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Abstract 
As UAV capabilities continue to improve the technology will spill out of the military sector and into 
commercial and civil applications. Already, UAVs have demonstrated commercial marketability in such 
diverse areas as scientific and environmental research, cross-seas shipping, communications relays, 
emergency management, border monitoring, agriculture, and aerial photography.  Small-scale tactical 
UAVs in particular have an enormous potential to fulfill a number of roles within urban centers, 
transforming the way civil safety institutions carry out their jobs. A lack of established flight regulations 
is currently the greatest barrier to the standardized use of these vehicles. While the United States is 
currently the world’s leader in UAV manufacturing, this position is tenuous given strong competitive 
threats from a variety of foreign countries who are already ahead in establishing a standardized regulatory 
environment for UAVs. 
 
As part of a larger research effort focused on the design, implementation, and demonstration of highly 
maneuverable rotorcraft UAVs, the primary objective of this work is to examine how UAVs might gain 
access to and function safely in civil and commercial markets. Despite the wide variety of existing UAVs 
in terms of size, targeted flight altitude, and capability, this work focuses primarily on small-scale tactical 
vehicles with the intended purpose of operating in and around urban centers. Operational requirements 
and risk mitigation strategies can be devised and effectively implemented to allow such UAVs to be 
operated at an acceptable level of risk. By combining GIS data manipulation with modern approaches to 
path-planning, UAVs can be operated such that the risk to the general public and urban infrastructure is 
minimized. 
 
Instead of focusing on vehicle reliability requirements which severely limit present-day experimentation 
and development of UAVs, efforts which focus on operational strategies allow for applications of the 
technology to be explored while the systems continue to grow more reliable. Public-private coalitions 
should expand their efforts beyond high altitude, long endurance UAVs to establish operating regulations 
for all of the vehicle classifications. The diversity of UAVs should be treated with an equally diverse set 
of regulations tuned to the particular requirements and risk management issues each classification 
represents. Finally, local and national government should recognize civil UAVs not only as a new 
commercial industry of great potential, but also as a latent threat to domestic security for which 
regulations should be established sooner rather than later.  
 
Thesis Supervisor: Eric Feron 
Associate Professor of Aeronautics and Astronautics 
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Chapter 1 
 

Introduction 
 

Years before the Wright brothers achieved the first manned airplane flight, primitive UAV technology 

was used in at least two wars for combat and surveillance. The first known UAV was an unmanned aerial 

bomber, invented by Charles Perley in 1863 for use in the Civil War. Perley designed a hot air ballon 

filled with explosives. The hinged basket was equipped with a timer which would simultaneously release 

the explosives and ignite a fuse. Only two decades later, Douglas Archibald conceived the idea of using 

large kites for aerial photography. Archibald’s concept was soon recognized for its potential military 

applications by Corporal William Eddy of Colorado. The first wartime surveillance photos in history were 

taken during the Spanish-American War of 1898 using a kite rigged like Archibald’s featuring a long 

shutter release attached to its string. As UAV technology continued to develop throughout the 20th 

century, it obtained a permanent and critical role in high-tech military arsenals. Deployment of vehicles 

such as the Darkstar, Predator, and Global Hawk for surveillance and reconnaissance missions is now 

standard procedure. The U.S. military is currently operating a fleet of over 510 UAVs consisting of ten 

different flight platforms. Of those 510 vehicles, up to 130 are actively engaged in flight operations at any 

one time.  

 

The role of UAVs has only recently been expanded to include the monitoring of the Earth’s environment 

from high altitudes. For example, Pathfinder is a solar-powered, ultra-lightweight research aircraft 

developed by AeroVironment Corporation being tested for environmental research. In 1997, Pathfinder 

reached an altitude of 67,350 feet, the highest altitude ever reached by a solar aircraft. The vehicle 

collects wind and weather data with extremely fine sensors and snaps digital images at high resolution.  

 

As the technology continues to improve, UAV applications will depart more from their traditional 

military functions, perhaps even filling new product niches in the commercial sector. The Helios, now 

under development, will incorporate a fuel cell energy storage system to provide power for flying through 

the night, making it capable of continuous flight at 50,000 - 70,000 feet for months at a time. Within 10 
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years, Helios aircraft are expected to be widely deployed as broadband communications platforms, 

providing a uniquely cost-effective complement to satellite and terrestrial communication systems. Long 

endurance UAVs, such as Helios, have the potential to fill the gap between satellites and surface networks 

in an integrated observing system. This gap is presently limited by pilot endurance in traditional aircraft 

and the lack of technically feasible low-cost alternatives. Other advanced platforms are designed for use 

in military surveillance, law enforcement, and civilian rescue efforts (Nova, 2002). In total, the market for 

both military and commercial UAVs is expected to top $10 billion over the next decade (e-Drive 

Executive Report, 2004). 

 

1.1 Motivation 

Since the mid 1900’s, the use of automation in mission-critical and life-sustaining systems has become 

prolific. The complexity of these systems continues to grow as advances in both hardware and software 

technologies make possible new implementations and applications. Unfortunately, what can be modeled 

as a linear growth in system complexity requires exponential growth in safety assurance and verification 

analysis to provide a commensurate level of flight system certification (Abdul-Baki, 2000). Given the 

highly volatile market for software and hardware engineering and the speed at which technologies 

change, it is becoming increasingly difficult for safety-critical systems to both maintain safety standards 

and exploit opportunities to streamline and re-engineer systems to improve performance and reduce cost 

(Gavrilets - Aggressive Maneuvering, 2001). 

 

The most stunning example of the growing divide between the technology that is usable because it has 

undergone extensive verification and certification and the commercial technology that is unusable due to 

a lack of certification is in the avionics industry. The Federal Aviation Administration faces tremendous 

difficulties integrating new technologies with regulations and flight platforms due to the safety-sensitive 

nature of the aviation industry. The field of UAVs offers a good test bed for analyzing how an emerging 

technology can be best incorporated into existing regulatory frameworks. These aircraft also offer the 

opportunity to streamline and develop verification and certification processes for new technologies 

without directly endangering human life and at a much lower cost than their full-sized counterparts. Thus 

there is much more room for experimentation in the way of systems and control engineering as well as 

policy analysis and development.  

 

Although radio-controlled planes and helicopters have been flown by hobbyists and enthusiasts for many 

years with only few regulatory requirements, UAVs introduce new elements of uncertainty and risk that 

must be addressed. UAVs are capable of operating without an internal pilot, are tethered by a radio 
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control link, and can be preprogrammed for both flight and payload operations prior to launch. While the 

former two characteristics are shared by standard radio-controlled aircraft, the latter quality is unique to 

UAVs and is one of the primary motivations for stringent regulations on the use of unmanned aircraft in 

civilian airspace. UAVs are currently considered unsuitable for domestic urban environments due to 

safety concerns. Aviation accidents can result in fatalities in three ways: collisions with the ground, 

collisions with another aircraft, and collisions with people or objects on the ground. Approximately 94% 

of fatalities in U.S. civil aviation are a product of the first category, which is irrelevant to UAVs because 

they do not carry any passengers. The categories in which UAVs would share culpability account for 

3.6% and 2.2% of fatalities, respectively. The percentages of the latter two categories are equivalent to 

about 60 American casualties annually (Newcome, 2003). Despite these risks, UAVs still present a viable 

alternative to manned vehicles, especially for deployment in dull, dirty, or inherently dangerous missions.  

 

One major advantage of a UAV over a piloted craft is its small size and maneuverability. Since large 

payloads exact a huge cost in terms of maneuverability, the miniaturization of technology has enabled 

particularly responsive small-scale UAVs. As these craft become smaller in size their moments of inertia 

decrease at an even faster rate, making them more agile. Rotorcraft are arguably the most efficient aircraft 

in terms of power, maneuverability, and noise. The use of matrix methods has demonstrated the 

tremendous potential of rotorcraft configurations to be effectively applied to a large range of missions 

(Saggiani, 2004). Unfortunately, these advantages come at the cost of a much more mechanically and 

dynamically complex system than a fixed wing configuration (Mettler – Identification Modeling, 2002). 

 

The lack of a pilot also means that UAVs cost less to build and operate than their manned counterparts. 

Aircraft generally require two to five times the weight of the pilot in specialized equipment needed to 

support him. Additionally, double, triple, and sometimes even quadruple redundant systems are included 

onboard manned aircraft to ensure that both the vehicle and the pilot return safely. UAVs also require as 

much or less pilot proficiency flying and lack many of the servicing requirements which are particular to 

maintaining a safe environment for a pilot. These factors add up to substantial cost savings in transferring 

applications which traditionally used manned aircraft into the domain of UAVs. Whereas present day 

UAVs range in price from $1000 to $14 million, the cost of a manned aircraft typically falls in the range 

of $20,000 to $500 million. Some examples of UAV costs, including payload, are the developmental 

version of the Air Force/Teledyne Ryan RQ-4/Global Hawk totaling nearly $14 million, the Air 

Force/General Atomics RQ-1/Predator costing $3.3 million, and the Navy/PUI RQ-2/Pioneer which costs 

just over $900,000. Tactical size UAVs are commercially available in the $250,000 range. The Aerosonde 

Robotic Aircraft's Atlantic-crossing Aerosonde costs a total of $35,000, and MLB offers miniature UAVs 
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for around $1000 per aircraft. These numbers represent the price of the standalone aircraft and are not to 

be confused with the price of the complete UAV system, which includes the aircraft’s ground control 

station and shelter, launching mechanism, and typically three or more additional aircraft. These 

complementary assets can make the price of an UAV system two to ten times the price of its individual 

aircraft. Once purchased and deployed, operating costs are reportedly in the hundreds of dollars an hour 

for Predator and tactical size UAVs. For comparison, commercial helicopters cost $600-800 an hour and a 

Boeing 747 airliner costs about $7400 an hour to operate (UAV Forum, 2004). 

