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Abstract

Pervasive computing promises to put computers in almost every corner of our life.
Unfortunately, it also promises to make programmers’ jobs harder since they cannot
know what components are available in the run-time environment and as such, cannot
statically plan out their programs. To help this situation, we propose goal-oriented
programming, which may be more amenable to programming pervasive applications.

Goal-oriented programming adds a level of indirection between Goals, high-level
intentions such as “make me available for chat,” and Techniques, the code that im-
plements the intentions. Each Technique is a combination of code and prerequisite
subgoals, so that a Technique can be itself goal-oriented.

By decomposing an application this way, it is possible to automatically build
parts of it based on the runtime environment. When an application would like a Goal
satisfied, the implementation Planner first finds Techniques that can satisfy the Goal,
and then recurses to satisfy the Techniques’ subgoals. After a sufficient number of
Techniques are found, the Planner evaluates the Techniques in some user-defined way,
and chooses a set to execute.

This work focuses on programming framework that isolates the planning aspect of
goal-oriented programming from the Goals and Techniques themselves. We provide
a reference Planner and evaluate its how well the Planner performs in simulation.

Thesis Supervisor: Steve Ward
Title: Professor
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Chapter 1

Introduction

Pervasive computing promises to put computers in almost every corner of our life.

Conventional computers will interact with new computers in appliances, cars, build-

ings, and other electronic jewelry. In such a world, users will expect their devices to

be aware of their environment and maintain services in the face of radical changes in

the computational environment.

For example, suppose Alyssa would like to communicate with Ben. In a pervasive

computing environment, all Alyssa should do is request a conference with Ben and the

environment should take care of the rest. If both parties both have phones, perhaps a

phone call is the best way to conference, while if they have access to video equipment,

the two should be connected by video. In other words, the conference software should

make use of the best components available in the environment. Furthermore, suppose

that after establishing the conference, Alyssa needs to walk out of her office, but would

like to continue talking with Ben. When Alyssa leaves, the conference should switch

over to using her cellular phone, since it is the best way for her to stay connected and

be mobile.

An application that supports such a rich variety of conferences is hard to pro-

gram. In a traditional computing environment, it is nearly impossible: Alyssa and

Ben would need to agree beforehand what kind of conference they want, fire up their

conferencing software, and restart the conference when some parameters of the con-

ference (such as location) change. Pervasive environments typically offer a variety of

13



frameworks to make this task easier, ranging from discovery tools to pluggable com-

ponents. However, even with such frameworks, the programmer cannot know what

components are available in the environment and as a consequence, cannot statically

plan programs.

Luckily, the programmer still has control over and can statically plan two levels

of a pervasive application. The first is the high-level intents the application has. The

second level is the many individual recipes that implement intentions. What is needed,

therefore, is a framework for dynamically choosing, instantiating, and connecting code

modules to maintain some higher-level intent.

1.1 Goal-oriented Programming

This thesis proposes Goal-oriented programming as a way of constructing pervasive

applications. Goal-oriented programming makes explicit the separation between in-

tent and implementation. The hope is that by exploiting the underspecified nature

of many intents, the system can automatically choose among different ways of imple-

menting each intent.

In a Goal-oriented program, the application asks a Planner to satisfy a high-

level intent—embodied as a Goal. The Planner then matches the Goal against a

repository of Techniques satisfying the Goal. If there are many Techniques satisfying

the Goal, the Planner must choose one among them. Next, the Planner executes the

Techniques it has chosen. Finally, as the environment changes, the Planner revisits

its set of chosen Techniques and may choose a new set to satisfy the Goal in the

changed environment.

Goal-oriented programming offers two key advantages over existing programming

methodologies:

1. A Goal may be satisfied in a myriad of ways, each of which is best suited at

different times. Since the Planner evaluates and monitors each of the Techniques

satisfying a Goal, the Planner may progressively refine its implementation as

the environment changes.
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2. New capabilities may be built into old applications by simply adding new Tech-

niques. The Planner will incorporate the new Techniques in the course of sat-

isfying future Goals.

These advantages greatly ease the job of writing an adaptive pervasive application.

1.2 The O2S System

Goal-oriented programming is motivated, in part, by our experience maintaining ap-

plication services in O2S[13], a typical pervasive computing environment. O2S gives

programmers three primitive types—Resources, Events, and Connectors—on top of

which the programmer can layer any pervasive application. Resources are generic net-

work objects that provide access to services through synchronous requests. Events

are asynchronous messages and notifications generated by Resources. Finally, Con-

nectors are low-overhead network sockets that can be used to stream data between

two Resources. In addition to the primitive types, O2S also provides a framework to

discover and acquire additional resources, as well as monitor the health of the existing

resources.

Hence, O2S provides an environment where pervasive applications can be com-

posed by discovering resources, connecting them together, and handling events as

necessary. However, much of this work is mundane and, moreover, error-prone as

the programmer must be careful to handle all execution modes. To make matters

worse, the logic of handling failures and adapting to changing environments is often

scattered in many parts of the program, making it hard to maintain. Finally, even

given perfect adaptability, making rich use of the computing environment is difficult

since knowledge of new capabilities needs to be built into the application before they

can be used.

Goal-oriented programming provides a way mechanize much of this work as well

as a way of concentrating adaptation logic in the Planner.
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1.3 Thesis Outline

The next two chapters present an overview of Goal-oriented programming and related

work. Subsequently, Chapter 4 outlines the constraints and goals we tried to meet

when creating our design. Chapters 5 and 6 detail our final design and implemen-

tation. Chapter 7 evaluates our implementation. Finally, Chapter 8 outlines future

work and concludes.
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Chapter 2

Overview of Goal-oriented

Programming

Goal-oriented programming centers around three main concepts: Goals, Techniques,

and the Planner.

2.1 Goals

A Goal is a parameterized specification of a class of high-level applications intents or

desires. A Goal instantiated with a particular set of parameters is formalized as a

Goal Instance. Goals specify both the type and meaning of their parameters as well

as the type of value returned by a particular Goal Instance.

A Goal is analagous to a function specification. Likewise, a Goal Instance is much

like a function call. However, there are a few differences between function calls and

Goal Instances:

1. The usual job of a function call perform a calculation or mutate state. A Goal

Instance, on the other hand, maintains an intent. In the process of maintaining

the intent, the Goal Instance may perform many of the same actions that a

function call may. However, unlike the “call and return” semantics of a function

call, a Goal Instance persists until an application no longer needs the intent
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maintained. In other words, a function call executes once, while a Goal Instance

runs continually and adapts as the environment changes.

2. A function call maps to exactly one body, while a Goal Instance has many ways

of being satisfied. It is the responsibility of the Planner to match appropriate

Techniques to the Goal Instance and make sure that these Techniques still

satisfy the Goal as the environment changes.

2.2 Techniques

A Technique is a parameterized template for satisfying a Goal. A Technique itself

may be goal-oriented by declaring prerequisite subgoals that the Planner must satisfy.

Goal Instances are satisfied by Technique Instances, which are Technique objects with

their parameters bound to the parameters of the Goal Instance that the Technique

Instance is to satisfy. Each Technique declares which class of Goals it can satisfy.

However, at runtime each Technique Instance works with the Planner to decide how

well, if at all, it can satisfy its particular Goal Instance. This is necessary since the

Planner must make an informed decision among the many Technique Instances that

satisfy any particular Goal Instance.

Since Techniques are recipes for satisfying Goals, a Technique contains arbitrary

code that allows it to interact with the Planner, its own subgoals, and the world at

large. Conceptually, a Technique’s code is use to:

1. Help the Planner determine how well a Technique Instance satisfies its Goal

Instance,

2. Form the implementation that actually satisfies the Goal Instance, and

3. Adapt the Technique Instance to a changing environment.

18



2.3 Planner

The Planner is responsible for building implementations that satisfy Goal Instances.

