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Abstract

Stem cell research is one of the most promising and cutting-edge fields in the medical
sciences. It is believed that this innovative research will lead to life-saving treatments in
the coming years. As part of their work, stem cell researchers must first determine which
of their stem cell colonies are of sufficiently high quality to be suitable for experimental
studies and therapeutic treatments. Since colony texture is a major discriminating feature
in determining quality, we introduce a non-invasive, semi-automated texture-based stem
cell colony classification methodology to aid researchers in colony quality control.

We first consider the general problem of textural image segmentation. In a new ap-
proach to this problem, we characterize image texture by the subband energies of the
image’s wavelet decomposition, and we employ a non-parametric support vector machine
to perform the classification that yields the segmentation. We also adapt a paramet-
ric wavelet-based classifier that utilizes the Kullback-Leibler distance. We apply both
methods to a set of benchmark textural images, report low segmentation error rates and
comment on the applicability of and tradeoffs between the non-parametric and parametric
segmentation methods. We then apply the two classifiers to the segmentation of stem cell
colony images into regions of varying quality. This provides stem cell researchers with a
rich set of descriptive graphical representations of their colonies to aid in quality control.
From these graphical representations, we extract colony-wise textural features to which
we add colony-wise border features. Taken together, these features characterize overall
colony quality. Using these features as inputs to a multiclass support vector machine, we
successfully categorize full stem cell colonies into several quality categories. This method-
ology provides stem cell researchers with a novel, non-invasive quantitative quality control
tool.
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Chapter 1

Introduction

Stem cell research is one of the most promising and cutting-edge fields in the medical sci-
ences. From the understanding of the core mechanisms of human growth and sustainment
to the development of novel medical treatments, the potential benefits of this research are
far reaching.

The hallmark of the stem cell that drives the current research frenzy is its unique
ability to develop from a generic, undifferentiated state into a wide range of specialized
human cells. For example, a single, unspecialized stem cell may specialize to become a
blood cell, bone cell, brain cell or many of the numerous other human cells necessary to
sustain life. While stem cell research is relatively young—beginning in 1998 with the first
sustained culture of human embryonic stem cells—understanding of the biology of these
cells and the medical treatments they can potentially provide has steadily progressed.

For example, by studying the process by which stem cells specialize, scientists can
systematically and safely learn the specific genetic and molecular triggers that cause
unspecialized cells in humans to differentiate into various types of specialized cells. Since
abnormalities in this process of specialization and cell growth contribute to many severe
diseases such as cancer and birth defects, an understanding of the molecular and genetic
causes will help researchers treat or prevent these diseases in humans [33].

Additionally, the medical treatments that could potentially arise from stem cell re-
search are numerous and powerful. One of the most ambitious treatments is transplanta-
tion therapy. Presently, only organs and tissues transplanted directly from other living or
recently deceased human beings are used in this treatment, and the demand for human
transplants exceeds the supply. With stem cell transplantation therapy, stem cells would
be induced to specialize into the needed replacement tissues or organs providing a limitless
supply of healthy transplants. Furthermore, stem cells could be used to treat conditions
that even human transplantation cannot. Individual or groups of cells needed to cure such
conditions as strokes, burns, Parkinson’s, Alzheimer’s and heart disease could be easily
generated from stem cells [33].

Despite the many avenues stem cell research is taking today, medical researchers in the
field all have the common need for high quality, undifferentiated lines of stem cell colonies
on which to perform their research. While stem cell colonies can be readily cultured in
the lab, researchers need to quickly and reliably determine which of the cultured colonies
are sufficiently healthy for use in their experiments and therapies. The current state
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of the art for this quality control process involves either direct visual inspection by an
expert stem cell microscopist or the performance of invasive, destructive biological tests.
The visual approach quickly becomes impractical considering the large number of colonies
needed for research and therapeutic purposes. In the biological test approach, the resulting
destruction of the inspected colonies is a significant drawback. Thus, this thesis is focused
toward providing novel semi-automated, non-invasive, image-based computational tools
to aid the medical researcher in the task of stem cell colony quality control.

However, that is not the only goal of this thesis. In fact, the method that we use and
expand upon to approach the stem cell application is a notably more general problem,
namely that of textural image segmentation. This is the problem of dividing, or segment-
ing, an image into various regions based on the texture of those regions. This general
problem relates well to the stem cell application since, as we discuss in more detail later,
stem cell colony texture is one of the most influential factors in distinguishing between
areas of high and low quality within and among stem cell colonies. Thus, by studying
solution methods to the general problem of textural image segmentation, we provide a
strong basis for both our approach to the stem cell problem and to various other uses of
the methods.

1.1 Medical Applications of Texture Classification

Throughout this thesis, as we encounter new topics and problems, we provide overviews of
and references to the various solution approaches taken by past researchers. Thus, in this
section, we do not intend to provide a thorough review of past work in the many fields on
which we touch; we leave that effort to the thesis body itself. Instead, as a motivation for
the usefulness and necessity of our work, we provide a few examples of the use of texture
classification methods to various medical applications.

Surprisingly, when we consider what has previously been accomplished in creating
non-invasive, image-based computational tools for stem cell colony analysis, we do not
find an established body of literature. However, the use of texture-based analysis can be
found in other medical fields, most notable toward cancer research.

For example, Rubegni et. al. use textural features to distinguish between harmless skin
lesions and cancerous melanomas. In fact, of all the various features considered in their
study, the textural contrast feature shows the most discriminative power [43]. Handels
et. al. also consider the problem of melanoma classification using texture features. They
propose the use of co-occurrence, Fourier and fractal textural features with a neural
network classifier to achieve a classification performance of 97.7% [16]. Gerger et. al.
also use co-occurrence texture features, along with color and gray level features, both
to segment skin lesions from the surrounding skin area and to diagnose the segmented
regions as benign or malignant. They employ the CART and nearest neighbor classifiers
for these tasks [14].

The similarities between melanoma and stem cell colony classification do not end with
texture analysis. As mentioned above, in Chapter 5 we consider measures of stem cell
colony border quality, and we find similar work among melanoma researchers. For exam-
ple, Grana et. al. propose a novel method of quantifying border sharpness in melanoma
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images using gradient measures [15]. Lee outlines various methods for the analysis of
border irregularity, proposes a new approach and applies his approach to the task of di-
agnosing cancerous melanomas [28]. While we do not explicitly use these approaches,
they suggest the applicability of previous research to the problem of stem cell colony
segmentation and categorization.

In addition to these applications to melanoma detection, textural segmentation has
been used as a step in the process of classifying colon cancer images [38] and in the
successful discrimination between malignant and benign breast cancer images [48].

Overall, we feel that the wide-ranging usefulness of texture-based image analysis by
researchers in various medical fields suggests that an equally fruitful landscape awaits in
the realm of stem cell research.

1.2 Thesis Overview

To provide a brief glimpse of our specific approaches to both the general problem of
textural image segmentation and to the stem cell application, we summarize here the
content of each chapter of this thesis, outlining the methods we employ, adapt or introduce
in each.

Chapter 2: Machine Learning for Texture Analysis

Chapter 2 serves as a technical literature review of the various approaches to the problem
of textural image segmentation. We also use it to present in detail the specific methods we
choose to employ in this thesis. We pose the textural image segmentation problem in the
context of the machine learning classification paradigm and its two steps of feature rep-
resentation and classification. We next discuss various common methods of representing
the textural characteristics of images, focussing on the specific method that we employ,
the wavelet energy feature. We then turn to the classification problem by outlining a few
of the more popular non-parametric methods as motivation for the discussion of the sup-
port vector machine classifier that we find superior. We motivate the development of the
support vector machine by appealing to its theoretical underpinnings before describing
its formulation as an optimization problem and discussing its unique features. Finally,
we detail the parametric wavelet-based Kullback-Leibler distance classifier of Vetterli and
Do that we adapt for the task of textural image segmentation.

Chapter 3: Benchmark Method Analysis

In Chapter 3 we apply the methods developed in Chapter 2 to the task of textural seg-
mentation of benchmark images. We formalize the training and test algorithms of both
the non-parametric support vector machine and parametric Kullback-Leibler distance
method, apply the algorithms to 18 pairs of benchmark images and report the perfor-
mance of both methods in segmenting the 18 pairs into the two textural fields comprising
each. The excellent performance of both methods on the benchmark images gives us con-
fidence in applying the methodology to the stem cell application. Finally, we comment
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Figure 1-1: Hierarchical Two Tiered Stem Cell Analysis Paradigm

on the applicability and relative merits of non-parametric and parametric classifiers for
the task of textural image segmentation.

Chapter 4: Stem Cell Application: Qualitative Interior Textural Segmentation

In Chapter 4, we motivate and introduce the stem cell application that is the major
focus of this thesis. We discuss the medical aspects of the problem and find that the
textural characteristics of stem cell colonies have a strong influence on their overall quality
and suitability for research. This suggests that the application of our textural image
segmentation methods of Chapters 2 and 3 would constitute a contribution to the field of
stem cell research. We frame this contribution as a two-tiered, hierarchical methodology
that creates both qualitative and quantitative measures of stem cell quality. Figure 1-1
diagrams this hierarchical paradigm showing work accomplished in this thesis with shaded
blocks and solid lines. Future work is shown as unshaded blocks with dotted lines. We
consider the Tier 1 analysis in Chapter 4 and the Tier 2 work in Chapter 5.

The Tier 1 analysis creates qualitative graphical representations of the interior regions
of stem cell colonies to aid researchers in pinpointing areas of good and bad quality in
their colonies. This is basically an application of the procedures of Chapter 3 applied
to real images of stem cell colonies. We propose practical uses for each of the graphical
outputs and discuss the effects of the various parameter settings that need to be specified
in the process.

Chapter 5: Stem Cell Application: Quantitative Image Categorization

The Tier 2 work in Chapter 5 expands on the Tier 1 analysis by extracting colony-wise
features from the Tier 1 outputs and introducing additional colony-wise features based on
the quality of the border of each colony. It then uses a multiclass support vector machine
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to categorize each full stem cell colony into one of several quality categories based on
the colony-wise features. We report effective categorization rates using these colony-wise
features.

Chapter 6: Summary, Conclusions and Future Work

The purpose of Chapter 6 is to draw the thesis to a close by making unifying conclusions
regarding the methods we have introduced for the problem of textural image segmentation
and the application and extension of those methods to create analysis tools for the stem
cell research community. We also suggest avenues for future work and applications of the
methodology that we have considered.

1.3 Thesis Contributions

Despite the abundance of work already accomplished in the general field of textural image
segmentation, this thesis provides two new contributions.

• We demonstrate the applicability of using the non-parametric support vector ma-
chine classifier with wavelet energy features to the textural segmentation of images.
We report a high success rate of 92.3% over a diverse set of benchmark textural
images.

• We adapt a parametric wavelet-based texture classification method originally pro-
posed for the task of content-based image retrieval to the task of textural image
segmentation. We report a high classification rate of 91.8% over a diverse set of
benchmark textural images.

Additionally, we make three novel advancements to the field of stem cell research.

• We introduce a two-tiered, hierarchical paradigm for the creation of a standard,
automated, non-invasive stem cell quality control tool. Our implementation of this
paradigm represents, to the best of our knowledge, the first known attempt at creat-
ing a routine, non-invasive method for measuring stem cell quality under conditions
favorable to their growth.

• As the first tier of this new paradigm, we perform textural image segmentation
on stem cell colony images to create a rich set of graphical aids to assist medical
researchers in determining the quality of their colonies.

• Employing inputs derived from the first tier, we introduce in the second tier a highly
accurate method for making quantitative categorizations of stem cell colonies based
on overall colony quality. Across a wide range of tests on real stem cell images, we
attain an average performance of 80.0%.
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Chapter 2

Machine Learning for Texture
Analysis

As described in Chapter 1, one of the main thrusts of this thesis is to introduce both
qualitative graphical and quantitative numerical tools to aid stem cell researchers in the
important task of characterizing the quality and health of their stem cell colonies. Based
on the various biological properties of stem cells that we discuss in Chapter 4, we find
that we can accurately pose this problem as one of textural image segmentation. Thus,
before focusing exclusively on the stem cell application, we should consider the theoretical
foundations and technical details of this textural image segmentation problem. That is
the purpose of this chapter.

Since the problem of textural image segmentation is actually a subset of the larger and
more general field of machine learning classification, we begin in Section 2.1 by describing
in generic terms the major aspects and terminology of this broad field. We will see in this
discussion that we can partition the problem into the two steps of feature representation
and classification. When we then turn our focus to textural image segmentation, we use
these two steps to guide our presentation.

Specifically, we delve into the details of textural feature representation in Section 2.2.
We motivate and describe the wavelet-based features that we employ in this thesis. Sec-
tions 2.3 and 2.4 then focus on the classification problem by outlining the non-parametric
support vector machine and parametric Kullback-Leibler distance classifiers that we em-
ploy and whose performance we compare in Chapter 3.

2.1 The Machine Learning Classification Paradigm

In the simplest terms, the field of machine learning attempts to figure out (learn) the pro-
cesses of nature through methods coded into and implemented by a computer (machine)—
hence the intuitive name “machine learning.” However, this definition lacks a certain con-
creteness. Thus, it is our goal in this section to formalize the machine learning problem.
While machine learning techniques are well-suited to a large class of data description
and prediction problems, we focus specifically on the problem of classification. We find
a useful context for the classification problem by posing it in the “Black Box” manner of
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Figure 2-1: The Basic “Black Box”

Section 2.1.1. We follow with descriptions of the two vital parts of the machine learning
classification problem: feature representation and classification method.

2.1.1 The “Black Box” Illustration

Figure 2-1 shows the basic black box description of machine learning classification. An
input object enters the box and is transformed into some output that subsequently exits
the box. The input object can be anything that needs to be classified, such as an image,
an email or a sonar reading. We interchangeably refer to the input object as the input
point or simply input. If we restrict the output to two possible values, +1 and −1,
representing the class, or label, to which the input is to be classified, we arrive at the
binary classification problem1.

Given a collection of input objects whose associated output classifications are fully
known a priori, it is our goal to learn the internal mechanism of the black box that yields
proper classifications. Once this mechanism is learned, we can predict the classification
of future inputs for which we do not know the correct class a priori.

The process of learning the mechanism of the black box can be broken into the two
steps of feature extraction and classification as in Figure 2-2. The feature extraction step
involves representing the input object in a descriptive manner that is both recognizable
by a computer system (i.e., as a numerical vector) and able to capture the key aspects of
the object that will lead to an accurate classification. The classification step refers to the
process of actually classifying the input points—via their feature representations—into
the two classes.

Figure 2-2: Partitioned “Black Box”

This partition into the two separate steps of feature representation and classification
is the standard procedure in machine learning applications. Such an architecture allows
feature representations and classification methods to be designed independently by ex-
perts in the individual fields. It also allows for the analysis of numerous different pairings

1We discuss the extension of the binary problem to the multiclass case in Appendix A

20



of feature representations and classification methods. There have also been attempts to
unify the two steps by designing classifiers that are tailored to specific feature represen-
tations. We describe one such unifying method, the Kullback-Leibler distance classifier,
in Section 2.4. However, we begin by considering the two steps in isolation.

We complete this section with an overview of some general terminology and theory
of the feature representation and classification steps. While this treatment of machine
learning classification theory is in no way complete, it will outline the key ideas and define
the terms that will be used throughout the remainder of the thesis. More detailed work
on machine learning theory and application can be found in the machine learning and
statistical learning theory literature [19] [20].

2.1.2 Feature Representation

In contrast to the generic effort of designing classification methods, the feature represen-
tation task is driven by the specific application under consideration. Thus, it is difficult
to discuss feature representation in a general manner. In fact, we have only one piece
of standard terminology to introduce in this section. We let xi ∈ <d represent the d-
dimensional real-valued feature vector that represents the ith object we are attempting
to classify. For our stem cell analysis, this object is the texture of the stem cell images.
However, we defer the more specific descriptions of textural feature representations to
Section 2.2.

2.1.3 Classification

As mentioned above, we can speak generally of the classification task without regard to the
specific application. We simply assume that we have been provided a set of d-dimensional
feature vectors from the application-specific feature representation step; additionally, each
feature vector has associated with it some known or unknown label, y ∈ {+1,−1}, repre-
senting the class into which the object falls.

Binary classification methods attempt to separate two classes of input points drawn
from some probability distributions, p(x|y = +1) and p(x|y = −1). Given a training
set of N input points, (xi, yi) for i = 1, . . . , N , whose true classifications (yi values)
are fully known, we attempt to design a function that both classifies correctly on that
training set—called empirical performance—and on a separate test set not used in training
the classification function—called the generalization performance2. If the probability
distributions p(x|y = +1) and p(x|y = −1) happen to be known explicitly or can be
accurately estimated, a parametric model is preferable in order to exploit this knowledge.
For example, if we know that p(x|y) follow Gaussian distributions with known mean and
covariance, then the parametric linear discriminant analysis method is optimal [20]. The
Kullback-Leibler distance (KLD) method presented later in the thesis is a parametric
method. However, if we do not explicitly know or do not wish to make assumptions
about the distributions p(x|y), we must rely on other non-parametric models that do not

2Technically, generalization error refers to the expected error, not test error. However, test error is an
unbiased estimate of generalization error, and we use the terms interchangeably.
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make use of underlying probabilistic distributions. The support vector machine (SVM)
employed in this thesis falls into this non-parametric scheme. We assume for the remainder
of this thesis that we do not know the true underlying distribution of the data, and we
either must use a non-parametric classifier or estimate the distribution.

The end result of the various classification methods is the creation of a classification
function h(x) : <d → < that maps the input feature vector x to the real number line.
Implicit to most algorithms is a threshold that determines the cutoff value along the real
number line between the two classes in consideration. Generally, this threshold is the
origin so that f(x) = sign(h(x)) returns the +1 or −1 classification of the input point
x. The output of f(x) returns the binary machine learning decision, while the output of
h(x) relative to the threshold gives us some idea of how confident we can be in our binary
decision.

We quantify how well our classifiers h(x) and f(x) perform via a measure of the
difference between the outputs from the classifier over a set of data and what the true
outputs should be over that set of data. This measure is called the error. We encounter
two types of error. We define empirical error ε̂N as [20],

ε̂N =
1

N

N∑
i=1

Loss(h(xi), yi) (2.1)

based on our N training points, and generalization error ε as [20],

ε = E(x,y)∼p(x|y) [Loss(h(xi), yi)] (2.2)

based on the unknown distribution p(x|y). The loss function Loss(h(xi), yi) is some
measure of how our prediction at data point xi differs from the true value yi. If this loss
function is defined relative to the h(x) classifier as in the expressions above, we get some
continuous measure of error. A common continuous loss function, and the one used for
least squares regression, is the squared error loss,

Loss(h(xi), yi) = (yi − h(xi))
2 (2.3)

The loss can also be defined relative to the binary f(x) classifier to get a discrete measure
of error. The 0/1 loss,

Loss(f(xi), yi) = |yi − f(xi)| (2.4)

simply returns a 0 or 1 depending on whether our predicted classification f(xi) matches
the true classification yi. This 0/1 loss is the standard metric used in the field of machine
learning classification. Thus, further reference to loss functions implies the use of the 0/1
loss unless otherwise specified.

The goal of any classifier is to minimize error. Since our specific goal is to predict the
classes of a new set of data points, minimizing generalization error is the more appropriate
objective since it tells us how well our classifier is expected to perform on a new data set
sampled from the underlying distribution. However, since we do not know this underlying
distribution, the only error measure we can actually calculate is the empirical error on the
training set. Thus, most classification methods create classifiers that minimize empirical
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error. Note that these classifiers minimize only a function of the training data with
no guarantees about performance on a new test set3. This class of algorithms follows
the empirical risk minimization (ERM) principle since the algorithms minimize empirical
error, or risk [54]. We outline two such methods, the neural network and k-nearest
neighbor classifiers, in Section 2.3.1.

However, if we can design a classification function via an algorithm that takes into
account both empirical and generalization error, we hope that we would arrive at a classi-
fier with better generalization performance4. Algorithms that create such classifiers follow
the structural risk minimization (SRM) principle of Vapnik and Chervonenkis [54]. The
support vector machine implements this strategy and is the focus of Section 2.3.2.

While we have only scratched the surface of statistical and machine learning theory,
a rich and varied subject awaits the interested reader [20] [54].

2.2 Texture Feature Representation

With the necessary machine learning classification theory and terminology at our disposal,
we can begin to focus on the more specific problem of textural image segmentation that
we will apply to the stem cell application. That is, we will discuss how to segment an
image into various regions based on the textural properties of those regions. We begin
in this section by detailing the feature representation step as it applies to image texture.
We turn to the classification step in Sections 2.3 and 2.4.

To fully develop our approach to textural feature representation, we begin by outlining
the standard image processing terminology and considering how specifically to define
texture. We then discuss some common textural feature paradigms and their associated
feature sets before concluding with a description of the specific feature representation that
we have adopted for our analysis, the wavelet energy feature.

2.2.1 Image Processing Terminology

Since we have implemented our analysis in MATLAB, our terminology follows closely with
that used in the MATLAB environment. Let I be an Nx ×Ny pixel digital image repre-
sented by an Nx×Ny matrix with grayscale values drawn from the set G = {1, 2, . . . , Ng}.
If the image is originally in RGB format, it is first converted to grayscale via the MATLAB
conversion function rgb2gray. Individual pixels s are indexed by the ordered pair (x, y)
where x ∈ {1, 2, . . . , Nx} and y ∈ {1, 2, . . . , Ny}. We use the image coordinate system
where the (1, 1) and (Nx, Ny) positions in the image matrix represent the upper left and
lower right corners of the image, respectively. Based on this convention, I(x, y) represent
the grayscale value of the (x, y) image pixel. We represent a subset of a full image as a
neighborhood, Ns, of (generally square) size M ×M pixels, centered around pixel s.

3All is not lost, however, as we assume the test set data is drawn from the same distribution as the
training data preserving some hope of satisfactory generalization performance.

4While we can measure generalization ability of ERM classifiers via cross validation techniques external
to the classifiers, the incorporation of generalization error by SRM classifiers is internal to the algorithm.

23



Images are generally classified in two different ways. Image segmentation refers to
the process of identifying regions with similar characteristics within an image that might
contain various fields of differing characteristics [23]. For example, a black and white
image may be segmented into a black region and white region. This segmentation is
done by analyzing each pixel in an image according to the classification scheme (feature
representation and classification algorithm) specified by the user and identifying regions
with similar characteristics. Image classification refers to the process of determining
whether or not an entire image contains a certain characteristic. For example, this could
involve classifying a radar image as containing an enemy aircraft or not. This task is
accomplished by analyzing the whole image according to the classification scheme specified
by the user. We alternatively call this image categorization or image-wise classification.

2.2.2 Defining Texture

The need to classify images into various categories based on their content is ubiquitous.
From X-ray machines at the airports to spy photographs, even our national security
benefits from good image analysis. Many characteristics such as color, shape and texture
may be extracted to aid in the image’s classification [56]. Image classification is indeed
a rich field with many avenues on which to proceed. However, as we will see later in the
stem cell application, textural features are central to determining stem cell quality. As
this stem cell application is a major focus of this thesis, we limit our work to the textural
analysis of images.

Image texture has a particularly unwieldy definition, and differences exist among re-
searchers as to the best definition. Jain and Tuceryan reference six different definitions
in their overview of texture analysis [52]. They summarize these by defining texture as
“a function of the spatial variation in pixel intensities” [52]. A more straightforward and
practical approach defines texture as characterized by “the gray-scale value for a given
pixel and the gray-level pattern in the neighborhood surrounding the pixel” [25].

