the zero-pole-zero-pole pattern characteristic of the force

transfer function.
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Figure 2.9 A typical zero trajectory plot for a mass-spring system with an in-line

ASM; a = 0.7,B = 25.
Mathematically, the coefficient corresponding to the pure strain transfer function leads to a
division by zero in the numerator parameter . The discontinuity in the zero trajectories
caused by division by zero leads to a characteristic asymptotic behavior in the vicinity of
ys. With y approachings from above, the feedthrough term approaches zero while the
faster zero pair approaches infinity along the imaginary axisy Forys , the feedthrough

term is exactly zero, the faster zero pair is at infinite frequency, and it is the only instance
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of the transfer function with only two zeroes. For the valueg of to the leftjeom |, the
transfer function acquires a pair of real-valued nearly-symmetric zeroes, one minimum
phase (MP) and one non-minimum phase (NMP). With approagking  from below, the

MP zero approaches negative infinity and the NMP zero positive infinity.

The presence of a NMP zero is difficult to identify on the Bode plot because the phase
contribution of a pair of nearly symmetric MP and NMP zeroes is negligible. However, a
time simulation of the system with the mixing coefficient set in the range between and
Ys shown in Figure 2.10 reveals the characteristic behavior: the sign of the initial

response is opposite to the sign of the steady-state value.
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Figure 2.10 Step response of the mass-spring system with-0.5 (s9lid)-1.0
(dashed), ang = -2.8 (dash-dot) demonstrates NMP behavior of the system with the

mixing coefficienty = -1.0 betweepgr ang . Steady state values are shown as hori-
zontal lines with the same line styles as the corresponding time responses.

A different representation of the motion of the zeroes of the mixed transfer function is
shown in Figure 2.11. It plots the zero locus in s-plane with the mixing coefficient as a

parameter. The zeroes of the mixed transfer function are shown as dots. The poles of the
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Figure 2.11 Zero locus of the mixed transfer function of an ASM connected to a mass-spring sys-

tem; also shown are the system poles (crosses), strain sensor zeroes (circles), and force sensor zeroes

(diamonds).
system are shown as crosses. The zeroes of the individual strain and force sensor transfer
functions are shown with circles and diamonds respectively. The concentric grid lines cor-
respond to the frequency of the two modes. The radial dashed lines are lines of constant
damping marking 0.5, 1, and 5 % damping. The modal damping of the structure for this
plot was arbitrarily set to 0.5% and then reduced slightly in the process of closing the feed-

back loop around the ASM mixed transfer function (see Section 2.1).

The plot highlights the change in zero damping for different values of the mixing coeffi-
cient. The important observation is that the zero locus never crosses the zero-damping line
indicating that the mixed output of an ASM attached to a mass-spring system does not pro-

duce non-minimum phase complex zeroes.
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Zero Dependence on the Stiffness of ASM Components

The explicit form of the transfer functions to strain, force, and mixed outputs in (2.42,
2.43, 2.44) offers insight into the pole and zero dependence on the relative stiffnesses of
the strain and force sensors and their interaction with the output mixing coefficient which
is the primary variable of interest. The pole-zero spacing in the three transfer functions is

considered in turn.

The amount of pole-zero separation in $h@in sensotransfer function depends strongly

on the relative stiffness of the load cell. The zeroes approach poles as the load cell’'s nor-
malized stiffness is reduced. This property of pole-zero cancellation due to a finite driving
point compliance was pointed out by Fanson in the discussion of a two-spring model of an
active truss member [Fanson, 1989]. As an illustration, a plot of zero-to-pole ratio in the
first mode as a function of the strain and force sensor normalized stiffnesses is shown in

Figure 2.12. The ratio of the pole and zero frequencies approaches unity as the load cell

13
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Figure 2.12 Pole-zero separation in the strain sensor transfer function as a function
of strain sensor and load cell stiffnesses for an ASM attached to a mass-spring sys-
tem.
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stiffness is reduced to zero. The surface also shows a weak inverse dependence on the
strain sensor stiffness, i.e. pole-zero separation is improved with a softer strain sensor. It is
clear from this plot that if the strain sensor transfer function is to be used for feedback by
itself, than the best pole-zero separation is achieved for a stiff load cell and a soft strain

Sensor.

When the strain sensor transfer function is expressed as a sum of the pure strain and force
signals, it appears to offer an opportunity of changing the sensor impedance without out-
put mixing. However, on closer examination this approach is limited in range and only
allows positive mixtures, whereas the output mixing does not have these limitations.
Figure 2.12 shows the limited range in which the pole-zero spacing in the strain sensor

transfer function can be adjusted by changing the ASM component stiffnesses alone.

The zeroes of thiorce sensotransfer function in (2.42) do not depend on the ASM stiff-
ness. As was shown earlier they are equal to the poles of the uninstrumented structure. The
amount of pole-zero separation, however, does depend on the relative structure-ASM stiff-
ness parametext because it effects the poles of the combined system. The softer the
actuator-sensor module the closer are the poles and the zeroes in the force transfer func-
tion. In the limit, forxt = 0 , the poles and zeroes of the force transfer function cancel. If
the force transfer function is to be used for feedback by itself, than better pole-zero separa-
tion is achieved for a stiffer ASM. Throughout this work the impedances of the structure

and the actuator-sensor module are matched as was done for the current system by setting
L

Xk = 1.

The zeroes of theixedtransfer function depend on both strain and force sensor relative
stiffnesses as can be seen from (2.44). The zero trajectory plot in Figure 2.9 was created
using “typical” values of component stiffness. A surface plot representing the motion of a
zero of the mixed transfer function for different values of the mixing coefficient and load
cell stiffness is shown in Figure 2.13. The zero trajectory plot in Figure 2.9 represents a

slice through the surface at the poiht= 2.5 . A similar surface plot of zero dependence
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Figure 2.13 Mixed transfer function zero dependence on the mixing coeffigient
and the relativéoad cellstiffnessp plotted normalized between 0 and 1 within the
bounds imposed by the zeroes of the force transfer funetionp.7

on the mixing coefficient and the strain sensor stiffness is shown in Figure 2.14. The plot

in Figure 2.9 represents a slice through the surface at theopain®.7

The dependence of the zeroes of the mixed transfer function on the strain sensor stiffness
IS not as pronounced as on the stiffness of the load cell. In either case, it is safe to conclude
that for a moderately stiff force sensor, &> 2 , and a sufficiently soft strain sensor, i.e.
a <1.0, the appearance of zero trajectories only weakly depends on the exact relative

stiffness of the ASM components.

Summary

In this section a simple two-degree-of-freedom lumped parameter structure coupled with
an actuator-sensor module was modeled and analyzed. Closed form expressions for the

transfer functions to strain, force, and mixed output were found.
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Zero relative frequency

Figure 2.14 Mixed transfer function zero dependence on the mixing coeffigient

and the relativetrain sensostiffnessa measured as a relative position within the

bounds imposed by the zeroes of the force transfer fun@ien2.5
Zero trajectory plot was constructed and its appearance verified the features predicted pre-
viously based on the general properties of the ASM. The assumption of monotonic motion

of zeroes between the bounds is confirmed for the case of mass-spring system.

The amount of pole-zero spacing — an important metric in this study — was found to
depend strongly on the output mixing coefficient. This is a promising result for using out-
put mixing as a tool for obtaining the desired pole-zero separation in a structural transfer
function. In addition zero dependence on the internal ASM stiffnesses was examined and

found to be a secondary effect for reasonable values of the strain and force sensors.

Non-minimum phase (NMP) real-valued zeroes were observed for the output mixtures
betweenyr angs . They appeared in nearly-symmetric real MP and NMP pairs. The fol-
lowing sections discussing more realistic structures will attempt to determine whether

these zeroes should be expected to be encountered in practice.
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2.3 Finite-Dimensional Models of Beams

In this section the results on the effects of output mixing on transfer function zeroes
obtained for a lumped-parameter system are extended to a representative distributed sys-
tem. The assumed-mode method is used to obtain an approximate solution for the sys-
tems’ frequency response with the objective of finding the trajectories of the zeroes of the
mixed transfer function. In the following section the same structures will be analyzed

again to obtain the exact solution of the partial differential equation.

|
'
2| |F
2 asm ‘ ,
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Figure 2.15 Two actuation methods used with an actuator-sensor module on a beam: (a)
force actuation and transverse deformation sensing; (b) moment actuation and deforma-
tion slope sensing.

A uniform cantilever beam is used as an example of a typical continuous system. An actu-
ator-sensor module (ASM) modeled in Section 2.1 is attached to a point along the span of
the beam. The first subsection outlines the general procedure for finding an approximate
solution for the beam vibration problem. In the following subsections two actuation con-
figurations are considered. In the first configuration, shown in Figure 2.15a, the ASM is
positioned perpendicular to the beam. The actuator exerts a trarfsveesand the strain
sensor measures transvedsgplacemenat the driving point on the beam. In the second,
shown in Figure 2.15b, the ASM is placed parallel to the beam. The actuator exerts a bend-
ing momentand the strain sensor measures the deformsltqeof the beam at the driv-

ing point. Finally, the modeling results for the two configurations are summarized and

compared to each other in the last subsection.
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2.3.1 Application of the Assumed-Mode Method to Beam Vibrations

The assumed mode method is used to find the approximate input-output transfer function
for the ASM attached to a beam. In the assumed method the response of a continuous sys-
tem is represented by a sum of a finite number of assumed mode shapes [Meirovitch,
1975],

w(x 1) = > Bi(x)q(t) (2.45)

where ;(x) are trial functions angj(t)  are generalized coordinates. The trial function
must satisfy the geometric boundary conditions only, since the natural boundary condi-
tions are accounted for in the expressions for the kinetic and potential energies. For the
solution to be accurate and the convergence speed to be acceptable, it is desirable that the
trial functions span or nearly span the solution space. The structures considered in this sec-
tion are perturbations of a uniform cantilever beam, and so the exact mode shapes of a uni-

form cantilever Bernoulli-Euler beam are used as trial functions [Meirovitch, 1975].

It has been shown that the inclusion of static deformation shapes into the set of assumed
modes improves convergence characteristics of the approximate solution. In particular it
helps accurately model the zero frequencies [Hagood, 1988, Fleming, 1990]. The set of
trial functions is therefore augmented with one static deformation shape found separately

for each loading case.

The expressions for the kinetic and potential energies in terms of generalized coordinates
and the work done by the external forces are formulated and substituted into Lagrange’s

equation,

d@To_oT , ou

a[bﬁm_a—ql a_q| = Q;(i) (2.46)

where T' is the kinetic energy)  is the potential energy, @nd are the generalized

forces. The result can be written in the form
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Mg+Kq = Q (2.47)

whereM andK are the mass and stiffness matrices respectively. In the two actuator con-
figurations considered in this section, the kinetic and potential energies and the corre-
sponding mass and stiffness matrices are the same and are derived in advance. The work
done by the external forces is different for each configuration and will be derived for each

case separately.

Exact expressions for the kinetic and potential energies of a vibrating beam are given

below,
= —mLJ' w(z t)% dé (2.48)
1E|
2L3f (a t)% dE (2.49)
wherem is constant linear density of the beam measured in [k§/m], is constant bend-

ing stiffness of the beam, argd= x/L is a normalized coordinate along the span of the

beam. For a concentrated external force, the work expression is written as,

W, = Fo, oW (2.50)

ext

Note that the external work includes a term quadratic in generalized coordinates which has
to be moved to the left-hand side of Lagrange’s equation and incorporated into the overall
stiffness matrix. The quadratic term corresponds to the strain energy in the ASM equiva-
lent stiffness and could have been included into the potential energy expression (2.49).

Both approaches lead to the same result.

After substituting the trial function expansion (2.45) into the kinetic and potential energy
expressions (2.48, 2.49), the elements of the mass and stiffness matrix are calculated as

follows,
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1

m; = mL{Y; (€)Y (§)d (2.51)
0

1
G = SV (&) (2.5
0

The system of equations resulting from Lagrange’s equation is expressed in generalized
(non-orthogonal) coordinates. For convenience, it can be transformed into normal coordi-
nates in which the mass and stiffness matrices are diagonalized. The transformation matrix
® is an eigenvector matrix associated with the homogeneous eqitjerKg = 0
Performing coordinate transformatigit) = ®n(t) and pre-multiplyingcthy , & SySs-

tem of differential equations expressed in hormal coordinates is found,
T
n; + 2gom; +2n; = ¢ Q (2.53)
wherew, and; are the natural frequency and damping dPtmode.