In order to do this, the Planner maintains a Plan Tree that encodes all of the possible

ways of satisfying the top-level Goal Instance. The Plan Tree takes the form of an

and/or tree since each Goal Instance can be satisfied by any one Technique Instance,

but each Technique Instance needs all of its subgoals satisfied. There are many ways

the top-level Goal Instance may be satisfied: a particular walk through the Plan Tree

encodes a single way of satisfying the Goal instance. We call the Technique Instances

in this walk a Plan.

Given this setup, from a high-level, the job of the Planner is to satisfy Goal

Instances by:

1. Recursively constructing a Plan Tree,

2. Evaluating each of the Plans in the Plan Tree,

3. Choosing one Plan and executing it, and

4. Monitoring the chosen Plan and choosing a new one as changes warrant.

2.4 An Example: Goal-oriented Conferencing

In order to solidify the concepts of the Goal-oriented paradigm, consider the Con-

ferencing task of the introduction. Figure 2-1 illustrates the example. In the goal-

oriented system, the entire Conferencing task is represented by the Goal Instance

Conference(from=Alyssa, to=Ben). When Alyssa requests satisfaction of this Goal,

her Planner will try to find Techniques that satisfy the Goal Instance. In this

case, it finds AVConference, AudioConference, and Voicemail and instantiates

these Techniques with the parameters {from=Alyssa, to=Ben} to form three Tech-

nique Instances. In Figure 2-1(a), these form the second level of the plan tree.

Each of these Technique Instances specifies subgoals based on its parameters. The

AudioConference Technique Instance, for example, requires Audio for Alyssa, Audio
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(a) The fully constructed plan tree before any selection has been made.

(b) The first Conferencing Plan, connecting Alyssa to Ben using Video.

(c) The second Conferencing Plan, initiated after Alyssa leaves her office. Note that several Techniques have failed, and as a consequence new
ones were chosen.

Figure 2-1: Stages of a Goal-oriented Teleconference
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for Ben, and a Hub. The Audio subgoals provide duplex audio, while the Hub connects

the audio streams together. The Planner continues recursively constructing the Plan

Tree until it bottoms out at Technique Instances with no sub-goals.

Once the tree has been built, the Planner will decide which Plan in the Plan Tree

best satisfies the Conference Goal Instance. Assume that initially, Alyssa and Ben

both have duplex audio and video connections on their computers and they are both

in their offices. The Planner realizes that it can use these resources so it executes the

Plan of Figure 2-1(b).

The Planner continually monitors its executed Plan. Suppose Alyssa leaves her

office. After leaving, she no longer has video capabilities and her audio capabilities

are limited to her phone. This causes her ComputerAudio and WebCam Techniques In-

stances to fail. As a consequence, the AVConference’s subgoal of Video(for=Alyssa)

is no longer implementable, so the AVConference Technique Instance itself fails. The

Planner recognizes this and chooses the next best implementable option: fail-over to

the AudioConference Technique Instance using Alyssa’s phone for her audio connec-

tion and Ben’s computer for his. Figure 2-1(c) shows failures and the new Plan.

Finally, when either Alyssa or Ben decides to cancel the conference, the Planner

shuts down all active Techniques Instances and garbage-collects the Plan Tree.
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Chapter 3

Related Work

Related work falls into roughly five categories: make, multiple dispatch, ai Planning,

heuristic search, and other pervasive computing systems.

3.1 make

Many people immediately think of make [11] when they first hear about Goal-oriented

programming. This is because make seems to implement goal satisfaction: the com-

mand make file.o will result in the object file.o being created if there is some

rule that can make file.o and if all of that rule’s preconditions are met. Roughly,

a Goal would correspond to the actual make command, Techniques to the Makefile

rules, and Technique subgoals to rule preconditions. Some have even called this goal-

oriented programming and have proposed make-like distributed systems [17].

However, our model differs significantly. First, we allow true separation of intent

and implementation. A Goal Instance may be satisfied by zero or more Technique

Instances whereas a Makefile rule has exactly one body. Moreover, since each Goal

may be satisfied by any one Technique, our dependence graph is an and-or tree

rather than make’s less flexible and tree. Second, make’s rules are not parameterized,

so any variation in rules can only be achieved by creating many similar, but distinct

rules. Finally, and most importantly, make is not adaptive. When make runs, it either

completes successfully or fails if any dependency fails. Goal-oriented programming,
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on the other hand, tries to maintain its goal in spite of failures of dependencies.

3.2 Multiple Dispatch

Satisfaction of a Goal Instance is close in spirit to a generic function call in a multiple

dispatch language [3, 2, 6]. Multiple dispatch languages are a generalization of com-

mon object oriented languages. Instead of letting the first argument (the object) of a

procedure determine the what function body will process the call, all of the arguments

are treated equally. Hence, a function dispatch must go through a phase of arbitra-

tion where the runtime types of the arguments to the function are evaluated and a

function chosen. The Plan evaluation phase is analogous to this arbitration phase

but with one large difference: in a Goal-oriented system, each Technique Instance

evaluates the arguments to determine its own ability to satisfy the Goal Instance,

and, as such, contributes to the arbitration process.

3.3 Planning in the ai Community

Planning and goal resolution are two long standing problems in the Artificial Intel-

ligence community. Indeed, there are several downloadable planner implementations

as well as many concrete applications, such as in nasa’s space program [18].

Most planning solutions are based on the strips model [10]. The strips model

was developed to plan the ordering and choice of actions of a robot as it accom-

plishes some task. strips operates on world models—sets of known facts about the

environment—and satisfies a goal by applying operators to a series of world models

in an attempt to find a final world model where the goal is satisfied. Each operator

acts on a starting world model and produces a new world model incorporating the

operator’s changes. If a strips planner can find an ordering of operators that take

the initial world model to the final one, then the goal is achieved.

Interestingly, in their 1971 paper on strips, Fikes and Nilsson wrote “...we would

like strips to be able to generate computer programs,” [10] anticipating that strips-
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style planning could be used to tie together primitive software operators to make a

larger software system. However, even given this forshadowing, it was many years

before planning was applied to software constrution. In the early 1990s, a group at

the University of Washington created a strips-based software robot[8, 9], or softbot

for short. The softbot knew how to interact with unix to solve a variety of tasks,

such as keeping LATEX and postscript files in sync or locating a person by searching

through network databases.

Goal-oriented programming aims to solve what we believe is a different problem.

strips and ai planners try to find an ordering of actions that can create the envi-

ronment it needs to achieve a goal. Goal-oriented programming, on the other hand,

simply searches the environment for its dependencies. Whereas an ai planner may

try to build complete solutions to a problem, Goal-oriented programming can only

aggregate smaller solutions. While this seems simpler, we are unsure if it is provably

so.

3.4 Heuristic Search

Many ai applications, such as theorem proving, employ a variety of algorithms and

heuristics to speed up search in a large problem space. This research is directly

applicable to Goal-oriented programming since the Planner must search through the

set of all Plans in the Plan Tree to find the Plan it eventually executes.

Prolog [16] is a language designed to address such applications. Prolog matches its

current goal to the set of rules it has. Then it expands the body of the rule to create

more goals that need to be solved. A goal can be achieved if the search bottoms out a

some set of base rules. Prolog will backtrack if a goal cannot be achieved. This nearly

matches our goal resolution methodology and influenced our current implementation.

More recently, ai researchers have turned to sat solvers for quick search solutions.

