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Noise and Multistability in Gene Regulatory Networks

by
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requirements for the degree of
Doctor of Philosophy

Abstract

Proteins are the functional machinery in living cells. Proteins interact with each
other and bind to DNA to form so-called gene regulatory networks and in this way
regulate the level, location and timing of expression of other proteins. Cells imple-
ment feedback loops to create a memory of their gene expression states. In this way,
every differentiated cell in a multicellular organism remembers its expression profile
throughout its life. On the other hand, biochemical reactions that take place dur-
ing gene expression involve small numbers of molecules, and are therefore dominated
by large concentration fluctuations. This intrinsic noise has the potential to corrupt
memory storage and might result in random transitions between different gene ex-
pression states. In the first part of my thesis, I will discuss how the fluctuations
in gene expression levels are regulated. The results provided the first experimental
evidence that cells can regulate noise in their gene expression by tuning their genetic
parameters. In the second half of my thesis, I will discuss how cells create memory
by experimentally studying a gene regulatory network that implements a positive
feedback loop. A positive feedback loop with nonlinear interactions creates two dis-
tinct stable gene expression states. A phase diagram, coupled with a mathematical
model of the network, was used to quantitatively investigate the biochemical pro-
cesses in this network. The response of the network depends on its previous history
(hysteresis). Despite the fluctuations in the gene expression, the memory of the gene
expression state is preserved for a long time for a broad range of system parameters.
On the other hand, for some of the parameters, noise causes random transitions of
the cells between different gene expression states and results in a bimodal response.
Finally, the hysteretic response of the natural system is experimentally converted to
an ultrasensitive graded response as predicted by our model.

Thesis Supervisor: Alexander van Oudenaarden
Title: Assistant Professor
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Chapter 1

Introduction

1.1 From genes to proteins: Information passaging

in living matter

Over ten million of species are living on this planet. They are either single-celled

organisms: like bacteria and yeast, or multicellular organisms: such as nematodes,

insects or mammals, some containing more than 1013 cells. Each single cell represents

a chemical factory, receiving raw materials from outside and using these materials to

grow and multiply. All the information for the functioning of these little factories are

encoded in the DNA of the cells. Thus, single cells can be perceived as the vehicles

of hereditary information for all living matter. Hereditary information of all genes

is stored as a linear chemical code in the DNA molecule of a single cell. Each gene

corresponds to the genetic information of one protein. During cell replication, DNA

copies itself to pass this information accurately to the next offspring of the mother

cell.

1.1.1 Central Dogma of Molecular Biology

During the life cycle of a cell, this conserved genetic information has to be converted

into the functional machinery of each cell. Proteins are the main functional molecules

in the cells and make up most of the cell mass. Therefore protein synthesis should

25



be very well organized. Protein synthesis consists of two sequential templated poly-

merization processes, which are called transcription and translation. This two step

process of information transfer constitutes the so-called “central dogma of molecular

biology”.

1.1.2 Transcription

There are different types of RNA molecules in each cell: messenger RNAs (mRNA),

transfer RNAs (tRNA), ribosomal RNAs (rRNA) and some other type of RNA

molecules which have catalytic functions. All of these RNA molecules are synthe-

sized by an enzyme called “RNA polymerase” by using one of the strands of DNA

as a template. This step is called transcription. During the transcription process, an

RNA transcript is created as a chain of single-stranded nucleic acids, whose length

ranges from 50 to 10000 nucleotides [2]. Free RNA polymerase molecules diffuse in

the cell and attach randomly to the DNA. They slide over the DNA but weakly stick-

ing to most of it. However, when they reach a DNA segment called “promoter”, they

bind tightly. The promoter contains a region called ”start site”, where RNA poly-

merase starts synthesizing a complementary RNA molecule from the DNA template.

The RNA polymerase moves stepwise on the DNA and the elongation of the RNA

ends when the polymerase reaches a termination signal on the DNA (Figure 1-1).

Each gene or gene cluster (operon) has its own upstream promoter sequences. In

bacteria, when all these promoter sequences are compared, a ”consensus sequence”

is obtained. Strong promoters (where RNA polymerase produces large amounts of

mRNAs from genes downstream of these promoters) have sequences that very closely

match to the consensus sequence, whereas weak promoters (where RNA polymerase

produces small amounts of mRNAs) have sequences that deviate significantly from

the consensus sequence.
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Figure 1-1: ”Start and stop signals for RNA synthesis by a bacterial RNA
polymerase. Here, the lower strand of DNA is the template strand. (A) Start
signal. The polymerase begins transcribing at the start site. Two short sequences
(shaded red), about -35 and -10 nucleotides upstream the start site, determine where
the polymerase binds; (B) A stop (termination) signal. The E. coli RNA polymerase
stops when it synthesizes a run of U residues (shaded blue) from a complementary
run of A residues on the template strand, provided that it has just synthesized a
self-complementary RNA nucleotide sequence (shaded green), which rapidly forms a
hairpin helix that is crucial for stopping transcription. Copyright c©Molecular Biology
of the Cell by B. Alberts and A. Johnson and J. Lewis and M. Raff and K. Roberts
and P. Walter. Reproduced by permission of Garland Science/Taylor and Francis
books, Inc.”
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Figure 1-2: ”Information flow in protein synthesis. (A) The nucleotides in an
mRNA molecule are joined together to form a complementary copy of a segment of
one strand of DNA. (B) They are then matched three at a time to complementary
sets of three nucleotides in the anticodon regions of tRNA molecules. At the other
end of each type of tRNA molecule, a specific amino acid is held in a high-energy
linkage, and when matching occurs, this amino acid is added to the end of the growing
polypeptide chain. Thus translation of the mRNA nucleotide sequence into an amino
acid sequence depends on complementary base-pairing between codons in the mRNA
and corresponding tRNA anticodons. Copyright c©Molecular Biology of the Cell by
B. Alberts and A. Johnson and J. Lewis and M. Raff and K. Roberts and P. Walter.
Reproduced by permission of Garland Science/Taylor and Francis books, Inc.”

1.1.3 Translation

At the second step of the central dogma, RNA molecules are used as templates to

synthesize protein molecules. This step is called “translation”. Proteins are polymers

of amino acids linked together by peptide bonds. During this process another type

of RNA, which is called tRNA, functions as an adaptor. tRNA translates nucleotide

sequence information into amino acid sequence information (Figure 1-2). tRNAs are

short RNA molecules, which bind at one end to a specific codon (composed of three

nucleotides) on the mRNA and at their other end to the specific amino acid dictated

by that codon. The region on the tRNA that binds to a codon on the mRNA is called

an anticodon. Codon-anticodon pairing is required to attach each specific amino acid

to a growing protein chain.

Proteins are translated from mRNA templates by a complex machinery called

the “ribosome”. Ribosomes are composed of rRNAs and proteins. Ribosomes have

two major subunits. The smaller subunit binds to mRNA and tRNAs. It helps the
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codon-anticodon base pairing and prevents any slipping between mRNA and tRNA.

The larger subunit catalyzes peptide bond formation between successive amino acids.

Ribosome moves stepwise along the mRNA. As it passes over a codon, a new amino

acid is added to the growing chain of amino acids. The complete synthesis of an

average sized protein takes about 20 seconds in bacteria[2].

In bacteria, there are specific sequences on mRNA molecules that are recognized

and bound by ribosomes. These are called ”ribosome binding sequences” (RBS).

On mRNAs, the exact sequences that defines for the start of translation is called

the ”start codon”. Each RBS is usually located at a close distance upstream of a

start codon. Ribosomes that bind to the RBS recognize this start codon on mR-

NAs and start synthesizing a new protein. RBS sites might occur in more than one

place of a bacterial mRNA. This leads to the synthesis of more than one species of

protein from one mRNA transcript. These kinds of mRNAs are called polycistronic

transcripts. Protein synthesis ends when a ribosome reaches either one of the three

specific codons, which are called stop codons, on a mRNA. At this point, the mature

protein dissociates from the ribosome.

1.1.4 Protein bursts

On average the synthesis of a protein takes about half a minute in bacteria. During

this time period, many translation initiations might take place on the same mRNA

transcript. Usually, a new ribosome jumps onto the start codon of mRNA, immedi-

ately after the preceding ribosome clears the RBS as it moves along the mRNA. There-

fore a series of ribosomes can simultaneously translate the same mRNA molecule, be-

fore that mRNA is degraded, giving rise to bursts of newly produced proteins in the

cell. This binding of multiple ribosomes on an mRNA molecule generates a structure

called polyribosomes (Figure 1-3).
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Figure 1-3: ”A polyribosome. Schematic drawing showing how a series of ribosomes
can simultaneously translate the same mRNA molecule. Copyright c©Molecular Bi-
ology of the Cell by B. Alberts and A. Johnson and J. Lewis and M. Raff and K.
Roberts and P. Walter. Reproduced by permission of Garland Science/Taylor and
Francis books, Inc.”
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1.2 Regulation of gene expression can be accom-

plished at different steps

Proteins are the functional machinery in the cell factories. They are used as catalysts

in most of the reactions happening in any cell. These reactions include replication of

DNA molecules and the passage of information from DNA to RNA and then to the

proteins themselves, which closes the feedback loop between DNA and proteins. This

feedback loop is the core of the self-reproducing capacity of living cells.

While DNA is a single stable molecule in every cell, mRNAs and proteins are

unstable molecules. Cells do not synthesize all of the proteins that their genome

encodes continuously at high levels. They adjust the rates of transcription of each

gene and translation of each mRNA molecule separately to regulate the levels of

each of their protein species separately. There are regulatory sequences on the DNA

that are called non-coding sequences. They do not code for any protein, but instead

define where a gene starts and ends or determine the efficiency of RNA and protein

production.

The complexity of the regulatory and non-coding regions of DNA changes from

organism to organism. Thus, the genome of an organism not only defines the functions

of its proteins but also when and how much of them will be synthesized.

A bacterium can control the amounts of the proteins it makes at different stages:

by controlling when and how often a given gene is transcribed (transcriptional con-

trol), by selecting which mRNAs in the cytoplasm are translated by ribosomes (trans-

lational control), by selectively degradating certain mRNA molecules (degradation

control), or by selectively activating or inactivating specific protein molecules after

they have been made (activity control).

In majority of the cases, transcriptional controls are the most widely used way of

regulating gene expression. Since transcription is the first stage in gene expression,

this is the most economic way of achieving regulation. It prevents wasting energy for

the production of unused superfluous intermediate molecules. Most of the mRNAs

in bacteria have very short lifetime. They are usually degraded within five minutes.
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Because of this rapid synthesis and degradation of mRNAs, a bacterium can quickly

adapt to any changes in the environment.

Sometimes RNA molecules regulate the translation of other RNA molecules by

binding to them and targeting them to degradation. This type of control is called

antisense RNA strategy. This strategy is implemented in regulation of the copy

number of one of the well-known plasmid family. This strategy creates a feedback

control on the initiation of DNA replication for a large family of bacterial DNA

plasmids. The control system limits the number of copies of the plasmid made in the

cell, thereby preventing the plasmid from killing its host cell by over replicating [2].

1.3 Genetic switches

Transcriptional control of gene expression is mostly done by DNA binding proteins.

They bind to specific recognition sequences on the DNA to turn transcription of a

gene (or a set of genes) on or off. Some of these regulatory proteins, which are called

“repressors”, bind to a region close to the promoter of a gene that they regulate. In

this case, they inhibit the binding of RNA polymerase to the promoter region of that

gene. Some of the other regulatory proteins use another strategy. They bind to the

DNA and induce a striking bend in the DNA. This bending sometimes blocks the

access of RNA polymerase to the promoter region [3], whereas in other cases it helps

RNA polymerase for binding the promoter [4].