 

1.2 Commercial Barriers 

A number of factors have helped to unlock new markets for UAVs beyond current military requirements. 

These include the increasing success of UAVs in service and demonstration, their suitability for use in 

“dull, dirty, and dangerous” missions, increases in payload capacity and flight time, the war on terror with 

new emphasis on homeland security, as well as the need for multi-mission capabilities. However, several 

preconditions must be satisfied before UAVs can become a commercially viable, cost effective, and 

regulated alternative to existing resources (Waddington, 2002). 

 

1.2.1 Regulations 

 Most countries are lacking in airspace regulation that covers all types of UAV systems, including 

capability requirements such as “sense and avoid”, airspace integration, and airworthiness standards. As 

new designs for UAVs continue to expand the frontier of possible applications, civil institutions must 

strive to catch up before this viable technology either loses its commercial appeal due to stringent and 

antiquated regulations, or explodes into a threat to public safety. Some countries are further along in this 

process than others. Australia was the first nation to incorporate laws governing the use of unmanned 

aerial vehicles into its regulatory framework. The Australian UAV regulations are comprised of a simple 

addition to the existing laws governing aircraft. UAV operators must obtain a certificate of approval for 

each mission. The regulations and oversight required for each mission is determined through a process of 

risk assessment. People who operate outside of this regulatory framework are in violation of the law and 

subject to prosecution.  

 

Though more behind in the process, the United States is undergoing a similar assimilation of regulations 

for UAVs into the current doctrine of the FAA. By 2008, the agency plans to incorporate new rules 

concerning the certification of flight operators, the nature of flight approvals, and requirements for the 

actual flight platforms. At present, the FAA’s guidelines, which apply to all aircraft operating in the 

United States, are contained in the Code of Federal Regulations part 60 to 139. One such regulation 
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mandates that all aircraft operate in a see and avoid manner, a capability not yet defined in the realm of 

UAVs. There are further restrictions and requirements for operating in different classes of airspace and 

different weather conditions. The FAA intends for UAVs to eventually fall under these same regulations.  

 

Current FAA regulations concerning UAV operations mandate a case-by-case approval process for flight 

plans. Within one FAA region, operations of UAVs outside of restricted airspace require obtaining a 

Certificate of Authorization from the FAA 60 days prior to commencing UAV operations (Myers, 2003). 

Other FAA regions have reported authorization delays ranging between 5 and 90 days. This significant 

delay effectively eliminates the potential use of UAVs in emergency situations. As one industry official 

argues, waiting 60 days does not utilize a “responsive, technical, and safe” way to fight fires, catch drug 

smugglers crossing U.S. borders, and help with other policing efforts (Wodele, 2003). Applications for a 

Certificate of Authorization require a detailed description of the intended flight operation including the 

classification of the airspace to be utilized, the physical characteristics of the UAV, flight performance 

characteristics, method of vehicle control and proposed method to avoid other traffic, coordination 

procedures, communication procedures, route and altitude, lost link or mission abort procedures, and 

sometimes a certificate of airworthiness for the UAV (Myers, 2003). Permission to fly a UAV is also 

often accompanied by several restrictions such as the obligation to fly a manned chase plane. These 

restrictions effectively eliminate any cost benefits derived from UAV operations. Finally, the current 

regulatory framework in place in the United States allows each FAA region to interpret the existing 

regulations differently, resulting in an inconsistent working environment for UAV developers (UNITE 

Alliance, 2004). These restrictions have limited the number of UAV flights in controlled US airspace to 

roughly 10 times a year (Graham-Rowe, 2003). The relatively long time horizon for incorporating new 

regulations for UAVs could prove detrimental to the growth of a lucrative and vital commercial UAV 

industry for civilian applications within the United States and may effectively forfeit U.S. leadership in 

aeronautics. 

 

The regulatory issues currently faced by UAVs include more than just simple questions about which form 

the regulations should take. A more important concern is how those regulations should be devised and 

enforced, and by whom. The FAA’s assertion of regulatory mandate over UAVs may be both damaging 

to the industry and ultimately erroneous. UAV is an expression that encompasses a wide range of aerial 

vehicles in terms of size, flight speed, flight altitude, and mission capability. While some UAVs might be 

designed to traverse the National Air Space (NAS), others will never leave Class G, or uncontrolled, 

airspace. Though the FAA has proven proficient at maintaining safe skies for a limited assortment of 

manned craft, there is little evidence that the agency has the flexibility, knowledge, and incentives to 
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effectively govern over the entire spectrum of UAVs. For example, the competencies of the FAA are not 

particularly applicable to small-scale, tactical UAVs for use in and around urban centers. These vehicles 

operate in the same space as construction cranes and pose similar threats to the public and other aircraft. 

Yet no national agency is empowered to govern over the use and placement of cranes; cranes are 

regulated though local governments. For such small-scale aircraft operating in Class G airspace, 

alternative regulatory frameworks to that proposed by the FAA should be considered. 

 

1.2.2 Affordability 

Price and customization issues are strongly tied to a vehicle’s ability to meet regulatory standards for 

reliability. In order to remain a compelling alternative to current resources, UAVs must be able to use 

commercial off the shelf (COTS) components and an open modular architecture safely and at low cost. 

The avionics industry provides a stunning example of how safety measures and concerns may be stifling 

the development of potential applications and uses for advanced technologies. The software validation 

specifications of the FAA require assembly code-level checking to ensure that every branch of operating 

code is executed and runs correctly. Such low-level code verification is necessary since compiler 

certification is currently outside the capabilities of modern technology. Compilers are difficult to certify 

because they generally have very complex, monolithic implementations and frequently take advantage of 

dynamic memory allocation, which introduces a level of non-determinism that renders code validation 

extremely difficult. Since compilers cannot currently be certified, every piece of mission-critical software 

that is generated by the compilers must be validated, line by line. One consequence of these rigorous 

application-level requirements is that a soft-ware engineer working on a safety-critical flight system will 

typically produce only three lines of onboard code per day. Consequently, systems develop very slowly 

and changes are usually limited in scope. The high certification cost thus fosters an atmosphere of 

evolutionary development and a tendency to build upon existing monolithic systems rather than 

implement a more maintainable and modular architecture.  

 

These tendencies away from more modular designs are problematic for a number of reasons. In addition 

to keeping component complexity at a minimum, the modularization of flight system architectures would 

also serve to enable the incorporation of commercial off-the-shelf (COTS) components into new designs. 

Such systems would also be able to better keep up with the pace of modern technology, since upgrades 

would not require an overhaul of the entire system. Unfortunately, there is little motivation for the 

producers of commercial off-the-shelf components to validate their products. The safety-concerned 

market is only a fraction of the total market for many products with potential uses in the avionics 

industry. In many cases, this small market share is not enough to motivate commercial product 
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manufacturers to undergo processes to validate and certify their components. Consequently, such readily-

available parts can rarely be used in safety-critical systems. 

 

1.2.3 Requirements 

Given the financial burden of meeting regulatory standards and the relatively low-volume characteristics 

of the market, efforts must be made to establish joint customer requirements to take advantage of scale 

effects. Requirements will not only facilitate the growth of a commercial market for UAVs by making the 

systems more affordable, they will also allow UAV developers to identify potential customers and share 

with them the burden of establishing a new industry. Already, UAV development is transforming from a 

process of technology push to application pull. 

 

1.2.4 Liability 

In addition to a regulatory framework for legal operation, a framework for liability and insurance must 

also be established for commercial operation. A regulatory infrastructure will help reduce liability in case 

of accidents. This will lead in turn to affordable insurance rates to cover their operations, just as current 

FAA regulations do for manned aircraft. If a UAV were to kill a person today, the operator and 

manufacturer could be sued without being able to claim that their crews, aircraft and procedures met FAA 

certification standards as some measure of legal protection. Currently, insurance companies charge 

hundreds or even thousands of dollars per hour to provide liability coverage for UAVs (Clarke, 2003). 

Reducing this component of the operating costs is critical to the success of a commercial market for 

UAVs. 

 

1.2.5 Capability 

Capability requirements for UAVs fall into two categories: those that arise out of an assessment of 

customer requirements, and those that are requirements of FAA regulations. Commercially viable UAVs 

must have sufficient capacity for payload flexibility as well as adequate flight endurance for mission 

flexibility. Developing systems that can perform a wide range of tasks and meet joint customer 

requirements will help ensure that unit costs are as low as possible. Matrix methods have been employed 

to evaluate vehicle configurations with high potential to satisfy requirements for a wide range of 

missions. Rotorcraft, with their ability for vertical take-offs and landings seem to be more flexible than 

fixed-wing configurations in terms of potential applications (Saggiani, 2004). 

 

In order to meet FAA flight safety certification standards, UAVs might also be required to include “sense 

and avoid” capabilities. The agency is concerned that unlike piloted aircraft guided by human air-traffic 
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controllers, UAVs currently do not have the equivalent capability to see and avoid other aircraft and 

obstacles in flight. While the industry has developed “detect and avoid” technology using lasers, sensors, 

and imaging equipment, the FAA has not yet determined if the technology is equivalent to its “see and 

avoid” standard (Wodele, 2003). Since the FAA insists on equivalent safety levels for manned aircraft 

and UAVs, “detect and avoid” technology must afford UAVs a safety margin similar to that afforded 

pilots operating under normal flight rules. While a number of such systems are currently under 

development and some have even been demonstrated as effective in several collision avoidance scenarios, 

the technology and the nature of the complimentary assets required to deploy it are still undetermined 

(Lopez, 2002). The answer to how stringently the FAA pursues “see and avoid” equivalence directly 

impacts the affordability of UAVs. While a $150,000 collision avoidance system represents only 0.2% of 

the investment in a Boeing 777, it accounts for 1% of the total cost of a Global Hawk UAV and 30% of 

the price of the Army's Shadow tactical UAV. 