For example, strips planning problems have been compiled to boolean satisfiability

problems [18]. After compilation, the Planning problems are fed to sat solvers like

BlackBox [12]. The sat community has produced such incredibly fast solvers that
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many “compile-to-sat” planners are significantly faster than hand-tuned planners.

Goal-oriented programming might similarly benefit from having a sat engine as its

backing algorithm.

3.5 Recent Systems Developments

Finally, the systems community has been actively exploring application programming

in pervasive and Internet environments. For example, service composition projects

try to build frameworks for tying together several distributed systems to perform

some greater service. HP’s eFlow [4] attacks the problem of re-composing a running

service or even an entire class of running services. Specifically, eFlow creates a pro-

gramming interface that is easy to reason about. The Planner of a Goal-oriented

system must be similarly able to reason about change and be able to export some

implementation-modification api that Technique writers can easily understand and

implement. However, unlike eFlow, which requires all service changes to be created

by a programmer, the Planner must be able to make such changes automatically using

information from Technique Instances.

A few projects even integrate aspects of ai planning into their composition engines.

One example, DReggie [5] uses a Prolog-based planning engine to discover services

in a changing mobile environment. The Prolog engine helps DReggie find service

providers that match ranged constraints as well as others that come close to matching

the constraints. Such an engine may be helpful during the construction phase of Goal

planning. Unfortunately, DReggie does not tackle the problem of actually composing

the discovered services.

Additionally, there are many pervasive computing projects that have goals similar

to this project. For example, the Aura Project [1] at Carnegie-Mellon also sepa-

rates user intents from implementations of intents in order to create a framework for

adaptive applications. However, it only matches pre-defined implementations to user

intents. The Goal-oriented system of this thesis goes one step further and allows the

implementations—Techniques—declare subgoals.
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Chapter 4

Design Challenges

In the design of a Goal-oriented system, there are two linked design spaces. The first

is the api that Techniques must implement in order to be used by the system. The

second is the environment that the Planner creates for Techniques. Both play off each

other and center around a trade-off of giving Techniques maximum flexibility while

simultaneously enabling reasonable implementations of the Planner. This trade-off

must be deliberate since a Goal-oriented system will only truly thrive if Techniques

can be used with many generations of Planners.

To guide our design, we kept to a few key design principles:

Ease of Programmer Reasoning Programming in a pervasive environment is al-

ready difficult since the programmer must keep track of asynchronous events

and changing network conditions while ensuring that application logic is correct.

Since we do not want to make this situation worse, a Goal-oriented system must

make it as easy as possible for the programmer to correctly write application

logic as well as providing the simplest interfaces possible to handle events and

other requests.

Separating policy from mechanism Techniques provide templates for Goals, and

as a consequence, as many policy decisions as possible should be made in these

templates. The Planner’s should strive to provide mechanism only to connect

Techniques. Occasionally, however, the Planner will need to make decisions
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about the Technique Instances. For example, the Planner needs to choose which

Technique Instance will be chosen to satisfy a Goal Instance. Since such a

decision, and others like it, fundamentally alter the way a Goal Instance is

satisfied, the Planner should provide a way to customize the policy or leave it

completely to the Techniques.

Isolation of Planning mechanism from application logic and Techniques This

ensures that development of the Planner, applications, and Techniques can

progress independently. In particular, this design principle means that we do

not assume any particular Planner implementation or evaluation algorithm.

Given information about all of the Techniques, a Planner is free to implement

any path of the tree. This way, we can plug-in ai planners or theorem-provers

in our system.

Simplicity Overall, we would like our system to be as simple as possible so that

there are fewer parts to understand, fewer guarantees that need to be met, and

fewer restrictions on optimization. For example, when deciding what policy

decisions the Planner must force on Techniques, we need to consider how much

simpler or more complex it forces Techniques to be.

The rest of this section describes some of the challenges associated with the Tech-

nique and Planner architectures. First, we delve more deeply into the Goal-Oriented

Conference example in order to better understand the challenges involved in Planner

and Technique interaction. Then for the remainder of the chapter, we identify and

explore the challenges in each phase more deeply.

4.1 A Typical Planner/Technique Interaction

All of the components in a goal-oriented system must support the three phases of goal

resolution: construction, evaluation, and execution. Figure 4-1 shows the interactions

that the AVConference Technique Instance and the Planner have over the course of

the example scenario.
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Figure 4-1: A transcript of the interaction between the Planner and the AVConference
Technique in the example scenario. Synchronous calls are represented by solid arrows
while asynchronous events are represented by dashed arrows. Blocks not connected
by arrows may be widely separated in time.
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The Planner first interacts with the AVConference Technique after discovering

that it implements the Conference Goal. In Step 2, the Planner instantiates the

AVConference Technique to create an AVConference Technique Instance with the

correct parameters. Next, in order to construct the Plan Tree, the Planner asks the

AVConference instance to enumerate its subgoals. Some time later, the Planner starts

its evaluation of the Conference Goal Instance, which kicks off a variety of activity in

AVConference (Steps 4–7). Recall, in the example scenario, Alyssa and Ben are both

at their video-equipped computers, so initially the AVConference best satisfies the

Conference Goal Instance. Therefore, after evaluating the other Technique Instances,

the Planner chooses to execute AVConference in Steps 8–10. Eventually, Alyssa

leaves her office, causing one of AVConference’s subgoals to fail, which in turn causes

AVConference itself to fail and the Planner to choose another Technique Instance.

Accordingly, AVConference’s implementation is shutdown, though it continues to

evaluate its environment in case the video conferencing tools become applicable again.

Finally, when the conference ends, the Planner garbage collects the AVConference

Technique Instance.

4.2 Construction

As step 1 of Figure 4-1 shows, for every Goal Instance in the tree, the Planner must

try to find a set of corresponding Technique Instances. Since each Technique declares

the Goal it satisfies, this amounts to a table look-up1 and instantiation with parame-

ters. However, maintaining this table presents a policy problem since the Techniques

that the Planner has access to fundamentally alter the resulting implementations.

Therefore, the Planner must provide a user-defined way of finding Techniques.

Similarly, the Planner must also query each Technique Instance for its subgoals and

subgoal arguments. Both of these may depend on the Technique Instance’s bound

parameters. For example, in step 3 of Figure 4-1, the AVConference Technique

1Note that there is no corresponding repository of Goals since each Technique can contain a
pointer to its Goal specification.
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Instance needs to know that it is connecting Alyssa and Ben in order to properly

enumerate its subgoals. The Planner, therefore, needs to let the Technique Instance

dynamically declare its subgoals.

4.3 Evaluation

The next phase evaluates potential Plans in order to choose which Technique Instances

are executed in order to satisfy each Goal Instance. Each Technique Instance provides

the Planner with a self-evaluation, while Goal Instances inherit the evaluation values

of their children Technique Instances. In Figure 4-1 this is the essence of steps 4–7.

Two basic considerations are the metrics used to communicate suitability for a

particular goal as well as the “reach” of the metrics—how much information the

metric has at its disposal when it computes its suitability. Applied to the scenario,

the metric affects the form of the messages passed in steps 6 and 7. This is potentially

difficult since AVConference must be able to understand the evaluation results of any

Technique the Planner chooses to implement its subgoals. The “reach” of the metric

affects how much information about the Plan Tree as a whole the AVConference has

as its disposal in Step 7 when it decides that it can implement the Conference goal.

