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by
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Doctor of Philosophy in Nuclear Science and Engineering

Abstract

This dissertation reports on the development of a diagnostic visible imaging system
on the Alcator C-Mod tokamak and the results from that system. The dissertation
asserts the value of this system as a qualitative and quantitative diagnostic for mag-
netically confined plasmas. The visible imaging system consists of six CCD cameras,
absolutely calibrated and filtered for specific spectral ranges. Two of these cameras
view the divertor region tangentially, two view RF antenna structures and two are
used for a wide-angle survey of the vacuum vessel. The divertor viewing cameras are
used to generate two-dimensional emissivity profiles using tomography. Three physics
issues have been addressed using the visible imaging system: 1) Using two-dimensional
emissivity profiles of Dγ, volumetric recombination rate profiles have been measured
and found to have a structure that depends on a poloidal temperature gradient in
the outer scrape-off-layer. 2) A camera viewing the inner wall tangentially was used
to measure Dα emission profiles. A sharp break in slope of the radial density profile
was found at the location of the secondary separatrix near the inner wall by using
these profiles and a kinetic model of the neutrals. 3) Two-dimensional emissivity
profiles of visible continuum (420-430nm) have been measured and found to be an
order of magnitude too large when compared to expected levels from electron-ion
bremsstrahlung and radiative recombination. Several atomic and molecular processes
have been considered to explain the enhanced continuum. However, none of the
considered processes could explain the continuum level without particle densities in-
consistent with current modeling efforts. The visible imaging system was also used in
identifying the causes of impurity injections during discharges, in identifying the fail-
ure of invessel components, and as a monitor of vessel and plasma conditions. Both
the physics results and the operational benefits of the visible imaging system show
that the system is a valuable quantitative and qualitative diagnostic.

Thesis Supervisor: James L. Terry
Title: Research Scientist
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Chapter 1

Introduction

This introduction provides an general overview of the dissertation. A discussion of

the visible imaging diagnostics on Alcator C-Mod is presented along with a very

brief review of the current visible imaging systems on other tokamaks. The research

question is then presented along with its short answer. Finally, a brief summary of

the results from the dissertation is discussed.

1.1 Background

Visible imaging on Alcator C-Mod began with sets of linear diode arrays filtered for

visible light.[59, 30] The imaging system consisted of four viewing arrays all of which,

except one, employed 64-channel, linear diode arrays, which were read out serially.

Variable frames rates (∼1 Hz to ∼3.5 kHz) resulted in an extremely large dynamic

range for these detectors. A 35-channel diode array was read out in parallel and

tracked fast events. The desired sections of plasma were imaged through windows

on re-entrant tubes onto coherent fiber bundles. The bundles did not transmit light

usefully below 400nm and were subject to transmission degradation when exposed to

neutron or gamma radiation. The images transmitted by each bundle could be viewed

in two colors by employing a beamsplitter, lens and interference filter combination

before being imaged onto the diode arrays. The interference filters were mounted

in wheels and could be selected remotely, allowing for between shot changes of the
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spectral lines to be viewed. This system was typically used to observe the brightness

profiles of Dα and C+2 emission.

Christian Kurz extended the use of the linear diode arrays by tomographically gen-

erating two-dimensional emissivity profiles of the visible light.[31] The reconstruction

divided the field-of-view into pixels 2.5 cm square in the poloidal plane. Therefore

the spatial resolution of the reconstruction was the size of one pixel. The viewing ge-

ometry was contained in a matrix and had been modelled accounting for the poloidal

and toroidal extent of each individual detector chord. Emissivities were obtained by

inverting the matrix in a least-squares sense under the constraints of smoothness and

non-negativity. This technique was used on the emission of both Dα and a carbon

line.

Aaron Allen used a single camera with a two-dimensional CCD to tomographi-

cally generate emissivity profiles.[1] The camera used was a wide-angle view of the

vacuum vessel. Only a small region of the images was used to reconstruction the

emissivity profiles. The reconstruction technique was similar to the that employed by

Kurz, except no smoothness and non-negativity constraints were used. The camera

was filtered for Dα emission using a wide bandpass colored glass combination. The

emissivity solutions were reconstructed on 1 cm square grid elements, improving the

resolution over the linear diode system employed by Kurz.