Despite the differences in definitions, the commonality in all texture definitions is
that an image’s texture is defined on a local image window extracted from the full image,
rather than being defined on the entire image or on each individual pixel [56]. In the image
processing terminology, texture is considered a neighborhood operator. Other common
neighborhood operations include convolution, dilation and median filtering [1].

Two basic methods exist for performing analysis with neighborhood operators: the dis-
tinct block and sliding neighborhood methods. In the distinct block method, the full image
is divided into non-overlapping windows. The neighborhood operator is then applied to
each window and the resulting output assigned to all pixels in the analyzed window [1].
This method has been employed in the texture analysis literature, commonly for the task
of image-wise classification for content-based image retrieval systems [11] [34] [56]. The
sliding neighborhood method instead defines a window around an individual pixel, ap-
plies the neighborhood operator to that window and assigns the resulting output to the
individual pixel itself [1]. Using this method, we can speak concretely of assigning neigh-
borhood features to specific pixels, as in Figure 2-3. Numerous applications in the field
of texture analysis, particularly for the task of image segmentation, have used the sliding
neighborhood method [25] [30] [39].
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Figure 2-3: Sliding Neighborhood Feature Extraction

For the texture analysis in this thesis, we choose to use the sliding neighborhood
method for two reasons. First, since machine learning techniques in general are data
intensive, the sliding neighborhood technique allows us to extract more training and test
samples from an image. For example, in a 128 × 128 pixel image, we can extract 12,321
sliding neighborhood windows of size 17× 17 compared with only 49 distinct block, non-
overlapping windows. Secondly, for the stem cell application described in Chapter 4, we
find that stem cell researchers must be able to accurately pinpoint regions of good and
bad quality in their stem cell colonies. By using the sliding neighborhood method, we
can classify each pixel in the stem cell colony images as good or bad, thus creating higher
resolution segmentations of the images. If we were to use the non-overlapping distinct
block method instead, all pixels within a given window block would be assigned the same
textural representation, and we would lose resolution.

One concern with using the sliding neighborhood method is that the features assigned
to neighboring pixels could be correlated due to the overlap of the windows used to extract
the features. Using such neighboring pixels in the training or test sets would yield sets
whose samples would not necessarily be independent and identically distributed (IID).
While classification methods theoretically require IID samples, we have not found any
work in the literature suggesting a way around this problem. Thus, we follow previous
work done in this field and continue to use the sliding neighborhood method for image
segmentation [25] [30] [39].

A compromise approach might involve analyzing only those pixels at a given inter-
val rather than every pixel in the image. For instance, in the stem cell application of
Chapter 4, we classify only every fifth pixel in each stem cell colony image. While the
motivation for this approach was originally to speed up implementation, we suspect that
it may also reduce the dependencies among pixel classifications. However, a more thor-
ough analysis of the effects of the dependence among pixels in the performance of machine
learning classification methods is an avenue for future research.
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2.2.3 Common Feature Paradigms and Feature Sets

Once we have extracted a window around a specific pixel, we need to analyze that win-
dow to calculate its textural feature representation. Given the lack of a clear definition
of texture, the number of approaches to textural feature extraction is truly staggering,
and it is not our intent to provide an exhaustive survey of these methods. It is difficult
even to group all the available methods into clear similarity categories. Methods invari-
ably overlap among the categories, and each researcher fashions his work from a slightly
different perspective. However, we attempt to highlight here the most common textural
feature representations by grouping them into four major paradigms: statistical, struc-
tural, model-based and signal processing methods. More in-depth surveys of the methods
and further references can be found in the literature [22] [39] [40] [44] [52] [56].

Statistical Paradigm

The statistical paradigm describes texture in terms of the statistical distribution of the
grayscale pixel values within an image. Haralick’s co-occurrence matrix approach is the
most common of these methods, and we outline his method briefly here to provide insight
into this class of feature representations.

Let s1 = (x1, y1) and s2 = (x2, y2) be two pixels in the image, and let s1 and s2 be
separated by a displacement of d = (dx, dy) pixels so that

s2 = (x2, y2) = (x1 + dx, y1 + dy) = s1 + d (2.5)

For a fixed displacement d, statistical methods assume that the probability that s1 and s2

take on grayscale values of i and j, respectively, is governed by the joint probability mass
function (PMF) P(i, j;d). We may equivalently reference the separation displacement
between s1 and s2 by an absolute distance d and angle θ relative to the horizontal axis.
The PMF of the spatial grayscale values becomes in this case P(i, j; d, θ) [18] [53].

Since we do not know the true grayscale distribution P(i, j; d, θ), we must estimate it
from empirical data. Haralick accomplishes this with the so-called co-occurrence matrices.
For an image I of size Nx×Ny with the set of distinct grayscale values G = {1, 2, . . . , Ng},
Haralick’s method creates symmetric co-occurrence matrices P̂(i, j; d, θ) with i, j ∈ G
specifying grayscale values, θ ∈ {0◦, 45◦, 90◦, 135◦} defining an angular direction and d
representing the user-defined pixel distance. The (i, j) entry of P̂(i, j; d, θ) holds the total
number of pixel pairs in the image, normalized by the total number of pixels in the image,
with grayscale values i and j such that the two pixels in the pairs lie d pixels apart in
the angular direction θ [18]. Thus, for any specified d value, the method produces four
co-occurrence matrices, one for each of the four θ values specified above. The value of d
specifies the size of the neighborhood over which it is feasible to estimate the PMF of the
grayscale distribution. The resulting co-occurrence matrices serve as an estimate of the
true grayscale distribution of the image.

From these co-occurrence matrices, Haralick defines 14 textural features. Table 2.1
shows the four most common features [18]. In the table, σx, µx, σy, µy are the stan-

dard deviations and means of the marginal distributions P̂(i; d, θ) =
∑

j P̂(i, j; d, θ) and
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Textural Feature Name Formula

Angular Second Moment
∑

i

∑
j

(
P̂(i, j; d, θ)

)2

Contrast
∑Ng−1

n=0 n2
{∑

i

∑
j |i−j|=n

P̂(i, j; d, θ)
}

Correlation
∑

i

∑
j(ij)P̂(i,j;d,θ)−µxµy

σxσy

Entropy −∑
i

∑
j P̂(i, j; d, θ) log

(
P̂(i, j; d, θ)

)

Table 2.1: Haralick’s Statistical Texture Features

P̂(j; d, θ) =
∑

i P̂(i, j; d, θ), respectively.
In an attempt to speed up the implementation of Haralick’s method by replacing the

double summations in the co-occurrence features of Table 2.1 with single summations,
Unser proposes using sum and difference histograms to estimate the joint grayscale dis-
tribution. These sum and difference histograms allow for the exact computation of nine
of Haralick’s 14 textural features and the estimation of the remaining five features [53].

Another statistical method is Galloway’s gray level run length approach. The basic
idea of this approach is that texture can be characterized by first identifying strings of
adjacent pixels having the same grayscale value. After calculating the length of these
strings for various grayscale values and spatial orientations, five textural features can be
calculated [13].

Structural Paradigm

Where the statistical methods analyze the distribution of individual pixel grayscale val-
ues, the structural paradigm instead measures the spatial distribution of blocks of pixels
called textural primitives. The underlying assumption of structural methods is that the
image texture is indeed composed of these distinct textural primitives, rather than simply
exhibiting a continuous distribution of grayscale values. The structural approach consists
of two steps [52]:

1. Identify and extract the textural primitives

2. Infer the placement rule that governs the distribution of the primitives across the
image

In general, specific methods of the structural paradigm do not receive as much atten-
tion as those of other paradigms. The main reason for this is that many textures do not
actually satisfy the assumption of the presence of repeating primitives [40] and those that
do are too regular to be of much real-world interest [30]. For example, the texture on
the left in Figure 2-4 is composed of regularly-placed textural primitives and a structural
feature representation would be useful for such a texture. In contrast, the more irregular
texture on the right is not well-suited for the structural paradigm since it is not composed
of clear primitives.

Details on various structural methods can be found in the literature [17] [52]. In fact,
Haralick even describes methods that combine the statistical and structural paradigms [17].

27



(a) Texture with
Primitives

(b) Texture with-
out Primitives

Figure 2-4: Illustration of Textural Primitives

One benefit of the structural paradigm is that if accurate primitives can be identified, tex-
ture synthesis reduces to the relatively simple task of replacing the primitives according
to the inferred placement rule [52].

Model-Based Paradigm

The model-based paradigm assumes an image texture model, fits that model to the image
being analyzed and uses the model parameters as the textural features of the image [39].
One of the most prevalent model-based approaches involves extracting the multi-resolution
autoregressive (AR) features of Mao and Jain. In this method, multiple neighborhoods
of various sizes are defined about a pixel, the AR model is fit to those neighborhoods and
the model parameters are estimated. The feature representation for the pixel consists
simply of all the resulting model parameters [30].

Another more complex model-based method involves modelling an image as a Markov
random field (MRF). This approach basically involves defining two Markov processes. The
label process {Ls, s ∈ N} defines the pixel class label within a neighborhood N around
the pixel s. The intensity process {Ys, s ∈ N} governs the distribution of grayscale values
about s within N [7]. A thorough discussion of this rich model-based approach is beyond
the scope of this work. However, further details on the MRF and other model-based
approaches can be found in the literature [7] [40].

Signal Processing Paradigm

Signal processing, or filtering, methods depart from the previous spatially-oriented para-
digms by attempting to incorporate features from the frequency domain of the textural
image. These methods generally follow the same two basic steps. First, a filter is applied
to the original image to produce a frequency-domain representation of the image. Then
the energies across the frequency subbands are calculated and used to represent the texture
of the image. Figure 2-5 illustrates this general process [39].

Randen and Husøy present a thorough overview and comparison of various signal
processing approaches, and we defer to their work for details on the many signal processing
methods available [39]. However, as a motivation for the wavelet energy feature set
employed in this thesis, we discuss below two other signal processing methods that give
insight into the signal processing paradigm.

The classic approach to extracting frequency information from a signal is via the
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Figure 2-5: Signal Processing Feature Representation

Fourier transform. The Discrete Fourier Transform (DFT) of an Nx × Ny image I is
defined as [1],

FI(p, q) =
Nx∑
x=1

Ny∑
y=1

I(x, y)e−j(2π/Nx)pxe−j(2π/Ny)qy (2.6)

for p = 1, 2, . . . , Nx and q = 1, 2, . . . , Ny where j is the imaginary number
√−1. The

Fourier coefficients FI(p, q), or some energy measures extracted from them can then be
used as textural features.

The main drawback of the Fourier approach is that the resulting frequency informa-
tion reflects global characteristics of the image [52]. We note this by observing that the
summations in Equation 2.6 are taken over the entire image, thus blurring any spatial
variation of the texture. So while we gain frequency information by applying the DFT,
we lose spatial information. It would be useful if we could obtain both frequency and
spatial information.

One means of retaining spatial information in the frequency domain is to use the
window Fourier transform (WFT), also called the short-time Fourier transform. This
method isolates a portion of the original signal and performs a Fourier transform on that
spatially isolated window. By repeating this process over various windows across the
entire signal, the method extracts frequency information from the Fourier analysis and
maintains spatial information due to the windowing. The width of the window determines
the spatial resolution of the analysis. For a one-dimensional signal f(x), this window
Fourier transform is [52]

Fw(u, ξ) =

∫ ∞

−∞
f(x)w(x− ξ)e−j2πuxdx (2.7)

where u and ξ represent the frequency and spatial components of the transformed signal
Fw(u, ξ). Equation 2.7 becomes the Gabor transform when the window function w(·)
is Gaussian [52]. Applying similar ideas to a two-dimensional image yields the two-
dimensional Gabor filter method. For example, the impulse response of an even-symmetric
(i.e., real part only) two-dimensional Gabor filter with a 0◦ orientation to the horizontal
axis is [23],

h(x, y) = exp

{
−1

2

[
x2

σ2
x

+
y2

σ2
y

]}
cos(2πu0x) (2.8)

where u0 is the frequency along the horizontal axis and σx and σy govern the Gaussian
envelope (window) that modulates the frequency sinusoid. Different orientations can be
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(a) Single Resolution Analysis: The
Window Fourier Transform

(b) Multi-Resolution Analysis: The
Wavelet Transform

Figure 2-6: Single Resolution Analysis vs. Multi-Resolution Analysis

analyzed via axis rotation of the x and y coordinates [23].
Gabor filters have enjoyed much attention and success in the texture classification

field [3] [23] [29]. For instance, Jain and Farrokhnia report good performance of the
Gabor filter for the task of unsupervised texture segmentation. They extract textural
features for each pixel s by first passing an image through Gabor filters with various
orientations and frequencies. They then pass the filtered images through a nonlinearity
function and calculate an energy measure—based on the mean absolute deviation—about
a local window centered around s, yielding the textural features for the pixel s [23].

While quite successful in practice, the Gabor filter has an important drawback. Once
a specific window with a specific width is chosen, that window is applied across the entire
signal. The result is a single resolution analysis of the image. A multi-resolution analy-
sis, where the image is analyzed over windows of varying widths, would provide a more
detailed and accurate analysis of the signal. This is precisely what the wavelet transform
achieves. We can visualize the difference between the single-resolution approach of the
window Fourier transform and the multi-resolution approach of the wavelet transform for
the one-dimensional case in Figure 2-6 [9]. The window Fourier transform uses a fixed
window width for all frequencies in the image. However, in the wavelet approach, higher
frequency regions are analyzed over smaller windows in order to more accurately localize
these fast-changing regions. Conversely, larger windows are needed to adequately capture
information in the slowly-varying lower frequency regions.

Despite the good performance shown by many of the methods discussed above, we find
wavelet analysis to be the most versatile and advanced of the texture analysis methods.
Its capability of capturing both the frequency and spatial content of image texture in a
multi-resolution framework draws our attention to it for further analysis.

2.2.4 Wavelet Energy Features

While wavelet analysis has been used for image compression, signal denoising and edge
detection [50], we focus on its application to texture analysis. We present in this section
only the basic ideas and terminology of wavelet theory necessary to understand the anal-
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Figure 2-7: n-level Wavelet Pyramid

Figure 2-8: Two-Dimensional DWT Schematic

ysis done in this thesis. A thorough treatment of the topic can be found in the text by
Strang and Nguyen [50].

The n-level two-dimensional discrete wavelet transform (DWT) iteratively extracts
low and high frequency information from an image. At the first level, it decomposes
the original image I into one set of approximation coefficients, denoted cA1, and three
sets of detail coefficients, denoted cD

(h)
1 , cD

(v)
1 and cD

(d)
1 , where h, v and d refer to

the horizontal, vertical and diagonal directions, respectively. At the next iteration, the
first-level approximation output, cA1, is further decomposed into its approximation and
detail coefficients cA2, cD

(h)
2 , cD

(v)
2 and cD

(d)
2 . The process continues to the nth level of

decomposition, forming the wavelet pyramid structure shown in Figure 2-7 [31].

Figure 2-8 shows a schematic of the DWT process at the jth level of decomposition [31].
Note that for the first decomposition, cAj−1 is replaced with the original image I.

From the schematic, we note that the approximation coefficients result from the ap-
plication of two low-pass filters. Thus, the approximation coefficients hold low frequency
information, and we can alternatively denote cAj as LLj. Similarly, the detail coefficients
result from the use of either one high-pass and one low-pass filter or two high-pass fil-
ters. Thus, they hold the high frequency information, and we can denote cD

(h)
j , cD

(v)
j

and cD
(d)
j as LHj, HLj and HHj, respectively. This naming convention is used in the
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Figure 2-9: 3-level Wavelet Pyramid

alternative visual representation of the DWT pyramid structure shown in Figure 2-9 for
n = 3 [9]. While the standard wavelet pyramid method shown here only decomposes the
approximation, or LL coefficients, it is also possible to iteratively decompose the detail
coefficients as well. The resulting decomposition is called the wavelet packet structure.

Each set of coefficients of an n-level wavelet decomposition represents an image sub-
band. When using the wavelet coefficients to characterize texture, it is common practice
to disregard the cAn, or LLn, subband as most interesting textural information has been
lost due to the iterative low-pass filtering at that subband [8]. Thus, an n-level wavelet
pyramid decomposition will yield a coefficient set for 3n = B subbands, and we denote the
bth subband coefficient set as cD[b] for b = 1, 2, . . . , B. The optimal choice for n depends
on the specific application, and we discuss that choice in Chapter 3 when we apply our
technique to benchmark textural images.

Along with the decomposition level, the type of wavelet used in the decomposition will
affect the resulting wavelet coefficients, and hence the resulting classification performance.
Common wavelets and wavelet families available in the MATLAB Wavelet Toolbox include
the Haar, Daubechies, Biorthogonal, Coiflets, Symlets, Morlet, Mexican Hat and Meyer
wavelets [31]. It is not our intent to discuss all the possible wavelet choices. We settle
on the Daubechies 4 wavelet for two reasons. First, it is the wavelet used in the KLD
classification method presented in Section 2.4, and we wish to be consistent in the choice
of wavelet. Secondly, Randen and Husøy present textural image segmentation results that
show generally better performance of the Daubechies 4 wavelet over other wavelets from
the Daubechies family [39].

After filtering the textural image and extracting the wavelet coefficients at each sub-
band, we need to then create the features that will actually represent the texture. Laws
first suggested that energy measures of the filtered image should be used as these textural
features [27]. If we have Nb wavelet coefficients at subband b, for b = 1, 2, . . . , B, then the
energy at that subband is defined as [8],

Eb =
1

Nb

Nb∑
i=1

(cD[b]i)
2 (2.9)
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where cD[b]i is the ith wavelet coefficient at the bth subband. For our analysis in Chap-
ter 3 and in the stem cell application, we use the highly-related variance of the wavelet
coefficients at each subband as our energy measure,

Eb =
1

Nb

Nb∑
i=1

(cD[b]i − µb)
2 (2.10)

where

µb =
1

Nb

Nb∑
i=1

cD[b]i (2.11)

is the mean value of the coefficients at the bth subband. Similarly, the mean deviation,
or absolute mean, is defined as [8],

MDb =
1

Nb

Nb∑
i=1

|cD[b]i| (2.12)

Applying Equations 2.10 and 2.12 across all B subbands in the wavelet decomposition of
an image yields the wavelet energy signature of that image. Thus, the vector,

x = [E1, E2, . . . , EB, MD1, MD2, . . . , MDB] (2.13)

is the resulting wavelet energy textural feature representation.

Wavelet energy features from the standard wavelet pyramid structure have been ap-
plied successfully by many researchers. Smith and Chang use this approach for the task
of image classification and achieve a success rate of 92.14% [49]. KocioÃlek et. al. also
perform image classification with wavelet energies with a high success rate [12].

Laine and Fan first showed that wavelet energy features from the wavelet packet
structure could be useful for texture classification [26]. Chang and Kuo also use energies
in the wavelet packet structure and report that the use of the packet structure as opposed
to the standard pyramid structure is better suited for textures with energies concentrated
in the lower frequencies [6]. Ma and Manjunath compare the use of energy features
between the wavelet packet and pyramid structures [29]. They conclude that the wavelet
pyramid structure performs just as well as the wavelet packet structure and does so with
a smaller feature vector yielding a lower computational complexity.

Moving beyond the strict use of wavelet energies, Wouwer et. al. explore a rich set of
wavelet histogram features [8]. Vetterli and Do then estimate a probabilistic distribution
on the actual wavelet coefficients for the task of content-based image retrieval [11].

Given the various choices available for textural feature representation using wavelet
analysis, we choose to employ energy measures from the standard wavelet pyramid struc-
ture. The use of wavelet subband energies has a rich theoretical and practical history and
is relatively straightforward to implement. We use the standard wavelet pyramid struc-
ture since it’s use has shown promising results and requires less computational effort than
the wavelet packets structure. Additionally, we find the pyramid structure more useful for
comparing the non-parametric SVM performance with the parametric KLD performance
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since the KLD method naturally employs the wavelet pyramid structure.

2.3 Non-Parametric Classification: The Support Vec-

tor Machine

Now that we have a sophisticated means of representing the textural characteristics of
images in general, and specifically for the stem cell images we will consider in Chapters
4 and 5, we turn to finding an equally sophisticated method to classify those textural
representations.

As discussed in Section 2.1.3, we can partition classification methods into two groups
based on the risk minimization principle they employ. Classifiers that implement the
empirical risk minimization (ERM) principle simply minimize error on the training set. In
contrast, classifiers following the structural risk minimization (SRM) principle attempt to
minimize both training error and generalization error. Since the support vector machine
implements this more advanced SRM principle, we choose to use it in our work. To
support this decision, we discuss the SVM’s pleasing theoretical foundation and strong
performance on various applications below. First, however, to provide context for our
choice, we comment briefly on two of the more popular ERM-based classification methods.

2.3.1 Common Non-Parametric Classification Methods

The number of ERM-based classification methods available today is truly immense, and
we limit our comments to two of the most popular and well-known of these: neural
networks and k-nearest neighbor.

The basic neural network architecture is shown in Figure 2-10 [19]. The input to the
network is the standard d-dimensional feature representation. The two outputs represent
the two classes of the binary classification problem. The wrinkle in the network is the
presence of the m nodes of the hidden layer. The hidden layer allows for interactions
among the input features in a manner similar to the basis function expansion found in
regression. While the neural network in the figure contains only one hidden layer, it is
possible to design networks with multiple hidden layers. In the figure, wji represents the
weight assigned to the arc from input feature i to hidden layer node j. Similarly, wkj

represents the weight of the arc from hidden layer node j to output class k. Not shown in
the figure, but essential to the neural network classifier, are nonlinear activation functions
that govern the interaction between the inputs, the hidden layer and the outputs [19].

Thus, in a neural network, the output classification is related to the input point via the
hidden layers and the specified activation functions. Training a neural network involves
using training data to estimate the arc weights and the form of the activation functions.
The so-called backpropagation algorithm is the standard method of training [19]. While
this is a very elementary description of the neural network, it provides the basic ideas
behind the method. Further details can be found in the literature [19] [20].

Advantages of the neural network classifier include its ability to learn the form of the
nonlinear activation functions from the training data, the flexibility of the hidden layer
architecture to model many complex problems and its strong empirical performance in
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Figure 2-10: Neural Network Architecture

many applications [19]. The main difficulty of the method involves regularization, or
controlling the complexity of the classifier. If the model contains too many hidden layers
or too many nodes within each layer, it will be overly complex and tend to overfit the
training data at the expense of generalization performance [19].

The k-nearest neighbor algorithm is a much simpler classifier than the neural network;
it has only one parameter that needs to be specified, namely k, and has no explicit training
step. Given a test point x, the algorithm finds the k nearest training points to the test
point. The test point is then assigned the label of the class most represented by those
k nearest neighbors. The Euclidean metric is a standard choice for defining the distance
between the test and training points [19].

The k-nearest neighbor classifier has the advantage of simplicity since only one pa-
rameter must be specified. Additionally, it is easy to implement and has performed well
in many applications. A drawback of the method is that its decision boundary is difficult
to specify analytically and is not generally smooth.

2.3.2 The Support Vector Machine

While the ERM-based classification methods discussed above often perform quite well
in practice, we feel that the SRM-based support vector machine represents a general
improvement over these methods. In fact, in many applications it has shown superior
performance to various other classifiers. To fully discuss why this is the case, we must first
give some attention to the theory and unique formulation that are the SVM’s hallmark.