4.3.1 Evaluation Metrics

Fundamentally, the job of the Planner in the evaluation phase is to order all of the

Technique Instances satisfying each Goal Instance so that it may choose one for

execution. Choosing a correct metric is important since the metric shapes how the

Goal Instance is satisfied. For example, one Goal Instance that provides video links

may favor Technique Instances providing high bandwidth links, while another Goal

Instance may favor Technique Instances providing low latency links. The evaluation

metric should allow the Goal Instance to discern between these to kinds of links and

choose what it wants.

To aid in Technique Instance selection, evaluation information may flow both up

and down the Plan Tree. For example, a Technique may want its subgoals to succeed
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if and only if they meet some expectation. This is a case for passing evaluation

information down the tree. Another Technique may be able to cope with variability

in its subgoals, and as such is interested when they change how well they satisfy

their Goal Instances. Since subgoal variability may change how well the Technique

Instance itself can satisfy its Goal Instance, evaluation information flows up the tree.

Some Techniques may even use a combination of both flows. This is particularly

useful in the example scenario since the AVConference Technique could specify video

links limited by a maximum latency, but with variable quality. Since both top-down

and bottom-up evaluation styles are valid policies, the Planner must strive to support

both.

Finally, while the Technique may employ a variety of policies to judge its suitability

to a particular goal, these policies are useless if the Planner cannot interpret the final

result of the Technique Instances’ evaluation. For the Goal-oriented system to work

correctly, either the Planner needs to understand all possible evaluation methodologies

or all Techniques must conform to a particular Planner-imposed standard.

4.3.2 Evaluation Reach

Suppose that we do have a way for Technique Instances to communicate how well they

satisfy their Goal Instances. A remaining unanswered questions is how information

the Planner may use when evaluating an entire Plan.

There are two fundamentally different ways of evaluating a Plan. One is to eval-

uate entire paths through the Plan Tree and choose the “best” path based on the

Techniques’ metrics. A second is to evaluate each node in the tree and make local

decisions as to what is best.

Largely, the evaluation methodology the Planner uses is an implementation detail.

Moreover, our Isolation design principle implies that we shouldn’t specify any con-

straints on the Planner’s Plan evaluation phase. However, evaluation methodology

becomes a design issue when Goals may be specified in such a way that they depend

on the evaluation method of the Planner.

At first glance, it seems that the path-based evaluation may lead to better plans
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since Technique Instances at the end of the path may make up for deficiencies in Tech-

nique Instances at the beginning of the path. However, there are some disadvantages

to path-based evaluation. Since the suitability of a particular Technique Instance

may change rapidly in time, it is difficult to pin down an entire path of Technique

Instances for evaluation. Furthermore, this evaluation method may add complexity to

the evaluation phase, violating our simplicity design principle. We also expect many

Planners to make greedy decisions at each Goal in the tree since greedy algorithms

are easy to implement. Therefore, the design of the Planner must restrict evaluation

in some way that allows both simple implementations as well as more complicated

ones.

4.3.3 Changing Evaluation with Time

As exemplified by step 11 in Figure 4-1, Technique Instances can change their reported

ability to satisfy their Goal Instance at any time. This can be due to both external

events and changes in its subgoals. Therefore, the Planner must support a way for

Technique Instances to respond to evaluation events and notify of the Planner any

changes it makes.

4.4 Execution

As step 9 of Figure 4-1 shows, once a Plan has been chosen, the Planner must execute

the Technique Instances in the Plan starting at the bottom. Starting at the bottom is

necessary because Technique Instances depend on their subgoals to satisfy their own

Goal Instances.

After execution, each Technique Instance must be able to handle events from its

subgoals. These events may be implementation-altering events, such as the swapping

of subgoals, or more mundane management events, such as a signal that the Technique

Instance should quit and shutdown its executing code.
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4.5 Error Handling

The execute phase is the commit point for a Technique Instance. All information in

the Construction and Evaluation stages is tentative because the Technique Instance

is only estimating what resources it needs or how well it can meet its Goal Instance.

However, only when the Technique Instance is actually executes will the estimates

be proved right or wrong. For example, the AVConference might run into problems

connecting its Video subgoals together. Moreover, as Alyssa’s leaving her office in

step 11 shows, even if the Technique Instance successfully executes initially, at a later

time it may no longer be able to satisfy its Goal Instance. Therefore, the Planner

must be able to react to failures in the execution phase.
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Chapter 5

Design

Given the challenges of the previous chapter, any architecture for a Goal-oriented

system must provide:

1. a way to find Techniques,

2. a way to evaluate them uniformly,

3. an environment for executing Technique evaluation and execution code,

4. methods for Technique Instance-Planner interaction, and

5. a way for Technique Instances to respond to events.

Our architecture for providing these services is illustrated in Figure 5-1. The archi-

tecture separates Technique Discovery from the rest of the Planner, then concentrates

on the interactions between Techniques and the Planner. These interactions are cod-

ified by a Planner api and a Technique api. Finally, the architecture also provides a

Satisfaction api that applications use to access the Planner.

5.1 Simplifying Assumptions and Clarifications

In order to concentrate on the dynamics of the evaluation and execution phases of

the Goal-oriented system, we make a simplifying assumption that the construction

phase completes before any part of the plan tree starts its evaluation phase.
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Figure 5-1: Illustration of the Goal-oriented programming system’s architecture.

Furthermore, we assume that the Planner and its Techniques operate in an envi-

ronment much like that of the O2S System. That is, both the Planner and Techniques

may assume that there are resource discovery, remote resource invocation, and asyn-

chronous event handling services inherent in the operating environment. This also

means that the Planner itself must support these operations. We allow both the Tech-

niques and the Planner make synchronous requests on the outside world. However,

in order to have control over the Technique execution, only the Planner can receive

asynchronous events and callbacks. This way, the Planner can serialize all events,

and schedule event callbacks for execution when it makes the most sense to.

5.2 Technique Discovery

Keeping with our design principle of separating policy from mechanism, the Planner

offloads technique discovery to a user-controlled Technique Repository. This repos-

itory contains only the Techniques that the Planner can and should access. A user

can customize the Techniques her Planner sees by altering the contents of her reposi-

tory. Additionally, adding a level of indirection for technique discovery helps with the
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fourth design principle of simplicity since the Technique Repository can implement

complicated caching or security independent of the Planner.

5.3 Satisfaction: A Uniform Evaluation Value

As reviewed in Section 4.3, to allow arbitrary Techniques to interoperate with gener-

ations of Planners, either the Planner must understand all Techniques, or the Tech-

niques must speak a common evaluation protocol with the Planner. We believe the

latter approach is simpler and in many cases as expressive as letting Technique define

their own evaluation protocol.

Therefore, we require that each Technique render all evaluation decisions into a

single scalar we term satisfaction. The higher the satisfaction, the better a Technique

Instance can implement its Goal Instance. A satisfaction of 0 indicates that the

Technique Instance cannot satisfy the Goal Instance at all. What other values mean

is determined by each Goal and codified in the Goal specification. Thus, satisfaction

is an evaluation metric mechanism that: can be passed up the tree, allows for Goal-

specific policy, and has simple semantics that both the Planner and the Technique

programmer can understand. All of these properties are in line with our design

principles.

The satisfaction metric also enables a simple, policy-independent way of pushing

evaluation information down the tree. A Technique Instance need only specify what

it expects as the arguments to its subgoals. If the Technique Instances fulfilling the

subgoal cannot meet expectations, they report back a satisfaction of 0. If they can

meet expectations, they report back a non-zero satisfaction and the Planner chooses

among the satisfactory Technique Instances.

In order to allow for particularly simple Planners, we require that Goal specifica-

tions, and thus, Technique Instance evaluations, be workable with a greedy algorithm

that works on only one Goal at a time. In other words, a Technique Instance’s eval-

uation can only depend on its subgoals’ satisfaction and whatever other evaluation

information the Technique Instance can generate. To enforce this, the Planner will
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only report to the Technique Instance the satisfaction levels of its immediate subgoals.

