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Abstract

An atmospheric entry and descent full-state navigation filter is developed and pre-
sented. Using this filter a navigation performance analysis is performed to examine
the effects of various instrument packages and differing sensor scenarios for the entry
and descent phase of the Mars Aerial Regional-scale Environmental Survey (ARES)
mission.

Deterministic simulation in conjunction with Monte Carlo techniques is used to
verify navigation performance of an extended Kalman filter. This analysis specifically
compares the performance of four feasible instrument packages, examines navigation
performance as it varies with changes to initial sensor activation altitude, and exam-
ines error sources and covariance trends for this entry and descent scenario.

The results from the analysis show that large attitude uncertainty resulting from
the LN200 IMU bias causes a breakdown of the filter algorithm due to nonlinearities.
The addition of a surface relative velocity measurement to the altimeter measurement
provides only marginal position uncertainty improvement and significant velocity and
attitude uncertainty improvement. Increasing the initial altitude for sensor activation
provides slight improvements in position uncertainty, but large velocity and attitude
uncertainty improvements. Finally, it is shown that initial state uncertainty domi-
nates over all other error sources in this navigation analysis. Error growth within
the principal states (position, velocity, and attitude) is predominantly a product of
the near-constant attitude uncertainty as it transfers from the innocuous roll attitude
channel into the more consequential pitch and yaw attitude channels.
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Chapter 1

Introduction

Navigation is generally thought of as the determination of position and heading for use

in moving from one place to another. Navigation as it applies to aerospace vehicles

is the use of various sensor data and initial conditions to fundamentally estimate

position, velocity, and attitude. Estimates of these primary states and information

on their uncertainty are then used to guide the vehicle along a desired trajectory.

Navigation is essential if vehicle guidance is required. Without navigation, an

unmanned vehicle could at best make open-loop guidance and control maneuvers

assuming that the vehicle closely follows some nominal precomputed trajectory. This

method does not allow for trajectory error that might arise due to uncertain initial

conditions, vehicle parameters, and environmental conditions. Quantities such as

vehicle mass, center of gravity, and aerodynamic coefficients constitute uncertain

vehicle parameters for the case of atmospheric entry. Environmental uncertainties

are unavoidable, but can be more severe at planets other than Earth where past

observational data is limited and models are imprecise. Environmental effects can

cause dispersions to a vehicle’s trajectory from inaccurate modeling of atmospheric

density, atmospheric temperature, and atmospheric wind.

The navigation system is a critical component in the design of a spacecraft. Nav-

igation uncertainties limit the accuracy to which the vehicle can be guided and con-

trolled. Guidance and control authority for correcting trajectory dispersions is only

useful if the navigation system is precise enough to detect these dispersions in the
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trajectory.

The baseline configuration of an aerospace navigation system is the inertial naviga-

tion system. Inertial navigation without any external measurement sensors is termed

“dead-reckoning” navigation. This involves incorporating observations from the iner-

tial measurement unit (IMU) into propagation of the fundamental states forward in

time. Different types of sensors can be added to this basic configuration to enhance

the navigation system. These additional sensors are used to provide information up-

dates to the vehicle states. Measurement sensors have differing regimes of usefulness

during any mission. In interplanetary cruise and planetary orbit, sensors such as

star cameras and sun sensors are useful. Altimeters, velocimeters, and radar/doppler

systems are useful during atmospheric entry and flight.

1.1 Mission Description

The problem under examination for this analysis is the entry and descent phase of a

Mars entry vehicle. The analysis is specifically applied to the proposed Mars Aerial

Regional-scale Environmental Survey (ARES) Mission. The purpose of this mission

is to deliver a small airplane to Mars to perform scientific measurements that fill

a critical gap between the current ground-based and orbital-based Mars scientific

observations. This analysis will therefore examine the atmospheric entry and descent

phases of the vehicle containing this ARES airplane.

One of the significant engineering challenges for delivering payloads from Earth

to Mars involves the entry and descent phases of the mission. Entry is defined as

the period of the mission from atmospheric interface to parachute deployment, and

descent is defined as the period of parachute descent until the airplane is deployed.

Understanding the navigation issues during this phase is critically important. The

entry vehicle is experiencing a tremendously dynamic environment for a short period

of time. During this phase, any vehicle and environmental uncertainties can cause sig-

nificant trajectory dispersions, jeopardizing the vehicle survival. In addition, vehicle

delivery accuracy can be important for reaching the mission objectives. Science ob-
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jectives necessitate precise delivery of a vehicle for maximum scientific return. Since

this near-final mission phase is so short and subject to such large dynamic forces

and potentially large trajectory dispersions, good navigation information is very im-

portant if the guidance system is expected to correct for these errors in the limited

remaining flight time.

This analysis will therefore examine a variety of feasible instrumentation config-

urations for the ARES mission to determine their absolute and relative performance

using a deterministic simulation in conjunction with Monte Carlo techniques. Ad-

ditionally, the analysis will examine the sensitivity of the navigation performance to

variations in the sensor activation time. This will help to answer questions concerning

the level of technology required to reach differing levels of navigation precision.

1.2 Approach

This paper can be separated into two parts. The first part describes the algorithmic

structure of the simulation used to perform the analysis. The second part describes

the various navigation performance analyses and presents their results.

The simulation used within this analysis can be visualized as three parts: true

vehicle dynamics and environment, sensors to measure information from the physical

environment, and a navigation system to use the sensor information to estimate the

true dynamics. Figure 1-1 shows the conceptual flow of the simulation.

Sensors

Vehicle
Dynamics

Environment
Models

Navigation
System

Guidance/Control
System

Flight 
Computer

Environment

Figure 1-1: Simulation Conceptual Flow
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The Environment block contains the quantitative description of the physical dy-

namics of the vehicle and the environment models of the physical world around the

vehicle (planetary atmosphere, planetary gravity, and aerodynamic forces acting upon

the vehicle). The vehicle dynamics are detected using onboard sensors. This is simu-

lated within the Sensors block using models of the various instruments. The sensor

measurements are fed into the Flight Computer block. The flight computer contains

the navigation system to estimate the vehicle states and incorporate the current mea-

surements. The guidance and control system uses this estimate of the states to issue

sensor commands and actuator commands to affect the vehicle dynamics within the

environment. The guidance and control system lies outside the scope of this analysis

and will therefore not be addressed.

Chapter 2 describes the vehicle dynamics portion of the Environment block. These

are essentially the rotational and translational vehicle dynamic equations. Chapter

3 discusses the environment models (atmospheric, aerodynamic, and gravity mod-

els) within the Environment block and the sensor models within the Sensors block.

Finally, Chapter 4 provides the algorithmic background and configuration for the

navigation system within the Flight Computer block.

The second portion of the analysis (Chapter 5) presents several key Mars entry

navigation performance analyses and discusses their results. These analyses involve

simulating the navigation system for the Mars ARES mission under a variety of

realistic instrument configurations. The analysis is extended by investigating the

sensitivity of the navigation system performance to variations in the sensor activation

time. Conclusions are presented in Chapter 6.

1.3 Thesis Statement

The thesis for this navigation analysis is threefold. First, reduced sensors errors associ-

ated with higher precision inertial measurement units (IMUs) will produce significant

performance improvements to the overall entry and descent navigation system. Sec-

ond, providing measurements to the navigation system earlier in the trajectory will
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provide not only additional time with precise navigation, but improved overall state

uncertainty. Last, the addition of a velocimeter to an altimeter sensor package will

provide measurements of an additional filter state (velocity) and consequently create

significant improvements to the navigation state uncertainty.

1.4 Notation

This analysis contains many analytical formulations to present concepts and algo-

rithms. As a result, keeping track of what each equation is describing requires clear,

thorough, and unencumbered notation. With this in mind, a notation convention is

presented in Table 1.1.

Quantity Example Description

scalars A, v, x upper or lowercase variable

vector a, v, x bold, lowercase variable

matrix A, V , X bold, uppercase variable

true value A, v, x any regular variable

estimated value Â, v̂, x̂ any variable with a hat

error value Ã, ṽ, x̃ any variable with a tilde

time derivative Ȧ, v̇, ẋ any variable with a dot

Table 1.1: Notation Conventions

In addition, subscripts on variables are used for any general, relevant notation.

Superscripts on vectors are an indication of the coordinate frame from which they are

measured. Two special variables are used frequently throughout the analysis. The

first is the direction cosine matrix used for coordinate frame rotations from frame A

to B. It is symbolized as T
A→B

. The second is an equivalent method for describing

a coordinate frame rotation from A to B. This is the four component quaternion

vector. It is symbolized as q
A→B

.

An often convenient representation of a vector cross-product is the cross product
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matrix formulation.

u × v = U⊗ v =











0 −u3 u2

u3 0 −u1

−u2 u1 0











v

For this representation, a three component vector is converted into a three-by-three

matrix. This is noted by a “⊗” subscript.

The quaternion product operation is noted by the symbol “⊗”. For example, the

rotation of a vector v from frame B to frame I is

vI = q
I→B

⊗ vB ⊗ q
B→I
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1.5 Mission Parameters and Constants

In order to perform this analysis in a realistic manner, various planetary and mis-

sion specific parameters are required. The sections below provide the details of the

parameters and constants used in this analysis.

Mars Constants

Accurate and up-to-date planetary constants are required for realistic atmospheric

entry navigation analysis. The quantities are provided by the most current NASA

specification on Mars planetary constants and models [17]. The relevant quantities

are Mars gravity constants, geometry constants, and the rotation rate (Table 1.2).

Description Value Units

Zonal harmonic coefficient, J2 1.95639057 × 10−3 –

Gravity constant, GMmars 42828.376212 [km3/s2]

Reference radius, rmars 3396.2 [km]

Equatorial radius, req 3396.19 [km]

Polar radius, rpol 3376.20 [km]

Rotation rate, ω̇ 350.89198226 [deg/day]

Table 1.2: Mars Constants, [17]
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Atmospheric Entry Interface Conditions

To properly simulate atmospheric entry for the ARES vehicle, entry interface (EI)

initial conditions for this near-final mission phase are required. The necessary quan-

tities are initial time, position, velocity, attitude, and angular velocity. Table 1.3 lists

these values.

Description Value Units

Date 1-Sept-2008 –

Time 14:30:00 –

Radius 3522.2 [km]

Latitude -44 [deg]

Longitude (east) 181.6 [deg]

Velocity 5.6 [km/s]

Flight path angle -13 [deg]

Azimuth 34.2 [deg]

Roll Rate 1.6 [RPM ]

Table 1.3: Entry Interface Initial Conditions, [13]
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Vehicle Specifications

Specifications of the presumed ARES vehicle are used as a baseline for this analysis.

These quantities are provided by the ARES Concept Report [13] or are approximated

using data from similar past missions [3]. Table 1.4 lists these entry vehicle specifi-

cations.

Description Value Units

Aeroshell Geometry sphere cone –

Aeroshell Diameter 2.65 [m]

Aeroshell Reference Area 5.52 [m2]

Vehicle Mass 580 [kg]

Ballistic Coefficient 65 [kg/m2]

Lift/Drag 0 –

Inertia, Ixx 407 [kg m2]

Inertia, Iyy = Izz 264 [kg m2]

Center of Mass (-1 0 0) [m]

Center of Pressure (-3 0 0) [m]

Table 1.4: ARES Entry Vehicle Specifications, [13]
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Chapter 2

Mars Atmospheric Entry Dynamics

The environment encountered by a planetary entry vehicle ranges from the weightless

vacuum of space to the intense temperatures and dynamic forces experienced in high

velocity atmospheric deceleration. This makes the task of simulating atmospheric

entry complicated. This chapter discusses the overall dynamics problem for planetary

entry. Figure 2-1 highlights this section of the analysis as it fits into the complete

simulation configuration.

Sensors

Environment
Models

Navigation
System

Guidance/Control
System

Flight 
Computer

Environment

VehicleVehicle
DynamicsDynamics

Figure 2-1: Simulation Conceptual Flow – Simulation Dynamics

The chapter is divided into three sections. First, the vehicle dynamic equations

of motion are presented. Next, an approximate closed form analytical trajectory

analysis is performed. Finally, a three degree-of-freedom (3-DOF) entry simulation is

used to construct a baseline trajectory for this Mars entry scenario.
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2.1 General Vehicle Dynamics Formulation

The analysis of this Mars entry problem is performed using a Mars centered, inertial

coordinate frame. In order to determine the vehicle’s position and attitude, the

dynamic equations of motion are integrated using all the forces and torques that are

applied to the vehicle.

Translational Dynamics

The translational dynamic equations of motion are

v̇ = a

ṙ = v
(2.1)

where a is any acceleration applied to the vehicle. For this analysis, these accel-

erations are due to gravity forces, entry body aerodynamic forces, and parachute

aerodynamic forces.

a = a
gravity

+ a
body aero

+ a
chute aero

The translational motion of the entry vehicle is determined using the position vector,

velocity vector, and models of the relevant accelerations. Inertial position and velocity

are found by integrating the differential equations in equation 2.1 using a fourth-order

Runga-Kutta algorithm.

v(t) =

t
∫

0

a(τ) dτ

r(t) =

t
∫

0

v(τ) dτ

(2.2)
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Rotational Dynamics

The rotational dynamic equations of motion are

ω̇ = I−1 (T − ω × Iω)

q̇ =
ω ⊗ q

2

(2.3)

where ω is the vehicle rotation rate, I is the vehicle moments of inertia matrix, T is

any torques applied to the vehicle, and q is the vehicle attitude quaternion. For this

analysis, any angular accelerations are due to entry body aerodynamic torques and

parachute aerodynamic torques.

T = T
body aero

+ T
chute aero

Using the initial attitude quaternion, initial angular velocity vector, vehicle moments

of inertia, and models of the relevant torques, the rotational motion of the entry

vehicle can be found. Vehicle attitude and angular velocity are found by integrating

the differential equations in equation 2.3 using a fourth-order Runga-Kutta algorithm.

ω(t) =

t
∫

0

I−1 (T (τ) − ω(τ) × Iω(τ)) dτ

q(t) =

t
∫

0

1

2
ω(τ) ⊗ q(τ) dτ

(2.4)
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2.2 3-DOF Trajectory Design

To begin the entry navigation analysis for this Mars ARES scenario mission, a nom-

inal flight path trajectory is defined. A 3-DOF numerical simulation is used in order

to establish this nominal trajectory. This simulation calculates the translational com-

ponents of the entry vehicle, but ignores the rotational dynamics. No aerodynamic

torques are calculated, and it is assumed that the vehicle’s orientation is fixed in

alignment with the current velocity vector. This method provides a reasonable ap-

proximation of the entry vehicle trajectory and a good reference for the higher-fidelity

6-DOF simulation used for the Mars entry navigation analysis. Figure 2-2 shows this

nominal 3-DOF trajectory plotted over the planet fixed longitude/latitude grid.
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Figure 2-2: 3-DOF Vehicle Trajectory

The next set of figures present important vehicle properties calculated within this

3-DOF simulation as functions of the time of flight.
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Figure 2-3: 3-DOF Vehicle Altitude
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Figure 2-4: 3-DOF Vehicle Translational Dynamics
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Figure 2-5: 3-DOF Vehicle Velocity Direction
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Figure 2-6: 3-DOF Vehicle Aerodynamic Properties
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Chapter 3

6-DOF Atmospheric Entry

Simulation

This chapter discusses the environmental and vehicle sensor models used within the

simulation. These sections constitute major portions of the “true” simulated environ-

ment for use in the navigation analysis. Figure 3-1 highlights the these two sections

within the total simulation configuration.

SensorsSensors

Vehicle
Dynamics

Navigation
System

Guidance/Control
System

Flight 
Computer

Environment
EnvironmentEnvironment

ModelsModels

Figure 3-1: Simulation Conceptual Flow – Simulation Models
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3.1 Environment Models

3.1.1 Atmosphere Model

Realistic representation of the Martian atmosphere is important for accurate entry

navigation simulation. For the ARES mission, the atmospheric entry interface is de-

fined as 3522.2 km radius from the planet’s center (approximately 126 km altitude

above the planet surface) [13]. Below this point the Mars Global Reference Atmo-

spheric Model (Mars-GRAM 2001) [10] is used to simulate the Martian atmosphere.

This model makes use of data table output generated from the NASA Ames Mars

General Circulation Model (MGCM) and the University of Arizona Mars Thermo-

spheric General Circulation Model (MTGCM) to create global, first-principal physics

atmospheric data results [11]. Quantities such as temperature, pressure, density, and

wind velocity are provided as a function of geographic location, altitude, time-of-day,

and season. These atmospheric properties are used within the aerodynamic force and

torque models described in Section 3.1.2 to properly calculate the atmospheric entry

dynamics.

3.1.2 Entry Vehicle Aerodynamic Force and Torque Models

The entry vehicle aerodynamic model used in this analysis is a six degree-of-freedom

(6-DOF) formulation using linearized stability derivatives. The aerodynamic forces

and torques are found using the atmospheric properties (Section 3.1.1), the ARES en-

try vehicle specifications (Section 1.5), and the current position, velocity, and attitude

of the vehicle (Section 2.1) [4, 14].