Theoretical Basis for the SVM

Implementing the SRM principle involves minimizing not only the empirical error but
also the generalization error. It can be shown that for a classifier f , parameterized by α,
for some η, 0 ≤ η ≤ 1, the following bound on generalization error holds [5]:

R(α) ≤ Remp(α) +

√(
υ(log(2N/υ) + 1)− log(η/4)

N

)
, with probability 1− η (2.14)
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In Equation 2.14, R(α) is the generalization error, Remp(α) is the empirical error based
on a training set of N data points and υ is the Vapnik Chervonenkis dimension (VC-
dimension) of the family of classifiers F that contains f . The VC-dimension is a measure
of the complexity of the family of classifiers F , and thus of the specific classifier f . We
see that the generalization error is bounded by the sum of the empirical error and a
complexity term. This bound tells us that if we can minimize both the empirical error
and VC-dimension of the family of classifiers from which our classifier is drawn, we are
guaranteed to generalize well.

We have one step remaining to tie the support vector machine to the SRM principle.
Consider N data points from two classes that are constrained to lie within a hypersphere
of radius ϕ. Vladimir Vapnik shows that a certain type of classifier, namely maximally
separating hyperplanes, applied to this set of data points has a VC-dimension bounded
as [54],

υ ≤ min

(
ϕ2

∆
, N

)
+ 1 (2.15)

where ∆ is a measure of the separation achieved between the two classes. Maximizing this
separation measure ∆ can yield a smaller VC-dimension, which in turn yields a tighter
upper bound on the generalization error. The support vector machine creates just such a
maximally separating hyperplane.

SVM Formulation

To derive the formulation of the SVM, consider two sets of training data points, each point
described by its d-dimensional input vector, with the points distributed among the +1 and
−1 classes. Support vector machines attempt to create a maximally separating hyperplane
by separating the two classes with a d-dimensional hyperplane w ·x+b = 0 where w ∈ <d,
b ∈ <. If a set of points can be separated without error by such a hyperplane, the set is
termed linearly separable. Generally many different hyperplanes will separate a linearly
separable set of training data and achieve zero empirical error. The ERM principle would
not distinguish among such hyperplanes. However, the SRM principle defines the optimal,
or maximally separating hyperplane as the one that maximizes margin where the margin is
defined as the distance from the nearest point of either class to the hyperplane. Figure 2-
11 illustrates this concept of maximizing margin in <2 (d = 2). By finding a hyperplane
that achieves both zero empirical error and a large separation between classes, we expect
to have low generalization error according to the SRM principle.

We should make an important note here regarding the link between the SRM principle
and the support vector machine classifier. Chris Burges makes clear that there is no
rigorous connection between the SVM and the SRM principle [5]. That is, the SRM
bounds in Equations 2.14 and 2.15 are generally not tight for a given implementation of
the SVM. Despite this, the concept of simultaneously achieving low empirical error and
maximizing margin as implemented by the SVM has a strong foundation in the SRM
principle and represents a significant improvement over methods that simply minimize
empirical error.

In practice, the support vector machine finds the maximally separating hyperplane
by solving a quadratic optimization problem. First, let yi = 1 for all points xi in class
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Figure 2-11: Separating Hyperplanes in <2

+1 and yi = −1 for all points xi in class −1. Assuming that the training data is indeed
linearly separable, we define a hyperplane by the pair (w, b) such that [35],

w · xi + b ≥ 1 ∀ i such that yi = +1 (2.16)

w · xi + b ≤ −1 ∀ i such that yi = −1 (2.17)

where w ∈ <d and b ∈ < is a scalar bias term. We can write the above expressions more
compactly as [35],

yi(w · xi + b) ≥ 1 ∀ i = 1, 2, . . . , N (2.18)

This expression represents the constraint that all training points must be correctly clas-
sified by the hyperplane.

The distance from a point xi to the hyperplane is |w·xi+b|
‖w‖ . If we impose the normal-

ization mini=1...N |w ·xi + b| = 1, the distance from the hyperplane to the nearest point of
either class, or the margin, is simply 1

‖w‖ . Since we want to maximize this margin while
ensuring that all points are correctly classified according to Equation 2.18, we can pose
the following optimization problem [35]:

maximizew,b
1

‖w‖
s.t. yi(w · xi + b) ≥ 1 ∀ i = 1, 2, . . . , N

Noting that maximizing 1
‖w‖ is equivalent to minimizing 1

2
‖w‖2, we have the following
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equivalent quadratic optimization formulation [35]:

minimizew,b
1

2
‖w‖2

s.t. yi(w · xi + b) ≥ 1 ∀ i = 1, 2, . . . , N

Solving this problem returns the optimal pair (w, b) from which we create the clas-
sification functions h(x) = w · x + b and f(x) = sign(w · x + b) for a new data point
x [35].

We call the formulation above the linear primal formulation and note that it is only
useful for data that is linearly separable in its original d-dimensional space. Using duality
theory, we can find an equivalent linear dual formulation that is often easier to solve than
the primal. Furthermore, by allowing some training points to be misclassified (violating
Equation 2.18), we can create the soft margin primal formulation and soft margin dual
formulation. Finally, by projecting the data into a higher-dimensional space, we arrive
at the most flexible and powerful of the SVM formulations, the nonlinear soft margin
dual formulation. We outline these more advanced formulations in Appendix A. Further
details can also be found in the excellent tutorial by Burges [5].

SVM Features and Terminology

As mentioned above, the most powerful of the SVM formulations is the nonlinear soft
margin dual formulation. This formulation also serves as a useful vehicle to discuss much
of the unique terminology and features of the support vector machine. We formulate it
as [5],

maximize{λ1,λ2,...,λN}
N∑

i=1

λi − 1

2

N∑
i=1

N∑
j=1

λiλjyiyjK(xi,xj) (2.19)

s.t.
N∑

i=1

λiyi = 0 (2.20)

λi ≤ C ∀ i = 1, 2, . . . , N (2.21)

λi ≥ 0 ∀ i = 1, 2, . . . , N (2.22)

where λi is the Lagrange multiplier associated with the training point xi, K(·, ·) is a kernel
function and C is a cost penalty. Solving this quadratic optimization problem returns the
λi values that define the maximally separating hyperplane (See Equations 2.25, 2.26 and
2.27).

We first note that the optimization problem above scales with the the number of
data points N rather than the dimensionality d of the input points. Thus, support
vector machines, unlike many other classification methods, can handle data with high-
dimensional feature vectors.

Furthermore, the ith Lagrange multiplier λi tells us how influential the ith training
point is in defining the separating hyperplane. If λi = 0, then the input point xi has
no influence in characterizing the hyperplane, and we can disregard such points without
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consequence. Conversely, those points xi for which λi > 0 are called support vectors, and
we define the set S = {xi : λi > 0} as the support vector set. The separating hyperplane
is fully characterized by only those points in S. The cardinality of S is generally less (and
never more) than the number of input points N ; thus, the SVM actually scales with only
a subset of the original input points.

The kernel function K(xi,xj) is a function in the original d-dimensional input space
that calculates the inner product of the two input vectors xi and xj in some higher-
dimensional feature space. The use of the kernel function allows us to find the optimal
hyperplane in the high-dimensional feature space and map that hyperplane back into the
original input space as a non-linear separator. Two common kernel functions are the
polynomial kernel of degree p,

K(xi,xj) = (xi · xj + 1)p (2.23)

and the radial basis function kernel with width σ,

K(xi,xj) = e−‖xi−xj‖2/2σ2

(2.24)

Finally, the cost penalty C controls the tradeoff between empirical error and margin.
A large C will sacrifice some margin width for better empirical performance (less mis-
classified training points), while a small C will attempt to create a larger margin at the
expense of more misclassified training points.

Once we have solved for the optimal multipliers {λ1, λ2, . . . , λN} we can create the
classification functions h(x) and f(x) for a new input point x as [5],

h(x) =
∑
i∈S

λiyiK(xi,x) + b (2.25)

f(x) = sign

(∑
i∈S

λiyiK(xi,x) + b

)
(2.26)

where

b = yi −
N∑

j=1

yiλiK(xj,xi), for i such that xi ∈ S (2.27)

Geometrically, h(x) returns the signed Euclidean distance from the test point x to
the optimal hyperplane, and f(x) returns the binary +1 or −1 classification of x. We
interpret h(x) as the confidence we have in our binary decision. Larger positive/negative
values of h(x) imply higher confidence in our corresponding +1/− 1 decision.

SVM Performance

In terms of performance, a number of unique and useful features make the support vector
machine more attractive than other classification methods. Perhaps the most beneficial of
these properties is the fact that the SVM attempts to minimize not only empirical error
but also the more appropriate generalization error by maximizing margin. This suggests

39



that it will perform better on a test data set than other methods, such as neural network
and nearest neighbor classifiers, that only minimize training error.

In further contrast to the neural network, the SVM is naturally regularized in two
senses. First, by adjusting the cost penalty C, we can easily control its complexity and
limit overfitting. A proper setting of C allows for the misclassification of some training
points in exchange for a larger margin and better generalization performance. Secondly,
Ryan Rifkin shows that the standard SVM formulation can actually be derived directly
from the deep and well-known concepts of regularization theory [42]. A full discussion of
this approach is outside the scope of our work; however, it gives further evidence of the
theoretical foundation of the SVM.

The concise and flexible formulation of the SVM as a quadratic optimization problem
also yields many beneficial features. For example, we can choose to work with either
the primal or dual version of the problem, whichever is easiest. The convexity of both
formulations guarantees a globally optimal solution. This convexity property, along with
duality theory, also allows for the derivation of Edgar Osuna’s active set algorithm, a fast
solution method for the dual problem [35]. The kernel function allows us to find a linear
separator in a high dimensional feature space without actually mapping the input points
into that space. Thus, while the resulting decision boundary may be highly nonlinear
in the original space, its linearity in the feature space results in a concise classification
function that is easily expressed in the original space. Overall, few other classifiers are as
flexible or exhaustive in their formulation properties.

As mentioned above, the size of the SVM scales with a generally small subset of the
number of training points rather than with the dimensionality of the inputs. This allows
the SVM to efficiently solve problems with high dimensional inputs.

Finally, the support vector machine method has repeatedly shown superior perfor-
mance to other popular classification methods in various real-world applications. Osuna
et. al. report an improved rate of face detection in images from 94.6% to 97.1% over a
neural network classifier [36]. For the task of digit recognition in the US Postal Service
digit database, the SVM yields a test error rate of 4.2% compared to error rates of 6.7%
for the classic radial basis function network classifier, 5.9% for a nearest neighbor method
and 5.9% for a two-layer perceptron (neural network) [45]. For the task of texture clas-
sification, the SVM has been shown to improve performance over a conventional neural
network by approximately 5.0% [25].

The twin aspects of solid theory and good empirical performance across numerous
and various applications leads us to choose the SVM as the machine learning classifier
employed in this thesis.

2.4 Parametric Classification: The Kullback-Leibler

Distance Classifier

Up to this point, we have considered the machine learning classification task in two
separate and unrelated steps, feature representation and classification, in the manner
of Figure 2-2. This setup is useful for two main reasons. First, splitting up the steps
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allows researchers to focus on that part of the problem for which they are particularly
suited. Computer scientists and statisticians can theorize and formulate classification
algorithms in a very general setting. Simultaneously, application-driven scientists can
derive powerful feature representations based on their knowledge of the specific problem
domain. By then combining the best feature representation with the best classification
method, the abilities of two expert communities are combined quite easily. The other
major benefit of splitting up the machine learning tasks is that the various available
feature representations can be paired with the many classification algorithms to produce a
vast amount of experimental work that can be performed. Given n feature representations
for a problem and m classification methods, n ·m different experiments can be run and
analyzed to find the optimal pairing of feature representation and classification method
for a given problem.

Despite the benefits outlined above, we might also find it useful to tailor the two tasks
to each other. For example, if we suspect that the data which we are attempting to
classify follows a certain probability distribution, we would want to design a parametric
classification method that takes that knowledge into account. This is precisely the goal
of the Kullback-Leibler distance (KLD) classifier used in this thesis. This classifier is
an adaptation of a method proposed by Martin Vetterli and Minh Do for the task of
content-based image retrieval (a specific application of the image-wise classification prob-
lem described in Section 2.2.1) [11]; we adapt it for the task of image segmentation as
described in Section 2.2.1.

2.4.1 The Generalized Gaussian Distribution for Wavelet Coef-
ficient Modelling

Vetterli and Do make the assumption that the wavelet coefficients at each subband ex-
tracted from a textural image follow a generalized Gaussian distribution (GGD),

p(x; α, β) =
β

2αΓ(1/β)
e−(|x|/α)β

(2.28)

where

Γ(z) =

∫ ∞

0

e−ttz−1dt (2.29)

is the Gamma function defined on z > 0. The two GGD parameters α and β control the
width and decreasing rate of the distribution’s peak. The GGD reduces to the Laplacian
and Gaussian distributions for β = 1 and β = 2, respectively [11]. In fact, as β →∞, the
GGD approaches the uniform distribution. Figure 2-12 shows the GGD for these three
parameter settings. The bottom line is that the GGD is a very general, unimodal and
symmetric distribution able to model a large range of data through the estimation of its
two parameters.

The applicability of the GGD for modelling wavelet coefficients has been demonstrated
by showing that estimated GGD’s fit well the actual wavelet coefficient histograms [8].
Vetterli and Do further justify this by performing texture synthesis using the estimated
GGD’s to generate synthesized sets of wavelet coefficients which are used to create an
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Figure 2-12: Generalized Gaussian Distribution

estimated textural image via the inverse wavelet transform. The visual similarity between
the original and synthesized images demonstrates the accuracy of the GGD model of
wavelet coefficients [11].

As discussed in Section 2.2.4, at each level of wavelet decomposition we extract three
sets of coefficients, each representing a different subband. Thus, for an n-level decompo-
sition, we have coefficients for 3n = B subbands. By modelling each set of coefficients as
a GGD and estimating the two parameters for each (αb and βb for b = 1, 2, . . . , B), we
can extract 2B parameters for each image.

2.4.2 The Kullback-Leibler Distance

After extracting the GGD parameters, Vetterli and Do turn to designing a classification
method that takes advantage of the parametric feature representation. They conclude
that a test point should be classified to the class whose wavelet coefficient distribution is
closest to the distribution of the test point as measured by the Kullback-Leibler distance
metric. While Vetterli and Do use their KLD classification method for the task of image-
wise classification, we have adapted it for image segmentation and present the ideas in
that vein below.

Let pb
k(x; αb

k, β
b
k), k = {+1,−1}, b = 1, 2, . . . , B, represent the GGD of the wavelet

coefficients of the kth class at the bth subband. Let pb
t(x; αb

t , β
b
t ) be the corresponding

GGD of a test point which we are trying to classify. Vetterli and Do show that we should
choose the class that satisfies the KLD decision rule [11],

kopt = arg min
k∈{+1,−1}

D(pb
t(x; αb

t , β
b
t )‖pb

k(x; αb
k, β

b
k)) (2.30)

where

D(pb
t(x; αb

t , β
b
t )‖pb

k(x; αb
k, β

b
k)) =

∫
pb

t(x; αb
t , β

b
t ) log

pb
t(x; αb

t , β
b
t )

pb
k(x; αb

k, β
b
k)

dx (2.31)

is the Kullback-Leibler distance operator at the bth subband.

Vetterli and Do show that for a GGD, Equation 2.31 can be simplified to the closed

42



form expression [11],

D(pb
t(x; αb

t , β
b
t )‖pb

k(x; αb
k, β

b
k)) = log

(
βb

t α
b
kΓ(1/βb

k)

βb
kα

b
tΓ(1/βb

t )

)
+

(
αb

t

αb
k

)βb
k Γ((βb

k + 1)/βb
t )

Γ(1/βb
t )

− 1

βb
t

(2.32)
From Equation 2.32, we note that we can calculate the Kullback-Leibler distance between
a test point and the kth class using only the estimated GGD parameters of the kth class
and the test pixel5.

Furthermore, under the assumption that the wavelet coefficient distributions are in-
dependent across the B subbands of the decomposed image, Vetterli and Do show that
Equation 2.30 expands to [11],

kopt = arg min
k∈{+1,−1}

B∑

b=1

D(pb
t(x; αb

t , β
b
t )‖pb

k(x; αb
k, β

b
k)) (2.33)

That is, with the independence assumption, we can simply sum up the KLD’s across all
subbands.

For notational consistency, we pose the KLD decision rule of Equation 2.33 in the
manner of the SVM decision rules of Section 2.3.2. If x is some test point, then

KLD(x, +1) =
B∑

b=1

D(pb
t(x; αb

t , β
b
t )‖pb

+1(x; αb
+1, β

b
+1)) (2.34)

and

KLD(x,−1) =
B∑

b=1

D(pb
t(x; αb

t , β
b
t )‖pb

−1(x; αb
−1, β

b
−1)) (2.35)

are the Kullback-Leibler distances between the test points’s wavelet coefficient distribution
and the +1 and −1 classes’ wavelet coefficient distributions, respectively. Then we write
Equation 2.33 as the KLD classification function,

f(x) = sign (KLD(x,−1)−KLD(x, +1)) (2.36)

Additionally, we introduce a KLD confidence measure,

h(x) = KLD(x,−1)−KLD(x, +1) (2.37)

With these concepts in hand, we are prepared to explore and compare the performance
of the non-parametric SVM classification scheme using the wavelet energy features and the
parametric KLD classification scheme using the generalized Gaussian distribution features
and Kullback-Leibler distance classifier. We perform this analysis first on benchmark
textural images in Chapter 3 to show the usefulness of the methods. We then turn to
applying the methods to the stem cell application of Chapters 4 and 5.

5We discuss in Chapter 3 how specifically we calculate the parameters αk, βk, αt and βt that represent
the kth class and each test pixel.
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Chapter 3

Benchmark Analysis

Having discussed the theoretical background and mathematical framework of the textural
image segmentation problem in Chapter 2, we turn in this chapter to the application
of those concepts in practice. We demonstrate the applicability of the non-parametric
support vector machine (SVM) classifier for the task of textural image segmentation using
the wavelet energy feature representation. To the best of our knowledge, this combination
of the SVM and wavelet energy features has not been previously studied, and our analysis
presented here constitutes a useful addition to the field of texture classification. We also
explore the adaptation of Vetterli and Do’s parametric Kullback-Leibler distance (KLD)
method for the task of textural image segmentation. We limit our analysis to binary
textural image segmentation—the segmentation of images containing only two texture
fields—since that is the form of the stem cell application presented later.

We use this chapter to explicitly describe the algorithmic implementation of the two
classification methods. We report results of the algorithms on the VisTex set of bench-
mark textural images and compare the SVM and KLD approaches based on empirical
performance on these images. We consider two main performance measures in this anal-
ysis:

1. Basic error rates on various test images

2. Test error rates for different amounts of training data

The overall goal of this chapter is two-fold. We first wish to establish the usefulness
of the SVM and KLD textural image segmentation methods before applying them to
the stem cell problem in Chapters 4 and 5. Secondly, we hope to elucidate some of
the differences between the two approaches and comment on the applicability of non-
parametric and parametric classification methods in general to the problem of textural
image segmentation.

3.1 Problem Description

We pose the problem of binary textural image segmentation to analyze the performance of
the SVM and KLD classification schemes. Specifically, given an image with two textural
fields, we attempt to segment the image into those two fields. We consider images of the
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Figure 3-1: Example Two-Texture Composite Test Image

(a) Texture 1 (b) Texture 2

Figure 3-2: Example Training Images

form shown in Figure 3-1 where the two textural fields lie side-by-side. We refer to these
two-texture images as the composite test images, or simply test images.

For each test image, we train the SVM and KLD classifiers using two training images—
one for each of the two textures in the composite test image—each containing only a single
textural field. Figure 3-2 shows the training images that are associated with the test image
in Figure 3-1.

3.1.1 Benchmark Textural Images

We have chosen to use the VisTex database from the MIT Media Lab to serve as a standard
set of benchmark textural images on which to apply our SVM and KLD segmentation
algorithms [55]. This database contains a rich set of texture images. Each image contains
only a single textural field that we can partition for use in creating training and test
images such as those shown in Figures 3-1 and 3-2. While the database holds over 100
texture images, we employ only 25 of those images for our analysis. We have chosen images
containing generally uniform textural characteristics across the entire image. Table 3.1
lists these 25 images according to their original file names in the VisTex database and the
shorter names used in this thesis.

3.1.2 Image Preprocessing

We begin our analysis by performing two image preprocessing steps. Since the original
VisTex images are in RGB color format, we first convert the RGB images to grayscale
via the MATLAB function rgb2gray. We then scale the original 256 grayscale intensity
levels to the interval [−1 1] for computational stability.
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VisTex File Name Thesis Name
Bark.0001.ppm Bark1
Bark.0003.ppm Bark3
Bark.0011.ppm Bark11
Brick.0000.ppm Brick0
Brick.0002.ppm Brick2
Brick.0004.ppm Brick4

WheresWaldo.0001.ppm WheresWaldo1
Fabric.0000.ppm Fabric0
Fabric.0004.ppm Fabric4
Fabric.0009.ppm Fabric9
Fabric.0015.ppm Fabric15
Flowers.0002.ppm Flowers2
Food.0000.ppm Food0
Food.0005.ppm Food5
Food.0006.ppm Food6
Grass.0001.ppm Grass1
Leaves.0003.ppm Leaves3
Leaves.0008.ppm Leaves8
Leaves.0010.ppm Leaves10
Metal.0003.ppm Metal3
Sand.0003.ppm Sand3
Stone.0004.ppm Stone4

Terrain.0005.ppm Terrain5
Water.0000.ppm Water0
Wood.0001.ppm Wood1

Table 3.1: 25 Benchmark VisTex Texture Images
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Thesis Names Thesis Designation
Brick0 – WheresWaldo1 P1

Leaves3 – Flowers2 P2
Leaves3 – Food6 P3
Fabric9 – Water0 P4
Water0 – Bark1 P5

Leaves10 – Sand3 P6
Food5 – Grass1 P7

Brick2 – Terrain5 P8
Terrain5 – Food0 P9
Wood1 – Fabric15 P10
Fabric4 – Flowers2 P11
Fabric9 – Sand3 P12
Brick0 – Fabric9 P13
Fabric0 – Leaves8 P14
Stone4 – Brick4 P15
Metal3 – Bark11 P16
Fabric0 – Bark3 P17

WheresWaldo1 – Leaves8 P18

Table 3.2: 18 Benchmark Textural Image Pairs

3.1.3 Training and Test Images

We create the composite test images by considering various pairs of textures drawn from
the 25 images in Table 3.1. Table 3.2 lists the 18 pairs that we have randomly chosen
to analyze. These pairs are referenced by the thesis names of the two images in the pair
and according to the pairwise designations Pi, i = 1, 2, . . . , 18, used to reference each pair
throughout the remainder of this chapter.

To create the two training images for each pair, we extract 256× 256 pixel subimages
from each of the two original 512× 512 images in the pair. To create the composite test
image, we extract 128 × 128 subimages from each of the original images in the pair and
place them side-by-side. This results in a composite test image of size 128 × 256 pixels.
The subimages extracted to create the training and test images do not overlap in the
original image and thus constitute statistically independent training and test data.

We show each of the 18 composite test images corresponding to the 18 image pairs of
Table 3.2 in Figure 3-3.

By training the SVM and KLD classifiers on the two training images and testing
on the composite test image for each pair, we can calculate empirical measures of the
performance of the two methods across a variety of textures.
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P1 P2 P3 P4

P5 P6 P7 P8

P9 P10 P11 P12

P13 P14 P15 P16

P17 P18

Figure 3-3: 18 Two-Texture Composite Test Images

3.2 Training and Test Algorithms

With the 18 benchmark image pairs of Table 3.2 at our disposal, we turn to presenting
the specific algorithms that we use to analyze those textural images. We describe these
training and test algorithms for both the support vector machine and Kullback-Leibler
distance classification methods. Furthermore, we highlight the various parameters that
need to be set to fully specify the algorithms, and we discuss our method of tuning these
parameters. With slight modifications and specifications which will be noted later, the
algorithms presented here are also those used in the stem cell application.

