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Abstract

This thesis addresses a problem at the nexus of engineering, computer science, and
economics: in large scale, decentralized systems, how can we efficiently allocate scarce
resources among competing interests? On one hand, constraints are imposed on the
system designer by the inherent architecture of any large scale system. These con-
straints are counterbalanced by the need to design mechanisms that efficiently allo-
cate resources, even when the system is being used by participants who have only
their own best interests at stake.

We consider the design of resource allocation mechanisms in such environments.
The analytic approach we pursue is characterized by four salient features. First, the
monetary value of resource allocation is measured by the aggregate surplus (aggre-
gate utility less aggregate cost) achieved at a given allocation. An efficient allocation is
one which maximizes aggregate surplus. Second, we focus on market-clearing mech-
anisms, which set a single price to ensure demand equals supply. Third, all the mech-
anisms we consider ensure a fully efficient allocation if market participants do not
anticipate the effects of their actions on market-clearing prices. Finally, when market
participants are price anticipating, full efficiency is generally not achieved, and we
quantify the efficiency loss.

We make two main contributions. First, for three economic environments, we con-
sider specific market mechanisms and exactly quantify the efficiency loss in these envi-
ronments when market participants are price anticipating. The first two environments
address settings where multiple consumers compete to acquire a share of a resource
in either fixed or elastic supply; these models are motivated by resource allocation
in communication networks. The third environment addresses competition between
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multiple producers to satisfy an inelastic demand; this model is motivated by market
design in power systems.

Our second contribution is to establish that, under reasonable conditions, the mech-
anisms we consider minimize efficiency loss when market participants anticipate the
effects of their actions on market-clearing prices. Formally, we show that in a class of
market-clearing mechanisms satisfying certain simple mathematical assumptions and
for which there exist fully efficient competitive equilibria, the mechanisms we consider
uniquely minimize efficiency loss when market participants are price anticipating.

Thesis Supervisor: John N. Tsitsiklis

Title: Professor of Electrical Engineering
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Preliminaries

Notation

We use R to denote the real numbers, and R
+ to denote [0,∞). Italics will be used to

denote scalars, e.g., x. Boldface will be used to denote vectors, e.g., x = (x1, . . . , xn).

When x is a scalar, the notation (x)+ will be used to denote the positive part of x;

i.e., (x)+ = x if x ≥ 0, and (x)+ = 0 if x ≤ 0. If x1, . . . ,xn ∈ R
m, and x =

(x1, . . . ,xn), we will use x−i to denote the components of x other than xi; that is,

x−i = (x1, . . . ,xi−1,xi+1, . . . ,xn). Throughout the thesis, if f : (Rm)n → R is a real-

valued function of n vectors x1, . . . ,xn ∈ R
m, we let f(xi;x−i) denote the function f

as a function of xi while keeping the components x−i fixed.

Convex analytic methods play a key role in this thesis, and we collect some re-

quired notions here [14, 103]. An extended real-valued function is a function f : R
n →

[−∞,∞]; such a function is called proper if f(x) > −∞ for all x, and f(x) < ∞ for at

least one x. We say that a vector γ ∈ R
n is a subgradient of an extended real-valued

function f at x if for all x ∈ R
n, we have:

f(x) ≥ f(x) + γ⊤(x − x).

The subdifferential of f at x, denoted ∂f(x), is the set of all subgradients of f at x.

We say that f is subdifferentiable at x if ∂f(x) 6= ∅. We will typically be interested in

subgradients of a convex function f , and supergradients of a concave function f . A

vector γ is a supergradient of f if −γ is a subgradient of −f ; thus we denote the

superdifferential of f at x by −∂[−f(x)].

For extended real-valued functions f : R → [−∞,∞], we will require some addi-

tional concepts. We denote the right directional derivative of f at x by ∂+f(x)/∂x and

left directional derivative of f at x by ∂−f(x)/∂x (if these exist). If f is convex, then

∂f(x) = [∂−f(x)/∂x, ∂+f(x)/∂x], provided the directional derivatives exist.

7
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Prerequisites

The main prerequisites for this thesis are a background in real analysis at the level of

Rudin [110], as well as some facility with convex optimization and elementary convex

analysis. Sources for background on convex optimization include the books by Whittle

[145], Bertsekas [13], and Boyd and Vandenberghe [17], while background on convex

analysis may be found in the texts by Bertsekas et al. [14] and Rockafellar [103].

Microeconomics (particularly market theory) and game theory also play a key role

in this thesis, and some basic knowledge of the two fields is helpful. The text by Varian

provides a concise introduction to microeconomic theory [137], while the textbook by

Mas-Colell et al. provides deeper coverage [82]. As to game theory, in this thesis we

will only use elementary concepts from game theory, particularly Nash equilibrium;

however, some understanding of the modeling issues is helpful. For this purpose, see

the books by Fudenberg and Tirole [43], Myerson [89], and Osborne and Rubinstein

[96] (where the last reference is a concise introduction for the uninitiated reader).

Bibliographic Note

Portions of the content of Chapter 2 appear in the paper by Johari and Tsitsiklis [60];

exceptions are Sections 2.1.3, 2.3, 2.4.3, and 2.5.1. Sections 3.1, 3.2, 3.3, and 3.4 will

appear in the paper by Johari et al. [58].
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C H A P T E R 1

Introduction

But man has almost constant occasion for the help of his brethren, and it is in
vain for him to expect it from their benevolence only. He will be more likely to
prevail if he can interest their self-love in his favour, and show them that it is for
their own advantage to do for him what he requires of them. . . . It is not from the
benevolence of the butcher, the brewer, or the baker that we expect our dinner, but
from their regard to their own interest.

—Adam Smith, The Wealth of Nations, Book I, Chapter II [125]

T his thesis addresses a problem at the nexus of engineering, computer science, and

economics: in large scale, decentralized systems, how can we efficiently allocate

scarce resources among competing interests? On one hand, constraints are imposed

on the system designer by the inherent architecture of any large scale system. These

constraints are counterbalanced by the need to design mechanisms that efficiently al-

locate resources, even when the system is being used by participants who have only

their own best interests at stake.

Our inspiration is drawn primarily from communication networks and power sys-

tems. Communication networks, particularly the Internet, have a distributed structure

which prohibits the implementation of sophisticated centralized mechanisms to allo-

cate network resources among end users. On the other hand, the growth of the Internet

has led to increasingly diverse traffic sharing the same network, making efficient allo-

cation of network resources difficult to ensure. Power systems are also characterized

by large scale, but by contrast, typically run a collection of markets that determine

clearing prices for electricity at nodes throughout regional networks. In this setting

demand is highly inelastic, largely because the variation in prices seen by most power

consumers is on a slow timescale. In general, the chosen market designs for large scale

power networks do not protect against the exercise of market power in the presence of

highly inelastic demand.

Our approach in this thesis is to design mechanisms which take into account ar-

chitectural features of these systems, while ensuring that efficient resource allocation

is achieved. The analytic approach we have chosen is characterized by four salient

features, described in detail in each of the next four sections. In Section 1.1, we de-
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16 CHAPTER 1. INTRODUCTION

scribe our metric of efficiency, the aggregate surplus of consumers and producers. In

Section 1.2, we restrict attention to market-clearing mechanisms which set a single price

to “clear the market” between suppliers and consumers of resources. In Section 1.3,

we note that all the mechanisms we consider achieve efficient allocations when market

participants act as price takers. Finally, in Section 1.4, we outline our measurement of

efficiency loss when market participants are price anticipating. In Section 1.5, we de-

velop a detailed example that highlights each of the points discussed in Sections 1.1 to

1.4. We briefly outline the contributions of the thesis in Section 1.6.

� 1.1 Consumers, Producers, and Aggregate Surplus

In this section we will describe the general resource allocation setting we will consider,

and our definition of efficiency. All the resource allocation problems we describe con-

sist of two types of market participants: consumers and producers. Consumers demand

an allocation of a resource; and producers supply that resource. We identify each con-

sumer r with a utility function Ur(dr), which defines the monetary value to consumer

r of receiving dr units of the scarce resource, where dr ≥ 0. Similarly, we identify each

producer n with a cost function Cn(sn), which defines the monetary cost to producer n

of supplying sn units of the scarce resource, where sn ≥ 0. We will formalize detailed

assumptions on these constructs throughout the thesis; but for the moment, we sim-

ply note that we will always assume both utility and cost are nondecreasing functions.

The implication is that consumers value larger amounts of resources, while suppliers

incur higher costs for producing larger amounts of resources.

A key assumption we have made is that both utility and cost are measured in mon-

etary units. This assumption implies that there are actually two types of goods in the

resource allocation settings we consider: the first is the scarce resource under consid-

eration (data rate, electric power, etc.), and the second is money. Suppose then that a

consumer with utility function U receives a resource allocation d, but makes a payment

w; then the net payoff to this consumer is:

U(d) − w. (1.1)

On the other hand, suppose that a producer with cost function C produces a supply s,

but receives revenue w; then the net payoff to this producer is:

w − C(s). (1.2)

Thus payoffs give the net monetary benefit to consumers and producers, taking into

account both the money paid or received, and the resource allocation received or pro-

duced. The separable form of the payoffs we see here is a direct consequence of the

fact that utility and cost are measured in monetary units. Environments where payoffs
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have this separable form are known as quasilinear environments [46, 82].

We are searching for mechanisms that achieve efficient allocation of resources. We

adopt as our notion of efficiency the well known concept of Pareto efficiency: an al-

location is Pareto efficient if the benefit to one market participant cannot be strictly

increased without simultaneously strictly decreasing the benefit to another player.

Throughout this thesis, we always use the term efficient allocation to refer to a Pareto

efficient allocation.

We now characterize the implications of Pareto efficiency on our resource alloca-

tion model. For simplicity, we start by considering a model consisting of only two

consumers with utility functions U1 and U2, and a single resource of inelastic supply

S; that is, the maximum available supply is fixed at S units. We can interpret inelas-

tic supply in terms of a producer with a discontinuous cost function: if the supply of

the resource available is exactly S units, then it is as if a single producer supplies the

resource, with cost function C(s) given by:

C(s) =

{

0, if s ≤ S;

∞, if s > S.

Thus the producer incurs zero cost if at most S units must be supplied, and infinite cost

otherwise. In particular, in searching for a Pareto efficient allocation, the assumption of

inelastic supply implies a constraint that the total allocation made to the two consumers

cannot exceed the available supply S.

The key assumption we make is that the two consumers may freely exchange cur-

rency. We claim that under this circumstance, any Pareto efficient allocation d =

(d1, d2) to the two consumers must be an optimal solution to the following optimiza-

tion problem:

maximize U1(d1) + U2(d2) (1.3)

subject to d1 + d2 ≤ S; (1.4)

d1, d2 ≥ 0. (1.5)

The intuition is clear: if a Pareto efficient allocation is not an optimal solution to (1.3)-

(1.5), then there must exist a solution to (1.3)-(1.5) and a vector of monetary transfers

between the consumers that collectively leave both consumers better off than the orig-

inal allocation. We now demonstrate this fact formally. Suppose that (d1, d2) is Pareto

efficient, but that for another feasible solution (d∗1, d
∗
2) to (1.3)-(1.5), we have:

U1(d1) + U2(d2) < U1(d
∗
1) + U2(d

∗
2).

We can assume without loss of generality that U1(d1) < U1(d
∗
1). In this case, suppose

the consumers shift to d∗ from d, but that in addition player 1 pays player 2 an amount
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w = (U2(d2) − U2(d
∗
2))

+. Then the payoff to player 1 is now:

U1(d
∗
1) − w = U1(d

∗
1) − (U2(d2) − U2(d

∗
2))

+ > U1(d1),

while the payoff to player 2 becomes:

U2(d
∗
2) + w = U2(d

∗
2) + (U2(d2) − U2(d

∗
2))

+ ≥ U2(d2).

Thus player 1 is strictly better off than before, and player 2 is no worse off than before;

so d could not have been Pareto efficient.

The preceding simple story is in fact quite general: as long as we allow arbitrary

monetary transfers between market participants, any Pareto efficient allocation must

maximize aggregate utility less aggregate cost. This quantity is known as the aggre-

gate surplus, or Marshallian aggregate surplus (after the economist Alfred Marshall,

though an early precursor was considered by Dupuit; see [35, 81, 82, 134]). Aggregate

surplus denotes the net monetary benefit to the economy under a chosen allocation.

In this work we will consider three instances of the aggregate surplus maximization

problem, which we refer to as the SYSTEM problem throughout the thesis. In Chapter

2, we consider a model where multiple consumers bid for a single resource in inelastic

supply; in this case the SYSTEM problem reduces to maximization of aggregate utility

subject to the supply constraint. In Chapter 3, we consider a model where multiple

consumers bid for a single resource in elastic supply, and in this case the SYSTEM

problem is written directly as maximization of aggregate utility less aggregate cost.

Finally, in Chapter 4, we consider a model where multiple producers bid to satisfy an

inelastic demand. In this case it is as if there exists a single consumer with utility −∞ if

less than the fixed demand is produced, and utility zero otherwise. Thus the SYSTEM

problem reduces to minimization of aggregate cost subject to the demand constraint.

We note that in an engineering context, “efficient” allocation of resources is often

simply interpreted as a requirement that all available resources be allocated, without

any specification of the distribution of the allocation over players. In the example il-

lustrated above, an efficient allocation would then be any allocation where the capacity

constraint (1.4) holds with equality. Indeed, this is precisely Pareto efficiency if con-

sumers have utilities that are strictly increasing in their allocation, and if no monetary

transfers are available to the consumers.

However, as we have seen, measuring cost and utility in monetary units reduces

welfare measurement to a simple and convenient quantity, the aggregate surplus.

When we introduce money into the system, a Pareto efficient allocation must not only

fully allocate available resources, but also maximize aggregate surplus. For the exam-

ple above, a Pareto efficient allocation should not only satisfy the constraint (1.4), but

also maximize the objective function (1.3). However, we note that the use of aggre-

gate utility, and aggregate surplus more generally, as a welfare metric has traditionally
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been a point of great debate in both economics and philosophy. The heart of this de-

bate can be traced to the fact that the very notion of aggregate utility presupposes the

ability to compare the utilities of different members of society, even though such a com-

parison may not be possible. One might assume that incomparability of preferences

is resolved by measuring all utilities and costs in monetary units; however, members

of society from different income classes place different values on currency itself, and

thus one cannot claim that “a dollar is a dollar is a dollar.”

The notion of maximization of aggregate utility as a desirable goal for society was

first proposed by Bentham, the father of utilitarianism [11]. Marshall advanced the

application of quasilinear payoffs to market theory, and developed the resulting notion

of maximization of aggregate surplus as a Pareto efficient allocation rule [81]. But the

quasilinear payoff model was critiqued for its presumption that comparison of utilities

of different market participants is possible; an illuminating discussion of these issues

in utility theory is provided in the pair of surveys by Stigler [128, 129]. The assumption

that utility was inherently incomparable eventually led to the famous impossibility

theorem of Arrow in social choice theory [3, 117].

For the purposes of this thesis, we only advise the reader that our focus on quasilin-

ear environments, though well motivated, is by no means canonical. The broader issue

in social choice is that market participants may not be motivated by only their mone-

tary payoff, and in addition, as a community they may not be interested in achieving

a Pareto efficient allocation. Instead, fairness concerns may be paramount, such as

ensuring that the number of consumers or producers who choose to participate in the

marketplace is as large as possible. Such questions suggest interesting departures from

the quasilinear payoff models used in this thesis. For further study, a thorough discus-

sion of preferences and utility involving elements of both philosophy and economics

may be found in the volume of Sen [118].

� 1.2 Market-Clearing Mechanisms

Having defined the maximal aggregate surplus as the benchmark we hope to attain,

we now consider the problem of defining resource allocation mechanisms which reach

that goal. Our focus in this thesis will be on market-clearing mechanisms. These mecha-

nisms choose a single price so that demand equals supply, i.e., to “clear the market.”

Why consider single price market mechanisms, as opposed to price discriminatory

solutions? First, our hope in this thesis is to advance the theory of resource allocation

mechanisms which are feasible in large scale, distributed systems. In such systems,

particularly the Internet, the fine-scale distinction of users needed to implement a so-

phisticated mechanism of price discrimination does not seem viable; for this reason,

we are led to simpler pricing schemes. A mechanism which sets a single price has the

advantage of anonymity: to determine the market-clearing price, the mechanism needs



20 CHAPTER 1. INTRODUCTION

price

quantity

p∗

AD(p) AS(p)

Figure 1-1. The market-clearing process: Each consumer r submits a demand function Dr(p) to the
market mechanism, and each producer n submits a supply function Sn(p). These define the aggregate
demand curve AD(p) =

∑

r
Dr(p), and the aggregate supply curve AS(p) =

∑

n
Sn(p). The price p∗ is

chosen so that supply equals demand, i.e., so that AD(p∗) = AS(p∗). (Here and throughout the thesis,
for market-clearing diagrams we adopt the standard convention from economics that quantity appears
on the horizontal axis and price on the vertical axis.)

no knowledge of individual consumers and producers—only the aggregate supply

and aggregate demand are required. (We will return to the discussion of scalability

of efficient resource allocation mechanisms in the context of our review of mechanism

design in the conclusion to the thesis, Chapter 6.) A second potential motivation for

single price mechanisms comes from their use in practice, particularly in electricity

markets; the “equity” of setting a single price for all market participants seems to have

appeal from a social and political standpoint, and has led to widespread use of bidding

systems which set a single price per node in an electricity grid [131].

We describe the basic operation of such a mechanism for the case of a single re-

source. Each consumer r chooses a demand function Dr(p), which describes his de-

mand for the resource as a function of the price p of that resource. Analogously, each

producer n chooses a supply function Sn(p), which describes the quantity the pro-

ducer is willing to supply as a function of the price of the resource. The mechanism

then chooses a single price p∗ so that aggregate demand equals aggregate supply:

∑

r

Dr(p
∗) =

∑

n

Sn(p∗).

Each consumer r receives a resource allocation of Dr(p
∗), while each producer n pro-

duces a quantity Sn(p∗). This process is graphically depicted in Figure 1-1.
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In this thesis, we will generally be interested in either competition between con-

sumers, or competition between producers; we leave open the analysis of models that

simultaneously allow competition among both buyers and sellers. In Chapter 2, we

consider a market-clearing mechanism where each consumer submits a demand func-

tion, and a price is chosen so that aggregate demand equals a preset inelastic supply.

In Chapter 3, we consider a similar model, but where instead a price is chosen so

that demand matches supply according to a preset elastic supply function. Finally, in

Chapter 4, we consider a market-clearing mechanism where each producer submits a

supply function, and a price is chosen so that aggregate supply equals a preset inelastic

demand.

Models have previously been developed to understand market behavior when ei-

ther suppliers submit supply functions, or consumers submit demand functions. In a

seminal paper, Klemperer and Meyer characterized equilibria in markets where sup-

pliers submit supply functions [69]. Competition among buyers who submit demand

schedules was considered by Wilson [146]. Both these models allow market partici-

pants to submit nearly arbitrary supply or demand functions.

By contrast, we will consider mechanisms where consumers and producers are re-

stricted to choose from parametrized demand or supply functions, where the parameter

is a real scalar. For example, in Chapters 2 and 3, we allow a consumer r to choose a

single scalar wr ≥ 0, and assume the resulting form of the demand function for that

consumer is D(p, wr) = wr/p. The interpretation is that wr is the total willingness-to-

pay of consumer r, since regardless of the market-clearing price p∗, the payment made

by consumer r will be p∗D(p∗, wr) = wr. (We investigate a simple example of such a

mechanism in Section 1.5.)

We have two primary motivations for considering market mechanisms where par-

ticipants submit parametrized demand or supply functions. First, in large scale decen-

tralized systems such as modern communication networks, it seems unreasonable to

expect the network to support transmission of arbitrary demand functions to widely

dispersed resources running market-clearing processes. Instead, scalable market so-

lutions for allocation of network resources must ensure the strategy space of users is

“simple”—which we interpret here as a reduction in the dimension of the space of de-

mand functions possible. (See also Kelly [63] for a similar argument regarding network

pricing.)

A second motivation for the types of market mechanisms we consider is that re-

ducing the strategy space of market participants might reduce inefficiency due to the

exercise of market power. This is a point most forcefully made in the electricity mar-

kets, where currently firms may submit arbitrary supply functions, as proposed in the

paper by Klemperer and Meyer [69]. In general, equilibria in supply functions may

be highly inefficient when firms manipulate the market; and thus we are motivated

to consider restrictions in the class of supply functions firms are allowed to submit, in
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hopes of improving the efficiency of the market mechanism. (A more detailed discus-

sion of this issue may be found in the introduction to Chapter 4.)

� 1.3 Price Taking Behavior and Competitive Equilibrium

A central feature of all the market mechanisms we consider is that when market par-

ticipants act as price takers, full efficiency can be achieved. Price takers are market par-

ticipants who do not anticipate the effect of their strategic choices (i.e., their demand

or supply function) on the eventual market-clearing price. An alternative situation is

that market participants do in fact anticipate the effects of their actions on the market-

clearing price—a situation we take up in the following section.

For simplicity, we will formalize price taking here only for a special case where

multiple consumers compete for a single resource. In this case, if a consumer r has a

utility function Ur and submits a demand function Dr(p) to the market mechanism,

the payoff to the consumer when the market-clearing price is p∗ is given by:

Ur(Dr(p
∗)) − p∗Dr(p

∗).

The first term is the monetary value, or utility, to the consumer of the allocation Dr(p
∗);

the second term is the payment made by the consumer when the price is p∗ per unit

consumed. Of course, the market-clearing price depends on the demand functions

submitted by all consumers. In particular, as consumer r varies his demand function,

the market-clearing price p∗ will vary as well. Price taking behavior assumes this re-

lationship is unknown to the consumers: all consumers take the price p∗ as fixed, and

then choose a demand function which optimizes their payoff given this fixed price p∗.

In this thesis, we will establish that for all the market mechanisms under consider-

ation, price taking behavior leads to a Pareto efficient allocation. The formal statement

of this proposition is that there exists a pair consisting of a price and a vector of strate-

gies for all market participants such that: (1) the price is the market-clearing price

given the composite strategy vector of the market participants; and (2) each of the par-

ticipants has chosen their strategy to maximize their payoff given the fixed price. Such

a pair is known as a competitive equilibrium. We will establish existence of competitive

equilibria, and then establish that at competitive equilibria the resulting allocations

maximize aggregate surplus; for the models of Chapters 2 and 3, these are results of

Kelly [62] and Kelly et al. [65], respectively. Informally, these results state that a single

price can be chosen so that individual optimization by market participants yields a

globally efficient outcome.

The fact that competitive equilibria yield Pareto efficient allocations is a central re-

sult in market theory, the first fundamental theorem of welfare economics [82]. (The second

fundamental theorem states that under sufficient assumptions, any Pareto efficient al-
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location can be achieved as a competitive equilibrium.) These fundamental theorems

are the cornerstone results of general equilibrium theory [5, 31], first developed by Walras

[142]; for this reason competitive equilibria are also referred to as Walrasian equilibria.

Marshall discussed Pareto efficiency of competitive equilibria in the special case where

utilities are separable [81, 82, 130, 137]; this line of development is often referred to

as partial equilibrium analysis, because the assumption that utility is separable may be

interpreted as a reflection of the fact that consumers spend a small fraction of their in-

come on the goods under consideration, and that the prices of all other goods are held

constant. In this case it is reasonable to assume that all members of society will value

currency identically relative to the goods under consideration (see the discussion in

Section 1.1, as well as Chapter 10 of [82]).

The first fundamental theorem provides a first justification for the attractiveness

of market mechanisms. Assuming that no market participants anticipate the effects of

the their actions, market mechanisms provide a simple and decentralized method to

ensure efficient allocation of resources. But the assumption of limited price anticipa-

tion is quite a strong one, particularly if only a few market participants compete at any

given time. In communication networks, one argument in favor of competitive equi-

libria is that the number of end users is enormous, and each user competes for only

a small fraction of overall network resources. However, if we expect that pricing of

network resources (such as transmission capacity) occurs only at high levels of aggre-

gation, then only a few service providers may be competing with each other to acquire

network resources—and in this case the exercise of market power becomes possible.

Similarly, in electricity markets only a few firms typically compete at any given node

of a regional electricity grid, calling into question the assumption that price taking

behavior and competitive equilibria will result.

� 1.4 Price Anticipating Behavior and Nash Equilibrium

Because we cannot guarantee that market participants will be price takers, we turn

our attention to the possibility that they may anticipate the effect of their actions on

market-clearing prices; in economic terminology, the market participants are said to

have market power.1 In this case, each participant views the market-clearing price as

a function of the composite strategy vector of all market participants. Thus the com-

petition between market participants who are price anticipating is a game: the payoff

of a given player is directly expressed as a function of his own strategy, as well as the

strategies of all other players.

1The term “market power” can be somewhat misleading, because some market participants may ac-
tually achieve a lower payoff when they are price anticipating instead of price taking. For this reason,
we typically use the more precise phrase “price anticipating” in most of the formal development of the
thesis.
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We will study these games through their Nash equilibria. A Nash equilibrium [90]

is a strategy vector from which no player has a unilateral incentive to deviate; that is,

keeping the strategies of other players other than i fixed, the strategy chosen by player

i maximizes his payoff. We make two observations regarding the choice of Nash equi-

librium as our solution concept. First, of course, it is a static concept: that is, it gives

no direction as to the dynamic process by which equilibrium is reached. Second, the

Nash equilibrium solution concept assumes a great deal of knowledge on the part of

the players of the game, and a key point of debate involves whether or not players

possess sufficient information to implement the Nash equilibrium. In regards to the

second point, a limited rebuttal may be offered by noting that for the market mecha-

nisms considered in this thesis, a market participant generally needs information only

on his own strategy and the price of the resource to determine whether his chosen

strategy is payoff maximizing. However, both the objections raised here are of criti-

cal importance in market modeling and game theory in general, and we will take up

further discussion on both topics in the conclusion to the thesis, Chapter 6.

While competitive equilibria are guaranteed to achieve full efficiency, Nash equi-

libria when market participants are price anticipating do not generally ensure full ef-

ficiency. However, the aggregate surplus at a Nash equilibrium still captures the net

monetary benefit to the economy at the allocation that the equilibrium achieves. In

this thesis, we will focus on the following basic question: how inefficient are the allo-

cations achieved when market participants are price anticipating, relative to Pareto efficient

allocations? Formally, this question is answered by considering the ratio of aggregate

surplus achieved at a Nash equilibrium to the maximum possible aggregate surplus.

Thus we investigate the percentage of monetary benefit lost to the economy because

market participants are able to anticipate the effects of their actions.

The fact that Nash equilibria of a game may not achieve full efficiency has been well

known in the economics literature [33]. The economist Pigou observed early on that

there may be a gap between the optimal performance of a system and that achieved

by selfish optimization [101]. Perhaps the simplest such example is the well known

game of the Prisoners’ Dilemma, where the Nash equilibrium chooses payoffs to the

two players which are strictly lower than payoffs each player would obtain at another

strategy vector [96]. This insight has been a central theme of the theory of industrial

organization as well, particularly for oligopoly models; see Tirole [134] for a survey of

these issues. In recognition of the effects of market power, heuristic measures are often

used to determine the efficiency loss in an environment where some participants may

be price anticipating. For example, the U.S. Department of Justice uses the Herfindahl

index, the sum of the squares of percentage market shares of all firms in a market,

as a measure of market concentration [135]. Informally, a Herfindahl index in excess

of 1800 is interpreted as a sign that significant market power may be present in an

industry, and by implication this situation is considered to yield high efficiency loss. (A
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formal investigation of the relationship between the Herfindahl index and efficiency is

attempted by [25], and surveyed by Shapiro [119].)

A recent surge of research, primarily driven by the computer science community,

has focused on quantifying efficiency loss for specific game environments. Most of the

results have focused on network routing, starting with the initial work of Koutsoupias

and Papadimitriou [70]. In that paper the authors introduce the notion of a “coordi-

nation ratio,” which Papadimitriou later refers to as the “price of anarchy” [99]; this

is precisely the ratio of a given performance metric at the Nash equilibrium of a game

relative to the optimal value of that performance metric. Subsequent works on routing

models include the papers by Mavronicolas and Spirakis [84]; Czumaj and Voecking

[24]; Roughgarden and Tardos [106, 107, 108, 109]; Correa, Schulz, and Stier Moses

[21, 113, 114]; and Perakis [100]. In addition to these works, other papers explore

efficiency loss in network design problems [2, 32, 37], as well as a special class of sub-

modular games including facility location games [138]. The key advance made by this

research is the quantification of the loss of efficiency at Nash equilibria in specific game

environments, and the goal of this thesis is to establish a quantitative understanding

of efficiency loss in market mechanisms.

� 1.5 An Example

In this section we will work through an example in detail to illustrate the concepts pre-

viously discussed in this chapter. Our purpose is to elucidate the meaning of the terms

and assumptions used through a simple model, as preparation for the mathematically

rigorous treatment offered in the remainder of the thesis. In working through this ex-

ample, we will follow the same order of presentation of concepts as Sections 1.1 to

1.4.

We consider a model consisting of two consumers competing for a resource in in-

elastic supply, as discussed in Section 1.1; this is a special case of the environment con-

sidered in much greater detail in Chapter 2. We assume the inelastic supply is fixed at

S = 1 unit. Furthermore, we assume that each consumer has a linear utility function:

Ur(dr) = αrdr, r = 1, 2, where α1 > α2 > 0. We recall that as shown in Section 1.1, a

Pareto efficient allocation must solve the following optimization problem:

maximize α1d1 + α2d2 (1.6)

subject to d1 + d2 ≤ 1; (1.7)

d1, d2 ≥ 0. (1.8)

This problem is identical to (1.3)-(1.5), but where we have substituted for the utility

functions of the two consumers in the objective function (1.3), and where we have set

the inelastic supply S equal to one unit in (1.4).
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Since we have assumed α1 > α2, the unique optimal solution d∗ to (1.6)-(1.8) al-

locates the entire supply to consumer 1, so that d∗1 = 1, d∗2 = 0; this is therefore the

unique Pareto efficient allocation. This yields aggregate utility α1d
∗
1 + α2d

∗
2 = α1.

Thus, the maximum possible aggregate monetary benefit to the system consisting of

two consumers and a single resource of unit supply is exactly equal to α1.

In Section 1.5.1, we develop a market-clearing mechanism for allocation of this

resource. In Section 1.5.2, we analyze the performance of the mechanism when the

consumers are price takers; we will see that there exists a unique competitive equilib-

rium, and that the resulting allocation is Pareto efficient. In Section 1.5.3, we consider

the possibility that consumers are price anticipating; we show there exists a unique

Nash equilibrium, and note that it is not Pareto efficient. Finally, in Section 1.5.4, we

quantify the efficiency loss when consumers are price anticipating by comparing the

aggregate utility at the Nash equilibrium to the maximal aggregate utility (i.e., α1).

� 1.5.1 A Market-Clearing Mechanism

In this section we develop a market-clearing mechanism for allocation of the scarce

resource. Suppose that the supplier of the resource, or resource manager, wishes to

efficiently allocate the unit supply among the two consumers. We will analyze the

following simple scheme, an analogue of the mechanism proposed by Kelly [62]:

1. Each consumer r = 1, 2 submits a total payment, or bid, wr that the consumer is

willing to make. The interpretation of wr is that regardless of the market-clearing

price, consumer r will always consume an amount of the resource which makes

his payment exactly equal to wr. Formally, if we denote the demand of consumer

r at a price p > 0 by D(p, wr), then the equality that must be satisfied is:

pD(p, wr) = wr, for all p > 0.

In other words, we can interpret the bid wr as submission of a demand function

D(p, wr) = wr/p.

2. The resource manager chooses a price to “clear the market,” i.e., so that the entire

unit supply is allocated. Formally, the manager chooses a market-clearing price

p∗ so that:

D(p∗, w1) + D(p∗, w2) = 1.

If we substitute D(p, w) = w/p, we find that the market-clearing price p∗ = p∗(w)

is given by:

p∗(w) = w1 + w2. (1.9)

(For technical simplicity, we ignore the boundary case where w1 + w2 = 0; such

details are addressed in greater mathematical depth in Chapter 2.)
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3. The allocation made to consumer r is now:

D(p∗(w), wr) =
wr

w1 + w2
,

while the payment made by consumer r is exactly p∗(w)D(p∗(w), wr) = wr.

In examining the operation of this mechanism, we have defined it in terms of demand

functions. However, because of the special structure of the demand functions, the

eventual operation of the mechanism is actually quite simple: each consumer r pays

an amount wr, and receives a fraction of the resource in proportion to his payment.

Note that the total revenue to the resource manager is equal to w1 + w2, the sum of the

payments from the two consumers.

� 1.5.2 Price Taking Consumers

In this section we will assume the consumers do not anticipate the effects of their ac-

tions on the market-clearing price. To understand this point concretely, consider the

mechanism from the point of view of consumer 1. Consumer 1 wishes to choose his

bid w1 to maximize his payoff, defined in (1.1). There are two possibilities: either con-

sumer 1 realizes that changing w1 will change the market-clearing price; or consumer 1

does not anticipate this effect, and takes the market-clearing price as fixed when choos-

ing an optimal bid w1. In the latter case we say consumer 1 is a price taker. We analyze

the price taking model in this section; we consider price anticipating consumers in the

next section.

If consumer 1 assumes the market-clearing price stays fixed at p as w1 varies, then

he solves:

max
w1≥0

[

α1 ·
w1

p
− w1

]

. (1.10)

To parse this expression, observe that when consumer 1 submits a bid w1, if the market-

clearing price is p he receives an allocation D(p, w1) = w1/p; this yields in turn the util-

ity to consumer 1, α1w1/p. This is the first term in the expression (1.10). The second

term is the payment w1 made by consumer 1. Thus, (1.10) expresses the fact that con-

sumer 1 chooses w1 to maximize his payoff (cf. (1.1)) while taking the market-clearing

price p as given and invariant. A symmetric expression holds for consumer 2:

max
w2≥0

[

α2 ·
w2

p
− w2

]

. (1.11)

We are searching for a competitive equilibrium, as described in Section 1.3. In our

setting, a competitive equilibrium is a vector w = (w1, w2) where each consumer

has optimally chosen his bid, while taking the market-clearing price p = p∗(w) as

fixed. Formally, we want a pair (w1, w2) such that: (1) the market-clearing price is



28 CHAPTER 1. INTRODUCTION

p = p∗(w) = w1 + w2; (2) the bid w1 is an optimal solution to (1.10), given the price p;

and (3) the bid w2 is an optimal solution to (1.11), given the price p. Since α1 > α2 > 0,

it is straightforward to establish that there exists a vector (w1, w2) satisfying these con-

ditions, given by w1 = α1, w2 = 0. To see this, note that when (w1, w2) = (α1, 0), the

market-clearing price is p = p∗(w) = w1 + w2 = α1. Thus the payoff to consumer 1 at

a bid w1, given by αw1/p − w1, is identically zero; in particular, w1 = α1 is an optimal

choice for consumer 1 given the price p. On the other hand, the payoff to consumer 2

at a bid w2 is α2w2/p − w2. Since α2 < α1 = p, we have α2/p − 1 < 0, so the unique

optimal choice for user 2 is w2 = 0.

Thus the pair w1 = α1, w2 = 0 is a competitive equilibrium, with market-clearing

price p∗(w) = α1. (In fact, it is possible to show that this is the unique competitive

equilibrium.) Furthermore, observe that at this equilibrium, consumer 1 receives the

entire resource: D(p∗(w), w1) = 1, while D(p∗(w), w2) = 0. In particular, in light of

our previous discussion, the allocation at the competitive equilibrium is an optimal so-

lution to (1.6)-(1.8). We conclude that the competitive equilibrium allocation is Pareto

efficient—a special case of the first fundamental theorem of welfare economics (see Section

1.3).

� 1.5.3 Price Anticipating Consumers

Now suppose that each consumer anticipates the effect of a change in his bid on the

market-clearing price. Again, for simplicity, let us consider the mechanism from the

point of view of consumer 1. Suppose that consumer 2 submits a bid of w2. When

consumer 1 submits a bid of w1, the market-clearing price is p∗(w) = w1 + w2, and

the resulting allocation to consumer 1 is D(p∗(w), w1) = w1/(w1 + w2). Now suppose

consumer 1 anticipates that the market-clearing price will change when w1 changes;

that is, rather than fixing the market-clearing price p and then optimally choosing w1,

as in (1.10), consumer 1 now takes into account the functional dependence of p∗(w) on

w1. Thus, given w2, consumer 1 chooses w1 to solve:

max
w1≥0

[

α1 ·
w1

w1 + w2
− w1

]

. (1.12)

Note that this payoff is identical to (1.10), except that we have replaced the allocation

w1/p with the term w1/(w1 + w2), reflecting the dependence of the market-clearing

price on w1. Symmetrically, given w1, consumer 2 chooses w2 to solve:

max
w2≥0

[

α2 ·
w2

w1 + w2
− w2

]

. (1.13)

(In the discussion to follow, we ignore boundary effects where w1 = 0 or w2 = 0; again,

such details are addressed in Chapter 2.)



SECTION 1.5. AN EXAMPLE 29

Note that the payoff of each consumer is dependent on the choice made by the

other consumer; thus the equations (1.12)-(1.13) define a game. We will search for a

Nash equilibrium of this game, i.e., a vector (w1, w2) such that: (1) w1 is an optimal

solution to (1.12) given w2; and (2) symmetrically, w2 is an optimal solution to (1.13)

given w1. For technical simplicity, we search only for a Nash equilibrium such that

w1 > 0, w2 > 0. Notice that given w2 > 0, the payoff (1.12) is concave in w1; and given

w1 > 0, the payoff (1.13) is concave in w2. Thus if we differentiate (1.12) with respect

to w1, and (1.13) with respect to w2, a Nash equilibrium is identified by the following

two necessary and sufficient optimality conditions:

α1

(

1

w1 + w2
− w1

(w1 + w2)2

)

= 1;

α2

(

1

w1 + w2
− w2

(w1 + w2)2

)

= 1.

It is straightforward to check that these equations have a unique solution (wNE
1 , wNE

2 ),

given by:

wNE
1 =

α2
1α2

(α1 + α2)2
; wNE

2 =
α1α

2
2

(α1 + α2)2
.

Thus the vector (wNE
1 , wNE

2 ) is a Nash equilibrium.

We now characterize the market-clearing price, allocation, payoffs, and revenue at

this Nash equilibrium. It is straightforward to check that the market-clearing price is:

p∗(wNE) = wNE
1 + wNE

2 =
α1α2

α1 + α2
.

Note that this is also the revenue to the resource manager at the Nash equilibrium.

Recall that the revenue to the resource manager at the competitive equilibrium was

w1 + w2 = α1. Since α1 > α2, we conclude the revenue to the resource manager is

lower at the Nash equilibrium than at the competitive equilibrium. This result can be

shown to hold more generally; see Corollary 2.3.

The allocation to consumer 1 at the Nash equilibrium, denoted dNE
1 , is:

dNE
1 = D(p∗(wNE), wNE

1 ) =
wNE

1

p∗(wNE)
=

α1

α1 + α2
. (1.14)

Symmetrically, the allocation dNE
2 to consumer 2 is:

dNE
2 = D(p∗(wNE), wNE

1 ) =
wNE

2

p∗(wNE)
=

α2

α1 + α2
. (1.15)
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Thus the payoff to consumer 1 is:

α1d
NE
1 − wNE

1 =
α3

1

(α1 + α2)2
.

A symmetric expression holds for consumer 2. In particular, note that now both pay-

offs are positive to the consumers, whereas both consumers had payoff equal to zero

at the competitive equilibrium. While the payoffs to consumers rise in this case, it is

not generally true that every consumer improves his payoff at a Nash equilibrium;

indeed, examples exist where the payoffs of consumers can actually fall relative to a

competitive equilibrium, despite the fact that they are price anticipating. The intu-

ition for this is that the market power gained by a single price anticipating consumer

may be undermined by the market power of all other consumers who are also price

anticipating.

� 1.5.4 Efficiency Loss

Recall that the unique Pareto efficient allocation, i.e., the unique optimal solution to

(1.6)-(1.8), is given by d∗1 = 1, d∗2 = 0. Thus, at the Nash equilibrium, the allocation

dNE defined by (1.14)-(1.15) cannot be Pareto efficient in general. In this section we

ask: how inefficient is the allocation at the Nash equilibrium?

To answer this question, we must consider the net monetary benefit of the Nash

equilibrium, which is measured by the aggregate utility at the allocation dNE :

α1d
NE
1 + α2d

NE
2 =

α2
1 + α2

2

α1 + α2
.

On the other hand, the net monetary benefit at the unique Pareto efficient allocation

(which is also the competitive equilibrium allocation) is given by:

α1d
∗
1 + α2d

∗
2 = α1.

To make a measurement of efficiency loss which is independent of the currency in

which we measure monetary value, we consider the ratio of Nash equilibrium aggre-

gate utility to maximal aggregate utility:

α1d
NE
1 + α2d

NE
2

α1d∗1 + α2d∗2
=

α2
1 + α2

2

α2
1 + α1α2

. (1.16)

The right hand side thus gives the percentage of the maximal aggregate surplus which

is achieved at a Nash equilibrium, and exactly quantifies the efficiency loss when con-

sumers are price anticipating.

Recall that we had assumed 0 < α2 < α1. It is not difficult to establish that for fixed
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α1, the minimum value of (1.16) over 0 < α2 < α1 is achieved when α2 = (
√

2 − 1)α1,

and the resulting minimum value is 2
√

2 − 2 ≈ 0.83. Thus the efficiency loss when

consumers are price anticipating in this model is no more than approximately 17%.

In fact, we will show in Chapter 2 that under much more general assumptions on the

utility functions of the consumers, the efficiency loss is no more than 25%.

To summarize the example, we have considered a simple market-clearing mech-

anism to allocate a single resource of fixed, unit supply. Each consumer chooses a

bid, which represents the total amount he is willing to pay; a price is then chosen to

clear the market. When the consumers act as price takers, there exists a competitive

equilibrium, and the resulting allocation is Pareto efficient. When consumers are price

anticipating, there exists a Nash equilibrium, but the resulting allocation is not Pareto

efficient. Nevertheless, the efficiency loss is never more than approximately 17% when

consumers are price anticipating.

� 1.6 Contributions of This Thesis

This thesis makes two main contributions. First, for three economic environments, we

consider specific market mechanisms and exactly quantify the efficiency loss in these

environments when market participants are price anticipating. These environments

are described in turn in Chapters 2, 3, and 4. Second, we show in Chapter 5 that

under reasonable conditions, the mechanisms we consider minimize efficiency loss

when market participants are price anticipating.

In Chapter 2, we consider a setting of multiple consumers and inelastic supply. We

investigate a network resource allocation mechanism proposed by Kelly [62] where

network users submit demand functions of the form D(p, w) = w/p, and a price is

chosen so that aggregate demand is equal to the inelastic supply. As in Section 1.5,

for the case of a single resource, this allocation mechanism allocates fractions of the

resource to the users in proportion to their bids w. We establish that when users are

price anticipating, aggregate utility falls by no more than 25% relative to the maximum

possible. We also develop an extension of this result to a network setting, where users

submit individual bids to each link in the network where they require service; we then

discuss the implications of this model for the network pricing proposal made by Kelly

in [62].

In Chapter 3, we consider the same class of demand functions as Chapter 2, but

now consider a setting where supply is elastic; this is the model considered by Kelly et

al. [65]. For this setting we establish that when users are price anticipating, aggregate

surplus falls by no more than approximately 34% relative to the maximum possible;

and as in Chapter 2, we extend this result to a network setting. In this chapter we also

characterize efficiency loss for Cournot games [23], where users submit demand func-

tions that are constant in p (i.e., D(p) = d for all p). While efficiency loss is generally
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arbitrarily high for this mechanism, we establish that in several special cases of interest

the efficiency loss when users are price anticipating is no more than 1/3.

In Chapter 4, motivated by power systems, we consider a setting where multi-

ple producers bid to satisfy an inelastic demand D. We consider a market mecha-

nism where producers submit supply functions of the form S(p, w) = D − w/p, and a

market-clearing price is chosen to ensure that aggregate supply is equal to the inelas-

tic demand. In this case we interpret w as the portion of the total revenue foregone

by a firm, since for any price p, the revenue to a firm bidding w is pD − w, while pD

is the revenue to all firms. We establish that when producers are price anticipating,

aggregate production cost rises by no more than a factor 1 + 1/(N − 2) relative to the

minimum possible production cost, where N > 2 is the number of firms competing.

Chapters 2, 3, and 4 establish efficiency loss results for specific market mechanisms.

Our second primary contribution in this thesis is the development of two results in

Chapter 5 which characterize the mechanisms studied in Chapters 2 and 4 as the “best”

choice of mechanism under reasonable assumptions. Formally, we show that in a class

of market-clearing mechanisms satisfying certain simple mathematical assumptions

and for which there exist fully efficient competitive equilibria, the mechanisms we con-

sider in Chapters 2 and 4 uniquely minimize efficiency loss when market participants

are price anticipating. These results justify the attention devoted to understanding the

market mechanisms studied in Chapters 2 and 4; furthermore, they clearly delineate

conditions which must be violated if we hope to achieve higher efficiency guarantees

than those provided by the results of Chapters 2 and 4.

Each of the chapter introductions discusses the content of that chapter, so we do not

survey results in detail here. In particular, the “Chapter Outline” at the start of each

chapter gives a roadmap to the results of that chapter. We recommend that Chapter 2

be read prior to Chapter 3. Chapter 4 is largely independent of the material in Chapters

2 and 3. Finally, a survey of Chapters 2 and 4 would be helpful in reading Chapter 5.

The conclusion to the thesis, Chapter 6, discusses open issues and questions raised

by the thesis, particularly related to dynamics and mechanism design in distributed

environments.
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Multiple Consumers,

Inelastic Supply

T he current Internet is used by a widely heterogeneous population of users; not

only are different types of traffic sharing the same network, but different end

users place different values on their perceived network performance. As a result,

characterizing “good” use of the network is difficult: how should resources be shared

between a file transfer and a peer-to-peer connection? Partly in response to this hetero-

geneity, a variety of models for congestion pricing in the future Internet have emerged.

These models propose a traditional economic solution to the problem of heterogeneous

demand: they treat the collection of network resources as a market, and price their use

accordingly.

The last decade has witnessed a dramatic rise in research suggesting the use of

market mechanisms to manage congestion in networks, starting with research on con-

gestion pricing in ATM networks, and continuing to subsequent efforts to develop

congestion pricing for the Internet. See, for example, the critique by Shenker et al.

[122] for an early overview of some of the issues involved; the book by Songhurst

[126] for a review of work related to congestion charging in ATM networks; and the

papers of Falkner [38] and Briscoe et al. [18] for more recent discussion.

Perhaps the simplest method of network pricing is a simple flat rate approach

[94]: each user of a network pays a fixed fee for network use, independent of the

actual resources consumed. The problem with such a simple scheme, of course, is

that resources may not be allocated efficiently among the competing heterogeneous

demands. Despite simple proposals to extend the flat rate pricing paradigm to include

a few service classes [93], in general flat rate pricing is inefficient—see, for example,

[77]. Such opinions have recently been supported through the experimental work of

the INDEX project [36].

In response to the basic inefficiency of flat rate pricing, usage based pricing gained

support. Under such a scheme, users are charged based on the impact their traffic has

on network performance. The basic goal of such a method is to provide better feedback

on congestion to users through a price signal; the hope is that the users will respond

33
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to such signals and achieve an efficient network operating point. Because the Internet

is a large scale, decentralized system, any such scheme is forced to make a tradeoff:

there is a compromise between sophistication of a pricing scheme and the ability to

implement it in a distributed manner [51].

One of the earlier, more prominent proposals for congestion pricing is the “smart

market” of MacKie-Mason and Varian [78]. Their approach uses an auction for data

rate at each network resource: each user submits a bid for the total amount they are

willing to pay for network service, and the network delivers available service to the

highest bidders. Using classical results on Vickrey-Clarke-Groves (VCG) mechanisms

[20, 50, 139], MacKie-Mason and Varian show that under their auction mechanism,

each network user will have an incentive to truthfully reveal their valuation for net-

work resources, and that the resulting allocation of network resources will be effi-

cient (in the sense that resources will be allocated to those users who value them most

highly).

Despite the appealing simplicity of the auction mechanism proposed by MacKie-

Mason and Varian, a key objection is that the mechanism is not scalable in a distributed

setting, since each network resource must perform a complex computation to deter-

mine the users which receive service. Indeed, the information requirements of imple-

menting a VCG mechanism in a network can be quite high [116]. For this reason, later

proposals by Lazar and Semret [76, 116] and Shu and Varaiya [123] attempt to devise

distributed auction mechanisms. (We will return to this connection in our discussion

of mechanism design for network resource allocation problems; see Section 6.3.)

Rather than attempting to simplify the implementation of an auction for network

resources, we adopt an alternative approach in this chapter. The mechanism we con-

sider views network resource allocation as a market-clearing process: users submit

demand functions expressing their desire for network resources as a function of the

prices of those resources, and the network chooses prices to ensure aggregate demand

is exactly equal to available supply. The market mechanism is constrained by two fea-

tures: first, the demand functions chosen by users must have a “simple” description,

since they are to be communicated across a network; and second, the computation of

prices of network resources should not require central coordination.

The specific framework we investigate was first proposed in the seminal work of

Kelly [62]. Kelly considers a model consisting of a single network manager who wishes

to allocate network capacity efficiently among a collection of users, each endowed

with a utility function depending on their allocated rate. In [62], a market is proposed

where each user submits a “bid,” or willingness-to-pay per unit time, to the network;

the network accepts these submitted bids and determines the price of each network

link. A user is then allocated rate in proportion to his bid, and inversely proportional

to the price of links he wishes to use. Under certain assumptions, it is shown in [62]

that such a scheme maximizes aggregate utility.
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In the special case where the network consists of only a single link, a user is al-

located a fraction of the link equal to his bid divided by the sum of all users’ bids.

This “proportional” allocation mechanism has been considered in a variety of other

contexts as well. Subsequent to Kelly’s work, La and Anantharam suggested a means

by which the proportional allocation mechanism might be implemented in a network

employing window-based congestion control, such as the Internet [73, 74]. Hajek and

Gopalakrishnan have considered a proportional allocation mechanism in the context

of Internet autonomous system competition [52]. They suggest that smaller Internet

providers might bid for resources from larger Internet providers upstream using the

proportional allocation mechanism. In the economics literature, such a mechanism

has been referred to as a “raffle”; it has been analyzed in the context of charitable

fundraising [34]. In the computer science community, this mechanism is known as the

“proportional share” mechanism, where it has been investigated for time-sharing of

resources [132].

In this chapter, we wish to understand the extent to which the analysis proposed in

[62] accurately models the interactions of network users. Specifically, a fundamental

assumption in the model of [62] is that each user acts as a price taker; that is, users do

not anticipate the effect of their actions on the prices of the links. In contrast, we relax

this assumption, and ask whether price anticipating behavior significantly worsens

the performance of the network. Such a relaxation is motivated by the fact that a large

enough user may be able to elicit the exact response of network prices to changes in

his strategy; see [22] for a model of an intelligent software agent that might mimic this

task. If we assume that users can anticipate the effects of their actions, then the model

becomes a game, and we will show that the Nash equilibria of this game lead to allo-

cations at which the aggregate utility is no worse than 75% of the maximal aggregate

utility.

Chapter Outline

The remainder of the chapter is organized as follows. In Section 2.1 we give back-

ground on the model formulation. We recapitulate the key results of [62], and pre-

cisely define the notion of price taking and competitive equilibrium. We prove the

main theorem of [62] for a single link: if users are price taking, then aggregate util-

ity is maximized. We then consider a game where users are price anticipating. We

give a proof of a result due to Hajek and Gopalakrishnan establishing existence and

uniqueness of a Nash equilibrium, by showing that at a Nash equilibrium, it is as if

aggregate utility is maximized but with modified utility functions [52]. (Less general

forms of this result have been previously established in the literature; see Section 2.1.2

for details.) We then establish several corollaries in Section 2.1.3. We first show that

revenues to the link manager may be arbitrarily low at the Nash equilibrium relative

to the competitive equilibrium; nevertheless, we show that if all utility functions are
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linear, then revenues to the link manager at a Nash equilibrium are no less than 50%

of the revenues obtained if the link manager were to use a Vickrey auction.

In Section 2.2, we consider the loss of efficiency at the Nash equilibrium of the

single link game. Theorem 2.6 is a key result of this chapter: when users are price

anticipating, the efficiency loss is no more than 25%. The key insight is that the worst

case occurs when utility functions are linear. We use this fact to explicitly construct

the worst case game in the proof of Theorem 2.6. In addition to this result, we show

in Corollary 2.8 that in an appropriate limit where each user consumes a negligible

fraction of the available link rate, the ratio of Nash equilibrium aggregate utility to

the maximal aggregate utility converges to one. Such a result is a “competitive limit”

[82], demonstrating that as the number of users becomes large, if no user is a “large”

consumer then it is as if all users are price takers.

In Section 2.3, we consider a model consisting of multiple profit maximizing net-

work providers. In particular, we investigate whether network providers will have

an incentive to truthfully reveal their link capacity. For a simple model of parallel

links, where each link is controlled by an independent network provider, we show

that when users have linear utility functions the unique profit maximizing strategy for

each provider is to truthfully declare their capacity. A consequence of this result is that

the loss of efficiency is no more than 25% when users are price anticipating and link

managers are profit maximizing, provided the utility functions of the users are linear.

In Section 2.4, we extend the analysis of Section 2.2 to networks. We consider a

game where each user requests service from multiple links by submitting a bid to each

link. Users have multiple routes available to them for sending traffic, so that this is a

model including alternative routing. Links then allocate rates using the same scheme

as in the single link model, and each user sends the maximum rate possible, given

the vector of rates allocated from links in the network. Although this definition of the

game is natural, we demonstrate that Nash equilibria may not exist, due to a discon-

tinuity in the payoff functions of individual players. (This problem also arises in the

single link setting, but is irrelevant there as long as at least two players share the link.)

To address the discontinuity, we extend the strategy space by allowing each user to

request a nonzero rate without submitting a positive bid to a link, if the total payment

made by other users at that link is zero; this extension is sufficient to guarantee exis-

tence of a Nash equilibrium. Furthermore, if a Nash equilibrium exists in the original

game, it corresponds naturally to a Nash equilibrium of the extended game. Finally,

we show that in this network setting, the total utility achieved at any Nash equilib-

rium of the game is no less than 3/4 of the maximum possible aggregate utility. This

extends the efficiency loss result from the single link case to the network setting.

The model of Section 2.4 is not identical to the original network pricing proposal

of Kelly [62]. In particular, the proposal made in [62] requires each user to submit a

single bid to the network, rather than individual bids to each link. In Section 2.4.3, we
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explore the consequences of this difference and the relationship between the network

pricing model of Section 2.4.1 and the original proposal of [62].

In Section 2.5, we consider two extensions to the basic model of this chapter. First,

in Section 2.5.1, we consider the possibility that link capacity is stochastic, rather than

deterministic. We establish that such a model is identical to the model of Sections 2.1

and 2.2, for an appropriate choice of utility functions and with capacity equal to 1. This

identification allows us to carry over the key results of the chapter to the setting where

capacity is stochastic.

If we interpret the model proposed in [62] in a broader economic context, then a key

feature is that the supplies of resources available are inelastic—that is, they do not vary

with prices. Thus we may view the model of this chapter as a solution for a general

class of resource allocation problems with inelastic supply. This motivates the resource

allocation game in Section 2.5.2. We suppose that users bid for multiple resources, as

in Section 2.4; but we no longer define utility as a function of the maximum rate that

a user can send. Rather, we allow the user’s utility to be any concave function of the

vector of resources allocated. As an example of such a game, each resource may be

a raw material, and each end user may be a manufacturing facility that takes these

raw materials as input. Building on Section 2.5.1, we also allow the capacity of each

resource to be randomly determined. We show that such a game can be analyzed using

the same methods as Section 2.4, and in particular prove once again that the efficiency

loss is no worse than 25% relative to the optimal aggregate utility.

� 2.1 Preliminaries

Suppose R users share a communication link of capacity C > 0. Let dr denote the

rate allocated to user r. We assume that user r receives a utility equal to Ur(dr) if the

allocated rate is dr; we assume that utility is measured in monetary units. We make

the following assumptions on the utility function.

Assumption 2.1

For each r, over the domain dr ≥ 0 the utility function Ur(dr) is concave, strictly increasing,

and continuous; and over the domain dr > 0, Ur(dr) is continuously differentiable. Further-

more, the right directional derivative at 0, denoted U ′
r(0), is finite.

We note that we make rather strong differentiability assumptions here on the utility

functions; these assumptions are primarily made to ease the presentation. In Section

2.4, we will relax the assumption that Ur is differentiable.

Concavity in Assumption 2.1 corresponds to the assumption of elastic traffic, as

defined by Shenker [121]. This is in fact quite a strong assumption in the setting of

communication networks; note that elastic traffic typically refers to file transfers, while

traffic such as telephone calls and video streams (with minimum rate requirements)
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may be modeled using nonconcave utility functions. For example, if a telephone call

requires a minimum data rate D, the corresponding utility function might be zero for

any rate less than D, and constant but positive for any rate greater than or equal to D.

Indeed, an important research direction concerns development of resource allocation

models for settings where users may have nonconcave utility as a function of the rate

received.

Given complete knowledge and centralized control of the system, a natural prob-

lem for the network manager to try to solve is the following optimization problem [62]:

SYSTEM:

maximize
∑

r

Ur(dr) (2.1)

subject to
∑

r

dr ≤ C; (2.2)

dr ≥ 0, r = 1, . . . , R. (2.3)

Note that the objective function of this problem is the aggregate utility. This is the

appropriate adaptation of the notion of aggregate surplus to a setting where supply

is inelastic; see Section 1.1. Since the objective function is continuous and the feasible

region is compact, an optimal solution d = (d1, . . . , dR) exists. If the functions Ur are

strictly concave, then the optimal solution is unique, since the feasible region is convex.

In general, the utility functions are not available to the link manager. As a result, we

consider the following pricing scheme for rate allocation. Each user r gives a payment

(also called a bid) of wr to the link manager; we assume wr ≥ 0. Given the vector

w = (w1, . . . , wr), the link manager chooses a rate allocation d = (d1, . . . , dr). We

assume the manager treats all users alike—in other words, the network manager does

not price discriminate. Each user is charged the same price µ > 0, leading to dr = wr/µ.

We further assume the manager always seeks to allocate the entire link capacity C; in

this case, following the analysis of [62], we expect the price µ to satisfy:

∑

r

wr

µ
= C.

The preceding equality can only be satisfied if
∑

r wr > 0, in which case we have:

µ =

∑

r wr

C
. (2.4)

In other words, if the manager chooses to allocate the entire available rate at the link,

and does not price discriminate between users, then for every nonzero w there is a

unique price µ > 0 which must be chosen by the network, given by the previous equa-



SECTION 2.1. PRELIMINARIES 39

price

quantity

µ

AD(p) AS(p)

C

Figure 2-1. The market-clearing process with inelastic supply: Each consumer r chooses a willingness-to-
pay wr , which maps to a demand function D(p, wr) = wr/p. This defines the aggregate demand function
AD(p) =

∑

r
D(p, wr) =

∑

r
wr/p. The aggregate supply function is AS(p) = C for all p. The price µ is

chosen so that supply equals demand, i.e., so that
∑

r
wr/µ = AD(µ) = AS(µ) = C.

tion.

We can interpret this mechanism as a market-clearing process by which a price is set

so that demand equals supply. To see this interpretation, note that when a user chooses

a total payment wr, it is as if the user has chosen a demand function D(p, wr) = wr/p

for p > 0. The demand function describes the amount of rate the user demands at any

given price p > 0. The link manager then chooses a price µ so that
∑

r D(µ, wr) = C,

i.e., so that the aggregate demand equals the supply C; see Figure 2-1. For the specific

form of demand functions we consider here, this leads to the expression for µ given in

(2.4). User r then receives a rate allocation given by D(µ, wr), and makes a payment

µD(µ, wr) = wr. This interpretation of the mechanism we consider here will be further

explored in Chapter 5, where we consider other market-clearing mechanisms for allo-

cating a single resource in inelastic supply, with the users choosing demand functions

from a family parametrized by a single scalar.

We note here that the interpretation of the mechanism in terms of users submitting

demand functions bears strong resemblance to the work of Wilson [146] on auctions

of divisible goods. Wilson considered a model where users submit demand functions,

and a price is chosen to ensure that supply equals demand; this model has later been

studied in the context of Treasury auctions [143]. The key difference between Wilson’s

model and the model of this chapter is the fact that the demand functions we consider

are parametrized by a single scalar. As discussed in the introduction to the chapter,

this decision is made so that the strategy space of the users is simple: rather than com-
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municating an entire demand function across the network, the users only submit their

total willingness-to-pay. (The interpretation of Wilson’s model as a “demand func-

tion equilibrium” bears close relation to the “supply function equilibrium” studied by

Klemperer and Meyer [69], which we discuss in Chapter 4 in the context of electricity

markets.)

In the remainder of the section, we consider two different models for how users

might interact with this price mechanism. In Section 2.1.1, we consider a model where

users do not anticipate the effect of their bids on the price, and establish existence of

a competitive equilibrium (a result due to Kelly [62]). Furthermore, this competitive

equilibrium leads to an allocation which is an optimal solution to SYSTEM. In Sec-

tion 2.1.2, we change the model and assume users are price anticipating, and establish

existence and uniqueness of a Nash equilibrium (a result due to Hajek and Gopalakr-

ishnan [52]). Section 2.2 then considers the loss of efficiency at this Nash equilibrium,

relative to the optimal solution to SYSTEM.

� 2.1.1 Price Taking Users and Competitive Equilibrium

In this section, we consider a competitive equilibrium between the users and the link

manager [82], following the development of Kelly [62]. A central assumption in the

definition of competitive equilibrium is that each user does not anticipate the effect of

their payment wr on the price µ, i.e., each user acts as a price taker. In this case, given a

price µ > 0, user r acts to maximize the following payoff function over wr ≥ 0:

Pr(wr; µ) = Ur

(

wr

µ

)

− wr. (2.5)

The first term represents the utility to user r of receiving a rate allocation equal to wr/µ;

the second term is the payment wr made to the manager. Observe that since utility is

measured in monetary units, the payoff is quasilinear in money [82].

We now say a pair (w, µ) with w ≥ 0 and µ > 0 is a competitive equilibrium if

users maximize their payoff as defined in (2.5), and the network “clears the market”

by setting the price µ according to (2.4):

Pr(wr; µ) ≥ Pr(wr; µ) for wr ≥ 0, r = 1, . . . , R; (2.6)

µ =

∑

r wr

C
. (2.7)

Kelly shows in [62] that when users are price takers, there exists a competitive equilib-

rium, and the resulting allocation is an optimal solution to SYSTEM. This is formalized

in the following theorem, adapted from [62]; we also present a proof for completeness.

Theorem 2.1 (Kelly, [62])

Suppose that Assumption 2.1 holds. Then there exists a competitive equilibrium, i.e., a vector
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w = (w1, . . . , wR) ≥ 0 and a scalar µ > 0 satisfying (2.6)-(2.7).

In this case, the scalar µ is uniquely determined, and the vector d = w/µ is an optimal

solution to SYSTEM. If the functions Ur are strictly concave, then w is uniquely determined

as well.