Aerodynamic Force The aerodynamic force vector is calculated in body coordi-

nates as

fB = q S
ref

cxyz(α, β,M) (3.1)

where q is the current dynamic pressure, S
ref

is the entry body reference area (max-

imum frontal area), and cxyz is the aerodynamic force coefficient vector. This vector
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is a function of angle-of-attack (α), side-slip (β), and Mach (M). It is defined as

cxyz =











Cx0
(M) + α2 Cxα2

(M)

β Cyzαβ
(M)

α Cyzαβ
(M)











The coefficients within the cxyz vector are the zero angle-of-attack axial force coeffi-

cient (Cx0
), axial force versus α2 coefficient (Cxα2

), and normal force derivative with

α coefficient (Cyzαβ
). These coefficients are linearized functions of Mach number and

are based on the Mars Smart Lander entry vehicle aerodynamics for the sphere cone

aeroshell configuration.

Aerodynamic Torque The aerodynamic torque vector is calculated in body co-

ordinates as

mB = mB

ref
− mB

offset

= q S
ref

L
ref

c
lmn

(α, β,M) −
(

rcg − r
ref

)

× fB
(3.2)

where q is the current dynamic pressure, S
ref

is the entry body reference area (max-

imum frontal area), L
ref

is the reference length (diameter), fB is the body frame

aerodynamic force vector as calculated in the previous section, rcg is the position

vector of the entry vehicle center-of-gravity, and r
ref

is the position vector to the

aerodynamic coefficient reference point. Both position vectors are relative to the cen-

ter nose of the entry vehicle aeroshell (Figure 3-2). The c
lmn

term is the aerodynamic

torque coefficient vector. This vector is a function of angle-of-attack (α), side-slip

(β), and Mach (M). It is defined as

c
lmn

=











β CLβ

α Cmα(M)

−β Cmα(M)










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The coefficients within the c
lmn

vector are roll moment derivative with β coefficient

(CLβ
) and pitch moment derivative with α coefficient (Cmα). This last coefficient is a

linearized function of Mach number. Both coefficients are based on the Mars Smart

Lander entry vehicle aerodynamics.

L

D

v

γ

α

mg

rcg

r
ref

Figure 3-2: Entry Body Aerodynamic Free Body Diagram

Figure 3-2 shows a basic aerodynamic free-body diagram of the entry body. The

quantities L and D represent the directions of Lift and Drag, respectively, as they

correspond to the vehicle body frame (measured by α). The flight path angle (γ)

represents the angle of the vehicle’s velocity vector (v) below the local horizontal

plane.

3.1.3 Parachute Aerodynamic Force and Torque Models

The parachute aerodynamic model used in this analysis produces forces and torques

that act on the vehicle. The aerodynamic forces and torques are found using the

atmospheric properties (Section 3.1.1) and the current position and velocity of the

vehicle (Section 2.1). This model is based on the parachutes designed for the Mars

Pathfinder and Mars Smart Lander missions [8, 16].
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Aerodynamic Force The aerodynamic force vector is calculated in inertial coor-

dinates as

f I = − q S
chute

C
Dchute

(M) îvrel
(3.3)

where q is the current dynamic pressure, S
chute

is the parachute reference area (max-

imum frontal area), C
Dchute

is the aerodynamic drag force coefficient, and îvrel
is the

unit vector pointing in the vehicle’s atmosphere-relative velocity direction. The drag

coefficient is a function of Mach (M).

Aerodynamic Torque The aerodynamic torque vector is calculated in body co-

ordinates as

mB = −
(

rcg − r
chute

)

× fB (3.4)

where rcg is the position vector of the entry vehicle center-of-gravity, r
chute

is the

position vector to the aerodynamic coefficient reference point, and fB is the body

frame aerodynamic force vector as calculated in equation 3.3. Both position vectors

are relative to the center nose of the entry vehicle aeroshell as in the previous section.

3.1.4 Gravity Force Model

Gravity Force Model The other force of interest for atmospheric entry is gravity.

The gravitational potential produced by a spherically symmetric planet is

u =
−GM

r
îr

=
−µ

r
îr

(3.5)

where G is the gravity constant, M is the planet’s mass, µ is the product of G and

M and is known as the planet gravity constant, r is the radial distance from the

center-of-gravity of the planet, and îr is the radial unit vector. Taking the gradient

33



of this vector yields the gravity acceleration.

ag = −∇u

=
−µ

r2
îr (3.6)

Planets with an approximate spherically symmetric mass can have their gravity po-

tential estimated with a perturbation to equation 3.5 [1, 19]

u =
−µ

r
+ b (r, θ, φ) (3.7)

where the perturbation term is a function of radius (r), latitude (θ), and longitude

(φ) and is defined as

b (r, θ, φ) =
µ

r

{

∞
∑

n =2

[

(req

r

)n

Jn Pn0 (cos θ)

+
n

∑

m = 1

(req

r

)n

(Cnm cos m φ + Snm sin m φ) Pnm (cos θ)

]}

(3.8)

where req is the planet equatorial radius, Jn are the zonal harmonic coefficients,

Pnm are the Legendre polynomials, and Cnm and Snm are the tesseral and sectoral

harmonic coefficients corresponding to n 6= m and n = m, respectively [19]. The zonal

harmonics correspond to planetary oblateness, while the tesseral harmonics describe

longitudinal variation. If the planetary body is assumed axially symmetric1, tesseral

and sectoral harmonics become zero and simplify equation 3.7 into

u (r, θ) =
−µ

r

{

1 −
∞

∑

n =2

(req

r

)n

Jn Pn0 (cos θ)

}

(3.9)

Taking the gradient of the perturbed gravity potential in equation 3.9 produces the

1Axial symmetry is often a valid assumption because longitudinal variations are both small and

tend to average out for most orbital motion.
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axially symmetric gravity acceleration equation.

ag (r, θ) =
−µ

r2

{

îr −
∞

∑

n = 2

(req

r

)n

Jn

[

P ′

n+1 (cos θ) îr − P ′

n (cos θ) îz

]

}

(3.10)

For Mars the second order zonal harmonic (J2) dominates the higher order terms.

This allows further simplification of equation 3.10 into

ag (r, θ) =
−µ

r2

{

îr −
(req

r

)2

J2

[

P ′

3 (cos θ) îr − P ′

2 (cos θ) îz

]

}

(3.11)

According to Lear [12], this relationship for J2 gravitational acceleration can be rewrit-

ten in cartesian X-Y-Z coordinates as

ag (x, y, z) =
−( µx x îx + µy y îy + µz z îz)

r3
(3.12)

where

µx = µ

[

1 +
3

2
J2

r2
eq

r2

(

1 − 5
z2

r2

)]

µy = µx

µz = µ

[

1 +
3

2
J2

r2
eq

r2

(

3 − 5
z2

r2

)]

= µx + 3 J2

r2
eq

r2
µ

r =
√

x2 + y2 + z2

Lear’s formulation in equation 3.12 is the gravity model used for this analysis. It

allows for reasonably accurate evaluation of gravitational acceleration by modeling

the spherical gravity field plus latitudinal perturbations.
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3.2 Sensor Models

3.2.1 Accelerometers

Strapdown accelerometers are used for this analysis. This means that the unit is

mounted to the vehicle body instead of to an inertial platform and therefore provides

a measure of nongravitational accelerations in the vehicle body coordinate frame 2.

These sensed nongravitational accelerations are typically due to aerodynamic forces,

parachute deployment forces, and reaction control system (RCS) forces. The ac-

celerometer error model is formulated as [2, 6]

aB
m

= (I + Γa)(I + Sa)(a
B + ba + ǫa) (3.13)

which gives the measured accelerations (aB
m

) in the body frame as corrupted values of

the true accelerations (aB). This information is corrupted by input axis nonorthogo-

nality and gyro-to-accelerometer misalignment errors (Γa), accelerometer scale factor

errors (Sa), accelerometer biases (ba), and accelerometer white noise (ǫa). These error

terms are defined as

Sa =











sax 0 0

0 say 0

0 0 saz











ba =











bax

bay

baz











ǫa =











ǫax

ǫay

ǫaz











2The accelerometer unit is assumed to reside at the vehicle center-of-gravity for this analysis.

Otherwise the measured accelerations would require an additional term to compensate for vehicle

rotation.
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Γa = Γa
nonorth

+ Γa
misalign

=











0 0 0

−nayz
0 0

nazy
−nazx

0











+











0 maz −may

−maz 0 max

may −max 0











=











0 γaxz
−γaxy

−γayz
0 γayx

γazy
−γazx

0











The white process noise term (ǫa) has a covariance of

E
[

ǫa ǫT
a

]

= Qa δ(t) (3.14)

where Qa is the process noise intensity and is defined as the square of the random

walk error shown in Table 3.1. The δ(t) term is the Dirac delta function.

Neglecting second-order terms, the first two binomials of equation 3.13 can be

approximated as

(I + Γa) (I + Sa) ≈ (I + Γa + Sa)

Using this approximation the first-order accelerometer error model becomes

aB
m

= (I + Γa + Sa) (aB + ba + ǫa)

= aB + Γaa
B + Saa

B + ba + ǫa

(3.15)

where aB
m

is the acceleration vector output of the accelerometer sensor. This final

formulation is the accelerometer error model used within the simulation sensor block

in Figure 3-1.

The magnitude of the error sources are dependent on the configuration of the

specific accelerometer in use. Accelerometers are combined with gyros in navigation

systems to form an IMU. The two commercially available, spaceflight qualified IMU
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packages under consideration are the Honeywell Miniature Inertial Measurement Unit

(MIMU) and the Litton LN200 Inertial Measurement Unit. The error specifications

for the model shown above are listed in table 3.1. The accelerometer is simulated

deterministically by randomly selecting error terms in equation 3.15 that are normally

distributed according to the statistical specifications in the table.

Accelerometer Errors (1σ) MIMU LN200 Units

Bias, ba 100 300 [µg ]

Scale Factor, sa 175 300 [ ppm ]

Nonorthogonality 15 20 [ arcsec ]

Misalignment 15 20 [ arcsec ]

Random Walk, ǫa 0.00015 0.00049 [m/s/
√

s ]

Table 3.1: IMU Specifications – Accelerometer Errors

3.2.2 Gyros

The gyro unit captures angular velocities of the vehicle body frame relative to the

inertial frame. The error model for the gyro unit is [2, 6]

ωB
m

= (I + Γg)(I + Sg)(ω
B + bg + ǫg) (3.16)

This gives the measured angular velocities (ωB
m

) in the body frame as corrupted values

of the true angular velocities (ωB). This information is corrupted by gyro input axis

nonorthogonality and misalignment errors (Γg), gyro scale factor errors (Sg), gyro

biases (bg), and gyro white noise (ǫg). These error terms are defined as

Sg =











sgx 0 0

0 sgy 0

0 0 sgz











bg =











bgx

bgy

bgz











ǫg =











ǫgx

ǫgy

ǫgz










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Γg = Γg
nonorth

+ Γg
misalign

=











0 0 0

−ngyz
0 0

ngzy
−ngzx

0











+











0 mgz −mgy

−mgz 0 mgx

mgy −mgx 0











=











0 γgxz
−γgxy

−γgyz
0 γgyx

γgzy
−γgzx

0











The white process noise term (ǫg) has a covariance of

E
[

ǫg ǫT
g

]

= Qg δ(t) (3.17)

where Qg is the process noise intensity and is defined as the square of the random

walk error shown in Table 3.2. The δ(t) term is the Dirac delta function.

Neglecting second-order terms, the first two binomials of equation 3.16 can be

approximated as

(I + Γg) (I + Sg) ≈ (I + Γg + Sg)

Using this approximation the first-order gyro error model becomes

ωB
m

= (I + Γg + Sg) (ωB + bg + ǫg)

= ωB + Γgω
B + Sgω

B + bg + ǫg

(3.18)

where ωB
m

is the rotation rate vector output by the gyro sensors. This final formulation

is the gyro error model used within the simulation sensor block in Figure 3-1.

The error sources are dependent on the configuration of the specific gyro in use.

Gyros are combined with accelerometers in navigation systems to form an IMU. The

two commercially available, spaceflight qualified IMU packages under consideration

are the Honeywell Miniature Inertial Measurement Unit (MIMU) and the Litton
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LN200 Inertial Measurement Unit. The error specifications for the model shown

above are listed in table 3.2. The gyro is simulated deterministically by randomly

selecting error terms in equation 3.18 that are normally distributed according to

the statistical specifications in the table. The gyro lacks a misalignment error (as

compared to the accelerometer) because its alignment to the vehicle defines the body

coordinate frame.

Gyro Errors (1σ) MIMU LN200 Units

Bias, bg 0.05 1 [ deg/hr ]

Scale Factor, sg 5 100 [ ppm ]

Nonorthogonality, γg 25 20 [ arcsec ]

Random Walk, ǫg .0001 .0012 [ deg/
√

s ]

Table 3.2: IMU Specifications – Gyro Errors

3.2.3 Radar Altimeter

The radar altimeter is a vehicle sensor that provides range measurements to the planet

surface. This type of instrument typically is concealed within the entry body and can

only begin collecting data upon aeroshell jettison. The instrument is fixed to the

vehicle body frame and therefore measures distance to the surface as a function of

vehicle attitude. The sensor essentially takes the true distance being measured and

corrupts it with various error sources. The altimeter model with these error terms is

formulated as

hm = h (1 + ka) + νa (3.19)

where hm is the measured distance, h is the true distance, ka is the scale factor, and

νa is the sensor noise. The error sources are dependent on the configuration of the

specific altimeter in use. The two sensors under consideration are the Mars Surveyor

Program (MSP) and Mars Exploration Rover (MER) -type altimeters. The error

specifications for the model shown above are listed in Table 3.3. The altimeter is

simulated deterministically by randomly selecting error terms in equation 3.19 that
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are normally distributed according to the statistical specifications in the table.

Altimeter Errors (1σ) MSP MER Units

Scale Factor, ka 1.66 0.33 [ % of altitude ]

Noise, νa 1 0.2 [m ]

Table 3.3: Altimeter Specifications

The true altimeter distance can be defined geometrically in terms of vehicle posi-

tion and attitude. Figure 3-3 shows the important quantities for defining this altime-

ter measurement.

To find the value of h, a geometric relationship can be formed through vector addition.

∣

∣ r I + (T
B→I

iB
a ) h

∣

∣

2
= R2

s (3.20)

where r I is the vehicle position vector, T
B→I

is the body to inertial transformation, iB
a

is the altimeter pointing direction unit vector in body coordinates, and Rs is the radius

of the planet surface at the point of altimeter signal contact. Rs is a function of the

current vehicle position and attitude above the planet and is determined using data

from the Mars Orbiter Laser Altimeter (MOLA) aboard the Mars Global Surveyor

(MGS) spacecraft. Expanding equation 3.20 gives

∣

∣r I
∣

∣

2
+ 2 r I · (T

B→I
iB
a ) h + h2 = R2

s (3.21)

This polynomial can then be solved for the true altimeter distance, h.

h = −
[

r I ·
(

T
B→I

iB
a

)]

− 1
2

√

4
[

r I ·
(

T
B→I

iB
a

)]2 − 4 |r I |2 + 4R2
s (3.22)
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Figure 3-3: Altimeter Measurement

3.2.4 Velocimeter

The velocimeter is an instrument that uses beams to determine the surface relative

velocity of the vehicle. The model for this instrument is formulated as

vB
m = T

I→B

(

v I − vs

)

(1 + kv) + νv (3.23)

where vB
m is the surface relative measured velocity vector in body coordinates, v I

is the true inertial vehicle velocity, vs is the planet surface velocity, kv is the scale

factor, and νv is the sensor noise. The surface velocity is defined as

vs = ω × Rs (3.24)

where ω is the rotational rate of the planet (see Table 1.2, page 19) and Rs is a vector

to the point where the radar beam intercepts the planet surface. It is defined as

Rs = r I + h
(

T
B→I

iB
a

)

(3.25)

The error sources are dependent on the configuration of the specific velocimeter

in use. The sensor under consideration is the Mars Surveyor Program (MSP) -type
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velocimeter. The error specifications for the model shown above are listed in table 3.4.

The velocimeter is simulated deterministically by randomly selecting error terms in

equation 3.23 that are normally distributed according to the statistical specifications

in the table. Figure 3-4 shows the important quantities for defining this velocimeter

measurement.

Velocimeter Errors (1σ) MSP Units

Scale Factor, kv 1.33 [ % of velocity ]

Noise, νv 0.1 [m/s ]

Table 3.4: Velocimeter Specifications
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yIzI
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yB

zB

iB
a

r I

Rs

vs

v I

ω

Figure 3-4: Velocimeter Measurement
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Chapter 4

Navigation System and Algorithms

This chapter provides the detailed information on the configuration and estimation

algorithms used within the navigation system implemented for this analysis. Figure

4-1 highlights the navigation system within the total simulation configuration.