The outputs of the system are first written in terms of the physical variables and their spa-
tial and temporal derivatives. The assumed solutions are then substituted, and the resulting

equation transformed into the normal coordinates.
Y = YW W WL W) = Syq+ S8 = S@n + SN (2.54)

The final step in the modeling process is the conversion of the system dynamics equation

(2.53) and the measurement equation (2.54) into state-space representation of the form

AXx+ Bu
Cx+ Du

X
y

(2.55)

with the state vectox' = [nT ﬁT} and input . The result is used to find the poles and
the zeroes of the transfer function from the actuator input to the ASM mixed output. Note

that the form of thed matrix in (2.56) implies constant modal damping which is assumed
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here for simplicity, however, a more general proportional damping could have been easily

[ a0

y = [5,0 5,0 m +D[u

used instead.

(2.56)

The assumed mode method leads to an approximate solution expressed as a finite sum of
modal responses. The exact solution expressed in modal form has an infinite number of
modes. Higher modes not included in the model contribute a constant term at low frequen-
cies. If the exact static solution is known then a correction procedure can be performed to
find a static correction term which will make up for the DC contribution of the unmodeled

modes [ref.].

The DC component of a state-space system like the one in (2.56) is written as
Yoc = —CA1B+D. If the exact static solutioye is known, then the static correction

term D¢, can be found as the difference between the exact and the approximate solutions,
D = y°+CA1B-D (2.57)

2.3.2 Fixed-Free Beam with an ASM as a Force Actuator

A configuration of a cantilever beam with an actuator-sensor module (ASM) placed per-
pendicular to the beam was previewed in Figure 2.15a and is shown again in more detail in
Figure 2.16. The ASM of equivalent stiffnelgg  is attached to the beam at a dfgjance
away from the clamp. The ASM is driven by a harmonic excitation with frequency  and

amplitudeq, . The output of the ASM is adjusted with a mixing coeffigient

As was previously stated, the entire mass matrix and the stiffness matrix elements corre-
sponding to the strain energy of beam deformation do not depend on the actuation method

and were given in (2.51, 2.52). The generalized forces depend on the actuation method and
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Figure 2.16 Fixed-free beam with ASM attached mid-span and acting as a force actuator
and displacement sensor.

are derived in this subsection. Using the results of Section 2.1, theFHgrge exerted on
the beam by the ASM at the poiit= ¢,  was found in (2.10).

The left end of the ASM is fixed, i.g, = 0 , and the right end moves with the beam, i.e.

d, = W[ . The ASM deformation is calculated as

= W|Ea (2.58)

where the superscript stands force actuationThe external work is then found as,
1
Weyt = Fasméwlza = [_ k0W|Ea+ mkoqa}éwka (2.59)

Substituting modal expansion (2.45), the expression for work performed by the external

forces is expressed in terms of generalized coordinates and then separated into two com-
ponents with quadratic and linear dependence on the generalized coorglinates . The first
term contributes to the stiffness matx  whereas the second leads to the generalized

forcesQ . In matrix form,

F
ki = 2koWie W, (2.60)

€a
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F 1

Q = TogkodVile, (2.61)

Substituting expressions for the mass matrix (2.51), the combined stiffness matrix (2.52,
2.60), and the generalized forces (2.61) into Lagrange’s equation and dividing through by
mL, the mass matrixM , stiffness matrik , and the generalized force ve€ctor are

obtained,

1

n; = IllJi‘ledE
_ L 2.62
ki = azgw i dE+ESXkL|J e W; |EE (2.62)
a2 3
Qi 231+anL|J|E

The beam parameter = JEI/mL*  describes the stiffness, inertial, and geometric prop-
erties of the beam and has dimensions of frequency. The non-dimensional pay(e'p:meter

characterizes the relative stiffness of the ASM and the structure and is defined as follows,

Ko(LE)®
F
X = ~3gi - (269
k
Note thath is similar to the stiffness parameggr= 0 defined in (2.34) during deri-

kStI’
vation of the zero-final-value mixing coefficient. In this case the static driving point

impedance of the structure is equal ktg)eam = 3EI/(LE,)3 . For good actuator effi-
ciency, the static stiffnesses of the ASM and the structure are matched by)gthﬁng
Physically this procedure ensures that under the deformation caused by a transverse static
load applied at the ASM attachment point the total strain energy is evenly divided between

the beam and the equivalent stiffness of the ASM.
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Sensor Outputs

The output of the ASM is derived using the general expression (2.17) and the result for
ASM deformation for the case of force actuation from (2.58). After substituting the trial

functions the mixed output in terms of the generalized coordiggiesbtained,
F
Ym = CWlg + Dyla = Sy + Dda (2.64)

whereS;, = C.y;
to (2.23, 2.24).

|Ea , whileC, and,, depend on the mixing coefficient according

In order to apply static correction to the result according to (2.57), the" exatit defor-
mation at the actuation point caused by a unit input into the ASM must be calculated. This
static deformation is then substituted into (2.64) to produce the exact static mixed output.

A concentrated static forde, applied at the attachment point of the ASM results in a

asnf&al)®
3El

from (2.10), and rearranging in non-dimensional form, the deformation can be written as,

transverse deformatiom® = . After substituting the expressionFigy,

Wig, = (2.65)

The exact deformation for the impedance matched case is calculated by substituting

F
Xk = 1.

—e

1
w

& = 5rg) (2.66)

The expected exact DC component of the mixed output signal of an ASM with impedance-
matched equivalent stiffness is found by substituting the result above into the mixed out-
put equation. The exact output for a particular mixing ratio  is used to calculate the static

correction term according to (2.57) as the difference bet\&%en and the DC component

1. Exact in the context of the Bernoulli-Euler beam.
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of y;. It found that with the static deformation shapes included into the set of trial func-
tions the accuracy of the solution was greatly improved and therefore the need for static

correction was reduced.

Transfer Functions, Poles, Zeroes

Strain and force sensor transfer functions for representative values of sensor stiffnesses are
shown in Figure 2.17. The force sensor output is adjusted by the output matching coeffi-

cient)_(y , roughly equalizing the magnitudes of the two signals.

GaindB

Phase (deg)

-100 I 4

-200 L SEREREEEEREHA"
10

Frequency (non-dimensional)
Figure 2.17 Transfer functions to strain (solid) and force (dashed) sensors derived from the

assumed mode solution for a cantilever beam with an ASMaasesactuatora = 0.5 8 = 3.0 ,
£, = 0.2.

The zero trajectory plot for the zeroes of the mixed transfer function is shown in
Figure 2.18. In plotting zero trajectory plots for beams it was found convenient to change
the vertical axes scaling from the usual coordinates of a zero in the complex plane (related
to temporal frequencyw ) to spatial frequency. The conversion from temporal to spatial

frequency is done using the dispersion equation which is given in Section 2.4 and is not
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Figure 2.18 Zero trajectories as a function of the mixing coefficignt  from the
assumed mode solution for a cantilever beam with an ASM actindoaseaactuator;
a=07,p=25§ =02.
important for present purposes. As the result of the change of scale the modes become
evenly spaced and allow a better view of the zero trajectories. It is necessary to keep track

of real-valued zeroes in order to display them properly.
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In all respects the trajectories of the mixed transfer function for the beam follows the pat-
tern set by the mass-spring system including the presence of the real-valued zeroes appear-
ing for the negative values of the mixing coefficient betwgen yand . The real-valued
zeroes appear in near-symmetric pairs in the left and right hand sides of the s-plane. Just as
in the case of the mass-spring system the zeroes of the mixed transfer function move

monotonically between the bounds.

Without using the static deformation as an assumed mode the modeling accuracy was par-
ticularly poor for the low-frequency modes which was reflected in the first zero trajectory
branch missing the intercept pointygt . Using the static deformation mode completely

eliminated the problem.

Imaginary

Figure 2.19 Zero locus for the first six modes of a cantilever beam with an ASM actinfpaea
actuator,a = 0.7 =25 g, =02 .

Zero locus of the mixed transfer function is shown in Figure 2.19. The behavior of the

zeroes in the complex plane is very similar to that observed in the case of a lumped param-
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eter system in Section 2.2. The regular pattern of the zero locus can be attributed to the
constant modal damping built into the model. The zero locus was also examined for the
case of randomly set modal frequencies. The result did not change significantly with the

same wave pattern following the varying damping.

A different actuation configuration of the same ASM on the same beam is considered next.

2.3.3 Fixed-Free Beam with ASM as a Moment Actuator

In the previous subsection an actuator-sensor module (ASM) actirigras actuator was
modeled. In this subsection the same ASM is connected to the beam to awb@eat
actuator and alopesensor. This configuration is more interesting because unlike the force
actuator it does not require an inertial frame to act against and is more representative of a

typical beam actuation mechanism. The modeling procedure remains the same.

Model

If an ASM is placed parallel to the beam, the axial force in the actuator is converted to a
bending moment acting on the beam and the ASM deformation is proportional to the rela-
tive deformation slope between the two attachment points. In general, an ASM can be
placed anywhere along the beam with both ends attached to the structure (see
Figure 2.15b). In that case the ASM acts as a relative actuator. Here however, for simplic-
ity, one end of the ASM is attached to the clamp. In this case both the ASM works as an
inertial actuator and sensor. The schematic of ASM placement on the beam is shown in
Figure 2.20. The potential and kinetic energy expressions were given in (2.48) and (2.49)

and remain unchanged. The work performed by external forces has to be rederived.

The external work is calculated according to (2.50) with the actuation moment used as the
generalized force and the beam slope as the generalized displacement. The actuation
moment is found aM ., = F,,h ,whefe, wasgivenin (2.10)land is the actua-
tion moment arm, i.e. the distance from the actuator’s line of action to the neutral axis of

the beam. For small deformations, the axial displacement of the ASM is proportional to



72 MODELING SYSTEMS WITH FORCE AND STRAIN SENSORS
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Figure 2.20 Fixed-free beam with ASM attached mid-span and acting as a moment actu-
ator and slope sensor.

the slope of the beam at the point of attachment (see Figure 2.21). The left end of the ASM

Figure 2.21 Axial displacement of the ASM mounted parallel to the

beam.
is again fixed, i.eq; = , and the right end moves horizontally with a point on the beam
distanceh away from the neutral axis, ig.= g_‘é" E . The ASM deformation for the
€a
case of moment actuation is found as,
M h
Qasm = a—\év Ea[ (2.67)

where the superscript stands fooment actuationlhe actuation moment is then written

as follows,
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h2 1
Masm = _L_zkog—\év g + 1+ ahkoqa (2.68)

Substituting the expression for the moment into (2.50), the work performed by the actuator

is found.

1 h
+ —qa}koiémza (2.69)

_ 1 _ [_how
BW,,, = M 66|Ea—[—— *Tia

asm[ L3ﬁ

Substituting trial functions and generalized coordinates in place of beam deformation, the
actuator stiffness elemerkﬁ and the generalized f@'ﬁ:ﬂes are obtained. These expres-

sions are analogous to the terms for the force actuator in (2.60, 2.61).

k™ = 2———|_2 Wile Wile. (2.70)
M h K .
Q% = [Tvgile, 2.71)

The matrix element definitions required to calculate the mass, stiffness, and load matrices

are given below,

1

m; = Iwilpjda
0
D1 2 U

— a2 LT <~ M ' 2.72
kij =a gw iLIJ jdE+Ean LIJI|EaLIJJ|EaS ( )

_a2 1 oM.
% il

where the nondimensional parameter h is the normalized actuator moment arm, and

L
xl':/' is a nondimensional parameter characterizing the relative stiffness of the actuator and

the structure, analogous X{ featured in the analysis of the force actuator.
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ko h2LE
M
Xp = OEI a (2.73)

The actuator stiffness is selected by matching it to the driving point bending stiffness of
the beam, i.e.)(,':/I = 1 . Physically this procedure ensures that under the deformation
caused by an axial static load applied at the ASM attachment point, the total strain energy

Is evenly divided between the beam and the equivalent stiffness of the ASM.

Sensor Outputs

The output of the ASM is derived using the general expression (2.17) with and the ASM
deformation result from (2.67). After substituting the trial functions, the mixed output in

terms of the generalized coordinatgs  is obtained,

Ym = Cmng_VEV +Dpd = S,a+ Dy d (2.74)
where§;, = CNile - The output ternS,,, amy, depend on the mixing coefficient
according to (2.23, 2.24).

Similar to the case of force actuation, static correction is applied to the tyMtput accord-

ing to (2.57). A concentrated static foreg,,,  applied at the attachment p0|nt in the direc-

aS”hE . After

Bl
substituting the expression fdéf,,,, from (2.10) and rearranging in a nondimensional

tion parallel to the beam results in a deformation slgpe

form, the exact deformation slope for the case of matched actuator impedance, i.e.

