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Abstract

A common assumption in network optimization models is that a central authority con-
trols the whole system. However, in some applications there are independent users, and
assuming that they will follow directions given by an authority is not realistic. Individ-
uals will only accept directives if they are in their own interest or if there are incentives
that encourage them to do so. Actually, it would be much easier to let users make their
own decisions hoping that the outcome will be close to the authority’s goals. Our main
contribution is to show that, in static networks subject to congestion, users’ selfish de-
cisions drive the system close to optimality with respect to various common objectives.
This connection to individual decision making proves fruitful; not only does it provide
us with insights and additional understanding of network problems, but it also allows
us to design approximation algorithms for computationally difficult problems.

More specifically, the conflicting objectives of the users prompt the definition of a
network game in which they minimize their own latencies. We show that the so-called
price of anarchy is small in a quite general setting. Namely, for networks with side
constraints and non-convex, non-differentiable, and even discontinuous latency functions,
we show that although an arbitrary equilibrium need not be efficient, the total latency of
the best equilibrium is close to that of an optimal solution. In addition, when the measure
of the solution quality is the maximum latency, equilibria in networks without constraints
are also near-optimal. We provide the first analysis of the problem of minimizing that
objective in static networks with congestion. As this problem is NP-hard, computing an
equilibrium represents a constant-factor approximation algorithm.

In some situations, the network authority might still want to do better than in
equilibrium. We propose to use a solution that minimizes the total latency, subject to
constraints designed to improve the solution’s fairness. For several real-world instances,
we compute traffic assignments of notably smaller total latency than an equilibrium,
yet of similar fairness. Furthermore, we provide theoretical results that explain the
conclusions derived from the computational study.

Thesis Supervisor: Andreas S. Schulz
Title: Class of 1958 Associate Professor of Operations Research
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Chapter 1

Introduction

A common assumption in network optimization models is that a central authority con-

trols the whole system, dictating what individuals should do. However, this assumption

is not necessarily valid in many real-world applications. It is sometimes not realistic

to assume that users of the system will follow directions given by the central authority,

unless the directives are in their own interest or there are incentives that encourage them

to do so. It would be much easier—and nicer—to let users make their own decisions,

hoping that the outcome will be close to the central authority’s objectives. For that

reason, our goal is to explore systems subject to congestion from the perspective of the

individuals. We will see that, in static network flow models, users’ independent and

selfish decisions inadvertently drive the solution towards optimality with respect to var-

ious objectives common in applications. This connection to individual decision making

proves fruitful; not only does it provide us with insights and additional understanding

of the problems we study, but it also allows us to design approximation algorithms for

NP-hard problems.

Consider a network of arcs that will be used as a medium to route demands given

by a collection of origin-destination pairs. To model congestion, we associate a latency

function to every arc. Each of these functions maps the flow rate on the arc to the

time that each user needs to traverse it. The existence of congestion generates interde-

pendencies between users’ decisions, which can be modeled using game theory. In our
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model, we assume that there are infinitely many users who are independent and select

routes selfishly. We can expect to see a traffic pattern in which all users are taking their

respective shortest paths under the prevailing congestion condition; otherwise some user

would switch to a shorter route. Therefore, this solution is fair : different users traveling

between the same terminals experience the same travel time. Moreover, such a flow is

a Nash equilibrium of the traffic game we just introduced. We will use the standard

terminology in traffic networks and call it a user equilibrium.

The network manager presumably cares about the system as a whole, and an objec-

tive that does not give preference to particular users is the total (or equivalently, aver-

age) travel time in the system. If the solution that minimizes this objective—typically

referred to as a system optimum—is computed, users could be guided accordingly. How-

ever, unless they are forced, users will not have an incentive to follow those directives

because it is well-known that some will end up making long detours. Namely, to reach a

solution of minimal travel time some users need to sacrifice themselves for the commu-

nity’s benefit. This is not realistic and probably very few users would be willing to do

so. For this reason, a result previously proved by Roughgarden and Tardos (2002) and

Roughgarden (2003b) is very interesting. The total travel time of a user equilibrium is

not higher than a small constant times that of a system optimum. For example, if the

latency functions are linear, the total travel time of a user equilibrium is at most 33%

higher than in a system optimum. Papadimitriou (2001) coined the term price of anar-

chy to refer to that multiplicative constant. The reason for using that term should be

clear: It measures the cost of lacking central coordination. In other words, it represents

how much the system loses by letting users make their own choices. This concept, first

proposed by Koutsoupias and Papadimitriou (1999) for a particular telecommunication

network model, has recently received considerable attention. Although this dissertation

considers network games, these ideas can be used to characterize the efficiency of Nash

equilibria in other applications as well, as we shall discuss in Chapter 7.

One of our main contributions is an extension of the results of Roughgarden and

Tardos to networks with side constraints and to latency functions that are non-convex,

non-differentiable, and even discontinuous. Side constraints are especially useful in traf-
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fic networks. For example, they can be used to model arc capacities, which has been

recognized as an important means to provide a more accurate description of traffic flows.

Moreover, real-world transportation models often include such constraints, not only to

prevent arcs from carrying arbitrarily large flows, but also as a way to calibrate the

network model and bring its solution into agreement with anticipated results. In this

more general model, multiple user equilibria might exist and an arbitrary user equilib-

rium does not need to be close to a system optimum. Nevertheless, we characterize

a particular equilibrium that we call Beckmann user equilibrium, which turns out to

be efficient. Defining the coordination ratio of a solution as the ratio between its total

travel time and that of the system optimum, we show that the coordination ratio of a

Beckmann user equilibrium is not higher than the price of anarchy in the model without

side constraints. Beckmann user equilibria arise from an extension of the mathematical

programming formulation used to compute user equilibria in the model without side

constraints, due to Beckmann, McGuire, and Winsten (1956). Besides having relatively

small total travel time, Beckmann user equilibria are attractive because they can be

computed efficiently. This also shows that game-theoretic concepts successfully offer a

way of computing approximate solutions to hard problems. Although there are mul-

tiple equilibria and computing the best equilibrium is difficult, a provably good user

equilibrium can be computed in polynomial time.

We have just argued that, in the worst case, equilibria are not too inefficient. But

what happens in the average case? Or at least in real-world examples? It turns out

that equilibria are even closer to system optima, which is good news. But not quite. A

number of studies with realistic instances coming from road traffic and telecommunica-

tions networks concluded that equilibria are of the order of 10% more costly than system

optima (see Section 2.5). The Urban Mobility Study, a survey conducted by the Texas

Transportation Institute (2002), recently estimated that the congestion bill in the U.S.

alone was $67.5 billion in 2000, consisting of 3.6 billion hours of delay that people lose

to highway congestion plus 5.7 billion gallons of gas. Given those figures, even a small

improvement in the efficiency of the road traffic system implies that a lot of money (and

time) could be saved. Therefore, in certain situations, a system manager might want to
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do better than in equilibrium.

Transportation officials hope that Intelligent Transportation Systems can help to al-

leviate the problem of congestion caused by the ever increasing amount of road traffic.1

Among the proposed Intelligent Transportation Systems that have emerged in the last

decade, so-called route guidance devices are an especially promising technology. In such

systems, visual and acoustic indicators connected to the device guide drivers to their

destinations, which they have specified at the beginning of the trip. The importance of

route guidance comes from the fact that it can not only provide mapping information

to drivers, but it could also be used as a mechanism to provide congestion-related infor-

mation. As we said before, guiding individual users according to a system optimum is

not an option because it is unfair to them. We explore a novel approach to route guid-

ance by explicitly aiming at a traffic assignment that minimizes the total travel time in

the network but with the incorporation of user constraints. Namely, when deciding on

recommendations for users, we do not even consider routes that are too long because

users are not likely to follow them even if recommended. Our approach offers significant

advantages: On the one hand, it guarantees greater fairness for the individual user com-

pared to the system optimum. On the other hand, the total travel time in the proposed

solution is still close to that of the system optimum and thus in general better than in a

user equilibrium. In addition to formulating the problem, we develop an algorithm for

its solution that is efficient in practice. Not only does this show that the route guidance

approach is feasible, the implementation also allows us to test real-world instances. Be-

sides performing a detailed computational analysis, we also conduct a theoretical study

of the parameters of the model to guarantee that the solutions we compute are indeed

efficient and fair. To theoretically evaluate the efficiency of such a system, we compare

the proposed solution to the situation without guidance, that is, the user equilibrium.

In other situations, the network authority may want to use a different objective.

Instead of minimizing the total travel time, the authority might wish to minimize the

1However, some are pessimistic. For example, the same traffic study forecasts that “The bad news
is that even if transportation officials do all the right things, the likely effect is that congestion will
continue to grow” (Texas Transportation Institute 2002).
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maximum delay, i.e., minimize the longest flow-carrying path in the network. A straight-

forward application of this objective is given by evacuation problems in which people

have to leave an area struck by disaster as soon as possible. Some previous research has

examined algorithms to compute an optimal evacuation pattern in a dynamic network.

In a chaotic situation, it can be difficult to enforce a pre-computed optimal solution.

Therefore, it is a better idea to design systems in which users act naturally as in an

approximately optimal solution. Other important applications of this objective can be

found in the study of computer networks, where it is desirable for the maximum latency

of transmissions to be small, and in supply chain management, where a product can

be assembled only when all the components have arrived at the production facility. To

the best of the author’s knowledge, this is the first work that considers minimizing this

objective in static networks with congestion.

We show that the optimal solution with respect to the maximum latency objective is

NP-hard to compute, even in the case of a single source, a single sink, and linear latencies.

Again, we show that the price of anarchy of this system is bounded, although now with

respect to this new objective. This implies the existence of a simple approximation

algorithm, because computing the user equilibrium flow can be done in polynomial time.

(Computing the system optimum is also an approximation algorithm for this problem.)

Conversely, the optimal solution with respect to the maximum latency objective has

small total travel time. Surprisingly, it is also fair when there is a single source, a single

sink, and latency functions are linear.

1.1 Outline and Main Contributions

This section presents an outline of this work and an overview of the main contributions.

The dissertation is divided into seven chapters, including the current one and the conclu-

sions at the end. It is advised to read them in order because all of them draw on concepts

from earlier chapters; the only exceptions may be Chapters 3 and 4, which are indepen-

dent of each other. We explicitly point out such relations in the chapter-by-chapter

discussion that follows.
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Chapter 2: Preliminaries

Chapter 2 offers a review of the central concepts needed for the subsequent chapters.

We present our network model, fundamental concepts such as the system optimum and

the user equilibrium, and well-known results related to those concepts. We also discuss

some simple examples to illustrate the model and the results. Finally, we review the

central concept of the price of anarchy, which is used to measure the efficiency of systems

controlled by independent and selfish individuals. This chapter is a prerequisite for all

the chapters that follow.

Chapter 3: The Price of Anarchy for Networks with Side Con-

straints

Chapter 3 considers networks with convex side constraints on the vector of arc flows and

introduces a definition of equilibrium that relies on user behavior. Side constraints are

important for many applications. Moreover, they can be used to incorporate relations

that are known to hold in the real-world. After comparing our concept of equilibrium

with other definitions, we study the properties of these equilibria. In contrast to the

basic model that we present in Chapter 2, the model with side constraints might have

multiple equilibria. We therefore analyze the coordination ratio of the best and the worst

equilibrium. Finally, we consider lower semicontinuous functions, the most general class

of latency functions that guarantees the existence of user equilibria.

Main Contribution: Recent results show that in a transportation network with con-

gestion (but without side constraints), the coordination ratio of an instance can be

bounded by a constant (Roughgarden and Tardos 2002; Roughgarden 2003b). This

constant does not depend on the network topology or demand structure but only on

the allowable class of latency functions. We show that side constraints do not matter if

one looks at equilibria from the right perspective. For instance, although there might

be multiple equilibria and the coordination ratio of the worst equilibrium might not be

bounded, the worst-case coordination ratio of the best equilibrium coincides with the

price of anarchy in the model without side constraints. Moreover, the assumptions we
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make on latency functions are relatively mild. In contrast to previous work, they are

not required to be convex, differentiable, or even continuous. These improvements result

from a simplified proof based on a variational inequality approach.

Bibliographic Information: This chapter is based on a research article by Correa,

Schulz, and Stier-Moses (2004b). A preliminary version appeared in Schulz and Stier-

Moses (2003).

Chapter 4: An Efficient Route Guidance System

In Chapter 4, we describe our route guidance model and give details of the algorithm

to compute associated solutions. Furthermore, we show how to calibrate the various

parameters of the model and provide comprehensive computational results based on

real-world networks that show that the model provides good solutions. This chapter is

based on the model that we introduce in Chapter 2, and it can be read independently

of Chapter 3 because we do not consider the side constraints introduced therein.

Main Contribution: The goal of the route guidance model introduced in this chapter

is minimizing the travel time in the network subject to user constraints. These user

constraints prevent users from being assigned to routes that they might regard as too

long. For instance, we constrain users to not travel more than ϕ times their respective

shortest paths, where ϕ represents a guess of the users’ tolerance to being assigned to

sub-optimal routes. We assume that ϕ is fixed and given in advance. The route lengths

in the constraints are computed with respect to a measure of arc lengths given a priori

that we call normal lengths. We propose different ways for selecting normal lengths.

For instance, we consider free flow travel times, and travel times when the prevailing

condition is a user equilibrium. We show how to compute the optimal solution to the

route guidance problem and comment on the software that we implemented for that

purpose. If normal lengths are user equilibrium travel times, then the proposed system

yields substantial improvements in practice. For several medium to large real-world

instances, we compute traffic assignments of notably smaller total travel time than in

a user equilibrium; at the same time, they possess fairness attributes unrivaled by the
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ordinary system optimum. In contrast, selecting free flow travel times as normal lengths

does not turn out to provide efficient solutions.

Bibliographic Information: This chapter is based on a research article by Jahn,

Möhring, Schulz, and Stier-Moses (2004).

Chapter 5: Efficiency and Fairness of the Route Guidance Sys-

tem

Chapter 5 presents analytical worst-case bounds for the efficiency and fairness of solu-

tions computed by the route guidance system that we present in Chapter 4. To measure

the improvement in efficiency if the route guidance system is adopted, we compare the

traffic patterns it returns to a user equilibrium. That allows us to determine the theo-

retical efficiency of the system when normal lengths are given by free flow travel times

or user equilibrium travel times. Finally, we present upper bounds for the unfairness of

optimal solutions to the route guidance problem. This chapter also draws strongly on

the concepts related to the price of anarchy developed in Chapter 3.

Main Contribution: For free flow normal lengths, we show that if the tolerance ϕ

is too small, user equilibria outperform the solutions returned by the route guidance

system, which defeats the purpose of such a system. However, when normal lengths

are user equilibrium travel times, the opposite is true. Indeed, we can prove that the

solutions to the route guidance problem are always more efficient than user equilibria.

The route guidance method that we propose is not incentive compatible, which means

that some users might have reasons to deviate from the system recommendation and

select a different route. This happens because the system does not provide the shortest

route to each user; otherwise, the solution would be a user equilibrium. Therefore, some

users might not comply with the recommendations given by the route guidance system.

We quantify to what extent this poses a problem by presenting bounds for the unfairness

of the solutions proposed by it.

Bibliographic Information: This chapter is based on an extended abstract by Schulz

and Stier-Moses (2003).
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Chapter 6: The Maximum Latency Problem

In Chapter 6, we examine a different objective: minimizing the maximum latency experi-

enced by users. We study the complexity of computing the optimal solution with respect

to that objective and the characteristics of an optimal solution (which we call a min-max

flow). In addition, we design constant-factor approximation algorithms for this problem.

Conversely, we study approximation guarantees of the min-max flow with respect to the

other objectives. Although independent from previous chapters, this chapter relates to

various concepts introduced before.

Main Contribution: We study the flow that minimizes the maximum latency that

users experience. In particular, we examine its relation to system optima (solutions of

minimal total travel time) and user equilibria, with respect to the different performance

measures that we consider (total travel time, fairness, and maximum latency). To that

effect, we present tight worst-case bounds for the three mentioned solutions with respect

to those three objectives. For single-source single-sink instances with linear latencies,

we establish that all users experience the same delay in a solution that minimizes the

maximum latency. In addition, we prove that the problem is NP-hard even with linear

latency functions. For the single-source single-sink case, the price of anarchy with respect

to the maximum latency coincides with the price of anarchy with respect to the total

latency. This result is important because it implies that computing a user equilibrium

(which can be done in polynomial time) represents an approximation algorithm for the

problem. Contrary to the conclusions of Chapter 3, the lack of central coordination has

more severe consequences when multiple commodities are present. Indeed, the price of

anarchy is unbounded even with linear latencies. With regards to fairness, we present

a family of examples that shows that in optimal solutions to instances with nonlinear

latency functions some users have to travel arbitrarily more than others.

Finally, another objective that we study is the maximum latency of an arc. In

contrast to the objective of minimizing the maximum latency experienced by users, an

optimal solution with respect to this objective can be arbitrarily bad when measured

with respect to the three objectives mentioned in the previous paragraph. Conversely,
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system optima, user equilibria, and min-max flows can be arbitrarily bad with respect

to the maximum arc-latency objective.

Bibliographic Information: This chapter is based on a research article by Correa,

Schulz, and Stier-Moses (2004a).

1.2 Comparison with Other Work

Table 1.1 compares our results with others that are available in the literature. Although

in many cases there are follow-up articles to those we indicate, for the sake of simplicity

we include only the initial paper. We provide details of the models and mention ad-

ditional articles in the corresponding chapters. We restrain ourselves from presenting

other research related to the price of anarchy here because it is not based on the model

we use. In Chapter 7, however, we take a step back to discuss the broader picture, and

that is a good occasion to mention those articles.

The table is divided in four parts as follows. The first group contains work related to

the initial result concerning the price of anarchy (Koutsoupias and Papadimitriou 1999).

Those articles consider a simple network consisting of parallel arcs that connect a single

source to a single sink, and the social goal is to minimize the maximum latency. In this

model, flow is controlled by finitely many users, and each user may only select a single

arc to route her flow. For more details concerning this model, we refer the reader to

Section 2.5. The second part groups results that consider the model of Roughgarden and

Tardos (2002), which assumes an arbitrary multicommodity flow network with infinitely

many users, each controlling an infinitesimal amount of flow. The social goal is the total

latency of a flow. Chapter 3 includes a detailed comparison of the results within this

group. The third group lists results that bound the unfairness of flows. As Roughgar-

den’s result (2003a) and ours were obtained independently and at the same time, we list

both. We provide details of this group of results in Chapters 5 and 6. Finally, the fourth

group contains results about the maximum latency of a flow in arbitrary networks. Al-

though these results use the same objective as those in the first group, they consider

divisible flow that is controlled by infinitely many users; see Chapter 6 for details.
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Table 1.1: Comparison with other work

Reference a Model b Latencies c Objective d Constraints e Users f

KP99 par linear max/bn none uns
BGGM03 par linear tot none uns
FKS04 st g linear max/tot none uns
RT02 netw linear tot none inf h

Rou03b netw cd tot none inf
SS03 netw cd tot cap inf

Chapter 3 netw i lsc tot sca j inf
KK03 netw linear tot scp inf
RT04 ncg cd tot none inf
CS03 ncg k sym tot none inf
Per04 netw asym tot none l inf
Rou02 st cd unf none inf
Rou03a netw diff unf none inf

Chapter 5 netw diff unf none inf
Wei01 st/netw cd max none inf

Chapter 6 st/netw multiple m max/bn none/sca inf
Rou04 st cont max none inf

aThis column references the following papers: [BGGM03] Berenbrink et al. 2003, [CS03] Chau
and Sim 2003, [FKS04] Fotakis, Kontogiannis, and Spirakis 2004, [KK03] Karakostas and Kolliopou-
los 2003, [KP99] Koutsoupias and Papadimitriou 1999, [Per04] Perakis 2004, [Rou02] Roughgar-
den 2002, [Rou03a] Roughgarden 2003a, [Rou03b] Roughgarden 2003b, [Rou04] Roughgarden 2004b,
[RT02] Roughgarden and Tardos 2002, [RT04] Roughgarden and Tardos 2004, [SS03] Schulz and Stier-
Moses 2003, [Wei01] Weitz 2001.

bModels: [par] single-origin, single-destination, and parallel links, [st] s-t-network with arbitrary
topology, [netw] multicommodity and arbitrary network, [ncg] nonatomic congestion game.

cLatency functions are always nonnegative, nondecreasing, and separable unless otherwise noted.
In addition, they were considered to be: [linear] linear functions (including a constant term) [cd] s-
convex and differentiable functions, [diff] differentiable, [cont] continuous, [lsc] lower semicontinuous,
[sym] continuously differentiable, non-separable, and symmetric, [asym] differentiable, non-separable,
and positive semidefinite Jacobian.

dObjectives that were considered: [bn] bottleneck (maximum arc-latency), [max] maximum latency,
[tot] total latency, [unf] unfairness.

eConstraints allowed in the problem: [none] no constraints, [cap] capacity constraints, [sca] side
constraints on arc flows, [scp] side constraints on path flows.

fAssumptions concerning the number of users in the system and whether flow can be split: [inf]
infinitely many users each controlling an infinitesimal of the flow, [uns] finitely many users who cannot
split their flow.

gPositive results assume a rather restricted class of networks.
hAlthough it is not their main model, they also consider [uns], and finitely many users who can split

their flow.
iCan be extended to [ncg]; see Section 3.9.
jCan also be extended to [scp]; see Section 3.9.
kIn addition, this article also considers a model with elastic demands.
lHer results can be extended to include arbitrary side constraints; see Section 3.9.

mWe make different assumptions for each result. For details, we refer the reader to Chapter 6.
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Chapters 4 and 5 propose a new model for route guidance and, therefore, cannot be

easily compared to earlier work. For that reason, we did not include those results in Ta-

ble 1.1. Let us note, however, that Holmberg and Yuan (2003) independently developed

a model similar to ours to compute routing patterns for telecommunication networks.

They propose to compute a solution with smallest total latency among those that satisfy

time-delay or reliability requirements. Although both models and the respective solution

approaches have some similarities, their goals are totally different from ours.

1.3 About this Dissertation

This dissertation is not meant as an introduction to network flows, optimization, or

game theory. Nevertheless, we do not make many assumptions concerning the reader’s

prior knowledge, except that the reader possesses a basic mathematical maturity. For

in-depth introductions to those topics, we refer the reader to the following sources.

The books by Sheffi (1985), Nagurney (1993), and Patriksson (1994), and the articles

by Magnanti (1984), and Florian and Hearn (1995) provide an introduction to traffic

flow theory and traffic equilibria. The book by Bertsekas and Gallager (1991) intro-

duces similar concepts from the perspective of telecommunication networks. The book

by Bertsekas (1999) is a good introduction to nonlinear programming, and the books

by Ahuja, Magnanti, and Orlin (1993), and Bertsekas (1998) on network optimization

complement the ones cited earlier. Another useful reference is Garey and Johnson’s

(1979) introduction to computational complexity and the theory of NP-completeness.

Finally, the books by Fudenberg and Tirole (1991), Osborne and Rubinstein (1994), and

Owen (1995) are good introductions to game theory.

We make every effort to define all the concepts that we use. For convenience, we list

the notation on the margin and in the index, and we use italics to denote names used

for the first time.
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Chapter 2

Preliminaries

In this chapter we lay the ground work for this thesis. Section 2.1 presents the specifics

of the model together with the obligatory notation. The models we shall discuss in the

following chapters are different generalizations of our basic model. We illustrate the net-

work model with instances, which will be repeatedly used later on. Section 2.5 presents

the concept of the price of anarchy, one of the key notions that we use extensively.

Finally, and to show the power of our approach, we prove a result about the price of

anarchy for the basic model. Although this result is already known, we are able to give

a simpler proof relying on a variational inequality that characterizes a user equilibrium.

2.1 The Basic Traffic Model

This section introduces the concepts and notation that will be used throughout this

dissertation. We start by defining the elements of an instance of a network with conges-

tion. We represent the network by a directed multigraph G = (N,A), where N is the G,N

set of nodes and A is the set of arcs in the network. In addition, the set K ⊆ N × N A,K

of origin-destination (OD) pairs models the demand. For each k = (sk, tk) ∈ K, a flow

of rate dk > 0 must be routed from the origin sk to the destination tk. In the context dk

of traffic networks, it is typical to assume infinitely many users and that each individ-

ual controls only an infinitesimal fraction of the flow. For k ∈ K, let Pk be the set of Pk
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directed (simple) paths in G connecting the corresponding origin with its destination,

and let P def
=
⋃

k∈K Pk. For certain results, we shall assume that there is a single originP

and a single destination. We sometimes refer to those networks as s-t-networks and to

their corresponding flows as s-t-flows.

Congestion is modeled by latency functions 1 associated with the arcs. For each arc

a ∈ A, there is a nonnegative and nondecreasing latency function `a with values in`a(xa)

�
>0 ∪{∞} that maps the flow on arc a to the time needed to traverse a. These latency

functions are called separable because the arc traversal time depends only on the flow

along the same arc. For some results in this thesis, additional assumptions are needed;

we explicitly indicate them when they are required. One of the assumptions that we

sometimes make is that xa `a(xa) is a convex function; in that case we say that `a is

s-convex (Bergendorff, Hearn, and Ramana 1997).s-convex

We only consider latencies that belong to a set L specified in advance. The reasonL

is that, in practice, latency functions take a specific form, and the bounds we would

obtain without any restriction are pessimistic (Roughgarden and Tardos 2002). The

only assumptions we make on L are that it includes a constant function and that it is

closed under multiplication (implying that it includes all constants). We do not assume

that it is closed under addition but that is irrelevant because one can always add latency

functions by subdividing an arc. The network G together with the arc latencies `a for

a ∈ A and the traffic to be routed—represented by K and (dk)k∈K —is called an instance

of the traffic routing problem.

To make the analysis more tractable, for some results we will assume that the laten-

cies are linear functions,2 i.e., they belong to Llin
def
= {` : `(x) = qx+ r : for some q, r >Llin

0}. Although this may appear restrictive at first sight, congestion and counterintuitive

phenomena may already be present with linear latencies. A paradox named after Braess

that is presented in Section 2.4.2 shows how intuition might sometimes be misleading.

Latency functions used in practice are usually smooth and convex (Cohen 1991;

1Latency functions are also known as link performance functions.
2To be more precise, we should say ‘affine’ because the functions we refer to contain an additive

constant term. However, as they have been usually referred to as ‘linear,’ we prefer to continue with
the same denomination.
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Figure 2-1: Typical link delay functions

Sheffi 1985). Thus, they satisfy the assumptions we just mentioned as well as those that

we will mention later. Figure 2-1 illustrates the typical shape of these functions: after

they reach the practical capacity ca (Patriksson 1994), they grow very fast. In practice, a ca

commonly used function is that put forward by the U.S. Bureau of Public Roads (1964):

`a(xa)
def
= `0a ·

(
1 + ζ

(
xa

ca

)η)
, (2.1)

where `0a > 0 is the travel time in the uncongested network (also called free flow travel

time) and ζ > 0 and η > 0 are tuning parameters. However, more general latency

functions might be needed on certain occasions. For example, some proposed congestion

pricing schemes make use of step-function tolls (Bernstein and Smith 1994), modeled

with discontinuous latency functions.

