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Abstract

The contribution of this thesis is to provide a tractable framework for supply chains and
revenue management problems subject to uncertainty that gives insight into the structure of
the optimal policy and requires little knowledge of the underlying probability distributions.
Instead, we build upon recent advances in the field of robust optimization to develop models
of uncertainty that make few probabilistic assumptions and have an adjustable level of
conservatism to ensure performance.

Specifically, we consider two classes of robust optimization approaches. First, we model
the random variables as uncertain parameters belonging to a polyhedral uncertainty set,
and optimize the system against the worst-case value of the uncertainty in the set. The
polyhedron is affected by budgets of uncertainty, which reflect a trade-off between robustness
and optimality. We apply this framework to supply chain management, show that the robust
problem is equivalent to a deterministic problem with modified parameters, and derive the
main properties of the optimal policy.

We also explore a second approach, which builds directly on the historical realizations
of uncertainty, without requiring any estimation. In that model, a fraction of the best cases
are removed to ensure robustness, and the system is optimized over the sample average
of the remaining data. This leads to tractable mathematical programming problems. We
apply this framework to revenue management problems, and show that in many cases, the
optimal policy simply involves an appropriate ranking of the historical data.

Robust optimization emerges as a promising methodology to address a wide range of
management problems subject to uncertainty, in particular in a dynamic setting, as it leads
to representations of randomness that make few assumptions on the underlying probabilities,
remain numerically tractable, incorporate the decision-maker’s risk aversion, and provides
theoretical insights into the structure of the optimal policy.

Thesis Supervisor: Dimitris J. Bertsimas
Title: Boeing Professor of Operations Research
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Chapter 1

Introduction

1.1 Background

Researchers have traditionally addressed the problem of optimally controlling stochastic

systems by taking a probabilistic view of randomness, where the uncertain variables are

assumed to obey known probability distributions and the goal is to minimize the expected

cost. However, accurate probabilities are hard to obtain in practice, in particular for dis-

tributions varying over time, and even small specification errors might make the resulting

policy very suboptimal. In a dynamic setting, this approach also suffers from tractability

issues, as the size of the problem increases exponentially with the time horizon considered.

This is known as “the curse of dimensionality” in dynamic programming. As a result,

the optimal stochastic policy might be numerically intractable, and even when available, it

might be of limited practical relevance if it was computed with the wrong distribution. In

applications, this translates into significant revenue opportunities that are lost when com-

panies misjudge demand for their product or are unable to solve the complex mathematical

formulations that best represent their problem. Therefore, the following question emerges

as a critical issue in the optimization of stochastic systems:

Can we develop a model of uncertainty that incorporates randomness in a tractable

manner, makes few assumptions on the underlying probability distributions, gives theoret-

ical insights into the structure of the optimal policy, and performs well in computational

experiments?

17



The purpose of this thesis is to present such an approach, based on robust optimization.

The focus of robust optimization is to protect the system against the worst-case value of the

uncertainty in a prespecified set. It was originally developed by Ben-Tal and Nemirovski

[4, 5, 6] and independently by El Ghaoui et al. [34, 35] to address the imperfect knowl-

edge of parameters in mathematical programming problems with an ellipsoidal uncertainty

structure, but can also be applied to uncertain probabilities in Markov decision problems

as Nilim and El Ghaoui showed in [50]. Other robust techniques have been implemented

to model trade-offs between performance and risk from a theoretical viewpoint as well as

a practical one, using polyhedral uncertainty sets or risk measures (see for instance Bertsi-

mas and Sim [15, 16], Bertsimas et al. [12, 17], Pachamanova [51]). In particular, appealing

features of the framework described by Bertsimas and Sim in [15] and Bertsimas et. al.

in [12] are that (a) such problems can be solved efficiently; and (b) their optimal solutions

are not overly conservative. This motivates investigating further the applicability of robust

optimization to the problem of optimally controlling systems subject to randomness. We

use this technique in two broad classes of applications:

1. Supply chain management: The decision-maker wants to minimize the cost asso-

ciated with operating a supply chain over time, but is faced with uncertain demand.

Each station in the supply chain can only send goods it currently has in inventory to

its successor. The decision-maker has a limited amount of information on the demands

at his disposal. What should his optimal strategy be?

2. Revenue management: A newsvendor’s goal is to maximize his revenue by selling

perishable products. Uncertainty here can affect the demand for the items on the

primary or secondary markets, or the number of goods ordered that are in good

enough condition to be sold. Alternatively, an airline would like to allocate seats to

customer classes or determine admission policies so that as many planes as possible

are filled close to capacity, without denying requests by high-paying customers. What

is the optimal policy?

1.2 Thesis Overview and Contributions

The main contribution of this thesis is to provide a tractable and insightful framework for

stochastic systems that requires little knowledge of the underlying probability distributions,

18



in the context of managerial problems with imperfect information. From a theoretical

perspective, we develop a robust optimization approach with two main components, each

adapted to a specific problem structure. The first one builds on uncertainty sets and the

second one is data-driven. They yield numerically tractable formulations as well as key

insights into the optimal policies. From a practical perspective, we apply these techniques

to supply chains and revenue management, where we derive robust replenishment strategies

for a wide range of inventory problems and robust seat allocations as well as admission

policies to maximize airline revenue.

We conclude this introduction by giving a brief overview of each chapter and its specific

contributions.

Robust Optimization with Uncertainty Sets

In this first robust optimization framework, we adopt a deterministic view of randomness,

in the sense that we model random variables by uncertain parameters in (polyhedral) un-

certainty sets and protect the system against the worst-case value in that set. We do not

assume any specific distribution. This is a representation of stochasticity that, to the best

of our knowledge, has not been considered before. To avoid overconservatism, rare events

are excluded from the uncertainty sets through the use of budgets of uncertainty, which

rule out large deviations. We study the implications of such a model for static and dynamic

problems with convex cost functions, analyze the optimal policies, describe how to select

the budgets of uncertainty and discuss some limitations of the approach. A key result is

that the robust counterparts of convex problems remain convex problems, and hence are

tractable.

Data-Driven Robust Optimization

We develop the second robust optimization framework to address some of the limitations of

the approach with uncertainty sets. We consider the sample of available realizations, trim

the best cases, and optimize the system over the remaining observations. This approach is

related to risk aversion and avoids altogether the estimation of the underlying stochastic

process. As in the first approach, it remains numerically tractable and provides insight

into the structure of the optimal policy. For linear programming problems, we use duality

arguments to show that the optimal solution corresponds to ranking quantities related to
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the observations in an appropriate manner.

Robustness with Uncertainty Sets and Data Samples: A Comparison

We compare the two robust optimization approaches, highlight their specific features, and

summarize the problem structures where each is most appropriate. We then focus on

linear programming problems, where both techniques are easily implemented, to give some

deeper insight into the differences and connections between the methods. The purpose of

this chapter is to provide a unifying framework to the robust optimization approach for

management problems, with the methods presented so far emerging as two complementary

sets of tools adapted to different situations but serving the same overarching goal.

Application to Supply Chains

We consider the problem of finding the optimal ordering strategies for supply chains subject

to uncertain demand over a finite horizon. We assume linear dynamics, i.e., unmet demand

is backlogged, a linear ordering cost with possibly an additional fee (fixed cost) incurred

whenever an order is made, and piecewise linear holding/shortage costs. We show that the

robust counterpart is a linear programming problem in situations with no fixed costs and is a

mixed integer programming problem in situations with fixed costs. In particular, the class

of the robust problem does not change as the network topology increases in complexity.

Furthermore, the robust problem is equivalent to a deterministic problem with modified

demands, and is qualitatively similar to the optimal stochastic policy obtained by dynamic

programming when theoretical properties of the stochastic policy are known. We also obtain

insights in situations where the optimal stochastic policy is not known, using Lagrangian

duality arguments. Therefore, the robust optimization approach provides us with a better

understanding of the way uncertainty affects the optimal policy.

Application to Revenue Management

We study two classes of revenue management problems: (a) the classical newsvendor prob-

lem and its extensions; and (b) seat allocation and admission policies for airlines. These

problems can be formulated as linear programming problems, and their robust counterparts

remain of the same class. The use of complementarity slackness allows us to derive the main

properties of the optimal solution. We show that in many cases, the optimal policy can be
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characterized by the ranking of appropriate parameters related to the observations. The

robust policy is also more intuitive than policies computed assuming only that the first two

moments are known (in the newsvendor problem) and gives a more accurate representation

of the real-world setting than the deterministic models commonly used as heuristics for

tractability purposes (in airline revenue management). It also easily incorporates corre-

lated demand, which is frequently encountered in practice but is not taken into account in

traditional optimization models.

1.3 Thesis Structure

This thesis is structured as follows: in Chapters 2 and 3, we develop and analyze the theory

of robust optimization applied to stochastic systems, first relying on a deterministic descrip-

tion of randomness based on uncertainty sets (Chapter 2), then building directly on the

sample of available data (Chapter 3). We show that both frameworks yield tractable math-

ematical programming problems and study the corresponding optimal policies. In Chapter

4, we investigate further the connections and differences between the two approaches and

describe the problem and uncertainty structures where each is most appropriate. In Chap-

ters 5 and 6, we apply the robust optimization techniques to management problems. In

Chapter 5, we consider supply chain management, to which the methodology developed in

Chapter 2 is well suited. Chapter 6 focuses on revenue management, which is best addressed

using the model presented in Chapter 3. Finally, in Chapter 7 we conclude the thesis with

a summary of the results and suggest some future research directions.
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Chapter 2

Robust Optimization with

Uncertainty Sets

2.1 Background and Contributions

The traditional approach to stochastic optimization builds upon a probabilistic description

of randomness, where the random variables are characterized by their probability distribu-

tions, which are assumed perfectly known, and minimizes the expected cost incurred. When

the system evolves over time, the optimal policy is found by solving backwards recursive

equations in the expected “cost-to-go”. This method, known as dynamic programming, is

described extensively by Bertsekas in [8] and [9], and has enjoyed much theoretical success

over the years. However, it suffers from two major disadvantages: it assumes full knowledge

of the underlying distributions, and the computational requirements increase exponentially

with the size of the problem, which is commonly referred to as “the curse of dimensionality”.

Researchers have long recognized that probability distributions are not always available

in practice. For instance, in what may well have been the first attempt at implementing

a robust optimization approach in the field, Scarf developed in 1958 a min-max approach

to the classical newsvendor problem, assuming only that the mean and the variance of the

demand were known [57]. His approach optimized the worst-case revenue over the class of

probabilities with given mean and variance. Later, Gallego and his co-authors extended his

results to static and dynamic problems in inventory and revenue management [36, 47, 48],

without breaking the curse of dimensionality. In the 1960s and 1970s, min-max approaches
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began generating interest in a widely different research context, since they were used to

optimally control dynamic systems subject to unknown-but-bounded disturbances. This

set-membership description of uncertainty was pioneered by Witsenhausen [71, 72] in the

late 1960s and Bertsekas [7, 10] in the early 1970s for common problems in control theory.

For instance, Bertsekas used set membership in [10] to address the target set reachability

problem, where one seeks to keep the state of the system close to a desired trajectory, i.e. in

a target set, despite the effect of (unknown but bounded) perturbations. Much around the

same time, Soyster applied in 1973 a similar technique to mathematical programming under

uncertainty [62], where he guaranteed the feasibility of each constraint for any value of the

parameters in a given uncertainty set. Specifically, his focus was on linear programming

problems subject to column-wide uncertainty:

max c′x

s.t.
n∑

j=1

Aj xj ≤ b, ∀Aj ∈ Kj , ∀j,

x ≥ 0,

(2.1)

with each column Aj belonging to a convex set Kj . Soyster showed that this problem was

equivalent to another linear programming problem:

max c′x

s.t.
n∑

j=1

Ãj xj ≤ b,

x ≥ 0,

(2.2)

where Ãij = supAj∈Kj
Aij for all i and j. Unsurprisingly, this problem yields very con-

servative solutions, as it protects each constraint against its worst case. This issue of

conservativeness prevented for many years the adoption of min-max approaches as a viable

alternative to probabilistic descriptions of uncertainty.

Interest in such a framework was revived in the 1990s when Ben-Tal and Nemirovski

developed robust optimization techniques to address parameter uncertainty in convex pro-

gramming with ellipsoidal uncertainty sets [4, 5, 6]. Similar results were derived indepen-

dently by El Ghaoui et al. [34, 35] using ideas from the field of robust control. The key idea

was that the size of the ellipsoid can be chosen to guarantee feasibility with high probabil-
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ity (rather than with probability 1), and preserve an acceptable level of performance. In

particular, if the uncertainty set is described by:

E = {a = a + Γ1/2 z, ‖z‖2 ≤ θ}, (2.3)

with a the mean and Γ the covariance matrix of the uncertain parameters, the size of the

ellipsoid is controlled by the parameter θ, and increases as θ increases.

However, although this approach leads to robust counterparts that are tractable either

exactly or approximately, it also increases the complexity of the problem considered. In

particular, when applied to the linear programming problem (LP):

min c′x

s.t. a′i x ≤ bi, ∀i,
(2.4)

where ai belongs to the ellipsoid Ei = {ai = ai + Γ1/2
i z, ‖z‖2 ≤ θi} for each i, it yields the

second-order cone problem (SOCP):

min c′x

s.t. a′i x + θi‖Γ1/2
i x‖2 ≤ bi, ∀i.

(2.5)

While many LPs can be interpreted quite easily, SOCPs might not provide such insights. At

the very least, this increase in complexity will change the nature of the underlying manage-

ment problem. For instance, in a production planning problem, producing xj units of item

j will use resource i at a set rate of aij per unit in the nominal case, but at a variable rate

depending on x (e.g., aij + θi σij/‖Γ1/2
i x‖2 if the uncertain parameters are independent) in

the robust problem.

In contrast, Bertsimas and Sim propose in [15] an approach based on polyhedral uncer-

tainty sets that yields linear robust counterparts of linear programming problems. They

also quantify explicitly the relationship between the level of conservativeness of the solution

and the probability of constraint violation, for which they coin the term “price of robust-

ness”. Specifically, they model each aij as an uncertain parameter obeying a symmetric

distribution and taking values in the interval [aij − âij , aij + âij ], with aij the mean of the

distribution and âij the half-length of its support. They further bound the total scaled
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deviation of the parameters in constraint i from their nominal value:
∑n

j=1
|aij − aij |

âij
≤ Γi,

where Γi is called the budget of uncertainty for constraint i. This can be interpreted as

requiring that at most Γi of the uncertain coefficients in constraint i take their worst-case

value at the same time. If Γi = 0, one simply solves the nominal problem. Equivalently,

this uncertainty set can be written in terms of scaled deviations:

Ai = {aij = aij + âij zij , |zij | ≤ 1, ∀j,
∑

j

|zij | ≤ Γi}, ∀i, (2.6)

where zij is the scaled deviation of aij from its nominal value aij . It appears that the choice

of ellipsoidal or polyhedral uncertainty sets is, in essence, a choice of norms: the L2-norm

for ellipsoids and the L1-norm for polyhedra. The link between norms and uncertainty sets

has been studied by Bertsimas and his co-authors in [17].

Bertsimas and Sim show that, in the framework described by (2.6), the robust counter-

part of the linear programming problem subject to parameter uncertainty:

min c′x

s.t. a′i x ≤ bi, ∀ai ∈ Ai, ∀i,
(2.7)

is another LP:
min c′x

s.t.
n∑

j=1

aij xj + pi Γi +
n∑

j=1

qij ≤ bi, ∀i,

pi + qij ≥ âijyj , ∀i, j,
−yj ≤ xj ≤ yj , ∀j,
pi ≥ 0, qij ≥ 0, ∀i, j.

(2.8)

They derive the following probabilistic guarantee:

Theorem 2.1.1 (Probabilistic guarantee [15]) The probability that the i-th constraint

is violated satisfies:

P




n∑

j=1

aijx
∗
j > bi


 ≤ 1

2ni





(1− µ)
ni∑

k=bνc




ni

k


 + µ

ni∑

k=bνc+1




ni

k








, (2.9)

where ni is the number of uncertain coefficients in row i, ν = Γi + ni
2 and µ = ν − bνc.

Bound (2.9) can be approximated using the probability function of the standard normal
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distribution Φ to yield:

P




n∑

j=1

aijx
∗
j > bi


 ≤ 1− Φ

(
Γi − 1√

ni

)
. (2.10)

An important consequence of this result is that Γi of the order of
√

ni will guarantee the

feasibility of the solution with high probability. This is the model of uncertainty that we

will use in the remainder of this thesis when we consider uncertainty sets, because of its

appealing linear properties.

Since robust optimization techniques do not suffer from overconservatism, in contrast

with the early min-max approaches, they might be of practical interest for the problem of

optimally controlling stochastic systems, to address the imperfect knowledge of the distribu-

tions so frequently encountered in practice. Further motivation to use robust optimization

with polyhedral uncertainty sets is provided by the dimensionality problems of dynamic

programming, since the latter becomes intractable as the size of the problem increases.

Methods proposed in the past to remedy this have their own drawbacks. Stochastic pro-

gramming, described by Birge and Louveaux [20], optimizes the average cost over a set of

scenarios generated in advance. However, it also suffers from the curse of dimensionality, as

one needs to sample a large number of scenarios to obtain relevant results. (Stochastic pro-

gramming is discussed further when we investigate robust data-driven methods in Chapter

3.) Approximate dynamic programming, originally developed by Schweitzer and Seidmann

[59] and later studied by Bertsekas and Tsitsiklis [11], as well as Van Roy and de Farias

[32], considers approximations of the value function to address the tractability issue, but its

practical use remains limited because of the difficulty in computing good approximations.

Myopic policies, often used in inventory management (see for instance Zipkin [74]), solve

the optimal stochastic problem for the current time period, and therefore can be very sub-

optimal.

Our goal in this chapter is to describe how robust optimization with polyhedral uncer-

tainty sets can be used to develop a tractable and insightful framework to optimize static

and dynamic systems subject to randomness. The remainder of this chapter is structured

as follows. In Section 2.2, we introduce the main concepts using simple static problems.

In Section 2.3, we extend these results to dynamic optimization with linear dynamics. We

discuss how to select the budgets of uncertainty in Section 2.4 and consider the applica-
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bility of the method to some extensions in Section 2.5. Finally, Section 2.6 contains some

concluding remarks.

2.2 Robust Static Optimization

In this section, we develop the robust optimization framework for static problems subject

to randomness. This allows us to highlight the key ideas involved in the approach, before

applying them to the dynamic case. We discuss the properties of the robust problem and

of its optimal solution, and investigate probabilistic guarantees for the system.

2.2.1 Additive Uncertainty

We consider the unconstrained problem:

min f

(
x−

n∑

i=1

wi

)
, (2.11)

where
∑n

i=1 wi is random and f is a convex function such that lim|x|→∞ f(x) = ∞. This

problem is traditionally solved by assuming that
∑n

i=1 wi obeys a known probability distri-

bution p and solving:

min Ep f

(
x−

n∑

i=1

wi

)
. (2.12)

The convexity of f implies that the optimal solution of Problem (2.12) is the unique solution

of:

Ep f ′
(

x−
n∑

i=1

wi

)
= 0. (2.13)

However, in practice the exact probability distribution is often not available, and solving

(2.12) with the wrong distribution will lead to suboptimal performance. In contrast, the

robust optimization approach we propose does not require any (specific) assumption on

the distribution. It is robust in the sense that it explicitly protects the system against the

worst-case realization of the random variable in a given uncertainty set. The counterpart

of Problem (2.11) in the general robust framework is:

min
x

{
max∑n

i=1
wi∈W

f

(
x−

n∑

i=1

wi

)}
, (2.14)
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where W is a convex set. As mentioned in Section 2.1, we will describe randomness by a

polyhedral set of the type:

W =

{
wi = wi + ŵi zi, |zi| ≤ 1, ∀i,

n∑

i=1

|zi| ≤ Γ

}
, (2.15)

with Γ the budget of uncertainty. In this framework, Problem (2.14) becomes:

min
x

max
z

f

(
x−

n∑

i=1

wi −
n∑

i=1

ŵi zi

)

s.t.
n∑

i=1

|zi| ≤ Γ,

|zi| ≤ 1, ∀i.

(2.16)

Since f is convex, (2.16) is equivalent to:

min
x

max

{
f

(
x−

n∑

i=1

wi −
n∑

i=1

ŵi z
∗
i

)
, f

(
x−

n∑

i=1

wi +
n∑

i=1

ŵi z
∗
i

)}
, (2.17)

where:

z∗ = arg max
n∑

i=1

ŵi zi

s.t.
n∑

i=1

zi ≤ Γ,

0 ≤ zi ≤ 1,∀i.

(2.18)

If Γ is given, we can first solve the auxiliary problem (2.18) and then reinject the corre-

sponding z∗ in (2.17), yielding a modified convex problem in x. Obviously, since the ŵi are

nonnegative, we have
∑n

i=1 ŵi z
∗
i =

∑bΓc
i=1 ŵ(i) + ŵ(Γ+1) · (Γ− bΓc), where ŵ(1) ≥ . . . ≥ ŵ(n).

We describe below how to solve the robust problem in a single step, without solving (2.18)

beforehand or ranking the ŵi. This is of practical interest for instance when the budgets

of uncertainty are adjusted successively to meet specific performance criteria. We have the

following theorem.

Theorem 2.2.1 (The robust problem) The robust counterpart of Problem (2.11) is the

convex problem:

min max

{
f

(
x−

n∑

i=1

wi −
[
p Γ +

n∑

i=1

qi

])
, f

(
x−

n∑

i=1

wi +

[
p Γ +

n∑

i=1

qi

])}

s.t. p + qi ≥ ŵi, ∀i,
p ≥ 0, qi ≥ 0, ∀i.

(2.19)
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Proof: Since {∑n
i=1 zi ≤ Γ, 0 ≤ zi ≤ 1} is bounded and nonempty, the optimal value of

the maximization problem in (2.18) is equal to, by strong duality:

min p Γ +
n∑

i=1

qi

s.t. p + qi ≥ ŵi, ∀i,
p ≥ 0, qi ≥ 0, ∀i.

(2.20)

Let F be the feasible set of (2.20), x any scalar and X = x −∑n
i=1 wi. Let also Y (p, q) =

p Γ +
∑n

i=1 qi for (p, q) ∈ F . We want to show that:

max

{
f

(
X − min

(p,q)∈F
Y (p, q)

)
, f

(
X + min

(p,q)∈F
Y (p, q)

)}
=

min
(p,q)∈F

max {f (X − Y (p, q)) , f (X + Y (p, q))} . (2.21)

From the nonnegativity constraints on p and q and the unboundedness of the feasible set,

Y (p∗, q∗) ≥ 0 with Y (p∗, q∗) = min(p,q)∈F Y (p, q), and Y (p, q) for (p, q) ∈ F can take any

value in [Y (p∗, q∗),∞). Since f is convex and lim|x|→∞ f(x) = ∞, there exists a unique xf

minimizing f , and f decreases, resp. increases, on (−∞, xf ], resp. [xf ,∞). Using these

remarks, it is easy to show that (2.21) holds for each of the three (exhaustive and mutu-

ally exclusive) cases: (a) X − Y (p∗, q∗) ≤ X + Y (p∗, q∗) ≤ xf , (b) xf ≤ X − Y (p∗, q∗) ≤
X + Y (p∗, q∗); and (c) X − Y (p∗, q∗) ≤ xf ≤ X + Y (p∗, q∗). (2.19) follows immediately. 2

The robust counterpart (2.19) of the unconstrained convex problem (2.11) with n sources

of uncertainty is a convex problem with linear constraints (n + 1 nonnegativity constraints

and n additional constraints). If the ŵi are ranked beforehand, the robust problem (2.19)

becomes an unconstrained convex problem where, for each x, we evaluate the function

f (x−∑n
i=1 wi) in (2.11) for two (symmetric, diametrally opposed) realizations of the un-

certainty and keep the greater one. Therefore, nominal and robust problems are closely

connected.

We next study the optimal solution of the robust problem. For any y > 0, f(x − y) =

f(x + y) has exactly one solution because f is convex and lim|x|→∞ f(x) = ∞. Let F (y) be

that solution, and let F (0) be defined by continuity in 0, i.e., F : R+ →R is defined by:

f(x− y) = f(x + y) ⇔ F (y) = x, ∀y > 0 and F (0) = lim
y→0

F (y) = xf , (2.22)

where xf = arg minx f(x) as before.

30



Examples:

• for f(x) = x2, F (y) = 0 for all y ≥ 0.

• for f(x) = max(hx,−p x), F (y) = p− h
p + h y for all y ≥ 0.

Theorem 2.2.2 (The robust solution) Let xΓ be the optimal solution of (2.17). We

have:

xΓ =
n∑

i=1

wi + F

(
n∑

i=1

ŵi z
∗
i

)
, (2.23)

where z∗ is obtained by solving (2.18) and F is the function defined in (2.22).

Moreover, solving the robust problem is equivalent to solving the deterministic problem

(2.11) when the uncertain parameter is equal to:

n∑

i=1

w′i =
n∑

i=1

wi + F

(
n∑

i=1

ŵi z
∗
i

)
− xf , (2.24)

with xf = arg minx f(x).

Proof: Let XΓ = xΓ −
∑n

i=1 wi and Y ∗ =
∑n

i=1 ŵiz
∗
i . At optimality, f(XΓ − Y ∗) =

f(XΓ +Y ∗), otherwise it would be possible to strictly decrease the cost by increasing (resp.

decreasing) XΓ if f(XΓ−Y ∗) > f(XΓ + Y ∗) (resp. f(XΓ− Y ∗) < f(XΓ + Y ∗)). Therefore,

XΓ = F (Y ∗). Since xf is the unique optimal solution of min f(x), xΓ will be the optimal

solution of (2.11) for some modified parameter if and only if (2.11) can be written under

the form min f(x− xΓ + xf ). 2

This theorem yields insights into the way the uncertainty affects the optimal solution,

and links the robust model to an equivalent nominal problem. The function F plays an

important role in this analysis. For instance, if f(x) = max(hx, −p x),

xΓ =
n∑

i=1

wi +
p− h

p + h

n∑

i=1

ŵi z
∗
i . (2.25)

In this case, the uncertainty has a greater impact on the robust solution xΓ if p and h

differ widely, as measured by the ratio |(p− h)/(p + h)|. On the other hand, if p = h, the

uncertainty has no influence on xΓ.

Finally, we interpret the optimal cost of the robust problem in terms of probabilistic

guarantees for the cost in the stochastic setting.

31



Theorem 2.2.3 (Probabilistic guarantee) Let CΓ be the optimal cost in the robust prob-

lem, and Y ∗ =
∑n

i=1 ŵiz
∗
i where z∗ is obtained in (2.18). If the wi are independent random

variables obeying a symmetric distribution with mean wi and support [wi − ŵi, wi + ŵi] for

each i, then:

P

(
f

(
xΓ −

n∑

i=1

wi

)
> CΓ

)
≤ 2 ·

(
1− Φ

(
Γ− 1√

n

))
. (2.26)

Proof: We know from Theorem 2.2.2, its proof and Equation (2.23) that: CΓ = f (F (Y ∗)− Y ∗) =

f (F (Y ∗) + Y ∗) . Let PΓ = P (f (xΓ −
∑n

i=1 wi) > CΓ). Then:

PΓ = P

(
xΓ −

n∑

i=1

wi < F (Y ∗)− Y ∗
)

+ P

(
xΓ −

n∑

i=1

wi > F (Y ∗) + Y ∗
)

, (2.27)

= P

(
n∑

i=1

wi >
n∑

i=1

wi +
n∑

i=1

ŵiz
∗
i

)
+ P

(
n∑

i=1

wi <
n∑

i=1

wi −
n∑

i=1

ŵiz
∗
i

)
, (2.28)

= 2 · P
(

n∑

i=1

wi >
n∑

i=1

wi +
n∑

i=1

ŵiz
∗
i

)
, (2.29)

≤ 2 ·
(

1− Φ
(

Γ− 1√
n

))
, (2.30)

where we have used the convexity of f (and therefore monotonicity over (−∞, xf ] and

[xf ,∞)) in Eq. (2.27), the definition of xΓ in Eq. (2.28), the symmetry of the random

variables in Eq. (2.29) and Bound (2.10) in Eq. (2.30). 2

Therefore, the probability that the cost in the real, stochastic world will exceed the

optimal cost in the robust framework (2.19) is bounded from above by a function of the

budgets of uncertainty and (the square root of) the number of random variables. This

bound depends neither on the function f nor on the parameters wi, ŵi. As an example, if

Γ = 2
√

n + 1, the probability of exceeding the threshold CΓ is guaranteed to be lower than

0.05, provided that the wi are symmetric and independent.

2.2.2 Multiplicative Uncertainty

We now consider the convex problem subject to uncertainty:

min f

(
n∑

i=1

wi xi

)
s.t. x ∈ X , (2.31)

where the wi are random, f is convex and X is a convex set. We use the robust optimization

approach, where the uncertainty set is defined as in (2.15), to develop a model using little
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information on the random variables. The robust counterpart of Problem (2.31) can be

formulated as:

min
x∈X

max
z

f

(
n∑

i=1

wixi +
n∑

i=1

ŵi zi xi

)

s.t.
n∑

i=1

|zi| ≤ Γ,

|zi| ≤ 1, ∀i.

(2.32)

Theorem 2.2.4 (The robust problem) Formulation (2.32) is equivalent to the convex

problem:

min max

{
f

(
n∑

i=1

wixi −
(

pΓ +
n∑

i=1

qi

))
, f

(
n∑

i=1

wixi +

(
pΓ +

n∑

i=1

qi

))}

s.t. p + qi ≥ ŵi yi, ∀i,
−yi ≤ xi ≤ yi, ∀i,
p ≥ 0, qi ≥ 0, ∀i,
x ∈ X .

(2.33)

Proof: From the convexity of f ,

max f

(
n∑

i=1

wi xi +
n∑

i=1

ŵi zi xi

)

s.t.
n∑

i=1

|zi| ≤ Γ,

|zi| ≤ 1, ∀i,

(2.34)

is equivalent to max {f (
∑n

i=1 wi xi −
∑n

i=1 ŵi |xi| z∗i (x)) , f (
∑n

i=1 wi xi +
∑n

i=1 ŵi |xi| z∗i (x))}
where z∗(x) = arg max

∑n
i=1 ŵi |xi| zi s.t.

∑n
i=1 zi ≤ Γ, 0 ≤ zi ≤ 1. Let x be a given feasible

vector. By strong duality,

max
n∑

i=1

ŵi|xi|zi = min pΓ +
n∑

i=1

qi

s.t.
n∑

i=1

zi ≤ Γ, s.t. p + qi ≥ ŵi yi, ∀i,

0 ≤ zi ≤ 1, ∀i, −yi ≤ xi ≤ yi, ∀i,
p ≥ 0, qi ≥ 0, ∀i.

(2.35)

Eq. (2.21) remains valid, using the feasible set of the minimization problem in (2.35) instead

of F . The rest of the proof follows closely the proof of Theorem 2.2.1. 2
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The robust counterpart (2.33) of the constrained convex problem (2.32) with n sources

of uncertainty is also a constrained convex problem, where n + 1 nonnegativity constraints

and 2 · n other constraints, all linear, have been added to the original feasible set. In the

robust formulation, the cost associated with a feasible x ∈ X is evaluated by taking the

greater value between two costs, realized for values of the uncertainty that are symmetric

with respect to the mean.

Corollary 2.2.5 Let xΓ be the optimal solution of Problem (2.33). If xΓ belongs to the

interior of X , then:
n∑

i=1

wi xΓ i = F

(
n∑

i=1

ŵi |xΓ i| zΓ i

)
, (2.36)

where zΓ = arg max
∑n

i=1 ŵi |xΓ i| zi s.t.
∑n

i=1 zi ≤ Γ, 0 ≤ zi ≤ 1.