M _ =M :
Xk = Xk , can be written as follows.

ow® -1 (2.75)

I £, 2n(1+a)
After substitution the exact deformation slope into the mixed output equation, the
expected DC component of the mixed output signal of an ASM for the system with an
iImpedance-matched actuator is found and can be used to calculate a static correction term

according to (2.57) as the difference betwyﬁgn and the DC compongnt of
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Transfer Functions, Poles, Zeroes

Strain and force sensor transfer functions for representative values of sensor stiffnesses are

shown in Figure 2.22. The force sensor output is adjusted by the output matching coeffi-

GaindB

Phase (deg)

-100 §

-200 e E——
10 10
Frequency (non-dimensional)

Figure 2.22 Strain (solid) and force (dash) transfer functions from the assumed-mode
solution for a cantilever beam with an ASM acting am@mentactuator;a = 0.7 ,
B=25¢ =02.

cient)_(y , roughly equalizing the magnitudes of the two transfer functions. Notice a nearly

unobservable and uncontrollable 4th mode.

A zero trajectory plot is shown in Figure 2.23. Vertical lines mark the familiar special val-
ues of the mixing coefficient. It is useful to observe the appearance of zero trajectories
around an unobservable and uncontrollable mode such as mode # 4. For all values of the
mixing coefficient the position of one zero remains unchanged producing a horizontal tra-
jectory. This zero trajectory appears to cross another one, although on close examination

the two trajectories do not actually cross.
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Figure 2.23 Zero trajectories from assumed-mode solution for a cantilever beam with
an ASM acting as momenfactuator,a = 0.7 8 =25 £, =02 .

A zero locus plot for the case of an ASM acting as a moment actuator is shown in
Figure 2.24. The zero locus in the vicinity of the unobservable and uncontrollable mode

remains well-behaved, not crossing or approaching the imaginary axis.

Overall, the behavior of zeroes proved similar for the cases of the force and moment actu-

ators.
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Figure 2.24 Zero locus plot for an ASM acting asreomentactuator attached to a cantilever beam;
a=07,B=25¢ =02.

Summary

It was shown in this section that according to a finite-dimensional model it appears to be

possible to move the zeroes of a distributed parameter system by mixing the outputs of
two sensors. A force and a moment actuation configurations were modeled. In both cases
the zero trajectory plot displayed the features predicted based on the static model of the
ASM and observed later in the results of modeling a 2-DOF mass-spring system. Real-val-
ued zero were found in the region of negative mixing coefficients betyyeen ygand . The

zero locus in the s-plane does not seem to approach or cross the imaginary axis indicating

the absence of complex non-minimum phase zeroes.

2.4 Infinite-Dimensional Models of Beams

It was shown in Section 2.3 that the mixture of the outputs of the strain and force sensors
retained the attractive alternating pole-zero structure except for appearance of nearly-sym-

metric real-valued zero pairs. In order to explore the possibility that the real-valued zeroes
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are artifacts of modal truncation, this section considers exact infinite-dimensional repre-
sentation of a distributed system by solving the beam equation directly. The possibility of
modal truncation effects would certainly be ruled out if real-valued zeroes of the mixed

transfer function are found in the exact solution of the beam equation.

A general procedure for obtaining the exact solution of a beam equation is presented first.
The procedure outlines the steps for finding the poles of the system, the transfer function,
and the exact zeroes of the transfer function. The following two subsections find solutions
for the mixed output of an actuator-sensor module (ASM) for the cases of force and

moment actuation.

2.4.1 Solution of the Beam Equation

The governing partial differential equation for a uniform Bernoulli-Euler beam is written

as,
4 2
ZT"X+%3_¥"+§ZT‘2’V = 15, 1) (2.76)
wherew(¢, t) is the transverse deflection of the beam, )[( is the normalized coordi-
nate along the span of the beam, dr{§, t) is the distributed forcing function [Meiro-

vitch, 1975; Graff, 1975]. The mass, stiffness, and damping characteristics of the beam are
. . 2 _ EI El
summarized in two parameteaS = — and- -

. .. ML . cL . * .
beam,El is constant flexural stiffness, is constant mass per unit length, and  is the

, Whiere is the length of the

equivalent viscous damping per unit length.

Note that the actual amount of damping attributed to the beam is not important for the pur-
poses of this study and small damping was included to improve readability of the fre-
qguency response plots. For the systems considered in this chapter, the forcifhg term is

absent and excitation enters in the equations through boundary conditions.
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Solution

To find the dispersion relation which relates the spatial and temporal frequencies [Graff,
1975], a homogeneous solution of (2.76) in the fov(d, t) = Agké-wt) is assumed.

Substituting and solving for the wave numker results in:
k= =+i= (2.77)

The homogeneous undamped case of (2.76) is solved next by assuming a solution with
separated variables as follows,

W(E, t) = X(E)elot, (2.78)

Substituting the assumed solution into (2.76), results in,

2 .
[x"’—%x}e'wt =0 (2.79)
a
The spatial component of the solution is sought in the fornX#) = e'¢ , with

r = xk, ik, subject to four boundary conditions — two at each end of the beam.
X(&) = Aeké +Beké + Ce€ + De ¢ (2.80)

Taking the appropriate derivatives of the assumed solution in (2.80), substituting into the
boundary conditions, and assuming harmonic excitation in the forcing boundary condi-

tions, a linear system (2.81) is obtained.

AgcVec = Fge (2.81)

T
whereAg is the boundary condition matrixg- = [A B C d is a vector of constant
coefficients in the assumed solution dfg}- is the forcing term defined by the boundary
conditions. Equation (2.81) can be used to solve for the frequency response and the poles

of the transfer function.
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To find the structural frequency response directly, the linear system in (2.81) is solved for
the coefficient vectovg- . The spatial part of the soluXgg) is then found according to
(2.80). The spatial part of the solutidi(¢) is a complex-valued function of the position
along the beam and the wave numker and when divided by the amplitude of the har-
monic input produces the transfer function from the harmonic excitation at the boundaries
to the structural response at any point along the beam. The wave fumber is related to the

temporal frequencw through the dispersion relation (2.77).

In order to find the poles of the system, the homogeneous form of (2.81) is considered.
The non-trivial solution of the homogeneous linear system requires the boundary condi-
tion matrix Ag- to be singular, which means that the determinant of the matrix must be
zero. For simple systems considered in this section, it is always possible to obtain a
closed-form expression for the determinant and numerically solve for the roots of the

resulting transcendental equation, usually calledrédtpiency equatian
det( A;c) = O (2.82)

Two approaches can be taken for finding the zeroes of the analytical transfer function. One
possible approach is to obtain a numerical solution for the frequencies at which the output
of the system expressed in termsXqk) is zero for a nonzero input. This method how-
ever fails to identify the zeroes which are perfectly cancelled by the system poles and is

likely to give poor results for near pole-zero cancellation.

An alternative approach makes use of the root locus definition of the zeroes of a transfer
function [Fleming, 1990]. The finite zeroes of the open loop transfer function are equal to
the poles of the closed loop system with feedback gain set to infinity. A feedback loop is
formed around the transfer function whose zeroes are being sought. The retnstg

loop boundary condition matrix depends on the feedback gain. The determinant of this
matrix is found and the limit of the determinant with the feedback gain approaching infin-
ity is calculated. The solution of the resulting transcendental equation gives the frequen-

cies of the zeroes of the open loop transfer function.
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glimoodet( Ag) = 0 (2.83)
In summary, the following results are obtained by solving the beam equation: (i) the exact
transfer function from the ASM control input to the ASM mixed output as a function of the
mixing coefficienty , ASM position along the beay , the internal ASM stiffnesses
B, and the relative stiffnesg, ; (ii) the exact transcendental frequency equation (2.82)
whose numerically found roots are the poles of the mixed transfer function; (iii) the exact
transcendental closed loop frequency equation (2.83) whose numerically found roots are

the zeroes of the mixed transfer function.

The solution procedure outlined in this subsections will now be applied to a cantilever
beam with an ASM attached to it. Two actuation configurations already encountered in

Section 2.3 will be considered.

2.4.2 Fixed-Free Beam with an ASM as a Force Actuator

This subsection applies the general wave solution method outlined in the preceding sub-
section to the case of an ASM attached perpendicular to a cantilever beam and functioning
as a force actuator and a displacement sensor. An approximate solution for this system was

already found in Section 2.3.2.

Solution

The system to consider a uniform beam with fixed-free boundary conditions and an ASM
attached at an arbitrary point along the span of the beam (see Figure 2.25a). The beam can
be broken up into two segments with two assumed solutp(s t) wa(idglt) for the
transverse deformation of the beam. After variable separation, the temporal component in
both solutions is the'®t  and the spatial componentXgf€) X&)

X, (&) = Aeké + B e kE + C eké + D, e k¢

2.84
X,(8) = AzeikE + Bze—iki + CzekE + Dze—kE ( )
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Figure 2.25 (a) Fixed-free beam with ASM as a force actuator; (b) the full solution is
obtained by dividing the beam into two parts with compatibility boundary conditions at
the common point.

The boundary conditions at the fixed end represent zero deflection and zero slope at the

clamp.

1
o

(2.85)

Wilg-o =

The boundary conditions at the free end specify zero moment and zero force at the tip.

|
o

Wo'le g =
2=1 (2.86)

W2'lg=1 =
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The continuity boundary conditions enforce continuity of deflection, slope, curvature, and
shear force across the common point between the two segments of the beam. The last con-

tinuity boundary condition accounts for the force exerted by the ASM onto the beam.

Wl g, = W2 g,
Wilg, = W2,
Wl = W, (2.87)
L3
m : I + m
Wi"lg, = —EF(O W,

a

The sign of the force in the last boundary condition is consistent with common sign con-
vention, i.e. positive sign for an external force applying a clockwise moment to the beam.
SubstitutingF(t) = F, ¢, = _k0W1|Ea + ﬁqa from (2.10) into the shear force con-
tinuity boundary condition, a new form of the last boundary condition reads,

3 3 F

F
Wi, X Wale, ~Wle, T (77 gygatk Y (2:89)

where the non-dimensional stiffness parameer characterizes the relative stiffnesses of
the ASM and the beam, and was previously defined by (2.63) in the derivation of the
approximate solution. Following the reasoning of Section 2.3.2, the actuator stiffness is set

to match the static driving-point bending stiffness of the beam.

Substitutingw(§, t) = X(&)el®t from (2.78) and its derivatives, and considering har-
monic excitationg, = gz€'®t , the boundary conditions yield a system of linear equations

with a vector of 8 unknown coefficientg -
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[ 1 1 1 0 0 o0 oA 0
[ - 1 -1 0 0 0 0flB 0
t3 ! b b gy -ty ic, 0
it,  -t, ot H,  itg ity 4 bp,| 8 (2.89)
13 14 t t 3 4 A, 3%
i +19)ts (=t)ty (L=t 1190ty 1ty e | |B, | gy g9
0 0 0 0 -t 15 t5 t|c, 0
0 0 0 0 ity ity g ~tg/|D, 0

The following temporary variables are used in the boundary condition matrix above

t, = e, = e 1, = e 1, = e 1 = ekt = ek 1, = ek g = ek
(=3
9 - .

(€aK)°

Solving for the coefficientsz  and substituting into (2.84) gives the exact structural
response of the bea; , = X; 5(k, E,Ea)aa at an arbitrary p@int  driven with the

excitation frequencyo by an actuator located at

A general expression for the mixture of force and strain outputs of an ASM was derived
earlier (ref.). Substituting, = 0 argh, = w,|, _, , an expression for the mixed output

of an ASM attached perpendicular to a cantilever beam is found.

ym = Cm(y)W1|Ea + Dm(y)qa (290)

Transfer Function, Poles, Zeroes

Setting the amplitude of the inpat,  to unity for simplicity, the transfer function from

ASM input to its mixed output is found as,

Gyalk ¥) = Con(V) X+ DY) (2.91)

The poles of the single-input single-output (SISO) transfer funG'gQ,n are found accord-
ing to (2.82) by setting the right-hand side of (2.89) equal to zero and looking for singular-
ities of the boundary condition matrix;- . A closed-form expression for the determinant
of the 8 by 8 boundary condition matrix was found using Magjenbolic mathematics

package and then the roots of the frequency equation were found numerically irf Matlab
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The zeroes oGyd(s) are calculated by closing a feedback loop around the ASM transfer
function and finding the roots of the closed-loop frequency equation. A constant-gain con-
trol law is defined ag, = —gy,,(y) . Substituting it into (2.90) and solving for the control
signalq, , the control signal is found as,
9Cy,

2 = 5= W1

T+ 9D (2.92)

€a

The loop is closed by feeding the control sigmal  into the ASM actuator which produces

an external force according to (2.10),

(2.93)

_ 1 9C,
F(t) = _k0[1+_1+0(—1+gDm:|W1 .

Substitution of the feedback force into the boundary conditions leads to the closed-loop
shear force continuity boundary condition.