 

1.2.6 Communications 

A secure non-military frequency for civil and commercial operation and methods for allocating specific 

operating bands must be established. Furthermore, current Federal Communications Commission (FCC) 

regulations limiting the range and strength of specific radio signals must be reconsidered in terms of their 

impact on UAV control and communication. 

 

1.2.7 Public Perception 

The perceived reliability in terms of the vehicle attrition rate must be high enough to overcome public 

safety concerns. UAVs must also gain recognition in their potential markets. 

 

1.2.8 Interactions 

Many of the issues discussed above have strong interactions. Figure 1.1 is a brief summary of the primary 

system interactions. Market forces will continue to place pressure on governing bodies to adopt some 

regulatory framework for UAVs. The establishment of flight regulations will have a three-fold effect. 

First, flight regulations will likely increase functional requirements on UAVs, mandating some sort of 

“sense and detect” capability. Second, regulations should act to decrease operational requirements relative 

to the present. Current plans include the ability to “file and fly,” meaning that UAV operations will no 

longer be hindered by a 5 to 90 day filing delay. Given that “file and fly” is incorporated as part of a new 

regulatory framework for UAV’s, mission flexibility will be significantly improved. Finally, a set of well-

defined rules and regulations will afford UAV operators some measure of liability protection. The 

backing of government agencies, either national or local, through the establishment of regulations will 
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thus drive down the insurance costs and ultimately unit costs of operating a UAV. The establishment of 

FCC regulations to govern the communications of UAVs will have similar effects on operational 

requirements and liability protection. 

 
Figure 1.1: System Diagram 

 

A set of joint customer requirements will also increase unit capability. These requirements can be 

gathered by UAV developers and manufacturers by estimating an initial target market and performing 

marketing focus groups and surveys. One issue that this diagram illuminates is the fact that the majority 

of potential UAV customers are completely unfamiliar with the technology and its wide range of 

applications. It can be difficult to obtain stable requirements from such customers. The benefit of joint 

requirements is that they will increase unit capability resulting in much greater mission flexibility; ideally, 

the same UAV platform can be used for a number of different applications for a wide variety of 

customers. Assuming scale effects common to the production of such systems, this flexibility would 

dramatically reduce unit costs. 
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A reduction in unit costs will help UAVs attain a utility level that will make them competitive with 

existing technologies and substitutes. The particular relative utility value is specific to the application. 

However, as UAVs become more competitive in each application, there will be increased opportunities 

for commercial use. In the more immediate future, UAVs will be employed to replace manned missions 

such as routine shipping operations and rural crop dusting. Replacing a manned vehicle with a UAV in 

such instances offers immediate cost savings and requires little additional operational overhead. Missions 

requiring automation on the fly and increased vehicle intelligence will follow later. 

 

This diagram does not illustrate the potential interactions between increased commercial use and public 

perceptions of safety. The nature of this interaction depends on the success of the commercial 

applications. If the public’s first exposure to UAVs is negative, then there might be pressure on 

government institutions to expand regulatory oversight, thereby stifling further development until 

technology reaches such a level that the new safety requirements are met. The diagram also does not 

include the potential positive feedback between increased commercial use and more joint customer 

requirements. UAVs are a particularly interesting example of an emerging technology because already a 

number of regulations precluding their use exists, thereby hindering their expansion from military 

applications into commercial markets. Consequently, joint customer requirements are difficult to establish 

simply because so few potential customers have experience with the technology. Finally, Figure 1.1 does 

not illustrate the extent to which market pull is driving the adoption of UAV regulations. This link offers 

crucial insights into how the current trend to relegate UAV governance to the FAA can potentially be 

changed. Specifically, UAV manufacturers and consumers must be vigilant in establishing the rules under 

which the new commercial industry will function. 

 

1.3 Objectives and Outline 

As part of a larger research effort focused on the design, implementation, and demonstration of highly 

maneuverable rotorcraft UAVs, the primary objective of this work is to examine how UAVs might gain 

access to and function safely in civil and commercial markets. Despite the wide variety of existing UAVs 

in terms of size, targeted flight altitude, and capability, this work focuses primarily on small-scale tactical 

vehicles with the intended purpose of operating in and around urban centers. This document describes 

how operational requirements and risk mitigation strategies can be devised and effectively implemented 

to allow such UAVs to be operated at an acceptable level of risk.   

 



 17

The MIT helicopter project was used as a case study to illustrate the current state of urban tactical UAV 

technology as well as to provide a demonstration platform for commercial and civil missions. Chapter 2 

provides a brief introduction to the work of the Information Control Engineering group of MIT’s 

Laboratory for Information and Decision Systems (LIDS). For the past 5 years, the group has been 

developing a highly maneuverable rotorcraft UAV for demonstration in a wide range of military and 

commercial applications.  

 

A preliminary needs assessment is presented in Chapter 3. Through a series of meetings with 

Massachusetts State and Cambridge City officials, a set of requirements for the use of UAVs in civil 

emergencies has been developed. The needs assessment helped in generating three scenarios for the use of 

UAVs along with recommendations for an experimental platform. These scenarios illustrate how UAVs 

might be employed in emergency situations in a manner that optimizes the safety of civilians while 

complementing the needs of civilian institutions such as police and fire departments.  

 

Chapter 4 provides an initial risk assessment and details how the risks introduced by UAVs might be 

controlled and mitigated. Preliminary calculations of implied vehicle reliability based on FAA 

requirements of a commensurate level of safety may be conservative and therefore limiting. Techniques 

in path optimization combined with detailed geospatial data concerning flight fields and areas of 

operation can be used to ensure that UAVs pose the least possible threat to the general public and urban 

infrastructure. 

 

Policy recommendations based on the civil needs assessment and risk mitigation options are offered in 

Chapter 5. 
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Chapter 2 
 

Case Study: The MIT Helicopter 
 

MIT's Laboratory for Information and Decision Systems (LIDS) Helicopter Project is a research effort 

focused on designing, implementing, and demonstrating a highly maneuverable rotorcraft UAV for use in 

a wide range of military and commercial applications. The project has provided a platform for studying 

vehicle modeling, control system design and augmentation, as well as policy options concerning the 

integration of UAVs into present day regulatory frameworks. 

 

2.1 History of the MIT Helicopter Project 

MIT's Helicopter Project began as an effort to learn pilots' strategies for executing maneuvers by studying 

pilot commands to the vehicle in flight (Gavrilets – Autonomous Maneuvering, 2001). Since vehicle 

states were not recorded, this groundwork supplied limited insight into small-scale helicopter dynamics. 

The effort motivated an examination of the full state output of the helicopter to pilot inputs. Such data 

provides valuable insight into the dynamics of the vehicle in flight, thereby facilitating the development 

of models and controllers. An onboard data acquisition system is required to collect input-output data for 

a helicopter performing aggressive maneuvers. The instrumentation package must be capable of providing 

complete state information, such as velocity and attitude. Furthermore, the avionics design must 

accommodate both manual and automated control of the vehicle, while meeting the size, weight, 

vibration, and interference constraints. 

 

The first introduction to MIT's instrumented, small-size helicopter equipped with a complete data 

acquisition system and capable of aggressive maneuvers was given in (Gavrilets, 2000). The development 

of this test platform enabled the first fully recorded acrobatic flight in July of 2000. During this flight, 

pilot inputs and the state information of the vehicle were recorded while the helicopter performed 

hammerhead maneuvers and loops. The data collected from such flights is extremely useful to build and 

validate the models that will be used to implement automated acrobatic maneuvers. The project focus 

then changed to the development and validation of a full-envelope helicopter model, as well as the design 
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of the feedback control logic used in autonomous acrobatic flight. In November of 2001 the MIT 

helicopter achieved the first fully autonomous acrobatic maneuver, completing three rolls without any 

pilot inputs. The project has since expanded in scope to include research into waypoint navigation, path-

planning, and multi-vehicle coordination techniques. As the technological capabilities of the rotorcraft 

continue to improve, there is an increasing opportunity to demonstrate the commercial viability of the 

platform for use in both military and civil missions and to explore how similarly outfitted vehicles might 

be effectively employed for specific tasks. 

 
Figure 2.1: The MIT flight vehicle equipped with avionics box 

 

2.2 Flight System 

The MIT flight system, shown in Figure 2.1, is composed of the helicopter, avionics system, flight control 

software, and ground station. The test vehicle is a derivative of an Xcell-60 helicopter manufactured by 

"Miniature Aircraft USA." The 0.9 in3 engine and carbon fiber frame give the craft a total weight of about 

10 lb. While the basic rotorcraft is known for its reliability as a stable acrobatics platform, the avionics 

system is entirely custom designed. Mounted in a single aluminum enclosure suspended below the 

landing gear of the helicopter, the 7 lb. avionics configuration consists of a CPU, a power regulator, five 

sensors to provide closed-loop feedback, and batteries. All sensors, with the exception of a pilot 

command receiver and servo control unit, are commercial-off-the-shelf components and are rated as 

flight-ready. The onboard and ground station software is entirely implemented in C and runs on QNX 

4.25, a popular real-time operating system. The high vibration levels of the rotorcraft, which can interfere 

with the operation of sensors and equipment, are attenuated by a passive vibration isolation subsystem, 
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which consists of an elastomeric isolator suspension system for the avionics box. The demonstrator 

platform is described in greater detail in (Sprague, 2002). 

 

2.3 Capabilities 

The MIT helicopter allows for three modes of operation: piloted, semi-automatic, and automatic. In 

piloted mode the helicopter is functioning simply as a radio-controlled vehicle, responding directly to the 

commands received from the pilot’s transmitter. Under pilot command, the helicopter is much more 

flexible in terms of its abilities to maneuver and perform precise movements. With the exception of 

potential signal loss, the craft remains under the complete control of a human operator for the duration of 

the flight. Although the piloted mode is arguably the perceived safest mode of operation, it also has a 

number of disadvantages. The aircraft is limited to flights within a certain range of the pilot and 

transmitter. This range is typically within about one mile due to FCC regulations on the signal power 

permitted in commercial radio transceivers. Another limitation on the range of flight and mission 

capabilities is that the vehicle must remain within the line of sight of pilot in order to facilitate flying. 