3.2.1 Support Vector Machine Method

The SVM training algorithm consists of the following steps as depicted in Figure 3-4:

1. Randomly extract N M ×M windows (training points) from each training image

2. Send these N windows from each class to the n-level wavelet energy feature extractor

3. The feature extractor returns the N wavelet energy feature vectors corresponding
to the N extracted windows for each class

4. Send these N feature vectors from each class to the support vector machine

5. The support vector machine solves the quadratic optimization problem described in
Equations 2.19 through 2.22 in Section 2.3.2

6. The support vector machine returns the classification functions h(x) and f(x)—
described as Equations 2.25 and 2.26 in Section 2.3.2—used to classify a new input
point x
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Figure 3-4: Support Vector Machine Training Algorithm

The SVM test algorithm is depicted in Figure 3-5. It consists of the following steps:

1. Extract all Ntest M ×M windows (test points) centered about each pixel (except
those within M−1

2
pixels of the image border to avoid exceeding the image bound-

aries) of the composite test image

2. Send these windows to the n-level wavelet energy feature extractor

3. The feature extractor returns the wavelet energy feature vectors corresponding to
the extracted windows

4. Evaluate h(xi) and f(xi) (from the training algorithm) for each test point xi

5. Calculate the percentage of misclassified test points; that is, points for which f(xi) 6=
yi where yi is the true class of the test point xi

6. Plot a binary reclassified image where pixels xi for which f(xi) = +1 are plotted
white and pixels xi for which f(xi) = −1 are plotted black

As shown in Figure 3-5, we quantify the error rate of the classifier by the percentage
of misclassified pixels in the composite test image. We extend this idea to include more
interesting performance measures, such as those incorporating the confidence outputs
h(x), in the stem cell application in Chapter 4.

For our implementation of the SVM classification method, we have used Thorsten
Joachims’ SVMlight solver implemented in C [24]. To interface this solver with our MAT-
LAB code, we have used Anton Schwaighofer’s interface code, version 0.92 [46].

3.2.2 Kullback-Leibler Distance Method

As shown in Figure 3-6, the KLD training algorithm consists of the following steps:

1. Randomly extract N M ×M windows (training points) from each training image

2. Perform an n-level wavelet decomposition on these N windows from each class
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Figure 3-5: Support Vector Machine Test Algorithm

3. The wavelet decomposition yields 3n = B sets of wavelet coefficients for each train-
ing point

4. Estimate the generalized Gaussian distribution (GGD) parameters αb
i and βb

i , b =
1, 2, . . . , B, for the B sets of coefficients for each training point xi

1

5. Average the N GGD parameters at each of the B subbands to yield the trained
KLD parameters,

αb
k =

1

N

N∑
i=1

αb
i (3.1)

βb
k =

1

N

N∑
i=1

βb
i (3.2)

for each class k ∈ {+1,−1}
Figure 3-7 shows the KLD test algorithm consisting of the following steps:

1. Extract all Ntest M ×M windows (test points) centered about each pixel (except
those within M−1

2
pixels of the image border to avoid exceeding the image bound-

aries) of the composite test image

2. Perform an n-level wavelet decomposition on these windows

3. The wavelet decomposition yields 3n = B sets of wavelet coefficients for each test
point

1Vetterli and Do use a combination of the method of moments and method of maximum likelihood to
numerically estimate these GGD parameters.
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Figure 3-6: Kullback-Leibler Distance Training Algorithm

4. Estimate the GGD parameters αb
i and βb

i , b = 1, 2, . . . , B, for the B sets of coeffi-
cients for each test point xi

5. Calculate KLD(xi, +1) and KLD(xi,−1) as defined in Equations 2.34 and 2.35 in
Section 2.4.2, using the trained KLD parameters for each class from the training
algorithm, for each test point xi

6. Evaluate
h(xi) = KLD(xi,−1)−KLD(xi, +1) (3.3)

and
f(xi) = sign (KLD(xi,−1)−KLD(xi, +1)) (3.4)

for each test point xi

7. Calculate the percentage of misclassified test points; that is, points for which f(xi) 6=
yi where yi is the true class of the test point xi

8. Plot a binary reclassified image where pixels xi for which f(xi) = +1 are plotted
white and pixels xi for which f(xi) = −1 are plotted black

For our implementation of the KLD classification method, we have modified the MAT-
LAB code written by Minh Do for the original task of textural image classification for
our task of textural image segmentation [11].

3.2.3 Parameter Tuning

A quick study of the training and test algorithms above suggests the presence of various
parameters that we need to tune in order to fully specify the algorithms. We first note
common parameter choices in past work in order to limit the number of settings we
consider for each parameter. We then choose the specific settings for each parameter by
experimenting on two independent validation image pairs. These pairs, drawn from the
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Figure 3-7: Kullback-Leibler Distance Test Algorithm

well-known Brodatz texture database, are shown in Figure 3-8 [4]. We employ the SVM
algorithm in the parameter tuning process and apply the resulting optimal settings to
both the SVM and KLD methods in the benchmark analysis.

The parameters that need tuning include the size M of the square M × M local
windows on which we define the textural features, the decomposition level n of the wavelet
analysis and the kernel type and cost parameter C of the SVM classifier. We do not
choose the number N of training points (windows) per class in this validation process.
Instead, it is one of the main goals of this chapter to explore the performance effects of
training the SVM and KLD classifiers on different amounts of training data; thus, we
experiment on the benchmark test data with various N values in Section 3.3.2 to glean

(a) D4/D84 Validation Image Pair (b) D5/D92 Validation Image Pair

Figure 3-8: Brodatz Validation Image Pairs
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Parameter Settings Error Rate
M = 35, n = 2 3.81%
M = 35, n = 3 13.1%
M = 65, n = 2 3.41%
M = 65, n = 3 11.1%

Table 3.3: D4/D84 Validation Image Pair Results, Polynomial Kernel (degree 3)

this information. Additionally, as mentioned in Section 2.2.4, we have fixed the type of
wavelet used throughout the analysis to the Daubechies 4 wavelet.

The choices of the window size M and wavelet decomposition level n are related. As
shown in Figure 2-9 in Section 2.2.4, as the wavelet decomposition proceeds, the wavelet
transform is applied to subimages of decreasing size. Since we do not want to apply the
transform to subimages that are too small to capture the textural qualities of the full
image, we must tailor the decomposition level to the window size. Window sizes used in
the literature range from 17 × 17 [25] to 128 × 128 [11]. Wavelet decomposition levels
of 2 and 3 are commonly found in the literature [11] [39] [56]. We experiment on the
validation images with window sizes of 35 × 35 and 65 × 65 using 2- and 3-level wavelet
decompositions.

The choice of window size also affects the ability of the classifier to distinguish the
border between adjacent texture classes in the composite test image. We find that smaller
windows better distinguish the border at the expense of performance on the interior
textural regions. Larger windows achieve almost perfect classification on the interior
textural regions but suffer in the border region. One solution to this disparity is to employ
an adaptive scheme where a large window is used in the interior and a smaller window
at the border. When we implement this method, however, we find that the additional
computational burden of considering multiple window sizes overrides the small gains in
classification performance. Thus, continuing to use the overall error rate across the entire
composite test image with a fixed window size seems the most natural way to account
equally for both interior and border errors.

To choose the best kernel and its associated parameters, we must rely solely on ex-
perimental results since we did not find any published work employing the SVM with
wavelet energy features for textural image segmentation that could guide our selections.
We experiment with the polynomial kernel (Equation 2.23 in Section 2.3.2) of degrees
3 and 5. We employ the default value of C determined automatically by the SVMlight

solver2.
Table 3.3 shows the error rates on the D4/D84 validation image pair using a polynomial

kernel of degree 3. Table 3.4 shows the same results on the D5/D92 validation image pair.
Using a polynomial kernel of degree 5 did not significantly reduce the error rates.

We see clearly that the 3-level decomposition suffers for both window sizes and both
validation pairs. For the 2-level decomposition on the D4/D84 pair, the 35× 35 window

2Joachims uses the equation C =
(

1
N

∑N
i=1

√
K(xi,xi)

)−2

, where {x1,x2, . . . ,xN} is the set of train-
ing data, to calculate the default C value.
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Parameter Settings Error Rate
M = 35, n = 2 8.1%
M = 35, n = 3 10.85%
M = 65, n = 2 9.1%
M = 65, n = 3 14.1%

Table 3.4: D5/D92 Validation Image Pair Results, Polynomial Kernel (degree 3)

performs only 0.4% worse than the 65×65 window. However, for the D5/D92 pair, we see
a full percentage point improvement using the 35× 35 window over the 65× 65 window.
Thus, we choose to use the 2-level decomposition on 35 × 35 windows for the full SVM
and KLD benchmark analyses. For the SVM analysis, we use the polynomial kernel of
degree 5. Although the degree 5 polynomial kernel does not show significant improvement
over the degree 3 kernel for the validation images, its use does not add much additional
computational cost and leaves open the possibility that it might improve performance on
the full set of 18 benchmark image pairs.

To summarize, all results presented in Section 3.3 use the following parameter settings:

• Daubechies 4 wavelet

• 2-level wavelet decomposition

• 35× 35 windows

• Polynomial kernel of degree 5 (for the SVM method)

• SVMlight default C value (for the SVM method)

3.3 Benchmark Results

Now that the SVM and KLD algorithms are fully specified, we can report the various
results we have achieve applying those algorithms to the 18 benchmark image pairs. The
first and most important set of results reports the low error rates we have achieved with
our new SVM classification scheme and our adaptation of the KLD scheme. This success
gives us confidence in applying these methods to the stem cell application to follow. We
also explore how the amount of training data influences the performance of the SVM and
KLD methods and discuss the statistical reasoning behind this result.

3.3.1 Basic Results

To establish the basic performance of the SVM and KLD classification schemes, we test
all 18 composite test image pairs using two different training set sizes. Since the use of
the support vector machine with wavelet energy features represents a new contribution
to the field, we can only conjecture that this new method will perform well based on
the excellent performance of the SVM in numerous other applications and of the wavelet
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Test Image Pair SVM Error Rate KLD Error Rate
P1 5.1% 6.6%
P2 3.0% 3.4%
P3 3.1% 3.7%
P4 1.5% 4.7%
P5 25.4% 12.1%
P6 6.2% 7.2%
P7 7.7% 2.4%
P8 4.9% 7.7%
P9 4.2% 7.5%
P10 2.7% 6.3%
P11 5.1% 4.0%
P12 2.0% 6.9%
P13 1.7% 6.7%
P14 3.0% 2.2%
P15 3.3% 1.5%
P16 51.5% 51.2%
P17 4.8% 6.6%
P18 2.9% 6.5%

Average 7.67% 8.18%

Table 3.5: Basic Benchmark Results (100 training points per class)

energy features in the various texture classification studies outlined in Section 2.2.4. Ad-
ditionally, we conjecture that the adapted KLD method will perform well based on its
excellent performance for the original task of image-wise classification, as demonstrated
by Vetterli and Do [11].

100 Training Points Per Class

Table 3.5 shows the error rates on each image pair and an average error rate over all the
pairs using 100 training points per class for both the SVM and KLD methods.

Overall, we observe good performance for both the SVM and KLD methods. With the
exception of pairs P5 and P16, which are difficult to segment for both methods, no error
rate exceeds 7.7%. A paired t-test of the equivalence of the mean performance for the
SVM and KLD methods over the sample of 18 image pairs (7.67% and 8.18% respectively)
shows that the difference in means is not significant at the 0.05 level. Nevertheless, the
SVM method achieves a lower error rate than the KLD method on 12 of the 18 pairs.

50 Training Points Per Class

Table 3.6 shows the error rates on each image pair and an average error rate over all the
pairs using 50 training points per class for both the SVM and KLD methods.
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Test Image Pair SVM Error Rate KLD Error Rate
P1 5.1% 6.5%
P2 2.9% 3.4%
P3 2.8% 3.7%
P4 1.6% 4.8%
P5 25.9% 12.6%
P6 5.5% 7.1%
P7 10.7% 3.2%
P8 4.2% 7.6%
P9 4.0% 7.5%
P10 3.8% 6.4%
P11 5.0% 4.3%
P12 1.7% 6.9%
P13 2.4% 6.6%
P14 2.2% 2.6%
P15 4.1% 1.6%
P16 51.3% 51.1%
P17 19.4% 6.1%
P18 3.1% 6.7%

Average 8.65% 8.26%

Table 3.6: Basic Benchmark Results (50 training points per class)
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We note here some performance effects of using only 50 training points per class
compared with using 100 training points as above. We see an average performance drop
of 0.98% for the SVM method and 0.08% for the KLD method. We note informally that
the SVM method suffers more from limited training data than does the KLD method.
We hope to explore this observation more in Section 3.3.2 when we explicitly consider
training set size effects.

Using only 50 training points per class also results in the KLD method outperform-
ing the SVM method as measured by the average performance over all 18 image pairs.
However, a paired t-test shows that this difference is not significant at the 0.05 level.
Additionally, as with 100 training points per class, the SVM method yields a lower error
rate than the KLD method on 12 of the 18 pairs.

Conclusions

Overall, given sufficient training data (i.e., 100 training points per class) both the SVM
and KLD segmentation schemes perform well on 17 of the 18 image pairs, with pair P16
as the exception. The average error rates over all 18 pairs are 7.67% and 8.18% for the
SVM and KLD methods, respectively. If we exclude pair P16, the error rates drop to
5.1% and 5.6%. Paired t-tests show that the average SVM and KLD performances over
all 18 image pairs are not statistically different using both 100 and 50 training points per
class.

Overall, we are confident in the viability of both the SVM and KLD wavelet-based
methods for the basic task of binary textural image segmentation. As discussed in Sec-
tion 2.2.3, wavelet analysis is a sophisticated multiresolution image processing tool that
can accurately capture both the spatial and frequency characteristics of a textural image.
This improves upon the many feature representations, such as Haralick’s co-occurrence
method and the various structural and model-based techniques, that consider only spa-
tial characteristics. Additionally, within the frequency domain, the adaptive windowing
technique of wavelet analysis accurately extracts both the high and low frequency com-
ponents of the image. This represents an improvement over the single-resolution Gabor
filter method.

We outlined in Section 2.3.2 the many features of the support vector machine classifier
that have made it generally superior to other classification methods. Additionally, Vetterli
and Do have shown the usefulness of the parametric Kullback-Leibler distance approach
for modelling the textural characteristics of images [11].

These benefits of our chosen feature representation and classification methods are also
manifested in empirical results. While we did not find in the literature any studies of
the performance of other classification schemes using VisTex image pairs, our error rates
of 5.1% and 5.6% using the wavelet-based SVM and KLD methods compare favorably
with error rates reported across different image pairs using various other classification
methods and feature representations. For example, Randen and Husøy report average
error rates of 5.4%, 3.3% and 7.8% using autoregressive (AR), co-occurrence and Gabor
filter features, respectively, with the LVQ classifier3 on three image pairs drawn from the

3The learning vector quantization (LVQ) classifier, proposed by Kohonen in 1989, is a prototype-based
classifier. The algorithm clusters the training data into a number of classes and represents those training
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Figure 3-9: Training Set Size Effects

Brodatz texture database [39].

3.3.2 Training Set Size Results

We observed informally above that the SVM method suffers more than the KLD method
when trained on a small data set. However, with sufficient training data, we observed that
the SVM method outperforms the KLD method in terms of the average error rate across
all 18 image pairs. While this difference in performance is not statistically significant, we
would like to explore these potential training set size effects in a bit more detail.

For this analysis, we simply train the SVM and KLD methods using training sets of
various sizes ranging from 1 to 150 points per class. We then calculate the average error
rate of each method over all 18 image pairs for each training set size. Figure 3-9 shows
the resulting average error rates as a function of training set size.

The plot confirms our initial observations from Section 3.3.1. We see that given only
a few training points per class, the SVM method suffers significantly more than the KLD
method. However, with more training points it quickly improves, eventually surpassing
the KLD classifier at about 60 training points per class. The addition of even more
training points does not significantly reduce the error rates for either method; however,
the SVM method shows consistently better performance than the KLD method in the
presence of a large amount of training data.

These results make sense in the statistical context of the SVM and KLD classifiers.
The parametric KLD method makes the assumption that the wavelet coefficients at each
subband follow a probabilistic distribution. Given only one training sample, the KLD
method can estimate the parameters of that distribution and produce a complete and
fully specified model of the coefficient distribution. The non-parametric SVM method,
on the other hand, does not have the luxury (or curse) of making such a probabilistic
assumption. The absolute mean and variance extracted at each subband yield some
indication of the coefficient distribution; however, they do not specify this distribution as

clusters with prototype points. New inputs are then classified to the class of the nearest prototype [20].
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completely as the full model in the KLD approach. Thus, more training data is needed
to achieve a viable model of the coefficient distribution.

We conclude that the SVM method is sensitive to the amount of training data, up
to about 60 training points per class. The KLD method shows consistent performance
regardless of the amount of available training data. Thus, if only a few training points
per class are available, the KLD method is the recommended approach. However, if there
is ample training data, the SVM method is generally superior.

3.3.3 Conclusions

In considering the various results of the benchmark analysis, we first observe that the
support vector machine using wavelet energy features shows sufficiently low error rates
on a wide range of textural images to conclude that it is a useful method of textural
image segmentation. In addition, we have shown that Vetterli and Do’s Kullback-Leibler
distance classifier can be well-adapted to the task of image segmentation based on its
good performance over a wide range of textural images.

In comparing the SVM and KLD methods, we do not find a statistically significant
difference in their mean performances over the 18 benchmark image pairs using either 100
or 50 training points per class. We do observe that the SVM method suffers more than
the KLD method with only a small amount of training data. However, with more than
50 training points per class, both methods show excellent performance with the SVM
method consistently having a slightly lower error rate over the 18 image pairs.

The observations above regarding the differences between the SVM and KLD methods
reflect common differences between non-parametric and parametric methods. If accurate
parameter estimation can be achieved, then parametric methods can perform quite well
on only a few training points since their assumption of a probabilistic distribution can fill
the gaps left by the incomplete data. However, as in the KLD method here, numerical
parameter estimation can take some time if closed-form expressions do not exist. In
contrast, non-parametric methods are fully dependent on data to specify the model and
thus do not perform as well with small training sets. However, with sufficient training
data, they can equal and exceed parametric methods. While non-parametric methods may
not be extremely fast, if they eliminate the need for time-consuming numerical parameter
estimation, they can significantly reduce computational time as well.
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Chapter 4

Stem Cell Application: Qualitative
Interior Textural Segmentation

Now that we have laid the theoretical and practical foundations for the use of both the
non-parametric support vector machine classifier with wavelet energy features and the
parametric Kullback-Leibler distance classifier to characterize texture, we turn to creating
a computer aid based on these methods for the characterization and categorization of stem
cell colonies. This chapter discusses the medical background of stem cells, outlines our
two-tiered approach to the problem and explores the textural segmentation problem that
forms the first-tier analysis. This analysis yields both qualitative stand-alone results that
are intended as graphical aids to stem cell researchers and the means of creating a set of
image-wise features that will be used for the second-tier image categorization analysis of
Chapter 5.

4.1 Medical and Biological Motivation

Before delving into the technical aspects of the problem, we use this section to first shed
some light on the medical and biological issues involved. We also outline the specific
contributions and scope of the research we will present, making clear the specific intent
and potential of the work1.

4.1.1 Stem Cell Background

The successful culture of human embryonic stem cells at the University of Wisconsin in
1998 opened the door for serious research into the potential medical benefits of these
unique cells. These medical benefits derive from three special properties of stem cells not
shared by normal human cells [33]:

1. Stem cells can divide and renew themselves for long periods of time

1This work has been highly motivated by Dr. Paul Sammak of the Pittsburgh Development Center
of the Magee-Womens Research Institute at the University of Pittsburgh. He has provided all the stem
cell images used in our work and has given us the expert medical insight needed to tackle this problem.
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Figure 4-1: Typical Stem Cell Colony

2. Stem cells are unspecialized

3. Stem cells can be induced to take on the specialized function of any normal human
cell

Ideally, these three properties would allow stem cells to remain undifferentiated for a long
period of time and then, when needed, be induced to differentiate into the type of human
cell necessary for a specific medical treatment. For example, transplantation therapy could
be given a patient suffering from type 1 diabetes, where the patient’s insulin-creating cells
in the pancreas have been destroyed by the body’s immune system. Available stem cells
would be induced to differentiate into insulin-producing cells that would then be injected
into the patient’s pancreas, curing the disease [33]. Another application would involve
testing exploratory drugs safely on differentiated stem cells rather than on live human
subjects [33].

The first step in realizing these medical benefits involves successfully creating and
maintaining healthy, undifferentiated stem cells in a laboratory environment. This pro-
cess, known as cell culture, begins by transferring the approximately 30 inner cells of a
three- to five-day-old embryo onto a culture dish where these cells begin to proliferate. As
they proliferate, the stem cells become clustered into stem cell colonies. Then, as these
colonies begin to crowd the culture dish, healthy regions of the colonies are transplanted
to other dishes for further proliferation. This process of subculturing is continued for six
or more months until a healthy, undifferentiated, stem cell line is created and becomes
available for research purposes [33].

Figure 4-1 shows a typical stem cell colony. The clear structure in the middle of the im-
age is the colony itself, with the individual stem cells making up its interior. Surrounding
the colony are feeder cells and other culture fluids.

In order for stem cells to be viable for research, they must remain genetically normal
and undifferentiated throughout the culturing process. To ensure this normality, the stem
cell colonies undergo a continuous quality control process where they are monitored and
tested for signs of degradation and differentiation. It is this monitoring process that our
research advances. We discuss below the current state of the art of this quality control
process as motivation for the contributions of our research.
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4.1.2 Research Contributions

The core step in the stem cell quality control process is the determination of each indi-
vidual colony’s health. Only those colonies deemed sufficiently healthy are maintained in
culture. Presently, two approaches exist for the determination of colony health, each with
significant drawbacks.

The first method involves visual inspection by an experienced stem cell microscopist.
While such an expert can quickly recognize a good colony, a working laboratory might have
up to 12,000 colonies in culture that need to be inspected every two days. Furthermore, in
future therapeutic uses of stem cells, a ten-fold increase in the number of colonies requiring
inspection would be expected. With so many colonies to be inspected, it quickly becomes
infeasible for researchers to directly inspect all of their colonies. Additionally, visual
analysis naturally introduces the biases of individual researchers into the quality control
process.

The second approach to colony health determination involves the use of invasive bio-
logical tests that either destroy the colonies or render them useless for research purposes.
For example, tests such as immunocytochemistry, gene arrays and PCR (tests for mRNA
characteristics of stem cells) are destructive tests that do not allow for continued colony
growth. Even a non-destructive test such as flow cytometry is very harsh and can result
in the death of a majority of the stem cells in a colony. At present, there is no routine,
non-invasive method for measuring stem cell quality under conditions favorable to their
growth.

The drawbacks of these two current methods suggest that a standardized, non-invasive,
automated approach to stem cell colony inspection would be a useful contribution to the
stem cell research community. Toward that end, we propose a semi-automated, computer-
implemented approach to providing stem cell researchers with standard qualitative and
quantitative measures of stem cell quality. We do so in a non-invasive manner by analyzing
digital images of stem cell colonies based on specific visual characteristics. We outline
our procedure in more detail in Section 4.1.4 below. However, since our work is based
on visual characteristics, we first discuss the specific visual criteria of stem cell colony
quality.