3 1 9C,
Wy Ea+E—g)[1+1+O(—1+9DHJW1

=0 (2.94)

g,V e,

The rest of the boundary conditions are not affected by feedback.

The closed-loop boundary condition matrix depends on the feedbacl gain . After multi-
plying by (1+gD,,,) , the determinant of the closed loop boundary condition mﬁg@x

is a first order polynomial igr and can be expresseﬂe&(s.égé) = f,+9f, . The limit
of the determinant wheg — « is taken and the resulting transcendental equation can be
expressed as a first order polynomial in the mixing coeffigient

1
im (f1+915) = T2 = Co(V) o1+ DY) f5 = hy +yhy = 0 (2.95)

gaoo

1. Maple V Release 4, Waterloo Maple Inc., W. Waterloo, Ontario, Canada.
2. Matlab 5, The MathWorks, Inc., Natick, MA, US.
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whereh; = f,; + f,,/B andh, = —f,; +f,,/(1+a) . The expressions fby; and

f,, contain a large number of exponential terms. They were found using Maple symbolic
mathematics package. The roots of the frequency equation (2.95) are the poles of the infi-
nite-gain closed-loop system and the zeroes of the original open-loop transfer function.
The roots of the frequency equation were found numerically using Matlab software pack-

age.
To verify that the transfer function solution is consistent with the solution for the poles and

the zeroes, the results for a sample ASM/beam configuration are plotted in Figure 2.26.

60 T
X X X XXX X XXX XROCORRRARRIEK

Magnitude (dB)

q

-100 :

Frequency (non-dimensional)
Figure 2.26 Typical mixed transfer function using wave analysis for a cantilever

beam with an ASM acting asfarce actuator, with independently calculated poles
(crosses) and zeroes (circles)= 05 B 7 3.0 y5 04 &, =02 .

The transfer function does not include any damping and its finite magnitude at resonances
is due discretization in plotting. Individual strain and force sensor transfer functions are

shown in Figure 2.27.
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-100 5 : T 5
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Figure 2.27 Strain (solid) and force (dashed) sensor transfer function from wave

solution for the ASM acting asfarce actuator attached to a cantilever beam.
The effect of the mixing coefficiept on the zeroes of the transfer function is investigated
next. The closed-loop frequency equation (2.95) is numerically solved for a range of mix-
ing coefficients and the resulting wave numbers for the zeroes of the transfer function are
plotted in the familiar format of zero trajectories in Figure 2.28. The general pattern of the
trajectories mimics the one observed for the lumped parameter system and for the approx-

imate solution of a cantilever beam.

The bottom branch intercepts the zero frequency line exactly at the mixing gain value of
Ye . However the real-valued zeroes were not encountered. Zero trajectories for higher
modes become increasingly sensitive to the mixing coefficient. High-mode trajectories
quickly shift from one zero of the force transfer function to the one above. The shift occurs

atyg . Pole-zero cancellation occurs at the mixing gain valyg of
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Figure 2.28 Zero trajectories as a function of the mixing coefficignt  for the wave
model of a cantilever beam with an ASM actingd@se actuator,a = 0.7 8 = 2.7 ,
£, =02,

2.4.3 Fixed-Free Beam with an ASM as a Moment Actuator

In this subsection the solution procedure from Section 2.4.1 is applied to the case of an
actuator-sensor module (ASM) acting as a moment actuator. The ASM is oriented parallel

to a cantilever beam, as shown in Figure 2.29a. Note that the setup is identical to the one
considered in Section 2.3.3 where an approximate solution of the same problem was found

using the assumed mode method.

Solution

The solution method follows the steps taken in finding the solution for the force actuator.
A different actuation method, however, leads to different boundary conditions. The dis-
placement solution is divided into two parts and is sought in the same form as for the force

actuator given in (2.84).
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Figure 2.29 (a) Fixed-free beam with ASM as a moment actuator; (b) the full solution is

obtained by dividing the beam into two parts with compatibility boundary conditions at

the common point.
The root and tip boundary conditions (2.85, 2.86) also remain unchanged. The displace-
ment and slope continuity boundary conditions in (2.87) are the same. The curvature and

shear continuity boundary conditions, however, are different and are re-derived below.

" L2 "

3 (2.96)

e, = W2,

The sign ofM(t) accounts for the direction of the applied moment in Figure 2.29b. Sub-

stituting M(t) = Fo.h = —hfk0W1'|Ea+%koqa into (2.96) and rearranging, the

curvature boundary condition reads,

1

M, " 1 M
+ =X W
Ea Eaxk 1

Wl £, = n(1+—G)Ean qa

(2.97)

€a
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where)(:l/I is a non-dimensional stiffness parameter identical to the one which appearing
in the derivation of an approximate solution and given in (2.73). The actuator stiffness is

again matched to the driving-point static bending stiffness of the beam.

Substitutingw(&, t) = X(&)e'®t from (2.78) and its derivatives into the boundary condi-
tions and considering harmonic excitatiog = g.€®t , the boundary value problem
leads to a linear system with the coefficients of the assumed solution (2.84) forming a vec-

tor of 8 unknowns.

o1 1 1 1 0 0 0 oA 0
i - 1 -1 0 0 0 0flB; 0
t3 b 1 t 3 -ty -, 0
it —it, t, “t, ity ity <4 t|[p,| 0 (2.98)
(~1+itg)ty (L+itg)ty (1+tg)ty (L-to)ty t3 by —t; o |A)| LZ :
ity it, t, “t, ity -ty t|[B, n(l+g)Eak
0 0 0 0 -t 45 t5 t|[c, 0
o 0 0 0 ity itg t5 g/ |D, 0

The following temporary variables are used in the boundary condition matrix above

t; = €%, t, = ety = €, = et = ekt = ekt = ek g = ek

t = i

9 Eak'

Substitutingg; = 0 andy, = r]g_W into the general expression for the mixed force-

strain output of an ASM obtain,

Ym = CmnW1'|§a+ D,d (2.99)

whereC_, andD,, are givenin (2.23, 2.24).

Transfer Function, Poles, Zeroes

Following the steps already familiar from the analysis of the force actuator in the preced-

ing subsection, the transfer function from ASM input to its mixed output is found as,

Gya(ki¥) = Cr(¥YINXy[; +Dm(Y) (2.100)
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The poles the ASM/structure system are found by numerically solving for the roots of the
frequency equation, obtained by setting the determinant of the boundary condition matrix
Agc in (2.98) to zero.

The zeroes of the transfer function were found in a manner similar to the previous subsec-
tion, by closing a feedback loop around the ASM output and setting the feedback gain to
infinity. The control law is again, = —gy,(y) . Substituting (2.99) and solving for the
control signalg, , obtain,

9Cp

Oa = =75 Wq

Tro0- (2.101)

€a

Substituting the result into the moment exerted by the ASM onto the beam
Masm = Fasrrh’

h2

_ 1 9C, :
M(t) = —rk0|:1+ mm}wl (2.102)

€a

The curvature continuity boundary condition is the only one affected by the feedback and

it is modified as,

. 1 1 9C, .
Wy Ea+5a[l+ 1+0(1+gDnJW1

=0 (2.103)

a

3 €a

The closed-loop frequency equation is found by forming the closed-loop boundary condi-
tion matrix, calculating its determinant, and finding its limit as the feedback gain
approaches infinity. The form of the closed-loop frequency equation is the same as for the
system with a force actuator (2.95), with the exceptionthat  fand are modified for
the moment actuator problem. The roots of the closed-loop frequency equation are the

zeroes of the open-loop ASM transfer function.
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Strain and force sensor transfer functions for typical values of ASM component stiffnesses

is shown in Figure 2.30. The magnitude of the force sensor transfer function is adjusted to

match the output of the strain sensor.

50 .

Magnitude (dB)

-100 5 S )
10 10 10
Frequency (non-dimensional)
Figure 2.30 Strain (solid) and force (dash) sensor transfer functions from the
wave solution for the ASM acting asneomentactuator attached to a cantilever
beam;a = 05 B =30 £, =02 .

The zero trajectory plot is shown in Figure 2.31. It demonstrates features already encoun-

tered in previous sections. Notice the characteristic signs of a nearly unobservable/uncon-

trollable mode # 4.

Summary
In this section the exact transfer functions from the ASM input to the mixed output were
calculated for the cases of force and moment actuation. A numeric solution for the exact

poles and zeroes of the transfer function was also found. Qualitatively, the exact zero tra-
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Figure 2.31 Zero trajectories as a function of the mixing coefficient  from the wave
solution of a cantilever beam with an ASM acting asi@mentactuator;a = 0.7 ,
B =27, =02.
jectories exhibit the same behavior as the approximate ones with the notable exception of

the real-valued zero branch which was not captured by the solution.

2.5 Discussion of Results

Having modeled the effect of output mixing for the cases of actuator-sensor module con-
nected to several systems, some preliminary conclusions can be made. This section
focuses on the similarities and the differences between the zero trajectories observed in the
models of lumped- and distributed-parameter systems. It also compares the results
obtained from the exact and approximate models of a cantilever beam, specifically the
presence of real-valued zeroes. For the beam models, a comparison is also made between

two different actuation configurations. The section also raises a specific question on the
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Figure 2.32 Comparison of zero trajectories using exact (large dots) and approximate
(small dots) models for thimrce actuator, the two solutions overlap with the obvious
exception of the real zeroes only present in the approximate solution.

nature of the real-valued zeroes which appear in the approximate model but not in the

model based on the wave solution

Qualitatively, the zero trajectories of the Ilumped-parameter system discussed in

Section 2.2 and the finite-dimensional models of beams in Section 2.3 appear very similar.
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The features of the zero trajectory plot summarized in Section 2.1.3 were confirmed on
models of lumped and distributed systems. It was also observed that both system types
produced monotonically varying zero trajectories, thus verifying the assumption made in
Section 2.1.3.

-200 ' L

10° 10°

Frequency (nondimensional)

Figure 2.33 Comparison of exact (solid) and approximate (dashed) sample transfer func-
tion, y = -0.6; poles and zeroes of the approximate transfer function are shown contain-
ing a real-valued zero pair, one real MP (circle) and one real NMP (triangle); the two
transfer functions nearly overlap.

The finite-dimensional models of both the mass-spring system and the beam gave rise to
similar patterns of nearly-symmetric real-valued zeroes one of which is minimum phase
(MP) and the other non-minimum phase (NMP). The real zeroes occur only in the region
of negative values of the mixing coefficient betwegn wod . Their frequency dimin-
ishes as the values of the mixing coefficient increase in magnitude. The physical signifi-

cance of the NMP zeroes was explained in Section 2.1.3.

A key goal of this chapter was to compare the zero patterns of the same beam structure

using approximate and exact solution methods. The objective of the investigation was to
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Figure 2.34 Comparison of zero trajectories obtained from exact (large blue dots) and
approximate (small black dots) models for thementactuator.

find out whether the direct solution of the partial differential equation would lead to the

same result as the truncated representation of the same system.

The comparison of the zero trajectory plots obtained using approximate and exact meth-

ods for the force actuation case is shown in Figure 2.32. A similar plot for the moment
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actuator is shown in Figure 2.34. For the force actuator case, the zero trajectories and the
natural frequencies are overlapping. The moment actuator case shows more discrepancy
between the assumed mode and the exact the solution but overall the results are suffi-
ciently close to each other. In both cases no real-valued zeroes were extracted from the

wave model.

A sample transfer function for the force actuator configuration is shown in Figure 2.33 for
a value of the mixing coefficient leading to a real zero pair visible as a circle and a triangle
in the pole-zero structure display at the bottom of the magnitude plot. The magnitude and

phase plots resulting from the approximate and the exact models match almost perfectly.

Preliminary conclusion based on best modeling effort using approximate and exact meth-
ods is that these zeroes are indicative of true non-minimum phase behavior and not results
of the modeling technique or modal truncation. The reason for their marked absence from
the wave solution remains undetermined. The final decision is reserved until the experi-

mental results are presented.



98 MODELING SYSTEMS WITH FORCE AND STRAIN SENSORS




Chapter 3

EXPERIMENT DESIGN

In Chapter 2 a general concept of a three-element actuator-sensor module (ASM) was pre-
sented without discussing the practical aspects of constructing the actuator and the sensors
suitable for distributed actuation. The objective of this chapter is to offer a practical ASM

design. The design employs a commercially available actuator and strain sensor package
and a novel force sensor. This force sensor uses shear piezoelectric effect and is suitable

for distributed actuation of beam structures.

The chapter begins by describing the concept of using three piezoelectric patches as com-
ponents of an ASM. Detailed description of ASM components is presented in the second
section. It also includes the description of the proof-of-concept experiment which was per-
formed to verify the feasibility of the shear load cell design. The last section lists the
design decisions made while integrating the shear load cell with an actuator and a strain
sensor. A finite element model is used to gain insight into the stress and strain distributions
inside the ASM components. The details of the manufacturing process and a tabulated

summary of measured and estimated properties of the test article are also provided.