A path flow (or flow on paths) is a nonnegative vector x = (xP )P∈P that meets the x

demand, i.e.,
∑

P∈Pk
xP = dk for all k ∈ K. Given a path flow, the corresponding arc

flow (or flow on arcs) is easily computed as xa =
∑

P3a xP , for each a ∈ A. Often, we

shall only write ‘flow’ and the meaning should be understood from the context. For a

flow x, the travel time along a path P is `P (x)
def
=
∑

a∈P `a(xa). Hence, the flow’s total `P (x)

travel time (or latency) is

C(x)
def
=
∑

P∈P

`P (x)xP =
∑

a∈A

`a(xa)xa . (2.2)

In addition, we also care about the average latency because that quantity is comparable

C(x)
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to the maximum latency. We let the average latency of a flow x between OD pair k ∈ K

be defined as Ck(x)
def
=
∑

P∈Pk
`P (x)xP/dk , and the average travel time of x beCk(x)

C(x) C(x)
def
=

∑
P∈P `P (x)xP∑

k∈K dk

.

Finally, we denote the maximum latency of a flow x for an OD pair k ∈ K by Lk(x)
def
=Lk(x)

max{`P (x) : P ∈ Pk, xP > 0}, and the maximum latency among all users by L(x)
def
=L(x)

maxk∈K Lk(x).

2.2 The System Optimum

Wardrop (1952) enunciated two principles that have been extensively used to describe

traffic flows. For convenience, let us start by describing the second one. The principle

says that a network manager should aim at a solution that minimizes the total travel

time. To achieve that, the manager could solve a mathematical program whose optimal

solution satisfies the mentioned principle.

Definition 2.1. A system optimum f ∗ is an optimal solution to the following nonlinearSO

minimum cost multicommodity flow problem with a separable objective function:

Problem SO:

min C(x) (2.3a)

s.t.
∑

P∈Pk

xP = dk k ∈ K, (2.3b)

xP > 0 P ∈ P . (2.3c)

We will denote system optimal flows by f ∗. Note that although this formulation hasf ∗

exponentially many variables, the same problem can be written with arc variables using

the standard flow conservation constraints. Knowing an optimal flow on arcs permits us

to recover a flow on paths easily; any flow decomposition works. Therefore, if C(x) is

convex, this problem can be solved in polynomial time by invoking the ellipsoid method3

3Note that the ellipsoid method, as well as interior point methods, can only solve the problem up
to an arbitrary small additive error term. As the example given in Section 3.4.1 shows, an optimal
solution may need irrational numbers, which cannot be represented exactly.
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(see, e.g., Vavasis 1991; Grötschel, Lovász, and Schrijver 1993).

Beckmann, McGuire, and Winsten (1956) proved that first-order optimality condi-

tions can be used to easily characterize the optimal solution to this problem (see also

Dafermos 1972; Bertsekas 1999 is a good introduction to optimality conditions in convex

optimization problems). Indeed, under the same convexity and differentiability assump-

tions, first-order optimality conditions imply that a flow f ∗ is optimal if and only if

`∗P (f
∗) 6 `∗Q(f

∗) for all k ∈ K and all paths P,Q ∈ Pk such that f ∗
P > 0 . (2.4)

Here, the modified travel time `∗a(xa)
def
= (`a(xa)xa)

′ = `a(xa) + `′a(xa)xa for an arc `∗a(xa)

a ∈ A includes an extra term that accounts for external costs 4 users cause to others.

Condition (2.4) is very similar to one that describes flows at equilibrium, which we now

proceed to define. This similarity will turn out to be very useful.

2.3 The User Equilibrium

A key assumption that motivates the current work is user selfishness. This means that

users only consider (or care about) their individual utilities. In our model, their goal is

minimizing the delay they experience when traveling from their origins to their desti-

nations (Kohl 1841). As long as there are better routes, users will update their choices

and select shorter paths with respect to their previously experienced condition. This

process converges to an equilibrium, in which users are distributed along the network

in a way such that each and every one travels along shortest paths under the prevailing

congestion condition (Friesz et al. 1994; Larsson and Patriksson 1999). This concept is

exactly what Wardrop (1952) indicated in his first principle.

Definition 2.2. A feasible flow f is a Wardrop equilibrium if

`P (f) 6 `Q(f) for all k ∈ K and all paths P,Q ∈ Pk such that fP > 0 . (2.5)

4The externalities are the additional delay that users impose to others by their presence in the
system: users generate congestion that have a negative impact on others’ utilities.
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At around the same time, Nash (1951) published an influential paper that defined

an equilibrium as a solution to a game in which no player has any incentive to deviate.

This motivates the following definition.

Definition 2.3. A feasible flow f is a Nash equilibrium if no small bundle of flow has

any incentive to switch to another path. Formally, for all k ∈ K, all paths Q,R ∈ Pk

such that fQ > 0, and all 0 6 ε 6 fQ, if we let a new flow f ε be defined by

f ε
P

def
=





fQ − ε if P = Q,

fR + ε if P = R,

fP otherwise,

for P ∈ P ,

we must have that `Q(f) 6 `R(f
ε).

A flow satisfying the preceding definition is a Nash Equilibrium of a non-cooperative

game among the network users. In this game, users wish to select a route with minimal

travel time. Recall that we assume that an infinite number of players participate in the

network game, and each controls an infinitesimal amount of flow. Although we only allow

players to select pure strategies (paths) as opposed to mixed strategies (distributions

over paths), this makes no essential difference because each player controls a negligible

amount of flow. Haurie and Marcotte (1985) discussed the difference of using pure

and mixed strategies formally and showed that a pure Nash equilibrium of a game

in which the number of players tends to infinity approaches the Nash equilibrium as

in Definition 2.3. We must mention that there exist related results in the domain of

telecommunication networks in which equilibria are also used to characterize traffic.

However, a key difference is the consideration of a finite number of users, each controlling

a non-negligible amount of flow (see, e.g., Orda, Rom, and Shimkin 1993).

Definitions 2.2 and 2.3 originated in different communities. Actually, the connection

between Wardrop and Nash equilibria was first made by Charnes and Cooper (1961). As

it turns out, they are equivalent in network games with continuous and nondecreasing

latency functions (see, e.g., de Palma and Nesterov 1998).
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Proposition 2.4. A feasible flow f of an instance that has continuous and nondecreasing

latency functions is a Nash equilibrium if and only if f is a Wardrop equilibrium.

The two assumptions of Proposition 2.4 are necessary: Wardrop and Nash equilibria

might differ (or even not exist) if any of the two assumptions is relaxed. Because all

users travel along shortest paths, the cost of an equilibrium can be simply expressed

as C(f) =
∑

k∈K Lk(f)dk. As latencies used in practice are nondecreasing and often

continuous, previous work has not generally differentiated between the two equilibria

and referred to flows at equilibrium as user equilibria (Dafermos and Sparrow 1969). UE

For this reason, we choose to refer to flows satisfying Definitions 2.2 and 2.3 as user

equilibria throughout the dissertation, and we denote them by f . We refer the reader to f

Bernstein and Smith (1994), and de Palma and Nesterov (1998), who described in detail

the types of equilibria used in traffic models and their differences (see also Section 3.8).

Let us remark that the simplicity of these concepts (and their tractability) prompted

transportation practitioners to adopt user equilibria as a way to model and predict user

behavior. For instance, user equilibria have been widely used in traffic planning projects

around the world as the main analytical tool.

Not surprisingly, the total (or equivalently, average) travel time is generally not

minimized by the user equilibrium, since users do not pay for their external costs

(Dupuit 1849; Pigou 1920; Knight 1924). Transportation economists have long pro-

posed collecting tolls from the users of the network to obtain an efficient equilibrium

(see, e.g., Beckmann, McGuire, and Winsten 1956; Arnott and Small 1994; Bergendorff,

Hearn, and Ramana 1997; Transport for London 2004 reports on a simple toll pricing

scheme recently implemented in London, UK). If in every arc travelers pay for the de-

lay they impose to others by their presence, it can be shown that an equilibrium is a

system optimum of the original instance. In other words, f ∗ is optimal if and only if

the marginal travel time of any used path is not greater than that of any other path.

The last sentence can be interpreted as the following proposition, which is implied by

Condition (2.4).

Proposition 2.5 (Beckmann, McGuire, and Winsten 1956). Let f ∗ be a feasible
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flow for an instance with nondecreasing, s-convex, and differentiable latency functions.

Then, f ∗ is a system optimum with respect to latencies ` if and only if f ∗ is a user

equilibrium with respect to latencies `∗ .

Note that s-convexity is only needed to show one of the implications. Namely, we

would not be able to show the backward implication because the solution would only

be a local optimum. The previous proposition provides the fundamental idea of toll

pricing: if users are charged a constant toll equal to `′a(f
∗
a )f

∗
a in every arc, the resulting

user equilibrium is a system optimum.

Notice the similarity of Conditions (2.4) and (2.5). This relation was successfully

exploited by Beckmann, McGuire, and Winsten (1956), who proposed to compute a

user equilibrium by modifying Problem SO. Indeed, (2.5) can be interpreted as the

optimality conditions of a convex min-cost multicommodity flow problem similar to

Problem SO, but with the objective in Equation (2.3a) replaced by

∑

a∈A

∫ xa

0

`a(y)dy . (2.6)

This transformation works because the derivative of
∫ xa

0
`a(y)dy with respect to xa is

precisely `a(xa). This is the essence of what is needed to prove the following theorem.

Theorem 2.6 (Beckmann, McGuire, and Winsten 1956). Consider an instance

with continuous and nondecreasing latency functions. A user equilibrium always exists,

it is essentially unique and it can be computed efficiently using standard procedures.

Here, essentially unique means that under different equilibria each user experiences

the same travel time. More formally, if f and f ′ are user equilibria, Lk(f) = Lk(f
′)

for all k ∈ K. Of course, this implies that all equilibria share the same total cost.

When latencies are strictly increasing, the objective is strictly convex and, in that case,

the equilibrium as a flow on arcs is unique. Note that the convexity of C(x) is not

required in the last theorem; continuity and monotonicity are enough to guarantee that

the objective function displayed in (2.6) is convex. Thus, in the space of flows, the set of

all equilibria is nonempty and convex. Furthermore, a user equilibrium can be computed
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in polynomial time by solving the flow problem previously described (Problem SO with

the convex objective function shown in (2.6) and formulated with arc variables). An

optimal solution to that problem is an equilibrium encoded as a flow on arcs. Finally, a

path representation can be obtained via any flow decomposition of that optimal solution;

it is guaranteed that all users of the same OD pair will experience the same travel time.

Note that the approach is similar to computing a system optimum; see the comment

after Definition 2.1.

For a more detailed discussion concerning the existence, uniqueness, algorithmic

techniques, and related aspects of equilibria, we refer the reader to Dafermos (1980),

Magnanti (1984), Friesz (1985), Sheffi (1985), Florian (1986), Nagurney (1993), Pa-

triksson (1994), and Florian and Hearn (1995). Note that many generalizations of the

basic model have been considered. To mention a few examples, there are extensions to

multiple modes of transit, link interactions, and demand relationships (Dafermos 1972;

Florian 1977; Aashtiani and Magnanti 1981).

Because of its simplicity and power, we are particularly interested in an equivalent

characterization of user equilibria in terms of a variational inequality problem due to

Smith (1979); see also Dafermos (1980). Let us define another cost function that will

play an important role in Chapter 3. We fix a given feasible flow f . For an arbitrary

feasible flow x, its cost with respect to the flow f is

Cf (x)Cf (x)
def
=
∑

a∈A

`faxa , (2.7)

which is equivalent to computing the (standard) cost with respect to constant latencies

`fa
def
= `a(fa). Notice that Cf (f) = C(f). The following proposition is a direct conse-

quence of the fact that at equilibrium, users travel on shortest paths with respect to arc

costs `fa.

Proposition 2.7 (Smith 1979). A feasible flow f for an instance with continuous and

nondecreasing latency functions is a user equilibrium if and only if

Cf (f) 6 Cf (x) for all feasible flows x . (2.8)
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Figure 2-2: Pigou’s example. From left to right: The instance (arcs are labeled with
their latency functions), the system optimum (arcs are labeled with their flows), and the
user equilibrium (idem).

2.4 Examples

In this section, we discuss two examples that will help the reader develop more intuition

regarding the model we have just described. Furthermore, they will be the basis of

various constructions to be developed in the following chapters.

2.4.1 Pigou’s Instance

Perhaps the simplest possible example of an instance of the traffic model we just intro-

duced was given by Pigou (1920) in his studies of economic markets; it is also described

by Roughgarden and Tardos (2002). The example consists of a unit demand rate com-

posed by an infinite number of users that have to travel between two terminals. Users

can opt between two paths of different characteristics: the arc a on top, featuring a

constant travel time, and the arc b on the bottom that has travel time equal to its flow.

On the left side of Figure 2-2, we show the network that we have just described; arcs

are labeled with their latency functions.

The system optimum can be calculated by solving the instance of Problem SO cor-

responding to this example:

min xa + x2
b

s.t. xa + xb = 1

xa, xb > 0 .
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Figure 2-3: Braess’ Paradox example. On the left we show the instances (arcs are labeled
with their latency functions); on the right we show their user equilibria (arcs are labeled
with their flows).

The optimal solution is f ∗ = (1/2, 1/2), where the pair of values represents the flow on

the top and the bottom arc, respectively (Figure 2-2, middle). The latencies of the arcs

are `a(f
∗
a ) = 1 and `b(f

∗
b ) = 1/2, giving a total travel time C(f ∗) of 3/4 units of time.

As the latency of the flow along arc a is 1 unit of time, while that of the flow along arc b

is 1/2 unit, users on a will not be satisfied with the assignment and would rather switch

to b.

The only solution in which no user has any incentive to switch is when all users take

arc b (Figure 2-2, right). Indeed, that is a user equilibrium because all the users travel

for one unit of time and the latency of arc a—the other option—is not smaller. The

total travel time C(f) equals one unit of time, which is obviously sub-optimal.

2.4.2 Braess’ Paradox

Another relevant example is a seemingly paradoxical instance that was first presented

by Braess (1968). The latency of every user in this network increases after a new arc

is added to it. Therefore, adding a new arc increases the total travel time, contrary to

what one might expect.
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We start with the instance depicted in the top-left of Figure 2-3. The network, which

contains two paths connecting a single origin to a single destination, has to route a unit

demand. It is easy to see from the previous definitions that the system optimum and

the user equilibrium coincide. Both route the flow by dividing it equally among the two

paths, as shown on the top-right of the figure. It is easy to see that the travel time of

every individual user and that of the whole system equal 3/2 units of time.

Consider “improving” the network by adding a new arc with latency function uni-

formly equal to 0. This new arc shortcuts the two paths as shown in the bottom-left of

the figure. The system optimum does not change, but the user equilibrium does. Indeed,

with respect to the previous user equilibrium, all users find that the path through the

new edge is preferable (its latency is 1 unit of time vs. 3/2 units). Therefore, all users

have an incentive to switch to the new path; the equilibrium is attained if all users are

routed precisely along that path. At equilibrium, the latency of every user, as well as

the total travel time, is 2.

The explanation of this apparent paradox is that there is no reason why users’ la-

tencies have to be monotone with network additions because nobody in such a system

pays attention to the system-wide utility. The conclusion is that it is not always wise to

construct new arcs if the planner’s goal is to minimize the travel time in a network and

route decisions are left to users. Note that before Braess, Downs (1962) predicted that

under certain conditions, creating a new arc might make traffic congestion worse than

before. However, the first concrete example is due to Braess. Among the vast amount of

literature that followed Braess’ article, Frank (1981) and Steinberg and Zangwill (1983)

analyzed necessary and sufficient conditions for the existence of such paradoxical flows,

and Hagstrom and Abrams (2001) did the same for a generalization of Braess’ paradox.

The results of Section 2.5.1 as well as the main result of Chapter 3 for general latency

functions and networks with side constraints (Theorem 3.10) can be used to provide a

worst-case bound on the degradation of the total (and therefore average) travel time

that can possibly be caused by Braess’ Paradox. Specifically, Roughgarden (2004a) and

Lin, Roughgarden, and Tardos (2004) analyzed the worst-case severity of this effect. For

s-t-networks, Roughgarden presented a tight upper bound for the improvement of the
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network performance after removing an arbitrary set of arcs. Subsequently, Lin, Rough-

garden, and Tardos presented a stronger bound that depends on the number of arcs

that are removed. Besides traffic networks, this paradox may also appear in other set-

tings such as queuing and telecommunication networks (Cohen and Kelly 1990; Kameda

et al. 2001).

2.5 The Price of Anarchy

The use of central coordination to achieve a system-wide objective is seldom feasible. It

is usually unacceptable as users may not have an incentive to comply with the central

directives. Although classic problems in operations research assume that there is a

central authority that has the power to control the system, recently there has been a

trend to acknowledge this difficulty, understand its consequences, and design systems

that achieve coordination by other means. These models invariably include economic and

game-theoretic aspects as a way to model user behavior. Some examples that have been

or can be modeled from that perspective include the Internet, wireless networks, road

traffic networks, transit networks, evacuation systems, distribution systems, auctions,

and facility location problems, just to mention a few.

Koutsoupias and Papadimitriou (1999) proposed to measure the cost of lacking cen-

tral coordination by comparing the cost of equilibria to that of an optimal solution.

Although others had previously compared the performance of the best equilibrium to

a system optimum (e.g., Papadimitriou and Yannakakis 1994, Shenker 1995, and Ko-

rilis and Lazar 1995), Koutsoupias and Papadimitriou argued that the comparison must

be with respect to the worst equilibrium because without explicit control nobody can

guarantee that the equilibrium that will turn out is any particular one. For a given

instance of a problem and a corresponding solution, the ratio of its cost to the optimal

cost is referred to as the coordination ratio of that solution. When a specific flow is not

mentioned, we mean the coordination ratio of the worst-case equilibrium of the given in-

stance. The worst-case coordination ratio among all the possible instances of a problem

is referred to as the price of anarchy of the system (Papadimitriou 2001).
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More concretely, Koutsoupias and Papadimitriou modeled a telecommunication net-

work as two terminals connected by parallel links used to serve a finite number of commu-

nication requests between the terminals, each controlled by a different player. To mea-

sure the efficiency of a particular solution, the authors selected the maximal load of the

links, a common objective in telecommunication network models. Among other things,

they showed that the maximal load of an arc in an equilibrium is Ω(logm/ log logm)

times that of an optimal solution, for m identical parallel links. They conjectured that

the bound is tight, a fact subsequently proved by Mavronicolas and Spirakis (2001) for

a particular case, and for the general one independently by Koutsoupias, Mavronico-

las, and Spirakis (2003), and by Czumaj and Vöcking (2004). When the speed of the

links is not uniform, the latter article proved that the worst-case ratio of the maximal

load of an equilibrium to that of an optimal solution is Θ(logm/ log log logm), a value

slightly larger than that of the uniform case. Subsequently, Berenbrink et al. (2003),

working with a model similar to that of Koutsoupias and Papadimitriou but with the

total latency objective, showed that the price of anarchy is, again, bounded. Finally,

Fotakis, Kontogiannis, and Spirakis (2004) extended some of these bounds to slightly

more general networks, still with a single source, a single sink and finitely many players

that cannot split their flow. It is surprising that these worst-case bounds do not de-

pend on the number of connection requests or their rates. This fact is also true for the

model we use in this dissertation, as we discuss below. For more details on these results,

their extensions and related results, we refer the reader to the surveys by Feldmann

et al. (2003b) and Czumaj (2004).

With a similar motivation, Roughgarden and Tardos (2002) studied the price of an-

archy with respect to the total travel time. In contrast to the results discussed in the

previous paragraph, they considered the model we described in Section 2.1 consisting

of arbitrary networks with multiple OD pairs, infinitely many users, and infinitely di-

visible flows. The authors showed that the total travel time of an equilibrium is at

most that of optimally routing twice as much traffic in the same network. Moreover,

the total latency of selfish routing is at most 4/3 times that of the best coordinated

routing, when the latency of every arc depends linearly on its congestion. Furthermore,
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Roughgarden (2003b) argued that the worst-case inefficiency due to selfish routing is

independent of the network topology, where the inefficiency of an instance is measured

by the coordination ratio. More specifically he proved the following result.

Theorem 2.8 (Roughgarden 2003b). Let L be a family of nondecreasing, s-convex,

and differentiable latency functions. Consider an instance of the traffic assignment prob-

lem with latency functions drawn from L. Then, the ratio of the total travel time of a

user equilibrium f to that of a system optimum f ∗ is bounded from above by the constant

α(L). Moreover, this upper bound is tight.

Note that the constant α(L) may be infinity depending on the choice of L. Section 3.6

gives more details about Roughgarden’s definition of α(L) and presents an alternative

definition that is simpler and can be generalized to our more general setting. Surprisingly,

instances for which the bound is tight are very simple: The constant α(L) turns out to
be the coordination ratio of an instance similar to Pigou’s (see Sections 2.4.1 and 3.6).

Therefore, the price of anarchy for networks satisfying the theorem’s assumptions is

α(L). As in the model of telecommunication networks, the price of anarchy does not

depend on the number of OD pairs, nor on the complexity of the network. Table 2.1

shows α(L) for a few classes of latency functions. For example, the first line of the

table indicates that when all latency functions are monomials of the same degree but

with arc-dependent nonnegative coefficients, user equilibria and system optima coincide

(Dafermos and Sparrow 1969); if all latency functions are polynomials of degree four

with arc-dependent nonnegative coefficients, the cost of the user equilibrium is not more

than 2.151 times that of the system optimum.

While Theorem 2.8 only works for latency functions that are nondecreasing, s-convex,

and differentiable, in Chapter 3 we generalize it to broader classes of functions and

networks with side constraints on the vector of arc flows. We prove that the bounds of

Table 2.1 are still valid so long as the correct equilibrium is selected. In contrast, the

price of anarchy is unbounded because there exist inefficient equilibria.

Chapter 6 considers two generalizations of the objective selected by Koutsoupias

and Papadimitriou: the maximum latency that users experience, and the maximum

47



Table 2.1: Guarantees for the efficiency of equilibria. All coefficients are assumed non-
negative.

Latencies are . . . (L) Example Price of Anarchy α(L)
monomials of degree n axn 1

linear functions a1x+ a0 4/3
quadratic functions a2x

2 + a1x+ a0 1.626
cubic functions a3x

3 + a2x
2 + a1x+ a0 1.896

polynomials of degree 4
∑4

i=0 aix
i 2.151

...
...

polynomials of degree n
∑n

i=0 aix
i Ω(n/ lnn)

latency of all arcs. (Recall that in their model each path consists of a single arc.) With

respect to the maximum user-latency and for instances with a single source and a single

sink, the worst-case guarantee for user equilibria coincides with the bounds presented in

Table 2.1. If general instances are considered, users at equilibrium may have arbitrarily

high latencies. Finally, equilibria are also inefficient with respect to the maximum latency

of all arcs.

Different studies have found that equilibria in realistic networks are closer to solu-

tions with minimal travel time than predicted by worst case analysis. Qiu et al. (2003)

conducted an empirical study with network topologies similar to sections of the Internet

backbone. They report that equilibria and system optima are very similar and both

perform much better than the traffic generated by the currently implemented Internet

protocols, designed to minimize the routers’ workload. However, the improvement of

the total latency of system optimum and equilibrium solutions comes at the expense

of increased congestion in the network’s bottlenecks (Section 6.6 discusses this issue

theoretically). Friedman (2003) explained why small losses should be expected in most

instances by considering generic demands instead of worst-case ones. For instance, he

showed that the Lebesgue measure of the set of instances with high coordination ratio

is small. Mahmassani and Peeta (1993), and Wie et al. (1995) compared user equilibria

to optimal flows in dynamic networks. For the small instances they analyzed, the con-

clusion is that equilibria are, on average, 10% more costly than optimal solutions. In
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Chapter 4, we simulate instances arising from real-world traffic networks with similar

findings.

2.5.1 The Case of Linear Latency Functions

Before closing this review, we give a different proof of a result shown by Roughgarden

and Tardos (2002) that establishes that the inefficiency of user equilibria in networks

with linear latency functions is at most 4/3. This simpler proof demonstrates the power

of the variational inequality approach and helps to set the stage for Chapter 3.

Theorem 2.9 (Roughgarden and Tardos 2002). Consider an instance with latency

functions of the form `a(xa) = qaxa + ra with qa, ra > 0, for a ∈ A. Let f be a user

equilibrium and f ∗ be a system optimum corresponding to the instance, respectively.

Then, C(f) 6 4
3
C(f ∗).

Proof (Correa, Schulz, and Stier-Moses 2004b). Let x be a feasible flow. Using Propo-

sition 2.7, the inequality (xa − fa/2)
2 > 0, and adding rafa to every term, we get that

C(f) 6 Cf (x) =
∑

a∈A

(qafa + ra)xa 6
∑

a∈A

(qaxa + ra)xa +
1

4

∑

a∈A

qaf
2
a 6 C(x) +

1

4
C(f) .

Therefore, 3
4
C(f) 6 C(x) for any feasible flow x, from where C(f) 6 4

3
C(f ∗) follows.

Let us make a remark that simultaneously is a preview: Exactly the same proof works

for networks with side constraints for arc-flows. In fact, one can use Proposition 3.5 in

lieu of Proposition 2.7. Moreover, Corollary 3.13 further generalizes this worst-case

bound of 4/3 to travel cost functions ` satisfying `(c x) > c `(x) for c ∈ [0, 1] (with the

only restriction that they are nonnegative, nondecreasing, and lower semicontinuous).

This includes, among others, some concave functions.
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Chapter 3

The Price of Anarchy for Networks

with Side Constraints

The subject of this chapter is the generalization of the basic model described in Sec-

tion 2.1 to a more realistic context. We discuss the relevance of network models with side

constraints and less restricted families of travel cost functions. Arguably, the type of side

constraints that has been most often considered by previous work and in practice are ca-

pacity constraints, which provide a way to upper bound the flow on arcs. We, therefore,

provide some details regarding that particular class of constraints. We present different

definitions of equilibria, and analyze their coordination ratios. Applications to specific

classes of latency functions are discussed in Section 3.7. While normally we assume

that latencies are continuous functions, we take a separate look at lower semicontinuous

travel cost functions in Section 3.8.

This chapter is based on a research article by Correa, Schulz, and Stier-Moses (2004b).

A preliminary version appeared in Schulz and Stier-Moses (2003).