Proof. The key idea in the proof is to use Lagrangian techniques to establish that

optimality conditions for (2.6)-(2.7) are identical to the optimality conditions for the

problem SYSTEM, under the identification d = w/µ.

Step 1: Given µ > 0, w satisfies (2.6) if and only if:

U ′
r

(

wr

µ

)

= µ, if wr > 0; (2.8)

U ′
r(0) ≤ µ, if wr = 0. (2.9)

Indeed, since Ur is concave, Pr is concave as well; and thus (2.8)-(2.9) are necessary

and sufficient optimality conditions for (2.6).

Step 2: There exists a vector d ≥ 0 and a unique scalar µ > 0 such that:

U ′
r(dr) = µ, if dr > 0; (2.10)

U ′
r(0) ≤ µ, if dr = 0; (2.11)

∑

r

dr = C. (2.12)

The vector d is then an optimal solution to SYSTEM. If the functions Ur are strictly concave,

then d is unique as well. Note that at least one optimal solution to SYSTEM exists since

the feasible region is compact and the objective function is continuous. We form the

Lagrangian for the problem SYSTEM:

L(d, µ) =
∑

r

Ur(dr) − µ

(

∑

r

dr − C

)

Here the second term is a penalty for the link capacity constraint. The Slater constraint

qualification ([13], Section 5.3) holds for the problem SYSTEM at the point d = 0,

since then 0 =
∑

r dr < C; this guarantees the existence of a Lagrange multiplier µ. In

other words, since the objective function is concave and the feasible region is convex,

a feasible vector d is optimal if and only if there exists µ ≥ 0 such that the conditions

(2.10)-(2.12) hold. Since there exists at least one optimal solution d to SYSTEM, there

exists at least one pair (d, µ) satisfying (2.10)-(2.12).

Since C > 0, at least one dr is positive, so µ > 0 (since Ur is strictly increasing). We

now claim that µ is uniquely determined. Suppose not; then there exist (d, µ), (d, µ)
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that satisfy (2.10)-(2.12), where (without loss of generality) µ < µ. For any r such that

dr > 0, we will have U ′
r(dr) ≤ µ < µ = U ′

r(dr), which implies that dr > dr > 0. Sum-

ming over all r, we obtain
∑

r dr >
∑

r dr, which contradicts the feasibility condition
∑

r dr = C =
∑

r dr. Thus µ is unique.

Step 3: If the pair (d, µ) satisfies (2.10)-(2.12), and we let w = µd, then the pair (w, µ)

satisfies (2.6)-(2.7). By Step 2, µ > 0; thus, under the identification w = µd, (2.12) be-

comes equivalent to (2.7). Furthermore, (2.10)-(2.11) become equivalent to (2.8)-(2.9);

by Step 1, this guarantees that (2.6) holds.

Step 4: If w and µ > 0 satisfy (2.6)-(2.7), and we let d = w/µ, then the pair (d, µ) sat-

isfies (2.10)-(2.12). We simply reverse the argument of Step 3. Under the identification

d = w/µ, (2.8)-(2.9) become equivalent to (2.10)-(2.11); and (2.7) becomes equivalent

to (2.12).

Step 5: Completing the proof. By Steps 2 and 3, there exists a vector w and a scalar

µ > 0 satisfying (2.6)-(2.7); by Step 4, µ is uniquely determined, and the vector d =

w/µ is an optimal solution to SYSTEM. Finally, if the utility functions Ur are strictly

concave, then by Steps 2 and 4, w is uniquely determined as well (since the transfor-

mation from (w, µ) to (d, µ) is one-to-one). 2

Theorem 2.1 shows that under the assumption that the users of the link behave as

price takers, there exists a bid vector w where all users have optimally chosen their

bids wr, with respect to the given price µ =
∑

r wr/C; and at this “equilibrium,” ag-

gregate utility is maximized. However, when the price taking assumption is violated,

the model changes into a game and the guarantee of Theorem 2.1 is no longer valid.

We investigate this game in the following section.

� 2.1.2 Price Anticipating Users and Nash Equilibrium

We now consider an alternative model where the users of a single link are price antici-

pating, rather than price takers. The key difference is that while the payoff function Pr

takes the price µ as a fixed parameter in (2.5), price anticipating users will realize that

µ is set according to (2.4), and adjust their payoff accordingly; this makes the model a

game between the R players.

We use the notation w−r to denote the vector of all bids by users other than r;

i.e., w−r = (w1, w2, . . . , wr−1, wr+1, . . . , wR). Given w−r, each user r chooses wr to
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maximize:

Qr(wr;w−r) =















Ur

(

wr
∑

s ws
C

)

− wr, if wr > 0;

Ur(0), if wr = 0.

(2.13)

over nonnegative wr. The second condition is required so that the rate allocation to

user r is zero when wr = 0, even if all other users choose w−r so that
∑

s 6=r ws = 0. The

payoff function Qr is similar to the payoff function Pr, except that the user anticipates

that the network will set the price µ according to (2.4). A Nash equilibrium of the game

defined by (Q1, . . . , QR) is a vector w ≥ 0 such that for all r:

Qr(wr;w−r) ≥ Qr(wr;w−r), for all wr ≥ 0. (2.14)

Note that the payoff function in (2.13) may be discontinuous at wr = 0, if
∑

s 6=r ws =

0. This discontinuity may preclude existence of a Nash equilibrium, as the following

example shows.

Example 2.1

Suppose there is a single user with strictly increasing utility function U . In this case,

the user is not playing a game against anyone else, so any positive payment results in

the entire link being allocated to the single user. The payoff to the user is thus:

Q(w) =

{

U(C) − w, if w > 0;

U(0), if w = 0.

Since U has been assumed to be strictly increasing, we know U(C) > U(0). Thus, at

a bid of w = 0, a profitable deviation for the user is any bid w such that 0 < w <

U(C) − U(0). On the other hand, at any bid w > 0, a profitable deviation for the user

is any bid w such that 0 < w < w. Thus no optimal choice of bid exists for the user,

which implies that no Nash equilibrium exists. 2

We will find the previous discontinuity plays a larger role in the network context,

where an extended strategy space is required to ensure existence of a Nash equilib-

rium. In the single link setting, Hajek and Gopalakrishnan have shown that there

exists a unique Nash equilibrium when multiple users share the link, by showing that

at a Nash equilibrium it is as if the users are solving another optimization problem of

the same form as the problem SYSTEM, but with “modified” utility functions. This is

formalized in the following theorem, adapted from [52]; we also present a proof for

completeness.

Theorem 2.2 (Hajek and Gopalakrishnan, [52])

Suppose that R > 1, and that Assumption 2.1 holds. Then there exists a unique Nash equilib-

rium w ≥ 0 of the game defined by (Q1, . . . , QR), and it satisfies
∑

r wr > 0.
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In this case, the vector d defined by:

dr =
wr

∑

s ws
C, r = 1, . . . , R, (2.15)

is the unique optimal solution to the following optimization problem:

GAME:

maximize
∑

r

Ûr(dr) (2.16)

subject to
∑

r

dr ≤ C; (2.17)

dr ≥ 0, r = 1, . . . , R, (2.18)

where

Ûr(dr) =

(

1 − dr

C

)

Ur(dr) +

(

dr

C

)(

1

dr

∫ dr

0
Ur(z) dz

)

. (2.19)

Proof. The proof proceeds in a number of steps. We first show that at a Nash equi-

librium, at least two components of w must be positive. This suffices to show that the

payoff function Qr is strictly concave and continuously differentiable for each user r.

We then establish necessary and sufficient conditions for w to be a Nash equilibrium;

these conditions look similar to the optimality conditions (2.8)-(2.9) in the proof of The-

orem 2.1, but for “modified” utility functions defined according to (2.19). Mirroring

the proof of Theorem 2.1, we then show the correspondence between these conditions

and the optimality conditions for the problem GAME. This correspondence establishes

existence and uniqueness of a Nash equilibrium.

Step 1: If w is a Nash equilibrium, then at least two coordinates of w are positive. Fix a

user r, and suppose ws = 0 for every s 6= r. If wr > 0, user r can maintain the same

rate allocation and reduce his payment by reducing wr slightly; and since Ur is strictly

increasing, if wr = 0, then user r can profitably deviate by infinitesimally increasing

his bid wr and capturing the entire link capacity C. Thus at a Nash equilibrium, ws > 0

for some s 6= r. Since this holds for every user r, at least two coordinates of w must be

positive.

Step 2: If the vector w ≥ 0 has at least two positive components, then the function

Qr(wr;w−r) is strictly concave and continuously differentiable in wr, for wr ≥ 0. This

follows from (2.13), because when
∑

s 6=r ws > 0, the expression wr/(wr +
∑

s 6=r ws) is a

strictly increasing function of wr (for wr ≥ 0); in addition, Ur(·) is a strictly increasing,

concave, and differentiable function by assumption.
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Step 3: The vector w is a Nash equilibrium if and only if at least two components of w are

positive, and for each r, the following conditions hold:

U ′
r

(

wr
∑

s ws
C

)(

1 − wr
∑

s ws

)

=

∑

s ws

C
, if wr > 0; (2.20)

U ′
r(0) ≤

∑

s ws

C
, if wr = 0. (2.21)

Let w be a Nash equilibrium. By Steps 1 and 2, w has at least two positive components

and Qr(wr;w−r) is strictly concave and continuously differentiable in wr ≥ 0. Thus wr

must be the unique maximizer of Qr(wr;w−r) over wr ≥ 0, and satisfy the following

first order optimality conditions:

∂Qr

∂wr
(wr;w−r)

{

= 0, if wr > 0;

≤ 0, if wr = 0.

After multiplying through by
∑

s ws/C, these are precisely the conditions (2.20)-(2.21).

Conversely, suppose that w has at least two strictly positive components, and sat-

isfies (2.20)-(2.21). Then we may simply reverse the argument: by Step 2, Qr(wr;w−r)

is strictly concave and continuously differentiable in wr ≥ 0, and in this case the con-

ditions (2.20)-(2.21) imply that wr maximizes Qr(wr;w−r) over wr ≥ 0. Thus w is a

Nash equilibrium.

If we let µ =
∑

r wr/C, note that the conditions (2.20)-(2.21) have the same form

as the optimality conditions (2.8)-(2.9), but for a different utility function given by Ûr.

We now use this relationship to complete the proof in a manner similar to the proof of

Theorem 2.1.

Step 4: The function Ûr defined in (2.19) is strictly concave and strictly increasing over 0 ≤
dr ≤ C. The proof follows by differentiating, which yields Û ′

r(dr) = U ′
r(dr)(1 − dr/C).

Since Ur is concave and strictly increasing, we know that U ′
r(dr) > 0, and that U ′

r is

nonincreasing; we conclude that Û ′
r(dr) is nonnegative and strictly decreasing in dr

over the region 0 ≤ dr ≤ C, as required.

Step 5: There exists a unique vector d and scalar ρ such that:

U ′
r(dr)

(

1 − dr

C

)

= ρ, if dr > 0; (2.22)

U ′
r(0) ≤ ρ, if dr = 0; (2.23)

∑

r

dr = C. (2.24)
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The vector d is then the unique optimal solution to GAME. By Step 4, since Ûr is con-

tinuous and strictly concave over the convex, compact feasible region for each r, we

know that GAME has a unique optimal solution. This optimal solution d is uniquely

identified by the stationarity conditions (2.22)-(2.23), together with the constraint that
∑

r dr ≤ C. Since Ûr is strictly increasing for each r, the constraint (2.24) must hold as

well. That ρ is unique then follows because at least one dr must be strictly positive at

the unique optimal solution to GAME.

Step 6: If (d, ρ) satisfies (2.22)-(2.24), then the vector w = ρd is a Nash equilibrium. We

first check that at least two components of d are positive, and that ρ > 0. We know

from (2.24) that at least one component of d is strictly positive. Suppose now that

dr > 0, and ds = 0 for s 6= r. Then we must have dr = C. But then by (2.22), we have

ρ = 0; on the other hand, since Us is strictly increasing and concave, we have U ′
s(0) > 0

for all s, so (2.23) cannot hold for s 6= r. Thus at least two components of d are positive.

In this case, it is seen from (2.22) that ρ > 0 as well.

By Step 3, to check that w = ρd is a Nash equilibrium, we must only check the

stationarity conditions (2.20)-(2.21). We simply note that under the identification w =

ρd, using (2.24) we have that:

ρ =

∑

r wr

C
; and dr =

wr
∑

s ws
C.

Substitution of these expressions into (2.22)-(2.23) leads immediately to (2.20)-(2.21).

Thus w is a Nash equilibrium.

Step 7: If w is a Nash equilibrium, then the vector d defined by (2.15) and scalar ρ defined

by ρ = (
∑

r wr)/C are the unique solution to (2.22)-(2.24). We simply reverse the argu-

ment of Step 6. By Step 3, w satisfies (2.20)-(2.21). Under the identifications of (2.15)

and ρ =
∑

r wr/C, we find that d and ρ satisfy (2.22)-(2.24). By Step 5, such a pair

(d, ρ) is unique.

Step 8: There exists a unique Nash equilibrium w, and the vector d defined by (2.15) is

the unique optimal solution to GAME. This conclusion is now straightforward. Existence

follows by Steps 5 and 6, and uniqueness follows by Step 7 (since the transformation

from w to (d, ρ) is one-to-one). Finally, that d is an optimal solution to GAME follows

by Steps 5 and 7. 2

Theorem 2.2 shows that the unique Nash equilibrium of the single link game is

characterized by the optimization problem GAME. Other games have also profited

from such relationships—notably traffic routing games, in which Nash equilibria can

be found as solutions to a global optimization problem. Roughgarden and Tardos use
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this fact to their advantage in computing efficiency loss for such games [108]; Correa,

Schulz, and Stier Moses also use this relationship to consider routing games in capaci-

tated networks [21].

Theorem 2.2 is also closely related to potential games [86, 105], where best responses

of players are characterized by changes in a global potential function. In such games,

the global minima of the potential function correspond to Nash equilibria, as we ob-

served for the problem GAME. However, it can be shown that despite this correspon-

dence the objective function of the problem GAME is not a potential function.1

Finally, we note that for the game presented here, several authors have derived re-

sults similar to Theorem 2.2. Gibbens and Kelly [45] considered the special case where

all the functions Ur are linear, and demonstrated existence and uniqueness of the Nash

equilibrium in this setting. The first result for general utility functions was given by La

and Anantharam [73], who showed that if the users’ strategies are restricted to a com-

pact set [Wmin, Wmax], where 0 < Wmin < Wmax < ∞, then there exists a unique Nash

equilibrium. Maheswaran and Basar consider a model where a fixed value of ε > 0 is

added to the price of the link [79]; the allocation to user r is thus dr = wr/(
∑

s ws + ε),

which avoids the possible discontinuity of Qr when wr = 0. The authors demonstrate

existence and uniqueness of the Nash equilibrium in this setting. It is possible to use

the model of [79] to show existence (but not uniqueness) of the Nash equilibrium of

the game defined by (Q1, . . . , QR), by taking a limit as ε → 0; indeed, such a limit

forms the basis of our proof of existence of Nash equilibria in the network context (see

Theorem 2.12).

� 2.1.3 Corollaries

The ability of users to anticipate their effect on prices is a form of market power in eco-

nomic terminology [82]. One effect of market power is typically a loss of efficiency;

in our model, this loss is no more than 25% of the optimal aggregate utility, as sum-

marized by Theorem 2.6. Another effect, however, is that as the users gain market

power, the resource manager loses market power; formally, the revenues to the re-

source manager drop when users anticipate their effect on prices. This is summarized

in the following theorem.

Corollary 2.3

Suppose that R > 1, and that Assumption 2.1 holds. Let (wS , µ) be a competitive equilibrium,

and let ρ =
∑

r wr/C, where w is the unique Nash equilibrium of Theorem 2.2. Then 0 ≤ ρ <

µ.

1To see why, we first note that for (2.16) to yield a potential function, it must be the case that the
derivative of (2.16) with respect to the strategy wr of user r must have the same sign as the derivative of
Qr(wr;w−r) with respect to wr , for fixed w−r . On the other hand, observe that (2.16) is a function of d,
not w; if we substitute (2.15) and differentiate with respect to wr , the resulting derivative need not have
the same sign as the derivative of Qr(wr;w−r) with respect to wr .
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Proof. The fact that ρ ≥ 0 follows from the definition. Let dS be any optimal

solution to SYSTEM, and let dG be the unique optimal solution to GAME. Then we

know:

U ′
r(d

S
r ) = µ, if dS

r > 0;

≤ µ, if dS
r = 0;

Û ′
r(d

G
r ) =

(

1 − dG
r

C

)

U ′
r(d

G
r ) = ρ, if dG

r > 0;

≤ ρ, if dG
r = 0.

These statements follow from the proofs of Theorems 2.1 and 2.2; recall that both ρ and

µ are uniquely determined.

Suppose that ρ ≥ µ. Consider any r such that dS
r = 0. Then U ′

r(0) ≤ µ, so U ′
r(0) ≤ ρ;

thus dG
r = 0 as well. Thus if dG

r > 0, then dS
r > 0.

Consider any r such that dG
r > 0; we know dG

r < C, since at least two components

of dG are strictly positive (by the proof of Theorem 2.2). Then:

U ′
r(d

G
r ) = ρ

(

1 − dG
r

C

)−1

> ρ ≥ µ.

On the other hand, since dG
r > 0 implies dS

r > 0, we know that U ′
r(d

S
r ) = µ. So

we must have dG
r < dS

r . Since this is true for all r where dG
r > 0, we conclude that

C =
∑

r dG
r <

∑

r dS
r = C, a contradiction. Thus we must have had ρ < µ. 2

The following corollary is immediate from the preceding proof.

Corollary 2.4

Suppose that R > 1, and that Assumption 2.1 holds. Let AS ⊆ {1, . . . , R} be the set of users

with positive rate at any optimal solution dS of SYSTEM, and let AG ⊆ {1, . . . , R} be the set

of users with positive rate at the unique optimal solution dG of GAME. Then AS ⊆ AG.

Recall that the resource manager’s revenue when users are not price anticipating is

given by
∑

r wr = µC (from (2.7)), where (w, µ) satisfies the conditions of Theorem 2.1.

Similarly, when users play the game (Q1, . . . , QR), the resource manager’s revenue is
∑

r wr = ρC, where w is the unique Nash equilibrium of Theorem 2.2. Corollary 2.3

thus shows that the resource manager’s revenue is strictly lower when users anticipate

the effect of their actions on the link price.

Both the lower and upper bounds on ρ in Corollary 2.3 are essentially tight. We

first give an example where ρ is arbitrarily close to µ. Consider a system with R users,

where Ur(dr) = dr for all r. Then µ = 1, since U ′
r(dr) = 1 for all r. At the unique Nash

equilibrium of the game, dr = 1/R for all r, and ρ = 1−dr = 1−1/R. Thus, as R → ∞,
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we find that ρ → µ.

To see that ρ may become arbitrarily small, consider two users sharing a link of

capacity 1, where U1(d1) = d1, and U2(d2) = εd2. Then at the efficient allocation,

d1 = C, d2 = 0, and the unique competitive equilibrium price is µ = 1. On the other

hand, at the Nash equilibrium we have:

1 − d1 = ε(1 − d2) = ρ,

and d1 + d2 = 1. Combining these relations, we find that:

ρ =
ε

1 + ε
.

As ε → 0, the revenues ρ to the network manager approach zero as well; note that

in this case the ratio ρ/µ also goes to zero, so the percentage of revenues lost can be

arbitrarily high.

However, at least one positive result is possible, in the case where all utilities

are linear. Let Ur(dr) = αrdr, with R > 1. Assume without loss of generality that

α1 ≥ α2 ≥ · · · ≥ αR > 0. The following corollary shows that the ratio of the Nash

equilibrium price ρ to the second highest slope α2 is no lower than 1/2. Recall that un-

der a Vickrey auction with linear utilities [139], the revenue to the auctioneer is given

by the second highest valuation for the commodity, given by α2C. Thus the following

corollary guarantees that the revenue to the resource manager is no worse than 50% of

the revenue under a Vickrey auction.

Corollary 2.5

Suppose that R > 1, and that for each r, Ur(dr) = αrdr, where α1 ≥ α2 ≥ · · · ≥ αR > 0.

Let ρ =
∑

r wr/C, where w is the unique Nash equilibrium of Theorem 2.2. Then ρ ≥ α2/2,

and this bound is tight.

Proof. Let dG denote the allocation at the Nash equilibrium. From Theorem 2.2,

we know that at least two users have dG
r > 0 at the Nash equilibrium. Furthermore,

from the structure of the modified utility function (2.19), it is clear that if αr ≥ αs, then

dG
r ≥ dG

s . We conclude that dG
1 ≥ dG

2 , and:

ρ = α1

(

1 − dG
1

C

)

= α2

(

1 − dG
2

C

)

.

Now suppose that ρ < α2/2. Then from the preceding relation, this is only possible if

dG
2 > C/2. Since dG

1 ≥ dG
2 , we have dG

1 > C/2. But then dG
1 + dG

2 > C, which violates

the capacity constraint in GAME. Thus we must have ρ ≥ α2/2. The bound holds with

equality if R = 2 and α1 = α2 > 0. 2
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� 2.2 Efficiency Loss: The Single Link Case

We let dS denote an optimal solution to SYSTEM, and let dG denote the unique optimal

solution to GAME. We now investigate the efficiency loss of this system; that is, how

much utility is lost because the users are price anticipating? To answer this question,

we must compare the utility
∑

r Ur(d
G
r ) obtained when the users fully evaluate the

effect of their actions on the price, and the utility
∑

r Ur(d
S
r ) obtained by choosing

the point which maximizes aggregate utility. (We know, of course, that
∑

r Ur(d
G
r ) ≤

∑

r Ur(d
S
r ), by definition of dS .)

An easy lower bound on
∑

r Ûr(d
G
r ) may be constructed by using the modified

utility functions Ûr defined in (2.19). Notice that Ûr(dr) may be viewed as the “expec-

tation” of Ur with respect to a probability distribution which places a mass of 1−dr/C

on the rate dr (the first term of (2.19)), and uniformly distributes the remaining mass of

dr/C on the interval [0, dr] (the second term of (2.19)). We now use this interpretation

to show that the efficiency loss is no more than 50% when users are price anticipating.

Assume that Ur(0) ≥ 0. Since Ur is strictly increasing, we know that:

1

dr

∫ dr

0
Ur(z) dz ≤ Ur(dr).

From expression (2.19), we may conclude that for 0 ≤ dr ≤ C, we have Ûr(dr) ≤
Ur(dr).

By concavity of Ur, we have the following inequality for 0 ≤ z ≤ dr:

Ur(z) ≥ z

dr
Ur(dr) +

(

1 − z

dr

)

Ur(0).

Now since Ur(0) ≥ 0, this inequality reduces to:

Ur(z) ≥ z

dr
Ur(dr).

Integrating both sides from 0 to dr, we have:

∫ dr

0
Ur(z) dz ≥ dr

2
Ur(dr).

We have the trivial bound that Ur(dr) ≥ 1
2Ur(dr), since Ur is strictly increasing and
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Ur(0) ≥ 0. Thus:

Ûr(dr) =

(

1 − dr

C

)

Ur(dr) +

(

dr

C

)(

1

dr

∫ dr

0
Ur(z) dz

)

≥
(

1 − dr

C

)(

1

2
Ur(dr)

)

+

(

dr

C

)(

1

2
Ur(dr)

)

=
1

2
Ur(dr).

Let dS be any optimal solution of SYSTEM. Then:

1

2

∑

r

Ur(d
S
r ) ≤

∑

r

Ûr(d
S
r ).

Let dG be the unique optimal solution to GAME; then since dS is also feasible for

GAME, we know that
∑

r

Ûr(d
S
r ) ≤

∑

r

Ûr(d
G
r ).

Finally, we know that Ûr(d
G
r ) ≤ Ur(d

G
r ) for each r. Combining these inequalities yields:

1

2

∑

r

Ur(d
S
r ) ≤

∑

r

Ûr(d
S
r ) ≤

∑

r

Ûr(d
G
r ) ≤

∑

r

Ur(d
G
r ).

The preceding argument shows that the efficiency loss is no more than 50% when users

are price anticipating. However, this bound is not tight. As we show in the following

theorem, the efficiency loss is exactly 25% in the worst case.

Theorem 2.6

Suppose that R > 1, and that Assumption 2.1 holds. Suppose also that Ur(0) ≥ 0 for all r.

If dS is any optimal solution to SYSTEM, and dG is the unique optimal solution to GAME,

then:
∑

r

Ur(d
G
r ) ≥ 3

4

∑

r

Ur(d
S
r ).

Furthermore, this bound is tight: for every ε > 0, there exists a choice of R, and a choice of

(linear) utility functions Ur, r = 1, . . . , R, such that:

∑

r

Ur(d
G
r ) ≤

(

3

4
+ ε

)

(

∑

r

Ur(d
S
r )

)

.

Proof. We first show that because of the assumption that Ur is concave and strictly

increasing for each r, the worst case occurs with linear utility functions. This is sum-

marized in the following lemma.
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Lemma 2.7 Suppose that Assumption 2.1 holds. Suppose that Ur(0) ≥ 0 for all r. Let

d = (d1, . . . , dr) satisfy
∑

r dr ≤ C, and let dS be any optimal solution to SYSTEM. Then

the following inequality holds:

∑

r Ur(dr)
∑

r Ur(dS
r )

≥
∑

r U ′
r(dr)dr

(

maxr U ′
r(dr)

)

C
. (2.25)

Proof of Lemma. Using concavity, we have Ur(d
S
r ) ≤ Ur(dr) + U ′

r(dr)(d
S
r − dr); see

Figure 2-2. Furthermore, since Ur is strictly increasing and nonnegative for each r, we

have
∑

r Ur(d
S
r ) > 0. Thus:

∑

r Ur(dr)
∑

r Ur(dS
r )

≥
∑

r(Ur(dr) − U ′
r(dr)dr) +

∑

r U ′
r(dr)dr

∑

r(Ur(dr) − U ′
r(dr)dr) +

∑

r U ′
r(dr)dS

r

.

Furthermore, since
∑

r dS
r = C, we have the following trivial inequality:

∑

r

U ′
r(dr)d

S
r ≤

(

max
r

U ′
r(dr)

)

C.

This yields:

∑

r Ur(dr)
∑

r Ur(dS
r )

≥
∑

r(Ur(dr) − U ′
r(dr)dr) +

∑

r U ′
r(dr)dr

∑

r(Ur(dr) − U ′
r(dr)dr) +

(

maxr U ′
r(dr)

)

C
.

Now notice that because we have assumed Ur(0) ≥ 0, we again have by concavity that

U ′
r(dr)dr ≤ Ur(dr). Thus the expression

∑

r(Ur(dr) − U ′
r(dr)dr) is nonnegative, so we

conclude that:
∑

r Ur(dr)
∑

r Ur(dS
r )

≥
∑

r U ′
r(dr)dr

(

maxr U ′
r(dr)

)

C
,

since the right hand side of the expression above is less than or equal to 1. 2

Let the vector dG be the unique Nash equilibrium of the game with utility functions

U1, . . . , UR. We define a new collection of linear utility functions by:

U r(dr) = U ′
r(d

G
r )dr.

Notice that the stationarity conditions (2.22)-(2.24) only involve the first derivatives of

the utility functions Ur, r = 1, . . . , R, at dG; thus, the unique Nash equilibrium of the

game with utility functions U1, . . . , UR is given by dG as well. Formally, dG satisfies

the stationarity conditions (2.22)-(2.24) for the family of utility functions U1, . . . , UR.

Furthermore, the optimal aggregate utility for this family of utility functions is given

by
(

maxr U ′
r(d

G
r )
)

C. Applying Lemma 2.7 with d = dG, we thus see that the worst



SECTION 2.2. EFFICIENCY LOSS: THE SINGLE LINK CASE 53

Ur(dr)

dr

dr

Figure 2-2. Proof of Lemma 2.7: We replace the utility function Ur by a linearization (dashed line) at
the allocation dr . The linearization has the same value at dr , but is uniformly higher than Ur . Thus the
optimal value of SYSTEM can only increase if we replace all utilities by their linearizations.

case efficiency loss occurs in the case of linear utility functions. We now proceed to

calculate this efficiency loss.

Assume for the remainder of the proof, therefore, that Ur is linear, with Ur(dr) =

αrdr, where αr > 0. Let dG be the Nash equilibrium of the game with these utility

functions. From the discussion in the preceding paragraph, the ratio of aggregate util-

ity at the Nash equilibrium to aggregate utility at the optimal solution to SYSTEM is

given by:
∑

r αrd
G
r

(maxr αr)C
.

By scaling αr and relabeling the users if necessary, we assume without loss of general-

ity that maxr αr = α1 = 1, and C = 1. To identify the worst case situation, we would

like to find α2, . . . , αR such that dG
1 +

∑R
r=2 αrd

G
r , the total utility associated with the

Nash equilibrium, is as small as possible; this results in the following optimization

problem (with unknowns dG
1 , . . . , dG

R, α2, . . . , αR):

minimize dG
1 +

R
∑

r=2

αrd
G
r (2.26)

subject to αr(1 − dG
r ) = 1 − dG

1 , if dG
r > 0; (2.27)

αr ≤ 1 − dG
1 , if dG

r = 0; (2.28)
∑

r

dG
r = 1; (2.29)

0 ≤ αr ≤ 1, r = 2, . . . , R; (2.30)

dG
r ≥ 0, r = 1, . . . , R. (2.31)
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This optimization problem chooses linear utility functions with slopes less than or equal

to 1 for players 2, . . . , R. The constraints in the problem require that given linear utility

functions Ur(dr) = αrdr for r = 1, . . . , R, the allocation dG must in fact be the unique

Nash equilibrium allocation of the resulting game. As a result, the optimal objective

function value is precisely the lowest possible aggregate utility achieved, among all

such games. In addition, since C = 1, and the largest αr is α1 = 1, the optimal aggre-

gate utility is exactly 1; thus, the optimal objective function value of this problem also

directly gives the worst case efficiency loss.

Suppose now (α,d) is an optimal solution to (2.26)-(2.31) in which n < R users,

say users r = R−n+1, . . . , R, have dG
r = 0. Then the first R−n coordinates of α and d

must be an optimal solution to the problem (2.26)-(2.31), with R − n users. Therefore,

in finding the worst case game, it suffices to assume that dG
r > 0 for all r = 2, . . . , R,

and then consider the optimal objective function value for R = 2, 3, . . .. This allows us

to consider only the constraint:

αr(1 − dG
r ) = 1 − dG

1 . (2.32)

This constraint then implies that αr = (1 − dG
1 )/(1 − dG

r ). We will solve the resulting

“reduced” optimization problem by decomposing it into two stages. First, we fix a

choice of dG
1 and optimize over dG

r , r = 2, . . . , R; then, we choose the optimal value of

dG
1 .

Given these observations, we fix dG
1 , and consider the following, simpler optimiza-

tion problem:

minimize dG
1 +

R
∑

r=2

dG
r (1 − dG

1 )

1 − dG
r

subject to
R
∑

r=2

dG
r = 1 − dG

1 ;

0 ≤ dG
r ≤ dG

1 , r = 2, . . . , R.

Notice that we have substituted for αr in the objective function. The constraint αr ≤ 1

becomes equivalent to dG
r ≤ dG

1 under the identification (2.32).

This simpler problem is only well defined if dG
1 ≥ 1/R; otherwise the feasible re-

gion is empty—in other words, there exist no Nash equilibria with dG
1 < 1/R. If we

assume that dG
1 ≥ 1/R, then the feasible region is convex, compact, and nonempty,

and the objective function is strictly convex in each of the variables dG
r , r = 2, . . . , R.

This is sufficient to ensure that there exists a unique optimal solution as a function of



SECTION 2.2. EFFICIENCY LOSS: THE SINGLE LINK CASE 55

dG
1 ; further, by symmetry, this optimal solution must be:

dG
r =

1 − dG
1

R − 1
,

for r = 2, . . . , R.

We now optimize over dG
1 . After substituting, we have the following optimization

problem:

minimize dG
1 + (1 − dG

1 )2
(

1 − 1 − dG
1

R − 1

)−1

subject to
1

R
≤ dG

1 ≤ 1.

The objective function for the preceding optimization problem is decreasing in R for

every value of dG
1 ; in the limit where R → ∞, the worst case efficiency loss is given by

solving the following problem:

minimize dG
1 + (1 − dG

1 )2

subject to 0 ≤ dG
1 ≤ 1.

It is simple to establish that the optimal solution to this problem occurs at dG
1 = 1/2,

which yields a worst case aggregate utility of 3/4, as required. This bound is tight in

the limit where the number of users increases to infinity; using this fact, we obtain the

tightness claimed in the theorem. 2

The preceding theorem shows that in the worst case, aggregate utility falls by no

more than 25% when users are able to anticipate the effects of their actions on the

price of the link. Furthermore, this bound is essentially tight. In fact, it follows from

the proof that the worst case consists of a link of capacity 1, where user 1 has utility

U1(d1) = d1, and all other users have utility Ur(dr) ≈ dr/2 (when R is large). As

R → ∞, at the Nash equilibrium of this game user 1 receives a rate dG
1 = 1/2, while

the remaining users uniformly split the rate 1− dG
1 = 1/2 among themselves, yielding

an aggregate utility of 3/4.

We note that a similar bound was observed by Roughgarden and Tardos for traf-

fic routing games with affine link latency functions [108]. They found that the ratio

of worst case Nash equilibrium cost to optimal cost was 4/3. However, it remains an

open question whether a relationship can be drawn between the two games; in partic-

ular, we note that while Theorem 2.6 holds even if the utility functions are nonlinear,

Roughgarden and Tardos have shown that the efficiency loss due to selfish users in

traffic routing may be arbitrarily high if link latency functions are nonlinear.

We conclude this section with a limit theorem, which shows that if the number of
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users grows to infinity while each user is allocated a negligible fraction of the resource,

then the efficiency loss becomes negligible.

Corollary 2.8

Let U1, U2, . . . be a sequence of utility functions such that Assumption 2.1 is satisfied, and

supr U ′
r(0) < ∞. Denote by dG(R) and dS(R) the unique optimal solution to GAME and any

optimal solution to SYSTEM, respectively, when R users with utility functions U1, . . . , UR

share a single link of capacity C. If:

lim
R→∞

dG
r (R) = 0 for all r,

then:

lim
R→∞

∑R
r=1 Ur(d

G
r (R))

∑R
r=1 Ur(dS

r (R))
= 1.

Proof. Let γ = supr U ′
r(0) < ∞. Let ρ(R) denote the unique Nash equilibrium

price when the utility functions are U1, . . . , UR. We first show that supR>1 ρ(R) ≤ γ.

Suppose not; then choose R such that ρ(R) > γ. But then we must have dG
r (R) = 0 for

all r = 1, . . . , R, which is impossible. Thus ρ(R) remains bounded below γ; choose a

convergent subsequence ρ(Rk) → ρ ≤ γ. We will show ρ = γ. To see this, note that for

all Rk and all r = 1, . . . , Rk, we have:

U ′
r(d

G
r (Rk))

(

1 − dG
r (Rk)

C

)

≤ ρ(Rk).

Now as Rk → ∞, the left hand side converges to U ′
r(0) for all r, and the right hand

side converges to ρ. Thus ρ ≥ supr U ′
r(0) = γ, so ρ = γ. Thus limR→∞ ρ(R) = γ.

By applying Lemma 2.7, we see that:

1 ≥
∑R

r=1 Ur(d
G
r (R))

∑R
r=1 Ur(dS

r (R))
≥
∑R

r=1 U ′
r(d

G
r (R))dG

r (R)
(

maxR
r=1 U ′

r(d
G
r (R))

)

C
.

Now if dG
r (R) > 0, then we have U ′

r(d
G
r (R))(1−dG

r (R)/C) = ρ(R), so that U ′
r(d

G
r (R)) >

ρ(R). Thus
∑R

r=1 U ′
r(d

G
r (R))dG

r (R) ≥ ρ(R)C. On the other hand, by concavity we have

U ′
r(d

G
r (R)) ≤ U ′

r(0), so that maxR
r=1 U ′

r(d
G
r (R)) ≤ γ. We conclude that:

1 ≥
∑R

r=1 Ur(d
G
r (R))

∑R
r=1 Ur(dS

r (R))
≥ ρ(R)

γ
.

As R → ∞, the right hand side converges to 1, which establishes the desired result. 2

The previous result refers to a “competitive limit”: as the system becomes large, if

each user consumes an infinitesimal fraction of the resource, then the price anticipating
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behavior of the players does not adversely affect the system; as a result, it is as if all

users were price takers, and the link begins to operate near an efficient allocation. Such

results are frequently observed in oligopoly models; see, e.g., [82] for details.

� 2.3 Profit Maximizing Link Managers

Before continuing to our discussion of general network topologies, we will consider

the effects of selfish link managers on the efficiency results above. We have assumed

to this point that the link manager does not manipulate the pricing mechanism to his

advantage. Specifically, we might expect the link manager to advertise a capacity Ĉ

which is strictly lower than the true capacity C, with the aim of increasing the total

revenues
∑

r wr received at the Nash equilibrium. In this section, we will explore a

formal model to determine the consequences of such behavior.

We consider a two stage model. At the first stage, the link manager chooses an

advertised capacity Ĉ > 0, such that Ĉ ≤ C. At the second stage, R users take the

advertised capacity Ĉ as given and compete for the link, where R > 1. Thus the R

users have no knowledge of the true capacity C; the pricing mechanism of Section 2.1

is used to allocate the advertised capacity Ĉ among the users. We assume all utility

functions are linear; let Ur(dr) = αrdr, where αr > 0. We let w(Ĉ) represent the

unique Nash equilibrium at the second stage of the game (cf. Theorem 2.2), and let

d(Ĉ) represent the associated rate allocation. The revenue to the link manager when

the advertised capacity is Ĉ is given by
∑

r wr(Ĉ). We assume that the link manager

knows exactly the dependence of the Nash equilibrium w(Ĉ) at the second stage on the

choice of advertised capacity Ĉ made at the first stage. In this case, the link manager

chooses Ĉ to maximize
∑

r wr(Ĉ) over Ĉ ∈ (0, C]. We have the following theorem.

Theorem 2.9

Assume R > 1, and Ur(dr) = αrdr, where αr > 0. Then:

C = arg max
0<Ĉ≤C

[

∑

r

wr(Ĉ)

]

.

That is, advertising the true capacity C is the unique optimal strategy for the link manager.

Proof. The key to the proof is to show that the following equality holds for all

Ĉ ∈ (0, C]:
∑

r

wr(Ĉ) =
Ĉ

C

∑

r

wr(C).
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This follows by examining the stationarity conditions (2.20)-(2.21), which imply that:

αr

(

1 − wr(Ĉ)
∑

s ws(Ĉ)

)

=

∑

s ws(Ĉ)

Ĉ
, if wr(Ĉ) > 0; (2.33)

αr ≤
∑

s ws(Ĉ)

Ĉ
, if wr(Ĉ) = 0. (2.34)

Now define wr = Cwr(Ĉ)/Ĉ. Then the preceding relations imply:

αr

(

1 − wr
∑

s ws

)

=

∑

s ws

C
, if wr > 0; (2.35)

αr ≤
∑

s ws

C
, if wr = 0. (2.36)

These are exactly the stationarity conditions (2.20)-(2.21), when the advertised capacity

is C. Since the Nash equilibrium is unique, we must have w = w(C). Thus:

∑

r

wr(C) =
∑

r

wr =
C

Ĉ

∑

r

wr(Ĉ).

Rewriting, we have:
∑

r

wr(Ĉ) =
Ĉ

C

∑

r

wr(C).

But now notice that
∑

r wr(Ĉ) is strictly increasing in Ĉ, and maximized if and only if

Ĉ = C, as required. 2

The preceding theorem shows that the optimal decision for a link manager is to al-

ways truthfully declare the capacity C, since this maximizes revenue. When combined

with Theorem 2.6, we conclude that the efficiency loss will be no more than 25% when

users are price anticipating, and the link manager is profit maximizing—provided that

all utility functions are linear. Of course, the theorem is significantly dependent on the

assumption that utility functions are linear. Indeed, the assumption of linear utility en-

sures that the revenue to the link manager is scale invariant—i.e., the revenue increases

linearly in the advertised capacity Ĉ. On the other hand, in general when utility is

nonlinear, characterizing the dependence of the revenue on the advertised capacity is

much more difficult, and thus characterizing optimal strategies for the link manager is

not straightforward.

We may extend this scenario to a game where users have the choice of multiple

parallel links which they can use. We label the links 1, . . . , J , and let the true capacity

of link j be Cj . Each link j is managed by a separate link manager, who chooses
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an advertised capacity Ĉj > 0, such that Ĉj ≤ Cj . The strategy of user r is now a

vector wr = (w1r, . . . , wJr), where wjr represents the bid of user r to link j. When the

advertised capacities are Ĉ = (Ĉ1, . . . , ĈJ), and the composite strategy vector is w, the

resulting payoff to user r is:

Qr(wr;w−r) = αr





∑

j:wjr>0

wjr
∑

s wjs
Ĉj



−
∑

j

wjr

=
∑

j:wjr>0

(

αr
wjr

∑

s wjs
Ĉj − wjr

)

.

Since the utility is linear, the second equality above shows this game is as if J separate

games are played by the R users, one at each link j. This implies there exists a unique

Nash equilibrium w(Ĉ). Furthermore, since the j games are independent from each

other, the total revenue
∑

r wjr(Ĉ) to link j depends only on Ĉj . We thus have the

following theorem; the proof is identical to the proof of Theorem 2.9.

Theorem 2.10

Assume R > 1, and Ur(dr) = αrdr, where αr > 0. Then for each j, independent of the value

of Ĉ−j :

Cj = arg max
0<Ĉj≤C

[

∑

r

wr(Ĉ)

]

.

That is, advertising the true capacity Cj is the unique optimal strategy for the manager of link

j, regardless of the strategies of the other link managers.

The previous theorem shows that as long as users’ utilities are linear, advertising

the true capacity will be optimal for all link managers in a network of parallel links.

Note that in this case each of the links are perfect substitutes for each other. An interest-

ing open question concerns determining the optimal strategies for profit maximizing

link managers either when users’ utility functions are nonlinear, or when the network

topology is more complex. We also note that an interesting question concerns the im-

plications for network performance when providers are profit maximizing, and are

not constrained to use the pricing scheme of this chapter; one might ask what pricing

scheme should be chosen by a network manager to maximize revenue, even if users

are selfish. A recent paper of Ozdaglar and Acemoglu [97] investigates such a model

when the link managers choose a price per unit rate sent through their link; under

the assumption that users act as price takers, Ozdaglar and Acemoglu characterize the

optimal pricing strategy for the link managers. These models suggest a problem of

optimal mechanism design, as first proposed by Myerson [88]; a further investigation of
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this topic remains an interesting open question.

� 2.4 General Networks

In this section we will consider an extension of the single link model to general net-

works. We consider a network consisting of J links, numbered 1, . . . , J . Link j has

a capacity given by Cj > 0; we let C = (C1, . . . , CJ) denote the vector of capacities.

As before, a set of users numbered 1, . . . , R shares this network of links. We assume

there exists a set of paths through the network, numbered 1, . . . , P . By an abuse of

notation, we will use J , R, and P to also denote the sets of links, users, and paths,

respectively. Each path p ∈ P uses a subset of the set of links J ; if link j is used by

path p, we will denote this by writing j ∈ p. Each user r ∈ R has a collection of paths

available through the network; if path p serves user r, we will denote this by writing

p ∈ r. We will assume without loss of generality that paths are uniquely identified

with users, so that for each path p there exists a unique user r such that p ∈ r. (There

is no loss of generality because if two users share the same path, that is captured in

our model by creating two paths which use exactly the same subset of links.) For no-

tational convenience, we note that the links required by individual paths are captured

by the path-link incidence matrix A, defined by:

Ajp =

{

1, if j ∈ p;

0, if j 6∈ p.

Furthermore, we can capture the relationship between paths and users by the path-user

incidence matrix H, defined by:

Hrp =

{

1, if p ∈ r;

0, if p 6∈ r.

Note that by our assumption on paths, for each path p we have Hrp = 1 for exactly one

user r.

Let yp ≥ 0 denote the rate allocated to path p, and let dr =
∑

p∈r yp ≥ 0 denote

the rate allocated to user r; using the matrix H, we may write the relation between

d = (dr, r ∈ R) and y = (yp, p ∈ P ) as Hy = d. Any feasible rate allocation y must

satisfy the following constraint:

∑

p:j∈p

yp ≤ Cj , j ∈ J.

Using the matrix A, we may write this constraint as Ay ≤ C.

We continue to assume that user r receives a utility Ur(dr) from an amount of rate

dr, where the functions Ur satisfy Assumption 2.1. The natural generalization of the
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problem SYSTEM to a network context is given by the following optimization prob-

lem:

SYSTEM:

maximize
∑

r

Ur(dr) (2.37)

subject to Ay ≤ C; (2.38)

Hy = d; (2.39)

yp ≥ 0, p ∈ P. (2.40)

Since the objective function is continuous and the feasible region is compact, an opti-

mal solution y exists; since the feasible region is also convex, if the functions Ur are

strictly concave, then the optimal vector d = Hy is uniquely defined (though y need

not be unique). As in Section 2.2, we will use the optimal solution to SYSTEM as a

benchmark for the outcome of the network game.

We now define the resource allocation mechanism for this network setting. The

natural extension of the single link model is defined as follows. Each user r submits a

bid wjr for each link j; this defines a strategy for user r given by wr = (wjr, j ∈ J), and

a composite strategy vector given by w = (w1, . . . ,wR). We then assume that each

link takes these bids as input, and uses the pricing scheme developed in Section 2.1.

Formally, each link sets a price µj(w), given by:

µj(w) =

∑

r wjr

Cj
. (2.41)

As before, we assume the rate allocated to a user is proportional to his payment. We

denote by xjr(w) the rate allocated to user r by link j; we thus have:

xjr(w) =







wjr

µj(w)
, if wjr > 0;

0, otherwise.
(2.42)

We define the vector xr(w) by:

xr(w) = (xjr(w), j ∈ J).

Now given any vector xr = (xjr, j ∈ J), we define dr(xr) to be the optimal value of
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the following optimization problem:

maximize
∑

p∈r

yp (2.43)

subject to
∑

p∈r:j∈p

yp ≤ xjr, j ∈ J ; (2.44)

yp ≥ 0, p ∈ r. (2.45)

Given the strategy vector w, we then define the rate allocated to user r as dr(xr(w)).

To gain some intuition for this allocation mechanism, notice that when the vector of

bids is w, user r is allocated a rate xjr(w) at each link j. Since the utility to user r is

nondecreasing in the total amount of rate allocated, user r’s utility is maximized if he

solves the preceding optimization problem, which is a max-flow problem constrained

by the rate xjr available at each link j. In other words, user r is allocated the maximum

possible rate dr(xr(w)), given that each link j has granted him rate xjr(w). (Note

that this is not the same as the mechanism proposed by Kelly in [62], where users

submit only a single total payment to the network; we explore the consequences of this

difference further in Section 2.4.3.)

Define the notation w−r = (w1, . . . ,wr−1,wr+1, . . . ,wR). Based on the definition

of dr(xr(w)) above, the payoff to user r is given by:

Qr(wr;w−r) = Ur

(

dr(xr(w))
)

−
∑

j

wjr. (2.46)

A Nash equilibrium of the game defined by (Q1, . . . , QR) is a vector w ≥ 0 such that

for all r:

Qr(wr;w−r) ≥ Qr(wr;w−r), for all wr ≥ 0. (2.47)

Although this pricing scheme is very natural, the fact that the payoff Qr may be

discontinuous can prevent existence of a Nash equilibrium, as we first observed in

Example 2.1. Although we were able to prove a Nash equilibrium exists with R > 1

users for the single link case, the following example shows that Nash equilibria may

not exist in the network context even if R > 1.

Example 2.2

Consider an example consisting of two links, labeled j = 1, and j = 2. The first link has

capacity C1, and the second link has capacity C2 > C1, as depicted in Figure 2-3. The

system consists of R users, where we assume that each user r has a strictly increasing,

concave, continuous utility function Ur. For this example, we will assume each user

r is identified with a single path consisting of both links 1 and 2. This simplifies the
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1

2

R

U
se

rs
C1 C2

Figure 2-3. Example 2.2: Link 1 has capacity C1, and link 2 has capacity C2, where C1 < C2. Each one of
R users requires service from both links.

analysis, since the optimal solution to the problem (2.43)-(2.45) is then given by:

dr(xr(w)) = min{x1r(w), x2r(w)}.

We will show that no Nash equilibrium exists for this network. Suppose, to the

contrary, that w is a Nash equilibrium. We first show that
∑

r wjr > 0, for j = 1, 2.

If not, then all users are allocated zero rate. First suppose that
∑

r wjr = 0 for both

j = 1, 2. Then any user r can profitably deviate by infinitesimally increasing w1r and

w2r, say by ∆ > 0; this deviation will give user r rate min{C1, C2} = C1, and increase

the total payment by 2∆. For small enough ∆, this will strictly improve the payoff of

player r; thus no Nash equilibrium exists where
∑

r wjr = 0 for both j = 1, 2. A similar

argument follows if
∑

r w1r = 0, but
∑

r w2r > 0: in this case, for any user r such that

w2r > 0, a profitable deviation exists where w2r is reduced to zero; this leaves user r’s

rate allocation unchanged at zero, while reducing his total payment to the network.

Symmetrically, the same argument may be used when
∑

r w1r > 0, and
∑

r w2r = 0.

As a result, we conclude that if w is a Nash equilibrium, we must have
∑

r wjr > 0 for

both j = 1, 2.

Now note that (trivially) we have the relations:

∑

r

w1r
∑

s w1s
C1 = C1; and

∑

r

w2r
∑

s w2s
C2 = C2.

Since C1 < C2, there must exist at least one user r for whom (w1rC1)/(
∑

s w1s) <

(w2rC2)/(
∑

s w2s). Recall that user r is allocated a total rate equal to:

min

{

w1r
∑

s w1s
C1,

w2r
∑

s w2s
C2

}

.

As a result, user r can profitably deviate by reducing w2r, since this reduces his pay-



64 CHAPTER 2. MULTIPLE CONSUMERS, INELASTIC SUPPLY

ment, without altering his rate allocation. Thus no such vector w can be a Nash equi-

librium. 2

As will be seen in the following development, the issue in the previous example is

that link 2 is not a bottleneck in the network (since C1 < C2, link 2 will never be fully

utilized). As a result, as long as the total payment
∑

s w2s to link 2 is strictly positive,

there will always be some user r who is overpaying—i.e., this user could profitably

deviate by reducing w2r. Thus the only equilibrium outcome is one where the total

payment to link 2 becomes zero; but in this case, because of the discontinuity in the

payoff function defined in (2.46) (or, more precisely, the discontinuity in (2.42)), all

users are allocated zero rate. In fact, by a similar argument it is possible to see that a

competitive equilibrium need not exist in general either. Considering the same model

as Example 2.2, one can show that at any competitive equilibrium the price µ2 at link

2 must be zero; however, in that case the payoff to any user r is not well defined for

wr > 0.

We will see in the following section that a resolution to this problem can be found

if users are allowed to request and be allocated a nonzero rate from links for which the

total payment is zero. We show that Nash equilibria are always guaranteed to exist for

this “extended” game; furthermore, we show that any Nash equilibrium for the game

defined by (Q1, . . . , QR) corresponds in a natural way to a Nash equilibrium of the

extended game. In Section 2.4.2, we show that the aggregate utility at any Nash equi-

librium of the extended game is no less than 3/4 times the SYSTEM optimal aggregate

utility, matching the result achieved for the single link game. Finally, in Section 2.4.3

we consider the relationship between the network pricing proposal given here and the

original pricing proposal of Kelly [62].

� 2.4.1 An Extended Game

In this section, we consider an extended game, where users not only submit bids, but

also rate requests. We consider an allocation mechanism under which the rate requests

are only taken into account by a link when the total payment to that link is zero. This

behavior ensures that when a link is not congested (as in Example 2.2), or is not in

sufficient demand (as in Example 2.1), users may still be allocated a nonzero rate on

that link. In particular, this modification addresses the degeneracies which arise due

to the discontinuity of Qr in the original definition of the network game. We will

show that Nash equilibria always exist for this extended game. (We note that extended

strategy spaces have also proven fruitful for other games with payoff discontinuities;

see, e.g., [57].)

Formally, we suppose that the strategy of user r includes a rate request φjr ≥ 0

at each link j; that is, the strategy of user r is a vector σr = (φr,wr), where φr =

(φjr, j ∈ J), and wr = (wjr, j ∈ J), as before. We will write σ = (σ1, . . . ,σR)
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to denote the composite strategy vector of all players; and we will use the notation

σ−r = (σ1, . . . ,σr−1, σr+1, . . . ,σR) to denote all components of σ other than σr. We

now suppose that each link j provides a rate xjr(σ) to user r, which is determined as

follows:

1. If
∑

s wjs > 0, then:

xjr(σ) =
wjr

∑

s wjs
Cj . (2.48)

2. If
∑

s wjs = 0, and
∑

s φjs ≤ Cj , then:

xjr(σ) = φjr. (2.49)

3. If
∑

s wjs = 0, and
∑

s φjs > Cj , then:

xjr(σ) = 0. (2.50)

In the first instance, when link j receives a positive payment from the users, rate is

allocated in proportion to the bids. The second two cases apply only when the to-

tal payment to link j is zero; in this event, if the total requested rate is less than the

capacity Cj , then the requests are granted. However, if the total requested rate ex-

ceeds capacity, no rate is allocated. We note here that the precise definition in case

3 above is not essential; any mechanism which splits the capacity Cj according to a

preset deterministic rule will lead to the same results below. For example, if requests

exceed capacity, a link may choose to allocate the same rate to all users who share the

link; or the link may choose to allocate all the entire capacity to some predetermined

“preferred” user.

It is straightforward to check, using methods similar to the proof of Theorem 2.1,

that a competitive equilibrium exists under this pricing mechanism, and any competi-

tive equilibrium is an optimal solution to SYSTEM. A competitive equilibrium consists

of a strategy vector σr for each user r, as well as a price µj for each link j, such that

µj =
∑

s wjs/Cj for all j, and each user r has optimally chosen his strategy σr while

taking the link prices µj as given.

As before, we define:

xr(σ) = (xjr(σ), j ∈ J).

The rate of user r is then dr(xr(σ)) (where dr is defined as the optimal value to the

optimization problem (2.43)-(2.45)). The payoff Tr to user r is given by:

Tr(σr; σ−r) = Ur

(

dr(xr(σ))
)

−
∑

j

wjr. (2.51)

(Note that this is an abuse of notation in the definition of xr and xjr, since we previ-
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ously had defined them as functions of w. However, the definition in use will be clear

from the argument of the function.)

A Nash equilibrium of the game defined by (T1, . . . , TR) is a vector σ ≥ 0 such that

for all r:

Tr(σr; σ−r) ≥ Tr(σr; σ−r), for all σr ≥ 0. (2.52)

Because we have extended the strategy space, in fact it is possible to prove exis-

tence of Nash equilibria under weaker conditions than those required in Section 2.1.2.

In particular, we no longer require Ur to be strictly increasing or differentiable, as in

the previous development. These modifications are summarized in the following as-

sumption.

Assumption 2.2

For each r, the utility function Ur(dr) is concave, nondecreasing, and continuous over the

domain dr ≥ 0.

From (2.48)-(2.50), the rate requests are only considered if the total payment to a

link is zero. This fact leads us to expect that any Nash equilibrium of the original

game defined by (Q1, . . . , QR) is also a Nash equilibrium of the new game defined by

(T1, . . . , TR), since in this case the rate requests should be meaningless. This is indeed

true, as we show in the following theorem.

Theorem 2.11

Suppose that Assumption 2.2 is satisfied, and that w is a strategy vector for the game defined

by (Q1, . . . , QR). For each user r, define:

φjr = xjr(w) =







wjr
∑

s wjs
Cj , if wjr > 0;

0, otherwise.

For each user r, let σr = (φr,wr). Then user r receives the same payoff in either game:

Tr(σr; σ−r) = Qr(wr;w−r).

Furthermore, if w is a Nash equilibrium of the game defined by (Q1, . . . , QR), then σ is a Nash

equilibrium of the game defined by (T1, . . . , TR).

Proof. We will refer to the game defined by (Q1, . . . , QR) as the “original game,”

and the game defined by (T1, . . . , TR) as the “extended game.” We first note that given

the definition of φjr above, we have the identity xjr(σ) = xjr(w) for each link j; that

is, the allocation from link j to user r in the extended game is identical to the allocation

made by link j in the original game. Furthermore, the total payment made by user r

remains unchanged in the extended game. Thus the payoff to user r is the same in

both games, under the mapping from w to σ defined in the statement of the theorem.
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Now suppose that w is a Nash equilibrium of the original game, and define σ as in

the statement of the theorem. For each link j and each user r, define Wjr =
∑

s 6=r wjs.

Suppose there exists a strategy vector σr = (φr, wr) such that:

Ur

(

dr(xr(σr, σ−r))
)

−
∑

j

wjr > Ur

(

dr(xr(σ))
)

−
∑

j

wjr.

Fix ε > 0. For each j, we define ŵjr = wjr if Wjr > 0, and ŵjr = ε if Wjr = 0. Then:

xjr(ŵr,w−r) ≥ xjr(σr, σ−r).

The preceding inequality follows because from each link j ∈ r with Wjr = 0, user r is

allocated the entire capacity Cj in return for the payment of ε > 0. From this we may

conclude that:

dr(xr(ŵr,w−r)) ≥ dr(xr(σr, σ−r)).

Now as ε → 0, we have limε→0
∑

j ŵjr ≤∑j wjr. Thus for sufficiently small ε > 0, we

will have:

Ur

(

dr(xr(ŵr,w−r))
)

−
∑

j

ŵjr ≥ Ur

(

dr(xr(σr, σ−r))
)

−
∑

j

ŵjr

> Ur

(

dr(xr(σ))
)

−
∑

j

wjr

= Ur

(

dr(xr(w))
)

−
∑

j

wjr.

Thus the vector ŵr = (ŵjr, j ∈ r) is a profitable deviation for user r in the origi-

nal game, a contradiction. Therefore no profitable deviation exists for user r in the

extended game. We conclude σ is a Nash equilibrium for the extended game, as re-

quired. 2

The preceding theorem shows that any Nash equilibrium of the original game cor-

responds naturally to a Nash equilibrium of the extended game. To construct a partial

converse to this result, suppose that we are given a Nash equilibrium σ = (φ,w) of

the extended game, but that
∑

r wjr > 0 for all links j. We first note that for each

link j, at least two distinct users submit positive bids. If not, then there is some link j

where a single user r submits a positive bid—but this user can leave his rate allocation

unchanged and reduce his payment by lowering the bid submitted to link j. Thus we

conclude that for each link j and each user r, the payment by all other users
∑

s 6=r wjs

is positive. This ensures the rate requests φr do not have any effect on the rate alloca-

tion made to user r, so that the payoffs are determined entirely by the bid vectors wr,

for r ∈ R. This is sufficient to conclude that w must actually be a Nash equilibrium
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for the original game. To summarize, we have shown that whenever all link prices

are positive at a Nash equilibrium in the extended game, then in fact we have a Nash

equilibrium for the original game as well.

We now turn our attention to showing that a Nash equilibrium always exists for

the extended game.

Theorem 2.12

Suppose that Assumption 2.2 is satisfied. Then a Nash equilibrium exists for the game defined

by (T1, . . . , TR).

Proof. Our technique is to consider a perturbed version of the original game, where

a “virtual” user submits a bid of ε > 0 to each link j in the network. Formally, this

means that at a bid vector w, user r is allocated a rate xε
jr(w) at link j, given by:

xε
jr(w) =

wjr

ε +
∑

s wjs
Cj .

We define the vector xε
r(w) = (xε

jr(w), j ∈ J), and the rate attained by user r is then

dr(x
ε
r(w)), where dr is the optimal value to the optimization problem (2.43)-(2.45).

The modified allocation defined by xε
r was also considered by Maheswaran and

Basar in the context of a single link [79]; we will use this allocation mechanism to

prove existence for our game by taking a limit as ε → 0. Our approach will be to first

apply standard fixed point techniques to establish existence of a Nash equilibrium wε

for this perturbed game, with an associated allocation to each user given by xε
r(w

ε).

We will then show that wε and xε
r(w

ε) (for each r) lie in compact sets, respectively. If

we then choose w and φ = (φr, r ∈ R) as limit points when ε → 0, we will find that

(w, φ) is a Nash equilibrium of the extended game.

Step 1: A Nash equilibrium wε exists in the perturbed game. We first observe that

since ε > 0, xε
jr(w) is a continuous, strictly concave, and strictly increasing function

of wjr ≥ 0 (in particular, there is no longer any discontinuity in the rate allocation at

wjr = 0). Furthermore, since dr is defined as the maximal objective value of a linear

program, dr(xr) is concave and continuous as a function of xr ([15], Section 5.2); and

if xjr ≥ xjr for all j, then clearly dr(xr) ≥ dr(xr), i.e., dr is nondecreasing (this follows

immediately from the problem (2.43)-(2.45)).

We will now combine these facts to show that user r’s payoff in this perturbed

game is concave as a function of wr, and continuous as a function of the composite

strategy w. The payoff in the perturbed game, denoted Qε
r, is given by:

Qε
r(wr;w−r) = Ur

(

dr(x
ε
r(w))

)

−
∑

j∈r

wjr.

Continuity of Qε
r as a function of w follows immediately from continuity of xε

jr, dr,
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and Ur. To show that Qε
r is concave as a function of wr, it suffices to show that

Ur(dr(x
ε
r(wr,w−r))) is a concave function of wr. Since for each j the function xε

jr is

concave in wjr, and does not depend on wkr for k 6= j, we conclude that each compo-

nent of xε
r(wr,w−r) is a concave function of wr. If we fix the bids of the other players

as w−r, then since dr is nondecreasing and concave in its argument, we have for any

two bid vectors wr,wr, and δ such that 0 ≤ δ ≤ 1:

dr(x
ε
r(δwr + (1 − δ)wr,w−r)) ≥ dr(δx

ε
r(wr,w−r) + (1 − δ)xε

r(wr,w−r))

≥ δdr(x
ε
r(wr,w−r)) + (1 − δ)dr(x

ε
r(wr,w−r)).

We now apply the fact that Ur is nondecreasing and concave to conclude that:

Ur

(

dr(x
ε
r(δwr + (1 − δ)wr,w−r))

)

≥ Ur

(

δdr(x
ε
r(wr,w−r)) + (1 − δ)dr(x

ε
r(wr,w−r))

)

≥ δUr

(

dr(x
ε
r(wr,w−r))

)

+

(1 − δ)Ur

(

dr(x
ε
r(wr,w−r))

)

.

Thus user r’s payoff function Qε
r(wr;w−r) is concave in wr.

Finally, we observe that in searching for a Nash equilibrium of the perturbed game

defined by (Qε
1, . . . , Q

ε
R), we can restrict the strategy space of each user to a compact,

convex subset of R
J . To see this, fix a user r, and choose Br > Ur(

∑

j Cj) − Ur(0).