Some of the bacterial promoters are only weakly functional on their own, either

because they are recognized poorly by RNA polymerase or because the polymerase has

difficulty opening the DNA helix when it tries to start transcription. In some cases,

these poorly functioning promoters can be activated by gene regulatory proteins that

bind to a nearby site to the promoter, contacting the RNA polymerase in a way that

dramatically increases the probability of transcription. In many cases, the binding

of the repressor or activator proteins are also regulated by secondary small molecules

(Figure 1-4).

Transcriptional switches are widely used in bacteria to adapt to changes in their
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Figure 1-4: ”Summary of the mechanisms by which specific gene regulatory
proteins control gene transcription in procaryotes. (A) Negative regulation;
(B) positive regulation. Note that the addition of an inducing ligand can turn on a
gene either by removing a gene repressor protein from the DNA (upper left panel) or
by causing a gene activator protein to bind (lower right panel). Likewise, the addition
of an inhibitory ligand can turn off a gene either by removing a gene activator protein
from the DNA (upper right panel) or by causing a gene repressor protein to bind
(lower left panel). Copyright c©Molecular Biology of the Cell by B. Alberts and A.
Johnson and J. Lewis and M. Raff and K. Roberts and P. Walter. Reproduced by
permission of Garland Science/Taylor and Francis books, Inc.”
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environment. The bacterial CAP (catabolite activator protein), for example, activates

genes that enable E. coli to use other carbon sources when glucose, its preferred carbon

source, is limited or unavailable. Decreasing levels of glucose induce an increase in the

intracellular signaling molecule cyclic AMP (cAMP), which binds to the CAP protein.

The cAMP-CAP complex binds to specific recognition sequences on the DNA near

the target promoters and turns on the appropriate genes. In this way the expression

of a target gene is switched on or off, depending on whether cyclic AMP levels in the

cell are high or low, respectively [2].

Some bacterial proteins (including CAP) can act as either activators or repres-

sors, depending on the exact placement of the DNA sequences they recognize with

respect to the promoter: if the binding site for the protein overlaps the promoter, the

polymerase cannot bind and the protein acts as a repressor; whereas if the binding

site does not block the access of the polymerase, the protein acts as an activator.

The lac operon in E. coli has a switch, which is regulated by two different DNA

binding proteins: a lac promoter specific transcriptional repressor and a globally

acting protein CAP (CRP). This operon encodes for three proteins involved in the

uptake and metabolism of the lactose. This operon’s expression is induced depending

on the availability of inducer galactosides (lactose is one of them) outside the cell.

The lac operon integrates different signals and switches on and off depending on

the outcome of these signals. This operon’s response under different conditions is

explained in the third chapter of my thesis in more detail.

1.4 Gene regulatory networks

Complex developmental switches are built from smaller ones. In a well-studied model

organism, Drosophila melanogaster, it was found that, during early development, the

expression of segmentation genes is regulated by a hierarchy of positional signals.

The products of the egg-polarity genes provide global positional signals that cause

downstream, so-called, gap genes to be expressed in special regions of the embryo, and

the products of the gap genes then provide a second level of positional signals that
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act more locally to regulate finer details of patterning by influencing the expression

of the pair-rule genes. In this way, the global gradients organize the creation of a

fine-grained pattern through a process of sequential positional controls [2].

In many cases, cells control their gene expression in combinatorial ways. In a

recent study, it was shown that, opposing gradients of two D. melanogaster transcrip-

tional repressors dictates the positions of several segments by differentially repressing

two distinct regulatory regions (enhancers) of one of the pair-rule genes [5]. As men-

tioned before, expression of critical gene regulatory proteins lead to dramatic changes

in a whole set of downstream genes.

1.5 Operating principles in gene regulatory net-

works

Cells have complex gene regulatory networks. The interaction diagrams resembles

electrical circuits in a computer. However, there are important differences between

our understanding of how a computer and a cell functions. First, computers are

built by humans and we know how each component of a computer connects to other

components. This enables us to predict the outcome of any change in the network

circuitry in a quantitative way. Whereas, we have just started to explore the genomic

interaction networks in living cells in the last decades. The genomes of many model

organisms, including man, have been sequenced. Biologists have been working hard

to decipher which genes code for which proteins. Recently, there has been a great

interest to discover the protein interaction circuits in cells [6, 7, 8]. What is still

missing, is an understanding of how the global protein interaction network defines

specific functions in a cell. From a given interaction network, we should be able

to reach a state of knowledge, where we will be able to predict the outcome of any

perturbation in this network. Before understanding how the global protein interaction

network of a cell works robustly, first we have to learn how the modular parts of this

global network function.
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A second significant difference between gene regulatory networks and electrical

circuits is the signal to noise ratio during information passage in each network. Elec-

tronics are designed to have large signal to noise ratios. Whereas, in cells, there

are considerable fluctuations (noise) in gene expression levels. Then, one might ask

whether or not this variation has any significant impact on the cells. Is it advantages

for the cells? Or is it just an unavoidable statistical fact that cells have to cope

with and try to filter out? In the literature, one finds examples of cells exploiting

the noise in gene expression to introduce heterogeneity in its population to adapt

better and faster to changing environmental conditions [9]. Although noise might be

advantageous for cells in some cases, one would expect to see that cells have adopted

mechanisms to cope with and survive in the presence of these fluctuations. For exam-

ple, during development of complex organisms, noise has to be filtered out to achieve

precise regulation of the differentiation of an embryo [10]. Is there any method that

cells use for controlling the noise levels in their gene expression?

Thirdly, computers are designed to have high memory storage capacity. Whereas,

as we discuss above, cells live in the presence of large internal fluctuations, which have

the potential to corrupt memory storage. However, during embryonic development,

all the cells of an adult organism are derived from the same fertilized egg. They

differentiate into different cell-fates that have different gene expression patterns at

early stages of development. Cells remember their initial commitments and hold on

to their distinct fates throughout the life of the adult organism. How is this memory

created in the presence of large fluctuations? Are there simple mechanisms that would

allow cells to create memory of gene expression pattern and life-long fates?

To answer above-posted questions, we tried to understand how two of the essential

operating principles (noise regulation and memory creation) are implemented in gene

regulatory networks.
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Figure 1-5: ”Large-scale protein interaction networks. Each dot corresponds to a
protein and each arrow points to an interaction. (Image courtesy of D. Figeys [1])”

37



1.6 Noise in gene expression

Cells respond to environmental or internal signals by changing the repertoire or the

amount of the proteins that they produce. Protein synthesis consumes more energy

than any other biosynthesis process in the cells. That’s why, every cell has to regulate

the changes in its gene expression levels in the most economical way. I made an

analogy between a cell and a factory in the beginning of the introduction chapter.

But at this point, that analogy fails. In a factory, every machine produces precise

quantities of materials within a given time interval, however in a living cell, mRNA

and protein concentrations fluctuate significantly. In a population of cells, these

fluctuations result in significant differences in the amounts of proteins in each cell at

a given time.

To understand the regulation of noise, we took a reductionist approach. The fluc-

tuation in the gene expression is studied at the single gene level. The details of this

study are described in the second chapter of my thesis. By changing the sequences

of the regulatory regions of a single gene, we showed that noise in the expression lev-

els of any gene is determined by its genetic parameters, such as transcriptional and

translational efficiencies. Cells can tune the mean and the noise of each gene’s expres-

sion independently, which will allow them to achieve any signal to noise ratio. The

experimental results are in close agreement with a theoretical prediction published

from our group [11].

1.7 Positive feedback mediated memory creation

in cells

In computers, memory is stored in a binary state. Cells also achieve storing mem-

ory by creating a bistable state. The easiest way to achieve a bistable state is to

use feedback loops. Positive feedback loops are one of the frequently recurring net-

work motifs in gene regulatory networks. Positive feedback loops with nonlinear

cooperative interactions create two distinct stable states (say, low and high) for the
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expression of the output protein of a gene network. Bistable networks usually have

a history-dependent response (hysteresis). We wanted to understand how cells can

store memory by using a single positive feedback loop. As our case-study, we focused

on the ”lactose transport network” in E. coli. This network is composed of an operon

that synthesizes essential proteins for the uptake and metabolism of the lactose sugar

into bacterial cells. Cells that are expressing the genes from this operon at high levels

(high state) take up high levels of lactose from the extracellular environment. Uptake

of lactose stimulates the expression of these genes even more. Thus, cells will stay

in the high expression state persistently. Whereas cells that are expressing the genes

from this operon at low levels (low state) are not able to uptake lactose molecules.

Cells that are initially in the low expression state, stay in that state unless they are

pushed up by very high levels of the stimulus (extracellular lactose). On the other

hand, cells in the high state will keep high gene expression levels unless they are put

into an environment which has trace amounts of the lactose molecules. When cells

are given intermediate level of stimulus, they stay in their initial states. Thus, the

positive feedback network creates a hysteretic bistable response, which allows cells

to remember their history (have a memory) until their history is erased by drastic

changes in the environment. Hysteretic response is a similar phenomenon that is ob-

served in ferromagnetism and thermodynamics. I discuss this project in more detail

in the third chapter of my thesis.
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Chapter 2

Regulation of Noise in the

Expression of a Single Gene

2.1 Variations in protein synthesis levels

Even in a population of genetically identical cells, grown in uniform conditions, there

are significant differences in the levels of gene expression from individual to individual.

One of the obvious reasons for this variation comes from the statistical variation in

random partitioning of small number of regulatory molecules between daughter cells,

when the mother cells divide. Another important part of this variation, the intrinsic

genetic noise, is caused by random fluctuations in the underlying biochemical reac-

tions [9, 12, 13]. The concentrations of key molecules that regulate gene expression

are in the nanomolar range (1nM = 1 molecule/cell in E.coli). This leads to consid-

erable fluctuations in the concentration of each protein species over time in one cell

and causes a cell-to-cell variation within a population of clonal cells.

2.2 Exploiting noise in genetic switches

One of the interesting examples for exploiting noise is a gene regulatory network

that consists of two proteins, where each protein represses synthesis of the other

protein. In this specific case, there would be two stable states in each cell: only one
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of these two proteins will be synthesized exclusively. Now, if each one of these two

proteins regulates the expression of a different set of genes, then in each cell only one

distinct set of genes will be expressed. Cells can take advantage of this stochasticity in

gene expression and partition their population into two subpopulations with distinct

fates. This gene network is the core of the phage-lambda lysis-lysogeny decision

circuit [9, 14]. Phage λ exploits this mechanism to achieve diversity in its population

and therefore increases the likelihood of the survival of its species under different

environmental conditions. Similar behavior is observed in the commitment decision

of Bacillus subtilis cells with respect to competence and sporulation [15].

Bistable regulatory mechanisms are used in gene networks to produce stochastic

phenotypic outcomes. There are many examples of these random bistable switch-

ing mechanisms that are used in the control of virulence of pathogenic organisms.

Random alterations of surface proteins or random inversions of DNA segments aid

pathogens to avoid the host’s immune response [12, 16] (Table 2.1). Another example

of a stochastic bistable switch is the induction of lac operon in E.coli cells. This net-

work implements a cooperative positive feedback to create two separate stable states

of gene expression. Stochastic fluctuations in gene expression in each cell drives clonal

population of cells into these two separate states. This will be the focus of the third

chapter of my thesis.

In a recent study [25], it was shown Drosophila melanogaster gene Dscam, which

is essential for axon guidance, has 38,016 possible alternative protein forms. Different

forms of this protein are synthesized from the same initial mRNA script. The differ-

ence among them depends on how that mRNA is processed to become a protein. It

was found that, the Dscam protein repertoire of each cell is different from those of its

neighbors, providing a potential mechanism for generating diversity in the nervous

system.