3.1 Introduction

The link performance functions `a relate the traffic rates xa of traffic on the links a ∈ A to

the average travel times. To account for congestion effects, these functions are typically
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nonlinear, positive, and strictly increasing with flow (Patriksson 1994, p. 29). In practice,

the most frequently used functions are polynomials whose degrees and coefficients are

determined from real-world data through statistical methods (Patriksson 1994, p. 70).

Branston (1976) and Larsson and Patriksson (1995) argued that functions of that

kind are unrealistic in the sense that the resulting travel times are finite whenever the arc

flows are finite, so that the arcs are actually assumed to be able to carry arbitrarily large

volumes of traffic flows; in practice, however, road links have some finite limits on traffic

flows.1 Moreover, they pointed out that travel times predicted in the overloaded range

do not have a real meaning. In connection with this deficiency, Hearn (1980) noted that

in the basic model described in Section 2.1, “the predicted flow on some links will be far

lower or far greater than the traffic engineer knows they should be if all assumptions of

the model are correct.” Hearn and others, in particular Larsson and Patriksson (1994,

1995, 1999) and, most recently, Marcotte, Nguyen, and Schoeb (2004), have therefore

advocated the inclusion of arc flow capacities and side constraints on the arc flows as an

obvious way of improving the quality of traffic assignment models.

A frequently used way to implicitly incorporate capacities is to employ volume de-

lay formulas that tend to infinity as the arc flow approaches the arc capacity; see, e.g.,

Branston (1976) for a discussion (in Section 3.4.1 we use precisely those barrier func-

tions to justify a particular equilibrium introduced in this chapter). Boyce, Janson, and

Eash (1981) have empirically found that asymptotic travel time functions yield unre-

alistically high travel times and devious re-routing of trips. In addition, Larsson and

Patriksson (1995) criticized the inherent numerical ill conditioning of this approach.

They went on to exalt the extension of the basic model by including side constraints

as an interesting alternative to the use of asymmetric traffic assignment models. Such

extensions are made through the development of complex travel cost functions, which,

in practical applications, are difficult to calibrate. In fact, the link flow pattern found

by solving a model with side constraints may also be found by solving the corresponding

unconstrained problem with travel time functions adjusted by the corresponding optimal

1Interestingly, the widely popular link delay formula proposed by the Bureau of Public Roads includes
a capacity parameter, as shown in Equation (2.1).
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shadow prices. The solution of a problem with side constraints can therefore be used as

a tool for guiding traffic engineers in correcting the travel time functions so as to bring

the flow pattern into agreement with the anticipated results (Hearn 1980). In a related

application, the introduction of capacities can be used to derive tolls for the reduction

of flows on overloaded links (Hearn and Ramana 1998); see Bernstein and Smith (1994)

for additional references.

It is worth mentioning that some traffic control policies give rise to link flow ca-

pacity constraints (Yang and Yagar 1994), that some of the first mathematical models

of traffic assignment problems used link flow capacity constraints to model congestion

effects (Charnes and Cooper 1961; Jorgensen 1963), and that several authors discussed

the consequences of including capacities on existing algorithms for the uncapacitated

case (Daganzo 1977a; Daganzo 1977b; Hearn 1980; Hearn and Ribera 1980; Hearn and

Ribera 1981; Larsson and Patriksson 1994; Larsson and Patriksson 1995). Larsson and

Patriksson (1999) have summarized and extended their earlier work to general convex

side constraints on the vector of arc flows.

3.2 User Equilibria with Side Constraints

In this section, we extend the notion of a user equilibrium to networks with side con-

straints on the vector of arc flows. As our main motivation was the consideration of

capacity constraints and they are simpler, we first extend the definition of a user equi-

librium to networks with arc capacities, and then consider the general case.

We start with an extension of Wardrop’s first principle to the case with capacities

that was first given by Jorgensen (1963). To define the capacity constraints, we formally

associate a nonnegative capacity ca with each arc a ∈ A (which may be ∞). We call ca

an arc flow x feasible if it satisfies all upper bound constraints xa 6 ca, for a ∈ A.

A path P ∈ P is said to be unsaturated with respect to a given feasible flow x if and

only if xa < ca for all arcs a ∈ P . Otherwise, it is called saturated. The behavioral

assumption that we make for the following definition is that users can only switch to

unsaturated paths. Then, extending Definition 2.2, an equilibrium with capacities is a
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flow in which each user takes a shortest path (under the prevailing conditions) among

those with residual capacity.

Definition 3.1. A feasible flow f is a user equilibrium with capacities if no OD pair hasUE with

capaci-

ties

an unsaturated path with strictly smaller cost than any path used for that pair. That

is, if fP > 0 for P ∈ Pk, then `P (f) 6 min{`Q(f) : Q ∈ Pk unsaturated}.

Maugeri (1994) considered a similar model, except he assumed that capacities are

associated to paths instead of arcs. He defined an equilibrium with capacities in a similar

way as in Definition 3.1, although, for him, a path is saturated if its flow matches its

capacity. We prefer to continue with the model with capacities (and side constraints)

on arc flows because flow on arcs can be easily measured and capacities have a physical

meaning.

Let us note that the previous definition of equilibrium and the results related to it

that we shall present are valid without modifications if the feasible region is defined by

generalized capacity constraints (Larsson and Patriksson 1999). This extension models

capacity constraints that may involve multiple arcs. Essentially, a generalized capacity

constraint is one that satisfies that, starting from any flow, a decrease in the flow along

any path cannot violate the constraint. To complete the extension of Definition 3.1,

we must add that a path is saturated when it cannot accept more flow at the current

congestion level.

In the unconstrained case, Definition 3.1 is obviously equivalent to Wardrop’s first

principle, since saturation is not an issue. In particular, all used paths in Pk are of equal

(and minimal) latency. In contrast, in a user equilibrium with (generalized) capacities,

the flow-carrying paths between the same OD pair can have different latencies (and are

therefore not necessarily of minimal length). However, a user equilibrium with capacities

satisfies a generalization of Wardrop’s first principle.

Proposition 3.2. Let f be a feasible flow of an instance with (generalized) capacity

constraints, and continuous and nondecreasing latency functions. Then, f is an equi-

librium with capacities if and only if the following property holds for all P ∈ Pk . If

`P (f) > Lk(f), then fP = 0; if `P (f) < Lk(f), then P is saturated.
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In other words, we can partition Pk into three sets: paths that are short and saturated,

paths that have a common length equal to Lk(f), and longer paths without flow.

We should remark that our definition of a user equilibrium with capacities includes

solutions that Marcotte, Nguyen, and Schoeb (2004) considered “less natural” because

a group of users that travels on a long path could contribute to the saturation of a

shorter path that they would prefer but cannot take. The reason is precisely that the

shortest path is saturated by their own presence. To prevent this possible anomaly,

we also extend the definition of a Nash equilibrium to the case with capacities. The

corresponding behavioral assumption is that a user may consider switching to a certain

path only if the solution satisfies the capacity constraints after the switch. Referring to

those paths as feasible, we say that a flow is at equilibrium if no arbitrary small bundle

of users has any incentive to switch to another feasible path. Essentially, this definition

was first suggested by Bernstein and Smith (1994).

Although Bernstein and Smith, and Marcotte, Nguyen, and Schoeb only looked at

capacity constraints, following the previous discussion, we generalize Definition 2.3 to

the case of arbitrary side constraints. Let us denote the space of arc flows satisfying

those constraints by the convex and closed set X ⊆ � A
>0. (It is easy to see that with X

open sets, equilibria may fail to exist.) Furthermore, we refer to an arbitrary flow f as

feasible when it satisfies demands (
∑

P∈Pk
fP = dk) and its projection into the space of

arc flows belongs to the set X. For convenience, we henceforth consider instances that

possess feasible flows.

Definition 3.3. A feasible flow f is a user equilibrium with side constraints if the UEwith

side

con-

straints

following condition holds for all k ∈ K, all paths Q,R ∈ Pk such that fQ > 0, and all

0 6 ε 6 ε̄ for a small ε̄. Namely, a new flow f ε, defined by

f ε
P

def
=





fQ − ε if P = Q,

fR + ε if P = R,

fP otherwise,

for P ∈ P ,
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must satisfy that `Q(f) 6 `R(f
ε) whenever it is feasible.

While Property 2.4 showed that Wardrop and Nash equilibria are equivalent for un-

constrained networks with continuous and monotone latency functions, this is not nec-

essarily true for their extensions to the case with constraints. For instance, the problem

alluded to by Marcotte, Nguyen, and Schoeb is obviously eliminated by Definition 3.3

because users have the possibility of switching to paths saturated by themselves. In

fact, although Definition 3.3 can be considered more general than 3.1 because it allows

us to incorporate arbitrary side constraints, under the case of (generalized) capacity

constraints, both apply and Definition 3.3 is more restrictive.

Proposition 3.4. Consider an instance with (generalized) capacity constraints, and con-

tinuous and nondecreasing latency functions. If a feasible flow f satisfies Definition 3.3,

then f satisfies Definition 3.1.

Proof. Consider a path Q ∈ Pk such that fQ > 0. We have to show that `Q(f) 6 `R(f)

for each unsaturated path R ∈ Pk. That easily follows the continuity of the latency

functions, and from Definition 3.3 by using the same Q and R in that definition.

All the examples and results presented hereafter are valid for Definition 3.3, and

therefore for the more general definition (when it applies), as the previous proposition

shows. Moreover, the particular equilibrium that we single out in Section 3.4 to over-

come the difficulty of characterizing the best user equilibrium with side constraints in a

not necessarily convex space, satisfies Definition 3.3, too. In Section 3.8, we relax the

assumption of continuity and compare the different notions of equilibria again.

Let us finally remark that Marcotte, Nguyen, and Schoeb went with a more involved

definition of user equilibrium with capacities. Instead of path-based formulations as

those we have just described, they considered that each user plans a strategy that ranks

the possible choices at each intersection. If, at some node along the trip, the first option

listed in the strategy is not available because the corresponding arc is saturated, the

user will try the second option, and so on. This mechanism is a random process because

if there is more demand for an arc than its capacity, a random selection will take place.
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Figure 3-1: Example showing that the set of user equilibria with side constraints may be
nonconvex. The instance, displayed on the left, has a single arc with a finite capacity.
The graph on the right depicts the space of flows. The heavy solid line represents the
set of user equilibria.

Some users will be allowed to go ahead and the rest will try their next choices. With

this process in place, an equilibrium was defined as an assignment of users to strategies

such that users do not have any incentive to deviate and improve their expected travel

times (the travel time of a user is random).

3.3 Inefficiency, Nonuniqueness, and Nonconvexity

of User Equilibria with Side Constraints

In networks without constraints, the user equilibrium is essentially unique; in particular,

different equilibria, if any, share the same total latency. An important effect of side

constraints is the existence of multiple equilibria, which is caused by the restrictions

imposed by the side constraints. The instance shown on the left of Figure 3-1 provides

an example with two commodities. The nodes on the left represent one OD pair, while

the nodes on the right form the other OD pair. The demand between each consists of 2

units of flow. Arc labels indicate the corresponding latency functions and the arc in the

center is the only one with finite capacity. Every user has two options: The route that

goes through the center, and the alternative at the side. One can represent any feasible

flow in this network using two variables.

Let v and w denote the flow that is routed through the common arc corresponding to
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the left and the right OD pair, respectively. Thus, the set of all feasible flows is in one-

to-one correspondence with {v, w ∈ [0, 2] : v + w 6 2} because the capacity constraint

must be obeyed and the flow on the four paths must be nonnegative. This space of

flows is shown on the right of Figure 3-1. According to Definition 3.1, a feasible flow is

a capacitated user equilibrium if and only if at least one of the following two conditions

holds:

(i) w = 1, i.e., the travel times along both paths for the OD pair on the right are the

same;

(ii) v+w = 2 and w < 1, i.e., the common arc is used up to capacity and the alternative

path for the OD pair on the right has higher cost.

Consequently, multiple equilibria with different total travel times can exist. This exam-

ple additionally shows that the space of equilibria is in general not convex. Indeed, the

thick black line of Figure 3-1 represents the set of all user equilibria.

Suppose that users will keep switching routes as long as they have a better choice.

Then, the only stable solutions are the equilibria of the network game. As the model

without side constraints has essentially a single equilibrium, no user or group of users

has any incentive to deviate because they know that even if they eventually converge to

another equilibrium, that equilibrium will not be better for them. In contrast to that,

with side constraints, although no user has any incentive to deviate, groups of users

can cooperate to improve their latencies. A group of users may switch routes so the

resulting flow is also an equilibrium in such a way that all of them are better off in the

new solution. In the previous example, one user of the left OD pair taking the route

through the center, and another user of the right OD pair taking the route at the side,

can cooperate and improve both the quality of the equilibrium and their experienced

latency (as long as w < 1). Therefore, the model with side constraints can benefit from

coordination because users could be guided towards a good equilibrium. If solutions that

are not at equilibrium can be accepted by users, Chapter 4 suggests a way to achieve an

approximate equilibrium that is more efficient than an exact one. Using that solution,

users do not have a big incentive to deviate.
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Besides the existence of multiple equilibria, the price of anarchy for the model with

capacities is, in general, unbounded. For that, consider the single commodity instance

shown in Figure 3-2. Arc labels again represent the corresponding latency functions; two

arcs have finite capacity. The flow that routes 1/2 on the only path consisting of three

arcs and 1/2 on the arc with constant latency M is a user equilibrium with capacities.

Its total travel time is 1
2

(
1
2
+ 0 + 1

2

)
+ 1

2
M = 1

2
(M +1). On the other hand, the system-

optimal flow, which incidentally happens to be another user equilibrium with capacities,

routes 1/2 on each of the two paths with two arcs. Its total travel time is 2 1
2
(1
2
+1) = 3

2
.

Clearly, the ratio of the two values goes to infinity as M →∞.

3.4 The Beckmann User Equilibrium

Recall that Section 2.3 describes a mathematical program for computing user equilibria

in the basic model that was introduced by Beckmann, McGuire, and Winsten (1956).

The natural way of extending it to our more general case is the inclusion of the additional

side constraints. To that effect, we define a Beckmann user equilibrium to be an optimal BUE

solution to the following problem:

min
∑

a∈A

∫ fa

0

`a(x) dx (3.1a)

s.t.
∑

P3a

fP = fa a ∈ A, (3.1b)
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∑

P∈Pk

fP = dk k ∈ K, (3.1c)

(fa)a∈A ∈ X . (3.1d)

As this amounts to minimizing a convex function over a nonempty convex set, the set

of optimal flows is nonempty and convex. For the example in the previous section

(see Figure 3-1), the set of all Beckmann user equilibria corresponds with the set {0 6

v 6 1, w = 1}, which is denoted as BUE in Figure 3-3. Note that a Beckmann user

equilibrium is not necessarily the most efficient equilibrium; it is just one that has a

good characterization. It is this structure that helps us to carry forward some of the

results known from networks without side constraints. First-order optimality conditions

imply that a flow f is a Beckmann user equilibrium if and only if

for all feasible directions h :
∑

a∈A

ha`a(fa) > 0 .

If we let x be any feasible flow, x − f is a feasible direction at f (and all feasible

directions can be obtained in this way). Therefore, the last equation is equivalent to

for all feasible flows x :
∑

a∈A

(xa − fa)`a(fa) > 0 . (3.2)

Condition (3.2) can stated as a variational inequality, extending that of the basic

model introduced in Proposition 2.7. Actually, we could have defined Beckmann user

equilibrium as the solution to the following variational inequality problem because this

is the only property we shall use in the proofs that follow. We prefer the mathematical

program as it clearly shows that the problem can be solved in polynomial time and that

the set of optimal solutions is nonempty and convex.

Proposition 3.5. Consider an instance with side constraints, and continuous and non-

decreasing latency functions. A feasible flow f is a Beckmann user equilibrium if andBUE

condi-

tion

only if

for all feasible flows x : Cf (f) 6 Cf (x) . (3.3)
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Like its counterpart (2.8) for uncapacitated networks, (3.3) is crucial for proving

results on the efficiency of (Beckmann) user equilibria. But, let us first show that

a Beckmann user equilibrium is indeed a user equilibrium with side constraints in the

sense of Definition 3.3. Note that Larsson and Patriksson (1999, Theorem 2.7) presented

a similar result, although they did not define user equilibrium with side constraints as we

have done in Section 3.1. Namely, they proved that (what we called) a Beckmann user

equilibrium satisfies the generalized Wardrop condition given by Property 3.2. While

they needed a feasible set given by generalized capacity constraints, the next lemma

holds with an arbitrary feasibility set.

Lemma 3.6. Consider an instance with side constraints, and continuous and nonde-

creasing latency functions. If a feasible flow f is a Beckmann user equilibrium, then f is

a user equilibrium with side constraints.

Proof. To show that f satisfies Definition 3.3, suppose to the contrary that there are

two paths Q,R ∈ Pk for some OD pair k with fQ > 0 such that `R(f
ε) < `Q(f), where

f ε
P =





fQ − ε if P = Q,

fR + ε if P = R,

fP otherwise,

for P ∈ P
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is a feasible flow for all 0 < ε 6 ε for some ε. Now, keep f ε fixed and consider

∑

a∈A

(f ε
a − fa)`a(fa) =

∑

P∈P

(f ε
P − fP )`P (f) = ε (`R(f)− `Q(f)) .

Since latency functions are continuous and nondecreasing, it follows that `R(f)−`Q(f) <

0 and so we have a contradiction to (3.2).

Although we do not need to assume that latency functions are continuous to prove

the existence of a Beckmann user equilibrium, the continuity assumption was important

for the previous lemma. Indeed, with arbitrary latencies, a user equilibrium with side

constraints may fail to exist or a Beckmann user equilibrium may not be an equilibrium

with side constraints. In Section 3.8, we present an example that illustrates this situation

and further discuss the issue of discontinuous latencies.

As a historical note, user equilibria in networks with capacities, and more gen-

erally with side constraints, have been considered before (see Jorgensen 1963; Da-

ganzo 1977a; Daganzo 1977b; Hearn 1980; Hearn and Ribera 1980; Hearn and Rib-

era 1981; Maugeri 1994; Larsson and Patriksson 1995; Larsson and Patriksson 1999, as

well as Patriksson 1994 and the references therein). With the exception of the articles by

Jorgensen and Maugeri, the mentioned articles defined a user equilibrium with capaci-

ties as our notion of Beckmann user equilibrium. We believe that this is not the correct

definition of user equilibrium because it is given by an optimization problem and not by

a description of user behavior. We do not know of any empirical study that establishes

that, in practice, the prevailing condition is close to a Beckmann user equilibrium. How-

ever, one of the contributions of the next section is providing some theoretical evidence

supporting that claim.

3.4.1 Further Remarks for Networks with Capacities

Hearn (1980) noted that a Beckmann user equilibrium of a network with capacities is an

uncapacitated user equilibrium with respect to latencies `a(·)+γa, where γa ∈
�

>0 is the

shadow price (Karush-Kuhn-Tucker multiplier) of the capacity constraint xa 6 ca for
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arc a ∈ A in an optimal solution to problem (3.1a) – (3.1d). Those shadow prices were

interpreted by some authors as the tolls that users are willing to pay (Jorgensen 1963) or

queuing delays that users experience in addition to the time to traverse the links (Payne

and Thompson 1975; Inouye 1987; Nesterov 2000; Nesterov and de Palma 2000).

This point of view facilitates an alternative proof of Proposition 3.5. In fact, let f

be a Beckmann user equilibrium and x be any feasible flow. Then we can re-prove (3.3)

as follows:

Cf (f) =
∑

a∈A

`a(fa)fa +
∑

a∈A

γa(fa − ca)

=
∑

a∈A

(`a(fa) + γa)fa −
∑

a∈A

γaca

6
∑

a∈A

(`a(fa) + γa)xa −
∑

a∈A

γaca

=
∑

a∈A

`a(fa)xa +
∑

a∈A

γa(xa − ca)

6 Cf (x) .

Here, the first equality follows from complementary slackness. The first inequality uses

Proposition 2.7 for uncapacitated user equilibria, while the second one makes use of the

feasibility of x.

Let us now discuss another good reason for paying attention to Beckmann user

equilibria. Suppose one would forgo explicit arc capacities and would instead incorporate

barrier terms in the latency functions. More specifically, let µ ∈ �
>0 be a penalty

parameter and consider the modified latency functions `µa(xa)
def
= `a(xa) + µ/(ca − xa)

for all arcs a with finite capacities, with the understanding that the barrier term equals

+∞ for xa > ca. The next lemma essentially shows that in the limit (for µ→ 0), selfish

users behave like they would in a Beckmann user equilibrium.

Lemma 3.7. Let (µi) be a parameter sequence with 0 < µi+1 < µi for i ∈ � , and

µi → 0. Let (f i) be the corresponding sequence of user equilibria in the network without

capacities but with modified latencies `µi
a . Every limit point of the sequence (f i) is a
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Beckmann user equilibrium of the original instance (i.e., with capacities).2

Proof. According to Beckmann, McGuire, and Winsten (1956), each user equilibrium f i

minimizes the following objective function, subject to (3.1b), (3.1c), and (3.1d):

∑

a∈A

∫ fa

0

(
`a(x) +

µi

ca − x

)
dx . (3.4)

Hence, f i also minimizes

∑

a∈A

∫ fa

0

`a(x) dx − µi

∑

a∈A

ln(ca − fa) , (3.5)

which differs from (3.4) by a constant. As the second term in (3.5) is a barrier function

as well, it follows that each limit point of (f i) is an optimal solution of the original

problem (3.1a) – (3.1d) (see, e.g., Bertsekas 1999, Proposition 4.1.1).

In addition, we can prove a similar result for the sequence of system optima. The

proof follows the same idea as that of the previous lemma.

Lemma 3.8. Let (µi) be a parameter sequence with 0 < µi+1 < µi for i ∈ � , and

µi → 0. Let (f i,∗) be the corresponding sequence of system optima in the network without

capacities but with modified latencies `µi
a . Every limit point of the sequence (f i,∗) is a

system optimum of the original instance.

In spite of the last two results, it is not true that the coordination ratio of an in-

stance in which capacities are enforced by using modified latency functions approaches

the coordination ratio of a Beckmann user equilibrium of the capacitated instance. In

other words, if the subsequence (f i) of user equilibria converges to the Beckmann user

equilibrium f , then in general

Cµi(f i)

Cµi(f i,∗)

µi→0

6−→ C(f)

C(f ∗)
. (3.6)

2The sequence can be shown to converge if there is a single Beckmann user equilibrium.
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Figure 3-4: The coordination ratio with barriers does not converge to that with capacities

Here, f ∗ and f i,∗ are system-optimal solutions corresponding to the instances for which

f and f i are user equilibria, respectively.

For an example, consider a network of two parallel arcs connecting a single origin

with a single destination, and a demand rate of 2, as shown in Figure 3-4. One of the

arcs has unit latency and unit capacity while the second arc has latency equal to 2 and

infinite capacity. Both the user equilibrium with capacities and the system optimum

route one unit of flow along each arc. The total travel time of both solutions is 3. If we

try to enforce the capacity constraint of the first arc with the help of a barrier term, its

latency becomes 1+µ(1−x)−1. The corresponding user equilibrium is (1−µ, 1+µ); here,

the first coordinate refers to the capacitated arc. As both latency functions evaluate to 2,

the total travel time is 4. The optimal flow is (1−√µ, 1+
√
µ), and its total travel time

is 3 − µ + 2
√
µ. While the sequence {(1 − µ, 1 + µ)} converges to the capacitated user

equilibrium (1, 1) for µ → 0, the corresponding sequence of total travel times remains

constant at 4. Hence, the left-hand side of (3.6) converges to 4/3 and not to 1, the value

of the right-hand side.

3.5 The Efficiency of Beckmann User Equilibria

We now present upper bounds on the inefficiency of any Beckmann equilibrium. Recall

from Section 3.3 that an arbitrary user equilibrium with side constraints can be arbi-

trarily inefficient (in contrast to the situation in networks without constraints). We first

focus on a bicriteria result à la Roughgarden and Tardos (2002, Theorem 3.1). This
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result implies that an equilibrium is not worse than the system optimum of an instance

with twice the demand. Put differently, lacking coordination is not more expensive than

doubling the demand.

Theorem 3.9. Consider an instance of the traffic assignment model with side con-

straints, and continuous and nondecreasing latency functions. If f is a Beckmann user

equilibrium for that instance and x is a feasible flow, then C(f) 6 C(2x), where 2x

denotes a solution that routes twice as much flow along every arc.

Proof. Like Roughgarden and Tardos, we start by modifying the original latency func-

tions `a. Namely,

˜̀
a(xa)

def
=





`a(fa) if xa 6 fa,

`a(xa) if xa > fa.

Consider a flow y with arbitrary total value (i.e, possibly infeasible). The increase in

the cost of y with respect to the new latencies is bounded by the following expression:

C̃(y)− C(y) =
∑

a∈A

(˜̀a(ya)− `a(ya))ya 6
∑

a∈A

`a(fa)fa = C(f) ,

where the inequality follows directly from the definition of ˜̀. Using ˜̀
P (y) > ˜̀

P (0) =

`P (f) for any path P , we also obtain:

C̃(y) =
∑

P∈P

˜̀
P (y)yP >

∑

P∈P

`P (f)yP = Cf (y) .

Finally, for a feasible flow x, Condition (3.3) implies that C(f) 6 C f (x). Putting the

three inequalities together yields

C(f) = 2C(f)− C(f) 6 2Cf (x)− C(f) = Cf (2x)− C(f) 6 C̃(2x)− C(f) 6 C(2x) .

It is straightforward to generalize the previous theorem using different coefficients.

Namely, following Roughgarden, for any constant η > 1 and any feasible flow x, C(f) 6

(η − 1)−1 C(ηx) .
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We now turn our attention to the inefficiency of the best equilibrium with side con-

straints. Note that the early paper of Jorgensen (1963) proved that system optima are

at equilibrium when latencies are constant functions. Our main result bounds the ineffi-

ciency of a Beckmann user equilibrium when latencies are drawn from a given set L. We

shall continue to assume that latency functions are just continuous and nondecreasing.

For example, L could be the polynomials of degree at most n. For every function ` ∈ L
and every value v > 0, let us define:

β(v, `)β(v, `)
def
=

1

v `(v)
max
x>0

{
x
(
`(v)− `(x)

)}
, (3.7)

where by convention 0/0 = 0. It is obvious that β(v, `) > 0 and since x(`(v)− `(x)) 6 0

for x > v, we could have restricted the maximum to the interval [0, v]. In addition, let

us define β(`)
def
= sup

v>0
β(v, `) and β(L) def

= sup
`∈L

β(`). Note that β(L) 6 1 because the β(`)

β(L)maximum in (3.7) cannot be larger than v`(v). These definitions arise naturally from

the result we are about to present, which is a straightforward extension of Theorem 2.9.

Theorem 3.10. Let L be a family of continuous and nondecreasing latency functions.