When user r sets wr = 0, his payoff is Ur(0). On the other hand, the maximum rate

user r can be allocated from the network is bounded above by
∑

j Cj ; and thus, if user

r chooses any strategy wr such that
∑

j wjr > Br, then regardless of the strategies w−r

of all other players, we have:

Ur(dr(x
ε
r(wr,w−r)) −

∑

j

wjr ≤ Ur(
∑

j

Cj) − Br < Ur(0).

Thus, if we define the compact set Sr = {wr :
∑

j wjr ≤ Br}, we observe that user r

would never choose a strategy vector that lies outside Sr; this allows us to restrict the

strategy space of user r to the set Sr.

The game defined by (Qε
1, . . . , Q

ε
R) together with the strategy spaces (S1, . . . , SR) is

then a concave R-person game: each payoff function is continuous in the composite strat-

egy vector w; Qε
r is concave in wr; and the strategy space of each user r is a compact,

convex, nonempty subset of R
J . Applying Rosen’s existence theorem [104] (proven

using Kakutani’s fixed point theorem), we conclude that a Nash equilibrium wε exists

for this game.

Step 2: There exists a limit point σ = (φ,w) of the Nash equilibria of the perturbed games.

For each user r, define φε
jr = xε

jr(w
ε). Let φε

r = (φε
jr, j ∈ J), and φε = (φε

r, r ∈ R). We

now note that for all ε > 0, the pair (φε,wε) lies in a compact subset of Euclidean space.
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To see this, note that wε lies in the compact set S1 × · · · × SR, and that 0 ≤ φε
jr ≤ Cj

for all j and r. Thus, there exists a sequence εk → 0 such that the sequence (φεk ,wεk)

converges to some σ = (φ,w), where w ∈ S1 × · · · × SR and 0 ≤ φjr ≤ Cj .

We expect that at the limit point σ, the rates allocated to each user are the limits of

the rates allocated in the perturbed games. Formally, we show that we have:

xjr(σ) = lim
k→∞

xεk

jr (w
εk). (2.53)

Fix a link j, and suppose that
∑

r wjr = 0. By definition, φjr = limk→∞ xεk

jr (w
εk) for

each r. We thus only need to show that xjr(σ) = φjr for each r, which follows from

the rate allocation mechanism since:

∑

r

φjr = lim
k→∞

∑

r

xεk

jr (w
εk) ≤ Cj .

On the other hand, suppose that
∑

r wjr > 0. In this case, we have that xjr(σ) =

(wjrCj)/(
∑

s wjs) = limk→∞ xεk

jr (w
εk) for each r, as required.

Step 3: The vector σ is a Nash equilibrium of the extended game. Suppose σ is not a

Nash equilibrium of the extended game; then there exists some user r, and a strategy

vector σr = (φr,wr), such that Tr(σr; σ−r) > Tr(σ). Our goal will be to show that

in this case, for sufficiently small ε > 0, a profitable deviation exists for user r from

the strategy vector wε
r (i.e., from the chosen Nash equilibrium for the game defined by

Qε
1, . . . , Q

ε
R).

For fixed ε > 0, we now construct a new strategy vector wε
r for user r. First fix a

link j such that Wjr > 0; we then define wε
jr > 0 by:

wε
jr =

W ε
jr + ε

Wjr
wjr.

Observe that with this definition, as k → ∞, we have wεk

jr → wjr. We also have:

wjr

wjr + Wjr
Cj =

wε
jr

wε
jr + W ε

jr + ε
Cj .

This implies that xjr(σr, σ−r) = xε
jr(w

ε
r,w

ε
−r), regardless of how we define the re-

maining components of the vector wε
r.

To complete this definition, suppose now that we fix a link j such that Wjr = 0.

In this case we define wε
jr =

√

W ε
jr + ε. (The specific form is not important here; for

the proof we only require that when Wjr = 0, we have wε
jr/(W ε

jr + ε) → ∞ as ε → 0.)
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Then we have wεk

jr → 0 as k → ∞. Furthermore:

xε
jr(w

ε
r,w

ε
−r) =

√

W ε
jr + ε

√

W ε
jr + ε + W ε

jr + ε
Cj .

Since W εk

jr + εk → 0 as k → ∞, we conclude that xεk

jr (w
εk
r ,wεk

−r) → Cj as k → ∞.

Define ŵjr and x̂jr as the limit of wεk

jr and xεk

jr(w
εk
r ,wεk

−r), respectively. From the

preceding discussion, as k → ∞ we have the following relations:

ŵjr = lim
k→∞

wεk

jr =

{

wjr, if Wjr > 0;

0, if Wjr = 0.
(2.54)

x̂jr = lim
k→∞

xεk

jr(w
εk
r ,wεk

−r) =

{

xjr(wr,w−r), if Wjr > 0;

Cj , if Wjr = 0.
(2.55)

(2.56)

From (2.54) we conclude ŵjr ≤ wjr; and from (2.55) we have x̂jr ≥ xjr(σr, σ−r). But

then since the functions dr and Ur are nondecreasing, we conclude that:

Ur

(

dr(x̂r)
)

−
∑

j

ŵjr ≥ Ur

(

dr(xr(σr, σ−r))
)

−
∑

j

wjr

> Ur

(

dr(xr(σ))
)

−
∑

j

wjr.

The last inequality follows since wr is a profitable deviation for user r.

But now recall that the composite function Ur(dr(·)) is continuous in its argument;

as a result, from the limits in (2.53), (2.54), and (2.55), we conclude that for sufficiently

large k we will have:

Ur

(

dr(x
εk
r (wεk

r ,wεk
−r))

)

−
∑

j

wεk

jr > Ur

(

dr(x
εk
r (wεk))

)

−
∑

j

wεk

jr .

But this contradicts the fact that wεk is a Nash equilibrium for the game defined by

(Qε
1, . . . , Q

ε
R), since we have found a profitable deviation for user r. As a result, no

profitable deviation σr can exist for user r in the extended game with respect to the

strategy vector σ; thus we conclude that σ is a Nash equilibrium for the extended

game, as required. 2

The previous theorem demonstrates that the “extended” strategy space eliminates

the possibility of the nonexistence of a Nash equilibrium. Indeed, with the extended

strategy space, both Examples 2.1 and 2.2 will possess at least one Nash equilibrium.
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In Example 2.1, the Nash equilibrium is for the single user to submit a bid of w = 0,

and to request a rate φ = C. In Example, 2.2, the Nash equilibrium is constructed

as follows. First, all users play a single link game for link 1; suppose this results in

the Nash equilibrium bid vector (w11, . . . , w1R), with rate allocation to user r given

by x1r = (w1rC1)/(
∑

s w1s). We may choose φ1r arbitrarily, since it plays no role in

the resulting allocation. Suppose each user then submits a bid of w2r = 0 to link

2, but requests rate φ2r = x1r from link 2; since
∑

r x1r = C1 < C2, these requests

will be granted. It is straightforward to check that the strategy vector (φ,w) is a Nash

equilibrium for the extended game. We observe that at this Nash equilibrium, the total

payment to link 2 is zero, reflecting the fact that link 2 is not a bottleneck.

We conclude by noting that while Theorem 2.12 establishes existence of a Nash

equilibrium in the network case, we have not shown that such a Nash equilibrium

is unique. In the special case where Cj = C for all j (all capacities are equal), and

each user is identified with exactly one path through the network (fixed routing), it

is possible to use an argument analogous to the proof of Theorem 2.2 to show that

a Nash equilibrium is unique; in particular, the Nash equilibrium conditions become

equivalent to the optimality conditions for a network form of the problem GAME.

In general, however, such a technique does not apply, and uniqueness of the Nash

equilibrium remains an open question.

� 2.4.2 Efficiency Loss

Let the vector σ be a Nash equilibrium of the extended game, i.e., the game defined by

(T1, . . . , TR), and let dG = (dr(xr(σ)), r ∈ R) be the allocation at this Nash equilibrium.

Let dS denote any optimal solution to the network SYSTEM problem. The following

theorem demonstrates that the utility lost at any Nash equilibrium is no worse than

25% of the maximum possible aggregate utility, matching the result derived in the

single link model. We also note that this result does not require R > 1, or Ur to be

strictly increasing and continuously differentiable; it is therefore a stronger version of

Theorem 2.6 for the single link case.

Theorem 2.13

Suppose that Assumption 2.2 is satisfied. Assume also that Ur(0) ≥ 0 for all users r. If σ

is a Nash equilibrium for the extended network game defined by (T1, . . . , TR), and dS is any

SYSTEM optimal allocation, then:

∑

r

Ur

(

dr(xr(σ))
)

≥ 3

4

∑

r

Ur(d
S
r ).

Proof. For the single user case (R = 1), at any Nash equilibrium the single user

makes no payment to the link, and is granted any feasible capacity request. Thus

any Nash equilibrium allocation yields a rate to user 1 given by d1(C), where C is
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the vector of link capacities. This allocation is an optimal solution to SYSTEM, so the

theorem is trivially true. We assume without loss of generality, therefore, that R > 1

for the remainder of the proof.

The proof consists of three main steps. First, we describe the entire problem in

terms of the vector xr(σ) = (xjr(σ), j ∈ J) of the rate allocations to user r from the

network. We show in Lemma 2.14 that Nash equilibria can be characterized in terms of

each user r optimally choosing a rate allocation xr = (xjr, j ∈ J), given the strategies

σ−r of all other users.

In the second step, we observe that the utility to user r given a vector of rate allo-

cations xr is exactly Ur(dr(xr)); we call this a “composite” utility function. In Lemma

2.15, we linearize this composite utility function. Formally, we replace Ur(dr(xr)) with

a linear function α⊤
r xr. The difficulty in this phase of the analysis is that the composite

utility function Ur(dr(·)) may not be differentiable, because the max-flow function dr(·)
is not differentiable everywhere; as a result, convex analytic techniques are required.

Finally, we conclude the proof by observing that when the “composite” utility func-

tion for user r is linear in the vector of rate allocations xr, the network structure is no

longer relevant. In this case the game defined by (T1, . . . , TR) decouples into J games,

one for each link. We then apply Theorem 2.6 at each link to arrive at the bound in the

theorem.

We start by describing the entire problem in terms of the vector xr(σ) = (xjr(σ), j ∈
J) of the rate allocations to user r from the network. We redefine the problem SYSTEM

as follows:

maximize
∑

r

Ur(dr(xr)) (2.57)

subject to
∑

r

xjr ≤ Cj , j ∈ J ; (2.58)

xjr ≥ 0, j ∈ J, r ∈ R. (2.59)

(The notation xr is used here to distinguish from the function xr(σ).) In this problem,

the network only chooses how to allocate rate at each link to the users. The users then

solve a max-flow problem to determine the maximum rate at which they can send (this

is captured by the function dr(·)). This problem is equivalent to the problem SYSTEM

as defined in (2.37)-(2.40), because of the definition of dr(·) in (2.43)-(2.45). We label an

optimal solution to this problem by (xS
r , r ∈ R).

Next, we prove a lemma which states that a Nash equilibrium may be characterized

in terms of users optimally choosing rate allocations (xr, r ∈ R). As before, given a

bid vector w, for each link j and each user r we let Wjr =
∑

s 6=r wjs. In addition, we

define the set C ⊂ R
J by C = {x = (xj , j ∈ J) : 0 ≤ xj ≤ Cj}. For xr ∈ C, we define a
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function fr(xr; σ−r) as follows:

fr(xr; σ−r) =



















−∞, if xjr = Cj for some j with Wjr > 0;

Ur(dr(xr)) −
∑

j:Wjr>0

Wjrxjr

Cj − xjr
, otherwise.

(2.60)

Lemma 2.14 A vector σ = (φ,w) is a Nash equilibrium for the extended game if and only if

the following two conditions hold:

1. For each link j and each user r, if Wjr = 0 then wjr = 0.

2. For each user r:

xr(σ) ∈ arg max
xr∈C

fr(xr; σ−r). (2.61)

Proof of Lemma. Suppose first that σ is a Nash equilibrium. Then consider a link

j and user r such that Wjr = 0. If wjr > 0, then user r can achieve exactly the same

rate allocation, but lower his total payment, by choosing a bid wjr to link j such that

0 < wjr < wjr. This is a profitable deviation, contradicting the assumption that σ is a

Nash equilibrium. So Condition 1 must hold.

Next, suppose there exists a vector xr ∈ C such that:

fr(xr; σ−r) > fr(xr(σ); σ−r). (2.62)

First, notice that if Wjr > 0, then the rate allocation rule:

xjr(σ) =
wjr

wjr + Wjr
Cj

implies that:

wjr =
Wjrxjr(σ)

Cj − xjr(σ)
. (2.63)

Since we have already shown wjr = 0 if Wjr = 0, we have:

fr(xr(σ); σ−r) = Ur(dr(xr(σ))) −
∑

j:Wjr>0

Wjrxjr(σ)

Cj − xjr(σ)
= Tr(σr; σ−r).

On the other hand, consider the following bid vector for user r. If Wjr > 0, we define:

wjr =
Wjrxjr

Cj − xjr
.
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If Wjr = 0, then we define wjr = ε > 0. We may define φjr arbitrarily for each link j;

it will play no role in user r’s payoff.

With the strategy σr = (φr,wr), user r will be allocated a rate xjr(σr, σ−r) given

by:

xjr(σr, σ−r) =

{

xjr, if Wjr > 0;

Cj , if Wjr = 0.

In particular, we conclude that xjr(σr, σ−r) ≥ xjr for all links j, so that:

Ur(dr(xr(σr, σ−r))) ≥ Ur(dr(xr)).

The payoff to user r at the strategy vector σr is:

Tr(σr; σ−r) = Ur(dr(xr(σr, σ−r))) −
∑

j:Wjr>0

wjr −
∑

j:Wjr=0

ε

≥ fr(xr; σ−r) −
∑

j:Wjr=0

ε.

As a result, for small enough ε > 0 we conclude from (2.62) that Tr(σr; σ−r) >

Tr(σr; σ−r), contradicting the assumption that σ was a Nash equilibrium. So Con-

dition 2 must hold as well.

Conversely, suppose that Conditions 1 and 2 of the lemma hold, but that σ is not a

Nash equilibrium. Fix a user r, and let σr be a profitable deviation for user r. Define

xjr = xjr(σr, σ−r) for each link j. Also, observe that if Wjr > 0, then the relation (2.63)

holds, so we have:

Tr(σr; σ−r) = Ur(dr(xr)) −
∑

j:Wjr>0

Wjrxjr

Cj − xjr
−

∑

j:Wjr=0

wjr

≤ Ur(dr(xr)) −
∑

j:Wjr>0

Wjrxjr

Cj − xjr

= fr(xr; σ−r).

On the other hand, from Condition 1 together with (2.63), we also have:

Tr(σr; σ−r) = Ur(dr(xr(σ))) −
∑

j∈r:Wjr>0

Wjrxjr(σ)

Cj − xjr(σ)
= fr(xr(σ); σ−r).

Since σr is a profitable deviation for user r, we have Tr(σr; σ−r) > Tr(σr; σ−r), which

implies:

fr(xr; σ−r) > fr(xr(σ); σ−r).
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But this violates Condition 2 in the statement of the lemma, a contradiction. So σ must

have been a Nash equilibrium, as required. 2

Now suppose that σ is a Nash equilibrium. Our approach is to replace user r by

J users (which we call “virtual” users), one at each link j; this process has the effect

of isolating each of the links, and removes any dependence on network structure. We

define the virtual users so that σ remains a Nash equilibrium at each single link game.

Formally, for each user r, we construct a vector αr = (αjr, j ∈ J), and consider a single

link game at each link j where user r has linear utility function Ujr(xjr) = αjrxjr.

We choose the vectors αr so that the Nash equilibrium at each single link game is

also given by σ; we then apply the result of Theorem 2.6 for the single link model to

complete the proof of the theorem.

A technical difficulty arises here because the function Ur(dr(·)) may not be differen-

tiable. If the composite function gr = Ur(dr(·)) were differentiable, then as in the proof

of Theorem 2.6, we could find an appropriate vector αr by choosing αr = ∇gr(xr(σ)).

However, in general Ur(dr(·)) is not differentiable; instead, we must choose αr to be

a supergradient of Ur(dr(·)), i.e., we require −αr to be a subgradient of −Ur(dr(·)). The

reader is referred to the Notation section for reference on these definitions from con-

vex analysis. The key relationship we note is that γ is a supergradient of an extended

real-valued function g : R
J → R at x if and only if for all x ∈ R

J :

g(x) ≤ g(x) + γ⊤(x − x).

Lemma 2.14 allows us to characterize the Nash equilibrium σ as a choice of optimal

rate allocation xr by each user r, given the strategy vector σ−r of all other users. We

recall the definition of fr in (2.60); we will now view fr as an extended real valued

function, by defining fr(xr) = −∞ for xr 6∈ C. We also define extended real-valued

functions gr and hr on R
J as follows:

gr(xr) =

{

Ur(dr(xr)), if xr ∈ C;

−∞, otherwise.

and

hr(xr; σ−r) =



















−∞, if xjr ≥ Cj for some j with Wjr > 0;

−
∑

j:Wjr>0

Wjrxjr

Cj − xjr
, otherwise.

Then we have fr = gr + hr on R
J . We observe that gr is a concave function of xr ∈ R

J .

This follows because dr is a concave function of its argument (as it is the optimal value
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of the linear program (2.43)-(2.45)), and Ur is nondecreasing and concave. We also

note that hr is a concave function of xr ∈ R
J , since (Wjrxjr)/(Cj − xjr) is a strictly

convex function of xjr ∈ (−∞, Cj) whenever Wjr > 0. Consequently, fr is a concave

function of xr ∈ R
J . Furthermore, the functions fr, gr, and hr are obviously proper—

e.g., gr(0) = Ur(0), hr(0) = 0, and fr(0; σ−r) = Ur(0). We now have the following

lemma.

Lemma 2.15 Let σ be a Nash equilibrium. Then for each user r, there exists a vector αr =

(αjr, j ∈ J) such that:

1. αr ∈ −∂[−gr(xr(σ))].

2. If Wjr = 0, then αjr = 0.

3. If Wjr > 0, then αjr > 0.

4. The following relation holds:

xr(σ) ∈ arg max
xr∈C



α⊤
r xr −

∑

j:Wjr>0

Wjrxjr

Cj − xjr



 . (2.64)

Proof of Lemma. Fix a user r. Observe that with the definitions we have made, the

domain of gr is equal to C (that is, −∞ < gr(xr) < ∞ for all xr ∈ C). Furthermore, for

any xr such that xjr < Cj for all j, we have −∞ < hr(xr; σ−r) < ∞. Thus, the relative

interior of the domain of −gr (denoted ri(dom(−gr))) has nonempty intersection with

the relative interior of the domain of −hr: ri(dom(−gr)) ∩ ri(dom(−hr)) 6= ∅. From

Theorem 23.8 in [103], this is is sufficient to ensure that at xr(σ), we have:

∂[−fr(xr(σ); σ−r)] = ∂[−gr(xr(σ))] + ∂[−hr(xr(σ); σ−r)]. (2.65)

(The summation here of the two subdifferentials on the right hand side is a summation

of sets, where A + B = {x + y : x ∈ A,y ∈ B}; if either A or B is empty, then A + B is

empty as well.)

From Condition 2 in Lemma 2.14, we have for all xr ∈ C that:

fr(xr(σ); σ−r) ≥ fr(xr; σ−r).

Since fr(xr; σ−r) = −∞ for xr 6∈ C, we conclude 0 is a supergradient of fr at xr(σ),

i.e., 0 ∈ −∂[−fr(xr(σ); σ−r)]. As a result, we know from (2.65) that there exists αr ∈
−∂[−gr(xr(σ))] and βr ∈ −∂[−hr(xr(σ); σ−r)] such that αr = −βr.

We will explicitly compute βr. We first note that from Condition 2 of Lemma 2.14,

we must have 0 ≤ xjr(σ) < Cj if Wjr > 0; otherwise the objective function in (2.61)
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is equal to −∞, which cannot be optimal for user r (e.g., choosing xr = 0 yields an

objective function value of Ur(0) > −∞). Now at any point xr ∈ C such that xjr < Cj

if Wjr > 0, we note that hr is in fact differentiable, with:

∂hr

∂xjr
(xr; σ−r) =







− WjrCj

(Cj − xjr)2
, if Wjr > 0;

0, otherwise.

Since hr is differentiable at xr(σ), we conclude that in fact −∂[−hr(xr(σ); σ−r)] is a

singleton, containing only ∇hr(xr(σ); σ−r), which is defined by the previous equa-

tion. So we must have βr = ∇hr(xr(σ); σ−r), and thus:

αjr = −βjr =







WjrCj

(Cj − xjr(σ))2
, if Wjr > 0;

0, otherwise.

We have established conclusions 1, 2, and 3 of the lemma. To establish conclusion 4,

we observe that 0 is a supergradient of the following function at xr(σ):

f̂r(xr; σ−r) =



























−∞, if xr 6∈ C
or if xjr = Cj for some j with Wjr > 0;

α⊤
r xr −

∑

j:Wjr>0

Wjrxjr

Cj − xjr
, otherwise.

This observation follows by replacing gr(xr) with the following function ĝr on R
J :

ĝr(xr) =

{

α⊤
r xr, if xr ∈ C;

−∞, otherwise.

Then we have f̂r = ĝr + hr; and as before, ri(dom(−ĝr)) ∩ ri(dom(−hr)) 6= ∅, so we

have:

∂[−f̂r(xr(σ; σ−r))] = ∂[−ĝr(xr(σ))] + ∂[−hr(xr(σ); σ−r)].

The vector αr is a supergradient of ĝr for all xr ∈ C, i.e., αr ∈ −∂[−ĝr(xr)] for

all xr ∈ C; in particular, αr ∈ −∂[−ĝ(xr(σ))]. We have already shown {−αr} =

−∂[−h(xr(σ); σ−r)]. Thus 0 ∈ −∂[−f̂r(xr(σ); σ−r)]. This implies conclusion 4 of the

lemma, as required. 2

For each user r, fix the supergradient αr given by the preceding lemma. We start

by observing that for each user r, since αr is a supergradient of gr(xr(σ)), we have:

Ur(dr(x
S
r )) ≤ Ur(dr(xr(σ))) + α⊤

r (xS
r − xr(σ)). (2.66)
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Now note that if αr = 0 for all r, then we have the following trivial inequality:

∑

r

Ur(dr(xr(σ))) ≥
∑

r

Ur(dr(x
S
r )) ≥ 3

4

∑

r

Ur(dr(x
S
r )).

Thus the theorem holds in this case; so we may assume without loss of generality that

αr 6= 0 for at least one user r. This implies that αjr > 0 for at least one link j and user

r; by the preceding lemma, we must have Wjr > 0. In particular, we conclude that at

least two users are competing for resources at link j.

Since αjr = 0 if Wjr = 0, we have the following simplification of (2.64):

xr(σ) ∈ arg max
xr∈C



α⊤
r xr −

∑

j:Wjr>0

Wjrxjr

Cj − xjr





= arg max
xr∈C





∑

j:Wjr>0

(

αjrxjr −
Wjrxjr

Cj − xjr

)



 .

The maximum on the right hand side of the preceding expression decomposes into

separate maximizations for each link j with Wjr > 0. We conclude that for each link j

with Wjr > 0, we in fact have:

xjr(σ) ∈ arg max
0≤xjr≤Cj

[

αjrxjr −
Wjrxjr

Cj − xjr

]

.

Fix now a link j with
∑

r wjr > 0. We view the users as playing a single link

game at link j, with utility function for user r given by Ujr(xjr) = αjrxjr. The preced-

ing expression states that Condition 2 of Lemma 2.14 is satisfied. Furthermore, since
∑

r wjr > 0 and σ is a Nash equilibrium for the network game, from Condition 1 in

Lemma 2.14 there must exist at least two users r1, r2 such that Wjr1
, Wjr2

> 0, so in par-

ticular, Wjr > 0 for all users r. Thus Condition 1 of Lemma 2.14 is vacuously satisfied

for the single link game; and we conclude that σ is a Nash equilibrium for this single

link game at link j. More precisely, we have that (wj1, . . . , wjR) is a Nash equilibrium

for the single link game at link j, when R users with utility functions (Uj1, . . . , UjR)

compete for link j. Since Wjr > 0 for all r, we know αjr > 0 for all users r from the

preceding lemma, so Ujr is strictly increasing for each r; and since R > 1, we apply

Theorem 2.6 to conclude that:

∑

r

αjrxjr(σ) ≥ 3

4

(

max
r

αjr

)

Cj . (2.67)

(The right hand side is 3/4 of the optimal value of SYSTEM for a single link of capacity

Cj , when each user r has linear utility Ur(xjr) = αjrxjr.)
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We now complete the proof of the theorem, by following the proof of Lemma 2.7.

Note that since Wjr = 0 implies αjr = 0 from Lemma 2.15, the following relation

holds:
∑

r

∑

j:Wjr>0

αjrx
S
jr =

∑

j

∑

r

αjrx
S
jr.

Thus we have:

∑

r

α⊤
r xS

r =
∑

r

∑

j:Wjr>0

αjrx
S
jr =

∑

j

∑

r

αjrx
S
jr ≤

∑

j

(

max
r

αjr

)

Cj . (2.68)

Now note that we can assume that
∑

r Ur(dr(x
S
r )) > 0. If instead

∑

r Ur(dr(x
S
r )) = 0,

then it must be the case that
∑

r Ur(dr(xr(σ))) = 0, since xS is an optimal solution to

SYSTEM and all utility functions are nonnegative. Thus the result of the theorem triv-

ially holds in this case; so we assume without loss of generality that
∑

r Ur(dr(x
S
r )) > 0.

Given this fact, we reason as follows, using (2.66) for the first inequality, and (2.68) for

the second:

∑

r Ur(dr(xr(σ)))
∑

r Ur(dr(xS
r ))

≥
∑

r

(

Ur(dr(xr(σ))) − α⊤
r xr(σ)

)

+
∑

r α⊤
r xr(σ)

∑

r (Ur(dr(xr(σ))) + α⊤
r (xS

r − xr(σ)))

=

∑

r

(

Ur(dr(xr(σ))) − α⊤
r xr(σ)

)

+
∑

r α⊤
r xr(σ)

∑

r (Ur(dr(xr(σ))) − α⊤
r xr(σ)) +

∑

r α⊤
r xS

r

≥
∑

r

(

Ur(dr(xr(σ))) − α⊤
r xr(σ)

)

+
∑

j

∑

r αjrxjr(σ)
∑

r (Ur(dr(xr(σ))) − α⊤
r xr(σ)) +

∑

j (maxr αjr) Cj
. (2.69)

Since Ur(dr(0)) = Ur(0) = 0, applying the fact that αr is a supergradient we have:

Ur(dr(xr(σ))) − α⊤
r xr(σ) ≥ 0.

We also have:

0 ≤
∑

j

∑

r

αjrxjr(σ) ≤
∑

j

(

max
r

αjr

)

Cj .

So we conclude from relations (2.67) and (2.69) that:

∑

r Ur(dr(xr(σ)))
∑

r Ur(dr(xS
r ))

≥
∑

j

∑

r αjrxjr(σ)
∑

j (maxr αjr)Cj
≥ 3

4
.
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Observe that all denominators in this chain of inequalities are nonzero, since αr 6= 0

for at least one user r implies that:

∑

j

(max
r

αjr)Cj > 0.

Since σ was assumed to be a Nash equilibrium, this completes the proof of the theo-

rem. 2

The preceding theorem uses the single link result to determine the worst case effi-

ciency loss for general networks. Note that since we knew from Theorem 2.6 that the

bound of 3/4 was essentially tight for single link games, and a single link is a special

case of a general network, the 3/4 bound is also tight in this setting. In particular, note

that a single link yields the worst efficiency loss. This is similar to a result observed by

Roughgarden for traffic routing games [106], where the worst efficiency loss occurs in

very simple networks.

� 2.4.3 A Comparison to Proportionally Fair Pricing

Our motivation for considering the network game described in this section comes from

the network model described by Kelly in [62]. Rather than a model where users sub-

mit individual bids to each link in the network where they desire service, as we have

considered, Kelly described a market mechanism known as proportionally fair pricing

where each user r only submits a total payment wr, and receives in return a rate allo-

cation dP
r (w) (where w is the composite vector of total payments from all users). The

network chooses the splitting of wr into individual payments wjr to each link j; and

in turn, the network determines the aggregation of individual allocations (xjr, j ∈ J)

into a rate allocation dP
r to user r.

The simplest development of this network allocation model is axiomatic. We define

the proportionally fair pricing axioms as follows.

Definition 2.1

Given w ≥ 0, a vector d ≥ 0 satisfies the proportionally fair pricing axioms if there exist

vectors µ ≥ 0, λ ≥ 0, and y ≥ 0 such that:

1. For all r, dr =
∑

p∈r yp, and λr = minp∈r
∑

j∈p µj .

2. If wr = 0, then dr = 0.

3. If wr > 0, then wr = λrdr.

4. If yp > 0, then λr =
∑

j∈p µj .

5. If
∑

p:j∈p yp < Cj , then µj = 0.
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We interpret µj as the price set at link j; λr as the price per unit rate experienced

by user r; yp as the rate allocated to path p; and dr as the rate allocation to user r. We

interpret these axioms as follows. The first axiom defines dr as the total rate allocation

to user r, summed over all paths p ∈ r; and λr as the price seen by user r, determined

as the aggregate price of the cheapest path(s) available to user r. The second axiom

requires that if a user bids zero, he is allocated zero rate in return. The third axiom

ensures that if a user r submits a positive bid, his allocation is equal to the bid divided

by his price λr; thus wr is the total payment made by user r. The fourth axiom states

that the only paths on which user r sends positive rate are those with the lowest aggre-

gate price among available paths. Finally, the last axiom is a complementary slackness

condition, which ensures a positive link price is set only if the link is saturated.

The primary restrictions on this pricing mechanism are the use of wr to represent

the total payment made by user r to the network, and the fact that the network sets

a single price of µj at each link j. Kelly shows in [62] that this uniquely defines the

allocation to user r.

Proposition 2.16 (Kelly [62])

Given a vector w ≥ 0, there exists a unique allocation dP (w) satisfying the proportionally fair

pricing axioms. This allocation is the unique optimal solution to the following optimization

problem:

maximize
∑

r:wr>0

wr log dr

subject to Ay ≤ C;

Hy = d;

dr = 0, if wr = 0;

yp ≥ 0, p ∈ P.

Note that formally, for fixed w the allocation dP (w) is an optimal solution to an

analogue of SYSTEM with the utility of user r equal to Ur(dr) = wr log dr. Several

points are straightforward to check. First, in a single link setting, this mechanism is

exactly the mechanism studied in Section 2.1. Second, if users are price taking, Kelly

shows in [62] that there exists a competitive equilibrium, and the resulting allocation

is an optimal solution to SYSTEM.

We expect that proportionally fair pricing by the network will ensure the total bid

wr of user r is split among the links to maximize the rate delivered to user r, given the

splitting of the remaining users’ bids among the links. This follows from the form of

the objective function
∑

r:wr>0 wr log dr: if wr > 0, then the term wr log dr is maximized

by “purchasing” the maximum rate dr possible for user r, given the splitting across

links of the payments ws by users s 6= r. This observation suggests that at a Nash

equilibrium σ of the network game presented in Section 2.4.1, the resulting allocation
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will be the same as dP
r (w1, . . . , wR), where wr is the total payment of user r. This is

formalized in the following proposition.

Proposition 2.17

Suppose that Assumption 2.2 is satisfied. Let σ be a Nash equilibrium of the extended game

defined by (T1, . . . , TR), and let dr(xr(σ)) be the resulting allocation to user r. Let wr =
∑

j wjr. Then:

1. If wr > 0, then dr(xr(σ)) = dP
r (w1, . . . , wR).

2. If wr = 0, then dr(xr(σ)) ≥ dP
r (w1, . . . , wR) = 0.

Proof. Let dr = dr(xr(σ)) if wr > 0, and dr = 0 if wr = 0. We demonstrate the

existence of µ, λ, and y such that the proportionally fair pricing axioms are satisfied

for d. For each j, let µj = (
∑

r wjr)/Cj . For each r, let λr = minp∈r
∑

j∈p µj . If wr > 0,

then let yr = (yp, p ∈ r) be an optimal solution to (2.43)-(2.45) when xr = xr(σ);

otherwise, if wr = 0, let yr = 0. With these definitions, we have dr =
∑

p∈r yp, so the

first and second axioms are trivially satisfied.

Now suppose that for some j, we have
∑

p:j∈p yp < Cj while µj > 0. For any user r

with wjr > 0, we must have
∑

p∈r:j∈p yp = xjr(σ); otherwise user r can profitably de-

viate by reducing wjr. For any user r with wjr = 0, we have xjr(σ) = 0 =
∑

p∈r:j∈p yp.

Thus we have
∑

p:j∈p yp =
∑

r xjr(σ) < Cj , while µj > 0—a contradiction to the

definition of the pricing mechanism in Section 2.4.1. Thus the fifth axiom is satisfied.

Now suppose that yp > 0, but that
∑

j∈p µj > λr; it then follows that
∑

j∈p wjr > 0.

Choose p′ ∈ r such that
∑

j∈p′ µj = λr. Then it is straightforward to check that a

profitable deviation for user r is to infinitesimally reduce
∑

j∈p wjr and yp, and in-

finitesimally increase
∑

j∈p′ wjr and yp′ , such that the aggregate rate allocated to user

r remains unchanged, but the total payment to the network made by user r decreases.

Thus σ could not have been a Nash equilibrium; we conclude that the fourth axiom

must hold.

Finally, to verify the third axiom, note that if wjr > 0, then the constraint (2.44)

must be binding for link j at the solution yr; otherwise, user r could profitably deviate

by lowering wjr. Furthermore, if wjr > 0, then we have xjr(σ) = wjr/µj . Using these

facts and the fourth axiom, we argue as follows:

∑

j

wjr =
∑

p∈r

yp

∑

j∈p

µj =
∑

p∈r

ypλr = λrdr(xr(σ)).

This establishes the third axiom, completing the proof. 2

Thus, at a Nash equilibrium of the game studied here, the allocation is nearly the

same as that made in the network model studied by Kelly in [62]; the only difference

is that the extended game of Section 2.4.1 allows a user to receive a positive rate even
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if he does not submit a positive bid, whereas the proportionally fair pricing axioms

require that such a user receives no rate allocation (cf. Axiom 2 of Definition 2.1). We

may interpret this result as an insight into the information structure of our game. By

definition, at a Nash equilibrium of the game defined by (T1, . . . , TR) (see (2.51)), the

users have chosen their individual payments to each link optimally, while keeping the

payments by other users to each link fixed. However, given the vector σ−r of other

strategies, it suffices for user r to choose only his total payment wr to the network;

given this total payment and the strategy vector σ−r, the splitting of the payment wr

across the links should be done so as to maximize the rate allocated to user r. From

this argument, we see that at a Nash equilibrium of the game defined by (T1, . . . , TR),

it is as if the users have chosen their total payment to the network optimally, while

keeping the payments by other users to each link fixed; and, from Proposition 2.17, the

allocation to any user r with wr > 0 is then made according to the network model

described in [62]. Thus we may view such an equilibrium as a limited response equilib-

rium of the game where users submit total payments to the network: users anticipate

the effect of a change in their total payment on the prices of the links, but not on the

reallocation of other users’ total payments among the links. An alternative model, re-

quiring greater deductive capability on the part of the users, would require that each

user r completely anticipate the effect of changing his total payment wr on the reallo-

cation of the other users’ total payments (w1, . . . , wr−1, wr+1, . . . , wR) among the links

of the network. Hajek and Yang have analyzed this game, and show that in general

Nash equilibria may not exist; and further, even when Nash equilibria do exist, the

efficiency loss may be arbitrarily high, in contrast to the result of Theorem 2.13 [53].

� 2.5 Extensions

The next two sections extend the model of this chapter to cover the possibility of

stochastic capacity (Section 2.5.1), and more general resource allocation environments

(Section 2.5.2).

� 2.5.1 Stochastic Capacity

In this section we consider a model where supply is stochastic, rather than predeter-

mined. We begin by considering a single link model. Let the capacity of the single link

be C > 0, with distribution P. We assume that 0 < E[C] =
∫∞
0 CdP(C) < ∞. We also

assume, as in Section 2.1, that R users share the link. User r has a utility function Ur,

and the utilities Ur are assumed to satisfy Assumption 2.1.

In this setting, we will define an allocation in terms of the fractions allocated to each

user, rather than the absolute amount of resource allocated. Formally, we define the

problem SYSTEM as:
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SYSTEM:

maximize
∑

r

E[Ur(πrC)] (2.70)

subject to
∑

r

πr = 1; (2.71)

πr ≥ 0, r ∈ R. (2.72)

Notice that this problem chooses the fractions πr allocated to each resource optimally

ex ante; that is, before the true supply has been realized.

Our key insight in analyzing this model is that stochastic capacity is equivalent to a

model with deterministic capacity C = 1, for an appropriate choice of utility functions.

Formally, for each user r, define U r as follows:

U r(πr) = E[Ur(πrC)]. (2.73)

We have the following proposition.

Proposition 2.18

Suppose that Assumption 2.1 is satisfied by the utility functions U1, . . . , UR. Then Assump-

tion 2.1 is also satisfied by the utility functions U1, . . . , UR.

Proof. We first show U r is continuous and continuously differentiable. Let πn
r → πr

as n → ∞, where πn
r ≥ 0. Then Ur(π

n
r C) → Ur(πrC) for all C > 0. Because Ur is

strictly increasing and concave, we have:

Ur(0) ≤ Ur(π
n
r C) ≤ Ur(0) + U ′

r(0)πn
r C ≤ Ur(0) + U ′

r(0)C.

Since C is integrable, we may apply the dominated convergence theorem to conclude

that E[Ur(π
n
r C)] → E[Ur(πrC)] as n → ∞. Thus U r is continuous. Since Ur is concave

and satisfies Assumption 2.1, it has bounded derivative, and:

0 ≤ Ur(π
n
r C) − Ur(πrC)

πn
r − πr

≤ U ′
r(0)C.

Thus again applying the dominated convergence theorem we conclude that U r is dif-

ferentiable, with derivative U
′
r(πr) = E[U ′

r(πrC)C]. Furthermore, the fact that U ′
r is

bounded allows us to use the dominated convergence theorem once more to show

that U
′
r is continuous as well.

It remains to be shown that U r is concave and strictly increasing. Concavity follows

immediately from concavity of Ur, because expectation is linear; i.e., if 0 < δ < 1 and
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π1
r , π

2
r > 0, then for all C > 0:

Ur(δπ
1
rC + (1 − δ)π2

rC) ≥ δUr(π
1
rC) + (1 − δ)Ur(π

2
rC),

and taking expectations yields concavity of U r. Finally, since Ur is strictly increasing,

if π1
r > π2

r then we have Ur(π
1
rC) > Ur(π

2
rC) for for all C > 0. Taking expectations

shows that U r is strictly increasing (since E[C] > 0). 2

The preceding lemma allows us to extend the main results of Sections 2.1 and 2.2

to the setting of stochastic capacity. We start with the following proposition.

Proposition 2.19

Suppose that Assumption 2.1 is satisfied. Then there exists a vector πS solving (2.70)-(2.72).

Furthermore, πS is an optimal solution to (2.70)-(2.72) if and only if πS is an optimal solution

to (2.37)-(2.39) with utility functions U1, . . . , UR and capacity C = 1.

Proof. From Proposition 2.18, the objective function (2.70) is continuous and the

feasible region (2.71)-(2.72) is compact. Furthermore, under the identification (2.73),

the problem (2.70)-(2.72) becomes equivalent to (2.37)-(2.39). 2

We continue to use the same pricing mechanism even in the presence of stochastic

capacity. Each user submits a bid wr, and receives a fraction wr/(
∑

s ws) of the realized

capacity C. Formally, the payoff to user r is given by:

Qr(wr;w−r) =















E

[

Ur

(

wr
∑

s ws
C

)]

− wr, if wr > 0;

Ur(0), if wr = 0.

(2.74)

Now observe that Qr(wr;w−r) is identical to the payoff Qr(wr;w−r) if we substitute

the utility function U r and capacity C = 1 in the definition (2.13). This observation

leads to the following proposition.

Proposition 2.20

Assume that R > 1, and suppose that Assumption 2.1 is satisfied. Then there exists a Nash

equilibrium w ≥ 0 for the game defined by (Q1, . . . , QR). Furthermore, w ≥ 0 is a Nash

equilibrium for the game defined by (Q1, . . . , QR) if and only if w is a Nash equilibrium for the

game defined by (Q1, . . . , QR) when the utility function of each user r is U r and the capacity

is C = 1.

The next proposition shows that the aggregate utility at a Nash equilibrium is no

worse than 75% of the aggregate utility at an optimal solution to SYSTEM. The in-

tuition is clear: we simply apply Theorem 2.6 to a game where the utility function of



SECTION 2.5. EXTENSIONS 87

each user r is U r, and the capacity is C = 1.

Theorem 2.21

Suppose that Assumption 2.1 is satisfied. Suppose also that Ur(0) ≥ 0 for all r. Let w be a

Nash equilibrium of the game defined by (Q1, . . . , QR), and define:

πG
r =

wr
∑

s ws
.

If πS is any optimal solution to SYSTEM, then:

∑

r

E[Ur(π
G
r C)] ≥ 3

4

∑

r

E[Ur(π
S
r C)].

Proof. We only need to check that Ur(0) ≥ 0 implies that U r(0) ≥ 0; but this is

trivial from the definition of U r. Thus U r(0) ≥ 0 and U1, . . . , UR satisfy Assumption

2.1 (from Proposition 2.18). Thus by applying Propositions 2.19 and 2.20 together with

Theorem 2.6, the result follows. 2

It is straightforward to extend this analysis to a network context, using exactly the

same methods as we applied in Section 2.4. We include this extension in our general

resource allocation model in the following section.

� 2.5.2 A General Resource Allocation Game

In this section we consider an extension to more general resource allocation games.

Suppose that there are J infinitely divisible scarce resources, and R users require these

resources. As before, let Cj be the total available amount of resource j; we assume

that Cj is stochastic, and the joint distribution of C1, . . . , CJ is given by P. We also

require that P(Cj = 0) = 0 for all j, and E[Cj ] < ∞ for all j. We let xjr denote the

amount of resource j allocated to user r. The key property which drives the model of

this section is the assumption that user r receives a utility Vr(xr) from the allocation

xr = (xjr, j ∈ J), where Vr satisfies the following assumption.

Assumption 2.3

For each r, the utility function Vr(xr) is a concave and continuous function of the vector xr ≥
0. In addition, Vr is nondecreasing; that is, if xjr ≥ xjr for all j ∈ J , then Vr(xr) ≥ Vr(xr).

Of course, one example where these conditions are satisfied is given by the model

of this chapter, where the resources represent links in a communication network, and

each user requires a subset of these resources. User r receives a nondecreasing, con-

cave, continuous utility Ur(dr) as a function of the total rate dr obtained from the net-

work; and the rate dr(xr) is determined by solving the max-flow problem (2.43)-(2.45).
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In this case, the composite function Ur(dr(xr)) is concave and nondecreasing in the

argument xr.

Another example may be described by interpreting each resource j as a distinct

raw material, and Vr(xr) as the profits of a firm r which has access to xjr units of raw

material j for each j ∈ J . In this case, the assumption that Vr is concave corresponds

to decreasing marginal returns; and the assumption that Vr is nondecreasing implies

profits should not fall as the raw materials available increase.

We suppose now that the users play a game to acquire resources as described in

Section 2.4.1. However, because resource capacities are stochastic, we rewrite the game

in terms of the fractions of each resource allocated to user r. In particular, each user r

chooses a requested fractional resource allocation φjr and makes a bid wjr to each

resource j ∈ J . Given the composite strategy vector σ = (φ,w), resource j then

allocates a fraction πjr(σ) to user r, where πjr(·) is defined as follows:

1. If
∑

s wjs > 0, then:

πjr(σ) =
wjr

∑

s wjs
. (2.75)

2. If
∑

s wjs = 0, and
∑

s φjs ≤ 1, then:

πjr(σ) = φjr. (2.76)

3. If
∑

s wjs = 0, and
∑

s φjs > 1, then:

πjr(σ) = 0. (2.77)

Once the capacities Cj are realized, user r receives an allocation xjr(σ) = πjr(σ)Cj

from resource j. The expected payoff to user r is:

Yr(σr; σ−r) = E[Vr(xr(σ))] −
∑

j

wjr.

Following the proofs of Theorem 2.12 and Proposition 2.20, but replacing Ur(dr(·))
with E[Vr(·)] for each r, we may prove the following theorem.

Theorem 2.22

Suppose that Assumption 2.3 is satisfied. Then a Nash equilibrium exists for the game defined

by (Y1, . . . , YR).

More importantly, we would like to compare the performance at any Nash equilib-

rium of this game with an “efficient” allocation. As in the preceding development, we

define the problem SYSTEM as follows:
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SYSTEM:

maximize
∑

r

E[Vr(π1rC1, . . . , πJrCJ)] (2.78)

subject to
∑

r

πjr ≤ 1, j ∈ J ; (2.79)

πjr ≥ 0, j ∈ J, r ∈ R. (2.80)

Since the objective function is continuous and the feasible region is compact, an

optimal solution exists for this problem. Again, following the proof of Theorem 2.13

together with Theorem 2.21, we may prove the following result.

Theorem 2.23

Suppose that Assumption 2.3 is satisfied. Assume also that Vr(0) ≥ 0 for all users r. Let σ be

a Nash equilibrium of the game defined by (Y1, . . . , YR). Let πS = (πS
r , r ∈ R) be any optimal

solution to SYSTEM, and let xS
jr = πS

jrCj . Then:

∑

r

E[Vr(xr(σ))] ≥ 3

4

∑

r

E[Vr(x
S
r )].

The preceding theorem shows that the essential structure in the network context

is the bidding scheme which allows each resource to operate its own “market.” Each

user then decides how to employ allocated resources, resulting in the expected utility

E[Vr(xr(σ))]. This decoupling between the pricing mechanism employed at each re-

source and the eventual use of the resources by the end users allows the extension of

the result of Theorem 2.6 from a single resource context to a general multiple resource

context.

� 2.6 Chapter Summary

This chapter has considered a model of resource allocation in settings where the sup-

ply of the resource available is inelastic—i.e., it does not respond to price. We have

shown that when users are price anticipating, the efficiency loss is no more than 25%

(Theorem 2.6); and further, this basic result extends to a setting of general networks

(Theorem 2.13), as well as to a setting of stochastic demand (Theorem 2.21). The main

motivation for such a model comes from usage based pricing in communication net-

works [62]. We close this chapter with a closer examination of the applicability of this

pricing model.

It is unrealistic to expect end users to pay for network rate allocation on a real time

basis. Rather, as advocated by Key [66] (and, in a different context, by Gibbens and

Kelly [44]), a more feasible scenario is that brokers bid for network resources on behalf
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of users, and in turn offer longer term contracts to users. In this context, it is both

more likely to expect such a pricing scheme to be implemented, and also more likely

that brokers will have sufficient market power to anticipate the effect of their bids on

prices. Such a scheme would admit the benefits of a usage based pricing scheme in

terms of network efficiency, while being feasible to implement and maintain.

Once we consider such a domain, however, we must acknowledge the great impor-

tance of network provider competition in future models of network pricing. Indeed,

although the results of this chapter shed insight into the efficiency properties of sim-

ple market-clearing mechanisms, it is less clear whether such market mechanisms will

ever be implemented in the decentralized, deregulated world of the current Internet.

Thus understanding how market pressures will affect the pricing strategies of com-

peting Internet providers remains a critical research issue for future communication

networks. We refer the reader to Odlyzko’s insightful critique of the issues involved

in this dimension [95].



C H A P T E R 3

Multiple Consumers,

Elastic Supply

I n the previous chapter, we developed market mechanisms for a setting where the

available supply of resources is inelastic. We now turn our attention to analyzing

market mechanisms for a setting where supply is elastic, i.e., where supply can vary

with price. In the models we discuss in this chapter, we will replace the fixed capacity

C of the model of Section 2.1 with a cost function C(f), which gives the monetary

cost incurred if the link manager allocates f units of data rate to the users. With this

modification, we wish to design mechanisms which maximize the aggregate utility of

the users less the cost incurred at the link, i.e., the aggregate surplus.

We will start by investigating a market mechanism which is the natural extension

of the price mechanism considered in Section 2.1 to a setting with elastic supply. The

mechanism we describe was first considered by Kelly et al. in [65] (motivated by the

proposal made in [62]). In the special case of a single link, the mechanism works as

follows. Each user submits a bid, or total willingness-to-pay, to the link manager. This

represents the total amount the user expects to pay. The link manager then chooses

both a total rate and a price such that the product of price and rate is equal to the total

revenue, and the price is equal to marginal cost. Finally, each user receives a fraction

of the allocated rate in proportion to their bid. It is shown in [65] that if users do not

anticipate the effect of their bid on the price, at an equilibrium the resulting allocation

maximizes aggregate surplus (i.e., the sum of users’ utilities minus the cost of the total

allocated rate).

The pricing mechanism of [65] takes as input the bids of the users, and produces

as output the price of the link, and the resulting rate allocation to the users. Kelly et

al. continue on to discuss distributed algorithms for implementation of this market-

clearing process [65]: given the bids of the users, Kelly et al. present two algorithms

which converge to the market-clearing price and rate allocation. Indeed, much of the

interest in this market mechanism stems from its desirable properties as a decentral-

ized system, including both stability and scalability. For details, we refer the reader to

[59, 64, 127, 140].

91
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One important interpretation of the price signal given to users in the algorithms

of [65] is that it can be used to provide early notification of congestion at links in the

network. Building on the Explicit Congestion Notification (ECN) proposal [102], this

interpretation suggests that the network might charge users proactively, in hopes of

avoiding congestion at links later. From an implementation standpoint, such a shift

implies that rather than a hard capacity constraint (i.e., a link is overloaded when the

rate through it exceeds the capacity of the link), the link has an elastic capacity (i.e.,

the link gradually begins to signal a buildup of congestion before the link’s true ca-

pacity is actually met). Many proposals for “active queue management” (AQM) to

achieve good performance with Explicit Congestion Notification have been made; see,

e.g., [6, 63, 71, 72]. This issue is of secondary importance to our discussion, as we do

not concern ourselves with the specific interpretation of the cost function at the link

(though an insightful discussion of the relationship between active queue manage-

ment and the cost function of the link may be found in [45]).

In this chapter, we investigate the robustness of the market mechanism of [65]

when users attempt to manipulate the market. Formally, we consider a model where

users anticipate the effects of their actions on link prices. This makes the model a

game, and we ask two fundamental questions: first, does a Nash equilibrium exist for

this game? And second, how inefficient is such an equilibrium relative to the maximal

aggregate surplus? We show that Nash equilibria exist, and that the efficiency loss is

no more than approximately 34% when users are price anticipating.

In addition to considering the “proportional” allocation mechanism of the previ-

ous chapter, the elasticity of supply allows us to consider another well-known model

for resource allocation: Cournot competition. In Cournot competition [23], the strategy

of each user is the quantity of rate that they desire, rather than the total payment they

are willing to make (as in the scheme of [65]). Cournot competition is not well-defined

when the supply is inelastic, since of course no market-clearing price will exist if the

aggregate demanded rate of the users exceeds the supply available at the resource.

On the other hand, Cournot games are one of the most well studied economic models

for competition among market participants. Historically the focus on Cournot com-

petition has been on Cournot oligopoly, i.e., the competition between multiple firms to

satisfy an elastic demand—indeed, this was the original model studied by Cournot in

1838 [23]. (For surveys of this rich topic, see [29, 41, 119].) By contrast, in this chapter

we consider Cournot oligopsony, i.e., the competition between multiple consumers for

a single resource in elastic supply. Such models have been previously considered in

the context of labor markets, where a small number of firms compete for an available

supply of workers [80]. We consider Cournot competition as a model for allocation of

rate at a link, in contrast to the proportional allocation of [62, 65]. We will show that in

general, the efficiency loss is arbitrarily high under Cournot competition. However, in

certain special cases, we will find that the efficiency loss is guaranteed to be no larger
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than 33%.

Chapter Outline

The remainder of the chapter is organized as follows. We start by considering the

pricing mechanism of [65] for a single link. In Section 3.1, we describe the market

mechanism for a single link, and recapitulate the results of Kelly et al. [65]. In Sec-

tion 3.1.2, we describe a game where users of a single link are price anticipating, and

establish the existence of a Nash equilibrium. We also establish necessary and suffi-

cient conditions for a strategy vector to be a Nash equilibrium, and in Section 3.1.3 we

prove, under an additional assumption on the cost function of the link, that the Nash

equilibrium is unique. In Section 3.2 we prove the main result of the chapter for a sin-

gle link: that when users are price anticipating, the efficiency loss—that is, the loss in

aggregate surplus relative to the maximum—is no more than 34%.

In Section 3.3, we compare the settings of inelastic and elastic supply. In particular,

we consider a limit of cost functions which approach a hard capacity constraint. We

show that if these cost functions are monomials and we let the exponent approach

infinity, then the worst case efficiency loss approaches 25%, which is consistent with

the result of the previous chapter (Theorem 2.6).

In Section 3.4, we extend the results to general networks. This extension is achieved

using the same approach as Section 2.4. We consider a game where users submit indi-

vidual bids to each link in the network, and establish existence of a Nash equilibrium.

We also show, using methods similar to the proof of Theorem 2.13, that the efficiency

loss is no more than 34% when users are price anticipating (matching the result of

Section 3.2).

In Section 3.5, we turn our attention to Cournot competition. We first present the

basic model of Cournot oligopsony, where multiple consumers of a resource in elastic

supply choose the quantity they wish to consume. The price of the resource is then set

equal to the marginal cost of the total requested allocation. We show that in general,

the efficiency loss of such a scheme can be arbitrarily high when users are price an-

ticipating. However, in Section 3.5.1 we consider several special cases and show that

efficiency loss is no more than 1/3 in each of these cases. We show that if R users with

the same utility function compete for a resource with a differentiable marginal cost

function, then the efficiency loss is no more than 1/(2R + 1) when the users are price

anticipating; we also establish that if the marginal cost function is not differentiable,

the efficiency loss is no more than 1/3 if exactly one user is bidding for the resource. If

users may have arbitrary utility functions, we show that the efficiency loss is no more

than 1/3 if the marginal cost function is linear (i.e., the cost function is quadratic). We

consider this to be the most applicable of the results of this section, since users will

generally not have identical utility functions. We also show in Section 3.5.2 that such

a result extends to a network setting, with the additional appealing feature that users
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only need to choose rates on paths through the network, rather than bidding to indi-

vidual links as in the mechanism of Section 3.4.

In Section 3.6, we consider the possibility that utility may depend on more than

just the rate allocated to a user of a communication network; the utility to a user may

be decreased if his traffic experiences a high latency passing through the network. To

investigate this phenomenon, we extend the Cournot competition model to include

the possibility that users’ utilities depend on both rate and latency. We show that, even

when users act as price takers and latency takers, the efficiency loss may be arbitrarily

high if the link manager is restricted to setting a price only as a function of the total

rate allocated at the link (an assumption satisfied by the pricing models of both Section

3.1 and 3.5). We then note that this result gives insight into the efficiency loss in the

“selfish routing” model of Wardrop [144] when the demand of users is elastic. This

example is a complement to the recent results of Roughgarden and Tardos [107, 108],

who consider loss of efficiency in selfish routing models when the demand of users is

inelastic.

� 3.1 Preliminaries

Suppose R users share a single communication link. Let dr ≥ 0 denote the rate allo-

cated to user r. We assume that user r receives a utility equal to Ur(dr) if the allocated

rate is dr. In addition, we let f =
∑

r dr denote the total rate allocated at the link, and

let C(f) denote the cost incurred at the link when the total allocated rate is f ≥ 0. We

will assume that both Ur and C are measured in the same monetary units. A natural

interpretation is that Ur(dr) is the monetary value to user r of a rate allocation dr, and

C(f) is a monetary cost for congestion at the link when the total allocated rate is f .

We make the following assumptions regarding Ur and C; note that Assumption 3.1

is identical to Assumption 2.1.

Assumption 3.1

For each r, over the domain dr ≥ 0 the utility function Ur(dr) is concave, strictly increasing,

and continuous; and over the domain dr > 0, Ur(dr) is continuously differentiable. Further-

more, the right directional derivative at 0, denoted U ′
r(0), is finite.

Assumption 3.2

There exists a continuous, convex, strictly increasing function p(f) over f ≥ 0 with p(0) = 0,

such that for f ≥ 0:

C(f) =

∫ f

0
p(z)dz.

Thus C(f) is strictly convex and strictly increasing.

We note that we make rather strong differentiability assumptions here on the utility



SECTION 3.1. PRELIMINARIES 95

functions; these assumptions are primarily made to ease the presentation. In Section

3.4, we will relax the assumption that Ur is differentiable.

The condition that p(0) = 0 in Assumption 3.2 plays an important role in the sub-

sequent development. We relax this assumption in the context of Cournot competition

(Section 3.5). We also present there an example that shows efficiency loss may be ar-

bitrarily high if users are price anticipating under the mechanism of this section, and

p(0) > 0; see Example 3.3.

Given complete knowledge and centralized control of the system, a natural prob-

lem for the network manager to try to solve is the following [62]:

SYSTEM:

maximize
∑

r

Ur(dr) − C

(

∑

r

dr

)

(3.1)

subject to dr ≥ 0, r = 1, . . . , R. (3.2)

We refer to the objective function (3.1) as the aggregate surplus; see Section 1.1. This is

the net monetary benefit to the economy consisting of the users and the single link.

Since the objective function is continuous, and Ur increases at most linearly while C

increases superlinearly, an optimal solution dS = (dS
1 , . . . , dS

R) exists; since the feasible

region is convex and C is strictly convex, if the functions Ur are strictly concave, then

the optimal solution is unique.

In general, the utility functions are not available to the resource manager. As

a result, we consider the following pricing scheme for rate allocation. Each user r

makes a payment (also called a bid) of wr to the resource manager. Given the compos-

ite vector w = (w1, . . . , wr), the resource manager chooses a rate allocation d(w) =

(d1(w), . . . , dR(w)). We assume the manager treats all users alike—in other words, the

network manager does not price differentiate. Thus the network manager sets a single

price µ(w); we assume that µ(w) = 0 if wr = 0 for all r, and µ(w) > 0 otherwise. All

users are then charged the same price µ(w), leading to:

dr(w) =











0, if wr = 0;

wr

µ(w)
, if wr > 0.

Notice that, with this formulation, the rate allocated to user r to user r is similar to the

rate allocated to user r in the model of Section 2.1. The key difference in this setting is

that the aggregate rate is not constrained to an inelastic supply; rather, associated with
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the choice of price µ(w) is an aggregate rate function f(w), defined by:

f(w) =
∑

r

dr(w) =















0, if
∑

r wr = 0;

∑

r wr

µ(w)
, if

∑

r wr > 0.

. (3.3)

We will assume that wr is measured in the same monetary units as both Ur and

C. In this case, given a price µ > 0, user r wishes to maximize the following payoff

function over wr ≥ 0:

Pr(wr; µ) = Ur

(

wr

µ

)

− wr. (3.4)

The first term represents the utility to user r of receiving a rate allocation equal to

wr/µ; the second term is the payment wr made to the manager.

Notice that as formulated above, the payoff function Pr assumes that user r acts as

a price taker; that is, user r does not anticipate the effect of his choice of wr on the price

µ, and hence on his resulting rate allocation dr(w). Informally, we expect that in such a

situation the aggregate surplus will be maximized if the network manager sets a price

equal to marginal cost; that is, if the price function satisfies:

µ(w) = p(f(w)). (3.5)

We show in the following proposition that a joint solution to (3.3) and (3.5) can be

found; we then use this proposition to show that when users optimize (3.4) and the

price is set to satisfy (3.5), aggregate surplus is maximized.

Proposition 3.1

Suppose Assumption 3.2 holds. Given any vector of bids w ≥ 0, there exists a unique pair

(µ(w), f(w)) ≥ 0 satisfying (3.3) and (3.5), and in this case f(w) is the unique solution f to:

∑

r

wr = fp(f). (3.6)

Furthermore, f(·) has the following properties: (1) f(0) = 0; (2) f(w) is continuous for

w ≥ 0; (3) f(w) is a strictly increasing and strictly concave function of
∑

r wr; and (4)

f(w) → ∞ as
∑

r wr → ∞.

Proof. Fix a vector w ≥ 0. First suppose there exists a solution to (3.3) and (3.5).

Then from (3.3), we have:
∑

r

wr = f(w)µ(w).

After substituting (3.5), this becomes the equation (3.6). Conversely, if f(w) solves

(3.6), then defining µ(w) according to (3.5) makes (3.6) equivalent to (3.3).
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Thus, it suffices to check that there exists a unique solution f to (3.6). By Assump-

tion 3.2, p is strictly increasing, and since p is convex, p(f) → ∞ as f → ∞; thus

defining g(f) = fp(f), we know g(0) = 0; g is strictly increasing, strictly convex, and

continuous; and g(f) → ∞ as f → ∞. Thus g is invertible, and crosses the level
∑

r wr

at a unique value f(w) = g−1(
∑

r wr). From this description and the properties of g

we immediately see that f has the four properties described in the proposition. 2

Observe that we can view (3.6) as a market-clearing process. Given the total rev-

enue
∑

r wr from the users, the link manager chooses an aggregate rate f(w) so that

the revenue is exactly equal to the aggregate charge f(w)p(f(w)). Due to Assumption

3.2, this market-clearing aggregate rate is uniquely determined. Kelly et al. present

two algorithms in [65] which amount to dynamic processes of market-clearing; as a re-

sult, a key motivation for the mechanism we study in this chapter is that it represents

the equilibrium behavior of the algorithms in [65].

Indeed, as in Section 2.1, we can view this market-clearing process in terms of

supply and demand. To see this interpretation, note that as in Section 2.1, when a user

chooses a total payment wr, it is as if the user has chosen a demand function D(p, wr) =

wr/p for p > 0. The demand function describes the amount of rate the user demands

at any given price p > 0. In contrast to Chapter 2, however, the available supply of rate

at the link is elastic. In particular, we define the supply function S(p) of the link manager

as the inverse of the price function p: S(p) = p−1(p). The link manager then chooses a

price µ > 0 so that
∑

r D(µ, wr) = S(µ), i.e., so that the aggregate demand equals the

available supply S(µ); see Figure 3-1. For the specific form of demand functions we

consider here, this leads to the equation for f(w) and µ = p(f(w)) given in (3.6). Note

that we have S(p(f(w))) = f(w), by definition. User r then receives a rate allocation

given by D(p(f(w)), wr), and makes a payment p(f(w))D(p(f(w)), wr) = wr.

In the remainder of the section, we consider two different models for how users

might interact with this price mechanism. In Section 3.1.1, we consider a model where

users do not anticipate the effect of their bids on the price, and establish existence of a

competitive equilibrium (a result due to Kelly et al. [65]). Furthermore, this compet-

itive equilibrium leads to an allocation which is an optimal solution to SYSTEM. In

Section 3.1.2, we change the model and assume users are price anticipating, and es-

tablish existence of a Nash equilibrium. In Section 3.1.3, we show for a certain class of

price functions that the Nash equilibrium is in fact unique. Finally, Section 3.2 consid-

ers the loss of efficiency at Nash equilibria, relative to the optimal solution to SYSTEM.