Finally, each Planner can set its own policy on how to determine the satisfaction

of any given Goal Instance. We impose only two contraints on the Goal satisfaction

level. First, a Goal Instance with no satisfactory Techniques must have a satisfaction

of 0. Second, the Goal Instance’s satisfaction level must be consistent with the Goal’s

specification.

Some may argue that the Planner-imposed satisfaction system violates our design

principle of separating policy and mechanism. The argument is based on a common

need to express how well a Technique Instance may perform on orthogonal issues.

This is a valid criticism since a general evaluation method may not compress into

a single metric. However, we rely on the heuristic that in most evaluations there is

some final decision that sways the evaluation one way or another. The particular

use of the satisfaction metric in the Goal specification can reflect this final binary

decision. While having to specify such decisions in the Goal specification may com-

plicate specification writing, we believe the trade-off for policy-independence is worth

it. Moreover, we believe that satisfaction also ports to ai theorem-proving systems,

making the trade-off even more valuable.

5.4 The Planner api

The Planner api provides a set of functions aimed at enabling inter-Technique In-

stance and Planner-Technique Instance communication. These functions are shown

in Figure 5-2. Only the first three functions are needed by the Planner: these allow a

Technique Instance to pass information to and through the Planner. The remaining

functions are convenience functions that help a Technique integrate into a pervasive

environment.

The send event function is used to send an event between executing Technique

Instances. The to argument can either be "parent" or the name of one of the

Technique Instance’s subgoals. This function is provided to strengthen the subgoal

abstraction since the Technique Instance should only be able to control its subgoals by
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Communication Functions:
send event(to, event)

post(event)

signal quit()

Pervasive Functions:
find resources(profile) returns set of resources
add subscription(profile) returns subscription id

remove subscription(subscription id)

monitor resource(resource)

unmonitor resource(resource)

get event listener() returns listener resource

Figure 5-2: Planner api used by Techniques

name. post is used to inform the Planner of changes in satisfaction or the return value

of the Technique Instance. Finally, the signal quit function notifies the Planner that

the Technique Instance would like to quit normally. signal quit should only be used

for normal terminations. Section 5.5.2 describes Technique event generation in more

detail.

The first block of pervasive helper functions allows the Technique Instance to

discover resources. Specifically, the find resources returns a possibly empty set of

resources matching the given profile. The next two manage callback subscriptions that

allow the Technique Instance to be notified if new resources come into the environ-

ment. The callback messages are received by the Technique Instance’s handle event

method.

The next block of functions allows the Technique Instance to monitor the health

of a resource. Like resource subscriptions, resource health notifications are received

by the Technique Instance’s handle event method.

Finally, there may be other kinds of event callbacks that the Technique Instance

may want to register, many of which are application-specific. The get event listener

function returns an event listener. Any event sent to this event listener will be

queued to be received by the Technique Instance’s handle event method.
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Constructor(planner, arguments)

Construction Functions:
get subgoals() returns map of names to subgoals

Evaluation Functions:
start evaluation()

stop evaluation()

Execution Functions:
start execution(subgoals) returns handle
stop execution()

Event handling Functions:
handle event(event)

Figure 5-3: api for Techniques

5.5 The Technique api

Figure 5-3 shows the api that Techniques must implement. Techniques need not be

thread-safe as the Planner guarantees that the Technique is executing in at most one

thread at any given time.

When the Planner instantiates a Technique, the Planner gives the Technique both

its arguments and a pointer to itself. The resulting object is a Technique Instance1.

The Planner pointer enables the Technique to access the Planner api. The Planner

also passes the arguments of the Goal Instance for which the Technique is being in-

stantiated since the Technique will need to make decisions based on those arguments.

5.5.1 Phases of Goal Resolution

During the construction phase, the Planner calls each Technique’s get subgoals

function. The Technique returns a set of name, subgoal pairs. In all subsequent

stages of Goal resolution, the Planner will refer to the subgoals by the names the

1In this section, we will primarily refer to Techniques rather than Technique Instances. This
is because programmers write Techniques that are instantiated by the Planner into Technique In-
stances.
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Figure 5-4: Each function call the Planner makes moves the Technique into a different
phase.

Technique chose.

When the Planner determines that the Technique should enter the evaluation

phase, it calls start evaluation. Here, the Technique can send to the planner a

basic estimate of its satisfaction as well as register relevant network probes.

When the Planner chooses a Technique for execution, it calls start execution

with the return values of the Technique’s subgoals, using the same names that the

Technique chose earlier. The exact type of the value bound to each subgoal name is

determined by the Goal specification that the subgoal implements. During this call,

the Technique should acquire any resources it needs. If the initialization succeeds,

the start execution function returns a handle as dictated in its Goal specification.

Otherwise, the start execution call fails by returning a special FAIL return value

to the Planner. The Technique returns to the Evaluation phase and the Planner

makes alternate plans if possible. If the Planner decides to shutdown an executing

Technique, it calls the stop execution function on that Technique. The Technique

must release all of the resources that it reserved.

Finally, if the Planner decides that certain Techniques are taking too many evalu-

ation resources, it may call stop evaluation. In this call, the Technique must cancel

any callbacks it started in the start evaluation function.

The Planner calls Technique methods in “Goal resolution” order as Figure 5-

4. In particular, get subgoals, start evaluation, and start execution must be

called to move the Technique into the construction, evaluation, and execution stages,

respectively. Similarly, stop evaluation and stop execution are used to take the

Technique out of the evaluation and execution stages. These guarantees are made

so that the Technique knows what plan phase it is in so that it can handle events
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Planner Functions:
Constructor(technique repository, event listener)

satisfy(goal, goal args, event listener) returns Plan object
stop()

Plan Functions:
stop()

Figure 5-5: The Satisfaction api the Planner exports to Applications.

properly.

5.5.2 Event Handling

At any point after instantiation, the Planner may call the Technique’s handle event

function. Typically, the events passed to this function are callbacks from sub-goals

or parent Techniques, though they may also be callbacks from the event listener the

Technique has access to. Any events from subgoals are identified by the name of the

subgoal given to the Planner in the construction phase.

The Planner defines two kinds of Events that it understands. Techniques send

these messages using the post method of the Planner’s event system. The first is

the EvaluationCallback message, which carries with it an update to a Technique’s

satisfaction. The Planner will then take this into consideration and pass the value up

the tree as necessary. If a Technique needs to report that it can no longer solve its

Goal, it sends an EvaluationCallback message with satisfaction set to 0. The other

message is an ExecutionCallback, which returns the result of re-implementing part

of the executing plan tree.

5.6 Satisfaction api

In order to separate development of applications from development of the Planner, the

Planner’s Goal Satisfaction api must be standardized. Figure 5-5 shows the api the

Planner exports to applications. The most important function is the satisfy call,

which instructs the Planner to satisfy some Goal Instance. It returns a Plan object,

42



which is a handle to that specific satisfaction call. One Planner can satisfy many

Goal Instances at once. Both the Planner and the satisfy call can optionally take in

event listeners, which will receive status events. For example, a Plan object may

notify the event listener whenever it changes its underlying implementation. Both

objects export a stop method. The stop method is used to cleanly shutdown the

Plan or Planner as a whole. Finally, the Planner also takes in a Technique Repository

that it will use as its database of Techniques.

5.7 Goal-oriented Conferencing Revisited

Figure 5-6 shows the interaction between the Planner and the AVConference Tech-

nique Instance using our api. There are a few things to note. First, the Planner

always uses the names of the subgoals that the Technique Instance returns in step 3.