Consider an instance of the side-constrained traffic assignment model (3.1b) – (3.1d)

with latency functions drawn from L. Then, the ratio of the total travel time of a

Beckmann user equilibrium f to that of a system optimum f ∗ is bounded from above

by (1− β(L))−1, i.e.,

C(f) 6
1

1− β(L) C(f ∗) .

Proof. Let x be a feasible flow. By definition Cf (x) =
∑
a∈A

`a(fa)xa; hence,

Cf (x) 6
∑

a∈A

β(fa, `a)`a(fa)fa +
∑

a∈A

`a(xa)xa 6 β(L)C(f) + C(x) . (3.8)

From Proposition 3.5, C(f) 6 Cf (x), and the claim follows by applying (3.8) to x =

f ∗

In spite of the simplicity of its proof, the power and flexibility of the last theorem

will become evident when we relate it to the main result of Roughgarden (2003b) next
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and demonstrate several further implications in Section 3.7. The key was to get the

definition of β(L) “right.”

3.6 Comparison with Previous Results

Let L be a given family of latency functions. We now relate β(L) to the anarchy

value α(L) introduced by Roughgarden (2003b). In order to do so, we have to assume

that, in addition to being continuous and monotone, ` is differentiable and s-convex for

all ` ∈ L (the setting of Roughgarden). The anarchy value α(`) of a latency function `

α(`)

is

α(`)
def
= sup

v>0: `(v)>0

[
λ
`(λv)

`(v)
+ (1− λ)

]−1

,

where λ ∈ [0, 1] solves `∗(λv) = `(v). By rearranging terms,

α(`) =

[
1− sup

v>0: `(v)>0

λ

(
`(v)− `(λv)

`(v)

)]−1

,

we can prove that α(`) = (1−β(`))−1. Indeed, if we use x = λv in the definition of β(`),

it is clear that α(`) 6 (1 − β(`))−1. For the other inequality, consider a given v. Since

x(`(v) − `(x)) is concave and its value in 0 and v is zero, there is a point x∗ ∈ (0, v)

that attains the maximum. From the differentiability of `, (x(`(v)− `(x)))′ evaluated at

x = x∗ equals zero. Therefore, λ = x∗/v satisfies `∗(λv) = `(v), as required.

Hence, the anarchy value α(L) def
= sup

`∈L
α(`) of a class L is equal to (1−β(L))−1. There-α(L)

fore, Theorem 3.10 not only implies Roughgarden’s main result (Roughgarden 2003b,

Theorem 3.8) but also extends it to functions ` that are not necessarily differentiable or

s-convex. Moreover, the constraints imposed on arc flows do not matter.

We conclude this section by showing that the bound given in Theorem 3.10 is tight. In

fact, if L contains the constant functions, this bound is attained by a single-commodity

network consisting of two parallel arcs, which essentially reflects the independence of the

network topology property highlighted by Roughgarden. Let us assume that the value

β(L) is achieved for ` ∈ L and v > 0. (Although we could use a convergent sequence
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Figure 3-5: Generalization of Pigou’s example

if the supremum is not attained, we omit this analysis since it is easy and does not

provide further insights.) Consider the network depicted in Figure 3-5 (Pigou 1920;

Roughgarden 2003b), with two parallel links, one with latency `(x) and the other with

constant latency `(v). A demand of v is to be routed. In this situation, the cost of

the equilibrium f is C(f) = v `(v), while the system optimum f ∗ can be evaluated as

follows:

C(f ∗) = min
06x6v

{x `(x) + `(v)(v − x)} = v `(v)− max
06x6v

{x (`(v)− `(x))} .

Hence, the ratio between the total latency of the user equilibrium and that of the system

optimum is

C(f)

C(f ∗)
=


1−

max
x>0

{x(`(v)− `(x))}

v `(v)




−1

= (1− β(L))−1 .

3.7 Computing the Price of Anarchy

Since the results in the last subsection generalize the results by Roughgarden (2003b), the

bounds he obtains for specific classes of latencies (e.g., linear functions and polynomials

with positive coefficients) apply here as well. In this section we study bounds for more

general latency functions. We start with two auxiliary lemmas.

Lemma 3.11. Let L be a family of continuous and nondecreasing latency functions.

Assume that for some real function s, ` satisfies `(c x) > s(c)`(x) for all c ∈ [0, 1].
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Then,

β(L) 6 sup
06x61

{x(1− s(x))} .

Proof. Recall from (3.7) that β(v, `) is defined as

β(v, `) = max
06x6v

{
x

v

(
1− `(x)

`(v)

)}
.

Rewriting x as v (x/v) and using the assumption, we can bound this expression from

above by

sup
06x6v

{x

v

(
1− s

(x
v

))}
= sup

06x61
{x (1− s(x))} ,

which implies the claim.

Lemma 3.12. Let L be a family of continuous and nondecreasing latency functions

Assume that for some real function s, ` satisfies `(c x) > s(c) + `(x) for all c ∈ [0, 1].

Then,

C(f) 6 C(f ∗)− |A|d inf
06x61

{x s(x)} ,

where d =
∑
k∈K

dk is the total demand to be routed, f is a Beckmann user equilibrium,

and f ∗ is a system optimum.

Proof. In this case, it is easy to see that

`(v)β(v, `) 6 sup
06x6v

{
−x

v
s
(x
v

)}
= − inf

06x61
{x s(x)} .

If we plug this into (3.8) with ` = `a and v = fa, we obtain,

C(f) 6
∑

a∈A

βa(fa, `a)`a(fa)fa +
∑

a∈A

`a(f
∗
a )f

∗
a 6 C(f ∗)− |A|d inf

06x61
{x s(x)} .

We now apply Lemmas 3.11 and 3.12 to specific classes of latency functions. The

following corollaries extend Theorem 2.9. Indeed, the Corollary 3.13 implies that the

price of anarchy is 4/3 for all nonnegative concave functions and this bound still holds in
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networks with side constraints (assuming that a Beckmann user equilibrium is chosen).

Corollary 3.14 generalizes Roughgarden’s bound for polynomials of degree n with positive

coefficients.

Corollary 3.13. If the set L of continuous and nondecreasing latency functions is con-

tained in the set {` : `(c x) > c `(x) for c ∈ [0, 1]}, then (1− β(L))−1 6 4/3.

Proof. Use Lemma 3.11 and note that sup
06x61

{x(1− x)} = 1
4
.

Corollary 3.14. If the set L of continuous and nondecreasing latency functions is con-

tained in the set {` : `(c x) > cn `(x) for c ∈ [0, 1]} for some positive number n, then

(1− β(L))−1 6
(n+ 1)1+1/n

(n+ 1)1+1/n − n
.

Proof. Use Lemma 3.11 and note that sup
06x61

{x(1− xn)} = n

(n+ 1)1+1/n
.

In particular, the price of anarchy in networks with quadratic (resp. cubic) latency

functions is 1.626 (resp. 1.896). Table 2.1 lists more values, which were computed using

the formula we just derived.

Finally, the following result comprises the case in which latency functions are log-

arithmic (i.e., `(x) = log(1 + x)). The Beckmann user equilibrium offers an additive

performance guarantee in this situation.

Corollary 3.15. If the set L of continuous and nondecreasing latency functions is con-

tained in the set {`(·) : `(c x) > logb(c) + `(x) for c ∈ [0, 1]}, then

C(f) 6 C(f ∗) +
|A|d
e ln b

.

Proof. Use Lemma 3.12 and note that inf
06x61

{x logb(x)} = −
1

e ln b
.

3.8 Lower Semicontinuous Latency Functions

Traffic assignment models customarily depend on the assumption of continuous travel

cost functions. However, Bernstein and Smith (1994) have pointed out that there are
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Figure 3-6: A lower semicontinuous function

times when this assumption is not appropriate. In this situation, a more careful distinc-

tion between different versions of the equilibrium concept is essential. For unconstrained

networks, Section 2.5 points out that the notions of Wardrop and Nash equilibria are

equivalent to each other for continuous latency functions. Let us borrow the following

example from Florian and Hearn (1995) to illustrate the consequences of relaxing that

assumption. Like in Figure 3-5, two parallel arcs connect an OD pair with demand

rate 2. The travel cost function for the first arc is `a(xa) = xa; for the second arc, it is

`b(xb) =





xb if xb < 1,

xb + 1 if xb > 1.

Although the solution xa = xb = 1 is a Beckmann user equilibrium, no solution satisfies

Definitions 3.1 and 3.3, which implies that the instance does not have Wardrop or Nash

equilibria.

Let us recall that a real function ` is lower semicontinuous if `(x) 6 lim inf `(xn) forlsc

all x in its domain and all sequences (xn) with limn→∞ xn = x. Here, lim inf `(xn) =

limn→∞ inf{`(xm) : m > n}. In fact, if ` is nondecreasing and lower semicontinuous,

then `(x) = limy↗x `(y), and the limit always exists.3 Figure 3-6 shows an example of

such a function. Upper semicontinuity is defined similarly.

The article of de Palma and Nesterov (1998), which considers unconstrained net-

works, presents additional examples as well as conditions that guarantee the existence of

the different notions of equilibrium. For instance, the authors illustrate that a Wardrop

3Recall that limy↗x `(y) represents the limit of (`(yi))i∈ � with respect to any increasing sequence
(yi)i∈ � that converges to x from below; limy↘x `(y) is similarly defined.
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equilibrium might not be a Nash equilibrium (and a Nash equilibrium might not exist),

a Nash equilibrium might not be a Wardrop equilibrium (and a Wardrop equilibrium

might not exist), or neither of the two might exist. Furthermore, for upper semicon-

tinuous latencies, they prove that a Nash equilibrium is both a Wardrop and a Beck-

mann equilibrium. More interestingly to us, they show that Beckmann user equilibria

are Nash equilibria if latencies are lower semicontinuous. This result, which is similar to

Lemma 3.6, provides us with a general assumption on latency functions for the existence

of Nash equilibria. We present an extension to the case of arbitrary side constraints.

Proposition 3.16. Consider an instance with side constraints, and lower semicontin-

uous and nondecreasing latency functions. If a feasible flow f is a Beckmann user

equilibrium of that instance, then f is a user equilibrium with side constraints.

Proof. We show that f satisfies Definition 3.3. Consider two paths Q,R ∈ Pk for some

OD pair k with fQ > 0, such that

f ε
P =





fQ − ε if P = Q,

fR + ε if P = R,

fP otherwise,

for P ∈ P

is a feasible flow for all 0 < ε 6 ε̄ and some ε̄. Now, keep x
def
= f ε̄ fixed and consider

∑

a∈A

(xa − fa)(∇f )a =
∑

P∈P

(xP − fP )(∇f )P = ε̄ ((∇f )R(f)− (∇f )Q(f)) ,

where ∇f is a subgradient of
∑

a∈A

∫ xa

0
`a(y) dy at f . The fact that f is a Beckmann

user equilibrium, the previous equation, and lower semicontinuity imply that

∑

a∈Q\R

`a(fa) 6
∑

a∈R\Q

`a(f
+
a ),

which means that no arbitrarily small bundle of users can reduce their cost by switching

from Q to R.
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We will now sketch that, under minor modifications, Theorem 3.10 still holds in the

more general setting of latency functions that are just lower semicontinuous. (Note that

we maintain the monotonicity assumption.) Hence, in this more general setting, we

still have a bound on the inefficiency of the best user equilibrium with side constraints.

Bernstein and Smith, as well as de Palma and Nesterov underline the importance of this

class of travel cost functions.

For a feasible (arc) flow x, we redefine Cf (x) to be the standard inner product

between ∇f and x, i.e., Cf (x)
def
= 〈∇f , x〉, where ∇f is a subgradient of

∑
a∈A

∫ xa

0
`a(y) dy

at f satisfying the optimality conditions for (3.1a) – (3.1d). In other words, ∇f satisfies a

condition similar to (3.3), namely 〈∇f , x−f〉 > 0 for all feasible flows x. Moreover, note

that limy↗fa
`a(y) 6 (∇f )a 6 limy↘fa

`a(y), for all a ∈ A. The first of these inequalities

together with the lower semicontinuity of ` implies that C(f) 6 Cf (f).

To proceed as we did in the proof of Theorem 3.10, we also need a slight technical

change in the definition of β(v, `), which should now be defined as

β(v, `)
def
=

1

v `(v)
max
x>0

{x (`(v+)− `(x))}.

Here, `(v+) = limy↘v `(y). After these preparations, we can complete the proof. Let x

be a feasible flow. We derive

Cf (x)=〈∇f , x〉6
∑

a∈A

`a(f
+
a )xa6

∑

a∈A

β(fa, `a)`a(fa)fa+
∑

a∈A

`a(xa)xa 6 β(L)C(f)+C(x) .

Recall that C(f) 6 Cf (f) by lower semicontinuity and Cf (f) 6 Cf (x) from the optimal-

ity conditions. Therefore, the claim follows by replacing x with a system optimum f ∗.

Let us further note that it appears difficult to extend our main result to families of

latency functions that are not lower semicontinuous. Consider an instance consisting of

two nodes connected by arcs a and b (similar to the one depicted in Figure 3-5) with
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unit demand. Let the latencies be `a(fa) = 1 and

`b(fb) =





1
2

if 0 6 fb < 1
2
,

2
3
fb +

1
3

if 1
2

6 fb < 1,

4
3

if fb > 1.

The Beckmann user equilibrium f routes all demand along arc b for a total cost of 4/3.

Although a system optimum cannot be attained, it can be approximated by a flow that

routes 1/2 + ε along a and the rest along b. For ε → 0, the total cost goes to 3/4.

Since our previous definition of β(L) assumes that latencies are lower semicontinuous,

let us consider a more pessimistic notion, for which we can still show that an ana-

log of Theorem 3.10 does not hold. So let β(v, `)
def
= 1

v `(v−)
supx>0{x (`(v+) − `(x−))},

where `(x−) = limy↗x `(y). In the example, β(L) = sup`,v β(v, `) = 5/12. Hence,

(1− β(L))−1C(f ∗) = 12
7

3
4
= 9

7
< 4

3
= C(f). Consequently, Theorem 3.10 (or reasonable

extensions thereof) does not hold for discontinuous functions in general.

3.9 Discussion

While Wardrop (1952) had used the concept of user equilibrium to describe user behavior

in traffic networks, equilibria have been exploited in traffic management systems to

predict and in proposals for route guidance systems to prescribe user behavior (e.g.,

Prager 1954; Steenbrink 1974; Gartner et al. 1980; Boyce 1989). Yet, Nash equilibria

in generic games and user equilibria in particular are known to be inefficient, and many

experts have favored in principle the difficult-to-implement system optimum (Merchant

and Nemhauser 1978; Henry, Charbonnier, and Farges 1991), which guarantees that the

total travel time is minimal. The results presented in this chapter provide an a posteriori

justification for employing user equilibria in traffic assignment models. We have shown

for a broader class of network models than considered before that the expense of working

with user equilibria instead of system optima is limited. With more generality, as the

base of our proofs was Condition (3.3), our results hold for any model with separable costs
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for which the equilibria can be characterized by a variational inequality. In particular,

we have not made use of the network structure in the proofs related to the price of

anarchy.

Subsequent to our work, Karakostas and Kolliopoulos (2003) considered a model with

side constraints on the path flows, based on that of Maugeri (1994). The authors defined

an equilibrium with side constraints as the variational inequality (3.3) and, therefore,

their definition coincides with our Beckmann user equilibrium. Using different techniques

from those of this present work, they proved that the price of anarchy is 4/3 for the case

of linear separable latency functions and general side constraints for the flow on paths.

In actual fact, while we have confined the above presentation to side constraints on the

vector of arc flows, virtually all of our results apply to the more general case of convex

sets of path flows (X ⊆ � P ). The proofs would not change because the projection

of such a set into the space of arc flows is convex too and, therefore, the first-order

optimality conditions are still valid. As we mentioned before, we have chosen to define

constraints with respect to arc flows because, as they can be observed, they are more

relevant for practical applications. Moreover, bear in mind that in the more general

case of path flows, computing a Beckmann user equilibrium (or equivalently, solving the

variational inequality (3.3)) cannot be done in polynomial time.

Game-theoretic concepts offer an attractive way of computing approximate solutions

to certain hard problems. Although our model with side constraints may have multiple

equilibria and computing the best equilibrium is difficult, Theorem 3.10 implies that

a provably good user equilibrium can be computed in polynomial time. Subsequent

to our work, Anshelevich et al. (2003) approximated optimal solutions to a network

design problem that is NP-hard with the help of Nash and approximate Nash equilibria.

A related idea was used by Fotakis et al. (2002), Feldmann et al. (2003a), Lücking

et al. (2003), Gairing et al. (2003), and Gairing et al. (2004) to show that it is hard

to find the best and worst equilibrium of the telecommunication game of Koutsoupias

and Papadimitriou, described in Section 2.5. In addition, they showed that there exist

approximation algorithms for computing a Nash equilibrium with minimal or maximal

social cost.
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Let us finally remark that Roughgarden and Tardos (2004) generalized their traffic

model to nonatomic congestion games, for which all of their results still hold. This class

of games, first defined by Rosenthal (1973), generalizes traffic games by not considering

a network at all. Users are divided into player types (corresponding to the OD pairs),

and there is a set of elements (corresponding to the arcs) with cost functions that map

the congestion of the element to its cost (they correspond to the latency functions).

For each player type there is a strategy set, and each strategy is a subset of the basic

elements (corresponding to the paths). Finally, for each strategy and element, there is

a consumption rate, which represents how much of the element is used by players that

select the strategy (in our traffic game, all those rates are assumed to be one).

The results of this chapter can also be extended to these more general games in a

straightforward way. Consequently, their findings also hold when side constraints are

present (e.g., the elements of the ground set have capacities) and the cost functions

satisfy the weaker assumptions made in this chapter. Chau and Sim (2003) extended

the results concerning nonatomic congestion games by Roughgarden and Tardos to non-

separable and symmetric affine latencies. Non-separable means that latency functions

depend on the full vector of arc-flows; symmetric refers to the fact that the Jacobian

∇`(x) is symmetric (for details regarding these assumptions, see, for example, Mag-

nanti 1984). Under these assumptions, they showed that the price of anarchy is still

4/3 in the affine case, and a generalization of α(L) in the general case. Furthermore,

they incorporated elastic demands which is a common feature when the demand corre-

sponding to an OD pair is not fixed but is a function of the minimum latency between

the pair. Although equilibria do not have the same performance guarantee as before,

they derived a weaker general bound. Independently, Schulz and Stier-Moses (2004) also

considered elastic demands but under a different model. With their model, the price of

anarchy is equal to that in the inelastic case. Let us add that Johari (2004), considering

elastic demands as well, proved that the price of anarchy can be arbitrary bad for his

and Tsitsiklis’ traffic model (we briefly describe that model in Chapter 7).

As the assumption that latencies are symmetric is very restrictive for many applica-

tions, Perakis (2004) recently generalized the network model to the case of non-separable
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and asymmetric latency functions and fixed demand. For affine latency functions, the

price of anarchy increases with the degree of asymmetry of the function. In the general

nonlinear case, the mentioned bound is modified to account for changes in the Jacobian

matrix. We remark that because these results use a variational inequality formulation,

they are still valid if side constraints are included, a fact that can be verified similarly

to the argument used in this chapter.
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Chapter 4

An Efficient Route Guidance System

The design of route guidance systems faces a well-known dilemma. The approach that

theoretically yields the system-optimal traffic pattern may discriminate against some

users in favor of others. Proposed alternative models, however, do not directly ad-

dress the system perspective and may result in inferior performance. In Section 4.3,

we propose a novel model and, in Section 4.4, the corresponding algorithms to resolve

this dilemma. The essence of this model is that system-optimal routing of traffic flow

with explicit integration of user constraints leads to a better performance than the user

equilibrium, while simultaneously guaranteeing superior fairness compared to the pure

system optimum. The algorithm is based on a method called Partan, which is a re-

vised version of the Frank-Wolfe algorithm. Section 4.5 presents computational results

on real-world instances and compare the new approach with the well-established traffic

assignment model. Many of the real-world instances that we use were kindly provided

by DaimlerChrysler AG, Berlin. Additional instances were retrieved from an online li-

brary called Transportation Network Test Problems (Bar-Gera 2002). Later, Chapter 5

complements this one by analyzing the route guidance system from a theoretical point

of view.

This chapter is based on a research article by Jahn, Möhring, Schulz, and Stier-

Moses (2004).
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4.1 Route Guidance Systems

Route guidance and information systems, collectively called Intelligent Transportation

Systems, are designed to assist drivers in making route decisions. Such devices can

provide information (e.g., conditions drivers are likely to experience) or give recommen-

dations (e.g., “leave the highway at the next exit and turn right”). We will concentrate

on in-vehicle route guidance devices that provide recommendations to drivers. Drivers

enter their destinations at the beginning of the trip, and the system computes routes

based on digital maps, up-to-date traffic data and current vehicle positions determined

with the help of the Global Positioning System1 (Henry, Charbonnier, and Farges 1991).

These devices normally use visual and acoustic indicators to aid drivers in following

the proposed route. Currently, many cars are already equipped with simple versions

of these devices, and with prices going down many more are likely to have one in the

not-so-distant future. For that reason, it is widely hoped that route guidance systems

can help to alleviate the congestion caused by the still increasing amount of road traffic.

Even small improvements can have a significant impact.

Several kinds of in-car navigation systems have been proposed. The simplest devices

perform static guidance (Bottom 2000); i.e., they work with information that is infre-

quently updated. The vast majority of the in-car guidance consoles deployed today are of

this type. Their main goal is to provide information to drivers who do not know the area

well. From an algorithmic point of view, they are straightforward: they only compute

shortest paths (or approximations thereof) to the destinations with respect to travel

time, geographic distance, or other appropriate measures. Computational challenges for

these approaches arise “solely” from the huge size of the underlying road networks (Yang

et al. 1991; Chou, Romeijn, and Smith 1998).

More sophisticated route guidance systems make use of information on current con-

ditions in the traffic network. To implement this, one-way—or even better, two-way—

communication with a traffic control center must be available. With one-way commu-

1The Global Positioning System (GPS) is used to determine the location of the vehicle. A receiver
listens to signals generated by satellites, computes angles, and finally performs a triangulation to find
its latitude and longitude.
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nication, current road conditions are determined through sensors placed in the network

and then broadcasted to users, who can use the information to compute realistic short-

est paths to their destinations. With bidirectional communication equipment, the traffic

control center would receive users’ current positions and destinations, allowing it to per-

form some kind of traffic assignment (not necessarily a user equilibrium). Finally, routes

in the assignment are randomly assigned to real drivers and transmitted back to the

route guidance devices.

The knowledge of the current conditions is the basis of reactive guidance systems

(Papageorgiou 1990; Friesz et al. 1993; Ben-Akiva, de Palma, and Kaysi 1996). In other

words, the recommendation provided to drivers at any given time is based on a snapshot

of the traffic at that time. One of the advantages of reactive guidance is that it can

respond quickly to demand changes or incidents because no predictions are used.

The most advanced approach, called anticipatory guidance, predicts future demands

and traffic conditions and gives recommendations accordingly (e.g., Kaufman, Smith,

and Wunderlich 1991; Chen and Underwood 1991; Kaysi, Ben-Akiva, and Koutsopou-

los 1993; Ben-Akiva, Cascetta, and Gunn 1995). The issue is how future conditions

should be predicted. When market penetration is low, guidance systems can basically

ignore their own effect. On the other extreme, when most users are guided and they

comply with the guidance, reality is likely to be as predicted. Between the two extremes,

the situation is more delicate. These route guidance systems must predict how users

will behave (e.g., follow the recommendation or not) to guide traffic in a way that is

consistent with the predictions (see Bottom 2000 and the references therein). Otherwise,

guidance can fail to achieve the desired objective because recommendations were given

making assumptions concerning the future that may not materialize.

According to Bottom (2000), there is no consensus in the community on which of

the latter two approaches—reactive or anticipatory—should be used in practice. For the

present thesis, we adopt reactive guidance because it is conceptually simpler.

Regardless of the source of network data, route guidance devices still have to com-

pute concrete routes to propose to users. Several systems compute shortest paths, the

k shortest paths for some properly chosen parameter k, or Pareto-optimal paths (when
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multiple criteria are considered simultaneously). Some systems perform these computa-

tions online while others perform them in a preprocessing step. In addition, most current

route guidance systems implement both user and system optimality, although the bias

has always been towards user-optimal traffic patterns (e.g., Mahmassani et al. 1994;

Ben-Akiva et al. 1997; Dynasmart 2002). Although system optimality is included in

such systems for computing good upper bounds on traffic efficiency, it is not accepted

as a realistic option for actual guidance (Mahmassani and Peeta 1993). Indeed, it is

well-known that under system-optimal traffic patterns some users may end up traveling

longer to allow the system to achieve global efficiency. Of course, it is not likely that

many users accept recommendations that are too inefficient with respect to their per-

sonal optimal choices. We measure the detriment for users as the ratio of the latency of

the recommended path to that of the shortest possible path the user could have taken.

This concept, called unfairness, will play a central role in this chapter and those to come.

Merchant and Nemhauser (1978) recognized that the assumptions of the traffic as-

signment problem are unrealistic and proposed to consider a dynamic model. Since then,

there has been significant effort towards the dynamic analysis of traffic networks (see,

e.g., Ben-Akiva 1985; Friesz 1985; Mahmassani and Peeta 1995; Peeta and Ziliaskopou-

los 2001 and the references therein). Unlike static traffic assignment, where models and

solution methods are well established, the dynamic traffic assignment problem has been

studied from several different perspectives with no single generally accepted model or

methodology. We refer the reader to the articles by Mahmassani and Peeta (1995) and

Peeta and Ziliaskopoulos (2001), which provide a discussion of the inherent difficulties

and corresponding solution attempts.

As an example, let us mention that DynaMIT (2002), a simulation-based real-time

system to provide travel information, computes k shortest paths beforehand with respect

to several static latency functions. Among other measures, it considers free flow travel

times, peak-period travel times, geographic lengths, and the number of signalized inter-

sections. Then, performing traffic simulation, it computes the dynamic user equilibrium

in which users are restricted to taking only those paths.

For a more comprehensive discussion concerning route guidance and its history, we
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refer the interested reader to the Ph.D. theses by Kaysi (1992), Peeta (1994), and Bot-

tom (2000).

4.2 A Different Approach

None of the existing or proposed guidance systems takes directly into account the ef-

ficiency of the solution they propose (with the exception of system-optimal solutions,

which are not implementable because of their unfairness). Thus, the need for inte-

grated algorithms that actually pay attention to the system-wide performance has been

recognized (Henry, Charbonnier, and Farges 1991; Beccaria and Bolelli 1991; Kaysi,

Ben-Akiva, and de Palma 1995).2

As mentioned earlier, the most popular approach is to route drivers according to a

user equilibrium. In that way, drivers are routed along their respective lowest-latency

paths so there are no paths they would prefer to the ones they are given. While a user

equilibrium should satisfy the drivers, as we have seen in Chapters 2 and 3, it does not

necessarily minimize the total latency in the system. Another unfavorable property of

the user equilibrium is its non-monotonicity with respect to the network’s capacity. This

is illustrated by the Braess paradox, described in Section 2.4.2.