4.1.3 Stem Cell Visual Quality Criteria

Focusing on the visual characteristics of stem cell colony health, we learn that there are
three criteria of a good stem cell colony:

1. Textural homogeneity

2. Textural tightness

3. Border sharpness and circularity

Though the first two criteria are independent factors, together they define the textural
characteristics of a good stem cell colony. Homogeneity refers to the uniformity of the
textural qualities across the colony. This factor is important because heterogeneous areas
of the colony may not be suitable for subculturing as these regions are showing signs
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(a) Good Stem Cell Colony (b) Bad Stem Cell Colony

Figure 4-2: Good and Bad Stem Cell Colonies

of cellular differentiation. However, this criterion alone does not discriminate among
the various types of uniform texture. For example, a colony could exhibit uniformly
loose texture and still satisfy the homogeneity criterion. The second criterion of textural
tightness dictates the specific type of texture that constitutes a good colony; namely,
a good colony consists of small cells, densely packed together to reveal a tight texture.
Jointly, these first two criteria state that a good stem cell colony exhibits a homogeneous
tight texture throughout the colony.

The third criterion is based on the border characteristics of a stem cell colony. A
good stem cell colony exhibits sharply defined, highly circular borders. Moving radially
out from the centroid of a good colony should reveal a sharp gradient at the colony
border, while traversing rotationally along the border should expose few inflection points
or deviations from circularity.

Figure 4-2 shows examples of a good and bad stem cell colony. Notice that the good
colony on the left exhibits a tight, homogeneous texture with a clear, generally circular
border. In contrast, the bad colony on right has a rather heterogeneous textural interior
consisting of very loose, broad cells. In addition, its border, while generally circular, is
not sharp.

4.1.4 Research Scope: A Two-Tiered Approach

As noted in Section 4.1.2 above, our research yields a semi-automated approach to pro-
viding stem cell researchers with both qualitative and quantitative measures of stem cell
quality. We partition our work into two tiers based both on the type of output produced
by each tier and the specific visual colony quality criteria employed to create that output.
Tier 1 focuses on the first two textural criteria and yields texture-based qualitative graph-
ical aids aimed at reducing the time spent by stem cell researchers in visually examining
their colonies. Tier 2 then combines the texture analysis from Tier 1 with its own border
criterion analysis to provide standard quantitative measures of colony quality.

To better motivate the usefulness of these two tools, we must first understand more
fully what the medical researchers are looking for when judging their colonies. As a stem
cell colony grows, some of the cells within the colony interior may differentiate while other
cells will remain healthy and undifferentiated. The researchers must be able to identify
the healthy regions of such a colony in order to extract cells from those regions for further
subculturing. Visually examining each colony for these healthy regions can be a time
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Figure 4-3: Two Tiered Stem Cell Analysis Methodology

consuming process for researchers without any guide as to where to focus their attention.
A useful time-saving aid would involve providing a graphical representation that segments
each colony into good and bad regions based on the interior colony texture; this visual
output would highlight the areas of the colony that deserve more visual attention. This
is precisely what the Tier 1, or qualitative interior textural segmentation analysis of this
chapter achieves.

Additionally, a numerical rating that characterizes the overall health of the entire
colony would be beneficial in order to highlight those colonies that show potential for
further subculturing and those that clearly do not. This standard output would also miti-
gate against individual researcher bias in judging the quality of a set of stem cell colonies.
This Tier 2, or quantitative image categorization output is the focus of Chapter 5.

Note that while Tier 1 focuses on the qualitative analysis of interior texture quality,
Tier 2 uses interior textural quality features—derived from the graphical Tier 1 outputs—
and a new set of border quality features to categorize the entire stem cell colony in
terms of its overall health and level of differentiation. This represents a hierarchical,
two-tiered approach where the Tier 2 analysis uses and builds upon the Tier 1 outputs.
Figure 4-3 illustrates the architecture of this two-tiered method and shows the interaction
between the two tiers. The shaded blocks connected with solid lines represent the work
accomplished in this thesis. The unshaded blocks connected with dotted lines illustrate
areas of future work. More details on these future additions are outlined in Section 6.1.

While the main goal of our research is to aid medical researchers in the task of visual
colony quality control, we also propose an interesting future biological application of this
research. Stem cell researchers perform biological experiments on their colonies to learn
about the effects of certain treatments and procedures. To quantify their results, it would
be useful to have a standard means of measuring the success or failure of the different
treatments and procedures performed on the colonies. For example, researchers would take
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a baseline measure of stem cell health before subjecting the colony to various experiments.
They would then take new measures to determine whether the experiments improved or
degraded the health of the colony. The Tier 2 ideas presented in Chapter 5 could be
extended to create the standard, quantifiable measure by which researchers would judge
the results of their biological experiments.

4.2 Interior Textural Segmentation Methodology

In order to begin the implementation of the two-tiered approach proposed in Section 4.1.4,
we must first consider the many algorithmic details of the SVM and KLD methods we have
chosen to use. The most important of these details is the actual data itself. For our work,
this data consists of 77 stem cell colony digital images. The images themselves warrant
some attention, as do the preprocessing steps we perform to set up the Tier 1 analysis. We
follow this discussion by describing the training data we use to train the SVM and KLD
classifiers. We conclude this section by specifying the various other parameter settings of
the two classifiers. Overall, the ideas presented here build on those of Chapter 3, and we
reference that chapter for more detailed explanations of the SVM and KLD classification
methods that we employ.

4.2.1 Description of Images

For our analysis, we have been provided 77 images of stem cell colonies of varying quality.
The colonies are approved National Institutes of Health (NIH) human embryonic stem
cells, line HSF-6 from the University of San Francisco. The images were acquired on a
Nikon TMS inverted tissue culture microscope with a 10x phase contrast objective and
a Nikon D100 digital camera. Each image is in RGB format of size 1000 × 1504 pixels.
Figure 4-2 shows grayscale versions of two of these 77 images.

The stem cell colonies are clearly defined in some images. However, in others, it is
not as easy to determine where the colony of interest is located. Some images contain
multiple colonies whose boundaries are often overlapping and melding. Others contain
colonies that are cut off by the image boundaries. However, following the guidance of
an expert in the stem cell research community, we are able to identify the true colony of
interest in each image for use in our analysis.

Another potential problem with the raw images is their shear size. As described in
Chapter 3, textural image segmentation requires the analysis of the texture surrounding
each pixel in the image to be segmented. Since there are about 1.5 million pixels in a
1000× 1504 image, even our segmentation of a subset of the pixels—namely, the interior
region of the colony—requires many intensive computations. We discuss ways to speed
up the process in Section 4.2.4 below.

4.2.2 Image Preprocessing

We perform the same image preprocessing steps outlined in Section 3.1.2 on each of the 77
stem cell images. Specifically, we convert each RGB image to grayscale via the MATLAB

66



Figure 4-4: Tier 1 Image Preprocessing

(a) Flat Texture Region (b) Tight Texture Region

Figure 4-5: Two Types of Good Stem Cell Texture

function rgb2gray and scale the resulting 256 grayscale intensity levels to the interval
[−1 1] for computational stability.

Additionally, since the Tier 1 analysis performs textural segmentation strictly on the
interior regions of the stem cell colonies, we must extract these interior regions from
each colony. We do so by identifying the largest inscribed rectangle lying clearly and
fully within the colony interior, as illustrated in Figure 4-4. We define this rectangular
subimage as the interior region used in the Tier 1 analysis. For the remainder of this
chapter, general references to the stem cell colony images refer specifically to this interior
textural region.

4.2.3 Training Data Extraction

Because our goal in the Tier 1 analysis is to segment each stem cell colony into healthy
and poor regions based on the colony texture, we need to provide training data repre-
senting good and bad texture to the SVM and KLD classification methods. This task is
complicated by the fact that there are two types of good texture. Similarly, there exist
two types of bad texture.

Flat texture defines healthy regions of the colony where the individual stem cells
are packed together so tightly as to be individually unrecognizable, giving the regions
a flat appearance. The tight texture regions also signify healthy portions of the colony
where individual cells are recognizable, yielding a tight textural quality. Figure 4-5 shows
examples of these two types of good texture.

The two types of bad texture we encounter are the black texture and loose texture
regions, shown in Figure 4-6. The black texture regions occur when the individual stem
cells pile up on top of each other and appear as a black splotch under the microscope and
in the resulting images. The individual cells in the loose texture regions are not tightly
packed together and are generally broad, giving the region its loose textural quality.
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(a) Black Texture Region (b) Loose Texture Region

Figure 4-6: Two Types of Bad Stem Cell Texture

In Chapter 3 we created the training sets by randomly extracting N windows from
each of the two textural classes under consideration for each run. This random selection
was necessary because in each run we were comparing a different combination of textures.
For our stem cell application, however, we are always comparing good and bad stem
cell texture. Thus, instead of randomly extracting training data for each run, we create
standard training sets representing each of the four types of texture defined above; we use
these training sets for all the runs in the Tier 1 analysis. We outline this approach in the
following bullets:

1. Identify four different colonies from among the 77 available colonies each containing
sufficiently large regions (approximately 300× 300 pixels) within them that exhibit
the flat texture depicted in Figure 4-5(a).

2. Randomly extract 50 windows of size 55× 55 from each of the four different regions
identified in Step 1, yielding 50 · 4 = 200 windows of size 55 × 55 exhibiting flat
texture.

3. Perform a wavelet decomposition on each of these 200 flat texture windows.

• For use with the SVM classifier, take the mean deviation and variance of the
wavelet coefficients at each subband for each of the 200 wavelet decomposi-
tions, as described in Section 2.2.4. This yields a wavelet energy feature vector
for each of the 200 flat texture windows that can be used to train the SVM
classifier.

• For use with the KLD classifier, estimate the generalized Gaussian distribution
parameters of the wavelet coefficients at each subband for each of the 200
wavelet decompositions. The yields a set of GGD parameters for each of the
200 flat texture windows that can be used to train the KLD classifier.

4. Define the flat texture training set to consist of these 200 wavelet energy feature
vectors and GGD parameter sets.

5. Repeat Steps 1 through 4 using regions exhibiting the tight texture depicted in
Figure 4-5(b). This results in a tight texture training set consisting of 200 wavelet
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Training Set Number Paired Texture Types
1 flat texture + black texture
2 flat texture + loose texture
3 flat texture + composite bad
4 tight texture + black texture
5 tight texture + loose texture
6 tight texture + composite bad
7 composite good + black texture
8 composite good + loose texture
9 composite good + composite bad

Table 4.1: Nine Tier 1 Training Sets

energy feature vectors and GGD parameter sets calculated from the tight texture
regions.

6. Create a composite good texture training set by combining 100 random samples
from the flat texture training set of Step 4 and 100 random samples from the tight
texture training set of Step 5.

7. Steps 1 through 6 result in the creation of three good texture training sets, each
with 200 training points.

8. Repeat Steps 1 through 7 replacing the two types of good texture with the two types
of bad texture depicted in Figure 4-6. This results in three bad texture training sets:
black texture training set, loose texture training set and composite bad training set,
each with 200 training points.

9. Repeat Steps 1 through 8 using windows of size 45 × 45 and 35 × 35 to create the
various training sets for these two additional window sizes.

For a given window size, pairing each good texture training set with each bad texture
training set yields nine complete training set pairs. Throughout the remainder of this
thesis, we reference these nine Tier 1 training sets numerically as shown in Table 4.1.

4.2.4 SVM and KLD Algorithmic Settings

For the Tier 1 analysis runs, we consider the three window sizes 55 × 55, 45 × 45 and
35× 35. Additionally, for the SVM method, we use a polynomial kernel of degree 3 and
SVMlight’s default C value. As in Chapter 3, we use the Daubechies 4 wavelet with a
2-level decomposition.

The SVM and KLD methods are computationally expensive due to the wavelet de-
composition, KLD parameter estimation and SVM classification steps. While the training
algorithms perform these steps on only 400 textural windows, having to train the SVM
and KLD classifiers each time we run the test algorithms introduces unnecessary com-
putations. However, since we have defined the nine training sets a priori, we can train
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the SVM and KLD classifiers only once for each training set and save the parameters
that define the trained classifier. Then, before each test run, we need only load the saved
classifiers rather than retrain.

In the SVM and KLD test algorithms, performing the wavelet decomposition, KLD
parameter estimation and SVM classification steps on even a small subset—specifically,
the extracted interior region—of the approximately 1.5 million pixels in the 1000× 1504
pixel colony images is a significant computational expense. To speed up this classification
process, we classify only every fifth pixel in both the vertical and horizontal directions of
the interior regions of each of the 77 images; the remaining pixels are assigned to the class
of their nearest classified neighbor. This results in a lower-resolution reclassified image,
but the computational speedup is significant.

4.3 Interior Textural Segmentation Results

Having motivated the need for and the technical details of the qualitative analysis of stem
cell colony health, we are prepared to discuss the actual Tier 1 outputs that result from the
analysis. We describe the various runs we perform, the graphical outputs we can create
from those runs and the benefits we expect the stem cell community to gain from them.
We conclude with a discussion of the effects that different parameter choices—specifically,
the choice of classification method, training set and window size—have on the resulting
graphical outputs.

4.3.1 Runs Performed

To provide a rich set of qualitative outputs, we perform a number of runs on each of the
77 colony images. These numerous Tier 1 runs also yield many interior textural quality
features that will be used for the task of quantitative image categorization in the Tier 2
analysis of Chapter 5.

For these runs, we employ both the SVM and KLD methods to test—or, more accu-
rately, reclassify—each of the 77 preprocessed stem cell colony images using each of the
nine training sets with each of the three window sizes. This results in 2 ·9 ·3 = 54 analyzes
for each of the 77 colonies. Note, however, that some of the 77 colonies have contributed
training data toward the creation of the nine training sets described in Section 4.2.3. In
order to keep the training and test data separate, we disregard the analysis of any colony
where a training set containing data contributed by that colony is employed.

As described in Sections 3.2.1 and 3.2.2, each analysis calculates a binary classification
f(xi) and confidence value h(xi) for each pixel xi in the stem cell colony image being
reclassified. We create the graphical outputs described in Section 4.3.2 below using these
values calculated across the colony images.

4.3.2 Reclassified Image Outputs

The SVM and KLD binary classifications and confidence values calculated across each
stem cell colony image allow us to produce various graphical outputs that will assist stem
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Figure 4-7: Tier 1 Graphical Outputs Example Colony

cell researchers in determining the health of their colonies. We propose four types of
graphical outputs, described below.

These graphical outputs will naturally be affected by which of the two classification
algorithms, nine training sets and three window sizes is used. We consider these parameter
choice effects in Section 4.3.3. However, to illustrate the various Tier 1 graphical outputs
that we can create, we consider the SVM and KLD analyzes of the colony shown in
Figure 4-7 using training set 5 (tight texture + loose textured) with window size 55× 55.

Examining the stem cell colony in Figure 4-7, we notice the loose texture in the center
of the colony. This region of the colony is clearly differentiated. Immediately surrounding
this center region is a ring of tight texture, followed by generally good, though not as tight,
texture in the outer portion of the colony. We expect the various graphical outputs from
our SVM and KLD segmentation algorithms to capture these features of this particular
stem cell colony.

Binary Reclassified Image

By plotting those pixels classified as good (pixels for which f(xi) = 1) in white and those
classified as bad (pixels for which f(xi) = −1) in black, we can create a binary reclassified
image. This output segments those areas of the colony interior that are healthy from those
than are differentiated and unhealthy. Additionally, the amount of black, or poor, regions
in the reclassified image provides a measure of the overall quality of the colony relative
to all the other colonies being examined. Thus, the binary reclassified images serve as
both a means of analyzing quality within an individual colony and across all the colonies
under consideration.

Figure 4-8 shows the binary reclassified images of the stem cell colony shown in Fig-
ure 4-7 using both the SVM and KLD classification algorithms. The SVM and KLD
methods both successfully segment the differentiated center region of the colony.
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(a) Support Vector Machine (b) Kullback-Leibler Distance

Figure 4-8: Binary Reclassified Images

(a) Support Vector Machine (b) Kullback-Leibler Distance

Figure 4-9: Locally Normalized Confidence Reclassified Images

Locally Normalized Confidence Reclassified Image

Where the binary reclassified image displays the binary classifications f(xi) of each pixel,
the locally normalized confidence reclassified image displays the confidence values h(xi).
While these confidence values are technically unbounded, for graphical display purposes
we need to normalize them to the interval [0 1]. We do this by examining the specific
colony under consideration and assigning the lowest confidence in the image to 0, the
highest confidence to 1 and the rest of the confidence values linearly to the [0 1] interval.
The resulting representation highlights the subtle differences in textural quality that exist
across the colony. Since the normalization to the [0 1] interval is local to the specific colony,
locally normalized confidence reclassified images should not be used to compare textural
quality among multiple different colonies.

Figure 4-9 shows this representation using both the SVM and KLD classification al-
gorithms. As with the binary representation, these images clearly show the differentiated
inner region. Additionally, the use of the more detailed confidence values highlights the
difference in texture quality between the ring surrounding the center region and the outer
portion of the colony. The lighter contrast of the ring compared to the outer region—
shown in both images, though more clearly in the KLD representation—demonstrates the
usefulness of using the confidence values to create a higher resolution graphical reclassifi-
cation of the colony.
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(a) Support Vector Machine (b) Kullback-Leibler Distance

Figure 4-10: Globally Normalized Confidence Reclassified Images

Globally Normalized Confidence Reclassified Image

A drawback of the locally normalized confidence reclassified images described above is
their unsuitability in making comparisons of textural quality across multiple different
colonies. To allow for this inter-colony comparison, we introduce globally normalized con-
fidence reclassified images. For a given classification algorithm, training set and window
size we find the lowest and highest confidence values across all 77 analyzed colonies. These
global extreme points are assigned the values 0 and 1, respectively. Then the remaining
confidence values in all the colonies are linearly scaled to the [0 1] interval. The result is
a set of reclassified images that show less detail in each individual image but can be used
to make textural quality comparisons among the different colonies.

Figure 4-10 shows the globally normalized reclassified representation using the SVM
and KLD algorithms. Though we can still make out the textural variation within the
colony, the global normalization smoothes out the contrast. While not particularly useful
when analyzing only one colony, this representation would be necessary for a comparison
of the relative qualities of a collection of stem cell colonies.

Quality Movie

The final graphical output we suggest consists of a series of images that shows the emer-
gence of unhealthy regions of the stem cell colony. This quality movie is actually a simple
dynamic representation of the locally normalized confidence reclassified image. The frames
in the movie are created by imposing various thresholds (from 0 to 1) on the locally nor-
malized confidence reclassified image; those confidence values falling above the threshold
are plotted as white and those falling below as black. As the movie is played, the poorest
regions of the colony will quickly appear in black, followed by regions of steadily improving
quality.

Figure 4-11 shows 12 frames from a movie using the information from the KLD version
of the locally normalized confidence reclassified image. The movie confirms our obser-
vations about the colony in Figure 4-7. The differentiated center region appears first,
followed by the outer area; the ring of tight texture around the center region appears last,
highlighting its good textural quality.
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Figure 4-11: Quality Movie

Two-Stage Qualitative Analysis

Since each of the four graphical outputs described above provides a different insight into
the quality of a researcher’s stem cell colonies, we propose a two-stage examination scheme
to effectively use all the available information. The binary reclassified and globally normal-
ized confidence reclassified representations of all the colonies under consideration should
first be examined. Since these two representations allow for comparisons among different
colonies, they can be used to identify the clearly healthy and unhealthy colonies. The
healthy colonies can be immediately retained for further subculturing while the clearly
unhealthy colonies can be disregarded. The remaining inconclusive colonies can then be
analyzed further using their associated locally normalized confidence reclassified images
and quality movies. This closer analysis will highlight the portions of these colonies that
can be salvaged and used for subculturing or further biological experimentation.

4.3.3 Reclassified Image Comparisons

As mentioned above in Section 4.3.2, the choice of classification method, training set and
window size in the Tier 1 analysis will affect the resulting graphical outputs. We con-
sider the effects of these parameter choices by examining the graphical outputs obtained
using various settings of the parameters on four prototypical stem cell colonies. The four
colonies, shown and numerically labelled in Figure 4-12, represent a cross-section of the
types of colonies stem cell researchers would likely encounter in their work. The colonies
are labelled in order of decreasing quality with Colony 1 showing the highest overall
quality and Colony 4 the lowest.

Classification Method Effects

To analyze the differences in the Tier 1 graphical outputs between the SVM and KLD
methods, we consider the binary and locally normalized confidence reclassified represen-
tations of each of the four colonies in Figure 4-12. We obtain the outputs using training
set 5 (tight texture + loose texture) and a 55× 55 window. Figures 4-13, 4-14, 4-15 and
4-16 show the outputs for each of the four colonies; the SVM method produces the top
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(a) Colony 1 (b) Colony 2

(c) Colony 3 (d) Colony 4

Figure 4-12: Stem Cell Colonies Used for Reclassified Image Comparison Study

two images of each figure, and the KLD method produces the bottom two.

Comparing the various SVM and KLD outputs across the four colonies, without mak-
ing judgements as to the accuracy of those outputs, we notice little difference between
the two methods. They both generally segment the colonies into the same good and
bad regions. We do observe that the KLD method is more extreme in its segmentations;
it produces clearer boundaries between good and bad regions in the binary images and
shows a larger contrast in the grayscale values between good and bad regions in the con-
fidence images. The SVM outputs tend to exhibit less-defined boundaries and a more
even contrast in the binary and confidence reclassified images. So, while the two methods
give commensurate qualitative Tier 1 outputs, the cautious reader might find the SVM
method more agreeable.

Training Set Effects

In comparing the SVM and KLD outputs above, we neglected to discuss why Colony 1
was classified by both methods as showing almost completely poor texture quality when,
in fact, it is the most healthy of the four colonies. We find that this is due to the use
of training set 5 in the analysis that produced those reclassified images. This example
highlights the potentially influential choice of Tier 1 training set. We consider this issue
in more depth by examining the binary reclassified images for each of the four colonies
using each of the nine training sets. We employ the SVM method and fix the window size
at 55 × 55. Table 4.2 reviews the nine training sets according to their numerical labels
and the types of good and bad texture they represent.

Figures 4-17, 4-18, 4-19 and 4-20 show the nine outputs for each of the four colonies.
The original colony is shown at the top of each figure, and the SVM binary reclassified
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(a) SVM Binary Image (b) SVM Confidence Image

(c) KLD Binary Image (d) KLD Confidence Image

Figure 4-13: Colony 1 Classification Method Effects

(a) SVM Binary Image (b) SVM Confidence Image

(c) KLD Binary Image (d) KLD Confidence Image

Figure 4-14: Colony 2 Classification Method Effects
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(a) SVM Binary Image (b) SVM Confidence Image

(c) KLD Binary Image (d) KLD Confidence Image

Figure 4-15: Colony 3 Classification Method Effects

(a) SVM Binary Image (b) SVM Confidence Image

(c) KLD Binary Image (d) KLD Confidence Image

Figure 4-16: Colony 4 Classification Method Effects
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Training Set Number Paired Texture Types
1 flat texture + black texture
2 flat texture + loose texture
3 flat texture + composite bad
4 tight texture + black texture
5 tight texture + loose texture
6 tight texture + composite bad
7 composite good + black texture
8 composite good + loose texture
9 composite good + composite bad

Table 4.2: Nine Tier 1 Training Sets (Review)

outputs are arranged in increasing training set number from left to right and top to
bottom. Thus, looking across the rows shows the effects of training on the different types
of bad texture (black, loose or composite) for a fixed type of good texture; looking down
the columns shows the effects of the type of good texture (flat, tight or composite) for a
fixed bad texture.