Proof: Is similar to Theorem 2.2.2. 2

In the deterministic case, we have
∑n

i=1 wi xΓ i = xf where xf = arg minx f(x). Hence,

F (
∑n

i=1 ŵi |xΓ i| zΓ i)−xf quantifies the impact of the uncertainty on the robust solution. It

also allows us to gain a better understanding of how the cost parameters in f (and F ) and

the volatility of the random variables, as measured by the ŵi, affect the optimal solution.

We study next the probabilistic guarantees on
∑n

i=1 ŵi xΓ i and the resulting cost.

Theorem 2.2.6 (Probabilistic guarantee) Let CΓ be the optimal cost in the robust prob-

lem (2.33), and xΓ, resp. zΓ the corresponding optimal solution, resp. optimal scaled devi-

ation. Let also w−i = wi − ŵi zΓ i and w+
i = wi + ŵi zΓ i for all i.

We have:

P

(
f

(
n∑

i=1

wi xΓ i

)
> CΓ

)
≤ 2 ·

(
1− Φ

(
Γ− 1√

n

))
, (2.37)

and:

P

(
n∑

i=1

wi xΓ i ∈
[

n∑

i=1

w−i xΓ i,
n∑

i=1

w+
i xΓ i

])
≥ 2 · Φ

(
Γ− 1√

n

)
− 1. (2.38)

Proof: There are three cases:

(a) If f
(∑n

i=1 w−i xΓ i

)
= f

(∑n
i=1 w+

i xΓ i

)
, the proof is similar to the proof of Theorem

2.2.3.

(b) If f
(∑n

i=1 w−i xΓ i

)
> f

(∑n
i=1 w+

i xΓ i

)
, let A be such that:

f(A) = f

(
n∑

i=1

w−i xΓ i

)
, A 6=

n∑

i=1

w−i xΓ i. (2.39)
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A exists and is unique since f is convex and
∑n

i=1 w−i xΓ i is not its minimum. In

particular, A >
∑n

i=1 w+
i xΓ i. Let PΓ = P (f (

∑n
i=1 wi xΓ i) > CΓ). We have:

PΓ = P

(
n∑

i=1

wi xi <
n∑

i=1

w−i xΓ i

)
+ P

(
n∑

i=1

wi xi > A

)
(2.40)

≤ P

(
n∑

i=1

wi xi <
n∑

i=1

w−i xΓ i

)
+ P

(
n∑

i=1

wi xi >
n∑

i=1

w+
i xΓ i

)
(2.41)

≤ 2 · P
(

n∑

i=1

wi xi <
n∑

i=1

w−i xΓ i

)
by symmetry, (2.42)

≤ 2 ·
(

1− Φ
(

Γ− 1√
n

))
from (2.10). (2.43)

(c) If f
(∑n

i=1 w−i xΓ i

)
< f

(∑n
i=1 w+

i xΓ i

)
, the proof is similar to (b).

2

Therefore, if the budgets of uncertainty are well chosen, the cost in the stochastic world

will remain lower than a given threshold, and the actual state
∑n

i=1 wi xi will remain within

a prespecified interval, with high probabilities. The threshold and the limits of the interval

are obtained by solving the robust problem (2.33).

2.2.3 The General Case

The approach developed in Sections 2.2.1 and 2.2.2 can be generalized to the problem:

min f




n∑

i=1

ṽi x̃i +
m∑

j=1

w̃i


 s.t. x̃ ∈ X , (2.44)

where the ṽi, w̃i are random, f is convex and X is a convex set.

Theorem 2.2.7 All the results of Section 2.2.2 apply, with w defined such that (w1, . . . , wn)′ =

ṽ, (wn+1, . . . , wn+m)′ = w̃, and x defined as (x1, . . . , xn)′ = x̃, (xn+1, . . . , xn+m)′ = e.

Proof: Is immediate. 2

As a result, the robust counterpart of (2.44) is a convex problem with the constraints

of the deterministic model and new auxiliary variables belonging to a polyhedron. The

value of the objective function for a feasible x̃ ∈ X is evaluated by taking the greater cost

associated with two possible realizations of the uncertainty. Hence, the robust problem is:

(a) tractable, and (b) closely connected to the deterministic framework.

We will use this model further when we consider the dynamic case in Section 2.3 and

discuss the selection of the budgets in Section 2.4.
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2.3 Robust Dynamic Optimization with Linear Dynamics

In this section, we apply the robust optimization framework to the problem of optimally

controlling, over a finite horizon of length T , a system subject to linear dynamics with

random perturbations. We describe the methodology in discrete as well as continuous

time, present the robust counterparts, and discuss their key features. In particular, we

show that the robust approach yields numerically tractable formulations and analyze how

uncertainty affects the optimal policy. We illustrate the approach on short examples of

portfolio management and control of queueing networks. In Chapter 5, we model and

analyze a supply chain management problem using the framework presented here.

2.3.1 The Discrete Case

The Model

For the sake of simplicity, we present the model for a scalar system, but it can be extended

to vectors with no difficulty. We define, for t = 0, . . . , T :

xt : the state of the system at the beginning of the t-th period,

ut : the control applied at the beginning of the t-th period,

vt, wt : the random perturbations during the t-th period.

The system evolves according to the linear dynamics:

xt+1 = at xt + v′t ut + wt, t = 0, . . . , T − 1, (2.45)

where at is known and vt and wt are random for all t. ut and vt can be scalars or vectors

and wt is a scalar. This leads to the closed-form expression:

xt+1 = a0,t x0 +
t∑

s=0

as+1,t (v′s us + ws), t = 0, . . . , T − 1, (2.46)

where:

as,t =
t∏

k=s

ak, ∀s ≥ 0, ∀t. (2.47)

We assume that the cost Ct(xt, ut, vt, wt) incurred in period t is separable into two compo-

nents, the cost ft(ut) of applying the control ut and the cost gt(xt+1) of being in state xt+1

at the end of the period, that is:

Ct(xt, ut, vt, wt) = ft(ut) + gt(at xt + vt ut + wt), (2.48)
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where ft and gt are convex. (The assumption of convexity of the ft can be somewhat

relaxed, as we will illustrate in Chapter 5.) Let Ut be the feasible set for the control ut at

time t, which is assumed to be convex.

The deterministic problem, where the vt and wt are known, can therefore be formulated

as:

min
T−1∑

t=0

[
ft(ut) + gt

(
a0,t x0 +

t∑

s=0

as+1,t (vs us + ws)

)]

s.t. ut ∈ Ut, ∀t,
(2.49)

where we have used the closed-form expression (2.46) of xt+1. As a convex problem, (2.49)

can be solved efficiently using standard optimization techniques.

In practice, v and w are random variables for which we have a limited amount of infor-

mation. We model them as uncertain parameters belonging to a prespecified uncertainty

set S. A natural problem formulation for the robust approach would be:

min
T−1∑

t=0

ft(ut) + max
(v,w)∈S

T−1∑

t=0

gt

(
a0,t x0 +

t∑

s=0

as+1,t (v′s us + ws)

)

s.t. ut ∈ Ut, ∀t.
(2.50)

However, in (2.50) each uncertain vs and ws affects all convex functions gt for t ≥ s, making

it difficult to maximize this sum of convex functions in a tractable manner. (An exception

will be the case of linear functions gt, where the inner maximization in (2.50) becomes a

linear programming problem and can be solved with no difficulty.) For this reason, we focus

instead on a slightly more conservative (hence, more robust) problem that is easier to solve:

min
T−1∑

t=0

ft(ut) +
T−1∑

t=0

max
(v,w)∈St

gt

(
a0,t x0 +

t∑

s=0

as+1,t (v′s us + ws)

)

s.t. ut ∈ Ut, ∀t,
(2.51)

where we have for all t:

St = {vsj = vsj + v̂sj ysj , ws = ws + ŵs zs, |ysj | ≤ 1, |zs| ≤ 1, ∀s ≤ t, ∀j,
t∑

s=0


∑

j

|ysj |+ |zs|

 ≤ Γ(m+1)·(t+1)



 , (2.52)

Another possible choice would be to consider separate uncertainty sets for v and w.

The budgets of uncertainty rule out large deviations in the cumulative perturbations.
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They depend on the number of parameters that have been revealed so far. In particular,

they are nondecreasing with the time horizon and increase by at most the number of new

uncertain parameters at each time period:

0 ≤ Γ(m+1)·(t+1) − Γ(m+1)·t ≤ m + 1, ∀t. (2.53)

Theorem 2.3.1 (The robust problem) The robust counterpart of Problem (2.49) is the

convex problem:

min
T−1∑

t=0

[ft(ut) + max {gt(xt+1 − Yt), gt(xt+1 + Yt)}]

s.t. Yt = pt · Γ(m+1)·(t+1) +
t∑

s=0


∑

j

qstj + rst


 , ∀t,

xt+1 = at xt + v′t ut + wt, ∀t,
pt + qstj ≥ |as+1,t| v̂sj u′sj , ∀t, ∀s ≤ t, ∀j,
pt + rst ≥ |as+1,t| ŵs, ∀t, ∀s ≤ t,

−u′t ≤ ut ≤ u′t, ∀t,
ut ∈ Ut, ∀t,
p, q, r ≥ 0.

(2.54)

Proof: This is an immediate extension of the proof for Theorems 2.2.1 and 2.2.4. 2

Remark: The robust problem (2.54) corresponds to a deterministic problem with the

same dynamics as before, a modified convex cost function (not separable in the state and

the control) and an extended control space (u,p,q, r,Y). The auxiliary variables belong

to a polyhedral set, and the new state-related cost at the end of time period t is computed

by taking the greater of two costs at the end of that period, corresponding to two possible

states.

Theoretical properties of (2.54) depend on the choice of the cost and the dynamics. Be-

low, we illustrate the methodology on a simple example in portfolio management. Chapter

5 describes in detail the linear case (with or without a fixed ordering cost), in the context

of supply chain management.

An Example: Portfolio Optimization

We follow Bertsekas [8] to formulate the problem. An investor wants to maximize his wealth

at the end of a finite horizon T by investing in a collecting of risky and riskless assets over
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time. Let n be the number of risky assets available at each time period. We define, for

t = 0, . . . , T :

xt : the wealth of the investor at the beginning of the t-th period,

ui
t : the amount invested at the start of the t-th period in the i-th risky asset,

ri
t : the rate of return of the i-th risky asset during the t-th period,

st : the rate of return of the riskless asset during the t-th period.

The investor wealth evolves according to the dynamics:

xt+1 =
n∑

i=1

ri
t ui

t + st

(
xt −

n∑

i=1

ui
t

)
, t = 0, . . . , T − 1, (2.55)

or equivalently:

xt+1 = st xt +
n∑

i=1

(ri
t − st)ui

t, t = 0, . . . , T − 1. (2.56)

In closed form, this yields:

xt+1 = S0,t x0 +
n∑

i=1

t∑

τ=0

Sτ+1,t (ri
t − st) ui

t, t = 0, . . . , T − 1, (2.57)

with

Sτ,t =
t∏

k=τ

sk, ∀t, τ ≤ t. (2.58)

The goal is to maximize the utility of the investor wealth at time T , U(xT ), where the

utility is a concave and nondecreasing function. The traditional stochastic setting assumes

probability distributions for the risky assets and solves:

maxEr0,...,rT−1 [U(xT )], (2.59)

where negative amounts invested indicate short sales. Bertsekas [8] describes the optimal

policy for utility functions with linear risk tolerance.

In the robust framework, each return ri is modelled as an uncertain parameter in a

symmetric interval [ri − r̂i, ri + r̂i] and the problem becomes:

max
u

min
r∈R

U(xT ), (2.60)

where (a first try for) the uncertainty set is defined by:

R =

{
ri
τ = ri

τ + r̂i
τ zi

τ , |zi
τ | ≤ 1, ∀i, ∀τ,

n∑

i=1

T−1∑

τ=0

|zi
τ | ≤ ΓnT

}
. (2.61)
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An important point in the robust approach is that since U is nondecreasing and the model

takes a deterministic viewpoint of uncertainty, Problem (2.60) is equivalent to:

U

(
max

u
min
r∈R

xT

)
, (2.62)

that is, the optimal allocation will not depend on the utility function, but only on the final

wealth itself. However, this raises the possibility of arbitrage, as the amounts invested have

not been constrained. Therefore, we have to impose “no short sales” constraints which were

not required in the stochastic setting:

ui
t ≥ 0,∀i, t,

n∑

i=1

ui
t ≤ xt, ∀t. (2.63)

In turn, enforcing these constraints at all times requires uncertainty sets that depend on

the current time period:

Rt =

{
ri
τ = ri

τ + r̂i
τ zi

τ , |zi
τ | ≤ 1, ∀i, ∀τ ≤ t,

n∑

i=1

t−1∑

τ=0

|zi
τ | ≤ Γn t

}
. (2.64)

This issue only arises because the investor wealth in the intermediate time periods is not

included in his objective. Applying Theorem 2.3.1 to this setting, we derive the following

linear programming problem for robust portfolio optimization:

max
u

xT −
(

pT ΓnT +
n∑

i=1

T−1∑

t=0

qi
τ,t

)

s.t. xt+1 = S0,t x0 +
n∑

i=1

t∑

τ=0

Sτ+1,t (ri
t − st) ui

t, ∀t,
n∑

i=1

ui
t ≤ xt −

(
pt Γnt +

n∑

i=1

t−1∑

τ=0

qi
τ,t

)
, ∀t,

pt + qi
τ,t ≥ Sτ+1,t−1 r̂i

τ ui
τ , ∀i, t, τ ≤ t,

pt, qi
τ,t, ui

t ≥ 0, ∀i, t, τ ≤ t.

(2.65)

Interpretations:

1. This corresponds to a problem with an extended control space (u,p,q), where u is

the main control driving the nominal dynamics xt+1, and p,q are auxiliary control

variables that do not affect xt+1 but affect the terminal cost as well as the resources

available to ut.
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2. Alternatively, if we set the variables p and q to their optimal values, (2.65) can be

interpreted as maximizing the nominal wealth subject to (a) “buffer” constraints,

where the investor puts aside pt Γnt +
∑n

i=1

∑t−1
τ=0 qi

τ,t from his nominal wealth at each

time period (instead of reinvesting it); and (b) upper bounds on the amount invested

in each asset ui
τ , which are of the order of 1/r̂i

τ . In particular, these bounds decrease

as the lengths of the confidence intervals for the ri increase.

Bound (2.10) indicates that in this case, protecting
√

n t risky assets for the horizon from 0 to

t will provide good probabilistic guarantees. This number can be much smaller than nt, even

for the early time periods, if n is sufficiently large. Therefore, an appealing feature of the

approach is that it will not be necessary to protect the portfolio against many fluctuations

to guarantee a good performance with high probability.

2.3.2 The Continuous Case

Generalities

In this section, we develop the robust model in the case of continuous time. We keep the

same notations as in Section 2.3.1, with time in parenthesis (e.g., x(t)) rather than as an

index (xt). We consider infinite-dimensional linear programming problems (see Anderson

and Nash [1]):

min
∫ T

0
c′x(t) dt

s.t. ẋ(t) = Fu(t) + g, ∀t,

Au(t) ≤ b, ∀t,

x(t), u(t) ≥ 0, ∀t,

(2.66)

with uncertainty on F and g. In Section 2.3.1, we presented an example where the uncer-

tainty did not depend on the control: in portfolio management, the investor can observe the

fluctuations of the stock prices whether the stocks belong to his portfolio or not. Here, we

will apply the robust methodology to (the fluid approximation of) queueing networks, where

service times can only be observed when the decision-maker chooses to process the corre-

sponding classes. In this sense, uncertainty depends on the control. This will be addressed

by choosing the uncertainty sets appropriately. To make our point clearer, we describe the

model in the context of the proposed application.
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Queueing Networks

Stochastic queueing systems are often hard to analyze because of the large number of possi-

ble transitions in the state space, and most mathematical models assume exponential (that

is, memoryless) inter-arrival and service distributions for tractability. Fluid approximations

have been developed by Newell [49] and Chen and Mandelbaum [26] to yield some insights

into the behavior of the network. They take a deterministic view of the system and replace

the flow of discrete jobs by the flow of a continuous fluid. Surprisingly, there are some

strong connections between the stability of the fluid model and its stochastic counterpart,

as established by Dai in [30]. Fluid approximations have also been implemented to develop

optimal policies for queueing networks (see Ricard [54]). However, because they do not

incorporate any information on the variability of the arrival and service rates, they might

lead in practice to very suboptimal policies. The robust optimization approach applied to

fluid networks seems well suited to model stochasticity in a tractable manner.

We define:

x(t): the fluid content at time t,

u(t): the policy at time t,

c: the cost vector,

λ: the vector of external arrival rates,

µ: the vector of service rates,

M: the diagonal matrix of service rates (M = diag(µ)),

R: the (deterministic) routing matrix of the different classes,

A: the topology matrix of the network,

e: the vector (1, . . . , 1)′.

The general control problem of a fluid network can be formulated as:

min
∫ T

0
c′x(t) dt

s.t. ẋ(t) = λ + RMu(t), ∀t,
Au(t) ≤ e, ∀t,
x(t), u(t) ≥ 0, ∀t,

(2.67)

where x(0) is given. Using the closed-form expression of x(t), and removing the terms

independent of the control, we obtain:
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min c′RM
∫ T

0

[∫ t

0
u(s) ds

]
dt

s.t. x(0) + λ t + RM
∫ t

0
u(s) ds ≥ 0, ∀t,

Au(t) ≤ e, ∀t,
u(t) ≥ 0, ∀t.

(2.68)

In practice, λ and µ are subject to uncertainty, and randomness affects the cost as well

as the nonnegativity constraints in x(t). Let x(t) be, as before, the state of the system if the

uncertain parameters are equal to their nominal value. To preserve the same stability region

for the robust model as for the original fluid approximation, we will consider uncertainty

on the cost only, and apply the nonnegativity constraints to x(t). This is further motivated

by the fact that the system evolves in a continuous manner, so that when xi(t) reaches

0 for some i, the control can always be adjusted in an ad-hoc manner to keep the state

nonnegative. If the confidence intervals for λ and µ are sufficiently small so that the robust

fluid network remains stable in the worst case, it is also possible to use the robust approach

on x(t) ≥ 0. Therefore, we focus on:

min c′RM
∫ T

0

[∫ t

0
u(s) ds

]
dt

s.t. x(0) + λ t + RM
∫ t

0
u(s) ds ≥ 0, ∀t,

Au(t) ≤ e, ∀t,
u(t) ≥ 0, ∀t,

(2.69)

where M = diag(µ) is uncertain.

Although the arrival rates might be uncertain as well, (2.69) only depends on their

nominal value. For this reason, we only describe the uncertainty set for the service rates µi.

They are modelled as uncertain parameters in [µi − µ̂i, µi + µ̂i], subject to an additional

constraint (involving budgets of uncertainty) that we describe below. The cost function can

be rewritten as:

min
∑

i,j

ci Rij

[
µj

∫ T

0
(T − s) uj(s) ds + µ̂j

∫ T

0
(T − s) uj(s) zj(s) ds

]
, (2.70)

where the zj(s) are the scaled deviations of the service rates at time s. In particular, it

is unnecessary to use budgets of uncertainty at each time period as described in Section

2.3.1. Instead, we focus on maximizing
∑

ij ci Rij µ̂j
∫ T
0 (T − s) uj(s) zj(s) ds and consider
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the constraint: ∫ T

0
|zj(s)| ds ≤ Γ, (2.71)

for some Γ. The performance of the method hinges on the choice of the budget of un-

certainty. As we have noted above, the “averaging effect” takes place across jobs being

processed, i.e., at the station level rather than at the class level. This justifies indexing the

budgets of uncertainty by K τ , where K is the number of stations and τ is approximately

the emptying time for the network. In particular, Bound (2.10) suggests that Γ ≈ √
K τ

will perform well in practice.

We now derive the equivalent of the robust problem (2.54) in the continuous case.

Theorem 2.3.2 (The robust problem) The robust counterpart of (2.69) is the infinite-

dimensional linear programming problem:

min
∑

i,j

ci Rij µj

∫ T

0
(T − s) uj(s) ds + pΓ +

∑

j

∫ T

0
qj(s) ds

s.t. p + qj(s) ≥
∣∣∣∣∣
∑

i

ci Rij

∣∣∣∣∣ µ̂j (T − s) uj(s), ∀s, ∀j,

x(0) + λ t + RM
∫ t

0
u(s) ds ≥ 0, ∀t,

Au(t) ≤ e, ∀t,

u(t), p, q(t) ≥ 0, ∀t.

(2.72)

Proof: Let Aj(s) = |∑i ci Rij | µ̂j (T − s) uj(s) for all j and s. (Aj(s) ≥ 0.) We want to

show that strong duality holds for the (infinite-dimensional) auxiliary problem:

ZP = max
∑

j

∫ T

0
Aj(s) zj(s) ds

s.t.
∑

j

∫ T

0
zj(s) ≤ Γ,

0 ≤ zj(s) ≤ 1, ∀j, ∀s.

(2.73)

The dual of Problem (2.73) is:

ZD = min pΓ +
∑

j

∫ T

0
qj(s) ds

s.t. p + qj(s) ≥ Aj(s), ∀j, ∀s,
p, qj(s) ≥ 0, ∀j, ∀s.

(2.74)

Weak duality holds:
ZP ≤ ZD, (2.75)
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since for any feasible z, p, q, we have:

∑

j

∫ T

0
Aj(s) zj(s) ds ≤

∑

j

∫ T

0
Aj(s) zj(s) ds + p


Γ−

∑

j

∫ T

0
zj(s) ds




+
∑

j

∫ T

0
qj(s)(1− zj(s)) ds, (2.76)

∑

j

∫ T

0
Aj(s) zj(s) ds ≤ p Γ +

∑

j

∫ T

0
qj(s) ds +

∑

j

∫ T

0
zj(s) [Aj(s)− p− qj(s)] ds,

︸ ︷︷ ︸
≤0

(2.77)

Furthermore, let p = A, Sj = {s|Aj(s) ≥ A} for all j, where A is chosen such that
∑

j

∫ T
0 1{s∈Sj}d s = Γ, and qj(s) = max(0, Aj(s) − A). Let also zj(s) = 1 if s ∈ Sj , 0

otherwise. Then it is easy to check that both primal and dual solutions are feasible and

achieve the same cost. Therefore, strong duality holds. 2

Interpretations:

1. With p, q set to their optimal values p∗, q∗, Problem (2.72) is equivalent to a nominal

problem with the additional upper bound on each uj(t):

uj(t) ≤
p∗ + q∗j (t)

|∑i ci Rij | µ̂j (T − t)
. (2.78)

This bound increases as either of the following quantities decreases: (a) the length of

the remaining time horizon, (b) the length of the confidence interval for the service

rates; or (c) the difference (in absolute value) between the cost of the class and that

of the next class in the network.

2. With (only) p set to its optimal value p∗, Problem (2.72) becomes:

p∗ Γ+ min
∑

i,j

ci Rij µj

∫ T

0
(T − s) uj(s) ds +

∑

j

∫ T

0
max

(
0,

∣∣∣∣∣
∑

i

ci Rij

∣∣∣∣∣ µ̂j (T − s) uj(s)− p∗
)

ds

s.t. Au(t) ≤ e,

u(t), x(t) ≥ 0, ∀t.
(2.79)

In particular, the effective service rate µj(s) of class j at time s is given by:

µ′j =





µj + sign

(∑

i

ciRij

)
µ̂j , if |∑i ci Rij | µ̂j (T − s) uj(s) ≥ p∗,

µj , otherwise.

(2.80)
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As a special case, it is easy to see that, for nontrivial values of Γ, the first classes

to be processed (resp. the last ones) will have an effective service rate equal to

µj + sign

(∑

i

ciRij

)
µ̂j (resp. µj).

2.4 Selecting the Budgets of Uncertainty

In this section, we show how to select the budgets of uncertainty to guarantee performance.

The performance of the system can be evaluated in two ways:

(a) Using probabilistic guarantees for the cost or the state at any time period,

(b) Using bounds on the expected cost, for a worst-case distribution.

2.4.1 Probabilistic Guarantees

A possible approach is to focus on probabilistic guarantees. We consider the dynamic

optimization problem described in Section 2.3.1:

min
T−1∑

t=0

ft(ut) +
T−1∑

t=0

max
(y,z)∈St

gt


xt+1 +

t∑

s=0




m∑

j=1

v̂sj usj ysj + ŵs zs







s.t. xt+1 = at xt + vt ut + wt, ∀t,

ut ∈ Ut, ∀t,

(2.81)

where y and z are the scaled deviations of the uncertain parameters. Let xt+1 be the state

of the system at time t+1 in the stochastic setting. We also define CΓ t the state-related cost

incurred at time t in the robust setting, Yt the value of
∑t

s=0

[∑m
j=1 v̂sj |usj ysj |+ ŵs |zs|

]

at optimality, and x+
Γ,t+1 = xt+1 + Yt, x−Γ,t+1 = xt+1 − Yt.

Theorem 2.4.1 (Probabilistic guarantees) We have:

P (gt (xt+1) > CΓ) ≤ 2 ·
(

1− Φ

(
Γ(m+1)·(t+1) − 1√
(m + 1) · (t + 1)

))
, (2.82)

and:
P

(
xt+1 ∈

[
x−Γ,t+1, x

+
Γ,t+1

])
≥ 2 · Φ

(
Γ(m+1)·(t+1) − 1√
(m + 1) · (t + 1)

)
− 1. (2.83)

Proof: Follows from Theorem 2.2.7. 2

In other words, it is possible to select the budgets of uncertainty so that the state-related

cost at each time period remains below a threshold, and the state at each time period re-

mains within a prespecified interval, with high probabilities. The threshold and the bounds
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of the interval are given by the robust model.

Example 1: For Γ(m+1)·(t+1) = 2
√

(m + 1) · (t + 1) + 1, P (gt (xt+1) > CΓ) ≤ 0.05 and

P
(
xt+1 ∈

[
x−Γ,t+1, x

+
Γ,t+1

])
≥ 0.95. For instance, if m = 3 and t = 100, this yields

Γ(m+1)·(t+1) ≈ 41.2 for 404 uncertain parameters. In other words, we only need here to

protect the system against the fluctuations of one tenth of its random variables to guaran-

tee performance with very high probability.

Example 2: Figure 2-1 shows how (2.83) evolves as a function of Γ for (m+1) ·(t+1) = 50.

Obviously, this bound is not tight for small values of Γ, as it is negative for Γ = 0. However,

it increases quite rapidly towards 1. At Γ = 10, resp. Γ = 15, the probability that the state

will actually be in the bounds given by the robust problem is 0.80, resp. 0.95.
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Figure 2-1: Lower bound on probability.

2.4.2 Bounds on the Expected Value

Another criterion to evaluate performance is the worst-case expected value of the cost,

where the worst case is computed over the set of distributions with given properties such as

their mean. Let w be the vector of random variables, P the set of feasible distributions, xΓ

the optimal solution given by the robust problem. Let also C(xΓ,w) be the cost incurred

by implementing xΓ in the stochastic setting, when the realization of the randomness is w.

We want to solve in Γ:

min
Γ

max
p∈P

Ep[C(xΓ,w)]. (2.84)
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This is conceptually different from the problem of minimizing in x the worst-case expecta-

tion:

min
x

max
p∈P

Ep[C(x,w)]. (2.85)

Specifically, the approach we have proposed leads to robust problems that are tightly con-

nected to the original deterministic formulation, while the problems that arise from Problem

(2.85) are stochastic problems for the worst-case distribution, and hence have a very differ-

ent cost structure. To give an example, the robust model in Section 2.2.1 with a piecewise

linear cost function is equivalent to a deterministic problem of the same class (i.e., a linear

programming problem) with a modified parameter, but in the stochastic setting where the

mean and the variance of the cumulative uncertainty are given, the problem becomes a

quadratic programming problem (see Bound (2.94)).

To solve Problem (2.84) in an efficient manner, we follow the approach developed by

Bertsimas and Popescu in [13] and Popescu in [52], and use strong duality to transform

the inner maximization problem into an equivalent minimization problem, which can be

solved in closed form. We will consider two possible choices for the set P, depending on the

information at our disposal:

1. the set of symmetric, independent random variables with given mean and support,

and verifying the probabilistic guarantee (2.10),

2. the set of random variables with given mean and variance (possibly with a nonnega-

tivity assumption).

We can also combine these two cases, or incorporate information on other moments, as

described by Popescu in [52].

When the optimal robust solution xΓ is given, the problem of selecting the budgets

of uncertainty amounts to finding tight upper bounds to E [f (a−∑n
i=1 wi)], where f is a

convex function, a is a constant and the wi are random variables, all possibly depending

on xΓ. In the formulations we are studying,
∑n

i=1 wi is a linear combination of xΓ and the

“real” sources of uncertainty, say v. Therefore, the information we have on v, such as its

mean, its support or its variance, can easily be expressed in terms of
∑n

i=1 wi.
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Case 1: Symmetric, independent random variables with given mean, support

and a probabilistic guarantee

We assume that the random variables are symmetric with given mean and support. The

assumption of independence across the vi is necessary to use the probabilistic guarantee

(2.10).

Theorem 2.4.2 (Upper bound, Case 1) Let W be the set of symmetric random vari-

ables W with mean W =
∑n

i=1 wi, support of half-length Ŵ =
∑n

i=1 ŵi, for which:

P
(
W ≤ W ≤ W + Y

)
≥ Φ

(
Γ− 1√

n

)
− 1

2
, (2.86)

where Y =
∑n

i=1 ŵiz
∗
i and z∗ is the optimal scaled deviation for w, obtained by solving the

robust problem.

We have, with b = a−W and φ = Φ
(

Γ− 1√
n

)
:

max
w∈W

E [f(a− w)] = [f (b− Y ) + f (b + Y )]
(

φ− 1
2

)
+

[
f

(
b− Ŵ

)
+ f

(
b + Ŵ

)]
(1− φ) .

(2.87)

Proof: We want to solve, using the symmetry of the density function around the mean:

max
∫ W+Ŵ

W

[
f(a− 2W + w) + f(a− w)

]
g(w) dw

s.t.
∫ W+Ŵ

W
g(w) dw =

1
2
,

∫ W+Y

W
g(w) dw ≥ φ− 1

2
,

g(w) ≥ 0, ∀w ∈
[
W, W + Ŵ

]
.

(2.88)

Following Popescu [52], we consider the dual of (2.88):

min
α

2
+ β

(
φ− 1

2

)

s.t. α + β 1{W≤w≤W+Y } ≥ f(a− 2W + w) + f(a− w), ∀w ∈
[
W, W + Ŵ

]
,

β ≤ 0.

(2.89)

The left-hand side is a piecewise constant, nondecreasing function, and the right-hand side

is a convex nondecreasing function (convex because f is convex, nondecreasing from the
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convexity and the fact that the derivative at W is 0.) Therefore, at optimality, left-hand

side and right-hand side are equal for w = W + Y and w = W + Ŵ . These two equations

allow us to determine α and β. Reinjecting into the cost function of Problem (2.89) yields

Equation (2.87). 2

An attractive feature of this upper bound on the expected cost is that it is available in

closed form for any cost function f .

Algorithm 2.4.3 (Selection of the budgets of uncertainty) The budgets of uncertainty

are obtained by minimizing the right-hand side of Bound (2.87) in Γ.

If the dependence of xΓ in Γ is not explicit, we will need to find the optimal budgets of

uncertainty iteratively, by a gradient-descent method. In the proposed robust approach,

such iterations can be performed with ease, as they are approximately of the same difficulty

as the nominal problem.