� 3.1.1 Price Taking Users and Competitive Equilibrium

Kelly et al. show in [65] that when users are price takers, and the network sets the

price µ(w) according to (3.3) and (3.5), the resulting allocation is an optimal solution

to SYSTEM. This is formalized in the following theorem, adapted from [65].
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price

quantity

µ

AD(p) AS(p)

Figure 3-1. The market-clearing process with elastic supply: Each consumer r chooses a willingness-to-
pay wr , which maps to a demand function D(p, wr) = wr/p. This defines the aggregate demand function
AD(p) =

∑

r
D(p, wr) =

∑

r
wr/p. The aggregate supply function is AS(p) = p−1(p). The price µ is

chosen so that supply equals demand, i.e., so that
∑

r
wr/µ = AD(µ) = AS(µ) = p−1(µ).

Theorem 3.2 (Kelly et al., [65])

Suppose Assumptions 3.1 and 3.2 hold. Given w ≥ 0, let (µ(w), f(w)) be the unique solution

to (3.3) and (3.5). Then there exists a vector w such that µ(w) > 0, and:

Pr(wr; µ(w)) = max
wr≥0

Pr(wr; µ(w)), r = 1, . . . , R. (3.7)

For any such vector w, the vector d(w) = w/µ(w) is an optimal solution to SYSTEM. If the

functions Ur are strictly concave, such a vector w is unique as well.

Proof. Let dS be any optimal solution to SYSTEM; as discussed above, at least one

such solution exists. Let fS =
∑

r dS
r , and define wS

r = dS
r p(fS) for each r. Observe

that with this definition, we have
∑

r wS
r =

∑

r dS
r p(fS) = fSp(fS); thus fS satisfies

(3.6), and we have f(wS) = fS , d(wS) = dS .

Given Assumptions 3.1 and 3.2, observe that any optimal solution to SYSTEM is

identified by the following necessary and sufficient optimality conditions:

U ′
r(d

S
r ) = p

(

∑

s

dS
s

)

, if dS
r > 0; (3.8)

U ′
r(0) ≤ p

(

∑

s

dS
s

)

, if dS
r = 0. (3.9)
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Now since p(0) = 0 but U ′
r(0) > 0 for all r, we must have fS =

∑

r dS
r > 0; thus

µ(w) = p(fS) > 0. But then dS
r = wr/p(fS) for each r, so the preceding optimality

conditions become:

U ′
r

(

wr

p(fS)

)

= p(fS), if wr > 0;

U ′
r(0) ≤ p(fS), if wr = 0.

These conditions ensure that (3.7) holds.

Conversely, suppose we are given a vector w such that µ(w) > 0, and (3.7) holds.

Then we simply reverse the argument above: since (3.7) holds, we conclude that the

optimality conditions (3.8)-(3.9) hold with d(w) = w/µ(w) = w/p(f(w)), so that d(w)

is an optimal solution to SYSTEM. Finally, if the functions Ur are each strictly concave,

then the optimal solution dS to SYSTEM is unique, so the price p(fS) is uniquely de-

termined as well. As a result, for each r the product dS
r p(fS) is unique, so the vector w

identified in the theorem must be unique as well. 2

Theorem 3.2 shows that with an appropriate choice of price function (as deter-

mined by (3.3) and (3.5)), and under the assumption that the users of the link behave

as price takers, there exists a bid vector w where all users have optimally chosen their

bids wr, with respect to the given price µ(w); and at this “equilibrium,” the aggregate

surplus is maximized. However, when the price taking assumption is violated, the

model changes into a game and the guarantee of Theorem 3.2 is no longer valid. We

investigate this game in the following section.

� 3.1.2 Price Anticipating Users and Nash Equilibrium

We now consider an alternative model where the users of a single link are price an-

ticipating, rather than price taking, and play a game to acquire a share of the link.

Throughout the remainder of this section as well as in Section 3.2, we will assume

that the link manager sets the price µ(w) according to the unique choice prescribed by

Proposition 3.1, as follows.

Assumption 3.3

For all w ≥ 0, the aggregate rate f(w) is the unique solution to (3.6):
∑

r wr = f(w)p(f(w)).

Furthermore, for each r, dr(w) is given by:

dr(w) =











0, if wr = 0;

wr

p(f(w))
, if wr > 0.

(3.10)
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Note that we have f(w) > 0 and p(f(w)) > 0 if
∑

r wr > 0, and hence dr is always

well defined.

We adopt the notation w−r to denote the vector of all bids by users other than r; i.e.,

w−r = (w1, w2, . . . , wr−1, wr+1, . . . , wR). Then given w−r, each user r chooses wr ≥ 0

to maximize:

Qr(wr;w−r) = Ur(dr(w)) − wr, (3.11)

over nonnegative wr. The payoff function Qr is similar to the payoff function Pr, ex-

cept that the user now anticipates that the network will set the price according to As-

sumption 3.3, as captured by the allocated rate dr(w). A Nash equilibrium of the game

defined by (Q1, . . . , QR) is a vector w ≥ 0 such that for all r:

Qr(wr;w−r) ≥ Qr(wr;w−r), for all wr ≥ 0. (3.12)

We begin by asking whether a Nash equilibrium exists for the game defined by

(Q1, . . . , QR). We will need the following proposition.

Proposition 3.3

Suppose that Assumptions 3.1-3.3 hold. Then: (1) dr(w) is a continuous function of w; and

(2) for any w−r ≥ 0, dr(w) is strictly increasing and concave in wr ≥ 0, and dr(w) → ∞ as

wr → ∞.

Proof. We first show that dr(w) is a continuous function of w. Recall from Proposi-

tion 3.1 that f(w) is a continuous function of w, and f(0) = 0. Now at any vector w

such that
∑

s ws > 0, we have p(f(w)) > 0, so dr(w) = wr/p(f(w)); thus continuity

of dr at w follows by continuity of f and p. Suppose instead that w = 0, and consider

a sequence w(n) → 0 as n → ∞. Then
∑

r dr(w(n)) = f(w(n)) → 0 as n → ∞,

from parts (1) and (2) of Proposition 3.1; since dr(w(n)) ≥ 0 for all n, we must have

dr(w(n)) → 0 = dr(0) as n → ∞, as required.

From Assumption 3.3, we can rewrite the definition of dr(w) as:

dr(w) =















0, if wr = 0;

wr
∑

s ws
f(w), if wr > 0.

(3.13)

From this expression and Proposition 3.1, it follows that dr(w) is a continuous function

of w, and that dr(w) is strictly increasing in wr. To show dr(w) → ∞ as wr → ∞, we

only need f(w) → ∞ as wr → ∞, a fact that was shown in Proposition 3.1.

It remains to be shown that for fixed w−r, dr is a concave function of wr ≥ 0.

Since we have already shown that dr is continuous, we may assume without loss of

generality that wr > 0. We first assume that p is twice differentiable. In this case, it

follows from (3.6) that f is twice differentiable in wr. Since wr > 0, we can differentiate
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(3.13) twice to find:

∂2dr(w)

∂w2
r

= −
(

2
∑

s 6=r ws

(
∑

s ws)3

)

f(w) +

(

2
∑

s 6=r ws

(
∑

s ws)2

)

∂f(w)

∂wr
+

(

wr
∑

s ws

)

∂2f(w)

∂w2
r

.

From Proposition 3.1, f is a strictly concave function of
∑

s ws; thus the last term in

the sum above is nonpositive. To show that dr is concave in wr, therefore, it suffices to

show that the sum of the first two terms is negative, i.e.:

f(w)
∑

s ws
≥ ∂f(w)

∂wr
.

By differentiating both sides of (3.6), we find that:

∂f(w)

∂wr
=

1

p(f(w)) + f(w)p′(f(w))
.

On the other hand, from (3.6), we have:

f(w)
∑

s ws
=

1

p(f(w))
.

Substituting these relations, and noting that f(w)p′(f(w)) ≥ 0 since p is strictly in-

creasing, we have:

f(w)
∑

s ws
=

1

p(f(w))
≥ 1

p(f(w)) + f(w)p′(f(w))
=

∂f(w)

∂wr
,

as required. Thus dr(w) is concave in wr, as long as p is twice differentiable.

Now suppose that p is any price function satisfying Assumption 3.2, but not nec-

essarily twice differentiable. In this case, we choose a sequence of twice differentiable

price functions pn satisfying Assumption 3.2, such that pn → p pointwise as n → ∞
(i.e., pn(f) → p(f) as n → ∞, for all f ≥ 0). We define pn(f) as follows. Define p(f) = 0

for f ≤ 0, and consider a sequence of twice differentiable functions φn, such that φn

has support on [−1/n, 0], and
∫∞
−∞ φn(z) dz = 1. Then it is straightforward to verify

the sequence pn defined by pn(f) =
∫∞
−∞ p(z)φn(z − f) dz has the required properties.

Let dn
r be the allocation function for user r when the price function is pn; then dn

r (w)

is concave in wr, for each n. In order to show that dr(w) is concave in wr, therefore,

it suffices to show that dn
r → dr pointwise as n → ∞. From (3.13), this will be true as

long as fn → f pointwise as n → ∞, where fn is the solution to (3.6) when the price

function is pn.

Fix a bid vector w; we now proceed to show that fn(w) → f(w) as n → ∞. For

each n, define gn(f) = fpn(f), and let g(f) = fp(f). Then gn(f) → g(f) as n → ∞, for
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all f ≥ 0. Furthermore, from (3.6),
∑

r wr = g(f(w)). Fix ε > 0, and choose δ > 0 so

that:

δ < min{
∑

r

wr − g(f(w) − ε), g(f(w) + ε) −
∑

r

wr}.

(Note that such a choice is possible because g is strictly increasing.) Now for suffi-

ciently large n, we will have:

gn(f(w) − ε) − g(f(w) − ε) < δ, g(f(w) + ε) − gn(f(w) + ε) < δ.

From the definition of δ, this yields:

gn(f(w) − ε) <
∑

r

wr < gn(f(w) + ε).

Since gn is strictly increasing, and fn(w) satisfies gn(fn(w)) =
∑

r wr, we conclude

that |fn(w) − f(w)| < ε for sufficiently large n, as required. 2

The previous proposition establishes concavity and continuity of dr; this guaran-

tees existence of a Nash equilibrium, as the following proposition shows.

Proposition 3.4

Suppose that Assumptions 3.1-3.3 hold. Then there exists a Nash equilibrium w for the game

defined by (Q1, . . . , QR).

Proof. We begin by observing that we may restrict the strategy space of each user r

to a compact set, without loss of generality. To see this, fix a user r, and a vector w−r

of bids for all other users. Given a bid wr for user r, we note that dr(w) ≤ dr(wr;0−r),

where 0−r denotes the bid vector where all other users bid zero. This inequality fol-

lows since wr = dr(w)p(f(w)); and if
∑

s ws decreases, then p(f(w)) decreases as well

(from Proposition 3.1), so dr(w) must increase.

We thus have Qr(wr;w−r) ≤ Ur(dr(wr;0−r)) − wr. By concavity of Ur, for wr > 0

we have:

Qr(wr;w−r) ≤ Ur(0) + U ′
r(0)dr(wr;0−r) − wr = Ur(0) + wr

(

U ′
r(0)

p(f(wr;0−r))
− 1

)

.

(3.14)

Now observe from (3.6) that:

wr = f(wr;0−r)p(f(wr;0−r)).

Since p is convex and strictly increasing, we have limf→∞ p(f) = ∞; thus we conclude

that p(f(wr;0−r)) → ∞ as wr → ∞. Consequently, using (3.14), there exists Br > 0

such that if wr ≥ Br, then Qr(wr;w−r) < Ur(0). Since Qr(0;w−r) = Ur(0), user r
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would never choose to bid wr ≥ Br at a Nash equilibrium. Thus, we may restrict the

strategy space of user r to the compact interval Sr = [0, Br] without loss of generality.

The game defined by (Q1, . . . , QR) together with the strategy spaces (S1, . . . , SR) is

now a concave R-person game: applying Proposition 3.3, each payoff function Qr is con-

tinuous in the composite strategy vector w, and concave in wr (since Ur is concave and

strictly increasing, and dr(w) is concave in wr); and the strategy space of each user r is

a compact, convex, nonempty subset of R. Applying Rosen’s existence theorem [104]

(proven using Kakutani’s fixed point theorem), we conclude that a Nash equilibrium

w exists for this game. 2

In the remainder of this section, we will establish necessary and sufficient condi-

tions for a vector w to be a Nash equilibrium. Because the price function p may not be

differentiable, we will require elements of the theory of subgradients to describe neces-

sary local conditions for a vector w to be a Nash equilibrium. Since the payoff of user

r is concave, these necessary conditions will in fact be sufficient for w to be a Nash

equilibrium. (The reader is referred to the Notation section for necessary details on

subgradients.)

For the remainder of the chapter, we view any price function p as an extended

real-valued convex function, by defining p(f) = ∞ for f < 0. Our first step is a lemma

demonstrating that dr is directionally differentiable (as a function of wr); for notational

convenience, we will require the following definitions of ε+(f) and ε−(f), for f > 0:

ε+(f) =
f

p(f)
· ∂+p(f)

∂f
, ε−(f) =

f

p(f)
· ∂−p(f)

∂f
. (3.15)

Note that under Assumption 3.2, we have 0 < ε−(f) ≤ ε+(f) for f > 0.

Lemma 3.5 Suppose Assumptions 3.1-3.3 hold. Then for all w with
∑

s ws > 0, dr(w) is

directionally differentiable with respect to wr. These directional derivatives are given by:

∂+dr(w)

∂wr
=

1

p(f(w))

(

1 − dr(w)

f(w)
· ε+(f(w))

1 + ε+(f(w))

)

; (3.16)

∂−dr(w)

∂wr
=

1

p(f(w))

(

1 − dr(w)

f(w)
· ε−(f(w))

1 + ε−(f(w))

)

. (3.17)

Furthermore, ∂+dr(w)/∂wr > 0, and if wr > 0 then ∂−dr(w)/∂wr > 0.

Proof. Existence of the directional derivatives is obtained because dr(w) is a con-

cave function of wr (from Proposition 3.3). Fix a vector w of bids, such that
∑

r wr > 0.

Since f is an increasing, concave function of wr, and the convex function p is direc-

tionally differentiable at f(w) ([103], Theorem 23.1), we can apply the chain rule to
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compute the right directional derivative of (3.6) with respect to wr:

1 =
∂+f(w)

∂wr
· p(f(w)) + f(w) · ∂+p(f(w))

∂f
· ∂+f(w)

∂wr
.

Thus, as long as
∑

r wr > 0, ∂+f(w)/∂wr exists, and is given by:

∂+f(w)

∂wr
=

(

p(f(w)) + f(w) · ∂+p(f(w))

∂f

)−1

.

We conclude from (3.10) that the right directional derivative of dr(w) with respect to

wr is given by:

∂+dr(w)

∂wr
=

1

p(f(w))
− wr
(

p(f(w))
)2 · ∂+p(f(w))

∂f
· ∂+f(w)

∂wr
.

Simplifying, this reduces to (3.16). Note that since dr(w) ≤ f(w) and ε+(f(w))/[1 +

ε+(f(w))] < 1, we have ∂+dr(w)/∂wr > 0. A similar analysis follows for the left di-

rectional derivative. 2

For notational convenience, we make the following definitions for f > 0:

β+(f) =
ε+(f)

1 + ε+(f)
, β−(f) =

ε−(f)

1 + ε−(f)
. (3.18)

Under Assumption 3.2, we have 0 < β−(f) ≤ β+(f) < 1 for f > 0.

The next proposition is the central result of this section: it establishes local condi-

tions that are necessary and sufficient for a Nash equilibrium.

Proposition 3.6

Suppose that Assumptions 3.1-3.3 hold. Then w is a Nash equilibrium of the game defined by

(Q1, . . . , QR), if and only if
∑

r wr > 0, and with d = d(w), f = f(w), the following two

conditions hold for all r:

U ′
r(dr)

(

1 − β+(f) · dr

f

)

≤ p(f); (3.19)

U ′
r(dr)

(

1 − β−(f) · dr

f

)

≥ p(f), if dr > 0. (3.20)

Conversely, if d ≥ 0 and f > 0 satisfy (3.19)-(3.20), and
∑

r dr = f , then the vector w =

p(f)d is a Nash equilibrium with d = d(w) and f = f(w).

Proof. We first show that if w is a Nash equilibrium, then we must have
∑

r wr > 0.

Suppose not; then wr = 0 for all r. Fix a user r; for wr > 0, we have dr(wr;w−r)/wr =
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f(wr;w−r)/wr = 1/p(f(wr;w−r)), which approaches infinity as wr → 0. Thus we

have ∂+dr(w)/∂wr = ∞, which yields:

∂+Qr(wr;w−r)

∂wr
= U ′

r(0) · ∂+dr(w)

∂wr
− 1 = ∞.

In particular, an infinitesimal increase of wr will strictly increase the payoff of user r, so

w = 0 cannot be a Nash equilibrium. Thus if w is a Nash equilibrium, then
∑

r wr > 0.

Now let w be a Nash equilibrium. We established in Lemma 3.5 that dr is direc-

tionally differentiable in wr for each r, as long as
∑

s ws > 0. Thus, from (3.12), if w is

a Nash equilibrium, then the following two conditions must hold:

∂+Qr(wr;w−r)

∂wr
= U ′

r(dr(w)) · ∂+dr(w)

∂wr
− 1 ≤ 0;

∂−Qr(wr;w−r)

∂wr
= U ′

r(dr(w)) · ∂−dr(w)

∂wr
− 1 ≥ 0, if wr > 0.

We may substitute using Lemma 3.5 to find that if w is a Nash equilibrium, then:

U ′
r(dr(w))

(

1 − β+(f(w)) · dr(w)

f(w)

)

≤ p(f(w));

U ′
r(dr(w))

(

1 − β−(f(w)) · dr(w)

f(w)

)

≥ p(f(w)), if wr > 0.

Since the condition wr > 0 is identical to the condition dr(w) > 0, this establishes

the conditions in the proposition. Conversely, if
∑

r wr > 0 and the preceding two

conditions hold, then we may reverse the argument: since the payoff function of user

r is a concave function of wr for each r (from Proposition 3.3), (3.19)-(3.20) are sufficient

for w to be a Nash equilibrium.

Finally, suppose that d and f > 0 satisfy (3.19)-(3.20), with
∑

r dr = f . Then

let wr = drp(f). We then have
∑

r wr > 0 (since f > 0); and
∑

r wr = fp(f), so

that f = f(w). Finally, since f > 0, we have dr = wr/p(f) = wr/p(f(w)), so that

dr = dr(w). Thus w is a Nash equilibrium, as required. 2

Note that the preceding proposition identifies a Nash equilibrium entirely in terms

of the allocation made; and conversely, if we find a pair (d, f) which satisfies (3.19)-

(3.20) with f > 0 and
∑

r dr = f , then there exists a Nash equilibrium which yields

that allocation. In particular, the set of allocations d which can arise at Nash equilibria

coincides with those vectors d such that f =
∑

r dr > 0, and (3.19)-(3.20) are satisfied.
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� 3.1.3 Nondecreasing Elasticity Price Functions:
Uniqueness of Nash Equilibrium

In this section, we demonstrate that for a certain class of differentiable price functions,

there exists a unique Nash equilibrium of the game defined by (Q1, . . . , QR). We con-

sider price functions p which satisfy the following additional assumption.

Assumption 3.4

The price function p is differentiable, and exhibits nondecreasing elasticity, i.e., for 0 < f1 ≤
f2, there holds:

f1p
′(f1)

p(f1)
≤ f2p

′(f2)

p(f2)
.

To gain some intuition for the concept of nondecreasing elasticity, consider a price

function p satisfying Assumption 3.2. The quantity fp′(f)/p(f) is known as the elas-

ticity of the price function p [137]. Note that the elasticity of p(f) is the derivative of

ln p(f) with respect to ln f . Intuitively, therefore, elasticity measures the percentage

change in p(f) which results from a one percent change in f . From this viewpoint,

we see that nondecreasing elasticity is equivalent to the requirement that ln p(f) be a

convex function of ln f . (Note that in general, this is not equivalent to the requirement

that p is a convex function of f .)

Nondecreasing elasticity can also be interpreted by considering the price function

as the inverse of the supply function S(µ) = p−1(µ); recall that the supply function gives

the amount of rate the link manager is willing to supply at a given price. In this case,

nondecreasing elasticity of the price function is equivalent to nonincreasing elasticity

of the supply function.

Nondecreasing elasticity captures a wide range of price functions; we give two

common examples below.

Example 3.1 (The M/M/1 Queue)

Consider the cost function C(f) = af/(s − f), where a > 0 and s > 0 are constants;

then the cost is proportional to the steady-state queue size in an M/M/1 queue with

service rate s and arrival rate f . (Note that we must view p as an extended real-valued

function, with p(f) = ∞ for f > s; this does not affect any of the analysis of this

chapter.) It is straightforward to check that, as long as 0 < f < s (the region of interest

for our purposes), we have:
fp′(f)

p(f)
=

2f

s − f
,

which is a strictly increasing function of f , and approaches ∞ as f → s. Thus p satisfies

Assumption 3.4. 2

Example 3.2 (M/M/1 Overflow Probability)

Consider the function p(f) = a(f/s)B , where a > 0, s > 0, and B ≥ 1 is an integer.
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Then the price is set proportional to the probability that an M/M/1 queue exceeds a

buffer level B, when the service rate is s and the arrival rate is f . In this case we have

fp′(f)/p(f) = B, so that p satisfies Assumption 3.4. 2

We now prove the key property of differentiable nondecreasing elasticity price

functions in the current development: for such functions, there exists a unique Nash

equilibrium for the game defined by (Q1, . . . , QR).

Proposition 3.7

Suppose Assumptions 3.1-3.3 hold. If in addition p is differentiable and exhibits nondecreasing

elasticity (Assumption 3.4 holds), then there exists a unique Nash equilibrium for the game

defined by (Q1, . . . , QR).

Proof. We use the expressions (3.19)-(3.20) to show that the Nash equilibrium is

unique under Assumption 3.4. Observe that in this case, from (3.18), we may define

β(f) = β+(f) = β−(f) for f > 0, and conclude that w is a Nash equilibrium if and

only if
∑

s ws > 0 and the following optimality conditions hold:

U ′
r(dr(w))

(

1 − β(f(w)) · dr(w)

f(w)

)

= p(f(w)), if wr > 0; (3.21)

U ′
r(0) ≤ p(f(w)), if wr = 0. (3.22)

Suppose we have two Nash equilibria w1, w2, with 0 <
∑

s w1
s <

∑

s w2
s ; then we must

have p(f(w1)) < p(f(w2)), and f(w1) < f(w2). Note that U ′
r(dr) is nonincreasing as

dr increases; and β(f) is nondecreasing as f increases (from Assumption 3.4), and

therefore β(f(w1)) ≤ β(f(w2)). Furthermore, if w2
r > 0, then from (3.21) we have

U ′
r(0) > p(f(w2)); thus U ′

r(0) > p(f(w1)), so w1
r > 0 as well (from (3.22)).

Now note that the right hand side of (3.21) is strictly larger at w1 than at w2; thus

the left hand side must be strictly larger at w1 than at w2 as well. This is only pos-

sible if dr(w
1)/f(w1) > dr(w

2)/f(w2) for each user r, since we have shown in the

preceding paragraph that f(w1) < f(w2); U ′
r(dr) is nonincreasing as dr increases; and

β(f(w1)) ≤ β(f(w2)). Since f(w) =
∑

r dr(w), we have:

1 =
∑

r:w2
r>0

dr(w
2)

f(w2)
<

∑

r:w2
r>0

dr(w
1)

f(w1)
= 1,

which is a contradiction. Thus at the two Nash equilibria, we must have
∑

s w1
s =

∑

s w2
s , so we can let f0 = f(w1) = f(w2), p0 = p(f0), and β0 = β(f0). Then all Nash
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equilibria w satisfy:

U ′
r(dr(w))

(

1 − β0 ·
dr(w)

f0

)

= p0, if wr > 0; (3.23)

U ′
r(0) ≤ p0, if wr = 0. (3.24)

But now we observe that the left hand side of (3.23) is strictly decreasing in dr(w), so

given p0, there exists at most one solution dr(w) to (3.23). Since wr = dr(w)p0, this

implies the Nash equilibrium w must be unique. 2

� 3.2 Efficiency Loss: The Single Link Case

We let dS denote an optimal solution to SYSTEM, and let w denote any Nash equi-

librium of the game defined by (Q1, . . . , QR). We now investigate the efficiency loss

of this system; that is, how much aggregate surplus is lost because the users attempt

to “game” the system? To answer this question, we must compare the aggregate sur-

plus
∑

r Ur(dr(w))−C(
∑

r dr(w)) obtained when the users fully evaluate the effect of

their actions on the price, and the aggregate surplus
∑

r Ur(d
S
r ) − C(

∑

r dS
r ) obtained

by choosing an allocation which maximizes aggregate surplus. The following theo-

rem is the main result of this chapter: it states that the efficiency loss is no more than

approximately 34%, and that this bound is essentially tight.

Theorem 3.8

Suppose that Assumptions 3.1-3.3 hold. Suppose also that Ur(0) ≥ 0 for all r. If dS is

any optimal solution to SYSTEM, and w is any Nash equilibrium of the game defined by

(Q1, . . . , QR), then:

∑

r

Ur(dr(w)) − C

(

∑

r

dr(w)

)

≥
(

4
√

2 − 5
)

(

∑

r

Ur(d
S
r ) − C

(

∑

r

dS
r

))

. (3.25)

In other words, there is no more than approximately a 34% efficiency loss when users are price

anticipating.

Furthermore, this bound is tight: for every δ > 0, there exists a choice of R, a choice of

(linear) utility functions Ur, r = 1, . . . , R, and a (piecewise linear) price function p such that

a Nash equilibrium w exists with:

∑

r

Ur(dr(w)) − C

(

∑

r

dr(w)

)

≤
(

4
√

2 − 5 + δ
)

(

∑

r

Ur(d
S
r ) − C

(

∑

r

dS
r

))

.

(3.26)

Proof. The proof consists of a sequence of reductions:
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1. We show that the worst case occurs when the utility function of each user is

linear.

2. We show we may restrict attention to games where the total allocated Nash equi-

librium rate is f = 1.

3. We compute the worst case choice of linear utility functions, for a fixed price

function p(·) and total Nash equilibrium rate f = 1.

4. We show that it suffices to consider a special class of piecewise linear price func-

tions.

5. Combining Steps 1-3, we compute the worst case efficiency loss by minimizing

the ratio of Nash equilibrium aggregate surplus to maximal aggregate surplus,

over the worst case choice of games with linear utility functions (from Step 2)

and our restricted class of piecewise linear price functions (from Step 3).

Step 1: Show that we may assume without loss of generality that Ur is linear for each user

r; i.e., Ur(dr) = αrdr, where α1 = 1 and 0 < αr ≤ 1 for r > 1. The proof of this claim

is similar to the proof of Lemma 2.7. Let dS denote any optimal solution to SYSTEM,

and let w denote a Nash equilibrium, for an arbitrary collection of utility functions

(U1, . . . , UR) satisfying the assumptions of the theorem. We let d = d(w) denote the

allocation vector at the Nash equilibrium. For each user r, we define a new utility

function U r(dr) = αrdr, where αr = U ′
r(dr); we know that αr > 0 by Assumption 3.1.

Then observe that if we replace the utility functions (U1, . . . , UR) with the linear utility

functions (U1, . . . , UR), the vector w remains a Nash equilibrium; this follows from

the necessary and sufficient conditions of Proposition 3.6.

We first show that
∑

r αrdr − C(f) > 0. To see this, note from (3.20) that αr > p(f)

for all r such that dr > 0. Thus αrdr > drp(f) for such a user r, so
∑

r αrdr > fp(f) ≥
C(f), by convexity (Assumption 3.2).

Next, we note that
∑

r Ur(d
S
r ) − C(

∑

r dS
r ) > 0. This follows since Ur is strictly

increasing and nonnegative, while C ′(0) = p(0) = 0; thus if dr is sufficiently small for

all r, we will have
∑

r Ur(dr)−C(
∑

r dr) > 0, which implies
∑

r Ur(d
S
r )−C(

∑

r dS
r ) > 0

(since dS is an optimal solution to SYSTEM).

Using concavity, we have for each r:

Ur(d
S
r ) ≤ Ur(dr) + αr(d

S
r − dr).
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Thus we have:

∑

r Ur(dr) − C(
∑

r dr)
∑

r Ur(dS
r ) − C(

∑

r dS
r )

≥
∑

r

(

Ur(dr) − αrdr

)

+
∑

r αrdr − C(
∑

r dr)
∑

r

(

Ur(dr) − αrdr

)

+
∑

r αrdS
r − C(

∑

r dS
r )

≥
∑

r

(

Ur(dr) − αrdr

)

+
∑

r αrdr − C(
∑

r dr)
∑

r

(

Ur(dr) − αrdr

)

+ max
d≥0

(
∑

r αrdr − C(
∑

r dr)
) .

(Note all denominators above are positive, since we have shown that
∑

r Ur(d
S
r ) −

C(
∑

r dS
r ) > 0.) Since we assumed Ur(0) ≥ 0, we have Ur(dr) − U ′

r(dr)dr ≥ 0 by

concavity; and since 0 <
∑

r αrdr −C(f) ≤ max
d≥0(

∑

r αrdr −C(
∑

r dr)), we have the

inequality:

∑

r Ur(dr) − C(
∑

r dr)
∑

r Ur(dS
r ) − C(

∑

r dS
r )

≥
∑

r αrdr − C(
∑

r dr)

max
d≥0

(
∑

r αrdr − C(
∑

r dr)
) .

Now observe that the right hand side of the previous expression is the ratio of the

Nash equilibrium aggregate surplus to the maximal aggregate surplus, when the util-

ity functions are (U1, . . . , UR); since this ratio is no larger than the same ratio for the

original utility functions (U1, . . . , UR), we can restrict attention to games where the

utility function of each user is linear. Finally, by replacing αr by αr/(maxs αs), and the

cost function C(·) by C(·)/(maxs αs), we may assume without loss of generality that

maxr αr = 1. Thus, by relabeling the users if necessary, we assume for the remainder

of the proof that Ur(dr) = αrdr for all r, where α1 = 1 and 0 < αr ≤ 1 for r > 1.

Before continuing, we observe that under these conditions, we have the following

relation:

max
d≥0

(

∑

r

αrdr − C

(

∑

r

dr

))

= max
f≥0

(

f − C(f)
)

.

To see this, note that at any fixed value of f =
∑

r dr, the left hand side is maximized

by allocating the entire rate f to user 1. Thus, the ratio of Nash equilibrium aggregate

surplus to maximal aggregate surplus becomes:

∑

r αrdr − C(
∑

r dr)

maxf≥0

(

f − C(f)
) . (3.27)

Note that the denominator is positive, since C ′(0) = p(0) = 0; and further, the opti-

mal solution in the denominator occurs at the unique value of f > 0 such that p(f) = 1.
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Step 2: Show that we may restrict attention to games where the total allocated Nash equi-

librium rate is f = 1. Fix a cost function C satisfying Assumption 3.2. Let w be a

Nash equilibrium, and let d = d(w) be the resulting allocation. Let f =
∑

r dr be the

total allocated rate at the Nash equilibrium; note that f > 0 by Proposition 3.6. We

now define a new price function p̂ according to p̂(f̂) = p(ff̂), and a new cost function

Ĉ(f̂) =
∫ f̂
0 p̂(z) dz; note that Ĉ(f̂) = C(ff̂)/f . Then it is straightforward to check that

p̂ satisfies Assumption 3.2. We will use hats to denote the corresponding functions

when the price function is p̂: β̂+(f̂), β̂−(f̂), d̂r(w), f̂(w), etc.

Define ŵr = wr/f . Then we claim that ŵ is a Nash equilibrium when the price

function is p̂. First observe that:

∑

r

ŵr =

∑

r wr

f
= p(f) = p̂(1).

Thus f̂(ŵ) = 1 by Proposition 3.1. Furthermore:

d̂r(ŵ) =
ŵr

p̂(f̂(ŵ))
=

ŵr

p̂(1)
=

wr

fp(f)
=

dr

f
.

Finally, note that:
∂+p̂(1)

∂f̂
= f

∂+p(f)

∂f
,

from which we conclude that β̂+(1) = β+(f), and similarly β̂−(1) = β−(f). Recall that

w is a Nash equilibrium when the price function is p; thus, if we combine the preceding

conclusions and apply Proposition 3.6, we have that ŵ is a Nash equilibrium when the

price function is p̂, with total allocated rate 1 and allocation d̂ = d/f .

To complete the proof of this step, we note the following chain of inequalities:

∑

r αrdr − C(
∑

r dr)

maxf≥0

(

f − C(f)
) =

∑

r αrd̂r − Ĉ(1)

maxf≥0

(

f/f − C(f)/f
)

=

∑

r αrd̂r − Ĉ(1)

maxg≥0

(

g − Ĉ(g)
) ,

where we make the substitution g = f/f . But now note that the right hand side is

the ratio of Nash equilibrium aggregate surplus to maximal aggregate surplus for a

game where the total Nash equilibrium allocated rate is equal to 1. Consequently, in

computing the worst case efficiency loss, we may restrict our attention to games where

the Nash equilibrium allocated rate is equal to 1.
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Step 3: For a fixed price function p, determine the instance of linear utility functions that

minimizes Nash equilibrium aggregate surplus, for a fixed Nash equilibrium allocated rate

f =
∑

r dr = 1. Note that fixing the price function p fixes the optimal aggregate

surplus; thus minimizing the aggregate surplus at Nash equilibrium also yields the

worst case efficiency loss.

We will optimize over the set of all games where users have linear utility functions

(satisfying the conditions of Step 1), and where the total Nash equilibrium rate is f = 1.

We use the necessary and sufficient conditions of Proposition 3.6. Note that fixing the

price function p and the total rate f > 0 fixes the Nash equilibrium price, p(1), as

well as β+(1) and β−(1) (from the definition (3.18)); for notational convenience, we

abbreviate p = p(1), C = C(1), β+ = β+(1), and β− = β−(1) for the duration of this

step. Since α1 = 1, for a fixed value of R the game with linear utility functions that

minimizes aggregate surplus is given by solving the following optimization problem

(with unknowns d1, . . . , dR, α2, . . . , αR):

minimize d1 +
R
∑

r=2

αrdr − C (3.28)

subject to αr

(

1 − β+dr

)

≤ p, r = 1, . . . , R; (3.29)

αr

(

1 − β−dr

)

≥ p, if dr > 0, r = 1, . . . , R; (3.30)

R
∑

r=1

dr = 1; (3.31)

0 < αr ≤ 1, r = 2, . . . , R; (3.32)

dr ≥ 0, r = 1, . . . , R. (3.33)

(Note that we have applied Proposition 3.6: if we solve the preceding problem and

find an allocation d and coefficients α, then there exists a Nash equilibrium w with

d = d(w).) The objective function is the aggregate surplus given a Nash equilibrium

allocation d. The conditions (3.29)-(3.30) are equivalent to the Nash equilibrium con-

ditions established in Proposition 3.6. The constraint (3.31) ensures that the total allo-

cation made is equal to 1, and the constraint (3.32) follows from Step 1. The constraint

(3.33) ensures the rate allocated to each user is nonnegative.

Our approach is to solve this problem through a sequence of reductions. We first

show we may assume without loss of generality that the constraint (3.30) holds with

equality for all users r = 2, . . . , R. The resulting problem is symmetric in the users

r = 2, . . . , R; we next show that a feasible solution exists if and only if 1 − β+ ≤ p < 1

and R is sufficiently large, and we conclude using a convexity argument that dr =

(f − d1)/(R − 1) at an optimal solution. Finally, we show the worst case occurs in the

limit where R → ∞, and calculate the resulting Nash equilibrium aggregate surplus.
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We first show that it suffices to optimize over all (α,d) such that (3.30) holds with

equality for r = 2, . . . , R. Note that if (α,d) is a feasible solution to (3.28)-(3.33), then

from (3.30)-(3.33), and the fact that 0 < β− < 1, we conclude that p < 1. Now if dr > 0

for some r = 2, . . . , R, but the corresponding constraint in (3.30) does not hold with

equality, we can reduce αr until the constraint (3.30) becomes active; by this process

we obtain a smaller value for the objective function (3.28). On the other hand, if dr = 0

for some r = 2, . . . , R, we can set αr = p; since p < 1, this preserves feasibility, but

does not impact the term αrdr in the objective function (3.28). We can therefore restrict

attention to feasible solutions for which:

αr =
p

1 − β−dr
, r = 2, . . . , R. (3.34)

Having done so, observe that the constraint (3.32) that αr ≤ 1 may be written as:

dr ≤ 1 − p

β−
, r = 2, . . . , R.

Finally, the constraint (3.32) that αr > 0 becomes redundant, as it is guaranteed by the

fact that dr ≤ 1 (from (3.31)), β− < 1 (by definition), and (3.34).

We now use the preceding observations to simplify the optimization problem (3.28)-

(3.33) as follows:

minimize d1 + p
R
∑

r=2

dr

1 − β−dr
− C (3.35)

subject to 1 − β+d1 ≤ p ≤ 1 − β−d1; (3.36)

R
∑

r=1

dr = 1; (3.37)

dr ≤ 1 − p

β−
, r = 2, . . . , R; (3.38)

dr ≥ 0, r = 1, . . . , R. (3.39)

The objective function (3.35) is equivalent to (3.28) upon substitution for αr for r =

2, . . . , R, from (3.34). We know d1 > 0 when p(f) < 1 (from (3.29)-(3.30)); thus the

constraint (3.36) is equivalent to the constraints (3.29)-(3.30) for user 1 with d1 > 0.

The constraint (3.29) for r > 1 is redundant and eliminated, since (3.30) holds with

equality for r > 1. The constraint (3.37) is equivalent to the allocation constraint (3.31);

and the constraint (3.38) ensures αr ≤ 1, as required in (3.32).

We first note that for a feasible solution to (3.35)-(3.39) to exist, we must have 1 −
β+ ≤ p < 1. We have already shown that we must have p < 1 if a feasible solution

exists. Furthermore, from (3.36) we observe that the smallest feasible value of d1 is d1 =
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(1 − p)/β+. We require d1 ≤ 1 from (3.37) and (3.39), so we must have (1 − p)/β+ ≤ 1,

which yields the restriction that 1 − β+ ≤ p. Thus, there only exist Nash equilibria

with total rate 1 and price p if:

1 − β+ ≤ p < 1. (3.40)

We will assume for the remainder of this step that (3.40) is satisfied.

We note that if d = (d1, . . . , dR) is a feasible solution to (3.35)-(3.39) with R users,

then letting dR+1 = 0, the vector (d1, . . . , dR+1) is a feasible solution to (3.35)-(3.39)

with R + 1 users, and with the same objective function value (3.35) as d. Thus the

minimal objective function value cannot increase as R increases, so the worst case

efficiency loss occurs in the limit where R → ∞.

We now solve (3.35)-(3.39) for a fixed feasible value of d1. From the constraints

(3.37)-(3.38), we observe that a feasible solution to (3.35)-(3.39) exists if and only if the

following condition holds in addition to (3.40):

d1 + (R − 1)

(

1 − p

β−

)

≥ 1. (3.41)

In this case, the following symmetric solution is feasible:

dr =
1 − d1

R − 1
, r = 2, . . . , R. (3.42)

Furthermore, since the objective function is strictly convex and symmetric in the vari-

ables d2, . . . , dR, and the feasible region is convex, the symmetric solution (3.42) must

be optimal.

If we substitute the optimal solution (3.42) into the objective function (3.35) and

take the limit as R → ∞, then the constraint (3.41) is vacuously satisfied, and the

objective function becomes d1 + p(1 − d1) − C. Since we have shown that p < 1, the

worst case occurs at the smallest feasible value of d1; from (3.36), this value is:

d1 =
1 − p

β+
. (3.43)

The resulting worst case Nash equilibrium aggregate surplus is:

p +
(1 − p)2

β+
− C.

To complete the proof of the theorem, we will consider the ratio of this Nash equi-

librium aggregate surplus to the maximal aggregate surplus; we denote this ratio by
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F (p), as a function of the price function p(·):

F (p) =
p(1) + (1 − p(1))2/β+(1) − C(1)

maxf≥0 (f − C(f))
. (3.44)

Note that henceforth, the scalar p used throughout Step 3 will be denoted p(1), and we

return to denoting the price function by p. Thus F (p) as defined in (3.44) is a function

of the entire price function p(·).
For completeness, we summarize in the following lemma an intermediate tightness

result which will be necessary to prove the tightness of the bound in the theorem.

Lemma 3.9 Suppose that Assumptions 3.2-3.3 hold. Then there exists R > 0 and a choice of

linear utility functions Ur(dr) = αrdr, where α1 = maxs αs = 1, with total Nash equilibrium

rate 1, if and only if (3.40) is satisfied, i.e.:

1 − β+(1) ≤ p(1) < 1. (3.45)

In this case, given δ > 0, there exists R > 0 and a collection of R users where user r has

utility function Ur(dr) = αrdr, such that d is a Nash equilibrium allocation with
∑

r dr = 1,

and:
∑

r αrdr − C(1)

maxd≥0 (
∑

r αrdr − C(
∑

r dr))
≤ F (p) + δ. (3.46)

Proof of Lemma. The proof follows from Step 3. We have shown that if there exists a

Nash equilibrium with total rate 1, then (3.45) must be satisfied. Conversely, if (3.45) is

satisfied, we proceed as follows: define d1 according to (3.43); choose R large enough

that (3.41) is satisfied; define dr according to (3.42); and then define αr according to

(3.34) with p = p(1). Then it follows that (d, α) is a feasible solution to (3.28)-(3.33),

which (by Proposition 3.6) guarantees there exists a Nash equilibrium with total allo-

cated rate equal to 1.

The bound in (3.46) then follows by the proof of Step 3. 2

The remainder of the proof amounts to minimizing the worst case ratio of Nash

equilibrium aggregate surplus to maximal aggregate surplus, over all valid choices of

p—that is, price functions p such that at least one choice of linear utility functions satis-

fying the conditions of Step 1 leads to a Nash equilibrium with total rate 1. By Lemma

3.9, all such functions p are characterized by the constraint (3.45). We will minimize

F (p), given by (3.44), over all choices of p satisfying (3.45).
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Step 4: Show that in minimizing F (p) over p satisfying (3.45), we may restrict attention

to functions p satisfying the following conditions:

p(f) =

{

af, 0 ≤ f ≤ 1;

a + b(f − 1), f ≥ 1;
(3.47)

0 < a ≤ b; (3.48)

1

a + b
≤ 1 <

1

a
. (3.49)

Observe that p as defined in (3.47)-(3.49) is a convex, strictly increasing, piecewise

linear function with two parts: an initial segment which increases at slope a > 0, and a

second segment which increases at slope b ≥ a. In particular, such a function satisfies

Assumption 3.2. Furthermore, we have ∂+p(1)/∂f = b, so that ε+(1) = b/a. This

implies β+(1) = b/(a + b); thus, multiplying through (3.49) by a yields (3.45).

To verify the claim of Step 4, we consider any p such that (3.45) holds. We define a

new price function p as follows:

p(f) =















fp(1), 0 ≤ f ≤ 1;

p(1) +
∂+p(1)

∂f
(f − 1), f ≥ 1.

(3.50)

(See Figure 3-2 for an illustration.) Let a = p(1), and let b = ∂+p(1)/∂f . Then a > 0;

and since p(0) = 0, we have ∂+p(1)/∂f ≥ p(1) by convexity of p, so that b ≥ a.

Furthermore, since p(1) < 1 from (3.45), we have 1/a > 1. Finally, we have:

1

a + b
=

1

p(1)
(1 − β+(1)) ≤ 1,

where the equality follows from the definition of β+(1) and the inequality follows from

(3.45). Thus p satisfies (3.47)-(3.49). Observe also that p(1) = p(1), and ∂+p(1)/∂f =

∂+p(1)/∂f , so that β
+
(1) = β+(1).

We now show that F (p) ≤ F (p). As an intermediate step, we define a new price

function p̂(·) as follows:

p̂(f) =

{

p(f), 0 ≤ f ≤ 1;

p(f), f ≥ 1.

Of course, p̂(1) = p(1) and ∂+p̂(1)/∂f = ∂+p(1)/∂f = ∂+p(1)/∂f , so that (3.45) is

satisfied for p̂. Let Ĉ(f) =
∫ f
0 p̂(z) dz denote the cost function associated with p̂(·).

Observe that (by convexity of p), we have for all f that p̂(f) ≤ p(f), so that Ĉ(f) ≤
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p(1)

1

p(f)

p(f)

f

Figure 3-2. Proof of Theorem 3.8, Step 4: Given a price function p (solid line) and Nash equilibrium rate
1, a new price function p (dashed line) is defined according to (3.50).

C(f). Thus:

max
f≥0

(f − Ĉ(f)) ≥ max
f≥0

(f − C(f)) > 0.

Furthermore, Ĉ(1) = C(1) trivially; hence we conclude F (p̂) ≤ F (p).

Next, we let C(f) =
∫ f
0 p(z) dz denote the cost function associated with p(·). By

convexity of p, we know p(1) ≥ p(1) for 0 ≤ f ≤ 1; thus C(f) ≥ C(f) in that region.

We let ∆ = C(1) − C(1) ≥ 0. Then we have the following relationship:

F (p̂) =
p(1) + (1 − p(1))2/β+(1) − C(1)

maxf≥0

(

f − Ĉ(f)
) (3.51)

≥ p(1) + (1 − p(1))2/β+(1) − (C(1) + ∆)

maxf≥0

(

f − (Ĉ(f) + ∆)
) (3.52)

= F (p). (3.53)

The last equality follows by observing that since p̂(1) = p(1) < 1, the optimal solution

to maxf≥0(f − Ĉ(f)) occurs at f̂S > 1 where p̂(f̂S) = 1; and at all points f ≥ 1, we

have the relationship Ĉ(f) + ∆ = C(f). Combining the preceding results, we have

F (p) ≥ F (p), as required.
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Step 5: The minimum value of F (p) over all p satisfying (3.47)-(3.49) is 4
√

2 − 5. Our

first step is to show that given p satisfying (3.47)-(3.49), F (p) is given by:

F (p) =
1
2a +

(

1 + a
b

)

(1 − a)2

1 − 1
2a + 1

2
(1−a)2

b

=
ab + 2(a + b)(1 − a)2

2b − ab + (1 − a)2
. (3.54)

The numerator results by simplifying the numerator of (3.44), when p takes the form

described by (3.47)-(3.49). To arrive at the denominator, we note that the optimal solu-

tion to maxf≥0(f −C(f)) occurs at fS satisfying p(fS) = 1. Since a < 1, we must have

fS > 1 and:

a + b(fS − 1) = 1.

Simplifying, we find:

fS = 1 +
1 − a

b
. (3.55)

The expression fS − C(fS), upon simplification, becomes the denominator of (3.54),

as required.

Fix a and b such that 0 < a ≤ b, and 1/(a + b) ≤ 1 < 1/a, and define p as in

(3.47). We note here that the constraints 0 < a ≤ b and 1/(a + b) ≤ 1 < 1/a may

be equivalently rewritten as 0 < a < 1, and max{a, 1 − a} ≤ b. Let H(a, b) = F (p);

from (3.54), note that for fixed a, H(a, b) is a ratio of two affine functions of b, and thus

the minimal value of H(a, b) is achieved either when b = max{a, 1 − a} or as b → ∞.

Define H1(a) = H(a, b)|max{a,1−a}, and H2(a) = limb→∞ H(a, b). Then:

H1(a) =















H(a, b)|b=1−a =
2 − a

3 − 2a
, if 0 < a ≤ 1/2;

H(a, b)|b=a = a2 + 4a(1 − a)2, if 1/2 ≤ a < 1;

(3.56)

H2(a) = lim
b→∞

H(a, b) =
a + 2(1 − a)2

2 − a
. (3.57)

We now minimize H1(a) and H2(a) over 0 < a < 1. Over 0 < a ≤ 1/2, the minimum

value of H1(a) is 2/3, achieved as a → 0. Over 1/2 ≤ a < 1, the minimum value of

H1(a) is 20/27, achieved at a = 2/3. Finally, over 0 < a < 1, the minimum value of

H2(a) is 4
√

2 − 5, achieved at a = 2 −
√

2. Since min{2/3, 20/27, 4
√

2 − 5} = 4
√

2 − 5,

we conclude that the minimal value of F (p) over all p satisfying (3.47)-(3.49) is equal

to 4
√

2 − 5. This completes the proof of (3.25).

We now show that this lower bound is tight. Fix δ > 0. The preceding argument

shows that the worst case occurs for price functions satisfying (3.47)-(3.49), where a =
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2 −
√

2 and b → ∞. For fixed b ≥ a = 2 −
√

2, let pb be the associated price function

defined according to (3.47). Then we have established that:

lim
b→∞

F (pb) = 4
√

2 − 5.

From Lemma 3.9, we know there exists γb such that γb < F (pb) + δ/2, and where γb

is the ratio of Nash equilibrium aggregate surplus to maximal aggregate surplus for

some game with price function pb and total allocated rate 1 at the Nash equilibrium.

We thus have:

lim
b→∞

γb = lim
b→∞

F (pb) + δ/2 = 4
√

2 − 5 + δ/2.

Thus for b sufficiently large, we will have γb < 4
√

2 − 5 + δ, establishing (3.26). 2

The preceding theorem shows that in the worst case, aggregate surplus falls by

no more than approximately 34% when users are able to anticipate the effects of their

actions on the price of the link. Furthermore, this bound is essentially tight. In fact,

from the proof of the theorem we see that this ratio is achieved via a sequence of games

where:

1. The price function p has the form given by (3.47)-(3.49), with a = 2−
√

2, b → ∞,

and f = 1;

2. The number of users becomes large (R → ∞); and

3. User 1 has linear utility with U1(d1) = d1, and all other users r have linear utility

with Ur(dr) = αrdr, where αr ≈ p(1) = 2 −
√

2.

The last item follows by substituting the solution (3.42) in (3.34), and taking the limit

as R → ∞. (Note that formally, we must take care that the limits of R → ∞ and b → ∞
are taken in the correct order; in particular, in the proof we first have R → ∞, and then

b → ∞.)

It is interesting to note that the worst case is obtained by considering instances

where the price function is becoming steeper and steeper at the Nash equilibrium rate

1, since b → ∞. This forces the system optimal rate fS to approach the Nash equi-

librium rate f = 1, as we observe from (3.55); nevertheless, the shortfall between the

Nash equilibrium aggregate surplus and the maximal aggregate surplus approaches

34%.

� 3.3 Inelastic Supply vs. Elastic Supply

In this section we briefly compare the model of this chapter (allocation of a resource

in elastic supply) with the model of Chapter 2 (allocation of a resource in inelastic
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supply). In Section 2.1, a model is considered with a single link having exactly C units

of rate available to allocate among the users. As in the model of this chapter, user r

submits a bid wr. The link manager then sets a price µ =
∑

r wr/C; and user r receives

an allocation dr given by:

dr =











0, if wr = 0;

wr

µ
, if wr > 0.

Formally, the space of parametrized demand functions available to the users are the

same in both models: D(µ, wr) = wr/µ. (See Sections 2.1 and 3.1 for more on this

point.) As in this chapter, in Chapter 2 the payoff to user r is Ur(dr) − wr. It is shown

in Section 2.2 that when users are price anticipating and the link supply is inelastic,

the efficiency loss is at most 25%.

Intuitively, we would like to model a system with an inelastic supply C by a cost

function which is zero for 0 ≤ f < C, and infinite for f > C. Formally, we show in

this section that if the price function is given by p(f) = afB for a ≥ 0 and B ≥ 1, then

as B → ∞ the worst case ratio of Nash equilibrium aggregate surplus to maximal ag-

gregate surplus approaches 75%—the same value obtained in Theorem 2.6. While this

does not formally establish the result of Theorem 2.6, the limit is intuitively plausible,

because as the exponent B increases, the price function p and associated cost function

begin to resemble an inelastic capacity constraint with C = 1: for f < 1, fB → 0 as

B → ∞; and for f > 1, fB → ∞ as B → ∞.

Theorem 3.10

Suppose that Assumptions 3.1-3.3 hold. Suppose also that Ur(0) ≥ 0 for all r, and that

p(f) = afB with a > 0 and B ≥ 1. Define the function g(B) by:

g(B) =

(

B + 1

2B + 1

)1/B ((B + 1)(3B + 2)

(2B + 1)2

)

. (3.58)

If dS is any optimal solution to SYSTEM, and w is any Nash equilibrium of the game defined

by (Q1, . . . , QR), then:

∑

r

Ur(dr(w)) − C

(

∑

r

dr(w)

)

≥ g(B)

(

∑

r

Ur(d
S
r ) − C

(

∑

r

dS
r

))

. (3.59)

The function g(B) is strictly increasing, with g(B) → 3/4 as B → ∞; see Figure 3-3.

Furthermore, the bound (3.59) is tight: for fixed B ≥ 1, for every δ > 0, there exists

a choice of R and a choice of (linear) utility functions Ur, r = 1, . . . , R, such that a Nash
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Figure 3-3. The function g(B) in Theorem 3.10: The function g(B) is defined for B ≥ 1 in (3.58), and
gives the worst case efficiency loss when the price function is p(f) = afB with a > 0. Note that g(B) is
strictly increasing, with g(1) = 20/27 and g(B) → 3/4 as B → ∞.

equilibrium w exists with:

∑

r

Ur(dr(w)) − C

(

∑

r

dr(w)

)

≤ (g(B) + δ)

(

∑

r

Ur(d
S
r ) − C

(

∑

r

dS
r

))

. (3.60)

Proof. We follow the proof of Theorem 3.8. Steps 1-4 follow as in that proof, pro-

vided we can show that two scalings of the function p(·) do not affect our result—in

Step 1, where we replace p(·) by p(·)/ maxr αr, and in Step 2, where we replace p(·) by

p(f ·), where f is the Nash equilibrium rate. Indeed, both these scalings remain valid,

since the rescaled price function is still a monomial with the same exponent as p, but a

different constant coefficient. In particular, we may continue to restrict attention to the

special case where Ur(dr) = αrdr, with maxr αr = α1 = 1, and where the total Nash

equilibrium allocated rate is 1.

From Steps 1-4 of the proof of Theorem 3.8, we must minimize F (p), defined in

(3.44), for all choices of p such that (3.45) is satisfied, i.e., such that:

1 − β+(1) ≤ p(1) < 1.
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For p(f) = afB , we have β+(f) = B/(1 + B); and thus we require:

1

1 + B
≤ a < 1. (3.61)

Note that at the maximal aggregate surplus, p(fS) = a(fS)B = 1 implies that

fS = a−1/B . Furthermore, C(f) = afB+1/(B + 1) for f ≥ 0. Thus fS − C(fS) is given

by:

fS − C(fS) =

(

B

B + 1

)(

1

a

)1/B

.

From (3.44), we conclude that F (p) is given by:

F (p) =
a + (1 − a)2(1 + 1/B) − a/(B + 1)

(

B
B+1

)

(

1
a

)1/B
.

We now minimize F (p) over the set of a satisfying (3.61). We begin by differentiating

F (p) with respect to a, and setting the derivative to zero; simplifying, this yields the

following equation:

Ba +

(

1 +
1

B

)(

(2B + 1)a2 − 2(B + 1)a + 1

)

= 0.

This equation is quadratic in a, and has two solutions a1 and a2: a1 = 1/(B + 1),

and a2 = (B + 1)/(2B + 1). Both solutions satisfy (3.61). Let p1(f) = a1f
B , and

p2(f) = a2f
B . We have:

F (p1) =

(

1

B + 1

)1/B (B + 2

B + 1

)

; F (p2) =

(

B + 1

2B + 1

)1/B ((B + 1)(3B + 2)

(2B + 1)2

)

.

To minimize F (p) over a satisfying (3.61), we need also to check the endpoint where

a = 1. If p = fB , we find F (p) = 1; since F (p1), F (p2) ≤ 1 from the definition of F (p),

the minimum value is achieved at either p1 or p2.

For B ≥ 1, we define g1(B) = F (p1), and g2(B) = F (p2). We need the following

technical lemma.

Lemma 3.11 The functions g1(B) and g2(B) are strictly increasing for B ≥ 1. Furthermore,

g1(B) ≥ 3/4 for B ≥ 1, while limB→∞ g2(B) = 3/4.

Proof. We begin by noting that g1(1) = 3/4. Let ĝ1(B) = ln(g1(B)); it suffices to

show that ĝ1(B) is strictly increasing for B ≥ 1. Differentiating ĝ1 yields:

ĝ′1(B) =
(B + 2) ln(B + 1) − 2B

(B + 2)B2
.
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It suffices to check that h1(B) > 0, where:

h1(B) = (B + 2) ln(B + 1) − 2B.

We have h1(1) = 3 ln 2 − 2 > 0; h′
1(1) = ln 2 − 1/2 > 0; and h′′

1(B) = B/(B + 1)2 > 0.

This implies h1(B) > 0 for all B ≥ 1, so g1 is strictly increasing for B ≥ 1.

Next we consider g2(B). Note first that g2(1) = 20/27. Furthermore, as B → ∞,

((B + 1)/(2B + 1))1/B → 1, and (B + 1)(3B + 2)/(2B + 1)2 → 3/4. Thus g2(B) → 3/4

as B → ∞.

Finally, let ĝ2(B) = ln(g2(B)); it suffices to show ĝ2 is strictly increasing for B ≥ 1.

Differentiating ĝ2(B) yields:

ĝ′2(B) =
(3B + 2) ln

(

2B+1
B+1

)

− 2B

(3B + 2)B2
.

As above, it suffices to check that h2(B) > 0, where:

h2(B) = (3B + 2) ln

(

2B + 1

B + 1

)

− 2B.

We have h2(1) = 5 ln(3/2) − 2 > 0; h′
2(1) = 3 ln(3/2) − 7/6 > 0; and h′′

2(1) =

B/[(B + 1)2(2B + 1)2] > 0. Thus h2(B) > 0 for all B ≥ 1, which implies g2 is strictly

increasing for B ≥ 1. 2

From the previous lemma, we conclude that the minimum value of F (p) over

p = afB satisfying (3.61) is given by g2(B); this establishes (3.59). As in Theorem

3.8, by construction this bound is tight, so (3.60) holds as well. 2

The preceding theorem shows that for a particular sequence of price functions

which approach a “hard” capacity constraint, the efficiency loss gradually decreases

from 7/27 (at B = 1) to 1/4 (as B → ∞). In the limit as B → ∞, we recover the same

efficiency loss as in Theorem 2.6. However, while we have demonstrated such a limit

holds as long as the price functions are monomials, there remains an open question: if

the price functions “converge” (in an appropriate sense) to a hard capacity constraint,

under what conditions does the efficiency loss also converge to 1/4? It is straight-

forward to check that such a limit cannot always hold. For example, consider price

functions p of the form specified in (3.47)-(3.49). Using the expression for F (p) given

in (3.54), it is possible to show that by first taking b → ∞, and then taking a → 0, the

worst case efficiency loss approaches zero; see (3.57).
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� 3.4 General Networks

In this section we will consider an extension of the single link model to general net-

works. We adopt exactly the same network model as Section 2.4. We consider a net-

work consisting of J links, or resources, numbered 1, . . . , J . As before, a set of users

numbered 1, . . . , R, shares this network of resources. We assume there exists a set of

paths through the network, numbered 1, . . . , P . By an abuse of notation, we will use

J , R, and P to also denote the sets of resources, users, and paths, respectively. Each

path q ∈ P uses a subset of the set of resources J ; if resource j is used by path q, we

will denote this by writing j ∈ q. (Note that we now denote a path by q rather than

p, as in Chapter 2; this change is made to avoid confusion with the price function p.)

Each user r ∈ R has a collection of paths available through the network; if path q

serves user r, we will denote this by writing q ∈ r. We will assume without loss of

generality that paths are uniquely identified with users, so that for each path q there

exists a unique user r such that q ∈ r. (There is no loss of generality because if two

users share the same path, that is captured in our model by creating two paths which

use exactly the same subset of resources.) For notational convenience, we note that

the resources required by individual paths are captured by the path-resource incidence

matrix A, defined by:

Ajq =

{

1, if j ∈ q

0, if j 6∈ q.

Furthermore, we can capture the relationship between paths and users by the path-user

incidence matrix H, defined by:

Hrq =

{

1, if q ∈ r

0, if q 6∈ r.

Note that by our assumption on paths, for each path q we have Hrq = 1 for exactly one

user r.

Let yq ≥ 0 denote the rate allocated to path q, and let dr =
∑

q∈r yq ≥ 0 denote

the rate allocated to user r; using the matrix H, we may write the relation between

d = (dr, r ∈ R) and y = (yq, q ∈ P ) as Hy = d. Furthermore, if we let fj denote the

total rate on link j, we must have:

∑

q:j∈q

yq = fj , j ∈ J.

Using the matrix A, we may write this constraint as Ay = f .

We continue to assume that user r receives a utility Ur(dr) from an allocated rate

dr, and that each link j incurs a cost Cj(fj) when the total allocated rate at link j is fj .

We make the following assumptions regarding the utility functions and cost functions.
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Assumption 3.5

For each r, the utility function Ur(dr) is concave, nondecreasing, and continuous over the

domain dr ≥ 0.

Assumption 3.6

For each j, there exists a continuous, convex, strictly increasing function pj(fj) over fj ≥ 0

with pj(0) = 0, such that for fj ≥ 0:

Cj(fj) =

∫ fj

0
pj(z)dz.

Thus Cj(fj) is strictly convex and increasing.

Assumption 3.5 is similar to Assumption 3.1, but we no longer require that Ur be

strictly increasing or differentiable. (Thus Assumption 3.5 is identical to Assumption

2.2.) Assumption 3.6 is identical to Assumption 3.2, for each link j. We emphasize here

that while we consider a more general class of utility functions under Assumption 3.5,

we do not resort to an extended game in this section as we did in Section 2.4.1. For

this reason, in the single link setting, the results of this section are generalizations of

the results of Sections 3.1 and 3.2.

The natural generalization of the problem SYSTEM to a network context is given

by the following optimization problem:

SYSTEM:

maximize
∑

r

Ur(dr) −
∑

j

Cj(fj) (3.62)

subject to Ay = f ; (3.63)

Hy = d; (3.64)

yq ≥ 0, q ∈ P. (3.65)

We continue to refer to the objective function (3.62) as the aggregate surplus (see Section

1.1). Since the objective function is continuous and Ur grows at most linearly while

Cj grows superlinearly, an optimal solution y exists. Since the feasible region is con-

vex and the cost functions Cj are each strictly convex, the optimal vector f = Ay is

uniquely defined (though y need not be unique). In addition, if the functions Ur are

strictly concave, then the optimal vector d = Hy is uniquely defined as well. As in the

previous development, we will use the optimal solution to SYSTEM as a benchmark

for the outcome of the network game.

We now define the resource allocation mechanism for this network setting, follow-

ing the development of Section 2.4. The natural extension of the single link model is

defined as follows. Each user r submits a bid wjr for each resource j; this defines a
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strategy for user r given by wr = (wjr, j ∈ J), and a composite strategy vector given

by w = (w1, . . . ,wR). We then assume that each link takes these bids as input, and

uses the pricing scheme developed in Section 3.1. This is formalized in the following

assumption, which is a direct analogue of Assumption 3.3 for each link j.