Instances of this can be seen in steps 6, 9, and 11. Second, there are no direct calls

between the Technique Instance and its subgoals, or from the Technique Instance to

its super-goals. Such interactions are provided through the handle event and post

method calls. This way, each Technique Instance is isolated from all other Technique

Instances. Finally, the ordering of method calls on the AVConference object helps

the Technique Instance know what execution stage the Planner is in. This way, the

AVConference can handle the events of steps 6 (received when evaluating) and 11

(received when executing) differently.
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Figure 5-6: The sample interaction between the Planner and the AVConference Tech-
nique Instance annotated with the api calls that each makes. p is a reference to the
Planner planning the Conference goal. avc is a reference to the AVConference Tech-
nique Instance created in step 2.
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Chapter 6

Implementation

We implemented a basic Planner and several Techniques based on our Goal-oriented

programming system design. Our implementation was written in Python 2.3 [15]. We

chose Python mainly because the rest of the O2S environment is written in Python.

No code of the Planner depends on a special feature unique to Python and could

have been implemented in Java or any other object-oriented language supporting

xmlrpc (to support communication with the rest of O2S). The implementation runs

under GNU/Linux, Windows using Cygwin, and Mac OS X.

There are two main goals for this implementation. The first is to prove that

the proposed api of the previous chapter is workable. The second is to exploit as

much parallelism as possible in the Planner. This helps show that the proposed

api lends itself to optimization as well as allowing large plan trees to be evaluated

and implemented quickly.

6.1 Writing a Parallel Planner

For our Planner implementation, we chose to try to exploit as much parallelism as

possible. This is motivated by the fact that Techniques do not do much computation,

but rather connect together Resources. Since many of these connections happen

over a network, most of the time a Technique is blocked waiting for a response.

In a serial Planner, this could lead to serious performance problems. For example,
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Figure 6-1: Simple Plan Tree. If T1 takes a long time to evaluate, in a single-threaded
Planner, T2 will be blocked.

consider the simple plan tree of Figure 6-1. Suppose that Technique Instance T1

makes many network requests to determine its satisfaction and takes 5 seconds to

post a satisfaction of .25, while T2 takes far less time to post a better satisfaction

of .5. A single-threaded Planner can take 5.25 seconds to choose T2 when it should

take closer to .25 seconds. It is easy to see that adding Technique Instances only

makes the problem worse. However, a multi-threaded planner could run the two

Technique Instances in parallel and have more of a chance of approaching the lower

bound of .25 seconds.1 Similar problems also plague event dispatch to Techniques.

In a single-threaded Planner, one Technique Instance could block event dispatch to

other Technique Instances if its handle event function takes sufficiently long.

In order to avoid these performance problems, we chose to implement a multi-

threaded Planner that runs as much of the planning process in parallel. Our Goal-

oriented system architecture anticipates that some Planners may be multi-threaded

and as such, ensures that distinct Technique Instances only communicate with each

other though asynchronous events. Since we don’t need to worry about isolating Tech-

nique Instances from each other, the main difficulty in our implementation becomes

efficiently parallelizing the Planner while at the same time ensuring that a Technique

Instance is never called in more than one thread at a time.

A Technique Instance may be called by more than one thread because its handle event

method may be called any time after object construction. The obvious solution is

to wrap a lock around each Technique Instance and block operations on Technique

Instances that are already running. However, this imposes scheduling problems when

1Note that if T1 had a higher satisfaction than T1, parallelism is still helpful since we could more
quickly get a worse solution with T2 and then swap T1 for T2 when the Planner learns that T1 is
better.
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a single Technique Instance may get many events at once, since the Planner may

schedule all of its threads to servicing those events, essentially leading to a livelocked

state. A potential refinement of this scheme is to give each Technique Instance its

own event queue and schedule it to handle all of the events in the queue. This has a

fairness problem since a set of Techniques with many events may take up all available

worker threads servicing their event queues, starving other threads of computation

time.

Therefore, we eschew fine-grained locking for the coarser mechanism of thread

coloring. The Planner assigns each Technique Instance in the tree a unique color.

During runtime, each worker thread assumes the color of the Technique Instance it

is working with. The Planner makes sure that no color is running in more than one

thread at any given time. Clearly, such a system allows each Technique to run in only

a single thread at any time. However, it also solves the fairness problem: the Planner

can schedule each call to handle event separately, breaking up large computation

blocks so other Techniques can run.

6.2 Physical Code Structure

Physically, the Planner code is broken into three Python modules mirroring our de-

sign.

techniques Prototypes for user-defined Techniques and Goals. Contains a Technique

interface and the GoalDescription class. This module provides templates for

programmers.

planner The bulk of the Planner. Contains the Planner, Plan, GoalNode, and

TechniqueNode classes. This module encapsulates our specific planner imple-

mentation and related files.

event driven The parallelizing framework. Contains the EventFramework class and

currying functions.
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Figure 6-2: The runtime environment of O2S.

All of the interesting implementation is in the planner and event driven mod-

ules. The event driven module implements a stand-alone multi-threaded event-driven

framework [14, 19]. It has no dependencies on O2S, and as such may be used in other

projects. The Planner of the planner module implements a simple Technique selection

algorithm. Both parts are described in more detail later in this chapter.

6.3 The O2S Programming Environment

Before delving in the details of the Planner’s implementation, it makes sense to briefly

review the O2S programming environment. Figure 6-2 illustrates the major runtime-

structures of O2S. All Resources are concrete subclasses of RService. Resources run

within an Entity object. The Entity provides Resources with an xmlrpc listener

as well as an EventListener. The former allows the Resource to receive function calls

over the network while the latter lets it receive asynchronous Events. For performance

reasons, the xmlrpc listener will optimize out network calls if two objects share a

process on a local machine.

Additionally, an Entity registers with the O2S Registry. The O2S Registry is
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Figure 6-3: The runtime structure of the Planner.

a simple resource discovery and health monitoring system. The Registry also offers

a subscription service that allows registered Entities (and the Resources contained

within them) to receive events when suitable Entities come up and go down. The

Planner’s resource functions are based on this interface, and in our initial implemen-

tation, the Registry backs these calls.

Usually, a programmer will create an Entity:

1. when the Entity needs to be located through the Registry, or

2. when the Entity serves as a database of related Resources.

Typically, Entities act as proxies for some host or user. Almost all other functionality

is coded as Resources.

6.4 Runtime Code Structure of the Planner

Figure 6-3 shows the runtime structure of the Planner. One Planner object contains a

reference to a TechniqueRepository, an EventListener, an EventFramework, and

zero or more Plan objects. Each Plan object represents a user-initiated goal call.

The TechniqueRepository contains the database of Techniques the Planner should

access, while the EventListener is an O2S event listener that enables the Planner
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to receive O2S events. The EventFramework provides a loop that drives the Planner

and is discussed in more detail in Section 6.5.

In our current implementation, the main job of the Planner object is to run the

main EventFramework loop, serialize O2S events, and support the Planner half of the

Satisfaction api. Most of the algorithmic logic for goal resolution is embedded in the

Plan class and the PlanTreeNodes it contains. The Plan object also implements the

Plan half of the Satisfaction api, as well as the Planner api exported to Techniques.

6.4.1 The Plan Object

Each Plan object contains all of the necessary state to satisfy a user-initiated Goal.

In particular it contains a tree of PlanTreeNode objects that represents the Goal

tree. PlanTreeNode is an abstract O2S RService with two concrete sub-classes,

GoalInstance and TechniqueInstance, which are instances of Goals and Tech-

niques, respectively. PlanTreeNode contains mostly mechanism related to O2S, while

its concrete sub-classes implement the Goal-selection algorithm.