Sensors

Vehicle
Dynamics

Environment
Models

Guidance/Control
System

Flight 
Computer

Environment

NavigationNavigation
SystemSystem

Figure 4-1: Simulation Conceptual Flow – Navigation System

The fundamental basis of this navigation system is the Kalman filter estimation

algorithm. Estimation can trace its history back to Gauss (circa 1800) [9] in his least-

squares estimation method. Since that time numerous varieties of data processing

and estimation methodologies have come about. The Kalman filter was a significant

step forward in the world of estimation because it is a state-space, time domain re-

cursive estimation filter. It is optimal in the least-squares sense, making it very much

like a recursive version of Gauss’s original least-squares problem. This filter is also

nonstationary by using dynamic models of the system to predict state changes over

time. The Kalman filter estimation algorithm is well suited for digital computer im-
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plementation because of its recursive nature. This explains its early use in spacecraft

navigation where the recursive estimation required very little computer memory for

the real-time calculations.

The conceptual state vector used for this implementation of Kalman filter is seen

below. The components of the state vector are chosen so that the filter tracks the

principle vehicle states (position, velocity, and attitude) and any sensor error terms

and Mars topography/terrain model errors. The estimates of sensor error terms are

used to improve the estimates of the primary states. The primary states are then

potentially used by the guidance system to make corrective maneuvers to mitigate

any dispersions from the vehicle’s nominal trajectory.

x =



































position

velocity

attitude

gyro errors

accelerometer errors

altimeter errors

velocimeter errors



































The state vector separates into nine subvectors and 3 scalars. This nominal state

vector is defined to be

x =
(

r I v I q
I→B

bg sg γg ba sa γa xt ka kv

)T

The first three subvectors are the principle states of the vehicle: position (r I) specified

in inertial coordinates, velocity (v I) specified in inertial coordinates, and attitude

specified as an inertial to body quaternion (q
I→B

)1. The remaining state vector terms

correspond to sensor errors as defined in Section 3.2. Of these, the first six terms are

the gyro bias (bg), gyro scale factor (sg), gyro misalignment (γg), accelerometer bias

(ba), accelerometer scale factor (sa), and accelerometer misalignment (γa). Further

1Definition and discussion of the quaternion is found in Section 4.3
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discussion on these terms is provided in Section 4.2. The three remaining terms are

scalars representing the surface topography error (xt), altimeter scale factor (ka), and

velocimeter scale factor (kv).

This chapter is organized in the following way. First, a description and derivation

is provided of the basic, discrete Kalman filter algorithm. Next, the sensor models

used within the navigation filter are described. Finally, detailed descriptions of the

implemented Kalman filter components are provided.

4.1 Discrete Linear Kalman Filter Formulation

The Kalman filter is well described as an “optimal recursive data processing algo-

rithm” or more commonly known as the “optimal linear estimator” [15]. Optimal

can be defined in many ways. With the assumptions of the system being described

by a linear model and the system and measurement noise being white and Gaussian,

Maybeck says the

filter is optimal with respect to virtually any criterion that makes sense.

One aspect of this optimality is that the Kalman filter incorporates all

information that can be provided to it. It processes all available measure-

ments, regardless of their precision, to estimate the current value of the

variables of interest, with use of (1) knowledge of the system and mea-

surement device dynamics, (2) the statistical description of the system

noises, measurement errors, and uncertainty in the dynamics models, and

(3) any available information about initial conditions of the variables of

interest. [15]

This section describes the discrete formulation of the Kalman filter as described

by Gelb, Lear, Maybeck, and VanderVelde [9, 12, 15, 18]. First, the state dynamics

and measurement models are developed in Section 4.1.1. Next, the Kalman filter

is formulated as a two-stage process: the propagation of the estimated state vector,

x̂, and state error covariance matrix, P , forward in time (Section 4.1.2); and the
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measurement update of the state and state error covariance (Section 4.1.3). Finally,

a summary is given in Section 4.1.4. Figure 4-2 provides a basic description of the

Kalman filter loop.

Time Propagate
State Estimate &

Covariance

Measurements

Available?

Update
State Estimate &

Covariance

No

Yes

Initial

Conditions
Measurements

x̂0 P 0

zk

Figure 4-2: Discrete Kalman Filter Algorithm Flow

4.1.1 State Dynamics and Measurement Models

For discrete dynamics, time-variant quantities possess the subscript “k” corresponding

to the time step index. The linear dynamic system is of the form

xk+1 = Φk xk + wk (4.1)

zk = Hk xk + vk (4.2)

where equation 4.1 is the discrete representation of the state dynamics with Φk as

the state transformation matrix and wk as the white process noise vector with zero

mean and covariance Qk.

E
[

wk

]

= 0 (4.3)

E
[

wj wT
k

]

=







Qk j = k

0 j 6= k







(4.4)

Equation 4.2 is the linear discrete form of the measurement vector where Hk is the

measurement sensitivity matrix (also known as the observation matrix ) and is used

to describe the linear combination of state variables which form zk in the absence of
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noise [9]. The term vk is the white measurement noise vector with zero mean and

covariance Rk.

E
[

vk

]

= 0 (4.5)

E
[

vj vT
k

]

=







Rk j = k

0 j 6= k







(4.6)

The process noise and measurement noise are assumed to be uncorrelated. This is

shown by

E
[

vk wT
k

]

= E
[

wk vT
k

]

= 0

The state estimate vector, x̂k , is defined as

x̂k = E
[

xk

]

(4.7)

The state error vector, x̃k , is defined as the difference between the state estimate,

x̂k , and the true state, xk .

x̃k = x̂k − xk (4.8)

The state error covariance matrix, Pk , is then defined as

E

[

x̃k x̃T
k

]

= Pk (4.9)
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4.1.2 Time Propagation Equations

State Propagation

During the estimation process, the estimated state vector is propagated forward in

time between the period of available measurements. This vector, x̂k , is propagated

from time (k) to (k + 1) using

x̂k+1 = Φk x̂k (4.10)

where Φk is the state transformation matrix.

Covariance Propagation

The state error covariance matrix as defined in equation 4.9 must also be propagated

in time between the measurements. Substituting equations 4.1 and 4.10 into the state

error definition

x̃k+1 = x̂k+1 − xk+1

gives the form

x̃k+1 = (Φk x̂k ) − (Φk xk + wk )

= Φk x̃k − wk (4.11)

Substituting equation 4.11 into the state error covariance definition (equation 4.9)

gives

Pk+1 = E

[

x̃k+1 x̃T
k+1

]

= E

[

(

Φk x̃k − wk

)(

Φk x̃k − wk

)T
]

= E

[

Φk x̃k x̃T
k ΦT

k − wk x̃T
k ΦT

k − Φk x̃k wT
k + wk wT

k

]

(4.12)
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Since there is no cross-correlation between the state error and process noise, the two

inner terms of the expectation go to zero leaving

Pk+1 = Φk Pk ΦT
k + Qk (4.13)

as the state error covariance matrix time propagation formulation.

4.1.3 Measurement Update Equations

State Update

The best state estimate update after a discrete measurement is some combination of

the previous state and the new measurement

x̂k+
= K ′

k x̂k−
+ Kk zk (4.14)

In this formulation K ′

k and Kk are some unknown weighting factors, x̂k−
and x̂k+

are the states before and after the measurement update, respectively, and zk is the

current discrete measurement. Substituting the state error definition (equation 4.8)

and measurement (equation 4.2) into equation 4.14 yields

xk + x̃k+
= K ′

k

(

xk + x̃k−

)

+ Kk

(

Hk xk + vk

)

(4.15)

Rearranging equation 4.15 for the post-update state error, x̃k+
, gives

x̃k+
=

(

K ′

k + Kk Hk − I
)

xk + K ′

k x̃k−
+ Kk vk (4.16)

For an unbiased estimator, the expectation of the state error is zero. Therefore, the

expectation of equation 4.16 requires that

K ′

k + Kk Hk − I = 0 (4.17)
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Using this relationship between the two unknown weighting factors and substituting

it into equation 4.14 gives the state error measurement update formulation as

x̂k+
=

(

I − Kk Hk

)

x̂k−
+ Kk zk

= x̂k−
+ Kk

(

zk − Hk x̂k−

)
(4.18)

Covariance Update

The process of updating the state error covariance matrix after a discrete measure-

ment begins by substituting equations 4.2 and 4.8 into equation 4.18.

x̃k+
=

(

I − Kk Hk

)

x̃k−
+ Kk vk (4.19)

From the state error covariance definition (equation 4.9), the pre- and post-update

covariance matrices are defined as

Pk+
= E

[

x̃k+
x̃T

k+

]

(4.20)

Pk−
= E

[

x̃k−
x̃T

k−

]

(4.21)

Substituting equation 4.19 into 4.20 gives

Pk+
= E

[

(

(

I − Kk Hk

)

x̃k−
+ Kk vk

)(

x̃T
k−

(

I − Kk Hk

)T
+ vT

k KT
k

)

]

(4.22)

Expanding equation 4.22 gives

Pk+
= E

[

(

I − Kk Hk

)

x̃k−

(

x̃T
k−

(

I − Kk Hk

)T
+ vT

k KT
k

)

+ Kk vk

(

x̃T
k−

(

I − Kk Hk

)T
+ vT

k KT
k

)

]

(4.23)
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Pk+
= E

[

(

I − Kk Hk

)

x̃k−
x̃T

k−

(

I − Kk Hk

)T

+
(

I − Kk Hk

)

x̃k−
vT

k KT
k

+ Kk vk x̃T
k−

(

I − Kk Hk

)T

+ Kk vk vT
k KT

k

]

(4.24)

Using 4.6, 4.21, and the lack of cross-correlation between the state error and mea-

surement noise

E

[

x̃k−
vT

k

]

= E

[

vk x̃T
k−

]

= 0

allows equation 4.24 to be simplified into the state error covariance matrix equation

used for measurement updates

Pk+
=

(

I − Kk Hk

)

Pk−

(

I − Kk Hk

)T

+ KkRkK
T
k (4.25)

Optimal Gain

The gain, Kk, is sought to minimize the sum of the mean-square state errors. To

perform this minimization, we first define the cost function, Jk, as the trace of the

error covariance matrix.

Jk = tr
[

Pk+

]

The minimum is found by taking the partial derivative of the cost function with

respect to the gain and setting this to zero.

∂

∂Kk

(

tr
[

Pk+

])

= 0 (4.26)

Substituting equation 4.25 into 4.26 produces

∂

∂Kk

(

tr

[

(

I − Kk Hk

)

Pk−

(

I − Kk Hk

)T

+ KkRkK
T
k

])

= 0 (4.27)
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Expanding the state error covariance matrix equation within equation 4.27 gives

∂

∂Kk

(

tr

[

Pk−
−Kk Hk Pk−

− Pk−
HT

k KT
k

+ Kk Hk Pk−
HT

k KT
k + Kk Rk KT

k

])

= 0 (4.28)

Equation 4.28 can be further simplified using the following trace identities:

tr
[

A
]

= tr
[

AT
]

(4.29a)

∂

∂A

(

tr
[

ABAT
])

= A(B + BT )

= 2AB ( for symmetric B )
(4.29b)

∂

∂A

(

tr
[

IAC
]

)

= CT (4.29c)

Equation 4.29a allows the two middle terms of equation 4.28 to collapse, producing

∂

∂Kk

(

tr

[

Pk−
− 2 Kk Hk Pk−

+
(

Kk

[

Hk Pk−
HT

k + Rk

]

KT
k

)

])

= 0 (4.30)

Application of the remaining trace identities (equations 4.29b and 4.29c) allows for

the evaluation of the partial derivative of the trace function.

−2
(

Hk Pk−

)T

+ 2 Kk

(

Hk Pk−
HT

k + Rk

)

= 0 (4.31)

Kk

(

Hk Pk−
HT

k + Rk

)

= Pk−
HT

k (4.32)

Rearrangement of equation 4.32 provides the optimal Kalman gain matrix.

Kk = Pk−
HT

k

(

Hk Pk−
HT

k + Rk

)−1

(4.33)
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4.1.4 Summary

For reference, Table 4.1 lists the fundamental discrete linear Kalman filter time prop-

agation and measurement update equations derived in the previous sections.

Propagate x̂k+1 = Φk x̂k (4.10)

Pk+1 = Φk Pk ΦT
k + Qk (4.13)

Update Kk = Pk−
HT

k

(

Hk Pk−
HT

k + Rk

)−1

(4.33)

x̂k+
= x̂k−

+ Kk

(

zk − Hk x̂k−

)

(4.18)

Pk+
=

(

I − Kk Hk

)

Pk−

(

I − Kk Hk

)T

+ KkRkK
T
k (4.25)

Table 4.1: Discrete Kalman Filter Equation Summary

The time propagation equations estimate the state vector and state error covari-

ance matrix through periods without measurements. To account for process noise

within the state dynamics, the error covariance matrix is made to grow faster by

incorporating the process noise covariance matrix, Qk.

For the update equations, the state vector is estimated by combining information

of the previous state with information from the current discrete measurement. The

weighting between these two quantities is determined by the Kalman gain matrix, Kk.

This gain matrix can be thought of as a ratio between the state estimate uncertainty

and the measurement uncertainty. As confidence in the measurements increase, the

Kalman gain increases giving measurements more weight in the state update equation.

The converse of this situation also holds true. The state error covariance matrix is

updated by incorporating information from the measurement partial derivative matrix

and by including measurement noise to cause covariance growth.
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4.2 Sensors and Instruments

4.2.1 Inertial Measurement Unit

The inertial measurement unit (IMU) is a standard instrument package used within

space navigation systems. A strapdown IMU is used for this analysis. It consists

of accelerometers and gyros arranged to measure accelerations and rotation rates

in the three body-frame coordinate axes. The two following sections will discuss the

derivation of the accelerometer and gyro models as used within the navigation system.

Accelerometers

The model for the accelerometer measurements is derived in Section 3.2.1 and is

shown here for reference.

aB
m

= aB + Γaa
B + Saa

B + ba + ǫa (3.15)

Within the navigation system, the accelerometer data are used in the time propa-

gation of the vehicle states between periods of non-IMU measurements. Since the

navigation filter is estimating the accelerometer error terms, these quantities are used

in conjunction with the measured accelerometer acceleration to produce the best

possible estimate of true acceleration, âB.

First, equation 3.15 must be solved for the true acceleration, aB. To solve for this,

the misalignment, nonorthogonality, and scale factors are grouped into the term ∆a.

∆a = Γa + Sa

aB
m

= (I + ∆a)a
B + ba + ǫa

For small ∆a the inverse of the (I + ∆a) is

(I + ∆a)
−1 ≈ (I − ∆a)

This is shown by the following brief derivation where second order terms have been
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neglected.

(I + ∆a)
−1 = (I + D)

(I + ∆a)(I + D) = I

I + ∆a + D ≈ I

D ≈ −∆a

Therefore, true acceleration is found to be

aB = (I + ∆a)
−1(aB

m
− ba − ǫa)

= (I − ∆a) (aB
m
− ba − ǫa)

= (I − ∆a) aB
m
− ba − ǫa

= aB
m
− Γaa

B
m
− Saa

B
m
− ba − ǫa

(4.34)

again neglecting second order terms. For the navigation filter to estimate the error

terms within the accelerometer model, they all must be represented as vectors. In

this case, equation 4.34 can then be rewritten as

aB = aB
m
− Faγa − Dasa − ba − ǫa (4.35)

where the alignment and scale factor matrices (Γa and Sa) are converted into vectors

(γa and sa), and the measured acceleration (aB
m

) is represented as matrices Fa and

Da.

γa =
(

γaxy
γaxz

γayx
γayz

γazx
γazy

)T

sa =
(

saxsay saz

)T
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Fa = F (aB
m

) =











−amz
amy

0 0 0 0

0 0 amz
−amx

0 0

0 0 0 0 −amy
amx











Da = D(aB
m

) =











amx
0 0

0 amy
0

0 0 amz











The best possible estimate of true acceleration, aB, is then obtained by taking

the expectation of equation 4.35. Since the expectation of the noise term is zero

(E(ǫa) = 0), the best estimate of the acceleration within the navigation filter is

âB = aB
m
− Faγ̂a − Daŝa − b̂a (4.36)

Gyros

The model for the gyro measurements is derived in Section 3.2.2 and shown here for

reference.

ωB
m

= ωB + Γgω
B + Sgω

B + bg + ǫg (3.18)

Within the navigation system, the gyro data are used in the time propagation of the

vehicle states between periods of non-IMU measurements. Since the navigation filter

is estimating the gyro error terms, these quantities are used in conjunction with the

measured gyro rotation rates to produce the best possible estimate of true rotation

rates, ω̂B.

58



First, equation 3.18 must be solved for the true rotation rate, ωB. To solve for

this, the nonorthogonality and scale factors are grouped into the term ∆g.

∆g = Γg + Sg

ωB
m

= (I + ∆g)ω
B + bg + ǫg

For small ∆g the inverse of the (I + ∆g) is

(I + ∆g)
−1 ≈ (I − ∆g)

Therefore, true rotation rate is found to be

ωB = (I + ∆g)
−1(ωB

m
− bg − ǫg)

= (I − ∆g) (ωB
m
− bg − ǫg)

= (I − ∆g) ωB
m
− bg − ǫg

= ωB
m
− Γgω

B
m
− Sgω

B
m
− bg − ǫg

(4.37)

by neglecting second order terms. For the navigation filter to estimate the error terms

within the gyro model, they all must be represented as vectors. In this case equation

4.37 can then be rewritten as

ωB = ωB
m
− Fgγg − Dgsg − bg − ǫg (4.38)

where the nonorthogonality and scale factor matrices (Γg and Sg) are converted into

vectors (γg and sg), and the measured rotation rate (ωB
m

) is represented as matrices

Fg and Dg.