From a global perspective, e.g., the traffic authority’s point of view, it is certainly

desirable to explicitly minimize the total travel time by computing a system optimum. In

particular, the existing road network could then carry more traffic (Lafortune et al. 1991;

Ferris and Ruszczyński 1997). Yet, users’ needs have to be taken into account: directly

implemented, this policy could route some drivers on unacceptably long paths in order

to use shorter paths for many other drivers. In fact, the length of a route in the system

optimum can be higher than in user equilibrium, even in the simplistic case of a single

OD pair (Roughgarden 2002). This is critical because routes can only be recommended

to drivers. It is reasonable to assume that only very few of them would be willing to

2Not all agree with this idea. For instance, Hall (1996) says that “The suggestion is that ATIS
[Advanced Traveler Information Systems] should not be viewed as a strategy for achieving system
optimal traffic distributions. ATIS should instead be viewed first as a service to the public, to improve
their confidence and comfort in using the system, and second as a means for steering traffic away from
dis-equilibrium behavior and toward user optima that utilize alternate routes where feasible.”
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sacrifice their own short routes for the benefit of the “community.” On the other hand,

user acceptance of a route guidance system is important if it is supposed to help in

reducing traffic congestion. Therefore, Beccaria and Bolelli (1991) have suggested to:

find the route guidance strategy which minimizes some global and community

criteria with individual needs as constraints.

We adopt a system optimum approach but honor the individual needs by imposing

additional constraints to ensure that drivers are assigned to “acceptable” paths only.

Note that these constraints are totally different from those analyzed in Chapter 3, this

chapter’s constraints are used to determine if a path that a user could take would be a

valid option or not. More precisely, we introduce the concept of the normal length of

a path, which can be either its traversal time in the uncongested network, its traversal

time in user equilibrium,3 its geographic distance, or any other appropriate measure.

The only condition imposed on the normal length of a path is that it may not depend

on the actual flow on the path. Equipped with this definition, we look for a constrained

system optimum in which no path carrying positive flow between a certain OD pair

is allowed to exceed the normal length of a shortest path between the same OD pair

by more than a tolerable factor. By doing so, we achieve our primary goal of finding

solutions that are fair and efficient at the same time.

The novelty of our approach consists in defining a constrained system optimum with

the “right” set of allowable paths. We demonstrate that this model leads to a signifi-

cantly better utilization of a traffic network than the standard traffic assignment (user

equilibrium) and still guarantees fairness similar to that in the user equilibrium. To

the best of our knowledge, no other work introduces a constrained system optimum ap-

proach that guarantees fairness comparable to that of the ordinary traffic assignment.

While we study the method from a computational perspective in this chapter, Chapter 5

analyzes this idea theoretically and provides estimates of the efficiency gain when us-

ing constrained system optima instead of user equilibria. In addition, the next chapter

presents theoretical results on the fairness of constrained system optima.

3Throughout this chapter, we consider the user equilibrium without side constraints, as it was
introduced in Chapter 2.
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4.3 The Route Guidance Model

We consider a model of reactive route guidance that allows us to work with static

flows. While not considering dynamic flows may preclude the direct application to

real-world situations, our approach can provide traffic planners with bounds on the

total travel time that are more accurate (compared to the ordinary system optimum).

Moreover, Sheffi (1985) points out that there are times when traffic exhibits steady-state

behavior; e.g., during rush hours. If nothing else, this research is a first step in explicitly

incorporating system-wide effects into route guidance systems.

We assume that all drivers use the route guidance system and that they actually

follow the recommended routes. Admittedly, this assumption is relatively strong, but

this should be considered a first step. Future research will explore the design of consistent

route guidance systems that optimize efficiency without comprising user acceptance. One

way to model a non-perfect market penetration is by considering two classes of users.

Some users have access to route guidance devices and follow the recommendations, while

the remaining users act selfishly. In this extension, a central question is that of creating

a traffic pattern for the guided users that is fair and minimizes the total travel time (for

all users, including those without guidance). Along this direction, Roughgarden (2004c)

studied how to compute an optimal strategy in a network consisting of a set of parallel

links.

In addition to the features of the standard model described in Chapter 2, we consider

that arcs in the network have an extra attribute. Each arc a ∈ A has a normal length

τa > 0 that serves as an a priori estimate for its traversal time in the solution we seek. τa

Normal lengths can be chosen to be any metric for the arcs that is fixed in advance.

However, their proper choice will allow us to produce solutions with desirable features;

we refer the reader to Section 4.5 for details. For a given path P ∈ P , its normal length

is τP
def
=
∑

a∈P τa . τP

We assess the quality of a particular traffic assignment using two criteria. The total

travel time in the system matters to the traffic authority while its (un)fairness is of

direct importance to users. We have already introduced the former in Chapter 2; let us
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now discuss the latter.

4.3.1 Measures of Unfairness

Without any centralized control, we would expect flow to be similar to a user equilibrium.

Such a flow is well-known to be “fair” in the sense that users between the same OD pair

encounter the same delay. However, as we have seen in Chapter 2, a user equilibrium

does in general not minimize the total travel time in the system. Our goal is to select

more efficient traffic patterns without loosing the fairness property. To make this more

precise, let us introduce several notions of unfairness of a solution. For a given flow, we

define the unfairness of a particular traveler as follows:

Loaded unfairness ratio of her experienced travel time to the experienced travel time

of the fastest traveler for the same OD pair, where “experienced travel time” means

travel time measured in terms of the current congestion level.

Normal unfairness ratio of the length of her path to the length of the shortest path

for the same OD pair, both measured with respect to normal arc lengths.

User equilibrium (UE) unfairness ratio of her experienced travel time to the travel

time for the same OD pair in a user equilibrium (which is the same for all users of

that OD pair).

Free flow unfairness ratio of her experienced travel time to the length of the fastest

path for the same OD pair with respect to free flow travel times.

The respective notion of unfairness for a particular flow is the maximum over all

OD pairs of the maximum unfairness of a traveler between that OD pair. More formally,

for a given flow x and an equilibrium flow f ,

unfairness

Loaded unfairness(x)
def
= max{`Q(x)/`R(x) : Q,R ∈ Pk, xQ, xR > 0, k ∈ K},

Normal unfairness(x)
def
= max{τQ/τR : Q,R ∈ Pk, xQ > 0, k ∈ K},

UE unfairness(x)
def
= max{`Q(x)/`R(f) : Q,R ∈ Pk, xQ > 0, fR > 0, k ∈ K},
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Free flow unfairness(x)
def
= max{`Q(x)/`R(0) : Q,R ∈ Pk, xQ > 0, k ∈ K}.

The notions of loaded and normal unfairness are similar. Both compare, using different

metrics, the travel times of users to the shortest travel times they could have had. The

UE unfairness, introduced by Roughgarden (2002) in the single-commodity context, in-

dicates how the travel times of the solution relate to those in user equilibrium. However,

drivers typically do not know the travel times in equilibrium; it is arguably more impor-

tant to them how their travel times compare to the actual travel times of others. The

free flow unfairness measures the degradation of performance that users experience due

to the prevalence of congestion effects. Note that the normal unfairness and the loaded

unfairness are always greater than or equal to 1, while the UE unfairness and the free

flow unfairness can be any nonnegative number.

4.3.2 Problem Formulation

As it is difficult to directly control the loaded unfairness, we will instead impose an

upper bound on the normal unfairness and show that by doing so the other notions of

unfairness will be small as well. In particular, we consider solutions for which the normal

length of any used path between OD pair k is not much greater than that of a shortest

sk-tk-path (with respect to normal lengths), for all k ∈ K. More specifically, we fix a

tolerance factor ϕ > 1 and restrict the normal unfairness to be smaller than ϕ. In other ϕ

words, a path P ∈ Pk is feasible if τP 6 ϕTk. Here, Tk
def
= minP∈Pk

τP is the normal Tk

length of a shortest path between sk and tk. If we let Pϕ
k denote the set of all feasible Pϕ

k

paths for OD pair k, we can define the entire set of feasible paths as Pϕ def
=
⋃

k∈K P
ϕ
k . Pϕ

Because route guidance systems eventually have to propose paths to the drivers, our

formulation is path-based: there is a decision variable xP for each path P ∈ Pϕ. In fact,

it is virtually impossible to model the restriction to feasible paths with the help of a

formulation based on arc variables only. Moreover, even if one were (somehow) given an

arc flow that has a decomposition into feasible paths, it is NP-hard to compute such a

decomposition (Corollary 6.4). In contrast, user equilibria and ordinary system optima
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can be computed using arc-based formulations; any flow decomposition results in path

flows with the desired property.

The constrained system optimum that we propose to use in route guidance systemsCSO

is an optimal solution to the following min-cost multicommodity flow problem with

separable objective function and path constraints:

Problem CSO:

min C(x) (4.1a)

s.t.
∑

P∈Pϕ
k

xP = dk k ∈ K, (4.1b)

xP > 0 P ∈ Pϕ . (4.1c)

In order to guarantee that this problem has a unique solution, we will assume

throughout this and the following chapter that `(x)x is convex (i.e., ` is s-convex) for

all ` ∈ L. Note that the flow variables are not required to be integral since they de-

scribe abstract flow rates. If paths were not restricted to be feasible (i.e., in Pϕ), an

optimal solution to this formulation would coincide with an ordinary system optimum.

We denote by CSOϕ an optimal solution to the problem with tolerance factor ϕ.CSOϕ

Figure 4-1 demonstrates the effect of path constraints on the system optimum. One

commodity is routed through the road network between two clearly marked terminals.

In the picture on the left, we display the (unconstrained) system optimum. The flow is

distributed widely over the network in order to avoid high arc flows, which would incur

high arc travel times. In the picture on the right, the same demand is routed, but this

time with the restriction that the normal length of any used path is at most 10% longer

than that of the shortest path (i.e., ϕ = 1.1). In this example, the normal length has

been chosen to be the geographic distance. Line thickness reflects arc capacity (light

gray) and arc usage (black), respectively.

Before we discuss the computational complexity of Problem CSO and algorithms

to find a constrained system optimum, let us emphasize that this model is different

from traffic assignment formulations with side constraints that we introduced in Chap-

ter 3. As pointed out before, the most commonly considered type of side constraints

are explicit bounds on arc flows. Nonetheless, such constraints cannot be used to render
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Figure 4-1: System optimum without and with restrictions on the normal length of
paths, resp.

certain paths infeasible, as we have argued earlier. Still, path-based multicommodity

flow models similar to ours with explicit constraints on the set of allowable paths are

frequently used in other application areas. A recent example is the work by Holmberg

and Yuan (2003), who study routing problems in telecommunication networks and solve

the resulting models by column generation. However, nobody has tried to capture as-

pects of system optimality and user fairness in a network with congestion effects, as we

do.

4.4 Algorithms and Complexity

To solve Problem CSO, we use a variant of the convex combination algorithm of Frank

and Wolfe (1956). As it is well-known that the standard Frank-Wolfe algorithm some-

times shows poor convergence (see, e.g., Sheffi 1985; Patriksson 1994; Florian and

Hearn 1995), we consider an improved version called Partan that was proposed by

LeBlanc, Helgason, and Boyce (1985) and further studied by Florian, Guélat, and

Spiess (1987) and Arezki and Van Vliet (1990), among others. As we cannot explic-

itly work with all variables xP associated with paths P ∈ Pϕ, because there may be

exponentially many, we only generate them when needed. For that reason, our algo-

rithm can be considered to be a column generation method. The application of column

generation to the computation of system optima and user equilibria was first studied by
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Gibert (1968) and Leventhal, Nemhauser, and Trotter (1973).

For the sake of completeness, let us briefly describe the Frank-Wolfe method.4 In

every iteration, and starting from a current solution, the algorithm solves a linearized

version of Problem CSO to determine a feasible descent direction. As the linearization

permits the decomposition of the problem by commodities, it is enough to call a sub-

routine for finding a shortest path in Pϕ
k for each commodity k ∈ K. In the subsequent

line search, the original nonlinear problem is solved restricted to the line defined by

the feasible direction of descent. The algorithm terminates when a certain precision is

achieved. To determine when this is the case, the convexity of the objective function is

used to derive a lower bound on the value of an optimal solution. It is well known that

this algorithm always converges to a global minimum (for convex programs). Partan is

based on the same idea, but it performs a more intelligent line search. It determines the

descent direction using the results of two consecutive iterations, thereby diminishing the

zigzagging effect.

The sub-step of computing a shortest path in Pϕ
k is precisely the so-called constrained

shortest path problem; see Section 4.4.1 below. The only difference between the algorithm

we just described and the version of Frank-Wolfe (or Partan) employed for computing

user equilibria or system optima is the use of constrained shortest paths instead of

regular shortest paths in the solution of the linear subproblems.

Note that other methods like partial linearization algorithms or simplicial decompo-

sition can also be adapted to our problem. Since we want to make the point that con-

strained system optima are useful, it was not necessary to implement potentially more

efficient algorithms as we can solve relatively large instances within acceptable time

limits by using Partan. As others concluded before, for our purpose “. . . the [Frank-

Wolfe] algorithm is considered sufficiently good for practical use” (Patriksson 1994,

p. 100). Nevertheless, if one wants to deploy these ideas in a real-time setting, more

careful and efficient implementations are needed. We refer the reader to the books by

Sheffi (1985), Nagurney (1993), and Patriksson (1994) as well as the chapter by Florian

4Jahn, Möhring, Schulz, and Stier-Moses (2002) provided an in-depth description of the implemented
algorithms.
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and Hearn (1995) for comprehensive overviews of these and many other algorithms.

4.4.1 The Constrained Shortest Path Problem

Let us sketch how the computation of constrained shortest paths—the pricing component

of our column generation approach—is carried out. In this subproblem, every arc a ∈ A

has two parameters, a traversal time `a and a length τa. Given an origin-destination

pair (s, t), the objective is to compute a quickest path from s to t whose length does not

exceed a given bound T . That is, one wants to solve the following problem:

min{`P : P is a path from s to t such that τP 6 T},

where `P
def
=
∑

a∈P `a and τP
def
=
∑

a∈P τa . This problem is NP-hard (Garey and John-

son 1979).

For solving this problem, Aneja and Nair (1978) proposed to use Lagrangian relax-

ation; Ribeiro and Minoux (1986) added a branch-and-bound scheme. Aneja, Aggarwal,

and Nair (1983) extended Dijkstra’s algorithm to the case of two objective functions,

and Climaco and Martins (1982) used path ranking.

Because of its superior computational efficiency, we implemented the label correcting

algorithm of Aneja et al. (1983).5 The algorithm fans out from the start node s and

labels each reached node v ∈ N with labels of the form (d`(v), dτ (v)). For each path

from s to v that has been detected so far, d`(v) represents its traversal time and dτ (v)

its distance. During the course of the algorithm, several labels may have to be stored

for each node v, namely the Pareto-optimal labels of all paths that have reached it.

This labeling algorithm can be interpreted as a special kind of branch-and-bound with

a search strategy similar to breadth-first search. Starting from a certain label of v,

one obtains lower bounds for the remaining paths from v to t by separately computing

ordinary shortest path distances from v to t with respect to travel times `a and lengths τa,

5Another promising approach has recently been suggested by Mehlhorn and Ziegelmann (2000). It
is based on the Lagrangian relaxation of the dual of an integer linear programming formulation of the
constrained shortest path problem.
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respectively. If one of these bounds is too large, the label can be dismissed.

4.4.2 Computational Complexity of Computing a Constrained

System Optimum

For the sake of completeness, let us also quickly discuss the computational complexity

of Problem CSO. Note that it includes as a special case the situation in which all

link performance functions are constant; i.e., `a(xa) = `a for all a ∈ A. Moreover,

the set of feasible paths is only given implicitly. Hence, the input dimension is |A| +
|K|. As computing a constrained shortest path is an NP-hard problem (Garey and

Johnson 1979), it is not hard to see that Problem CSO is also NP-hard, even for |K| = 1.

4.5 Computational Study

The computational study is divided into three parts. First, we discuss which normal

length should be used in practice. Next, we analyze efficiency vs. fairness of solutions

for instances that arise from real-world networks. Finally, we briefly report on the

performance of the algorithm itself.

The seven instances we used in this study come from two different sources. Four

of them represent different parts of the actual road network of the city of Berlin, Ger-

many, and were provided by DaimlerChrysler AG. Their demand rates stem from origin-

destination polls conducted in Berlin. The other three come from the Transportation

Network Test Problems website (Bar-Gera 2002). Table 4.1 shows the specifics of each

instance. Instances are listed in increasing order of the product of the number of arcs

and the number of commodities. This measure of complexity has been used in the liter-

ature (e.g., Holmberg and Yuan 2003), and it indeed corresponds to the ordering with

respect to solution times. Instances range from rather small ones, which were included

because they are standard in the literature, to fairly large ones.

The algorithm described in Section 4.4 was implemented in C++ using the GCC

compiler under Linux; the computing platform was a Pentium IV based computer run-
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Table 4.1: Problem instances used in the computational study

Instance Name Short Name Source |N | |A| |K| |A| · |K|
Sioux Falls SF TNTP 24 76 528 40K
Friedrichshain F DC 224 523 506 265K
Winnipeg W TNTP 1,067 2,975 4,344 13M
Neukölln N DC 1,890 4,040 3,166 13M
Mitte, Prenzlauerberg

& Friedrichshain MPF DC 975 2,184 9,801 21M
Chicago Sketch CS TNTP 933 2,950 83,113 245M
Berlin B DC 12,100 19,570 49,689 972M

ning at 2.4 GHz with 1 GB RAM.

4.5.1 Choice of Normal Length

We initially considered three possible ways to define the normal length of an arc: geo-

graphic distances, free flow travel times, and travel times when the network is in user

equilibrium. Recall that normal lengths can only be static; for instance, it is not possible

to consider travel times under the current solution with the methodology described in

this dissertation. The advantage of keeping the model simple is a fast algorithm that

still produces solutions with small total travel time and low unfairness. It is important

to remark that users do not need to know the normal lengths; they are just an artifact

of our algorithm to select solutions that are approximately fair.

Geographic distances and free flow travel times are highly correlated; therefore, one

cannot expect significant differences between solutions resulting from choosing either

one as the normal length. For free flow travel times, our runs establish that the total

travel time of user equilibria is smaller than that of constrained system optima when

the factor ϕ is too small, in agreement with the conclusions to be derived theoretically

in Chapter 5. Consequently, to obtain an improvement in the total travel time, bigger

factors must be considered. However, this gives rise to relatively high unfairness, which

is undesired. As an example, consider instance Neukölln. The graph on the left in

Figure 4-2 shows the value of the objective function for different tolerance factors ϕ, for
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Figure 4-2: Objective values and unfairness distributions for instance Neukölln and nor-
mal lengths equal to free flow travel times

the user equilibrium (UE), and for the system optimum (SO). Factors smaller than 1.4

are not helpful because the total travel time of the corresponding solutions is greater

than the total travel time in user equilibrium. The other two graphs in Figure 4-2 depict

the distribution of unfairness across users for varying tolerance factors; for instance, for

factor ϕ = 1.5, 80% of all users will experience a loaded unfairness of less than 1.1. This

value increases to 1.2 if one considers 90% of all users. For factors greater than 1.5,

the distributions are quite similar to that of the system optimum. In the graph on the

right, note that for small tolerance factors most users end up traveling longer than they

would in user equilibrium. This happens because there are not enough alternative paths

between any one OD pair, which explains the poor quality of the solutions under this

choice of normal length.

We therefore propose to make use of the travel times in user equilibrium when defining

normal arc lengths, which results in high-quality solutions. Indeed, for any factor ϕ, the

user equilibrium itself is a feasible solution to the constrained system optimum problem.

Therefore, for all ϕ > 1,

C(CSOϕ) 6 C(UE),

which guarantees that the optimal solution to Problem CSO is never worse than the user

equilibrium in terms of the total travel time in the system. The advantage of this normal

length definition is that it is flow-dependent; it provides a better indication which paths

should be selected. Let us repeat that users do not need to know the user equilibrium;

it is just an ingredient for the computation of the constrained system optimum.
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Figure 4-3: Objective values and unfairness distributions for instance Neukölln and nor-
mal lengths equal to travel times in user equilibrium

Figure 4-3 displays graphs similar to the ones in Figure 4-2 for this choice of normal

length. Most notably, total travel times are distinctively smaller than in equilibrium,

while the fraction of users traveling longer than in equilibrium is substantially smaller.

We therefore limit our analysis in the sequel to this version of normal length; that is, we

assume user equilibrium travel times are used to define normal lengths.

4.5.2 Quality of Constrained System Optima

Tables 4.2 and 4.3 exhibit the output of the algorithm for the instances presented in

Table 4.1 and varying tolerance factors. Every row represents one run for the factor

reported in the first column. The column objective value is the total travel time of the

solution; the column number of paths contains the number of paths with positive flow,

which is an indication of the complexity of the solution. In addition, the tables include

the 99th percentiles of the different unfairness distributions, the number of iterations

(one iteration consists of solving the linearized problem and performing the line search;

see Section 4.4), and the time (in seconds) needed to reach the target optimality gap of

0.5%.

For example, the third row for instance Friedrichshain portrays the attributes of the

constrained system optimum with tolerance factor ϕ = 1.02. The total travel time is

621, and the users between the 506 different OD pairs are assigned to 1, 290 different

paths. The actual travel time for 99% of all users is not more than 65.7% than that of the

fastest route between their OD pair. Compared to the user equilibrium, their individual
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travel times are at most 11.7% higher. Note that the corresponding quantities for the

system optimum are 106.3% and 25%, respectively.

Before we interpret the computational results, let us call attention to an apparent

anomaly in the rows of Tables 4.2 and 4.3 that correspond to user equilibria. In theory,

the normal unfairness, the loaded unfairness, and the UE unfairness should be equal to 1;

however, in practice they are obviously not. The reason is that each user equilibrium

is computed as the optimal solution of an appropriately defined convex optimization

problem as per Beckmann, McGuire, and Winsten (1956). As the algorithm terminates

as soon as the value of the current solution is within 0.5% of that of an optimal solution,

the solution reported here is merely an approximate user equilibrium. In some sense,

the normal unfairness, the loaded unfairness, and the UE unfairness give information

about its actual deviation from a user equilibrium. Incidentally, in the derivation of the

normal arc lengths, we computed the user equilibrium with higher precision, namely a

target optimality gap of 0.01% instead of 0.5%. This explains why the 99th percentiles

of normal unfairness, loaded unfairness, and UE unfairness of the user equilibrium are

not necessarily equal to one another.

Clearly, the larger the tolerance factor ϕ the closer is the objective function value of

an associated constrained system optimum to that of the unconstrained system optimum,

and the higher is its unfairness. On the other hand, smaller tolerance factors lead to

“fairer” solutions but also result in larger gaps of the total travel time compared to

the unconstrained system optimum. However, we will argue that a carefully chosen

tolerance factor strikes a good balance between these two conflicting effects. For the

sake of argument, let us consider instance Neukölln with ϕ = 1.02.

The gap between the total travel time of CSO1.02 and that of the system optimum is

about a third of the gap between the user equilibrium and the system optimum. In fact,

the travel time of the system optimum is 2, 653 compared to 2, 903 in user equilibrium

and 2, 732 for CSO1.02 . Moreover, the travel time of 99% of all users in CSO1.02 is

at most 30.4% higher than that of any other traveler (between the same terminals),

compared to 55.5% in the system optimum. In other words, the reduction of unfairness

amounts roughly to 45%. The numbers are similar for most of the other instances.
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Table 4.2: Constrained system optima with different tolerance factors, Part I

factor total paths 99th unfairness percentile itera- runtime
latency normal loaded UE free flow tions (sec.)

Sioux Falls

UE 7448 989 1.001 1.040 1.031 5.098 31 0
1.01 7263 749 1.001 1.282 1.187 4.908 27 0
1.02 7256 754 1.001 1.258 1.184 4.901 38 0
1.03 7251 758 1.001 1.265 1.195 4.789 34 0
1.05 7239 812 1.035 1.290 1.210 4.749 32 0
1.10 7216 893 1.060 1.283 1.178 4.712 56 0
1.20 7207 984 1.078 1.295 1.168 4.573 46 0
1.30 7201 1129 1.092 1.296 1.170 4.598 64 0
SO 7199 1326 1.092 1.295 1.169 4.599 78 0

Friedrichshain

UE 682 1713 1.011 1.036 1.062 4.382 27 0
1.01 628 1283 1.008 1.657 1.087 4.163 45 1
1.02 621 1290 1.017 1.652 1.117 4.132 30 1
1.03 613 1515 1.029 1.711 1.094 4.124 42 1
1.05 612 1594 1.046 1.733 1.092 4.130 43 1
1.10 594 1598 1.096 1.929 1.109 3.565 40 1
1.20 591 2080 1.170 2.060 1.177 3.932 74 1
1.30 591 2251 1.213 2.058 1.229 3.948 59 1
SO 591 2631 1.213 2.063 1.250 3.947 63 1

Winnipeg

UE 857 14633 1.029 1.050 1.047 1.503 16 7
1.01 844 10224 1.009 1.119 1.027 1.429 15 8
1.02 842 11901 1.017 1.123 1.019 1.402 16 8
1.03 842 13123 1.027 1.142 1.027 1.389 18 8
1.05 842 15374 1.043 1.164 1.044 1.409 23 10
1.10 841 17846 1.068 1.192 1.054 1.411 30 12
1.20 841 18619 1.075 1.203 1.058 1.429 33 13
1.30 841 18755 1.078 1.210 1.068 1.458 30 12
SO 841 19331 1.076 1.211 1.066 1.449 33 14

Neukölln

UE 2903 6744 1.025 1.063 1.053 3.806 21 17
1.01 2794 4380 1.008 1.332 1.084 3.182 15 7
1.02 2732 4700 1.015 1.304 1.072 3.054 17 8
1.03 2721 5665 1.028 1.420 1.070 3.079 18 8
1.05 2690 6427 1.045 1.450 1.099 2.987 22 10
1.10 2672 8755 1.091 1.493 1.125 2.944 47 17
1.20 2653 10018 1.168 1.527 1.179 2.292 54 17
1.30 2653 7983 1.183 1.539 1.193 2.327 48 15
SO 2653 8631 1.187 1.555 1.197 2.335 58 48
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Table 4.3: Constrained system optima with different tolerance factors, Part II

factor total paths 99th unfairness percentile itera- runtime
latency normal loaded UE free flow tions (sec.)