In examining Colony 1 in Figure 4-17, we note that its homogeneous flat texture makes
it a high quality colony. However, this flat homogeneity is also the cause of the wildly
different binary reclassified representations of the colony. When using training sets 4, 5
and 6 (the middle row in the figure), the classifier cannot recognize the high quality of the
flat-textured colony since it has only been trained to recognized tight texture as signifying
colony quality. In contrast, when the classifier is trained to recognize flat regions as high
quality, solely (top row) or in combination with the tight textured definition (bottom
row), the resulting segmentations are more accurate.

The training set effects are not as clear for Colony 2 in Figure 4-18. Still, we do
notice that the binary images in the first column do not segment as clearly the loose
textured region in the lower left corner of the original colony. This is due to the fact that
the classifier for these images has been trained using the black texture definition of poor
quality rather than the loose texture definition. Thus, it has trouble clearly classifying
this area of loose texture as a bad region.

In Figure 4-19 we see again what we would expect regarding the different binary
images for the different training sets. Colony 3 shows an obvious dark portion in its
center, signifying a poor quality region. In those binary images for which the black
texture definition is employed (first and last columns), we see a clear classification of the
dark central region as bad. However, for training sets 2 and 8, where the loose texture
definition is used, the classifier cannot clearly distinguish the poor central black region.

The binary output for training set 5 presents an interesting case. Even though it is
not trained to recognize black regions as bad, it still performs well in its segmentation of
the center region. This is due to the fact that it is also trained to recognize tight texture
as good. Since the texture surrounding the dark center is relatively tight, it correctly
classifies this surrounding region and simply finds the center region less similar to tight
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Figure 4-17: Colony 1 Training Set Effects

Figure 4-18: Colony 2 Training Set Effects

texture than to loose texture, thus correctly classifying it as bad.

All but one of the outputs for Colony 4 in Figure 4-20 classify the colony as almost
completely of poor quality. The binary reclassified image using training set 2 (middle
image in the top row) is the one exception. It is perhaps ironic that the SVM classifier used
to create this reclassified image, trained to distinguish explicitly between flat and loose
texture, would fail on a colony exhibiting extremely loose texture throughout. However,
under further examination, the result makes sense for two reasons. First, since Colony
4 is the only one among the 77 colonies with such a loose texture, we do not include its
extreme texture in the training data since it does not represent well the colony images
at our disposal. Thus, it is rightfully difficult for the classifier to correctly segment the
colony. Secondly, the windows used to capture the textural qualities of the colony are not
large enough to recognize such a loose texture. Instead, these windows see only the flat
regions among the widely-dispersed cells that create the colony’s loose texture. Since the
classifier is trained to recognize flat texture as good, it tends to incorrectly classify the
very loose, bad texture as tight, good texture.

79



Figure 4-19: Colony 3 Training Set Effects

Figure 4-20: Colony 4 Training Set Effects
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Window Size Effects

Along with classification method and training set, the window size can conceivable affect
the resulting stem cell colony segmentation. We analyze these window size effects by
considering the SVM binary reclassified images for each of the four colonies using training
set 5 (tight texture + loose texture). Figures 4-21, 4-22, 4-23 and 4-24 show the outputs
for each colony; in each figure, the leftmost image uses a 55 × 55 window, the middle
image a 45× 45 window and the rightmost image a window of size 35× 35.

The only common window size effect among the four colonies appears to be the in-
creased speckling with the 35× 35 window. We attribute this to the increased locality of
the analysis with this smaller window size; the larger windows naturally smooth out the
local irregularities in the image. Overall though, we do not notice any dominant window
size effects that would significantly influence our results.

(a) 55× 55 Window (b) 45× 45 Window (c) 35× 35 Window

Figure 4-21: Colony 1 Window Size Effects

(a) 55× 55 Window (b) 45× 45 Window (c) 35× 35 Window

Figure 4-22: Colony 2 Window Size Effects

(a) 55× 55 Window (b) 45× 45 Window (c) 35× 35 Window

Figure 4-23: Colony 3 Window Size Effects

Conclusions

The above analyzes demonstrate some of the complexities of the stem cell classification
problem. While the classification method and window size parameter choices do not
significantly affect the resulting colony segmentations, the choice of training set can have

81



(a) 55× 55 Window (b) 45× 45 Window (c) 35× 35 Window

Figure 4-24: Colony 4 Window Size Effects

a legitimate effect. This is due to the difficulty in fully characterizing good and bad stem
cell colony texture. The fact that there exist two types of both good and bad texture
is evidence of this difficulty. Additionally, a wide range of textures is represented within
each of these four types of texture. As it is not practical to train the classifiers on each
manifestation of texture we might encounter, we trade textural specificity for practical
applicability and train only on the four most common textures. We recommend the stem
cell researchers using our work examine the outputs from all nine training sets to gain a
full understanding of the quality of their colonies.

As we now transition to the quantitative stem cell categorization task of Chapter 5 we
will encounter these difficulties again, and we consider methods to account for performance
differences over the various parameter settings.
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Chapter 5

Stem Cell Application: Quantitative
Image Categorization

In Chapter 4 we outlined a two-tiered approach—diagrammed again here as Figure 5-
1 below—to the problem of providing tools to aid stem cell researchers in the visual
characterization of the health of their stem cell colonies. Then, based on the textural
criteria of stem cell quality, we created various graphical representations that segmented
each colony interior into good and bad regions using the SVM and KLD algorithms
discussed in Chapters 2 and 3. Our hope was that these outputs would reduce the time
spent by researchers in visually examining their colonies by providing a clear blueprint of
the quality across the colonies and focusing their attention on those regions that might
require closer inspection. This work constituted the Tier 1, or qualitative interior textural
segmentation analysis.

While helpful to stem cell researchers, the Tier 1 analysis leaves open the opportunity
for further work in two areas. First, the Tier 1 graphical outputs still require a subjective
interpretation in order to make stem cell quality judgements. A quantitative measure of
overall colony quality would thus be useful to mitigate against the natural subjectivity
of individual researchers. Secondly, since the Tier 1 analysis focused strictly on interior
textural quality, it naturally did not consider the third, or border criterion of stem cell
quality. However, in implementing a quantitative analysis of overall colony quality, we
should consider such border features.

The goal of this chapter is to report a successful method of implementing these two
open tasks; this work constitutes the Tier 2, or quantitative image categorization anal-
ysis. We frame this analysis as a multiclass, or multiway categorization problem where
we attempt to classify each full stem cell colony into one of several quality categories.
Following the machine learning classification methodology presented in Section 2.1, we
consider again the two steps of feature representation and classification, operating now at
the full colony level rather than the pixel level of the benchmark and Tier 1 segmentation
work.

We tackle the colony-wise feature representation problem in Section 5.1 by deriving
colony-wise interior texture features from the Tier 1 outputs and introducing new colony-
wise border features. This analysis yields the colony-wise feature representations xi,
i = 1, 2, . . . , 77, for each of the 77 stem cell colonies. We discuss in Section 5.2 the
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Figure 5-1: Two Tiered Stem Cell Analysis Methodology (Review)

associated multiclass labels yi ∈ {1, 2, . . . , 5}, i = 1, 2, . . . , 77, for each colony. Then, in
Section 5.3 we describe the multiclass support vector machine classifier that trains and
tests on the full colonies, and we outline various run setup procedures. In Section 5.4 we
report the encouraging categorization rates we achieve with this methodology and give
guidance for its practical implementation.

5.1 Colony-Wise Feature Extraction

Just as feature representation on the pixel level was the first step for the Tier 1 analysis,
feature extraction on a colony level is the first Tier 2 task. Where the Tier 1 analysis
worked at the level of local windows extracted about each pixel of the stem cell colony
images, we now expand to the level of the entire colony in order to provide a quantitative
measure of overall colony quality. These colony-wise features should capture the aggregate
health of the colony.

We accomplish this by deriving features based on the criteria of stem cell colony quality
discussed in Section 4.1.3. We recall the following three criteria:

1. Textural homogeneity

2. Textural tightness

3. Border sharpness and circularity

Since the first two criteria reference interior textural quality and the third focuses on
border quality, we similarly partition the colony-wise features into two sets, those that
characterize texture quality and those that consider border quality. We describe the
specific features from each of these two sets in the two sections to follow.
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5.1.1 Interior Texture Feature Extraction

We conjecture that we can capture the interior textural quality of a stem cell colony by
considering the following two general measures:

1. The percent of the colony interior that is healthy and undifferentiated

2. The level of homogeneity of healthy regions across the colony

We propose four colony-wise features, called mean features, to capture the first charac-
teristic and six features, called variance features, for the second.

All ten colony-wise interior texture features are easily calculated from the Tier 1 out-
puts of Chapter 4. Recall that the Tier 1 analysis performed a pixel-by-pixel classification
of the interior region of each stem cell colony. Furthermore, each colony was analyzed
using both the SVM and KLD classifiers with three different window sizes and nine dif-
ferent training sets. Thus, for a fixed Tier 1 window size and training set, we have binary
classifications fSV M(xi) and fKLD(xi) and confidence values hSV M(xi) and hKLD(xi) for
each pixel xi in the colony interior, depending on whether we employ the outputs from
the SVM or KLD classifier. We derive the colony-wise interior texture features using
these binary classification and confidence values. Additionally, we derive these features
assuming a fixed Tier 1 window size and training set.

Mean Features

The first measure of interior texture quality listed above states that the percentage of
healthy area in the colony interior reflects the relative quality of the colony itself. For
example, a colony whose interior consists of a single high-quality region would be consid-
ered of high quality as a whole. A colony where only half of the interior area is healthy
would itself be rated a mediocre colony.

Recall that the Tier 1 analysis provides a pixel-by-pixel classification of each colony
interior. As a slight modification to the original approach of letting f(xi) = −1 for poor
quality pixels, we now set f(xi) = 0 for such pixels. To then find the percentage of good
pixels across the colony, we can simply calculate the colony average of the f(xi) values.
This motivates the use of the mean operator to create colony-wise features. Depending
on whether we use the SVM or KLD classification method, we have the following SVM
texture binary mean and KLD texture binary mean features:

µf :SV M =
1

N

N∑
i=1

fSV M(xi) (5.1)

µf :KLD =
1

N

N∑
i=1

fKLD(xi) (5.2)

where N is the number of pixels in the interior of the stem cell colony being considered.
In Chapter 4, we found that we could create higher-resolution reclassified images by

plotting the confidence values h(xi) for each pixel. Similarly, taking the average confidence
values across each colony interior provides a higher-resolution colony-wise feature for the
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(a) Colony 1 (b) Colony 2

Figure 5-2: Confidence Reclassified Images of Two Toy Colonies

Tier 2 analysis. Thus, we have the following SVM texture confidence mean and KLD
texture confidence mean features:

µh:SV M =
1

N

N∑
i=1

hSV M(xi) (5.3)

µh:KLD =
1

N

N∑
i=1

hKLD(xi) (5.4)

Variance Features

The second measure of interior textural quality listed above is based on the homogeneity
criterion of stem cell quality. That criterion states that a healthy colony exhibits textural
homogeneity across the entire colony.

The four mean features in Equations 5.1 through 5.4 do not necessarily capture this
homogeneity characteristic. For example, consider the confidence reclassified images of
the two toy colonies in Figure 5-2. Outside of the obvious poor area in its interior, Colony
1 exhibits excellent quality. It returns a confidence mean value of 0.874. Colony 2 also
has a confidence mean of 0.874 on account of the slightly degraded quality throughout.
Thus, even though Colony 2 is clearly the superior colony due to its homogeneity, the
confidence mean features cannot distinguish between the two.

However, we could use the variance operator to create features that capture the differ-
ence in the homogeneity of the two colonies and thus distinguish between them. Indeed,
the variance in the confidence values across Colony 1 of 0.1101 is clearly distinguishable
from the variance of 0 for Colony 2.

Using the above example as motivation, we introduce four variance-based features:
SVM texture binary variance, KLD texture binary variance, SVM texture confidence
variance and KLD texture confidence variance. Their respective mathematical expressions
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are,

σ2
f :SV M =

1

N

N∑
i=1

(fSV M(xi)− µf :SV M)2 (5.5)

σ2
f :KLD =

1

N

N∑
i=1

(fKLD(xi)− µf :KLD)2 (5.6)

σ2
h:SV M =

1

N

N∑
i=1

(hSV M(xi)− µh:SV M)2 (5.7)

σ2
h:KLD =

1

N

N∑
i=1

(hKLD(xi)− µh:KLD)2 (5.8)

where N is the number of pixels in the colony interior being considered and the µ· ex-
pressions are the mean features defined in Equations 5.1 through 5.4 above.

We introduce two additional outlier-based features to augment the variance features
above in characterizing homogeneity. Specifically, we define new 35 × 35 windows about
each pixel in the colony under consideration. We then calculate the local confidence
mean within each window. If the local mean value for a given pixel’s window differs by
more than two standard deviations from the confidence mean across the entire colony, we
declare the pixel to be an outlier1. We define the SVM texture outlier and KLD texture
outlier features to be the total number of outlier pixels across the colony using the SVM
and KLD classifiers, respectively. Mathematically, we have,

ξSV M =
N∑

i=1

δ
(
|µ(i)

h:SV M − µh:SV M | > 2σh:SV M

)
(5.9)

ξKLD =
N∑

i=1

δ
(
|µ(i)

h:KLD − µh:KLD| > 2σh:KLD

)
(5.10)

where N , µ· and σ· are as above, µ
(i)
h:SV M and µ

(i)
h:KLD are the local means of the SVM and

KLD confidence values within the 35 × 35 window about pixel xi, and δ(·) is a function
that returns a 1 if its argument is satisfied and a 0 otherwise.

Feature Summary

Motivated by the textural criteria for stem cell colony quality and confirmed by an ex-
pert in the field of stem cell microscopy, we have proposed ten colony-wise features that
characterize the overall health and quality of the interior region of a stem cell colony. Ad-
ditionally, all ten features can be easily calculated from the outputs of the Tier 1 analysis

1The use of the mean statistic here is perhaps not the most appropriate approach for outlier detection
since the local and colony means are themselves already skewed by outliers. A more robust measure,
such as the median, would be more appropriate. However, we leave its implementation and analysis for
future work.
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Feature Name Feature Symbol Formula

SVM Texture Binary Mean µf :SV M
1
N

∑N
i=1 fSV M(xi)

KLD Texture Binary Mean µf :KLD
1
N

∑N
i=1 fKLD(xi)

SVM Texture Confidence Mean µh:SV M
1
N

∑N
i=1 hSV M(xi)

KLD Texture Confidence Mean µh:KLD
1
N

∑N
i=1 hKLD(xi)

SVM Texture Binary Variance σ2
f :SV M

1
N

∑N
i=1(fSV M(xi)− µf :SV M)2

KLD Texture Binary Variance σ2
f :KLD

1
N

∑N
i=1(fKLD(xi)− µf :KLD)2

SVM Texture Confidence Variance σ2
h:SV M

1
N

∑N
i=1(hSV M(xi)− µh:SV M)2

KLD Texture Confidence Variance σ2
h:KLD

1
N

∑N
i=1(hKLD(xi)− µh:KLD)2

SVM Texture Outlier ξSV M

∑N
i=1 δ

(
|µ(i)

h:SV M − µh:SV M | >
2σh:SV M)

KLD Texture Outlier ξKLD

∑N
i=1 δ

(
|µ(i)

h:KLD − µh:KLD| >
2σh:KLD)

Table 5.1: Tier 2 Colony-Wise Interior Texture Features

completed in Chapter 4. Thus, there is little additional computational cost in extracting
these colony-wise features. All ten colony-wise interior texture features are summarized
in Table 5.1 for a fixed Tier 1 window size and training set.

Relaxing the assumption of a fixed Tier 1 window size and training set, we find that we
actually have 3 · 9 = 27 different versions of the ten colony-wise interior texture features
of Table 5.1. Each version depends on the specific window size and training set employed
in the Tier 1 analysis to calculate the binary classifications fSV M(xi) and fKLD(xi) and
confidence values hSV M(xi) and hKLD(xi) then used to derive the colony-wise features.
Considering these 27 versions, we actually have 10 · (3 · 9) = 270 available features to
characterize the interior texture of a stem cell colony. The astute reader will recognize
that using all 270 features in training would likely yield a severely overfit and complex
classifier. Thus, we discuss an approach to feature selection in Section 5.3.2 below to
avoid these problems.

5.1.2 Border Feature Extraction

While we are able to utilize the various results from the Tier 1 analysis for the calculation
of the colony-wise interior texture features, we do not have such a luxury for the creation
of the colony-wise border features since the Tier 1 analysis did not consider border char-
acteristics. Thus, we must first perform some preliminary steps in order to calculate the
data that will then be used to create the actual border features.

We begin this process by expanding on and revising the border criterion of stem cell
colony quality documented at the beginning of this section. We then describe how we
extract information from the stem cell colony images to capture this revised criterion.
Finally, we outline the actual border features that we calculate.
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Figure 5-3: Border Window Extraction Process

Revised Border Criterion

The original border criterion dictates that a good colony exhibits a sharp and circular
border. While we consider a revised border criterion discussed below, methods do in fact
exist for the analysis of border sharpness and circularity. For example, gradient methods
can be used to quantify changes in intensity as the colony border is crossed in a radial
direction from the colony centroid. A large gradient, reflecting a sharp intensity change
from colony interior to exterior, would indicate a sharp border while a low gradient value
would signal a less-defined border [15]. Measures of circularity include the circularity in-
dex, fractal-based methods and Fourier analysis [28]. Other novel techniques are discussed
in the literature, often in the application to cancerous melanoma detection [15] [28].

Despite the availability of these methods, we choose instead to employ a slightly
different manifestation of the border quality criterion that dovetails better with our work
in texture analysis. The revised criterion states that a good colony border will contain
high quality texture immediately interior to the colony border. This revision has a strong
biological justification. Namely, we find that stem cell colonies generally show the first
signs of degradation and differentiation in two specific regions: the center and border
regions of the colony. Since this degradation is reflected in the texture of the stem cells
in those regions, by analyzing texture in the border region we hope to capture the border
quality of the colony2.

Border Window Extraction

Implementing the revised border criterion involves analyzing texture quality in the border
region in much the same manner as we have done in Chapter 4 for the interior region. Just
as we defined windows around each pixel of the colony interior, calculated wavelet-based
texture features and classified each pixel according to those features using the SVM and
KLD methods, we now perform the same basic tasks on the border region. This process of
border window extraction is illustrated in Figure 5-3 and described in more detail below.

The first step involves explicitly defining the colony border. This process of border
segmentation can be performed either manually by an expert or in some automated fash-
ion. Sophisticated automated border segmentation algorithms exist in the literature. For
example, Pien et. al. employ the curve evolution method of Shah to the task of segmenting
anatomic structures of the human brain in magnetic resonance images [37] [47]. However,
as it is not the primary focus of our work to consider such automated methods, we leave
their implementation to future work and employ the manual segmentation approach.

2Since the texture in the colony interior has already been incorporated into the colony-wise interior
texture features of Section 5.1.1 above, we do not explicitly analyze the center region again here.
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Figure 5-4: Border Window Orientation

With these defined borders, we then extract windows about each border pixel on which
to perform the textural analysis that we use to characterize the overall border quality in
accordance with the revised border criterion. To speed up implementation of this process,
we employ an automated method requiring the user to specify only one parameter, the
colony centroid. This centroid location partitions the image into four quadrants. A
window is then placed about each border pixel in an orientation dictated by the quadrant
in which the pixel lies. The four possible orientations are shown in Figure 5-4.

By following this process for each of the 77 colonies, we can extract the border windows
on which to perform the wavelet-based texture analysis discussed in the previous chapters.
Specifically, we extract border windows of size 35× 35, 45× 45 and 55× 55 and run these
windows through the SVM and KLD algorithms of Section 3.2 using each of the nine
training sets outlined in Section 4.2.3. This results in the various binary classifications
fSV M(xi) and fKLD(xi) and confidence values hSV M(xi) and hKLD(xi) for a fixed window
size and training set that characterize each border pixel xi of each colony.

Colony-Wise Border Features

Consider for now that we have fixed the window size and training set used in the border
window analysis. Then, using the resulting binary classifications and confidence values
for each border pixel, we calculate eight colony-wise border features analogous to the first
eight colony-wise interior texture features. That is, we take the mean and variance of the
binary and confidence values across each colony’s border pixels using both the SVM and
KLD methods. These features are summarized in Table 5.2.

As with the colony-wise interior texture features, if we relax the assumption of a fixed
window size and training set, we actually have 8 ·(3 ·9) = 216 available colony-wise border
features to characterize the border of a stem cell colony. Again, as with the colony-wise
interior texture features, we discuss below how to select only a subset of these 216 features
to avoid an overfit and complex model.
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Feature Name Feature Symbol Formula

SVM Border Binary Mean µf :SV M
1
N

∑N
i=1 fSV M(xi)

KLD Border Binary Mean µf :KLD
1
N

∑N
i=1 fKLD(xi)

SVM Border Confidence Mean µh:SV M
1
N

∑N
i=1 hSV M(xi)

KLD Border Confidence Mean µh:KLD
1
N

∑N
i=1 hKLD(xi)

SVM Border Binary Variance σ2
f :SV M

1
N

∑N
i=1(fSV M(xi)− µf :SV M)2

KLD Border Binary Variance σ2
f :KLD

1
N

∑N
i=1(fKLD(xi)− µf :KLD)2

SVM Border Confidence Variance σ2
h:SV M

1
N

∑N
i=1(hSV M(xi)− µh:SV M)2

KLD Border Confidence Variance σ2
h:KLD

1
N

∑N
i=1(hKLD(xi)− µh:KLD)2

Table 5.2: Tier 2 Colony-Wise Border Features

Category Description
1 Great texture and sharp edges
2 Imperfect but good colony

Some darkening or thinning of the edge or center of the colony
Starting to differentiate

3 Compromised colony with a significant thinning of
the edge or thickening of the center of the colony

4 Poor colony with some usable cells
Mostly differentiated

5 Unusable colony with no usable stem cells
Nearly complete differentiation

Table 5.3: Full Colony Rating Scale

5.2 Expert Rating of Colony Quality

Having defined the characteristics that we use to create the colony-wise feature vectors xi,
i = 1, 2, . . . , 77, for each full colony in the categorization process, we now turn to defining
the true labels, or ratings yi ∈ {1, 2, . . . , 5} that we associate with each colony. This
labelling was provided by an experienced stem cell research biologist, and we consider his
expert rating to be the “truth” in the sense that it is the standard with which we compare
the outputs from our categorization methodology.

This rating is based on overall colony quality using all three stem cell quality criteria
outlined at the beginning of Section 5.1 above. Table 5.3 lists the specific guidance used
to rate the colonies into the five categories.

The partition of the colonies into as many as five categories poses some significant
difficulties to our analysis. First, a data set of 77 stem cell colonies is barely sufficient
for making even pairwise classifications, let alone a five-way comparison. Considering
that after partitioning the 77 colonies into separate training and test sets for each of the
five categories, we have only between seven and ten colonies on which to train for each
category, we realize that we are embarking on a truly difficult endeavor. Thus, we expect
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that this scarcity of data will affect our results and that better results could be obtained
with more data.

Secondly, a five-way labelling reduces the differences between colonies in adjacent
categories making it even more difficult to distinguish between them. Of these adjacent
categories, we find it particularly difficult to discriminate between categories 1 and 2. This
is true both to the expert eye3 and, as we shall see below, to our Tier 2 categorization
method.