γg =
(

γgxy
γgxz

γgyx
γgyz

γgzx
γgzy

)T

sg =
(

sgxsgy sgz

)T
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Fg = F (ωB
m

) =











−ωmz
ωmy

0 0 0 0

0 0 ωmz
−ωmx

0 0

0 0 0 0 −ωmy
ωmx











Dg = D(ωB
m

) =











ωmx
0 0

0 ωmy
0

0 0 ωmz











The best possible estimate of true rotation rate, ω̂B, is then obtained by taking

the expectation of equation 4.38. Since the expectation of the noise term is zero

(E(ǫg) = 0), the best estimate of the rotation rate within the navigation filter is

ω̂B = ωB
m
− Fgγ̂g − Dgŝg − b̂g (4.39)

4.2.2 Altimeter

The radar altimeter provides range measurements from the vehicle down to the planet

surface. The model for this sensor measurement is derived in Section 3.2.3 and the

resulting model equation is shown here for reference.

hm = h (1 + ka) + νa (3.19)

For the true altimeter measurement, h varies as a function of vehicle position, vehicle

attitude, and planet topography.

h = −
[

r I ·
(

T
B→I

iB
a

)]

−
√

[

r I ·
(

T
B→I

iB
a

)]2 − |r I |2 + R2
s (3.22)

The planet radius, Rs, varies in some fashion according to the local topography, but

it is assumed that the navigation filter does not have access to topography data.
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To compensate for this difference, the estimated planet radius (R̂s) is treated as

a constant and an additional error term (x̂t) is added to the estimated altimeter

measurement model. The noise term, νa is dropped because its expected value is

zero. The estimated altimeter measurement model is then

ĥm = ĥ
(

1 + k̂a

)

+ x̂t (4.40)

where the estimate of the true altitude, ĥ, is

ĥ = −
[

r̂ I ·
(

T̂
B̂→I

iB
a

)]

−
√

[

r̂ I ·
(

T̂
B̂→I

iB
a

)]2

− |r̂ I |2 + R̂2
s (4.41)

This new error term, x̂t, is meant to simulate topographic variations and is therefore

chosen to be a Markov process. The discrete Markov process dynamics equation is

xt i+1
= e

−∆t
τ xt i

+ wi (4.42)

where wi is the driving white noise term. This bias has a variance based on the

statistical altitude variation of the topography and a time constant defined as

τ =
d

vrel

where d is a reference length of major topographic features and vrel is the surface

relative velocity of the vehicle. See Appendix C (page 141) for details on this Markov

process and the associated topography statistics.

4.2.3 Velocimeter

The velocimeter provides measurements of the vehicle’s velocity by bouncing radar

signals off the planet’s surface. The model for this sensor measurement is derived in

Section 3.2.4 and the resulting model equation is shown here for reference.

vB
m = T

I→B

(

v I − vs

)

(1 + kv) + νv (3.23)
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The estimated velocimeter measurement is formed by taking the expectation of equa-

tion 3.23. Since the expectation of the noise term is zero (E(νv) = 0), the best

estimate of the surface relative velocity is

v̂B
m = T̂

I→B̂

(

v̂ I − v̂s

)

(

1 + k̂v

)

(4.43)

The estimated surface velocity is defined as

v̂s = ω × R̂s (4.44)

where ω is the rotational rate of the planet (see Table 1.2, page 19) and R̂s is the

estimated radius vector of the planet defined as

R̂s = r̂ I + ĥ
(

T̂
B̂→I

iB
a

)

(4.45)

where ĥ is the estimated altitude measurement described in the previous section.

62



4.3 Filter Design

The filter algorithm used for the ARES entry scenario is an Extended Kalman filter.

The extended filter follows the discrete linear algorithm outlined in section 4.1, but

models system dynamics for state propagation with non-linear equations and cal-

culates the measurement partial derivative matrices in real-time as functions of the

current estimated state.

Generally, the size of the filter state vector and the error state vector used for the

covariance are equal in size. For this implementation, there is a vector size difference

of one element. This discrepancy resides within the attitude portion of the state.

Attitude is generally thought of as three rotation angles. For the error state, this

holds true, but for the filter state these three angles are replaced with a four compo-

nent attitude quaternion. A quaternion still only contains the information of three

independent angles, but has the added benefit of avoiding numerical singularities and

using less memory for coordinate transformations. Several styles of quaternions exist.

The version in use within this analysis is a “right-handed” scalar-last quaternion. A

rotation from coordinate frame a to b is defined as

q b
a =

















q 1

q 2

q 3

q 4

















=





q

q 4



 =





u sin(φ/2)

cos(φ/2)



 (4.46)

where φ is the rotation angle from coordinate frame a to b and u is the unit vector

defining the plane of rotation [19].

This section provides the specific design details of the Extended Kalman Filter

used for this Mars entry navigation problem. First, the non-linear time propagation

of the states is derived for all the state sub-vectors. Next, the discrete, linearized

state transition matrix and process noise covariance are derived for time propagation

of the state error covariance. The design description is concluded with explanations

of the measurement update portion of the filter. The last part of this section discusses
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numerical problems that arise in digital implementation of the Kalman filter and how

to correct for them.

4.3.1 State Propagation

One key feature of the Kalman filter algorithm is the propagation of the state vector

forward in time. This is accomplished by using reasonable descriptions of the state

dynamics to calculate the new value at some later time. The state vector, x, contains

the principal vehicle states (ie. position, velocity, and attitude vectors) and sensor

error states. The state vector is defined to be

x =
(

r I v I q
I→B

bg sg γg ba sa γa xt ka kv

)T

(4.47)

where the bold terms within this state vector are subvectors. These subvectors are

the position (r I) specified in inertial coordinates, velocity (v I) specified in inertial

coordinates, attitude specified as an inertial to body quaternion (q
I→B

), gyro error

states (bg, sg,γg), and accelerometer error states (ba, sa,γa). The three remaining

terms are scalars representing the altimeter topography error (xt), altimeter scale

factor (ka), and velocimeter scale factor (kv). Details of these sensor error states can

be found in Sections 3.2 and 4.2.

The state propagation routine involves propagating the best estimate of the state

(x̂) forward in time. This is defined to be

x̂ =
(

r̂ I v̂ I q̂
I→B̂

b̂g ŝg γ̂g b̂a ŝa γ̂a x̂t k̂a k̂v

)T

Principal State Propagation

The principal states consist of position, velocity, and attitude vectors. The time

propagation of these states is accomplished by integrating the vehicle dynamic equa-

tions (2.1) and incorporating measured acceleration and rotation rates from the IMU

(4.2.1) to predict the state values at some later time. The integration of the dynam-

ics equations is accomplished using the fourth order Runge-Kutta integrator. This
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algorithm is shown below [7]

xi+1 = xi + 1
6
(k1 + 2k2 + 2k3 + k4) ∆t

where the “ki” terms are the time derivatives of the function “x” in the interval and

are defined as 2

k1 = f(xi)

k2 = f
(

1
2
∆t, xi + 1

2
k1∆t

)

k3 = f
(

1
2
∆t, xi + 1

2
k2∆t

)

k4 = f(∆t, xi + k3h)

The time derivatives (slopes) are necessary for this time propagation integration

algorithm. The following sections will describe the time derivatives of the position,

velocity, and attitude subvectors within the full state.

Position and Velocity Derivative Position (r̂ I) and velocity (v̂ I) estimates are

propagated using the non-linear gravitational acceleration equations that incorporate

the J2 gravity model (aI
g) and the best estimate non-gravitational accelerations sensed

by the accelerometers (âB). The time derivative for the position and velocity states

are

˙̂r I = v̂ I

˙̂v I = aI
g(x, y, z) + q̂

I→B̂
⊗

[

âB(aB
m

, γ̂a, ŝa, b̂a)
]

⊗ q̂
B̂→I

(4.48)

where q̂
I→B̂

is the estimated attitude quaternion state variable used to transform the

non-gravitational accelerations into the inertial frame, and “⊗” is the quaternion

product operator. These non-gravitational accelerations are functions of the directly

measured acceleration (aB
m

) and the estimated accelerometer errors (γ̂a, ŝa, b̂a) tracked

within the state vector (See equation 4.36).

2Sensor information is not available at intermediary time intervals. This results in less accurate

integration of the state.
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Attitude Derivative For the Runge-Kutta algorithm, the quaternion derivative

is calculated using the best estimate attitude rotation rates (ω̂B) provided by the

gyros. These values are the rotation rates of the body frame with respect to the

inertial frame and are specified in body coordinates. The derivative needed for the

inertial to body quaternion propagation is [19]

˙̂q
I→B̂

= 1
2

q̂
I→B̂

⊗ ω̂B

= 1
2

Ω(ω̂B) q̂
I→B̂

=
1

2





−ω̂B
⊗

ωB

(−ωB)T 0



 q̂
I→B̂

=
1

2

















0 ω̂z −ω̂y ω̂x

−ω̂z 0 ω̂x ω̂y

ω̂y −ω̂x 0 ω̂z

−ω̂x −ω̂y −ω̂z 0

















q̂
I→B̂

(4.49)

where the subscript “⊗” represents the cross product matrix form of a three compo-

nent vector as shown below.

u × v = U⊗ v =











0 −u3 u2

u3 0 −u1

−u2 u1 0











v

The estimated attitude rotation rates are a function of the rates directly measured

by the gyros (ωB
m

) and the estimated gyro errors (γ̂g, ŝg, b̂g) tracked within the state

vector (See equation 4.39).

Propagation of Sensor Error States

The remaining state subvectors are the sensor error states. Of these states, all but

the altimeter topography error (x̂t) are modeled as constants. The states that are

treated as constant over the scenario duration do not require any adjustment during
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the state time propagation. The altimeter topography error is treated as a first order

Markov process. It is propagated forward in time using the estimated version of the

relations shown in Section 4.2.2.

x̂t i+1
= e

−∆t
τ x̂t i

(4.42)

This bias has a variance based on the statistical altitude variation of the topography

and a time constant defined as

τ =
d

v̂rel

where d is a reference length of major topographic features and v̂rel is the estimated

surface relative velocity of the vehicle. See Appendix C (page 141) for details on the

this Markov process and the associated topography statistics.

4.3.2 Covariance Propagation

The error covariance matrix (Pk ) provides a description of the state vector uncer-

tainty over time. The definition is provided here again for reference.

Pk = E

[

δxk δxT
k

]

This is the covariance of the state error vector. The state error vector (δx) is defined

as

δx = x̂ − x (4.50)

δx =
(

δr I δv I δθB δbg δsg δγg δba δsa δγa δxt δka δkv

)T

(4.51)

Notice that this state error vector is consistent with the state vector (equation 4.47) in

all terms but the third subvector, δθB. As mentioned previously, this is the attitude

error specified using three rotation angles instead of a quaternion. The attitude error

is defined as rotation angles from the vehicle body-frame to the estimated body-

frame. This vector discrepancy results in a one element size difference between the

state vector and state error vector.
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Using the dynamic descriptions of the states, the covariance is propagated forward

in time. The basic time propagation relation derived in Section 4.1.2 is shown below.

Pk+1 = Φk Pk ΦT
k + Qk (4.13)

The navigation filter uses this relationship to properly calculate the covariance matrix

for the next time step. This process depends on the state transition matrix, Φk , and

the process noise covariance, Qk. The following sections describe how these two

quantities are derived.

State Transition Matrix

The first step in calculating the state transition matrix (Φk ) is to determine the

linearized state error differential equation

δẋ = ˙̂x − ẋ (4.52)

where ˆ̇x is the estimated state time derivative and ẋ is the true state time derivative.

The individual states within that state error vector derivative are shown below.

δẋ =
(

δṙ I δv̇ I δθ̇B δḃg δṡg δγ̇g δḃa δṡa δγ̇a δẋt δk̇a δk̇v

)T

The sensor errors (δbg, δsg, δγg, δba, δsa, δγa, δka, δkv) are assumed to be constant

over time, and therefore the associated rates (δḃg, δṡg, δγ̇g, δḃa, δṡa, δγ̇a, δk̇a, δk̇v)

are zero. The altimeter topography error (δxt) is treated as a Markov process and

therefore varies in time.

In order to form the state transition matrix, the state error derivatives must be

formulated as linear functions of error states. The next sections show the derivation

of the state error derivative for these nonconstant states.
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Position Error Derivative The linearized error derivative for the position is

δṙ I = ˙̂r I − ṙ I

= v̂ I − v I

= δv I

(4.53)

Velocity Error Derivative The linearized error derivative for the velocity is

δv̇ I = ˙̂v I − v̇ I (4.54)

where ˙̂v I is the estimated inertial velocity time derivative (similar to equation 4.48)

and is defined as

˙̂v I = g(r̂ I) +
[

T (q̂
B̂→I

)
]

âB(aB
m

, ŝa, γ̂a, b̂a) (4.55)

This equation assumes a point-mass gravity model evaluated at the estimated inertial

position plus the estimated non-gravitational acceleration rotated from the body-

frame into the inertial-frame using the estimated body-to-inertial quaternion. The

true inertial velocity time derivative, v̇ I , is modeled as

v̇ I = gI + aI + ǫ
accel

= g(r I) +
[

T (q
B→I

)
]

aB(aB
m

, sa,γa, ba) + ǫ
accel

(4.56)

which also uses a point-mass gravity model evaluated at the true inertial position

vector plus the true non-gravitational acceleration rotated from the body-frame to

the inertial-frame using the true body-to-inertial quaternion. The term ǫ
accel

is a

white noise term added to compensate for any unmodeled accelerations (ie. higher

order gravity dynamics and aerodynamics). Its covariance is defined as

E
[

ǫ
accel

ǫT

accel

]

= Q
accel

δ(t) (4.57)
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where Q
accel

is the process noise intensity for the unmodeled accelerations. The δ(t)

term is the Dirac delta function.

Substituting equation 4.55 and 4.56 into 4.54 results in

δv̇ I =
[

g(r̂ I) − g(r I)
]

+
[

T̂
B̂→I

âB − T
B→I

aB
]

− ǫ
accel

(4.58)

The function notation has been removed in the transformation matrix and acceler-

ation vector for clarity. Using the definition of the position vector error, (δr I =

r̂ I − r I), the gravity vector can be simplified using a first-order approximation.

g(r I) = g(r̂ I − δr I)

= g(r̂ I) −
(

∂ g

∂ rI

∣

∣

∣

∣

r̂I

)

δr I
(4.59)

g(r̂ I) − g(r I) =

(

∂ g

∂ rI

∣

∣

∣

∣

r̂I

)

δr I (4.60)

Substituting equation 4.60 and the equations for the estimated and true accelerometer

model (equations 3.15 and 4.36) into equation 4.58 gives

δv̇ I =

(

∂ g

∂ rI

∣

∣

∣

∣

r̂I

)

δr I + T̂
B̂→I

[

aB
m
− Daŝa − Faγ̂a − b̂a

]

− T
B→I

[

aB
m
− Dasa − Faγa − ba − ǫa

]

− ǫ
accel

(4.61)

To further simplify this equation and render it useful for filter implementation, the

right-hand-side of equation 4.61 must be written in terms of error states (δr I , δv I ,

δθB, etc). Noting that
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T
B→I

= T̂
B̂→I

T
B→B̂

= T̂
B̂→I











1 δθz −δθy

−δθz 1 δθx

δθy −δθx 1











= T̂
B̂→I

(I − δθ⊗)

where δθ is a small angle rotation, and δθ⊗ is the associated cross-product matrix,

allows equation 4.61 to be written as

δv̇ I =

(

∂ g

∂ rI

∣

∣

∣

∣

r̂I

)

δr I

+ T̂
B̂→I

[

Da(sa − ŝa) + Fa(γa − γ̂a) + (ba − b̂a) + ǫa

]

+ T̂
B̂→I

δθ⊗aB
m
− ǫ

accel

(4.62)

Where all second-order terms have been discarded. Rewriting equation 4.62 in terms

of state errors produces

δv̇ I =

(

∂ g

∂ rI

∣

∣

∣

∣

r̂I

)

δr I

− T̂
B̂→I

[Daδsa + Faδγa + δba − ǫa]

− T̂
B̂→I

(aB
m

)⊗ δθ − ǫ
accel

(4.63)

Attitude Error Derivative The time derivative of the body-frame attitude error

vector is provided.

δθ̇B = δωB − ωB× δθB (4.64)

In this equation, δωB are the unknown gyro rate errors, ωB are the true angular

attitude rates, and δθB are the attitude angle errors. Appendix B (page 137) provides

a detailed derivation of this equation. Substituting equation 3.18 for ωB and canceling
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higher-order terms results in

δθ̇B = δωB − ωB
m
× δθB (4.65)

where ωB
m

is the measured angular attitude rate vector provided by the gyros. The

gyro rate errors (δωB) are found by differencing the estimated and true gyro model

equations (equations 4.39 and 4.38, respectively).