Some other examples of population heterogeneity include: individual swimming

behavior and chemotaxis in bacteria [26, 27], differentiation of progenitor haematopoi-

etic stem cells [28], random activation of genes in different T cells [29] and variation

of dendrite formation due to haploinsufficiency-mediated increased noise in the ex-
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Organism and Reference Mechanism and Function

Escherichia coli Pap system, [17] Differential methylation of different Lrp binding sites.
Phase variation in pili expression, affecting virulence.

Escherichia coli Fim system, [18] Invertible DNA segments.
Phase variation in type 1 pili, affecting virulence.

Haemophilus influenzae, [19] lipopolysaccharide epitope expression
Moraxella bovis, [20] Invertible DNA segments.

Phase variation in pilin alters antigen response.
Neisseria gonorrheae, [21] Pili expression
Phage Mu, [22] Invertible DNA segments.

Phase variation in type 1 pili, affecting virulence.
Salmonella typhimurium Invertible DNA segments.
Hin system, [22] Phase variation in flagellin alters antigen response.
Staphylococcus epidermidis, [23] polysaccharide intercellular adhesin synthesis
Vibrio vulnificus, [24] Capsular polysaccharide expression

Table 2.1: Noise induced switches

pression of a tumor-suppressor gene[30].

2.3 How do cells achieve predictable outcomes?

Despite the above mentioned unavoidable stochasticity, in majority of the cases, cells

display predictable outcomes. This becomes even more striking in the development of

complex multicellular organisms. How are these deterministic outcomes achieved? Up

to now, redundancy in genes or in regulatory networks, feedback loops and checkpoint

mechanisms are proposed as an answer to this question. Checkpoint mechanisms

pause cells to make sure that certain tasks during the cell cycle are accomplished

properly. Redundancy in genes and regulatory pathways provides back up against

mutational and environmental perturbations.

In nematodes (worms) anchor cells (AC) and ventral uterus cells (VU) differentiate

from two precursor cells: Z1 and Z4. In some of the worm species, differentiation of

AC/VU cell lineages has a fixed pathway from their precursor cells, however in C.

elegans, different cell lineage (AC or VU) decisions are made randomly from Z1 and Z4

precursor cells. In about half of the animals, AC is derived from the Z1 precursor cell,

whereas in the rest of the embryos it is derived from the Z4 precursor cell. Because
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of an intercellular feedback loop, the other precursor cell always differentiate into VU

fate. Thus, stochastic decision in the beginning of lineage selection is compensated

by an intercellular feedback loop to give rise to precise ratio of final differentiated cell

types [31].

In a recent study, using a synthetic gene circuit, it was shown that negative feed-

back reduces the noise in gene expression levels substantially [32]. Negative feedback

works like a low-pass filter. On the other hand, integral feedback results in band-

pass filter that amplifies intermediate frequencies while attenuating low and high

frequencies. This type of feedback is used in bacterial chemotaxis [33]. This feedback

enables cells to have a robust adaptation in response to chemotactic stimuli. Circa-

dian rhythms are observed in nearly all living organisms with a characteristic period

close to 24h. In a theoretical study [34], robustness of circadian rhythms with respect

to molecular noise was investigated. It was found that, robustness increases with the

degree of cooperativity of the autorepression circuit that composes the essential core

of the circadian network. The entrainment by light/dark cycles was found to stabilize

the phase of the oscillations with respect to molecular noise. Whereas, a different the-

oretical study claims that noise may even be beneficial to the somitogenesis oscillator

in vertebrates. It allows the oscillations to continue under conditions, where a purely

deterministic reaction model does not allow sustained oscillations [35] and results in

spatial patterns of somites in vertebrates.

Another recent study investigated the precision in the establishment of regulatory

protein gradients during embryonic development [10]. Although a gradient of an

upstream regulatory protein varies strongly from one embryo to another, its positional

readout (downstream regulated protein) is still precise and scales with the embryo

length. Although the specific mechanism that leads to this noise filtration was not

identified, nevertheless the results implied the existence of such mechanisms.
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2.4 Noise in the expression of a single gene

As is apparent from the previous discussion, it is important to develop a quantitative

understanding of noise in gene expression. Sometimes cells exploit it to achieve di-

versity in their population response in a widely changing environment. Whereas, in

other cases they have to filter it to achieve robust phenotypes. However there has not

been any experimental study to identify the sources and the regulation of noise at the

expression level of a single gene. Therefore, we investigated whether or not cells can

differentially regulate the noise levels in the production of each one of their different

protein species. If this is true, then, each gene should have some distinct property to

regulate the level of fluctuations in its expression.

To get an experimental answer to this question, we examined how the cell-to-cell

variation in the expression level of a single gene depends on its genetic parameters such

as transcription and translation rates. There are regulatory non-coding sequences

upstream of each gene. We specifically explored how some of the sequences determine

the transcriptional and translational efficiencies (Chapter 1) of any gene and how they

also affect the noise in the gene expression levels. We selected as our reporter system

a single copy chromosomal gene with an inducible promoter. Since an estimated 50-

80% of bacterial genes are transcriptionally regulated [36], this system typifies the

majority of naturally occurring genes, allowing our results to be extended to natural

systems.

A single copy of our reporter, the green fluorescent protein gene (gfp), was in-

corporated in the chromosome of B. subtilis (Appendix B.1). We chose to integrate

gfp in the chromosome itself, rather than in the form of plasmids, since plasmid copy

number variation [37, 38] can act as an additional and unwanted source of noise. We

also introduced a repressor protein (LacI) into the chromosome under the control of

a constitutively active and strong promoter. gfp is put under the control of the Pspac

promoter. This promoter has specific binding sites for LacI repressors. The LacI

repressors will bind to their recognition sequences and repress gene expression from

this promoter. An inducer molecule, isopropyl-β-D-thiogalactopyranoside (IPTG),
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Strain Ribosome Binding Site Initiation Codon Translational
Efficiency

ERT25 GGG AAA AGG AGG TGA ACT ACT ATG 1.00
ERT27 GGG AAA AGG AGG TGA ACT ACT TTG 0.87
ERT 3 GGG AAA AGG TGG TGA ACT ACT ATG 0.84
ERT29 GGG AAA AGG AGG TGA ACT ACT GTG 0.66

Table 2.2: Point mutations in RBS and initiation codon

Strain -10 Regulatory Region Transcriptional Efficiency

ERT 57 CAT AAT GTG TGT AAT 6.63
ERT 25 CAT AAT GTG TGG AAT 1.00
ERT 53 CAT AAT GTG TGC AAT 0.79
ERT 51 CAT AAT GTG TGA AAT 0.76
ERT 55 CAT AAT GTG TAA AAT 0.76

Table 2.3: Point mutations in the Pspac promoter

binds to LacI and impairs its binding to the promoter.

Varying the concentration of IPTG in the growth medium was used to regulate the

transcriptional efficiency of gfp expression. Translational efficiency was regulated by

constructing a series of B. subtilis strains (Table 2.2) that contained point mutations in

the ribosome binding site (RBS) and initiation codon of gfp [39]. As it was discussed in

the introduction, binding affinity of ribosomes depends on their recognition sequences

on the mRNA and how they match to their strongly preferred sequences.

Since we used two different type of strategies to regulate transcriptional (by chang-

ing the probability of RNA polymerase binding to the promoter region with the use of

an intermediate repressor molecule) and translational (by mutating the RBS site, so

directly changing the affinity of ribosome to the RBS) processes, this might introduce

a potential bias in the relative contributions of these processes to biochemical noise.

As a control, we constructed four additional strains (Table 2.3) whose transcription

rates were altered by mutations in the promoter region, which changed the binding

probability of RNA polymerase to the promoter region directly. As described below,

both strategies of transcriptional regulation produce similar results.

The GFP expression levels for single cells in a bacterial population were measured

by flow cytometry. Differences in GFP expression from cell to cell (phenotypic noise)
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Figure 2-1: ”Histogram showing the result of a typical experiment in which the ex-
pression level of a fluorescent reporter protein is measured in a population of isogenic
bacterial cells. Traditional population-averaged measurements would summarize the
entire histogram by its mean value p; however, our single-cell measurements show
that the expression level varies from cell to cell, with a standard deviation σP . The
phenotypic noise strength, defined as the quantity σ2

P/p, is a measure of the spread
of expression levels in a population. The relative standard deviation σP/p, although
a more common measure of phenotypic noise, obscures its essential behavior. For
instance, the relative standard deviation for a Poisson distribution is σP/p = 1/p1/2,
which decreases as the mean increases; but the noise strength for this distribution,
σ2

P/p = 1, is independent of the mean. In general, the noise strength circumvents the
trivial effect of decreased noise with increased mean, and measures deviations from
Poisson behavior.”

are clearly seen in a histogram showing the protein expression levels (p) measured

during a typical experiment Figure 2-1.

The histogram is characterized by a mean value p and a standard deviation σP .

The phenotypic noise strength, defined as the quantity σ2
P/p (variance/mean), is

sensitive to the microscopic sources of stochasticity (which depends on the sequence

properties of each gene) that we wish to study, and is the unit in which we report our

results. We measured the phenotypic noise strength for the four different translational

mutants as IPTG concentration was varied between 30 µM (near-basal transcription)
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Figure 2-2: ”Phenotypic noise strength for the four different translational mutants
at fixed inducer concentration. Noise strength is clearly dependent on translational
efficiency.”

and 1 mM (full operon induction).

For example: Figure 2-2 shows flow cytometer results for these four strains at full

induction; Figure 2-3 shows the results from a series of flow cytometer experiments

conducted on a single strain (ERT3) as IPTG concentration was varied.

Figure 2-4 summarizes all of our experimental results, showing the measured noise

strength as a function of both transcriptional efficiency (varying [IPTG] in the growth

medium) and translational efficiency (using different strains with mutations in the

RBS and initiation codon). Note that each data point is the result of an entire

histogram corresponding to a flow cytometer run of a population of typically 104 to

105 cells.

Since the addition of IPTG and mutations in the gfp RBS are not expected to affect

normal cellular processes, all contributions to phenotypic noise remain unchanged

throughout our experiment, other than transcriptional and translational efficiencies.

The response of the phenotypic noise strength to a change in either the translational

efficiency (the slope of the curve shown in Figure 2-5) or the transcriptional efficiency
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Figure 2-3: ”Phenotypic noise strength for one strain (ERT3) as inducer concentration
is varied. The transcriptional efficiency does not significantly affect noise strength.”

(the slope in Figure 2-6) therefore isolates the contribution of that parameter to the

phenotypic noise.

We find that the phenotypic noise strength shows a strong positive correlation

with translational efficiency (Figure 2-5 , slope=21.8), compared to only a weak pos-

itive correlation with transcriptional efficiency (Figure 2-6 , slope=6.5). Switching

from the ERT27 strain to the ERT25 strain (an increase in translational efficiency of

about 15%, see Table 2.2) increases the noise strength from 32 to 35 units; the same

effect is achieved only upon doubling transcriptional efficiency (a 100% increase) from

the half-induction to the full-induction level. Experiments conducted on the control

strains, in which transcription rates were altered by mutation rather than by operon

induction, corroborated the weak correlation between noise strength and transcrip-

tional efficiency (Figure 2-7, slope=7.3). The differential nature of our measurements

makes these results independent of the specific properties of the reporter protein, such

as gene locus or folding characteristics.
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Figure 2-4: ”Complete experimental data. Each data point is the summarized result
of an entire histogram corresponding to a flow cytometer run of a population of
typically 104 − 105 cells. The phenotypic noise strength of the population (z, in
arbitrary fluorescence units) is plotted as a function of transcriptional efficiency (x,
depending on the IPTG concentration) and translational efficiency (y, depending
on the translational mutant used). Transcriptional and translational efficiencies are
normalized to those of the wildtype ERT25 strain, allowing these parameters to be
directly compared. These data are fitted to a plane of the form z = a0 + axx + ayy
using a least-square routine, giving a0 = 7.10.9, ax = 6.50.4, ay = 21.80.9. The ratio
ay/ax = 3.4 gives the relative effect of translational versus transcriptional efficiency
on phenotypic noise strength.”
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Figure 2-5: ”For clarity, the three-dimensional data are projected parallel to the fit
plane onto the boundary planes x = 1, noise strength as a function of translation.
The intersection of the fit plane with each boundary plane is shown as a solid line;
dotted lines indicate an interval of 1 s.d. Data are summarized separately for each
translational mutant (dark circles with error bars that represent 95% c.i.).”
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Figure 2-6: ”The three-dimensional data are projected parallel to the fit plane onto the
boundary planes y = 1, noise strength as a function of transcription. The intersection
of the fit plane with each boundary plane is shown as a solid line; dotted lines indicate
an interval of 1 s.d.”