Example: We plot Bound (2.87) as a function of Γ for the simple case given in Section

2.2.1, with f(x) = max(hx,−p x) for h, p > 0 and i.i.d. random variables. Eq. (2.23) yields

the robust optimal solution in closed form:

xΓ = nw +
p− h

p + h
ŵ Γ. (2.90)

In turn, we obtain the following expression for Bound (2.87):

B1(Γ) = ŵ

[
2 p h

p + h
Γ ·

(
2Φ

(
Γ− 1√

n

)
− 1

)
+ (p + h)

(
1− Φ

(
Γ− 1√

n

)) {
n− Γ

(
p− h

p + h

)2
}]

.

(2.91)

We omit the term in ŵ and take n = 50, p = 5 and h between 2 and 8. There is a clear

trade-off between performance and robustness. As we start protecting the system against

uncertainty, the performance of the system (in terms of worst-case bound on expected

cost) improves markedly. It reaches its optimum for Γ ≈ 11, and deteriorates rapidly as Γ

increases past this value. Another interesting point is that the optimal value of Γ does not

seem to depend significantly of the cost parameters for this choice of cost function.

Case 2: Random variables with given mean and variance

Here, we describe how to obtain a tight upper bound on the expectation when mean W and

variance Σ (for the cumulative uncertainty) are known. The other notations are similar to
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Figure 2-2: Bound on expected cost, case 1.

the previous cases. We follow closely Popescu [52].

Theorem 2.4.4 (Upper bound, Case 2) maxp∈P Ep[f(a− w)] is equivalent to:

min α + β W + γ
(
W

2 + Σ2
)

s.t. α + β w + γ w2 ≥ f(a− w), ∀w.
(2.92)

Proof: This follows from taking the dual of:

max
∫ ∞

−∞
f(a− w) g(w) dw

s.t.
∫ ∞

−∞
g(w) dw = 1,

∫ ∞

−∞
w g(w) dw = W,

∫ ∞

−∞
w2 g(w) dw = W

2 + Σ2,

g(w) ≥ 0,

(2.93)

in a manner similar as in the proof of Theorem 2.4.2. 2

The closed-form expression of the bound, if available, is specific to the function f . It is

obtained by computing the tangent points between the quadratic function α + β w + γ w2

and the convex function f(a − w) to derive α, β and γ, and reinjecting into the cost of

Problem (2.92).

Algorithm 2.4.5 (Selection of the budgets of uncertainty) The budgets of uncertainty

are obtained by minimizing the right-hand side of Bound (2.92) in Γ.
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Example: We consider the same example as above. Here, the bound will depend on ŵ

(through xΓ) as well as Σ. To implement Bound (2.92), we need the following lemma.

Lemma 2.4.6 (Optimal upper bound, Lo [45] and Bertsimas and Popescu [13])

Let X be a random variable with mean W and variance Σ2, which we denote as X ∼
(W, Σ2). For any k, we have:

max
X∼(W,Σ2)

E[max(0, X − k)] =
1
2

[
−(k −W ) +

√
Σ2 + (k −W )2

]
. (2.94)

Proof: See Bertsimas and Popescu [13]. This result was also derived by Moon and Gallego

in [47], and an equivalent tight lower bound for E min(X, k) is due to Scarf [57]. Although

the bound in the references above is derived in the case of nonnegative random variables,

it is straightforward to adapt the proof by Bertsimas and Popescu in [13] to obtain the

(simpler) formula above. 2

This yields the closed-form expression for Bound (2.92):

B2(Γ) = − (p− h)2

2(p + h)
ŵ Γ +

(h + p)
2

√
σ2 n +

(
p− h

p + h
ŵ Γ

)2

, (2.95)

where σ is the standard deviation of any wi. We take n = 50, p = 5, and h between 2 and

8 as before. We also take ŵ = 50 and σ = 20 for each of the random variables. Figure 2-3

shows the worst-case bound on the expected cost as a function of Γ. Here,
∑n

i=1 wi (from

the formulation in Section 2.2.1) is modelled as a single random variable with known mean

and variance. In contrast, the previous bound incorporated the fact that it was a sum of

random variables, and as a result exhibited a sharper trade-off between performance and

robustness. That trade-off was approximately independent of h and p, with an optimum

for Γ ≈ 11. In Figure 2-3, the shape of the curves depends strongly on the values of p and

h. In particular, the curves are almost flat when p ≈ h. For the other curves, the optimum

is reached for Γ ≈ 5, and there does not seem to be a significant benefit in taking Γ > 0

rather than Γ = 0 for these numerical values. This preliminary evidence suggests that

incorporating the averaging effect (through probabilistic guarantee) into the bound leads

to deeper insights and is better aligned with the goals of the robust optimization approach.

The implementation of this approach is illustrated in further detail in Chapter 5, in the

context of supply chain management.
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Figure 2-3: Bound on expected cost, case 2.

2.5 Extensions and Limitations

The problems studied in Sections 2.2 and 2.3 have a particular structure that plays a

crucial role in the performance of the robust optimization approach. Specifically, when

formulated in terms of the deviations of the uncertain parameters from their nominal value,

these problems involve (weighted) sums of the scaled deviations and an averaging effect

in the cost incurred from the real-world randomness. In other words, realizations that

are worse than average can be counterbalanced by others that are better than average.

Although this is often the case in practice, it also leaves out important classes of problems.

We illustrate this point and highlight the limitations of the proposed methodology on the

following example. We consider the class of linear programming problems with uncertain

bounds on the decision variables, which can be used to model revenue management problems

with random demand. The deterministic problem is:

max c′x

s.t. Ax ≤ b,

0 ≤ x ≤ d,

(2.96)

where only d is subject to randomness, for instance the demand in a revenue-maximizing

problem with capacity constraints. For simplicity we will assume that aij ≥ 0 for all i,

j. In the robust optimization approach, each di is modelled by an uncertain parameter in

[di − d̂i, di + d̂i] with
∑n

i=1 |di − di|/d̂i ≤ Γ. However, if Γ ≥ 1, protecting the constraints

xi ≤ di + d̂i zi, |zi| ≤ 1 always yields xi ≤ di − d̂i, i.e., is very conservative. To address
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this issue raised by column-wise uncertainty, a possibility is to consider an alternative

formulation, which is equivalent to Eq. (2.96) when the problem is deterministic:

max c′ min(x,d)

s.t. Ax ≤ b,

x ≥ 0.

(2.97)

Since all the uncertainty is expressed in the cost, we can hope that the robust optimiza-

tion approach applied to Problem (2.97) will not be so conservative. Unfortunately, this is

not the case, because min(x,d) limits the revenue upward when demands are higher than

expected. Alternatively, in this model the resource is wasted if it is not used by the class it

was originally allocated to. Therefore, there is no averaging effect. We detail below from a

more technical perspective what happens if we implement the robust optimization approach

in this context.

Applying the framework of Sections 2.2 and 2.3, we define the robust counterpart of

Problem (2.97) as:

max
[

min
z∈Z

n∑

i=1

ci min(xi, di + d̂i zi)

]

s.t. Ax ≤ b,

x ≥ 0,

(2.98)

where Z =

{
|zi| ≤ 1, ∀i,

n∑

i=1

|zi| ≤ Γ

}
, or equivalently:

max min
n∑

i=1

ci min(xi, di − d̂i zi)

s.t.
n∑

i=1

zi ≤ Γ,

0 ≤ zi ≤ 1, ∀i,
s.t. Ax ≤ b,

x ≥ 0,

(2.99)

as the worst case is reached when the demand is less than expected. If Γ is integer, the

minimum over Z will be reached for zi ∈ {0, 1} ∀i (the minimum of a concave function over

a convex set is reached on the boundary of the feasible set, and it is easy to show that if

there are i, j such that 0 < zi, zj < 1, the revenue can be increased by bringing zi and zj

to 0 or 1.) Therefore, the robust problem (2.99) can be rewritten as a linear combination

of the zi.
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For any feasible x, we have:

n∑

i=1

ci min(xi, di − d̂i zi) =
n∑

i=1

ci

[
min(xi, di) (1− zi) + min(xi, di − d̂i) zi

]
. (2.100)

If at optimality x∗ is such that x∗i > di for some i, min(x∗, d) is also feasible (since we have

assumed aij ≥ 0 ∀i, j) and yields the same revenue. So we can limit ourselves to considering:

max
n∑

i=1

ci xi + min
n∑

i=1

ci zi min(0, di − d̂i − xi)

s.t.
n∑

i=1

zi ≤ Γ,

0 ≤ zi ≤ 1, ∀i,
s.t. Ax ≤ b,

0 ≤ x ≤ d.

(2.101)

As a result, we have found a linear robust counterpart to the original problem:

max
n∑

i=1

ci xi −
(

p Γ +
n∑

i=1

qi

)

s.t. p + qi − ci yi ≥ 0, ∀i,
xi − yi ≤ di − d̂i, ∀i,
Ax ≤ b,

0 ≤ x ≤ d,

p, q, y ≥ 0.

(2.102)

The issue with this formulation is that it is possible, and sometimes optimal, to select

xi = di− d̂i more than Γ times and yet have
∑n

i=1 zi ≤ Γ. In that case the robust framework

yields very conservative results, and the meaning of the budget of uncertainty is lost.

It follows from this analysis that, although the robust approach with uncertainty sets

performs well for a wide range of problems, alternative approaches need to be developed for

problems that do not allow for an averaging effect across the sources of uncertainty. This

is the purpose of the next chapter.

2.6 Concluding Remarks

In this chapter, we have proposed an approach, based on robust optimization with uncer-

tainty sets, that addresses the problem of optimally controlling stochastic systems without

assuming specific probability distributions. Instead, we have modelled random variables as
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uncertain parameters belonging to polyhedral sets, and optimized the system against the

worst-case value of the uncertainty in that set. The robust framework builds upon the fea-

tures of the deterministic convex problem to yield tractable formulations of a similar class.

This innovative way to model randomness also provides key insights into the optimal solu-

tion, in the static as well as in the dynamic case. It is particularly well suited to problems

with an averaging effect in the uncertainty. Furthermore, we have described how to select

the parameters to ensure practical performance. The robust optimization approach with

uncertainty sets emerges as a powerful methodology, which will be further investigated in

its application to supply chain management in Chapter 5.
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Chapter 3

Data-Driven Robust Optimization

3.1 Background and Contributions

In the traditional approach to stochastic optimization, the decision-maker has at his disposal

the past realizations of the random variables, and uses them to estimate the distribution in

the next time period. This of course is nothing more than an educated guess, without any

guarantee that the future will indeed behave like the past. The historical data can also be

used to extract some properties of the random variables, such as the mean or the confidence

interval, and build the uncertainty sets described in Chapter 2. On the other hand, we

have seen that the performance of that approach is affected by the problem structure, and

the data sample might contain more information than what is captured by the mean and

support width. Therefore, it seems legitimate to develop a robust optimization approach

based directly on the data, which eliminates the need for an estimation procedure.

The data-driven approach should also reflect the decision-maker’s attitude towards risk.

We assume that he is risk-averse, that is, he prefers a sure reward to a stochastic reward

with the same mean, despite the possibility of a higher gain in the latter case. This ques-

tion of preferences is central to any realistic framework of optimization under uncertainty,

and has been addressed in the past by considering the expected value of utility functions.

Unfortunately, in practice it is very difficult to articulate a particular investor’s utility. We

have also noted in Chapter 2 that accurate probabilities are rarely available in real-life ap-

plications. This raises the following point:

Can we develop a tractable framework, built directly on the available data, that will
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incorporate risk aversion and protect the system against uncertainty without assuming a

specific utility and/or probability distribution?

In this chapter, we present such an approach, based on robust optimization techniques.

The idea is to remove the best realizations of the random data and optimize the system over

the remaining sample. As a result, the solution will be robust against downside risk. In

mathematical terms, we replace the expected utility E[U(X)] by the conditional expectation

E[X|X ≤ qα(X)], where qα(X) is the α-quantile of the random variable X:

qα(X) = inf{x|P (X ≤ x) ≥ α}, α ∈ (0, 1). (3.1)

Note that if we consider a minimization problem with cost X, we will remove the cases

yielding the lowest costs, and hence, focus on the tail expectation E[X|X ≥ qα(X)]. A

nonparametric estimator of E[X|X ≤ qα(X)] is provided by:

R̂α =
1

Nα

Nα∑

k=1

X(k), (3.2)

where N is the total number of observations available, Nα is the number of cases remaining

after trimming to the level α (Nα = bN · (1 − α) + αc ≈ N · (1 − α)) and X(k) is the

k-th smallest component of (X1, . . . .XN ), yielding X(1) ≤ . . . ≤ X(N). In minimization

problems, X(k) will be defined as the k-th greatest component. The exact definition of Nα,

and specifically the addition of α to N · (1− α), is motivated by the extreme value α = 1,

where we want to keep the worst-case realization only.

Although two-sided trimming has been extensively studied in statistics, for instance by

Rousseeuw and Leroy [55], Ryan [56], Wilcox [69], to develop robust estimators, one-sided

trimming has received little attention outside the field of portfolio optimization, where it

has been shown to have some attractive properties, in particular a linear programming

formulation (see Bertsimas et al. [12], Krokhmal et. al. [41], Pachamanova [51], Uryasev

and Rockafellar [64]). It has also been shown to be a coherent risk measure (see Artzner

et. al. [2]). Levy and Kroll have characterized in [43] investor preferences in terms of the

quantile functions of their investments.

Theorem 3.1.1 (Levy and Kroll [43]) E[U(X)] ≥ E[U(Y )] for all U increasing and

concave if and only if E[X|X ≤ qα(X)] ≥ E[Y |Y ≤ qα(Y )] for any α in (0, 1), and we have

strict inequality for some α.
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This theorem establishes that a portfolio chosen to maximize E[X|X ≤ qα(X)] is non-

dominated, i.e., no other portfolio would be preferred by all investors with increasing and

concave utilities.

The conditional expectation at the quantile level is closely related to the expected short-

fall studied by Bertsimas et. al. [12], which is defined by:

sα(X) = E[X]− E[X|X ≤ qα(X)]. (3.3)

In the context of portfolio management, it measures the expected loss if the return of the

portfolio drops below its α-quantile. In what follows, we will refer to E[X|X ≤ qα(X)] (or

E[X|X ≥ qα(X)] in minimization problems) as the Conditional Value-at-Risk (CVaR).

Before studying CVaR further, we point out two major differences with the methodology

developed in Chapter 2: (a) the robust approach with uncertainty sets rules out large

deviations, good and bad, while CVaR only removes the best cases; and (b) the base value

of the budgets of uncertainty (Γ = 0) corresponds to the nominal, deterministic problem,

while CVaR with α = 0 corresponds to the sample stochastic problem.

The contributions of this chapter can be summarized as follows:

1. We develop a data-driven approach that is based on Conditional Value-at-Risk, and

is tightly connected to the risk aversion of the decision-maker,

2. We derive robust formulations that are computationally tractable, as the robust coun-

terpart of a convex problem remains convex, and illustrate the applicability of the

method on a wide range of problem structures, in the static and dynamic cases,

3. We gain important insights into the structure of the optimal solution for linear pro-

gramming problems with uncertain right-hand side, in particular we show that the

optimal solution can be found by ranking quantities related to the historical data and

the dual variables.

In Section 3.2, we build the theoretical framework for the data-driven approach. We apply

the method to static problems in Section 3.3 and extend the results to the dynamic case in

Section 3.4. We discuss how to select the trimming factor in Section 3.5. Finally, Section

3.6 presents some concluding remarks.
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3.2 The Data-Driven Framework

3.2.1 The Model

We consider problems of the type:

min f0 (A0 x + b0)

s.t. fi (Ai x + bi) ≤ 0, ∀i ≥ 1,

x ∈ X ,

(3.4)

where x is the decision vector, (Ai,bi), i ≥ 0, are the parameters subject to randomness,

the fi, i ≥ 0, are convex functions and X is a convex set. There are two ways to formulate

(3.4) in the stochastic case using Conditional Value-at-Risk:

1. We can incorporate fi (Ai x + bi) ≤ 0, i ≥ 1, to the cost using convex penalty func-

tions, and minimize the CVaR of the modified cost.

2. We can replace each random quantity fi (Ai x + bi), i ≥ 0, by its CVaR, in the cost

and the constraints.

In this chapter, we will only consider Case 1. We study Case 2 in Chapter 4 when we

compare the robust approaches in the context of linear programming. (Other methods,

such as random sampling presented by Calafiore and Campi in [24], are also available to

address the stochasticity of the constraints, but are outside the scope of this thesis.)

Eq. (3.4) can be rewritten as:

min f(Ax + b)

s.t. x ∈ X ,
(3.5)

where f incorporates the penalty function. We assume that we have at our disposal N

realizations of the random variables, (A1,b1), . . . , (AN ,bN ). The traditional framework

assumes specific distributions for A and b, and solves:

min EA,b [f(Ax + b)]

s.t. x ∈ X ,
(3.6)

or its sample-based equivalent:

min
1
N

N∑

k=1

f(Ak x + bk)

s.t. x ∈ X .

(3.7)
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Let α be the fraction of data removed, also called the trimming factor, and Nα = bN ·
(1− α) + αc the number of observations remaining after trimming. In particular, if α = 0,

Nα = N and we simply compute the sample mean. If α = 1, Nα = 1 and we only keep the

worst case. Selecting α in (0, 1) allows us to adjust the level of conservatism of the solution.

The data-driven robust counterpart can be written as:

min
1

Nα

Nα∑

k=1

f (A· x + b·)(k)

s.t. x ∈ X ,

(3.8)

where s(k) is the k-th greatest element of s (s(1) ≥ . . . ≥ s(N)).

Theorem 3.2.1 (The robust problem)

(a) The robust counterpart of (3.5) is the convex problem:

min φ +
1

Nα

N∑

k=1

ψk

s.t. φ + ψk ≥ f
(
Ak x + bk

)
, ∀k,

ψk ≥ 0, ∀k,

x ∈ X .

(3.9)

Furthermore, this is a linear programming problem if f is (convex) piecewise linear.

(b) Problem (3.9) is equivalent to:

min φ +
1

Nα

N∑

k=1

max
(
0, f

(
Ak x + bk

)
− φ

)

s.t. x ∈ X .

(3.10)

At φ given, this is a stochastic optimization problem similar to Problem (3.7), with the

same feasible set X , the same realizations (Ak,bk) for k = 1, . . . , N , and a truncated cost

function max (f(Ax + b), φ), where the cost values that fall below a threshold φ are replaced

by φ.

(c) Problem (3.9) can be interpreted a posteriori as a stochastic problem of the type of

Problem (3.7), solved for a specific distribution P ∗ over the set of past realizations. We

have:

P ∗
(
(A,b) = (Ak,bk)

)
=





1
Nα

, if k ∈ Sα,

0, otherwise,
(3.11)

where Sα is defined as follows. Let φ∗ = f(A· x∗ + b·)(k), ψ∗k = max
(
0, f(Ak x∗ + bk)

)
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for all k, S+
α = {k|ψ∗k > 0} and S0

α = {k|φ∗ = f(Ak x∗ + bk)}. If S0
α has more than

Nα − |S+
α | elements, we only keep Nα − |S+

α | of them (chosen arbitrarily) in the set. We

take Sα = S+
α ∪ S0

α.

Proof: (a) For any vector s with ranked components s(1) ≥ . . . s(N),
∑Nα

k=1 s(k) is the

optimal solution of:

max
N∑

k=1

sk yk

s.t.
N∑

k=1

yk = Nα,

0 ≤ yk ≤ 1, ∀k.

(3.12)

The feasible set of Problem (3.12) is nonempty and bounded, therefore by strong duality

Problem (3.12) is equivalent to:

min Nα · φ +
N∑

k=1

ψk

s.t. φ + ψk ≥ sk, ∀k,

ψk ≥ 0, ∀k.

(3.13)

Reinjecting Eq. (3.13) into Eq. (3.8) with sk = f
(
Ak x + bk

)
for all k yields Eq. (3.9).

This is a convex problem because f is convex. Moreover, if f is piecewise linear, that is

f(y) = maxl[cl
′y + dl] for all y, then Problem (3.9) is a linear programming problem.

(b) We note that at optimality,

ψk = max
(
0, f

(
Ak x + bk

)
− φ

)
, for all k. (3.14)

Eq. (3.10) is obtained by injecting Eq. (3.14) into Eq. (3.9).

(c) Finally, Eq. (3.9) can be interpreted a posteriori as solving the stochastic problem:

min
1

Nα

N∑

k=1

f
(
Ak x + bk

)
y∗k

s.t. x ∈ X ,

(3.15)

where y∗k = 1 if scenario k is among the Nα worst cases and 0 otherwise. The y∗k are

obtained from Problem (3.9) once it has been solved to optimality. In particular, it is easy

to see that φ∗ + ψ∗k = sk if k is among the Nα greatest scenarios, with φ∗ = s(Nα) and

ψ∗k = max(0, sk − φ∗). However, if several scenarios achieve the Nα-th worst case, the set
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S = {k|φ∗ + ψ∗k = sk} has more than Nα elements. We distinguish between the scenarios

k in S whose cost is strictly worse than the Nα-th worst case (ψ∗k > 0) and the ones that

make the tie (k such that φ∗ = f(Ak x + bk)), to obtain a set of Nα worst cases. 2

Theorem 3.2.1 establishes that the data-driven robust framework leads to tractable

convex problems (point (a)), which can be reformulated with only one new variable, the

same feasible set as in the deterministic problem (3.5) and a similar, truncated cost function

(point (b)), and have a strong connection with the traditional stochastic problem (3.7) (point

(c)). In particular, once the set of worst-case scenarios has been identified, we can use all the

insights available for the optimal stochastic policy to characterize its robust counterpart.

3.2.2 Incorporating New Information

The robust problem (3.8) adds 2 · N constraints to the nominal problem: N constraints

involving φ and ψ, which we will call the main constraints, and N nonnegativity constraints

on ψ. This can be a large number if many scenarios are available. However, the number of

scenarios considered after trimming, Nα, might be much smaller than N . In this section,

we describe how we can solve the robust problem by considering convex problems of smaller

size as new information is revealed over time.

Let K be the number of realizations (out of N) we have observed so far, and let Nα =

bN · (1 − α) + αc be the number of worst cases considered in the robust approach. Let

also SK be the optimal set of worst-case scenarios for the robust problem solved at time K

(with the K historical observations).

Theorem 3.2.2 (Reduced robust problem)

If K ≤ Nα, the robust problem is equivalent to solving the stochastic problem (3.7) for those

realizations. In particular, |SK | = K and SNα = {1, . . . , Nα}.
If K > Nα, |SK | = Nα and the robust problem at time K is equivalent to solving a reduced

problem with 2·(Nα+1) (rather than 2·N) constraints added to the deterministic formulation

(3.4):
min φ + 1

Nα

K∑

k=1

ψk

s.t. φ + ψk ≥ f(Ak x + bk), k ∈ SK−1 ∪ {K},
ψk ≥ 0, k ∈ SK−1 ∪ {K},
x ∈ X .

(3.16)

Once (3.16) has been solved to optimality at time K, we define SK similarly to Sα in
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Theorem 3.2.1. Moreover, it is unnecessary to resolve the problem at time K if the optimal

solution of the problem at time K−1 is still feasible with ψK = 0, in which case SK = SK−1.

Proof: The result for K ≤ Nα is straightforward. At time K for K > Nα, we use that

SK ⊂ SK−1∪{K}, since either K will be among the Nα worst cases or this new observation

will not change the optimal set. SK is updated in the same manner as Sα in Theorem 3.2.1.

Moreover, the optimal solution at time K − 1 will still be optimal if and only if it is still

feasible with ψK = 0. 2

Example: if the decision-maker only wants to keep the 10 worst cases among the realiza-

tions he has observed so far, and has observed a number N ≥ 10, which can possibly be

very large, he only needs to consider 11 scenarios at each time period.

3.3 Robust Static Optimization

In this section, we revisit the static problems presented in Section 2.2 from a data-driven

perspective. Then we apply the robust methodology to the linear programming problem

described in Section 2.5, which could not be satisfactorily addressed with uncertainty sets,

and characterize the optimal policy. A last example further illustrates the applicability of

the robust approach in linear programming. The data-driven methodology allows us to

derive key insights on the structure of the optimal solution.

3.3.1 Additive and Multiplicative Uncertainty

Additive Uncertainty

We consider the unconstrained problem of minimizing f (x−∑n
i=1 wi) where

∑n
i=1 wi is

random and f is a convex function such that lim|x|→∞ f(x) = ∞. This problem was

addressed in Section 2.2.1 using uncertainty sets. Here, we assume that we have at our

disposal a set of N scenarios,
∑n

i=1 w1
i , . . . ,

∑n
i=1 wN

i . The data-driven model (3.8) becomes:

min
1

Nα

Nα∑

k=1

[
f

(
x−

n∑

i=1

w·i

)]

(k)

, (3.17)

where [f (x−∑n
i=1 w·i)](k) denotes the k-th greatest f

(
x−∑n

i=1 wk
i

)
.

Theorem 3.3.1 (The robust problem)

(a) The robust problem is:
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min φ +
1

Nα

N∑

k=1

ψk

s.t. φ + ψk ≥ f

(
x−

n∑

i=1

wk
i

)
, ∀k,

ψk ≥ 0, ∀k.

(3.18)

(b) Let (
∑n

i=1 w·i)(k) be the k-th greatest element of
(∑n

i=1 wj
i

)
, j = 1, . . . , N . The optimal

solution xα to (3.18) can be found by solving (Nα + 1) stochastic problems, where the K-th

subproblem, K = 0, . . . , Nα, is defined by:

min
1

Nα





K∑

k=1

f


x−

(
n∑

i=1

w·i

)

(k)


 +

N∑

k=MK+1

f


x−

(
n∑

i=1

w·i

)

(k)






 , (3.19)

with MK = K + N −Nα. xα is the solution of the subproblem with the greatest cost.

Proof: (a) follows from Theorem 3.2.1. Since f is convex and lim|x|→∞ f(x) = ∞, f has a

unique, finite minimum xf and is decreasing, resp. increasing, over (−∞, xf ], resp. [xf ,∞).

Therefore, if x− (
∑n

i=1 w·i)(k) ≤ xf , then f
(
x− (

∑n
i=1 w·i)(j)

)
decreases in j for j ≤ k. The

case where x − (
∑n

i=1 w·i)(k) ≥ xf is similar. As a result, the set of worst-case scenarios is

of the type Sα = {1, . . . , K} ∪ {MK , . . . , N}, where MK = K + N − Nα since |Sα| = Nα.

(b) follows by enumerating the possible values of K. 2

Theorem 3.3.1 presents a tractable formulation for the data-driven problem (point (a))

and gives some insight into the worst-case scenarios (point (b)). In particular, it establishes

that the worst cases are a combination of the higher and the smaller values of the uncertainty.

Multiplicative uncertainty

Here, we consider the problem of minimizing f (
∑n

i=1 wixi) subject to x ∈ X , where f is a

convex function and X a convex set. Its data-driven robust counterpart is:

min
1

Nα

Nα∑

k=1

f

(
n∑

i=1

w·ixi

)

(k)

s.t. x ∈ X . (3.20)

Theorem 3.3.2 (The robust problem) The robust problem is:

min φ +
1

Nα

N∑

k=1

ψk

s.t. φ + ψk ≥ f

(
n∑

i=1

wk
i xi

)
, ψk ≥ 0, ∀k,

x ∈ X .

(3.21)
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Proof: Follows from Theorem 3.2.1. 2

Therefore, the data-driven formulation allows us to optimize the system and determine

the worst-case scenarios in a single step, by solving a convex problem with a linear cost

function and 2 ·N additional (linear) constraints.

3.3.2 Application to Linear Programming: Uncertain Bounds

We consider the linear programming problem described in Section 2.5:

max c′x

s.t. Ax ≤ b,

0 ≤ x ≤ d,

(3.22)

where d is subject to uncertainty. In practical applications, Problem (3.22) arises from:

max c′min(x,d)

s.t. Ax ≤ b,

x ≥ 0,

(3.23)

which we will use to build the data-driven model. An example for such a setting is seat allo-

cation in airline revenue management, which is described in further detail in Section 6.3.1.

The worst cases here are those bringing in the smallest revenues. The robust counterpart

of Problem (3.23) can be written as:

max 1
Nα

Nα∑

k=1

(
n∑

i=1

ci min(xi, d
·
i)

)

(k)

s.t. Ax ≤ b,

x ≥ 0,

(3.24)

where y(k) denotes the k-th smallest component of a vector y.

Theorem 3.3.3 (The robust problem) The robust model is:

max φ + 1
Nα

N∑

k=1

ψk

s.t. φ + ψk −
n∑

i=1

ci y
k
i ≤ 0, ∀k,

yk
i − xi ≤ 0, yk

i ≤ dk
i , ∀i, k,

Ax ≤ b, x ≥ 0, ψ ≤ 0.

(3.25)
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Proof: Is a direct application of Theorem 3.2.1. 2

In particular, it is a linear programming problem as its deterministic counterpart, and

thus can be solved efficiently with standard optimization packages.

We now characterize the optimal solution. For that purpose we will need the dual of

Problem (3.25), where we have indicated the corresponding primal variables on the right:

min π′b +
N∑

k=1

n∑

i=1

dk
i δk

i

s.t. ci ρk − (γk
i + δk

i ) = 0, ∀i, k, : yk
i

(A′π)i −
N∑

k=1

γk
i ≥ 0, ∀i, : xi

0 ≤ ρk ≤ 1
Nα

, ∀k, : ψk

N∑

k=1

ρk = 1, : φ

ρ, γ, δ, π ≥ 0.

(3.26)

We assume that the set of the Nα worst cases Sα is “nondegenerate”, in the sense that at

optimality, the Nα-th worst-case scenario yields a revenue strictly lower than the (Nα+1)-st

one. This assumption is necessary to take full advantage of complementary slackness. Let

π∗ be the optimal π in Problem (3.26). Also, let [d·i]
(k)
Sα

be the k-th greatest di among the

Nα worst cases.

Theorem 3.3.4 (The robust solution)

(a) If x∗i > 0 and
(

(A′π∗)i
ci

·Nα

)
is not an integer, then:

x∗i = [d·i]
(k)
Sα

where k =
⌈
(A′π∗)i

ci
·Nα

⌉
. (3.27)

(b) If (A′π∗)i > ci, then x∗i = 0.

Proof: By complementarity slackness, the following hold at optimality:

1. Scenario k will be among the Nα worst cases if and only if ρ∗k = 1/Nα, otherwise

ρ∗k = 0. Specifically, for any scenario that is not in Sα, φ + ψk −
∑n

i=1 ci y
k
i < 0

because of our assumption of “nondegeneracy” of Sα, so that ρ∗k = 0. For any of

the (Nα − 1) worst-case scenarios, ψ∗k > 0, forcing ρ∗k = 1/Nα. Finally, we use that
∑N

k=1 ρ∗k = 1 to show that ρ∗k = 1/Nα for the Nα-th worst case as well.

2. For any scenario k that does not belong to Sα, γ∗ki = δ∗ki = 0 for all i. This is a direct

consequence of ρ∗k = 0 in conjunction with ci ρ
∗
k − (γ∗ki + δ∗ki ) = 0 and δ, γ ≥ 0.
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3. For any scenario k in Sα,

(i) if x∗i < dk
i , we have δ∗ki = 0 and γ∗ki = ci

Nα
.

(ii) if x∗i > dk
i , we have δ∗ki = ci

Nα
and γ∗ki = 0.

(iii) if x∗i = dk
i , we have γ∗ki + δ∗ki = ci

Nα
with γ∗ki , δ∗ki ≥ 0.