δωB = ω̂B − ωB

=
(

ωB
m
− Dgŝg − Fgγ̂g − b̂g

)

−
(

ωB
m
− Dgsg − Fgγg − bg − ǫg

)

= Dg(sg − ŝg) + Fg(γg − γ̂g) + (bg − b̂g) + ǫg

= −Dg δsg − Fg δγg − δbg + ǫg

(4.66)

Substituting equation 4.66 into equation 4.65 provides the final attitude error deriva-

tive needed for the state transition matrix calculation.

δθ̇B = −Dg δsg − Fg δγg − δbg + ǫg − (ωB
m

)⊗ δθB (4.67)

Altitude Topography Error Derivative The estimated altimeter model includes

a term to account for the planet surface topography variations. This term is described

as a Markov process. The error rate is defined as

δẋt = − 1
τ
δxt + w (4.68)

The white process noise term (w) has a variance of

E
[

w2
]

= Q
alt

δ(t)

=
2σ2

s

τ
δ(t)

(4.69)

where Qalt is the process noise intensity, σs is the topography standard deviation as
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described in appendix C, τ is the Markov process time constant, and δ(t) is the Dirac

delta function.

State Dynamics Equation Using the individual state error derivatives previous

derived, the full state error derivative vector can now be filled in. To summarize, the

entire error vector rate (δẋ) is defined as

δẋ =
(

δṙ I δv̇ I δθ̇B δḃg δṡg δγ̇g δḃa δṡa δγ̇a δẋt δk̇a δk̇v

)T

where the terms within the vector are derived to be

δṙ I = δv I

δv̇ I =

(

∂ g

∂ rI

∣

∣

∣

∣

r̂I

)

δr I

− T̂
B̂→I

[Daδsa + Faδγa + δba − ǫa]

− T̂
B̂→I

(aB
m

)⊗ δθ − ǫ
accel

δθ̇B = −Dg δsg − Fg δγg − δbg + ǫg − (ωB
m

)⊗ δθB

δẋt = − 1
τ
x̂t + w

δḃg = δṡg = δγ̇g = δḃa = δṡa = δγ̇a = δk̇a = δk̇v = 0

The state error vector and the noise terms can be factored out of this state error rate

equation allowing it to be rewritten as

δẋ = A δx + B ǫ (4.70)

where A is the state dynamics matrix and B is the coefficient matrix for the white

noise vector ǫ. The white noise vector consists of the noise terms from the accelerom-
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eter, gyro, unmodeled acceleration, and Markov process and is defined as

ǫ =

















ǫa

ǫg

ǫ
accel

w

















(4.71)

The matrices A and B are shown in Appendix D due to their size.

The state transition matrix is defined as the matrix exponential of the state dy-

namics matrix [5]

Φk = eA∆t (4.72)

where ∆t is the navigation filter time step. A second-order approximation of the state

transition matrix using Taylors series expansion of the matrix exponential produces

Φk
∼= I + A∆t + A2 ∆t2

2
(4.73)

Process Noise

The process noise covariance (Qk) is defined in section 4.1.1 as

E
[

wj wT
k

]

=







Qk j = k

0 j 6= k







(4.4)

where w is the state process noise vector. One way to derive the details of the discrete

process noise covariance is from the continuous system process noise [6].

w(t) =

∫ ∆t

0

Φ(∆t − τ) B ǫ(τ) dτ (4.74)

where Φ, B, and ǫ are defined above. Using the definition in equation 4.4, the process
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noise covariance is found to be

Q(t) = E
[

w(t) w(t)T
]

= E





∆t
∫

0

∆t
∫

0

Φ(∆t − τ) B(τ) ǫ(τ) ǫT (τ ′) BT(τ ′)ΦT (∆t − τ ′) dτ dτ ′





=

∆t
∫

0

∆t
∫

0

Φ(∆t − τ) B(τ) E
[

ǫ(τ) ǫT (τ ′)
]

BT(τ ′)ΦT (∆t − τ ′) dτ dτ ′

(4.75)

Noting that the expectation of the white noise vectors is defined as

E
[

ǫ(τ) ǫT (τ ′)
]

= Qǫ δ(τ − τ ′) (4.76)

allows equation 4.75 to simplify into

Q(t) =

∆t
∫

0

Φ(∆t − τ)B(τ) Qǫ BT(τ)ΦT (∆t − τ) dτ (4.77)

Using a first order approximation of the state transition matrix in equation 4.77

Φk (∆t − τ) ∼= I + A(∆t − τ)

produces

Q(t) =

∆t
∫

0

[

I + A(∆t − τ)
]

B(τ) Qǫ BT(τ)
[

I + A(∆t − τ)
]T

dτ (4.78)

Expanding the terms in equation 4.78 and evaluating the integral produces the process
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noise covariance used for this analysis.

Qk =
(

BkQǫB
T
k

)

∆t

+
(

AkBkQǫB
T
k

) ∆t2

2

+
(

BkQǫB
T
k AT

k

) ∆t2

2

+
(

AkBkQǫB
T
k AT

k

) ∆t3

3

(4.79)

The term Qǫ is the process noise intensity and is defined as

Qǫ =

















Qa 0 0 0

0 Qg 0 0

0 0 Q
accel

0

0 0 0 Q
alt

















(4.80)

where Qa is accelerometer noise variance (Equation 3.14), Qg is gyro noise variance

(Equation 3.17), Q
accel

is the variance of unmodeled acceleration (Equation 4.57),

and Q
alt

is the variation of terrain uncertainty (Equation 4.69).

4.3.3 Measurement Updates

The power of the recursive Kalman filter derives from the optimal estimation of the

state from past data and current sensor measurements. This section discusses the

measurement update to the state vector and error covariance matrix. The state

vector and error covariance matrix are updated within the Kalman filter algorithm

using relationships similar to those as derived in Section 4.1.3. The standard extended

Kalman filter version of these equations are

x̂k+
= x̂k−

+ Kk

(

zm − ẑm

)

(4.81)

Pk+
=

(

I − Kk Hk

)

Pk−

(

I − Kk Hk

)T

+ KkRkK
T
k (4.82)

The term Kk is the Kalman gain matrix, zm is the sensor measurement vector, ẑm is
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the estimated sensor measurement vector, Hk is the measurement sensitivity matrix,

and Rk is the measurement noise intensity matrix. The Kk (zm−ẑm) term represents

the correction to the state. However, for attitude corrections this is represented by

a small angle vector that needs to be applied to the estimated attitude quaternion,

q̂
I→B̂

. This is accomplished using quaternion multiplication.

q̂+

I→B̂
= q̂−

I→B̂
⊗ θ

B̂→B
(4.83)

The Kalman gain is used in equation 4.81 to optimally combine the previous state

(x̂k−
) and the current measurement residual (zm − ẑm). The gain is defined as

Kk = Pk−
HT

k

(

Hk Pk−
HT

k + Rk

)−1

(4.33)

Altimeter and velocimeter measurements and their estimated values are defined in

Section 4.2.

zm =





hm

vB
m



 ẑm =





ĥm

v̂B
m





The measurement sensitivity matrix (Hk) is derived for the specific set of instru-

ments in use by the navigation filter. It is defined as the partial derivative of the

measurement value with respect to the state vector. Each row of this matrix corre-

sponds to the partial derivative of a particular instrument measurement, and each

column represents the partial derivative with respect to a particular state. The sen-

sitivity matrix is evaluated at each time step requiring a measurement update. The

resulting matrix for this implementation of the Kalman filter is

H =








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∂v̂B
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




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(4.84)
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where the partial derivative in respect to the altimeter and velocimeter are derived

to be

∂ĥm

∂x
=

[

∂ĥm

∂r I

∂ĥm

∂v I

∂ĥm

∂θ

∂ĥm

∂bg, ∂sg, ∂γg

∂ĥm

∂ba, ∂sa, ∂γa

∂ĥm

∂xt

∂ĥm

∂ka

∂ĥm

∂kv

]

=

[

(1 + ka)
∂h

∂r I
0 (1 + ka)

∂h

∂θ
0 0 1 ĥ 0

]

(4.85)
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(4.86)

and where
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∂r I
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The derivation of these measurement partial derivatives is provided in Appendix G.

The measurement noise intensity matrix (Rk) is defined by the statistical noise

behavior of the sensors providing measurements to the navigation filter. It is a diag-

onal matrix containing the white noise variances for each measurement sensor. The

values for the specific altimeter and velocimeter being used are found in Sections 3.2.3
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and 3.2.4.
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(4.87)

4.3.4 Filter Numerical Issues

An important numerical issue that often arises in the implementation of the Kalman

filter is matrix symmetry. Stable performance of the filter requires that the covariance

matrix and process noise matrix remain symmetric throughout the filter operation.

Asymmetry can arise from errors caused by numerical accuracy limitations of the

computer. To prevent this potential problem, the process noise matrix, post-time-

propagation error covariance matrix, and post-update error covariance matrix are

symmetrized using

A =
A + AT

2
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Chapter 5

Navigation System Performance

Analysis

5.1 Introduction

As the entry vehicle approaches Mars, final navigation measurements are used to

initialize the onboard navigation filter. This update is performed using the Deep Space

Network (DSN) earth-based antenna network for position and velocity and a cruise

stage mounted star camera for attitude. This occurs approximately twelve hours

prior to atmospheric entry interface (EI). From this point, the entry vehicle separates

from the cruise stage and begins its coast to EI. The entry vehicle navigation filter

uses this initial information (ie. position, velocity, and attitude) to propagate the

state information through time. No additional external measurements or navigation

aids are available during this final cruise phase. The IMU gyros are used during

this ”dead-reckoning” orbital cruise period to assist in the state estimation. For

this analysis, the primary focus is on the atmospheric entry and descent phases of

the mission. To produce a realistic entry navigation analysis, though, the change in

the state covariance must be understood over this twelve hour cruise. A state and

covariance propagation is performed for the twelve hour cruise using only gyros data

from the IMU. Accelerometer data is ignored because no significant non-gravitational

accelerations are experienced during this period. Processing of the accelerometer

81



data would unnecessarily add noise from this instrument to the state estimation.

This 12 hour cruise analysis provides the appropriate navigation information to be

used as initial conditions for the atmospheric entry analysis. This pre-entry analysis

is presented in Appendix E.

The analysis begins by first presenting the 6-DOF trajectory for the ARES mission

(Figure 5-1) and the vehicle dynamics experienced during entry and descent. Next the

mission scenario is presented with discussion of the navigation configuration under

consideration and the specific analysis approach. Next the analysis for each sensor

configuration is presented with observations for that specific scenario. Finally, an

overall discussion of the results is presented.

−34◦

−44◦

180◦

190◦

N

E

Figure 5-1: ARES Entry & Descent Trajectory
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5.2 6-DOF Vehicle Dynamics

5.2.1 Translational Dynamics

The nominal mission scenario begins with the vehicle in its aerodynamically stable

orientation spinning about the atmosphere relative velocity vector. Spinning is in-

duced in order to mitigate any aerodynamic lift that might result from uncertainty in

the vehicle’s center of gravity. Spinning also has the additional benefit of containing

attitude uncertainty in two axes orthogonal to the spin axis. The vehicle descends

through the atmosphere decelerating with aerodynamic drag. Figure 5-2 shows the

inertial velocity and non-gravitational acceleration magnitude profiles for the trajec-

tory. This large rise in acceleration is the aerodynamic drag that results from the

vehicle’s high velocity and the atmosphere’s rapid density increase as the vehicle de-

scends. This effect is shown more directly by the dynamic pressure profile in Figure

5-3.
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Figure 5-2: Vehicle Translational Dynamics

To further decelerate the vehicle, a supersonic parachute is deployed. This para-

chute has a nominal, safe deployment condition specified as a dynamic pressure of

540 Pa and 2.1 Mach [13]. This condition is met for the trajectory around 10.2 km

altitude. The parachute event is visible as a rapid jump in acceleration in Figure 5-2

near 185 seconds into the atmospheric entry.
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Figure 5-3: Vehicle Aerodynamics
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Figure 5-4: Vehicle Velocity Direction
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Figure 5-4 shows the vehicle flight path angle and azimuth over time from at-

mospheric entry interface. Flight path angle is the angle measuring from the local

horizontal, up to the vehicle’s velocity vector. The ARES vehicle begins with a -13

degree flight path angle, meaning that its velocity is pointed in toward the planet by

13 degrees. This angle initially decreases resulting in a more level flight of the entry

vehicle. This is because this first portion of the trajectory is still largely orbital mo-

tion uninhibited by the Martian atmosphere. Without any atmospheric interference,

this flight path angle would decrease in magnitude toward zero at the orbital perigee.

The angle begins to increase in magnitude as atmospheric effects dominates the tra-

jectory and causes rapid deceleration of the vehicle. The vehicle effectively falls into

the planet at increasingly steeper angles as it slows down. The azimuth plot shows

the direction of the horizontal component of the velocity vector with respect to north.

The trend is once again the orbital mechanics dominating the problem early, followed

by atmospheric effects later. A slope discontinuity is visible near 185 seconds. This

is an effect of parachute deployment.

The vehicle continues its descent until the Mars airplane is released for flight.

The nominal airplane flight is at an altitude of 1.5 km. This is chosen as the stop

condition for this analysis. Dynamics of the airplane deployment and flight are not

considered. Figure 5-5 shows the entry vehicle trajectory plotted as altitude versus

the planetary fixed longitude/latitude coordinates. The faint curves in this figure are

constant latitude and longitude trajectory projections. This shows that the vehicle

is traveling north-east, up from the southern pole.

85



−44
−42

−40
−38

−36
−34180

182
184

186
188

190
0

20

40

60

80

100

120

140

Latitude [deg]Longitude (East) [deg]

A
lt

it
u

d
e 

[k
m

]

Vehicle Trajectory
Projections

Figure 5-5: Vehicle Trajectory
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5.2.2 Rotational Dynamics

The simulation also evaluates the vehicle attitude dynamics through the trajectory.

Figure 5-6 shows the vehicle body frame attitude dynamics. Angle of attack represents

the angle of the vehicle’s body axis from the velocity vector around the pitch axis. Side

slip is the same type of measurement, but around the yaw axis. Total angle of attack

is the total angle measured from the vehicle velocity vector. Angle of attack and side

slip are seen to oscillate around zero, meaning the vehicle is stable and consequently

produces no net lift. The oscillations are caused by the aerodynamic torques on the

vehicle. They are seen to increase in frequency, but decrease in magnitude at the peak

of dynamic pressure. Past this point, the aerodynamic forces and torques decrease,

and the oscillations increase in magnitude and decrease in frequency. The rapid angle

change is due to parachute deployment. Figure 5-7 shows the body frame rotation

rates. The first plot shows that the vehicle is spinning about the roll axis at 1.6

RPM . The trends of the pitch and yaw axis rotation rates match the previously

discussed attitude plots prior to parachute deploy. After the parachute is deployed,

the rotation rates increase because of the increased drag and lengthened aerodynamic

moment arm created by the trailing parachute.
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0 50 100 150 200 250
8

9

10

11

ω
 [

d
eg

/s
]

0 50 100 150 200 250
−10

−5

0

5

10

ω
 [

d
eg

/s
]

0 50 100 150 200 250
−20

−10

0

10

20

time [s]

ω
 [

d
eg

/s
]

Figure 5-7: Vehicle Angular Rates
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5.3 Mission Scenario

The entry and descent phase of this mission begins at entry interface. The ini-

tial conditions for the translational and rotational dynamics are presented in table

1.3. Using this, the environment portion of the simulation calculates the vehicle’s

trajectory over time by incorporating gravity dynamics, atmosphere dynamics, and

aerodynamics. To estimate the navigation states, the entry vehicle has use of an IMU

and sensor package for measurements.

The nominal navigation instrument scenario consists of the IMU providing accel-

eration and angular rate data throughout the trajectory, while other sensors provide

measurement updates at appropriate times. This analysis examines the performance

of two commercially available, spacecraft qualified IMUs used by the navigation filter

for state and covariance propagation. These are the Honeywell MIMU and Litton

LN200. Performance specifications for these IMUs are found in Tables 3.1 and 3.2.

Two commercially available, spacecraft qualified sensor packages also under consid-

eration are those used for the Mars Exploration Rover (MER) and Mars Surveyor

Program (MSP) NASA missions. The MER-type sensor is a radar altimeter and the

MSP-type sensor is a radar altimeter packaged with a radio Doppler velocimeter.

Performance specifications for these sensors are found in Tables 3.3 and 3.4. The four

combinations of these instruments (an IMU paired with a sensor) are examined in

the analysis.

Monte Carlo analysis is the primary technique used for this navigation perfor-

mance analysis. For the nominal altimeter/velocimeter activation of 8.75km [13], a

Monte Carlo analysis is performed by executing the simulation 400 times with the

initial principal vehicle states being randomly selected from a normal distribution

according to the statistics contained within the initial error covariance. Atmospheric

properties are also randomly perturbed for each run. The details of the initial state

error covariance for the particular instrument configuration under consideration are

provided in Appendix E.

The navigation filter uses these initial conditions to estimate the state and state
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error covariance through time as the vehicle traverses its entry and descent trajec-

tory. The vehicle states are estimated within the propagation routine of the Extended

Kalman filter for the first 200 seconds using only inertial dead reckoning navigation.

After 200 seconds, the entry vehicle jettisons the heat shield revealing the altimeter.