2.5 Modeling noise in the expression levels of a

single gene

The noise properties of a single gene can be derived using the Langevin technique.

This approach yields statistics equivalent to those generated by large-scale Monte

Carlo simulations, but has the added advantage of providing insight into system

behavior [40]. We treat the mRNA number r and protein number p as continu-

ous quantities and assume that fluctuations are introduced by gaussian white noise

sources:

dr

dt
+ γRr = kR + ηR (2.1)

dp

dt
+ γPp = kP r + ηP (2.2)
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Figure 2-7: ’The noise strength as a function of transcription. The results of the
control experiments conducted on transcriptional mutants at full induction. Three
strains (ERT51, ERT53 and ERT55) are very similar, both in transcriptional efficiency
and in noise strength, suggesting that biochemical noise is determined by the actual
transcription rate rather than by the specific method used to achieve it. The strain
ERT57 shows a highly amplified transcriptional efficiency, allowing reliable estimation
of correlations. Data are summarized separately for each transcriptional mutant. A
linear fit through these points gives a slope ax = 7.30± 0.3, which is consistent with
the slope ax = 6.5 ± 0.4 obtained from Figure 2-4”

Figure 2-8: ”Modeling single-gene expression. mRNA molecules are transcribed at
rate kR from the template DNA strand. Proteins are translated at a rate kP from
each mRNA molecule. Proteins and mRNA degrade at rates γP and γR, respectively.
Degradation into constituents is denoted by a slashed circle.”
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Here, γR and γP represent the decay rates of mRNA and protein, respectively; kR

is the transcription rate and kP is the translation rate, so the rate of protein creation

is kP r (Figure 2-8). ηR and ηP are white noise sources with the following statistics:

ηi(t) = 0 (2.3)

ηi(t)ηi(t+ τ) = qiδ(τ) (2.4)

where i = R or P, angular braces represent population averages, and δ is the Dirac

δ-function. The noise magnitudes qi are chosen so that they are consistent with the

steady-state Poisson statistics of chemical reactions. For example, in steady-state,

the mRNA number is given by r = kR/γR. Expanding around this steady-state by

setting r = r + δr gives:

dδr

dt
+ γRδr = ηR (2.5)

Fourier-transforming these equations by setting x(t) =
∫
eiωtx(ω)dω/2π gives:

δr(ω)

ηR(ω)
=

1

γR + iω
(2.6)

(|ηR(ω)|)2 = qR (2.7)

so that the steady-state value of the fluctuations is given by:

δr2 =
∫ dω

2π

1

γ2
R + ω2

qR =
qR
2γR

Now we impose Poisson statistics by setting δr2 = r, giving qR = 2kR, and simi-

larly, qp = 2kPkR/γR. Protein number fluctuations can then be derived as:

δp2 =
∫ dω

2π

1

γ2
P + ω2

(qP +
qR

γ2
R + ω2

) = p(1 +
kP

γR + γP

)
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We define the noise strength to be the quantity ν = δp2/p, also known as the Fano

factor (Figure 2-1). For a Poisson process, ν = 1; for an arbitrary stochastic process,

the noise strength reveals deviations from Poissonian behavior. Setting φ = γP/γR

and defining the burst size b = kP/γR finally gives:

δp2

p
≡ σ2

P

p
= 1 +

b

1 + φ
(2.8)

Typically, φ is a small quantity (mRNA is unstable compared with protein), so

that the result above reduces to:

σ2
P

p
∼= 1 + b (2.9)

This equation shows that (σ2
P/p) is greater than Poissonian noise strength (σ2

P/p

= 1) and is simply an increasing function of translational efficiency.

Here, b = kP/γR is the average number of proteins synthesized per mRNA tran-

script. These proteins are injected into the cytoplasm in sharp bursts (upper panel

in Figure 2-9). The measured asymmetry between the transcriptional and transla-

tional contributions is consistent with this prediction, and is strong evidence for the

biochemical origin of phenotypic variability (lower panels in Figure 2-9). Phenotypic

noise in a population is therefore indicative of protein concentration fluctuations over

time in single cells.

The cell to cell variation in gene expression, and fluctuations over time in single

cells, have broad implications. Noise is often thought as being harmful, garbling

cell signals, corrupting circadian clocks [41], and disrupting the fine-tuned process

of development. Cell signaling pathways [42] and developmental switches [43] have

evolved so as to minimize the disruptive effect of such fluctuations in ways which are

only now beginning to be understood.

Previously, it was reported that variation in gene expression could be reduced

by autoregulation [32]. In our experiments [44], we experimentally demonstrate that

phenotypic variation can also be controlled by the genetic parameters of a single gene.
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Figure 2-9: ”Upper panel:Typically, mRNA is unstable when compared with the pro-
tein product of a gene. During its brief lifetime, however, an mRNA molecule can
inject a large burst of proteins into the cytoplasm. A Monte Carlo timecourse over
a 30 min time interval shows bursts of protein creation of average size b = kP/γR

occurring at average rate kR. The magnitudes of these parameters are indicated on
the figure by bars. The timecourse in upper panel is a magnified section of the mid-
dle panel. Middle and lower panels: Monte Carlo simulations of typical timecourses
for protein number. Deterministic timecourses are indicated as solid lines; the corre-
sponding population histogram is shown to the right of each timecourse. The following
examples both achieve the same mean protein concentration, but with different noise
characteristics. In both cases, γR = 0.1s−1 and γP = 0.002s−1; the burst size b is
varied to obtain different noise strengths, whereas the transcript initiation rate kR

is chosen to fix the mean protein number at 50. A gene with low transcription but
high translation rates (middle panel; kR = 0.01s−1, b = 10) produces bursts that are
large, variable and infrequent, resulting in strong fluctuations. Conversely, a gene
with high transcription and low translation rates (lower panel, kR = 0.1s−1, b=1)
produces bursts that are small and frequent, causing only weak fluctuations in pro-
tein concentration and producing a smaller phenotypic variation in the population.
Regulation of a two-step process, that of transcription followed by translation, can
therefore be used to independently adjust the mean protein concentration and the
level of phenotypic noise in a bacterial population.”
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2.6 Gene intrinsic and extrinsic sources of the noise

Another study differentiated the noise contributions coming from gene intrinsic or

extrinsic factors [45]. In this study, inserted cyan and yellow fluorescent protein

genes (cfp and yfp) under the control of the same promoter were inserted into the

chromosome of E.coli and the expression levels of these two proteins were measured.

The degree of correlation in the fluctuations of these two proteins gives information

about the extrinsic contribution to the total noise. Extrinsic noise stems from the

fluctuations in the common regulatory elements, such as: fluctuations in the amount

of repressor proteins, RNA polymerase molecules or ribosomes. Uncorrelated fluctu-

ations in these two fluorescent protein levels measure the gene intrinsic noise. If the

intrinsic noise dominates, individual genes could be selected for their noise properties.

If the extrinsic part of the noise dominates, the noise levels of all of the genes would be

regulated similarly independent of their different transcription and translation rates.

The outcome of this study was that the gene extrinsic contribution of the noise is the

dominant part of the total noise in gene expression levels. However, a recent analysis

[46] showed that, most of the extrinsic noise in the two gene study originates from

repressor proteins that were synthesized from plasmids. Variation in plasmid copy

number could lead to an increased extrinsic noise.

When we plot our data from one strain at different transcriptional induction levels

with different units: σ2
P/p2, we found that (Figure 2-10) most of the noise comes from

the fluctuations in the intrinsic factors. The extrinsic part only adds up a constant

displacement to the total noise. If we divide Equation 2.9 by p, we obtain:

σ2
P

p2
∼= C1

p
(2.10)

where C1 = b+1. The right hand side of this equation corresponds to the intrinsic

noise term. Any additional constant terms to the right hand side will correspond to

the extrinsic part of the total noise. Therefore the total noise is:

η2
TOT = η2

int + η2
ext =

C1

p
+ C2 (2.11)
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Figure 2-10: ”Total noise is plotted. The arrow shows the basal level of the total
noise, which is defined as the extrinsic noise. Experiments are carried with strain
ERT3 as [IPTG] varied.”

where η2
ext = C2. Based on this analysis (Figure 2-10) it can be concluded that

extrinsic noise is smaller compared to the intrinsic part of the noise.

2.7 Noise in the gene expression of eukaryotic cells

A recent study investigated noise in the gene expression of Saccharomyces cerevisiae

(budding yeast) cells [47]. Yeast is a single-celled eukaryotic (which has a nucleus) or-

ganism. In yeast cells, transcription takes place in the nucleus. Yeast DNA is bound

to special proteins that constitute the so-called chromatin. Bacteria do not have a

nucleus and both transcription and translation take place in the cytoplasm. Bacteria

also do not have a chromatin structure. The motivation of this study was to see,

whether or not compartmentalization of transcription and chromatin structure has

any effect on the noise levels in eukaryotic cells. They showed a clear difference in the

noise levels between bacterial and eukaryotic gene expression. The noise strength has
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a non-monotonical dependence on the transcriptional efficiency in eukaryotic gene ex-

pression. This result is attributed to pulsatile mRNA production due to transcription

reinitiation, which is crucial for the dependence of noise on transcriptional efficiency.

However, experiments have not been performed yet that directly explore the effects

of transcriptional reinitiation on the fluctuations in the protein levels in eukaryotic

cells [46].

2.8 The balance between noise and cost reduction

in gene expression

It is the random births and deaths of mRNA transcripts that dominantly determine

the noise levels in gene expression. The average number of proteins produced per

gene is equal to the product of the average number of mRNAs produced per gene

and the average number of proteins produced per mRNA. One cell can obtain the

same average protein number by reducing the transcriptional efficiency by a certain

factor and increasing the translational efficiency by that same factor. Exactly the

opposite case is also possible. The same average number of proteins is obtained by

increasing the transcriptional efficiency by a factor and decreasing the translational

efficiency by the same factor. In the first scenario, protein production would be more

economical (Chapter 1.2), since it will require much less transcript production to

achieve the same average number of proteins. But this case will result in a noisier

protein production within a clonal population of cells. In the second scenario, the

protein production is less economical but will also be less noisy. Thus, the reduction

in noise will only be achieved by spending more cellular materials to produce the same

amount of proteins [13]. This scenario suggests the existence of a balance between

noise and energy management in the cell.

The technique of transcriptional and translational noise control can be applied in

the fast growing field of artificial genetic networks [48]. The current capabilities of

artificially engineered circuits such as genetic toggle switches [49] or ring oscillators
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[50] are limited by intrinsic noise. Novel noise reduction methods will allow these

circuits to mimic the robust behavior of natural biological systems, and will enable

their practical application in areas such as biocomputation, or in the construction of

genetic biosensors.
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Chapter 3

Multistability in the Lactose

Utilization Network of Escherichia

coli

3.1 Multistability

Multistability, the capacity to achieve multiple internal states in response to a single

set of external inputs, is the essence of a biological switch. Biological switches are es-

sential for the determination of cell fate in multicellular organisms [51], the activation

of mitogen-activated protein kinase (MAPK) cascades in animal cells [52], the regula-

tion of cell-cycle oscillations during mitosis with mutually exclusive cell cycle phases

[53, 54, 55], the threshold response of lateral propagation of EGFR phosphorylation

and the maintenance of epigenetic traits in microbes [56].