The technique of using CCD cameras to generate emissivity profiles is also em-

ployed by other tokamaks. The DIII-D tokamak in San Diego, California and the

JET tokamak in Abingdon, England both employ a visible imaging camera system

to generate two-dimensional emission profiles.[15, 24] The DIII-D system employs a

lens, fiber image guide, and filter combination to relay the view to a charge induction

device (CID) camera. These images are then inverted using a geometry matrix similar

to the techniques of both Kurz and Allen. The JET system uses an endoscope to

obtain the toroidal view, and a system of beam splitters to allow the observation of

three wavelengths simultaneously. The reconstruction technique for the JET system

involves using singular value decomposition to solve the matrix problem and then

iteratively redistributing the negative values to obtain a non-negative solution.
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1.2 Research Question

As a natural extension of previous work in visible imaging on Alcator C-Mod, this

dissertation answers the question: Can visible imaging spectroscopy be a valuable

qualitative and quantitative diagnostic for magnetically confined plasmas? The an-

swer is that visible imaging spectroscopy is a valuable diagnostic as evidenced by the

physics results and operational benefits obtained by this system, summarized in the

following section and discussed in detail in Chapter 4.

1.3 Summary of Results

In answering the research question this dissertation presents three physics results and

a discussion on the operational benefits of a visible imaging system. The physics

results include an explanation of the divertor recombination profiles based on a radial

drift induced by a poloidal temperature gradient, analysis of the Dα emission near

the inner wall region of the tokamak and the influence the secondary separatrix has

on the profiles, and a finding that the level of continuum emission from the divertor is

not due to atomic or to a number of considered molecular processes. The discussion

of the operational benefits of the visible imaging system focuses on its ability to

locate impurity sources, identify failed invessel components and its use as a monitor

of plasma and vessel behavior.

Using the technique and physical setup described in sections 4.1 and 4.2 the volu-

metric recombination rate profiles were measured and found to have a structure that

depends on a poloidal temperature gradient in the outer scrape-off layer. The two

dimensional volumetric recombination rate profiles where obtained using Dγ emis-

sivity profiles from the visible imaging system and electron density and temperature

measurements from Langmuir probes and visible spectroscopy. Significant recombi-

nation was observed in the private flux region of the divertor during moderate density

discharges (n̄e ∼ 0.8 − 1.9 × 1020 m−3). Using Braginskii’s equations and deriving a

radial drift, it was determined that the temperature gradient in the outer divertor
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could generate the flux of plasma consistent with the recombination rate observed in

the private flux region.

A sharp break in slope of the radial density profile was found at the location of the

secondary separatrix near the inner wall of Alcator C-Mod by using Dα emissivity

profiles from the visible imaging system and a kinetic neutral code (KN1D [32]).

The inboard Dα emission was found to peak near and follow in time the secondary

separatrix. The decay lengths of the inboard Dα emission were found to depend on

either the neutral mean-free-path (emission decay length towards the plasma core) or

on the electron density at the secondary separatrix (emission decay length towards

the inner wall). This decay length towards the inner wall begins at the secondary

separatrix and is found to be significantly shorter then the decay length on the same

flux surfaces on the low-field-side of the plasma core.

Two dimensional visible continuum (420-430 nm) emissivity profiles in the scrape-

off layer have been measured and found to be an order of magnitude too large when

compared to expected levels from electron-ion bremsstrahlung and radiative recom-

bination based on measured values of electron densities and temperatures. Various

atomic and molecular processes were considered in an attempt to explain the con-

tinuum level. The atomic processes included: electron-atom bremsstrahlung, H−

attachment, ion-atom bremsstrahlung, and H+
2 attachment. For these processes to

generate the level of continuum observed, the atomic density would have to be two

orders of magnitude larger than the electron density. The molecular process con-

sidered is a radiative dissociation of the deuterium molecule (a3Σ+
g → b3Σ+

u ). The

deuterium molecule can decay radiatively from an excited electronic state into an

unbound electronic state, thus dissociating the molecule and generating a continuum

emission. Two mechanisms for populating the excited state were considered, excita-

tion from ground and cascading decays from H+
2 volume recombination. With both of

these mechanisms it was estimated that the H2 and the H+
2 densities would need to be

on the same order of the electron density, if the molecular process is the cause of the

enhanced continuum. All the above mentioned processes require densities (molecular,

atomic, and molecular ion) that are too high when compared to those predicted by
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divertor plasma modelling, therefore it is not likely that any of these processes are

the cause of the observed continuum emission in the divertor and the cause remains

unknown.