At this point the altimeter/velocimeter is activated and begins providing measure-

ments to the navigation filter. The simulation concludes near 240 seconds, repre-

senting the end of the entry and descent phases of the mission. In addition to this

nominal case, the sensors are activated over a range of altitudes to observe the effect

this has on the navigation state uncertainty.

The results of the analysis are plots of the principal state estimation errors for

each case run and the corresponding state error covariance. The state error covariance

is represented with ±3-σ curves. When the 400 trial runs are bounded between these

two curves, this gives confidence that the Kalman filter is tuned properly and that

the various assumptions of linearity throughout its design are valid. The position

and velocity data is presented in the local vertical-local horizontal coordinate system

(LVLH). This coordinate system is oriented with one axis pointing in the planet radial

direction (altitude), one axis pointed in the ~r×~v direction (cross track), and the final

axis completing the triad (downrange). These final two axes define a plane tangent

to the planet (local horizontal plane) with the downrange direction in line with the

velocity vector and the cross track normal to the velocity vector.
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5.4 Scenario 1: MIMU/MER Sensor Suite

For the first scenario, the MIMU is used with the MER-type altimeter. These two

instruments are the best possible combination of IMU and altimeter under considera-

tion. Details of the initial state error covariance for this instrument configuration are

provided in Appendix E. Figures 5-8 through 5-10 present the principal state errors

for 400 cases and the corresponding 3-σ uncertainty level (heavy bounding line) as

predicted by the covariance matrix within the Kalman filter. Numerous trends are

apparent in these state error/covariance plots. The trends result from both physical

dynamics experienced by the entry vehicle and errors within the onboard instruments.

Attitude Errors

For attitude errors (Figure 5-8), the vehicle begins EI with a large roll 3-σ uncertainty

of approximately 6.5 degrees, but small pitch and yaw errors of approximately 0.065

degrees. This ”cigar”-shaped initial attitude covariance ellipsoid is due to the IMU

gyro errors being incorporated into the error covariance during the 12 hours cruise

period. Spinning the vehicle largely inhibits covariance growth in pitch and yaw since

the dominant error source, gyro bias, integrates out to zero after each revolution. The

small growth from the star camera update at EI-12 hours is a result of gyro noise. The

roll axis covariance, though, experiences growth due to gyro bias, scale factors, and

noise. The magnitude of the attitude covariance grows very little during atmospheric

entry and descent (approximately 250 seconds) since the uncertainty growth is due

to the same factors during the 12 hour cruise.

The apparent error growth is primarily due to an increase in the vehicle’s flight

path angle midway through atmospheric entry flight. This results in the vehicle

rotating with respect to the attitude ellipsoid, causing uncertainty within the roll

covariance channel to transfer into the pitch and yaw channels. This is seen by the

tapering of the roll 3-σ plot and the corresponding growth of the pitch and yaw

plot. The oscillating behavior of the pitch and yaw covariance is due to the spin

rate of the vehicle. They oscillate between the min and max axes of the attitude
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Figure 5-8: MIMU\MER Scenario: Attitude Error Monte Carlo Analysis
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error ellipse projected onto the body y-z axes. The pitch and yaw axes spin with

respect to this covariance ellipse creating oscillating trends 90 degrees out of phase

with one another. Activation of the altimeter at 200 seconds results in small attitude

knowledge improvement for the roll axes. The final data trend to notice is the small,

high frequency oscillations within the covariance plots. This is the effect of the high

frequency attitude vehicle dynamics (Figures 5-6 and 5-7).

Velocity Errors

The velocity errors (Figure 5-9) begin with those estimated from the 12 hour cruise

to EI. Velocity is estimated by integration of the acceleration data from the IMU.

Attitude estimates must be used to properly interpret the direction of the measured

accelerations for the velocity estimation. This creates a coupling of attitude errors

with the velocity errors. Growth in the state uncertainty before the altimeter mea-

surement is due to this attitude error coupling and accelerometer errors. The cross

track direction of velocity covariance grows rapidly beginning around 100 seconds.

This is due to the growth of attitude error with respect to the yaw direction. Activa-

tion of the altimeter creates a strong knowledge improvement within the altitude rate

channel due to its strong correlation with the altitude position. Downrange and cross

track rates are not as correlated and therefore have a slower knowledge improvement

from this measurement.

Position Errors

The positions errors in Figure 5-10 begin with those estimated from the 12 hour cruise

to EI. Position is estimated by integrating the estimated velocity data. This creates

a coupling of the velocity and attitude errors with the position errors. Early in the

simulation, the entry vehicle’s trajectory is dominated by orbital mechanics. Posi-

tion error covariance follows distinctive trends for orbital motion. Downrange errors

oscillate, but grow with time. This is due to an orbital period error or more funda-

mentally an orbital energy error. Altitude and cross track errors oscillate around a

constant point. This is due to an altitude and orbit inclination error, respectively.
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Figure 5-9: MIMU\MER Scenario: Velocity Error Monte Carlo Analysis
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Upon activation of the altimeter, the measurement update provides information very

strongly into the altitude and downrange state error channels. This sharing of infor-

mation is due to correlations between altitude and downrange channels. Cross track

position error grows predominantly as a result of the cross track velocity error growth.

Altimeter measurement information is used to correct other state errors throughout

the filter through correlation with downrange and altitude errors.
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Figure 5-10: MIMU\MER Scenario: Position Error Monte Carlo Analysis
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5.4.1 Altitude Activation Study

Improving navigation uncertainty early in the trajectory through measurements can

be critical for entry guidance. Also, earlier measurement updates generally result in

smaller final landing or delivery errors and less fuel expenditure. To examine the

effect of varied measurement activation, the navigation simulation is run for several

scenarios where the altimeter is activated at different altitudes. These altitudes are:

16km, 10.2km, 8.75km, and 4km. The case with no measurement updates (only iner-

tial navigation) is included for comparison. The 8.75km case is the nominal scenario

for the ARES mission. 10.2km corresponds to supersonic parachute deployment. The

remaining two altitudes are chosen as extreme high and low cases.

A general explanation of why earlier measurements improve navigation uncertainty

is that all the various white noise sources degrade correlations between the states over

time. The earlier measurements begin, the more these correlations can be used to

estimate navigation filter state errors. For this scenario, increasing the activation

point of the altimeter produces relatively small improvements in the final position

uncertainty (Figure 5-11). The altitude uncertainty for the low altimeter activation

has the largest discrepancy, having approximately twice the uncertainty of the other

altitudes.

The velocity error (Figure 5-12) shows much more differentiation among the differ-

ent altitude cases. These uncertainties decrease rapidly and level off with near-zero

or gradually sloped lines. The highest activation altitude case gives the best im-

provement for downrange and cross track rates and provides this improvement for

the remainder of the trajectory. In contrast, the low altitude case provides the least

downrange and cross track improvement, but good altitude improvement.

Attitude exhibits similar error covariance improvements to those seen in the ve-

locity state. Early measurements provide significant uncertainty improvement, and

late measurements provide very little improvement.
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Figure 5-11: MIMU\MER Altitude Study – Position Errors

98



0 50 100 150 200 250
0

10

20

30

40

50

60
D

R
 V

el
o

ci
ty

 E
rr

o
r 

[m
/s

]

0 50 100 150 200 250
0

10

20

30

40

50

60

C
T

 V
el

o
ci

ty
 E

rr
o

r 
[m

/s
]

0 50 100 150 200 250
5

10

15

20

25

time [s]

A
lt

 V
el

o
ci

ty
 E

rr
o

r 
[m

/s
]

16 km
10.2 km
8.75 km
4 km

Figure 5-12: MIMU\MER Altitude Study – Velocity Errors
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Figure 5-13: MIMU\MER Altitude Study – Attitude Errors
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5.5 Scenario 2: MIMU/MSP Sensor Suite

The next scenario under consideration incorporates the MIMU with the MSP-type

instrument package. The MSP package includes an altimeter and a velocimeter. This

altimeter has a lower level of performance than the one in the previous scenario,

but is supplemented with this velocimeter to provide measurement information into

the velocity states. Details of the initial state error covariance for this instrument

configuration are provided in Appendix E.

Figures 5-14 through 5-16 present the principal state errors for 400 cases and the

corresponding 3-σ uncertainty level (heavy bounding line) as predicted by the co-

variance matrix within the Kalman filter. Because of the large discrepancy between

the initial velocity errors and the high precision of the velocimeter, the filter for this

scenario is tuned by down-weighting measurements slightly with increased measure-

ment noise. This helps avoid instability that might result from non-linearities in the

problem or integration errors present in the filter. Numerous trends are apparent in

these state error/covariance plots. The trends result from both physical dynamics

experienced by the entry vehicle and errors within the onboard instruments.
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Figure 5-14: MIMU\MSP Scenario: Attitude Error Monte Carlo Analysis
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Figure 5-15: MIMU\MSP Scenario: Velocity Error Monte Carlo Analysis
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Figure 5-16: MIMU\MSP Scenario: Position Error Monte Carlo Analysis
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Attitude Errors

Attitude errors for this sensor configuration follows similar trends to those of the

MIMU/MER scenario prior to measurement updates. Once the altimeter and ve-

locimeter updates begin, the attitude errors decrease dramatically. This is explained

by the strong correlation between attitude errors, velocity errors, and the measure-

ment of the velocity error by the velocimeter.

Velocity Errors

Velocity error also follow the same trends as seen in the MIMU/MER sensor con-

figuration prior to measurement update. The very strong improvement in velocity

uncertainty is explained primarily by the velocimeter measurements providing infor-

mation directly into this estimated state. Altimeter measurements provide additional

improvement through position/velocity correlations.

Position Errors

Position state errors match closely with the MIMU/MER scenario errors. Perfor-

mance is better in all channels despite the use of a lower accuracy altimeter. This is

because velocimeter measurements provide information on velocity errors which are

strongly correlated with position errors.
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5.5.1 Altitude Activation Study

The same altitude study discussed in Section 5.4.1 is performed with the MIMU/MSP

sensor configuration. The initial measurement altitudes under examination are: 16km,

10.2km, 8.75km, and 4km. The case with no measurement updates (only inertial

navigation) is included for comparison. The 8.75km case is the nominal scenario for

the ARES mission. 10.2km corresponds to supersonic parachute deployment. The

remaining two altitudes are chosen as extreme high and low cases.

For this scenario, increasing the activation point of the altimeter produces rela-

tively small improvements in the final position uncertainty (Figure 5-17). The altitude

uncertainty for the low altimeter activation has the largest discrepancy, having ap-

proximately twice the uncertainty of the other altitudes. The downrange and cross

track position errors show consistent improvement over the MIMU/MER scenario in

the previous section.

The velocity error (Figure 5-18) also shows very little differentiation among the

different altitude cases. All cases produce very large velocity error improvements

shortly after measurements begin.

The attitude errors in Figure 5-19 exhibit similar covariance improvements to

those seen in the velocity error covariance. All altitude cases produce large and fast

improvements in the attitude uncertainty.
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Figure 5-17: MIMU\MSP Altitude Study – Position Errors
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Figure 5-18: MIMU\MSP Altitude Study – Velocity Errors
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Figure 5-19: MIMU\MSP Altitude Study – Attitude Errors
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5.6 Scenario 3: LN200/MER Sensor Suite

This scenario consists of the LN200 IMU with the MER-type altimeter. The LN200

provides comparable accelerometer performance to that of the MIMU system, but

much lower gyro performance. Details of the initial state error covariance for this

instrument configuration are provided in Appendix E.

A limited Monte Carlo analysis shows a failure of the navigation filter upon mea-

surement update. The reason for this filter problem is the low performance of the

LN200 gyros, which allows the attitude covariance to grow to large angle uncertainties

of nearly 180◦ in roll after 12 hours of coast to EI. The measurement partial matrix

within the extended Kalman filter is linearized assuming small angles. For the large

attitude errors seen using the LN200, this assumption breaks down and causes the

filter to fail due to nonlinearities.

Figures 5-20 through 5-22 present the principal state errors for this limited Monte

Carlo analysis. Before measurements are processed, the error covariance is growing

in many of the states to very large uncertainties. The 3-σ uncertainty level (heavy

bounding line) fails to provide good state error predictions upon processing of the

altimeter measurements. This breakdown causes large, sudden velocity and position

state estimate errors.
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Figure 5-20: LN200\MER Scenario: Attitude Error Monte Carlo Analysis
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Figure 5-21: LN200\MER Scenario: Velocity Error Monte Carlo Analysis
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Figure 5-22: LN200\MER Scenario: Position Error Monte Carlo Analysis
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5.6.1 Potential Improvements

At least two reasonable solutions for this problem exist. One is to include a nonlinear

filter in the navigation system to process sensor measurements in the situation with

very large attitude uncertainty. Another option is to supplement the attitude estimate

process with additional instrumentation.

The current approach to space vehicle design is to incorporate off-the-shelf, space-

qualified components instead of designing new systems for enhanced performance or

implementing advanced ad-hoc algorithms. With this in mind, a reasonable solution

for this navigation problem is to add additional sensors to mitigate the large attitude

errors stemming from the LN200 gyro performance. This additional attitude sensing

could come in the form of space-based sensing from star cameras or atmosphere-based

sensing from sun sensors, for example.

The approach taken for this analysis is to assume that the entry vehicle has access

to a star camera instrument up to one hour prior to entry interface. This would allow

the vehicle to perform an attitude measurement update and then propagate this new

initial state error covariance forward in time. Details of this new EI-1 hour state error

covariance for this instrument configuration are provided in Appendix E.

A limited Monte Carlo analysis for this proposed configuration shows that the

filter performs reasonably well for this augmented entry scenario. Error covariance

trends follow closely those seen in the MIMU/MER scenario. The Monte Carlo results

for this case are presented in Appendix F.

5.6.2 Altitude Activation Study

The altitude study is performed on this augmented LN200/MER sensor configuration.

The initial measurement altitudes under examination are: 16km, 10.2km, 8.75km,

and 4km. The case with no measurement updates (only inertial navigation) is in-

cluded for comparison. The 8.75km case is the nominal scenario for the ARES mis-

sion. 10.2km corresponds to supersonic parachute deployment. The remaining two

altitudes are chosen as extreme high and low cases.
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For this scenario, increasing the activation point of the altimeter produces very

little improvement in the final position uncertainty (Figure 5-23). Comparing this to

the MIMU/MER scenario (Figure 5-11) shows that this LN200 case could have more

improvement with increasing initial measurement altitudes if the attitude errors could

be reduced to a lower level. The larger growth of the position cross track covariance

is due to the larger cross track velocity uncertainty, which is a consequence of the

large and growing yaw channel uncertainty.

The velocity errors shown in Figure 5-24 exhibit similar trends to those of the

MIMU/MER scenario (Figure 5-12). The major differences are that this LN200 case

generally has larger errors throughout the trajectory, and the altitude rate channel

shows more differentiation according to altitude activation.

The attitude errors in Figure 5-25 exhibit similar covariance improvements to

those seen in the velocity error covariance. The performance is similar in character

to that of the MIMU/MER scenario (Figure 5-13), with the exception of the attitude

errors being larger in magnitude.
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Figure 5-23: Augmented LN200\MER Altitude Study – Position Errors
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Figure 5-24: Augmented LN200\MER Altitude Study – Velocity Errors
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Figure 5-25: Augmented LN200\MER Altitude Study – Attitude Errors
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5.7 Scenario 4: LN200/MSP Sensor Suite

This scenario consists of the LN200 IMU with the MSP-type altimeter and velocime-

ter. The LN200 provides comparable accelerometer performance to that of the MIMU

system, but much lower gyro performance. Details of the initial state error covariance

for this instrument configuration are provided in Appendix E.

A limited Monte Carlo analysis shows a failure of the navigation filter upon mea-

surement update. This problem with the filter results from the low performance of

the LN200 gyros, which allows the attitude covariance to grow to large angle uncer-

tainties of nearly 180◦ in roll after 12 hours of coast to EI. The measurement partial

matrix within the extended Kalman filter is linearized assuming small angles. For the

large attitude errors seen using the LN200, this assumption breaks down and causes

the filter to fail due to nonlinearities.

Figures 5-26 through 5-28 present the principal state errors for this limited Monte

Carlo analysis. Before measurements are processed, the error covariance is growing

in many of the states to very large uncertainties. The 3-σ uncertainty level (heavy

bounding line) fails to provide good state error predictions upon processing of the

altimeter measurements. This breakdown causes large, sudden velocity and position

state estimate errors.
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Figure 5-26: LN200\MSP Scenario: Attitude Error Monte Carlo Analysis
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Figure 5-27: LN200\MSP Scenario: Velocity Error Monte Carlo Analysis
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Figure 5-28: LN200\MSP Scenario: Position Error Monte Carlo Analysis
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5.7.1 Potential Improvements

As in the previous LN200 navigation scenario, this problem can be addressed with a

nonlinear filter in the navigation system to process sensor measurements or a supple-

ment to the attitude estimation process with additional instrumentation.

Again, the solution examined in this analysis is to assume that the entry vehi-

cle has access to a star camera instrument up to one hour prior to entry interface.