The multistability of several natural [51, 52, 53, 54, 55, 57, 56, 58, 59] and synthetic

[49, 60, 61] systems has been attributed to positive feedback loops or mutually ex-

clusive double negative feedback loops in their regulatory networks [62]. Many years

ago [63], it was mathematically proven that the existence of at least one positive feed-

back loop is a necessary condition for having multiple steady states in the system.

However, feedback alone does not guarantee multistability. The phase diagram of
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a multistable system, a concise description of internal states as key parameters are

varied, reveals the conditions required to produce a functional switch [64, 65].

3.2 The lac operon

Complex developmental switches are built from smaller ones. We wanted to under-

stand the basic underlying principles of a simple natural switch. If we can understand

how this simple switch works quantitatively, we hope that, in the future, we will be

able to understand and design more complex biological switches. With this goal in

mind, we picked one of the most intensively studied natural networks; the lactose

utilization network of Escherichia coli [66]. The bistability of the lactose utilization

network has been under investigation since 1957 [67, 68].

The basic components of this network have been well characterized [66], making it

an ideal candidate for global analysis. The lac operon comprises three genes required

for the uptake and metabolism of lactose and related sugars (Figure 3-1): lacZ, lacY

and lacA. lacZ codes for β-galactosidase, an enzyme responsible for the conversion of

lactose into allolactose and subsequent metabolic intermediates. lacY codes for the

lactose permease (LacY), which facilitates the uptake of lactose and similar molecules,

including thio-methylgalactoside (TMG), a non-metabolizable lactose analogue. lacA

codes for an acetyltransferase, which is involved in sugar metabolism. The operon has

two transcriptional regulators: a repressor (LacI) and an activator (the cyclic AMP

receptor protein, CRP). Inducers, among them allolactose and TMG, bind to and

inhibit repression by LacI, whereas cAMP binds to and triggers activation by CRP.

The concentration of cAMP drops in response to the uptake of various carbon sources,

including glucose and lactose [69]; glucose uptake also interferes with LacY activity,

leading to exclusion of the inducer [69]. Together these effects mediate catabolite

repression; the ability of glucose to inhibit lac expression. Crucially, cAMP levels are

not affected by TMG uptake. Therefore, the extracellular concentrations of TMG

and glucose can be used to independently regulate the activities of LacI and CRP,

the two cis-regulatory inputs of the lac operon [70]. However, the response of the
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operon must be considered within the broader context of the network. The uptake of

TMG induces the synthesis of LacY, which in turn promotes further TMG uptake;

the resulting positive feedback loop creates the potential for bistability [63, 71]

We wanted to use a phase diagram, coupled with a mathematical model of the net-

work, to quantitatively investigate processes such as sugar uptake and transcriptional

regulation in vivo and then to test whether or not the wild-type natural response of

this genetic network could be changed by a perturbation into a completely different

kind of response [72, 73].

3.3 Bistable response of the lac operon

In order to probe the network’s bistable response, we incorporated a single copy of

the green fluorescent protein gene (gfp) under the control of the lac promoter into the

chromosome of E. coli MG1655 (Figure 3-1) (Appendix C). We placed this reporter

in the chromosome rather than on a multicopy plasmid to minimize the titration of

LacI molecules by extraneous LacI-binding sites. The cells also contained a plasmid

encoding a red fluorescent reporter (HcRed) under the control of the galactitol (gat)

promoter. This promoter includes a CRP-binding site, as well as a binding site

for the galactitol repressor, GatR. However, GatR is absent in E. coli MG1655 [74].

Therefore, transcription at the gat promoter, measured by red fluorescence, is a direct

measure of CRP-cAMP levels. In our experiments, we measure the response of single

cells, initially in a given state of lac expression, to exposure to various combinations

of glucose and TMG levels (Figure 3-2). It is crucial to use cells with well-defined

initial states, either uninduced or fully induced, because the response of a bistable

system is expected to depend on its history.

We find, in the absence of glucose, that the lac operon is uninduced at low TMG

concentrations ( < 3 µM) and fully induced at high TMG concentrations ( > 30

µM) regardless of the cell’s history. Between these switching thresholds, however,

system response is hysteretic (history dependent): TMG levels must exceed 30 µM

to turn on initially uninduced cells but must drop below 3 µM to turn off initially
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Figure 3-1: ”The lactose utilization network. Red lines represent regulatory inter-
actions, with pointed ends for activation and blunt ends for inhibition; black arrows
represent protein creation through transcription and translation, and dotted arrows
represent uptake across the cell membrane. In our experiments we vary two external
inputs, the extracellular concentrations of glucose and TMG, and measure the result-
ing levels of two fluorescent reporter proteins: GFP, expressed at the lac promoter,
and HcRed, expressed at the gat promoter. LacY catalyses the uptake of TMG, which
induces further expression of LacY, resulting in a positive feedback loop.”
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Figure 3-2: ”Overlayed green fluorescence and inverted phase-contrast images of cells
that are initially uninduced for lac expression, then grown for 20 h in 18 µM TMG.
The cell population shows a bimodal distribution of lac expression levels, with induced
cells having over one hundred times the green fluorescence of uninduced cells. Scale
bar, 2 µm.”

induced cells (Figure 3-3). As one approaches the boundaries of this bistable region,

stochastic mechanisms cause growing numbers of cells to switch from their initial

states, resulting in a bimodal distribution of green fluorescence levels, with induced

cells having over one hundred times the fluorescence levels of uninduced cells. This

behavior shows the importance of performing single-cell experiments, as a population-

averaged measurement (Section 3.8) would have shown the mean fluorescence level

to move smoothly between its low and high endpoints [53], obscuring the fact that

individual cells never display intermediate fluorescence levels.

We find that the red fluorescence level is independent of cell history and of TMG

concentration, showing that the observed history dependence of lac induction is not

due to CRP. Red fluorescence levels do decrease in response to an increase in glucose

concentration, ultimately dropping fivefold (Figure 3-4). There is a proportional drop

in the green fluorescence levels of induced cells, reflecting the reduction in the levels

of CRP-cAMP. The network continues to respond hysteretically in the presence of
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Figure 3-3: ”Behavior of a series of cell populations, each initially uninduced (lower
panel) or fully induced (upper panel) for lac expression, then grown in media con-
taining various amounts of TMG. Scatter plots show log(green fluorescence) versus
log(red fluorescence) for about 1,000 cells in each population. Each scatter plot is
centered at a position that indicates the underlying TMG concentration. The scale
bar represents variation in red fluorescence by a factor of 10. White arrows indicate
the initial states of the cell populations in each panel. The TMG concentration must
increase above 30 µM to turn on initially uninduced cells (up arrow), whereas it must
decrease below 3 µM to turn off initially induced cells (down arrow). The grey region
shows the range of TMG concentrations over which the system is hysteretic.”
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Figure 3-4: ”The mean red fluorescence level of each cell population is independent
of its history but decreases with increasing glucose concentrations.”

glucose, but higher levels of TMG are required to induce switching. By measuring

system response at several glucose concentrations ranging from 0 to 1 mM, we are

able to map out the complete range of glucose and TMG levels over which the system

is bistable (Figure 3-5). This is the phase diagram of the wild-type lactose utilization

network.

3.4 Global analysis of the lactose transport net-

work

The switching boundaries of this phase diagram correspond to special conditions of

the network dynamics. By imposing these conditions within a mathematical model

of the lac system, one is able to use the phase diagram as a quantitative probe of the

molecular processes in living single cells. The lac system was modeled by using the

following equations:

R

RT

=
1

1 + (x/x0)n
(3.1)
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Figure 3-5: ”The phase diagram of the wild-type lactose utilization network. When
glucose is added to the medium, the hysteretic region moves to higher levels of TMG.
At each glucose level, the lower (down arrow) and upper (up arrow) switching thresh-
olds show those concentrations of TMG at which less than 5% of the cells are in their
initial states.”

68



τydy

dt
= α

1

1 +R/R0

− y (3.2)

τxdx

dt
= βy − x (3.3)

Here, x is the intracellular TMG concentration, y is the concentration of LacY

in green fluorescence units, RT is the total concentration of LacI tetramers, and

R is the concentration of active LacI. The active fraction of LacI is a decreasing

sigmoidal function of the TMG concentration x, with half-saturation concentration

x0, and Hill coefficient n (Equation 3.1). This sigmoidal behavior arises from the fact

that the binding of TMG to any one of four possible sites on the LacI tetramer is

sufficient to interfere with LacI activity, while higher TMG occupancies cause even

further impairment. There is extensive experimental evidence [75] showing that n

≈ 2. The interaction of a single active LacI tetramer with multiple operator sites

on the lac promoter generates a DNA loop which blocks transcription. The rate of

generation of LacY is therefore a decreasing hyperbolic function of R, with maximal

value α, half-saturation concentrationR0, and minimal value α/ρ achieved at R = RT .

The maximal activity, α, is the lac expression level that would be obtained if every

repressor molecule were inactive. The repression factor, ρ, gives the ratio of maximal

to basal activities, the latter being the expression level that would be obtained if every

repressor molecule were active. The repression factor ρ = 1 + RT/R0 describes how

tightly LacI is able to regulate lac expression. LacY is depleted in a first-order reaction

with time constant τy, due to a combination of degradation and dilution (Equation

3.2). TMG enters the cell at a rate proportional to y, and is similarly depleted in a

first-order reaction with time constant τx (Equation 3.3). The parameter β measures

the TMG uptake rate per LacY molecule. Since we cannot directly measure x, we are

free to choose its units so that x0 = 1. Once inside the cell, TMG is able to inactivate

LacI, completing the feedback loop. Combining these equations, one can obtain the

steady state result:
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y = α
1 + (βy)2

ρ+ (βy)2
(3.4)

Here, ρ, α and β are allowed to be arbitrary functions of our external inputs,

the extracellular glucose (G) and TMG (T) levels. As these parameters are var-

ied, the system is capable of generating either one or two stable fixed points, with

saddle-node bifurcations [64] separating these two behaviors (Figure 3-9d). The two

fluorescence values at each fixed point do not by themselves provide enough informa-

tion to uniquely specify the underlying parameters. However, by also applying the

saddle-node condition at the switching thresholds, one is able to obtain three equa-

tions for the three unknowns ρ, α and β. We can therefore solve for these parameters

at those values of G and T which lie on the boundaries of the bistable region. In this

way, we obtain the complete functional dependence of these parameters on G and T

as shown in the following section.

3.5 Theoretical phase diagram and calculation of

parameters

The boundary between monostability (one stable fixed point) and bistability (two

stable fixed points separated by one unstable fixed point) occurs when Equation 3.4

admits precisely two solutions: this signifies the onset of a saddle-node bifurcation.

Rewriting Equation 3.4 as a cubic, we obtain:

y3 − αy2 + (ρ/β2)y − (α/β2) = 0 (3.5)

On the other hand, a general cubic with two identical roots has the form:

(y − a)(y − a)(y − θa) = y3 − (2 + θ)ay2 + (1 + 2θ)a2y − θa3 (3.6)

where θ is the dimensionless ratio of roots. Comparing coefficients, we find:
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ρ = (1 + 2θ)(1 + 2/θ) (3.7)

αβ = (2 + θ)1.5/θ0.5 (3.8)

These are the parametric equations describing the boundary of the bistable region

(Figure 3-9d). The critical point occurs where all three roots coincide, so θ = 1.