Assumption 3.7

For all w ≥ 0, at each link j the aggregate rate fj(w) is the unique solution fj to:

∑

r

wjr = fjpj(fj). (3.66)

Furthermore, for each r, xjr(w) is given by:

xjr(w) =















0, if wjr = 0;

wjr

pj(fj(w))
, if wjr > 0.

(3.67)

We define the vector xr(w) by:

xr(w) = (xjr(w), j ∈ J).

Now given any vector xr = (xjr, j ∈ J), we define dr(xr) to be the optimal objective

value of the following optimization problem:

maximize
∑

q∈r

yq (3.68)

subject to
∑

q∈r:j∈q

yq ≤ xjr, j ∈ J ; (3.69)

yq ≥ 0, q ∈ r. (3.70)

(Note this is identical to the definition in (2.43)-(2.45).) Given the strategy vector w,

we then define the rate allocated to user r as dr(xr(w)). Thus user r is allocated the

maximum possible rate possible, given that each link j has granted him rate xjr(w).

Define the notation w−r = (w1, . . . ,wr−1,wr+1, . . . ,wR). Based on the definition

of dr(xr(w)) above, the payoff to user r is given by:

Tr(wr;w−r) = Ur

(

dr(xr(w))
)

−
∑

j

wjr. (3.71)

A Nash equilibrium of the game defined by (T1, . . . , TR) is a vector w ≥ 0 such that

for all r:

Tr(wr;w−r) ≥ Tr(wr;w−r), for all wr ≥ 0. (3.72)



SECTION 3.4. GENERAL NETWORKS 127

As in the development of Section 3.1.2, the following proposition plays a key role

in demonstrating existence of a Nash equilibrium. The proof is identical to the proof

of Proposition 3.3, and is omitted.

Proposition 3.12

Suppose that Assumptions 3.5-3.7 hold. Then for each j and each r: (1) xjr(w) is a continuous

function of w; and (2) for any w−r ≥ 0, xjr(w) is strictly increasing and concave in wjr ≥ 0,

and xjr(w) → ∞ as wjr → ∞.

As in Proposition 3.4, the following proposition gives existence of a Nash equilib-

rium for the game defined by (T1, . . . , TR). We note here that when supply is elastic,

we do not have any discontinuity in the payoff function Tr of user r; and thus we do

not require an extended game to guarantee existence of a Nash equilibrium, as was

developed in Section 2.4.1.

Proposition 3.13

Suppose that Assumptions 3.5-3.7 hold. Then there exists a Nash equilibrium w for the game

defined by (T1, . . . , TR).

Proof. The proof follows the proof of Proposition 3.4. The only step which requires

modification is to show that the payoff Tr of user r is a concave function of wr and a

continuous function of w. To prove this, it suffices to show that Ur(dr(xr(wr;w−r)))

is a concave function of wr and a continuous function of w. We first observe that by

Proposition 3.12, xjr(w) is a concave function of wjr ≥ 0, and a continuous function of

w. Since for each j the function xjr(w) does not depend on wkr for k 6= j, we conclude

that each component of xr(wr;w−r) is a concave function of wr. Now since dr defined

as the optimal objective value of a linear program, dr(xr) is continuous and concave as

a function of xr [15]. In addition, dr(xr) is nondecreasing in xr; i.e., if xjr ≥ x̂jr for all j,

then dr(xr) ≥ dr(x̂r) (this follows from the problem (3.68)-(3.70)). These properties of

xjr and dr, combined with the fact that Ur is concave, continuous, and nondecreasing

from Assumption 3.5, imply that Ur(dr(xr(wr;w−r))) is a concave function of wr, and

a continuous function of w. 2

The following theorem demonstrates that the utility lost at any Nash equilibrium

is no worse than 4
√

2 − 5 of the maximum possible aggregate surplus, matching the

result derived for the single link model. The proof follows the proof of Theorem 2.13:

we construct a single link game at each link j, whose Nash equilibrium is the same as

the fixed Nash equilibrium of the network game. We then apply Theorem 3.8 at each

link to complete the proof. However, we note that this result does not require Ur to be

strictly increasing or continuously differentiable, and is therefore a stronger version of

Theorem 3.8 for the single link case.
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Theorem 3.14

Suppose that Assumptions 3.5-3.7 hold. Assume also that Ur(0) ≥ 0 for all users r. If w is

any Nash equilibrium for the game defined by (T1, . . . , TR), and (yS , fS ,dS) is any optimal

solution to SYSTEM, then:

∑

r

Ur(dr(xr(w))) −
∑

j

Cj(fj(w)) ≥ (4
√

2 − 5)





∑

r

Ur(d
S
r ) −

∑

j

Cj(f
S
j )



 .

Proof. The proof consists of three main steps. First, we describe the entire problem

in terms of the vector xr(w) = (xjr(w), j ∈ J) of the rate allocations to user r from the

network. We show in Lemma 3.15 that Nash equilibria can be characterized in terms

of each user r optimally choosing a rate allocation xr = (xjr, j ∈ J), given the vector

of bids w−r of all other users.

In the second step, we observe that the utility to user r given a vector of rate allo-

cations xr is exactly Ur(dr(xr)); we call this a “composite” utility function. In Lemma

3.16, we linearize this composite utility function. Formally, we replace Ur(dr(xr)) with

a linear function α⊤
r xr. The difficulty in this phase of the analysis is that the composite

utility function Ur(dr(·)) may not be differentiable, because the max-flow function dr(·)
is not differentiable everywhere; as a result, convex analytic techniques are required.

Finally, we conclude the proof by observing that when the “composite” utility func-

tion for user r is linear in the vector of rate allocations xr, the network structure is no

longer relevant. In this case the game defined by (Q1, . . . , QR) decouples into J games,

one for each link. We then apply Theorem 3.8 at each link to arrive at the bound in the

theorem.

We start by describing the problem in terms of the vector xr(w) = (xjr(w), j ∈ J)

of the rate allocations to user r from the network. We redefine the problem SYSTEM

as follows:

maximize
∑

r

Ur(dr(xr)) −
∑

j

Cj(fj) (3.73)

subject to
∑

r

xjr = fj , j ∈ J ; (3.74)

xjr ≥ 0, j ∈ J, r ∈ R. (3.75)

(The notation xr is used here to distinguish from the function xr(w).) In this problem,

the network only chooses how to allocate rate at each link to the users. The users then

solve a max-flow problem to determine the maximum rate at which they can send (this

is captured by the function dr(·)). This problem is equivalent to the problem SYSTEM

as defined in (3.62)-(3.65), because of the definition of dr(·) in (3.68)-(3.70). We label an

optimal solution to this problem by (xS
r , r ∈ R; fS

j , j ∈ J).

Our next step is to show that a Nash equilibrium may be characterized in terms
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of users optimally choosing rate allocations (xr, r ∈ R). We begin by “inverting” the

function xjr(w), with respect to wjr; that is, we determine the amount that user r must

pay to link j to receive a predetermined rate allocation xjr, given that all other users

have bid w−r. Formally, we observe from Proposition 3.12 that xjr(w) is concave,

strictly increasing, and continuous in wjr. Finally, since xjr(w) = 0 if wjr = 0, and

xjr(w) → ∞ as wjr → ∞, we can define a function ωjr(xjr;w−r) for xjr ≥ 0, which

satisfies:

xjr(w) = xjr if and only if wjr = ωjr(xjr;w−r).

From the properties of xjr described above, we note that for a fixed vector w−r, the

function ωjr(·;w−r) is convex, strictly increasing, and continuous, with ωjr(0;w−r) =

0 and ωjr(xjr;w−r) → ∞ as xjr → ∞.

We now use the functions ωjr to write user r’s payoff in terms of the allocated rate

vector xr = (xjr, j ∈ J), rather than in terms of the bid wr. For xr ≥ 0, we define a

function Fr(xr;w−r) as follows:

Fr(xr;w−r) = Ur(dr(xr)) −
∑

j

ωjr(xjr;w−r). (3.76)

We now have the following lemma, which shows a Nash equilibrium may be charac-

terized by an optimal choice of xr for each r.

Lemma 3.15 A vector w is a Nash equilibrium if and only if the following condition holds

for each user r:

xr(w) ∈ arg max
xr≥0

Fr(xr;w−r). (3.77)

Proof of Lemma. Fix a bid vector w, and suppose that there exists a vector xr ≥ 0

such that:

Fr(xr;w−r) > Fr(xr(w);w−r). (3.78)

Since ωjr(xjr(w);w−r) = wjr, we have Fr(xr(w);w−r) = Tr(wr;w−r). Now consider

the bid vector wr defined by wjr = ωjr(xjr;w−r). Then xjr(wr;w−r) = xjr for each j,

so:

Tr(wr;w−r) = Fr(xr;w−r).

Thus wr is a profitable deviation for user r, so w could not have been a Nash equilib-

rium.

Conversely, suppose that w is not a Nash equilibrium. As above, we have the

equality Fr(xr(w);w−r) = Tr(wr;w−r). Fix a user r, and let wr be a profitable devia-

tion for user r, so that Tr(wr;w−r) > Tr(wr;w−r). For each j, let xjr = xjr(wr;w−r).

Then ωjr(xjr;w−r) = wjr, so that Fr(xr;w−r) = Tr(wr;w−r). Thus we conclude that

Fr(xr;w−r) > Fr(xr(w);w−r), so that (3.77) does not hold. 2
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Now suppose that w is a Nash equilibrium. Our approach is to replace user r by

J users (which we call “virtual” users), one at each link j; this process has the effect

of isolating each of the links, and removes any dependence on network structure. We

define the virtual users so that w remains a Nash equilibrium at each single link game.

Formally, for each user r, we construct a vector αr = (αjr, j ∈ J), and consider a single

link game at each link j where user r has linear utility function Ujr(xjr) = αjrxjr.

We choose the vectors αr so that the Nash equilibrium at each single link game is

also given by w; we then apply the result of Theorem 3.8 for the single link model to

complete the proof of the theorem.

As in the proof of Theorem 2.13, a technical difficulty arises here because the func-

tion Ur(dr(·)) may not be differentiable. If the composite function gr = Ur(dr(·)) were

differentiable, then as in the proof of Theorem 3.8, we could find an appropriate vector

αr by choosing αr = ∇gr(xr(w)). However, in general Ur(dr(·)) is not differentiable;

instead, we will choose αr to be a supergradient of Ur(dr(·)), i.e., we require −αr to be

a subgradient of −Ur(dr(·)). The reader is referred to the Notation section for reference

on these definitions from convex analysis. The key relationship we note is that γ is a

supergradient of an extended real-valued function g : R
J → R at x if and only if for all

x ∈ R
J :

g(x) ≤ g(x) + γ⊤(x − x).

Lemma 3.15 allows us to characterize the Nash equilibrium w as a choice of optimal

rate allocation xr by each user r, given the strategy vector w−r of all other users. We

recall the definition of Fr in (3.76); we will now view Fr as an extended real valued

function, by defining Fr(xr;w−r) = −∞ if xjr < 0 for some j. We also define extended

real-valued functions Gr and Kjr on R
J as follows:

Gr(xr) =

{

Ur(dr(xr)), if xr ≥ 0;

−∞, otherwise.

and

Kjr(xr;w−r) =

{ −ωjr(xjr;w−r), if xjr ≥ 0;

0, otherwise.

Then we have Fr = Gr +
∑

j Kjr on R
J . The following lemma establishes existence of

the desired vector αr.

Lemma 3.16 Let w be a Nash equilibrium. Then for each user r, there exists a vector αr =

(αjr, j ∈ J) ≥ 0 such that αr ∈ −∂[−Gr(xr(w))], and the following relation holds:

xr(w) ∈ arg max
xr≥0



α⊤
r xr −

∑

j

ωjr(xjr;w−r)



 . (3.79)
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Proof of Lemma. Fix a user r. We observe that Gr is a concave function of xr ∈ R
J .

This follows as in the proof of Proposition 3.13, because dr is a concave function of

its argument (as it is the optimal objective value of the linear program (3.68)-(3.70)),

and Ur is nondecreasing and concave. Furthermore, we note that Kjr(xr;w−r) is a

concave function of xr ∈ R
J as well, since ωjr(xjr,w−r) is convex and nonnegative for

xjr ≥ 0. Consequently, Fr is a concave function of xr ∈ R
J . In particular, −Fr, −Gr,

and −Kjr are proper, convex, extended real-valued functions. It is straightforward to

show, using Theorem 23.8 in [103], that at xr(w) we have:

∂[−Fr(xr(w);w−r)] = ∂[−Gr(xr(w))] +
∑

j

∂[−Kjr(xr(w);w−r)]. (3.80)

(The summation here of the subdifferentials on the right hand side is a summation of

sets, where A + B = {x + y : x ∈ A,y ∈ B}; if either A or B is empty, then A + B is

empty as well.)

Since w is a Nash equilibrium, from Lemma 3.15, we have for all xr ≥ 0 that:

Fr(xr(w);w−r) ≥ Fr(xr;w−r).

Since Fr(xr;w−r) = −∞ if there exists a j such that xjr < 0, we must in fact have

Fr(xr(w);w−r) ≥ Fr(xr;w−r) for all xr ∈ R
J so we conclude 0 is a supergradient

of −Fr(·;w−r) at xr(w). As a result, it follows from (3.80) that there exist vectors

αr and βjr with αr ∈ −∂[−Gr(xr(w))] and βjr ∈ −∂[−Kjr(xr(w);w−r)], such that

αr = −∑j βjr.

We first note that Gr(xr) is a nondecreasing function of xr; that is, if xr ≥ x̂r, then

Gr(xr) ≥ Gr(x̂r). From this fact it follows that αr must be nonnegative, i.e., αjr ≥ 0

for all j. It remains to be shown that (3.79) holds. We observe that 0 is a supergradient

of the following function at xr(w):

F̂r(xr;w−r) =







α⊤
r xr −

∑

j

ωjr(xjr;w−r), if xr ≥ 0;

−∞, otherwise.

This observation follows by replacing Gr(xr) with the following function Ĝr on R
J :

Ĝr(xr) =

{

α⊤
r xr, if xr ≥ 0;

−∞, otherwise.

Then we have F̂r = Ĝr +
∑

j Kjr; and as before:

∂[−F̂r(xr(w);w−r))] = ∂[−Ĝr(xr(w))] +
∑

j

∂[−Kjr(xr(w);w−r)].



132 CHAPTER 3. MULTIPLE CONSUMERS, ELASTIC SUPPLY

The vector −αr is a subgradient of −Ĝr for all xr ≥ 0. In particular, we can conclude

that αr ∈ −∂[−Ĝr(xr(w))]. Recall that we have already shown αr = −∑j βjr ∈
∑

j −∂[−Kjr(xr(w);w−r)]. Thus 0 ∈ ∂[−F̂r(xr(w);w−r)]. This implies (3.79), as re-

quired. 2

Let w be a Nash equilibrium. For each user r, fix the vector αr given by the pre-

ceding lemma. We start by observing that for each user r, since αr is a supergradient

of Gr(xr(w)), we have:

Ur(dr(x
S
r )) ≤ Ur(dr(xr(w))) + α⊤

r (xS
r − xr(w)). (3.81)

Now note that since ωjr is strictly increasing, if αr = 0, then the unique maximizer in

(3.79) is xr = 0. Thus if αr = 0 for all r, we must have xr(w) = 0 for all r. But from

(3.81), we have the following trivial inequality:

∑

r

Ur(dr(xr(w))) ≥
∑

r

Ur(dr(x
S
r )).

Since dr(xr(w)) = dr(0) = 0 for all r, this is only possible if Ur(dr(x
S
r )) = Ur(0) for all

r as well. It follows that the aggregate surplus is zero at both the Nash equilibrium and

the optimal solution to SYSTEM, so the theorem holds in this case. We may assume

without loss of generality, therefore, that αr 6= 0 for at least one user r.

We have the following simplification of (3.79):

xr(w) ∈ arg max
xr≥0



α⊤
r xr −

∑

j

ωjr(xjr;w−r)





= arg max
xr≥0





∑

j

(αjrxjr − ωjr(xjr;w−r))



 .

The maximum on the right hand side of the preceding expression decomposes into

separate maximizations for each link j. We conclude that for each link j, we have in

fact:

xjr(w) ∈ arg max
xjr≥0

[αjrxjr − ωjr(xjr;w−r)] . (3.82)

Fix a link j. We view the users as playing a single link game at link j, with utility

function for user r given by Ujr(xjr) = αjrxjr. The preceding expression states that

(3.77) in Lemma 3.15 is satisfied, so we conclude that w is a Nash equilibrium for

this single link game at link j. More precisely, we have that (wj1, . . . , wjR) is a Nash

equilibrium for the single link game at link j, when R users with utility functions

(Uj1, . . . , UjR) compete for link j. The maximum aggregate surplus for this link is
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given by:

max
xj1,...,xjR≥0

[

∑

r

αjrxjr − Cj

(

∑

r

xjr

)]

= max
fj≥0

[

(max
r

αjr)f j − Cj(f j)
]

.

Now if αjr = 0, then from (3.82), the optimal choice for user r is xjr(w) = 0. Thus there

are two possibilities: either αjr = 0 for all r, in which case both the Nash equilibrium

aggregate surplus and maximum aggregate surplus are zero; or αjr > 0 for at least

one user r, in which case the maximum aggregate surplus is strictly positive, and we

can apply Theorem 3.8 to find:

∑

r

αjrxjr(w) − Cj(fj(w)) ≥
(

4
√

2 − 5
)

(

max
fj≥0

[

(max
r

αjr)f j − Cj(f j)
]

)

. (3.83)

In particular, note that the preceding inequality holds for all links j (since it holds

trivially for those links where αjr = 0 for all r).

We now complete the proof of the theorem, by following the proof of Step 1 of The-

orem 3.8. We first note that we can assume without loss of generality that
∑

r Ur(d
S
r )−

∑

j Cj(f
S
j ) > 0. If not, then

∑

r Ur(d
S
r )−∑j Cj(f

S
j ) = 0. On the other hand, since w is

a Nash equilibrium, for each r we have:

Ur(dr(xr(w))) −
∑

j

wjr ≥ 0.

This holds since user r can guarantee a payoff of zero by bidding wr = 0. Summing

over all users, and applying (3.66), we have:

∑

r

Ur(dr(xr(w))) −
∑

j

fj(w)pj(fj(w)) ≥ 0.

By convexity, we know fj(w)pj(fj(w)) ≥ Cj(fj(w)); thus:

∑

r

Ur(dr(xr(w))) −
∑

j

Cj(fj(w)) ≥ 0.

Thus if
∑

r Ur(d
S
r ) −∑j Cj(f

S
j ) = 0, it must also be the case that

∑

r Ur(dr(xr(w))) −
∑

j Cj(fj(w)) = 0, since (yS , fS ,dS) is an optimal solution to SYSTEM. We conclude

the theorem trivially holds in this case, so we can assume without loss of generality

that
∑

r Ur(d
S
r ) −∑j Cj(f

S
j ) > 0.
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We note that we have:

∑

r

α⊤
r xS

r −
∑

j

Cj(f
S
j ) =

∑

j

(

∑

r

αjrx
S
jr − Cj(f

S
j )

)

≤
∑

j

max
fj≥0

[

(max
r

αjr)f j − Cj(f j)
]

. (3.84)

We now reason as follows, using (3.81) for the first inequality, and (3.84) for the second:

∑

r Ur(dr(xr(w))) −∑j Cj(fj(w))
∑

r Ur(dr(xS
r )) −∑j Cj(fS

j )
(3.85)

≥
∑

r

(

Ur(dr(xr(w))) − α⊤
r xr(w)

)

+
∑

r α⊤
r xr(w) −∑j Cj(fj(w))

∑

r (Ur(dr(xr(w))) + α⊤
r (xS

r − xr(w))) −∑j Cj(fS
j )

=

∑

r

(

Ur(dr(xr(w))) − α⊤
r xr(w)

)

+
∑

r α⊤
r xr(w) −∑j Cj(fj(w))

∑

r (Ur(dr(xr(w))) − α⊤
r xr(w)) +

∑

r α⊤
r xS

r −∑j Cj(fS
j )

≥
∑

r

(

Ur(dr(xr(w))) − α⊤
r xr(w)

)

+
∑

j (
∑

r αjrxjr(w) − Cj(fj(w)))
∑

r (Ur(dr(xr(w))) − α⊤
r xr(w)) +

∑

j maxfj≥0

[

(maxr αjr)f j − Cj(f j

] . (3.86)

Since Ur(dr(0)) = Ur(0) ≥ 0, by concavity of Ur and the fact that αr ∈ ∂[−Gr(xr(w))]

we have:

Ur(dr(xr(w))) − α⊤
r xr(w) ≥ 0.

Furthermore, from (3.20), we have αjr > pj(fj(w)) if xjr(w) > 0; thus
∑

r αjrxjr(w) >

fj(w)pj(fj(w)) ≥ Cj(fj(w)), where the second inequality follows by convexity (As-

sumption 3.6). This yields:

0 <
∑

j

(

∑

r

αjrxjr(w) − Cj(fj(w))

)

≤
∑

j

max
fj≥0

[

(max
r

αjr)f j − Cj(f j)
]

.

So we conclude from relations (3.83) and (3.86) that:

∑

r Ur(dr(xr(w))) −∑j Cj(fj(w))
∑

r Ur(dr(xS
r )) −∑j Cj(fS

j )
≥

∑

j (
∑

r αjrxjr(w) − Cj(fj(w)))
∑

j maxfj≥0

[

(maxr αjr)f j − Cj(f j)
] ≥ 4

√
2−5.

(Observe that both denominators in this chain of inequalities are nonzero.) Since w

was assumed to be a Nash equilibrium, this completes the proof of the theorem. 2
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The preceding theorem uses the bound on efficiency loss in the single link game to

bound the efficiency loss when users are price anticipating in general networks. Note

that since we knew from Theorem 3.8 that the bound of 4
√

2 − 5 was essentially tight

for single link games, and a single link is a special case of a general network, the bound

4
√

2 − 5 is also tight in this setting.

We conclude with two observations. First, the discussion of Section 2.4.3 remains

relevant here. The network pricing mechanism discussed by Kelly et al. in [65] in-

volves each user submitting only their total payment to the network; the network then

calculates a rate allocation. Following an argument similar to Proposition 2.17, it is

possible to show that at a Nash equilibrium of the game considered in this section, the

resulting allocation for users with positive bids is identical to that obtained if users

submit only their total payments (w1, . . . , wR) (where wr =
∑

j wjr) to the mechanism

proposed by Kelly et al. in [65]. However, an open question remains concerning the

existence and efficiency of Nash equilibria of the game where users submit only their

total payments to the network. Recall from the discussion in Section 2.4.3 that Hajek

and Yang have shown the efficiency loss can be arbitrarily high when users are price

anticipating in the game where they submit only their total payments, and link capac-

ities are inelastic [53]. We thus conjecture that in the worst case, efficiency loss may

be arbitrarily high even when link capacities are elastic, based on the intuition that the

model considered by Hajek and Yang can be viewed as a limit of a sequence of games

with elastic link capacities.

Our second observation is that, as in Section 2.5.2, the essential structure in the

network game we consider here is that the function Ur(dr(xr)) is a concave and con-

tinuous function of the vector xr ≥ 0, and also nondecreasing; that is, if xjr ≥ xjr for all

j ∈ J , then Ur(dr(xr)) ≥ Ur(dr(xr)). Thus, arguing exactly as in Section 2.5.2, we can

consider a more general resource allocation game where the utility to user r is a con-

cave, continuous, nondecreasing function of the vector of resources allocated, Vr(xr);

all the results of this section continue to hold for this more general game.

� 3.5 Cournot Competition

In this section, we will consider a game where the strategies of users are their desired

rates, rather than their total payments; such games, where the strategy of the market

participants is the quantity demanded or supplied, are known as Cournot games [82,

134]. Such games are not well defined when supply is inelastic, since in that case a

market mechanism has no means to ensure supply equals demand if the sum of the

desired rates of the users exceeds supply. On the other hand, when supply is elastic,

then the Cournot mechanism is valid; we will find, however, that in general a Cournot

mechanism can have arbitrarily high efficiency loss.
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Formally, we consider the following model. As before, R users share a single com-

munication link. We continue to assume that each user r has a utility function Ur, and

that the link has a cost function C. We make the following assumptions.

Assumption 3.8

For each r, over the domain dr ≥ 0 the utility function Ur(dr) is concave, nondecreasing, and

continuous; and over the domain dr > 0, Ur(dr) is continuously differentiable. Furthermore,

the right directional derivative at 0, denoted U ′
r(0), is finite.

Assumption 3.9

There exists a continuous, convex, nondecreasing function p(f) over f ≥ 0 with p(0) ≥ 0 and

p(f) → ∞ as f → ∞, such that for f ≥ 0:

C(f) =

∫ f

0
p(z)dz.

Thus C(f) is convex and nondecreasing.

Assumption 3.8 is nearly identical to Assumption 3.5, though we also impose the

requirement that Ur is differentiable for ease of technical presentation. Note that As-

sumption 3.9 is more general than Assumption 3.2; for example, it allows p(0) to be

nonzero. Before continuing, therefore, we consider the implications of Assumption 3.9

on the model of Section 3.1, and in particular on the conclusion of Theorem 3.8. Un-

fortunately, we show in the next example that there exist price functions p satisfying

Assumption 3.9 for which the efficiency loss may be arbitrarily high when users are

price anticipating.

Example 3.3

Fix a < 1, and consider a system consisting of R = 2 users, with U1(d1) = d1, and

U2(d2) = ad2. Define the price function p according to p(f) = a+(f−1)+ (i.e., p(f) = a

if f ≤ 1, and p(f) = a + f − 1 if f ≥ 1). Let C(f) =
∫ f
0 p(z) dz be the associated cost

function. Then it is easy to verify that p and C satisfy Assumption 3.9. Furthermore,

for this price function it can be shown that a vector w is a Nash equilibrium of the

game defined by (Q1, . . . , QR) (where Qr is defined in (3.11)) if and only if w satisfies

the conditions of Proposition 3.6. Define the vector w according to w1 = a − a3, and

w2 = a3; we claim that w is a Nash equilibrium. First note that there holds f(w) = 1,

p(f(w)) = a, β+(f(w)) = 1/(1 + a), and β−(f(w)) = 0, with d1(w) = 1 − a2, and

d2(w) = a2. Recall the Nash equilibrium conditions (3.19)-(3.20) for each r:

U ′
r(dr(w))

(

1 − β+(f(w)) · dr(w)

f(w)

)

≤ p(f(w));

U ′
r(dr(w))

(

1 − β−(f(w)) · dr(w)

f(w)

)

≥ p(f(w)), if wr > 0.
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Using these conditions, it follows that w is a Nash equilibrium. Furthermore, it can be

verified that the Nash equilibrium aggregate surplus in this case is given by 1 − a2 +

a3−a = (1−a)2(1+a). On the other hand, the maximal aggregate surplus is achieved

when p(fS) = 1, i.e., when fS = 2− a; and in this case the maximal aggregate surplus

is 1− a + (1− a)2/2. Thus the ratio of Nash equilibrium aggregate surplus to maximal

aggregate surplus is:

(1 − a)2(1 + a)

1 − a + 1
2(1 − a)2

=
(1 − a)(1 + a)

1 + 1
2(1 − a)

.

As a → 1, the right hand side approaches zero; thus the efficiency loss may be arbi-

trarily high at a Nash equilibrium. 2

Because of the negative result of the previous example, we focused only on price

functions p satisfying Assumption 3.2 for the duration of Sections 3.1 and 3.2. For the

development of the current section, however, the arguments are in fact simplified if

we only require the price function p to satisfy the more general Assumption 3.9.

We continue to assume the problem SYSTEM is defined as in (3.1)-(3.2):

SYSTEM:

maximize
∑

r

Ur(dr) − C

(

∑

r

dr

)

subject to dr ≥ 0, r = 1, . . . , R.

As in Section 3.1, the objective function of this problem is the aggregate surplus (see

Section 1.1). Since p(f) → ∞ as f → ∞, while Ur only grows at most linearly, it

follows that an optimal solution exists. We now consider the following pricing scheme

for rate allocation. Each user r chooses a desired rate dr; the network manager then

sets a single price µ(d). In this case, given a price µ > 0, user r chooses dr to maximize:

Pr(dr; µ) = Ur(dr) − µdr. (3.87)

Notice that in the previous expression, each user is acting as a price taker. We expect

that marginal cost pricing would again yield an optimal solution to SYSTEM, i.e., that

choosing µ(d) = p(
∑

r dr) would lead users to maximize aggregate surplus at a com-

petitive equilibrium. This is formalized in the following proposition, proven using

methods similar to the proof of Theorem 3.2.

Proposition 3.17

Suppose Assumptions 3.8 and 3.9 hold. There exists a competitive equilibrium, that is, a
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price

quantity

µ

AD(p)

AS(p)

∑

r

dr

Figure 3-4. The market-clearing process for Cournot competition: Each consumer r chooses a quantity
dr , which maps to the inelastic demand function D(p, dr) = dr . This defines the aggregate demand
function AD(p) =

∑

r
D(p, wr) =

∑

r
dr . The aggregate supply function is AS(p) = p−1(p). The price µ

is chosen so that supply equals demand, i.e., so that
∑

r
dr = AD(µ) = AS(µ) = p−1(µ); in other words,

µ = p(
∑

r
dr).

vector d and a scalar µ such that µ = p(
∑

r dr), and:

Pr(dr; µ) = max
dr≥0

Pr(dr; µ), r = 1, . . . , R. (3.88)

Any such vector d is an optimal solution to SYSTEM. If the functions Ur are strictly concave,

such a vector d is unique as well.

Observe that we can again interpret this process as a market-clearing process (see

Section 3.1). Each user r chooses a parameter dr; the demand function of user r as a

function of price is then D(p, dr) = dr, so that demand is independent of price. The

resource manager then chooses a price µ so that aggregate demand equals supply,

where supply is given by the function S(µ) = p−1(µ); see Figure 3-4. Thus the price µ

satisfies
∑

r D(µ, dr) = S(µ); inverting, this gives precisely the equation µ = p(
∑

r dr).

Proposition 3.17 shows that with an appropriate choice of price function, and under

the assumption that the users of the link behave as price takers, there exists a vector

of rates d where all users have optimally chosen their dr, with respect to the given

price µ = p(
∑

r dr); and at this “equilibrium,” the aggregate surplus is maximized.

However, when the price taking assumption is violated, the model changes into a

game and the guarantee of Proposition 3.17 is no longer valid.

Consider, then, an alternative model where the users of a single link are price an-
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ticipating, rather than price takers, and play a Cournot game to acquire a share of the

link. We use the notation d−r to denote the vector of all rates chosen by users other

than r; i.e., d−r = (d1, d2, . . . , dr−1, dr+1, . . . , dR). Then given d−r, each user r chooses

dr ≥ 0 to maximize:

Qr(dr;d−r) = Ur(dr) − drp

(

∑

s

ds

)

. (3.89)

The payoff function Qr is similar to the payoff function Pr, except that the user now

anticipates that the network will set the price according to p(
∑

s ds). A Nash equilibrium

of the game defined by (Q1, . . . , QR) is a vector d ≥ 0 such that for all r:

Qr(dr;d−r) ≥ Qr(dr;d−r), for all dr ≥ 0. (3.90)

It is straightforward to show that a Nash equilibrium exists for this game, as we

prove in the following result; see also [92].

Proposition 3.18

Suppose that Assumptions 3.8 and 3.9 hold. Then there exists a Nash equilibrium d for the

game defined by (Q1, . . . , QR).

Proof. We begin by observing that we may restrict the strategy space of each user

r to a compact set, without loss of generality. We simply observe that for all dr larger

than some sufficiently large Dr, we will have Ur(dr) < drp(dr), so that for any vector

d−r of rates chosen by other users, user r would always be better off choosing dr = 0

rather than dr > Dr. Thus, we may restrict the strategy space of user r to the compact

interval Sr = [0, Dr] without loss of generality.

Next, note that since p satisfies Assumption 3.9, drp(
∑

s ds) is convex in dr ≥ 0 for

any value of d−r. This ensures Qr is concave in dr ≥ 0 for all d−r.

The game defined by (Q1, . . . , QR) together with the strategy spaces (S1, . . . , SR) is

now a concave R-person game: each payoff function Qr is continuous in the composite

strategy vector d, and concave in dr; and the strategy space of each user r is a compact,

convex, nonempty subset of R. Applying Rosen’s existence theorem [104] (proven us-

ing Kakutani’s fixed point theorem), we conclude that a Nash equilibrium d exists for

this game. 2

Because the payoff Qr is concave in dr for fixed d−r, a vector d is a Nash equilib-

rium if and only if the following first order conditions are satisfied for each r, where
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f =
∑

s ds:

U ′
r(dr) ≤ p(f) + dr

∂+p(f)

∂f
; (3.91)

U ′
r(dr) ≥ p(f) + dr

∂−p(f)

∂f
, if dr > 0. (3.92)

We will use these conditions to investigate the efficiency loss when users are price an-

ticipating. Before continuing, however, we note in the following proposition that if the

price function p is differentiable, then either all Nash equilibria are optimal solutions

to SYSTEM, or there exists a unique Nash equilibrium.

Proposition 3.19

Suppose that Assumptions 3.8 and 3.9 hold, and the price function p is differentiable. Then at

least one of the following holds:

1. All Nash equilibria of the game defined by (Q1, . . . , QR) are also optimal solutions to

SYSTEM; or

2. There exists a unique Nash equilibrium of the game defined by (Q1, . . . , QR).

Proof. Suppose there exists a Nash equilibrium d which is not an optimal solution

to SYSTEM. Let f =
∑

r dr. From (3.91)-(3.92), we know that U ′
r(dr) = p(f) + drp

′(f)

for all r with dr > 0. Now if p′(f) = 0, then U ′
r(dr) = p(f) for all r with dr > 0, while

U ′
r(dr) ≤ p(f) for all r with dr = 0 (from (3.91)). These are the optimality conditions

for SYSTEM; thus if p′(f) = 0, then d is in fact an optimal solution to SYSTEM. Thus

we cannot have p′(f) = 0, so p′(f) > 0.

Now let d̂ be another Nash equilibrium, and let f̂ =
∑

r d̂r. Assume that d̂ 6= d.

We first suppose that f̂ ≤ f , and choose a user r such that d̂r < dr. In this case dr > 0,

so we have U ′
r(dr) = p(f) + drp

′(f). But now f̂ ≤ f , d̂r < dr, p′(f) > 0, convexity of

p, and concavity of Ur imply that U ′
r(d̂r) ≥ U ′

r(dr) = p(f) + drp
′(f) > p(f̂) + d̂rp

′(f̂),

which contradicts (3.91).

So we can only have f̂ > f ; in particular, note that this implies p′(f̂) ≥ p′(f) > 0

by convexity of p. But then interchanging the roles of d̂ and d, we can apply the same

argument as the preceding paragraph to arrive at a contradiction. Thus we must have

had d̂ = d, i.e., the Nash equilibrium is unique. 2

We will now use the conditions (3.91)-(3.92) to analyze the efficiency loss when

users are price anticipating under Cournot competition. We first show in the following

example that, in general, the efficiency loss may be arbitrarily high.
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Example 3.4

Consider a price function p defined as follows:

p(f) =

{

af, 0 ≤ f ≤ 1;

a + b(f − 1), f ≥ 1.

Note that this yields:

C(f) =







1
2af2, 0 ≤ f ≤ 1;

1
2a + a(f − 1) + 1

2b(f − 1)2, f ≥ 1.

We assume that 0 < a < 1/2, and b > 1. We consider a game with R = 2 users where

U1(d1) = d1, and:

U2(d2) = a

(

2 − 1 − a

b

)

d2.

In this case, note that aggregate surplus is maximized when p(fS) = 1, i.e., when

fS = 1 + (1 − a)/b; and furthermore, this rate should be allocated entirely to user 1.

Thus the maximal aggregate surplus is U1(f
S) − C(fS), or:

1 +
1 − a

b
− 1

2
a − a(1 − a)

b
− (1 − a)2

2b
. (3.93)

On the other hand, we claim that the vector d defined by:

d1 =
1 − a

b
;

d2 = 1 − 1 − a

b
,

is a Nash equilibrium. Observe that f = d1 + d2 = 1, so p(f) = a. Furthermore, at

f = 1, we have ∂+p(f)/∂f = b, ∂−p(f)/∂f = a. It then follows that (3.91) is satisfied

with equality by user 1, and (3.92) is satisfied with equality by user 2. Since a < b,

these conditions are sufficient to ensure that d is a Nash equilibrium. Note that the

aggregate surplus at this Nash equilibrium is U1(d1) + U2(d2) − C(f), or:

1 − a

b
+ a

(

2 − 1 − a

b

)(

1 − 1 − a

b

)

− 1

2
a.

Comparing this expression with (3.93), it is clear that in the limit where a → 0 and

b → ∞, the Nash equilibrium aggregate surplus approaches zero, and the maximal

aggregate surplus approaches 1; thus the ratio of Nash equilibrium aggregate surplus

to the maximal aggregate surplus approaches zero.
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Despite the preceding negative result, in the next section we prove a sequence of

three results characterizing efficiency loss in more limited environments. We then also

demonstrate an extension of Cournot competition to a network context in Section 3.5.2.

This network model has the appealing feature that users only need to select rates on

paths through the network, rather than bidding at individual links as in the model of

Section 3.4.

� 3.5.1 Models with Bounded Efficiency Loss

In this section we consider restricted models of Cournot competition which allow pos-

itive results in bounding efficiency loss when users are price anticipating. The first two

of these results make restrictive assumptions on the users; the third result restricts the

price function to be affine. We start with the following theorem.

Theorem 3.20

Suppose that R = 1, and user 1 has utility function U such that Assumption 3.8 holds; in

addition, suppose that Assumption 3.9 holds. Suppose also that U(0) ≥ 0. If dS is an optimal

solution to SYSTEM, and d maximizes U(d) − dp(d) over d ≥ 0, then:

U(d) − C(d) ≥
(

2

3

)

(

U(dS) − C(dS)
)

. (3.94)

Furthermore, this bound is tight, i.e., there exists a choice of U and C such that (3.94) holds

with equality.

Proof. First suppose that U ′(d) ≤ p(d). Now if U ′(d) < p(d), then d = 0 (from

(3.91)-(3.92)), and in this case d is an optimal solution to SYSTEM. On the other hand,

if U ′(d) = p(d), then d is again an optimal solution to SYSTEM. In either of these cases,

the bound (3.94) holds; so we can assume without loss of generality that U ′(d) > p(d).

Furthermore, note that U(d) − C(d) ≥ U(d) − dp(d) ≥ 0, by convexity of C; thus,

if U(dS) − C(dS) = 0, then we must also have U(d) − C(d) = 0 since dS is an optimal

solution to SYSTEM. So if U(dS) − C(dS) = 0, we again conclude that (3.94) holds.

Thus we can assume without loss of generality that U(dS) − C(dS) > 0, and U ′(d) >

p(d). Now, by arguing as in Step 1 of Theorem 3.8, we can show that the worst case

occurs when the utility function U is linear: U(d) = αd for some α > 0 with α > p(d).

We make this assumption for the remainder of the proof.

Since α > p(d), we conclude that d > 0 (using (3.91)). Furthermore, by applying

the fact that p is nondecreasing we conclude that d < dS (since α = p(dS)).
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p(d)

d

p(f)

p(f)

f

Figure 3-5. Proof of Theorem 3.20: Given a price function p (solid line) and Nash equilibrium rate d, a
new price function p (dashed line) is defined according to (3.95).

We now argue as follows. Define a new price function p(f) according to:

p(f) =















p(d), f ≤ d;

p(d) +

(

α − p(d)

d

)

(f − d), f ≥ d.

(3.95)

(See Figure 3-5 for an illustration.) Define C(f) =
∫ f
0 p(z) dz. Note that since α > p(d),

p and C satisfy Assumption 3.9. We now claim that d maximizes αd−dp(d) over d ≥ 0.

We need only to check that (3.91)-(3.92) are satisfied. The condition (3.92) is satisfied

since:

α > p(d) = p(d) + d
∂−p(d)

∂d
.

On the other hand, by definition of p(d) we have:

∂+p(d)

∂d
=

α − p(d)

d
,

so that (3.91) is satisfied with p in place of p. Thus d maximizes αd − dp(d) over d ≥ 0.

In particular, observe that αd − C(d) = (α − p(d))d.
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The optimal solution to SYSTEM when the utility function is U and the price func-

tion is p is given by solving α = p(d
S
), which yields d

S
= 2d, and aggregate surplus

U(2d)−C(2d) = 3(α−p(d))d/2. Thus the ratio of Nash equilibrium aggregate surplus

to maximal aggregate surplus is 2/3. To complete the proof of the theorem, therefore,

it suffices to show that:

αd − C(d)

αdS − C(dS)
≥ αd − C(d)

maxd≥0

(

αd − C(d)
) .

We argue as follows. Define an intermediate price function p̂(f) as follows:

p̂(f) =

{

p(d), f ≤ d;

p(f), f ≥ d.

Define Ĉ(f) =
∫ f
0 p̂(z) dz; then it is straightforward to check that p̂ satisfies Assump-

tion 3.9. Since p is nondecreasing (Assumption 3.9), we have p(d) ≥ p(f) for f ≤ d; and

thus if we define ∆ = Ĉ(d) − C(d), then ∆ ≥ 0. Furthermore, since we have already

shown that dS > d, we have Ĉ(dS) = C(dS) + ∆, or rearranging, C(dS) = Ĉ(dS) − ∆.

Because α > p(d), we have 0 < αd − dp(d) = αd − Ĉ(d) ≤ αdS − Ĉ(dS) (where the

latter inequality follows since dS is an optimal solution to SYSTEM even when the cost

function is Ĉ). Thus we have:

αd − C(d)

αdS − C(dS)
=

αd − Ĉ(d) + ∆

αdS − Ĉ(dS) + ∆

≥ αd − Ĉ(d)

αdS − Ĉ(dS)
. (3.96)

We now observe that Ĉ(d) = dp(d) = C(d), so the numerator in the last expression is

αd − Ĉ(d) = αd − C(d). On the other hand, from (3.92) it follows that:

α = U ′(d) ≤ p(d) + d
∂+p(d)

∂d
.

Rearranging, we conclude that:

∂+p(d)

∂d
=

α − p(d)

d
≤ ∂+p(d)

∂d
=

∂+p̂(d)

∂d
.

Thus since p̂ is convex, we have p̂(f) ≥ p(f) for f ≥ d; on the other hand, we have

p̂(f) = p(f) for f ≤ d. Since dS > d, we have Ĉ(dS) ≥ C(dS), so that αdS − Ĉ(dS) ≤
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αdS − C(dS) ≤ maxd≥0(αd − C(d)). Combining this inequality with (3.96) yields:

αd − C(d)

αdS − C(dS)
≥ αd − C(d)

maxd≥0

(

αd − C(d)
) =

2

3
,

as required. 2

The preceding theorem considered a single user; in the next theorem, we consider

a model where multiple users share the same utility function.

Theorem 3.21

Suppose that R ≥ 1 users share the same utility function Ur = U , such that Assumption 3.8

holds; in addition, suppose that Assumption 3.9 holds, and that p is differentiable. Suppose

also that U(0) ≥ 0. If dS is an optimal solution to SYSTEM, and d is a Nash equilibrium of

the game defined by (Q1, . . . , QR), then

∑

r

U(dr) − C

(

∑

r

dr

)

≥
(

2R

2R + 1

)

(

∑

r

U(dS
r ) − C

(

∑

r

dS
r

))

. (3.97)

In the special case where U(dr) = αdr for α > 0, the preceding result holds even if p is not

differentiable.

Proof. We start by assuming that p is differentiable. If all Nash equilibria are also

optimal solutions to SYSTEM, then the theorem is trivially true; thus we assume with-

out loss of generality that d is a Nash equilibrium which does not solve SYSTEM. In

this case, from Proposition 3.19, we know that d is in fact the unique Nash equilibrium.

Let f =
∑

r dr; then by symmetry (since all users have the same utility function), the

unique Nash equilibrium must be dr = f/R for all r. Furthermore, by symmetry, since
∑

r U(dr) − C(
∑

r dr) is concave in dr, there exists a symmetric optimal solution dS to

SYSTEM; i.e., letting fS =
∑

r dS
r , we have dS

r = fS/R.

We use the same basic argument as in the proof of Theorem 3.20. As in the opening

of that proof, we can assume without loss of generality that U ′(dr) > p(f) for all r, and
∑

r U(dS
r ) − C(fS) > 0. In this case, by using an argument similar to the proof of Step

1 of Theorem 3.8, it follows that linear utility functions are the worst case. In fact, we

conclude something stronger: the worst case occurs when all users have the same linear

utility function, since U ′(dr) = U ′(ds) = U ′(f/R) for r 6= s. Thus, for the remainder

of the proof, we assume without loss of generality that U(d) = αd for α > 0, where

α > p(f) at the Nash equilibrium. A key observation we make is that since α > p(f)

at the Nash equilibrium, while α = p(fS) at the optimal solution to SYSTEM, and p

is nondecreasing, we must have fS > f . In addition, since U ′(dr) > p(f) for all r, we

must have dr > 0 for all r (from (3.91)), so that f > 0.
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We now argue exactly as in the proof of Theorem 3.20. We define a new price

function p as follows:

p(f) =















p(f), f ≤ f ;

p(f) +

(

(α − p(f))R

f

)

(f − f), f ≥ f.

(Note the similarity with the definition (3.95) of p in the proof of Theorem 3.20.) We

also define the intermediate price function p̂ as follows:

p̂(f) =

{

p(f), f ≤ f ;

p(f), f ≥ f.

Define the associated cost functions C(f) =
∫ f
0 p(z) dz, and Ĉ(f) =

∫ f
0 p̂(z) dz. We

now use an argument similar to the proof of Theorem 3.20. If we define ∆ = Ĉ(f) −
C(f), then ∆ ≥ 0; and since fS > f , we have Ĉ(fS) = C(fS) + ∆. Because α > p(f),

we have 0 < αf − fp(f) = αf − Ĉ(f) ≤ αfS − Ĉ(fS) (where the latter inequality

follows since dS is an optimal solution to SYSTEM even when the cost function is Ĉ).

Thus we have:

αf − C(f)

αfS − C(fS)
=

αf − Ĉ(f) + ∆

αfS − Ĉ(fS) + ∆

≥ αf − Ĉ(f)

αfS − Ĉ(fS)
. (3.98)

We now observe that Ĉ(f) = fp(f) = C(f), so the numerator in the last expression

is αf − Ĉ(f) = αf − C(f). On the other hand, since d is a Nash equilibrium, p is

differentiable, and dr = f/R > 0 for all r, from (3.91)-(3.92) we must have:

α = p(f) +
fp′(f)

R
.

From this we conclude that:

∂+p(f)

∂f
=

(α − p(f))R

f
= p′(f) =

∂+p̂(f)

∂f
. (3.99)

Since p is convex (Assumption 3.9), we know that p̂ is convex; and thus we may con-

clude that p̂(f) ≥ p(f) for f ≥ f . On the other hand, p̂(f) = p(f) for f ≤ f . We con-

clude that Ĉ(f) ≥ C(f) for f ≥ f . Since fS > f , we have αfS−Ĉ(fS) ≤ αfS−C(fS) ≤
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maxf≥0(αf − C(f)). Thus:

αf − C(f)

αfS − C(fS)
≥ αf − C(f)

maxf≥0

(

αf − C(f)
)

.
. (3.100)

We now explicitly compute the right hand side. The numerator is (α − p(f))f . The

maximum in the denominator is achieved when p(f) = α, i.e., when f = f + f/R. It

is straightforward to check that in this case the denominator is equal to (α − p(f)(f +

f/2R). Thus, the ratio on the right hand side of (3.100) is exactly equal to 2R/(2R+1).

Note that the only step in the above argument that required differentiability of the

price function is the reduction to linear utility functions where each user has exactly

the same slope. If we assume to begin with that each user has utility function U(d) =

αd, then we do not require differentiability of p. To see this, let p be any price function

satisfying Assumption 3.9, and let d be any Nash equilibrium (note that it is no longer

necessarily unique); let f =
∑

r dr. As in the preceding development, we can assume

without loss of generality that α > p(f), αfS − C(fS) > 0, and fS > f > 0. We now

recall the optimality condition (3.91) for each user r:

α ≤ p(f) + dr
∂+p(f)

∂f
.

If we consider a user r such that dr ≤ f/R (at least one such user exists), then the

preceding inequality implies:

(α − p(f))R

f
≤ ∂+p(f)

∂f
.

It is now possible to verify that the proof of the theorem holds as before if we replace

(3.99) by the following inequality:

∂+p(f)

∂f
=

(α − p(f))R

f
≤ ∂+p(f)

∂f
=

∂+p̂(f)

∂f
.

Thus the theorem holds in this case, even if the price function p is not necessarily dif-

ferentiable. 2

Note that although a tightness result is not claimed in the theorem, such a result

may be established by considering a limit of differentiable price functions which ap-

proach the worst case price function p defined in the theorem. However, defining such

price functions requires additional technical complexity, and does not yield additional

insight; thus the argument is omitted.
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Note that the preceding theorem also implicitly yields a competitive limit theorem

[82], since as R → ∞ the efficiency loss approaches zero. Indeed, this result is to be

expected, since the users are assumed to be symmetric; thus in the limit of many users

no single user should have a significant impact on the market-clearing price.

Theorems 3.20 and 3.21 present bounds on efficiency loss under various restrictions

on utility functions and the price function p. We note that as was done in the shift

from Assumption 3.1 to Assumption 3.5, these results would continue to hold even if

the utility functions were not necessarily differentiable (as we required in Assumption

3.8). Differentiability of the utility function only eases the presentation of the technical

arguments, but is not essential to the results.

By contrast, differentiability of the price function p is essential to the proof of The-

orem 3.21. In particular, in considering the statements of Theorems 3.20 and 3.21, one

might expect a more general result to hold: if R users share the same utility function U

and Assumption 3.8 is satisfied, and the price function p satisfies Assumption 3.9 (but

is not necessarily differentiable), then the efficiency loss is no more than 1/(2R + 1)

when users are price anticipating. Such a result would be a generalization of both

Theorem 3.20 and Theorem 3.21.

However, the efficiency loss can be arbitrarily high if the price function is not dif-

ferentiable, even if all users share the same utility function. The main reason for this

negative result is that when the price function is not differentiable, there exist Nash

equilibria which are not symmetric among the players; this symmetry plays a key role

in the proof of Theorem 3.21. We present an example here of such a situation.

Example 3.5

Let the number of users be R > 1, and let the price function be p(f) = (f − 1)+. Let

C(f) =
∫ f
0 p(z) dz be the associated cost function; note that p and C satisfy Assump-

tion 3.9. Define α = 1/R2 and d̂ = (α + 1)/R. We then define the piecewise linear

utility function U as follows:

U(d) =

{

αd, if d ≤ d̂;

αd̂, if d ≥ d̂.

Then U is concave and continuous. Note that U is not differentiable, but as discussed

above, this feature is inessential to the argument; a similar example can be constructed

with a differentiable utility function U , at considerably higher technical expense.

We now claim that if dS
r = d̂ for all r, then dS is a optimal solution to SYSTEM. To

see this, note that fS =
∑

r dS
r = Rd̂ = α + 1; and thus p(fS) = α. On the other hand,
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we have:

∂+U(dS
r )

∂dr
=

∂+U(d̂)

∂d
= 0 < α = p(fS);

∂−U(dS
r )

∂dr
=

∂−U(d̂)

∂d
= α = p(fS).

These are necessary and sufficient optimality conditions for dS to be a optimal solution

to SYSTEM, as required. Note that the aggregate surplus at this solution is
∑

r U(dS
r )−

C(fS) = Rαd̂ − α2/2 = α2/2 + α.

Next, let dr = α for r = 2, . . . , R, and d1 = 1 − (R − 1)α. Note that f =
∑

r dr = 1,

and thus p(f) = 0 and:
∂−p(f)

∂f
= 0;

∂+p(f)

∂f
= 1.

We claim d is a Nash equilibrium; note that d is not symmetric among the players.

Using the definitions of d̂ and α, it is straightforward to establish that 0 < α < d̂ <

1− (R− 1)α as long as R > 1. Thus, in particular, U is differentiable at dr for all r, and

U ′(d1) = 0, while U ′(dr) = α. Now we observe that:

p(f) + d1
∂−p(f)

∂f
= 0 = U ′(d1) < 1 − (R − 1)α = p(f) + d1

∂+p(f)

∂f
;

p(f) + dr
∂−p(f)

∂f
= 0 < U ′(dr) = α = p(f) + dr

∂+p(f)

∂f
, r = 2, . . . , R.

These conditions are identical to the necessary and sufficient conditions (3.91)-(3.92),

so we conclude d is a Nash equilibrium. At this Nash equilibrium, the aggregate

surplus is
∑

r U(dr) − C(f) = αd̂ + (R − 1)α2. If we now substitute α = 1/R2 and

d̂ = (α + 1)/R = 1/R3 + 1/R, the ratio of Nash equilibrium aggregate surplus to the

maximal aggregate surplus reduces to:

1/R5 + 1/R3 + (R − 1)/R4

1/(2R4) + 1/R2
.

As R → ∞, the preceding ratio approaches zero. 2

The preceding example highlights an important issue in market modeling: results

on the performance of the market can be very sensitive under assumptions of symme-

try among the participants. In particular, one might expect that little difference exists

in market performance whether the price function is differentiable or not; neverthe-

less, the preceding example shows that efficiency loss can become arbitrarily high if

the price function is not differentiable. To avoid such singular effects, we now search
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instead for a result that holds regardless of the utility functions of the users. Of course,

such a result cannot hold for all price functions. In particular, we prove in the follow-

ing theorem that if the price function is linear, the resulting efficiency loss is no more

than 1/3 of the maximal aggregate surplus, regardless of the utility functions of the

users.

Theorem 3.22

Suppose that Assumption 3.8 holds, and that p(f) = af for some a > 0. Suppose also that

Ur(0) ≥ 0 for all r. If dS is any optimal solution to SYSTEM, and d is any Nash equilibrium

of the game defined by (Q1, . . . , QR), then:

∑

r

Ur(dr) − C

(

∑

r

dr

)

≥
(

2

3

)

(

∑

r

Ur(d
S
r ) − C

(

∑

r

dS
r

))

. (3.101)

Furthermore, this bound is tight: for every δ > 0, there exists a choice of R and a choice of

(linear) utility functions Ur, r = 1, . . . , R such that a Nash equilibrium d exists with:

∑

r

Ur(dr) − C

(

∑

r

dr

)

≤
(

2

3
+ δ

)

(

∑

r

Ur(d
S
r ) − C

(

∑

r

dS
r

))

. (3.102)

Proof. We first note that Steps 1 and 2 of the proof of Theorem 3.8 hold in this

setting as well; i.e., we may assume without loss of generality that Ur(dr) = αrdr,

where 0 < α ≤ 1 = maxr αr, and that the aggregate Nash equilibrium rate is equal to

1. Note that after rescaling, as required in those steps, the new price function p is still

linear but may have a different slope. Since the price function is fixed as p(f) = af ,

the maximal aggregate surplus is achieved when p(fS) = 1, i.e., when fS = 1/a; and

the maximal aggregate surplus is 1/a − (a/2)(1/a)2 = 1/(2a).

Without loss of generality, we have restricted attention to situations where the ag-

gregate Nash equilibrium rate is f = 1. We define p = p(1) = a, C = C(1) = a/2, and

p′ = p′(1) = a. Since the maximal aggregate surplus is fixed as 1/(2a), by (3.91)-(3.92)

the worst case game is identified by solving the following optimization problem (with
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unknowns d1, . . . , dR, α2, . . . , αR):

minimize d1 +
R
∑

r=2

αrdr − C (3.103)

subject to αr ≤ p + drp
′, r = 1, . . . , R; (3.104)

αr ≥ p + drp
′, if dr > 0, r = 1, . . . , R; (3.105)

R
∑

r=1

dr = 1; (3.106)

0 < αr ≤ 1, r = 2, . . . , R; (3.107)

dr ≥ 0, r = 1, . . . , R. (3.108)

The objective function is the aggregate surplus given a Nash equilibrium allocation

d. The conditions (3.104)-(3.105) are equivalent to the Nash equilibrium conditions

established in (3.91)-(3.92). The constraint (3.106) ensures that the total allocation made

at the Nash equilibrium is equal to 1, and the constraint (3.107) follows from Step 1 of

the proof of Theorem 3.8. The constraint (3.108) ensures the rate allocated to each user

is nonnegative.

Our approach is to solve this problem through a sequence of reductions. As in the

proof of Theorem 3.8, it follows that we may assume without loss of generality that the

constraint (3.105) holds with equality for all users r = 2, . . . , R. Furthermore, it follows

from (3.107) together with (3.104)-(3.105) that a candidate solution satisfying (3.106)

can only exist if d1 > 0, in which case we have 1 = p + d1p
′, so that d1 = (1 − p)/p′. In

particular, we conclude immediately that for a feasible solution to exist, we must have

0 < (1 − p)/p′ ≤ 1. This yields the following reduced optimization problem:

minimize
1 − p

p′
+

R
∑

r=2

(p + drp
′)dr − C (3.109)

subject to
R
∑

r=2

dr = 1 − 1 − p

p′
; (3.110)

dr ≤ 1 − p

p′
, r = 2, . . . , R; (3.111)

dr ≥ 0, r = 2, . . . , R. (3.112)

The objective function (3.109) is equivalent to (3.103) upon substitution for αr (assum-

ing equality in (3.105)) and d1 (also by requiring equality in (3.105)). The constraint

(3.110) is equivalent to the allocation constraint (3.106); and the constraint (3.111) en-

sures αr ≤ 1, as required in (3.107).
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The resulting problem is symmetric in the users r = 2, . . . , R. It is clear that a

feasible solution exists if and only if:

1

R
≤ 1 − p

p′
≤ 1. (3.113)

In this case the following symmetric solution is feasible:

dr =
1 − (1 − p)/p′

R − 1
.

(Note that dr ≥ 0 because we know that (1 − p)/p′ ≤ 1 for a feasible solution to exist.)

By an argument similar to the proof of Step 3 of Theorem 3.8, we see that the worst

case occurs as R → ∞, and in this case the optimal objective value (3.109) becomes:

1 − p

p′
+ p

(

1 − 1 − p

p′

)

− C =
1

a
− 1 + a

(

2 − 1

a

)

− a

2
.

Furthermore, the feasibility requirements (3.113) on p and p′ become 0 < (1−p)/p′ ≤ 1;

upon substituting for p and p′, these become 1/2 ≤ a ≤ 1.

Recall that the maximal aggregate surplus is 1/(2a). Thus, the worst case ratio is

identified by the following optimization problem:

minimize
1/a − 1 + a (2 − 1/a) − a/2

1/2a

subject to 1/2 ≤ a ≤ 1.

It is straightforward to establish that the minimum value of this optimization problem

occurs at a = 2/3, and the minimum objective value is equal to 2/3. This establishes

(3.101).

We now show (3.102), for a fixed price function p(f) = af with a > 0. To see this,

choose the utility functions so that U1(d1) = 3ad1/2, and Ur(dr) = a(1 + d)dr, where

d = 1/(2(R−1)). It is then straightforward to check that for sufficiently large R, if d1 =

1/2 and dr = d for r = 2, . . . , R, the allocation d is a Nash equilibrium. Furthermore,

the maximum aggregate surplus is achieved by choosing fS so that 3a/2 = p(fS) =

afS , so fS = 3/2. Thus the ratio of Nash equilibrium aggregate surplus to maximal

aggregate surplus is:

(3a/2)(1/2) + a(1 + d)/2 − a/2

(3a/2)(3/2) − (a/2)(3/2)2
=

3/2 + d

9/4
.

Now as R → ∞, this ratio approaches 2/3, as required. 2
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Note that while the proof makes it appear as if the worst case occurs when the price

function has slope 2/3, in fact by an appropriate choice of utility functions the worst

case efficiency loss is always exactly 1/3 for any linear price function.

� 3.5.2 General Networks

It is straightforward to extend Cournot competition to a network game of the form

described in Section 3.4, where the strategy of a user r is a vector xr = (xjr, j ∈ J) of

rates desired from the resources j ∈ J , and the payoff to user r is:

Tr(xr;x−r) = Ur(dr(xr)) −
∑

j

xjrpj

(

∑

s

xjs

)

.

With this formulation, it can be shown that Nash equilibria exist, and the result of

Theorem 3.22 continues to hold; the proof techniques are identical to those in Section

3.4. (Note that Theorem 3.21 may not extend, since users do not in general share the

same topology, and thus have different effective utility functions Ur(dr(·)).)
The extension of the Cournot game to general networks has an additional attractive

feature: it is equivalent to a game where users choose only the rate they desire on

available paths, rather than choosing rates on a per-link basis. To formalize this notion,

consider an alternative game where the strategy of a user r is yr = (yq, q ∈ r) ≥ 0, the

rates user r wishes to send on each of the paths available to him. Define the payoff to

user r as follows:

T r(yr;y−r) = Ur

(

∑

q∈r

yq

)

−
∑

q∈r

yq

∑

j∈q

pj





∑

q:j∈q

yq



 .

The first term is the utility to user r; the last term is the total payment user r makes to

the network. The expression
∑

j∈q pj(
∑

q:j∈q yq) is the total price to user r of the path

p. Note that this is a much more natural game for the users to play: it is reasonable to

expect users to choose rates on a per path basis, based on observation of the prices of

each of those paths.

We have the following theorem.

Theorem 3.23

Suppose that Assumption 3.5 holds, and that each price function pj and cost function Cj satisfy

Assumption 3.9. Let y be a Nash equilibrium of the game defined by (T 1, . . . , TR), and define

xjr =
∑

q∈r:j∈q yq. Then x is a Nash equilibrium of the game defined by (T1, . . . , TR).

Conversely, let x be a Nash equilibrium of the game defined by (T1, . . . , TR), and let yr be

any optimal solution to (3.68)-(3.70) with xr = xr. Then y is a Nash equilibrium of the game

defined by (T 1, . . . , TR).



154 CHAPTER 3. MULTIPLE CONSUMERS, ELASTIC SUPPLY

Proof. Suppose first that the vector y is a Nash equilibrium of the game defined by

(T 1, . . . , TR), and define xjr =
∑

q∈r:j∈q yq. By definition it follows that:

∑

q∈r

yq

∑

j∈q

pj





∑

q:j∈q

yq



 =
∑

j

xjrpj

(

∑

s

xjs

)

. (3.114)

We now claim that Ur(
∑

q∈r yq) = Ur(dr(xr)). Clearly yr is feasible for (3.68)-(3.70)

with xr = xr, so
∑

q∈r yq ≤ dr(xr); and thus Ur(
∑

q∈r yq) ≤ Ur(dr(xr)). Suppose then

that Ur(
∑

q∈r yq) < Ur(dr(xr)); this is only possible if
∑

q∈r yq < dr(xr). But in this case

if yr is an optimal solution to (3.68)-(3.70) with rate allocation xr, then yr is a profitable

deviation for user r in the game defined by (T 1, . . . , TR): the utility to user r strictly

increases, while the payment made by user r does not increase. This is not possible,

since y is a Nash equilibrium of the game defined by (T 1, . . . , TR). We conclude that

Ur(
∑

q∈r yq) = Ur(dr(xr)), and thus we have Tr(xr;x−r) = T r(yr;y−r) for all r.