Besides physics results the visible imaging system has been shown to have sig-

nificant operational benefits. The system has been used in identifying the causes of

impurity injections during discharges, in identifying the failure of invessel compo-

nents, and as a monitor of vessel and plasma behavior. There are three main causes

of impurity injection in Alcator C-Mod. The injections typically either originate from

the RF antenna structure, the Langmuir scanning probes or from the molybdenum

protection tiles that line the inside of the vacuum vessel. All of these injections have

been observed and are monitored by the visible imaging system. This system has

been useful in identifying when certain invessel components fail. Three specific in-

cidents were noted, the bending of a viewing dump, the complete dislocation of a

viewing dump, and the breaking and falling of boron nitride protection tiles from

an RF antenna structure. In its capacity as a vacuum vessel and plasma behavior

monitor, the system is used to observe during electron cyclotron discharge cleaning,

during, and after the discharge, sometimes recording the flight of debris around the

vacuum vessel after a disruption.
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Chapter 2

Review of Current Visible

Spectroscopic Imaging Techniques

This chapter reviews the current visible imaging systems on tokamaks and gives

a review of the two most commonly used algorithms for solving the tomographic

problem. Section 2.1 will describe the visible imaging systems on two of the largest

tokamaks in the world, the DIII-D tokamak in San Diego, California and the Joint

European Torus (JET) in Abingdon, England. Section 2.2 will describe the most

commonly used algorithms for solving the linear problem of Ax = b, using least

squares methods. They are the Singular Value Decomposition (SVD) method and

the Conjugate-Gradient method. Section 2.2 will also discuss the advantages and

disadvantages of the two algorithms applied to visible imaging.

2.1 Review of Current Visible Imaging Systems on

Tokamaks

2.1.1 DIII-D Visible Imaging System

The DIII-D visible imaging system consists of several components that give a tangen-

tial view of the DIII-D divertor region.[15] The tangential view is obtained by the use

of a mirror located at the end of a reentrant tube in vacuum. Figure 2-1 shows the
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borescope !Olympus F-100-107-000-55, 107-cm-long, ac-
ceptance angle !27.5°, f /20" was used for measurements of
the strong D# line emission from the divertor. In a recent
upgrade, this high loss component was replaced with a fast
mini-lens !Schott IG-1635" and fiber image guide assembly
!Schott IG-154, 274-cm-long, see Fig. 3". The mini-lends is
$f /1.1 and has a diameter of 3 mm. It is mounted in a 10
mm diam housing, and has an acceptance angle of !20 deg.
The fiber imageguide is a square bundle, 4 mm on a side,
constructed of 10 %m fibers of standard commercial glass.
The imageguide numerical aperature is NA"0.56 !f /0.9".

This combination was chosen primarily because it fit
into the preexisting design of the reentrant tube and it pro-
vided a substantial improvement in the light throughput of
the system for a reasonable cost. The major disadvantage of

the system is that the commercial glass fibers are susceptible
to neutron damage !browning". Initial transmission fraction
for the 2.7 m guide in this system is 27% at 465 nm !C III",
35% at 514 nm !C II" and 37% at 656 nm !D#". On DIII-D,
the neutron fluence is sufficient to substantially reduce the
transmission of the fiber imageguide at the short wavelengths
in three months of continuous operation. The system features
a modular design and at present the imageguide is removed
from the machine hall except on days for which the diagnos-
tic is critical to the experiment. The decrease in transmission
as a function of neutron fluence and wavelength is docu-
mented each time the imageguide is removed from the ma-
chine hall. This allows a single imageguide to give accept-
able performance for selected experiments during about one
year of DIII-D operation.

The design includes a water cooled jacket surrounding
the imageguide inside the reentrant tube. This allows the
imageguide to remain on the tokamak during high tempera-
ture baking. Maximum temperature on the imageguide is
120 °C !250 °F". Parts of the DIII-D vacuum vessel are
baked to 350 °C; the reentrant tube typically reaches
$140 °C during high temperature baking. At the contact
point between the cooling jacket assembly and the reentrant
tube, the copper jacket and the imageguide are separated
from the reentrant tube by a VESPEL spacer. Thermocouple
measurements during vacuum vessel bakes to 350 °C indi-
cate that, with active cooling, a temperature differential of
greater than 75 °C is sustained by $0.4 cm of VESPEL. This

FIG. 1. Cross section of the lower divertor region of DIII-D showing the
location of the TTV reentrant tube. The viewing region of the diagnostic is
roughly centered about the X point of a typical lower single null equilib-
rium.

FIG. 2. 3D schematic of the TTV reentrant tube head showing the mirror,
carbon shutter assembly, and carbon guard blocks. Dashed lines show that
the last clear field lines do not intersect the top of the mirror for typical
equilibria.