At every glucose concentration, we have two switching thresholds (OFF and ON).

Given the two distinct fluorescence values at each threshold, we can calculate the

values of all three parameters ρ, α and β. However, there are three caveats. First, we

find that α is systematically higher (by about 15 %) at the OFF threshold than at the

ON threshold, though it shows precisely the same linear behavior at both thresholds,

over the entire range (a factor of 5 variation) of red fluorescence levels (Figure 3-4).

This small discrepancy could arise from a systematic error in our estimate of the

induced fluorescence, since our measurements are performed near but not precisely

at the switching threshold. However, it might also arise due to a weak competitive

interaction between CRP and LacI at the lac promoter, which we have neglected in

our model. Second, the low fluorescence values at the OFF threshold are very close to

background, introducing a large error in the calculation of ρ. We therefore estimate

both α and ρ at the ON threshold alone, and use this information to calculate b at

both thresholds. Third, we can decompose the net TMG uptake rate as β(T, G) =

βT (T) βG(G), where T and G are the extracellular glucose and TMG concentrations.

Assuming a power-law for βT (T), we use a least-squares fitting routine to extract

the functions βT (T) and βG(G). We have normalized the units to give βT (G=0) =

100, and α(G=0) = 100. These calculations produce the following results (plotted in

Figure 3-6, Figure 3-7 and Figure 3-8):

α =
84.4

1 + (G+ 8.1)1.2
+ 16.1 (3.9)

ρ = 167.1 (3.10)
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βT = (0.00123)T 0.6 (3.11)

βG(G > 10) ∼= 65 (3.12)

where G and T are measured in µM. The uncertainities in the estimates of α and

βG are shown in Figure 3-8; the uncertainity in βT is similar to that shown for βG.

There is a 50 % uncertainity in each measurement of ρ, and a 20 % uncertainity in

its final fitted value.

We find that α is directly proportional to the red fluorescence level (upper panel

in Figure 3-6), demonstrating that the lac and gat promoters respond identically to

CRP-cAMP (section 3.7). By contrast, ρ is essentially independent of TMG levels,

suggesting that LacI and CRP bind independently to the lac operator site. We find

the repression factor ρ to be 170 ± 30 regardless of the glucose and TMG levels

(lower panel in Figure 3-6). This confirms a strong prediction of our model that ρ

should be a function of the LacI concentration alone. Assuming an effective LacI

concentration in the nanomolar range cite [66], this value of ρ implies a dissociation

constant between LacI and its major DNA-binding site of about 10−10 to 10−11 M,

which is consistent with reported values [76].

The transport rate β is a product of two terms. The first term, βT , which rep-

resents the TMG uptake rate per active LacY molecule, is purely a function of ex-

tracellular TMG levels (Figure 3-7). By fitting βT to a hyperbola, we find that the

half-saturation concentration for TMG uptake is 680 ± 25 µM, which agrees with pre-

vious measurements [77]. The second term, βG, which represents the fraction of LacY

molecules that are active, is purely a function of extracellular glucose levels, reflecting

the inducer-exclusion effect [69]. This allows us to separate catabolite repression into

its constituent parts (Figure 3-8). We find that by lowering CRP-cAMP levels glucose

reduces operon expression by 80%, whereas by inactivating LacY molecules it reduces

TMG uptake by 35%. However, the network’s positive feedback architecture ampli-

fies these effects, resulting in the observed hundred-fold difference in lac expression
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levels between induced and uninduced cells. This type of global information would

be extremely difficult to obtain using standard molecular-genetic techniques and in

vitro biochemical assays. Our approach allowed us to study the wild-type network in

its entirety rather than isolated from other cellular systems or broken up into simpler

subcomponents.

3.6 Transitions in the phase diagram

The phase diagram of the wild-type network (Figure 3-5) shows that lac induction

always takes place hysteretically, with cells increasing their expression levels discon-

tinuously as a switching threshold is reached. However, our theoretical phase diagram

(Figure 3-9d) suggests that system response could also occur in a graded fashion, with

the expression levels of individual cells moving continuously between low and high

values. Such a response is predicted to occur when the degree of operon repression, ρ,

is decreased below wild-type levels. Guided by this prediction, we sought to elicit a

graded response from the lac system. We constructed two new strains, one containing

a plasmid with an average copy number of 4, and the other containing a plasmid with

an average copy number of 25. Each plasmid carried a single copy of the lac pro-

moter. The introduction of extra LacI-binding sites had the expected titrating effect,

reducing the effective LacI concentration and causing a drop in the operon-repression

factor ρ from its wild-type value of 170, to 50 in the cells with 4 plasmids, and 5 in

the cells with 25 plasmids. Graded behavior is expected to occur below a repression

factor of nine, and this is precisely what we observe: cells with a repression factor of

50 have a discontinuous hysteretic response similar to that of the original cells (Figure

3-9b, bimodal histograms are shown in grey panels), whereas cells with a repression

factor of 5 show a continuous graded response (Figure 3-9c).
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Figure 3-6: ”Model parameters are extracted by fitting to measured fluorescence
values at the switching thresholds. Upper panel: The maximal promoter activity, α,
increases linearly with red fluorescence. Lower panel: The operon repression factor,
ρ, is constant.”
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Figure 3-7: ”The TMG uptake rate per active permease, βT , increases with extracel-
lular TMG levels. The dashed line shows a power-law fit with an exponent of 0.6.
The data can also be fitted using a hyperbola, giving a half-saturation concentration
of 680 µM.”
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Figure 3-8: ”The elements of catabolite repression. At each glucose concentration,
we show the transport activity of LacY molecules (βG, measuring inducer exclusion)
versus the transcriptional activity of the lac operon (α, measuring CRP activation).
We see that permease activity drops rapidly as glucose is added, falling to 65% of its
maximal value. Operon activity drops more gradually, but falls to 20% of its maximal
value. Error bars were determined by propagating the experimental error in measured
fluorescence values.”
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Figure 3-9: ”Histograms of log(fluorescence) for cells that are initially uninduced,
then grown in media containing 1 mM glucose and various levels of TMG (indicated
in µM on each panel). a, Response of the wild-type network. b, c, Response of the
network with extraneous LacI-binding sites on a 4-copy plasmid (b) and a 25-copy
plasmid (c). d, Theoretical phase diagram of the lactose utilization network.”
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Figure 3-10: ”The mean green fluorescence level of each cell population in Figure 3-9c
is shown as a function of the TMG concentration. The response is highly sigmoidal
(Hill coefficient ≈ 6) owing to positive feedback.”

3.7 Correlation between green and red fluorescence

values

The mean green fluorescence level of a population of induced cells was directly pro-

portional to the mean red fluorescence level. This carried through to the behavior of

single cells. Figure 3-11 shows a scatter plot of green and red fluorescence levels of

single cells in a population that is initially uninduced, then grown in 10 mM glucose

and 150 mM TMG. The population has a bimodal distribution of green fluorescence

levels because it is close to a switching threshold. The green and red fluorescences of

the induced subpopulation are highly correlated (correlation coefficient 0.71).
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Figure 3-11: ”Fluorescence levels of single cells in a bimodal population. Cells in the
induced state show strongly correlated green and red fluorescence levels.”
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3.8 Population averaged measurements and mean

fluorescences

Many previous studies of lac operon expression have focussed on population-averaged

measurements [70], whereas we have used single cell measurements. These two ap-

proaches should produce similar results if the cell populations are homogeneous, but

not if they are heterogeneous. In order to connect with previous studies, we incor-

porated our fitted parameters in a stochastic model [60], thus generating a map of

mean lac expression levels as glucose and TMG concentrations were varied. In these

calculations, we assumed that the system had reached a steady state distribution

between the induced and uninduced sub-populations, corresponding to a timescale

much longer than those at which hysteresis would be observed.

In a previous study [70], a series of population-averaged measurements of lac

operon induction was conducted during growth on IPTG and cAMP. They found that

the mean fluorescence of the cell population was a fairly intricate function of the two

inducer concentrations. In particular, they found that the threshold for induction by

IPTG depended on the cAMP level, and vice versa. In order to explain their results,

the authors used a model of lac induction in which CRP and LacI bound competitively

to the lac operator site. We show here that similar behavior can arise from a very

different kind of model, in which the two regulators bind essentially independently,

but positive feedback arises due to the uptake of inducer by LacY. We used such a

model to analyze our results for growth on TMG; however, the fact that we find the

system response to be bimodal during growth on IPTG implies that positive feedback

must exist in that case as well. In Figure 3-12, we show the mean fluorescence as a

function of TMG and glucose concentrations, using a stochastic model based on our

fitted parameters. These results are qualitatively very similar to those of [70], with

several thresholds and a strong interdependency between the effects of glucose and

TMG.

The population-averaged fluorescence can increase either because the fluorescence

level of induced cells increases (due to a decrease in glucose) or because the fraction
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Figure 3-12: ”Population averaged lac expression levels as a function of glucose and
TMG concentrations. These results are obtained by incorporating our fitted param-
eters into a stochastic version of the positive feedback model. Axes are oriented so
that cells are uninduced at the bottom left corner.”
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of cells in the induced state increases (due to an increase in TMG). It is only by

performing single-cell measurements that these two effects can be distinguished.

3.9 Conclusion

The ability of a single system to produce both binary and graded responses has pre-

viously been observed but not explained [73]. We [78] presented a general mechanism

by which this may be achieved and experimentally validated this mechanism in the

context of a natural biological system, the lactose utilization network. We showed

that the observed change from the wild-type binary response to the engineered graded

response should be interpreted as a shift between different parts of a unified phase

diagram. In this respect, the behavior of the lac system closely resembles that of

thermodynamic systems [64]: the discontinuous transition from low to high induc-

tion is analogous to a first-order phase transition such as evaporation in a liquid-gas

system, with chemical noise instead of thermal noise driving stochastic transitions

between these states [60, 40]. The shift from a hysteretic to a graded response is

analogous to a second-order phase transition across a critical point. More complex

transitions, such as those between different types of multistability [79] or between

stable and oscillatory behavior [80, 81], can be similarly analyzed. The response of

any natural network may be regarded as a single realization in a vast but structured

space of possible responses. By experimentally probing this space, we were able to

gain quantitative insight into the architecture, dynamics and design constraints of

biological systems.
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Chapter 4

Conclusion and Future Directions

In the first half of my thesis, I discussed the regulation of fluctuations in the expression

levels of a single gene. The results showed that cells can tune the mean and the

variation in protein synthesis independently and the fluctuations in the protein levels

can be regulated by changing the genetic parameters [44]. Other studies following our

publication have focused on: the separation of gene intrinsic and extrinsic sources of

fluctuations in protein synthesis [45] and noise in gene expression in eukaryotic cells

[47].

All above mentioned studies focused on some of the first questions about the

origin and regulation of the noise in gene expression. However, there are still a lot

of unaddressed questions left for future studies. First of all, the time dynamics of

fluctuations (temporal variability) in single cells has not been analyzed yet. Up to

now, all the previous studies focused on the variability within a population of cells,

not on the variability in a single cell at different time points. It was discussed in

the introduction of this thesis that cells have complex interacting gene regulatory

networks. Expression of many genes are controlled by regulatory proteins that are

synthesized from an upstream gene in the network. How much noise is transferred

from the gene expression of an upstream gene to the gene expression of a downstream

gene in a gene regulatory cascade has not been studied yet. Although the intrinsic and

extrinsic sources of noise in gene expression are identified, how much the fluctuations

in the local environment of a gene (chromatin remodeling, changes in methylation or
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acethylation) affect the noise in the expression of that gene is left to be addressed.

On the other hand, we have learnt that cells function very precisely even though they

have inevitable fluctuations in gene expression. It has not yet studied in detail what

common noise filtering mechanisms are used by multicellular organisms to achieve

robustness during their development.