Pilots must also be heavily trained to effectively operate radio-controlled aircraft. Rotorcraft present a 

unique set of challenges for the pilot since they incorporate four axes of movement with fairly complex 

feedback structures and equations of movement. Finally, the piloted aircraft is subject to human mistakes 

and constraints and are thereby inherently limited in terms of flying time and failure recovery.  

 

The addition of avionics to the flight system can mitigate some of these latter problems in terms of ease of 

flight and failure recovery. The MIT helicopter avionics box includes a GPS receiver to obtain positional 

data, an inertial measurement unit (IMU) which provides acceleration data for three axes of movement (x, 

y, and z), and an altimeter which provides a means of correcting GPS and IMU biases. The sensor data 

feeds into a control system which can then modify the interpretation of commands from the pilot’s 

transceiver and thus autonomously control flight dynamics. While any number of control systems is 

possible, the MIT avionics system currently features a semi-automatic controller which simplifies the 

dynamics enough that almost anybody is capable of flying the vehicle with little or no instruction. This 

control system decouples the flight variables and allows the pilot to send commands that translate to 

robust movements along the x, y, and z axes. The primary advantage of this controller is that the craft can 

be operated by almost anyone without requiring extensive training or experience. Under semi-automatic 

flight, the craft must still remain within range of the pilot and transmitter and must also be within the line 

of sight of the pilot. Furthermore, the addition of the avionics box and controller adds significantly more 

points of failure. A pilot trained in rotorcraft flight may still be needed for fault recovery. 
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An onboard avionics system is also a necessary prerequisite for fully autonomous flight, the final and 

defining mode of UAV operation. The MIT helicopter utilizes waypoint navigation techniques and 

programmed maneuvers, known as trims, to enable the vehicle to follow a predefined trajectory. The 

primary advantage of such a system is that the aircraft literally requires no pilot to monitor and control 

movements as long as the vehicle is capable of following a trajectory with a certain degree of reliability. 

Vehicles can be deployed at will to perform specific tasks with minimal supervision. While the MIT 

helicopter has demonstrated fully autonomous flight, including waypoint navigation and acrobatic 

maneuvers such as rolls and hammerheads, the operations have still employed a highly trained rotorcraft 

pilot as a fail-over. 

 

2.4 Current Limitations 

Despite its powerful capabilities for autonomous maneuvering, the helicopter is also subject to a number 

of constraints. The current flight time is limited to between 10 and 20 minutes, depending on how the 

vehicle is flown and the subsequent stress on the gas-powered engine. While the onboard batteries which 

power the vehicle’s servos and avionics significantly outlast the fuel tank, they are another limitation on 

the duration of flight operations. The battery lifetime is also dependent on the way the craft is being 

flown. Intense maneuvering and acrobatics drains both the fuel and servo batteries much more quickly 

than routine flight. 

 

The payload capacity of the demonstration platform is also extremely limited. In cooperation with Draper 

Laboratory, flight tests were performed with a dumb weight mounted on the vehicle's landing gear. The 

tests demonstrated that the pilot is able to perform acrobatic maneuvers with a payload of up to 7 lb. 

Additional physical constraints on the system provide a lower bound on the weight of the payload. The 

avionics system must be immune to the numerous sources of vibration inherent in a small helicopter. The 

primary source of vibration on such a vehicle is the main rotor, spinning at roughly 27 Hz. Other sources 

of vibration include the engine, the tail rotor, and the tailboom bending resonance. These vibrations must 

be attenuated for an onboard sensor package to report reasonably accurate measurements, particularly in 

regards to gyroscope and accelerometer data. The control system must then be designed to fit into a single 

unit that is heavy enough for a passive vibration mount to be effective, but is light enough that the vehicle 

can still perform aggressive maneuvers. Simple calculations indicate that commercially manufactured 

elastomeric isolators can effectively attenuate the vibrations described above for a payload weighing more 

than 5 lb. (Gavrilets, 2000). The passive vibration mount also loses effectiveness if the payload is 

unevenly spread across the elastomeric isolators; the weight of the payload must be evenly distributed. 
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Since the existing avionics configuration weighs 7 lb., there is little additional payload capacity to allow 

for supplemental onboard instrumentation and sensors. 

 

Given the constraints of the existing system, a new flight platform is currently under development for 

demonstration in civil safety missions. The demonstrator will feature flight times of up to 45 minutes and 

a payload capacity of about 15 lb. Though it lacks some of the agility of its predecessors, this vehicle will 

feature additional onboard processing capability which will enable it to execute real-time path-planning 

algorithms. 
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Chapter 3 
 

Integrated Needs Assessment 
 

While the MIT helicopter has demonstrated tremendous capabilities in terms of an augmented control 

system and autonomous acrobatic flight, these capabilities may not be sufficient to serve the needs of any 

specific commercial market segment. This schism between platform capability and customer 

requirements is bridged through a needs assessment. Unfortunately, the task of gathering customer 

requirements is difficult due to fact that most potential customers in the commercial and civil market 

segments lack of experience with UAVs. Leveraging their existing knowledge about and use of aerial 

mission support, civil safety institutions were targeted for an initial needs assessment. Institutions such as 

the police and fire departments also make sense as an initial market because many of the missions in 

which they might employ a UAV are inherently dangerous. Rather than focusing on the threats introduced 

by using UAVs in an urban environment, civil safety missions have the potential to demonstrate how 

UAVs can actually increase the safety of the general public. 

 

3.1 Interviews 

Interviews were conducted with Cambridge Mayor Michael Sullivan, MIT Chief of Police and former 

Massachusetts State Police Colonel John DiFava, and Cambridge Fire Chief Gerald Reardon to gather 

requirements for a UAV designed for use by civil institutions such as police and fire departments. These 

interviews provided valuable information about the operations of these organizations and offered insights 

into how UAVs may be able to serve some of their modern needs more effectively than current 

technologies. 

 

3.1.1 Massachusetts Institute of Technology Campus Police Department (The Police at MIT, 2002) 

The Campus Police at MIT subscribe to the traditional notion of crime prevention as “the anticipation, 

recognition, and appraisal of a crime risk and the initiation of some action to remove or reduce it.” This 

general goal is supplemented by a practice of crime risk management, which involves the development of 

systematic approaches to crime risk reduction that are cost effective and promote both the security and 

socioeconomic well-being of the potential victim. 
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Officers of the department have taken part in a variety of training exercises, including reactor training, 

CPR training, biohazard awareness training, firearms training, roll call training, officer safety programs, 

Massachusetts Criminal Justice Training Council courses, in-service training, diversity training, designer 

drugs training, criminal law procedure training, neighborhood crime watch training, motorcycle patrol 

training, firearms instructor training, and weapons of mass destruction training. A number of officers have 

also undergone additional professional development through courses on Criminal Offender Record 

Information and Law Enforcement Administrative Program Systems updates, racial profiling, gang 

violence and suppression, drug law enforcement training, combating underage drinking, and command 

training. Throughout the year, officers also attend a number of refresher courses to maintain their training 

as emergency medical technicians.  

 

The MIT Police Department operates a total of 12 vehicles, including 5 marked cruisers, 2 marked 

motorcycles, 2 unmarked cruisers, a van used as a mobile command post, a class 1 ambulance, and a 

marked vehicle for prisoner transport, as well as a bicycle patrol unit consisting of 5 bikes. The marked 

patrol cruisers carry emergency equipment, which includes first aid kits, resuscitators with oxygen, flares, 

and other emergency items. 

 

The department offers a wide breadth of services to the community. Community education and crime 

prevention measures include awareness packets, bike and laptop registration, lighting and security 

surveys, and seminars designed to disseminate knowledge and familiarize community members with 

officers. The department includes units which handle threat management, domestic abuse issues, rape and 

sexual assaults, and hate crimes and incidents. Figure 3.1 summarizes the department’s most frequently 

requested activities for 2002. In terms of service requests, Friday was by far the busiest day of the week 

with 1850 total requests. The next busiest days were Wednesday (1659) and Saturday (1652). 

1 Directed Patrol Service 3737
2 Alarms-Security 1787
3 Lock Outs  884
4 Security Checks  709
5 Larcenies 635
6 Medical Shuttles 394
7 Fire Alarms  368
8 Field Stop  258
9 Escort Person  248

10 Suspicious Activity  245
Figure 3.1: MIT Police 2002 Most Frequently Requested Activities 
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3.1.2 Cambridge Fire Department (Reardon, 2003) 

Massachusetts is unique in that, for funding purposes, the state is not subdivided into counties. State 

funding for safety programs such as the police and fire departments is allocated directly to the city in 

which the departments are based. One consequence of this structure is that the Cambridge Fire 

Department is the only fire department in a city that has up to 12 different police units (MIT, Harvard, 

Cambridge, AmTrak, MBTA, etc.). The Cambridge Fire Department is currently engaged in a long-term 

effort to integrate communications with all of these outlets. Most advanced development work is 

conducted in-house by a fulltime technical services group composed of 4 engineers and 3 mechanics. On 

occasion, the department will test out new equipment from their trusted suppliers. 

 

The Cambridge Fire Department has an annual budget of about $28 million. The primary costs of running 

the department come from equipment, administration, and operations. There are two types of equipment 

units: ladders and engines. Each unit, including the staff of operators, costs about $300/hour. Limited 

revenues are generated through hydrant parking ticket fees, false alarm tickets, and equipment rentals. 

However, most of these sources are at cost; the department generates no profit from them. 

 

Cambridge generates about 30,000 responses annually, one third of which are health-related issues. These 

responses also include the roughly 500-600 fires which take place each year within the city as well as 

hazardous material responses. Given that most responses take place under severe time constraints and 

represent an emergency, the department functions under an alarm system. Responses are categorized into 

alarm levels up to ten alarms. Each alarm level specifies the number and type of units to respond as well 

as where those units should come from. 