3.1 Conceptual Design

In this section a practical design of an actuator-sensor (ASM) module is presented. The

details of component design are covered in the next section.

99
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The generalized actuator-sensor module in Figure 2.2 contains three essential elements:
the actuator, the low impedance sensor or strain sensor, and the high impedance sensor or
force sensor. Following the design process, the practical issues associated with each of

these elements are described below.

Actuator

Actuator technology is not the focus of this work, therefore a thin PZT wafer was chosen
as the actuator. This active elements type is most commonly used for distributed beam and

plate actuation.

Strain Sensor

It is also common to place another active material wafer on top of the actuator and use it as
a sensor. The sensor is essentially placed in parallel with the actuator and it measures some
combination of strain and force whose exact proportions depend on the relative stiffnesses
of the structure, actuator, and sensor. If the sensor element has the same dimensions as the
actuator then the two form a collocated actuator-sensor pair. Note that while it is important
for the actuator and the sensor to have the same width and length, they can have different
thickness or even be made from different piezoelectric materials. These features fit per-

fectly the requirements for the strain sensor in the three-element ASM.

Force Sensor

The third element needed for the design is a force sensor. In order to act as a load cell, the
active element must be placed in the load path between the actuator and the structure. The
actuation mechanism modeled in Chapter 2 with an ASM pushing against a riser on the
beam would allow an easy placement of the force sensor in line with the actuator. While
piezoelectric actuators built for this purpose exist and are used in truss actuation, this
approach is not a natural solution for structures in bending because it eliminates the advan-
tage of a surface-mounted piezoelectric wafer: simplicity, compactness, and jointless actu-

ation.
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\

Figure 3.1 Concept sketch of an ASM based on a collocated piezoelectric actuator

and strain sensor, and a shear piezoelectric load cell.
The concept drawing of the solution adopted in this work is illustrated in Figure 3.1. Itis a
hybrid between a typical piezoelectric wafer bonded on the surface of a beam and a stack

with discrete attachment points similar to the one modeled in Chapter 2.

A collocated actuator-sensor pair is positioned to span two thin risers placed on the surface
of the structure. As the voltage is applied to the actuator it produces actuation strain and
applies force to the two risers causing them to deform and transmit the force to the struc-
ture below. One of the risers is made out of piezoelectric material and the signal it pro-

duces is expected to be closely related to the force developed by the actuator. This active

riser is therefore referred to as the force sensor.

The ASM diagram with a mixed virtual sensor output is shown Figure 3.2 and can be
directly compared to the general diagram in Figure 2.2. Note that an insert under the left
end of the strain sensor is needed for symmetry and it does not have to be made out of
active material. Also, the issue of relative placement of the strain sensor and the actuator

will be discussed separately and the labels marking their positions in this figure are for
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Figure 3.2 Input-output diagram of an ASM based on collocated piezoelectric actuator
and sensor and a shear load cell.
illustration purposes only. In the remainder of the chapter the details of the design are pre-

sented.

The design parameters which have been discussed so far and are applicable to any design
are (i) the location of the ASM on the structure; (ii) the actuator stiffness relative to the
structurey ; (iii) the strain sensor stiffness relative to the actwator ; and (iv) the force
sensor stiffness relative to the actugBor . Note that the relative stiffness definitions are

consistent with those in Section 2.1 which focused on a static model of the ASM.

The design parameters specific to this design are (i) the shear load cell width, length, and
thickness; (i) the stacking order in which the actuator and strain sensor are placed onto the

structure; and (i) the choice of the electrodes to be grounded.

The design choices are made based on either the component design in Section 3.2 or the

experimental results presented in Chapter 4.

3.2 Component Design

A test article was designed and built by implementing the concept of the actuator-sensor
module (ASM) outlined in the preceding section. This section presents the details of engi-
neering design of the main components of the device. The test article is designed as a

proof of concept device and the design choices reflect the need for quick and not necessar-
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ily the most efficient solutions. First, a brief introduction to piezoelectric properties is
given.
Piezoelectric properties

Piezoelectric materials are a class of materials whose constitutive relation couples
mechanical stress and strain with electric field and electric displacement. Linear piezo-
electric constitutive relations [IEEE, 1978] can be presented in four forms. Using the form

in which the electrical field and the mechanical stress are independent variables the mate-

H _ " d ﬁ 3.1)
S dt SE T

whereD is the electrical displaceme8t, is the strgin, is the electric field] and is the

rial properties are written as,

stress. The complementary electrical and mechanical fields are related through the mate-
rial properties: the dielectric constant , the induced strain condtant , and the compli-

ances- . The subscript-);  denotes a matrix transpose. The superscripts in material
properties specify the boundary conditions for which the values were measured. Super-
script(-)T represents a constant stress condition, e.g. free strain. Supéfis%ript repre-
sents a constant electric field condition, e.g. short circuit. The material properties are

described in a standard coordinate system, with axes named 1, 2, and 3. The poling direc-

tion is by convention chosen to be parallel to the 3 direction.

Equation (3.1) can be expanded into a 9 by 9 matrix and several simplifications can be
made. The relationship between the electric field and the electrical displacement is
described by a diagonal matrix. Poled piezoelectric material is transversely isotropic about
the 3 direction resulting in material properties which are identical in the 1 and 2 directions.
The first term in the subscript of the coupling coefficients refers to the electrical axis while
the second refers to the mechanical. Teys refers to the normal strain developed in the

1 direction (perpendicular to the direction of material poling) in response to a field in the 3
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direction (parallel to material poling). Similarlg,;  refers to the shear strain in the 5
direction (in plane with material poling) in response to a field in the 1 direction (perpen-

dicular to material poling).

T
811 . . . . . . d15

T
811 . . . . d15
g1 0oy day d
33031 G103 - - - |E
A & &£ E
31511 S12 13 - - - || Ty
(3.2)
A & &£ £
33 513 S12 S33

E
d15 . . . . 855

D,
D,
Ds
Sy
S|, L dys,s;s, . . . ||T2
S3
Sy
S5
S5

E

E
. 86 6_

Note that the normal and shear directions are uncoupled.

3.2.1 Actuator and Strain Sensor package: QuickPack

Actuators and sensors used for distributed actuation of beams and plates are typically
made out of thin wafers of piezoelectric material poled through the thickness. The elec-
trodes are placed on the top and bottom surfaces of the wafer so the driving or the mea-

sured field is parallel to the poling direction.

The equations for the transverse mode of operation in the 1-D case of beam bending is
found by eliminating the rows of the equation (3.2) corresponding to the decoupled shear
components, the zero field components, and the normal stresses through the thickness and
through the width. The independent variables are the electrical field, used as the input, and

the stress in the 1 direction.
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electrode

Figure 3.3 Piezoelectric block in transverse extension uses the so-cglled
effect for both actuation and sensing.

T
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An alternative form of the equation is obtained by inverting (3.3) so that the independent

variables are the electrical displacement and strain in the 1 direction.

E
Ea| _ 1 ;1 —Uay||Ds (3.4)

T E
—d2 T

Note that for the case of a sensor connected to a high-impedance measuring device, the
electrical displacement is small and the voltage output depends only on the shear deforma-
tion. An alternative form of measuring the signal is to connect the sensor to a charge
amplifier in which case the signal is proportional to the electrical displacdment . Both

options are discussed in Chapter 4 while presenting experimental results.

The ASM test article is based on a commercially available two-ply piezoelectric package
offered by Active Control ExpeﬁsThe specific model used @uickPack QP20NThe

active element is made out of a variation of PZT piezoelectric material and the dimensions

1. Active Control Experts, Inc., Cambridge, MA, USA.
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for each ply are 1.81 in long, 0.81 in wide, and 0.010 in thick. The capacitance of the pack
(both plies) is reported as 0.11 pF.

The device was chosen because of its availability, ease of use, and because its two-ply con-
struction makes it a collocated actuator-sensor pair. The decision to use a QuickPack con-
strained the design in tlee  direction at the point of equal stiffness for the actuator and the

strain sensor, i.ex = 1.0

3.2.2 Force Sensor: a Shear Load Cell

The total deformation of the force sensor placed as in Figure 3.2 is a combination of shear
deformation due to the actuation force and the deformation due to the bending and exten-
sion of the underlying structure. Since we are interested in obtaining the signal related to
the force, it is desirable to construct a sensor which produces a signal proportional prima-

rily to the shear deformation in the piezoelectric block.

The shear parameters in the constitutive relations in (3.2) are decoupled from their normal

counterparts and the coupled equations are given as follows,

T
E(T
S5 dis Sss| L' 5
The decoupled nature of the constitutive relations means that in order to sense shear defor-
mations in the 1 direction, the electrical field in the 1 direction must be measured and the
electrodes must be positioned as in Figure 3.4. This is an unusual electrode configuration

because for a typical patch of piezoelectric material, the dimension in direction 3 is much

smaller than in the other two directions making it difficult to position the electrodes.

An alternative form of the equation is obtained by inverting (3.5) so that the electrical dis-

placement and the strain are independent variables.
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electrode

Figure 3.4 Piezoelectric block in shear uses the so-callgd effect for shear
strain sensing.
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Simple analysis of the prismatic force sensor in shear is questionable because its expected
small thickness leads to an extremely low aspect ratio. Pure shear deformation is neverthe-
less a limiting case worth considering. Besides the obvious dependence on the material
properties, the voltage on the electrodes of a piezoelectric block under pure shear defor-
mation is directly proportional to the applied force and inversely proportional to its width
(dimension in the 1 direction). The voltage does not depend on the block’s thickness
(dimension in the 2 direction) because the electrical field is proportional to strain which
remains the same for a thicker piece. The voltage does not depend on the length of the
piece in (dimension in the 1 direction) because for a longer piece the stiffening effect is
counterbalanced by the larger separation between the electrodes which for a constant field

leads to a higher voltage. Again, pure shear strain conditions are not expected in the shear

load cell, and the information above is provided only to clarify the design issues.

Proof-of-Concept Experiment

A simple fixture was built to verify feasibility of building a piezoelectric shear load cell.

Its sketch and a photograph are shown in Figure 3.5 and Figure 3.6. Four piezoelectric
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Figure 3.5 Sketch of the shear load cell proof-of-concept device.

patches were bonded between three strips of fiber-glass. Fiber glass composite was used
because it is not conductive and the need to insulate the exposed electrodes was elimi-
nated. All four shear load cells were instrumented in order to compare the consistency of

the manufacturing process. The fiber-glass pieces are 0.75 in wide and 0.25 in thick.

The shear load cells were made out of 0.010 in thick sheet of PZT-5A material poled
through the thickness. The sensor strips were made 0.75 in long and 0.25 in wide. Nickel
electrodes on top and bottom surfaces of the wafer were removed using ferric chloride.
Small electrode patches, approximately 1/16 in square, were left in the corners of the

wafers and were used later to attach lead wires.

The electrodes on the side surfaces were deposited using P-CS-30 colloidal silver paint
made by Energy Beam ScienteEhe paint is in liquid state and the manufacturing pro-
cess consisted of dipping the edges of pre-cut PZT pieces into the paint and allowing to
dry. Care was taken to insure continuity of coverage along the edge and to minimize paint
runoffs onto the top and bottom surfaces. The electrical resistance between the two ends of

the electrode varied betweé® &a8d for different pieces.

An attempt was made to measure the complex electrical impedance of the piezoelectric

block between the two electrodes. Due to the unusual location of the electrodes the equiv-

1. Energy Beam Sciences, Agawam, MA, USA.
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Figure 3.6 Shear load cell proof-of-concept fixture was built out of
fiber-glass and four PZT blocks.

alent capacitance of the piezoelectric block cannot be found by the two-infinite-parallel-
plates approximation typically used for thin piezoelectric sheets. The arrangement is better
viewed as two parallel wires separated by a material of known dielectric constant. It was
found experimentally that the measured equivalent capacitance is very dependent on the
grounding scheme and the environment. Measured capacitance on the order of 100 pF was

typically observed.

During the experiment the test fixture was mounted vertically on a shaker with a load cell

placed between the shaker and the mounting point A. The measured transfer functions
from the force applied to the fixture to the output of the shear sensors was encouraging for
the work to progress into the stage of designing and building the actuator-sensor module

using the shear load cell as a force sensor.

3.3 Component Integration and Manufacturing

In this section design issues specific to the interaction of the components comprising the
actuator-sensor module (ASM) are discussed. A low-fidelity finite element model of the
ASM used in the design process is introduced. The section also describes the test article

used in obtaining experimental data presented in Chapter 4.
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The design decisions discussed below are (i) the choice of locations of the active and pas-
sive risers; (ii) shear load cell thickness, width, and length; (iii) location of the shear load
cell relative to the actuator and strain sensor package; (iv) stacking order of the actuator

and strain sensor.