In the second half of my thesis, I studied a recurring gene network motif: a positive

feedback loop. This feedback loop is implemented in the lactose transport network

in E. coli. Hysteretic bistability is observed at the single cell level. A global analysis

of the lactose transport network is done by modeling the system. The functional

dependence of the key interaction parameters on the external inputs are obtained by

doing in vivo single-cell experiments. The system response is changed from hysteretic

bistability to graded response by the right perturbation as predicted by our model.

In the coming years, it will be possible to integrate the lessons we learned from the

modular networks to understand bigger ones. Well-planned single-cell experiments

will allow us to uncover how larger gene networks function so robustly in living cells.

By doing these kinds of experiments one can reveal gene networks that has the same

function in different species. Comparison of similar networks in different organisms

will uncover which network connections are conserved in different species and allow

us to identify core circuitry of gene networks. By looking at the differences in the in-

teraction diagrams, one can identify specific advantages that these differences provide

for each species to adapt to their environmental niches.
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Appendix A

General Cloning Tools

A.1 PCR

The purpose of PCR (Polymerase Chain Reaction) is to make a large number of copies

of a specific DNA sequence. PCR is a form of DNA cloning that is done outside of

the cells using a purified, thermostable DNA polymerase enzyme. This type of DNA

amplification requires a prior knowledge of the gene sequence (usually fewer than

5000 bp) that is to be amplified. Cloning by using PCR is much faster and easier

than other standard cloning methods.

This technique, allows the DNA from a selected region of any genome to be am-

plified a billion-fold. Before starting a PCR reaction, the known sequence has to be

used to design two synthetic DNA oligonucleotides (usually 25 nucleotides in length),

one complementary to each strand of the DNA and positioned on opposite sides of

the region to be amplified. These oligonucleotides serve as primers for in vitro DNA

synthesis, which is catalyzed by a DNA polymerase, and they determine the ends of

the final DNA fragment that is obtained.

There are three major steps in a PCR (Figure A-1), which are repeated about 20

to 30 cycles. This is done on an automated cycler, which can heat and cool the tubes

with the reaction mixture in a very short time. Each cycle of the reaction requires

a brief heat treatment (usually 94oC) to separate the two strands of the genomic

DNA (step 1: denaturation). The success of this technique depends on the use of
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Figure A-1: ”PCR amplification. PCR produces an amount of DNA that doubles
in each cycle of DNA synthesis and includes a uniquely sized DNA species. Three
steps constitute each cycle, as described in the text. After many cycles of reaction,
the population of DNA molecules becomes dominated by a single DNA fragment, X
nucleotides long, provided that the original DNA sample contains the DNA sequence
that was anticipated when the two oligonucleotides were designed. In the example
illustrated, three cycles of reaction produce 16 DNA chains, 8 of which have this
unique length (yellow); but after three more cycles, 240 of the 256 DNA chains would
be X nucleotides long. Copyright c©Molecular Biology of the Cell by B. Alberts and
A. Johnson and J. Lewis and M. Raff and K. Roberts and P. Walter. Reproduced by
permission of Garland Science/Taylor and Francis books, Inc.”

a special DNA polymerase isolated from a thermophilic bacterium that is stable at

much higher temperatures than normal, so that it is not denatured by the repeated

heat treatments.

Normally, the primers in the reaction mixture are moving around, caused by the

Brownian motion. Ionic bonds are constantly formed and broken between the single

stranded primer and the single stranded DNA template. More stable bonds last a little

bit longer (primers that perfectly match) and on that piece of double stranded DNA

(template and primer), the polymerase can attach and starts copying the template.

Once there are a few bases built in, the ionic bond is so strong between the template

and the primer, that it does not break anymore. To start this attachment, the reaction

mixture is cooled down to, usually, 55oC to 65oC. These temperature ranges allow
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oligonucleotides (primers) to hybridize to complementary sequences in the genomic

DNA (step 2: annealing).

The annealed mixture is then extended by the polymerase till the regions of DNA

in between each of the two primers are synthesized (step 3: extension). This step is

carried at 72oC, which is the ideal working temperature for the polymerase.

As these steps are repeated, the newly synthesized fragments serve as templates

in their turn, and within a few cycles the predominant product is a single species of

DNA fragment with the desired length. In practice, 20 to 30 cycles of reaction are

required for effective DNA amplification. Each cycle doubles the amount of DNA

synthesized in the previous cycle. A single cycle requires only about 3-5 minutes, and

an automated procedure permits cell-free cloning of a DNA fragment within a few

hours, compared with the several days required for standard cloning procedures [2].

Later, the PCR product has to be checked by running it on an agarose gel. DNA

pieces of different length run at different speed on the gel. If the right length product

is obtained, one can pass to the next stages of the cloning [82].

A.2 Insertion of DNA segments into plasmid vec-

tors

The plasmid vectors are self-replicating shuttles, which are used for gene cloning.

They are small circular molecules of double-stranded DNA derived from larger plas-

mids that occur naturally in bacterial cells. For use as cloning vectors, the purified

plasmid DNA circles are first cut with a restriction nuclease to create linear DNA

molecules. The PCR-amplified DNA is also cut with the same restriction nuclease.

These digestion reactions are done by using specific enzymes that recognize different

but well-determined sequences. Under their preferred salt concentrations and tem-

perature conditions, they bind to their recognition sequences and cut DNA molecules

into two pieces with cohesive ends.

The resulting restriction fragments (the gene to be cloned and plasmids) can be an-
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Figure A-2: ”The formation of a recombinant DNA molecule. The cohesive ends
produced by many kinds of restriction nucleases allow two DNA fragments to join
by complementary base-pairing. DNA fragments joined in this way can be covalently
linked in a highly efficient reaction catalyzed by the enzyme DNA ligase. In this
example a recombinant plasmid DNA molecule containing a chromosomal DNA insert
is formed. Copyright c©Molecular Biology of the Cell by B. Alberts and A. Johnson
and J. Lewis and M. Raff and K. Roberts and P. Walter. Reproduced by permission
of Garland Science/Taylor and Francis books, Inc.”

nealed to each other via their cohesive ends to form recombinant DNA circles. These

recombinant molecules containing foreign DNA inserts are then covalently sealed by

the enzyme “DNA ligase” (Figure A-2) [2, 82].

A.3 Transformation of plasmids into bacteria

In the next step of cloning, the recombinant DNA circles (plasmids) are introduced

into bacterial cells. This step is called “plasmid transformation”. Before this step,

bacteria have to be made transiently permeable to foreign DNA. Typically, this is

achieved by treating the cells with special media for a few hours and then by applying

a mild heat-shock to these cells. As these cells grow and divide, doubling in number

every 20 minutes, the recombinant plasmids also replicate to produce an enormous

number of copies of DNA circles containing the foreign DNA (Figure A-3). The cells

that accepted foreign DNA have to be separated from other cells that failed to do so.

Many bacterial plasmids carry genes for antibiotic resistance, this property is used
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to select those cells that have been successfully transfected. When the bacteria are

grown in the presence of the antibiotic, only cells containing plasmids will be able to

develop antibiotic resistance and thus survive [2, 82].

A.4 Gene insertion into the chromosome of Bacil-

lus subtilis

An integrable plasmid, which can replicate independently in Escherichia coli is used

for inserting any gene of interest into the chromosome of B. subtilis as a single copy.

This plasmid could only be integrated into the chromosome of B. subtilis if it contains

sequences homologous to chromosomal sequences of the bacteria. These kinds of

plasmids carry a selectable antibiotic resistance and unique sites for the ligation of

gene of interest. The amyE locus, coding for a nonessential α-amylase, is used in most

of the cases for integration. The antibiotic resistance marker and a multiple cloning

site sandwiched between the two halves of the amyE gene, designated amyE-front

and amyE-back. Upon transformation of B. subtilis cells, both amyE sequences will

recombine at their homologous sites, thereby stably inserting the DNA sequences in

between amyE-front and amyE-back into the B. subtilis chromosome via a double-

crossover events [83, 84]. The cells stable integrated the foreign plasmid will loose

the amyE. This can be checked by growing cells under conditions when they need

α-amylase to digest starch and continue to grow.

A.5 Gene insertion into the chromosome of E. coli

Lambda InCh (”Into the Chromosome”) vectors are derived from bacteriophage

lambda, which mediates the transfer of cloned DNA from pBR322-type or pUC-

type plasmids into the E. coli chromosome. The transfer depends on three regions of

homology. At these regions, recA dependent recombination is used as the mechanism

for genetic exchange.

The first of these recombination events occurs during growth of the phage in a cell
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Figure A-3: ”Purification and amplification of a specific DNA sequence by DNA
cloning in a bacterium. Each bacterial cell carrying a recombinant plasmid develops
into a colony of identical cells, visible as a spot on the nutrient agar. By inoculat-
ing a single colony of interest into a liquid culture, one can obtain a large number
of identical plasmid DNA molecules, each containing the same DNA insert. Copy-
right c©Molecular Biology of the Cell by B. Alberts and A. Johnson and J. Lewis
and M. Raff and K. Roberts and P. Walter. Reproduced by permission of Garland
Science/Taylor and Francis books, Inc.”
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containing a plasmid. Recombination at one of these regions shared by the plasmid

and the phage results in a cointegrate formation. Resolution of the cointegrate then

results in transfer of genetic material from the plasmid to the phage. The second step

can happen either during growth of the phage or at a later step.

Once the plasmid insert has recombined into the phage, replacing the KanR allele

with a complete bla allele along with whatever is cloned between the two homologous

regions, an Ampicillin resistant lysogen can be selected. This involves site specific

recombination at the lambda attachment site (att) on the E. coli chromosome.

In the last step, nearly all of the lambda DNA is removed by another homologous

recombination event. An 800 bp fragment of the chromosome right next to the att site

is cloned in the phage so that in the lysogen there is a direct repeat. Recombination

between these regions loops out the intervening sequence deleting it. This is easily

selected since the phage has a temperature sensitive repressor, cI857, and is induced

at 42oC killing any cell in which the deletion has not occurred. This results in a

temperature independent (phage cured) strain with a stable single copy of the insert

from the plasmid on the chromosome [85].
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Appendix B

Methods 1

B.1 Strains, growth conditions and media

We placed the gene gfpmut2 under the control of the Pspac promoter and introduced

mutations in the ribosome binding site, initiation codon and promoter region of gf-

pmut2 by PCR (see Appendix A.1). Mutations were verified by sequencing; sponta-

neous mutation frequencies were negligible over the timecourse of our experiments.

We digested the PCR products and ligated them into the amyE integration vector

pDR67, which contains a single copy of lacI downstream of the constitutive promoter

Ppen (see Appendix A.2). We amplified the resulting recombinant plasmid in the E.

coli AG1111 strain (see Appendix A.3) and inserted it into the chromosome of the

B. subtilis JH642 strain by double-crossover at the amyE locus (see Appendix A.4).

Cells of E. coli and B. subtilis were made competent and transformed according to

standard procedures [82]. The resulting B. subtilis strain contained a single copy of

gfpmut2 under the Pspac promoter and a single copy of lacI under the constitutive Ppen

promoter. The Pspac promoter includes a binding site for Lac repressor, the product

of the lacI gene; Pspac is externally inducible by IPTG, which binds to and inhibits

the repressor function of LacI. The concentration of IPTG in the growth medium

therefore determines the transcriptional efficiency of gfpmut2. Addition of IPTG is

not expected to affect native operon expression in B. subtilis.

We grew cells overnight in Luria Bertani (LB) broth at 37oC, diluted these cultures
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and induced them with varying amounts of IPTG for at least 5 h at 37oC. We grew

non-induced strains to determine the amount of background fluorescence due to auto-

fluorescence. The background fluorescence is very similar to the fluorescence measured

for the B. subtilis JH642 strain lacking gfpmut2. This implies that the Pspac promoter

is tightly controlled.