To simultaneously ease these two problems, we consider combining the category 1 and
2 colonies into a composite “1/2” category, thus yielding only four categories among which
to distinguish. This approach increases the amount of data within the composite category
on which to train and eliminates the difficult task of distinguishing between categories 1
and 2. However, we do not abandon the hope of separating categories 1 and 2 and discuss
in Section 5.4.3 below our attempts at doing so.

5.3 Colony-Wise Classification Methodology

With colony-wise feature vectors xi and associated multiclass labels yi, we have accom-
plished the feature extraction step of the machine learning classification paradigm as
applied to the full stem cell colonies. We must now choose a classification method that
can use these colony-wise features to accurately categorize the full colony images into the
five (or four) quality categories described above. As in Section 2.3, we are free to choose
any suitable method, such as a multiway neural network or nearest neighbor classifier.
However, we again choose the support vector machine for the same reasons as outlined in
Section 2.3.2 earlier, namely its superior theoretical and empirical performance over other
methods.

While algorithmically similar to the SVM employed in Chapters 3 and 4 for the task
of image segmentation, we now consider a new instantiation of the method. We replace
wavelet energy features with the colony-wise features defined above, and instead of making
binary pixel-by-pixel classifications, we make multiway colony-wise classifications. Addi-
tionally, training and test data consists now of full stem cell colonies rather than textural
windows.

In the remainder of this section, we outline the multiclass extension of the now well-
known binary support vector machine and describe the various runs that we perform to
demonstrate the effectiveness of our Tier 2 methodology.

5.3.1 Multiclass SVM Formulation

There exist a number of methods for formulating multiway classifiers. Most of these
simply involve running a combination of binary classifications and combining the results to
arrive at a multiclass solution. Examples include the one-vs-one [32] and decision tree [51]
approaches. The multiclass problem can also be considered in the more flexible framework

3In a five category comparison, it is quite possible that even an expert microscopist might classify a
generally good colony to category 1 one day and to category 2 another based on the specific biological
criteria on which the expert focuses each day.
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of error correcting output codes (ECOC) [10]. In essence, all of these multiclass approaches
are generic as they simply provide a framework for combining binary classifications into
multiclass results; thus, any suitable binary method can be employed as the underlying
classifier.

As mentioned above, we choose to use the support vector machine as our underlying
binary classification method. Additionally, we employ a specific implementation of the
ECOC framework, namely the one-vs-all approach. We give a brief summary of this
approach here and leave further details and development to Appendix A.

Training the one-vs-all k-class SVM involves creating k different binary classifiers. For
the ith binary classifier, we train data from the ith class against a composite data set of
the remaining k − 1 classes. This yields a function hi(x) that we interpret as returning
the confidence that a stem cell colony x should be classified into class i. Training all k
binary classifiers yields a vector of confidence functions (h1(x), h2(x), . . . , hk(x)).

We then apply the multiway classification function [41],

H(x) = arg max
j∈{1,...,k}

hj(x) (5.11)

to classify a colony x into one of the k classes. Intuitively, Equation 5.11 dictates that we
classify the colony x to the class which is the most confident of x belonging to it rather
than not. For k = 2, this multiclass approach collapses to the standard binary SVM
classifier.

5.3.2 Run Setup

Simply stated, the goal of the Tier 2 problem is to use colony-wise feature vectors to
classify stem cell colonies into five (or four) categories. An obvious, but unrefined solution
approach dictates that we attempt a full five-way (or four-way) categorization of the
available stem cell colonies using all 486 colony-wise features (270 interior texture features
and 216 border features) as inputs. This approach has several drawbacks.

First, using all 486 features results in an excessively high dimensional feature vector.
Even the SVM, with its ability to handle high dimensional feature vectors, would not be
expected to successfully identify which of the 486 features are truly useful in defining the
underlying structure of the colony categorization problem. As a remedy, before running
the SVM classifier, we perform feature selection in order to reduce the dimensionality of
the feature vectors seen by the SVM. We describe our methodology below.

Secondly, as mentioned in Section 5.2 above, we have only approximately ten colonies
per category for use as training data. With such little training data, a full five-way (or
four-way) categorization becomes a very difficult problem. Thus, we find it beneficial to
consider less ambitious efforts, such as pairwise or three-way categorizations. We discuss
later the specific category comparison runs that we perform.

The practical result of implementing these two modifications is that we replace the
single, infeasible run described above with a series of well-selected smaller runs. By then
defining optimality criteria with respect to these smaller problems, we can report results
and make conclusions regarding the Tier 2 problem of using colony-wise features to classify
stem cell colonies into quality categories.
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Figure 5-5: Tier 2 Colony-Wise Features

Feature Selection

The first modification we make to the single, full run described above involves feature
selection. As depicted in Figure 5-5, there exist 486 colony-wise features that we can use
to characterize a given stem cell colony. This high dimensionality in the face of limited
training data will naturally result in ineffective categorization. However, by first reducing
the dimensionality of the feature vectors, we hope to attain legitimate results.

Approaches to feature selection have been considered both for general data analy-
sis problems and specifically for the support vector machine. One general approach in-
volves performing a regression analysis on the input data and employing feature selection
methods tailored to the regression problem. Examples of such methods include forward
stepwise selection, backward stepwise selection, ridge regression, partial least squares and
principal components analysis [20]. Only those features found to be the significant in this
pre-analysis are then used as inputs to the chosen classification method. Another approach
might involve using various data mining algorithms such as CART and MART—designed
specifically to mine for useful information or features in large and messy data sets—to
determine the most important features to be used as inputs in the final classification
scheme [20].

Direct feature selection for the SVM is not difficult when a linear kernel is employed.
In that case, one need only calculate the w vector defining the optimal hyperplane and
identify the most influential features as those whose components in the w vector have the
largest absolute values. For other kernels such as the polynomial and radial basis function
kernels that we use in this work, feature selection is rather more difficult. Nevertheless,
methods for nonlinear SVM feature selection have been developed and are discussed in
the literature [21] [57].

While these advanced feature selection methods might be considered in future work,
we employ a simpler combinatorial approach. In general, this method involves choosing
various subsets of the 486 features and running the SVM with each of the corresponding
smaller feature vectors. Those features contained in the specific feature subset yielding
the highest performance are determined to be the most influential.

A full combinatorial implementation where we run the SVM on every possible subset
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Group Name Included Features
Texture Binary µf :SV M , µf :KLD, σ2

f :SV M , σ2
f :KLD

Texture Confidence µh:SV M , µh:KLD, σ2
h:SV M , σ2

h:KLD

Texture Outlier ξSV M , ξKLD

Texture Binary and Confidence µf :SV M , µf :KLD, σ2
f :SV M , σ2

f :KLD

µh:SV M , µh:KLD, σ2
h:SV M , σ2

h:KLD

Texture Binary and Outlier µf :SV M , µf :KLD, σ2
f :SV M , σ2

f :KLD

ξSV M , ξKLD

Texture Confidence and Outlier µh:SV M , µh:KLD, σ2
h:SV M , σ2

h:KLD

ξSV M , ξKLD

All Texture µf :SV M , µf :KLD, σ2
f :SV M , σ2

f :KLD

µh:SV M , µh:KLD, σ2
h:SV M , σ2

h:KLD

ξSV M , ξKLD

Table 5.4: Colony-Wise Interior Texture Feature Groups

Group Name Included Features
None ∅

Border Binary µf :SV M , µf :KLD, σ2
f :SV M , σ2

f :KLD

Border Confidence µh:SV M , µh:KLD, σ2
h:SV M , σ2

h:KLD

All Border µf :SV M , µf :KLD, σ2
f :SV M , σ2

f :KLD

µh:SV M , µh:KLD, σ2
h:SV M , σ2

h:KLD

Table 5.5: Colony-Wise Border Feature Groups

of the 486 features would require,

486∑
i=1

(
486
i

)
→∞ (5.12)

runs. Clearly, we must limit the subsets we consider. We do so by first fixing the Tier 1
window size and training set reducing our feature choices to the 10 colony-wise interior
texture features listed in Table 5.1 and 8 colony-wise border features of Table 5.2. Instead
of considering these features in isolation, we operate on various fixed combinations of
features by creating seven interior texture feature groups and four border feature groups.
By pairing one of the interior texture groups with one of the border feature groups, we
can define the specific feature vector sent to the SVM.

The seven interior texture feature groups are listed in Table 5.4 via their corresponding
feature symbol from Table 5.1 while the four border feature groups are shown in Table 5.5
referencing Table 5.2.

Pairing each interior texture group with each border group results in 7·4 = 28 different
feature sets. However, recall that the Tier 1 window size and training set has been fixed
throughout this discussion. By employing each of the three window sizes and each of
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the nine training sets on each of the 28 combinations described above, we actually have
3 · 9 · 28 = 756 possible different feature vectors to be used as inputs into the SVM.

Finally, note that each of these 756 different feature vectors employs only one of the
nine Tier 1 training sets. As we discovered in Section 4.3.3, the choice of training set can
have a significant impact on Tier 1 analysis. Since we have used the Tier 1 analyzes to
create the Tier 2 colony-wise features, we expect that the training set choice will also affect
the Tier 2 results. Thus, we also consider feature vectors containing features derived from
all nine training sets. Considering the three window sizes, this adds 3 · 28 = 84 additional
feature vectors.

Thus, our feature selection methodology results in the creation of 756 + 84 = 840
different feature vectors. This is clearly more feasible than following the full combinatorial
approach with its excessively large number of feature vectors. By running the SVM using
each of these 840 feature vectors, we can calculate results for each and determine which
specific features yield the best categorization performance.

Parameter Settings

Implementing the feature selection methodology discussed above requires us to run the
SVM categorization algorithm 840 times to calculate results for each of the 840 different
feature vectors. For each of these runs, we need to specify various SVM parameters. For
simplicity, we choose to fix the SVM’s cost parameter C to 1. However, we expect that
the SVM kernel choice may affect the results of each run. Thus, we experiment with two
different kernels, the polynomial of degree 2 and the radial basis function. By performing
the 840 runs outlined above with each of these two kernels, we arrive at 840 · 2 = 1680
different Tier 2 runs, each reflecting a different setting of the colony-wise feature vector
and multiclass SVM kernel.

Category Comparisons

As mentioned at the beginning of this section, we find it beneficial to perform, in addition
to the full five-way (or four-way) categorization, various other category comparisons, such
as pairwise or three-way comparisons. Specifically, for the five category case, we perform
all ten pairwise comparisons, a comparison among categories 1, 3 and 5 and the five-way
run. For the four category case where we have combined categories 1 and 2, we perform
the six pairwise comparisons along with the full four-way comparison.

For each of these comparison runs, we need to specify training and test data from
among the colonies involved. We accomplish this by randomly splitting the applicable
colonies into disjoint training and test sets. For example, if we are comparing categories
1 and 2, we randomly split the category 1 colonies into a training and test set and the
category 2 colonies into a training and test set4. In order to achieve more accurate results,
we perform each comparison run ten times using a random training/test partition each

4As mentioned briefly in Section 4.3.1, for a given Tier 2 run, we recuse from the analysis those
colonies contributing data to the specific Tier 1 training set used in the creation of the Tier 2 feature
vector employed in that run. In short, we never test on data that has been used previously for training,
whether in Tier 1 or Tier 2.
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(a) Five Category Case (b) Four Category Case

Figure 5-6: General Tier 2 Performance Matrices

Figure 5-7: Example Mean Optimal Performance Matrix

time. We then take the average categorization rate over the ten runs as our performance
measure.

Thus, the full Tier 2 analysis consists of performing each of the 1680 Tier 2 runs
described above for each of these category comparisons. Arranging the categorization
rates for each of the 1680 runs in a performance matrix, as shown for a particular feature
vector and SVM kernel setting in Figure 5-6, the Tier 2 analysis yields 1680 different
performance matrices.

To find the specific feature vector and SVM kernel setting that yields the highest
performance out of the 1680 different settings, we must sift through this performance data
in a logical manner. We do so by defining two types of optimality, mean and individual.
We then search through the 1680 performance matrices to identify the setting that satisfies
each type of optimality.

Defining Optimality

For a specific setting to satisfy mean optimality, it must yield, among all 1680 different
settings, the highest average performance across the various comparisons in the perfor-
mance matrix. For example, for a particular setting in the four category case, we might
have the performance matrix shown in Figure 5-7. If no other setting of the feature vec-
tor and SVM kernel produces a higher average performance than its 80.57%, then this
particular setting would be mean optimal.

While mean optimality is defined on the level of the feature and parameter setting,
individual optimality works at the category comparison level. That is, we search for the
feature vector and SVM kernel setting that yields the highest performance for each cate-
gory comparison. Thus, in contrast to mean optimality where a single setting is optimal
across the entire performance matrix, the enforcement of individual optimality results
in a potentially different optimal setting for each comparison. Figure 5-8 illustrates the
individually optimal results that we might achieve. For example, in comparing categories
4 and 5, no feature vector and SVM kernel setting will yield better performance than
the specific individual optimal setting that produces the 93.5% rate in the figure. Addi-
tionally, the setting that produces the 86.2% when comparing between categories 3 and
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Figure 5-8: Example Individual Optimal Performance Matrix

4 would likely be different from the setting leading to the 88.0% rate for the category 3
and 5 comparison.

From a practical stem cell research perspective, these two optimality definitions have
different interpretations and uses. The use of individual optimality is appropriate in two
practical cases. First, and most realistically, if a researcher has no prior information
regarding the quality of a set of colonies and wishes to make a full four-way categoriza-
tion, he should use the individual optimal setting for the four-way comparison. For the
illustrative example in Figure 5-8, the researcher would expect to be correct on 68.8% of
the colonies. Secondly, consider a researcher who has a set of colonies that are known
a priori to be generally poor. If he wishes to further quantify their poorness, he might
only consider classifying them between categories 4 and 5. In that case, he would use
the individual optimal setting for the category 4 and 5 comparison and expect a correct
categorization 93.5% of the time.

While individual optimality is appropriate for making binary comparisons with prior
knowledge, mean optimality should be used for binary comparisons without prior knowl-
edge. In this case, a researcher could use the mean optimal setting to make all the
different binary comparisons on an unknown colony yielding some information regarding
the category to which the colony should be classified. Mean optimality is also useful for
determining the overall performance ability of the Tier 2 methodology and for identifying
trends in the feature and SVM parameter settings.

5.4 Quantitative Image Categorization Results

We are now prepared to report the results of these runs on our 77 stem cell colonies. Our
goals are four-fold:

1. To report the high colony-wise categorization rates that we achieve with our Tier 2
methodology when categories 1 and 2 are combined

2. To explore the colony-wise feature and SVM parameter settings that produce these
high categorization rates

3. To determine whether using our revised border criterion of Section 5.1.2 increases
categorization performance

4. To discuss the present successes and difficulties in separating categories 1 and 2

We discuss the first three goals in the first two sections, leaving the fourth goal for
Section 5.4.3. Then, in Section 5.4.4 we make some final conclusions and briefly discuss
the practical implementation of the Tier 2 methodology.
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Figure 5-9: Four-Way Mean Optimal Performance Matrix

Figure 5-10: Four-Way Mean Optimal Border Effects Performance Matrix

5.4.1 Mean Optimality Results

Figure 5-9 shows the mean optimal performance matrix when we combine categories 1
and 2. These results reflect the use of a 45 × 45 window, all nine training sets, texture
binary and outlier features, no border features and the radial basis function kernel. We
find these results quite pleasing. All binary comparisons show a correct categorization
rate above 74.0% with most higher than 80.0%.

Considering the specific setting that produces these results, we first notice that no
border features are included. We will examine this result in more detail below. The
inclusion of the texture binary and outlier features supports our hypothesis of Section 5.1.1
that both the percentage of healthy area and the level of homogeneity in the colony
contribute to its overall characterization.

To examine further the effects of including the border features derived from our re-
vised border criterion, we report the mean optimal results under two different conditions:
required exclusion and required inclusion of the border features. Figure 5-10 shows the
resulting performance matrix, where, for each category comparison, the first percent-
age reflects border feature exclusion and the second number reflects inclusion. Category
comparisons for which the use of border features either does not change or improves
performance are shaded.

We notice that the border features—specifically the border binary features—improve
performance in three of the seven category comparisons and have no effect in a fourth.
Additionally, the mean performances of the two cases differ by only 0.7%. Thus, we
cannot make any clear conclusions as to the effects of border inclusion, and in the case of
mean optimality, we are indifferent between including and excluding the revised border
criterion features.

5.4.2 Individual Optimality Results

Figure 5-11 shows the individual optimal performance matrix. We first note the high
categorization rates across all the comparisons. We are especially successful in separating
category 5 from the other categories, achieving no worse than 88.0% and up to 96.7%
performance for all three comparisons. Note also that the 68.8% rate when comparing
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Figure 5-11: Four-Way Individual Optimal Performance Matrix

Figure 5-12: Four-Way Individual Optimal Border Effects Performance Matrix

all four categories is excellent considering than we would expect only a 25.0% rate for a
random classifier. We also observe that these individual optimal rates are consistently
higher than the corresponding mean optimal rates in Figure 5-9 above. This is to be ex-
pected since individual optimality chooses the best feature and parameter setting for each
comparison, thus not imposing a common, and possibly worse, setting on all comparisons
as with the mean optimal case.

In examining the feature and parameter settings that yield each individual optimal
categorization rate, we observe that the border features are used in only one of the seven
comparisons, namely the full four-way comparison. We examine this result more below.
Additionally, the most common texture features include the texture binary and outlier
features.

Figure 5-12 compares border exclusion and inclusion for the individual optimal case.
Overall, excluding the border features improves performance by only 1.0%, and while it
produces higher rates in six of the seven comparisons, the performance increase in each
is minimal. Thus, as with mean optimality, we are indifferent between including and
excluding the border features.

5.4.3 On Separating Categories 1 and 2

In addition to the four-way results presented above where we employed a composite cat-
egory consisting of the original categories 1 and 2, we also present results where we do
not combine categories 1 and 2. As mentioned in Section 5.2, the similarity of these two
categories makes discriminating between them a difficult endeavor. We thus expect to see
rather lower classification rates in the performance matrices when comparing categories
1 and 2.

The mean and individual optimal five-way performance matrices are shown in Figures
5-13 and 5-14, respectively. As above, these matrices show the categorization rates both
excluding (first percentage) and including (second percentage) border features for each
category comparison. Again, if the border features either increase or have no effect on
the categorization rate for a specific comparison, the associated cell is shaded.

In examining these matrices, we first note that we do indeed have rather low catego-
rization rates between categories 1 and 2. More encouragingly, though, we see that for
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Figure 5-13: Five-Way Mean Optimal Performance Matrix

Figure 5-14: Five-Way Individual Optimal Performance Matrix

both mean and individual optimality, the inclusion of the border features increases the
ability of the classifier to distinguish between categories 1 and 2. These increases are not
trivial; we observe a full 7.4% increase for mean optimality and 5.3% increase for individ-
ual optimality. In both cases, the border binary features are the significant contributors
to this increase.

In addition to aiding the discrimination between categories 1 and 2, the inclusion of
border features under mean optimality yields a 12% increase in comparing categories 1
and 4 and a full 16.7% increase in comparing categories 2 and 4. In comparison, the worst
performance loss we suffer by including border features is only 6.0% in comparing cate-
gories 3 and 4. While we do not see as significant of performance gains under individual
optimality, neither do we see significant degradation by including border features.

These improvements with the inclusion of the border features suggest that our revised
border criterion, while not ideal, is at least sufficiently accurate to lead to some perfor-
mance increases. However, in future work, it would be useful to consider other border
features that capture the original criterion of sharpness and circularity. As mentioned in
Section 5.1.2, methods to accomplish this exist in the literature, particularly within the
field of melanoma detection and classification.

5.4.4 Conclusions and Implementation

Overall, based on the high categorization rates under both mean and individual optimality
when categories 1 and 2 are combined, the Tier 2 approach that we have proposed in
this chapter represents a useful and successful methodology for performing quantitative
stem cell colony categorization. For mean optimality, five of the six binary comparisons
yield categorization rates above 80.0%. For individual optimality, all six binary rates
exceed 80.0% with three beyond 90.0%. For the full four-way comparison using individual
optimality, we are successful 68.8% of the time.

For the four category case, we observe two consistent colony-wise feature and SVM
parameter trends. First, among the interior texture features, the binary and outlier
features appear most significant. Secondly, the border features from the revised border
criterion are generally not helpful in increasing categorization performance.

However, these border features do have a positive influence when we attempt to sepa-
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rate categories 1 and 2. Their inclusion increases our ability to separate categories 1 and
2 by 7.4% under mean optimality and 5.3% under individual optimality. They also yield
performance increases by up to 16.7% for some binary category comparisons with only
marginal losses in others.

Based on this effective categorization ability of our Tier 2 methodology, we make
the following recommendations for its practical implementation. We consider a stem cell
researcher with a new collection of colony images that he wishes to categorize. He should
first utilize the four category scenario and run the full four-way classification using its
individual optimal setting:

• Window Size of 45× 45

• Training Set 5 (tight texture + loose texture)

• Border Binary Features

• Texture Confidence and Outlier Features

• Radial Basis Function Kernel for Tier 2 SVM

Based on the results above, he would expect a 68.8% correct categorization of his colonies
into the four different categories for this run.

For any colonies classified to the composite “1/2” category, he should run the pairwise
comparison between categories 1 and 2 of the five category case using the individual
optimal setting for that comparison:

• Window Size of 45× 45

• Training Set 4 (tight texture + black texture)

• Border Binary Features

• Texture Outlier Features

• Tier 2 Polynomial of Degree 2 for Tier 2 SVM

He would expect to classify 63.7% of these colonies correctly into category 1 and category
2.

Based on these two runs, the researcher could expect to have a relatively good idea of
the quality of each of his new colonies. If he wishes to make further pairwise comparison,
he should employ the individual optimal settings for each of the desired comparisons.
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Chapter 6

Conclusions and Future Work

This thesis makes two contributions to the general field of textural image segmentation
and three contributions to the advancement of stem cell research. We summarize and
make conclusions regarding the work performed in this thesis by referencing these five
contributions.

• We demonstrate the applicability of using the non-parametric support vector ma-
chine classifier with wavelet energy features to the textural segmentation of images.
We report a high success rate of 92.3% over a diverse set of benchmark textural
images.

The ability of the wavelet decomposition to perform multiscale analysis of both the spa-
tial and frequency components of images makes it one of the most sophisticated image
processing tools currently available. Additionally, the non-parametric support vector ma-
chine classifier is highly attractive due to its strong theoretical justification and empirical
performance across a wide range of applications. To the best of our knowledge, the combi-
nation of wavelet subband energy features with the SVM classifier for the task of textural
image segmentation has not been previously studied. We introduce and test this par-
ticular pairing of feature representation and classification method by performing binary
image segmentation on a set of benchmark textural images. We achieve a segmentation
accuracy of 92.3% over the 18 benchmark images.

• We adapt a parametric wavelet-based texture classification method originally pro-
posed for the task of content-based image retrieval to the task of textural image
segmentation. We report a high classification rate of 91.8% over a diverse set of
benchmark textural images.

To serve as a comparison to the non-parametric SVM classifier, we adapt for the task
of textural image segmentation a parametric wavelet-based classification approach origi-
nally developed by Vetterli and Do for content-based image retrieval [11]. The method is
parametric in the sense that it models the coefficients of a wavelet decomposition as real-
izations of a generalized Gaussian probability distribution. By estimating the distribution
parameters at each wavelet subband, we can make classifications based on the Kullback-
Leibler distance between distributions, resulting in a parametric image segmentation. On
the same set of benchmark textural image as above, we achieve an accuracy of 91.8%.
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• We introduce a two-tiered, hierarchical paradigm for the creation of a standard,
automated, non-invasive stem cell quality control tool. Our implementation of this
paradigm represents, to the best of our knowledge, the first known attempt at creat-
ing a routine, non-invasive method for measuring stem cell quality under conditions
favorable to their growth.