Now suppose that x is not a Nash equilibrium of the game defined by (T1, . . . , TR);

then there exists a user r such that xr 6= xr is a profitable deviation for user r. It is then

straightforward to show that if yr is an optimal solution to (3.68)-(3.70), then yr is a

profitable deviation for user r from yr, i.e., T r(yr;y−r) > T r(yr;y−r). Thus y could

not have been a Nash equilibrium for the game defined by (T 1, . . . , TR), a contradic-

tion. So we conclude x is a Nash equilibrium for the game defined by (T1, . . . , TR), as

required.

Conversely, suppose x is a Nash equilibrium for the game defined by (T1, . . . , TR),

and let yr be any optimal solution to (3.68)-(3.70) for each r; then
∑

q∈r yq = dr(xr).

From the constraint (3.69), we have for each r that
∑

q∈r:j∈q yq ≤ xjr, from which it

follows that for each r:

∑

q∈r

yq

∑

j∈q

pj





∑

q:j∈q

yq



 ≤
∑

j

xjrpj

(

∑

s

xjs

)

.

Thus T r(yr;y−r) ≥ Tr(xr;x−r). So now suppose that y is not a Nash equilibrium of

the game defined by (T 1, . . . , TR); then there exists a user r and a vector yr which is a

profitable deviation for user r from yr. But then let xjr =
∑

q∈r:j∈q yq. It then follows

that xr is a profitable deviation for user r from xr, so that x could not have been a

Nash equilibrium for the game defined by (T1, . . . , TR)—a contradiction. Thus y is a

Nash equilibrium for the game defined by (T 1, . . . , TR), as required. 2

The preceding theorem shows that when users play a Cournot game in a general

network, there is essentially no difference in the structure of the game whether they

choose their rate demands at each link in the network, or along each path available

through the network. Indeed, it is this equivalence which drives the proof of the the-
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orem. From an architectural standpoint, such a theorem is very appealing, since the

game where users select rates only along paths yields a much more natural and scal-

able network market mechanism. Formally, Theorem 3.23 allows us to conclude that

the game defined by (T 1, . . . , TR) inherits the mathematical properties of the game

defined by (T1, . . . , TR); in particular, Nash equilibria exist for the game defined by

(T 1, . . . , TR), and the efficiency loss is no more than 1/3 when users are price antici-

pating in the special case where pj is linear for each j.

� 3.6 Cournot Competition with Latency

Throughout this chapter, as well as Chapter 2, we have focused on users whose util-

ity is determined only as a function of the data rate allocation. However, users of

large networks (both communication networks and others) are not necessarily sensi-

tive only to the amount of resources they are allocated; they may also care about other

measures of performance. In this section, we consider a model where a user’s utility is

determined by both the rate allocation to that user, as well as the latency experienced

by that user—i.e., the delay that the user’s traffic suffers in traversing the network. For

simplicity, we continue to focus on Cournot competition, so that the strategy space of

the users is simply the data rate allocation they wish to receive. The network chooses a

price per unit rate, and users choose their rate allocation to maximize their utility less

their payment.

In the special case where the network does not charge any price, such a model bears

close relation to the celebrated “selfish routing” model of Wardrop [10, 55, 61, 144].

That model initially considered a setting where users choose routes through a network

to minimize their own latency; the rate users wish to send is assumed to be fixed, or

inelastic. Our model is thus an extension to a setting where users’ demands are elastic,

rather than fixed. Roughgarden and Tardos [108] analyzed efficiency loss in the selfish

routing model when users have fixed demands; in this section we will show that in

general, efficiency loss can be arbitrarily high when users’ demands are elastic (see

Example 3.7).

We will investigate the model for a single link. Users have utility functions mea-

sured in monetary units, which depend on both allocated rate and experienced latency.

We allow the possibility of a cost function at the link (which may represent a provi-

sioning cost, for example), which is also measured in monetary units. Under simple

conditions, we show there exists a aggregate surplus maximizing allocation; we also

show that a competitive equilibrium exists, when users are both latency taking and

price taking.1 However, we then show that for a number of cases of interest, the ef-

ficiency loss between the aggregate surplus at the competitive equilibrium and the

1The term latency taking here is used in the same sense as price taking: users do not anticipate the
effect of their actions on the latency they experience.
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maximal aggregate surplus can be arbitrarily high. Note that in this setting, there is an

efficiency loss even when users are latency taking and price taking; as we will identify,

this efficiency loss occurs because the correct price is not being set for the users, even

at the competitive equilibrium.

The formal specification of our model is as follows. We assume that each user r is

endowed with a utility function Ur(dr, lr), where dr is the rate allocated to user r, and

lr is the latency experienced by user r. We will assume the link has a latency function

l(f), which specifies the delay experienced by a single unit of traffic on the link when

the total rate through the link is f . We make the following assumptions on Ur and l.

Assumption 3.10

For each r, Ur is a concave and continuous function of the pair (dr, lr) ≥ 0, such that

Ur is nonincreasing in lr, with Ur(0, lr) ≥ 0 for all lr, and for any positive constant a,

Ur(dr, adr) → −∞ as dr → ∞. Furthermore, we assume the directional derivatives of Ur

are continuous over the region (dr, lr) ≥ 0; in particular, Ur is continuously differentiable for

dr > 0, lr > 0.

Assumption 3.11

Over the domain f ≥ 0, the function l(f) is convex, strictly increasing, and continuous,

with l(0) = 0 and l(f) → ∞ as f → ∞; and over the domain f > 0, the function l(f) is

continuously differentiable.

As an example, observe that Assumption 3.10 is satisfied by any separable utility

function Ur(dr, lr) = ur(dr) − drlr, where ur is concave, nondecreasing, nonnegative,

and differentiable. (Indeed, this is precisely the example considered in Example 3.7.)

In addition, we will allow the possibility of a cost function C(f), which may represent

the monetary cost of provisioning the link. We will make the following assumption on

C, which also allows the possibility that C is identically zero.

Assumption 3.12

There exists a continuous, nonnegative, and nondecreasing function p(f) over f ≥ 0 such that

for f ≥ 0:

C(f) =

∫ f

0
p(z)dz.

Thus C(f) is convex and nondecreasing.

As in the previous sections, we will be interested in maximizing aggregate surplus.

Formally, we define the SYSTEM problem for this setting as follows:
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SYSTEM:

maximize
∑

r

Ur

(

dr, l

(

∑

s

ds

))

− C

(

∑

r

dr

)

(3.115)

subject to dr ≥ 0, r = 1, . . . , R. (3.116)

Observe that in this problem, each user r experiences a latency per unit rate given by

lr = l(
∑

s ds). Since the objective function is not separable over the users, it is not

immediately obvious that the problem is convex; however, this is indeed the case, as

demonstrated in the next proposition.

Proposition 3.24

Suppose that Assumptions 3.10-3.12 hold. Then the objective function (3.115) is concave in

the vector d; and furthermore, there exists at least one optimal solution to SYSTEM.

Proof. Fix two vectors d1, d2, and δ ∈ (0, 1). We have:

Ur

(

δd1
r + (1 − δ)d2

r , l

(

δ
∑

s

d1
s + (1 − δ)

∑

s

d2
s

))

≥ Ur

(

δd1
r + (1 − δ)d2

r, δl

(

∑

s

d1
s

)

+ (1 − δ)l

(

∑

s

d2
s

))

≥ δUr

(

d1
r , l

(

∑

s

d1
s

))

+ (1 − δ)Ur

(

d2
r , l

(

∑

s

d2
s

))

,

where the first inequality follows because l is convex and Ur is nonincreasing in lr;

and the second inequality follows because Ur is concave. This establishes that Ur is

concave as a function of d, so that (3.115) is concave in d.

Finally, to see that there exists at least one optimal solution, it suffices to show that

Ur(dr, l(dr)) → −∞ as dr → ∞. To see this, fix f0 > 0, and choose a > 0 such that

l(f) ≥ af if f ≥ f0 (such a choice is possible given our assumptions on l). Then we

have Ur(dr, l(dr)) ≤ Ur(dr, adr) for dr ≥ f0; and since Ur(dr, adr) → −∞ as dr → ∞,

we have Ur(dr, l(dr)) → −∞ as dr → ∞, as required. 2

From the previous proposition, a vector d is an optimal solution to SYSTEM if and

only if for all r we have:

∂+Ur(dr, l)

∂dr
+ l′

∑

s

∂+Us(ds, l)

∂l
≤ p;

∂−Ur(dr, l)

∂dr
+ l′

∑

s

∂−Us(ds, l)

∂l
≥ p, , if dr > 0,
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where l = l(
∑

s ds); l′ = l′(
∑

s ds) (where we interpret l′(0) as the right directional

derivative of l(0)); and p = p(
∑

s ds). Intuitively, if all users act as latency takers and

price takers and Us is differentiable, then these optimality conditions suggest that the

link manager should set a price given by q = p− l′
∑

s ∂Us(ds, l)/∂l (observe this price

is positive, since the second term is negative). However, such a price would depend

on the individual rate allocations made to the users, rather than on the aggregate rate

allocation
∑

s ds. For this reason, we restrict attention to pricing schemes where the

resource manager chooses a price t(
∑

s ds) depending only on the aggregate rate allo-

cation.

We now turn our attention to this model. Suppose that given a rate allocation

d, the resource manager charges a price t(
∑

s ds); we assume that the function t(·) is

continuous and nonnegative. We then say that a vector d is a competitive equilibrium if

for l = l(
∑

s ds), t = t(
∑

s ds), there holds:

dr ∈ arg max
dr≥0

[

Ur(dr, l) − tdr

]

. (3.117)

Observe that Ur(dr, l) − tdr is the payoff to user r when the latency is l, the price per

unit rate is t, and the allocation to user r is dr. Thus, user r chooses dr to maximize

this payoff, given a fixed latency l and price t; i.e., user r acts as a latency taker and

a price taker. The next proposition shows there always exists at least one competitive

equilibrium.

Proposition 3.25

Suppose that Assumptions 3.10-3.12 hold. Suppose also that t(f) is continuous and nonnega-

tive. Then there exists a competitive equilibrium d.

Proof. In this case we cannot frame the competitive equilibrium as the optimal

solution to an optimization problem. Instead, we use a fixed point approach. We

start by showing that in searching for a competitive equilibrium, we may restrict the

strategy space of each user to a compact set. To see this, note that since Ur(dr, adr) →
−∞ as dr → ∞ for any a > 0, we may argue as in the proof of Proposition 3.24 to

show that Ur(dr, l(dr)) → −∞ as dr → ∞. In particular, for sufficiently large Dr, we

will have Ur(Dr, l(Dr)) < 0. Thus if there exists a competitive equilibrium d with

dr > Dr, we will have Ur(dr, l) − tdr < 0 (where t = t(
∑

s ds) and l = l(
∑

s ds)),

since l is increasing, and Ur is nonincreasing in l. But in this case dr = 0 is a profitable

deviation for user r, so d could not have been a competitive equilibrium. We thus

restrict the strategy space of each user r to [0, Dr].

Define for each user r:

BRr(t, l) = arg max
dr∈[0,Dr]

[

Ur(dr, l) − tdr

]

.
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This is the best response mapping for user r, given the price t and the latency l. Next, we

define the set-valued mapping Y(d) for d such that 0 ≤ dr ≤ Dr as follows:

Yr(d) = BRr

(

t

(

∑

s

ds

)

, l

(

∑

s

ds

))

.

We show that the mapping Y has a fixed point; such a fixed point will be a competitive

equilibrium. First, observe that since Ur(·, l) is concave and continuous for fixed l ≥ 0,

the set BRr(t, l) is nonempty and convex for fixed t, l ≥ 0, and thus Yr(d) is nonempty

and convex. To apply Kakutani’s fixed point theorem [124], it remains to be shown

that Yr is a closed mapping.

Suppose then that we have a sequence d(n) → d as n → ∞, such that y(n) ∈
Y(d(n)), and y(n) → y. We must show that y ∈ Y(d). But this follows easily by

writing the optimality conditions which define BRr(t, l). We have d ∈ BRr(t, l) if and

only if:

∂+Ur(dr, l)

∂dr
≤ t, if 0 ≤ dr < Dr;

∂−Ur(dr, l)

∂dr
≥ t, if 0 < dr ≤ Dr.

Let ln = l(
∑

s ds(n)), and let tn = t(
∑

s ds(n)); and let l = l(
∑

s ds), and let t =

t(
∑

s ds). Then as n → ∞, we have ln → l and tn → t, by continuity of the functions l

and t. Thus we have:

∂+Ur(yr(n), ln)

∂dr
− tn → ∂+Ur(yr, l)

∂dr
− t,

as n → ∞; a similar result holds for the left directional derivative if 0 < yr ≤ Dr. (Re-

call we assumed Ur to have continuous directional derivatives.) From this it follows

that if y(n) ∈ BRr(tn, ln) for all n, then y ∈ BRr(t, l). This establishes that Yr is a

closed mapping, and hence Y possesses a fixed point, as required. 2

The previous example shows a competitive equilibrium exists; however, in general,

the efficiency loss can be arbitrarily high relative to the maximal aggregate surplus,

regardless of the choice of the function t. The basic intuition for this fact is well known

in economics: there exists a negative externality between the users due to the latency l,

and by using a price of the form t(
∑

s ds), the externality cannot be priced correctly.

(For details on the theory of externalities, see Chapter 11 of [82].) We illustrate this first

in a general setting, then specialize to a “selfish routing” example.
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Example 3.6

Fix a continuous and nonnegative function t(f). We will construct an example for

which the competitive equilibrium has arbitrarily low efficiency relative to the maxi-

mal aggregate surplus, as follows. Suppose the system consists only of one user, with

U(d, l) = αd−βdl, where α > 0 and β > 0; in addition, suppose that l(f) = f . Observe

that in this case U satisfies Assumption 3.10, and l satisfies Assumption 3.11. We as-

sume that the cost function C is identically zero. It is straightforward to verify that the

maximal aggregate surplus in this situation is given by α2/4β, and is achieved when

d = α/2β.

On the other hand, suppose that d is a competitive equilibrium rate. We assume

without loss of generality that d > 0; otherwise the efficiency loss relative to the max-

imal aggregate surplus is trivially 100%. Let t = t(d), and l = l(d) = d. Since d

maximizes U(d, l)− td over d ≥ 0, we must have α−βl− t = 0, or d = (α− t)/β. In this

case the competitive equilibrium aggregate surplus is given by αd − βdl = t(α − t)/β.

Thus the ratio of competitive equilibrium aggregate surplus to the maximal aggregate

surplus is:
4t(d)(α − t(d))

α2
. (3.118)

Thus suppose we choose a sequence of pairs (αn, βn), with αn → ∞ as n → ∞, such

that the competitive equilibrium is d when the utility function is Un(d, l) = αnd−βndl.

(Such a choice can be accomplished by choosing βn > 0 so that αn − βnd = t.) In this

case t(d) remains fixed, and the ratio (3.118) will tend to zero, as required. 2

Example 3.7 (Selfish routing with elastic demands)

A related special case occurs when we set t(f) = 0 for all f , and Ur(dr, l) = ur(dr)−drl

for all r (where ur(dr) is a utility function satisfying Assumption 3.1). Such a model is

then identical to the selfish routing model of Wardrop [144], but where users’ demands

are elastic (i.e., determined by utility maximization), rather than inelastic (i.e., exoge-

nously specified); see Chapter 6 of [120] or Chapter 2 of [10]. The preceding example

then can be specialized to (trivially) yield arbitrarily high efficiency loss in this set-

ting. This is in contrast to the results of Roughgarden and Tardos [108], who show that

when demands are fixed and latency functions are affine, the aggregate latency is no

more than 4/3 of the minimal aggregate latency. In our setting with elastic demands,

the efficiency loss is arbitrarily high even if latency functions are affine. We note here

that Chau and Sim [19] have considered a model similar to this example, and provide

a bound on the efficiency loss in terms of the parameters of a given game instance; in

addition, Schulz and Stier Moses have considered a related model of elastic demands

and compare only the costs (not the utilities) achieved at the competitive equilibrium

and the aggregate surplus maximizing allocation [114]. 2

These negative results are quite trivial, and suggest that naive schemes are not
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sufficient to eliminate the efficiency loss due to “mispricing” that results in the context

of selfish routing. In these results we have focused on competitive equilibrium, where

users are price taking. When users are price taking, the particular choice of market

mechanism is less essential—one could also consider a model where the strategy of

each user is their total willingness-to-pay (as in Section 3.1), rather than the Cournot

model of this section. The resulting mechanism has the same efficiency properties

as those described here, and in particular, efficiency loss can be arbitrarily high even

though users are price taking. Note that, of course, the fact that price taking behavior

may lead to arbitrarily high efficiency loss suggests that price anticipating behavior

may lead to arbitrarily high efficiency loss, by considering an appropriate limiting

case of many users.

� 3.7 Chapter Summary

This chapter has considered a variety of settings where the available supply of re-

sources is elastic, as compared to the setting of the previous chapter where resources

are inelastically supplied. For a game where users’ strategies are the payments they

are willing to make, we have shown that the efficiency loss is no more than 34% when

users are price anticipating, for the setting of a single link (Theorem 3.8) as well as a

network (Theorem 3.14). We also considered Cournot games, where the strategies of

users are the quantities they desire. While efficiency loss is generally arbitrarily high

for Cournot games when users are price anticipating, we show for some special cases

that efficiency loss may be bounded (Theorems 3.20, 3.21, and 3.22). Finally, we con-

sidered some simple models for Cournot games where utility depends on latency as

well as rate.

We close by comparing and contrasting the price anticipating behavior of users in

the models of this chapter, and the price anticipating behavior of users discussed in

Section 2.1.2. Note that for the model of that section, users need to know only the

current price at the link, i.e., µ =
∑

r wr/C, as well as the capacity C of the link, to

compute an optimal response. On the other hand, in the discussion of Section 3.1.2,

in order to compute an optimal strategic decision users need to know not only the

current price level p(f(w)), but also the total allocated rate f(w) and the derivative

of the price p′(f(w)) (where we have assumed for simplicity that p is differentiable).

We postulate that the overhead of actually collecting such detailed information in a

large scale communication network is quite high; in fact, in general users will have

no knowledge of either the total allocated rate or the derivative of the price at the

resource. This raises an important question of information availability when users

respond to price signals: users may not react optimally, so what are users’ conjectures

about how their strategies affect the price? Developing more detailed models for the

users’ response to available price information from the network poses an interesting
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research direction for the future.



C H A P T E R 4

Multiple Producers,

Inelastic Demand

I n this chapter we turn our attention to a model where multiple suppliers compete

to satisfy a fixed, inelastic demand. We will discuss two motivations for such a

model—the first theoretical, and the second practical. First, we will delineate the dif-

ferences between “consumers” and “producers,” lending justification to further theo-

retical investigation of models of competing firms. Next, we will relate a model con-

sisting of multiple producers and inelastic demand to existing work on modeling elec-

tricity markets, and in particular connect our model with the extensive work on supply

function equilibrium.

In the previous two chapters, we have considered models where multiple con-

sumers bid for a scarce resource (either in inelastic supply, as in Chapter 2, or in elastic

supply, as in Chapter 3). In each of these models, given a consumer with utility func-

tion U , we assume the net monetary payoff when the allocation is x and the payment

is w is given by:

U(x) − w. (4.1)

In this chapter we consider a symmetric problem, where multiple suppliers “bid” to

meet a fixed demand. We describe a firm by a cost function C, which gives the mon-

etary cost of production by the firm. If the firm produces x and receives revenue R,

then the net monetary payoff to the firm is:

R − C(x).

Notice that this payoff is identical to (4.1), if we define C(x) = −U(x) and w = −R.

Thus, on the surface, one might expect the results of the previous two chapters to also

carry through to games where suppliers compete, rather than consumers. However,

we must be careful in defining consumers and producers. Formally, we say that an

agent in a market is a consumer if he has nondecreasing utility (or, equivalently, non-

increasing cost) in the amount of resource allocated. Conversely, we say an agent in a

market is a producer if he has nondecreasing cost (or, equivalently, nonincreasing util-

163



164 CHAPTER 4. MULTIPLE PRODUCERS, INELASTIC DEMAND

ity) in the amount of resource allocated. Because of this distinction, if U(x) is the utility

of a consumer, then C(x) = −U(x) will not be the cost of a producer. Thus, a further

theoretical investigation of market-clearing mechanisms for environments with multi-

ple competing producers and inelastic demand is required.

An important motivation for considering such models may be found in the evo-

lution of modern markets for generation of electricity. Demand for electricity, par-

ticularly in the short run, is characterized by low elasticity with respect to price, i.e.,

changes in price do not lead to significant changes in the level of demand; see, e.g.,

[131], Section 1-7.3. We emphasize here that this characteristic is primarily an artifact

of the architecture of electricity pricing as it exists today, where prices seen by con-

sumers do not typically vary on timescales shorter than a month. Indeed, recent efforts

at changing the pricing architecture for electricity demand have focused on ensuring

the responsiveness of demand on shorter timescales [91].

In light of the short run price inelasticity of demand, markets for generation today

operate by setting a price for electricity so that the aggregate supply offered by gener-

ators meets the demand requirements of a given region. This raises a simple market

design question: given a fixed, inelastic demand, how should a market mechanism

be designed to yield an efficient allocation of generation—that is, an allocation which

minimizes production cost? In particular, as in the previous two chapters, we desire

efficiency even if firms are price anticipating.

Before considering various models for market mechanisms, we fix some terminol-

ogy. We will assume that N generators compete to satisfy a fixed demand D > 0, and

that each generator n submits a supply function Sn(p) to a central clearinghouse, de-

scribing the amount of electricity the generator is willing to produce at a given price

per unit p. The clearinghouse then “clears the market” by choosing a price p such

that
∑

n Sn(p) = D. For each firm, we also let Pn(S) denote the inverse of the supply

function, i.e., Pn(Sn(p)) = p. (These definitions are made informally, without regard

to ensuring that market-clearing prices or inverse supply functions exist; we will con-

sider these technical issues more carefully in the remainder of the chapter.)

We start by considering simple structures for the supply functions, the well known

models of Bertrand [12] and Cournot [23] competition. In Bertrand competition, each

firm n chooses a price pn at which it is willing to supply any amount of electricity;

that is, the inverse supply functions chosen by the firms are Pn(s) = pn for all s >

0. The market manager then chooses the lowest price among those offered by the n

firms, and the entire demand is supplied at this price (possibly split among multiple

firms offering the lowest price). However, as observed by Shapiro [119], Bertrand

competition is characterized by the fact that equilibria may fail to exist when marginal

production cost of each firm is not linear.

We next consider instead a mechanism where each firm chooses a fixed quantity it

is willing to supply, regardless of the price; this is known as Cournot competition [23].
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In this case each firm n chooses a quantity qn, and Sn(p) = qn for all n. However, when

the price elasticity of demand is zero, then such a mechanism is not well defined; and

furthermore, if the price elasticity of demand is low, then it is straightforward to check

that Cournot equilibria may have arbitrarily high efficiency loss when some firms are

price anticipating [30].

Thus both Bertrand and Cournot mechanisms will not typically yield mechanisms

which are efficient when firms are price anticipating, and demand is inelastic; in fact,

in general these mechanisms may not even have well-defined market-clearing prices.

For this reason, both theory and practice in construction of markets for electricity gen-

eration have focused on supply function bidding, or supply function equilibrium (SFE).

In such markets, the strategy of each firm is not limited to one scalar (either price or

quantity), but rather consists of an entire function Sn(p) describing the amount of elec-

tricity a generator is willing to produce at any price p; note the relation to the demand

function bidding discussed by Wilson [146] (see Section 2.1). Thus the strategy space

of each firm is infinite dimensional.

Grossman [49] and Hart [54] provide concrete examples of SFE models. Gross-

man, in particular, suggested the investigation of equilibria in supply functions as a

means to eliminate the efficiency losses due to market power in industries with only

a small number of firms competing. His analysis shows that in the presence of fixed

startup costs to the firms, it is possible for a supply function equilibrium to achieve

full efficiency; however, in general it is difficult to guarantee that the number of sup-

ply function equilibria is small, and other inefficient supply function equilibria may

exist.

The seminal work in the study of supply function equilibria is the paper of Klem-

perer and Meyer [69]. The authors begin by showing that, in the absence of uncer-

tainty, nearly any production allocation can be supported as a supply function equi-

librium. They then show that if demand is uncertain, then the range of equilibria is

dramatically reduced; and that in equilibrium, the range of possible prices and alloca-

tions range between those achieved at Bertrand and Cournot equilibria. The key con-

tribution of Klemperer and Meyer in this work is the identification of uncertainty in

demand as a factor which reduces the number of equilibria; indeed, this insight builds

on earlier work by the same authors in [68] which investigates preferences firms might

have between prices as strategies (vertical supply functions) or quantities as strategies

(horizontal supply functions).

The SFE work of Klemperer and Meyer sparked activity in the electricity market

modeling literature, in no small part because these markets actually operate in practice

by having generators submit complete supply functions (see, e.g., [136] for a descrip-

tion of the recent United States Federal Energy Regulatory Commission guidelines for

Standard Market Design for the power industry). The first applications of SFE to elec-

tricity markets appeared in the papers of Bolle [16] and Green and Newbery [47, 48].
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We now briefly survey some of the developments of this stream of literature. Our goal

is not to give an exhaustive survey (for a more complete list of references, see for ex-

ample [30]; and for a discussion of some of the issues involved, see [147]). Rather, we

aim to give background on the existing models as a contrast to the model we build in

this chapter.

The initial papers of [16] and [48] considered SFE models with continuous and

differentiable supply functions submitted by suppliers. On the other hand, in practice

generators submit discretized supply functions (typically step functions). As would be

expected, such an assumption on the supply functions may preclude existence of Nash

equilibria in pure strategies, a result shown by von der Fehr and Harbord [141]. As

one response to this negative result, Supatgiat et al. consider a game where generators

submit single price-quantity pairs as bids, and bids are accepted at increasing price

until demand is met; the authors characterize Nash equilibria for this game [133].

Another key assumption in the original work of Klemperer and Meyer [69] is that

demand varies with price (i.e., that demand is elastic). Rudkevich et al. extend the

original analysis of Klemperer and Meyer to games where demand is completely in-

elastic, but possibly uncertain [111]. Building on this model and the conclusions of

von der Fehr and Harbord in [141], Anderson and Philpott characterize supply func-

tion equilibria with inelastic demand under general assumptions on the cost functions

of the individual firms, and then investigate the loss of revenue if firms must approxi-

mate both their own supply functions and the supply functions of competitors [1].

We make two observations about this line of work as it relates to our models in

this chapter. First, the original model of Klemperer and Meyer in [69] required that the

firms competing in a market have identical cost functions; characterizing supply func-

tion equilibria when firms are not necessarily symmetric is a much harder problem.

As discussed by Baldick et al. [7], asymmetric markets are typically handled by mak-

ing linearity assumptions on the structure of the supply functions submitted. Baldick

and Hogan [8, 9] justify such an assumption by showing that, in general, supply func-

tion equilibria other than affine supply functions will be “unstable” (i.e., unlikely to

persist in practice); however, their theoretical conclusion relies on an assumption that

marginal costs are affine for all firms. In summary, therefore, the complexity of the

SFE model places restrictions on the types of environments which can be successfully

analyzed.

Our second observation is that the line of modeling electricity markets has focused

almost entirely on using the SFE framework for its predictive power. In other words,

by solving the SFE model for an appropriate set of assumptions, the papers discussed

above hope to lend insight into the operation of power markets which require gen-

erators to submit complete supply schedules as bids. But because there may be a

multiplicity of equilibria, an explicit understanding of efficiency losses in these games

has not been developed. Papers such as the work of Rudkevich et al. [111] do suggest,
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however, that in the presence of inelastic demand, price anticipating behavior can lead

to significant deviations from perfectly efficient allocations.

These observations lead us to consider a substantially different approach in this

chapter. First, we aim to create a market-clearing mechanism where the strategy space

of each firm is simple (as in Bertrand or Cournot competition), but where the descrip-

tion of each firm’s supply function is rich enough to ensure that both competitive and

Nash equilibria exist (as in SFE model). Second, we desire that such a mechanism al-

ways yields full efficiency when firms are price taking, regardless of the firms’ cost

functions; and we also hope that the efficiency loss remains bounded when firms are

price anticipating, again regardless of the firms’ cost functions (provided the num-

ber of firms is greater than two). Thus the question we pose is a mechanism design

question: given that a market designer wishes to use a single price to determine the

allocation of demand, what is a reasonable restricted class of supply functions for

which good efficiency properties can be guaranteed? (In fact, we will see in Section

5.2 that the mechanism we construct in this chapter minimizes efficiency loss among

all market-clearing mechanisms satisfying certain assumptions.)

Finally, we note here a caveat to the model of this chapter. We have adopted the

stance that market-clearing mechanisms are desirable because the use of a single price

to ensure supply equals demand has long been an architectural feature of modern

electricity markets. However, if the goal of the electricity market is only to ensure an

efficient allocation of production across the firms, even if firms are price anticipating,

then a reasonable solution might be found in the traditional elements of the theory of

mechanism design (see [46] and Chapter 23 of [82]). For the moment we simply note

this issue requires further investigation; we defer a detailed discussion to Chapter 6.

Chapter Outline

The remainder of the chapter is organized as follows. In Section 4.1, we precisely de-

fine the market mechanism we are considering; in particular, we assume that each

firm submits a supply function of the form S(p, w) = D−w/p, where D is the demand

and w is a nonnegative scalar chosen by the firm. The market then chooses a price

so that aggregate supply is equal to demand. In Section 4.1.1, we assume that firms

are price taking, and show there exists a competitive equilibrium; furthermore, at this

competitive equilibrium the resulting allocation minimizes aggregate production cost.

In Section 4.1.2, we assume instead that firms are price anticipating, and establish exis-

tence and uniqueness of a Nash equilibrium as long as more than two firms compete.

In Section 4.2 we consider the aggregate production cost at a Nash equilibrium relative

to the minimal possible aggregate production cost. As long as more than two firms are

competing, we show that the ratio of Nash equilibrium production cost to the minimal

production cost is no worse than 1 + 1/(N − 2), where N is the number of firms in

the market. We conclude by considering two extensions of the model, first to mitigate
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the possibility of negative supply by the firms (discussed in Section 4.3), and second

to apply to settings with stochastic demand (in Section 4.4). The latter section demon-

strates that the efficiency loss result of Section 4.2 carries over even to a setting where

demand is inelastic but stochastically determined, by showing that in such an instance

it is as if firms play a game with deterministic demand but different cost functions.

� 4.1 Preliminaries

Suppose N > 2 firms compete to satisfy a known inelastic demand D > 0. Let sn

denote the amount produced and supplied by firm n. We assume that firm n incurs a

cost Cn(sn) when it produces sn units; we assume that cost is measured in monetary

units. We make the following assumption on the cost functions Cn.

Assumption 4.1

For each n, the cost function Cn(sn) is continuous, with Cn(sn) = 0 if sn ≤ 0. Over the

domain sn ≥ 0, the cost function Cn(sn) is convex and strictly increasing.

We observe that the assumption of convexity is quite strong in the context of elec-

tricity markets, since startup costs may be significant for a generator, thus making the

overall cost function nonconvex. However, for the purposes of analytical simplicity

we consider in this chapter only the setting where cost is convex; extending this model

to a situation where costs may be nonconvex remains an open problem.

Given complete knowledge and centralized control of the system, a natural prob-

lem for the market manager to try to solve is the following optimization problem:

SYSTEM:

minimize
∑

n

Cn(sn) (4.2)

subject to
∑

n

sn = D; (4.3)

sn ≥ 0, n = 1, . . . , N. (4.4)

The objective function in the previous equation is the aggregate cost. This is the natural

adaptation of the concept of aggregate surplus to a setting where demand is inelastic;

see Section 1.1. Note that we can restrict the feasible region to s ≥ 0, since Cn is strictly

increasing if sn ≥ 0 and Cn(sn) = 0 if sn ≤ 0. Since the objective function is continuous

and the feasible region is compact, an optimal solution s exists; since the feasible region

is convex, if the functions Cn are strictly convex, then the optimal solution is unique.

We consider the following market mechanism for production allocation. Each firm

n submits a supply function to the market manager, which gives (as a function of price)

the amount the firm is willing to produce. We will assume the supply functions are
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price

quantity

µ

AD(p)

AS(p)

D0

Figure 4-1. The market-clearing process with inelastic demand: Each producer n chooses a parameter
wn, which maps to the supply function S(p, wn) = D−wn/p. This defines the aggregate supply function
AS(p) =

∑

n
S(p, wn) = ND −

∑

n
wn/p. The aggregate demand function is AD(p) = D for all p. The

price µ is chosen so that supply equals demand, i.e., so that D = AD(µ) = AS(µ) = ND −
∑

n
wn/p.

chosen from a parametrized family of supply functions. Formally, we assume that firm

n submits a parameter wn ≥ 0 to the market manager. The supply function indicates

that at a price p > 0, firm n is willing to supply S(p, wn) units given by:

S(p, wn) = D − wn

p
. (4.5)

We now assume that the market manager chooses the price p(w) > 0 to clear the market,

i.e., so that
∑

s S(p(w), wn) = D; see Figure 4-1. Such a choice is only possible if
∑

n wn > 0, in which case:

p(w) =

∑

n wn

(N − 1)D
. (4.6)

On the other hand, if
∑

n wn = 0, then S(p, wn) = D for all n, regardless of the value

of p; so we fix the following conventions:

S(0, 0) = D, and p(0) = 0. (4.7)

(This makes the function p continuous in w.)

We note here that the mechanism we are considering is related to the mechanisms

of Chapters 2 and 3, where users choose demand functions of the form D(p, wr) =

wr/p (recall Sections 2.1 and 3.1). The parameter wn may be interpreted as the revenue

that firm n is willing to forego; this may be seen since pD is the total pool of revenue
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when the price is p, and pS(p, wn) = pD − wn is the revenue to firm n when the price

is p. While this seems on the surface to be an unnatural bidding method for firms,

we will discuss in Section 5.2 the extent to which the mechanism we consider here is

uniquely defined by certain desirable properties.

Before continuing, we pause here to examine the implications of using the same

mechanism as in Chapter 2 to allocate demand among the producers. In such a mech-

anism, each firm n submits a bid wn; the market-clearing price is set to µ =
∑

n wn/D;

and firm n produces sn = wn/µ = wnD/(
∑

m wm), while receiving revenue wn. When

firm n is price anticipating, then, the payoff to firm n is:

wn − Cn

(

wn
∑

m wm
D

)

.

But now consider a strategy where firm n lets wn grow arbitrarily large: the revenue

to firm n approaches infinity, while the cost remains bounded by Cn(D). Thus we

find that a Nash equilibrium does not exist for such a mechanism when firms are price

anticipating. More generally, it is possible to show that such a mechanism does not

ensure payoffs to firms are concave when they are price anticipating, and hence Nash

equilibria cannot be guaranteed to exist; we will investigate the consequences of such

a restriction further in Section 5.2 of Chapter 5. For the purposes of the current chapter,

such a restriction leads us to consider the parametrized supply function class described

by (4.5).

In the remainder of the section, we consider two different models for how firms

might interact with the price mechanism. In Section 4.1.1, we consider a model where

firms do not anticipate the effect of their bids on the price, and establish existence

of a competitive equilibrium. Furthermore, this competitive equilibrium leads to an

allocation which is an optimal solution to SYSTEM. In Section 4.1.2, we change the

model and assume firms are price anticipating, and establish existence and uniqueness

of a Nash equilibrium. Section 4.2 then considers the loss of efficiency at this Nash

equilibrium, relative to the optimal solution to SYSTEM.

� 4.1.1 Price Taking Firms and Competitive Equilibrium

In this section, we consider a competitive equilibrium between the firms and the market

manager [82]. A central assumption in the definition of competitive equilibrium is

that each firm does not anticipate the effect of its payment wn on the price, i.e., each

firm acts as a price taker. In this case, given a price µ > 0, firm n acts to maximize the

following profit function over wn ≥ 0:

Pn(wn; µ) = µS(µ, wn) − Cn(S(µ, wn)). (4.8)
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If we substitute using (4.5) and (4.6), then for µ > 0 we have:

Pn(wn; µ) = (µD − wn) − Cn

(

D − wn

µ

)

.

The first term represents the revenue to firm n when the price is µ and the firm supplies

S(µ, wn) units; the second term represents the cost to the firm of producing S(µ, wn)

units. Observe that since cost is measured in monetary units, the payoff is quasilinear

in money.

We now say a pair (w, µ) where w ≥ 0 and µ > 0 is a competitive equilibrium if firms

maximize their payoff as defined in (4.8), and the market is cleared by setting the price

µ according to (4.6):

Pn(wn; µ) ≥ Pn(wn; µ) for wn ≥ 0, n = 1, . . . , N ; (4.9)

µ =

∑

n wn

(N − 1)D
. (4.10)

We show that when firms are price takers, there exists a competitive equilibrium, and

the resulting allocation is an optimal solution to SYSTEM. This is formalized in the

following theorem.

Theorem 4.1

Suppose that Assumption 4.1 is satisfied and that N > 1. Then there exists a competitive

equilibrium, i.e., a vector w = (w1, . . . , wN ) ≥ 0 and a scalar µ > 0 satisfying (4.9)-(4.10).

In this case, the vector s defined by sn = S(µ, wn) is an optimal solution to SYSTEM.

Proof. The key idea in the proof is to use Lagrangian techniques to establish that

the equilibrium conditions (4.9)-(4.10) are identical to the optimality conditions for the

problem SYSTEM, under the identification sn = S(µ, wn) for each n.

Step 1: Given µ > 0, w satisfies (4.9) if and only if wn ∈ [0, µD] for all n, and:

∂−Cn(S(µ, wn))

∂sn
≤ µ, if 0 ≤ wn < µD; (4.11)

∂+Cn(S(µ, wn))

∂sn
≥ µ, if 0 < wn ≤ µD. (4.12)

To see that these conditions are necessary and sufficient, first note that firm n would

never bid more than µD when the price is µ. If wn > µD, then S(µ, wn) < 0, so the pay-

off Pn(wn; µ) becomes negative; on the other hand, Pn(µD; µ) = 0. Thus if wn satisfies

(4.9) for firm n, then wn ∈ [0, µD]. To complete the proof, we note only that convexity

of Cn implies concavity of Pn; and thus wn satisfies (4.9) if and only if wn ∈ [0, µD],

and wn satisfies the optimality conditions (4.11)-(4.12).



172 CHAPTER 4. MULTIPLE PRODUCERS, INELASTIC DEMAND

Step 2: There exists a vector s ≥ 0 and a scalar µ > 0 such that:

∂−Cn(sn)

∂sn
≤ µ, if sn > 0; (4.13)

∂+Cn(sn)

∂sn
≥ µ, if sn ≥ 0; (4.14)

∑

n

sn = D. (4.15)

The vector s is then an optimal solution to SYSTEM. As discussed above, at least one op-

timal solution to SYSTEM exists since the feasible region is compact and the objective

function is continuous. We form the Lagrangian for the problem SYSTEM:

L(s, µ) =
∑

n

Cn(sn) − µ

(

∑

n

sn − D

)

Here the second term is a penalty for the demand constraint. The Slater constraint

qualification ([13], Section 5.3) holds for the problem SYSTEM at the point s = 0,

since then 0 =
∑

n sn < C; this guarantees the existence of a Lagrange multiplier µ. In

other words, since the objective function is convex and the feasible region is convex,

a feasible vector s is optimal if and only if there exists µ ≥ 0 such that the conditions

(4.13)-(4.15) hold. Since there exists at least one optimal solution s to SYSTEM, there

exists at least one pair (s, µ) satisfying (4.13)-(4.15). We see that µ > 0 from (4.13), since

sn > 0 for at least one firm n.

Step 3: If the pair (s, µ) satisfies (4.13)-(4.15), and we let wn = µ(D − sn), then the

pair (w, µ) satisfies (4.9)-(4.10). By Step 2, µ > 0; thus, under the identification wn =

µ(D−sn), (4.15) becomes equivalent to (4.10). Furthermore, (4.13)-(4.14) become equiv-

alent to (4.11)-(4.12); by Step 1, this guarantees that (4.9) holds.

Step 4: Suppose w and µ > 0 satisfy (4.9)-(4.10). Let sn = S(µ, wn) for each n. Then

there exists µ > 0 such that the pair (s, µ) satisfies (4.13)-(4.15). First note that (4.10) is

equivalent to (4.15) under the identification sn = S(µ, wn). Next, we observe that if

0 ≤ sn < D for all n, then 0 < wn ≤ µD for all n. Thus the conditions (4.11)-(4.12)

become equivalent to the conditions (4.13)-(4.14), for the pair (s, µ). Thus the claim is

proven if 0 ≤ sn < D for all n; in this case we let µ = µ.

On the other hand, suppose that sn = D for some n, and sm = 0 for m 6= n;

thus wn = 0 and wm = µD for m 6= n. Let µ = min{µ, ∂+Cn(D)/∂sn}; note that

µ > 0. Now note from (4.12), we have ∂+Cm(0)/∂sm ≥ µ for m 6= n. Since µ ≤ µ,

we conclude that (4.14) holds for (s, µ). Next notice that the only firm with sm > 0
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is m = n. From (4.11), we have ∂−Cn(D)/∂sn ≤ µ; and since Cn is convex, we have

∂−Cn(D)/∂sn ≤ ∂+Cn(D)/∂sn. Thus (4.13) holds for (s, µ) as well, as required.

Step 5: Completing the proof. By Steps 2 and 3, there exists a vector w and a scalar

µ > 0 satisfying (4.9)-(4.10); by Step 4, the vector s defined by sn = S(µ, wn) is an

optimal solution to SYSTEM. 2

Theorem 4.1 shows that under the assumption that firms behave as price takers,

there exists a strategy vector w where all firms have optimally chosen their bids wn,

with respect to the given price µ =
∑

n wn/((N − 1)D); and at this “equilibrium,”

aggregate production cost is minimized. However, when the price taking assumption

is violated, the model changes into a game and the guarantee of Theorem 4.1 is no

longer valid. We investigate this game in the following section.

� 4.1.2 Price Anticipating Firms and Nash Equilibrium

We now consider an alternative model where the firms are price anticipating, rather

than price takers. The key difference is that while the payoff function Pn takes the

price µ as a fixed parameter in (4.8), price anticipating firms will realize that µ is set

according to µ = p(w) from (4.6), and adjust their payoff accordingly; this makes the

model a game between the N firms.

We use the notation w−n to denote the vector of strategies of firms other than n;

i.e., w−n = (w1, w2, . . . , wn−1, wn+1, . . . , wN ). Given w−n, each firm n chooses wn to

maximize:

Qn(wn;w−n) = p(w)S(p(w), wn) − Cn (S(p(w), wn)) (4.16)

over nonnegative wn. If we substitute for p(w) from (4.6) and for S(p, wn) from (4.5),

we have:

Qn(wn;w−n) =























∑

m wm

N − 1
− wn − Cn

(

D −
(

wn
∑

m wm

)

(N − 1)D

)

, if wn > 0;

∑

m6=n wm

N − 1
− Cn(D), if wn = 0.

(4.17)

The payoff function Qn is similar to the payoff function Pn, except that the firm antic-

ipates that the network will set the price µ according to µ = p(w) from (4.6). A Nash

equilibrium of the game defined by (Q1, . . . , QN ) is a vector w ≥ 0 such that for all n:

Qn(wn;w−n) ≥ Qn(wn;w−n), for all wn ≥ 0. (4.18)

The following theorem shows that there exists a unique Nash equilibrium alloca-

tion when N > 2 firms compete, by showing that at a Nash equilibrium it is as if
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the firms are solving another optimization problem of the same form as the problem

SYSTEM, but with “modified” cost functions.

Theorem 4.2

Assume that N ≥ 2, and suppose that Assumption 4.1 is satisfied. If N = 2, then no Nash

equilibrium exists for the game defined by (Q1, . . . , QN ). On the other hand, if N > 2, then

there exists a Nash equilibrium w ≥ 0 of the game defined by (Q1, . . . , QN ), and it satisfies
∑

n wn > 0. In this case the vector s defined by sn = S(p(w), wn) is the unique optimal

solution to the following optimization problem:

GAME:

minimize
∑

n

Ĉn(sn) (4.19)

subject to
∑

n

sn = D; (4.20)

sn ≥ 0, n = 1, . . . , N, (4.21)

where

Ĉn(sn) =

(

1 +
sn

(N − 2)D

)

Cn(sn) − 1

(N − 2)D

∫ sn

0
Cn(z) dz. (4.22)

Proof. The proof proceeds in a number of steps. We first show that at a Nash equi-

librium, at least two components of w must be positive. This suffices to show that the

payoff function Qn is concave and continuous for each firm n. We use these properties

to show no Nash equilibrium exists if N = 2, and then restrict attention to the case

N > 2. We then establish necessary and sufficient conditions for w to be a Nash equi-

librium; these conditions look similar to the optimality conditions (4.11)-(4.12) in the

proof of Theorem 4.1, but for “modified” cost functions defined according to (4.22).

Mirroring the proof of Theorem 4.1, we then show the correspondence between these

conditions and the optimality conditions for the problem GAME. This correspondence

establishes existence of a Nash equilibrium, and uniqueness of the resulting allocation.

Step 1: If w is a Nash equilibrium, then at least two coordinates of w are positive. Fix a

firm n, and suppose wm = 0 for every m 6= n. The payoff to firm n is then:

Qn(wn;w−n) =















−Cn(D), if wn = 0;

−(N − 2)wn

N − 1
, if wn > 0.

The first expression follows by noting that when wn = 0 (so that w = 0), we have

p(w) = 0, while S(p(w), wn) = D for firm n. (Recall the convention (4.7) that S(0, 0) =
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D for all p ≥ 0.) For the second expression, note that when wn > 0, we have the

inequality S(p(w), wn) = D − (N − 1)D < 0, so C(S(p(w), wn)) = 0. We now see

that when wn = 0, firm n can profitably deviate by increasing wn infinitesimally (since

Cn(D) > 0); on the other hand, when wn > 0, firm n can profitably deviate by infinites-

imally decreasing wn. Thus no Nash equilibrium exists where
∑

m6=n wm = 0. Since

this holds for every firm n, we conclude at least two coordinates of w must be positive.

Step 2: If the vector w ≥ 0 has at least two positive components, then the function

Qn(wn;w−n) is concave and continuous in wn, for wn ≥ 0. This follows from (4.16).

When
∑

m6=n wm > 0, from (4.17) we have:

Qn(wn;w−n) =

∑

m6=n wm

N − 1
− (N − 2)wn

N − 1
− Cn

(

D −
(

wn

wn +
∑

m6=n wm

)

(N − 1)D

)

.

Indeed, when
∑

m6=n wm > 0, the function wn/(wn +
∑

s 6=r ws) is a strictly concave

function of wn (for wn ≥ 0). Since Cn was assumed to be convex and nondecreasing

(and hence continuous), it follows that Qn(wn;w−n) is concave and continuous in wn

for wn ≥ 0.

Step 3: If N = 2, then no Nash equilibrium exists. Suppose that (w1, w2) is a Nash

equilibrium. Then by Step 1, w1 > 0 and w2 > 0; and by Step 2, in this case the payoff

to firm 1 as a function of w1 ≥ 0 is:

Q1(w1; w2) = w2 − Cn

(

D − w1

w1 + w2
D

)

.

The preceding expression is strictly increasing in w1, so (w1, w2) could not have been

a Nash equilibrium. Thus no Nash equilibrium exists if N = 2.

Based on the preceding step, for the remainder of the proof, we will assume that

N > 2.

Step 4: The vector w is a Nash equilibrium if and only if at least two components of w are

positive, and for each n, wn ∈ [0, (
∑

m6=n wm)/(N − 2)] and the following conditions hold:

∂C−
n (S(p(w), wn))

∂sn

(

1 +
S(p(w), wn)

(N − 2)D

)

≤ p(w), if 0 ≤ wn <

∑

m6=n wm

N − 2
; (4.23)

∂C+
n (S(p(w), wn))

∂sn

(

1 +
S(p(w), wn)

(N − 2)D

)

≥ p(w), if 0 < wn ≤
∑

m6=n wm

N − 2
. (4.24)

Let w be a Nash equilibrium. By Steps 1 and 2, w has at least two positive components
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and Qn(wn;w−n) is concave and continuous for wn ≥ 0. We first observe that we must

have wn ≤ (
∑

m6=n wm)/(N − 2); if not, then S(p(w), wn) < 0, and by arguing as in

Step 1 of the proof of Theorem 4.1 we can show that firm n can profitably deviate by

choosing wn = (
∑

m6=n wm)/(N − 2). Thus wn must maximize Qn(wn;w−n) over 0 ≤
wn ≤ (

∑

m6=n wm)/(N − 2), and satisfy the following first order optimality conditions:

∂+Qn(wn;w−n)

∂wn
≤ 0, if 0 ≤ wn <

∑

m6=n wm

N − 2
;

∂−Qn(wn;w−n)

∂wn
≥ 0, if 0 < wn ≤

∑

m6=n wm

N − 2
.

Recalling the expression for p(w) given in (4.6), after multiplying through by p(w) the

preceding optimality conditions become:

∂C−
n (S(p(w), wn))

∂sn

(

1 − wn
∑

m wm

)

≤ (N − 2)p(w)

N − 1
,

if 0 ≤ wn <

∑

m6=n wm

N − 2
; (4.25)

∂C+
n (S(p(w), wn))

∂sn

(

1 − wn
∑

m wm

)

≥ (N − 2)p(w)

N − 1
,

if 0 < wn ≤
∑

m6=n wm

N − 2
. (4.26)

We now note that by definition, we have:

wn
∑

m wm
=

D − S(p(w), wn)

(N − 1)D
.

Substituting into (4.25)-(4.26) and simplifying yields (4.23)-(4.24).

Conversely, suppose that w has at least two strictly positive components, that

0 ≤ wn ≤ (
∑

m6=n wm)/(N − 2), and w satisfies (4.23)-(4.24). Then we may simply

reverse the argument: by Step 2, Qn(wn;w−n) is concave and continuous in wn ≥ 0,

and in this case the conditions (4.23)-(4.24) imply that wn maximizes Qn(wn;w−n)

over 0 ≤ wn ≤ (
∑

m6=n wm)/(N − 2). Since we have already shown that choosing

wn > (
∑

m6=n wm)/(N − 2) is never optimal for firm n, we conclude w is a Nash equi-

librium.

If we let µ = p(w), note that the conditions (4.23)-(4.24) have the same form as the

optimality conditions (4.11)-(4.12), but for a different cost function given by Ĉn. We

now use this relationship to complete the proof in a manner similar to the proof of

Theorem 4.1.
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Step 5: The function Ĉn(sn) defined in (4.22) is continuous, and strictly convex and

strictly increasing over sn ≥ 0, with Ĉn(sn) = 0 for sn ≤ 0. Since Cn(sn) = 0 for sn ≤ 0,

it follows that Ĉn(sn) = 0 for sn ≤ 0. For sn ≥ 0, we simply compute the directional

derivatives of Ĉn:

∂+Ĉn(sn)

∂sn
=

(

1 +
sn

(N − 2)D

)

∂+Cn(sn)

∂sn
;

∂−Ĉn(sn)

∂sn
=

(

1 +
sn

(N − 2)D

)

∂−Cn(sn)

∂sn
.

Since Cn is strictly increasing and convex, for 0 ≤ sn < sn we will have:

0 ≤ ∂+Ĉn(sn)

∂sn
<

∂−Ĉn(sn)

∂sn
≤ ∂+Ĉn(sn)

∂sn
.

This guarantees that Ĉn is strictly increasing and strictly convex over sn ≥ 0.

Step 6: There exists a unique vector s ≥ 0 and at least one scalar ρ > 0 such that:

(

1 +
sn

(N − 2)D

)

∂−Cn(sn)

∂sn
≤ ρ, if sn > 0; (4.27)

(

1 +
sn

(N − 2)D

)

∂+Cn(sn)

∂sn
≥ ρ, if sn ≥ 0; (4.28)

∑

n

sn = D. (4.29)

The vector s is then the unique optimal solution to GAME. By Step 5, since Ĉn is continu-

ous and strictly convex over the convex, compact feasible region for each n, we know

that GAME has a unique optimal solution s. As in the proof of Theorem 4.1, the Slater

constraint qualification holds for GAME, so there exists a Lagrange multiplier ρ such

that (s, ρ) satisfy the stationarity conditions (4.27)-(4.28), together with the constraint

(4.29). The fact that ρ > 0 follows from (4.27), since at least one sn is positive.

Step 7: If s ≥ 0 and ρ > 0 satisfy (4.27)-(4.29), then the vector w defined by wn =

(D − sn)ρ is a Nash equilibrium. First, observe by this definition that wn ≥ 0, from

(4.29) and the fact that sn ≥ 0 for all n. Furthermore, since sn ≥ 0, of course we have

(1 + 1/(N − 2))sn ≥ 0; it is thus straightforward to check that we have:

wn = (D − sn)ρ ≤ ((N − 2)D + sn) ρ

N − 2
=

∑

m6=n wm

N − 2
.
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Finally, at least two components of w are strictly positive, since otherwise we have

sn1
= sn2

= D for some n1 6= n2, in which case
∑

n sn > D, which contradicts (4.29).

By Step 4, to check that w is a Nash equilibrium, we must only check the sta-

tionarity conditions (4.23)-(4.24). We simply note that under the identification wn =

(D − sn)ρ, using (4.29) we have that:

ρ =

∑

n wn

(N − 1)D
= p(w); and sn = D − wn

ρ
= S(ρ, wn).

Substitution of these expressions into (4.27)-(4.28) leads immediately to (4.23)-(4.24).

Thus w is a Nash equilibrium.

Step 8: If w is a Nash equilibrium, then there exists a scalar ρ > 0 such that the vector

s defined by sn = S(p(w), wn) satisfies (4.27)-(4.29). We simply reverse the argument

of Step 7. Since w is a Nash equilibrium, by Step 1
∑

n wn > 0, so p(w) > 0; thus
∑

n sn = D, i.e., (4.29) is satisfied. By Step 4, w satisfies (4.23)-(4.24). We now consider

two possibilities. First suppose that 0 ≤ sn < D for all n; then let ρ = p(w). In this case

ρ > 0 and 0 < wn ≤ (
∑

m6=n wm)/(N − 2) for all n, so (4.23)-(4.24) become equivalent

to (4.27)-(4.28). On the other hand, suppose that sn = D for some n; then sm = 0 for

all m 6= n. We define ρ by:

ρ = min

{

p(w),

(

1 +
1

N − 2

)

∂+Cn(D)

∂sn

}

.

Note that again, we have ρ > 0. We now argue as in Step 4 of the proof of Theorem 4.1.

By combining (4.24) with the definition of ρ, we see that (4.28) is satisfied. Finally, since

sm > 0 only for m = n, we combine (4.23) with the fact that ∂−Cn(sn) ≤ ∂+Cn(sn) (by

convexity) to see that (4.27) holds, as required.

Step 9: There exists a Nash equilibrium w, and the vector s defined by sn = S(p(w), wn)

is the unique optimal solution of GAME. This conclusion is now straightforward. Exis-

tence follows by Steps 6 and 7. Uniqueness of the resulting production vector s, and

the fact that s is an optimal solution to GAME, follows by Steps 6 and 8. 2

An interesting parallel between the proof of Theorem 4.2 and the proof of Theorem

2.2 is evident: both theorems use “modified” objective functions for SYSTEM, and

show that solving the resulting optimization problem yields the allocation achieved

at a Nash equilibrium when market participants are price anticipating. In the case of

Theorem 2.2, the modified utility functions Ûr are strictly concave; and in the case of

Theorem 4.2, the modified cost functions Ĉn are strictly convex. In each case, these

properties ensure uniqueness of the resulting allocation at a Nash equilibrium.
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� 4.2 Efficiency Loss

We let sS denote an optimal solution to SYSTEM, and let sG denote the unique optimal

solution to GAME. We now investigate the efficiency loss of this system: that is, to

what extent does the aggregate production cost increase because firms try to game the

market? To answer this question, we must compare the cost
∑

n Cn(sG
n ) obtained when

the firms fully evaluate the effect of their actions on the price, and the cost
∑

n Cn(sS
n)

obtained by choosing the allocation which minimizes aggregate cost. (We know, of

course, that
∑

n Cn(sG
n ) ≥ ∑

n Cn(sS
n) by definition of sS .) The following theorem

shows that we may explicitly bound the efficiency loss.

Theorem 4.3

Assume that N > 2, and suppose that Assumption 4.1 is satisfied. If sS is any optimal solution

to SYSTEM, and sG is the unique optimal solution to GAME, then:

∑

n

Cn(sG
n ) ≤

(

1 +
1

N − 2

)

∑

n

Cn(sS
n). (4.30)

Furthermore, this bound is tight: for every ε > 0 and N > 2, there exists a choice of cost

functions Cn, n = 1, . . . , N , such that:

∑

n

Cn(sG
n ) ≥

(

1 +
1

N − 2
− ε

)

∑

n

Cn(sS
n). (4.31)

Proof. We exploit the structure of the modified cost functions Ĉn to prove the result.

Let Gn(sn) =
∫ sn

0 Cn(z) dz. Then by our assumptions on Cn, Gn is a convex, continu-

ous, nondecreasing function for sn ≥ 0, with Gn(0) = 0. This implies that for sn ≥ 0

we have snCn(sn) − Gn(sn) ≥ 0; from the definition of Ĉn in (4.22), we conclude that

Ĉn(sn) ≥ Cn(sn) for sn ≥ 0. This yields:

∑

n

Ĉn(sG
n ) ≥

∑

n

Cn(sG
n ). (4.32)

On the other hand, notice that for sn ≥ 0, we have Gn(sn) ≥ 0. Thus for 0 ≤ sn ≤ D,

we have:

Ĉn(sn) ≤ Cn(sn) +

(

sn

(N − 2)D

)

Cn(sn) ≤
(

1 +
1

N − 2

)

Cn(sn).

This yields:
∑

n

Ĉn(sS
n) ≤

(

1 +
1

N − 2

)

∑

n

Cn(sS
n). (4.33)



180 CHAPTER 4. MULTIPLE PRODUCERS, INELASTIC DEMAND

Since sG is an optimal solution to GAME, we know that
∑

n Ĉn(sG
n ) ≤ ∑

n Ĉn(sS
n).

Combining this inequality with (4.32) and (4.33) yields the bound (4.30).

It remains to be shown that the bound is tight, i.e., that (4.31) holds; we prove this

via an example. We fix D > 0, and assume we are given N > 2. Choose t such that

D/N < t < D, and choose δ such that 0 < δ < 1. Consider the following cost functions:

C1(s1) =

{

δs1, if s1 ≤ t;

s1 − t + δt, if s1 ≥ t;

Cn(sn) = αsn, n = 2, . . . , N,

where

α =

1 +
t

(N − 2)D

1 +
D − t

(N − 1)(N − 2)D

.

Thus C1 is piecewise linear, and Cn is linear for n = 2, . . . , N . It is straightforward to

check that t > D/N implies α > 1; thus, the unique optimal solution to SYSTEM is

given by sS
1 = D, sS

n = 0 for n = 2, . . . , N , and we have
∑

n Cn(sS
n) = D − t + δt.

Let s1 = t, and sn = (D− t)/(N − 1) for n = 2, . . . , N . We claim that s is the unique

optimal solution to GAME. To see this, let ρ = 1 + t/((N − 2)D). Then we have:

(

1 +
s1

(N − 2)D

)

∂−C1(s1)

∂s1
= δ

(

1 +
t

(N − 2)D

)

≤ ρ;

(

1 +
sn

(N − 2)D

)

∂+Cn(sn)

∂sn
= 1 +

t

(N − 2)D
= ρ;

(

1 +
sn

(N − 2)D

)

∂Cn(sn)

∂sn
= 1 +

t

(N − 2)D
= ρ, n = 2, . . . , N ;

∑

n

sn = D.

These conditions are identical to (4.27)-(4.29), so we conclude s is the unique optimal

solution to GAME. Observe that:

∑

n

Cn(sn) = δt +









1 +
t

(N − 2)D

1 +
D − t

(N − 1)(N − 2)D









(D − t).
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Thus we have:

∑

n Cn(sn)
∑

n Cn(sS
n)

=

(

1

δt + (D − t)

)









δt +









1 +
t

(N − 2)D

1 +
D − t

(N − 1)(N − 2)D









(D − t)









.

Now let t → D and D → 1, while D/N < t < D, and let δ → 0 so that δt/(D − t) → 0,

e.g., let δ = (D−t)2. Then the preceding ratio converges to 1+1/(N−2), as required.2

The preceding theorem shows that in the worst case, aggregate cost rises by no

more than a factor 1 + 1/(N − 2) when firms are able to anticipate the effects of their

actions on the price of the resource. Furthermore, this bound is essentially tight. In

comparing Theorem 4.3 with the previous results of this thesis, particularly Theorem

2.6, we make two key observations. First, the bound obtained by using the modified

cost functions Ĉn is in fact tight in the case of Theorem 4.3. As discussed in Section

2.2, however, the upper bound on efficiency loss derived by using the modified utility

functions Ûr defined in (2.19) is 50%, which is not tight (the efficiency loss is 25% in

the worst case, as shown in Theorem 2.6). Second, we note that in the case of Theorem

4.3, the efficiency loss 1/(N − 2) approaches zero as the number of firms N grows

large, even though the firms are price anticipating. This is a form of a competitive

limit theorem [82]; however, note that this result holds even if only a small number of

firms continue to remain dominant as N → ∞ (i.e., we do not require any symmetry

constraints on the cost functions of the firms). In the model of Section 2.2, such a limit

only held under the assumption that all users consumed a negligible fraction of the

resource in the limit (see Corollary 2.8). Indeed, in an industry with one large firm

and many small firms, we do not expect to achieve full efficiency; nevertheless, the

mechanism described in this chapter ensures this is the case.

� 4.3 Negative Supply

One undesirable feature of the parametrized supply functions we have chosen is that

they do not ensure each firm will have nonnegative supply at the market-clearing

price. While we have shown that the supply of each firm is nonnegative at both the

competitive equilibrium and at the Nash equilibrium, nonequilibrium bidding may

lead to negative supply to some firms. In this section we consider a simple modifica-

tion to the basic model which corrects this issue.

We continue to assume that S(p, wn) and the market-clearing price p(w) are defined

as before. We fix a minimum liability W > 0, such that no firm will ever have to pay

more than W when the market is cleared. Thus, if p(w)S(p(w, wn) < −W , then firm n
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only pays W to the market manager. Formally, the payoff of firm n now becomes:

Qn(wn;w−n) = max {−W, p(w)S(p(w), wn)} − Cn (S(p(w), wn)) . (4.34)

One interpretation of this game is as follows. Each firm submits a participation fee of

W to the market manager. The game is then played as before, and the market manager

clears the market. At the resulting allocation, any required payment higher than W by

a firm is forgiven.

We have the following proposition.

Proposition 4.4

Assume that N > 2, and suppose that Assumption 4.1 is satisfied. Then w is a Nash equilib-

rium of the game defined by (Q1, . . . , QN ) if and only if w is a Nash equilibrium of the game

defined by (Q1, . . . , QN ).

Proof. The proof technique uses the fact that any firm n can always guarantee

itself Qn(wn;w−n) > −W , given the value of w−n. To see this, first suppose that
∑

m6=n wm > 0. Then if wn = (
∑

m6=n wm)/(N − 2), we will have Qn(wn;w−n) = 0 (as

shown in Step 1 of the proof of Theorem 4.2). On the other hand, if
∑

m6=n wm = 0,

then for sufficiently small wn > 0, we will have Qn(wn;w−n) > −W ; this also follows

by Step 1 of the proof of Theorem 4.2.