B.2 Data acquisition and analysis

We collected cells from growth cultures at OD600 ≈ 1.0, which corresponds to the

late exponential phase. To eliminate cell aggregates, we centrifuged cells at 4,000

rpm for 1 min, pelleted the supernatant at 14,000 rpm for 1 min and resuspended

the pellet in PBS. We independently confirmed the distributions of cell shapes using

fluorescence microscopy. Single-cell fluorescence measurements were carried out on a

Becton-Dickinson FACScan flow cytometer with a 488-nm Argon excitation laser and

a 525-nm emission filter. FACScan data were analyzed on a Macintosh Quadra 650

using the Cell Quest program. During each flow-cytometer experiment, we collected

data from 104−105 single cells; each run typically lasted for 2 min and was conducted

at room temperature. Cells from the same sample were often analyzed in two runs

separated by 15 min or more. The measured fluorescence distribution was unchanged

both during the course of a single run and between two such runs. To reduce noise

in fluorescence values resulting from different cell sizes, we analyzed cells using the

smallest allowed gate in the side-scattering and forward-scattering space.

B.3 Determination of transcriptional and transla-

tional efficiencies

For the translational mutants, we defined the transcriptional efficiency as the average

fluorescence measured for a specific strain at a certain IPTG concentration normalized

to the average fluorescence measured for that strain at full induction ([IPTG] = 1

mM). The translational efficiency of a strain was defined as the average fluorescence
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of the strain at full induction normalized to that of the wildtype strain (ERT25). For

the transcriptional mutants, we defined transcriptional efficiency for each strain as

the average fluorescence measured at full induction normalized to that of the ERT25

strain. We determined parameter error bars over at least 20 repeated measurements.

B.4 Monte Carlo simulations

Simulations were implemented using Gillespie’s algorithm for stochastic coupled chem-

ical reactions [86]. The reactions simulated are those schematically indicated in Figure

2-8. We assume individual reactions to be Poisson, so that the probability of a reac-

tion with rate k happening in a time dt is given by kdt, and the waiting times between

successive reactions are exponentially distributed. We assume that steady-state has

been reached at a time equal to ten times the protein half-life. Each simulated his-

togram is the result of 5,000 trials.

B.5 Software

We converted data obtained in flowcytometer to ASCII format using MFI (E. Martz,

Univ. of Massachusetts, Amherst, available at http://www.umass.edu/microbio/mfi.
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Appendix C

Methods 2

C.1 Bacterial strains and plasmids

The gfp gene under the control of the wild-type lac promoter, obtained from plasmid

pGFPmut3.1 (Clontech), was inserted into the chromosome of E. coli MG1655 at the

lambda insertion site using the λ-InCH technique [85] (see Appendix A.5) to pro-

duce the strain MUK21. The gat promoter was amplified from the E. coli MG1655

chromosome by polymerase chain reaction (see Appendix A.1) using primers flanking

the 2,175,231-2,175,531 chromosomal region. The HcRed gene was obtained from

pHcRed1-C1 (Clontech) and was placed under the control of the gat promoter into a

plasmid with a ColE1 replication origin (see Appendix A.2), which was transformed

into MUK21 cells (see Appendix A.3) to obtain the strain ERT113. All measurements

of wild-type network response were conducted in this strain. Two additional strains

with lac operon repression factors at lower levels than in the wild-type were con-

structed by transforming MUK21 cells with multicopy plasmids, each incorporating a

single copy of the lac promoter. The strain MUK21-pSC101* contains plasmids with

a pSC101* replication origin (average copy number 4), and the strain MUK21-p15A

contains plasmids with a p15A replication origin (average copy number 25)[37].
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C.2 Growth conditions and media

Cells were grown at 37oC in M9 minimal medium with succinate as the main carbon

source, supplemented with varying amounts of glucose and TMG. Master cultures

with cells induced for lac expression were prepared by overnight growth in 1 mM

TMG, and master cultures with uninduced cells by overnight growth in the absence of

TMG. During each experimental run, cells were transferred from these master cultures

into media containing specified amounts of glucose and TMG. They were subsequently

grown for 20 additional hours before they were harvested for measurement. The

transfer volume was calculated to produce extremely low final cell densities (OD600

∼ 0.001), thereby preventing the depletion of glucose and TMG from the medium.

Cells were concentrated by filtration and centrifugation, and the resulting pellet was

resuspended in 2.5 µl of the growth medium to prepare a microscope slide.

C.3 Data acquisition

Green and red fluorescence values of single cells were measured using a Nikon TE2000

microscope with automated stage and focus. For each experiment, images of about

1,000 cells on each slide were collected using a cooled back-thinned CCD camera

(Micromax, Roper Scientific). These images were analyzed using Metamorph (Uni-

versal Imaging) to obtain the average fluorescence of each cell above the fluorescence

background.

C.4 Data analysis

For each glucose concentration, the fraction of cells in the induced state was deter-

mined as a function of TMG concentration, and the switching thresholds (defined as

the TMG concentrations at which less than 5% of the cells are in their initial states)

were obtained by interpolation. We estimated the green fluorescence values of the

induced (high) and uninduced (low) subpopulations at each switching threshold by

averaging over two neighboring TMG concentrations. At each threshold, the high

98



fluorescence was a linear function of the low fluorescence, with a small positive inter-

cept comparable to the autofluorescence of E. coli MG1655 cells. We interpreted this

intercept as the autofluorescence of the ERT113 strain. The repression factors for

the MUK21-pSC101* and MUK21-p15A strains were estimated by taking the ratio

of fully induced to uninduced fluorescence levels, assuming that these strains had the

same autofluorescence background as ERT113.

C.5 Calculation of the repression factor

The most direct way to measure the operon repression factor is to take the ratio of

fluorescence levels of fully induced cells (grown in saturating amounts of TMG) and

uninduced cells (grown in the absence of TMG). However, because our reporter is

present in single copy in the chromosome, the fluorescence levels of uninduced cells

are very close to the measurement background of the camera, and comparable to cell

autofluorescence. We therefore chose to determine the repression factor by the fitting

technique discussed above. We obtained a repression factor ρ = 170 for the wild-type

system, whereas previous studies [70] report much higher repression factors, of order

1000. This difference could be due to the following reasons. First, the wild-type lac

promoter contains three operator sites (O1, O2 and O3) to which LacI binds. The

lac promoter used in our reporter construct is missing the O2 operator site, leading

to a decrease in repression efficiency due to a drop in DNA looping activity. Such a

promoter has been reported [76] to have a repression factor of only 440. (Note that

the native copy of the lac promoter still contains all three operator sites, so system

response is unaffected.) Second, our fit is performed only at the switching thresholds,

far from either the fully induced or uninduced limits. Our fitted value of ρ will

probably be different from the value that would be obtained by direct measurement

at the two limits, due to small differences between our approximate model and the true

system response. However, the fact that we find ρ to be independent of glucose and

TMG levels strongly suggests that the true repression factor is similarly independent

of these parameters.
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C.6 Growth in IPTG and lactose

For completeness, we conducted a series of experiments using lactose and isopropyl-

β-D-thiogalactopyranoside (IPTG) as inducers in place of TMG.

During induction with IPTG, cells show a persistent bimodal response, but the

fluorescence levels of uninduced cells are higher than with TMG. It is known that

IPTG is able to enter cells independently of LacY, accounting for the increased flu-

orescence of the uninduced cells. However, the persistence of bimodality indicates

that LacY continues to play a role in the active transport of IPTG [87], preserving

positive feedback. Under these circumstances, we might expect the phase diagram

during growth on IPTG to be very similar to the phase diagram we have measured

using TMG. Indeed, as an indirect evidence of this, a population-averaged version

of our TMG-glucose phase diagram bears a striking resemblence to the results of re-

cent population-averaged measurements of lac expression using IPTG and cAMP as

inducers [70] (Section 3.8).

During induction with lactose, initially uninduced cell populations show a tran-

sient bimodal distribution of green fluorescence levels at certain glucose concentra-

tions, and a transient unimodal distribution at others. However, the steady state dis-

tribution after 4 hours of growth is always unimodal, and we never observe hysteresis.

By performing extensive measurements, we confirmed this unimodal behaviour to oc-

cur for over fifty combinations of glucose and lactose concentrations, upto saturating

quantities of each sugar. The difference between the observed responses to TMG

and lactose could be due to several causes. First, because lactose is metabolized and

therefore affects cell growth rate, it could happen that the induced sub-population of

a bimodal population always grows to dominance. Second, since the metabolism of

lactose leads to a drop in CRP-cAMP levels [69], the inducer activity of allolactose

might be counteracted to some extent. Third, although an increase in operon expres-

sion leads to an increase in lactose uptake and allolactose production, it also leads to

an increase in allolactose degradation by β-galactosiadase. Intracellular allolactose

levels therefore depend very weakly on operon expression levels, reducing the strength
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of positive feedback and possibly eliminating bistability altogether.
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mechanism of phase variation of virulence in staphylococcus epidermidis: evidence

for control of the polysaccharide intercellular adhesin synthesis by alternating

insertion and excision of the insertion sequence element is256. Mol. Microbiol.,

32(2):345–356, 1999.

[24] A.C. Wright, J.L. Powell J.B. Kaper, and J.G.Jr Morris. Identification of a

group 1-like capsular polysaccharide operon for vibrio vulnificus. Infect. Immun.,

69(11):6893–6901, 2001.

[25] G. Neves, J. Zucker, M. Daly, and A. Chess. Stochastic yet biased expression of

multiple dscam splice variants by individual cells. Nature Genetics, 36(3):240–

246, 2004.

[26] M.D. Levi, C.J. Morton-Firth, W.N. Abouhamad, R.B. Bourret, and D. Bray.

Origins of individual swimming behavior in bacteria. Biophys. J., 74(1):175–181,

1998.

[27] J.L. Spudich and D.E.Jr. Koshland. Non-genetic individuality: chance in the

single cell. Nature, 262(5568):467–471, 1976.

[28] H. Mayani, W. Dragowska, and P.M. Lansdorp. Lineage commitment in human

hemopoiesis involves asymmetric cell division of multipotent progenitors and

does not appear to be influenced by cytokines. J. Cell. Physiol., 157(3):579–586,

1993.

[29] J.I. Elliott, R. Festenstein, M. Tolaini, and D. Kioussis. Random activation of

a transgene under the control of a hybrid hcd2 locus control region/ig enhancer

regulatory element. EMBO Journal, 14(3):575–584, 1995.

[30] R. Kemkemer, S. Schrank, W. Vogel, H. Gruler, and D. Kaufmann. Increased

noise as an effect of haploinsufficiency of the tumor-suppressor gene neurofibro-

matosis type 1 in vitro. Proc. Natl Acad. Sci. USA, 99(21):13783–13788, 2002.

106



[31] P.W. Sternberg and M.A. Felix. Evolution of cell lineage.

Curr. Opin. Genet. Dev., 7(4):543–550, 1997.

[32] A. Becskei and L. Serrano. Engineering stability in gene networks by autoregu-

lation. Nature, 405(6786):590–593, 2000.

[33] T.M. Yi, Y. Huang, M.I. Simon, and J. Doyle. Robust perfect adaptation in bac-

terial chemotaxis through integral feedback control. Proc Natl Acad Sci U S A.,

97(9):4649–4653, 2000.

[34] D. Gonze, J. Halloy, and A. Goldbeter. Robustness of circadian rhythms with

respect to molecular noise. Proc Natl Acad Sci U S A., 99(2):673–678, 2002.

[35] J. Lewis. Autoinhibition with transcriptional delay: a simple mechanism for the

zebrafish somitogenesis oscillator. Curr Biol, 13(16):1398–1408, 2003.
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