 

Although the Cambridge Fire Department does not own any helicopters for use in responses, they employ 

vehicles from a number of institutions. A consortium of hospitals fund Medflight, which is a medical 

response unit used for emergency transport of individuals. Patients (or rather their insurance carriers) are 

billed through an integrated billing system, much as they would be for the use of an ambulance. Medflight 

flies out of Hanscom Air Force Base and Plymouth. The Fire Department also occasionally calls on the 

State Police Airwing Unit, which flies out of Norwood. The Airwing Unit is funded through a mutual-

sharing agreement between the safety organizations. For the most part, the Airwing is used to obtain 

aerial views, forward-looking infrared, as well as to perform alpha-site work. Finally, the Coast Guard 

helicopters are sometimes called on in a similar support capacity. 
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3.2 Use Scenarios 

The data acquired through interviews with the MIT police chief and the Cambridge fire chief is helpful in 

developing use scenarios for micro to miniature tactical UAVs in commercial and civil settings. These 

scenarios were developed based on actual situations described by Cambridge city officials. Some are 

adaptations of current military applications to a domestic urban setting. Due to the nature of the data 

collected, these use scenarios focus primarily on civil safety institutions, but can be easily translated to a 

number of commercial applications.  

 

Several assumptions were used in the development of these scenarios. First, the cost of an urban tactical 

UAV is low enough that institutions can afford to maintain and operate their own fleet. This assumption 

is realistic, given that the present-day cost of acquiring micro or miniature UAV systems is relatively 

affordable and that the operating costs of these systems is much less than that of the helicopters currently 

employed by civil institutions. Secondly, the scenarios assume that regulations have been adopted which 

allow certified UAVs to be legally flown on an as-needed basis without requiring substantial, if any, lead-

time. The UAVs involved are capable of flight times of at least one hour and are based throughout a city 

such that they can be deployed to the location of an emergency, perform a service, and return to base 

without needing to refuel. Finally, the UAVs are capable of vertical take-offs and landings. This last 

requirement is critical to the effective use of a UAV in an urban environment which lacks large open 

spaces for use as runways.  

 

Police and fire department responses can be divided into two categories – those that require an immediate 

response and those that are not as urgent. These classifications provide a framework for developing the 

modes of transporting a UAV to a specific site. Open flight over an urban environment involves greater 

risk to the public at large than flight limited to small area already subject to an emergency situation. Thus, 

in situations in which the speed with which the UAV arrives on location must be no greater than the speed 

with which emergency operators are deployed, the UAV can be transported via a trailer or motor vehicle. 

While this mechanism of grounded deployment may result in a slower response time than if the UAV had 

been deployed through the air, it is also cheaper in terms of vehicle fuel and battery requirements, and 

provides more safety to the general public. In contrast, grounded deployment does not make sense in 

situations which require immediate deployment or involve surveillance over a large area. In these cases, 

the UAV should take off by air directly from base. Similarly, the mode of transporting a UAV back to 

base should take into account the remaining flight time available, the distribution of response forces, and 

the availability of complementary assets such as a mobile trailer to carry the vehicle back to base.  
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3.2.1 Surveillance and Video Reconnaissance 

A truck containing sensitive biological and chemical materials must transport its cargo from a 

manufacturing facility to a secure storage warehouse on the other side of the city. The truck is equipped 

with a GPS tracking system which sends periodic position updates back to a central server. To facilitate 

the transfer the secure storage warehouse operators deploy a UAV to the location of the truck. 

Deployment takes place such that the UAV arrives at the manufacturing facility not more than 5 minutes 

before the truck is scheduled to depart. A trained pilot controls the UAV take-off and then switches to 

automatic control. The UAV ascends to an altitude of 150 meters, well above the highest structure in the 

pre-determined flight area and still within class G airspace. The UAV then flies directly to the 

manufacturing facility and hovers above the truck. As the truck pulls out and begins its journey, the UAV 

follows the truck’s GPS footprints and relays video back to the security office of the warehouse. From the 

vantage point of the UAV, the secure warehouse can monitor the movement of the truck, obtain visual 

feedback about security threats the truck may encounter, and gain advanced warning about traffic patterns 

so that the truck can be rerouted if necessary. As the truck pulls into the secure warehouse, the UAV is 

switched back to manual control by a trained pilot at the scene and landed. 

 

3.2.2 Hazardous Situations 

A fire breaks out at an apartment building resulting in an alarm sounding at the local fire house. The first 

firemen at the scene quickly deduce that the fire is already stronger than what they are capable of 

controlling. The fire is escalated to alarm level 3. Following alarm level 3 procedures, a number of other 

fire companies are called to the scene, including a UAV crew and their mobile trailer. At the same time 

that the crew is deployed, a rotorcraft UAV is relayed flight plan instructions directing it to the 

emergency location. The UAV takes off vertically from its base station, ascending to an altitude of 100 

meters, well above the highest structure in the pre-determined flight area. The UAV travels immediately 

to the location of the fire where it proceeds to map out the hot spots of the fire by relaying infrared video 

from an onboard camera to a receiver operated by the UAV crew on their way to the scene. The UAV 

continues to monitor the fire’s activity either until the UAV crew issues new instructions or the vehicle 

senses that it must return to base for refueling. 

 

By the time the UAV crew arrives at the apartment building, they have already communicated with the 

other crews deployed at the scene and have developed a strategy to battle the fire and evacuate the 

building based on the imagery from the UAV and the building blueprints. The UAV crew switches the 

UAV over to piloted control and lands it in a nearby yard. The UAV is refueled and returned to the 

mobile trailer where it is ready for immediate deployment. 
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3.2.3 Patrols 

It’s late on a Friday night and a phone call comes into the campus police department reporting strange 

activity in the alley between the gym and the field. Since Friday nights are typically the busiest of the 

week, all of the on-duty patrols are out servicing other requests. Dispatch reroutes the on-duty department 

UAV from its general patrol of the campus to the gym to gain a visual on the area. The vehicle is one of 

two UAVs the department employs for routine patrols. The deployment of the vehicles is coordinated 

such that one can always be patrolling while the other is refueling. The vehicle receives its new 

commands through a wireless link to the onboard computer and immediately changes heading to fly to the 

new destination. Upon reaching the gym, the vehicle begins a circular search pattern, relaying high-

resolution video back to the department dispatcher. Upon finding no further evidence of illegal activity, 

the dispatcher instructs the vehicle to obtain views of a couple more areas missed by the circular sweep 

and then decides that the reported activity was either a prank or a false positive. The UAV is released 

from the mission and returns to its patrol of the campus. 
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Chapter 4 
 

Risk Mitigation 
 

A key advantage of UAVs over their manned counterparts is the potential cost savings. Theoretically, a 

vehicle which does not need to support a human being can be made more cheaply than one which must 

guarantee the safety of the onboard operators. Simply in terms of raw equipment required onboard, a 

manned aircraft must both accommodate a human pilot as well as all of the gear needed to sustain the 

pilot’s life. By their very nature, UAVs require none of this special equipment. Similarly, since a system 

failure during a UAV mission is much less likely to result in casualties than a similar failure during a 

manned mission, UAVs should also provide a more operationally cost-effective alternative. While it 

seems intuitive that the safety requirements of UAVs be less rigorous than that for manned aircraft, the 

FAA insists that all UAVs meet a “commensurate level of safety.” At the same time, safety analyses 

performed by the FAA assume that the safety of the occupants onboard an aircraft guarantees the safety 

of the public on the ground. These methods of analysis cannot be immediately applied to UAVs resulting 

in ambiguity about what constitutes a “commensurate level of safety.” However, by applying the current 

methodology and safety targets used by the FAA, the implied criteria for UAV system reliability and fault 

tolerance can be deduced. Strategies and policy options can then be devised and evaluated to mitigate 

risk. 

 

4.1 Preliminary Risk Formulation 

Roland Weibel performed a preliminary risk analysis by focusing on the fatal hazards associated with 

UAV operation: high-energy ground impacts and midair collisions. His work offers a methodology for 

quantifying risk as a function of the mass of the UAV by using an order of magnitude analysis to compare 

the risk associated with fatal hazards to definitions of the FAA’s target level of safety (TLS). Based on 

this comparison, the requisite vehicle reliability to meet a given TLS can be determined in terms of 

failures per flight hours. 
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Target level of safety is a design criterion specifying the probability of the occurrence of adverse events. 

Events are classified as catastrophic, hazardous, major, or minor based on their severity. Each level of 

severity is then associated with a TLS which defines the probability at which each level of severity can 

occur. According to FAA guidelines, midair and ground exposure risks are classified as either hazardous 

or catastrophic. A hazardous event is defined by serious or fatal injury to a small number of occupants of 

the aircraft or fatal injury to ground personnel or the general public. Hazardous events have an associated 

TLS of 10-7 events per hour of flight. A catastrophic event is a failure which results in multiple fatalities 

and/or the loss of the system. The TLS designated for catastrophic events is 10-9 events per hour of flight. 

Since these definitions may not be directly applicable to UAVs resulting in some uncertainty about the 

appropriate TLS, Weibel performed his analysis at a TLS of 10-8. 

 

4.1.1 Ground Impacts 

Focusing first on ground impacts, the fatality probability formulation is given by: 

( ) ( ) ( ) ( )ExposureFatalityPIncidentExposureP
hour

IncidentP
hour

FatalityP ||=  

Where, 

 
( )

hour
FatalityP

 is the fatal accident rate, or the probability of a fatal injury to a person on the 

ground per hour of flight. The fatal accident rate is determined by the TLS used in the analysis. 

 
( )

hour
IncidentP

 is the vehicle reliability, or the hourly probability of an incident occurring on the 

vehicle resulting in a ground impact. 