4. If x∗i > 0, then (A′π∗)i =
∑N

k=1 γ∗ki . Using the expressions of γ∗ki derived above, this

yields:

(i) If there is no k such that x∗i = dk
i (instead, x∗i would exhaust a resource, for

instance it would be the last fare class admitted on a flight of given capacity),

then:
(A′π∗)i =

ci

Nα
N0

i , (3.28)

where N0
i the number of scenarios k in Sα such that x∗i < dk

i , which implies that(
(A′π∗)i

ci
·Nα

)
is an integer.

(ii) If
(

(A′π∗)i
ci

·Nα

)
is not an integer, then there exists a scenario k∗ such that

x∗i = dk∗
i and:

(A′π∗)i =
ci

Nα
· (Ni − βi), (3.29)

with Ni the number of scenarios k in Sα such that xi ≤ dk
i and βi ∈ [0, 1] such

that δ∗k∗i = (ci/Nα)βi. This leads to:

Ni =
⌈
(A′π∗)i

ci
·Nα

⌉
. (3.30)

Eq. (3.27) follows immediately. This proves (a).

5. If (A′π∗)i >
∑N

k=1 γ∗ki , then x∗i = 0. In that case, Ni = Nα and βi = 0. But we have

seen that
∑N

k=1 γ∗ki = ci
Nα

· (Ni − βi). This yields (b).
2

Remark: The index k for variable i in Eq. (3.27) is proportional (neglecting the rounding-

up effects) to (A′π∗)i/ci. It increases if the unit profit ci decreases or the opportunity cost

(A′π∗)i increases. Unsurprisingly, as [d·i]
(k)
Sα

has been defined as the k-th greatest di among

the Nα worst cases, x∗i (when x∗i > 0 and the nonintegrality condition is verified) decreases

when (A′π∗)i/ci increases. Moreover, the probability that the demand for product i is

not fully met is approximately proportional to (A′π∗)i/ci, in the risk-neutral as well as

the risk-averse cases. This suggests that the ratio (A′π∗)i/ci (rather than, for instance,
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(A′π∗)i − ci) plays a key role in optimally allocating scarce resources under uncertainty.

Since Nα ≈ N · (1 − α), the probability that demand for any product in stock is not fully

met is also approximately proportional to 1−α, and in particular, this probability decreases

as the trimming factor α increases.

Example: Limited shelf space at a retailer

A retailer can choose among n products to display on a shelf, where the total space available

is b. Each item of type i uses ai units of space and sells for a unit price ci. Product i is

subject to demand di. Let π∗ be the optimal dual variable associated with the shelf space.

We know from Theorem 3.3.4 that, if it is optimal to stock product i and (ai/ci) π∗Nα

is not an integer, x∗i = [d·i]
(k)
Sα

with k = d(ai/ci) π∗Nαe. As a result, the probability of

shortage for such a product i is approximately proportional to (1−α) ai/ci, which does not

depend on π∗. Moreover, if we consider two such products i and j, at optimality the ratio

of their shortage probabilities is approximately equal to (ai/ci)/(aj/cj), independently of

the trimming factor. As an example, if products 1 and 2 are of the same size, but product

1 sells for twice as much as product 2, at optimality product 1 is half as likely to be out of

stock than product 2, for any α. The risk aversion of the decision-maker will however affect

the choice of the products which are indeed stocked at the beginning of the period.

The numerical experiment below illustrates the impact of the decision-maker’s risk aver-

sion on the optimal allocation. The retailer has the choice between 5 products of equal size

(ai = 1 for all i), shelf space is 100 units, unit price is ci = 10 · (6 − i) for all i), and the

demands for all products are i.i.d. with mean 30 units and standard deviation 10 units. We

consider (symmetric) Bernoulli and Gaussian distributions. For each of 100 iterations,

1. we generate 21 historical scenarios (therefore the number Nα of scenarios remaining

after trimming between 1 and 20),

2. use them to determine the optimal allocation at Nα given,

3. and test them on 100 new realizations of the demand.

Figure 3-1 shows how mean and standard deviation of the actual revenue vary with the

number of discarded scenarios N − Nα, when the optimal quantities of products in stock

are chosen as above. Trimming the data sample by up to 30% has only a small impact on

the mean, which decreases by at most 1.5%, but significantly affects the standard deviation,
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which decreases by up to 7%, resp. 25%, in the Gaussian, resp. Bernoulli (Binomial) case.

Figure 3-2 shows the optimal allocation for the 5 products as a function of the number

of discarded scenarios. The average demand for each product is 30, and we note that the

risk-neutral retailer orders more of product 1 than average because of the potential for

high profits. On the other hand, he orders less of products 4 and 5 than average. As his

risk aversion increases, he orders less of product 1 and more of products 4 and 5, i.e., he

trades off high profit opportunities for the likelihood that he will indeed sell the products

on the shelf. Finally, Figure 3-3 shows the probability ratios Pi/P1 for i = 2, . . . , 5 for both

distributions, and confirms that for x∗i > 0, and assuming the nonintegrality condition is

verified, Pi/P1 is of the order of i · (1 − α), although this prediction seems more accurate

when the distribution is Bernoulli than Gaussian.
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Figure 3-1: Mean and standard deviation of actual revenue.
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Figure 3-2: Optimal allocation with Gaussian (left) and Bernoulli (right) distributions.
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Figure 3-3: Probability ratios with Gaussian (left) and Bernoulli (right) distributions.

This example illustrates that the data-driven approach provides a tractable framework

to incorporate randomness and risk aversion in revenue management problems. It also

allows us to gain valuable insights into the properties of the optimal solution when the

decision-maker is risk-averse, in terms of product allocations and probabilities of unmet

demand. In particular, we have shown that, under some conditions, if it is optimal to

have a positive inventory of product i, then (a) x∗i is equal to a historical realization of

the demand for i; and (b) the rank of this observation depends on the ratio between unit

price and opportunity costs for the product, as well as the number of scenarios Nα that the

decision-maker keeps after trimming.

3.3.3 Application to Linear Programming: Robust Bid Prices

A common way to analyze the deterministic problem (3.22) is to consider its dual. It is well

known from duality theory (see Bertsimas and Tsitsiklis [19]) that:

max c′x

s.t. Ax ≤ b,

0 ≤ x ≤ d

(3.31)

has the same optimal solution as:

min
π≥0

π′b + max (c−A′π)′x

s.t. 0 ≤ x ≤ d.
(3.32)

Therefore, in the deterministic setting it is optimal to take xi = di if ci ≥ (A′π∗)i and

xi = 0 otherwise, where π∗ is the dual vector corresponding to the capacity constraints at
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optimality. The quantity ci − (A′π∗)i is the “net profitability” of class i (revenue minus

opportunity cost, per unit), also called “bid price” in applications such as airline revenue

management, for instance by Talluri and van Ryzin in [63]. The example of airline revenue

management is investigated further in Section 6.3.2. Problem (3.32) is equivalent to:

min
π≥0

π′b + max (c−A′π)′Dx

s.t. 0 ≤ x ≤ e,
(3.33)

with D = diag(d).

In the data-driven framework, we have at our disposal N past observations of the uncer-

tain vector d. Let πk be the optimal dual vector associated with the capacity constraints in

scenario k. The revenue generated in scenario k by a feasible x is (πk)′b+(c−A′πk)′Dk x.

The robust counterpart of Problem (3.33) can be written as:

max
1

Nα

Nα∑

k=1

[
(π·)′b + (c−A′π·)′D· x

]
(k)

s.t. 0 ≤ x ≤ e.

(3.34)

As explained in Section 3.2, Problem (3.34) is equivalent to:

max φ +
1

Nα

Nα∑

k=1

ψk

s.t. φ + ψk ≤ (πk)′b + (c−A′πk)′Dk x, ∀k,

0 ≤ x ≤ e, ψk ≤ 0, ∀k.

(3.35)

Let Sα be the set of Nα worst-case scenarios, which can be obtained from (3.35) by comple-

mentarity slackness, and for any vector y, let < y >= 1
Nα

∑
k∈Sα

yk be the average of the

components of y in Sα. We assume that Sα is “nondegenerate”, i.e., it is uniquely defined.

Theorem 3.3.5 (Robust bid prices) The optimal solution of Problem (3.34) verifies:

x∗i =





1 if ci ≥ < DA′ π >i
< D >i

,

0 otherwise.
(3.36)

Proof: Follows from using the actual scenarios in Sα to evaluate (3.34), and studying the

sign of the coefficient in front of xj for all j. 2

For variable i to be selected (x∗i = 1), the unit profit has to be greater than a weighted

average of the opportunity costs, the weights being the actual demands in each scenario.
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This can be contrasted with the deterministic model, where variable i is selected when the

unit profit is greater than the opportunity cost of the nominal problem.

Example: Supply chain contract

A supplier is considering contracts with n = 5 possible retailers. If he enters into a contract

with retailer i, he will fill any order made by i. Each such order is processed by the supplier

at a unit profit ci = 10 · (6− i), uses ai = 1 units of his production capacity, and the total

number of orders di is a random variable with mean 30 units and standard deviation 10 units.

Orders across retailers are independent. We consider Gaussian and (symmetric) Bernoulli

distributions. The total production capacity at the supplier is equal to b = 100. The

supplier has to decide which retailers he should sign a contract with. He has at his disposal

N = 21 historical realizations of the demands and has computed the opportunity cost of his

production capacity for each scenario k = 1, . . . , N . In this framework, an admission policy

x ∈ {0, 1}n yields the profit
∑n

i=1(ci−πk) dk
i xi+b πk in scenario k = 1, . . . , N . The supplier

maximizes the trimmed mean over the Nα lowest profits. To evaluate the policies obtained

by this approach, we proceed as follows, for each of 100 vectors of historical realizations (of

size 21 · 5 = 105) drawn from either a Gaussian or a Bernoulli distribution:

1. we determine the optimal admission policies when the number of discarded scenarios

N −Nα varies from 0 to N − 1 = 20 (Figure 3-4 represents the policies averaged over

the historical scenarios),

2. then we evaluate the policy by computing the mean profit on a sample of 100 vectors

of realizations, and comparing it to the mean profit realized by implementing the

traditional approach, where the bid prices are derived from the nominal model (Figure

3-5). Here, the robust shadow price associated with the resource varies between 0 and

30 depending on the scenarios, and the nominal shadow price is 20. The profit in each

approach is defined as:

either the total revenue
∑n

i=1 ci di xi (Figure 3-5, left),

or the total revenue minus the loss incurred by paying a unit penalty of 10 whenever

the supplier oversells his production capacity (Figure 3-5, right)

Figure 3-4 shows that, as the risk aversion of the supplier increases, he is more likely to

accept contracts with the lowest-paying retailers 4 and 5, as he values the extra income more
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than risking the unit penalty (shadow price) πk associated with overcommitting himself

in scenario k. Figure 3-5 shows that the robust approach yields higher profits than the

traditional method, even after factoring in the overselling penalty. Moreover, trimming

the available data by up to 25% increases the ratio by up to 2%. In the case without

penalty, the data-driven approach outperforms the nominal approach by at least 12%, for

both distributions and any trimming factor. With penalty, the ratio is about 0.8%, resp.

2.2%, in the Gaussian, resp. Bernoulli, case.
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Figure 3-4: Admission policies.
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Figure 3-5: Ratio of mean profits without (left) and with (right) penalty.

This example suggests that incorporating the historical data in a robust approach to

determine the optimal admission policies can have a significant impact on revenue, in partic-

ular when compared to the traditional bid price approach. It also illustrates the supplier’s

trade-off between the opportunity for high profit and the possibility of overcommitting his

production capacity as his aversion to risk increases. An appealing feature of this framework
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is that its interpretation remains similar to the traditional method, where the unit profit

of a class needs to exceed a certain threshold depending on the opportunity costs of the

resources used, for the class to be admitted.

3.4 Robust Dynamic Optimization

In this section, we apply the methodology developed in Section 3.2 to dynamic systems.

3.4.1 Two-Stage Stochastic Programming

Stochastic programming, studied by Birge and Louveaux in [20] and Kall and Wallace in

[40], is concerned with sequential decision-making. In its simplest form, it involves decisions

at two time periods in an uncertain environment modelled by scenarios. The first-stage

decisions must be made before the true scenario is known, but the second-stage decisions

can (and should) take into account which scenario has been realized. Such a setting was

originally presented by Dantzig in [31]. Let x be the first-stage decision variables, which

must satisfy the constraints:
Ax = b, x ≥ 0, (3.37)

with A and b of appropriate dimensions. We have previously observed N realizations of the

uncertainty. (It is also possible to generate random scenarios from simulations, as Shapiro

and Homem-de-Mello explain in [60].) The true scenario is revealed after x is chosen and

before the second-stage decisions are made. Let yk be the vector of decisions made if

scenario k (k = 1, . . . , N) is realized. It must satisfy the constraints:

Bk x + Dyk = dk, yk ≥ 0, (3.38)

with Bk, D, dk of appropriate dimensions. We are also given cost vectors c and f associated

with the first and second-stage decisions.

The traditional stochastic programming framework considers the problem:

min c′x + 1
N

N∑

k=1

f ′yk

s.t. Ax = b,

Bk x + Dyk = dk, ∀k,

x ≥ 0, yk ≥ 0, ∀k.

(3.39)
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As mentioned in Section 3.2, this framework assumes that the risk of second-stage infea-

sibility induced by the uncertainty can be modelled by an appropriate penalty function.

Here, we will use piecewise linear penalty functions to preserve the linear structure of the

problem. Alternatively, we can follow Dantzig’s assumption in [31] that for any feasible first-

stage decision, there is at least one feasible second-stage decision available. The Conditional

Value-at-Risk counterpart of Problem (3.39) is:

min c′x + 1
Nα

Nα∑

k=1

(f ′y·)(k)

s.t. Ax = b,

Bk x + Dyk = dk, ∀k,

x, yk ≥ 0, ∀k.

(3.40)

Theorem 3.4.1 (The robust problem)

(a) The robust formulation (3.40) is equivalent to:

min c′x + φ + 1
Nα

N∑

k=1

ψk

s.t. φ + ψk ≥ f ′yk, ∀k,

Ax = b,

Bk x + Dyk = dk, ∀k,

x, ψ, yk ≥ 0, ∀k.

(3.41)

(b) Let SK be the optimal set of worst-case scenarios at time K (with K observations).

Assume we know beforehand that we will observe the realizations of the random variables

until we have N observations, and that we will keep Nα of these. At time K, (3.41) is

equivalent to a smaller problem involving min(K,Nα + 1) scenarios. Specifically:

(i) if K ≤ Nα, we solve the stochastic problem averaging (without trimming) over all the

realizations so far.

(ii) if K > Nα, we solve (3.41) by considering only the scenarios in SK−1 and the new

observation vector.

Proof: Theorem 3.2.1 applied to Eq. (3.40) yields (a). (b) follows from Theorem 3.2.2. 2

Theorem 3.4.1 establishes that risk aversion can be incorporated to two-stage stochastic

programming without any difficulty, and without overly increasing the size of the problem.
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3.4.2 The General Dynamic Model

We now extend the framework developed in Section 3.4.1 to the multi-period case, where

N scenarios of length T are available. Our goal is to determine the optimal control at time

0. We define, for t = 0, . . . , T and k = 1, . . . , N :

xk
t : the state of the system at time t in scenario k,

ut : the control implemented at time t = 0, . . . , T − 1,

wk
t : the random perturbation at time t in scenario k.

The trajectories (xk
t ) for each scenario k start from the same initial state x0. The state of

the system in scenario k evolves according to the dynamics:

xk
t+1 = ht(xk

t , ut, w
k
t ), ∀t, ∀k. (3.42)

We assume that the cost incurred at time t in scenario k is separable into a control-related

and a state-related component:

Ct(xk
t , ut, w

k
t ) = ft(ut) + gt(xk

t+1), (3.43)

where ft and gt are convex. Let Ut be the feasible (convex) set for the control ut at time t.

The data-driven robust problem takes the form:

min
T−1∑

t=0

ft(ut) +
1

Nα

Nα∑

k=1

[
T−1∑

t=0

gt(x·t+1)

]

(k)

s.t. xk
t+1 = ht(xk

t , ut, w
k
t ), ∀t, ∀k,

ut ∈ Ut, ∀t.

(3.44)

Theorem 3.4.2 (The robust problem)

(a) The robust problem (3.44) is equivalent to:

min
T−1∑

t=0

ft(ut) + φ +
1

Nα

N∑

k=1

ψk

s.t. φ + ψk ≥
T−1∑

t=0

gt(xk
t+1), ∀k,

xk
t+1 = ht(xk

t , ut, w
k
t ), ∀t, ∀k,

ψk ≥ 0, ∀k

ut ∈ Ut, ∀t.

(3.45)

Therefore, the robust formulation adds N + 1 variables and 2 · (N + 1) constraints to the
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original problem.

(b) Problem (3.45) can also be written as:

min
T−1∑

t=0

ft(ut) + φ +
1

Nα

N∑

k=1

max

(
0,

T−1∑

t=0

gt(xk
t+1)− φ

)

s.t. xk
t+1 = ht(xk

t , ut, w
k
t ), ∀t, ∀k,

ut ∈ Ut, ∀t.

(3.46)

In (3.46), there is only one new variable φ and no new constraint, and the state-related cost

for each scenario is truncated so that, if it falls below the threshold φ, it is replaced by that

value. The control-related cost and the feasible set for the control remain identical.

Proof: This is a direct application of Theorem 3.2.1. 2

An important consequence of Theorem 3.4.2 is that the robust data-driven model is

tightly connected to the original model, increases the problem considered by only one vari-

able and no constraint, and has an intuitive interpretation.

3.4.3 The Piecewise Linear Case with Additive Perturbations

We now illustrate the data-driven methodology on the case of linear dynamics with additive

perturbations:
xk

t+1 = xk
t + ut − wk

t , ∀k, ∀t, (3.47)

a piecewise linear cost:

Ct(xk
t , ut, w

k
t ) = c ut + max(hxk

t+1,−p xk
t+1), ∀k, ∀t, (3.48)

and nonnegativity constraints on the control: ut ≥ 0 for all t.

Theorem 3.4.3 (The robust problem) The robust problem can be formulated as a lin-

ear programming problem:

min c
T−1∑

t=0

ut + φ +
1

Nα

N∑

k=1

ψk

s.t. φ + ψk −
T−1∑

t=0

zk
t+1 ≥ 0, ∀k,

zk
t+1 − h

t∑

s=0

us ≥ h

(
x0 −

t∑

s=0

wk
s

)
, ∀k, ∀t,

zk
t+1 + p

t∑

s=0

us ≥ −p

(
x0 −

t∑

s=0

wk
s

)
, ∀k, ∀t,

ψk ≥ 0, ut ≥ 0, ∀k, ∀t.

(3.49)
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Proof: Theorem 3.4.2 yields the following robust counterpart:

min c
T−1∑

t=0

ut + φ +
1

Nα

N∑

k=1

ψk

s.t. φ + ψk ≥
T−1∑

t=0

max
(
h xk

t+1,−p xk
t+1

)
, ∀k,

xk
t+1 = x0 +

t∑

s=0

(us − wk
s ), ∀k, ∀t,

ψk ≥ 0, ut ≥ 0, ∀k, ∀t.

(3.50)

We then use the closed-form expression of xk
t+1 and introduce auxiliary variables zk

t+1 with

zk
t+1 ≥ hxk

t+1 and zk
t+1 ≥ −p xk

t+1 to obtain (3.49). 2

We next provide some insight into the structure of the optimal solution at time 0, under

the assumption that the set of worst cases is “nondegenerate”, i.e., at optimality the cost

of the (Nα + 1)-st worst scenario is strictly lower than the cost of the (Nα)-th worst one.

We assume u0 > 0. Let τ = arg min{t ≥ 1|ut > 0} be the next time period a control is

implemented. Let also
[∑τ−1

s=0 w·s
](k)

be the k-th greatest
∑τ−1

s=0 wk
s .

Theorem 3.4.4 (The robust solution) We have:

(a) If τ < ∞ and hNα
h + p is not an integer,

u0 = −x0 +

[
τ−1∑

s=0

w·s

](k)

with k =
⌈

h

h + p
Nα

⌉
. (3.51)

(b) If τ = ∞ and (h + c) Nα
h + p is not an integer,

u0 = −x0 +

[
T−1∑

s=0

w·s

](k)

with k =
⌈

h + c

h + p
Nα

⌉
. (3.52)

Proof: The dual of (3.49) is:

max
T−1∑

t=0

N∑

k=1

(hHk
t+1 − pP k

t+1)

(
x0 −

t∑

s=0

wk
s

)

s.t. Hk
t+1 + P k

t+1 − Sk = 0, ∀k, t : zk
t+1

N∑

k=1

Sk = 1, : φ

Sk ≤ 1
Nα

, ∀k : ψk

∑

t≥s

N∑

k=1

(
pP k

t+1 − hHk
t+1

)
≤ c, ∀s : us

S,H,P ≥ 0.

(3.53)
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where we have indicated the corresponding primal variables on the right, or equivalently:

max
T−1∑

t=0

N∑

k=1

(hHk
t+1 − pP k

t+1)

(
x0 −

t∑

s=0

wk
s

)

s.t.
N∑

k=1

(
Hk

t+1 + P k
t+1

)
= 1,

Hk
t+1 + P k

t+1 ≤ 1
Nα

, ∀k,

∑

t≥s

N∑

k=1

(
pP k

t+1 − hHk
t+1

)
≤ c, ∀s,

H,P ≥ 0.

(3.54)

Following the same line of argument as in the proof of Theorem 3.3.4, we have at optimality

by complementarity slackness:

1. if k is not among the Nα worst-case scenarios, Hk
t+1 = P k

t+1 = 0 for all t, because of

the assumption of “nondegeneracy” of Sα.

2. if k is among the Nα worst-case scenarios,

(i) if xk
t+1 < 0, Hk

t+1 = 0 and P k
t+1 = 1

Nα
,

(ii) if xk
t+1 > 0, Hk

t+1 = 1
Nα

and P k
t+1 = 0,

(iii) if xk
t+1 = 0, Hk

t+1 + P k
t+1 = 1

Nα
for Hk

t+1, P k
t+1 ≥ 0.

3. if us > 0 at time s,
∑

t≥s

N∑

k=1

(
pP k

t+1 − hHk
t+1

)
= c. (3.55)

4. Let assume that u0 > 0, u1 > 0 and hNα
h + p is not an integer, so that we are guaranteed

to have at least one scenario k for which xk
1 = 0. Let S−α , resp. S0

α, be the set of

scenarios in Sα for which xk
1 < 0, resp. xk

1 = 0. Eq. (3.55) becomes, using the

expressions of Hk
1 and P k

1 derived above:

|S−α |+
∑

k∈S0
α

(1− hk) =
h

p + h
Nα, (3.56)

where the hk are numbers in [0, 1]. This yields:

|S−α | ≤
⌊

h

h + p
Nα

⌋
and |S−α ∪ S0

α| ≥
⌈

h

h + p
Nα

⌉
, (3.57)
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In particular, the k-th greatest demand w
(k)
0 with k =

⌈
h

h + p Nα

⌉
corresponds to a

scenario in S0
α, i.e., xk

1 = 0. Equivalently,

u0 = −x0 + w
(k)
0 with k =

⌈
h

h + p
Nα

⌉
, (3.58)

where the w
(k)
0 are ranked so that w

(1)
0 ≥ . . . ≥ w

(N)
0 .

5. If u0 > 0, h Nα
h + p is not an integer and no control is implemented before time τ

(τ = arg min{t ≥ 1|ut > 0}) with τ < ∞, the situation is equivalent to the case where

u1 > 0 if we aggregate the demand from time 0 to time τ − 1. Therefore, we have:

u0 = −x0 +

[
τ−1∑

s=0

ws

](k)

with k =
⌈

h

h + p
Nα

⌉
, (3.59)

6. If u0 > 0, time 0 is the last time period where a control is implemented and (h + c) Nα
h + p

is not an integer, a similar analysis yields:

u0 = −x0 +

[
T−1∑

s=0

ws

](k)

with k =
⌈

h + c

h + p
Nα

⌉
, (3.60)

2

An important consequence of this result is that the optimal policy in the data-driven,

risk-averse framework is basestock1, as it brings the total amount of stock on hand and on

order up to a certain level. In particular, we have expressed the threshold in terms of the

historical demand for a specific scenario.

3.5 Selecting the Trimming Factor

We now discuss how to select the trimming factor in a minimization problem.

3.5.1 Expected Value over Discarded and Remaining Data

Let Y = f (Ax + b). We focus on the mean E[Y ], the mean of the discarded tail distri-

bution E[Y |Y ≤ qα(Y )], and the mean of the remaining tail distribution after trimming,

E[Y |Y ≥ qα(Y )].

Theorem 3.5.1 (The trimming factor) The trimming factor α quantifies how much of

an outlier the discarded part of the distribution will be on average. Specifically, the mean
1See Chapter 5 for a definition.
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will be
(

1
α − 1

)
closer to the one-sided trimmed mean than to the mean of the discarded tail

distribution:
E[Y ]− E[Y |Y ≤ qα(Y )]
E[Y |Y ≥ qα(Y )]−E[Y ]

=
1
α
− 1. (3.61)

Proof: Follows from E[Y ] = E[Y |Y ≤ qα(Y )] ·α + E[Y |Y ≥ qα(Y )] · (1−α). Equivalently,

E[Y |Y ≥ qα(Y )]− E[Y ]
E[Y |Y ≥ qα(Y )]− E[Y |Y ≤ qα(Y )]

= α. (3.62)

2

Example: If we trim 10%, resp. 20%, of the data, the mean will be nine, resp. four, times

closer to the one-sided trimmed mean than to the mean of the discarded tail distribution.

In Figure 3-6, we plot Bound (3.61) for α ∈ [0.1, 0.9].
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Figure 3-6: Ratio between distances of tail expectations from the mean.

3.5.2 Gaussian and Worst-Case Distributions for Shortfall

We have:

Theorem 3.5.2 (Bounds on CVaR)

(a) If Y follows a Gaussian distribution with mean E[Y ] and variance V ar(Y ),

E[Y |Y ≥ qα(Y )] = E[Y ] +
φ(Φ−1(α))

1− α

√
V ar(Y ), (3.63)

with φ the density of the standard Gaussian distribution, and Φ its cumulative function.

(b) For any distribution with mean E[Y ] and variance V ar(Y ),
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E[Y |Y ≥ qα(Y )] ≥ E[Y ] +
√

α

1− α

√
V ar(Y ) (3.64)

Proof: (a) We have that E[Z|Z ≤ qβ(Z)] = E[Z]− φ(Φ−1(1− β))
β

√
V ar(Z) for a Gaussian

random variable Z and any trimming factor β ∈ (0, 1) (see Bertsimas et al. [12]). We apply

this result to Z = −Y , β = 1− α, and use that q1−α(Y ) = −qα(−Y ). The proof for (b) is

similar, using another result of Bertsimas et al. [12]. 2

Theorem 3.5.2 gives some insights into the role of the distribution on the relationship

between CVaR and standard deviation.

Figure 3-7 shows the impact of the trimming factor on the CVaR when the distribution

of Y is Gaussian (left panel) or unknown with mean and variance given (right panel). In

both cases, we take E[Y ] = 100 and V ar(Y ) = 400. In practice, the trimming factor is
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Figure 3-7: CVaR with Gaussian (left) and Worst-Case (right) Distributions.

often chosen between 0.1 and 0.2.

3.6 Concluding Remarks

We have presented here a robust approach, based on Conditional Value-at-Risk, that directly

uses the historical data and does not require any estimation procedure. Its appealing

features include its connection to risk aversion, its numerical tractability and its theoretical

insights. It also addresses the limitations encountered by the approach described in Chapter

2. Specifically,

(a) risk aversion is captured by a single parameter, the trimming factor, rather than the

whole utility, which makes the approach easy to implement in real-life applications,
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(b) the robust counterparts are convex formulations with close ties to the stochastic model,

and the methodology can be successfully applied to any convex problem,

(c) the data-driven framework allows for deeper insights into the optimal solution, notably

for linear programming problems with uncertain right-hand side.

Therefore, CVaR holds a significant potential as a robust technique applied to management

problems. It is further analyzed in later chapters of the thesis: in Chapter 4, we compare

it to the robust approach with uncertainty sets, and in Chapter 6, we apply the framework

to common problems in revenue management.
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Chapter 4

Robustness with Uncertainty Sets

and Data Samples: A Comparison

4.1 Background and Contributions

In Chapters 2 and 3, we have taken a robust optimization approach to model randomness

and optimize stochastic systems in a tractable manner. This has involved two techniques:

in Chapter 2, we have represented random variables as unknown parameters belonging to

polyhedral uncertainty sets, and in Chapter 3, we have applied one-sided trimming to the

historical data. While each framework has appealing features, these ideas build on very

different models of uncertainty. The purpose of this chapter is to offer a unified perspective

on robust optimization of stochastic systems, by:

• contrasting the main features of the approaches, and describing the problem structures

where each is most appropriate (Section 4.2),

• studying in depth a case where both methods can be implemented successfully: lin-

ear programming, with an emphasis on how to choose the uncertainty sets and the

parameters so that the frameworks become equivalent (Section 4.3).

Finally, Section 4.4 contains some concluding remarks.
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4.2 Overview

4.2.1 Summary of Features

Table 4.1 summarizes the key features of each approach. The reader is referred to Chapters

2 and 3 for more details on these points.

Approach with Uncertainty Sets Approach with Data Samples
Chapter 2 Chapter 3

Framework Worst-case approach over an Worst-case approach over the set
uncertainty set of adjustable size of past realizations
Removes best and worst cases Removes the best cases only

Parameter Budgets of uncertainty Trimming factor
Required Nominal value of parameters All past realizations

data Half-length of confidence interval (can be somewhat reduced)
Insights Link with deterministic model Link with stochastic model
Features Probabilistic guarantee of constraint Link with risk aversion and

violation in some cases robust optimization on proba-
Models “averaging effect” between -bilities, incorporates learning
good and bad realizations No need for estimation

Correlated Need to adapt uncertainty sets Well suited to correlated
uncertainty Use covariance matrix random variables - no change

Good for Row-wise uncertainty Column-wise uncertainty
Problems with linear combinations Problems with sums of convex
of random variables functions of one random variable

Example Supply Chain Management Revenue Management
Chapter 5 Chapter 6

Table 4.1: Summary of key features.

4.2.2 The Averaging Effect

The main difference between the approaches presented in Chapters 2 and 3 can be described

as follows. In the data-driven framework, we remove a number of realizations that we

consider too optimistic. The other good scenarios are counterbalanced by the bad ones

when we average them to compute the Conditional Value-at-Risk over the remaining data.

In the method with uncertainty sets, the good or bad cases are not evaluated at the global

level (i.e., in terms of cost or revenue for the whole system), but rather at the local level (i.e.,

in terms of the random variables being greater or smaller than their mean, or the uncertain

parameters being greater or smaller than their estimate). In that setting, the good and bad

cases are not necessarily counterbalanced by each other. Such a phenomenon will indeed
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only occur when the problem structure allows for an “averaging effect”. Loosely speaking,

this involves linear combinations of (a large number of) symmetric uncertain parameters,

although the assumption of symmetry can be somewhat relaxed. The fundamental insight

here is that, for the approach with uncertainty sets to perform well1 in practice, upside and

downside risk of each random variable need to cancel each other out when the system is

considered as a whole. This is the basis for diversification in portfolio management: keeping

many different stocks in one’s portfolio decreases the risk of major losses, as it is more likely

that some stocks will appreciate and others will depreciate during the time period. Table

4.2 gives a few examples that are well suited for the approach with uncertainty sets. The

term “linear in uncertainty” below refers to the problem structure and is not related to

the actual choice of the uncertainty sets, which can be polyhedral or ellipsoidal. Table 4.3

lists problems that do not exhibit the averaging effect. The references on the right provide

detailed descriptions of the exact problems considered.