Thus, suppose that w is a Nash equilibrium of the game defined by (Q1, . . . , QN );

then we have Qn(wn;w−n) > −W . If w is not a Nash equilibrium for the game defined

by (Q1, . . . , QN ), then there exists a firm n and wn ≥ 0 such that Qn(wn;w−n) >

Qn(wn;w−n). It follows that Qn(wn;w−n) > −W , so that wn is a profitable deviation

for firm n in the game defined by (Q1, . . . , QN )—a contradiction. Thus w is a Nash

equilibrium of the game defined by (Q1, . . . , QN ).

Conversely, suppose that the vector w is a Nash equilibrium of the game defined by

(Q1, . . . , QN ). Then we must have Qn(wn;w−n) > −W for all n, so that Qn(wn;w−n) =

Qn(wn;w−n). An argument similar to the preceding paragraph then shows that w is a

Nash equilibrium of the game defined by (Q1, . . . , QN ). 2

While this extension to the game is appealing from a market implementation point

of view, we must be careful in interpreting the preceding result. Suppose that w is a

composite strategy vector where p(w)S(p(w), wn) < −W ; in particular, S(p(w), wn) <

0. In this case we will have
∑

m6=n S(p(w), wm) > D—that is, the remaining firms will

be producing excess supply. In an economy with free disposal, this does not pose any

problem. However, in the context of electricity markets, such a situation indicates a

misalignment of supply and demand, and can induce instability in the power grid.

In general, then, addressing the possibility of negative supply when w is not a Nash

equilibrium remains an important implementation-dependent issue.
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� 4.4 Stochastic Demand

In this section we consider a model where demand is stochastic, rather than predeter-

mined; the model developed is analogous to the one in Section 2.5.1. Suppose that the

demand is D, where 0 ≤ D ≤ Dmax, with distribution P (thus P(D > Dmax) = 0). We

assume that E[D] =
∫ Dmax

0 DdP(D) > 0. We also assume, as in Section 4.1, that N firms

compete for the demand.

We will define an allocation in terms of the fractions allocated to each firm, rather

than the absolute amount of resource allocated. Formally, we define the problem

SYSTEM as:

SYSTEM:

minimize
∑

n

E[Cn(πnD)] (4.35)

subject to
∑

n

πn = 1; (4.36)

πn ≥ 0, n = 1, . . . , N. (4.37)

Notice that this problem chooses the fractions πn allocated to each resource optimally

ex ante; that is, before the true supply has been realized.

As in Section 2.5.1, our key insight in analyzing this model is that stochastic de-

mand is equivalent to a model with deterministic demand D = 1, for an appropriate

choice of cost functions. Formally, for each firm n, define Cn as follows:

Cn(πn) = E[Cn(πnD)]. (4.38)

We have the following proposition.

Proposition 4.5

Suppose that Assumption 4.1 is satisfied by the cost functions C1, . . . , CN . Then Assumption

4.1 is also satisfied by the cost functions C1, . . . , CN .

Proof. Observe that Cn(πn) = 0 for πn ≤ 0, since Cn satisfies Assumption 4.1.

We next show that Cn is continuous, using the same argument as in Proposition 2.18.

Suppose that πk
n → πn as k → ∞. Then Cn(πk

nD) → Cn(πnD) as k → ∞ for 0 ≤ D ≤
Dmax. Since Cn(sn) is nonnegative and nondecreasing, there exists ε > 0 such that for

sufficiently large k we have 0 ≤ Cn(πk
nD) ≤ Cn(πnDmax + ε). Thus we can apply the

bounded convergence theorem to conclude that as k → ∞, E[Cn(πk
nD)] → E[Cn(πnD)].

Thus Cn is continuous.

It remains to be shown that Cn(πn) is convex and strictly increasing for πn ≥ 0.
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First fix δ > 0, and π1
n, π2

n ≥ 0. Then for fixed D > 0 we have:

Cn(δπ1
nD + (1 − δ)π2

nD) ≤ δCn(π1
nD) + (1 − δ)Cn(π2

nD).

Taking expectations shows that Cn(πn) is convex for πn ≥ 0. Finally, suppose that

π1
n > π2

n ≥ 0. Since Cn is strictly increasing, for D > 0 we have Cn(π1
nD) > Cn(π2

nD).

Taking expectations shows that Cn(πn) is strictly increasing for πn ≥ 0 (since E[D] >

0). 2

The preceding lemma allows us to extend the main results of Sections 4.1 and 4.2

to the setting of stochastic demand. We start with the following proposition.

Proposition 4.6

Suppose that Assumption 4.1 is satisfied. Then there exists a vector πS that is an optimal

solution to (4.35)-(4.37). Furthermore, πS is an optimal solution to (4.35)-(4.37) if and only if

πS is an optimal solution to (4.2)-(4.4) with cost functions C1, . . . , CN and demand D = 1.

Proof. From Proposition 4.5, the objective function (4.35) is continuous and the fea-

sible region (4.36)-(4.37) is compact. Furthermore, under the identification (4.38), the

problem (4.35)-(4.37) becomes equivalent to (4.2)-(4.4). 2

We use an analogue of the pricing mechanism developed in Section 4.1. First, each

firm n chooses a parameter wn. Next, the demand D is realized. The market manager

then takes as input the supply function S(p, wn) = D−wn/p for each firm n, and clears

the market by choosing p(w) according to (4.6). Note that when a firm n chooses a

parameter wn, it is still as if the firm has chosen the supply function D − wn/p; but

now the supply function depends on the eventual realization of the demand D. The

payoff to each firm is then the expected profit. Since we will focus on price anticipating

firms in this section, we redefine their payoff explicitly in terms of the strategy vector

w. Formally, by substituting using (4.5) and (4.6), the payoff to firm n is given by:

Qn(wn;w−n) =























E

[∑

m wm

N − 1
− wn − Cn

(

D −
(

wn
∑

m wm

)

(N − 1)D

)]

, if wn > 0;

E

[

∑

m6=n wm

N − 1
− Cn(D)

]

, if wn = 0.

(4.39)
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If we substitute Cn(πn) = E[Cn(πnD)] (cf. (4.38)), then we have:

Qn(wn;w−n) =























∑

m wm

N − 1
− wn − Cn

(

1 −
(

wn
∑

m wm

)

(N − 1)

)

, if wn > 0;

∑

m6=n wm

N − 1
− Cn(1), if wn = 0.

Now observe that Qn(wn;w−n) is identical to the payoff Qn(wn;w−n) if we substitute

the cost function Cn and demand D = 1 in the definition (4.17). This observation leads

to the following proposition.

Proposition 4.7

Assume that N > 2, and suppose that Assumption 4.1 is satisfied. Then there exists a Nash

equilibrium w ≥ 0 for the game defined by (Q1, . . . , QN ). Furthermore, w ≥ 0 is a Nash

equilibrium for the game defined by (Q1, . . . , QN ) if and only if w is a Nash equilibrium for

the game defined by (Q1, . . . , QN ) when the cost function of each firm n is Cn and the demand

is D = 1.

The next proposition shows that the aggregate cost at a Nash equilibrium is no

worse than a factor 1 + 1/(N − 2) larger than the aggregate cost at an optimal solution

to SYSTEM. The intuition is clear: we simply apply Theorem 4.3 to a game where the

cost function of each firm n is Cn, and the demand is D = 1.

Theorem 4.8

Suppose that N > 2 and that Assumption 4.1 is satisfied. Let w be a Nash equilibrium of the

game defined by (Q1, . . . , QN ), and define:

πG
n = 1 −

(

wn
∑

m wm

)

(N − 1).

Then πG
n is the fraction of demand produced by firm n at the Nash equilibrium w. Furthermore,

if πS is any optimal solution to SYSTEM, then:

∑

n

E[Cn(πG
n D)] ≤

(

1 +
1

N − 2

)

∑

n

E[Cn(πS
nD)].

Proof. We know C1, . . . , CN satisfy Assumption 4.1 (from Proposition 4.5). Thus by

applying Propositions 4.6 and 4.7 together with Theorem 4.3, the result follows. 2

Note that while in Section 2.5.1 the capacity C is a random variable with support in

[0,∞), in this section we require the demand D to be a random variable with compact

support [0, Dmax]. In fact, it is clear from the proof of Proposition 4.5 that the key
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requirement is that Cn(πnD) must be integrable for πn ≥ 0. But this is only possible if

D has bounded support; otherwise, by choosing a cost function Cn which approaches

infinity rapidly enough, we can guarantee that E[Cn(πnD)] = ∞. Thus if we want to

ensure that Cn(πn) is finite whenever Cn satisfies Assumption 4.1, the random variable

D must have bounded support.

� 4.5 Chapter Summary

In this chapter we have considered a model of multiple producers competing to satisfy

a fixed demand. We have shown that if we restrict firms to bidding supply functions

of the form S(p, w) = D − w/p, then there exist fully efficient competitive equilibria

when firms are price taking (Theorem 4.1), and Nash equilibria when N > 2 firms are

price anticipating (Theorem 4.2). Furthermore, the Nash equilibrium aggregate cost is

no worse than a factor 1+1/(N − 2) higher than the minimal aggregate cost (Theorem

4.3). Finally, all these results continue to hold even in the case that the demand is

stochastic.

An important difference between this chapter and Chapter 2 is that in considering

“worst case” games, we cannot simply replace the cost functions Cn by linear approx-

imations, as we did in the proof of Theorem 2.6. The reason is that if we replace the

function Cn(sn) by C̃n(sn) = Cn(sn) + C ′
n(sn)(sn − sn), where sn > 0, the resulting

function C̃n(sn) is not always nonnegative. Thus we must consider instead the cost

function [C̃n(sn)]+. This difficulty—that we cannot replace general cost functions with

linear cost functions—precludes an immediate extension of the results of this chapter

to a network context, as in the general network game of Section 2.5.2.

Developing an extension of this game to a network context thus remains an impor-

tant issue. Such an extension is also complicated by the complex physical properties

of an electrical network—electricity cannot be stored, and does not “flow” through

the network according to the same laws governing either Internet traffic or road trans-

portation networks. Instead, the equilibrium electric flow in the power grid requires

solution of a global physical optimization problem, and thus changes at a local node

of the grid can potentially have wide reaching consequences [115]. For this reason the

material of this chapter represents only the starting point in a broader examination of

power network market structure.

In moving from Chapter 2 to 3, we moved from a model with inelastic supply

to one with inelastic demand. A similar undertaking may be done for the model of

this chapter, by changing from the assumption of inelastic demand to assuming that

demand is in fact elastic and varies with price. However, the same supply function

mechanism cannot be considered directly, as the inelastic demand D is required as a

parameter to the supply functions, which take the form S(p, w) = D − w/p. Thus

an important research direction for the future involves developing a supply function
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bidding mechanism for elastic demand which can ensure bounded efficiency loss even

when firms are price anticipating.

We close by noting that, of course, the scheme we consider is not very natural; it

is difficult to imagine that electricity firms will subscribe to a model which requires

them to submit as a parameter the total amount of revenue they are willing to forego

(cf. Section 4.1). However, the key contribution of this chapter is a counterpoint to the

extensive work on supply function equilibria: that by restricting the strategy spaces of

the firms intelligently, it may be possible to prevent arbitrarily high efficiency losses.

A second motivation for the scheme of Section 4.1 will be presented in the following

chapter, where we will show that it is the scheme which minimizes efficiency loss

among a class of market mechanisms satisfying certain desirable axioms (see Section

5.2).





C H A P T E R 5

Characterization Theorems

T his thesis has considered the design of market mechanisms which can ensure

reasonably efficient allocation of resources. In the first three chapters of the the-

sis, we considered specific mechanisms, and analyzed their efficiency properties both

when market participants are price taking, and when market participants are price an-

ticipating. This chapter focuses on designing market mechanisms more generally, for

the settings of either multiple consumers and inelastic supply (Chapter 2) or multiple

producers and inelastic demand (Chapter 4).

In this chapter we ask an axiomatic question: are the mechanisms we have cho-

sen “desirable” among a class of mechanisms satisfying certain “reasonable” proper-

ties? Of course, an answer to this question hinges on our definition of “desirable”

and “reasonable.” Defining desirability is the simpler of the two tasks: we consider

a mechanism to be desirable if it achieves a fully efficient allocation when users are

price taking, and if it minimizes efficiency loss when users are price anticipating. Im-

portantly, we ask for these efficiency properties independent of the characteristics of the

market participants (i.e., their cost functions or utility functions). That is, the mecha-

nisms we seek are those that perform well under broad assumptions on the nature of

the preferences of market participants.

The mechanisms we are trying to characterize must minimize efficiency loss among

the class of “reasonable” mechanisms. We are thus led to define mathematically the

conditions we would like a market mechanism to satisfy. The first such conditions are

straightforward: we would like to consider only mechanisms where market partici-

pants submit either demand or supply functions, and where the resulting allocation is

chosen by fixing a single price to clear the market. We require that this market-clearing

price be unique, and that the mechanism is “smooth” with respect to the strategies of

the market participants (in a sense we make precise later). We refer to such mecha-

nisms as smooth market-clearing mechanisms.

An important additional condition we impose is that the strategy space of each

market participant should be “simple,” which we interpret as low dimensional. For-

mally, we will focus on mechanisms for which the strategy space of each market par-

ticipant is R
+; that is, each market participant chooses a scalar, which is a parameter

that determines either his demand or supply function as input to the market-clearing

189
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mechanism. The motivation here is twofold. First, as in the models of Chapter 2, in

a communication network setting information flow is limited; and in particular, we

would like to implement a market with as little overhead as possible. Thus keeping

the strategy spaces of the users low dimensional is a first reasonable goal. A second

motivation comes from the models of Chapter 4, where we discussed the possibility

that general supply function equilibria may lead to arbitrarily low efficiency at a Nash

equilibrium. Thus we might hope that by restricting the strategy space of the firms, we

can reduce this inefficiency; indeed, this intuition is borne out by the result of Section

4.2.

We then impose two mathematical constraints on the class of mechanisms we con-

sider. First, we require that payoffs of market participants are concave when they are

price taking; and second, we require their payoffs to be concave when they are price

anticipating. The former requirement eases characterization of competitive equilibria,

while the latter eases characterization of Nash equilibria. The requirement of these

conditions is certainly a debatable point; indeed, in the course of this chapter we will

discuss the extent to which these conditions are necessary, and when they might be

relaxed.

Within this class of mechanisms, we characterize exactly the mechanisms which

achieve full efficiency at competitive equilibria and minimize efficiency loss at Nash

equilibria. We will find that when multiple consumers compete for a resource in in-

elastic supply, the unique mechanism satisfying these conditions is the mechanism

studied in Section 2.1. Similarly, we will find that when multiple producers compete

to satisfy an inelastic demand, the unique mechanism satisfying these conditions is the

mechanism studied in Section 4.1.

Chapter Outline

The remainder of the chapter is organized as follows. In Section 5.1, we consider the

setting of multiple consumers competing for a resource in inelastic supply. We start

in Section 5.1.1 by proving that the mechanism considered in Section 2.1 minimizes

efficiency loss among all smooth market-clearing mechanisms for which users’ payoffs

are concave both when they are price taking or price anticipating; where the demand

functions chosen by the users are nonnegative; and where full efficiency is achieved if

users are price taking. We also show that for any such mechanism, there exists a unique

Nash equilibrium when users are price anticipating. We then proceed in Section 5.1.2

to show that we can remove the requirement that users’ payoffs must be concave when

they are price taking, if we require our mechanisms to be well defined for any value

of the inelastic supply. Finally, in Section 5.1.3, we present a specialized mechanism

which can guarantee arbitrarily low efficiency loss for the case of two users. This

mechanism sets only a single common price for both users, but cannot be defined in

terms of the users submitting scalar parametrized demand functions.
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In Section 5.2, we turn our attention to the setting of multiple producers competing

to satisfy an inelastic demand. We prove that the mechanism considered in Section 4.1

minimizes efficiency loss among all smooth market-clearing mechanisms for which

firms’ payoffs are concave both when they are price taking or price anticipating; where

the supply functions chosen by the firms are uniformly no larger than the demand; and

where full efficiency is achieved if firms are price taking. We also compare this result

with the results of Section 5.1.

� 5.1 Multiple Consumers, Inelastic Supply

In this section we will consider the same resource allocation model as in Section 2.1.

We will ask: what is the mechanism which minimizes efficiency loss when users are

price anticipating, in a class of mechanisms with certain desirable properties?

Formally, we consider a collection of users bidding to receive a share of a finite,

infinitely divisible resource of capacity C. We begin by describing the users. Each

user has a utility function U : R
+ → R

+ (where R
+ = [0,∞)). We assume that U is

continuous, strictly increasing, and concave on [0,∞). We also assume that U is con-

tinuously differentiable on (0,∞), with finite right directional derivative at 0, denoted

U ′(0). Note that these conditions are identical to Assumption 2.1. Let U denote the set

of possible utility functions; i.e.:

U =
{

U : R
+ → R

+ | U is continuous, strictly increasing, concave on [0,∞),

and continuously differentiable on [0,∞), with U ′(0) < ∞
}

.

Note that although we make rather strong differentiability assumptions, these are not

essential to the argument; however, they ease the technical presentation. We let R

denote the number of users, and let U = (U1, . . . , UR) denote the vector of utility

functions, where Ur is the utility function of user r. We call a pair (R,U), where R > 1

and U ∈ UR, a utility system; our goal will be to design a resource allocation mechanism

which is efficient for all utility systems.

We assume that utility is measured in monetary units; thus, if user r receives a rate

allocation dr, but must pay wr, he receives a net payoff given by:

Ur(dr) − wr.

Given any vector of utility functions U ∈ UR, our goal is to maximize aggregate

utility, as defined in the following problem:
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SYSTEM(C, R,U):

maximize
R
∑

r=1

Ur(dr) (5.1)

subject to
R
∑

r=1

dr ≤ C; (5.2)

d ≥ 0. (5.3)

We will say that d solves SYSTEM(C, R,U) if d is an optimal solution to (5.1)-(5.3),

given the utility system (R,U).

In general, the utility system (R,U) is unknown to the mechanism designer, so a

mechanism must be designed to elicit information from the users. We will consider

two different possibilities: first, that the capacity C > 0 is fixed before the mechanism

is chosen; and alternatively, that the chosen mechanism must be well defined for all

positive values of the capacity C. The former case is discussed in the following section,

and the latter case is discussed in Section 5.1.2.

� 5.1.1 A First Characterization Theorem

In this section, we will consider smooth market-clearing mechanisms given a fixed

capacity C > 0. We have the following definition.

Definition 5.1

Given C > 0, a smooth market-clearing mechanism for C is a differentiable function

D : (0,∞) × [0,∞) → R
+ such that for all R, and for all nonzero θ ∈ (R+)R, there exists a

unique solution p > 0 to the following equation:

R
∑

r=1

D(p, θr) = C.

We let pD(θ) denote this solution.

Note that while this definition implicitly restricts the strategy θr of each user to R
+, this

fact is inessential; the subsequent analysis can be adapted to hold even if the strategy

space of each user is allowed to be [c,∞), where c ∈ R. We also note that the market-

clearing price is undefined if θ = 0. As we will see below, when we formulate a game

between consumers for a given mechanism D, we will assume that the payoff to all

players is −∞ if the composite strategy vector is θ = 0. Note that this is slightly

different from the definition in Section 2.1, where the payoff is U(0) to a player with

utility function U who submits a strategy θ = 0. We will discuss this distinction further

later; we simply note for the moment that it does not affect the results of this section.
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Our definition of smooth market-clearing mechanism generalizes the demand func-

tion interpretation of the mechanism discussed in Section 2.1. We recall that in that

development, each user submits a demand function of the form D(p, θ) = θ/p, and

the link manager chooses a price pD(θ) to ensure that
∑R

r=1 D(p, θr) = C. Thus,

for this mechanism, we have pD(θ) =
∑R

r=1 θr/C if θ 6= 0. Another related exam-

ple is provided by D(p, θ) = θ/
√

p; in this case it is straightforward to verify that

pD(θ) = (
∑R

r=1 θr/C)2.

We will restrict attention to a particular class of smooth market-clearing mecha-

nisms for C denoted D(C), which we define as follows.

Definition 5.2

Given C > 0, the class D(C) consists of all smooth market-clearing mechanisms D for C such

that the following conditions are satisfied:

1. For all U ∈ U , a user’s payoff is concave if he is price taking; that is, for all p > 0 the

function:

U(D(p, θ)) − pD(p, θ)

is concave for θ ≥ 0.

2. For all Ur ∈ U , a user’s payoff is concave if he is price anticipating; that is, for all R, and

for all θ−r ∈ (R+)R, the function:

Ur(D(pD(θ), θr)) − pD(θ)D(pD(θ), θr)

is concave in θr > 0 if θ−r = 0, and concave in θr ≥ 0 if θ−r 6= 0.

3. The demand functions are nonnegative; i.e., for all p > 0 and θ ≥ 0, D(p, θ) ≥ 0.

We pause here to briefly discuss the three conditions in the previous definition. The

first two conditions ease characterization of equilibria in terms of only first order con-

ditions. The first condition allows us to characterize competitive equilibria in terms of

only first order conditions, as we did in the proof of Theorem 2.1. The second condi-

tion allows us to characterize Nash equilibria in terms of only first order conditions, a

property we exploited in the proof of Theorem 2.2; indeed, some such assumption is

generally used to guarantee existence of pure strategy Nash equilibria [104]. Finally,

the third condition is a normalization condition, which ensures that regardless of the

bid of a user, he is never required to supply some quantity of the resource (which would

be the case if we allowed D(p, θ) < 0).

Of these conditions, the least desirable one is the first, that users’ payoffs are con-

cave when they are price taking. First, we note that concavity of users’ payoffs is not

necessarily required to ensure existence of a competitive equilibrium. Indeed, as long

as we assume that for any p > 0, the range of D(p, θ) spans the entire interval [0,∞)
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for θ ≥ 0, then we can consider the following convex problem for each user r:

max
dr≥0

Ur(dr) − pdr.

After determining an optimal dr, user r only needs to choose θr such that D(p, θr) = dr.

In this way we could establish existence of competitive equilibria for settings where

Condition 1 in Definition 5.2 does not necessarily hold. However, it is certainly the

case that concavity of payoffs eases characterization of competitive equilibria in terms

of first order optimality conditions.

Nevertheless, an additional objection to Condition 1 in Definition 5.2 is that we ex-

pect it to apply as a limit of Condition 2: that is, with a “large” number of users, we

might expect concavity of payoffs when users are price anticipating to lead to concav-

ity of payoffs when users are price taking. For this reason, developing a characteriza-

tion theorem which does not rely on Condition 1 of Definition 5.2 is desirable; we will

turn our attention to this problem in Section 5.1.2.

In order to state the main result of this section, we must define competitive equilib-

rium and Nash equilibrium. Given a utility system (R,U) and a smooth market-clearing

mechanism D ∈ D(C), we say that a nonzero vector θ ∈ (R+)R is a competitive equi-

librium if, for µ = pD(θ), there holds for all r:

θr ∈ arg max
θr≥0

[

Ur(D(µ, θr)) − µD(µ, θr)
]

. (5.4)

Similarly, we say that a nonzero vector θ ∈ (R+)R is a Nash equilibrium if there holds

for all r:

θr ∈ arg max
θr≥0

Qr(θr; θ−r). (5.5)

where

Qr(θr; θ−r) =

{

Ur(D(pD(θ), θr)) − pD(θ)D(pD(θ), θr), if θ 6= 0;

−∞, if θ = 0.
(5.6)

Notice that the payoff is −∞ if the composite strategy vector is θ = 0, since in this case

no market-clearing price exists.

Our interest is in the worst-case ratio of aggregate utility at any Nash equilibrium

to the optimal value of SYSTEM(C, R,U) (termed the the “price of anarchy” by Pa-
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Figure 5-1. The function g(ε) in Theorem 5.1: The function g(ε) is defined for 0 ≤ ε ≤ 1 in (5.7). Note
that g(ε) is strictly increasing, with g(0) = 0 and g(1) = 3/4.

padimitriou [99]). Formally, for D ∈ D(C) we define a constant ρ(C, D) as follows:

ρ(C, D) = inf

{

∑R
r=1 Ur(D(pD(θ), θr))
∑R

r=1 Ur(dr)

∣

∣

∣

∣

R > 1,U ∈ UR,d solves SYSTEM(C, R,U)

and θ is a Nash equilibrium

}

Note that since all U ∈ U are strictly increasing and nonnegative, and C > 0, the

aggregate utility
∑R

r=1 Ur(dr) is strictly positive for any utility system (R,U) and any

optimal solution d to SYSTEM(C, R,U). However, Nash equilibria may not exist for

some utility systems (R,U); in this case we set ρ(C, D) = −∞.

The following theorem shows that among smooth market-clearing mechanisms for

C for which there always exists a fully efficient competitive equilibrium, the mecha-

nism proposed in Section 2.1 minimizes efficiency loss when users are price anticipat-

ing.

Theorem 5.1

Given C > 0, let D ∈ D(C) be a smooth market-clearing mechanism for C such that for all

utility systems (R,U), there exists a competitive equilibrium θ such that (D(pD(θ), θr), r =

1, . . . , R) solves SYSTEM(C, R,U). Then:
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1. There exists a concave, strictly increasing, differentiable, and invertible function B :

(0,∞) → (0,∞) such that for all p > 0 and θ ≥ 0:

D(p, θ) =
θ

B(p)
.

2. For any utility system (R,U), there exists a unique Nash equilibrium.

3. Define the function g(ε) for 0 ≤ ε ≤ 1 according to:

g(ε) =



















3

4
, if ε = 1;

2
√

ε − 3ε + ε2

(1 − ε)2
, if 0 ≤ ε < 1.

(5.7)

Then g is continuous and strictly increasing over 0 ≤ ε ≤ 1, with g(0) = 0; see Figure

5-1. Furthermore, if we define:

ε∗ = inf
p>0

[

pB′(p)

B(p)

]

, (5.8)

then 0 ≤ ε∗ ≤ 1, and:

ρ(C, D) = g(ε∗).

In particular, ρ(C, D) ≤ 3/4, and this bound is met with equality if and only if D(p, θ) =

∆θ/p for some ∆ > 0.

Proof. The proof proceeds as follows. We first use Condition 1 in Definition 5.2 to

show that any mechanism D ∈ D(C) must be of the form D(p, θ) = a(p) + b(p)θ. We

then show that a(p) = 0, and b(p) > 0; thus D(p, θ) = b(p)θ. Finally, we explicitly

determine conditions that must be satisfied by B(p) = 1/b(p), and compute the worst

case efficiency loss for any mechanism satisfying these conditions.

We begin with the following lemma.

Lemma 5.2 Let D be a smooth market-clearing mechanism for C > 0. Then D ∈ D(C) if

and only if the following three properties hold:

1. There exist functions a, b : (0,∞) → R
+ such that for all p > 0 and θ ≥ 0, D(p, θ) =

a(p) + b(p)θ.

2. For all R > 1 and θ−r ∈ (R+)R, the functions D(pD(θ), θr) and −pD(θ)D(pD(θ), θr)

are concave in θr > 0 if θ−r = 0, and concave in θr ≥ 0 if θ−r 6= 0.

Proof of Lemma. Fix p > 0; we show that D(p, ·) must be both concave and convex as

a function of θ, thus implying it is linear in θ. We use Condition 1 in Definition 5.2. Let
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U(d) = αd, where α > 0; then U ∈ U . Thus for θ ≥ 0, (α − p)D(p, θ) must be concave

in θ. Thus if α < p, then D(p, θ) must be convex in θ; and if α > p, then D(p, θ) must

be concave in θ. This implies D(p, θ) is linear in θ, so there exist a(p) and b(p) such that

D(p, θ) = a(p) + b(p)θ. Since D(p, θ) ≥ 0 for all p > 0 and θ ≥ 0 (from Condition 3 in

Definition 5.2), by considering the case θ = 0 and the limit θ → ∞ we conclude that

a(p), b(p) ≥ 0.

The second claim of the lemma again follows by considering a utility function of

the form Ur(dr) = αdr, and applying Condition 2 in Definition 5.2. We must have

P (θ) = (α − pD(θ))D(pD(θ), θr) concave in θr over the appropriate domain. Now if

D(pD(θ), θr) is not concave, then for sufficiently large α, P will not be concave; and

similarly, if pD(θ)D(pD(θ), θr) is not convex, then for sufficiently small α, P will not

be convex. This proves that D has the two properties claimed.

To prove the reverse implication, recall that the composition of any concave strictly

increasing function with a concave function is concave. Since any U ∈ U is strictly in-

creasing and concave, we conclude that the first claim of the lemma ensures Condition

1 in Definition 5.2 is satisfied; similarly, the second claim of the lemma ensures Con-

dition 2 is satisfied. Finally, since a(p), b(p) ≥ 0 for all p > 0, the first claim of the

lemma ensures that Condition 3 in Definition 5.2 is satisfied. Thus if D satisfies the

three claims of the lemma, then D ∈ D(C). 2

We next show that the function a(p) given in the previous lemma must be identi-

cally zero, under the conditions of the theorem. To see this, suppose a(p) > 0 for some

p > 0. Choose R such that C/R < a(p), and choose constants d1, . . . , dR such that

0 < dr < a(p);
∑R

r=1 dr = C; and dr 6= ds for r 6= s. Finally, choose strictly concave util-

ity functions U1, . . . , UR ∈ U such that U ′
r(dr) = p for all r. It is then straightforward to

check that d must be the unique optimal solution to SYSTEM(C, R,U).

So now let θ be a competitive equilibrium such that the resulting allocation solves

SYSTEM(C, R,U); then we must have D(pD(θ), θr) = dr for all r. Since dr 6= ds for

r 6= s, it follows that b(pD(θ)) > 0, and θr > 0 for at least one user r. Differentiating

(5.4) with µ = pD(θ), we must have:

U ′
r(D(µ, θr)) ·

∂D(µ, θr)

∂θr
= µ · ∂D(µ, θr)

∂θr
.

Now note that ∂D(µ, θr)/∂θr = b(µ) > 0, so we have:

U ′
r(dr) = U ′

r(D(µ, θr)) = µ = pD(θ).

Since U ′
r(dr) = p and Ur is strictly concave, this implies pD(θ) = p. But then a(p) +

b(p)θr = dr < a(p), so we must have θr < 0, which is impossible (since the strategy

space of all users is assumed to R
+). Thus any D satisfying the conditions of the
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theorem must have a(p) = 0 for all p.

We now have D(p, θ) = b(p)θ, for all p > 0 and θ ≥ 0. We note that this immediately

implies b(p) > 0 for all p. Otherwise, arguing as in the previous paragraph, we can

choose a utility system (R,U) with a unique optimal solution d to SYSTEM(C, R,U),

such that U ′
r(dr) = p for all r. But such an allocation can never be a competitive

equilibrium if D(p, θr) = 0 for all θr ≥ 0.

Since b(p) > 0, we let B(p) = 1/b(p) for all p > 0. In addition, since pD(θ) satisfies
∑R

r=1 D(pD(θ), θr) = C for nonzero θ, we have:

B(pD(θ)) =

∑R
r=1 θr

C
. (5.9)

Note that this implies:

D(pD(θ), θr) =
θr

∑R
s=1 θs

C, (5.10)

for nonzero θ; thus D(pD(θ), θr) is trivially concave in θr.

We immediately see that B must be invertible on (0,∞); it is clearly onto, as the

right hand side of (5.9) can take any value in (0,∞). Furthermore, if B(p1) = B(p2) = γ

for some prices p1, p2 > 0, then choosing θ such that
∑R

r=1 θr/C = γ, we find that

pD(θ) is not uniquely defined. Thus B is one-to-one as well, and hence invertible.

Finally, note that since D is differentiable, B must be differentiable as well.

We let Φ denote the differentiable inverse of B. We will show that Φ is strictly

increasing and convex. To see this, note that for nonzero θ we have:

pD(θ) = Φ

(

∑R
r=1 θr

C

)

.

We now apply the second claim of Lemma 5.2. It must be the case that wr(θ) =

pD(θ)D(pD(θ), θr) is convex in θr, for nonzero θ. Thus we must have:

wr(θ) = Φ

(

∑R
s=1 θs

C

)(

θr
∑R

s=1 θs

C

)

(5.11)

convex in θr for nonzero θ. It is straightforward to see that Φ must be convex; if not,

then by considering strategy vectors θ for which θ−r = 0, we can show that wr is not

convex in θr. It remains to be shown that Φ is strictly increasing. Since Φ is invertible,

it must be monotonic; and thus Φ is either strictly increasing or strictly decreasing. We
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differentiate wr with respect to θr:

∂wr

∂θr
(θ) = Φ′

(

∑R
s=1 θs

C

)(

θr
∑R

s=1 θs

)

+ Φ

(

∑R
s=1 θs

C

)







∑

s 6=r θs
(

∑R
s=1 θs

)2 C






.

Now choose nonzero θ such that θr = 0, and consider infinitesimally increasing θr. If

Φ is strictly decreasing, then the first term does not increase, and the second strictly

decreases; thus the derivative of wr falls. But this is impossible, since wr is convex in

θr. We conclude that Φ must be strictly increasing.

We summarize these observations in the following lemma, which also establishes

the first claim of the theorem.

Lemma 5.3 If a smooth market-clearing mechanism D ∈ D(C) satisfies the conditions of

the theorem, then there exists a concave, strictly increasing, and differentiable function B :

(0,∞) → (0,∞) such that D(p, θ) = θ/B(p) for all p > 0 and θ ≥ 0. Furthermore, B is

invertible, so that B(p) → 0 as p → 0 and B(p) → ∞ as p → ∞. Finally, given R, for

nonzero θ ∈ (R+)R there holds:

pD(θ) = Φ

(

∑R
r=1 θr

C

)

,

where Φ is the inverse of B.

Conversely, if there exists such a function B(p) with D(p, θ) = θ/B(p) for all θ ≥ 0 and

p > 0, and B is twice differentiable, then D ∈ D(C).

Proof of Lemma. Since B has already been shown to be invertible, and Φ has been

shown to be strictly increasing and convex, it is clear that B is strictly increasing and

concave, with B(p) → 0 as p → 0, and B(p) → ∞ as p → ∞.

It remains to be checked that D ∈ D(C) for any mechanism of the form D(p, θ) =

θ/B(p), where B is twice differentiable and satisfies the conditions of the lemma. It

is clear that D satisfies the first and third claims in Lemma 5.2. To check the second

claim, we note from (5.10) that D(pD(θ), θr) is concave in θr for nonzero θ. Thus it

remains to be shown that wr(θ) = pD(θ)D(pD(θ), θr) is convex in θr for nonzero θ. We

twice differentiate wr(θ) given in (5.11). Letting µ =
∑R

s=1 θs/C, we have for nonzero

θ:
∂2wr

∂θ2
r

(θ) = Φ′′(µ)
θr

C2µ
+

2
∑

s 6=r θs

C2µ3

(

µΦ′(µ) − Φ(µ)
)

.

Since Φ is convex, the first term is nonnegative; and since Φ(x) → 0 as x → 0, we have

by convexity that µΦ′(µ) − Φ(µ) ≥ 0, so the second term is nonnegative as well. Thus

we conclude that wr is convex in θr for nonzero θ, as required. 2
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The following lemma gives optimality conditions which characterize Nash equi-

libria.

Lemma 5.4 Let D ∈ D(C) satisfy the conditions of the theorem, and let Φ be the inverse of B

as given in Lemma 5.3. Let (R,U) be a utility system. A vector θ ≥ 0 is a Nash equilibrium if

and only if at least two components of θ are nonzero, and there exists a nonzero vector d ≥ 0

and a scalar µ > 0 such that θr = µdr for all r,
∑R

r=1 dr = C, and the following conditions

hold:

U ′
r(dr)

(

1 − dr

C

)

= Φ(µ)

(

1 − dr

C

)

+ µΦ′(µ)

(

dr

C

)

, if dr > 0; (5.12)

U ′
r(0) ≤ Φ(µ), if dr = 0. (5.13)

In this case dr = D(pD(θ), θr), µ =
∑R

r=1 θr/C, and Φ(µ) = pD(θ).

Proof of Lemma. First suppose that θ is a Nash equilibrium. Since Qr(θr; θ−r) = −∞
if θ = 0, (from (5.6)), we must have θ 6= 0. Suppose then that only one component of θ

is nonzero; say θr > 0, and θ−r = 0. Then the payoff to user r is:

Ur(C) − Φ

(

θr

C

)

C.

But now observe that by infinitesimally reducing θr, user r can strictly improve his

payoff (since Φ is strictly increasing). Thus θ could not have been a Nash equilibrium;

we conclude that at least two components of θ are nonzero. In this case, from (5.6), and

the expressions in (5.10) and (5.11), the payoff Qr(θr; θ−r) to user r is differentiable.

When two components of θ are nonzero, we may write the payoff Qr to user r as

follows, using (5.10) and (5.11):

Qr(θr; θ−r) = Ur

(

θr
∑R

s=1 θs

C

)

− Φ

(

∑R
s=1 θs

C

)(

θr
∑R

s=1 θs

C

)

.
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Differentiating the previous expression with respect to θr, we conclude that if θ is a

Nash equilibrium then the following optimality conditions hold for each r:

U ′
r

(

θr
∑R

s=1 θs

C

)







C
∑R

s=1 θs

− θrC
(

∑R
s=1 θs

)2






− Φ′

(

∑R
s=1 θs

C

)(

θr
∑R

s=1 θs

)

−

Φ

(

∑R
s=1 θs

C

)







C
∑R

s=1 θs

− θrC
(

∑R
s=1 θs

)2






= 0, if θr > 0; (5.14)

≤ 0, if θr = 0. (5.15)

These conditions are equivalent to (5.12)-(5.13), if we make the substitutions µ =
∑R

s=1 θs/C, and dr = D(pD(θ), θr). Furthermore, in this case we have d ≥ 0, µ > 0,

θr = µdr,
∑R

r=1 dr = C, and pD(θ) = Φ(µ).

On the other hand, suppose that we have found θ, d, and µ such that the conditions

of the lemma are satisfied. In this case we simply reverse the argument above; since

Qr(θr; θ−r) is concave in θr (Condition 2 in Definition 5.2), if at least two components

of θ are nonzero then the conditions (5.14)-(5.15) are necessary and sufficient for θ to

be a Nash equilibrium. Furthermore, if d ≥ 0, µ > 0, θr = µdr, and
∑R

r=1 dr = C,

then it follows that µ =
∑R

s=1 θs/C, Φ(µ) = pD(θ), and dr = D(pD(θ), θr). Thus the

conditions (5.14)-(5.15) become equivalent to (5.12)-(5.13), as required. 2

We can now use the preceding lemma to show there exists a unique Nash equilib-

rium, by exploiting the monotonicity of Φ; this also establishes the second claim of the

theorem.

Lemma 5.5 Let D ∈ D(C) satisfy the conditions of the theorem. Let (R,U) be a utility

system. Then there exists a unique Nash equilibrium.

Proof of Lemma. Our approach will be to demonstrate existence of a Nash equilib-

rium by finding a solution µ > 0 and d ≥ 0 to (5.12)-(5.13), such that
∑R

r=1 dr = C.

If we find such a solution, then at least two components of d must be nonzero; other-

wise, (5.12) cannot hold for the user r with dr = C. Thus, if we define θ = µd, then

µ =
∑R

s=1 θs/C, so pD(θ) = Φ(µ); and from (5.10), we have dr = D(pD(θ), θr). Thus if

µ > 0 and d ≥ 0 satisfy (5.12)-(5.13), then θ = µd is a Nash equilibrium by Lemma 5.4.

Consequently, it suffices to find a solution µ > 0 and d ≥ 0 to (5.12)-(5.13).

We first show that for a fixed value of µ > 0, the equality in (5.12) has at most one

solution dr. To see this, rewrite (5.12) as:

U ′
r(dr)

(

1 − dr

C

)

− (µΦ′(µ) − Φ(µ))

(

dr

C

)

= Φ(µ).
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Since Φ is convex and strictly increasing with Φ(µ) → 0 as µ → 0, we have µΦ′(µ) −
Φ(µ) ≥ 0. Thus the left hand side is strictly decreasing in dr (since Ur is strictly increas-

ing and concave), from U ′
r(0) at dr = 0 to Φ(µ)−µΦ′(µ) ≤ 0 when dr = C. This implies

a unique solution dr ∈ [0, C] exists for the equality in (5.12) as long as U ′
r(0) ≥ Φ(µ);

we denote this solution dr(µ). If Φ(µ) > U ′
r(0), then we let dr(µ) = 0. Observe that as

µ → 0, we must have dr(µ) → C, since otherwise we can show that (5.12) fails to hold

for sufficiently small µ.

Next we show that dr(µ) is continuous. Since we defined dr(µ) = 0 if Φ(µ) > U ′
r(0),

and dr(µ) = 0 if Φ(µ) = U ′
r(0) from (5.12), it suffices to show that dr(µ) is continuous

for µ such that Φ(µ) ≤ U ′
r(0). But in this case continuity of dr can be shown using

(5.12), together with the fact that U ′
r, Φ, and Φ′ are all continuous (the latter because Φ

is concave and differentiable, and hence continuously differentiable). Indeed, suppose

that µn → µ where Φ(µ) ≤ U ′
r(0), and assume without loss of generality that dr(µn) →

dr (since dr(µn) takes values in the compact set [0, C]). Then since µn and dr(µn) satisfy

the equality in (5.12) for sufficiently large n, by taking limits we see that µ and dr satisfy

the equality in (5.12) as well. Thus we must have dr = dr(µ), so we conclude dr(µ) is

continuous.

We now show that dr(µ) is nonincreasing in µ. To see this, choose µ1, µ2 > 0

such that µ1 < µ2. Suppose that dr(µ1) < dr(µ2). Then, in particular, dr(µ2) > 0, so

(5.12) holds with equality for dr(µ2) and µ2. Now note that as we move from dr(µ2) to

dr(µ1), the left hand side of (5.12) strictly increases (since Ur is concave). On the other

hand, since Φ is convex and strictly increasing with Φ(µ) → 0 as µ → 0, we have the

inequalities µ2Φ
′(µ2) − Φ(µ2) ≥ µ1Φ

′(µ1) − Φ(µ1) ≥ 0. From this it follows that the

right hand side of (5.12) strictly decreases as we move from dr(µ2) to dr(µ1) and from

µ2 to µ1. Thus neither (5.12) nor (5.13) can hold at dr(µ1) and µ1; so we conclude that

for all r, we must have dr(µ1) ≥ dr(µ2).

Thus for each r, dr(µ) is a nonincreasing continuous function such that dr(µ) → C

as µ → 0, and dr(µ) → 0 as µ → ∞. We conclude there exists at least one µ > 0 such

that
∑R

r=1 dr(µ) = C; and in this case d(µ) satisfies (5.12)-(5.13), so by the discussion

at the beginning of this proof, we know that θ = µd(µ) is a Nash equilibrium.

Finally, we show that the Nash equilibrium is unique. Suppose that there exist two

solutions d1 ≥ 0, µ1 > 0, and d2 ≥ 0, µ2 > 0 to (5.12)-(5.13), such that
∑R

r=1 di
r = C

for i = 1, 2. Of course, we must have di = d(µi), i = 1, 2. We assume without loss of

generality that µ1 ≤ µ2; our goal is to show that µ1 = µ2. Since dr(·) is nonincreasing,

we know dr(µ1) ≥ dr(µ2) for all r. Suppose that dr(µ1) > dr(µ2) for all r with dr(µ2) >

0. Then we have:

C =
R
∑

r=1

d1
r =

R
∑

r=1

dr(µ1) >
R
∑

r=1

dr(µ2) =
R
∑

r=1

d2
r = C,
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a contradiction. Thus we must have dr(µ1) = dr(µ2) for some user r with dr(µ2) > 0.

Observe that Φ(µ) and µΦ′(µ) are both strictly increasing in µ > 0, since Φ is strictly in-

creasing and convex. Thus for fixed dr > 0, the equality in (5.12) has a unique solution

µ, so dr(µ1) = dr(µ2) > 0 implies µ1 = µ2, in which case d1 = d2. Thus (5.12)-(5.13)

have a unique solution d ≥ 0, µ > 0, such that
∑R

r=1 dr = C. From Lemma 5.4, this

ensures the Nash equilibrium θ = µd is unique as well. 2

We now proceed to compute the efficiency loss of mechanisms in D(C) satisfy-

ing the conditions of the theorem. Following the same reasoning as in Lemma 2.7,

it is straightforward to show that the worst case efficiency loss occurs when all util-

ity functions are linear. We assume without loss of generality that Ur(dr) = αrdr, for

r = 1, . . . , R. Let A = maxr αr; relabeling if necessary, we also assume that α1 = A.

Then the optimal solution to SYSTEM(C, R,U) has optimal value AC. We now pro-

ceed to compute the worst case aggregate utility at a Nash equilibrium.

To identify the worst case situation, we would like to find α2, . . . , αR ≤ A such

that Ad1 +
∑R

r=2 αrdr, the total utility associated with the Nash equilibrium, is as

small as possible; this results in the following optimization problem (with unknowns

µ, d1, . . . , dR, α2, . . . , αR):

minimize Ad1 +
R
∑

r=2

αrdr (5.16)

subject to αr

(

1 − dr

C

)

= Φ(µ)

(

1 − dr

C

)

+ µΦ′(µ)

(

dr

C

)

, if dr > 0; (5.17)

αr ≤ Φ(µ), if dr = 0; (5.18)
∑

r

dr = C; (5.19)

0 < αr ≤ A, r = 2, . . . , R; (5.20)

µ > 0; dr ≥ 0, r = 1, . . . , R. (5.21)

As in the proof of Theorem 2.6, this optimization problem chooses linear utility func-

tions with slopes less than or equal to A for players 2, . . . , R. The constraints in the

problem require that given linear utility functions Ur(dr) = αrdr for r = 1, . . . , R, the

allocation d must in fact be the unique Nash equilibrium allocation of the resulting

game. (The resulting Nash equilibrium θ is given by θ = µd, as in Lemma 5.4.) As a

result, the optimal objective function value is precisely the lowest possible aggregate

utility achieved, among all such games; since the optimal value of SYSTEM(C, R,U)

is fixed at AC, this computation will yield ρ(C, D) as well.

Suppose now (µ,d, α) is an optimal solution to (5.16)-(5.21). If Φ(µ) ≥ A, it follows

from (5.17)-(5.18) that dr = 0 for all r (since µΦ′(µ)−Φ(µ) ≥ 0); thus (5.19) cannot hold.
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We conclude that Φ(µ) < A, in which case (5.17)-(5.18) imply that d1 > 0, since α1 = A.

Now suppose that n < R users, say users r = R − n + 1, . . . , R, have dr = 0. Then the

first R − n coordinates of α and d must be an optimal solution to the problem (5.16)-

(5.21), with R−n users. Therefore, in finding the worst case game, it suffices to assume

that dr > 0 for all r = 1, . . . , R, and then consider the optimal objective function value

for R = 2, 3, . . .. This allows us to replace the pair of constraints (5.17)-(5.18) with the

following single constraint:

αr

(

1 − dr

C

)

= Φ(µ)

(

1 − dr

C

)

+ µΦ′(µ)

(

dr

C

)

. (5.22)

We now fix µ > 0. Since α1 = A, (5.22) implies that:

d1 =
(A − Φ(µ))C

A − Φ(µ) + µΦ′(µ)
. (5.23)

The constraint d1 > 0 becomes equivalent to Φ(µ) < A, since µΦ′(µ) − Φ(µ) ≥ 0.

Furthermore, given µ > 0, we can rewrite (5.22) as:

αr =
Φ(µ)C + (µΦ′(µ) − Φ(µ))dr

C − dr
. (5.24)

The constraint αr ≤ A can now be rewritten as:

dr ≤ (A − Φ(µ))C

A − Φ(µ) + µΦ′(µ)
. (5.25)

(Note the right hand side is exactly equal to d1, from (5.23).)

Thus we have the following “reduced” optimization problem:

minimize
(A − Φ(µ))AC

A − Φ(µ) + µΦ′(µ)
+

R
∑

r=2

Φ(µ)Cdr + (µΦ′(µ) − Φ(µ))d2
r

C − dr
(5.26)

subject to
R
∑

r=2

dr = C − (A − Φ(µ))C

A − Φ(µ) + µΦ′(µ)
; (5.27)

dr ≤ (A − Φ(µ))C

A − Φ(µ) + µΦ′(µ)
, r = 2, . . . , R; (5.28)

Φ(µ) < A; (5.29)

µ > 0; dr > 0, r = 2, . . . , R. (5.30)

The objective function (5.26) is equivalent to (5.16), upon substituting with (5.23) and

(5.24); these substitutions also ensure that (5.17)-(5.18) hold. The constraint (5.27) is

equivalent to (5.19), upon substitution from (5.23). The constraint αr > 0 in (5.20)



SECTION 5.1. MULTIPLE CONSUMERS, INELASTIC SUPPLY 205

holds from (5.24), since (5.27) and (5.30) ensure that 0 < dr < C. The constraint αr ≤ 1

in (5.20) becomes equivalent to (5.28) (see (5.25)). Finally, the constraint that d1 > 0

yields (5.29), from (5.23).

For fixed µ > 0, it follows that there exists a feasible solution to (5.26)-(5.30) if and

only if Φ(µ) < A, and R is sufficiently large, i.e.:

C

R
≤ (A − Φ(µ))C

A − Φ(µ) + µΦ′(µ)
. (5.31)

In this case, the following symmetric solution is feasible:

dr =

(

1

R − 1

)(

C − (A − Φ(µ))C

A − Φ(µ) + µΦ′(µ)

)

, r = 2, . . . , R. (5.32)

Notice that the objective function (5.26) is strictly convex and symmetric in dr; thus

the feasible solution (5.32) must in fact be an optimal solution to (5.26)-(5.30). If we

substitute this solution into the objective function (5.26), the resulting expression is

decreasing in R. Thus the worst case efficiency loss occurs as R → ∞. Furthermore, for

fixed µ > 0 such that Φ(µ) < A, as R → ∞ the constraint (5.31) holds for all sufficiently

large R. We conclude the worst case aggregate utility at a Nash equilibrium is given

by solving the following optimization problem:

minimize
(A − Φ(µ))AC

A − Φ(µ) + µΦ′(µ)
+

(

C − (A − Φ(µ))C

A − Φ(µ) + µΦ′(µ)

)

Φ(µ) (5.33)

subject to Φ(µ) < A; µ > 0. (5.34)

The first term of (5.33) is identical to the first term of (5.26). The second term of (5.33)

is the limit as R → ∞ of the expression
∑R

r=2 αrdr, where αr is defined in (5.24) and dr

is defined in (5.32). The limit follows since dr → 0 as R → ∞, so αr → Φ(µ).

The optimization problem (5.33)-(5.34) gives the worst case aggregate utility at a

Nash equilibrium. Recall that since all users have linear utility functions with slopes

less than or equal to A, while user 1 has marginal utility exactly equal to A, the max-

imal aggregate utility is equal to AC. Thus the worst case efficiency loss at a Nash

equilibrium relative to the maximal aggregate utility is given by solving the following

problem, with unknowns µ > 0, A > 0:

minimize
(A − Φ(µ))

A − Φ(µ) + µΦ′(µ)
+

(

1 − (A − Φ(µ))

A − Φ(µ) + µΦ′(µ)

)(

Φ(µ)

A

)

(5.35)

subject to Φ(µ) < A; µ > 0. (5.36)

The objective function (5.35) results by dividing the objective function (5.33) through

by AC.
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We briefly summarize the sequence of reductions made to this point. Suppose that

(R,U) is a utility system, and let θ be a Nash equilibrium. Define A as the largest

marginal utility at the Nash equilibrium, A = maxr U ′
r(D(pD(θ), θr)) > 0. In addition,

let µ =
∑R

s=1 θs/C. Then the ratio of Nash equilibrium aggregate utility to the maximal

aggregate utility is no worse than the value of the objective function (5.35) given A and

µ. Furthermore, for fixed µ > 0 and A such that A > Φ(µ), there exists a sequence of

games (where R → ∞) such that the ratio of Nash equilibrium aggregate utility to

the maximal aggregate utility approaches the value of the objective function (5.35).

Thus, if we solve the optimization problem (5.35)-(5.36), the resulting optimal value is

exactly equal to ρ(C, D).

If we rearrange the terms of (5.35) and make the substitutions x = Φ(µ)/A, and

Ψ(µ) = µΦ′(µ)/Φ(µ) ≥ 1, we have the following equivalent optimization problem:

minimize
(1 − x)2

1 + (Ψ(µ) − 1)x
+ x (5.37)

subject to 0 < x < 1; µ > 0. (5.38)

For fixed µ > 0, denote the objective function value (5.37) by F (x; µ):

F (x; µ) =
(1 − x)2

1 + (Ψ(µ) − 1)x
+ x. (5.39)

Observe that for fixed µ > 0, F (x; µ) is strictly convex, and approaches 1 either as

x → 0 or as x → 1. Thus for fixed µ > 0 there exists a unique optimal solution

x ∈ (0, 1) to (5.37)-(5.38) in (0, 1), which we denote x∗(µ). This optimal solution is

straightforward to identify by differentiating F (x; µ) with respect to x; we have:

x∗(µ) =























1

2
, if Ψ(µ) = 1;

√

Ψ(µ) − 1

Ψ(µ) − 1
, if Ψ(µ) > 1.

After substituting and simplifying, it is straightforward to verify that F (x∗(µ); µ) =

G(Ψ(µ)), where G(Ψ) is defined for Ψ ≥ 1 according to:

G(Ψ) =























3

4
, if Ψ = 1;

2Ψ2 − 3Ψ
√

Ψ +
√

Ψ

(Ψ − 1)2
√

Ψ
, if Ψ > 1.

(5.40)
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Since ρ(C, D) is the optimal value of the optimization problem (5.35)-(5.36), we con-

clude:

ρ(C, D) = inf
µ>0

F (x∗(µ), µ) = inf
µ>0

G(Ψ(µ)).

From the definition, it is straightforward to verify that G(Ψ) is continuous, by checking

that G(Ψ) → 3/4 as Ψ → 1. If Ψ(µ1) > Ψ(µ2) ≥ 1, then F (x; µ1) < F (x; µ2) for all x

such that 0 < x < 1; this follows directly from the definition of F in (5.39). Thus we

must have G(Ψ(µ1)) < G(Ψ(µ2)). We conclude G(Ψ) is strictly decreasing, and that

G(Ψ) approaches zero as Ψ → ∞ (using the definition (5.40)). Thus if supµ>0 Ψ(µ) =

∞, then ρ(C, D) = infµ>0 G(Ψ(µ)) = 0. On the other hand, if supµ>0 Ψ(µ) = Ψ∗ < ∞,

then ρ(C, D) = infµ>0 G(Ψ(µ)) = G(Ψ∗). Note that since B is the differentiable inverse

of Φ on (0,∞), we have:

sup
µ>0

Ψ(µ) = sup
µ>0

[

µΦ′(µ)

Φ(µ)

]

=

(

inf
p>0

[

pB′(p)

B(p)

])−1

,

where we interpret the right hand side as infinity if the infimum is equal to zero. Fur-

thermore, for 0 < ε ≤ 1, we have g(ε) = G(1/ε), where g is defined as in (5.7). Thus

we have ρ(C, D) = g(ε∗), where ε∗ is defined in (5.8).

Finally, suppose that Φ(µ) = µΦ′(µ) for all µ > 0. Then Ψ(µ) = 1 for all µ > 0, so

G(Ψ(µ)) = 3/4 for all µ > 0, and ρ(C, D) = 3/4. Since Φ is convex and strictly increas-

ing, with Φ(µ) → 0 as µ → 0, we can only have Ψ(µ) = 1 for all µ > 0 if Φ(µ) = ∆µ for

some ∆ > 0; thus B(p) = p/∆, and we conclude that D(p, θ) = ∆θ/p, as required. On

the other hand, if µΦ′(µ) > Φ(µ) for some µ > 0, then Ψ(µ) > 1, and G(Ψ(µ)) < 3/4,

so ρ(C, D) < 3/4. This establishes the third claim of the theorem. 2

The preceding theorem establishes that the mechanism proposed in Section 2.1

minimizes efficiency loss among a wide class of mechanisms with certain desirable

properties. In fact, the theorem proves something much stronger: we explicitly show

that all mechanisms D satisfying the conditions of the theorem must be of the form

D(p, θ) = θ/B(p). Furthermore, we show that the worst case efficiency loss of such a

mechanism is governed by the degree of “nonlinearity” of B(p), as measured through

the quantity ε∗ defined in (5.8). Note that the quantity pB′(p)/B(p) is the elasticity of

B(p) [137]; thus ε∗ is the minimal elasticity of B(p) over all p > 0.

We note that one potentially undesirable feature of the family of market-clearing

mechanisms considered is that the payoff to user r is defined as −∞ when the com-

posite strategy vector is θ = 0 (cf. (5.6)). This definition is required because when

the composite strategy vector is θ = 0, a market-clearing price may not exist. One

possible remedy is to restrict attention instead to mechanisms where D(p, θ) = 0 if

θ = 0, for all p ≥ 0; in this case we can define pD(θ) = 0 if θ = 0, and let the payoff to

user r be Ur(0) if θr = 0. This condition amounts to a “normalization” on the market-
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clearing mechanism. Furthermore, this modification now captures the mechanism of

Chapter 2, where Qr(0;w−r) = Ur(0) for all w−r ≥ 0 (see (2.13)). It is straightforward

to check that this modification does not alter the conclusion of Theorem 5.1, since the

class of mechanisms in D(C) satisfying the conditions of Theorem 5.1 can be extended

to ensure D(p, θ) = 0 if θ = 0.

Finally, we note one desirable feature of the mechanisms considering in Theorem

5.1, particularly in the context of communication networks. In general, even though

the strategy space of the users is one-dimensional, the market-clearing price pD(θ)

may have a complex dependence on the vector θ. However, from Lemma 5.3, note

that the market clearing price pD(θ) depends only on the sum of the strategies of all the

players,
∑

s θs. Thus, under the conditions of Theorem 5.1, we show that the market-

clearing price is only a function of a simple aggregate
∑

s θs of the players’ strategies,

so that the market-clearing process does not require identification of individual players

interacting with the mechanism, or even the number of players. This is a desirable

scaling property for market mechanisms to be deployed in large scale networks.

� 5.1.2 A Second Characterization Theorem

Note that given the definition of D(C), we have considered market-clearing mecha-

nisms for a fixed supply C. Intuitively, if we require a mechanism to be well defined

for all capacities C, then given Condition 2 in the definition of D(C) one might expect

Condition 1 to hold as well; that is, for an appropriate limiting case we expect that

price anticipating users will be approximately price taking.

Formally, we define the class D̂ as follows.

Definition 5.3

The class D̂ consists of all functions D(p, θ) such that the following conditions are satisfied:

1. For all C > 0, D is a smooth market-clearing mechanism for C (cf. Definition 5.1).

2. For all C > 0, and for all Ur ∈ U , a user’s payoff is concave if he is price anticipating;

that is, for all R, and for all θ−r ∈ (R+)R, the function:

Ur(D(pD(θ), θr) − pD(θ)D(pD(θ), θr)

is concave in θr > 0 if θ−r = 0, and concave in θr ≥ 0 if θ−r 6= 0.

3. The demand functions are nonnegative; i.e., for all p > 0 and θ ≥ 0, D(p, θ) ≥ 0.

Note that any mechanism in D̂ must be a smooth market-clearing mechanism for any

C > 0; in particular, the market-clearing price pD(θ) must be uniquely defined for any

C > 0. (Note that in the notation we suppress the dependence of the market-clearing

price pD(θ) on the capacity C.) We have the following proposition.
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Proposition 5.6

If D ∈ D̂, then for all C > 0, D ∈ D(C).

Proof. Fix D ∈ D̂. It suffices to show that Condition 1 in Definition 5.2 is satisfied.

Our approach is to show that for an appropriate limiting environment, price anticipat-

ing users behave as if they are price taking.

First suppose that for fixed θ > 0, there exist µ1, µ2 > 0 with µ1 6= µ2 such that

D(µ1, θ) = D(µ2, θ) = d. If d > 0, then let C = 2d and let R = 2. Then for θ = (θ, θ),

there cannot exist a unique market-clearing price pD(θ). We conclude that D(·, θ) must

be a strictly monotonic function for µ > 0; furthermore, the condition that a unique

market-clearing price must exist implies that as µ → 0 or µ → ∞, either D(µ, θ) → 0

or D(µ, θ) → ∞.

Let I ⊂ (0,∞) be the set of θ > 0 such that D(µ, θ) is strictly increasing in µ; note

that if θ ∈ (0,∞) \ I , then D(µ, θ) is necessarily strictly decreasing in µ. Suppose

I 6= (0,∞) and I 6= ∅; then choose θ ∈ ∂I , the boundary of I . Choose a sequence

θn ∈ I such that θn → θ; and choose another sequence θ̂n ∈ (0,∞) \ I such that

θ̂n → θ. Fix µ1, µ2 with 0 < µ1 < µ2. Then we have D(µ1, θn) < D(µ2, θn), and

D(µ1, θ̂n) > D(µ2, θ̂n). Taking limits as n → ∞, we get D(µ1, θ) ≤ D(µ2, θ), and

D(µ1, θ) ≥ D(µ2, θ), so that D(µ1, θ) = D(µ2, θ). But this is not possible, as shown

above (since D(·, θ) must be strictly monotonic). Thus I = (0,∞) or I = ∅. In partic-

ular, either D(µ, θ) is strictly decreasing in µ > 0 for all θ > 0, or strictly increasing in

µ > 0 for all θ > 0.

As in Lemma 5.2, it is straightforward to check that for all C, we must have that

D(pD(θ), θr) is concave in θr, for nonzero θ. We will use this fact to show D(µ, θ) is

concave in θ ≥ 0 for fixed µ > 0. Since D(µ, θ) is continuous, it suffices to show that

D(µ, θ) is concave for θ > 0. Suppose not; fix θ > 0, θ > 0, and δ ∈ (0, 1) such that:

D(µ, δθ + (1 − δ)θ) < δD(µ, θ) + (1 − δ)D(µ, θ). (5.41)

Note this implies in particular that either D(µ, θ) > 0 or D(µ, θ) > 0. We assume with-

out loss of generality that D(µ, θ) > 0. Let CR = RD(µ, θ), and let θR = (θ, . . . , θ) ∈
(R+)R. To emphasize the dependence of the market-clearing price on the capacity, we

will let pD(θ; C) denote the market-clearing price when the composite strategy vector

is θ and the capacity is C. We will show that for any θ′ > 0, if µR = pD(θR−1, θ′; CR),

then µR → µ as R → ∞. First note that by definition, we have D(µR, θ′) + (R −
1)D(µR, θ) = RD(µ, θ); or, rewriting, we have:

1

R
D(µR, θ′) +

(

1 − 1

R

)

D(µR, θ) = D(µ, θ). (5.42)

Now note that as R → ∞, the right hand side remains constant. Suppose that µR → ∞.