 ( )IncidentExposureP |  is the exposure probability, or the area-based probability that a person 

on the ground is exposed to a lethal field of debris from the colliding vehicle. This quantity is 

given by: 

( ) ρosureAIncidentExposureP exp| =  

Where, 

 osureAexp  is the average area of lethality due to a UAV ground impact. Weibel 

approximated this as the frontal area of the UAV. 

 ρ  is the population density of the area, based on 2000 census data. 

 ( )ExposureFatalityP |  is the protection factor, or the probably of a fatal injury given the 

exposure to the lethal field of debris. Weibel estimated this value as the percentage of the 
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population exposed to the vehicle at any point in time, recognizing that some persons will be 

protected by buildings and other structures. 

 

Figures 4.1-4.3 illustrate the results of Weibel’s ground impact formulation when applied to modern 

tactical UAVs. 

 
Figure 4.1: Ground exposure risk formulation applied to a UAV weighing 351 lb. 

*Courtesy of Roland Weibel 
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Figure 4.2: Ground exposure risk formulation applied to a UAV weighing 9.6 lb. 

*Courtesy of Roland Weibel
 

 
Figure 4.3: Ground exposure risk formulation applied to a UAV weighing 2.12 oz. 

*Courtesy of Roland Weibel
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The ground exposure risk formulation offers a preliminary estimate of the ground exposure risk 

associated with UAV flight across large regions. However, the preciseness of the formulation is severely 

reduced by potentially misleading population density data and critical estimates regarding the protection 

factor. Census data employs a hierarchy of spatial reporting units such that counties are divided into tracts 

comprised of groups of blocks. The block unit was originally defined to mean a city block, but variations 

in block unit size exist between rural and urban areas and across census regions. Occupied census blocks 

vary in size between 172 ft2 (16 m2) and 288 million ft2 (26.5 million m2), and between 0 and 4720 

persons per block. Since population is tabulated at the block level and population density is computed 

based on the area of each block, the population density is largely dependent on the size of the block used. 

Some of the census blocks in urban areas are extremely small and thus yield very high densities. 

Furthermore, since population densities are based on location of residence, some blocks, both urban and 

rural, have a reported population of zero. A substantial number of these zero population blocks can be 

found at the core of urban centers. The lack of precision inherent to census data and estimates may mean 

that the resulting approximations of required UAV reliability are far more conservative than those 

actually mandated by the FAA. 

 

4.1.2 Midair Collisions 

Weibel also developed a framework for evaluating the risks associated with midair collisions. The 

formulation is based on the idea that from the perspective of a UAV, several airplanes transit through the 

airspace creating volumes of exposure. If any of these exposure volumes intersect the space-time path of 

the UAV, then a collision has occurred. The formulation relies on a number of assumptions. First, flights 

are assumed to be uniformly distributed between 0 and 10,000 ft. MSL, as well as uniformly distributed 

horizontally and throughout the day. Weibel’s calculations thus assume an equal likelihood of 

encountering an aircraft in any region of the National Air Space (NAS) at any time of day. A second 

assumption is that the velocity of the threatened aircraft is large compared to that of the cruising UAV, 

meaning that the UAV can be treated as static. Finally, the exposure area of the threatened aircraft is 

assumed to be equal to the frontal area of a Boeing 757.  

 

The midair exposure risk formulation is given by: 

( ) ( )
air

osure

V
V

hour
AircraftN

hour
CollisionN exp=  

Where, 

 
( )

hour
CollisionN  is the collision rate, which is determined by the TLS 
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( )

hour
AircraftN  is the rate of aircraft through the airspace which specifies the number of times the 

exposure area sweeps through the airspace. 

 osureVexp  is the exposure volume. This quantity is given by: 

airosureosure dAV expexp =  

Where, 

 osureAexp  is the vulnerable area of the threatened aircraft in a collision with a UAV. 

 aird  is the distance traveled by the threatened aircraft through the airspace. 

 airV  is the volume of the airspace segment. 

 

Figure 4.4 illustrates Weibel’s analysis using Enhanced Traffic Management System aircraft surveillance 

data for a typical weekday. 

 
Figure 4.4: Midair collision risk results 

*Courtesy of Roland Weibel
 

While midair collisions do constitute a potential hazard in UAV missions, Weibel’s work is primarily 

applicable to UAVs routinely traveling through NAS. Tactical UAVs performing missions in and around 

urban centers within Class G airspace would never be expected to collide with an aircraft approaching the 
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size of a Boeing 757. Furthermore, the formulation only yields the probability of collision, assigning the 

same severity to the incident regardless of the collision momentum.  This simplification can lead to 

misleading results; there are huge differences in the consequences of colliding with a manned aircraft 

between a stationary 10 lb object and a 4 ton projectile traveling at 450 mph, such as Boeing’s X-45 

UAV. 

 

4.1.3 General Shortcomings 

While Weibel’s work establishes a good framework for evaluating the risks associated with UAV 

operation and offers valuable insights into generalized nation-wide risk mitigation strategies, his 

formulation lacks the granularity required to evaluate risks and develop mitigation strategies at the level 

of a city or urban center. Whereas the above analysis derived threat levels from relatively low-resolution 

population densities, a more granular approach could focus on high-resolution time-based population 

densities, critical buildings and structures, and areas of poor radio and GPS reception. Instead of deriving 

vehicle reliability standards for attaining a given TLS, a city-level risk assessment can highlight 

operational modes which maximize the safety of the general public and critical urban infrastructure. 

 

4.2 Path Planning 

The risk of a UAV causing injury to a person or building is strongly dependent on the path the vehicle 

follows between any two points. Flying over densely populated parks or sidewalks and streets where 

individuals are less likely to be protected by structures constitutes more of a threat to the general public 

than flying over structures and buildings. Similarly, flying around critical structures such as power plants 

and chemical factories is typically more risky than flying over or near office buildings. Though the 

probability of vehicle failure remains unchanged, the severity of a crash is primarily dependent on where 

the collision takes place. 

 

4.2.1 Approaches to Path Planning 

Path planning describes the problem of applying mathematical programming techniques to find the 

optimal path between two states for a single vehicle of a group of vehicles. The path can be optimized 

with respect to any cost function, typically fuel and/or time, and must guarantee that the vehicles do not 

collide with each other or with any of the defined obstacles, which can be dynamic or static. The use of 

potential functions has been the classic approach to robotic collision avoidance (Latombe, 1991). 

Additional techniques have included the use of randomized algorithms and graph searching and surface 

covering (Barraquand, 1997; Lozano-Perez, 1980). These approaches are limiting because they fail to 

take advantage of the full range of vehicle maneuverability, severely restricting the potential of small-
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scale UAVs, particularly miniature rotorcraft. At the same time, the vehicle dynamics of the miniature 

rotorcraft are so complex that it is impractical to consider the full equations of motion when developing a 

guidance system. One method of balancing path optimization with maneuverability is to simplify the 

vehicle dynamics through some method of control augmentation and then designing the guidance system 

for the modified closed-loop dynamics. Unfortunately, this approach may still restrict the performance of 

extremely agile vehicles. 

 

A different approach to incorporating vehicle dynamics into the guidance system is to use a “maneuver 

automaton,” as described in (Frazzoli, 2002). This method models the vehicle as a hybrid automaton. The 

states are a set of discrete equilibrium trim conditions and the transitions are the maneuvers that allow the 

vehicle to move between one trim and the next. This approach allows for real-time calculation of the 

optimal trajectory by evaluating the possible discrete actions at each time step. Optimality is determined 

by a policy operating on a value function, which is the result of a dynamic program that is solved offline 

through value iteration (Bertsekas, 2000). These methods have successfully been implemented and 

demonstrated on the MIT helicopter described above in Chapter 2. The application of the maneuver 

automaton theory to a real platform provided an excellent opportunity to evaluate the resulting vehicle 

performance. Despite the direct incorporation of vehicle dynamics into automated trajectory planning, the 

maneuver automaton as described above suffers from several drawbacks. The automaton constrains the 

vehicle dynamics to a finite set of motion primitives, trims and maneuvers. A continuous velocity mode is 

consequently discretized into several trims with constant velocities, thereby restricting the vehicle's 

behavior to one of these. The resulting lack of continuous velocity modes and the discretization used in 

the value function can hinder precise navigation (Mettler – Rotorcraft Motion Planning, 2002). 

Furthermore, since a single operating region is typically discretized into multiple trim conditions with 

their corresponding transition maneuvers, increases in the resolution of the discretization substantially 

amplify the complexity of the maneuver automaton and resultant dynamic program. 

 

Yet another method of path planning takes advantage of a framework based on a hybrid architecture 

combining a velocity control system and maneuver scheduler to apply advanced mathematical 

programming techniques. Framed as such, optimal guidance can be formulated as a mixed integer linear 

program (MILP). The flexibility inherent to MILP is advantageous because it permits continuous 

optimization over several velocity control modes, allows the inclusion of dynamic and kinematic 

constraints, and is able to incorporate binary logic such as the decision to execute a maneuver 

(Schouwenaars, 2003). Additionally, it can directly incorporate obstacle and collision avoidance 

constraints into the trajectory planning problem (Schouwenaars, 2001). MILP allows for two planning 



 37

strategies: a receding horizon strategy and a fixed arrival time approach. Receding horizon implies that 

the optimization problem is applied at each time step to solve for the solution to N future time steps. 

Though onerous, such calculations can be performed real-time. While the solution to the MILP ensures 

that no collision occur, either with collaborating vehicles or obstacles, such guarantees cannot be made in 

a receding horizon setting. Receding horizon allows for the possibility that a single vehicle or set of 

vehicles reach a critical situation for which the MILP becomes unfeasible in the next iteration. This 

situation typically arises when the horizon is too short for other vehicles and obstacles to be identified in 

time (Schouwenaars, 2001). MILP, too, has been implemented and simulated for use on the MIT 

demonstrator. The shortcomings of the MILP formulation rest primarily with the trade-offs inherent in 

modeling the dynamics of the miniature helicopter. If the model is too complex, then the resulting 

optimization task is untenable. If the model is too simple, the optimization can not take advantage of full 

flight envelope motion planning. 