Examples Why References
Inventory management Linear dynamics Bertsimas and Thiele [18]

Same Thesis, Chapter 5
Knapsack problems Linear in uncertainty Bertsimas and Sim [15]
Network flows Linear in uncertainty Bertsimas and Sim [16]
Portfolio management Linear in uncertainty Goldfarb and Iyengar [38]

Same Bertsimas and Sim [15]
Same Pachamanova [51]

Table 4.2: Some problems with an averaging effect.

Examples Why References
LP with column-wise Need to protect each Soyster [62]
uncertainty row
Newsvendor problem Profit in f ′min(x,d) Thesis, Chapter 6

Higher demand is lost
Optimal Stopping Time Highest offer only is Bertsekas [8]
(Asset Selling) retained
Seat allocation in airline Profit in f ′min(x,d) Thesis, Chapter 6
revenue management Unused seats are lost

Table 4.3: Some problems without averaging effect.

1By “perform well”, we mean that the approach should protect the system against a reasonable amount
of uncertainty without being overly conservative.
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4.3 Linear Programming Problems

4.3.1 Generalities

In this section, we apply the robust approaches to linear programming problems with row-

wise uncertainty. It follows from the discussion in Section 4.2 that the method with uncer-

tainty sets will perform well in this setting, and the data-driven framework can be applied

to any convex problem with ease. This allows us to compare in greater depth the features

of each approach. We are particularly interested in studying constraint protection from

both perspectives, and investigating whether the uncertainty sets can be chosen so that the

frameworks become equivalent.

We consider a linear programming problem of the type:

max c′x

s.t. Ax ≤ b,
(4.1)

where we assume w.l.o.g. that only A is random, and focus on any row of that formulation:

a′x ≤ b, (4.2)

where we have dropped the row index for simplicity. We have at our disposal N past

realizations of the random vector, a1, . . . ,aN and use this data sample to either build

uncertainty sets or to implement the data-driven framework.

Uncertainty set:

Following the approach developed in Chapter 2, we first model each aj as an uncertain

parameter in the interval [aj − âj , aj + âj ], and bound the total deviation
∑n

j=1 |aj − aj |/âj

by Γ. The choice of aj and âj as a function of the observations is made more precise below.

We assume that Γ is integer for our analysis. (4.2) becomes:

a′x + max
n∑

j=1

âj |xj | zj ≤ b,

s.t.
n∑

j=1

zj ≤ Γ,

0 ≤ zj ≤ 1, ∀j.

(4.3)
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Therefore, (4.3) is equivalent to:

a′x +
Γ∑

j=1

(â· |x·|)(j) ≤ b, (4.4)

where y(k) is the k-th greatest component of a vector y. In particular, the level of constraint

protection is:

βu(x) =
Γ∑

j=1

(â· |x·|)(j) . (4.5)

Data samples:

In the robust data-driven approach, we are given the trimming factor α and the number

Nα of realizations left after trimming. (4.2) is rewritten as:

E[a′x|a′x ≥ qα(a′x)] ≤ b, (4.6)

which in turn is estimated by:
1

Nα

Nα∑

k=1

(a·′x)(k) ≤ b. (4.7)

With a = (1/N) ·∑N
k=1 ak, (4.7) is equivalent to:

a′x +
1

Nα

Nα∑

k=1

(
(a· − a)′x

)
(k) ≤ b, (4.8)

yielding the level of constraint protection:

βv(x) =
1

Nα

Nα∑

k=1

(
(a· − a)′x

)
(k) . (4.9)

4.3.2 Models of Randomness

Theorem 4.3.1 (Preliminary results) The levels of constraint protection βu(x) and βv(x)

are nondecreasing in Γ and α, respectively. Furthermore, we have:

[βu(x)]Γ=0 = [βv(x)]α=0 = 0. (4.10)

Proof: Follows immediately from (4.5) and (4.9). 2

In the general case, let SΓ be the set of Γ greatest âj |xj | and let Sα be the set of Nα
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worst-case scenarios. We define the half-length âj as:

âj = max
k
|akj − aj |, ∀j. (4.11)

Therefore, for any scenario k, there exists zkj ∈ [−1, 1] such that akj = aj + âj · zkj . Let

< zj > be the average of zkj over the set of worst-case scenarios Sα. We want to compare

βu(x) =
∑

j∈SΓ
âj |xj | with βv(x) =

∑n
j=1 âj xj < zj >.

First we consider the extreme cases Γ = n and α = 1 (i.e., Nα = 1).

Theorem 4.3.2 (Extreme cases) We have:

[βv(x)]α=1 ≤ [βu(x)]Γ=n . (4.12)

(4.12) is an equality:

- for a given x if and only if the vector ã where ãj = aj + âj sign(xj) for all j is among

the scenarios,

- for any x if and only if the 2n vectors ã such that, for all j, ãj = aj + âj or ãj = aj − âj

are among the scenarios.

In other words, there must be a scenario that realizes the worst cases for each component.

Therefore, the probability, when the scenarios are generated randomly, that (4.12) is an

equality decreases exponentially fast with n.

Proof: (4.5) becomes:

[βu(x)]Γ=n =
n∑

j=1

âj |xj |. (4.13)

On the other hand, (4.9) is now:

[βv(x)]α=1 =
n∑

j=1

âj xj z(1)j , (4.14)

where z(1)j denotes the components zkj of the worst-case scenario. Since zkj ∈ [−1, 1] for

all k, j, we have xj zkj ≤ |xj | for all j. This proves (4.12). We analyze the case where (4.12)

is an equality by studying when xj z(1)j = |xj | for all j and for a given x or any x. 2
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Theorem 4.3.3 (Interdependence of the models) We have:

∀α ∈ [0, 1], ∃ Γ ∈ [0, n], s.t. [βu(x)]Γ ≤ [βv(x)]α < [βu(x)]Γ+1 . (4.15)

Therefore, the data-driven approach applied to linear constraints is equivalent to the ap-

proach with uncertainty sets for well-chosen parameters.

Proof: Follows from [βu(x)]Γ=0 = [βv(x)]α=0 = 0,[βv(x)]α=1 ≤ [βu(x)]Γ=n, and the mono-

tonicity of βu(x) in Γ, resp. βv(x) in α. 2

Figure 4-1 shows the resulting constraints protections when x = e and the aj , j = 1, . . . , n,

are i.i.d. random variables in {−1, 1} with equal probability, for n = 10 or 50 random vari-

ables and N = 50 or 5, 000 scenarios generated. (For clarity, the x-axis for Γ is not shown,

but Γ varies from 0 to n.) As expected from Theorem 4.3.2, for n = 10 and N = 5, 000,

enough scenarios are generated for the two approaches to be equivalent. In the other cases

however, the constraint can be much more protected when the method with uncertainty

sets is used. For n = 10 and N = 50, all βv(x) are smaller than βu(x) computed with

Γ = 5. For n = 50, all βv(x) are smaller than βu(x) computed with Γ = 15 for N = 50 and

Γ = 25 for N = 5, 000.
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Figure 4-1: Constraint protections with n = 10 (left) and n = 50 (right).

4.3.3 Extensions

It is legitimate to ask if the results derived in Section 4.3.2 depend on the assumption of

symmetry and independence of the random variables. We address this question next by

considering two extensions: (a) asymmetric and (b) correlated sources of uncertainty.

91



Asymmetric random variables

In some cases, the historical data might strongly indicate that the random variables are

asymmetric. As a result, we might want to model the aj by uncertain parameters in

asymmetric intervals [aj − â−j , aj + â+
j ], with:

â+
j = max

k
(ajk − aj) , â−j = max

k
(aj − ajk) . (4.16)

The approach with uncertainty sets will consider:

a′x + max
n∑

j=1

(
â+

j xj z +
j − â−j xj z−j

)
≤ b,

s.t.
n∑

j=1

(
z +
j + z−j

)
≤ Γ,

z +
j + z−j ≤ 1, ∀j,

z +
j , z−j ≥ 0, ∀j.

(4.17)

(4.17) is equivalent to:

a′x +
Γ∑

j=1

(
max

(
â+

j xj ,−â−j xj

))
(j)

︸ ︷︷ ︸
=βu(x)

≤ b. (4.18)

We also have:

βv(x) =
1

Nα

Nα∑

k=1




n∑

j=1

(
â+

j xj z +
j − â−j xj z−j

)



(k)

=
n∑

j=1

(
â+

j xj <z +
j > −â−j xj <z−j >

)
,

(4.19)

where <z−j > and <z +
j > are the average of zjk over the worst-case scenarios.

Theorem 4.3.4 (Asymmetric random variables) βu(x), resp. βv(x), is nondecreas-

ing in Γ, resp. α, and we have:

[βu(x)]Γ=0 = [βv(x)]α=0 = 0, [βu(x)]Γ=n ≥ [βv(x)]α=1. (4.20)

Consequently,

∀α ∈ [0, 1], ∃ Γ ∈ [0, n], s.t. [βu(x)]Γ ≤ [βv(x)]α < [βu(x)]Γ+1 . (4.21)
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Therefore, the data-driven approach applied to linear constraints is equivalent to the ap-

proach with uncertainty sets.

Proof: Follows immediately from above. 2

Correlated random variables

In practice, the random variables aj might be correlated. The data-driven approach does

not require this information and therefore can be implemented without any change. We

now discuss how correlation affects uncertainty sets.

For simplicity, we assume that the random variables are symmetric. If we define âj =

maxk |aj k − aj | for all j as before, the realizations of the random variables still fall within

the box [a1− â1, a1 + â1]× . . .× [an− ân, an + ân]. However, the assumption that the total

scaled deviation from the mean remains relatively small (
∑n

j=1 |zi| ≤ Γ) is not justified any

more, as for instance (1, . . . , 1) and (−1, . . . ,−1) might be the only possible values for z.

Hence, we need to consider another polyhedron to model correlated uncertainty. Let a be

the sample mean and A be the covariance matrix of the realizations (a1, . . . ,aN). We define

âi = maxk

∣∣∣A−1/2(ak − a)
∣∣∣
i
and use the polyhedral set:

P =

{
z, aj = aj +

∑

i

A
1/2
ji âi zi, |zi| ≤ 1, ∀i,

n∑

i=1

|zi| ≤ Γ

}
. (4.22)

Let zk = diag(1/â)A−1/2(ak − a) for any scenario k. Straightforward calculations lead to,

at x given:

βu(x) =
Γ∑

i=1


â·

∣∣∣∣∣∣

n∑

j=1

A
1/2
j · xj

∣∣∣∣∣∣




(i)

, (4.23)

where we note y(1) ≥ . . . y(n), and:

βv(x) =
1

Nα

Nα∑

k=1

(
(a− a)′x

)
(k) =

n∑

i=1




n∑

j=1

A
1/2
ji xj


 âi <zi>, (4.24)

where < zi > is the average of the zik over the set of worst-case scenarios. It follows

immediately that:

Theorem 4.3.5 (Correlated random variables) βu(x), resp. βv(x), is nondecreasing

in Γ, resp. α, and [βu(x)]Γ=0 = [βv(x)]α=0 = 0, [βu(x)]Γ=n ≥ [βv(x)]α=1. Therefore,
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∀α ∈ [0, 1], ∃ Γ ∈ [0, n], s.t. [βu(x)]Γ ≤ [βv(x)]α < [βu(x)]Γ+1 and the data-driven approach

is equivalent to the approach with uncertainty sets.

4.3.4 An Example

Here, we consider the example of a knapsack linear programming problem with random

cost coefficients, which are independent and symmetric:

min
n∑

j=1

cj xj

s.t.
n∑

j=1

wj xj ≥ W,

0 ≤ xj ≤ 1, ∀j,

(4.25)

where wj = 20 + j for all j. We study two distributions to generate the historical data for

the cj : Gaussian with mean cj = 10 + 2 j, standard deviation 0.067 cj , and Bernoulli such

that cj = 0.8 cj w.p. 1/2, and cj = 1.2 cj w.p. 1/2. This corresponds to ĉj = 0.2 cj for all

j. The standard deviation of the Gaussian distribution is chosen so that the realizations

for both distributions fall approximately within [cj − ĉj , cj + ĉj ] for all j. We generate 100

scenarios to serve as historical data. Then we implement the robust approaches, and test the

solutions they give us on a sample of 1, 000 new realizations of the same distribution. Let

Crob be the optimal cost given by the robust approach considered. We evaluate performance

by computing P
(∑n

j=1 cj xj > Crob

)
and E[max(0,

∑n
j=1 cj xj −Crob)]. They represent the

probability that the actual cost will be greater than the threshold Crob, and the expected

value of the cost in excess. In the figures, the results for the approach with uncertainty sets,

resp. the data-driven approach, are shown on the left, resp. on the right. To compare the

trends more easily, the plots for the data-driven approach are function of N − Nα rather

than α.

First set of experiments: n = 10

We take W = 150. Figure 4-2 shows the evolution of the robust cost, i.e., the optimal

value of the robust formulations, as Γ varies from 0 to n and α varies from 0 to 1. We

observe that the cost increases much more in the approach with uncertainty sets than in

the one with trimming. This is related to the fact, noted above, that the approach with
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uncertainty sets allows for more constraint protection. In Figures 4-3 and 4-4, we observe

that the probability and expected value of constraint violation decrease more sharply when

we use uncertainty sets.
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Figure 4-2: Robust cost, Case 1.
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Figure 4-3: Probability of constraint violation, Case 1.

Second set of experiments: n = 50

We take W = 1, 500. When n = 50, the approach with uncertainty sets has the potential

to be much more conservative (Figure 4-5, left), but the probability of constraint violation

(Figure 4-6, left) decreases very fast (for instance, it is less than 0.005 for both distributions

when Γ = 15). This is also true of the expected value of the constraint violation (Figure

4-7, left), which is less than 0.1 for both distributions at Γ = 15, although it was of the

order of 10 to 20 at Γ = 0. On the other hand, the results for the data-driven approach are

somewhat disappointing, as the probability (Figure 4-6, right) and expected value (Figure
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Figure 4-4: Expected value of constraint violation, Case 1.

4-7, right) of the constraint violation decrease very slowly. This can be explained as follows:

the 100 historical realizations represent only a tiny fraction of the possible values taken by

the uncertainty. For instance, if the random variables are binomial, we can have at most 100

different scenarios, while the total number of possible cases is 250 ≈ 1015. This exacerbates

the trends mentioned in the first set of experiments, as the data-driven approach does not

have a range of possible scenarios large enough to adequately protect the system.
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Figure 4-5: Robust cost, Case 2.

Conclusions:

This numerical experiment suggests that the approach with uncertainty sets performs better

than the data-driven approach for problems with row-wise uncertainty.
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Figure 4-6: Probability of constraint violation, Case 2.
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Figure 4-7: Expected value of constraint violation, Case 2.

4.4 Concluding Remarks

In this chapter, we have unified the techniques developed in Chapters 2 and 3 in a single

robust optimization framework, by comparing the key features of the approaches and dis-

cussing when each is most appropriate. We have also analyzed the methods in detail in

the case of linear programming problems with row-wise uncertainty. It emerges from this

work that the approach with uncertainty sets should be preferred whenever possible, i.e.,

whenever the uncertainty structure allows for an averaging effect.
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Chapter 5

Application to Supply Chains

5.1 Background and Contributions

Optimal supply chain management has been extensively studied in the past with much

theoretical success. Dynamic programming has long emerged as the standard tool for this

purpose, and has lead to significant breakthroughs as early as 1960, when Clark and Scarf

proved the optimality of basestock policies for series systems in their landmark paper [28].

It has generated a considerable amount of research interest, with contributions by Iglehart

[39], Veinott [66] and Veinott and Wagner [67], to name only a few. Although dynamic

programming is a powerful technique as to the theoretical characterization of the optimal

ordering policy for simple systems, the complexity of the underlying recursive equations

over a growing number of state variables makes it ill-suited for the computation of the ac-

tual policy parameters, which is crucial for real-life applications. As a result, preference for

implementation purposes is given to more intuitive policies that are much easier to compute,

but also suboptimal.

Bramel and Simchi-Levi in [21] and Zipkin in [74] describe policies widely used in prac-

tice, such as the Economic-Order-Quantity model, where the demand is constant over time,

and the Dynamic-Economic-Lotsize model, which incorporates time-varying demands, for

single installations. In both cases, the demand is considered to be without any uncertainty.

Myopic policies, which minimize the cost solely at the current time period, are also often

used as a substitute for the optimal policy obtained by dynamic programming. For supply

chains more complex than series systems, “the curse of dimensionality” plagues even the

theoretical use of dynamic programming to find the structure of the optimal policy, thus
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making it necessary to resort to approximations.

Dynamic programming also assumes full knowledge of the underlying distributions,

which further limits its practical usefulness. The first attempt to address the issue of

imperfect information in inventory control is due to Scarf [57], who studied the optimal pol-

icy for the most adverse distribution in a one-period one-stage inventory model where only

the mean and the variance of the demand are known. Moon and Gallego later extended

this approach to single-period newsboy problems [47] and to one-stage inventory models

with a fixed reorder quantity and under periodic review [48]. Similar ideas were applied to

finite-horizon inventory models by Gallego et. al. [36], under the assumption that demand is

a discrete random variable taking values in a known countable set. However, their approach

relies on dynamic programming and, as a result, suffers from similar practical limitations.

Hence, the need arises to develop a new optimization approach that incorporates the

stochastic character of the demand in the supply chain without making any assumptions

on its distribution, and combines computational tractability with the structural properties

of the optimal policy. In the light of the results derived in the previous chapters, robust

optimization appears as a promising technique to develop such an approach.

Specifically, the contributions of this chapter are:

1. We develop an approach that incorporates demand randomness in a deterministic

manner, remains numerically tractable as the dimension of the problem increases and

leads to high-quality solutions without assuming a specific demand distribution. In

particular, preliminary computational results are quite promising.

2. The robust problem is of the same class as the nominal problem, that is, a linear

programming problem if there are no fixed costs or a mixed integer programming

problem if fixed costs are present, independently of the topology of the network.

Moreover, the optimal robust policy is identical to the optimal nominal policy for a

modified demand sequence.

3. The optimal robust policy is qualitatively similar to the optimal policy obtained by

dynamic programming when known. In particular, it remains basestock when the

optimal stochastic policy is basestock, as well as in some other cases where the optimal

stochastic policy is not known.

4. We derive closed-form expressions of key parameters defining the optimal policy.
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These expressions provide a deeper insight into the way uncertainty affects the optimal

policy in supply chain problems.

The remainder of this chapter is structured as follows: Section 5.2 introduces the frame-

work in the single station case, and Section 5.3 considers general networks. Extensions

are discussed in Section 5.4. Section 5.5 presents computational results. The last section

summarizes our findings.

5.2 Single Station

5.2.1 Problem Formulation

In this section we apply the robust optimization framework to the problem of ordering, at a

single installation, a single type of item subject to stochastic demand over a finite discrete

horizon of T periods, so as to minimize a given cost function. We follow closely Bertsekas [8]

in our setting. We define, for t = 0, . . . , T :

xt : the stock available at the beginning of the t-th period,

ut : the stock ordered at the beginning of the t-th period,

wt : the demand during the t-th period.

The stock ordered at the beginning of the t-th period is delivered before the beginning of

the (t+1)-st period, that is, all orders have a constant leadtime equal to 0. Excess demand

is backlogged. Therefore, the evolution of the stock over time is described by the following

linear equation:

xt+1 = xt + ut − wt, t = 0, . . . , T − 1, (5.1)

leading to the closed-form expression:

xt+1 = x0 +
t∑

τ=0

(uτ − wτ ), t = 0, . . . , T − 1. (5.2)

Neither the stock available nor the quantity ordered at each period are subject to upper

bounds. Section 5.4.1 deals with the capacitated case.

The demands wt are random variables. Because the dynamics of the system are lin-

ear, the discussion in Chapter 4 motivates using the robust optimization approach with

uncertainty sets developed in Chapter 2. In other words, the fact that at time t + 1 the

101



uncertainty affects the state xt+1 through the sum of random variables
∑t

τ=0 wτ (rather

than, say, wt only) creates an averaging effect for the demands across the different time

periods. As we have explained in Section 4.2, this makes a description of randomness based

on uncertainty sets well suited for this type of problems. Therefore, we model wt for each

t as an uncertain parameter that takes values in [wt − ŵt, wt + ŵt], and impose budgets of

uncertainty at each time period t for the scaled deviations up to that time:
∑t

τ=0 |zτ | ≤ Γt.

As in Section 2.3, the main assumption we make on the Γt is that they are increasing in

t, i.e., we feel that uncertainty increases with the number of time periods considered. We

also constrain the Γt to be increasing by at most 1 at each time period, i.e., the increase of

the budgets of uncertainty should not exceed the number of new parameters added at each

time period.

Finally, we specify the cost function. The cost incurred at period t consists of two parts:

a purchasing cost C(ut) and a holding/shortage cost resulting from this order R(xt+ut−wt),

which is computed at the end of the end of the period, after the shipment ut has been re-

ceived and the demand wt has been realized. Here, we consider a purchasing cost of the

form:

C(u) =





K + c · u, if u > 0,

0, if u = 0,
(5.3)

with c > 0 the unit variable cost and K ≥ 0 the fixed cost. If K > 0, a fixed positive

cost is incurred whenever an order is made. The holding/shortage cost represents the cost

associated with having either excess inventory (positive stock) or unfilled demand (negative

stock). We consider a convex, piecewise linear holding/shortage cost:

R(x) = max(hx,−px), (5.4)

where h and p are nonnegative. We assume p > c, so that ordering stock remains a

possibility up to the last period. In mathematical terms, the inventory problem at demand

given is:
min

T−1∑

t=0

(
c ut + K 1{ut>0} + max(h xt+1,−p xt+1)

)

s.t. xt+1 = xt + ut − wt, ∀t,

ut ≥ 0, ∀t.

(5.5)

If K = 0, the cost function is convex. If K > 0, it is K-convex, where K-convexity is

defined by Scarf in [58] and Bertsekas in [8] as:
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Definition 5.2.1 (K-convexity) A real-valued function f is K-convex with K ≥ 0 if, for

any y, any z ≥ y and b > 0, we have:

K + f(z) ≥ f(y) +
z − y

b
(f(y)− f(y − b)). (5.6)

Chen and Simchi-Levi propose in [27] the equivalent definition, which might be more in-

sightful to contrast K-convexity with convexity:

Definition 5.2.2 (Equivalent definition of K-convexity) A real-valued function f is

K-convex with K ≥ 0 if, for any y, any z ≥ y and λ ∈ [0, 1], we have:

f ((1− λ) y + λ z) ≤ (1− λ) f(y) + λ f(z) + λ K. (5.7)

Using the piecewise linearity and convexity of the holding/shortage cost function, and mod-

elling the fixed ordering cost with binary variables, (5.5) can be written as a mixed integer

programming (MIP) problem:

min
T−1∑

t=0

(c ut + K vt + yt)

s.t. yt ≥ h

(
x0 +

t∑

τ=0

(uτ − wτ )

)
, t = 0, . . . , T − 1,

yt ≥ −p

(
x0 +

t∑

τ=0

(uτ − wτ )

)
, t = 0, . . . , T − 1,

0 ≤ ut ≤ Mvt, vt ∈ {0, 1}, t = 0, . . . , T − 1,

(5.8)

where wτ = wτ + ŵτ · zτ such that z ∈ P = {|zτ | ≤ 1 ∀τ ≥ 0,
∑t

τ=0 |zτ | ≤ Γt ∀t ≥ 0}. The

following theorem presents the robust counterpart of this formulation.

Theorem 5.2.1 (The robust problem) The robust inventory problem is:

min
T−1∑

t=0

(c ut + K vt + yt)

s.t. yt ≥ h

(
x0 +

t∑

τ=0

(uτ − wτ ) + qtΓt +
t∑

τ=0

rτt

)
, ∀t,

yt ≥ p

(
−x0 −

t∑

τ=0

(uτ − wτ ) + qtΓt +
t∑

τ=0

rτt

)
, ∀t,

qt + rτt ≥ ŵτ , ∀t, ∀τ ≤ t,

qt ≥ 0, rτt ≥ 0, ∀t, ∀τ ≤ t,

0 ≤ ut ≤ M vt, vt ∈ {0, 1}, ∀t,

(5.9)
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where M is a large positive number. The robust problem is of the same class as its deter-

ministic counterpart: a LP if there are no fixed costs (K = 0) and a MIP if fixed costs are

present (K > 0).

Proof: Follows from Theorem 2.3.1. 2

Interpretation: The variables qt and rτt quantify the sensitivity of the cost to infinitesimal

changes in the key parameters of the robust approach, namely the level of conservativeness

and the bounds of the uncertain variables. At each time period t, qt Γt+
∑t

τ=0 rτt represents

the worst-case deviation of the cumulative demand from its nominal value, subject to the

budgets of uncertainty.

Therefore, the robust model can readily be solved numerically through standard opti-

mization tools, which is of course very appealing. It is also desirable to have some theoretical

understanding of the optimal policy, in particular with respect to the optimal nominal policy

and, if known, the optimal stochastic policy. We address these questions next.

5.2.2 Theoretical Properties

First we define basestock policies, which play a critical role in the analysis of inventory

systems.

Definition 5.2.3 ((S,S) and (s,S) policies) The optimal policy of a discrete-horizon in-

ventory problem is said to be (s, S), or basestock, if there exists a threshold sequence (st, St)

such that, at each time period t, it is optimal to order St − xt if xt < st and 0 otherwise,

with st ≤ St. If there is no fixed ordering cost (K = 0), st = St.

In order to analyze the optimal robust policy, we need the following lemma:

Lemma 5.2.2 (Optimal nominal and stochastic policy)

(a) The optimal policy in the stochastic case, where the cost to minimize is the expected

value of the cost function over the random variables wk, is (s, S). As a result, the optimal

policy for the nominal problem is also (s, S).

(b) For the nominal problem without fixed cost, the optimal policy for the nominal case is

(S,S) with the threshold at time t being St = wt.

(c) For the nominal problem with fixed cost, if we denote by tj (j = 1, . . . , J) the times

where stock is ordered and sj, Sj the corresponding thresholds at time tj, we have:
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Sj =
Ij∑

τ=0

wtj+τ , (5.10)

and

s1 = x0 −
t1−1∑

τ=0

wτ , sj = −
Lj−1−1∑

τ=Ij−1+1

wtj−1+τ , j ≥ 2, (5.11)

where Lj = tj+1 − tj and Ij =
⌊
pLj − c 1{j=J}

h + p

⌋
.

Proof: (a) See [8] for the optimality of basestock policies in the stochastic case. The

nominal problem is a special case where the random variables are equal to their nominal

value with probability 1.

(b) For the nominal case without fixed cost, the policy u defined by:

ut =





wt − xt, if xt < wt,

0, otherwise,
(5.12)

is feasible and incurs the cost COST = c
(∑T−1

t=0 wt − x0

)
+h

∑I
t=0

(
x0 −

∑t
τ=0 wτ

)
, where

I is the largest integer t such that x0 −
∑t

τ=0 wτ ≥ 0. We assume I < T − 1, otherwise the

problem is trivial. We consider the dual of this linear programming problem:

max
T∑

t=1

(
x0 −

t−1∑

τ=0

wτ

)
(hαt − p βt)

s.t. −h
T∑

τ=t

ατ + p
T∑

τ=t

βτ ≤ c, ∀t,

αt + βt = 1, ∀t,

αt ≥ 0, βt ≥ 0, ∀t.

(5.13)

The following solution is dual feasible with cost equal to COST , proving (b) by strong

duality:

αt =





1, if x0 −
t−1∑

τ=0

wτ ≥ 0,

p− c 1{t=T}
h + p , otherwise

, βt = 1− αt. (5.14)

(c) In the case with fixed cost, we consider the optimal ordering times as given (that is,

v∗ is given). The problem becomes a linear programming problem. Let tj , j = 1, . . . , J , be

the times when an amount of stock uj is ordered. The cost function can be decomposed
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in J + 1 pieces, the jth piece (j = 0, . . . , J) representing the cost incurred from time tj

up to tj+1 (non included), with the conventions t0 = −1 and tJ+1 = T . The minimization

problem is solved recursively backwards for j = 1, . . . , J , for the cumulative cost from step j

onward. Let Ij be the greatest integer i in [1, Lj ] such that xtj+i > 0, where Lj = tj+1− tj .

(If xtj+i ≤ 0 for all i ∈ [1, Lj ], we take Ij = 0.) The cost function for the J-th piece can be

rewritten as:

cuJ + h
IJ−1∑

t=0

(
xt

J
+ uJ −

t∑

τ=0

wt
J
+τ

)
+ p

LJ−1∑

t=IJ

(
−xt

J
− uJ +

t∑

τ=0

wt
J
+τ

)
, (5.15)

and is therefore linear in uJ with slope (h+p)IJ +c−pLJ , with uJ subject to the constraint:
∑IJ−1

τ=0 wtJ+τ < xtJ +uJ ≤
∑IJ

τ=0 wtJ+τ from the definition of IJ . This function is minimized

for:

I∗J =
⌊
pLJ − c

h + p

⌋
, xtJ + u∗J =

I∗J∑

τ=0

wtJ+τ . (5.16)

Moreover, we have xtJ+LJ
= xtJ+1 = xtJ + u∗J −

∑LJ−1
τ=0 wtJ+τ = −∑LJ−1

τ=I∗J+1 wtJ+τ . At

optimality, the cost function at the last time period is equal to c
(∑I∗J

τ=0 wtJ+τ − xtJ

)
+

h
∑IJ−1

t=0

(∑I∗J
τ=t+1 wtJ+τ

)
+ p

∑LJ−1
t=IJ+1

(∑t
τ=I∗J+1 wtJ+τ

)
.

After step j + 1, we see that at optimality the cumulative cost at step j + 1 affects the

cumulative cost at step j only through −c xtj+1 , which depends on Ij and the data of the

problem. The cumulative cost function at step j is minimized for:

I∗j =
⌊

pLj

h + p

⌋
, xtj + u∗j =

I∗j∑

τ=0

wtj+τ . (5.17)

Moreover, we have xtj+Lj = xtj+1 = xtj + u∗j −
∑Lj−1

τ=0 wtj+τ = −∑Lj−1
τ=I∗j +1 wtj+τ . Using the

definition of s and S in a (s, S) policy, it follows immediately that:

sj = −
Lj−1−1∑

τ=I∗j−1+1

wtj−1+τ , ∀j ≥ 2, Sj =
I∗j∑

τ=0

wtj+τ , ∀j ≥ 1, (5.18)

with I∗j =
⌊
pLj − c 1{j=J}

h + p

⌋
. s1 is obtained by the dynamics equation, using s1 = xt1 . 2

We next present the main result regarding the structure of the optimal robust policy.

Theorem 5.2.3 (Optimal robust policy)

(a) The optimal policy in the robust formulation (5.9), evaluated at time 0 for the rest of
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the horizon, is the optimal policy for the nominal problem with the modified demand:

w′t = wt +
p− h

p + h
(At −At−1) , (5.19)

where At = q∗t Γt+
∑t

τ=0 r∗τt is the deviation of the cumulative demand from its mean at time

t, q∗ and r∗ being the optimal q and r variables in (5.9). (By convention q−1 = r·,−1 = 0.)

In particular it is (S, S) if there is no fixed cost and (s, S) if there is a fixed cost.

(b) If there is no fixed cost, the optimal robust policy is (S,S) with St = w′t for all t.

(c) If there is a fixed cost, the corresponding thresholds Sj, sj, where j = 1, . . . , J indexes

the ordering times, are given by Equations (5.10) and (5.11) applied to the modified demand

w′t.