The PlanTreeNode Class

The PlanTreeNode provides the Planner api interface of Figure 5-2.

PlanTreeNode inherits from O2S’s RService class and as a result, can be passed as

a Resource. In particular, the PlanTreeNode class implements the O2S EventListener

Resource specification. One bookkeeping job the Planner must perform efficiently is

routing of Events through the Planner’s one EventListener. Since each PlanTreeNode

is directly corresponds to a Goal or Technique Instance, if the PlanTreeNode is

passed, it knows which node the event goes to, and as a result can multiplex the

Planner’s EventListener without keeping lookup tables. This significantly simplifies

the Planner object’s implementation.
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The GoalInstance Class

The GoalInstance class implements a very simple algorithm for Goal selection. On

initial evaluation, the GoalInstance chooses the TechniqueInstance with the high-

est satisfaction for implementation. This choice is made either after all TechniqueInstances

have reported their satisfaction or a timeout occurs. Note that as long as TechniqueInstances

correctly calculate their satisfaction, this choice is in line with our requirement that

Planners choose a Goal satisfaction in line with the Goal specification. The GoalInstance

updates its choice as TechniqueInstance satisfactions change: it always tracks the

most satisfying TechniqueInstance and keeps the satisfaction value of that best

instance.

The TechniqueInstance Class

The TechniqueInstance class is a thin wrapper around a Technique. It only adds

functionality around the Technique’s handle event function. Specifically, it trans-

lates the from field of the event from the GoalInstance object itself to the name of

the Goal specified by the Technique’s get subgoals function.

6.5 The EventFramework

The EventFramework contains all of the code to implement our thread coloring system

as well as the api of Figure 6-4. The api is loosely based on that of libasync-mp [20, 7].

As its name suggests, the EventFramework centers on “events” that it reads from an

event queue. Each event contains at the least a function pointer and a color. The

function pointer is executed when the event is serviced while the color is used for

thread coloring. The EventFramework ensures that no two events of the same color

are serviced at the same time.

The first two functions in the EventFramework api schedule functions. enqueue

and run both create events that run their fn argument; run also calls creates an

event that runs cb when fn completes. The next two functions manage time-delayed

callbacks, typically used to implement timeouts. The delay cb function will cb at
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Call Scheduling Functions:
enqueue(fn, color)

run(fn, cb, color, cb color)

Delayed Execution Management Functions:
delay cb(cb, delay, color) returns callback id

remove cb(callback id)

Function Currying for above:
curry(fn, arguments...) returns closure

Callback Functions:
post(poster, message)

register post callback(cb, filter, poster, color) returns reg id

unregister post callback(reg id)

Figure 6-4: api exported by the EventFramework.

least delay seconds after the delay cb call. remove cb allows delayed callbacks to

be removed before they are run. Function arguments to all of the above calls must be

argument-less. As a convenience, the curry function turns the application of fn to

its arguments into a parameter-less closure that can be used by the other functions.

Finally, the last three EventFramework methods allow Techniques to post messages

and register callbacks to receive those messages asynchronously.

6.5.1 Implementation of the EventFramework

Figure 6-5 shows the major components of the EventFramework. Events scheduled

by delay cb contain delay times, while events scheduled by run also contain callback

functions and colors for the callbacks.

The heart of the Event-Driven implementation is the Dispatch Loop. Its job is to

assign events from the Event Queue to idle threads in its thread pool. It also monitors

the Delayed Event Queue and adds events to the main Event Queue when the delay

has expired. Finally, the Dispatch Loop also manages messages and callbacks from

produced by the post calls. The Dispatch Loop is responsible for ensuring that only

one color runs at any given time and also that for any given color, events run in

fifo order.
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Figure 6-5: The runtime structure of the EventFramework.

The rest of the implementation is straightforward. When assigned an event, a

worker thread runs the function, and schedules the event’s callback (if it has one)

when the function completes. When it completes, the worker thread returns to the

idle thread pool. The CallbackDatabase maintains a mapping between post callback

registrations and subscription ids so that post messages can be routed to the correct

callbacks.
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Chapter 7

Performance Evaluation

A good goal-oriented system must provide a reasonable programming environment as

well as decent performance at runtime. Therefore, we evaluate our Planning system

in two ways. First, we detail a few anecdotes from development of Techniques in our

Conferencing scenario of earlier chapters. Second, we evaluate the planner’s runtime

performance using a variety of simulations.

7.1 Scenario Anecdotes

To support the Conferencing scenario, we created six Goals and nine Techniques. The

Goals and Techniques correspond directly with Figure 2-1. We were able to write and

debug the all of the Techniques in a single day. As a show of how much mechanism

the Planner hides, the complete application code fits in the five lines of Figure 7-1.

The satisfaction metric works well in the Conferencing scenario: it provides a clear

ordering of Techniques as well as a method of indicating failure. Additionally, we were

1 planner = Planner ( technique db ,
2 app e v en t l i s t e n e r )
3 plan = planner . s a t i s f y ( con f e r enc e goa l ,
4 fromuser=”Alyssa ” ,
5 touse r=”Ben” )

Figure 7-1: Application code to run the scenario. technique db is a pointer to a
common TechniqueRepository
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able to combine satisfaction with a few Goal parameters to avoid any backtracking

in our initial evaluations phases. However, it still remains to be seen if satisfaction

will be useful in larger systems and if backtracking can be avoided in the evaluation

phase.

As an additional anecdote, during Technique development, we found that Goal-

oriented programming lends itself quite well to incremental development. For the sce-

nario’s Techniques, we first implemented the simpler AudioConference before tack-

ling the more complicated AVConference Technique. We made no changes to the code

in Figure 7-1: all we had to do was add the new Techniques to the TechniqueRepository

and re-run the Planner.

7.2 Performance

Ideally, a user should not be able to notice that a goal-oriented system is planning her

application. To the user, it should appear that the application is just adapting to its

environment. However, in reality, the Planner takes time to perform its operations.

This shows up as latency between making a satisfy call and getting an implementation,

and as lag time between changes in the environment re-implementation of the plan.

We measure performance as the amount of real time it takes the Planner to im-

plement a solution to a satisfy call or re-implement a solution after a change to the

environment is made. We believe that this metric is appropriate because the Planner

does not actually run Application or Resource code, but only glue code when im-

plementations must change. For each test, the real time delay is plotted against the

number of threads the Planner’s EventFramework is allowed. Since the Planner can

do one operation per thread at any given time, variation in real time delay shows how

well the Planner is exploiting parallelism in the tree.

7.2.1 Test Methodology

All tests were performed on a lightly-loaded Pentium 4/3.0GHz Linux workstation

with 1.0GB of RAM connected to a local-area network at 100Mb/s. For each test,
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we created a database of Goals and Techniques according to three parameters:

Goal Degree : the number of Techniques implementing each Goal

Technique Degree : the number of subgoals required by each Technique Instance

Tree Height : the number of levels of Goal and Technique Instances in the plan

tree.

Tests were also run with varying evaluation delays meant as simulations of network

delays. The delay caused the Technique to sleep for a certain amount of time before

reporting its satisfaction. We used three delay values: 0ms, 6ms, and 250ms:

0ms Delay These tests indicate the peak performance of the planner as well as how

well the Planner can be expected to run when all Resources are local calls rather

than network calls.

6ms Delay 6ms is a typical round-trip time for the O2S identify1 Resource request.

Therefore, these delays are indicative of performance when all network calls are

quick.

250ms Delay The find resources request in the Planner takes, on average, .25s.