 

The traditional path planning problem formulation can be supplemented with additional input variables to 

the cost function. Instead of limiting a flight field to be composed of obstacles, or high-risk areas, and free 

space, or low-risk areas, these methods allow for a wide range of risks to be assigned to the various 

regions of the field. The optimization problem then incorporates these values to determine the lowest-risk 

path through the area of interest. These methods have been employed primarily for military applications 

to determine paths that demonstrate the least potential for losing the vehicle (Jun, 2001). However, the 

problem in the military domain of calculating safest paths for vehicles is analogous to the problem in the 

civil and commercial domain of computing the route which minimizes threat to the general public. 

 

4.2.2 Global Information Systems 

The theoretical framework of trajectory design optimizing on both discrete and continuous variables 

while incorporating vehicle dynamics is well understood. Solutions to these problems are limited by two 

critical data collection issues. First, the optimization problem must include an adequate model of the 

UAV dynamics so as to allow for motion planning over the full flight envelope. This issue is resolved by 

applying methods similar to those described by Gavrilets et al. in their generation of a complex model for 

the dynamics of the MIT helicopter (Gavrilets – Non-Linear Model, 2001). Second, the flight field must 

be described in sufficient detail to allow for optimization over relevant threat assignments. This latter 

problem can be addressed through the use of global information systems (GIS). GIS combines layers of 

information about a location as a means of providing a better understanding of that location. The 

technology has successfully been applied to a number of fields including the biological sciences as a 

means of providing valuable insight into the origin and spread of diseases, urban planning to estimate and 
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manipulate traffic flows and growth patterns, and information technology to offer better ways of 

navigating through an area. 

 

GIS data comes from a variety of sources including digitized and scanned maps, geospatial databases, 

global positioning system (GPS) data, and remote sensing and aerial photography. A number of 

organizations are currently developing aerial maps of the entire globe; within years, extensive GIS data 

will be available for most of the world. Although there are multiple sources of data, GIS features only two 

ways to visualize and manipulate data. Raster data corresponds to a grid; each “pixel” or node is 

associated with a value. Satellite images and aerial photos are already in this format. An example of raster 

data is given in Figure 4.5. In contrast, vector or linear data describes lines, points, and polygons. Vector 

data can be used to define features such as buildings, lakes, and streets. While raster data is merely a 

location and a corresponding value, vector data can contain a number of other descriptive attributes such 

as size, type, and length. Figure 4.6 shows the same location pictured in Figure 4.5 coded as vector data. 

GIS is powerful because it combines data, both raster and vector, from disparate sources into a single 

visualization. 
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Figure 4.5: Sample GIS raster data, MIT campus 

*Courtesy of whereis.mit.edu
 

 
Figure 4.6: Sample GIS vector data, MIT campus 

*Courtesy of whereis.mit.edu
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4.2.3 Application to UAVs 

As UAV reliability improves and the field of commercial and civil applications expands, GIS will 

become a critical resource for designing, simulating, and executing UAV missions. Though UAVs will 

likely be equipped with sophisticated sense and avoid systems, GIS offers a strong framework for 

implementing general risk mitigation strategies and preliminary mission design. Given that adequate data 

on the planned flight location is available, a map of the entire field of flight can be accessed or generated. 

Ideally, the map should identify features that are important from a risk assessment perspective. Layers 

might include physical boundaries and features such as buildings, roads, parks, and power lines, 

population density based on time of day, and even weather patterns. Additional layers might contain an 

interpolation of potential radio reception null spaces and GPS dead spots or a raster map of values 

pertaining to the risk or threat involved in flying in or over specific regions such as no-flight zones, power 

stations, or nuclear reactors. Much of this data is already available in geographic information system 

(GIS) databases. Once a detailed map is generated, advanced path-planning techniques can be applied to 

compute the lowest risk path between any two points on the map optimized across any combination of 

variables for which data exists. The trade-offs in optimization variables such as safety, fuel, and flight 

time can be assessed and appropriately balanced by an informed decision-maker. 

 
Figure 4.7: Sample risk-minimized path, MIT campus 
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A simple example of how this process can be applied is to identify building rooftops as low risk areas. 

Especially during the day, when many pedestrians are traversing the streets and sidewalks, the damage a 

small UAV can inflict is much more limited if it crashes into a building as opposed to a well-populated 

thoroughfare. Figure 4.7 illustrates the path a UAV might track to travel from the Charles River Basin to 

a point on the MIT campus following this simple risk construction. The path will vary depending on the 

relative risk assignments of the different regions of the map and the value attributed to optimizing fuel 

and flight time.  By basic geometry, an area with extensive building coverage should yield risk-optimized 

paths which are no greater than %4.1412 ≈ of the direct path in length. The path shown in Figure 4.7 

has greater length inefficiency because it minimizes absolutely the risk associated with the flight by 

maximizing the time spent over buildings. A more realistic path might have the vehicle cross 

Massachusetts Avenue at building 7A and proceed directly to the target. The loss in path efficiency when 

the risk associated with flight is optimized is essentially the cost of achieving a target level of safety. 

 

A key benefit of this more granular approach to risk assessment and management is that entire portions of 

the country are not restricted from UAV use. Whereas Weibel’s ground exposure formulation used 

population densities blurred into census blocks and estimates of the number of individuals protected by 

buildings and other structures to deduce the required vehicle reliability to meet FAA standards of 

commensurate safety, this suggested approach for use by tactical UAVs in and around urban centers can 

account for more variables contributing to risk and is more precise in terms of quantifying the risk 

involved in a particular mission. Granular information about a UAVs field of flight thereby allows for the 

use of optimization technology to mitigate risks. 
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Chapter 5 
 

Policy Recommendations 
 

As UAV capabilities continue to improve the technology will spill out of the military sector and into 

commercial and civil applications. Already, UAVs have demonstrated commercial marketability in such 

diverse areas as scientific and environmental research, cross-seas shipping, communications relays, 

emergency management, border monitoring, agriculture, and aerial photography.  Small-scale tactical 

UAVs in particular have an enormous potential to fulfill a number of roles within urban centers, 

transforming the way civil safety institutions carry out their jobs. A lack of established flight regulations 

is currently the greatest barrier to the standardized use of these vehicles. While the United States is 

currently the world’s leader in UAV manufacturing, this position is tenuous given strong competitive 

threats from a variety of foreign countries who are already ahead in establishing a standardized regulatory 

environment for UAVs. 

 

5.1 Concerns 

From a policy perspective, the commercial and civil use of UAVs is extremely problematic for a number 

of reasons. First, operation of UAVs over domestic territories has a distinct impact on the safety, both real 

and perceived, of the general public. Despite the relatively low portion of aviation casualties resulting 

from midair collisions and collisions with individuals on the ground, UAVs are capable of fatally harming 

bystanders. Roland Weibel’s work offers a preliminary assessment of the risks involved with UAV flight. 

Moreover, the public may very well not feel comfortable with the concept of fully autonomous flight. 

Using M. Granger Morgan’s formulation of risk space, which has axes that correspond to a hazard’s 

controllability and to the degree to which it is known or understood by the individuals facing the hazard, 

UAVs are classified in the upper right quadrant with similar risks which are neither observable nor 

controllable by the individuals placed at risk through the use of a technology (Morgan, 1993). In general, 

these risks in the upper right quadrant are those which are likely to provoke the most calls for government 

regulation. Figure 5.1 illustrates Morgan’s risk space and shows where the risks inherent to UAV flights 

are mapped. 
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Figure 5.1: M. Granger Morgan’s risk space 

 

In addition to the obvious safety concerns about UAV flights, UAV technology also invokes anxieties 

regarding domestic security. UAVs preprogrammed for flight and with no radio signature can not be 

easily traced back to any particular individual, making them an ideal transport for dangerous and illegal 

materials. Even more disturbing is the fact that a UAV can be constructed out of fairly cheap, 

unregulated, commercial-off-the-shelf components. The MIT flight platform, built entirely of 

commercially available parts and a standard radio-controlled hobby craft has a material cost of only 

$40,000. The most expensive component is the inertial measurement unit, which has such a high cost due 

to the control system requirements for acrobatic flight. While UAVs are not alone as a technology fraught 

with potentially malevolent uses, careful thought must be given to how best to control the diffusion of and 

access to the technology so as to ensure accountability.  

 

The apparent need for regulation gives rise to a third policy issue pertaining to who should do the 

regulating and what form the regulations should take. While the FAA has traditionally managed the risks 

associated with general aviation, the FAA approach of protecting the public on the ground by focusing on 

the safety of the passengers onboard an aircraft does not translate easily to the realm of UAVs. The FAA 

is an organization designed to regulate a risk in the lower right quadrant of Granger Morgan’s risk space, 

in which the risk is known and understood by those boarding an aircraft. Even if the FAA becomes the 

eventual enforcement agency for UAV regulations, retrofitting existing FAA regulations to UAVs may 
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not be an adequate solution given the wide assortment of unmanned craft. By necessity, the FAA is a 

large, slow moving, regulatory body which is not equipped to engineer new operating regulations for each 

innovative aviation device. On the other hand, if the FAA is not the appropriate agency to regulate UAVs, 

or certain subclasses of UAVs, then the issue becomes a question of who is better positioned to govern 

those UAV operations. 