This would allow the vehicle to perform an attitude measurement update and then

propagate this new initial state error covariance forward in time. Details of this new

EI-1 hour state error covariance for this instrument configuration are provided in

Appendix E.

A limited Monte Carlo analysis for this proposed configuration shows that the

filter performs reasonably well for this augmented entry scenario. Error covariance

trends follow closely those seen in the MIMU/MSP scenario. The Monte Carlo results

for this case are presented in Appendix F.

5.7.2 Altitude Activation Study

The altitude study is performed on this augmented LN200/MSP sensor configuration.

The initial measurement altitudes under examination are: 16km, 10.2km, 8.75km,

and 4km. The case with no measurement updates (only inertial navigation) is in-

cluded for comparison. The 8.75km case is the nominal scenario for the ARES mis-

sion. 10.2km corresponds to supersonic parachute deployment. The remaining two

altitudes are chosen as extreme high and low cases.

For this scenario, increasing the activation point of the altimeter produces very

little improvement in the final position uncertainty (Figure 5-29). The highest altitude

sensor activation shows some improvement over the other cases for the downrange and

cross track channels. Comparing this to the MIMU/MSP scenario (Figure 5-17) shows

that this LN200 case has larger downrange and cross track errors, but similar altitude

performance.

The velocity errors shown in Figure 5-30 exhibit similar trends to those of the
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Figure 5-29: Augmented LN200\MSP Altitude Study – Position Errors
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MIMU/MSP scenario (Figure 5-18). The strength in which the improvement occurs

is due to the very precise velocimeter in conjunction with the altimeter measurements.

The attitude errors in Figure 5-31 exhibit similar improvements to those seen in

the velocity error covariance. The performance is similar in character to that of the

MIMU/MSP scenario (Figure 5-19), with the exception of the attitude errors being

larger in magnitude.
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Figure 5-30: Augmented LN200\MSP Altitude Study – Velocity Errors
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Figure 5-31: Augmented LN200\MSP Altitude Study – Attitude Errors
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5.8 Discussion of Results

This navigation performance analysis shows that for the nominal ARES entry and

descent, the MIMU IMU is the appropriate inertial instrument package for use with

the extended Kalman filter navigation system. The LN200 lacks the attitude preci-

sion to maintain the estimated states within the linear operating range of the filter.

This effectively eliminates the LN200 from consideration for this mission under the

nominal use scenario. The LN200 IMU is a cheaper and less massive instrument pack-

age. In scenarios where this is a crucial factor, it would be possible to supplement

the LN200 with additional attitude measurements to allow the navigation system

to operate effectively. To examine the navigation performance of the LN200 in this

situation, an additional star camera attitude measurement update is provided to the

navigation filter one hour prior to EI. Since this augmented LN200 is a departure from

the nominal ARES scenario, presentation of its compiled performance comparison is

provided in Appendix H.

An important fact to notice is that the position uncertainties are extremely large

until sensor measurements are taken. This is a product of initial state uncertainty

that originates with the Deep Space Network (DSN) update 12 hours prior to EI.

The large initial state uncertainty for this scenario makes using the navigation filter

state for guidance maneuvers or parachute deployment prior to measurement update

unreasonable.

MIMU Performance Summary

Comparing the MIMU/MER and MIMU/MSP sensor configurations show the distinct

advantage of using two instruments to provide measurement information into multiple

states of the filter. Figures 5-32 through 5-34 compare the navigation uncertainty

for these two instrument packages being flown on the nominal (8.75km instrument

activation) scenario.

Altitude errors over the trajectory duration show similar results between the two

sensor packages. This is because the two altimeters have relatively similar perfor-
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mance specifications, and altimeter performance dominates this channel of position

error. In downrange and cross track errors, though, the MSP altimeter/velocimeter

package is able to reduce uncertainty by about 5 km as compared to the MER al-

timeter. Velocity errors exhibit significant improvement when using the MSP package

over the MER altimeter. This is explained by the velocimeter providing measurement

information directly into the velocity state, while the other case must improve velocity

errors through correlations with the measurements entering the position state. Atti-

tude errors exhibit a similar dramatic improvement. The strong coupling of attitude

states with the velocity states receiving the measurement information also explains

this.
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Figure 5-32: Nominal MIMU Scenario: Position Error Comparison

Tables 5.1 through 5.3 present the final primary state 3-σ uncertainties for the

nominal entry and descent scenario. The data provides the performance of the

MIMU/MER and MIMU/MSP sensor configurations and shows the improvement

achieved through use of the MSP sensor package. Again, the data shows that the

addition of a velocimeter measurement provides moderate uncertainty improvements
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Figure 5-33: Nominal MIMU Scenario: Velocity Error Comparison

0 50 100 150 200 250
0

2

4

6

R
o

ll 
A

n
g

le
 E

rr
o

r 
[d

eg
]

0 50 100 150 200 250
0

1

2

3

4

5

P
it

ch
 A

n
g

le
 E

rr
o

r 
[d

eg
]

0 50 100 150 200 250
0

1

2

3

4

5

time [s]

Y
aw

 A
n

g
le

 E
rr

o
r 

[d
eg

]

MER − Altimeter
MSP − Altimeter, Velocimeter

Figure 5-34: Nominal MIMU Scenario: Attitude Error Comparison
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within the position state, but dramatic improvements within the velocity and attitude

states.

Downrange Cross track Altitude

MIMU/MER 12.40 [km] 10.21 [km] 1.16 [km]

MIMU/MSP 6.79 [km] 5.51 [km] 0.96 [km]

MSP improvement 58% 60% 19%

Table 5.1: Final Position Uncertainty (3-σ)

Downrange Cross track Altitude

MIMU/MER 37.80 [m/s] 42.08 [m/s] 10.65 [m/s]

MIMU/MSP 0.90 [m/s] 0.83 [m/s] 1.52 [m/s]

MSP improvement 191% 192% 150%

Table 5.2: Final Velocity Uncertainty (3-σ)

Roll Pitch Yaw

MIMU/MER 2.78 [deg] 2.23 [deg] 2.86 [deg]

MIMU/MSP 0.27 [deg] 0.17 [deg] 0.22 [deg]

MSP improvement 165% 172% 171%

Table 5.3: Final Attitude Uncertainty (3-σ)
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Figures 5-35 through 5-37 show only the terminal principal state errors as a func-

tion of initial measurement altitude. Using the MSP altimeter/velocimeter consis-

tently reduces the final state uncertainties. Selection of one sensor package over

another, though, depends on the specific mission requirements.

If final position knowledge is of greatest importance, the MSP package performs

better, but only marginally. Figure 5-35 shows that there is little improvement in

final position error by increasing the altitude of initial measurements. This is a sig-

nificant finding because an additional cost, mass, and technology development is likely

required to move the initial altitude of measurements above the nominal (8.75km)

location. One reason is that the entry vehicle heat shield hides the instrumenta-

tion up to this point. Activation before this point requires early jettison of the heat

shield or a new approach to sensor design in order to allow it to sense through or

around this shield. Sensor activation at a higher altitude also requires a more pow-

erful sensor package (due to signal attenuation), which generally drives up cost and

mass of the entry vehicle. If the mission requires precise final velocity or attitude

knowledge, then the MSP package shows significant performance improvement. Per-

formance differences between the MSP and MER packages range almost up to two

orders of magnitude for velocity uncertainty and one order of magnitude for attitude

uncertainty. An interesting trend of these results is that increased activation altitude

reduces the performance gap between the MER and MSP sensor packages for velocity

and attitude uncertainty.

For guided entry vehicles, such as the Mars Science Lab (MSL), precise naviga-

tion information is important early in the entry and descent phase. In this case,

early sensor measurements provide the advantage of precise navigation sooner in the

vehicle trajectory. The earlier the sensor activation occurs, the more time the guid-

ance system has to make corrective trajectory maneuvers. In addition, the potential

range of the entry vehicle is extended by gaining precise navigation (and consequently

control authority) as early as possible in the entry and descent. Developing methods

of altimeter/velocimeter sensing at higher altitudes is crucial if precise navigation is

needed throughout a significant portion of the entry and descent trajectory. This nav-
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igation knowledge improvement is even more significant if measurements can occur

before parachute deployment. This is a consequence of the entry vehicle being more

maneuverable and having more control authority during entry compared to the vehi-

cle under parachute descent. However, issues associated with getting measurements

through the heat shield, as previously mentioned, may be a problem.
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Figure 5-35: MIMU Scenario: Terminal Position Error Comparison
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Figure 5-36: MIMU Scenario: Terminal Velocity Error Comparison
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Figure 5-37: MIMU Scenario: Terminal Attitude Error Comparison

In general, initial errors dominate this entry and descent navigation problem.

Attitude errors in particular explain much of the state error growth seen. Error growth

within the attitude channels due to gyro noise, scale factor, and bias is negligible over

the duration of the entry and descent phase of the mission. The dominant source is

the initial attitude error at EI. This error is a function of gyro errors that accumulate

over the 12 hour cruise prior to atmosphere interface. During the cruise the vehicle

spins about its roll axis. This contains pitch and yaw uncertainty, but drives roll

uncertainty to grow relatively large. As the vehicle follows its entry and descent

trajectory, atmospheric and gravity forces cause the vehicle to rotate with respect to

the initial attitude covariance ellipsoid. This rotation transfers the large attitude roll

uncertainty into the pitch and yaw attitude channels. This transfer of roll attitude

error into other channels has a cascade effect through the other principle states via

improper integration of the accelerometer data. This effect is a primary driver for

uncertainty growth in the position and velocity states through the entry and descent

phase. Velocity error growth due to accelerometer noise, scale factor, and bias is a

secondary effect contributing first to the velocity state error growth and second to

the position state error growth.
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Chapter 6

Conclusions

The navigation system is a critical component in the design of a spacecraft. Without

good navigation information, the guidance system is unable to correct for any trajec-

tory dispersions which can jeopardize the mission objectives and possibly the vehicle

survival.

This analysis first develops an atmospheric entry and descent full-state filter.

This filter is used to examine the scenario of Mars entry and descent for the ARES

mission entry vehicle. Under examination are the error covariance trends within the

navigation filter during dead-reckoning navigation and the subsequent change in state

uncertainty as sensor measurements are taken later in the trajectory. The analysis

compares four IMU/altimeter/velocimeter combinations for the nominal ARES entry

and descent profile and then extends the discussion by investigating the effect of the

altitude at which the sensor become activated.

Analysis of the entry and descent navigation scenario using the LN200 IMU shows

that its poor gyro accuracy builds up very large attitude errors after the 12 hour

cruise to atmospheric entry interface. This causes failure of the extended Kalman

filter due to nonlinearities upon processing sensor measurements. This problem can

be overcome with additional attitude measurements before or during the entry and

descent trajectory. To examine the performance characteristics of the LN200 IMU, it

is assumed that the entry vehicle has access to a star camera instrument up to one hour

prior to entry interface. This augmented entry scenario provides improved EI initial

131



conditions that allow for reasonably filter performances. Since this augmented LN200

is a departure from the nominal ARES scenario, results are considered separately from

the MIMU scenario results.

The addition of a surface relative velocity measurement to the altimeter mea-

surement was expected to provide significant improvements to the navigation state

uncertainty. The analysis shows that this additional sensor provides only marginal

position uncertainty improvement and significant improvement in the velocity and

attitude uncertainty. The addition of this velocimeter to the baseline altimeter adds

cost and complexity to the entry vehicle, but depending on the mission requirements

this additional position, velocity, and attitude knowledge might be crucial.

Increasing the altitude for initial altimeter/velocimeter activation provides more

time for the sensors to supply measurements to the navigation filter. This was ex-

pected to provide additional precision to the overall estimated state. For the scenarios

under consideration, this produces only marginal improvements in position uncer-

tainty, but relatively large improvements in velocity and attitude uncertainty. In

situations where only final position knowledge is important, there is little advantage

to early sensor activation. If good velocity and attitude information is an important

factor then there is an advantage to early measurements. Examples of this situation

might be a requirement for precise attitude knowledge for science imaging instru-

ments or precise final velocity knowledge for proper engine throttling for a powered

engine descent. A distinct advantage of early sensor activation is that this provides

improved navigation states for a longer portion of the entry and descent trajectory.

This situation is important if the vehicle is being actively guided along a desired tra-

jectory. The specific requirements of the mission under consideration determine what

approach should be taken in regard to initial sensor activation altitude. Increasing the

altitude of initial measurement above the nominal point of heat shield jettison likely

requires additional cost, mass, and technology development. Improvements derived

from this approach must overcome technological hurdles, and possibly at a significant

cost.

Higher precision IMUs were expected to produce significant performance improve-
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ments to the overall entry and descent navigation system due to the assumed dominant

role of IMU errors in covariance predictions. An important finding of this analysis is

that the initial state uncertainty dominates the entry and descent navigation prob-

lem. For this scenario, the initial state uncertainty originates with the Deep Space

Network (DSN) update 12 hours prior to EI. This state uncertainty is so large that

using the navigation filter for guidance maneuvers or parachute deployment prior to

measurement update is unreasonable. State uncertainty growth due to IMU gyro and

accelerometer errors over the course of the short final trajectory is small. Integration

of accelerometer data under the influence of attitude errors causes significant growth

in velocity and position uncertainty. This effect is driven by the near-constant attitude

errors and the effect of vehicle rotation with respect to the attitude covariance ellip-

soid during the trajectory. This has the effect of redistributing attitude errors from

the innocuous attitude roll channel, into the more consequential pitch and yaw atti-

tude channels. This apparent growth in yaw and pitch uncertainty cascades through

the filter states, causing growth in velocity and position uncertainty.

This analysis provides insight into how initial atmospheric entry interface errors

and sensor performance affect the entry and descent navigation problem. In addition,

limitations of the extended Kalman filter for this application are explored. Exten-

sions of this analysis could include investigation into methods for achieving ”pinpoint”

(sub-kilometer) navigation position accuracy. This might include methods for reduc-

ing state uncertainty at atmosphere interface and examination of additional or higher

accuracy measurement sensors. Improvements to initial conditions at entry interface

could focus on reducing roll error so that error transfer into pitch and yaw attitude

channels is less significant. It could also focus on achieving better position/velocity

errors at EI via better Mars approach navigation (eg. improved DSN updates, land-

mark tracking or optical measurements of the Martian moons). Enhancements to

the sensor package during entry, descent, and landing could include improved al-

timeters that have access to surface terrain models or terrain imaging systems that

provide highly accurate surface relative position measurements. This could also in-

clude range/Doppler measurements to surface and/or orbiting beacons. Since the
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IMU errors (gyro and accelerometer bias, scale factor, and misalignment) are not

significant performance drivers, a reduced-state filter excluding these terms might be

realizable without reduced navigation performance. Additional future work could in-

clude tuning of the extended Kalman filter for this application to reduce the number

of states tracked to improve computation performance.
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Appendix A

Simplified Covariance

Measurement Update Formulation

Expanding equation 4.25 and substituting in equation 4.33 in the following way allows

for further simplification of the error covariance matrix update equation [18].
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)
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(
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)
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(
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(A.1)
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Appendix B

Derivation of the Body-Frame

Attitude Error Time Derivative

For information on the vehicle attitude, the navigation filter tracks the estimated

inertial-to-body quaternion (q̂
I→B̂

). The state error covariance tracks the error of this

quaternion to the true inertial-to-body quaternion (q
I→B

), but in terms of three small

angle rotations (δθB) about the body X-Y-Z axis. This error is defined as the small

angle rotation from the true body frame (B) to the estimated body frame (B̂). In

order to formulate the proper state error covariance, the time derivative of these three

attitude angles is required. The error quaternion is given by

q̂
B→B̂

= q
B→I

⊗ q̂
I→B̂

≈
(

δθB/ 2

1

)

(B.1)

The time derivative of this quaternion error is

˙̂q
B→B̂

= q̇
B→I

⊗ q̂
I→B̂

+ q
B→I

⊗ ˙̂q
I→B̂

≈
(

δθ̇B/ 2

0

)

(B.2)

where

q̇
B→I

= 1
2

q
B→I

⊗ ωI

I/B
(B.3)
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˙̂q
I→B̂

= 1
2

q̂
I→B̂

⊗ ω̂B

B/I

= 1
2

q̂
I→B̂

⊗
[

ωB

B/I
+ δωB

B/I

] (B.4)

The term ωI
I/B

is the angular rate of the inertial frame with respect to the body frame,

coordinitized in the inertial coordinate system, and ω̂B
B/I

is the angular rate of the

body frame with respect to the inertial frame, coordinitized in the body coordinate

system. Substituting equations B.3 and B.4 into equation B.2 produces

˙̂q
B→B̂

=
(

1
2

q
B→I

⊗ ωI

I/B
⊗ q̂

I→B̂

)

+
(

1
2

q
B→I

⊗ q̂
I→B̂

⊗
[

ωB

B/I
+ δωB

B/I

])

(B.5)

Replacing both occurrences of q̂
I→B̂

in equation B.5 with

q̂
I→B̂

= q
I→B

⊗ q̂
B→B̂

and using the relationships

ωB

I/B
= q

B→I
⊗ ωI

I/B
⊗ q

I→B

and

q
B→I

⊗ q
I→B

=







0
0
0
1






= {Identity}

allows the equation to simplify into

˙̂q
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= 1
2

ωB
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⊗ q̂

B→B̂
+ 1

2
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⊗

[

ωB

B/I
+ δωB
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(B.6)

Equation B.6 can be rewritten as

˙̂q
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= −1

2

(
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(B.7)
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Converting equation B.7 into quaternion matrix multiplication and dropping the ωB

“body frame with respect to inertial frame” subscript for clarity results in

˙̂q
B→B̂

= − 1

4





ωB
⊗

ωB

(−ωB)T 0





(

δθB

2

)

+
1

4





(2I + δθB
⊗
) δθB

(−δθB)T 2





(

ωB+ δωB

0

)

(B.8)

Expanding the vector-matrix multiplication produces

˙̂q
B→B̂

= − 1

4





ωB× δθB + 2ωB

(−ωB)T δθB





+
1

4





2(ωB+ δωB) + δθB× (ωB+ δωB)

(−δθB)T (ωB+ δωB)





(B.9)

Neglecting second-order terms and equating the result with the approximate ˙̂q
B→B̂

shown in equation B.2 gives





δθ̇B/ 2

0



 ≈





−(ωB× δθB)/4 − ωB/2

(ωB)T δθB/4





+





ωB/2 + δωB/2 + (δθB× ωB)/4

(−δθB)T ωB/4





(B.10)

Extracting the vector portion of the above expression provides the approximate rela-

tionship for the time derivative of the three angle body-frame attitude error.