Therefore, these tests are indicative of how the Planner can cope with long

network delays.

We only applied the evaluation delays to Techniques with no sub-Goals, since these

Techniques will typically be the ones that need to use the network for evaluation.

7.2.2 Satisfy Performance on Full Trees

To start evaluating the Planner’s performance, it is helpful to look at six different tree

configurations, summarized in Figure 7-5. We chose either trees with two Techniques

per Goal and two subgoals per Technique or three of each, then varied the height of

1The identify request simply returns the Resource’s name.
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Figure 7-2: Latency for plan trees of varying size and no evaluation delay. Note that
the time scale is different for each graph.
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Figure 7-3: Latency for plan trees of varying size and 6ms evaluation delay. Note
that the time scale is different for each graph.
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the tree. Overall, these configurations gave a wide variety of tree sizes, so they form

a good baseline of planner performance.

In particular, each tree has a varying number of leaf nodes—Techniques without

any subgoals to which we add evaluation delays. We can estimate ideal plan latency,

ignoring Planner overhead and execution time, for our simulations from the number of

leaf Techniques. The ideal latency for a single-threaded Planner is just the number of

leaf Techniques multiplied by the delay time. For a multi-threaded planner, the ideal

latency is simply the delay time of the Techniques. These ideal times are summarized

in the last columns of Figure 7-5.

Figures 7-2–7-4 show the Planner’s performance on each of the six tree configura-

tions as well as on all delay times.

No Delay Figure 7-2 shows how well the planner performs when there is no evalu-

ation delay. Therefore, the difference between the ideal delays of Figure 7-5 and the

real results is the overhead the Planner incurs. As could be expected, the amount of

overhead is proportional to the number of nodes in the tree. For small trees overhead

is under 1s, which is reasonable. However, for large trees, the overhead becomes sig-

nificant for the largest tested tree. For example, the “Height = 3” line of 7-2(b) shows

a minimum overhead of 5s. Furthermore, this delay becomes larger as the number of

threads grows, showing that thread and color management also increases overhead.

6ms Delay Figure 7-3 shows that parallelism does help in the face of even minor

evaluation and execution delays. In the multi-threaded case, each Plan is able to

gain a speedup of 2 over the single-threaded case. Again, as the “Height = 3” line

of Figure 7-4(b) shows, a large number of threads incurs additional overhead, though

the multi-threaded Planner is still faster than the single-threaded version.

250ms Delay Figure 7-4 shows that for very long delays, parallelism helps im-

mensely. For example, for low numbers of threads, the “Height = 3” tree of Figure

7-4(b) could not finish in under a minute, while for higher numbers of threads, it
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Tree Characteristics Ideal Serial Latency [s] Ideal Parallel Latency [s]
Goal Degree Tech. Degree Height Total Nodes Total Leaf Nodes 0ms 6ms 250ms 0ms 6ms 250ms

2 2 1 3 2 0 .012 .500 0 .006 .250
2 2 2 15 8 0 .048 2.000 0 .006 .250
2 2 3 63 32 0 .192 8.000 0 .006 .250
3 3 1 4 3 0 .018 .750 0 .006 .250
3 3 2 40 27 0 .162 6.750 0 .006 .250
3 3 3 364 243 0 1.458 60.750 0 .006 .250

Figure 7-5: Comparison of Tree Properties.
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Figure 7-6: Latency for scrawny trees of varying height and no evaluation delay.

could easily finish in a little over 10 seconds. If Techniques regularly perform slow

network calls, then the overhead of extra parallelism is well worth it.

7.2.3 Satisfy Performance on Long, Scrawny Trees

Though full, bushy trees are ideal for the Planner since they allow it to weigh dif-

ferent Techniques, long trees with little Technique and Goal Degree are also likely.

For example, in our implementation of the Goal-oriented Conference, a maximum of

two Techniques implement each Goal. Figures 7-6–7-8 show satisfy latency for such

scrawny trees of varying height. Here, a moderate amount of parallelism is incredibly

helpful in lowering latency any delay is involved.

7.2.4 Fail-Over Performance

In addition to quickly satisfying a Goal, the Planner must also be able to react

quickly to changes in the environment. This statistic is related to the number of Goal

Instances that must be re-planned. Figure 7-9 shows the tree on which we took our

fail-over measurements. Initially the left most branch of each Goal is selected. Then

we gradually make Technique Instances fail starting from the left and moving right,

63



0

0.5

1

1.5

2

2.5

3

3.5

5 10 15 20 25 30 35 40 45 50

T
im

e 
to

 P
la

n 
C

om
pl

et
io

n 
[s

]

Threads

Satisfy Latency (Evaluation Delay = 6ms, Goal Degree = 1, Technique Degree = 2)

Height = 1
Height = 2
Height = 3
Height = 4
Height = 5
Height = 6
Height = 7

Figure 7-7: Latency for scrawny trees of varying height and an evaluation delay of
6ms .
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Figure 7-9: The tree used for the fail-over tests. Goal Instances are ellipses and
Technique Instances are rectangles. If Technique Instance T fails, the Planner will
switch from Plan A to Plan B requiring 5 levels of Goals to be re-planned. Failures
in other Techniques cause similar re-plans.
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therefore giving us a way to measure latency as a function of the Goal levels that

need to be re-planned. This causes each Goal Instance from the top down to switch

to its right branch. Figure 7-10 shows the amount of time it takes the Planner to

react to a failure of a Technique and re-plan the goal as a function of the number of

Goals that failed.

Overall, reacting to a failure is a quick process since the Planner continually

monitors the Plan and has all of the information it needs when the failure occurs.

Note that, in our test case, allowing extra threads does not improve re-plan latency.

In re-planning, most of the re-planning latency comes from starting up and shutting

down a handful of Techniques, so the Planner doesn’t need the extra parallelism.
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Chapter 8

Conclusion

8.1 Future Work

In the future we would like to explore a variety of extensions to our Planner imple-

mentation. The first is making it more dynamic. Our current implementation does

not let the arguments to a Technique Instance change after it is constructed, nor

allow the subgoals a Technique Instance needs to change after it declares them. Such

a restriction might not be necessary and may give Techniques more flexibility. As an

extension of the evaluation phase, the Planner might also enable Technique Instances

to negotiate terms of service. This could be useful when a Technique Instance de-

mands a subgoal that can’t be met, but that could be met in a compromise solution.

We would also like to explore hot-swapping Technique Instances. Currently, if two

implementations need to be swapped, the first one is completely shutdown before the

second is started.

However, in order to make sure that such dynamism does not kill performance,

the Planner should be able to “compile” branches of Techniques to a single Composite

Technique. This way the Planner needs to only explore fewer branches. Additionally,

the Planner can engage in “common subgoal elimination” to reduce the number of

Goal Instances the Planner must plan across distinct parts of the Plan.

Finally, we would also like to explore using theorem-proving systems. This way,

the Planner can benefit from the ever-increasing performance of these systems.
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8.2 Conclusion

This thesis presented Goal-oriented programming as a way of writing pervasive appli-

cations. An application written in a Goal-oriented way only specified that its intents

be satisfied: the actual implementation that backs the intent is planned by the sys-

tem. This is useful for pervasive applications since they must continually adapt to

changing network conditions and service availability.

As a proof of concept, we built a Goal-oriented system as well as a sample scenario.

Most of our optimization was in parallelizing as much of the Planner as possible. In

many cases, especially for large trees with many Techniques per Goal, parallelization

led to several times speedup compared to the single-threaded case. However, speedup

was sometimes reduced when the Planner was run with a large number of threads,

due to the extra management of the threads.
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