We introduce this paradigm as a general framework through which we provide stem cell
researchers with both qualitative and quantitative tools to aid in the stem cell quality
control process. The two tiers that make up this hierarchical approach constitute the two
additional stem cell research contributions described below.

• As the first tier of this new paradigm, we perform textural image segmentation
on stem cell colony images to create a rich set of graphical aids to assist medical
researchers in determining the quality of their colonies.

As neither the non-parametric SVM nor parametric KLD method significantly outper-
forms the other in the benchmark analysis, we employ both for the task of segmenting
stem cell colony images into regions of varying quality. We use the binary pixel-by-pixel
classifications of both methods to create binary reclassified colony images that pinpoint
the areas of high and low quality within the interior regions of the colonies. Employing
the confidence information implicit to the SVM classifier and derived in this thesis for
the KLD classifier, we develop higher resolution confidence reclassified images and movies
as additional visual representations of the colonies. We provide guidance for the practi-
cal implementation of these graphical representations into the stem cell quality control
process.

• Employing inputs derived from the first tier, we introduce in the second tier a highly
accurate method for making quantitative categorizations of stem cell colonies based
on overall colony quality. Across a wide range of tests on real stem cell images, we
attain an average performance of 80.0%.

To expand upon the qualitative graphical outputs discussed above, we develop a method-
ology for making quantitative classifications of full stem cell colonies into discrete qual-
ity categories. We extract colony-wise textural features from the graphical outputs and
introduce new colony-wise border quality features. We then demonstrate the high cat-
egorization rates that can be achieved by using these colony-wise features as inputs to
a multiclass support vector machine classifier. Across various runs, we achieve average
categorization rates on the order of 80.0%.

6.1 Future Technical Challenges

Despite the contributions above, significant future challenges still exist in refining and
expanding upon our technical work. We document the most critical of these.

• In theory, the feature vector inputs into machine learning classification methods
should be independent. However, as mentioned in Section 2.2.2, the use of the sliding
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neighborhood method for the extraction of textural features for each pixel in an
image results in potentially dependent feature vector inputs. Thus, a theoretical and
practical examination of the effects of employing dependent inputs would constitute
a useful future research task.

• Referencing Tables 3.5 and 3.6 in the benchmark textural image analysis of Sec-
tion 3.3.1, we notice that image pairs P5 and P16 are particularly difficult to seg-
ment. Further study into the reasons for this difficulty might yield useful insights
into the performance abilities of the support vector machine and Kullback-Leibler
distance classifiers.

• In both the benchmark study of textural image segmentation and in the application
to stem cell imaging, we have considered only binary segmentation. An extension
to multiway segmentation of benchmark images would provide an additional con-
tribution to the general analysis of Chapter 3. Additionally, we could perform a
multiway stem cell colony segmentation into the four types of texture discussed in
Section 4.2.3. This would then lead to reduced Tier 2 colony-wise feature dimen-
sionality by replacing the nine different training set features with a single multiway
feature.

• While not particularly beneficial for the benchmark image segmentations of Chap-
ter 3, the implementation of an adaptive textural window technique might lead to
more accurate stem cell colony segmentations. As above, it would also reduce Tier
2 feature dimensionality as we would not need to consider all three window sizes
separately.

• As discussed in Section 3.3.2, non-parametric classification methods such as the
support vector machine require a significant amount of training data in order to
achieve high classification rates. However, as mentioned in Section 5.2, the seven
to ten colonies per category for use in training the multiclass Tier 2 SVM are likely
not sufficient. If more stem cell colonies could be acquired, our methodology could
be run with the additional data and new, hopefully higher, categorization rates
calculated.

• When defining the colony-wise features in Sections 5.1.1 and 5.1.2, we frequently
employed the mean operator. Since the mean statistic can be adversely affected
by outliers, a more robust measure such as the median might be more appropriate,
particularly for the calculation of the colony-wise interior texture outlier features
ξSV M and ξKLD.

• In Section 5.3.2, we suggested several approaches to feature selection that could be
used in the Tier 2 analysis to prune the excessive number of colony-wise features.
While we chose a simple combinatorial approach, the study and implementation of
the more advanced feature selection methods might lead to more effective catego-
rization performance.
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• In Section 5.4.3, we concluded that while our revised texture-based border criterion
did lead to improved separation of stem cell colony categories 1 and 2, its overall
effect on the Tier 2 analysis was marginal. Thus, we suggest a study of the original
border criterion by implementing the various methods outlined in Section 5.1.2 for
the direct quantification of border sharpness and circularity.

• Our two-tiered stem cell analysis methodology of Chapters 4 and 5 is presently only
semi-automated. User inputs are required to define the colony border, extract the
colony interior and identify the colony centroid. The implementation of an advanced,
automated border segmentation procedure, such as that suggested in Section 5.1.2,
would represent a necessary first step toward increasing automation.

6.2 Future Applications

Despite our focus on the application and extension of basic textural image segmentation
methods to the field of stem cell image analysis, the ideas and methodologies presented in
this thesis are applicable to a wide range of both medical and non-medical applications.
In fact, any segmentation or classification task for which textural features are of interest
would suffice as an area of future application.

Toward further stem cell analysis, we proposed in Section 4.1.4 the use of our Tier 2
methodology in providing quantitative measures of the effects of biological experiments
performed on stem cell colonies. This application would increase experimental standard-
ization and allow researchers to run many experiments without the time-consuming task
of analyzing every result themselves. Additionally, it would represent an active involve-
ment of our method in stem cell researchers’ quests both for a deeper understanding of
human physiology and for the development of novel medical treatments.

As we mentioned in Chapter 1, the classification of skin abnormalities as either cancer-
ous melanomas or harmless lesion bears a close resemblance to the stem cell segmentation
and categorization problem discussed in this thesis. The application of our methods to-
ward the texture-based classification of this and other forms of cancer, such as colon and
breast cancer, would also be beneficial.

Additionally, our two-tiered methodology could be applied to various non-medical ap-
plications in such diverse fields as remote sensing, machine vision in robots and intelligence
gathering.

106



Appendix A

The Support Vector Machine

In this appendix, we describe in more detail the various formulations of the support
vector machine classifier. We begin with the binary classification formulations, discussing
first the simplest of these formulations before introducing increasingly more complex and
powerful versions. Along the way, we discover additional insights into the unique behavior
of the SVM classifier. After covering these binary formulations, we consider a framework
for performing multiclass classification using the SVM.

This appendix is driven primarily by the implementation aspects of the SVM rather
than the theoretical justification. A brief outline of the theory is provided in Section 2.3.2
of Chapter 2. Additional theoretical work can be found in the literature [5] [54].

A.1 Binary Classification Formulations

As standard terminology for the various formulations to follow, let xi ∈ <d be a d-
dimensional feature vector representing some input object. Associated with each feature
vector is a label yi ∈ {−1, +1} dictating the class into which the object falls. For now, we
limit yi to only one of two classes, the −1 class or +1 class. We assume that we have N
feature vectors xi, i = 1, 2, . . . , N , comprising a training data set whose true class labels
yi, i = 1, 2, . . . , N , are fully known. The goal of the SVM is to use these training points
to find a hyperplane, or linear separator, that will separate the two classes. Furthermore,
this hyperplane should be oriented such that it maximizes margin, or the distance from
the hyperplane to the nearest point of either class.

If the convex hulls of the points from each class do not overlap in the original d-
dimensional input space, the classes are considered linearly separable as they can be
separated by a linear surface in the input space. If the convex hulls do overlap in the
original space but do not overlap in some higher dimensional feature space, the classes
are considered nonlinearly separable; in this case, the points can be separated by a linear
surface in the feature space that maps to a nonlinear separator in the input space. If
we require all training points to be correctly classified, we can create a hard margin
separator to accomplish this. However, we can also create a soft margin separator that
allows some training points to be misclassified. The formulations below capture these
different situations.
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Unless otherwise noted, all of the formulations below follow the terminology and gen-
eral methodology of Edgar Osuna [35].

A.1.1 Linear Primal Formulation

The first two formulations that we consider, the linear primal and linear dual, create hard
margin separators of linearly separable input points. That is, we assume that the two
classes under consideration can be separated without error by a hyperplane in the original
input space. We define this hyperplane as all points x such that,

w · x + b = 0 (A.1)

where w ∈ <d dictates the orientation of the hyperplane with respect to the origin and
b ∈ < is a scalar bias term.

To enforce the hard margin property of the formulation, we require that all training
points xi, i = 1, 2, . . . , N , satisfy the constraints,

w · xi + b ≥ 1 ∀ i such that yi = +1 (A.2)

w · xi + b ≤ −1 ∀ i such that yi = −1 (A.3)

Recalling that yi = 1 for all points in class +1 and yi = −1 for all points in class −1, we
can write the above expressions together as,

yi(w · xi + b) ≥ 1 ∀ i = 1, 2, . . . , N (A.4)

The distance from a point xi to the hyperplane is |w·xi+b|
‖w‖ . If we impose the normal-

ization,
min

i=1,...,N
|w · xi + b| = 1 (A.5)

the distance from the hyperplane to the nearest point is simply 1
‖w‖ . If we think of our

problem of maximizing the margin as finding the hyperplane that is farthest from the
closest data point from either class while ensuring the separation criterion above, we can
pose the following problem:

maximizew,b
1
‖w‖

s.t. yi(w · xi + b) ≥ 1, i = 1, . . . , N

Noting that maximizing 1
‖w‖ is equivalent to minimizing 1

2
‖w‖2, we have the following

quadratic optimization problem as the linear primal SVM formulation:

minimizew,b
1
2
‖w‖2

s.t. yi(w · xi + b) ≥ 1, i = 1, . . . , N

Solving this problem returns the optimal pair (w∗, b∗) from which we create the classifi-
cation functions,

h(x) = w∗ · x + b∗ (A.6)

f(x) = sign(w∗ · x + b∗) (A.7)
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for a new data point x.
Geometrically, h(x) returns the signed Euclidean distance from the new point x to

the optimal hyperplane, and f(x) returns the binary +1 or −1 classification of x. We
interpret h(x) as the confidence we have in our binary decision. Larger positive/negative
values of h(x) imply higher confidence in our corresponding +1/− 1 decision.

A.1.2 Linear Dual Formulation

While the primal formulation above will yield an optimal hyperplane, we find it instructive
to consider the dual problem as well. If we let λi be the Lagrangian multiplier for the ith
constraint in the primal problem, we have the Lagrangian function,

L(w, b, λ) =
1

2
‖w‖2 −

N∑
i=1

λi[yi(w · xi + b)− 1] (A.8)

Differentiating with respect to w and b and setting the partial derivatives equal to zero,
we have,

∂L(w, b, λ)

∂w
= w−

N∑
i=1

λiyixi = 0 (A.9)

∂L(w, b, λ)

∂b
=

N∑
i=1

λiyi = 0 (A.10)

From Equation A.9 we find the optimal value for w to be,

w∗ =
N∑

i=1

λ∗i yixi (A.11)

where the λ∗i parameters are the optimal multipliers to be gleaned from the solution to
the dual problem. Substituting this expression for w and the statement

∑N
i=1 λiyi = 0

from Equation A.10 into Equation A.8, we have the simplified Lagrangian as a function
only of the dual multipliers:

L(λ) =
N∑

i=1

λi − 1

2

N∑
i=1

N∑
j=1

λiλjyiyjxi · xj (A.12)

Maximizing this Lagrangian subject to the non-negativity constraint on the multipliers
and Equation A.10 above, we have the following dual formulation:

maximizeλ

∑N
i=1 λi − 1

2

∑N
i=1

∑N
j=1 λiλjyiyjxi · xj

s.t.
∑N

i=1 λiyi = 0
λi ≥ 0, i = 1, . . . , N

If we let Λ = (λ1, λ2, . . . , λN) be the vector of multipliers, D be a symmetric matrix
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with entries Dij = yiyjxi · xj and 1 be a vector of ones, we can re-write the above
formulation in matrix form as,

maximizeΛ Λ · 1− 1
2
Λ ·D · Λ

s.t. Λ · y = 0
Λ ≥ 0

Using duality theory, we can derive expressions for the optimal primal variables w∗

and b∗ in terms of the optimal multipliers returned by the solution to the dual formulation.
In fact, we already have such an expression for w∗ in Equation A.11 above. Additionally,
the complementary slackness condition says that,

λ∗i [yi(w
∗ · xi + b∗)− 1] = 0 ∀ i = 1, 2, . . . , N (A.13)

which we expand and simplify to find,

b∗ =
1− yiw

∗ · xi

yi

= yi −w∗ · xi (A.14)

for any index i such that λ∗i > 0. While we can use any yi and xi for which λ∗i > 0 to
calculate b∗ in Equation A.14, we obtain a more stable estimate by averaging the b∗ values
calculated over all i for which λ∗i > 0 [20]. Thus, we can find the optimal pair (w∗, b∗)
easily from the dual solution and write the decision functions of Equations A.6 and A.7
as,

h(x) =
N∑

i=1

yiλ
∗
i (x · xi) + b∗ (A.15)

f(x) = sign

(
N∑

i=1

yiλ
∗
i (x · xi) + b∗

)
(A.16)

The complementary slackness condition of Equation A.13 also yields one of the unique
features of the SVM, namely that the resulting hyperplane is fully specified by only a
(generally small) subset of the training points. Note that if a point xi satisfies the primal
constraint yi(w

∗ ·xi + b∗) ≥ 1 with strict inequality, in order to satisfy the complementary
slackness condition,

λ∗i [yi(w
∗ · xi + b∗)− 1] = 0 (A.17)

we must have λ∗i = 0. Recalling that w∗ =
∑N

i=1 λ∗i yixi, we see that points for which
λ∗i = 0 do not have any effect on the resulting hyperplane. Geometrically, the points xi

with this property are those whose distance to the hyperplane exceeds the optimal margin.
Thus, we find that only those points lying on the margin have non-zero dual multipliers
and are active in defining the optimal hyperplane. We call these points support vectors,
and the set of support vectors is generally significantly smaller than the full set of training
points. This results in a concise representation of the optimal hyperplane as a function
of only a small set of points. Additionally, it allows for the derivation of Osuna’s efficient
active set algorithm for the dual problem [35].
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A.1.3 Soft Margin Primal and Dual Formulations

Suppose we now drop the assumption that the two classes are completely separable by a
hyperplane in the original input space. In this case, we create a soft margin separator in
the input space that allows some training points to be misclassified. However, we impose a
penalty in the objective function when such misclassifications occur. Let ξi ≥ 0 represent
the amount of violation of the primal constraint yi(w · xi + b) ≥ 1 by each point xi.
Additionally, specify a scalar C such that a penalty of C

∑N
i=1 ξi is added to the objective

function. Then, the primal problem simply becomes,

minimizew,b,ξ
1
2
‖w‖2 + C

∑N
i=1 ξi

s.t. yi(w · xi + b) ≥ 1− ξi, i = 1, . . . , N
ξi ≥ 0, i = 1, . . . , N

As before, solving this problem returns the pair (w∗, b∗) that defines the optimal hyper-
plane. This soft margin separator allows some training points to be misclassified in order
to yield a larger margin. The chosen value of C governs this tradeoff between misclassified
training points and margin.

We can also derive the dual formulation,

maximizeΛ Λ · 1− 1
2
Λ ·D · Λ

s.t. Λ · y = 0
Λ ≤ C1
Λ ≥ 0

where, as above,

w∗ =
N∑

i=1

λ∗i yixi (A.18)

b∗ = yi −w∗ · xi (A.19)

and the decision functions are,

h(x) =
N∑

i=1

yiλ
∗
i (x · xi) + b∗ (A.20)

f(x) = sign

(
N∑

i=1

yiλ
∗
i (x · xi) + b∗

)
(A.21)

We notice that the only difference between this soft margin dual formulation and
the hard margin dual formulation of Section A.1.2 is that the dual parameters are now
bounded above by the cost parameter C.

A.1.4 Nonlinear Soft Margin Dual Formulation

Up to this point, we have worked only in the original d-dimensional input space. If the
training points could be separated without error, we derived a hard margin separator. If
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we could not separate the points without error, we formed a soft margin separator that
permitted misclassification at a cost. An alternative approach to this second situation
involves projecting the input data into a higher dimensional feature space and finding
a hyperplane there that can separate the points without error. This hyperplane in the
feature space will map to a nonlinear separator in the original space. If we additionally
allow some points to be misclassified in the feature space in order to create a large margin,
we arrive at the nonlinear soft margin formulation. We consider the dual version of this
problem below.

We begin by mapping the input points to some higher, possibly infinite dimensional
space F via the explicit mapping φ : <d → F . We note here that the input points xi ap-
pear only in dot product expressions in the linear dual formulation via the matrix D where
Dij = yiyjxi ·xj, and in the resulting classification functions of Equations A.15 and A.16.
Thus, we can replace each instance of the dot product xi · xj with φ(xi) · φ(xj) to solve
the dual problem in the higher dimension feature space [5].

Implementing this explicit mapping procedure, however, presents a few difficulties.
First, it may be difficult to actually find a useable expression for the mapping φ. Secondly,
the operation φ(xi) · φ(xj) involves direct computation in the higher dimensional space.
If the dimensionality of this space is significant, this operation can be computationally
consuming. To get around these problems, we employ a kernel function K that implicitly
computes the high dimensional dot product φ(xi) ·φ(xj) as the operation K(xi,xj) in the
original input space. This solves the problem of finding an explicit mapping and allows
us to make all computations in the lower dimensional input space. Three common kernel
functions include [5],

Polynomial Kernel (degree p): K(xi,xj) = (xi · xj + 1)p

Gaussian Radial Basis Function Kernel: K(xi,xj) = e−‖xi−xj‖2/2σ2

Sigmoidal Neural Network Kernel: K(xi,xj) = tanh(κxi · xj − δ)

To implement this kernel-based approach, we simply replace each instance of the dot
product xi·xj in the soft margin dual formulation with K(xi,xj). This yields the following
nonlinear soft margin dual formulation:

maximizeΛ Λ · 1− 1
2
Λ ·D · Λ

s.t. Λ · y = 0
Λ ≤ C1
Λ ≥ 0

where D is now the symmetric matrix with entries Dij = yiyjK(xi,xj). The classification
functions are now,

h(x) =
N∑

i=1

yiλ
∗
i K(x,xi) + b∗ (A.22)

f(x) = sign

(
N∑

i=1

yiλ
∗
i K(x,xi) + b∗

)
(A.23)
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We can think of this formulation as the master formulation since it is the most pow-
erful and expressive of the various SVM formulations. In fact, all the other formulations
described above can be derived from it with proper choices for the kernel function K and
the cost parameter C.

A.2 Multiclass Formulations

We now depart from the basic binary classification problem and consider the multiclass
problem. As with the binary classification problem, let xi ∈ <d be a d-dimensional feature
vector representing some input object, and let its label yi ∈ {1, 2, . . . , k} dictate the class
into which the object falls. Note, however, that we now allow the object to fall into one
of k classes rather than just the −1 and +1 classes. As above, we assume that we have N
feature vectors xi, i = 1, 2, . . . , N , comprising a training data set whose true class labels
yi, i = 1, 2, . . . , N , are fully known.

We describe the multiclass method that we employ in this thesis, the one-vs-all for-
mulation, as a specific implementation of the general multiclass approach known as error
correcting output coding (ECOC)1.

A.2.1 Error Correcting Output Codes

Error correcting output coding provides a systematic procedure for solving multiclass
classification problems. One useful feature of this approach is that ECOC simply reduces
the multiclass problem to a series of binary classification problems; thus, one need only
understand the basic binary classification problem to implement this multiclass approach.
Another advantage of ECOC is that it is a very general framework; in fact, any suitable
binary classification method can be used to solve the underlying binary classification
problems. Example classifiers that have been used with ECOC include the naive Bayes
classifier [2] and the support vector machine [41]. As we have focused on the SVM in this
thesis, we discuss ECOC in the context of the SVM.

Since ECOC reduces our problem to a series of binary classifications, we must first
partition the original multiclass data into data sets on which we can apply the binary
SVM. In other words, we reduce the multiclass data down to two classes by grouping
some of the original classes together. ECOC defines a binary code matrix C that holds
the information regarding these partitions. The C matrix is k× n where k is the number
of classes in the original multiclass problem and n is the number of binary classifications
to which we reduce the multiclass problem. The jth row of C corresponds to a codeword
for label j. For example, a code matrix for the multiclass problem considered in the stem
cell application of Chapter 5 might take the form,

1The work in this section was originally written for a term project in the MIT course 6.867, Machine
Learning. The work was performed jointly with MIT student Ramsay Key.
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Stem Cell Category 1 1 0 1 0 0 1
Stem Cell Category 2 0 1 0 0 1 0
Stem Cell Category 3 1 0 0 1 1 1
Stem Cell Category 4 1 1 1 1 0 0
Stem Cell Category 5 1 0 1 1 0 0

Recall that each column v, v ∈ {1, . . . , n}, of the code matrix represents a different
binary classification problem. For the vth binary classification, we group together those
classes with a 1 in the vth column and consider this composite data as the +1 class. We
then group together those classes with a 0 in the vth column and consider this composite
data as the −1 class. We can then train an SVM for each of these n composite data
sets to create n binary classification functions (f1(x), . . . , fn(x)) and n confidence value
functions (h1(x), . . . , hn(x)).

Given a new input x to be classified, we calculate n confidence values by inputting
x into the n confidence value functions to yield the confidence vector (h1(x), . . . , hn(x)).
We use this confidence vector to produce a solution to the original multiclass problem via
the multiclass classifier [41],

H(x) = arg min
j∈{1,...,k}

n∑
v=1

g(hv(x)Cjv) (A.24)

where Cjv is the vth entry of the jth row of the code matrix C and g : < → < is a
user-defined loss function. We follow previous work and choose to use the linear loss
function g(x) = −x [41]. With this specific loss function, the multiclass classifier H(x)
looks at each possible multiclass classification for x, sums up the confidences from the
SVM that we achieve for each class (which is based on the structure of the coding matrix)
and chooses the class with the highest overall confidence.

Obviously, the multiclass classification function is highly dependent on the form of
the coding matrix, whose choice is left up to the user. One common option is a random
matrix where each 0/1 entry in the coding matrix is governed by the flip of a fair coin.
Another common option is to use BCH codes, which have high column and row separation
[41]. A simpler option, and the one employed in this work, is the one-vs-all matrix; this
is simply the k × k identity matrix.

A.2.2 One-vs-All Formulation

We now turn more specifically to our chosen coding matrix, the k×k identity matrix, and
explore how this matrix fits within the ECOC framework. Since the vth column of the
identity coding matrix holds a 1 in the vth row and zeros elsewhere, when we train the
binary SVM for the vth column, we are simply training the vth class versus a composite
data set of all the other classes. This yields k one-vs-all SVMs; one for each of the k
classes. Thus, to classify a new point x, our multiclass classification function using the
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identity coding matrix and linear loss function simplifies as,

H(x) = arg min
j∈{1,...,k}

n∑
v=1

g(hv(x)Cjv) (A.25)

= arg min
j∈{1,...,k}

g(hj(x)Cjj) (A.26)

= arg min
j∈{1,...,k}

−hj(x) (A.27)

= arg max
j∈{1,...,k}

hj(x) (A.28)

Thus, we simply classify x to the class whose associated one-vs-all SVM yields the
highest confidence. By choosing such a simple coding matrix, we are perhaps sacrificing
some performance that we might gain from employing a more complex matrix. However,
this one-vs-all coding matrix has been shown to perform well in practice [41].
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