Mitte, Prenzlauerberg & Friedrichshain

UE 1845 28091 1.015 1.040 1.032 2.236 16 9
1.01 1771 32476 1.008 1.304 1.051 2.086 25 30
1.02 1762 34618 1.017 1.291 1.045 1.993 25 30
1.03 1755 35392 1.026 1.303 1.045 2.008 24 27
1.05 1733 39320 1.046 1.358 1.060 1.808 26 22
1.10 1727 48968 1.086 1.451 1.083 1.881 29 14
1.20 1726 56687 1.122 1.478 1.122 1.918 37 17
1.30 1726 56304 1.123 1.477 1.124 1.910 35 15
SO 1726 64431 1.127 1.471 1.126 1.921 40 24

Chicago Sketch

UE 18383 194564 1.017 1.039 1.046 1.592 9 46
1.01 18123 119696 1.007 1.101 1.052 1.543 4 27
1.02 18047 155800 1.016 1.123 1.047 1.509 8 46
1.03 18016 192152 1.025 1.148 1.044 1.492 11 57
1.05 17993 242188 1.043 1.193 1.055 1.499 14 69
1.10 17971 289999 1.072 1.211 1.074 1.504 19 89
1.20 17970 334364 1.081 1.227 1.090 1.496 25 118
1.30 17976 344830 1.085 1.224 1.092 1.498 24 118
SO 17981 331146 1.087 1.238 1.093 1.496 25 117

Berlin

UE 16223 150922 1.038 1.057 1.058 2.400 15 1584
1.01 16254 98271 1.008 1.135 1.906 3.191 9 904
1.02 15806 142944 1.018 1.214 1.112 2.181 14 1274
1.03 15671 171452 1.028 1.247 1.066 2.058 19 1626
1.05 15632 216328 1.045 1.270 1.060 2.003 29 2247
1.10 15587 257707 1.084 1.333 1.083 2.000 39 2689
1.20 15572 295138 1.126 1.372 1.120 2.016 49 3614
1.30 15565 307050 1.137 1.398 1.128 2.022 52 4184
SO 15544 322687 1.148 1.438 1.135 2.066 56 5512
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Figures 4-4 and 4-5 depict the complete unfairness distributions for all instances.

Let us again pick Neukölln to highlight typical effects. In CSO1.02 , the travel time of

just 4.5% of all users is more than 10% than that of the fastest paths of their OD pairs.

In contrast, this number is 15.3% for the ordinary system optimum; i.e., one sixth of

all drivers experience delays that are significantly above and beyond that of their fellow

drivers. Moreover, most users (around 80%) spend less time on the road than they would

in equilibrium. Actually, for factor 1.02, only 0.3% of the users travel 10% more than

in equilibrium. Compare this number to the 4.6% that travel at least 10% longer under

the system optimum.

To facilitate a comparison of the characteristics of constrained system optima with

different tolerance factors, Figures 4-6 to 4-12 plot various percentiles of the different

notions of unfairness. The two diagrams on top of each figure represent the 95th and

99th percentile, respectively, of the four notions of unfairness. The four remaining graphs

correspond to each unfairness definition and show the 95th, 97.5th and 99th percentiles,

respectively.

Let us draw attention to some typical effects, and we will once again use instance

Neukölln when we need to mention concrete numbers. We first compare the travel

times of users in any of the computed route guidance solutions to the length of their

shortest paths in the uncongested network (free flow unfairness). It is remarkable that for

virtually all tolerance factors in our study, the increase of travel time due to congestion

effects is significantly smaller than the corresponding increase in the (approximate) user

equilibrium. For example, for Neukölln and the 99th percentile, the free flow unfairness

for all constrained system optima is about 3 or lower, while the free flow unfairness of the

user equilibrium is 3.8. The significance of this observation is only reinforced by the fact

that at equilibrium all users between the same OD pair experience the same delay, while

this is not necessarily the case in a constrained system optimum. The second important

observation to be made is the strong correlation between the loaded unfairness and the

normal unfairness, which is illustrated by the two diagrams in the middle of each figure.

Bounding the normal unfairness (a static measure) results in bounded loaded unfairness

(a dynamic measure), which explains why our approach is successful.
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Figure 4-4: Unfairness distributions for various tolerance factors, Part I
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‘Mitte, Prenzlauerberg & Friedrichshain’
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Figure 4-5: Unfairness distributions for various tolerance factors, Part II
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Figure 4-6: Unfairness over the different factors and percentiles for instance Sioux Falls
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Figure 4-7: Unfairness over the different factors and percentiles for instance Friedrichshain
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Figure 4-8: Unfairness over the different factors and percentiles for instance Winnipeg
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‘Mitte, Prenzlauerberg & Friedrichshain’
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Figure 4-9: Unfairness over the different factors and percentiles for instance ‘Mitte,

Prenzlauerberg & Friedrichshain’
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Neukölln
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Figure 4-10: Unfairness over the different factors and percentiles for instance Neukölln
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Chicago Sketch
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Figure 4-11: Unfairness over the different factors and percentiles for instance Chicago

Sketch
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Figure 4-12: Unfairness over the different factors and percentiles for instance Berlin
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Figure 4-13: Efficiency and loaded unfairness of constrained system optima across all
instances. The plot on the left shows the efficiency (the cost of the solution over the cost
of the system optimum) of select constrained system optima vs. that of the associated
user equilibria; the plot on the right compares the loaded unfairness of the same solutions
with that of the corresponding system optima.

Figures 4-13 and 4-14 provide conclusive evidence of the benefits of the solutions we

propose; constrained system optima with appropriately chosen tolerance factors bring

together the favorable attributes of user equilibria and system optima. In Figure 4-13,

we display constrained system optima with tolerance factors close to 1.02 and compare

them with the user equilibrium and the unconstrained system optimum, both in terms

of efficiency and fairness. Figure 4-14 illustrates the tradeoff between efficiency and

fairness achieved by constrained system optima. The graph shows, for each of the

instances we studied, system optima (on the left), user equilibria (at the bottom) and

the intermediate solutions represented by constrained system optima (in the center).

The circled data-points correspond to CSO1.02 , for the various instances. In summary,

constrained system optima with user equilibrium travel times as normal lengths provide

a handle to effectively control the tradeoff between fairness and efficiency.

4.5.3 Performance of the Algorithm

Let us briefly discuss our findings with respect to the running time needed by the al-

gorithm described in Section 4.4. Figure 4-15 shows a detailed study of the effects of
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Figure 4-14: Tradeoff between efficiency and unfairness. For all instances, we plot
the tradeoff curve between the efficiency (the cost of the solution over the cost of the
system optimum) vs. the loaded unfairness. The left area of the graph corresponds to
system optima (SO), the lower area corresponds to user equilibria (UE), and the circled
data-points (denoted with ‘◦’) correspond to constrained system optima with ϕ = 1.02
(CSO1.02 ).

varying the tolerance factor and the target optimality gap. We only present the results

for instances Chicago Sketch and Berlin because they are the largest and hence arguably

the most difficult ones. For each selected instance, the figure contains a graph describ-

ing the objective function value, another one illustrating the number of iterations, and

finally one displaying the computation time (in seconds).

Most notably, the time needed by our algorithm to compute a constrained system

optimum is typically not larger than that for computing an unconstrained system opti-

mum, and it is only somewhat larger than that for getting a user equilibrium. In fact,

the problem of finding a constrained system optimum becomes computationally more

costly with increasing values of the tolerance factor ϕ. The reason is that the number

of allowable paths increases. However, the constrained shortest path subproblems be-

come easier because the normal lengths are less binding. In this trade-off situation, the

total work and the number of iterations increase, but the work per iteration decreases.

Generally, most of the time is spent on computing constrained shortest paths (which im-

plies that improved algorithms for this subproblem would yield greatly improved overall
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Figure 4-15: Algorithm specifics for various optimality gaps and tolerance factors for
instances Chicago Sketch and Berlin
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performance).

From our experience, instances with a few thousand nodes, arcs and commodities

can be solved on an average PC within minutes. Bigger instances like Berlin take longer

but can also be solved without difficulty in less than an hour. Very large instances

(e.g., networks with twice as many nodes and arcs as Berlin and with over one million

OD pairs) could not be handled mostly due to memory problems resulting from the

path-based formulation.

With respect to Partan, we found that the running time is reduced by 30% on

average for our target optimality gap of 0.5% when compared to the original version of

the Frank-Wolfe method. The reduction is even bigger if just the most difficult instances

are considered.

4.6 Discussion

When designing a route guidance system, it is desirable to explicitly aim at reducing the

total travel time by putting it into the objective function of the underlying optimization

problem. Yet, without further constraints, this would include the possibility that some

vehicles are assigned to fairly long paths in order to make the shorter paths available

to other drivers. Obviously, this phenomenon would render such a system unacceptable

for several drivers, jeopardizing the desired effect of improved system performance.

We have proposed to impose constraints on paths to eliminate lengthy detours. While

it may be ideal to explicitly enforce that travel times of recommended routes between

the same OD pair do not deviate significantly from each other, our computational re-

sults justify the use of a computationally simpler model, in which the deviation is not

measured with respect to the actual flow but with respect to a “normal length.” Our

computational study suggests that the travel time in user equilibrium is an excellent

choice for defining the normal length.

In fact, it turns out that this approach offers significant advantages over both the

traditionally considered user equilibrium and the system optimum. On the one hand, it

guarantees superior fairness for the individual user compared to the system optimum, in
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which individual travel times between the same OD pair may deviate substantially from

each other. On the other hand, the total travel time of a constrained system optimum

is still close to that in the ordinary system optimum and thus much better than in

user equilibrium. This shows that optimal route guidance with fairness guarantees is in

principle feasible. Apart from the proof of concept, we consider our algorithm practical

for problems with several thousand nodes, arcs, and commodities. Future work should

incorporate the dynamic aspect of traffic and the behavior of unguided users.
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Chapter 5

Efficiency and Fairness of the Route

Guidance System

We study the route guidance system introduced in Chapter 4 from a theoretical per-

spective. Recall that normal lengths must be selected to calibrate the system. We show

that if the correct normal lengths are used, the constrained system optimum achieves

two desired properties: efficiency and fairness. We use the price of anarchy of the system

to measure efficiency. In contrast to Chapters 2 and 3, we compare user equilibria to

the solutions proposed by the route guidance system. In Section 5.2, we concentrate on

the choice of free flow travel times as normal lengths and conclude that a constrained

system optimum may be inefficient. Subsequently, Section 5.3 analyzes the case in which

normal lengths are defined as user equilibrium travel times. As opposed to the case of

free flow travel times, constrained system optima are efficient when these normal lengths

are used. Finally, Section 5.4 shows that the loaded unfairness of constrained system

optima is bounded from above by a small constant.

This chapter is based on an extended abstract by Schulz and Stier-Moses (2003).
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5.1 Introduction

In Chapter 4, we proposed a route guidance system that computes a flow pattern that

minimizes the total travel time subject to certain user constraints. These constraints

are designed to overcome the inherent problem of system-optimal guidance which may

suggest routes that are too long to some users. Indeed, in a system-optimal flow pattern,

some users may be routed on considerably longer paths for the benefit of others and

hence would typically not follow the route recommendations. (Theorem 5.12 gives a

tight upper bound for the unfairness.) User constraints ensure that paths suggested

to users are not much longer than shortest paths, both measured with respect to a

metric that we referred to as normal length. Recall that normal lengths are intended to

model the travel times envisioned for each arc of the network. Although there are no

restrictions in how to set them, they have to be defined a priori; in other words, normal

lengths cannot depend on the solution that the system will compute. It is important

to remark that users need not know the normal lengths; they are merely an artifact to

select solutions without detours. Relying on empirical evidence coming from real-world

instances, in Chapter 4, we concluded that the flow patterns that the system provides

have two desirable properties: the total travel time is close to that of the unconstrained

system optimum, and individual users do not experience a considerably larger travel

time than the smallest possible.

This chapter complements the previous one by providing a theoretical focus. For this

study, we rely on the price of anarchy concept, introduced in Chapter 2 and developed

in Chapter 3. Here, though, instead of defining the price of anarchy as the ratio of the

total travel time of a user equilibrium to that of an ordinary system optimum, we adopt

a more realistic perspective. Flow patterns based on system-optimality only cannot be

implemented because of their “unfairness;” therefore, it is more reasonable to measure

the price of anarchy with respect to a flow pattern that can potentially be used in

practice. For that reason, we measure the efficiency of the route guidance system with

the worst-case ratio of the total travel time of an equilibrium to that of a constrained

system optimum. In addition, we compare the travel times experienced by different users

116



to each other: a primary goal of a route guidance system is to offer routes with similar

travel times to users with the same OD pair. A recommended route is not likely to be

accepted if other users with similar origins and destinations obtain routes that are much

faster. Even more, as the system assigns users to routes randomly, it is desirable that

routes offered on successive days have similar latencies so as to reduce the variance of

latencies experienced by individual users. Our results establish that constrained system

optima are efficient and fair so long as “correct” normal lengths are selected. This is in

agreement with the computational evidence presented earlier.

Recall that there are two aspects that define the quality of a flow. The loaded

unfairness of the route assignment is of importance to the users while the total travel

time in the system is of importance to the traffic authority (see Section 4.3). Our route

guidance system is designed to select the most efficient traffic pattern among those that

are not too unfair.

In this chapter, we denote a user equilibrium of a given instance by f , a constrained

system optimum with tolerance factor equal to ϕ by fϕ, and an unconstrained system

optimum by f ∗. The larger the factor ϕ, the larger the feasible region; consequently,

the total travel time C(fϕ) is a nonincreasing function of ϕ and C(f ∗) 6 C(fϕ) for all

ϕ > 1.

5.2 Free Flow Travel Times as Normal Lengths

In this section, we assume that normal lengths are defined as travel times in the uncon-

gested network; i.e., τa = `a(0) for all a ∈ A. Under this assumption, it turns out that

user equilibria have improved performance guarantees when compared to constrained

system optima rather than ordinary system optima. This is because constrained system

optima with respect to free flow travel times do not perform as well as system optima;

moreover, for small values of ϕ constrained system optima may be even worse than

user equilibria. Our theoretical results help to explain the conclusions derived from the

computational study of real-world instances developed in Chapter 4.

To analyze the benefits of the proposed concept theoretically, we evaluate the price
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of anarchy using constrained system optima as a benchmark. Although the original

definition of the price of anarchy relies on ordinary system optima, our notion is arguably

more realistic because system optima cannot be implemented in practice due to their

unfairness. We define the price of anarchy for a tolerance factor ϕ and a set L of allowed

latency functions as follows:

αϕ(L) αϕ(L) def
= sup

I∈ inst(L)

C(fI)

C(fϕ
I )

, (5.1)

where inst(L) is the set of instances with latency functions drawn from L, and fI and

fϕ
I denote the user equilibrium and constrained system optimum of an instance I, re-
spectively. It is immediately clear that α1(L) > 1 and that αϕ(L) is nondecreasing as a

function of ϕ. In addition, using Theorem 2.8, we obtain

C(fI) 6 α(L)C(f ∗
I ) 6 α(L)C(fϕ

I ) . (5.2)

This implies that αϕ(L) 6 α(L) for all ϕ > 1. Moreover, for instances with positive

minimum normal length Tk for all OD pairs k ∈ K, a constrained system optimum with

large tolerance is optimal in the unconstrained sense, i.e., C(fϕ) = C(f ∗) when ϕ is

sufficiently large.

Let us start our study of the function αϕ(L) by proving a structural property. We

introduce a construction that permits us to modify a given instance for some factor ϕ

so as to obtain an instance for a different factor ϕ̃, but with similar (in)efficiency. Fix

a tolerance factor ϕ and consider an instance I with large coordination ratio; i.e., for a

fixed positive constant ε,
C(fI)

C(fϕ
I )

> αϕ(L)− ε . (5.3)

We construct a new instance Ĩ equal to I except for the modifications that follow (see

Figure 5-1). The origins in Ĩ are new vertices s̃k for k ∈ K (instead of sk), which are

connected to sk with arcs of constant latency Mk, specified below. The natural extension

x̃ of a flow x to the new instance is defined as x̃P̃
def
= xP for P ∈ Pk and k ∈ K, where

P̃ starts from s̃k and continues with the original path P . It is not too hard to see that
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the extensions f̃ and f̃ ∗ of a user equilibrium f and a system optimum f ∗ of I are a

user equilibrium and a system optimum to instance Ĩ, respectively. The next lemma

establishes a relation between the constrained system optima of the two instances.

Lemma 5.1. Consider a fixed ϕ̃ such that 1 < ϕ̃ < ϕ, and set Mk
def
= ϕ−ϕ̃

ϕ̃−1
Tk . If fϕ is

a ϕ-constrained system optimum of I, then its natural extension f̃ϕ is a ϕ̃-constrained

system optimum of Ĩ.

Proof. All paths among Pk that carry flow under fϕ have a normal length between Tk

and ϕTk. After adding Mk to each of them, their lengths are between Mk + Tk and

Mk + ϕTk = ϕ̃(Mk + Tk). It follows that f̃ϕ is a ϕ̃-constrained system optimum.

Observe that extending a flow x in I to a flow x̃ in Ĩ changes its cost by a fixed

amount M ; that is, C(x̃) = M + C(x) with M
def
=
∑

k∈K Mkdk . Moreover, M =

ϕ−ϕ̃
ϕ̃−1

∑
k Tkdk 6 ϕ−ϕ̃

ϕ̃−1
C(x), because for this choice of normal lengths, Tk 6 `P (x) for all

P ∈ Pk. With this setup, we can now prove that the price of anarchy cannot increase

too fast.

Theorem 5.2. The function
αϕ(L)
ϕ− 1

is nonincreasing in ϕ.

Proof. Consider the instance I with large coordination ratio that we selected in (5.3),

and let f be a user equilibrium and fϕ be a ϕ-constrained system optimum. Furthermore,

their natural extensions to Ĩ are referred to as f̃ and f̃ϕ, respectively. We bound the
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price of anarchy of the new instance Ĩ with that of the original instance I.

αϕ̃(L) >
C(f̃)

C(f̃ϕ)
=

M + C(f)

M + C(fϕ)
>

C(f)
ϕ−1
ϕ̃−1

C(fϕ)
> ϕ̃−1

ϕ−1

(
αϕ(L)− ε

)
for all ϕ̃ < ϕ ,

where the first inequality comes from the definition of the price of anarchy, the second

uses results from the previous paragraph, and the third is just (5.3). As ε was arbitrary,

αϕ̃(L) > ϕ̃−1
ϕ−1

αϕ(L) for all ϕ̃ < ϕ.

The last theorem implies that the price of anarchy is subadditive as a function of δ,

where δ > 0 is a modified tolerance factor defined as ϕ− 1.

Corollary 5.3. The function α1+δ(L) is subadditive in δ.

Proof. Theorem 5.2 implies that for any positive δ1 and δ2,

α1+δ1+δ2(L)
δ1 + δ2

6
α1+δ1(L)

δ1
and

α1+δ1+δ2(L)
δ1 + δ2

6
α1+δ2(L)

δ2
.

By taking a convex combination, we get that

α1+δ1+δ2(L)
δ1 + δ2

6
δ1

δ1 + δ2

(
α1+δ1(L)

δ1

)
+

δ2
δ1 + δ2

(
α1+δ2(L)

δ2

)
.

Therefore, α1+δ1+δ2(L) 6 α1+δ1(L) + α1+δ2(L).

5.2.1 Bad Instances

In this section, we will characterize instances with high coordination ratios. We call an

instance tight when its coordination ratio C(f)/C(fϕ) matches the upper bound α(L)
shown in (5.2). Here, f and fϕ are the user equilibrium and the constrained system

optimum of the corresponding instance, respectively. Understanding when an instance

is tight might help system administrators design networks with small price of anarchy.

First, we point out conditions that characterize tight instances in the unconstrained

case, i.e., C(f)/C(f ∗) = α(L). Recall that Pigou’s example is tight when latencies are

taken from Llin (see Sections 2.4.1 and 2.5.1). Roughgarden (2003b) extended Pigou’s
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example to an arbitrary class of latencies L. Indeed, the discussion in Section 3.6 implies

that tight instances exist if the supremum in the definition of β(L) is attained. By a

careful analysis of the proof of Theorem 3.10, we establish conditions that characterize

unconstrained instances that are tight. For convenience, we remind the reader that

Lk(f) denotes the maximum travel time for users corresponding to OD pair k ∈ K, and

that `∗a(x) = `a(x) + x`′a(x) denotes a modified latency function that includes an extra

term that accounts for the congestion that users generate; for details check Chapter 2.

Observation 5.4. Let L be a family of continuous and nondecreasing latency functions.

An unconstrained instance with latency functions drawn from the set L is tight if and

only if the following three conditions are satisfied:

for all k ∈ K and P ∈ Pk : f ∗
P > 0⇒ `P (f) = Lk(f) , (5.4a)

for all a ∈ A : f ∗
a = argmax

x>0
x(`a(fa)− `a(x)) , (5.4b)

for all a ∈ A : `a(fa)fa > 0⇒ β(fa, `a) = β(L) . (5.4c)

Proof. An instance is tight if and only if all inequalities in the proof of Theorem 3.10

are equalities. The conditions correspond to the three inequalities in (3.8), in the order

in which they appear.

Let us make a few remarks related to Observation 5.4:

(i) When latency functions are differentiable and s-convex, we deduce from Condi-

tion (5.4b) that `∗a(f
∗
a ) = `a(fa). This implies that `∗P (f

∗) = `P (f) for all P ∈ P ,
and that L∗

k(f
∗) = Lk(f) for all k ∈ K. For example, when latencies are lin-

ear, the user equilibrium and system optimum of a tight instance must satisfy that

f ∗
a = fa/2 for all arcs a ∈ A with the exception of those that have constant latency.

(ii) Condition (5.4a) is redundant because the optimality of f ∗ and the last remark

imply it. Indeed, first-order optimality conditions of Problem SO imply that f ∗ is

optimal if and only if

for all k ∈ K and P ∈ Pk : f ∗
P > 0⇒ `∗P (f

∗) = L∗
k(f

∗) ,
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which is equivalent to Condition (5.4a).

(iii) For arcs with strictly increasing latency functions, Condition (5.4b) implies that

f ∗
a < fa or f ∗

a = fa = 0.

(iv) Assume that the set L contains a nonconstant function and therefore β(L) > 0

(otherwise the price of anarchy is 1 and all instances are tight). If an arc a carries

flow in the user equilibrium, it must satisfy `a(0) = 0.

Proof. To show the implication, assume that `a(0) > 0. Let x̂ be the argument that

maximizes x(`a(fa) − `a(x)) in the definition of β(fa, `a) given in (3.7). Because

0 < `a(0) 6 `a(fa), Condition (5.4c) implies that β(fa, `a) > 0 meaning that

`a(x̂) < `a(fa). Therefore,

x̂

fa

(
1− `a(x̂)

`a(fa)

)
<

x̂

fa

(
1− `a(x̂)− `a(0)

`a(fa)− `a(0)

)
,

and this shows that β(fa, `a − `a(0)) > β(fa, `a), which is a contradiction to Con-

dition (5.4c).

In Lemma 5.5 below, we shall prove that an instance with latency functions satisfying

`a(0) = 0 for a ∈ A cannot be tight. As Remark (iv) prevents all arcs a with `a(0) > 0

from carrying flow in a user equilibrium, the lemma implies that a tight instance must

have an arc a with `a(0) > 0 that carries flow in a system optimum.

Lemma 5.5. Let L be a family of continuous and nondecreasing latency functions.

Assume further that latencies can only be constant or strictly increasing. If `a(0) = 0

for all a ∈ A, the instance cannot be tight.

Proof. Given the assumption, there are two classes of arcs: those with latencies iden-

tically equal to 0 (we refer to them as 0-latency arcs), and those with strictly increas-

ing latencies. Consider a user equilibrium and a system optimum flow, and one OD

pair k ∈ K. Let us define a set Ck = { i ∈ N : there is a path from sk to i using

0-latency arcs }. If tk ∈ Ck, both flows route the demand of OD pair k along a 0-latency
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path. If this happens for all OD pairs, the instance cannot be tight. Therefore, consider

an OD pair k ∈ K for which tk 6∈ Ck. Thus, Ck defines a sk-tk-cut. Note that all

the flow that reaches nodes in Ck has to follow paths that, up to the last node in Ck,

consist of 0-latency arcs. By construction of Ck, a forward arc in the cut cannot be a

0-latency arc and a backward arc cannot carry (user or system optimal) flow for OD

pair k. The former is obvious; to see the latter, if a backward arc a carried flow, a would

be a 0-latency arc because all flow reaching Ck must use paths with latency equal to

zero. Thus, its tail would belong to Ck too. We showed that there is no flow of OD

pair k entering Ck, and that all the flow exits Ck along non 0-latency arcs. This is a

contradiction to Remark (iii) because the sum of the flow on forward arcs of the cut Ck

must equal the demand dk.

We will use Observation 5.4 and Lemma 5.5 to show that, under mild assumptions,

there cannot exist tight instances for the constrained case. Note that this does not

prevent αϕ(L) from being equal to α(L) for some ϕ.

Theorem 5.6. Consider an instance with latency functions drawn from L. Assume also

that these latencies are either strictly increasing or constant. Then, the coordination

ratio C(f)/C(fϕ) < α(L) for all ϕ > 1, where f denotes the user equilibrium and fϕ

the ϕ-constrained system optimum.

Proof. Suppose that the coordination ratio equals α(L). In that case, fϕ is a system

optimum because the cost of the system optimum is a lower bound of that of fϕ and

the coordination ratio cannot be larger than α(L). From Remark (iv), we know that

`a(0) = 0 for all arcs a with fa > 0. Hence, there is a path joining each OD pair with null

free flow travel time. In other words, the normal length Tk has to be 0 for all k ∈ K,

which implies that a path is feasible only when its normal length is zero. Therefore,

`a(0) = 0 for all arcs a with flow in f or fϕ, contradicting Lemma 5.5 (we can disregard

arcs without flow in both f and fϕ).

We turn our attention to characterizing instances with large coordination ratio for

a fixed ϕ. We say that a path P ∈ Pk is longest if its normal length τP equals the

maximum possible ϕTk.
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Theorem 5.7. Consider a family L of differentiable and s-convex latency factions. Let

ϕ > 1 and fϕ be a ϕ-constrained system optimum of a given instance with latencies

drawn from L. If fϕ routes flow along a path that is not longest, the instance can be

modified to increase the coordination ratio C(f)/C(fϕ).

Proof. We again use the idea of modifying a network to prove the claim. Suppose that

for some k ∈ K there is path Q ∈ Pϕ
k that is not longest such that fϕ

Q > 0. We will

construct an instance with bigger ratio. We modify the given instance by incorporating

the tight instance given by Pigou (Section 3.6). Figure 5-2 illustrates the modification.