Since I = (0,∞) or I = ∅, either D(µR, θ′), D(µR, θ) → 0, or D(µR, θ′), D(µR, θ) → ∞;
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in either case, the equality (5.42) is violated for large R. A similar conclusion holds if

µR → 0 as R → ∞. Thus we do not have µR → 0 or µR → ∞ as R → ∞. Choose

a convergent subsequence Rk, such that µRk → µ̂, where µ̂ ∈ (0,∞). From (5.42),

we must have D(µ̂, θ) = D(µ, θ). But as established above, since D(·, θ) is strictly

monotonic, this is only possible if µ̂ = µ. We conclude that the following three limits

hold:

lim
R→∞

pD(θR; CR) = µ;

lim
R→∞

pD(θR−1, θ; CR) = µ;

lim
R→∞

pD(θR−1, δθ + (1 − δ)θ; CR) = µ.

The remainder of the proof is straightforward. From (5.41), for R sufficiently large, we

must have:

D(pD(θR−1, δθ + (1 − δ)θ; CR), δθ + (1 − δ)θ) <

δD(pD(θR; CR), θ) + (1 − δ)D(pD(θR−1, θ; CR), θ).

This violates Condition 1 in the definition of D̂. A similar argument shows that µD(µ, θ)

is convex in θ, by using the fact that pD(θ)D(pD(θ), θr) must be convex in θr for

nonzero θ (which follows using the same logic as Lemma 5.2). We conclude that Con-

dition 1 of the definition of D(C) holds, so D ∈ D(C), as required. 2

From the preceding proposition and Theorem 5.1, it follows that for D ∈ D̂, the

same result as Theorem 5.1 holds.

Theorem 5.7

Let D ∈ D̂ be a smooth market-clearing mechanism such that for all capacities C > 0 and

utility systems (R,U), there exists a competitive equilibrium θ such that (D(pD(θ), θr), r =

1, . . . , R) solves SYSTEM(C, R,U). Then the conclusions of Theorem 5.1 hold for D; in

particular, for any capacity C and utility system (R,U), there exists a unique Nash equi-

librium. Furthermore, ρ(C, D) ≤ 3/4, and this bound is met with equality if and only if

D(p, θ) = ∆θ/p for some ∆ > 0.

We comment briefly here on the possibility of relaxing Condition 2 in the defini-

tions of D(C) and D̂: that users’ payoffs are concave when they are price anticipating.

We motivated this assumption in Section 5.1.1 as a means of characterization of pure

strategy Nash equilibria. However, if we relax this assumption, then in general one

can still expect existence of mixed strategy Nash equilibria [96], where the strategy of

a player is a probability distribution over available actions. In this case one can then

ask whether the expected aggregate utility of a mixed strategy Nash equilibrium suf-
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fers a high efficiency loss relative to the maximal aggregate utility. However, such a

direction constitutes a significant departure from the material of this section as well as

the previous section, because we use Condition 2 in the definitions of D(C) and D̂ not

only to characterize pure strategy Nash equilibria, but also to constrain the structure

of the mechanisms under consideration.

The theorems of this section and the previous section suggest that the best effi-

ciency guarantee we can hope to achieve is 75%, if we are restricted to market-clearing

mechanisms with scalar strategy spaces. Mechanisms which do not choose a single

price to clear the market can lead to lower efficiency losses. For example, Sanghavi and

Hajek [112] have shown that if users choose their total payments, but the link manager

is allowed to choose the allocation to users as an arbitrary function of the payments, it

is possible to ensure no worse than a 13% efficiency loss. Furthermore, Yang and Hajek

[148] have shown that if a mechanism allocates resources in proportion to the users’

strategies (i.e., user r receives a fraction θr/(
∑R

s=1 θs) of the resource), then by using

differentiated pricing, it is possible to guarantee arbitrarily small efficiency loss at the

Nash equilibrium. Note that, in light of Lemma 5.3, any mechanism in D(C) satisfying

the conditions of Theorem 5.1 must in fact allocate resources in proportion to the users’

strategies as well. However, we can only guarantee an efficiency loss of no more than

25%, because the mechanisms in D(C) set only a single price, and choose this price as

a function of
∑R

r=1 θr (as shown in Lemma 5.3). Indeed, in the next section, we will

present a two-user mechanism which can guarantee an arbitrarily low efficiency loss

by setting a single price, because the conditions imposed in the analysis of this section

are violated.

� 5.1.3 A Two User Mechanism with Arbitrarily Low Efficiency Loss

In this section we consider the special case where R = 2. We develop a mechanism

where the strategy space of each user is R
+, and where the mechanism sets a single

price, such that the efficiency loss when users are price anticipating can be guaranteed

to be arbitrarily low. However, we will see that such a mechanism cannot be defined

in terms of users submitting demand functions, with a price being chosen to “clear the

market.”

The mechanism is defined as follows. Let the capacity of the resource be C > 0,

and assume the two users have utility functions U1, U2 ∈ U . Fix γ such that 0 < γ < 1.

Each user chooses a strategy θi ≥ 0, i = 1, 2; the payoff to user 1 is then:

Q1(θ1; θ2) =















U1

(

(θ1 − γθ2)
+

(θ1 − γθ2)+ + (θ2 − γθ1)+
C

)

− (θ1 − γθ2)
+, if θ1 > 0;

U1(0), if θ1 = 0.

(5.43)
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The payoff to user 2 is defined symmetrically. We interpret the preceding mechanism

as follows. Given the strategy vector θ, the resource manager chooses a price p(θ)

given by:

p(θ) =
(θ1 − γθ2)

+ + (θ2 − γθ1)
+

C
.

If p(θ) > 0, then user 1 is allocated a rate given by d1(θ) = w1(θ)/p(θ), where w1(θ) =

(θ1 − γθ2)
+ is the payment made by user 1. The same definitions hold symmetrically

for user 2. We note that in the special case where γ = 0, this mechanism is identical to

the mechanism studied in Section 2.1.

Note that in this case, the resource manager is choosing a single price p(θ) which

is charged to both users. However, we cannot interpret this game as one where users

submit demand functions; to see this, note that the “demand” of user 1 at a given price

p is given by (θ1 − γθ2)
+/p. However, this is not a function only of θ1 and p; it also

depends on the strategy of the second player, θ2. For this reason the mechanism does

not fit the definition of market-clearing mechanism outlined in Section 5.1.1. In fact,

the mechanism also exhibits a more striking property: in general, the payoffs Qr are

not concave in the strategy θr. Nevertheless, the following theorem shows that a Nash

equilibrium always exists, and as γ → 1, the efficiency loss approaches zero.

Theorem 5.8

Fix U1, U2 ∈ U and C > 0. For any γ such that 0 < γ < 1, there exists a Nash equilibrium

(θ1, θ2) of the game defined by (Q1, Q2). Furthermore, all such Nash equilibria lead to the same

allocation to the two players. If we denote this allocation by (d1(γ), d2(γ)), and let (dS
1 , dS

2 ) be

any optimal solution to SYSTEM(C, 2,U), then there holds:

lim
γ→1

U1(d1(γ)) + U2(d2(γ))

U1(dS
1 ) + U2(dS

2 )
= 1.

Proof. Fix θ2 ≥ 0. We start by rewriting the payoff to user 1 as follows:

Q1(θ1; θ2) =































U1(0), if 0 ≤ θ1 < γθ2;

U1

(

θ1 − γθ2

(1 − γ)(θ1 + θ2)
C

)

− (θ1 − γθ2), if γθ2 ≤ θ1 ≤ θ2/γ;

Ur(C) − (θ1 − γθ2), if θ1 > θ2/γ.

(5.44)

From the preceding expression, we see that at a Nash equilibrium we would never

have θ1 > θ2/γ, since in this case infinitesimally reducing θ1 is a profitable deviation

for user 1. Thus if θ is a Nash equilibrium, then γθ1 ≤ θ2. Symmetrically, by reasoning

for user 2, we see that γθ2 ≤ θ1.

Thus, in searching for Nash equilibria, we restrict our search to strategy vectors
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(θ1, θ2) such that γθ1 ≤ θ2 and γθ2 ≤ θ1. This is actually the key insight of the proof,

because under these restrictions the payoffs of each player become concave. This fol-

lows from (5.44): note that when γθ2 ≤ θ1 ≤ θ2/γ, the payoff to player 1 is concave in

θ1.

Following this observation, the remainder of the proof closely follows the proof of

Theorem 2.2, so we only sketch the argument. As in that proof, it is straightforward

to show that at a Nash equilibrium, we must have θ1 > 0 and θ2 > 0. Furthermore,

by differentiating (5.44) when γθ2 ≤ θ1 ≤ θ2/γ, we find that if a pair (θ1, θ2) is a Nash

equilibrium then the following conditions must hold for user 1, where µ = (1−γ)(θ1 +

θ2)/C > 0, and d1 = (θ1 − γθ2)/µ:

γU ′
1(C) ≥ µ, if d1 = C; (5.45)

U ′
1(d1)

(

1 − (1 − γ)d1

C

)

= µ, if 0 < d1 < C; (5.46)

U ′
1(0) ≤ µ, if d1 = 0. (5.47)

The first condition corresponds to the case where θ1 = θ2/γ; the second condition

corresponds to the case where γθ2 < θ1 < θ2/γ; and the third condition corresponds

to the case where θ1 = γθ2. Conditions symmetric to (5.45)-(5.47) hold for user 2, with

d2 = (θ2 − γθ1)/µ. Conversely, suppose we are given (d1, d2) and µ > 0 such that

d1 +d2 = C, the conditions (5.45)-(5.47) hold for user 1, and their symmetric analogues

hold for player 2. Define (θ1, θ2) according to:

θ1 =
µd1 + γµd2

1 − γ2
; θ2 =

µd2 + γµd1

1 − γ2
.

Then it follows that (1 − γ)(θ1 + θ2)/C = µ, d1 = (θ1 − γθ2)/µ, and d2 = (θ2 − γθ1)/µ.

Furthermore, we have γθ1 ≤ θ2 and γθ2 ≤ θ1; and since the payoff Qr(θr; θ−r) is

concave for r = 1, 2 in this case, the conditions (5.45)-(5.47) (for both users 1 and 2) are

sufficient to guarantee that θ is a Nash equilibrium.

By arguing as in the proof of Theorem 2.2, it is straightforward to show from the

optimality conditions (5.45)-(5.47) that the allocation (d1, d2) at any Nash equilibrium

is the unique optimal solution to the following problem:

maximize Û1(d1) + Û2(d2) (5.48)

subject to d1 + d2 = C; (5.49)

d1, d2 ≥ 0, (5.50)
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where for r = 1, 2,

Ûr(dr) =

(

1 − (1 − γ)dr

C

)

Ur(dr) +

(

(1 − γ)dr

C

)(

1

dr

∫ dr

0
Ur(z) dz

)

. (5.51)

(Note that for γ = 0, this definition is the same as (2.19).) As γ → 1, we have Ûr → Ur

pointwise, and hence uniformly, over [0, C]. It then immediately follows that the op-

timal solution to (5.48)-(5.50) (i.e., the Nash equilibrium allocation) converges to the

optimal solution to SYSTEM(C, 2,U), which establishes the desired result. 2

The key step in the previous proof involves showing that we can restrict atten-

tion to strategy vectors where γθ1 ≤ θ2 and γθ2 ≤ θ1, and in this case, the payoff

to both players becomes concave. Unfortunately, this step is critically dependent on

the assumption that we have only two players. Thus an interesting question concerns

extending the preceding result to a general setting of R players.

� 5.2 Multiple Producers, Inelastic Demand

In this section, we turn our attention to a game where demand is inelastic, rather than

supply; and where multiple producers compete to meet demand. The model we con-

sider is motivated by the setting of Section 4.1. Let D denote the inelastic demand; we

assume the demand is infinitely divisible among N producers, where N > 1. As in

the previous section, our goal is to characterize smooth market-clearing mechanisms

which minimize efficiency loss. Note that by contrast to the previous section, however,

we fix N a priori; thus the mechanisms we consider may depend on N . Our main mo-

tivation for this shift is the difference between the analyses of Section 2.2 and Section

4.2. In Section 2.2, we found the worst case efficiency loss occurred as the number of

users R approached infinity; for this reason, in Section 5.1, we considered efficiency

loss of smooth market-clearing mechanisms independent of the value of R. By con-

trast, in Section 4.2 we found that the efficiency loss approached zero as the number of

firms approached infinity. Thus, to develop a meaningful characterization theorem in

this section, and in particular to make a meaningful comparison to the result of The-

orem 4.3, we fix the number of firms N in advance. (We will find, however, that the

efficiency loss minimizing mechanism does not depend on N .)

We begin by describing the producers, or firms. Each producer has a cost function

C : R → R
+. We assume that C is continuous on R, and strictly increasing and convex

on R
+, with C(s) = 0 for s ≤ 0; note that these are the same conditions as Assumption
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4.1. Let C denote the set of possible cost functions; i.e.:

C =
{

C : R → R
+ | C is continuous on R, and strictly increasing and convex on R

+,

and C(s) = 0 for s ≤ 0}.

Let C = (C1, . . . , CN ) denote the vector of cost functions, where Cn is the cost function

of firm n. We call a vector C ∈ CN a cost system; our goal will be to design a resource

allocation mechanisms which is efficient for all cost systems.

We assume that cost is measured in monetary units; thus, if firm n produces an

amount sn, but receives revenue wn, the net payoff to firm n is given by:

wn − Cn(sn).

Given any cost system C, our goal is to minimize aggregate production cost, as

defined in the following problem:

SYSTEM(D, N,C):

minimize
N
∑

n=1

Cn(sn) (5.52)

subject to
N
∑

n=1

sn = D; (5.53)

s ≥ 0. (5.54)

We will say that s solves SYSTEM(D, N,C) if s is an optimal solution to (5.52)-(5.54),

given the cost system C.

As in the previous section, we will consider smooth market-clearing mechanisms

to determine the production allocation. We have the following definition.

Definition 5.4

Given D > 0 and N > 1, a smooth market-clearing mechanism for D and N is a differ-

entiable function S : (0,∞)× [0,∞) → R
+ such that for all nonzero θ ∈ (R+)N , there exists

a unique solution p > 0 to the following equation:

N
∑

n=1

S(p, θn) = D.

We let pS(θ) denote this solution.

As in Definition 5.1, note that while this definition implicitly restricts the strategy θn

of each firm to R
+, this fact is inessential; the subsequent analysis can be adapted to
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hold even if the strategy space of each firm is allowed to be [c,∞), where c ∈ R. We

also observe that the market-clearing price is undefined if θ = 0. For this reason,

in defining the game associated with a given mechanism S, we will assume that the

payoff to all firms is −∞ if the composite strategy is 0, analogous to the definition

made in Section 5.1. In fact, we note that at this level, Definition 5.4 is identical to

Definition 5.1, except that the mechanism may depend on both D and N .

We also observe that as in the previous section, this definition of smooth market-

clearing mechanism generalizes the supply function interpretation of the mechanism

discussed in Section 4.1. We recall that in that development, each firm submits a

supply function of the form S(p, θ) = D − θ/p, and the resource manager chooses

a price pS(θ) to ensure that
∑N

n=1 S(p, θn) = D. Thus, for this mechanism, we have

pS(θ) =
∑N

n=1 θn/((N − 1)D) if θ 6= 0. Another possible mechanism is given by

S(p, θ) = D− θ/
√

p; it is straightforward to verify that pS(θ) = [
∑N

n=1 θn/((N − 1)D)]2

if θ 6= 0.

We will restrict attention to a particular class of smooth market-clearing mecha-

nisms for C and N , which we define as follows.

Definition 5.5

Given D > 0 and N > 1, the class S(D, N) consists of all smooth market-clearing mechanism

S for D and N such that:

1. For all C ∈ C, a firm’s payoff is concave if the firm is price taking; that is, for all p > 0

the function:

pS(p, θ) − C(S(p, θ))

is concave for θ ≥ 0.

2. For all Cn ∈ C, a firm’s payoff is concave if the firm is price anticipating; that is, for all

θ−n ∈ (R+)N−1, the function:

pS(θ)S(pS(θ), θn) − Cn(S(pS(θ), θn))

is concave in θn > 0 if θ−n = 0, and concave in θn ≥ 0 if θ−n 6= 0.

3. The function S is uniformly less than or equal to D; i.e., for all p > 0 and θ ≥ 0,

S(p, θ) ≤ D.

Our justification for these conditions is similar to the discussion following Defini-

tion 5.2 in Section 5.1.2. The only modification is Condition 3, where we require the

supply functions to be bounded below D; this is a natural assumption, since the de-

mand is known in advance and we do not expect any producer to supply more than

the demand.

In order to state the main result, we define competitive equilibrium and Nash equilib-

rium. Given a cost system C and a smooth market-clearing mechanism S ∈ S(D, N),
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we say that a nonzero vector θ ∈ (R+)N is a competitive equilibrium if, for µ = pS(θ),

there holds for all n:

θn ∈ arg max
θn≥0

[

µS(µ, θn) − Cn(S(µ, θn))
]

. (5.55)

Similarly, we say that a nonzero vector θ ∈ (R+)N is a Nash equilibrium if there holds

for all n:

θn ∈ arg max
θn≥0

Pn(θn; θ−n), (5.56)

where

Pn(θn; θ−n) =

{

pS(θ)S(pS(θ), θn) − Cn(S(pS(θ), θn)), if θ 6= 0;

−∞, if θ = 0.
(5.57)

Notice that the payoff is −∞ if the composite strategy vector is θ = 0, since in this case

no market-clearing price exists.

Our interest is in the worst-case ratio of aggregate cost at any Nash equilibrium

to the optimal value of SYSTEM(D, N,C). Formally, for S ∈ S(D, N) we define a

constant ρ(D, N, S) as follows:

ρ(D, N, S) = sup

{

∑N
n=1 Cn(S(pS(θ), θn))
∑N

n=1 Cn(sn)

∣

∣

∣

∣

C ∈ CN , s solves SYSTEM(D, N,C)

and θ is a Nash equilibrium

}

In this case we define ρ as a function of the demand level D, the number of firms

N , and the mechanism S. As previewed in the discussion above, this allows us to

compare different market mechanisms for fixed values of N , and hence explore the

relationship to the results of Chapter 4. Note that since all C ∈ C are strictly increasing

and nonnegative, and D > 0,
∑N

n=1 Cn(sn) is strictly positive for any cost system C

and any optimal solution s to SYSTEM(D, N,C). However, Nash equilibria may not

exist for some cost systems C; in this case we set ρ(D, N, S) = ∞.

The following theorem shows that among smooth market-clearing mechanisms for

which there always exists a fully efficient competitive equilibrium, the mechanism

proposed in Section 4.1 minimizes efficiency loss when users are price anticipating.

Theorem 5.9

Assume D > 0 and N > 1. Let S ∈ S(D, N) be a smooth market-clearing mechanism for D

and N such that for all cost systems C ∈ CN , there exists a competitive equilibrium θ such

that (S(pS(θ), θn), n = 1, . . . , N) solves SYSTEM(D, N,C). Then:

1. ρ(D, 2, S) = ∞.
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2. If N > 2, then there exists a concave, strictly increasing, differentiable, and invertible

function B : (0,∞) → (0,∞) such that for all p > 0 and θ ≥ 0:

S(p, θ) = D − θ

B(p)
.

3. For N > 2, ρ(D, N, S) ≥ 1 + 1/(N − 2), and this bound is met with equality if and

only if S(p, θ) = D − ∆θ/p for some ∆ > 0.

Proof. The proof proceeds as follows. We first use Condition 1 in Definition 5.5 to

show that any mechanism S ∈ S(D, N) must be of the form S(p, θ) = a(p)− b(p)θ; this

result is analogous to the start of the proof of Theorem 5.1. We then show that a(p) =

D, and b(p) > 0; thus S(p, θ) = D − b(p)θ. Finally, we explicitly determine conditions

that must be satisfied by B(p) = 1/b(p), and compute the worst case efficiency loss for

any mechanism satisfying these conditions.

We begin with the following lemma, which is an analogue of Lemma 5.2.

Lemma 5.10 Let S be a smooth market-clearing mechanism for D and N . Then S ∈ S(D, N)

if and only if the following three properties hold:

1. There exist functions a, b : (0,∞) → R such that for all p > 0 and θ ≥ 0, S(p, θ) =

a(p) − b(p)θ. Furthermore, a(p) ≤ D, and b(p) ≥ 0.

2. For all θ−n ∈ (R+)N−1, the functions −S(pS(θ), θn) and pS(θ)S(pS(θ), θn) are con-

cave in θn > 0 if θ−n = 0, and concave in θn ≥ 0 if θ−n 6= 0.

Proof. The proof is identical to the proof of Lemma 5.2; i.e., we consider a linear

cost function C(s) = αs, and then consider limits as α → 0 and α → ∞. The only

additional subtlety involves showing that a(p) ≤ D and b(p) ≥ 0. If a(p) > D, then

by choosing θ = 0 we have S(p, θ) > D, violating Condition 3 in Definition 5.5; thus

a(p) ≤ D. On the other hand, suppose that b(p) < 0 for some p. Then by choosing

θ large enough, we would have S(p, θ) > D, violating Condition 3 in Definition 5.5.

Thus b(p) ≥ 0. 2

We now show that if S ∈ S(D, N) satisfies the conditions of the theorem, then

a(p) = D. Suppose not; then a(p) < D. Choose a vector s such that
∑N

n=1 sn = D;

a(p) < s1 < D; sn > 0 for all n; and sn 6= sm for m 6= n. Next, choose a collection of

strictly convex, differentiable cost functions (C1, . . . , CN ) such that C ′
n(sn) = p. Then

it is straightforward to establish that the unique optimal solution to SYSTEM(D, N,C)

is the vector s.

Now let θ be a competitive equilibrium such that the resulting allocation solves

SYSTEM(D, N,C); then we must have S(pS(θ), θn) = sn for all n. Since sn 6= sm
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for n 6= m and N > 1, it follows that b(pS(θ)) > 0, and θn > 0 for at least one n.

Differentiating (5.55) with µ = pS(θ), we find that:

C ′
n(S(µ, θn)) · ∂S(µ, θn)

∂θn
= µ · ∂S(µ, θn)

∂θn
.

But note that ∂S(µ, θn)/∂θn = b(µ) > 0, so that the preceding relation reduces to:

C ′
n(sn) = C ′

n(S(µ, θn)) = µ = pS(θ),

from which we conclude that pS(θ) = p (since Cn is strictly convex). But now consider

firm 1: we have a(p) − b(p)θ1 = s1 ∈ (a(p), D). Since b(p) > 0, this is only possible if

θ1 < 0. But we have assumed the strategy space of each firm is restricted to [0,∞), so

this is a contradiction; thus we must have a(p) = D.

Thus any mechanism S ∈ S(D, N) satisfying the conditions of the theorem must

be of the form:

S(p, θ) = D − b(p)θ, p > 0, θ ≥ 0.

Observe that this immediately implies b(p) > 0 for all p > 0; otherwise, if b(p) =

0, we can argue as in the previous paragraph and construct a competitive equilib-

rium for which pS(θ) = p, which would imply S(pS(θ), θn) = D for all n. But then
∑N

n=1 S(pS(θ), θn) = ND > D (since N > 1), a contradiction to the assumption that

pS(θ) is a market-clearing price.

Since b(p) > 0, we let B(p) = 1/b(p); thus S(p, θ) = D − θ/B(p). For fixed N > 1

and nonzero θ ≥ 0, since
∑N

n=1 S(pS(θ), θn) = D, we have:

B(pS(θ)) =

∑N
n=1 θn

(N − 1)D
. (5.58)

Thus we find, for nonzero θ:

S(pS(θ), θn) = D −
(

θn
∑N

m=1 θm

)

(N − 1)D. (5.59)

In particular, observe that the preceding expression is convex in θn, for nonzero θ.

We now claim that B is invertible on (0,∞). To see this, note from (5.58) that B

is clearly onto, since the right hand side of (5.58) can take any value in (0,∞). Fur-

thermore, if B(p1) = B(p2) = γ for some prices p1, p2 > 0, then if we choose θ such

that
∑N

n=1 θn/((N − 1)D) = γ, we find that pS(θ) is not uniquely defined. Thus B is

one-to-one as well, and hence invertible. Finally, since S is differentiable, B must be

differentiable as well.

We let Φ denote the differentiable inverse of B. Observe from Condition 2 in

Lemma 5.10 that wn(θ) = pS(θ)S(pS(θ), θn), the revenue to firm n, must be concave in
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θn for nonzero θ. From (5.58) and (5.59), we have:

wn(θ) = Φ

(

∑N
m=1 θm

(N − 1)D

)(

D − θn
∑N

m=1 θm

(N − 1)D

)

. (5.60)

We will consider the cases N = 2 and N > 2 separately. Suppose first that N = 2.

In this case we have:

w1(θ1, θ2) = Φ

(

θ1 + θ2

D

)(

θ2D

θ1 + θ2

)

.

(A symmetric expression holds for w2(θ1, θ2).) Now observe that the preceding quan-

tity is nonnegative for every nonzero (θ1, θ2). Thus if θ2 > 0, then w1(θ1, θ2) is a con-

cave, nonnegative function of θ1 ≥ 0; this is only possible if ∂w1(θ1, θ2)/∂θ1 ≥ 0 for all

θ1 ≥ 0.

Now suppose that (C1, C2) ∈ C2 is a cost system, and that θ is a Nash equilibrium.

By our definition of Pn in (5.57), at least one of θ1 or θ2 must be nonzero; assume

without loss of generality that θ2 > 0. Now consider the payoff to firm 1. We have

already shown that w1(θ1, θ2) is nondecreasing in θ1. Furthermore, from (5.59), it is

straightforward to show that S(pS(θ), θ1) = θ2D/(θ1 + θ2). Thus, if θ2 > 0 then the

cost C1(S(pS(θ), θ1)) is strictly decreasing as θ1 increases (since C1 is assumed to be

strictly increasing). Thus the payoff to firm 1 is strictly improved by increasing θ1, and

θ could not have been a Nash equilibrium. We conclude no Nash equilibrium exists, so

that ρ(D, 2, S) = ∞. (Note that in fact, no Nash equilibrium exists for any cost system.)

This establishes the first claim of the theorem.

For the remainder of the proof, then, we assume that N > 2. In this case, we

will show that Φ is strictly increasing and convex. Since wn must be concave in θn, it

follows easily that Φ must be convex. If not, then by considering strategy vectors θ

where θ−n = 0 and θn = (N −1)Dµ, we can show that wn is not concave in θn (since in

this case we have wn(θ) = (2−N)DΦ(µ)). Consequently, it only remains to be shown

that Φ is strictly increasing. Since Φ is invertible, it must be strictly monotonic; and

thus Φ is either strictly increasing or strictly decreasing. We differentiate (5.60) with

respect to θn:

∂wn(θ)

∂θn
= Φ′

(

∑N
m=1 θm

(N − 1)D

)(

1

N − 1
− θn
∑N

m=1 θm

)

−

Φ

(

∑N
m=1 θm

(N − 1)D

)







∑

m6=n θm
(

∑N
m=1 θm

)2






(N − 1)D. (5.61)

Suppose that Φ is strictly decreasing; then Φ′ < 0. Choose θ such that θn/(
∑N

m=1 θm) =
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1/(N − 1), and consider infinitesimally increasing θn. The first term in (5.61) becomes

nonnegative (in particular, it does not decrease), while the second term strictly in-

creases. Thus wn could not be concave; we conclude that Φ must be strictly increasing.

We summarize these observations in the following lemma, which also establishes

the second claim of the theorem.

Lemma 5.11 Suppose N > 2. If a smooth market-clearing mechanism S ∈ S(D, N) satisfies

the conditions of the theorem, then there exists a concave, strictly increasing, and differentiable

function B : (0,∞) → (0,∞) such that S(p, θ) = D − θ/B(p) for all p > 0 and θ ≥ 0.

Furthermore, B is invertible, so that B(p) → 0 as p → 0 and B(p) → ∞ as p → ∞. Finally,

for nonzero θ ∈ (R+)N , there holds:

pS(θ) = Φ

(

∑N
n=1 θn

(N − 1)D

)

,

where Φ is the inverse of B.

Proof of Lemma. Since B has already been shown to be invertible, and Φ has been

shown to be strictly increasing and convex, it is clear that B is strictly increasing and

concave, with B(p) → 0 as p → 0, and B(p) → ∞ as p → ∞. 2

In contrast to the proof of Theorem 5.1 (and in particular Lemma 5.3), convexity

of Φ is not a sufficient condition for S to be a member of S(D, N); and furthermore,

Nash equilibria are not guaranteed to exist for all members of S(D, N) satisfying the

conditions of the theorem. Nevertheless, the following lemma gives necessary and

sufficient optimality conditions which characterize Nash equilibria.

Lemma 5.12 Let S ∈ S(D, N) satisfy the conditions of the theorem, and let Φ be the inverse

of B as given in Lemma 5.11. Let C be a cost system. A vector θ ≥ 0 is a Nash equilibrium if

and only if at least two components of θ are nonzero, and there exists a nonzero vector s ≥ 0

and a scalar µ > 0 such that θn = µ(D − sn) for all n,
∑N

n=1 sn = D, and the following

conditions hold:

(µΦ′(µ) − Φ(µ))

(

sn

(N − 2)D

)

+

(

1 +
sn

(N − 2)D

)

∂−Cn(sn)

∂sn
≤ Φ(µ), if 0 < sn ≤ D;

(5.62)

(µΦ′(µ) − Φ(µ))

(

sn

(N − 2)D

)

+

(

1 +
sn

(N − 2)D

)

∂+Cn(sn)

∂sn
≥ Φ(µ), if 0 ≤ sn < D.

(5.63)

In this case sn = S(pS(θ), θn), and Φ(µ) = pS(θ).
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Proof. First suppose that θ is a Nash equilibrium. From (5.57), the payoff to all

players is −∞ if θ = 0, so at least one component of θ is positive. Suppose then that

θ−n = 0 for some firm n, while θn > 0. Then using (5.59) and (5.60), the payoff to this

firm is:

Pn(θn; θ−n) = Φ

(

θn

(N − 1)D

)

(2 − N)D,

since S(pS(θ), θn) = (2 − N)D < 0 implies Cn(S(pS(θ), θn)) = 0, by our assumptions

on Cn ∈ C. But now observe that firm n can improve its payoff by infinitesimally

reducing θn; thus θ cannot be a Nash equilibrium. We conclude that at a Nash equilib-

rium, at least two components of θ must be positive.

Next, let µ =
∑N

m=1 θm/((N − 1)D) > 0, and sn = S(pS(θ), θn) = D − θn/µ (where

the last equality follows from (5.59)). Then observe that θn = µ(D−sn). We now show

that s ≥ 0; suppose, to the contrary, that sn < 0 for firm n. Then the payoff to firm

n is Pn(θn; θ−n) = Φ(µ)sn < 0, since Cn(sn) = 0. On the other hand, by choosing

θn = (
∑

m6=n θm)/(N − 2) > 0, it follows from (5.59) that S(pS(θn, θ−n), θn) = 0, and

thus Pn(θn; θ−n) = 0 > Pn(θn; θ−n), so that θ could not have been a Nash equilibrium.

We conclude that at a Nash equilibrium, the production of every firm is nonnegative,

i.e., s ≥ 0. Alternatively, this implies that 0 ≤ θn ≤ (
∑

m6=n θm)/(N − 2) for all n.

Finally, observe that when θ−n is nonzero, the payoff Pn(θn; θ−n) to firm n is di-

rectionally differentiable for θn ≥ 0; it is also concave, by Condition 2 in Definition 5.5.

Thus necessary and sufficient conditions for (5.56) to hold are:

∂+Pn(θn; θ−n)

∂θn
≤ 0, if 0 ≤ θn <

∑

m6=n θm

N − 2
; (5.64)

∂−Pn(θn; θ−n)

∂θn
≥ 0, if 0 < θn ≤

∑

m6=n θm

N − 2
. (5.65)

Note that using (5.59) and (5.60), we have:

Pn(θn; θ−n) = Φ

(

∑N
m=1 θm

(N − 1)D

)(

D −
(

θn
∑N

m=1 θm

)

(N − 1)D

)

− Cn

(

D −
(

θn
∑N

m=1 θm

)

(N − 1)D

)

.

Differentiating this expression and using the substitutions µ =
∑N

m=1 θm/((N − 1)D),

θn/(
∑N

m=1 θm) = (D − sn)/((N − 1)D), and sn = D − θn(N − 1)D/(
∑N

m=1 θm), (5.64)-

(5.65) become equivalent to (5.62)-(5.63).

On the other hand, suppose that we have found θ, s, and µ such that the conditions

of the lemma are satisfied. In this case we simply reverse the argument above; since

Pn(θn; θ−n) is concave in θn (Condition 2 in Definition 5.5), if at least two components
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of θ are nonzero then the conditions (5.64)-(5.65) are necessary and sufficient for θ to

be a Nash equilibrium. Furthermore, if s ≥ 0, µ > 0, θn = µsn, and
∑N

n=1 sn = D, then

it follows that µ =
∑N

n=1 θn/((N − 1)D), Φ(µ) = pS(θ), and sn = S(pS(θ), θn). Under

these identifications the conditions (5.64)-(5.65) become equivalent to (5.62)-(5.63), as

required. 2

We now turn our attention to computing ρ(D, N, S) for S ∈ S(D, N). Note that, if

there exist cost systems C for which no Nash equilibrium exists under S, then trivially

ρ(D, N, S) = ∞. For the remainder of the proof, we assume without loss of generality,

therefore, that Nash equilibria exist for any cost system C.

For µ > 0 we let Γ(µ) = µΦ′(µ) − Φ(µ). Since Φ is convex and strictly increasing

with Φ(µ) → 0 as µ → 0, we know Γ(µ) ≥ 0, and Γ(µ) is nondecreasing. Suppose that

Γ(µ) = 0 for all µ. In this case Φ(µ) = ∆µ for some ∆ > 0, and thus B(p) = p/∆. It

then follows from Theorem 4.3 in Chapter 4 that ρ(D, N, S) = 1 + 1/(N − 2). For the

remainder of the proof, therefore, we assume that Γ(µ) > 0 for some µ > 0.

We will need the following lemma.

Lemma 5.13 Fix S ∈ S(D, N), and let Φ be defined as in Lemma 5.11. Suppose there exists

t such that 0 ≤ t < D and for all µ > 0,

(

t

(N − 2)D

)

Γ(µ) > Φ(µ). (5.66)

Then ρ(D, N, S) = ∞.

Proof. Of course, (5.66) can only hold if t > 0, so we assume this for the remainder

of the proof. We define a cost system C as follows. Choose δ such that 0 < δ < 1.

Define C1(s1) according to:

C1(s1) =







0, if s1 ≤ 0;

δs1, if 0 ≤ s1 ≤ t;

s1 − t + δt, if s1 ≥ t.

Then note that C1 ∈ C. For n = 2, . . . , N and sn ≥ 0, let Cn(sn) = αsn, where α > 1;

and let Cn(sn) = 0 for sn ≤ 0. Thus Cn ∈ C as well. Furthermore, in this case the

optimal value of SYSTEM(D, N,C) is equal to D−t+δt (the entire demand is allocated

to firm 1).

Now suppose that θ is a Nash equilibrium, and let s and µ be defined as in Lemma

5.12. Suppose that s1 ≥ t. Since t > 0, it follows from (5.62) that:

(

t

(N − 2)D

)

Γ(µ) ≤
(

s1

(N − 2)D

)

Γ(µ) +

(

1 +
s1

(N − 2)D

)

∂−C1(s1)

∂s1
≤ Φ(µ),
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which contradicts (5.66). Thus 0 ≤ s1 < t. But in this case, notice the aggregate cost at

the Nash equilibrium is given by δs1 + α(D − s1) ≥ α(D − t). This inequality holds

independent of the value of α > 1; thus, we can choose a sequence of cost systems

C with α → ∞ such that the ratio of Nash equilibrium aggregate cost to the optimal

value of SYSTEM(D, N,C) is lower bounded by:

α(D − t)

D − t + δt
.

As α → ∞, this ratio approaches ∞, which establishes that ρ(D, N, S) = ∞. 2

In view of the previous lemma, we can restrict attention to mechanisms S ∈ S(D, N)

such that for all t with 0 ≤ t < D, there exists a scalar µt > 0 such that:

(

t

(N − 2)D

)

Γ(µt) ≤ Φ(µt).

If necessary, by replacing µt with µt+ε for sufficiently small ε > 0, we can make the

following stronger assumption without loss of generality:

(

t

(N − 2)D

)

Γ(µt) < Φ(µt). (5.67)

Let t0 be the smallest value of t < D such that t ≥ D/N and (D − t)2/t ≤ 1. For the

remainder of the proof, we restrict attention to t ∈ (t0, D). Observe that for any such t

we will have (D − t)2/t < 1.

We now define a sequence of cost systems Ct as follows. Given t such that t0 < t <

D, choose At > 0 such that:

(

t

(N − 2)D

)

Γ(µt) + At

(

1 +
t

(N − 2)D

)

= Φ(µt). (5.68)

Define δt = (D − t)2At/t < At, and let Ct
1(s1) be defined by:

Ct
1(s1) =







0, if s1 ≤ 0;

δts1, if 0 ≤ s1 ≤ t;

At(s1 − t) + δtt, if s1 ≥ t.

(5.69)

Since 0 < δt < At, we have Ct
1 ∈ C. Next, define αt as:

αt =

(

1 +
D − t

(N − 1)(N − 2)D

)−1(

Φ(µt) −
(

D − t

(N − 1)(N − 2)D

)

Γ(µt)

)

. (5.70)

Note that since we have assumed t > t0 ≥ D/N , we have (D− t)/((N −1)(N −2)D) <
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t/((N −2)D); thus applying (5.67) and (5.68), it follows that αt > At. For n = 2, . . . , N ,

define Ct
n(sn) as:

Ct
n(sn) =

{

0, if sn ≤ 0;

αtsn, if sn ≥ 0.
(5.71)

Since αt > At > 0, we have Ct
n ∈ C. We now observe that the optimal solution to

SYSTEM(D, N,Ct) is to allocate the entire demand to firm 1, which yields optimal

value δtt + At(D − t).

Let s1 = t, sn = (D − t)/(N − 1) for n = 2, . . . , N , and µ = µt. Then note that
∑N

n=1 sn = D, and 0 < sn < D for all n. In particular, if we define θn = µ(D − sn) for

all n, then s, θ, and µ will satisfy the conditions of Lemma 5.12 as long as (5.62)-(5.63)

are satisfied, in which case θ would be a Nash equilibrium.

We now proceed to check that (5.62)-(5.63) are satisfied. Note that ∂+Ct
1(s1)/∂s1 =

At, and ∂−Ct
1(s1)/∂s1 = δt. Thus (5.63) is satisfied with equality for firm 1 (by (5.68)),

while δt < At implies that (5.62) holds as well. For the remaining users, we have

∂Ct
n(sn)/∂sn = αt, and thus the definition of αt in (5.70) ensures that (5.62)-(5.63) hold

with equality. We conclude that θ is a Nash equilibrium, and sn = S(pS(θ), θn) is the

resulting allocation to firm n.

After substitution of (5.68) into (5.70), the ratio of Nash equilibrium aggregate cost
∑N

n=1 Ct
n(sn) to the optimal value of SYSTEM(D, N,Ct) is given by:

F (t) =

(

1

δtt + At(D − t)

)

·








δtt +

At

(

1 +
t

(N − 2)D

)

+ Γ(µt)

(

t

(N − 2)D
− D − t

(N − 1)(N − 2)D

)

1 +
D − t

(N − 1)(N − 2)D

(D − t)









.

If we now substitute for δt (recalling δt = (D − t)2At/t), and normalize by At(D − t),

we have:

F (t) =

(

1

D − t + 1

)

·








D − t +

(

1 +
t

(N − 2)D

)

+

(

Γ(µt)

At

)(

t

(N − 2)D
− D − t

(N − 1)(N − 2)D

)

1 +
D − t

(N − 1)(N − 2)D









. (5.72)

By taking subsequences if necessary, we assume without loss of generality that

we have a sequence tk → D such that the nonnegative sequences Γ(µtk), Atk , Φ(µtk),

Γ(µtk)/Atk , and Φ(µtk)/Atk all converge (possibly to ∞).

We will distinguish two cases. First suppose there exists µ > 0 such that Φ(µ) >
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Γ(µ). Since Φ(µ) is strictly increasing, Γ(µ) is nondecreasing, and Γ(µ) is not identically

zero, it can be verified that we can assume Γ(µ) > 0 without loss of generality. In this

case it follows from (5.67) we may let µt = µ for all t ∈ (t0, D). With this definition of

µt we can rewrite (5.68) as:

(

t

(N − 2)D

)(

Γ(µ)

At

)

+

(

1 +
t

(N − 2)D

)

=
Φ(µ)

At
.

Since tk → D as k → ∞, it follows from this expression that we must have A =

limk→∞ Atk < ∞, which implies:

lim
k→∞

F (tk) = 1 +
1

N − 2
+

(

1

N − 2

)(

Γ(µ)

A

)

> 1 +
1

N − 2
.

(Of course, if A = 0, then limk→∞ F (tk) = ∞.) This establishes that ρ(D, N, S) >

1+1/(N−2) in this case. Note this depends critically on the fact that Γ is not identically

zero; if Γ(µ) = 0 for all µ, then this bound holds with equality.

For the remainder of the proof, therefore, we assume that for all µ > 0, we have

Φ(µ) ≤ Γ(µ). Let ζ = limk→∞ Γ(µtk)/Atk . Rewrite (5.68) as:

(

t

(N − 2)D

)(

Γ(µt)

At

)

+

(

1 +
t

(N − 2)D

)

=
Φ(µt)

At
.

From the preceding expression, it follows that if ζ = 0, then Φ(µtk)/Atk → 1 + 1/(N −
2) > 0 as k → ∞ (since tk → D). But then we have:

lim
k→∞

Φ(µtk) − Γ(µtk)

Atk

= 1 +
1

N − 2
> 0,

so that for sufficiently large k we have Γ(µtk) < Φ(µtk)—a contradiction. Thus we

must have ζ > 0, in which case we have:

lim
k→∞

F (tk) = 1 +
1

N − 2
+

ζ

N − 2
> 1 +

1

N − 2
.

(Of course, if ζ = ∞, then limk→∞ F (tk) = ∞.) This bound establishes that ρ(D, N, S) >

1 + 1/(N − 2), as required.

To summarize: we have shown that if N > 2 and S(p, θ) = D − ∆θ/p for p > 0,

θ ≥ 0, then ρ(D, N, S) = 1 + 1/(N − 2) for N > 2. If N > 2, but there exists a t ∈ [0, D)

such that (5.66) holds, then ρ(D, N, S) = ∞. Finally, for all other S ∈ S(D, N) sat-

isfying the conditions of the theorem, there holds ρ(D, N, S) > 1 + 1/(N − 2). This

completes the proof of the third claim of the theorem. 2

The preceding proof leaves two important open questions. First, unlike Lemma 5.3,
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we do not explicitly characterize necessary and sufficient conditions for a mechanism

S ∈ S(D, N) to satisfy the conditions of the theorem. Furthermore, we do not establish

that Nash equilibria always exist for such mechanisms. In particular, in light of these

facts, it may be the case that no mechanisms in S(D, N) other than those of the form

S(p, θ) = D −∆θ/p satisfy the conditions of Theorem 5.9. We now demonstrate this is

not the case, via the following example.

Example 5.1

Fix N ≥ 2, and D > 0. Let S(p, θ) = D − θ/
√

p, for p > 0 and θ ≥ 0. Since S(p, θ) ≤ D,

Condition 3 in Definition 5.5 is trivially satisfied. Furthermore, Condition 1 in Defini-

tion 5.5 is trivially satisfied, since S(p, θ) is linear in θ ≥ 0 for fixed p > 0. Finally, given

a cost system C, let s be an optimal solution to SYSTEM(D, N,C), and let p > 0 be a La-

grange multiplier for the constraint (5.53). (Such a multiplier exists because the Slater

constraint qualification holds; see [13].) Define θ =
√

p(D − sn); then S(p, θ) = sn,

and it is straightforward to verify that θ is a competitive equilibrium, with pS(θ) = p.

Thus to check that S satisfies the conditions of Theorem 5.9, we only need to check

Condition 2 in Definition 5.5.

We use Lemma 5.10. It is easy to check that:

pS(θ) =

(

∑N
m=1 θm

(N − 1)D

)2

.

As in (5.59), this implies:

S(pS(θ), θn) = D −
(

θn
∑N

m=1 θm

)

(N − 1)D.

Thus S is convex in θn, for nonzero θ. It remains to be checked that the expression

wn(θ) = pS(θ)S(pS(θ), θn) is concave in θn for nonzero θ, where:

wn(θ) =

(

∑N
m=1 θm

(N − 1)D

)2(

D − θn
∑N

m=1 θm

(N − 1)D

)

=

(

∑N
m=1 θm

)2

(N − 1)2D
−

θn

(

∑N
m=1 θm

)

(N − 1)D
.

It suffices to compute the coefficient on θ2
n in the expansion of wn(θ); we have:

wn(θ) =
2 − N

(N − 1)2D
θ2
n + f(θ−n)θn + g(θ−n).

Here f and g are functions which depend only on the strategies of players other than

firm n. Since N ≥ 2, we conclude that wn is concave in θn, as required. Thus S ∈
S(D, N).
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We now show that if N > 2, then for any cost system C, there always exists a Nash

equilibrium under S. Fix a cost system C; we will search for θ, s, and µ which satisfy

the conditions of Lemma 5.12. In the notation of the proof of Theorem 5.9, we have

S(p, θ) = D − θ/B(p), where B(p) =
√

p; thus Φ(µ) = µ2, and µΦ′(µ)−Φ(µ) = Φ(µ) =

µ2. This allows us to rewrite the conditions (5.62)-(5.63) as follows:

(

1 − sn

(N − 2)D

)−1(

1 +
sn

(N − 2)D

)

∂−Cn(sn)

∂sn
≤ µ2, if 0 < sn ≤ D; (5.73)

(

1 − sn

(N − 2)D

)−1(

1 +
sn

(N − 2)D

)

∂+Cn(sn)

∂sn
≥ µ2, if 0 ≤ sn < D. (5.74)

If µ2 ≤ ∂+Cn(0)/∂sn, then let sn(µ) = 0; and if (1 − 1/(N − 2))−1(1 + 1/(N −
2))∂−Cn(D)/∂sn ≤ µ2, then let sn(µ) = D. For all other values of µ, (5.73)-(5.74)

have a unique solution sn(µ) ∈ (0, D). Furthermore, by arguing as in the proof of

Lemma 5.5, it is straightforward to check that sn(µ) is continuous and nondecreasing

in µ, with sn(µ) → D as µ → ∞, and sn(µ) → 0 as µ → 0. (This step uses the fact that

the left hand sides of (5.73)-(5.74) are strictly increasing in sn.) Thus there must exist

µ > 0 such that
∑

n sn(µ) = D. In this case the pair s = s(µ) ≥ 0 and µ > 0 satisfy

(5.12)-(5.13); and since N > 2 and s ≥ 0, at least two components of s must be strictly

lower than D. Thus if we define θn = µ(D− sn), then the triple θ, s, and µ > 0 satisfies

the conditions of Lemma 5.4, and hence θ is a Nash equilibrium, as required. 2

As in Section 5.1, a potentially undesirable feature of the mechanisms considered

is that the payoff to firm n is defined as −∞ when the composite strategy vector is

θ = 0 (cf. (5.6)). We can restrict attention instead to mechanisms where S(p, θ) = D

if θ = 0, for all p ≥ 0; in this case we can define pS(θ) = 0 if θ = 0. From Lemma

5.11, if p > 0 and θn = 0, then the payoff to firm n is D − Cn(D); for the present

discussion, then, we redefine the payoff to firm n to be D − Cn(D) if θn = 0, regardless

of the strategy θ−n of the other firms. This condition amounts to a “normalization”

on the market-clearing mechanism. Furthermore, this modification now captures the

mechanism of Chapter 4, where Qr(0;w−n) = D − Cn(D) for all w−n ≥ 0 (see (4.5),

(4.6), and (4.16)). It is straightforward to check that this modification does not alter

the conclusion of Theorem 5.9, since the class of mechanisms in D(C) satisfying the

conditions of Theorem 5.9 can be extended to ensure S(p, θ) = D if θ = 0.

For the mechanism discussed in Section 4.1, given by S(p, θ) = D − θ/p, another

undesirable property is that S(p, θ) may be negative for some values of p and θ. This

raises the following question: does there exist any mechanism S ∈ S(D, N) satisfying

the conditions of Theorem 5.9, such that S(p, θ) ≥ 0 for all p > 0 and θ ≥ 0? The

answer is no, from Lemma 5.11: we know that any such mechanism must have the

form S(p, θ) = D − θ/B(p), where B(p) > 0. Thus if we wish to design mechanisms

where S(p, θ) is guaranteed to be nonnegative, we must relax either the definition of
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S(D, N), or the assumptions in Theorem 5.1.

We conclude with a brief discussion of Condition 1 in Definition 5.5, the require-

ment that firms’ payoffs be concave when they are price taking. The same objections to

this assumption arise as in our discussion following Definition 5.5. However, by con-

trast to our analysis in Section 5.1.2, and in particular our definition of D̂ in that section,

we cannot remove Condition 1 in Definition 5.5 by focusing instead on mechanisms

which are well defined for all values of the inelastic demand D. The formal reason for

this is simple: all the mechanisms in S(D, N) which satisfy the conditions of Theorem

5.9 explicitly depend on D, as shown in Lemma 5.11. Thus there remains an interest-

ing open question: does the mechanism studied in Section 4.1 minimize efficiency loss

among all smooth market-clearing mechanisms which satisfy only Conditions 2 and

3 of Definition 5.5 and the assumptions of Theorem 5.1? Part of the challenge in this

problem lies in the fact that Lemma 5.10 no longer holds, and thus we do not have a

simple characterization available of all such smooth market-clearing mechanisms.

� 5.3 Chapter Summary

The results of this chapter characterize the mechanisms studied in Chapters 2 and 4

as those which uniquely satisfy certain desirable properties. These results are closely

related in spirit to the classical literature on mechanism design in economics; we have

framed and solved an axiomatic problem of developing efficient mechanisms given

certain constraints (the most important being that the strategy spaces of the market

participants should be one-dimensional). This relationship warrants further inspec-

tion, and in the following chapter we will situate our work in a broader mechanism

design setting, and discuss related open questions.





C H A P T E R 6

Conclusion

T he central motif of this thesis is the investigation of efficiency loss in simple,

market-clearing mechanisms for resource allocation, particularly for application

in large scale systems. We concentrate on simple strategy spaces and single price

mechanisms, in the belief that this simplicity yields scalability and robustness for dis-

tributed systems; on the other hand, we hope to ensure that even if market partici-

pants try to manipulate the market in their own self interest, efficiency losses will be

bounded. This thesis represents one corner of a problem which requires a multifaceted

approach; and in this chapter, we briefly discuss some key open issues on which fur-

ther study is necessary: the modeling of two-sided markets (Section 6.1); dynamics

(Section 6.2); and the relationship between classical mechanism design and modern

distributed systems (Section 6.3). We conclude with final thoughts in Section 6.4.

� 6.1 Two-Sided Markets

Throughout the thesis, we have concentrated only on competition occurring on one

side of a market—either between consumers, or between producers. Of course, in

practical large scale systems, competition typically occurs on both sides of the mar-

ket simultaneously. Thus, for example, consumers may be competing for network

resources, but in addition Internet service providers compete with each other to cap-

ture market share; and while generators compete to supply electricity, large buyers

also compete to acquire electricity at the lowest price. If we view the architecture and

infrastructure of large scale systems as guiding the interaction between market partic-

ipants, then from an engineering perspective we must be sensitive to this competition

between both buyers and sellers.

As a starting point, in our results we have ascribed higher precedence to one side of

the market. In considering communication networks, the diversity and dispersion of

network users suggests the approach of treating the problem of network resource allo-

cation among users while taking the service provider’s pricing strategy as fixed. Sim-

ilarly, in considering electricity networks, the short run price inelasticity of demand

suggests the approach of keeping demand fixed, while considering the competition
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among suppliers. An interesting open direction then concerns introducing into these

models competition between both sides of the market, and investigating the resulting

efficiency properties of the system as a whole.

� 6.2 Dynamics

This entire thesis considers only a static theory of equilibrium: either competitive equi-

librium (when market participants are price taking), or Nash equilibrium (when mar-

ket participants are price anticipating). These static equilibrium concepts only guar-

antee that if all market participants behave as prescribed by the equilibrium, then no

player will have an incentive to deviate. This raises an obvious and critical question:

how do market participants reach an equilibrium in the first place?

An answer to the previous question must, by definition, involve a dynamic model

of market behavior. We have deliberately chosen the simpler route of considering

static models in this thesis; but again, this only provides a starting point for a more

substantive investigation of dynamic issues in network resource allocation problems.

In this section we outline briefly some possible means for investigation of dynamics of

the market mechanisms in this thesis.

Perhaps the simplest means of approaching dynamics is through the natural model

of a price-adjustment process which matches supply and demand. We consider this ap-

proach here in the context of a single resource in inelastic supply, shared by multi-

ple users (see Section 2.1). As shown in Theorem 2.2, at a Nash equilibrium it is as

if market participants have achieved a competitive equilibrium, but with respect to

“modified” utility functions. Once we make the connection between the Nash equi-

libria of a game where players are price anticipating and competitive equilibria of a

related economic system, we can apply the well known dynamics of the Walrasian

tâtonnement process [82, 137] to study the convergence of prices to a point where aggre-

gate supply matches aggregate demand. (Indeed, these dynamics serve as inspiration

for the dynamic models of Kelly et al. [65]; see also [127], as well as the introduction

to Chapter 3, for further discussion and references.) Such dynamics immediately yield

convergence to the Nash equilibrium for the simple setting of Section 2.1; and a similar

investigation can be carried out for the more sophisticated models of this thesis.

However, the basic dynamics of the price-adjustment process are problematic, be-

cause they posit a very specific response on the part of market participants: prices

move up if aggregate demand exceeds aggregate supply, and down otherwise; and

the response of market participants is captured only through an immediate change in

aggregate demand or supply in response to changes in price. However, in realistic

scenarios it is unclear whether all players would react in the exact manner presup-

posed by the tâtonnement dynamics; for example, some players may react on faster

timescales than others. Furthermore, players may not even be myopic in their re-
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sponse to the network state, and may use information from past interactions with the

network to guide future behavior.

All these observations suggest that an applicable dynamic theory must allow for

some degree of sophistication in the response of the players. Some modeling tech-

niques include repeated games [43, 85], dynamic games [43], and learning in games

[40, 42]. Incorporating elements of these approaches into the models considered here

is appealing; however, dynamics in games are generally quite difficult to analyze, and

for this reason an understanding of the dynamics of the market mechanisms presented

here may be best achieved through experimental distributed game environments [67].

Indeed, one attraction of such experiments is that they investigate both the dynam-

ics of users’ behavior, as well as their interaction with network software, or protocols.

The protocol stack controls the feedback to the users, as well as the strategies avail-

able to them; and thus limiting the users’ actions through the protocol stack offers one

possibility for mitigating the sophistication of users’ responses.

The preceding discussion highlights the importance of information in models for

games in large scale distributed systems. In order to adequately address the dynamic

interaction of market participants, we must first understand the information available

to them in making decisions. This information then guides both the responses of mar-

ket participants, as well as the notion of equilibrium we choose. For this reason, we

turn next to a discussion of the relationship between distributed systems, the models

of this thesis, and the classical theory of mechanism design.

� 6.3 Mechanism Design and Distributed Systems

In this section we will briefly discuss the connection of our work to the theory of mech-

anism design, and also frame some open questions regarding mechanism design for

distributed systems. Mechanism design is a subfield of economics that seeks the de-

sign of games to achieve a prespecified outcome; typically, the theory is applied to

achieve an efficient outcome in environments with multiple competing players. For

an introductory survey of mechanism design, see Chapter 23 of [82].

In a resource allocation setting, mechanism design is concerned with the same ba-

sic problem we have treated in this thesis: how can resources be allocated efficiently

among competing interests, even if players act in their own self interest? For simplic-

ity, we consider here the basic framework of Section 2.1: multiple users compete for a

scarce resource in inelastic supply with capacity C. Each user has a utility function de-

scribing his monetary value for the allocation that user receives; the goal is to allocate

the scarce resource efficiently, i.e., to maximize aggregate utility.

We have considered the Nash equilibrium solution concept, which in full generality

implies that users have complete information about their environment, including the

utility functions of all other users. This is contrasted with implementation in Bayesian
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equilibrium, where users have some knowledge about other users, only through a prob-

ability distribution over the possible utility functions other users may have; a Bayesian

equilibrium (or Bayes-Nash equilibrium) is then one where each user has chosen a

strategy so as to maximize his expected payoff. Finally, in a dominant strategy equilib-

rium, users have no information about the utility functions of other users, and must

choose strategies which maximize their payoffs independent of the choices of other

players. Of course the dominant strategy implementation concept is the strongest con-

cept, and dominant strategy equilibria are the least likely to exist.

These solution concepts have been extensively explored in the literature on mecha-

nism design; we briefly survey some of the key contributions here. The seminal result

of the field is the celebrated Vickrey-Clarke-Groves (VCG) mechanism [20, 50, 139],

shown in quasilinear environments to be essentially the only mechanism which maxi-

mizes aggregate utility under the dominant strategy solution concept [46]. By contrast,

there exist a plethora of such mechanisms when we expand to Bayesian implementa-

tion [27, 28, 4], and an interesting question concerns design of such mechanisms which

maximize revenue to the resource seller [88]. However, implementation in Bayesian

equilibrium (as well as Nash equilibrium) suffers from an unfortunate side effect: typ-

ically, there exist multiple equilibria [98], and only some of these may have desirable

efficiency properties. (By contrast, under simple conditions the efficient outcome is the

only dominant strategy equilibrium of the VCG mechanism [26, 75].) Finally, Moore

has written a survey of implementation in Nash equilibrium [87]; the central result

in this area is in the paper of Maskin [83], where conditions are given under which

mechanisms can be designed that yield Pareto efficient Nash equilibria.

This literature almost exclusively focuses on the problem of finding fully efficient

equilibria. The tradeoff for achieving full efficiency is typically a great increase in

mechanism complexity. As an example, we outline the operation of the VCG mech-

anism. In such a mechanism, the strategy of a user is a “declared” utility function,

which may or may not be the true utility function of that user. The VCG mechanism

chooses an allocation which maximizes the aggregate declared utility of the users. The

payment made by each user r is then the difference between the maximum possible

aggregate utility of all other users if user r were not present, and the aggregate util-

ity of all other users given that user r is present. (This payment rule is the “pivotal”

rule [20].) Under these conditions, users have the incentive to declare their own utility

function truthfully, independent of the strategy of other players [46].

The VCG mechanism is attractive because the notion of dominant strategy imple-

mentation implies users have the incentive to truthfully reveal preferences, without

any knowledge of other users; this is a desirable feature in large networks, where

users gain limited information about other users of the network. Notice, however, that

the VCG mechanism has two undesirable features from the perspective of a large scale

distributed system. First, the mechanism requires users to submit their entire util-
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ity function, a potentially high dimensional object. Second, the mechanism requires

R + 1 centralized computations of maximal aggregate utility (where R is the number of

users). In general, it is difficult to design a computationally decentralized scheme, with

low communications overhead, which can implement the VCG mechanism. Lazar and

Semret [76, 116] have proposed a reduced dimension equivalent of the VCG mecha-

nism for network resource allocation, and show that there exists a nearly fully efficient

Nash equilibrium. However, their analysis does not rule out the possibility of other,

potentially inefficient equilibria.

For this reason, we have chosen instead to focus instead on simple market-clearing

mechanisms, and the design of such mechanisms to minimize efficiency loss (rather

than guarantee full efficiency). The mechanisms we study have one-dimensional strat-

egy spaces, and require only price feedback from the market. In particular, although

we have considered Nash equilibria, in our model users need to know only the capac-

ity C, their own strategy, and the current price to determine if they have made a payoff

maximizing choice. Thus the mechanism of Section 2.1 appears to be better suited to a

large scale architecture than the VCG mechanism.

We note, however, one caveat to the conclusion that our mechanism is “simple.”

The main objection is our use of Nash equilibrium as the solution concept, which re-

quires “complete knowledge” of the utility functions. To help illustrate this point,

consider the possibility of applying the Bayesian equilibrium concept instead. In this

case the strategy of a player is a mapping from his realized utility function to a choice

of bid. Thus, for a player to maximize expected payoff, he must choose a bid which

is optimal (in expectation) relative to any possible bids that will be made by other

players, given their choice of strategy. In particular, this means that at a Bayesian

equilibrium, a player must choose a single bid which is an optimal response in an ex-

pectation taken over multiple possible prices. By contrast, because we adopt the Nash

equilibrium solution concept in Section 2.1, a user’s decision can be reduced to requir-

ing knowledge only of the bids of other players, as well as the capacity. To summarize,

the model of Section 2.1 does indeed yield the result that users only need knowledge

of the capacity, the price, and their own strategy to determine whether they have made

a payoff maximizing decision. However, this reduction in necessary information may

also be interpreted as a consequence of the choice of the Nash equilibrium solution con-

cept. (Indeed, a more complete resolution of this information issue requires a detailed

understanding of a dynamic model for information acquisition and action by market

participants.)

The field of mechanism design in distributed environments is only in its infancy,

and the results of this thesis suggest the possibility of traditional market-clearing mech-

anisms as a solution. An alternate possibility is the adaptation of VCG and related

mechanisms for use in distributed environments. This class of problems, broadly

known as distributed mechanism design, has attracted attention in recent years, particu-
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larly in the computer science community; see, e.g., [39] for an overview.

We conclude our discussion of mechanism design with a note regarding power

systems. While power systems are also large scale, distributed systems, they differ

significantly from communication networks in that markets for electricity are run cen-

trally at nodes throughout the power grid. As discussed in Chapter 4, these markets

use supply function bidding, i.e., producers submit supply functions describing their

willingness to produce electricity as a function of price. A market-clearing price is

then chosen so supply equals demand.

Because these markets are run at central clearinghouses, a natural solution would

be to implement exactly the VCG mechanism; indeed, one appealing feature of the

VCG mechanism in this respect is that it is not affected by nonconvexity in the cost

structure of producing firms. Hobbs et al. have presented an argument against the use

of the VCG mechanism in electricity markets [56]; however, we believe that deeper

investigation of the structure of the electricity market itself is necessary, to determine

whether the goal of efficient allocation can be achieved using existing tools of mecha-

nism design. By contrast, our approach in Chapter 4 is that the supply function bid-

ding structure is a consequence of social and political realities which make single price,

market-clearing mechanisms attractive, justifying our investigation of efficient market-

clearing mechanisms (see also [147]).

� 6.4 Future Directions

Any attempt to design efficient resource allocation mechanisms for large scale systems

must answer at least the following questions:

1. What constitutes an efficient allocation?

2. What information is available to the market participants?

3. What constraints on mechanism complexity (regarding both computation and

communication) are imposed by the system?

We have defined efficiency in terms of Pareto efficiency; we have assumed that market

participants receive information from the mechanism in the form of a single market-

clearing price, as well as an allocation of resources; and finally, we meet the require-

ments of simplicity of communication and computation through one-dimensional strat-

egy spaces and a market-clearing process. However, as the discussion of this chapter

has highlighted, these are all choices open to debate. Indeed, it is our hope that the

results of this thesis serve as a springboard to further answers to the three questions

posed above. In particular, we view the long term goal of such an agenda to be a more

comprehensive view of the interaction between information, computation, and com-

munication in large scale systems, and the impact of these components on mechanism

design.
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