(d) The optimal cost of the robust problem (5.9) is equal to the optimal cost for the nominal

problem with the modified demand plus a term representing the extra cost incurred by the

robust policy, 2ph
p + h

∑T−1
t=0 At.

Proof: Let xt+1 = x0 +
∑t

τ=0(uτ − wτ ) be the inventory that we would have at time t if

there was no uncertainty on the demand. We use that:

max (h(xt+1 + At), p(−xt+1 + At)) = max
(
h x′t+1,−p x′t+1

)
+

2ph

p + h

T−1∑

t=0

At, (5.20)

with:

x′t+1 = xt+1 − p− h

p + h
At, ∀t. (5.21)

x′ can be interpreted as a modified stock variable with the following dynamics:

x′t+1 = x′t + ut −
(

wt +
p− h

p + h
(At −At−1)

)

︸ ︷︷ ︸
=w′t

, (5.22)

with x′0 = x0. Note that, at q and r given, the modified demand w′t is not subject to

uncertainty. The reformulation of the robust model as a nominal inventory problem in the

modified stock variable x′k (plus the fixed cost 2ph
p + h

∑T−1
k=0 Ak) follows immediately. This

proves (a) and (d). We conclude that (b) and (c) hold by invoking Lemma 5.2.2. 2

Remarks:

1. Since Γt−1 ≤ Γt for all t, we have At−1 ≤ At for all t. (At = max
∑t

τ=0 ŵτzτ s.t.
∑t

τ=0 zτ ≤ Γt, 0 ≤ zτ ≤ 1, so the feasible domain increases in t.) Therefore, w′t will

107



be greater than wt if p > h (that is, if shortage costs are more expensive than holding

costs, we increase the “safety stock”), smaller than wt if p < h (if holding costs are

more expensive, we want to make sure that we will not be left with extra items), and

equal to wt if p = h.

2. Using a similar argument as above, and since Γt ≤ Γt−1 + 1 for all t, we have At ≤
At−1 + ŵt for all t. Therefore, at time t, w′t belongs to

[
wt, wt + p− h

p + hŵt

]
if p ≥ h

and
[
wt + p− h

p + hŵt, wt

]
if p < h. The extreme case is p = h, where w′t = wt for all t

and Γt.

3. For the case without fixed cost, and for the case with fixed cost when the optimal

ordering times are given, the robust approach leads to the thresholds in closed form.

For instance, if the demand is i.i.d. (wt = w, ŵt = ŵ for all t), we have At = ŵ Γt

and, if there is no fixed cost, St = w′t = w + p− h
p + h ŵ (Γt − Γt−1) for all t.

Hence, the robust approach protects against the uncertainty of the demand while main-

taining striking similarities with the nominal problem, remains computationally tractable

and is easy to understand intuitively.

5.3 Series Systems and Trees

5.3.1 Problem Formulation

We now extend the results of Section 5.2 to the network case. We focus on tree networks,

which are well suited to describe supply chains because of their hierarchical structure: the

main storage hubs (the sources of the network) receive their supplies from outside manu-

facturing plants and send items throughout the network, each time bringing them closer to

their final destination, until they reach the stores (the sinks of the network). Let S be the

number of sink nodes. When there is only one sink node, the tree network is called a series

system.

We define echelon k, for k = 1, . . . , N with N the total number of nodes in the net-

work, to be the union of all the installations, including k itself, that can receive stock from

installation k, and the links between them. This is the definition used by Clark and Scarf

in [28] as well as Zipkin in [74] when they consider tree networks. In the special case of

series systems, we number the installations such that for k = 1, . . . , N , the items transit
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from installation k + 1 to k, with installation N receiving its supply from the plant and

installation 1 being the only sink node, as in [28]. In that case, the demand at installation

k + 1 at time t is the amount of stock ordered at installation k at the same time t.

We also define, for k = 1, . . . , N :

Ik(t) : the stock available at the beginning of period t at installation k,

Xk(t) : the stock available at the beginning of period t at echelon k,

Uikk(t) : the stock ordered at the beginning of period t at echelon k to its supplier ik,

Ws(t) : the demand at sink node s during period t, s = 1, . . . , S.

Let N(k) be the set of installations supplied by installation k and O(k) the set of sink

nodes in echelon k. We assume constant leadtimes equal to 0, backlog of excess demand,

and linear dynamics for the stock at installation k over time (k = 1, . . . , N):

Ik(t + 1) = Ik(t) + Uikk(t)−
∑

j∈N(k)

Ukj(t), t = 0, . . . , T − 1, (5.23)

By convention, if k is a sink node s,
∑

j∈N(k) Ukj(t) = Ws(t). This leads to the following

dynamics for the stock at echelon k:

Xk(t + 1) = Xk(t) + Uikk(t)−
∑

s∈O(k)

Ws(t), t = 0, . . . , T − 1. (5.24)

Furthermore, the stock ordered by echelon k at time t is subject to the coupling con-

straint: ∑

i∈N(k)

Uki(t) ≤ max(Ik(t), 0), ∀k, ∀t, (5.25)

that is, the total order made to a supplier cannot exceed what the supplier has currently in

stock, or, equivalently, the supplier can only send through the network items that it really

has. Since the network was empty when it started operating at time t0 = −∞, it follows

by induction on t that Ik(t) ≥ 0 for all k ≥ 2. Therefore the coupling constraint between

echelons is linear and can be rewritten as:

∑

i∈N(k)

Uki(t) ≤ Xk(t)−
∑

i∈N(k)

Xi(t), ∀k, ∀t. (5.26)

Neither the echelon inventories nor the orders are capacitated, although the approach can

be extended to incorporate this case (see Section 5.4).

Finally, we specify the cost function. We assume that each echelon k has the same
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cost structure as the single installation modelled in Section 5.2 with specific parameters

(ck, Kk, hk, pk). We also keep here the same notations and assumptions as in Section 5.2

regarding the uncertainty structure at each sink node. In particular, each sink node s has

its own threshold sequence Γs(t) evolving over time that represents the total budget of

uncertainty allowed up to time t for sink s. We have Ws(t) = W s(t) + Ŵs(t) · Zs(t) such

that the Zs(t) belong to the set Ps = {|Zs(t)| ≤ 1 ∀t, ∑t
τ=0 Zs(τ) ≤ Γs(t), ∀t}. We assume

0 ≤ Γs(t)− Γs(t− 1) ≤ 1 for all s and t, that is, the budgets of uncertainty are increasing

in t at each sink node, but cannot increase by more than 1 at each time period.

Theorem 5.3.1 (The robust problem) The robust problem is:

min
T−1∑

t=0

N∑

k=1

∑

i∈N(k)

{ckiUki(t) + KkiVki(t) + Yi(t)}

s.t. Yi(t) ≥ hi



Xi(t + 1) +

∑

s∈O(i)

(
qs(t)Γs(t) +

t∑

τ=0

rs(τ, t)

)

 , ∀i, ∀t,

Yi(t) ≥ pi



−Xi(t + 1) +

∑

s∈O(i)

(
qs(t)Γs(t) +

t∑

τ=0

rs(τ, t)

)

 , ∀i, ∀t,

∑

i∈N(k)

Uki(t) ≤ Xk(t)−
∑

i∈N(k)

Xi(t), ∀k, ∀t,

qs(t) + rs(τ, t) ≥ Ŵs(τ), ∀s, ∀t, ∀τ ≤ t,

qs(t) ≥ 0, rs(τ, t) ≥ 0, ∀s, ∀t, ∀τ ≤ t,

0 ≤ Uki(t) ≤ MVki(t), Vki(t) ∈ {0, 1}, ∀k, ∀i ∈ N(k), ∀t,
(5.27)

with Xi(t + 1) = Xi(0) +
∑t

τ=0

{
Uki(τ)−∑

s∈O(i) W s(τ)
}

for all i, t, where k supplies i.

This is a LP if there are no fixed costs and a MIP if fixed costs are present.

Proof: Follows from Theorem 2.3.1. 2

As in the single-station case, an attractive feature of this approach is that the robust

model of a supply chain remains of the same class as the nominal model, that is, a linear

programming problem if there are no fixed costs and a mixed integer programming problem

if fixed costs are present. Therefore, the proposed method is numerically tractable for very

general topologies.
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5.3.2 Theoretical Properties

We now investigate the structural properties of the optimal solution in the robust framework.

First, we need to study the optimal policy in the nominal case.

Lemma 5.3.2 (Optimal nominal policy)

(a) For the problem without uncertainty, the optimal policy for each echelon k is the optimal

policy obtained for a single installation with time-varying capacity on the orders, subject to

the demand
∑

s∈O(k) W s(t) at time t.

(b) In the case without fixed costs, it is also the optimal policy obtained for a single in-

stallation with new, time-varying cost coefficients, without capacity, subject to the demand
∑

s∈O(k) W s(t) at time t.

(c) In the case without fixed costs, the optimal policy at each echelon is basestock, for the

new parameters of the system.

Proof: Let first analyze the series system case. The coupling constraint for echelon k at

time t is then Uk(t) ≤ Ik+1(t). We analyze the optimal orders by setting the right-hand sides

of the coupling constraints to their optimal values. The coupling constraint for echelon k at

time t becomes Uk(t) ≤ Ck(t) for some given Ck(t). Hence, the problem is now decoupled

in the echelons and is equivalent to solving a capacitated single-station inventory problem

with or without fixed cost at each echelon, subject to the nominal demand at the sink node

and with the original cost parameters. This proves (a) for series systems.

In the general network case, since the coupling constraints (5.26) bound the total order

made at an installation by its customers, it cannot be directly interpreted as a capacity on

the orders made by each customer. We analyze the nominal problem by duplicating the

coupling constraint and writing it as:

Uki(t) ≤ Xk(t)−
∑

i∈N(k)

Xj(t)−
∑

j∈N(k),j 6=i

Ukj(t), ∀k, ∀t (5.28)

for each echelon i supplied by installation k, and setting the right-hand side of this new

constraint to its optimal value, to obtain a time-varying capacity on the orders made by

each echelon. (a) follows immediately.

For any network, the inventory problem in the case without fixed costs is a linear

programming problem. We dualize the coupling constraints (5.26) through a Lagrangian

multiplier approach. The feasible set of the relaxation is now separable in the echelons, and
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the cost function of the relaxation can be rewritten as the sum of separable single-installation

problems, with new cost parameters that incorporate the Lagrangian multipliers. It follows

from the theory of Lagrangian relaxation for linear programming problems that the cost of

the relaxation of the problem is equal to the cost of the original problem. This proves (b).

(c) follows from applying Lemma 5.2.2 to (b). 2

We now give the main theorem regarding the optimal policy in the robust approach:

Theorem 5.3.3 (Optimal robust policy)

(a) The optimal policy in the robust formulation (5.27) for echelon k is the optimal policy

obtained for the supply chain subject to the modified, deterministic demand at sink node s

(for s ∈ O(k)):
W ′

s,k(t) = W s(t) +
pk − hk

pk + hk
(As(t)−As(t− 1)) , (5.29)

where As(t) = q∗s(t)Γs(t) +
∑t

τ=0 r∗s(τ, t), q∗s and r∗s being the optimal q and r variables

associated with sink node s in (5.27).

(b) The optimal cost in the robust case for the tree network is equal to the optimal cost

of the nominal problem for the modified demands, plus a term representing the extra cost

incurred by the robust policy,
∑N

k=1
2pkhk

pk + hk

∑T−1
t=0

∑
s∈O(k) As(t).

Proof: We reformulate the problem as a nominal problem in the same way as in the proof

of Theorem 5.2.3 and invoke Lemma 5.3.2. 2

5.4 Extensions

5.4.1 Capacity

So far, we have assumed that there is no upper bound on the amount of stock that can

be ordered, nor on the amount of stock that can be held in the facility. Here, we consider

the more realistic case where such bounds exist. For simplicity, we present this extension

on single stations, but the results apply to more complex networks as well. The other

assumptions remain the same as in Section 5.2.

Capacitated orders

The extension of the model to capacitated orders of maximal size d is immediate, by adding

the constraint ut ≤ d, ∀t to (5.9).

112



Theorem 5.4.1 (Optimal robust policy) The optimal robust policy is the optimal pol-

icy for the nominal problem with capacity d on the links and with the modified demand

defined in (5.19).

Proof: The reformulation of the robust model as a problem without uncertainty does not

affect constraints on the orders ut. Adding ut ≤ d for all t to this new problem, we obtain

a deterministic model with capacity d on the links. 2

Capacitated inventory

We now consider the case where stock can only be stored up to an amount C. This adds

the following constraint to (5.9):

x0 +
t∑

τ=0

(uτ − wτ ) ≤ C, (5.30)

where wτ = wτ + ŵτ · zτ such that z ∈ {|zτ | ≤ 1 ∀τ, ∑t
τ=0 |zτ | ≤ Γt ∀t}. This constraint

depends on the uncertain parameters wτ . Applying the technique developed in Chapter 2,

we rewrite the constraint in the robust framework as:

xt+1 + qtΓt +
t∑

τ=0

rτt ≤ C, ∀t, (5.31)

where qt and rτt are defined in (5.9). Therefore, capacitated stock can be incorporated to

the robust formulation without changing the class, and therefore the numerical tractability,

of the problems considered.

We now analyze the optimal robust policy. We define the modified stock variables x′t by

x′t+1 = x′t + ut − w′t and x′0 = x0, with w′t given by (5.19) for all t. The inventory capacity

constraint (5.31) becomes:
x′t+1 ≤ C − 2p

p + h
At, ∀t. (5.32)

This deterministic problem in x′t is not equivalent to a nominal problem with inventory

capacity, since the right-hand side in the new capacity constraint depends on the time

period t, and worse, decreases with t. However, it never threatens the feasibility of the

problem, in the following sense:

Lemma 5.4.2 For all t, if x′t ≤ Ct, then x′t − w′t ≤ Ct+1, where Ct = C − 2p
p + hAt−1.

Therefore, if x′t is feasible, it is always possible to satisfy the inventory capacity at time

t + 1 by not ordering.
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Proof: We need to show that x′t ≤ C − 2p
p + hAt−1 implies x′t ≤ C − 2p

p + hAt + w′t for all

t. Since w′t = wt + p− h
p + h(At − At−1), it suffices to prove that: At − At−1 ≤ wt. But we

have seen that At−At−1 ≤ ŵt from Γt−Γt−1 ≤ 1, and ŵt ≤ wt since the demand is always

nonnegative. 2

We then have the following theorem:

Theorem 5.4.3 (Optimal robust policy) The optimal robust policy is the optimal pol-

icy for the nominal problem subject to the modified demand defined in (5.19), and with

inventory capacity at time 0 equal to C, and inventory capacity at time t + 1, t ≥ 0, equal

to C − 2p
p + hAt.

Proof: Follows from incorporating (5.32) to (5.9). 2

5.4.2 Lead Times, Cost Structure and Network Topology

Lead times

The robust methodology does not depend on the actual Xk(t), t ≥ 0, but only uses that

the uncertainty is additive. Therefore, it can readily be extended to arbitrary constant

leadtimes L, using Xk(t + 1) = Xk(0) +
∑t−L

τ=0 Uik k(τ) − ∑t
τ=0

∑
s∈O(k) W s(τ) for all k,

where ik is the supplier of echelon k and O(k) the sink nodes of that echelon. In particular,

the robust problem remains a linear programming problem if there is no fixed cost and a

mixed integer programming problem if fixed costs are present.

Cost structure

The cost structure can be extended in several different ways, without changing the class of

problems considered.

Station versus echelon: Although we have considered cost at the echelon level in net-

works, we obviously can apply the methodology to costs computed at the station level,

where the uncertainty will only affect the sink nodes of the network.

Other order- and state-related costs: The framework we have presented here can

also be used as an approximation for more complex cost functions, where order- and

state-related costs will be modelled as piecewise linear.
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Time-varying cost parameters: The methodology can also be applied when the unit

cost parameters vary in time.

Network topology

Finally, it is important to acknowledge that the numerical tractability of the proposed

approach is not dependent on the network topology. The robust method will still apply if

we consider a problem with, for instance, inward trees, e.g., several warehouses supplying

by the same shop.

Example

As an example, we give below the robust formulation of a supply chain management problem

for a station (i = 0) with n suppliers (i = 1, . . . , n). Each supplier has a capacity constraint

di on the order size ui(t) it can send to the customer, and sends goods with a lead time Li.

The suppliers face neither capacity nor lead times on their own orders Ui(t) for all i and t,

and costs are computed at the installation level. Capital letters denote costs and variables

associated with the suppliers. Cost parameters vary in time.

min
T−1∑

t=0

{
n∑

i=1

[ci(t) ui(t) + ki(t) vi(t)] + y(t) +
n∑

i=1

[Ci(t) Ui(t) + Ki(t) Vi(t) + Yi(t)]

}

s.t. y0(t) ≥ h0(t)


x0(0) +

n∑

i=1

t−Li∑

τ=0

ui(τ)−
t∑

τ=0

wτ + qtΓt +
t∑

τ=0

rτt


 , ∀t,

y0(t) ≥ p0(t)


−x0(0)−

n∑

i=1

t−Li∑

τ=0

ui(τ)−
t∑

τ=0

wτ + qtΓt +
t∑

τ=0

rτt


 , ∀t,

Yi(t) ≥ hi(t)

(
Xi(0) +

t∑

τ=0

[Ui(τ)− ui(τ)]

)
, ∀i, ∀t,

Yi(t) ≥ pi(t)

(
−Xi(0)−

t∑

τ=0

[Ui(τ)− ui(τ)]

)
, ∀i, ∀t,

t∑

τ=0

ui(τ)−
t−1∑

τ=0

Ui(τ) ≤ Xi(0), ∀i, ∀t,

qt + rτt ≥ ŵτ , ∀t, ∀τ ≤ t,

qt ≥ 0, rτt ≥ 0, ∀t, ∀τ ≤ t,

0 ≤ ui(t) ≤ di vi(t), vi(t) ∈ {0, 1}, ∀i, ∀t,
0 ≤ Ui(t) ≤ M Vi(t), Vi(t) ∈ {0, 1}, ∀i, ∀t,

(5.33)
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where M is a large number and by convention
∑t−L

τ=0 uτ is 0 if t < L.

5.5 Computational Experiments

5.5.1 The Budgets of Uncertainty

We now present some computational results. We assume that the random variables are

uncorrelated and that we know the mean W s(t) and the variance σ2
s(t) of the demand at

each sink and each time period. Therefore, the budgets of uncertainty are selected using

the mean and variance of the random variables as described in Chapter 2, where we also

incorporate the nonnegativity in a bound similar to (2.4.4). Specifically, the budgets are

computed as in [18], using the following algorithm:

Algorithm 5.5.1 (Selection of the budgets of uncertainty) If the demands are i.i.d.,

we solve:

min
N∑

k=1

∑

i∈N(k)

cki
pi − hi

pi + hi

∑

s∈O(i)

ŴsΓs(T − 1)

+
T−1∑

t=0

N∑

k=1

∑

i∈N(k)

{
hiXi(t + 1) + (hi + pi) f

(
Xi(t + 1),Mi(t + 1), S2

i (t + 1)
)}

s.t. Xi(t + 1) =
pi − hi

pi + hi

∑

s∈O(i)

ŴsΓs(t), ∀i, t,

0 ≤ Γs(t)− Γs(t− 1) ≤ 1, ∀s, t,

(5.34)

where f is defined by:

f(x, µ, σ2) =





1
2

[
−x +

√
σ2 + x2

]
, if x ≥ σ2 − µ2

2µ ,

−x µ2

µ2 + σ2 + µ σ2

µ2 + σ2 , if x < σ2 − µ2

2µ ,
(5.35)

and with Mi(t + 1) =
∑t

τ=0

∑
s∈O(i) W s(τ) and Si(t + 1) =

√∑t
τ=0

∑
s∈O(i) σ2

s(τ) for all i,

t.

If the demands are not i.i.d., we replace Ŵs by
∑T−1

τ=0 Ŵs(τ)/T in the cost function of

(5.34) and by
∑t

τ=0 Ŵs(τ)/(t + 1) in the definition of Xi(t + 1), for all t and s ∈ O(i).

116



5.5.2 Example of a Single Station

We first apply the proposed methodology to the example of minimizing the cost at a single

station. The horizon is T = 20 time periods, the station has zero initial inventory, with an

ordering cost per unit c = 1, a holding cost h = 4 and a shortage cost p = 6, in appropriate

measurement units. There is no fixed ordering cost. The stochastic demand is i.i.d. with

mean w = 100 and standard deviation σ = 20 (unless specified otherwise). In the robust

framework, we take ŵ = 2 ·σ, that is, the demand belongs to the interval [w−2 ·σ,w+2 ·σ].

In the first set of experiments, the stochastic policy is computed using a binomial dis-

tribution. In the second set of experiments, the stochastic policy is computed using an

approximation of the gaussian distribution on five points (w− 2σ,w− σ,w,w + σ,w + 2σ).

In both cases, the actual distribution is Gamma, Lognormal or Gaussian, with the same

mean w and standard deviation σ.

The key metric we consider is the relative performance of the robust policy compared

to the stochastic policy obtained by dynamic programming, as measured by the ratio R =

100 · (E(DP )−E(ROB))/E(DP ), in percent. The expectations are computed with respect

to the actual probability distribution, on a sample of size 1, 000. In particular, when R > 0

the robust policy leads to lower costs on average than the stochastic policy. We are also

interested in the sample probability distribution of the costs DP and ROB.

The numerical experiments aim to provide some insight into the relationship between

the performance of the robust policy and:

• the actual and assumed distributions,

• the standard deviation of the demand,

• the cost parameters c, h, p.

Budgets of uncertainty:

The budgets of uncertainty are computed as in Algorithm 5.5.1. Figure 5-1 (resp. Figure

5-2) shows Γk as a function of k, for p varying and h = 4 (resp. h varying and p = 4), with

c = 0 on the left panel and c = 1 on the right panel. The general trend is that Γk evolves

as
√

k + 1, although there are differences for the last few time periods. In particular:
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• From Algorithm 5.5.1, the budgets of uncertainty for c = 0 verify for all k:

Γk =
σ

ŵ

√
k + 1
1− α2 , (5.36)

with α = p− h
p + h . (The constraint 0 ≤ Γk − Γk−1 ≤ 1 is verified for all the numerical

values of interest here.)

• The budgets of uncertainty for c = 0 and c = 1 are identical for the early time periods,

suggesting that c is not a factor there, but differ in the last few periods.

• If p varies at h given, the budgets of uncertainty increase in p, for c = 0 as well as

c = 1. If h varies at p given, the budgets of uncertainty increase in h for c = 0, and

for c = 1 except for the last few time periods, where they decrease in h.

• If p varies at h given (here h = 4), having c > 0 rather than c = 0 results in

less conservative budgets of uncertainty. In particular, if c = 1, the budgets stop

increasing once a certain threshold is reached. This threshold decreases with p.

• If h varies at p given (here p = 4), having c > 0 rather than c = 0 results in much

more conservative budgets of uncertainty in the last time periods, in particular as h

is small (with h > p).
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Figure 5-1: Budgets of uncertainty for c = 0 (left) and c = 1 (right).

In the rest of this example (Figures 5-3 to 5-9), results obtained when dynamic program-

ming assumes a binomial (resp. approximate gaussian) distribution are shown in the left

(resp. right) panel of all figures.
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Figure 5-2: Budgets of uncertainty for c = 0 (left) and c = 1 (right).

Impact of the standard deviation:

Figure 5-3 shows how the ratio R = 100 · (E(DP )−E(ROB))/E(DP ), in percent, evolves

as the ratio σ/w increases (i.e. as the standard deviation increases, since we keep w con-

stant). When the assumed and actual distributions are very different beyond their first

two moments, the ratio R increases as the standard deviation increases and the robust

policy outperforms dynamic programming by up to 10 to 13%, depending on the actual

distribution. When the assumed and actual distributions are similar, the two methods are

equivalent, since the robust policy outperforms dynamic programming by at most 0.4%. In

both cases, R shows the same qualitative trend as σ increases for the three actual distribu-

tions implemented here, although spreads in numerical values increase as σ increases.
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Figure 5-3: Impact of the standard deviation on performance.
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A probabilistic view of performance:

Figure 5-4 shows the sample probability distribution of the costs ROB and DP . The sample

distributions have the same shape, and although DP has slightly less variance, ROB has

the potential of yielding much lower costs.
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Figure 5-4: Sample probability distributions.

Impact of the cost parameters:

In Figures 5-5 to 5-9, we study the impact on performance of the cost parameters c, h and

p, for σ = 20.

In Figures 5-5 to 5-7, we change one parameter (c, h or p) and show the results for the

three actual distributions implemented. The numerical evidence suggests that:

• The choice of the actual distribution does not affect the qualitative trends in perfor-

mance, although it slightly changes the numerical values obtained.

• When assumed and actual distributions vary widely, the relative cost benefit of using

the robust approach rather than dynamic programming decreases as c increases (with

c < p), down to 4%. When assumed and actual distributions are similar, the difference

between the robust and stochastic policies is not statistically significant.

• The stochastic policy leads to better results when h is small. The exact numbers

depend on the distribution used to compute the stochastic policy.

• The robust approach performs better than dynamic programming for a wide range of
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parameter values. In particular here, when p and h are of the same order of magnitude

and assumed and actual distributions differ widely, R can exceed 15%.
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Figure 5-5: Impact of the ordering cost.

1 2 3 4 5 6 7 8 9 10
−15

−10

−5

0

5

10

15

20

25

R
el

at
iv

e 
pe

rfo
rm

an
ce

, i
n 

pe
rc

en
t

holding cost h

Gamma
Lognormal
Gaussian

1 2 3 4 5 6 7 8 9 10
−12

−10

−8

−6

−4

−2

0

2

4

holding cost h

R
el

at
iv

e 
pe

rfo
rm

an
ce

, i
n 

pe
rc

en
t

Gamma
Lognormal
Gaussian

Figure 5-6: Impact of the holding cost.

In Figures 5-8 and 5-9, we change two parameters and, for clarity, only show the results

for the Gamma distribution, since the choice of the actual distribution does not appear to

have a large impact on performance. The numerical results lead to the following additional

insights:

• The relative advantage of the robust policy over dynamic programming decreases

as the unit ordering cost c increases. When actual and assumed distributions vary

widely, the relative advantage increases in h until h = p, then decreases. When they

are similar, it increases in h for h < p and h > p, despite a slight discontinuity around

h = p.
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Figure 5-7: Impact of the shortage cost for various distributions.

• Dynamic programming outperforms the robust policy for very low values of the holding

cost h, especially for large values of p, and in some cases where p is very small and h

is large.

• When actual and assumed demand distributions vary widely, the relative performance

as a function of the shortage cost p is shifted to the right and upward as h increases.

When actual and assumed demand distributions are similar, the relative performance

as a function of the shortage cost p is shifted to the right for h ≥ 4.

• The robust policy outperforms dynamic programming for a wide range of parameters,

although not always, and its relative performance can reach 20% in some cases.
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Figure 5-8: Impact of the ordering cost for various holding costs.

This numerical evidence suggests that the robust policy performs significantly better
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Figure 5-9: Impact of the shortage cost for various holding costs.

than dynamic programming when assumed and actual distributions differ widely beyond

their first two moments, and performs similarly to dynamic programming when assumed

and actual distributions are close. The results are thus quite promising.

5.5.3 Examples of Networks

A series system

In this section, we apply the proposed approach to the series system in Figure 5-10 over

T = 10 time periods. Each order made at echelon 1 or 2 incurs a fixed cost K1 = K2 = 10

(t)2D (t) W(t)
1

D

2
I

1
I

Figure 5-10: A series system.

and a cost per unit ordered c1 = c2 = 1. The holding and shortage costs at echelon 1 are

h1 = 4, p1 = 12, while holding and shortage are penalized equally at echelon 2: h2 = p2 = 4.

The stochastic demand is i.i.d. with mean W = 100 and σ = 20. In the robust model, we

take Ŵ = 2 · σ. Echelons 1 and 2 hold zero inventory at time 0.

Here we are interested in comparing the performance of the robust policy and the myopic

policy obtained for the same two assumed distributions as in Section 5.5.2 (binomial and

approximate gaussian on five points). The actual distributions remain Gamma, Lognormal

or Gaussian with the same first two moments.
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The budgets of uncertainty at time 0 for all remaining time periods are computed using

Algorithm 5.5.1. We reoptimize the problem at each time period, for both the robust and

the myopic approach. For the robust approach, we update the budgets of uncertainty at

time t, t = 1, . . . , T − 1, as follows:

Γ(t)(τ) = Γ(t−1)(τ + 1)− Γ(t−1)(1), (5.37)

for τ = 0, . . . , T−t−1. (If we reoptimized the budgets of uncertainty, we would consistently

overprotect the first time period in the horizon.) This updating rule does not change

Γ(t)(τ)−Γ(t)(τ−1), which we use to define the modified demand, and therefore is consistent

with the implementation of the basestock levels in Section 5.5.2.

The performance is measured by the sample probability distributions of the costs MY O

and ROB, and the ratio r = 100 · (MY O − ROB)/MY O, in percent. As before, the left

(resp. right) panels of the figures show the results obtained assuming a binomial distribution

(resp. approximate gaussian).

Costs of the robust and the myopic policies:

The actual distribution of the demand and, more surprisingly, the distribution assumed to

compute the myopic policy, do not appear to play a significant role in the sample probability

distribution of the costs of the two policies. The robust policy clearly outperforms the

myopic policy, since it leads to costs with a lower mean and variance.
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Figure 5-11: Costs of robust and myopic policies .
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Sample distribution of performance ratio:

When actual and assumed distributions vary widely, all values of r are positive and the

sample probability distribution of r is mostly concentrated on the range [20%, 45%]. When

actual and assumed distributions are similar, r < 0 has a very low probability and the sample

probability distribution of r is mostly concentrated on the range [15%, 35%]. Therefore,

it appears that having similar actual and assumed distributions does reduce the relative

difference between the two policies, but the very use of a myopic policy leads to a significant

cost disadvantage. This further demonstrates the high potential of the robust policy when

applied to supply chains.
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Figure 5-12: Sample distribution of relative performance.

A tree network

In this section, we apply the proposed approach to the supply chain in Figure 5-13 over

T = 5 time periods. Echelons 1 and 2 consist of installations 1 and 2, respectively. Echelon

2
D  (t)

(t)

(t)(t)

(t)3D

2W

1W
1

D
I
1

I
2

I
3

Figure 5-13: A supply chain.
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3 consists of installations 1, 2 and 3, and the links in-between. The unit ordering costs are

c1 = c2 = c3 = 1. There are no fixed costs. Holding and shortage are penalized equally at

echelons 1 and 2: h1 = p1 = 8, h2 = p2 = 8, while the holding and shortage costs at echelon

3 are h3 = 5, p3 = 7. Demands at installations 1 and 2 are i.i.d., with the same nominal

demand W = 100 and the same standard deviation σ. What distinguishes echelons 1 and 2

are their initial inventory: 150 items at echelon 1, 50 at echelon 2, and the actual demand

distributions, which are either Gamma, Lognormal or Gaussian, with the same mean and

standard deviation. Echelon 3 holds initially 300 items. Expected costs are computed using

a sample of size 1, 000.

As in Section 5.5.3, we are interested in comparing the performance of the robust policy

and the myopic policy obtained for the same two assumed distributions as in Section 5.5.2

(binomial and approximate gaussian on five points). Here, we assume the same distribution

at stations 1 and 2 when computing the myopic policy. The actual distributions remain

Gamma, Lognormal or Gaussian with the same first two moments, and can differ between

stations. In the robust framework, Ŵ = 2 · σ and the budgets of uncertainty are computed

at time 0 for all remaining time periods using Algorithm 5.5.1. We reoptimize the problem

at each time period, for both the robust and the myopic approach, and update the budgets

of uncertainty as in Section 5.5.3.