Instead of deciding a priori on which of the two risers to make active, both of them made

out of PZT-5A and both were instrumented with electrodes and lead wires.

The design decision on the thickness of the shear force sensor was driven mostly by con-
siderations of stiffness, compactness, and manufacturability. The first two drive the thick-
ness down and the last drives it up. Higher stiffness is required for better actuation
efficiency and better pole-zero separation in the strain sensor transfer function as was
shown in Chapter 2. Thinner shear sensors decrease the overall height of the device and
reduce the gap between the structure and the actuator-sensor package bridging the two
sensors making it less damage prone. Thicker electrodes make it easier, at least in the
experimental stage, to deposit electrodes on the sides of the piezoelectric sheet. The
0.010 in thickness of the shear sensors was chosen as a compromise between the available
0.005 in and 0.020 in PZT sheets. In the hindsight, it appears possible to deposit elec-

trodes on a 0.005 in thick piece using the present technique.

The width of the shear sensors (dimension across the beam) was chosen to be 1/8 in wider
than a QuickPack to allow the some space for lead wire connection. Having experienced
one of the connectors break on the proof-of-concept fixture, lead wire connectors were

positioned on both sides of the shear sensor in case one of them was damaged.

The length of the shear sensors (dimension along the beam) was at first chosen based on
engineering judgement and then validated through finite element analysis. The obvious
bounds on the length of the sensors are “as small as practically possible” on the low side
and almost half-length of the QuickPack on the high side. A shorter sensor is lighter which

is likely to be important for high-performance structures. A longer sensor is stiffer and
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also reduces the span of the unsupported actuator-sensor pack positioned above. No

attempt was made to optimize the sensor length and the length was picked to be 1/4 in.

The location of the sensors was also picked based on engineering judgment. It has been
shown that most of the strain is transferred into the structure at the tips of the piezoelectric
wafer [References]. It is therefore logical to position the two shear sensors such that their

outside edges are directly under the edges of the active elements inside the QuickPack.

The decision on which QuickPack ply to use as an actuator was originally based on the
assumption that by placing the sensor between the actuator and the structure pole-zero
spacing would improve because “more information” about the structure is extracted from

the sensor. This decision was verified experimentally as described in Chapter 4.

Finite-Element Model

A two-dimensional low-fidelity finite element model (FEM) was created to verify that the
expected output levels from a shear load cell are measurable and to gain insight into the
approximate strain and stress distributions in the components. It would have been useful to
have a model accurate enough to reliably predict the frequency response of the system.
Such model would have allowed to make more informed decisions on sizing and position-
ing the parts by considering the impact on the pole-zero structure. However, small feature
sizes, large aspect ratios, and poorly known material properties of the piezoelectric and the

epoxy did not allow to create such model in a reasonable amount of time.

A commercial FEM package ANSY¥$vas used for the analysis. A sample mesh is shown

in Figure 3.7. Coupled field plane stress elements were used to model piezoelectric mate-
rial. A short cantilever aluminum beam is modeled using plane stress finite elements. A
shear load cell is represented by a rectangular block offset from the strain sensor material
above it in order to allow the voltage degrees of freedom in the strain and force sensors to

remain independent from each other. The nodes on the left and right sides of the shear sen-

1. ANSYS 5.3, Swanson Analysis Systems, Houston, PA, USA.
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Figure 3.7 FEM results for shear strain distribution in the vicinity of a

shear load cell for a simplified representation of an ASM.
sor block have coupled voltage degrees of freedom to represent electrodes. Two layers of
piezoelectric material represent a QuickPack. Nodes in the top, bottom, and middle rows
have coupled voltage degrees of freedom representing QuickPack electrodes. The middle

electrode is grounded.

Another rectangular piezoelectric block is placed on the bottom surface of the beam oppo-
site the shear sensor. It represents one of two dummy sensors intended to be placed on the
test article in order to compare their output signals with those from the shear sensors. Like

the shear sensor the dummy sensors have electrodes on the sides.

A static shear strain solution is shown in Figure 3.7. A 1V potential applied at the top
electrode causes the actuator to contract which in turn deforms the shear load cell and the
structure. More shear deformation is visible towards the left side of the load cell. As
expected, very little shear deformation is present in the dummy sensor visible on the bot-

tom of the figure.

The nodal voltage solution for the same loading condition as above is shown in Figure 3.8.

The electrode on the left side of the shear sensor is grounded. The voltage distribution
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offers no surprises.The predicted output level is certainly high enough to be measured.
Note that the software is somewhat misleading in extrapolating the values of the voltage

degrees of freedom into the aluminum elements below.

Figure 3.8 FEM results for voltage distribution in a simplified repre-
sentation of an ASM.

The FEM results indicated that the strain, stress, and voltage distributions were not partic-
ularly sensitive to the length of the shear force sensors. The decision was made to leave the

width at approximately 1/4 in, the size already tested in the proof-of-concept experiment.

A detailed view of the manufactured device is shown Figure 3.9. A QuickPack with a large
connector plug is visible in the center. Two shear sensors with their individual lead wires

are seen near the edges of the QuickPack.

Complete Test Article

A cantilever aluminum beam was chosen as the structure for ASM testing. The beam was
made out of 5052 aluminum and with dimensions 9.5 in long, 1.25 in wide, and 0.126 in
thick. The fundamental bending frequency of the bear beam is 45 Hz. An actuator-sensor

module was attached near the root of the beam as shown in Figure 3.10. The placement
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Figure 3.9 Actuator-sensor module (ASM) mounted on an aluminum beam.

near the root offers good actuation authority due to high strain levels in the low-frequency

modes.

E/— ASM
\— dummy sensors T

0.126"
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Figure 3.10 The test article is a cantilever aluminum beam with an ASM attached near
the clamp on one side of the beam and two dummy sensors on the opposite side.

To prevent the electrodes of the shear sensors from being shorted by exposure to the con-

ductive beam, a layer of 0.001 in thick Kapton film was placed between the ASM and the
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beam. All components were bonded at the same time using ACX QuickPack epoxy recom-
mended for bonding QuickPack piezoelectric actuators. The combined thickness of the
assembled shear sensors including two epoxy layers and the thickness of the insulation
was measured to be 0.014 in. The total height of the module assembly above the beam sur-
face including the QuickPack and one more epoxy layer is 0.035 in. The total mass of the
fully instrumented module mounted on the beam was 8 g including 5.5 g for the Quick-

Pack.

Figure 3.11 Dummy sensors are located on the back side of the beam
directly opposite the shear sensors built into the ASM; an electrically insu-
lating layer of Kapton is visible under the sensors.

To quantify the degree of decoupling between the normal and shear strains in a realistic
piezoelectric material, two dummy sensors were placed on the back side of the beam. The
dummy sensors have the same dimensions, were made out of the same batch of PZT, elec-
troded using the same procedure as the shear sensors and were placed at the same position
along the beam opposite the shear sensors. A photograph of the back side of the beam is
shown in Figure 3.11. The shear and dummy sensor transfer functions are compared in
Chapter 4.
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The final design choice is electrode grounding scheme. Finite element analysis showed
that the transfer functions are influenced by this decision. Since the model was not accu-
rate enough to be trusted, it was decided to make this decision based on the experimental

data.

Modified Four-Element Static Model

Compared to the ASM topology assumed in the development of the static model in
Chapter 2, the present design consists of four elements: the actuator, the strain sensor, and
two shear load cells. In order to use the results of the model, small modification must be
made. Most importantly, the formulae for the special values of the mixing coefficient have

to be modified. The modified system diagram is shown in Figure 3.12

a, Uiy 92 )

Figure 3.12 Diagram of the static model of a four-element ASM with two load cells.

Because the modeling approach remains static the two stiffness corresponding to the two
, : o B1B>

s.hear sensors can t.)e comblneq and th.elr effective stiffness .6@]uaI?31TB2 . qu-Ja-

tion (2.18) for the mixed output is re-derived and the new version has the same form with

the normalized stiffness of the single force seffisor replaced with the effective stiffness of

two force sensorg, . The special values of the mixing coefficient obtained from this

expression are given below,
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o _ Xc Bo
Ye = Xy1+a
N Xc
= — 3.7
Ys Xy (3.7)

Where)A(LE == is the modified structure/ASM relative stiffness parameter, the modi-

+a
fied ASM equwgfgnt stiffness is calculatedlq'fs: {—IGT)EOka , BRd,
0

driving point impedance of the experimental setup which can be approximatgf_hy
given in (2.73). The difference betwekf,,,, adfl,,, is due the fact that in the exper-

is the static

imental setup, the ASM is not attached to the clamp as was assumed in Chapter 2 but is
offset by 1.125 in.

Calculation and Estimation of ASM Parameters

In order to relate the results obtained in Chapter 2 to the experimental results in Chapter 4,
the parameters describing the test article must be collected. The important ones are sum-
marized in Table 3.1. The relative stiffness of the force sensor proved to be particularly

challenging to determine.

The actuator stiffness was calculated using the dimensions for one QuickPack ply and the
modulus of elasticitf,p, = 120GPs . The relative stiffness of the strain sensor is set by
the choice of a two-ply QuickPack to act as an actuator and a sensot, . The relative
stiffness of the shear load cell was difficult to calculate analytically or using the FEA
model because the dimensions and stiffnesses of multiple bonding layers were not accu-

rately known.

An attempt was made to estimate the shear sensor stiffness by measuring the longitudinal
natural frequencies of a QuickPack under free-free condition and compare those to the
longitudinal frequencies of the QuickPack mounted on the shear sensors. The two shear

sensors were viewed as springs and by knowing the change in frequencies during the tran-
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TABLE 3.1 Summary of ASM and test article parameters.

Parameter Value Source of data, notes
Strain sensor nor- a=1 By design, two equal stiffness QuickPack plies
malized stiffness
Force sensor nor- B=1.33 Estimate, based on experimental zero trajec-
malized stiffness tory plot, procedure described in Section 4.2.
ASM equivalent K =04 Calculated according to (2.4)
stiffness

Actuator stiffness Calculated according to (2.5)

ky=75 Dl@%

ASM mass m = 8(q) Measured
Beam parameter

a= 80.6% Calculated as = E-

mL4

ASM moment arm| h = 0.10Q(in) Measured

Relative ASM/strucy M _ 74 Calculated according to (2.73). The impedance

ture stiffness param matched value fromgy' =1 (an approximatio
eter because ASM is not at the clamp).

-

sition from free-free to spring-spring boundary conditions the required spring stiffness
could be calculated. An impedance analyzer was used to estimate the natural frequencies
of the electro-mechanical system which eliminated the need for using shakers or sensors.
Unfortunately the measured frequencies under two boundary conditions did not correlate

well and a different approach described in Chapter 4 had to be used.

The normalized shear sensor stiffness was estimatedio=bé.33 based on the experi-
mental data and the properties of zero trajectory plots. The procedure for estipnating is
described in Section 4.2. The equivalent stiffness of the ASM based on the vfllue of
above was found to be = 0.45 . The ASM/structure relative stiffp(é/'sg 0.74 can be
compared tq_(:l/l = 1 for the case of ASM/structure impedance matching, indicating that
the present ASM design is approximately 25% softer than the target medians matched

value.
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The internal resonances of the ASM are important because they set the frequency up to
which the behavior of the ASM can be considered quasi-static. Using the Hewlett-Packard
4194A impedance analyzer the complex impedances of electro-mechanical systems can be
measured. Two measurements were made: (i) complex electrical impedance of the Quick-
Pack by itself and (ii) a QuickPack assembled into the ASM and mounted on a beam. The
extension and bending modes of the QuickPack can be effectively separated by connecting
the electrodes of the two plies to the terminals of the analyses in such a way that the plies
are driven in or out of phase with each other. This method gave good results for a sus-
pended QuickPack with approximately free-free conditions. The frequencies for both
bending and extensional vibrations correlated well with the analysis. When mounted on
the shear sensors, the boundary conditions for both types of vibrations become spring-
spring with unknown extensional and rotational spring stiffnesses. For these boundary
conditions the fundamental frequencies are lower than for the free-free conditions. In
addition, due to the changed geometry the bending and extensional vibration can no longer

be easily decoupled.

The fundamental bending frequency of the QuickPack by itself under free-free conditions
was calculated and experimentally verified to be not lower than 850 Hz. The lowest exten-
sional frequency of the QuickPack by itself was measured at approximately 30 kHz. The
low frequency modes of the ASM mounted on the beam were unobservable through the
impedance analyzer and could not be measured. The FEA model showed high degree of
coupling between bending of the beam and bending of the actuator / strain sensor package

starting with the second bending mode of the beam at approximately 280 Hz.