 

Finally, any regulations established to govern the certification and operation of UAVs must be flexible 

and robust to advances in technology. The present debacle the United States is facing due to a lack of 

regulatory standards for UAVs and a slow process for integration should not be repeated. An interesting 

consequence of the rise of UAV commercial marketability and the growing demand for regulation is the 

development of a number of public-private partnerships working toward the regulatory integration of the 

technology. Access 5 is a national project sponsored by NASA with the participation of the FAA, DoD, 

and industry with the goal of enabling a robust civil and commercial market for high altitude, long 

endurance (HALE) UAVs. Access 5 hopes to allow HALE vehicles to routinely, safely, and reliably 

operate within the National Airspace System (Access 5, 2004). The industry consortium associated with 

Access 5 is known as the UAV National Industry Team or UNITE. The membership of UNITE includes 

AeroVironment, Aurora Flight Sciences, Boeing Company, General Atomics ASI, Lockheed Martin, and 

Northrop Grumman (UNITE Alliance, 2004). Should Access 5 prove to be a success in generating a 

government and industry consensus on the effective regulation of HALE UAVs, it may provide a good 

model for the means of integrating of other UAV technologies. 

 

5.2 Implications 

Present day efforts to implement a regulatory framework for UAV operations have been too narrowly 

focused on the FAA. Not only is the agency’s timeline for integration stifling to the industry, its core 

competencies related to managing access to and safety of NAS are not applicable to the entire range of 

UAVs. For certain classes of vehicles, such as small-scale, tactical UAVs for use in and around urban 

centers, alternative regulatory approaches are crucial to the immediate growth of the industry. Much as 

local governments regulate the use of cranes within city limits, local governments and institutions should, 

and may already, have the legal authority to establish regulations governing UAV operations within Class 

G airspace. Until the FAA is prepared to incorporate new rules regarding low altitude UAV operations, 

local municipalities should be allowed the freedom to experiment with different regulatory frameworks. 

 

Much of the current effort focused on integrating UAVs into the regulatory framework of the FAA has 

been industry-driven. Access 5 is the product of proposals and recommendations initiated by the member 
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companies of UNITE. While industry efforts have mostly concentrated on HALE vehicles, similar 

objectives can easily be applied to other UAV classifications. UNITE should expand its focus to include 

more classes of UAVs for which a clear market has been identified. 

 

The work of Access 5 further indicates that the FAA may be tuning regulations to the various classes of 

UAVs, as well it should. The operational requirements for a HALE vehicle which must take off and land 

from an airfield and travel through the NAS are very different from those of a small tactical UAV capable 

of vertical take-offs and landings and limited to flight in Class G airspace. For cases involving the latter, 

the FAA should take advantage of its regional structure to allow for regulatory experimentation. Regions 

should be given authority to establish their own sets of requirements which will be evaluated for a 

predetermined duration. These experimental regions can be as small as a city municipality or as large as 

an entire FAA regulatory region. At the end of the evaluation period, the most effective regional 

requirements should be combined into a single regulatory framework and adopted nationwide. The FAA’s 

regional initiatives should defer to and coordinate with local municipalities until such a time that the FAA 

is prepared to adopt and oversee an established regulatory framework. 

 

Lastly, governing bodies must not ignore the domestic security implications of ubiquitous UAV flights. 

Efforts should be made to ensure known vehicle ownership, traceability, and accountability at all times. 

This might be accomplished by tagging and tracking inertial measurement unit (IMU) purchases since an 

IMU is a requirement for vehicle autonomy and is fairly difficult to produce without extensive 

manufacturing capabilities. FCC regulations should also set up a corresponding system of accountability 

through traceable radio communications. 

 

5.3 Future Work 

In addition to technological abundance, the field of UAVs has tremendous potential for further policy 

research. A careful review of existing FAA standards and regulations may illuminate considerations that 

have not yet been revealed and offer insights into how new regulations can be adopted through a more 

streamlined approach. A detailed case study of the integration of UAV technology into a civil safety 

organization should provide a better understanding of how to introduce a new technology into a non-

commercial social situation. The field also touches upon interesting issues concerning the use of highly 

engineered military technology in domestic and urban settings. The process by which technology moves 

out of the military sector and into the commercial domain raises important questions about national 

security. Specifically, what effect would the general purpose use of a potentially very dangerous 
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technology have on the visibility and likelihood of it being used as a threat to national security?  How 

could these effects be mitigated? 

 

As UAVs continue to prove themselves as military assets of an advanced arsenal and their capabilities 

expand, demand for their use in civil and commercial sectors will only grow. UAVs have demonstrated 

that there is a need for faster regulatory responses to emerging technologies with large public safety 

implications. Despite the inherent risks involved in UAV operations, granular risk mitigation strategies 

can be effective in managing the risk. 
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Appendix 
 

GIS Data Manipulation 
 

GIS data is typically stored in binary files, known as shape files, which must be converted into text 

formats so the data can be used by non-GIS programs. The process for converting GIS data into data that 

can be manipulated by path-planning programs and used in simulations consists of five steps: 

 

 [1] Find a shape file defining the area of interest. The MIT GIS data repository has quite a bit of data 

available including geographical definitions of the MIT campus, Cambridge, and Boston. Additional 

data is available upon request and is limited only to the regions that have been fully mapped in GIS 

shape files. As GIS technology becomes ubiquitous, more and more of the world will be defined 

virtually in such files. 

 

[2]  Convert the shape file from its original datum to WGS-84. A number of different standards exist for 

representing the same geographical data. Nad-27, Nad-83, state-plane, and WGS-84 are all different 

coordinate systems which can be used to map regions. Most GIS software includes the functionality 

to change the coordinate system the data is defined in. In ESRI’s ArcGIS, this is accomplished by 

right-clicking on the dataset and clicking “Properties.” Since the MIT helicopter GPS system uses 

WGS-84, regions being evaluated for path-planning should be similarly defined using this standard. 

 

[3]  Create a new project in ArcView GIS 3.3. By opening the new WGS-84 shape file in this project, the 

data can be manipulated using scripts. GIS data is stored and manipulated as a database. Each shape 

file contains an attributes table containing ancillary information for the vector and raster data which is 

stored in associated tables within the shape file. The ancillary information might include building 

names, heights, addresses, or other information that is considered useful by the person generating the 

shape file. The following script accesses the attributes table of a shape file and generates an output 

text file including building identifiers, heights, and vertices. While the script is particular to the shape 
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file which defines the MIT campus, the required changes to apply it to another shape file are fairly 

obvious. 
 
tf = LineFile.Make( ".\wgs84.txt".AsFileName, #FILE_PERM_WRITE ) 
 
theCount = 1 
theVTab = Av.GetProject.FindDoc("Attributes of Wgs84.shp").GetVTab 
theVTab.SetEditable(True) 
theVTab.StartEditingWithRecovery 
theShapeField    = theVTab.FindField("SHAPE") 
theFacilityField = theVTab.FindField("FACILITY") 
theHeightField   = theVTab.FindField("FACILITY_H") 
 
for each rec in theVTab 
  MaxValue    = 0 
  thePolygon  = theVTab.ReturnValue(theShapefield, rec) 
  theFacility = theVTab.ReturnValue(theFacilityField, rec) 
  theHeight   = theVTab.ReturnValue(theHeightfield, rec) 
  LengthOfListArray = thePolygon.Count 
  LengthOfListArray = LengthOfListArray - 1 
  for each i in 0 .. (LengthOfListArray) 
  theOutputString = 
theFacility++theHeight.AsString++thePolygon.AsList.Get(0).Get(i).AsString 
  theSize = theOutputString.Count 
  tf.writeELT(theOutputString) 
  End ' reading the list for each shape for loop 
End ' reading FTab for loop 
 
tf.close 
 
theVTab.StopEditingWithRecovery(True) 
theVTab.SetEditable(False) 
MsgBox.Info(MaxValue.AsString,"") 
return nil 
 

This script generates a file of the format: 
<identifier> <height> <latitude> <longitude> 

<identifier> <height> <latitude> <longitude> 

<identifier> <height> <latitude> <longitude> 

... 

 

Each line of the output file includes an identifier for the particular polygon being described, the 

height of the polygon, and the next vertex in clockwise order. 

 

[4]  Convert data into meters with respect to a point. The path-planning software takes in data defined as 

meters with respect to the equator and prime meridian. Since the tool can compute more quickly with 

smaller input numbers, the origin of the coordinate system is translated to a location central to the 

region of interest. For the data defining the MIT campus, the Great Dome was chosen as the central 

point of reference. The polygon output file generated in step [3] thus needs to be translated from the 



 49

WGS-84 datum into meters with respect to the Great Dome.  GISutil.exe is a program, written in C, 

which converts the output of the ArcGIS script into a file with the following format: 
<total number of polygons> 
<identifier> 
<height> 
<total number of vertices in polygon> 
<vertex x> <vertex y> 
<vertex x> <vertex y> 
<vertex x> <vertex y> 
... 
 

Each polygon definition in the output file includes a list of vertices defined in meters with respect to 

the Great Dome and in counter-clockwise order. 

 

 [5] Triangulate the polygons. While the data generated in step [4] is sufficient to fully define an obstacle 

field or map, the polygons described as ordered lists of vertices can not be readily rendered or used 

for path-planning because many of them are non-convex. These polygons must then be defined as sets 

of triangles so as to avoid the processing problems inherent to non-convex polygons. This step uses a 

triangulation program, written in C, called triangulationUtil.exe. The program reads in the file 

generated in step [4] and makes iterative calls to a triangulation utility produced by (Narkhede, 2004) 

which is based on Seidle’s Algorithm. The output file has the following format: 
<total number of polygons> 
<identifier> 
<height> 
<total number of vertices in polygon> 
<vertex x> <vertex y> 
<vertex x> <vertex y> 
<vertex x> <vertex y> 
... 
<total number of triangles describing polygon> 
<vertex x> <vertex y> <vertex x> <vertex y> <vertex x> <vertex y> 
<vertex x> <vertex y> <vertex x> <vertex y> <vertex x> <vertex y> 
<vertex x> <vertex y> <vertex x> <vertex y> <vertex x> <vertex y> 
... 

 

The output file generated in step [5] is used as an input for visualizations as well as an input for path-

planning programs. The visualization used by the MIT Helicopter Project also uses path generation files 

as an input so that planned flights can first be simulated in a virtual environment. 
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