Two parallel arcs connect a new origin s̃k to sk, the origin of path Q. For a small enough

number ε > 0, ε units of demand are reassigned from OD pair k to a new OD pair k̃

with terminals s̃k and tk. As before, the latencies of the new arcs are the constant `(ε)

and the function `(x), where ` is a latency function that satisfies β(ε, `) = β(L).
Consider a path P ∈ Pϕ

k . After the modification, there are two possible extensions

of P . Denoting the set of paths in the new instance by P̃ , the path P↑ ∈ P̃k (resp. P↓)

starts with the constant (resp. nonconstant) arc just added and continues along P . The

path P↓ belongs to P̃ϕ
k because τ̃P↓ = τP . Although P↑ need not belong to P̃ϕ

k , Q↑ ∈ P̃ϕ
k

because Q was not longest. The user equilibrium and the constrained system optimum

of the new instance are simple extensions f̃ and f̃ϕ of f and fϕ. We reassign ε units of

flow originally in fQ to f̃Q↓ and leave the rest as in f . It is straightforward to see that

f̃ is feasible and at equilibrium. Similarly, fϕ can be extended to f̃ϕ by routing ε units
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of demand that were originally in Q along the paths Q↓ and Q↑ in a way that satisfies

`∗Q↓(f̃
ϕ) = `∗Q↑(f̃

ϕ). This extension is a constrained system optimum because f̃ϕ
a = fϕ

a

for all the original arcs a and, therefore, `∗P (f̃
ϕ) = `∗P (f

ϕ) for all P ∈ P̃ϕ. Computing

the total travel times of both flows, the coordination ratio C(f̃)/C(f̃ϕ) equals

C(f) + `(ε)ε

C(fϕ) + `(ε)ε/α(L) ,

which is a convex combination of C(f)/C(fϕ) and α(L). As the former is smaller than

the latter, the new instance has worse performance.

5.2.2 Bounds for the Price of Anarchy

In this section, we present upper and lower bounds for the function αϕ(Llin). That will

allow us to establish that, with free flow normal lengths, constrained system optima

are not efficient when compared to user equilibria. We start with an upper bound that

improves on αϕ(Llin) 6 α(Llin) = 4/3.

Theorem 5.8. The price of anarchy αϕ(Llin) 6 (2 − ϕ)−1 for all 1 6 ϕ < 2. In

particular, α1(Llin) = 1 and αϕ(Llin) < 4/3 for ϕ < 5/4.

Proof. Consider a factor 1 6 ϕ < 2, and let fϕ and f be a ϕ-constrained system optimum

and a user equilibrium, respectively. We define the function h(z)
def
= C(f + z(fϕ − f)).

Due to the convexity of C(·), h(1) > h(0) + h′(0). To prove the claim we verify that

h(0) + h′(0) > (2− ϕ)h(0) because then C(fϕ) = h(1) > (2− ϕ)h(0) = (2− ϕ)C(f), as

required. Now,

h′(0) =
∑

a

`∗a(fa)(f
ϕ
a − fa) =

∑

a

[2`a(fa)− `a(0)] (f
ϕ
a − fa)

> 2

[
∑

k

Lk(f)dk −
∑

k

Lk(f)dk

]
+
∑

k

Tkdk − ϕ
∑

k

Tkdk

= (1− ϕ)
∑

k

Tkdk > (1− ϕ)C(f) = (1− ϕ)h(0) .

The first inequality comes from the fact that `P (f) = Lk(f) for every P ∈ Pk such that
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fP > 0, and `P (f) > Lk(f) in general. Similarly, τP 6 ϕTk for every P such that fϕ
P > 0,

and Tk 6 τP in general.

We now give lower bounds for αϕ(Llin) by providing corresponding instances. Al-

though the tight instance discussed in Section 3.6 can be used, a stronger bound can

be given with a collection of instances based on the Braess Paradox network (see Sec-

tion 2.4.2).

Lemma 5.9. The price of anarchy αϕ(Llin) > 1 +
(
3 + 2

ϕ−1

)−1
.

Proof. Consider the network depicted in Figure 5-3, based on the Braess Paradox net-

work, where z > 0 is a constant and the demand between the terminals is d > 0.

Maximizing the coordination ratio over z and d, we obtain the claim. Indeed, the sys-

tem optimum and user equilibrium are:

C(f ∗) =





2d2 + zd if d 6 1−z
2

(2− z)d− (1− z)2/2 if 1−z
2

6 d 6 1− z

d2/2 + d if 1− z 6 d ,

C(f) =





2d2 + zd if d 6 1− z

(2− z)d if 1− z 6 d 6 2(1− z)

d2/2 + d if 2(1− z) 6 d .
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Figure 5-4: The function ρ(d, z)

For the constrained system optimum there are two possibilities, either just the short-

est path is feasible or all the three paths are. If the later happens, the constrained

system optimum is optimal. Therefore,

C(fϕ) =





2d2 + zd if z < 1 and ϕ < 1
z

d2

2
+ d if z > 1 and ϕ < z

C(f ∗) otherwise .

We define the coordination ratio for the set of parameters d, z and ϕ:

ρ(d, z, ϕ)
def
=

C(f)

C(fϕ)
.

Notice that as a function of ϕ, ρ(d, z, ϕ) may only take two values depending if ϕ is

small or large. Using the solutions computed above, we can evaluate ρ for any d, z and

ϕ. It turns out that when ϕ is small, the coordination ratio is bounded from above by

1 for all d and z, thus we will concentrate on the case in which ϕ is large enough. That

case occurs when either z < 1 and ϕ > 1
z
, or when z > 1 and ϕ > z. Figure 5-4 plots

the values of the coordination ratio as given by the following formula:
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ρ(d, z)
def
=





1 if d 6 1−z
2

2d2+zd
(2−z)d−(1−z)2/2

if 1−ϕ
2

6 d 6 1− z

(2−z)d
d2/2+d

if 1− z 6 d 6 2(1− z)

1 if 2(1− z) 6 d .

The best lower bound can be computed by maximizing the value of ρ. Indeed,

αϕ(Llin) > max{ρ(d, z) : 1
ϕ

6 z 6 ϕ and d > 0} .

We compute the solution of that problem by first solving the maximization for a fixed z.

Let ρ(z)
def
= max {ρ(d, z) : d > 0}. For values of z bigger than 1, ρ(z) = 1. More

interestingly, when z < 1,

ρ(z) = ρ(1− z, z) =
(2− z)(1− z)

(1− z)2/2 + (1− z)
= 2

2− z

3− z
.

Then, as ρ(z) is nonincreasing, the optimal solution is achieved at z = 1/ϕ, from where

the claim follows.

Figure 5-5 summarizes the bounds for αϕ(Llin) that we obtained in the last two
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results. The main conclusion is that αϕ(Llin) is close to 1 when ϕ is close to 1. Therefore,

we need not compute the exact price of anarchy to establish that constrained system

optima are almost as bad as user equilibria in the worst case.

5.3 User Equilibrium Travel Times as Normal

Lengths

In this section, we assume that normal lengths are set equal to the travel times expe-

rienced in a user equilibrium. In Chapter 4, we concluded that these normal lengths

are the “correct” choice due to superior empirical performance compared to free flow

travel times. Now, we establish that a theoretical analysis supports the same conclusion.

The improvement with respect to free flow normal lengths comes from the fact that UE

normal lengths depend on the demand.

A user equilibrium f is a feasible solution to Problem CSO because all paths used

in f are feasible. Therefore, the constrained system optimum fϕ satisfies

C(fϕ) 6 C(f) for all ϕ > 1 . (5.5)

As in the previous section, we obtain a lower bound for the function αϕ(L) by providing

an appropriate instance. In this case, though, the lower bound matches the upper bound.

Lemma 5.10. The price of anarchy αϕ(L) = α(L) for all ϕ > 1.

Proof. Consider the tight instance introduced in Section 3.6 in which a demand of d units

must be routed along two parallel arcs with latencies equal to `(d) and `(x), respectively.

At equilibrium both paths have latency `(d). Hence, regardless of the value of ϕ, the

system optimum is a ϕ-constrained system optimum. The claim follows by taking the

supremum over ` ∈ L.

The lemma implies that the worst-case coordination ratio is the same whether it is

defined with respect to the system optimum or the constrained system optimum. The

129



two bounds presented in (5.2) and (5.5) may be tight. Indeed, we have two extreme

examples for ϕ = 1. The proof of Lemma 5.10 describes an instance satisfying C(f ∗) =

C(f 1) = C(f)/α(L). For the second instance, add a small constant ε > 0 to the latency

of the first arc. The constrained system optimum coincides with the user equilibrium

and, therefore, C(f) = C(f 1) ≈ α(L)C(f ∗).

Finally, let us remark that Theorem 5.7, proved before for free flow normal lengths,

is also valid when normal lengths are set to user equilibrium travel times. To see that,

it is enough to note that at equilibrium the lengths of the two new arcs equal `(ε) and

therefore Q↓ and Q↑ belong to P̃ϕ .

Observation 5.11. Let ϕ > 1 and fϕ be a ϕ-constrained system optimum of a given

instance with latencies drawn from L. If fϕ routes flow along a path that is not longest,

the instance can be modified to increase the coordination ratio C(f)/C(fϕ).

5.4 Fairness

As we mentioned earlier, a typical argument against using the system optimum in the

design of route guidance devices for traffic assignment is that, in general, it assigns some

drivers to unacceptably long paths in order to use shorter paths for most other drivers.

This section presents results related to the unfairness of system optima and constrained

system optima. In this section, we work with arbitrary normal lengths, unless explicitly

pointed out.

The following theorem quantifies the severity of this effect by characterizing the

loaded unfairness of the system optimum. It turns out that there is a relation to earlier

work by Roughgarden (2002), who compared the maximum latency of a system optimum

in a single-sink single-source network to the latency of a user equilibrium (i.e., the

UE unfairness, see Section 4.3.1). He showed that for a given class of latency functions L,
this ratio is bounded from above by γ(L), which is defined to be the smallest value that

satisfies `∗(x) 6 γ(L)`(x) for all ` ∈ L and all x > 0. For example, it is easy to see thatγ(L)

γ({ polynomials of degree p with positive coefficients }) = p + 1. We prove that the
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loaded unfairness of a system optimum is in fact bounded by the same constant, even

for general instances with multiple commodities. The same result was independently

obtained by Roughgarden (2003a).

Theorem 5.12. Let L be a family of differentiable and nondecreasing latency functions.

If f ∗ denotes a system optimum in a multicommodity flow network with arc latency

functions drawn from a class L, the loaded unfairness of f ∗ is bounded from above

by γ(L).

Proof. Using the definitions of `∗ and γ(L), it is clear that `a(x) 6 `∗a(x) 6 γ(L)`a(x) for
all x > 0. The first-order optimality conditions of Problem SO introduced in Section 2.2

imply that `∗P (f
∗) = L∗

k(f
∗) for all P ∈ Pk such that f ∗

P > 0 (see Proposition 2.5).

Therefore, for all paths P ∈ Pk carrying flow,

L∗
k(f

∗)

γ(L) 6 `P (f
∗) 6 L∗

k(f
∗) ,

from where we deduce that `Q(f
∗)/`R(f

∗) 6 γ(L) for all Q,R ∈ P∗
k with positive

flow.

An immediate corollary is that users in a system optimum of an s-t-network (i.e., a

network with a single source and a single sink) cannot travel too much.

Corollary 5.13. Let L be a family of differentiable and nondecreasing latency functions.

If f ∗ denotes a system optimum of a single-source single-sink network with arc latency

functions drawn from a class L, then L(f ∗) 6 γ(L)L(x) for any feasible flow x.

Proof. Obviously, C(f ∗) 6 C(x) and, therefore, min{`P (f ∗) : P ∈ Pk, f
∗
P > 0} 6 L(x).

The bound of Theorem 5.12 implies the claim.

As we mentioned, Roughgarden (2002) proved that, for the single-source single-sink

case, L(f ∗) 6 γ(L)L(f). This result also follows by plugging in the user equilibrium

in Corollary 5.13. Roughgarden used that bound to argue that system optima are not

too unfair because users do not experience a much bigger travel time than they would

without control. In addition, it follows that when normal lengths are user equilibrium
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Figure 5-6: The unfairness may decrease when ϕ increases (free flow travel times case)

travel times, constrained system optima coincide with system optima for ϕ > γ(L),
under the assumption that the instance has a single OD pair.

It is straightforward to extend Theorem 5.12 to constrained system optima. Notice

that the following result does not assume any particular definition of normal lengths.

Corollary 5.14. For arbitrary normal lengths, the loaded unfairness of a constrained

system optimum is bounded from above by γ(L).

Proof. As first-order optimality conditions for a constrained system optimum are similar

to those of an ordinary system optimum, the exact proof of Theorem 5.12 can be repeated

by replacing ‘system optimum’ by ‘constrained system optimum,’ and Pk by Pϕ
k .

In Section 6.4, we present an instance that shows that the bounds given in Theo-

rem 5.12 and Corollary 5.14 are tight. Nevertheless, in practice these bounds are loose

and constrained system optima are fairer than the unconstrained counterpart, as the

extensive experimentation developed in Chapter 4 shows. Notice that Corollary 5.14

does not imply that the loaded unfairness of constrained system optima with factor ϕ is

nondecreasing as a function of ϕ. We give two examples, one for each of the definitions

of normal lengths.

When normal lengths are free flow travel times, consider the instance depicted in

Figure 5-6. That instance has a unit demand, and two terminals connected by three

arcs with latencies 1 + ε, 1 + x and 1+ x2, respectively. A constrained system optimum

with ϕ = 1 can only route flow in the last two arcs and therefore has loaded unfairness

strictly larger than 1. Now, for ϕ > 1 + ε, all arcs can be used and it easy to see that
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the loaded unfairness approaches 1 when ε→ 0.

For the case when normal lengths are user equilibrium travel times, consider the

instance shown in Figure 5-7. There are five arcs a, b, c, d and e with latencies x+ 2ε,

1, 2ε, 1 + 5ε, and x, respectively. The user equilibrium routes flow only along paths ab

and ace; at equilibrium the path de is too long to carry flow. Therefore, the constrained

system optimum f 1 can only use paths ab and ace, and its unfairness is 4+4ε
3+6ε

. Instead,

when ϕ > 2+3ε
2+2ε

, the constrained system optimum fϕ can use all three paths. In that

case, it routes the flow along ab and cd, and its unfairness is 6+17ε
6+11ε

. For small enough

values of ε, the unfairness of the constrained system optimum with ϕ = 1 is arbitrarily

close to 4/3 while the unfairness for a large enough tolerance factor ϕ is arbitrarily close

to 1.

Finally, we show that if a system-optimal solution uses paths that are short with

respect to zero flow normal lengths, they must also be short with respect to experienced

travel times.

Theorem 5.15. Consider an instance with linear latencies. Let P ∈ Pk be a path such

that f ∗
P > 0 and satisfying that `P (0) 6 εCk(f

∗) for some ε > 0. Then, the experienced

travel time `P (f
∗) is bounded from above by (1 + ε/2)Ck(f

∗) .

Proof. Using Proposition 2.5 and the fact that latencies are linear,

`P (f
∗) = `∗P (f

∗)−
∑

a∈P

qaf
∗
a =

(
∑

Q∈Pk

f ∗
Q`

∗
Q(f

∗)

dk

)
− (`P (f

∗)− `P (0))
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6

(
∑

Q∈Pk

2
f ∗
Q`Q(f

∗)

dk

)
− `P (f

∗) + εCk(f
∗) .

Therefore, 2`P (f
∗) 6 (2 + ε)Ck(f

∗).
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Chapter 6

The Maximum Latency Problem

In this chapter, we study the problem of minimizing the maximum latency of flows

in networks with congestion. After giving an example of the problem in Section 6.2,

Section 6.3 shows that it is NP-hard, even when all arc latency functions are linear

and there is a single source and sink. Section 6.4 proves that an optimal flow and

an equilibrium flow share a desirable property: all flow-carrying paths have the same

length; i.e., these solutions are “fair,” which is in general not true for the optimal flow in

networks with nonlinear latency functions. Section 6.5 argues that the price of anarchy is

bounded. That is, the maximum latency of a user equilibrium is within a constant factor

of that of an optimal solution. In contrast, we present a family of instances that shows

that the price of anarchy is unbounded for instances with multiple sources and a single

sink, even in networks with linear latencies. Finally, we show that an s-t-flow that is

optimal with respect to the average latency objective is near optimal for the maximum

latency objective, and it is close to being fair. Conversely, the average latency of a

flow minimizing the maximum latency is also within a constant factor of that of a flow

minimizing the average latency.

This chapter is based on a research article by Correa, Schulz, and Stier-Moses (2004a).
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6.1 Introduction

While in previous chapters we concentrated on the objective of minimizing the total

latency of a flow, in this chapter we broaden our view and consider other objectives.

Depending on the concrete circumstances, operators of computer networks, traffic control

centers, or building designers can pursue a variety of system objectives when planning

their systems. For instance, they might elect to minimize the average latency, they

might aim at minimizing the maximum latency, or they might try to ensure that users

between the same origin-destination pair experience essentially the same latency. In

fact, the ideal solution would be simultaneously optimal or near optimal with respect to

all three objectives.

For linear latencies, we prove the existence of an s-t-flow that is at the same time

optimal for two of the three objectives while its average latency is within a factor of

4/3 of that of an optimum. As attractive as this solution might be, we also show that

it is NP-hard to compute. Moreover, there is a surprising difference between linear and

nonlinear latency functions. Namely, this particular flow remains optimal with respect

to the maximum latency and near optimal with respect to the average latency, but it

does in general not guarantee that different users face the same latency. However, an

optimal s-t-flow for the average latency objective can be computed in polynomial time,

and we show that the latency of any one user is within a constant factor of that of any

other user. In particular, the maximum latency is within the same constant factor of the

maximum latency of an optimal solution to the latter objective. This constant factor

only depends on the class of allowable latency functions. For instance, its value is 2 for

the case of linear latencies.

The objective of minimizing the maximum latency is common in the network routing

and evacuation literature. The telecommunications network model analyzed by Kout-

soupias and Papadimitriou (1999) described in Section 2.5 is similar in nature to that of

this chapter. However, their model is not comparable to ours because they work with a

finite number of players and consider mixed strategies. In contrast, in our setting every

player just controls an infinitesimal amount of flow, making mixed strategies essentially
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irrelevant; moreover, we work with arbitrary networks.

Starting from the early article by Ford and Fulkerson (1958), most articles on evac-

uation problems consider constant travel times; we refer the reader to the articles by

Chalmet, Francis, and Saunders (1982), Burkard, Dlaska, and Klinz (1993), Hoppe and

Tardos (1994, 2000), and Fleischer and Skutella (2003b) for more details. See also the

surveys by Aronson (1989) and Powell, Jaillet, and Odoni (1995). One exception is the

work of Köhler and Skutella (2002) that considers a dynamic quickest flow problem with

load-dependent transit times. They established strong NP-hardness, and they also pro-

vided an approximation algorithm by considering the average of a flow over time, which

is a static flow. Köhler, Langkau, and Skutella (2002) propose to use time-expanded

networks to derive approximation algorithms for a similar problem.

Another important application, if one considers this objective, can be found in supply

chains. For instance, a product can only be assembled when all the required components

arrive at the production facility. Actually, the maximum latency for this application is

nothing else than the lead time to get the parts.

Recall that we assumed that latency functions are nonnegative and nondecreasing.

We call a feasible flow that minimizes the maximum latency L(·) a min-max flow and

denote it by f̂ . The maximum latency problem consists of finding a min-max flow. f̂

Although the main goal of this chapter is studying this problem, we still refer to the

optimal solution with respect to the average travel time C(·) (or C(·)) as the system

optimum and denote it by f ∗.

While a user equilibrium can be computed in polynomial time (because it results

from the minimization of a convex function over a polytope; see Theorem 2.6), and so

can a system optimum if `a is s-convex for all arcs a ∈ A, we show in Section 6.3 that

computing a min-max flow is NP-hard. This result still holds if all latencies are linear

and there is a single OD pair.

Recall that Sections 2.5 and 3.5 bound the inefficiency of user equilibria in terms of

the average latency. It turns out that equilibria are also bounded with respect to the

maximum latency objective. Indeed, latencies encountered by different users of the same

origin-destination pair are the same. The user equilibrium therefore represents another
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Table 6.1: Summary of results for single-source single-sink networks with linear latency
functions

maximum latency average latency unfairness

min-max flow 1 4/3 Thm. 6.10 1 Thm. 6.5
system optimum 2 Thm. 6.9 1 2 Thm. 5.12
user equilibrium 4/3 Thm. 6.6 4/3 Thm. 2.9 1

flow that can be computed in polynomial time and that is optimal or close to optimal

for the three objectives introduced earlier.

We should point out that among the multiple (nonequivalent) definitions of unfairness

introduced in Chapter 4, in the context of Section 6.4 we adopt that of loaded unfairness,

the unfairness concept that comes from the competition between different agents. In light

of that, sometimes throughout this chapter we may just call it “unfairness.” As pointed

out earlier, a user equilibrium has unfairness equal to 1 by construction. In Section 6.4,

we establish a somewhat surprising result: When latencies are linear and there is a single

source and a single sink, there exist min-max flows that are fair.

Finally, in Section 6.5, we show that in the single-source single-sink case under ar-

bitrary latency functions, there actually exist solutions that are simultaneously optimal

or near optimal with respect to all three criteria (maximum latency, average latency,

and unfairness). In fact, this property is shared by the system optimum, the user equi-

librium, and—to some extent—the min-max flow, albeit with different bounds. Let us

remark that Jarvis and Ratliff (1982) showed that, in the dynamic case, a flow that

minimizes the average latency also minimizes the maximum latency. Although that is

not exactly true in our model, there is a big correlation between the objective values of

system optima, min-max flows, and user equilibria.

Table 6.1 presents the bounds obtained for the three criteria in the single-source

single-sink case with linear latencies. The first entry in each cell represents a worst-case

bound on the ratio of the value of the flow associated with the corresponding row to

the value of an optimal flow for the objective function denoted by the corresponding

column. The second entry refers to the theorem in which the respective result is proved.
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All bounds are tight, as examples provided after each theorem demonstrate. The bound

of 4/3 on the ratio of the average latency of the user equilibrium to that of the system

optimum was first proved by Roughgarden and Tardos (2002); we already gave a simpler

proof in Theorem 2.9. Weitz (2001) observed first that this bound carries forward to

the maximum latency objective for the case of only one source and sink; we present a

generalization of this observation to multicommodity flows in Theorem 6.6. Roughgar-

den (2004b) gave a tight bound for the single-source single-sink case that depends on

the size of the network.

An important consequence of these results is that computing a user equilibrium or

a system optimum constitutes a constant-factor approximation algorithm for the NP-

hard maximum latency problem. On the other hand, Weitz also presented a family of

examples that showed that user equilibria can be arbitrarily bad in multiple commodity

networks. We show that already in networks with multiple sources and a single sink,

the ratio of the maximum latency of a user equilibrium to that of the min-max flow is

not bounded by a constant, even with linear latency functions.

6.2 An Example

Let us start by presenting the solutions to the maximum latency problem for the ex-

amples introduced in Section 2.4. In Pigou’s instance, every feasible flow has maximum

latency equal to 1, making the problem trivial. More interestingly, it is not difficult to

see that in Braess’ instance, the unique min-max flow coincides with the system opti-

mum. The latter example puts in evidence that a min-max flow may not use shortest

paths because the path that goes through the ‘middle’ arc has travel time equal to 1, as

opposed to 3/2, i.e., the travel time of every single user. Moreover, this indicates that

a straightforward greedy algorithm that incrementally routes flow along shortest paths

does not work. That algorithm would have ended up with the unique user equilibrium.

We use the following instance to compare the three flows we indicated, as well as their

objective values. The example, depicted on the top of Figure 6-1, is an instance with one

OD pair and quadratic latency functions. The flow has to be shipped through two equal
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Figure 6-1: An example of the maximum latency problem (top) and comparison of a
min-max flow, a system optimum, and a user equilibrium (bottom, from left to right,
respectively)

stages with two parallel arcs each. At the bottom, the figure shows a min-max flow, a

system optimum, and user equilibrium, optimal solutions with respect to the maximum

travel time, the average travel time, and the unfairness, respectively. Table 6.2 displays

the values of the mentioned solutions. Notice that the figure shows the user equilibrium

and the system optimum as a flow on arcs. As we mentioned in Chapter 2, any path

decomposition provides a correct solution. However, not all of those solutions have the

same unfairness and maximum latency; where needed, the table indicates two values

coming from the two different decompositions that are possible. The min-max flow,

instead, is given as a flow on paths. This is necessary because presenting a flow on arcs

is not enough to solve the problem, as we are going to show in Section 6.3. Note that

although the unfairness of the min-max flow is 1, we are going to see in Section 6.4 that

we can modify this instance to produce an instance that features high unfairness.

This example shows that the objective values of the different solutions are similar.

Section 6.5 is devoted to proving guarantees similar to those presented in Table 6.1 for

general sets of latency functions.
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Table 6.2: Objective values of solutions of the instance shown in Figure 6-1

maximum latency average latency unfairness

min-max flow 3/2 3/2 1
system optimum {14/9, 20/9} 4/3 {7/4, 5/2}
user equilibrium 2 2 1

6.3 Computational Complexity

It follows from the work of Köhler and Skutella (2002) on the quickest s-t-flow problem

with load-dependent transit times that the maximum latency problem considered here

is NP-hard (though not necessarily in NP) when latencies include arbitrary nonlinear

functions or when there are explicit arc capacities. Lemma 6.1 below implies that the

general maximum latency problem is in NP, while Theorem 6.3 establishes its NP-

hardness, even in the case of linear latencies and a single source and a single sink.

Note that the following result does not follow from ordinary flow decomposition as

it is not clear how to convert a flow on arcs into a path flow such that the latency of the

resulting paths remains bounded; in fact, it is a consequence of Theorem 6.3 that the

latter problem is NP-hard, too.

Lemma 6.1. Let x be a feasible flow for a multicommodity flow network with nonnegative

latency functions. (Note that we do not need to assume that latencies are nondecreasing

or continuous for this result.) Then, there exists another feasible flow x′ such that

L(x′) 6 L(x), and x′ uses at most |A| paths for each source-sink pair.

Proof. Consider an arbitrary commodity k ∈ K. Let P1, . . . , Pr be sk-tk-paths such

that xPi
> 0 for i = 1, . . . , r, and

∑r
i=1 xPi

= dk. Slightly overloading notation, we

let P1, . . . , Pr also denote the arc incidence vectors of these paths. Let’s assume that

r > |A|. (Otherwise we are done.) Hence, the vectors P1, . . . , Pr are linearly dependent

and
∑r

i=1 λiPi = 0 has a nonzero solution. Let’s assume without loss of generality that

λr 6= 0. We define a new flow x′′ (not necessarily feasible) by setting x′′
Pi

def
= xPi

− λi

λr
xPr

for i = 1, . . . , r, and x′′
P

def
= xP for all other paths P . Notice that under x′′, the flow on
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Figure 6-2: Instance used in the reduction from Partition

arcs does not change:

r∑

i=1

Pix
′′
Pi

=
r−1∑

i=1

PixPi
−

r−1∑

i=1

λi

λr

PixPr
=

r∑

i=1

PixPi
.