Based on this limited information it can be concluded that the quasi-static range of the
present design of the ASM does not extend high enough to be ignored when used for con-
trol. Therefore care must be taken to minimize the degree of interaction between the struc-
ture and the module or the module dynamics must taken into consideration in the control

design.
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Summary

The ASM design proposed at the beginning of the chapter uses a standard component for
actuator and strain sensor and focuses attention on an novel force sensor which uses piezo-
electric shear effect to measure shear force. Trial force sensors were built and a proof-of-

concept experiment was conducted.



Chapter 4

EXPERIMENTAL RESULTS

This chapter presents experimental results obtained for the test article whose design and
manufacturing details were described in Chapter 3. The primary objective of the experi-
ments described in this chapter is to experimentally verify the feasibility of controlling the
pole-zero structure of the plant transfer function by mixing the outputs of the two available
sensors. Experimental results are correlated to the predictions of simple models consid-

ered in Chapter 2.

The chapter begins by describing the experimental setup and procedure. First, the experi-
ments conducted to gather the information necessary for finalizing the test article design
are described. The main part of the chapter covers the experimental transfer functions of
the two sensors and the experimental mixed transfer functions. Discussion of the results

and conclusions are presented in the last section.

4.1 Hardware

This section describes the laboratory equipment and procedure used to record the experi-

mental transfer functions.

A block diagram of the data acquisition system is shown in Figure 4.1. The setup was used

to record both the individual sensor transfer functions and the experimentally mixed trans-

121
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fer functions. A Siglab Model 20-42 4 channel Fourier analyzer was used as the main mea-

surement tool. The analyzer's bandwidth is 20 kHz.

Strain sensor
output Ys
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input system
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Figure 4.1 Block diagram of the data acquisition system.

The low-current driving signal generated by the output channel of the Fourier analyzer
was amplified by a Crown D-150A Series Il amplifier with maximum power of 750 W.
Typically, an amplification factor of approximately 5 was used, setting the driving signal
applied to the ASM in the region between 2.5V at high frequencies and 7.5V at low. The

driving signal was applied to the actuator ply of the QuickPack which typically was the

top ply.

The output from the sensor ply of the QuickPack acting as a strain sensor was fed directly
into one of the input channels of the Fourier analyzer. The bottom ply was typically used
as a sensor. The output of the force sensor was passed through an Endevco model 2721
charge amplifier. The resulting voltage signal was amplified in an analog circuit represent-
ing the output matching gaixy ~ described in Section 2.1. The phase loss associated with

the analog circuit was measured to be approximately 5 degrees at 5 kHz.
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A photograph of the beam mounted in a clamp is shown in Figure 4.2. The accelerometer

Figure 4.2 Test article in a clamp mounted on an optical bench.

seen in the picture was originally used to verify the finite element and Rayleigh-Ritz mod-

els, but was subsequently removed from the beam.

A charge amplifier was used to condition the output of the shear sensor but not the output
of the strain sensor because of the difference in equivalent capacitances of the two active
elements. The corner frequency for R circuit associated with a piezoelectric wafer
connected to a high-impedance measuring device such as a Fourier analyzer is inversely
proportional to the capacitance of the piezoelecg € ﬁlf: ). The measured capaci-
tance of the QuickPack ply was found to be three orders of magnitude higher than that of a

typical shear sensor (see hardware description in Chapter 3). Therefore the corner fre-
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quency of the high-pass filter for the shear sensor is significantly higher and is more likely

to be in the bandwidth of interest.

Frequency (Hz)

Figure 4.3 The output of the shear sensor # 2 passed through a charge amplifier (solid)
and measured directly by the data acquisition system (dashed).

The effect of using a charge amplifier is illustrated in Figure 4.3. The high-pass filtering
with a corner frequency of approximately 600 Hz is clearly visible in both magnitude and
phase plots for the signal measured directly by the network analyzer. The filtering effects
are not present in the output of the charge amplifier. Otherwise the pole-zero structure

remains unchanged.

In the experiments in which the mixed transfer function was measured, the signal from the
sensor ply of the QuickPack and the amplified shear sensor signal were combined in an
analog circuit which allowed to vary the mixing ggin  from -10 to +10. The amplifying,
summing, and inverting analog circuits were implemented using common operational

amplifiers.



Transfer Functions 125

Note that due to the limitation on the input voltage allowed by the Fourier analyzer, the
transfer function input was measured directly from the signal generator therefore making
the driving signal amplifier part of the plant. To estimate the true magnitude of the transfer
function from the ASM input to the appropriate output, the magnitude of the experimental
transfer function must be divided by the amplifier gain which, although was not held con-

stant for all experiments, remained in the region between 5 and 6.

4.2 Transfer Functions

The experiments performed on the test article can be roughly divided into three groups: (i)
exploratory measurements with the goal of finalizing design parameters, (ii) individual
strain and force sensor transfer functions, and (iii) experimentally mixed transfer func-

tions. These results are presented and discussed in turn.

Phase 1: Finalizing the Design

Recall that two shear sensors were designed into the ASM even though only one of them
was needed to produce the mixed transfer function. Both were made functional so that the
differences due to the sensor location and manufacturing variations could be observed.
The results of the finite-element model showed that the transfer functions to the outputs of
the two sensors would be substantially different, however the final decision on which sen-

sor to use for output mixing was based on experimental results.

QuickPack
'_
| 1 1 1
Shear #1 Shear #2 | (
Beam B B B Beam Y
(a) (b)

Figure 4.4 Two candidate electrode grounding schemes: (a) both inside electrodes are
grounded; (b) both outside electrodes are grounded.
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Another design variable which was briefly mentioned in the Chapter 3 is the grounding of
the shear sensor electrodes. In general, consistent and thorough grounding proved abso-
lutely critical for measuring meaningful and consistent results. Two possible grounding
schemes are illustrated in Figure 4.4. In order to simplify the decision, only symmetric
grounding schemes were considered, i.e. both inside or both outside electrodes were

grounded at the same time.

Figure 4.5 and Figure 4.6 show four candidate force transfer functions resulting from the
choice of two shear sensors and two grounding schemes. A fairly large variation in shape

and relative magnitude of the transfer functions is observed.

Bode Plot

Frequency (Hz)

Figure 4.5 Candidate force transfer functions from shear sensors #1 (solid) and
#2 (dashed) witinsideelectrodes grounded.

In choosing the suitable sensor and grounding scheme combination two criteria were
applied: (i) the frequency at which the alternating pole-zero pattern breaks down and (ii)
mode observability in the bandwidth of interest, i.e. the amount of pole-zero separation.

Based on these criteria, the combination of shear sensor # 2 (located farther away from the
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root of the beam) and the inside electrode grounding scheme were selected. For this trans-
fer function the onset of non-collocation occurs at approximately 6 kHz and modal
observability is high, particularly for the mode just above 200 Hz which is nearly unob-

servable when viewed through two out of four candidate transfer functions.
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Figure 4.6 Candidate force transfer functions from shear sensors #1 (solid) and #2
(dashed) withoutsideelectrodes grounded.

To verify that the signal from the shear load cells is primarily proportiorsddarstrain,

the transfer functions to the shear sensor #2 and the corresponding dummy sensor are
compared in Figure 4.7. The dummy sensor transfer function does indeed have a different
pole-zero structure and has the appearance of a strain transfer function with its characteris-
tic pole-zero-pole structure. Its magnitude is on average at least 10 dB lower than the shear

sensor transfer function.

Another design matrix was explored regarding the task assignment and the grounding of
the QuickPack plies. The differences between the transfer functions were not as drastic as

those for the shear sensors and the details are not presented here. In the final design the top
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Figure 4.7 Comparison of transfer functions to the shear sensor #2 (solid) and the corre-

sponding dummy sensor (dashed).
ply of the QuickPack acts as the actuator and the bottom ply acts as the strain sensor. With
this layout the pole-zero separation in the strain sensor transfer function is wider. A possi-
ble physical explanation for this observation is that by placing the sensor between the
actuator and the structure more structural information is extracted thus leading to better
modal observability and wider pole-zero spacing. In both plies the bottom electrodes were
grounded, on the assumption that by grounding the electrode located immediately above
the shear sensor the electrical cross talk between the sensors would be minimized. The

diagram of the final ASM configuration is shown in Figure 4.8.

Phase 2: Strain and Force Sensor Transfer Functions

With the sensor configuration finalized, the two individual sensor transfer functions were

recorded. In order to keep the main mixing coefficient small, the magnitudes of the two

transfer functions are roughly equalized by a constant gain . In the models from
_ Cc

Chapter 2 this gain was setg = Xy = 1 E ac_s (2.20). However, as was pointed out in
f

Chapter 3, accurate values for ASM parameters are difficult to obtain due to uncertainties
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top ply - actuator strain sensor

ASM input voltage ;output

_|_> /_ bottom ply - strain senso
=

T

_>
force sensor
sensor2  output

Figure 4.8 Final design of the ASM ply assignments and grounding

scheme.
in geometry and material properties. An alternative approach is to manually equalize force
and strain sensor transfer functions at an arbitrary frequency. In the current implementa-
tion a gain ofx, = 102 was required to make the magnitude of transfer functions equal at
the frequency of 100 Hz.

Gain dB

Phase (deg)

-400 1 I 2 I 3 4
10 10 10 10

Frequency (Hz)

Figure 4.9 Experimental strain (solid) and force (dash) sensor transfer functions
adjusted to be equal at 100 Hz.
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The Bode plot of the strain sensor transfer function anddhestedforce sensor transfer

function is shown in Figure 4.9. Note that both transfer functions lose phase at around
5 kHz, indicating loss of collocation. However the drop in the magnitude of the strain sen-
sor transfer function is much lower which leads to a non-minimum phase (NMP) zero in
the identified system. Note also a large peak on the magnitude plot at approximately
6 kHz. It corresponds to the first cord-wise bending mode of the beam. Similar results

were reported in the past [McCain, 1995; Yung, 1996].

A system identification procedure was performed on the strain and force sensor transfer
functions in order to gain insight into the pole-zero structure of the system and to allow to
create zero trajectory and zero locus plots. The identified and experimental transfer func-
tions are compared in Figure 4.10 and Figure 4.11. The system was identified as a single-
input dual-output linear time-invariant system using Integrated Frequency domain Observ-
ability Range Space Extraction and Least Square parameter estimation algorithm (IFOR-

SELS) [Jacques, 1996]. The order of the system was chosen to be 34 states.

Gain dB

Phase (deg)
j
J

-400 1 : 2
10 10

Frequency (Hz)

Figure 4.10 Experimental (solid) and identified (dashetfpin sensor transfer function.
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Note that in the strain sensor output channel, the identified system contains a nearly-sym-
metric pair of lightly-damped minimum-phase (MP) and non-minimum phase (NMP)
zeroes around 5 kHz. The reason for the NMP complex zero in the strain sensor transfer
function is unknown. The results were verified by zooming in on the mode in question and
performing high-resolution high-gain sine sweep measurements36die drop in phase

was consistently observed.

GaindB

Phase (deg)

-100

-200

Frequency (Hz)

Figure 4.11 Experimental (solid) and identified (dashé&afre sensor transfer function.

The two outputs of the identified state-space model were mixed in software using a range
of mixing coefficients, zeroes of the mixed transfer function were calculated and the
resulting zero trajectory plot is shown in Figure 4.12. The original identified model with
34 states had two modes between modes 5 and 6 (see right edge of Figure 4.12) with low
observability and controllability. They were nearly unaffected by output mixing and
appeared as horizontal lines, similar to mode 4 in the model of the ASM acting as a
moment actuator (see Figure 2.23). These two modes were removed from the model to

clarify the picture.
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Above the sixth mode the zero branches clearly do not follow the pattern set by the simple
models from Chapter 2. Another feature of zero trajectory plot not previously encountered

is the MP real-valued branch curving away fromyge  asymptote.

Recall that an earlier attempt to estimate the relative force sensor stiffness failed as was
described in Chapter 3. Another opportunity to obtain an estimate comes from examining
the zero trajectory plots. Knowing the expected general appearance of the plot the special
values of the mixing coefficient can be picked off. The mixing géin lies on the inter-
cept of the lowest zero branch in the negative range of mixing coefficiengsiand is the
easiest to identify on the plot of real zeroes as the asymptote for the two real-valued
branches. The superscript  standsefqrerimental The value of/g is found at the inter-
section of the zero branches and the pole frequencies but the shallow slope of the zero tra-
jectories makes the crossover point very sensitive to errors in data acquisition and system
identification. Out of the three data points the one corresponding to pole-zero cancellation

is most suspected of being incorrect.