δθ̇B = δωB − ωB× δθB (B.11)
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Appendix C

Mars Topographic Analysis

This appendix discusses a Mars topographic statistical analysis used for the radar

altimeter error model. This model is used within the navigation filter to estimate

the measurements of the altimeter. Two of the error terms within the model (ka,

xt) are elements of the state and therefore have their statistical behavior represented

within the state error covariance. As discussed in Section 4.2.2, the estimated radar

altimeter measurement is modeled as

ĥm = ĥ
(

1 + k̂a

)

+ x̂t (4.40)

The Markov process bias, xt, is a representation of the variations in surface topogra-

phy seen by the altimeter. The discrete dynamic description of this Markov process

is

xt i+1
= e

−∆t
τ xt i

+ wi (4.42)

where wi is the driving white noise term and

xt 0
∼ N(0, σ2

s)

wi ∼ N(0, 2 σ2
s

τ
∆t)

The time constant is defined as

τ =
d

vrel
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and σ2
s is the steady-state variance of xt. The constant d is a reference length of

major topographic features and vrel is the surface relative velocity. The time constant

is inversely proportional to relative velocity because increased velocity would result

in fast variations in topography below the vehicle. This corresponds to a decrease in

the time constant, (vrel → ∞) ⇔ (τ → 0), meaning that the Markov term should

approach white noise as velocity goes to infinity. The converse of this makes physical

sense as well. A zero surface velocity would have the topography below appearing

as a constant random value. This corresponds to an infinite time constant, (vrel →
0) ⇔ (τ → ∞).
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Figure C-1: Mars Topography for Entry Trajectory Ground Track

A sample of the Mars topography beneath the nominal flight trajectory was col-

lected using data from the Mars Orbiter Laser Altimeter (MOLA) aboard the Mars

Global Surveyor (MGS) spacecraft. Figure C-1 shows the collected data as planet

radius variations versus the traversed ground track distance. The data mean and 3-σ
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values are represented as horizontal dashed lines on the plot. The standard deviation

(σs) of the data indicates a vertical scatter of the topography around the mean radius,

ms. The reference length of major topographic features, d, is a horizontal measure of

distance. The resulting statistics from the topography are listed in Table C.1.

Description Value Units

topography mean, ms 3388.373 [km]

topography standard deviation, σs 0.8379 [km]

reference length, rmars 90 [km]

Table C.1: Mars Topography Statistics
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Appendix D

State Dynamics Equation

The state dynamics equation is defined as

δẋ = A δx + B ǫ (4.70)

where A is the state dynamics matrix, δx is the state error vector, and B is the

coefficient matrix for the white noise vector ǫ. These terms are defined as

δx =
(

δr I δv I δθB δbg δsg δγg δba δsa δγa δxt δka δkv

)T

ǫ =

















ǫa

ǫg

ǫ
accel

w
















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E
[

ǫǫT
]

= Qǫ

where

Qǫ =

















Qa 0 0 0

0 Qg 0 0

0 0 Q
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


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

See equation 4.80, page 76.
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Appendix E

Initial Filter Covariance at

Atmosphere Interface

Figure E-1: 12 Hour Cruise Trajectory Prior to Atmosphere Interface

As the entry vehicle approaches Mars, final navigation measurements are used

to initialize the onboard navigation filter. This update is performed using the Deep

Space Network (DSN) earth-based antenna for position and velocity and a cruise

stage mounted star camera for attitude. This occurs approximately twelve hours

prior to atmospheric entry interface (EI). From this point, the entry vehicle separates

from the cruise stage and begins its coast to EI. The position and velocity correlation

matrix for this initial EI-12 hour point is provided below.
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















1 0.9262992 0.6755059 −0.9967651 −0.8826522 −0.745258

0.9262992 1 0.4450082 −0.931506 −0.8566474 −0.5574377

0.6755059 0.4450082 1 −0.6388666 −0.7219254 −0.9516894

−0.9967651 −0.931506 −0.6388666 1 0.8488419 0.6976657

−0.8826522 −0.8566474 −0.7219254 0.8488419 1 0.8665107

−0.745258 −0.5574377 −0.9516894 0.6976657 0.8665107 1

















This matrix is in the LVLH coordinate system organized in the order of altitude,

cross track, and downrange. The corresponding 1-σ position and velocity errors in

meters and meters-per-second are

x̃ =
(

1.643865771e + 04 4.942183642e + 03 3.991479429e + 03
)

ṽ =
(

2.768808352e − 01 1.386667238e − 01 9.012280708e − 02
)

The star camera attitude measurement system provides attitude information to the

navigation system with a 20 arcsecond (1-σ) accuracy per axis.

The entry vehicle navigation filter uses the initial state information and this as-

sociated uncertainty to propagate the state information through time. No additional

external measurements or navigation aids are available during this final cruise phase.

The IMU gyros are used during this ”dead-reckoning” orbital cruise period to assist

in the state estimation. Two IMU systems are under consideration. The Honeywell

MIMU and Litton LN200. Using the performance specifications of the gyros within

these two IMUs, the estimated states and error covariance are propagated forward in

time to EI. The resulting position/velocity error covariance matrix associated with

the ARES entry interface location after this 12 hour cruise is

















7.3472E+06 1.1651E+07 −1.5816E+07 −9.1142E+03 −3.0358E+02 −8.6052E+03

1.1651E+07 2.6611E+07 −4.1133E+07 −2.0888E+04 1.3634E+03 −2.3854E+04

−1.5816E+07 −4.1133E+07 6.9142E+07 3.3660E+04 −4.3329E+03 4.0160E+04

−9.1142E+03 −2.0888E+04 3.3660E+04 1.6924E+01 −1.6104E+00 1.9336E+01

−3.0358E+02 1.3634E+03 −4.3329E+03 −1.6104E+00 9.6137E−01 −2.5465E+00

−8.6052E+03 −2.3854E+04 4.0160E+04 1.9336E+01 −2.5465E+00 2.3540E+01
















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This matrix is presented in the inertial X-Y-Z coordinate system in meters and

meters-per-second. The entry vehicle is spinning during the 12-hour cruise. The

resulting roll/pitch/yaw attitude errors are presented in Table E.1. These are the

attitude errors that result from a 12 hour cruise to EI using the specified gyros.

MIMU LN200

roll [rad] 0.03767 0.75352

pitch [rad] 0.00037 0.00435

yaw [rad] 0.00037 0.00435

Table E.1: Entry Interface Attitude Errors

For a secondary analysis, the LN200 is updated with a star camera measurement

one hour prior to EI. The pre-EI analysis is executed again, but from one hour before

EI and with the attitude state uncertainty reset to 20 arcseconds for each attitude

axis. The resulting EI attitude uncertainty for this scenario is seen in Table E.2.

LN200

roll [rad] 0.06281

pitch [rad] 0.00126

yaw [rad] 0.00126

Table E.2: LN200 Entry Interface Errors for EI-1Hr Attitude Update
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Appendix F

Additional Monte Carlo Results

Figures F-1 through F-3 present the LN200/MER limited run Monte Carlo results

for the scenario where a star camera attitude update is made available one hour prior

to atmospheric interface. Figures F-4 through F-6 present the same results for the

LN200/MSP instrument scenario.
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Figure F-1: Augmented LN200\MER Scenario: Attitude Error Monte Carlo Analysis
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Figure F-2: Augmented LN200\MER Scenario: Velocity Error Monte Carlo Analysis

155



0 50 100 150 200 250
−3

−2

−1

0

1

2

3
x 10

4

D
R

 P
o

si
ti

o
n

 E
rr

o
r 

[m
]

0 50 100 150 200 250
−1.5

−1

−0.5

0

0.5

1

1.5
x 10

4

C
T

 P
o

si
ti

o
n

 E
rr

o
r 

[m
]

0 50 100 150 200 250
−1.5

−1

−0.5

0

0.5

1

1.5
x 10

4

A
lt

 P
o

si
ti

o
n

 E
rr

o
r 

[m
]

time [s]

Figure F-3: Augmented LN200\MER Scenario: Position Error Monte Carlo Analysis
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Figure F-4: Augmented LN200\MSP Scenario: Attitude Error Monte Carlo Analysis
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Figure F-5: Augmented LN200\MSP Scenario: Velocity Error Monte Carlo Analysis
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Figure F-6: Augmented LN200\MSP Scenario: Position Error Monte Carlo Analysis
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Appendix G

Measurement Sensitivity Matrix

Derivation

Altimeter Partial Derivative

The derivation of the altimeter partial derivative is as follows. The altimeter model

is formulated as

hm = h (1 + ka) + xt + νa

where hm is the measured distance, h is the true distance, ka is the scale factor, xt is

the Markov topography process, and νa is the sensor noise. The partial with respect

to several of the states is zero.

∂hm

∂v I
=

∂hm

∂bg

=
∂hm

∂sg

=
∂hm

∂γg

=
∂hm

∂ba

=
∂hm

∂sa

=
∂hm

∂γa

=
∂hm

∂kv

= 0

The partial with respect to xt is
∂hm

∂xt

= 1

The partial with respect to ka is
∂hm

∂ka

= h
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The partial with respect to position is

∂hm

∂r I
= (1 + ka)

∂h

∂r I

The partial of h with respect to position is found by differentiating the quadratic

equation of geometry

∣

∣r I
∣

∣

2
+ 2 r I · (T

B→I
iB
a ) h + h2 = R2

s

with respect to position.

2(r I)T + 2(r I)T T
B→I

iB
a

∂h

∂r I
+ 2 h

∂

∂r I

(

(r I)T T
B→I

iB
a

)

+ 2 h
∂h

∂r I
= 0

(r I)T + (r I)T T
B→I

iB
a

∂h

∂r I
+ h(iB

a )T T
I→B

+ h
∂h

∂r I
= 0

Solving this equation for the partial derivative produces

∂h

∂r I
=

−
[

(r I)T + h (iB
a )T T

I→B

]

(r I)T T
B→I

iB
a + h

The partial with respect to attitude is

∂hm

∂θ
= (1 + ka)

∂h

∂θ

The partial of h with respect to attitude is also found by differentiating the quadratic

equation of geometry

h
∂

∂θ

(

2(r I)T T
B→I

iB
a

)

+
(

2(r I)T T
B→I

iB
a

)∂h

∂θ
+ 2 h

∂h

∂θ
= 0

h
∂

∂θ

(

2(r I)T T̂
B̂→I

(I − δθ⊗)iB
a

)

+
(

2(r I)T T
B→I

iB
a

)∂h

∂θ
+ 2 h

∂h

∂θ
= 0

h
∂

∂θ

(

2(r I)T T̂
B̂→I

(−δθ⊗)iB
a

)

+
(

2(r I)T T
B→I

iB
a

)∂h

∂θ
+ 2 h

∂h

∂θ
= 0
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h
∂

∂θ

(

2(r I)T T̂
B̂→I

(iB
a )⊗ δθ

)

+
(

2(r I)T T
B→I

iB
a

)∂h

∂θ
+ 2 h

∂h

∂θ
= 0

Solving this equation for the partial derivative produces

∂h

∂θ
=

−
[

h (r I)T T̂
B̂→I

(

iB
a

)

⊗

]

(r I)T T
B→I

iB
a + h

Velocimeter Partial Derivative

The derivation of the velocimeter partial derivative is as follows. The model for this

instrument is formulated as

vB
m = T

I→B

(

v I − vs

)

(1 + kv) + νv

where vB
m is the surface relative measured velocity vector in body coordinates, v I

is the true inertial vehicle velocity, vs is the planet surface velocity, kv is the scale

factor, and νv is the sensor noise. The surface velocity is defined as

vs = ω × Rs

where ω is the rotational rate of the planet and Rs is a vector to the point where the

radar beam intercepts the planet surface. It is defined as (see Figure 3-4)

Rs = r I + h
(

T
B→I

iB
a

)

The partial with respect to several of the states is zero.

∂vB
m

∂bg

=
∂vB

m

∂sg

=
∂vB

m

∂γg

=
∂vB

m

∂ba

=
∂vB

m

∂sa

=
∂vB

m

∂γa

=
∂vB

m

∂xt

=
∂vB

m

∂ka

= 0

The partial with respect to velocity is

∂vB
m

∂v I
=

∂

∂v I

(

T
I→B

v I(1 + kv)
)

= (1 + kv)TI→B
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The partial with respect to kv is

∂vB
m

∂kv

=
∂

∂kv

(

T
I→B

(v I − vs)(1 + kv)
)

= T
I→B

(v I − vs)

The partial with respect to position is
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∂r I
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−T
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(1 + kv)
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The partial with respect to attitude is
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)

= −(1 + kv)

[

∂

∂θ
(T

I→B
(θ)vs) +

∂

∂θ
(T

I→B
vs(θ))

]

= −(1 + kv)

[

∂

∂θ
((I + δθ⊗)T̂

I→B̂
vs) + T

I→B

∂

∂θ
( h ω⊗T

B→I
iB
a )

]

= −(1 + kv)

[

∂

∂θ
(δθ⊗T̂

I→B̂
vs) + T

I→B

∂

∂θ
( h ω⊗T

B→I
iB
a )

]

= (1 + kv)
(

T̂
I→B̂

vs

)

⊗

− (1 + kv) T
I→B

[

ω⊗T
B→I

iB
a

∂h

∂θ
+ h ω⊗

∂

∂θ
(T

B→I
iB
a )

]

= (1 + kv)
(

T̂
I→B̂

vs

)

⊗

− (1 + kv) T
I→B

[

ω⊗T
B→I

iB
a

∂h

∂θ
+ h ω⊗T̂

B̂→I

∂

∂θ
((I − δθ⊗)iB

a )

]

= (1 + kv)
(

T̂
I→B̂

vs

)

⊗

− (1 + kv) T
I→B

[

ω⊗T
B→I

iB
a

∂h

∂θ
+ h ω⊗T̂

B̂→I

∂

∂θ
(−δθ⊗iB

a )

]

= (1 + kv)
(

T̂
I→B̂

vs

)

⊗

− (1 + kv) T
I→B

ω⊗

[

T
B→I

iB
a

∂h

∂θ
+ h T̂

B̂→I
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∂h
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(iB
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Appendix H

LN200 Results Comparison

Figures H-1 through H-3 compare the navigation uncertainty for the nominal (8.75km

instrument activation) scenario using the LN200 IMU combined with the two in-

strument packages under consideration: the MER altimeter, and the MSP altime-

ter/velocimeter.

Figures H-4 through H-6 show only the terminal principal state errors as a function

of initial measurement altitude for this same entry and descent scenario.

165



0 50 100 150 200 250
1

1.5

2

2.5

3
x 10

4

D
R

 P
o

si
ti

o
n

 E
rr

o
r 

[m
]

0 50 100 150 200 250
0

0.5

1

1.5

2

2.5
x 10

4
C

T
 P

o
si

ti
o

n
 E

rr
o

r 
[m

]

0 50 100 150 200 250
0

5000

10000

15000

A
lt

 P
o

si
ti

o
n

 E
rr

o
r 

[m
]

Time [sec]

MER − Altimeter
MSP − Altimeter, Velocimeter

Figure H-1: Nominal LN200 Scenario: Position Error Comparison
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Figure H-2: Nominal LN200 Scenario: Velocity Error Comparison
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Figure H-3: Nominal LN200 Scenario: Attitude Error Comparison
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167



0

10

20

30

40

50

60

70

80

90

2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0

Initial Altitude for Measurments [km]

T
er

m
in

al
 V

el
oc

ity
 U

nc
er

ta
in

ty
 (

3 
- σ

) 
[m

/s
]

MER - Downrange

MER - Crosstrack

MER - Altitude

MSP - Downrange

MSP - Crosstrack

MSP - Altitude

Figure H-5: LN200 Scenario: Terminal Velocity Error Comparison
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Figure H-6: LN200 Scenario: Terminal Attitude Error Comparison
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