Here, we used the linear dependency for the last equality. In particular, L(x′′) 6 L(x).

Let us consider a convex combination x′ of x and x′′ that is nonnegative and uses fewer

paths than x. Note that such a flow always exists because x′′
Pr

= 0, and the flow on some

other paths P1, . . . , Pr−1 might be negative. Moreover, L(x′) 6 L(x), too. If x′ still uses

more than |A| paths between sk and tk, we can iterate this process so long as necessary

to prove the claim.

Corollary 6.2. The decision version of the maximum latency problem is in NP.

Proof. Lemma 6.1 shows the existence of a succinct certificate. Indeed, there is a min-

max flow using no more than |K| · |A| paths.

We are now ready to prove that the maximum latency problem is in fact NP-hard.

We present a reduction from Partition:

Given: A set of n positive integer numbers q1, . . . , qn.

Question: Is there a subset I ⊂ {1, . . . , n} such that
∑

i∈I qi =
∑

i6∈I qi?

Theorem 6.3. The decision version of the maximum latency problem is NP-complete,

even when all latencies are linear functions and the network has a single OD pair.
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Proof. Given an instance of Partition, we define an instance of the maximum latency

problem as depicted in Figure 6-2. The network consists of nodes 0, 1, . . . , n with 0

representing the source and n the sink, and there is a unit demand. For i = 1, . . . , n, the

nodes i − 1 and i are connected with two arcs, namely ai with latency `ai
(xai

) = qi xai

and ãi with latency `ãi
(xãi

) = qi.

Let T
def
= 3

4

∑n
i=1 qi. Notice that the system optimum f ∗ has cost equal to T and

f ∗
a = 1/2 for all a ∈ A. We claim that the given instance of Partition is a Yes-

instance if and only if there is a solution to the maximum latency problem of maximum

latency equal to T . Indeed, if there is a partition I, the flow that routes half a unit of

flow along the 0-n-path composed of arcs ai, i ∈ I, and ãi, i 6∈ I, and the other half

along the complementary path has maximum latency T .

To prove the other direction, assume that we have a flow x of maximum latency

equal to T . Therefore, C(x) 6 T (there is a unit demand), which implies that C(x) = T

(it cannot be better than the optimal solution). As the arc flows of a system optimum

are unique, this implies that xa = 1/2 for all a ∈ A. Take any path P such that

xP > 0, and partition its arcs such that I contains the indices of the arcs ai ∈ P . Then,

3
4

∑n
i=1 qi = T = `P (x) =

∑
i∈I

qi

2
+
∑

i6∈I qi, and subtracting the left-hand side from the

right-hand side yields
∑

i∈I
qi

4
=
∑

i6∈I
qi

4
.

The following corollary states that a flow decomposition that achieves small path-

lengths is difficult to compute.

Corollary 6.4. Let x be a (path) flow in an s-t-network with linear latencies. Let

(xa)a∈A be the associated flow on arcs. Given just (xa)a∈A and L(x), it is NP-hard to

compute a decomposition of this arc flow into a (path) flow x′ such that L(x′) 6 L(x).

In particular, it is NP-hard to recover a min-max flow even though its arc values are

given.

Recall that, as we discussed in Chapter 2, Corollary 6.4 neither holds for the system

optimum nor the user equilibrium. In both cases any flow derived from an ordinary flow

decomposition is indeed an optimal flow or an equilibrium flow, respectively. Neverthe-

less, an arbitrary decomposition of a system-optimal flow need not be good with respect
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to the maximum latency objective. To see that, consider the instance described in the

proof of Theorem 6.3. The flow on paths that routes 1/2 along the path a1, a2, . . . , an

and 1/2 along the path ã1, ã2, . . . , ãn is indeed a system optimum, but its maximum

latency is
∑n

i=1 qi as opposed to the optimal solution which has value 3
4

∑n
i=1 qi. In

Section 6.5, we prove a tight worst-case bound for the maximum latency of a system

optimum.

Let us finally mention that Theorem 4.3 in Köhler and Skutella (2002) implies that

the maximum latency problem is APX-hard when latencies can be arbitrary nonlinear

functions.

6.4 Fairness

As explained in Section 2.3, user equilibria are fair. The next result establishes the same

property for min-max s-t-flows in the case of linear latencies. Namely, a fair min-max

flow always exists. Therefore, the difference between a user equilibrium and a min-max

flow is that the latter may leave paths unused that are shorter than the ones carrying

flow, a situation that cannot happen at equilibrium. The following result is not true for

nonlinear latencies, as we shall see later.

Theorem 6.5. Every instance of the single-source single-sink maximum latency problem

with linear latency functions has an optimal solution that is fair.

Proof. Consider an instance with demand d and latency functions `a(xa) = qaxa + ra,

for a ∈ A. Among all min-max flows, let f̂ be the one that uses the smallest number of

paths. Let P1, P2, . . . , Pu be these paths. Consider the following linear program:

min z (6.1a)

s.t.
∑

a∈Pi

qaxa + ra 6 z i = 1, . . . , u, (6.1b)

∑

Ph3a

xPh
= xa a ∈ A, (6.1c)

144



PSfrag replacements
11

xpxp

axp + baxp + b

Figure 6-3: Instance with nonlinear latencies that illustrates that fair min-max flows
may not exist

u∑

i=1

xPi
= d (6.1d)

xPi
> 0 i = 1, . . . , u. (6.1e)

Note that this linear program has u+ 1 variables. Furthermore, by construction, it has

a feasible solution with z = L(f̂), and there is no solution with z < L(f̂). Therefore, an

optimal basic feasible solution gives a min-max flow that satisfies with equality u of the

inequalities (6.1b) and (6.1e). As xPi
> 0 for all i because of the minimality assumption,

all inequalities (6.1b) have to be tight.

A byproduct of this proof is that an arbitrary flow can be transformed into a fair

one without increasing its maximum latency. In fact, just solve the corresponding linear

program. An optimal basic feasible solution will either be fair or it will use fewer paths.

In the latter case, eliminate all paths carrying zero flow and repeat until a fair solution

is found.

Notice that the min-max flow may not be fair for nonlinear functions. A modification

of the example presented in Section 6.2 features high unfairness with latencies that are

polynomials of degree p, for p > 2 (see Figure 6-3).

When a = (1 + ε)p−1 and b = 2 −
(
1+ε
2+ε

)p−1 − δ for some ε > 0 and δ > 0 such that

b > 1, the min-max flow routes 1
2+ε

units of flow along the “top-bottom” and “bottom-

top” paths, respectively, and ε
2+ε

units of flow along the “top-top” path. It is not hard to

see that this flow is optimal. Indeed, the “bottom-bottom” path is too long to carry any

flow. Moreover, by symmetry, the “top-bottom” and “bottom-top” paths have to carry
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Figure 6-4: Instance showing that Theorem 5.12 is tight

the same amount of flow. Letting the variable x denote the flow on the “top-top” path,

the flow on both top arcs is 1+x
2

, and that of both bottom arcs is 1−x
2

. Summing along

paths, we get that the latency of the “top-top” path is 2
(
1+x
2

)p
, which is always smaller

than that of the other two paths, which is
(
1+x
2

)p
+ a

(
1−x
2

)p
+ b. Finally, we compute

the optimal solution of min
{(

1+x
2

)p
+ a

(
1−x
2

)p
+ b : 0 6 x < 1

}
and get f̂top-top = ε

2+ε
,

as specified before.

Let us compute the unfairness of this solution. The “top-top” path has latency equal

to 2
(
1+ε
2+ε

)p
, which tends to

(
1
2

)p−1
as ε → 0. The latency of the other two paths used

by the optimum is equal to 2 − δ. Therefore, the unfairness of this min-max flow is

arbitrarily close to 2p.

As explained earlier, system optima may route flow along paths that users would not

choose. Recall that the modified latency function `∗a(xa) was defined as (`a(xa)xa)
′ =

`a(xa) + `′a(xa)xa. In Chapter 5, we proved that when latencies are drawn from L, the
unfairness of a system optimal flow is bounded by γ(L), where γ(L) was defined as the

smallest value that satisfies `∗a(x) 6 γ(L)`a(x) for all ` ∈ L and all x > 0. Here, we

prove that the bound shown in Theorem 5.12 turns out to be tight.

To see that consider the instance displayed in Figure 6-4. It is easy to see that the

system optimum routes half of the demand along each arc, implying that the unfairness

is `∗(d/2)/`(d/2). Taking the supremum of that ratio over d > 0 and ` ∈ L yields

γ(L). Moreover, note that this example is also tight if constrained system optima are

considered (see Corollary 5.14).
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6.5 Price of Anarchy and Related Approximation

Results

As discussed earlier, Nash equilibria in general and user equilibria in particular are

known to be inefficient (Section 2.5). It is quite appealing that in the routing game

considered here, the price of anarchy with respect to the maximum latency objective

is small too. It was first noted by Weitz (2001) that in networks with only one source

and one sink, any upper bound on the price of anarchy for the total latency is an upper

bound on the price of anarchy for the maximum latency. We present a multicommodity

version of this result that relies on the findings for the total latency objective shown by

Theorems 2.8 and 3.10. Recall that Lk(x) denotes the maximum latency incurred by a

flow-carrying path in Pk under a flow x, and dk denotes the demand rate corresponding

to OD pair k.

Theorem 6.6. Consider a set L of continuous and nondecreasing latency functions, and

a multicommodity flow network with latency functions drawn from L. Let f be a user

equilibrium and f̂ be a min-max flow. For each commodity k ∈ K, Lk(f) 6 d
dk
α(L)L(f̂),

where d
def
=
∑

k∈K dk is the total demand.

Proof. Let f ∗ be the system optimum. Then,

dkLk(f) 6 dC(f) 6 dα(L)C(f ∗) 6 dα(L)C(f̂) 6 dα(L)L(f̂) .

Here, the first inequality holds because f is a user equilibrium, the second inequality is

that of Theorem 3.10,1 the third one comes from the optimality of f ∗, and the last one

just expresses that the average latency cannot be larger than the maximum latency.

The proof of Theorem 6.6 implies that if for a given single-source single-sink instance

an equilibrium flow f happens to be a system optimum, then f is also optimal for

1Although we do not need side constraints for this result, we rely on this theorem instead of Theo-
rem 2.8 to be able to relax the assumptions on latency functions.
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the maximum latency objective.2 For single-source single-sink networks with general

latency functions, Theorem 6.6 shows that computing a user equilibrium is an α(L)-
approximation algorithm for the maximum latency problem. Notice that this guarantee

is tight as shown by the example given in Figure 6-5, which generalizes the Braess’

Paradox network described in Section 2.4.2. Indeed, the latency of a user equilibrium

is `(d) while the maximum latency of a min-max flow, which coincides with the system

optimum, is

`(d)− max
06x6d

{x

d

(
`(d)− `(x)

)}
.

As in Section 3.6, taking the supremum over d > 0 and ` ∈ L, the ratio of the latency

of the user equilibrium to that of the min-max flow is arbitrarily close to α(L).
For instances with multiple sources and a single sink, the maximum latency of a user

equilibrium is unbounded with respect to that of an optimal solution, even with linear

latencies. In fact, we will show that the price of anarchy cannot be better than Ω(n),

where n is the number of nodes in the network. Weitz (2001) showed that the price of

anarchy is unbounded in the case of two commodities, and Roughgarden (2004b) proved

that it is at most n− 1 if there is a common source and sink.

Theorem 6.7. The price of anarchy (with respect to the maximum latency) in a single-

commodity network with multiple sources and a single sink is Ω(n), even if all latencies

are linear functions.

Proof. Fix a constant ε > 0 and consider the instance presented in Figure 6-6. Nodes

2Recall from Chapter 2 that the system optimum and the user equilibrium coincide when latencies
are monomials of a common degree.
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Figure 6-6: Instance showing that user equilibria can be arbitrarily bad with respect to
the maximum latency objective when multiple sources are present

n, n− 1, . . . , 1 are the sources while node 0 is the sink. Nodes i and i− 1 are connected

with two arcs: ai with constant latency equal to 1 and ãi with latency equal to x/εi. Let

the demand entering node i > 0 be εi. The user equilibrium of this instance routes the

flow along paths of the form ãi, ai−1, . . . , a1 and has maximum latency n. To show the

claim, it suffices to exhibit a good solution. For instance, for origin i, let its demand flow

along the path ai, ãi−1, . . . , ã1. Under this flow, the load of ãi is equal to εi+1 + · · ·+ εn

and its traversal time is (εi+1 + · · ·+ εn)/εi = ε1 + · · ·+ εn−i. Hence, we can bound the

maximum latency from above by 1 + nε
1−ε

, which tends to 1 when ε→ 0.

In contrast to our results of Chapter 3 about the total latency objective, the pre-

vious theorem implies that equilibria are bad in single-source single-sink networks with

capacities.

Corollary 6.8. Consider a single-source single-sink network with explicit arc capacities.

With respect to the maximum latency, the worst-case coordination ratio of the best user

equilibria is unbounded, even if all latencies are linear functions.

Proof. It suffices to show an instance with high coordination ratio. Starting from that

of Theorem 6.7, we create one with capacities using a common network transformation

(Ahuja, Magnanti, and Orlin 1993). Indeed, we add a super-source n + 1, and for each

node i = 1, . . . , n, we connect n + 1 to i with an arc of capacity equal to the demand

of OD pair (i, 0), and with latency function `(i,0)(x)
def
= 0. Finally, we let the demand of

the new instance be the single OD pair (n + 1, 0) with rate equal to the total demand

of the original network.
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As all feasible flows in the new instance saturate every arc (n+1, i) for i = 1, . . . , n,

flows in the original and the new instances are in one-to-one correspondence. Therefore,

the extension of a min-max flow is a min-max flow. More interestingly, the extension of a

user equilibrium is a user equilibrium with side constraints, according to Definition 3.3.

Indeed, users of an OD pair (k, 0) cannot switch to another OD pair (k ′, 0) because

arc (n+1, k′) is saturated. As the flow was at equilibrium in the original instance, users

do not have an incentive to switch to another path starting with arc (n + 1, k). The

original instance had an essentially unique equilibrium (recall that this means that if

there is more than one, they all share the same objective value), and so does the new

one. Hence, the coordination ratio is that of the original instance, which was shown to

be large.

Of course, the price of anarchy is unbounded because it refers to an arbitrary equi-

librium. Let us also remark that for the instance described in the previous corollary,

the extension of any flow of the original instance is a user equilibrium with capacities

(Definition 3.1).

Going back to the approximations guarantees, let us note that in the single-source

single-sink case, user equilibria are not the only good approximations to the maximum

latency problem. For instance, Corollary 5.13 implies that system optima are also close

to optimality with respect to the maximum latency objective.

Theorem 6.9. Let L be a family of differentiable and nondecreasing latency functions.

For single-source single-sink instances with latency functions drawn from L, computing

a system optimum is a γ(L)-approximation algorithm for the maximum latency problem.

150



PSfrag replacementsd d

`(d) + ε

`(x)

Figure 6-8: Instance showing that Theorem 6.10 is tight

Proof. In Corollary 5.13, replace x by a min-max flow.

The bound given in Theorem 6.9 is best possible. To see this, consider the instance

depicted in Figure 6-7. The min-max flow routes the entire demand along the lower arc,

for a small enough ε > 0. On the other hand, the unique system optimum has to satisfy

`∗(f ∗) = `∗(d)−ε, where f ∗ is the flow along the lower arc. Therefore, the upper arc has

positive flow and the maximum latency is `∗(d) − ε. The ratio between the maximum

latencies of the two solutions is arbitrarily close to `∗(d)/`(d). Taking the supremum

over d > 0 and ` ∈ L shows that the bound in Theorem 6.9 is tight.

To complete Table 6.1, let us prove that the average latency of the min-max flow is

not too far from that of the system optimum.

Theorem 6.10. Consider a set L of continuous and nondecreasing latency functions.

Let f̂ be a min-max flow and f ∗ be a system optimum for an instance with a single

source, a single sink, and latencies drawn from L. Then, C(f̂) 6 α(L)C(f ∗).

Proof. Note that C(f̂) 6 L(f̂) 6 L(f) = C(f) 6 α(L)C(f ∗), where f is the user

equilibrium of the instance.

Again, the guarantee given in the previous theorem is tight. To show this, it is

enough to note that the equilibrium flow and the min-max flow coincide in the example

of Figure 6-8, and their average latency is `(d). Moreover, the average latency of the

system optimum is arbitrary close to

`(d)− max
06x6d

{x

d
(`(d)− `(x))

}
.
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Table 6.3: Overview of approximation guarantees for single-source single-sink networks
when latencies belong to a given set L. All bounds are tight. The “?” indicates that no
upper bound is known; recall from the example depicted in Figure 6-3 that 2p is a lower
bound for polynomials of degree p, for p > 2.

maximum latency average latency unfairness

min-max flow 1 α(L) ?
system optimum γ(L) 1 γ(L)
user equilibrium α(L) α(L) 1

Taking the supremum of the ratio of these two values over d > 0 and ` ∈ L completes

the argument.

Let us finally remark that, for other traffic games, there always exist flows that simul-

taneously minimize the average and the maximum travel time (Fotakis, Kontogiannis,

and Spirakis 2004). In other words, the bounds corresponding to the previous two results

would be 1.

6.6 Discussion

We have shown that computing a flow of minimum maximum latency is NP-hard, even

in the single-source single-sink case and with linear latency functions. Still, the problem

admits a solution that is fair. We have proved tight bounds between the different

solutions and with respect to different objectives. For instance, we have shown that

two standard solutions in networks problems give constant factor approximations to this

problem. Indeed, on the one hand, the coordination ratio of user equilibria is α(L) and
they are fair. On the other, the ratio of the maximum latency of system optima to that

of the min-max flow is γ(L), while their unfairness is also bounded by γ(L). In Table 6.3,

we summarize the findings for single-source single-sink networks with latencies drawn

from a given class L of allowable latency functions.

Let us finally note that a fourth objective could have been considered. We refer to a

different generalization of the problem of Koutsoupias and Papadimitriou (1999). They

considered the maximum latency in a network in which all paths consist of just a single
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arc. Instead of generalizing that objective to the maximum latency of a path, we could

as well consider the problem of minimizing the maximum latency of the arcs, i.e., mini-

mizing the length of the bottleneck arc, defined as the arc with maximum latency among

those with flow. This objective would be of interest to telecommunication network’s

service providers because they try to minimize the arc loads so that, in an event of an

arc failure, sufficient capacity is available for alternative routes.

In contrast to the maximum latency problem, this new problem can be solved in

polynomial time, if latency functions are convex. To see that, we can “guess” the

optimal solution. Obviously, arcs for which `a(0) is larger than our guess cannot be used

in an optimal solution. We, therefore, let Ã include the arcs of A that are shorter than

the guess. We formulate the following convex program:

min z (6.2a)

s.t. `a(xa) 6 z a ∈ Ã, (6.2b)
∑

P3a

xP = xa a ∈ Ã, (6.2c)

∑

P∈Pk

xP = dk k ∈ K, (6.2d)

xP > 0 P ∈ P , (6.2e)

where P is modified to include paths consisting of arcs in Ã only. Consider an optimal

solution to the previous problem. If all the inequalities (6.2b) corresponding to arcs that

carry flow are not tight, an empty arc is preventing z to be smaller. Hence, our guess

was incorrect. Updating the guess with the maximum latency among arcs with flow,

and repeating as many times as needed, solves the problem in polynomial time.

In terms of approximation, the optimal solution to this problem can be arbitrarily

inefficient with respect to the other objectives we considered in this chapter and vice-

versa. Let us call the optimal solution with respect to the new objective the “bottleneck

flow.” Consider an instance with two nodes connected with two paths that has to route
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Figure 6-9: Examples for the bottleneck objective

a unit demand (Figure 6-9, left). The first path consists of a single arc and the second

is given by a chain of n arcs; the latency of each arc is equal to its flow. The bottleneck

flow is 1/2 along all the arcs, and the system optimum, the user equilibrium and the

min-max flow coincide and are equal to 1
n+1

along the chain and n
n+1

along the other

arc. This shows that the bottleneck flow does arbitrarily bad with respect to the other

three objectives.

Conversely, consider the same instance but now set the latencies of the arcs in the

chain to x
n
, where x is the flow on the arc (Figure 6-9, right). Now, the bottleneck flow

is n
n+1

along the arcs on the chain and 1
n+1

on the other arc. In this case, the system

optimum, the user equilibrium and the min-max flow coincide, too, but are equal to 1/2

everywhere. This shows that the optimal solutions with respect to the three objectives

are arbitrarily bad with respect to the bottleneck objective.
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Chapter 7

Conclusion

One of the main goals of this dissertation has been to understand the consequences of

a laisez-faire approach in systems where central coordination is impractical. In other

words, we have considered the following question: How far from optimality is the system

if no central coordination is imposed? This has been a long standing open question. For

example, Mahmassani and Peeta (1993) wrote:

. . . the extent of the differences between SO [system optimum] and UE [user

equilibrium] solutions, particularly in terms of overall system cost, is not

known. This is very important for ATIS [Advanced Traveler Information

Systems] because if the two solutions are not perceptibly different, coordi-

nated cooperative SO route guidance imposed by a central controller may

not be necessary, and descriptive information that is less complicated and

simpler to disseminate to noncooperating drivers may be sufficient.

[. . . ]

. . . although mathematical relationships among traffic flow variables are rea-

sonably well established for arterials and intersections, the intricacies of in-

teractions at the network level preclude analytic derivability of network-wide

traffic relationships from the link-level traffic models.

Nevertheless, this question has recently been answered for a certain traffic model (Rough-

garden and Tardos 2002; Roughgarden 2003b), and our work contributes to addressing
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it by providing a positive answer for a more general model that is commonly used in

transportation networks.

The proper use of route guidance devices with the objective of improving the uti-

lization of road networks by giving more information to drivers has been one of the

most active research areas in traffic engineering. Indeed, the ultimate goal of Intelligent

Transportation Systems is making the actual traffic close to the system optimum. Yet,

not all drivers would have the incentive to follow a corresponding route recommendation

under system-optimal routing; actually, some would face rather long “detours.” There-

fore, most of the recent approaches in transportation science are content with computing

a user equilibrium. That is, users are guided onto paths they would—in theory—take

anyway. Our results give an a posteriori justification for doing so; in fact, we have shown

for a broader class of networks than considered before that the expense of working with

user equilibria instead of system optima is limited.

The introduction of side constraints proposed in Chapter 3 gives rise to multiple

equilibria. In particular, the price of anarchy has been shown to be unbounded, even

in the case of linear latency functions. Nevertheless, it is reassuring that the best user

equilibrium is still close to the system optimum, despite the presence of side constraints.

Even though that equilibrium happens to be difficult to compute, an equilibrium of good

quality, namely the Beckmann user equilibrium, can be computed efficiently. Although

Beckmann user equilibria are not appropriate for describing user behavior because it is

not possible to predict which of the many equilibria users will adhere to,1 Beckmann

user equilibria can be used for prescribing user behavior. In fact, if the system optimal

solution with user constraints that we have described in Chapters 4 and 5 cannot be

implemented, a more conservative choice would be an equilibrium that is efficient and

easily computable; that is precisely the Beckmann user equilibrium.

With respect to route guidance, the ability to guide people efficiently has potentially

a significant impact. On the one hand, recall that the study conducted by the Texas

1Unless Observation 3.7 is used to argue that, behaviorally, the Beckmann user equilibrium is a
“natural” equilibrium and therefore it is the equilibrium to be expected. As that argument requires
a specific interpretation of the meaning of side constraints and we have not conducted experiments to
determine the validity of that interpretation, we prefer to not make such a claim.
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Transportation Institute (2002) estimated that congestion costs the United States $67.5

billion dollars per year. That implies that huge nationwide savings can be expected from

even a small percentual reduction in congestion. On the other hand, besides minimizing

the total travel time, our route guidance system also computes solutions with small

travel time for each of the individual users (user equilibria, although fair, may be bad

for all users as exemplified by the Braess Paradox).

Finally, we have also considered alternative objective functions relevant to other

application domains. The price of anarchy computed earlier in Chapter 3 is robust

against changes in the objective function. For s-t-networks, the price of anarchy does not

change if the maximum latency objective is used to evaluate the solution performance.

Furthermore, system optima, user equilibria, and min-max flows are all close to each

other when evaluated with respect to the three objectives we have considered in the

dissertation (total latency, unfairness, and maximum latency).

Before concluding with open questions, let us note that although we have exclusively

worked with network games, there are other research efforts related to the price of an-

archy that consider other domains. Vetta (2002) proposed a general framework that fits

multiple applications. In his model, an instance is given by a ground set and players have

to choose a subset of those elements. Assuming that the cost function is submodular,2

the author proved an upper bound for the price of anarchy. He applied that result to

competitive facility location problems, auctions, and a road traffic model similar to that

of Chapter 2. Johari and Tsitsiklis (2004) analyzed resource allocation games. In partic-

ular, they considered a telecommunication system in which individuals bid for capacity

according to private utilities. That article extends the work of Kelly (1997) on rate con-

trol to the case in which users are price anticipating instead of price takers. The authors

proved a tight bound for the price of anarchy for this model (which surprisingly is again

4/3, but as opposed to our model, linear utilities are the worst possible). Acemoglu and

Ozdaglar (2003) analyzed a telecommunication network in which a (monopolist) service

provider sets prices for its links. Users, in a second stage, selfishly select the amount of

2Basically, submodular functions correspond to those with decreasing marginal utility, and therefore
are common in several applications.
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flow to transmit and their routes. They proved the existence of a unique equilibrium of

this two-stage game. Interestingly, this equilibrium achieves full efficiency for the rout-

ing problem. Finally, Perakis (2004) argued that her results on the price of anarchy for

non-separable latencies (described in Section 3.9) can be used to guarantee the efficiency

of an equilibrium in a competitive multi-period pricing problem.

The concept of the price of anarchy has been gaining momentum lately, and there

now exist many research groups working on these problems. In the author’s opinion, this

area of research is particularly exciting, not only because of the interesting questions

that exist, but also because the concepts and tools it requires have been drawn from

different application domains. These concepts and tools have facilitated some elegant

results and proofs.
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Hoppe, B. and É. Tardos (2000). The quickest transshipment problem. Mathematics of

Operations Research 25, 36–62.

Inouye, H. (1987). Traffic equilibria and its solution in congested road networks. In R. Genser

(Ed.), Control in Transportation Sysyems, Proceedings of the 5th IFAC/IFIP/IFORS

Conference, Vienna, Austria, July 1986, pp. 267–272. Pergamon Press, Oxford.
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