As was pointed out in Chapter 3, the arrangement of the practical implementation of the
ASM differs from the static model considered in Chapter 2 in that the actuator-sensor pack
IS mounted ortwo compliances while the in static model only one of them had finite stiff-
ness. The modified expressions for the special values of the mixing coefficient were given
in (3.7). The three equations for the measured mixing coefficjgntys , yeand  can be
separated into the known parameters on the right and the two unknown parfdRgters

andy. on the left.

(1+a)X,Y¢

BoXc
Xc = —XyYs 4.1)
k
k_aBoXc+Xc = —XyVE
str

Note that in the last equation, the expression for the ASM equivalent stiffness was substi-

tuted into (3.7) to avoid iterative solution.
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Figure 4.12 Zero trajectories of the model based on the identified strain and force sensor trans-
fer functions.
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The solution can be found as a least squares approximation. For the experimental special
valuesy(e: =0.2 ,yg = -0.6, and/fi = —-1.5 obtained from Figure 4.12 and the known
parametersxy = 1.0 x. = 102 , the force sensor relative stiffness was estimated to be

B =1.33. The sensor ratio according to this estimate.is 87.6

X 10

Imaginary

05

0_‘....4.......4...4.--....4....4.. DY

-800 -700 -600 -500 -400

Real

Figure 4.13 Zero locus of the low-frequency modes for the model based on the identified strain and
force sensor transfer functions; the modes with low observability/controllability were eliminated.

To estimate the quality of the least squares fit the special values of the mixing coefficient
were recalculated using the estimatesfor nd . The returned approximated values are
yés = 0.28, y;S = -0.86, andytS = —1.24 . The fit is not particularly good. Specifi-

cally, the static model had difficulty fitting a low valuey%‘
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For a look from a different perspective, the detail of the zero locus focusing on the first six
modes is shown in Figure 4.13. The low-observability modes were eliminated from the
model, in order to clarify the picture. The overall shape of the zero locus is not dissimilar
to that encountered in the beam models in Chapter 2. The big difference, however, is that
the zeroes travel into the right-hand side of the s-plane. Such behavior was not observed in

the simple models.

At higher frequencies, the branches of the zero locus are less understandable. The full plot
is shown in Figure 4.14. Two branches sweeping through high damping values on the left-
and right-hand side of the s-plane are clearly related to the pair of lightly-damped zeroes
present in the identified strain sensor transfer function. Another possible factor in the
change of behavior for higher modes is the finite order of the identified model itself (11

modes not counting the nearly unobservable ones).

Phase 3: Experimentally Mixed Transfer Functions

Because unexpected complex NMP zeroes were encountered in the mixed transfer func-
tions of the model based on the sensor transfer functions, it was decided to mix the two
sensor signals in an analog circuit and record the resulting experimental mixed transfer
functions. Twelve mixed transfer functions were measured for a set of mixing coefficient

ranging from -2 to +2.

System identification procedure was performed on all transfer functions at once, again
using IFORSELS method. The resulting system has one input and twelve outputs, one for
each experimental transfer function.The modes with low observability and controllability
were removed from the model. Because of the number of transfer functions involved, the
fit was not as close as for the original sensor data. Most transfer functions were identified
with acceptable quality however, with one notable exception of a transfer function with
y = 0.6 which was clearly MP in the experiment but became NMP in the identified

model.
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Figure 4.14 Full view of the zero locus based on the identification of the sensor transfer functions;

also shown zeroes of the strain sensor transfer function: minimum phase (circles) and non-minimum

phase (triangles); the non-minimum phase branch is visible on the right.
Figure 4.15 shows the zero trajectory plot of zeroes from the model based on the two iden-
tified sensor transfer function with the zeroes of individual experimentally mixed transfer
functions over-plotted as large asterisks. The correlation between zeroes resulting from

two models is acceptable.

Similarly, a combination plot showing the zero locus resulting from the two models is
shown in Figure 4.16. The match between the two models is not as good when the zero
motion is plotted in the s-plane. Three types of discrepancies between the model based on

two sensor transfer functions and the system of identified mixed transfer functions can be
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Figure 4.15 Zero trajectory plot based on the identification of two sensor transfer functions
(small dots) and identification of individual experimentally mixed transfer functions (asterisks).
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noticed: (i) complex NMP zeroes predicted by the first one but did not occur in the second
one (see zeroes between modes 1 and 2); (ii) complex NMP zeroes observed in both (see
zeroes between modes 3 and 4); (iii) complex NMP zero was not predicted by the first one,
it did not occur in experiment, but appeared in the second identified system (a single zero

between modes 4 and 5).

x 10"

8 | s
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Figure 4.16 Zero locus based on the identification of two sensor transfer functions (small dots) and
identification of individual experimentally mixed transfer functions (asterisks), radial lines of con-
stant damping are plotted for values of 0.5%, 1%, and 5%.

By comparing Figure 4.15 and Figure 4.16, it can be concluded that the method of identi-

fying the two sensor transfer functions and mixing them in software was able to capture
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the frequency of the zeroes of the mixed transfer function (seen in Figure 4.15) much more

successfully then their damping (in Figure 4.16).

4.3 Discussion of Results

The ability to adjust the pole-zero spacing in the structural transfer function was experi-

mentally demonstrated for the case of distributed actuation on a beam.

In the low frequencies the appearance of the experimental zero trajectory plot was similar
to the shape expected based on the static ASM model. The stiffness of the force sensor and
the ratio of the sensor coefficients was estimated from the experimental zero trajectory
plot by fitting the experimental special values of the mixing coefficient to the static model

of a four-element actuator-sensor module. Although the values obtained are reasonable,
the fit of the model to data was not particularly good. Specifically, a low value for the mix-

ing coefficient corresponding to pole-zero cancellatign () made the fit difficult.

Real-valued NMP zeroes appeared in the identified models in the negative range of mixing
coefficients. The appearance of real-valued zero branches was similar to those observed in
simple models. The presence of real-valued NMP zeroes in the model based on experi-
mental data may be interpreted as confirmation of their existence. However, the identified
model is still a finite-dimensional representation of a continuous system and these results
do not answer the question whether the real zeroes, both MP and NMP, are artifacts of

modal truncation or not.

Complex NMP zeroes which were not predicted by beam models were also observed. One
branch of NMP zeroes was apparently related to the NMP zero present in the strain sensor
transfer function. In addition, the branch which otherwise looked like the one predicted by
models crossed into the right hand-side of the s-plane. For three values of the mixing coef-
ficient seen between modes #3 and #8@& phase loss was observed in the experimental
transfer function and the identified model placed a NMP zero at that frequency. Taking

additional data points by recording additional experimentally-mixed transfer functions
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confirmed the original results. The inability to predict complex NMP zeroes is considered

to be the biggest deficiency of the models in Chapter 2.



Chapter 5

CONCLUSIONS

Summary

This work focused on a method of shaping the open loop structural transfer function from

a distributed sensor to a distributed actuator. The outputs of two sensors of different
impedances were combined electronically with the goal of increasing pole-zero spacing
for improved performance in low-authority structural control loops. The concept of a
three-element actuator-sensor module (ASM) capable of adjusting the equivalent actuator
and sensor impedances was presented. The module consists of an actuator, and two sen-
sors for measuring force and strain. The output of the module is constructed by mixing the
force and strain signals using a mixing coefficient which can be used to tune the apparent
sensor impedance for maximum performance. General shape of zero trajectories as a func-
tion of the mixing coefficient was derived. Mass-spring and beam models were used in

examples. Both approximate and exact models of beams were employed.

A practical implementation of the module was proposed. The design uses a piezoelectric
actuator with a collocated piezoelectric strain sensor and a novel piezoelectric shear load
cell. A test article was built, mounted on a cantilever aluminum beam, and tested. Experi-
ments verified the ability to increase pole-zero separation of a structural transfer function
by mixing the outputs of displacement and force sensors. Experimentally obtained zero

trajectories were compared to the results of simple models.

141
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The overall shape of experimental zero trajectories followed the pattern predicted by con-
sidering a static model of the ASM and models of simple mass-spring and beam structures.
Specifically, two branches of real-valued minimum phase (MP) and non-minimum phase
(NMP) zeroes were encountered for a certain range of negative mixing coefficients. In
addition, the experimental results indicated presence of complex NMP zeroes for negative

values of the mixing coefficient which were not found in the models of simple structures.

Conclusions

1. Characteristic features of zero trajectories resulting from output mixing were
identified by considering a static model of the ASM and models of simple
structures. The predicted overall shape and the main features of zero trajec-
tories were confirmed by the experimental mixed transfer functions. How-
ever, an attempt to estimate the equivalent static stiffness parameters of the
practical ASM design by fitting the measured special values of the mixing
coefficient to the ASM static model was not particularly successful. This
result suggests that the practical design is significantly different from the

static model even at low frequencies.

2. A piezoelectric shear load cell suitable for measuring the force acting
through a distributed actuator on a beam structure was built and incorporated
into an actuator-sensor module. The method used for applying electrodes to
the sides of a thin piezoelectric wafer proved to be simple and produced
repeatable results. It appears possible to apply electrodes using the same
method to piezoelectric wafers thinner than 0.010 in. The pole-zero structure
of transfer functions to the shear sensors was found different from that of the
dummy sensors placed at the same location on the beam but not in the load

path from the actuator to the structure.

3. The feasibility of controlling pole-zero spacing in a piezoelectric-to-piezo-

electric transfer function by means of adjusting the effective sensor imped-
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ance of the actuation-sensor module using output mixing was experimentally

demonstrated.

. Based on the work done in the past, NMP behavior of the mixed output was
expected for certain negative values of the mixing coefficient [Fleming,
1990; Spangler, 1994]. Physical interpretation of the NMP behavior was
given in Chapter 2. Nearly symmetric real-valued MP and NMP zeroes were
observed in the mass-spring model and the finite dimensional model of the
beam. The infinite-dimensional model of the beam had only imaginary
zeroes because the procedure for finding the zeroes of the exact transfer
function used in this work could not return real zeroes. Despite the apparent
difference in the pole-zero structure between the exact and the approximate
solutions, the transfer functions obtained using the two methods were nearly
identical in both magnitude and phase. The finite-dimensional representation
of the experimental transfer functions also included real-valued zeroes which

formed a familiar pattern of nearly-symmetric MP and NMP pairs.

The conclusion which can be made based on the available information is that
the real-valued NMP zeroes represent true NMP behavior caused by measur-
ing the difference between two dynamic signals and are not artifacts of
model discretization or truncation. It is believed that an appropriate solution

procedure would identify real-valued zeroes in the wave solution as well.

. In a clear departure from the results of the models of simple structures in
Chapter 2, the finite-dimensional representation of the experimentally mixed
transfer functions included complex lightly-damped NMP zeroes. One of the
NMP zero branches is believed to be caused by the presence of a NMP zero
in the strain sensor output. However, an additional mechanism which drives
the zero trajectories into the right-hand side of the s-plane appears to be at
work and it is not captured in the models of Chapter 2. Complex NMP

zeroes remain unexplained and warrant further investigation.
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Recommendations for Future Work

1. Further research is needed to understand what parameter not included in the

present models causes the zeroes of the experimental mixed transfer function
to come close to and even cross the imaginary axis leading to the appearance

of complex lightly-damped NMP zeroes.

. The effects of the presence of real-valued NMP zeroes in the open loop

transfer function on the effectiveness of a local controller must be investi-

gated.

. Performance increases expected due to improved pole-zero spacing should

be verified by closing a feedback loop around the mixed transfer function.
Any one of the commonly used classical or optimal methods can be used
[Yung, 1996].

. It is expected that some actuator efficiency is sacrificed by lifting the actua-

tor off the beam surface and mounting it two risers of finite stiffness. If the
present actuator-sensor module design were to be used in a practical applica-
tion the effect of design parameters on the efficiency of the load transfer

from the actuator to the structure must be investigated.

Potential Improvements to the Specific ASM Design

1. From the actuation efficiency point of view it is better to use a softer strain

sensor. The strain sensor can be made thinner than the actuator. It can also be
made from a softer piezoelectric material such as polyvinylidene fluoride
(PVDF).

. It is also desirable to use a stiffer force sensor. One possible approach is to

use a thinner shear sensor. The area available for electrode application will
be reduced and the expected voltage output will be lower, but these changes

do not appear to prevent the use of a thinner shear sensor, e.g. 0.005 in thick.
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3. The design parameter whose effects on the force sensor output was not prop-
erly explored is the dimension of the shear sensor in the direction along the
length of the beam. A more detailed finite element model could be con-
structed to understand the reason for the dependence of the transfer functions

on the grounding scheme of the shear sensors mentioned in Chapter 4.

4. To minimize the possibility of damage to the active elements, the gap
between the structure and the actuator-sensor package spanning the two ris-
ers can be filled with some material to provide support for the fragile piezo-

electric wafers.
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