The performance is measured by the sample probability distributions of the costs MY O

and ROB, and the ratio r = 100 · (MY O − ROB)/MY O, in percent. As before, the left

(resp. right) panels of the figures show the results obtained assuming a binomial distribu-

tion (resp. approximate gaussian).

Sample distribution of performance ratio:

As shown in Figure 5-14, the robust policy performs significantly better than the myopic

policy, independently of the actual probability distributions, although there is a small posi-

tive probability that the myopic policy will perform better. This last point is not surprising

given the short time horizon we are considering.

Costs of the robust and the myopic policies:

For clarity, and because the actual distribution does not seem to play a major role, we only

show in Figure 5-15 the costs for Gamma distributions at both sink nodes. The robust
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Figure 5-14: Relative performance.

policy has lower mean and variance than the myopic policy, when actual and assumed dis-

tributions vary widely or are similar.
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Figure 5-15: Sample probability distributions of costs.

Impact of the horizon:

We study here the impact of the time horizon T on the relative performance of the robust

and myopic policies as measured by the ratio r, for Gamma demand distributions at both

stations 1 and 2. The results presented in Figure 5-16 confirm the intuition that the robust

policy tends to perform better as the horizon T increases. Although the peak of the relative

performance r stays around 20% for a sample probability of about 0.3, the spread of the

sample distribution seems to be reduced as T increases, thus making it more and more likely

that the robust policy will outperform the myopic policy as the horizon increases.
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Figure 5-16: Impact of the horizon.

5.5.4 Summary of Results

The numerical evidence that we have presented suggests that:

• The robust approach leads to high-quality solutions and often outperforms other com-

monly used approaches, such as dynamic programming in single stations or myopic

policies in more complex supply chains.

• For single stations, the robust approach outperforms dynamic programming for a wide

range of parameters when assumed and actual distributions vary widely, and performs

similarly otherwise.

• For more complex supply chains, the robust policy performs significantly better than

a myopic policy, in particular over many time periods, even when actual and assumed

demand distributions are close.

• The exact actual distribution of the demand does not play a significant role in the

qualitative trends.

5.6 Concluding Remarks

In this chapter, we have proposed a deterministic, numerically tractable methodology to op-

timally control supply chains subject to random demand. Using robust optimization ideas,

we have built an equivalent model without uncertainty of the same class as the nominal

problem, with a modified demand sequence. Specifically, the proposed model is a linear
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programming problem if there are no fixed costs throughout the supply chain and a mixed

integer programming problem if fixed costs are present.

This model incorporates a wide variety of phenomena, including demands that are not

identically distributed over time and capacity on the echelons and links. When the parame-

ters are chosen appropriately, the proposed approach preserves performance while protecting

against uncertainty. One of its most appealing features is that it uses very little information

on the demand distributions, and therefore is widely applicable. In particular, if we only

know the mean and the variance of the distributions, the robust policy often outperforms

the nominal policy, as well as policies computed assuming full but erroneous knowledge of

the distributions for the correct mean and variance.

This approach also provides valuable theoretical insights. We have derived the expres-

sion of key parameters of the robust policy, and shown optimality of basestock policies in

the proposed framework when the optimal stochastic policy is basestock, but also in other

instances where the optimal stochastic policy is not known. Hence, the methodology is

not only validated on benchmark problems where the optimal stochastic policy is already

known (yet in general hard to compute numerically), but also provides a framework to an-

alyze complex supply chains for which the traditional tools of stochastic optimization face

serious dimensionality problems.
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Chapter 6

Application to Revenue

Management

6.1 Background and Contributions

Revenue management is concerned with the theory and practice of maximizing profits in

industries facing uncertain customer demand. This encompasses a broad range of problems.

In this work, we focus our attention on those involving perishable assets, for which it is par-

ticularly difficult to obtain accurate probabilistic information. As an example, the demand

for a newspaper varies greatly depending on what is making the headlines that day. In

Scarf’s words [57], “we may have reason to suspect that the future demand will come from

a distribution which differs from that governing past history in an unpredictable way”.

We consider two classes of applications. In the first part of this chapter (Section 6.2), we

apply robust techniques to management problems maximizing net revenue (profits minus

costs) in presence of uncertain demand for a perishable product. A classical example of

such a setting is the newsvendor problem, which Porteus summarizes in [53]. As one of the

building blocks of inventory theory, it has received much attention in the literature, often

under the assumption that the demand distribution is known exactly. However, in practice,

the volatility of the demand for perishable products makes it difficult to obtain an accurate

forecast. The issue of imperfect information has been addressed in the past by assuming

that only the first two moments are available. In 1958, Scarf [57] derived the optimal order-

ing quantity for the classical newsboy problem at mean and variance given, and his work
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was later extended by Gallego and his co-authors [36, 47, 48]. Here, we apply the robust

optimization framework to address uncertainty in the demand distribution. We assume that

demand for a product is lost if the product is out-of-stock. Such a profit structure rules out

the possibility of an averaging effect across different items, which motivates using the data-

driven technique developed in Chapter 3 rather than the method with uncertainty sets. It

also allows us to incorporate risk aversion in a very intuitive manner. The first attempt to

model the attitude of the decision-maker towards risk in the newsboy problem is due to Lau

[42], who considers two alternative criteria to the expected revenue: the expected utility and

the probability of reaching a prespecified profit target. More recently, Eeckhoudt et al. [33]

have revisited the framework based on the expected utility of the newsvendor, and Chen

and Federgruen [25] have analyzed some simple inventory models from a mean-variance

perspective. The Conditional Value-at-Risk approach that we propose here incorporates

risk without requiring the exact knowledge of the utility function, and yields more tractable

formulations that models using the variance of the revenue. For the newsvendor problem

with a single source of uncertainty, we show in Section 6.2.1 that the optimal order can be

found by ranking the historical data appropriately. When several sources of uncertainty are

present, we derive linear programming formulations, which we analyze in detail in Section

6.2.2. Section 6.2.3 presents numerical results.

In the second part of this chapter (Section 6.3), we focus on capacity-constrained indus-

tries. This describes many services such as hotels or car rentals, but most of the research

efforts have focused on airlines, as they have the longest history of work in revenue manage-

ment. For instance, as early as 1972, Littlewood proposed a simple rule to optimally control

discount and full fare bookings on a single-leg flight [44]. Belobaba developed in [3] an ap-

proach to compute protection levels for multiple classes, which became famously known

as the Expected Marginal Seat Revenue (EMSR) approach, however it is only optimal for

two classes. Brumelle and McGill extended Littlewood’s results to multiple classes in [22].

Interest in yield management techniques was fuelled by the airline industry deregulation

in the 1970s, and the potential of generating high profits by efficiently allocating scarce

resources. For instance, Cook notes in [29] that American Airlines increased its revenue by

one billion dollars in 1997 following the implementation of such methods. A comprehensive

survey by McGill and van Ryzin [46] discusses the research developments in the field over

the last forty years, and points out that demand dependencies between booking classes,
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among other factors, dramatically increase the complexity of the forecasting process. The

same authors have proposed in an earlier paper [65] an algorithm for determining airline seat

protection levels without forecasting, but their technique is limited to independent demands

on a single leg. Brumelle et al. have considered correlated demand with perfect knowledge

of the distribution in [23], again on a single leg. The seat allocation problem is far more

complex at the network level than on individual routes. Glover et al. [37] have studied

network flow models when the demand is deterministic, and the case of random demands

has been investigated by Wang [68] and Wollmer [73]. However, the introduction of bidprice

control, which was proposed by Simpson in [61] and further analyzed by Williamson in [70],

is widely regarded as the most important conceptual breakthrough in the theory of network

revenue management. In that model, booking requests are accepted if the corresponding

fares are higher than the opportunity cost of the itineraries. A drawback of the approach

is that opportunity costs are computed in a static manner, using the nominal value of the

demands. Taking into account dynamic effects across the network adds another layer of

complexity to the formulation. This is indeed a crucial component of yield management

in the airline industry, as cost-conscious travellers tend to buy their tickets before those

willing to pay the full fare. Talluri and van Ryzin [63] suggested a mechanism relying on

adaptive bidprices to control the system, while Bertsimas and Popescu proposed and ana-

lyzed in [14] an algorithm based on approximate dynamic programming. Moreover, McGill

and van Ryzin [46] mention implementable dynamic programming approaches as an impor-

tant area to investigate further in the context of airline revenue management. Because the

data-driven approach developed in Chapter 3 does not require any forecasting and yields

tractable formulations, it seems particularly well suited to such a dynamic network envi-

ronment with a complex demand structure. Specifically, we consider robust seat allocations

(Section 6.3.1) and admission policies (Section 6.3.2), and analyze the optimal solution in

terms of the historical data and the shadow prices on each leg of the network. We report

encouraging computational results in Section 6.3.3.

Finally, we conclude this chapter in Section 6.4.
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6.2 The Newsvendor Problem

In this section, we apply the data-driven approach to the newsvendor problem and its

extensions. Section 6.2.1 presents three possible cost structures when only the demand in

the primary market is random: (a) the classical setting, (b) the model with holding and

shortage cost; and (c) the problem with a set ordering fee. We describe how the optimal

policy can be found by ranking the historical data in an appropriate manner. Our results

also quantify explicitly the impact of risk aversion on the optimal order. Section 6.2.2

considers the case of multiple sources of uncertainty: (a) the demand and the yield, (b)

multiple items; and (c) the demand in the primary as well as secondary markets. We show

that the robust counterparts are linear or mixed integer programming problems, and give

insights into the structure of the optimal solution. We implement the data-driven approach

on some examples in Section 6.2.3.

6.2.1 With a Single Source of Uncertainty

The purpose of the newsboy problem, in its most elementary version, is to find the optimal

order for a perishable item in a single-period horizon, in order to maximize revenue. We

follow closely Gallego ([47] and [48]) in our notations and assumptions.

The classical problem

We define:

c > 0: the unit cost,

p = c (1 + m): the unit selling price,

s = (1− t) c: the unit salvage price,

Q: the order quantity,

D: the random demand.

m (resp. t) is commonly referred to as the markup (resp. the discount) factor. The random

profit is given by:

π(Q,D) = p min(Q,D) + s max(0, Q−D)− c Q, (6.1)

or, equivalently:
π(Q, D) = (p− c)Q + (p− s) min(0, D −Q). (6.2)
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Let d1, . . . , dN be previous observations of the demand, and d(1), . . . , d(N) the same

observations ranked in increasing order, so that d(1) ≤ . . . ≤ d(N). We assume dk ≥ 0 for all

k and integers. The robust approach described in Chapter 3 maximizes the sample profit

over the Nα = bN (1− α) + αc worst cases, that is:

max
Q≥0

(p− c)Q + (p− s) · 1
Nα

Nα∑

k=1

(min(0, d· −Q))(k). (6.3)

(There is no need to impose an integrality constraint on Q since at optimality it will be one

of the breakpoints of the objective function, that is: one of the dj , which are all integers.)

Since min(0, D −Q) is nondecreasing in D, the k-th smallest min(0, D −Q) at Q given is

equal to min(0, d(k)−Q). Therefore, in this case the robust formulation follows immediately,

without requiring the use of strong duality:

max
Q≥0

(p− c) Q + (p− s) · 1
Nα

Nα∑

k=1

min(0, d(k) −Q). (6.4)

Theorem 6.2.1 (Optimal policy) The optimal order Q∗ solution of Problem (6.4) ver-

ifies:

Q∗ = d(j) with j =
⌈

m

m + t
Nα

⌉
. (6.5)

Proof: For d(k) ≤ Q ≤ d(k+1), the optimum is reached at Q = d(k) if p− c ≤ (p− s)k/Nα

and at Q = d(k+1) otherwise. Similarly, for Q ≤ d(1) (resp. Q ≥ d(N)), the optimum is

reached at d(1) (resp. d(N)). Hence, the optimum over Q ≥ 0 is reached at Q = d(j) where

(j − 1)/Nα < (p− c)/(p− s) ≤ j/Nα. The result follows from (p− c)/(p− s) = m/(m + t).

2

Remarks:

• An appealing feature of this framework is that the optimal order is very easy to

compute, by ranking the historical data.

• Unsurprisingly, the risk-averse newsvendor orders less than his risk-neutral counter-

part, as Nα ≤ N . The impact of his aversion to risk on Q∗ depends on m/(m + t).

• Alternatively, for Q∗ = d(j) where j =
⌈

m
m + t Nα

⌉
is given, Nα can take any value

such that: (
1 +

t

m

)
(j − 1) ≤ Nα <

(
1 +

t

m

)
j, (6.6)

which corresponds to an interval that has b1+t/mc integer points (i.e. possible values
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for Nα) in it. As a result, if t À m, the problem is less sensitive in the choice of Nα

than if m ¿ t. This also appears in the numerical experiments in Section 6.2.3.

Comparison with the optimal order for the worst-case distribution:

Scarf gives in [57] the following ordering rule for the newsboy problem when only the mean

µ and the standard deviation σ of the demand distribution are known:

Q0 = µ +
σ

2

(√
m

t
−

√
t

m

)
(6.7)

(Q0 is obtained by optimizing the worst-case expected profit over all nonnegative distri-

butions with those first two moments.) The optimal policies in Scarf’s model and in the

data-driven approach have in common that they do not depend on the unit cost c, but

rather on the markup and discount factors m and t.

We note that if m = t, the optimal order is equal to the mean in Scarf’s formulation,

and to d(dNα/2e) in the data-driven framework. In particular, if α = 0, the robust optimal

order is equal to the median, rather than the mean. Therefore, using the historical data or

assuming only that the first two moments are known can result in very different ordering

strategies, in particular for skewed distributions.

We next show that trimming can improve the average a-posteriori ratio to optimality,

computed with the historical observations. If D = d(k), the a-posteriori optimal order for

the classical newsvendor problem is Q = d(k), yielding the profit (p− c) d(k). We are inter-

ested in measuring the average ratio between the random profit π(d(j), d(k)) obtained for

Q = d(j) and D = d(k) (all d(k), k = 1, . . . , N , occurring with equal probability), and the

a-posteriori optimal profit (p− c) d(k).

Theorem 6.2.2 (Average ratio to optimality) The average ratio to optimality is min-

imized for Q = d(j) where j is the smallest integer such that:

j∑

k=1

1
d(k)

≥ m

m + t

N∑

k=1

1
dk

. (6.8)

The optimal j is always less than or equal to
⌈

m
m + t N

⌉
.

Proof: For D = d(k) and Q = d(j), j, k = 1, . . . , N , the ratio to optimality is given by:

136



ρkj = 1− d(j)

d(k)
−

(
1 +

t

m

)
min

(
0, 1− d(j)

d(k)

)
. (6.9)

Averaging over all dk yields a piecewise linear, convex function in d(j). (6.8) follows by

studying the slope of this function. To prove that j ≤
⌈

m
m + t N

⌉
, where j is the smallest

integer verifying (6.8), it is sufficient to prove that
⌈

m
m + t N

⌉
itself verifies (6.8). Since

d(1) ≤ . . . ≤ d(N), the function j → ∑j
k=1

1
d(k)

is concave in j, where j is an integer between

0 and N , and the function takes the value 0 for j = 0. Therefore,
⌈

mN
m + t

⌉
∑

k=1

1
d(k)

≥
⌈

mN
m + t

⌉

N

n∑

k=1

1
dk
≥ m

m + t

N∑

k=1

1
dk

. (6.10)

2

Since j =
⌈

m
m + t N

⌉
, there exists α∗ ∈ [0, 1] such that j =

⌈
m

m + t Nα∗
⌉
. Therefore,

trimming a fraction α ∈ [0, α∗] will improve the average ratio of optimality, as compared to

the case without trimming.

Remark: The property that the order Q̃ minimizing the average ratio to optimality is less

than or equal to the order Q maximizing the (non-trimmed) sample profit is quite gen-

eral in practice and arises under the assumption that the a-posteriori optimal profit (here,

π∗(D) = (p− c) D) increases with the demand.

This is because the average ratio to optimality 1− (1/N)
∑

k

π(Q, d(k))
π∗(d(k))

gives more rela-

tive weight to the cases with small demand than they have in the sample profit (1/N)
∑

k π(Q, d(k))

(since π∗(d(1)) ≤ . . . ≤ π∗(d(N))), and the slope of the profit for a specific demand is nega-

tive as soon as Q is greater than the demand. As a result, the slope in Q of
∑

k

π(Q, d(k))
π∗(d(k))

(which we want to maximize) decreases and changes signs before the slope of the sample

profit
∑

i π(Q, d(i)). In particular, since the order Q∗
α minimizing the trimmed sample profit

is always less than or equal to Q (and can be equal to any d(j) in [d(1), Q]), it is possible to

find a trimming factor α such that Q∗
α = Q̃ ≤ Q.

The model with holding and shortage cost

Let h+ (resp. h−) be the unit holding cost (resp. the unit shortage cost), incurred when

the newsvendor has items left (resp. does not have enough items) at the end of the time

period. As before, the unit cost is c and the unit price is p. The random profit is given by:

π(Q,D) = (p− c + h−) Q + (p + h+ + h−) min(0, D −Q)− h−D. (6.11)
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Our goal is to maximize the trimmed mean of the profit:

max
Q≥0

(p− c + h−) Q +
1

Nα

Nα∑

k=1

[
(p + h+ + h−) min(0, d· −Q)− h−d·

]
(k) , (6.12)

where for any y ∈ Rn, y(k) is the k-th smallest component of y.

Theorem 6.2.3 (Optimal policy)

(a) The optimal order Q∗ in (6.12) is solution of the linear programming problem:

max (p− c + h−)Q + φ + 1
Nα

N∑

k=1

ψk

s.t. φ + ψk − (p + h+ + h−) Zk ≤ −h−dk, ∀k,

Zk + Q ≤ dk, ∀k,

Zk ≤ 0, ψk ≤ 0, ∀k,

Q ≥ 0.

(6.13)

Moreover, Q∗ = d(j) for some j.

(b) Let Mα =
⌈

p− c + h−
p + h+ + h− Nα

⌉
. Q∗ verifies:

Q∗ = min

{
d(j)|d(j) ≥

p + h+

p + h+ + h−
d(Mα) +

h−

p + h+ + h−
d(N−Nα+Mα)

}
. (6.14)

(c) Let Sα be the set of the Nα worst-case scenarios at optimality, and dSα

(j) the j-th lowest

demand within that set. We have:
Q∗ = dSα

(Mα), (6.15)

where Mα is defined in (b).

Proof: (a) follows from applying Theorem 3.2.1 to (6.12). At optimality, Q = d(j) for some

j because the function to maximize in (6.12) is concave piecewise linear with breakpoints

in the set (di).

(b) This uses ideas similar to the proof of Theorem 3.3.1. The slope of the profit function

is: (p− c + h−)− 1
Nα

(p + h+ + h−) · |{i ∈ S(Q), di ≤ Q}|, where S(Q) is the set of indices

of the Nα smallest (p + h+ + h−)min(0, di − Q) − h−di at Q given. It is easy to show

that for any i ∈ S(Q) and any k such that dk ≤ di ≤ Q, k ∈ S(Q) as well. Similarly,

for any i ∈ S(Q) and any k such that dk ≥ di ≥ Q, k ∈ S(Q). Hence, S(Q) consists of

the indices of d(1), . . . , d(Mα) and d(N−Nα+Mα+1), . . . , d(N), for some 0 ≤ Mα ≤ N , with

d(mα) ≤ Q ≤ d(N−Nα+Mα+1). The slope of the trimmed profit function is then proportional

to p− c + h−
p + h+ + h− Nα −Mα, and at optimality Mα is equal to

⌈
p− c + h−

p + h+ + h− Nα

⌉
. We now
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have to determine the optimal value of Q.

Let f j
i = (p + h+ + h−) min(0, d(i) − d(j))− h−d(i) be the profit realized when Q = d(j)

and D = d(i), for all i and j. The optimal Mα is the greatest integer less than or equal

to Nα such that f j
Mα

≤ f j
N−Nα+Mα

. (Otherwise, we would remove Mα from S(Q) and add

N −Nα + Mα instead.) Plugging the expressions of f j
Mα

and f j
N−Nα+Mα

yields:

(p + h+)d(Mα) − (p + h+ + h−)d(j) ≤ −h−d(N−Nα+Mα). (6.16)

Combining the previous results, (6.14) follows immediately.

(c) Considering only the scenarios in Sα, we inject N = Nα into (6.14). 2

Remarks:

1. For α = 0, we obtain the data-driven version of the optimal policy obtained when the

exact distribution of the demand is known [36]:

Q = arg min

{
y|P (D ≤ y) ≥ p− c + h−

p + h+ + h−

}
. (6.17)

2. This framework can also be used to model the newsvendor problem with recourse. In

this case, we consider the problem described in Section 6.2.1, and have the additional

assumption that, once the demand has been revealed, we place a second order at a

unit cost of c′ = c(1 + e) with 0 < e < m, whenever the first order is not enough to

satisfy the demand. The profit becomes:

π(Q,D) = p D + s max(0, Q−D)− cQ− c′ max(0, D −Q), (6.18)

or equivalently:

π(Q,D) = (c′ − c) Q + (c′ − s)min(0, D −Q) + (p− c′)D. (6.19)

The profit function is identical to the one for the model with holding and shortage cost,

with c′ = p + h− and s = −h+. Therefore, all the results presented in Section 6.2.1

apply here. In particular, it is straightforward to show that the optimal policy with

recourse is the same as the optimal policy without recourse where the markup factor

m has been replaced by the cost premium e. This property is also verified by the

optimal policy when only mean and variance of the distribution are known [47].

Theorem 6.2.4 (Average ratio to optimality) The average ratio to optimality is min-
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imized for Q = d(j) when j is the smallest integer such that:

j∑

k=1

1
d(k)

≥ p− c + h−

p + h+ + h−
N∑

k=1

1
dk

. (6.20)

In particular, there exists α∗ ∈ [0, 1] such that trimming by a fraction α ∈ [0, α∗] will

improve the average ratio to optimality.

Proof: Is similar to the proof of Theorem 6.2.2. 2

The model with fixed ordering cost

In this section, we consider the case where a fixed cost A is incurred whenever an order is

made. Let I ≥ 0 be the initial inventory. All the other assumptions remain the same as in

Section 6.2.1. The random profit is here:

π(Q,D) = −A 1{Q>0} + p min(Q + I, D) + s max(Q + I −D, 0)− cQ, (6.21)

or, defining S = Q + I:

π̃(S, D) = −A 1{S>I} + c I + (p− c)S + (p− s) min(0, D − S). (6.22)

Since c I is a constant and min(0, D−S) is increasing in D, the data-driven approach solves:

max
S≥I

−A 1{S>I} + (p− c)S +
(p− s)

Nα

Nα∑

k=1

min(0, d(k) − S), (6.23)

with d(1) ≤ . . . ≤ d(N).

Theorem 6.2.5 (Optimal policy) It is optimal to order S∗−I if I ≤ s∗ and 0 otherwise,

with:
S∗ = d(j) where j =

⌈
m

m + t
Nα

⌉
, (6.24)

and:

s∗ = S∗ −
A
c + m + t

Nα

j∑

i=k+1

(S∗ − d(i))

m− (m + t) k
Nα

, (6.25)

where k is such that:

m d(k)+
m + t

Nα

k−1∑

i=1

(d(i)−d(k)) ≤ −A

c
+mS∗+

m + t

Nα

j∑

i=1

(d(i)−S∗) < m d(k+1)+
m + t

Nα

k∑

i=1

(d(i)−d(k+1)).

(6.26)

Proof: We have seen in Section 6.2.1 that the optimal solution for A = 0 is S∗ = d(j) with

j =
⌈

m
m + t Nα

⌉
, yielding a Conditional Value-at-Risk of:
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Kα(S∗) = c


mS∗ +

(m + t)
Nα

j−1∑

i=1

(d(i) − S∗)


 . (6.27)

If we choose not to order, the trimmed average profit becomes:

Kα(I) = c

[
mI +

(m + t)
Nα

N∑

i=1

min(0, d(i) − I)

]
. (6.28)

We want to find s = arg min{I|Kα(I) ≥ −A+Kα(S∗)}, the threshold value for the inventory

that makes ordering optimal (note that s here is not the salvage value. The only parameter

related to the salvage value in this section is the discount factor t.) It is easy to see that

s ≤ S. Since Kα(x) is piecewise linear, nondecreasing for x ≤ S, we first identify which

interval [d(k), d(k+1)) s belongs to by solving in k: Kα(d(k)) ≤ −A + Kα(S) < Kα(d(k+1)).

Then Kα(s) = c
[
ms + m + t

Nα

∑k
i=1(d(i) − s)

]
is linear in s and the value of s for which

Kα(s) = −A + Kα(S∗) follows from simple algebraic manipulations. 2

Comparison with the optimal policy for the worst-case distribution: For α = 0,

we can compare the optimal policy with the one obtained in [48] when only the mean and

the standard deviation of the distribution are known, namely:

S0 = µ +
σ

2

(√
m

t
−

√
t

m

)
, s0 = µ +

(m− t)Â− (m + t)
√

Â2 −mt σ2

2mt
, (6.29)

where Â = σ
√

mt + A
c . The differences between S∗ and S0 have been described in Sec-

tion 6.2.1. Here we focus on S∗ − s∗ and S0 − s0.

• For A/c large, k = 0 and:

S∗ − s∗ ≈ S0 − s0 ≈ A

mc
. (6.30)

In this case, both approaches leads to a similar value of S − s.

• For A/c small, k = j − 1 and:

S∗ − s∗ ≈ A

c
(
m− (m + t)j − 1

N

) . (6.31)

In the case where only mean and variance are known:

S0 − s0 ≈ m + t

(mt)3/4
·
√

Aσ

2c
. (6.32)

Here, the data-driven approach yields very different results from the case where only
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the first two moments are known.

The average ratio to optimality can be computed by distinguishing first between the cases

where I ≤ s∗ and I > s∗ (order or no order in the robust model) and then, for D = d(i),

between d(i) ≥ I + A
p− c and d(i) < I + A

p− c (order or no order in the a-posteriori optimal

policy). However, since the formulas are not particularly insightful, we omit them here.

6.2.2 With Multiple Sources of Uncertainty

The model with random yield

We consider the newsboy problem described in Section 6.2.1, with the additional assumption

that an order for Q units results in the delivery of Q units, only G(Q) of which are good.

The random profit can be written as:

π(Q,D) = (s− c) Q + (p− s)min(G(Q), D). (6.33)

We define the yield r as G(Q) = r Q. The data observed in realization i is (di, ri). (We

assume that the yield is independent of the quantity ordered.) Relaxing the integrality

constraint on G(Q), we consider the problem:

max
Q∈Z+

(s− c) Q +
p− s

Nα

Nα∑

k=1

[min(r·Q, d·)](k) . (6.34)

Let Sα be the set of the Nα worst-case scenarios at optimality. At x given, let xSα

(j) be the

j-th smallest component of x among the components in the set Sα. Here, we consider x

such that xi = di/ri for all i. We also define Sj
α =

{
i ∈ Sα, di

ri
≥

(
d
r

)Sα

(j)

}
.

Theorem 6.2.6 (Optimal policy)

(a) The optimal order Q∗ is solution of the mixed integer programming problem:

max (s− c) Q + (p− s)

(
φ + 1

Nα

N∑

k=1

ψk

)

s.t. φ + ψk ≤ dk, ∀k,

φ + ψk − rk Q ≤ 0, ∀k,

ψk ≤ 0, ∀k,

Q ∈ Z+.

(6.35)

(b) If the set of worst-case scenarios Sα is given, if we relax the integrality constraint on
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Q∗, Q∗ verifies:

Q∗ =
(

d

r

)Sα

(j)
with j s.t.

∑

i∈Sj+1
α

ri ≤ t

m + t
Nα <

∑

i∈Sj
α

ri. (6.36)

Proof: (a) follows from Theorem 3.2.1. The proof of (b) is similar to the proof of Theo-

rem 6.2.1, where we consider the subintervals [(di/ri)Sα

(j), (di/ri)Sα

(j+1)) and study the slope

in Q of the sample profit. 2

Note that if ri = 1 for all i, Sα is the set of scenarios corresponding to the Nα lowest

demands, and the condition in (b) yields again j =
⌈

m
m + t Nα

⌉
, as in Theorem 6.2.1.

Remark: The formula in (b) is much more intuitive than the optimal order obtained when

only the first two moments of the demand and the exact probability ρ of each unit being

good are known [48]:

Q0 =
1
ρ



µ− ρ

2
+

1
2

(√
m

t
−

√
t

m

) √
µ2 + σ2 −

(
ρ

2
− µ

)2


 , (6.37)

where ρ = 1− ρ.

The model with multiple products

This case is also referred to in the literature as “stochastic product mix”. It is an extension

of the newsboy problem to multiple items in presence of a budget constraint. We define for

item i = 1, . . . , n:

ci > 0: the unit cost,

pi = ci (1 + mi): the unit selling price,

si = (1− ti) ci: the unit salvage price,

Qi: the order quantity,

Di: the random demand.

The budget constraint is: n∑

i=1

ci Qi ≤ B, (6.38)

where B is the total budget. The random profit can then be written as:

π(Q,D) =
n∑

i=1

ci [mi Qi + (mi + ti) min(0, Di −Qi)] . (6.39)

The data observed in realization k, k = 1, . . . , N , is (dk
1, . . . , d

k
n), the demand for each item.

We consider the following problem:
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max
n∑

i=1

ci mi Qi +
1

Nα

Nα∑

k=1

(
n∑

i=1

ci (mi + ti)min(0, d·i −Qi)

)

(k)

s.t.
n∑

i=1

ci Qi ≤ B,

Qi ∈ Z+, ∀i.

(6.40)

Theorem 6.2.7 (Optimal policy)

(a) The optimal orders Q∗ are solutions of the mixed integer programming problem:

max
n∑

i=1

ci mi Qi + φ +
1

Nα

N∑

k=1

ψk

s.t.
n∑

i=1

ci Qi ≤ B,

φ + ψk −
n∑

i=1

ci (mi + ti)Zk
i ≤ 0, ∀k,

Zk
i + Qi ≤ dk

i , ∀i, k,

Zk
i ≤ 0, ψk ≤ 0, Qi ∈ Z+, ∀i, k.

(6.41)

(b) If we relax the integrality constraint on Q, we can separate the multi-item problem into

single-item subproblems with a new markup factor m′
i = mi − λ and a new discount factor

t′i = ti + λ for any item i = 1, . . . , n, where λ ≥ 0 is the optimal Lagrangian multiplier for

the budget constraint. For any i:

Q∗
i = (d·i)(ji) with ji =

⌈
mi − λ

mi + ti
Nα

⌉
, (6.42)

i.e., the optimal order for item i is equal to its
⌈
mi − λ
mi + ti

Nα

⌉
-th smallest historical demand.

Proof: (a) follows from Theorem 3.2.1. Moreover, when the integrality constraint on Q is

relaxed, the problem becomes a linear programming problem and we can dualize the budget

constraint by assigning a Lagrangian multiplier λ to it without changing the optimal cost

of the problem (when λ is selected optimally). The stochastic mix problem becomes then

separable in the items, and we can use the results of Section 6.2.1. This proves (b). 2

The model with random demand at the salvage value

Finally, we consider the case where the demand at the salvage value V is random. All the

other assumptions remain as in Section 6.2.1. The random profit is now:

π(Q, D, V ) = (p− c) Q + min[p min(0, D −Q) + s V, (p− s) min(0, D −Q)]. (6.43)
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The data in realization k is here (dk, vk), where dk is the demand at the beginning of the

period and vk is the demand at the end. These demands might be correlated. An appealing

feature of the proposed approach is that, by building directly upon the data sample, it

incorporates such dependency without requiring the estimation of key parameters such as

the covariance, since the realizations of the data will capture the correlation.

Since the trimmed profit is piecewise linear with breakpoints at the (dj), which are

integer, we can relax the integrality constraint on Q∗ in the problem formulation.

Theorem 6.2.8 (Optimal policy) The optimal order Q∗ is solution of:

max (p− c)Q + φ +
1

Nα

N∑

k=1

ψk

s.t. φ + ψk − pZk ≤ s vk, ∀k,

φ + ψk − (p− s) Zk ≤ 0, ∀k,

Zk + Q ≤ dk, ∀k,

ψk ≤ 0, Zk ≤ 0, ∀k,

Q ≥ 0.

(6.44)

Proof: This is a straightforward application of Theorem 3.2.1. 2

The optimal policy when the first few moments are known can also be obtained by solving

a linear programming problem on the worst-case probabilities [36], when the demands belong

to a known countable set. However, the worst-case approach is quite conservative since the

probabilities it yields can be very different from the actual distribution, and unrealistic given

the historical data at our disposal. (Another drawback is that its extension to a multi-period

setting relies on recursive equations as in dynamic programming, and therefore suffers from

the same dimensionality problems.) An appealing feature of the methodology proposed

here is that the optimal policy incorporates the information revealed by the data sample.

6.2.3 Computational Experiments

Example of the classical newsvendor problem

In this section, we apply the proposed methodology to the classical newsvendor problem

described in Section 6.2.1 and seek to gain some insight into the following questions:

• does the data-driven approach lead to high-quality results, as compared to the optimal
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policy computed with the accurate demand distribution?

• does the data-driven approach outperform Scarf’s approach (i.e. the optimal policy

computed when only the first two moments are known)?

• how sensitive is the data-driven approach to the choice of the trimming factor?

• what is the influence of the markup and discount factors?

• how does the standard deviation of the demand affect the results?

• what happens if the demand is not i.i.d.?

We will consider two types of distributions: gamma and lognormal, both with mean and

standard deviation equal to 200 items unless specified otherwise. (Throughout the simula-

tions, we will round down the realizations of the random variables, to have integer demands.)

We study these distributions because we feel that positively skewed distributions depict ac-

curately the situation in practice, where the “bulk” of the demand (repeat buyers, who for

instance buy the newspaper most of the time) is followed by a long tail (one-time buyers

who, say, will buy the newspaper only if there is something that interests them in the news).

We generate N +1 values of the demand with N = 50 over 1, 000 iterations. Each time, the

first N values are taken to be the historical data and are used to compute the optimal order

quantity for the (N + 1)st scenario. At mean, standard deviation and type of distribution

given, this data sample of size 1, 000 · (N + 1) is generated only once at the beginning of

the simulation, so that the effects of the parameters on the expected revenue are measured

over exactly the same data.

Influence of Nα on performance

Figures 6-1 to 6-3 show how the sample average revenue obtained in the data-driven, robust

approach evolves as a function of Nα for different values of the markup and discount factors

m and t. We consider 3 cases: in Case 1, we take m = 0.4, t = 0.4, in Case 2, m = 0.2,

t = 0.6, and in Case 3, m = 0.6, t = 0.2. The sample average is taken over the 1, 000

(N + 1)st scenarios. Since we compute the expected revenue over the same data sample

for all Nα, and since Q = d(j) for some j, plateaux appear in the expected revenue when

changing Nα does not change the index j determined by Theorem 6.2.1. Throughout this

section, the results obtained with the gamma (resp. lognormal) distribution are shown on
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the left (resp. right) panel. We take c = 10.
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Figure 6-1: Influence of Nα, Case 1.
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Figure 6-2: Influence of Nα, Case 2.
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Figure 6-3: Influence of Nα, Case 3.
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We notice that the curve of the expected revenue obtained in the robust approach (i.e.

where the optimal order is computed by optimizing the trimmed revenue) levels off as Nα

tends towards N , suggesting a very small performance loss, as measured by the difference

between the expected revenues. The curve labeled “optimal” is obtained by optimizing the

expected revenue for the accurate demand distribution (gamma or lognormal). The robust

and optimal approaches yield similar results for trimming factors up to 10− 20%, depend-

ing on the values of the markup and discount factors. The curve labeled “Scarf” shows the

expected revenue when Scarf’s policy - using only the first two moments - is implemented.

The mean and standard deviation that are necessary to implement Scarf’s ordering policy

are computed from the data sample available at each iteration. The data-driven approach

leads to a substantive performance gain as compared to Scarf’s approach when t ≥ m, which

corresponds to a perishable product whose value deteriorates fast (the unit profit incurred

by a sale at the beginning of the period is smaller than the unit loss incurred by a sale at

the salvage value at the end of the period). For m > t, Scarf’s approach and the data-

driven methodology yields similar results when the trimming factor is chosen appropriately.

The figures with gamma and lognormal distributions exhibit the same qualitative trends,

suggesting that the actual type of the distribution is less important for the performance of

the robust approach than the markup and discount factors.

Influence of the markup and discount factors

Figures 6-4 to 6-6 show in further detail how the markup and discount factors affect the

performance of the robust, data-driven approach, when we take α = 0.15 (i.e., Nα = 42,

since N = 50.) In Figure 6-5, resp. 6-6, we consider the ratio t/m = 2, resp. t/m = 0.5.

Again, the figures show the same qualitative trends both for the gamma and the log-

normal distributions, and high-quality results from the robust approach as compared to the

optimal approach. This is very encouraging since in practice we would not know the actual

distribution and therefore we would not be able to compute the optimal expected revenue.

The data-driven approach seems to have a significant advantage over Scarf’s approach when

t ≥ m. At t/m given, the expected revenues (in the robust, optimal and worst-case ap-

proaches) appear to be linear in the markup cost m, although the actual slopes vary.

Influence of the standard deviation
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Figure 6-4: Influence of the markup and discount factors.
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Figure 6-5: Influence of the markup and discount factors, Ratio 1.
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Figure 6-6: Influence of the markup and discount factors, Ratio 2.

149



Here we study the impact of the standard deviation on the performance of the system, at

mean given. We take m = 0.4, t = 0.6. (As before, the standard deviation to be used

in Scarf’s ordering policy is estimated from the past realizations of the data.) The robust

and optimal approaches behave similarly, and the performance of Scarf’s policy is adversely

affected by the increasing standard deviation.
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Figure 6-7: Influence of the standard deviation.

Influence of demand distributions that are not i.i.d.

Here the distributions are still gamma or lognormal, but this time the mean is random,

and the standard deviation remains equal to the mean. In this example the mean follows a

gaussian distribution with mean 200 and standard deviation 40. The ratio t/m is equal to

2.
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Figure 6-8: Influence of demand distributions that are not i.i.d.
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It appears that the data-driven approach is robust to changes in the parameters of the

distribution and performs well despite this additional randomness. Scarf’s policy is not

as robust to such changes, although the performance loss is more striking for the gamma

distribution than for the lognormal one.

Example of the newsvendor problem with random demand at the salvage value

In this section, we apply the data-driven approach to the newsvendor problem with random

demand at the salvage value, as described in Section 6.2.2. Of particular interest is the

impact on performance of a possible correlation between the demands. We will also study

the influence of the standard deviation of the demand at the full price.

We will consider three policies:

• the robust policy, obtained in the data-driven approach,

• the optimal policy computed under the (wrong) assumption that both demands are

uncorrelated and Gaussian (those assumptions are often encountered in practice), with

mean and standard deviation estimated from the available data,

• Scarf’s policy obtained under the (wrong) assumption of infinite demand at the salvage

value, when only the first two moments of the demand at the full price are known.

(In other words, the newsvendor assumes, perhaps erroneously, that the salvage price

is so low that the remaining items will always be sold.)

For each of 50 test cases, we generate 120 observations that will be used as follows: the first

20 observations represent the historical data (N = 20), used to find the optimal policy. Then

the expected revenue for that order will be computed over the 100 remaining observations,

each representing a possible value of the demand in the coming time period. This represents

a total of 5, 000 test cases. The distributions we consider are (a) gamma for the demand at

the full price, and a linear combination of the demand at the full price and another gamma

distribution for the demand at the salvage value, representing different motivations of the

buyers (left panel of the figures below) (b) lognormal for the demand at the full price, and

a linear combination of the demand at the full price and another lognormal distribution for

the demand at the salvage value (right panel). The coefficients of the linear combination

depend on the desired correlation.
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To select Nα, we start at Nα = N (α = 0) for each of the 50 test cases, solve the

data-driven problem and reiterate if necessary, decreasing Nα until a prespecified number

of scenarios (β N , with β = 0.9) have a revenue greater than the trimmed mean given by

the robust approach. This corresponds to a Value-at-Risk requirement. We take c = 10,

m = 0.2, t = 0.7, means and standard deviations equal to 200.

Influence of the correlation

Figure 6-9 shows the influence of the correlation on the expected revenue for the three

policies. The correlation varies from −0.9 to 0.9. The gamma and the lognormal cases

present the same qualitative features:

1. when the correlation is negative, the expected revenue for the three approaches in-

creases with the correlation, and the three approaches perform somewhat similarly,

2. when the correlation is positive, the expected revenue in the robust approach shows

little dependence in the correlation. The robust approach performs significantly better

than the other two approaches.

Figure 6-10 shows the influence of the correlation on the mean and median of Nα, when

Nα is selected to satisfy the Value-at-Risk requirement. It appears that the sign of the

correlation between the two demands plays a key role in the mean and median value of Nα:

if the demands are negatively correlated, the newsvendor will be more conservative in order

to guarantee performance, while if the demands are positively correlated, the newsvendor

does not have to trim as much. The type of distribution does not significantly affect the

choice of Nα.

Influence of the standard deviation

Figure 6-11 shows the influence of the standard deviation on the expected revenue in the

three approaches. The data-driven policy appears to perform better than the other two

strategies as the standard deviation increases.

6.2.4 Summary of Results

In this section, we have applied the data-driven approach to the classical newsvendor prob-

lem and its extensions when the probability distributions of the underlying sources of un-
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Figure 6-9: Influence of the correlation on the expected revenue.
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Figure 6-10: Influence of the correlation on Nα.
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Figure 6-11: Influence of the standard deviation on the expected revenue.
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certainty are not accurately known. The corresponding robust formulations are linear or

mixed integer programming problems, and therefore can be solved efficiently. This model

also allows us to gain a deeper insight into the impact of risk aversion on the optimal or-

ders. We have derived closed-form expressions for several models, which highlight the role

of the trimming factor and of the profit parameters on the optimal solution. They generally

correspond to a well-chosen historical realization of the demand. Finally, we have presented

encouraging computational results. In particular, the numerical evidence suggests that:

1. a small trimming factor (up to about 20%) does not significantly affect the expected

revenue,

2. the data-driven approach performs better than Scarf’s policy, which uses only the first

two moments,

3. the benefit of using the data-driven methodology rather than Scarf’s formula increases

when the demand is more volatile, i.e., the standard deviation increases,

4. the data-driven approach is robust to non-i.i.d. distributions,

5. using such a framework that incorporates demand correlation increases profits, some-

times substantially.

Therefore, the data-driven robust approach applied to the newsvendor problem and its

extensions opens a promising area of research.

6.3 Airline Revenue Management

In this section, we apply the robust data-driven framework developed in Chapter 3 to

airline revenue management. Specifically, we consider the problems of finding optimal seat

allocations (Section 6.3.1) and admission policies (Section 6.3.2) for a network subject to

random demand over time.

6.3.1 Robust Seat Allocation

Notations

A booking request is identified by its origin o, destination d and fare class f , which is

summarized in the notation odf . We have N past realizations of the random demand at
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our disposal, where each scenario k consists of the vector dk of past demands over time in

that scenario, where demand for booking type odf at time t in scenario k noted d kt
odf . Let

Nα be the number of scenarios we keep after trimming. We define:

T : the time horizon,

Nodf : the total number of possible odf ,

Sl: the set of odf using leg l in the network,

d kt
odf : the demand for booking of type odf at time t = 1, . . . , T in scenario k,

f t
odf : the fare for booking of type odf at time t = 1, . . . , T ,

xt
odf : the number of seats reserved for booking requests of type odf at time t.

The Model

The nominal problem can be formulated as:

max
T∑

t=1

Nodf∑

odf=1

f t
odf xt

odf

s.t.
T∑

t=1

∑

odf∈Sl

xt
odf ≤ Cl, ∀l,

0 ≤ xt
odf ≤ dt

odf , ∀odf, ∀t.

(6.45)

We have the following theorem.

Theorem 6.3.1 (The robust problem) The robust counterpart to Problem (6.45) is:

max φ + 1
Nα

N∑

k=1

ψk

s.t. φ + ψk −
T∑

t=1

Nodf∑

odf=1

f t
odf y kt

odf ≤ 0, ∀k,

y kt
odf − xt

odf ≤ 0, y k
odf ≤ d kt

odf , ∀odf, t, k,

T∑

t=1

∑

odf∈Sl

xt
odf ≤ Cl, ∀l,

x ≥ 0, ψ ≤ 0.

(6.46)

Proof: Is an immediate application of Theorem 3.3.3. 2

Let π∗ be the optimal dual vector corresponding to the capacity constraints of (6.46) and

for any vector y, let [y](k)
Sα

be the k-th greatest yk among the Nα worst cases.

Theorem 6.3.2 (The robust seat allocation)
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(a) If x∗todf > 0 and

(
∑

l∈odf π∗l · Nα

f t
odf

)
is not an integer, then:

x∗todf =
[
d · todf

](k)

Sα

where k =




∑

l∈odf

π∗l ·
Nα

f t
odf




. (6.47)

(b) If
∑

l∈odf π∗l > f t
odf , then x∗todf = 0.

Proof: Follows from Theorem 3.3.4. 2

Remarks:

1. In the nominal model, we have (a) x∗todf = 0 if
∑

l∈odf π∗l > f∗todf ; and (b) if x∗todf > 0 and
∑

l∈odf π∗l < f∗todf then x∗todf = d
t
odf . Therefore, it appears that, while in the nominal

case the sign of f∗todf −
∑

l∈odf π∗l determines the optimal allocation, in the robust

case what matters is the ratio between unit revenue and opportunity costs
f t

odf∑
l∈odf π∗l

,

rather than their difference.

2. Everything else being equal, if the fare for a ticket of type odf increases with time, the

index k in Eq. (6.47) decreases, and as a result x· todf increases with time (assuming that

x∗todf > 0 and
∑

l∈odf π∗l · Nα

f t
odf

is not an integer). Unsurprisingly, the decision-maker

allocates more seats to the odf when it generates more revenue. This is also true if

the trimming factor increases, i.e., if the decision-maker becomes more conservative

he will tend to allocate more seats to odf that clearly generate revenue.

3. If two fare classes for the same origin and destination (possibly at different time

periods) are allocated seats and verify the nonintegrality condition, the ratio of the

probabilities that demands for those classes is not fully met is equal to the inverse

of the fare ratio. For instance, under these conditions, if a ticket for a specific odf is

twice as expensive at time t2 than t1, the probability that demand at time t2 is not

fully met is approximately half the probability at time t1.

6.3.2 Robust Admission Policies

We keep the same notations as in Section 6.3.1, with the difference that xt
odf now represents

the decision to admit odf at time t. We consider the linear relaxation of the admission

problem, so that xt
odf ∈ [0, 1]. For practical purposes, we admit odf at time t whenever

xt
odf > 0. The nominal problem is therefore:
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max
T∑

t=1

Nodf∑

odf=1

f t
odf dt

odf xt
odf

s.t.
T∑

t=1

∑

odf∈Sl

dt
odf xt

odf ≤ Cl, ∀l,

0 ≤ xt
odf ≤ 1, ∀odf, ∀t.

(6.48)

We follow the approach outlined in Section 3.3.3 to build the data-driven problem. Let πk

be the optimal dual vector associated with the capacity constraints in Problem (6.48) in

scenario k.

Theorem 6.3.3 (The data-driven approach in airline revenue management)

(a) The optimal admission policy is the solution of:

max φ +
1

Nα

n∑

k=1

ψk

s.t. φ + ψk −
T∑

t=1

Nodf∑

odf=1


f t

odf −
∑

l∈odf

πk
l


 d kt

odfxt
odf ≤

∑

l

πk
l Cl, ∀k,

ψk ≤ 0, ∀k,

0 ≤ xt
odf ≤ 1, ∀ odf, ∀ t.

(6.49)

(b) Let Sα the optimal set of the Nα worst cases. The optimal admission policy is to accept

all requests of type odf at time t if:

f t
odf ≥

∑

k∈Sα

∑

l∈odf

πk
l d kt

odf

∑

k∈Sα

d kt
odf

, (6.50)

and reject otherwise.

Proof: Follows from Theorem 3.3.5. 2

In particular, the optimal policy is to accept requests of type odf at time t if the unit

fare at that time is greater than a weighted average of the opportunity costs, where the

weights are the historical demands across scenarios.

Example: A single-leg static network

Here, we consider the case of a single-leg static network, where either the capacity is not

reached or it is always reached for the same class of travellers, i.e., if πk > 0, then πk = π,

where π corresponds to the fare of the last class admitted. Let S+
α be the set of scenarios

k in Sα for which πk > 0. Then, from Eq. (6.50), class i is admitted if:
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fi ≥

 ∑

k∈S+
α

dk
i /

∑

k∈Sα

dk
i




︸ ︷︷ ︸
≤1

π. (6.51)

An important consequence of this result is that a class i with a fare lower than the oppor-

tunity cost might well be admitted, if the demand for that class is negatively correlated

with the saturation of the available capacity. In other words, if demand for that class hap-

pens to be low in many of the worst-case scenarios where capacity is reached, we will have
∑

k∈S+
α

dk
i /

∑
k∈Sα

dk
i ¿ 1, and therefore fi ≥

(∑
k∈S+

α
dk

i /
∑

k∈Sα
dk

i

)
π although fi < π.

Intuitively, the decision-maker admits this class because if the capacity is not reached, it

makes sense to admit as many classes as possible, and if it is, the demand for this class will

likely be lower than ordinary, and therefore will not play an important role in meeting the

capacity of the aircraft.

Remark: Because both sides of Eq. (6.50) vary with time, some requests in this approach

might be accepted at a time period, rejected later and finally accepted again. For instance,

consider the case with two scenarios in S, a single leg, two classes and an horizon of three

time periods. The fare and the demand of the first class are constant over time and sce-

narios, equal to 50 and 20, respectively. The fare for the second class is (10, 15, 30) and its

demand in scenario 1, resp. 2, is (1, 20, 50), resp. (10, 10, 10). Capacity is 100. It follows

that π1 = 30 and π2 = 0. As a result, the optimal admission policy in the data-driven

approach is to always admit class 1 (50 ≥ 20) and admit class 2 at times 1 and 3, and

reject it at time 2 (Theorem 6.3.3 (b) yields 10 ≥ 30/11, 15 < 20 and 30 ≥ 25). This is

counter-intuitive as one would expect that any booking request will be accepted once the

price is high enough. In practice, this might indicate that the prices have not been set

optimally.

6.3.3 Computational Experiments

In this section, we implement the robust approach on the huh-and-spoke network shown in

Figure 6-12. This network has one hub, noted 1, and 8 auxiliary airports, noted 2, . . . , 9.

Directions of travel on the legs are from left to right on Figure 6-12, and legs are numbered

from left to right and from top to bottom (for instance the leg from airport 2 to the hub is

leg 1, the leg from airport 3 to the hub is leg 2, etc.) There is only one fare class. The fares
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Figure 6-12: The airline network.

for each origin and destination are summarized in Table 6.1.

To 1 6 7 8 9
From

1 x 25 30 35 40
2 37 30 35 40 45
3 45 40 50 55 60
4 50 30 40 50 60
5 25 15 20 25 30

Table 6.1: The fares.

Demands are assumed to be i.i.d. with mean 100 and standard deviation 30. We consider

two types of distributions: Gaussian and symmetric Bernoulli (binomial). Unless specified

otherwise, the left, resp. right, panel of the figures shows the results for the Gaussian, resp.

Bernoulli distribution, and capacity on each leg is 350.

Our goal is to find optimal seat allocations in a static environment. In each of 50

iterations,

1. we start with N = 11 previous realizations of the demand across the network,

2. we determine the optimal seat allocations,

3. we evaluate the corresponding solution on 50 new realizations of the demand and

compute various statistics.

Influence of the trimming factor:

First we analyze the influence of the trimming factor on the optimal solution. The figures

below show the mean and standard deviation of the actual revenue (Figure 6-13) and the
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optimal seat allocations (Figures 6-14 to 6-21) as a function of the number of discarded

scenarios N −Nα.
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Figure 6-13: Influence of the trimming factor on mean and standard deviation of actual
revenue.

In this example, increasing the trimming factor decreases the mean revenue for both

distributions. It also significantly decreases the standard deviation of the revenue when the

distribution is Bernoulli (binomial). When the distribution is Gaussian, it decreases the

standard deviation if the trimming factor is less than 0.6, but increases it otherwise.
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Figure 6-14: Influence of the trimming factor on allocations on leg 1.

The effect of the trimming factor on the actual allocations is qualitatively the same

for both distributions, although the actual allocations differ, sometimes significantly. (As

an example, Route 2 − 1 is allocated between 94 and 101 seats when the distribution is

Gaussian, but only between 74 and 85 when it is Bernoulli, see Figure 6-14.) In particular,

the number of seats given to each route generally follows the same ranking in both cases.

In Figure 6-15, for both distributions, Route 3 − 1 receives the highest number of seats,
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Routes 3− 7, 3− 8 and 3− 9 are assigned comparable quantities, and Route 3− 6 has the

lowest allocation.
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Figure 6-15: Influence of the trimming factor on allocations on leg 2.
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Figure 6-16: Influence of the trimming factor on allocations on leg 3.

We note that, for this fare structure, the number of seats allocated to one-leg routes,

i.e., routes that have the hub as their origin or destination, is always nonincreasing with

the number of scenarios discarded. Moreover, there is often a substitution effect, where the

seats taken from the one-leg routes are re-assigned to a specific two-leg route using that

same leg, while the allocations of the remaining origin-destination pairs show little change.

This effect is somewhat stronger when the distribution is Bernoulli. Intuitively, as his risk

aversion increases, the decision-maker prefers a higher likelihood to sell the seats rather

than the opportunity for larger profits.

For instance, on leg 3, Route 4− 1 from Airport 4 to the hub loses seats to Route 4− 6

from Airport 4 to Airport 6 (Figure 6-16). On leg 5, Route 1− 6 loses seats to Route 4− 6
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as well (Figure 6-18). Specifically, Routes 4 − 1 and 1 − 6 combined bring in a total unit

revenue of 50 + 25 = 75 units, which is much larger than the unit revenue of 30 units for

Route 4−6, but they are also allocated a number of seats that exceed the mean demand by

the risk-neutral decision-maker (about 120 each in the Bernoulli case), while Route 4 − 6

receives a far smaller number of seats (about 20). In contrast, the most risk-averse decision-

maker in the Bernoulli case assigns about 75, resp. 78, 65, seats to Route 4− 1, resp. 1− 6,

4− 6.
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Figure 6-17: Influence of the trimming factor on allocations on leg 4.
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Figure 6-18: Influence of the trimming factor on allocations on leg 5.

Other examples of the same phenomenon can be observed on Routes 5 − 1 and 1 − 7

compared to Route 5− 7 (Figures 6-17 and 6-19), Routes 5− 1 and 1− 8 compared to 5− 8

(Figures 6-17 and 6-20) and Routes 5 − 1 and 1 − 9 compared to 5 − 9 (Figures 6-17 and

6-21).
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Figure 6-19: Influence of the trimming factor on allocations on leg 6.
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Figure 6-20: Influence of the trimming factor on allocations on leg 7.

Influence of leg capacity:

We also study how leg capacity affects the optimal solution. The figures below show the

mean and standard deviation of the actual revenue (Figure 6-22) and the optimal seat al-

locations (Figures 6-23 to 6-30) as a function of the capacity of leg 1, which varies between

0 and 700. In this case, Nα is taken equal to 9, which corresponds to a trimming factor of

about 20%.

Mean and standard deviation exhibit the same qualitative behavior for both distribu-

tions (Figure 6-22). Unsurprisingly, increasing the capacity increases the mean revenue,

as it allows more demand to be satisfied. We note that the mean revenue plateaus when

the capacity of leg 1 reaches a value of about 500 seats, which corresponds to the sum of

the mean demands over all routes using that leg. As noted before, the allocations for the

different routes approximately follow the same ranking in the Gaussian and Bernoulli cases.

We make the following additional observations:
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Figure 6-21: Influence of the trimming factor on allocations on leg 8.
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Figure 6-22: Influence of capacity of leg 1 on mean and standard deviation of actual revenue.

• On leg 1 (Figure 6-23), the number of seats assigned to each origin-destination pair is

nondecreasing in the capacity, and the highest number of seats is consistently allocated

to the single-leg route 2− 1. When the capacity exceeds 500, the number of seats for

the two-leg routes 2−6, 2−7, 2−8 and 2−9 reaches a plateau, as these quantities are

also constrained by the capacity of the other leg. Route 2− 1 has no such constraint

and therefore the corresponding number of seats continues to grow.

• Legs 2 to 4 (Figures 6-24 to 6-26) are affected by the capacity of leg 1 in an indirect

manner, as the passengers on these legs compete for a seat towards the destinations

6 to 9. As the capacity of leg 1 increases, it becomes more lucrative for the decision-

maker to let the travellers coming from City 2 go to 6, 7, 8 or 9. This results in a

shift in the seat allocations on legs 2 to 4 from two-leg routes to the single-leg routes

3− 1, 4− 1 and 5− 1.
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Figure 6-23: Influence of capacity of leg 1 on allocations on leg 1.
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Figure 6-24: Influence of capacity of leg 1 on allocations on leg 2.
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Figure 6-25: Influence of capacity of leg 1 on allocations on leg 3.

• On legs 5 to 8 (Figures 6-27 to 6-30), the routes coming from City 2 are assigned an

increasing number of seats, which were previously attributed for the most part to the

single-leg routes 1− 6 to 1− 9. After the capacity reaches 500, the allocations remain

constant.
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Figure 6-26: Influence of capacity of leg 1 on allocations on leg 4.
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Figure 6-27: Influence of capacity of leg 1 on allocations on leg 5.
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Figure 6-28: Influence of capacity of leg 1 on allocations on leg 6.

Therefore, the data-driven approach appears as a promising tool to incorporate risk aversion

in a tractable and insightful manner.
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Figure 6-29: Influence of capacity of leg 1 on allocations on leg 7.
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Figure 6-30: Influence of capacity of leg 1 on allocations on leg 8.

6.3.4 Summary of Results

In this section, we have applied data-driven techniques to airline revenue management.

Our goal was to obtain robust seat allocations and admission policies that (a) would make

full use of the available historical data without assuming specific distribution; and (b)

would incorporate the decision-maker’s risk aversion. We have formulated these problems

in a linear programming framework, and derived closed-form expressions for the optimal

policy. The proposed methodology highlights the role of each parameters (risk aversion,

demand, fare price) in the choice of the allocation or admission strategy. Furthermore, we

have implemented this approach on a network example. The insights we derived from this

numerical experiment can be summarized as follows:

1. the robust framework is well-suited for network topologies, as it incorporates un-

certainty while preserving the linear structure of the deterministic problem, and can
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therefore be solved with standard optimization packages, using if necessary large-scale

methods available commercially.

2. the optimal solution can be affected substantially by the decision-maker’s risk aver-

sion, which makes it all the more important to incorporate this factor in the decision

process,

3. the data-driven approach also helps to identify which legs and routes play the most

important role in the optimal strategy.

One of the major challenges in airline revenue management is to integrate different levels of

the decision-making process, such as crew scheduling, pricing, aircraft assignment, admis-

sion policies, which are currently addressed sequentially, in one single model. The robust

framework holds much potential in that respect as it incorporates uncertainty in a tractable

and efficiently solvable manner.

6.4 Concluding Remarks

In this chapter, we have applied a data-driven methodology to common revenue manage-

ment problems. Using the sample of historical realizations of the demand, we have built

a tractable framework that does not require any estimation of the future demand process,

and instead have used the ideas from the field of robust statistics and portfolio management

developed in Chapter 3 to obtain linear programming problems for all the applications con-

sidered. These formulations allow us to gain valuable insights into the impact of uncertainty

and risk aversion on the optimal solutions of the newsvendor problem, as well as seat alloca-

tion and admission policies in airline revenue management. In particular, we show that the

optimal solution can be formulated in terms of auxiliary variables, and sometimes historical

demands, appropriately ranked. Therefore, the data-driven approach opens a promising

area of research in the field of revenue management.
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Chapter 7

Conclusions and Future Research

Directions

The unifying theme of this thesis is that robust optimization provides a powerful frame-

work to model stochastic systems in a tractable and insightful manner. It is well suited

to problems with volatile uncertainty, where the randomness is hard to describe in exact

probabilistic terms. Supply chains and revenue management represent an important class of

such problems, as customer demand is notoriously difficult to estimate accurately. Robust

optimization also offers an elegant technique to address dynamic environments, since in

contrast with other methods available to the decision-maker, e.g., dynamic programming,

the robust formulations can be solved efficiently for large problem sizes.

In this thesis, we first presented a deterministic approach to randomness, where we

modelled the random variables as uncertain parameters in polyhedral uncertainty sets. We

derived tractable robust counterparts of the original convex problems, studied the static as

well as the dynamic cases, analyzed the optimal solutions in detail, and described how to

select the parameters to achieve a trade-off between robustness and optimality.

We then considered a second technique, which builds directly on the sample of histori-

cal data and incorporates risk aversion through a single parameter. An appealing feature

of this approach is that it does not require any estimation process. We showed that this

data-driven framework leads to convex problems, and hence is tractable. Furthermore, we

provided insights into the structure of the optimal policy. In linear programming examples,

we characterized the optimal solution in terms of auxiliary variables ranked appropriately.
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In a third part, we compared the two methods and argued that the approach with un-

certainty sets was best suited to problems exhibiting an averaging effect in the random

variables. We also studied the implications of each framework in settings where both could

be applied successfully, and established some conditions for the models to be equivalent.

Following these theoretical results, we applied the robust optimization techniques to ex-

amples from the fields of supply chains and revenue management. In the context of supply

chains with backlogged demand and piecewise linear costs, we showed that the robust prob-

lem was equivalent to a nominal problem with modified demand. We derived the optimality

of basestock policies in cases where the optimal stochastic policy is basestock as well, and

in cases where the optimal stochastic policy is not known.

We also proposed robust strategies for the newsvendor problem and airline revenue man-

agement. We formulated the data-driven counterparts as linear programming problems and

characterized the optimal policy as a function of the different demand scenarios and the

dual variables. Our findings provide a deeper insight into the impact of risk aversion and

demand stochasticity on the system.

In conclusion, we believe that robust optimization holds great promise as a modelling

tool for management problems. It opens many research directions, as virtually any prob-

lem in supply chains or revenue management can be revisited using the techniques that

we have developed. This is particularly attractive in a dynamic setting, where traditional

methods quickly become intractable. In future work, we intend to address management

problems with endogenous uncertainty. The randomness that we have considered so far was

exogenous to the system, that is, could not be controlled by the decision-maker. In many

applications however, pricing schemes allow for a much greater flexibility in regulating the

demand process and therefore optimizing revenue. We hope that integrating these various

decision levels in a single tractable formulation through a robust optimization approach will

lead to a better understanding of the problem at hand, and a more efficient allocation of

the resources available.
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