FIG. 3. Schematic layout of the TTV diagnostic showing the reentrant tube
assembly, the fiber imageguide, optics, remotely controllable filter changers,
and the CID camera.
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Figure 2-1: Cross section of the lower divertor region of DIII-D showing the location
of the DIII-D imaging system reentrant tube and viewing region. [15]

location of the DIII-D imaging system reentrant tube and viewing area. This mirror

is protected from the plasma by having the top of the mirror recessed below the level

of surrounding carbon tiles. At the vacuum end of the reentrant tube, a vacuum glass

window is mounted, allowing all other components of the imaging system to be at

atmosphere. The light is brought out of the vacuum vessel through this glass window

and then through a lens and fiber image guide. The fiber image guide is coupled

to a charge induction device (CID) camera through a series of lenses and a remotely

controllable filter changer. Figure 2-2 shows schematically the DIII-D imaging system

from the vacuum-side mirror to the CID camera. The images from the CID camera

are recorded onto a high quality VHS tape for subsequent digitization. Both the

spatial and intensity calibrations are done in situ during vents of the DIII-D vacuum

vessel.
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borescope !Olympus F-100-107-000-55, 107-cm-long, ac-
ceptance angle !27.5°, f /20" was used for measurements of
the strong D# line emission from the divertor. In a recent
upgrade, this high loss component was replaced with a fast
mini-lens !Schott IG-1635" and fiber image guide assembly
!Schott IG-154, 274-cm-long, see Fig. 3". The mini-lends is
$f /1.1 and has a diameter of 3 mm. It is mounted in a 10
mm diam housing, and has an acceptance angle of !20 deg.
The fiber imageguide is a square bundle, 4 mm on a side,
constructed of 10 %m fibers of standard commercial glass.
The imageguide numerical aperature is NA"0.56 !f /0.9".

This combination was chosen primarily because it fit
into the preexisting design of the reentrant tube and it pro-
vided a substantial improvement in the light throughput of
the system for a reasonable cost. The major disadvantage of

the system is that the commercial glass fibers are susceptible
to neutron damage !browning". Initial transmission fraction
for the 2.7 m guide in this system is 27% at 465 nm !C III",
35% at 514 nm !C II" and 37% at 656 nm !D#". On DIII-D,
the neutron fluence is sufficient to substantially reduce the
transmission of the fiber imageguide at the short wavelengths
in three months of continuous operation. The system features
a modular design and at present the imageguide is removed
from the machine hall except on days for which the diagnos-
tic is critical to the experiment. The decrease in transmission
as a function of neutron fluence and wavelength is docu-
mented each time the imageguide is removed from the ma-
chine hall. This allows a single imageguide to give accept-
able performance for selected experiments during about one
year of DIII-D operation.

The design includes a water cooled jacket surrounding
the imageguide inside the reentrant tube. This allows the
imageguide to remain on the tokamak during high tempera-
ture baking. Maximum temperature on the imageguide is
120 °C !250 °F". Parts of the DIII-D vacuum vessel are
baked to 350 °C; the reentrant tube typically reaches
$140 °C during high temperature baking. At the contact
point between the cooling jacket assembly and the reentrant
tube, the copper jacket and the imageguide are separated
from the reentrant tube by a VESPEL spacer. Thermocouple
measurements during vacuum vessel bakes to 350 °C indi-
cate that, with active cooling, a temperature differential of
greater than 75 °C is sustained by $0.4 cm of VESPEL. This

FIG. 1. Cross section of the lower divertor region of DIII-D showing the
location of the TTV reentrant tube. The viewing region of the diagnostic is
roughly centered about the X point of a typical lower single null equilib-
rium.

FIG. 2. 3D schematic of the TTV reentrant tube head showing the mirror,
carbon shutter assembly, and carbon guard blocks. Dashed lines show that
the last clear field lines do not intersect the top of the mirror for typical
equilibria.

FIG. 3. Schematic layout of the TTV diagnostic showing the reentrant tube
assembly, the fiber imageguide, optics, remotely controllable filter changers,
and the CID camera.
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Figure 2-2: Schematic layout of the DIII-D imaging system showing the reentrant
tube assembly, the fiber image guide, optics, remotely controllable filter changers,
and the CID camera. [15]
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The two-dimensional emissivity reconstructions are generated using least squares

regression techniques to solve the matrix equation Ax = b, where x is the desired two-

dimensional emission profile, A is the transformation matrix that takes into account

the imaging geometry, and b is the raw data from the CID camera. Due to computer

memory constraints, the 512 × 512 image array is resampled at 128 × 128 and the

reconstructed image is generated with a 2 cm resolution. A three-dimensional integral

must be evaluated for each matrix element in A. These calculations are done using

distributed computing techniques on ∼ 45 workstations across the U.S.

The DIII-D imaging system has several benefits, including the ability to remotely

control the spectral line being recorded by the use of filter changers and its nearly

horizontal tangential view. A drawback to this system is the possible “browning” of

the image guide fibers due to neutron damage. This effect is minimized by removing

the image guide when the imaging system is not in use.

2.1.2 Joint European Torus Visible Imaging System

The Joint European Torus (JET) also employs a visible imaging system that views

the divertor. [24] The JET system uses an endoscope to obtain the toroidal view, and

a series of beam splitters to allow the observation of three wavelengths simultaneously.

The CCD cameras record images at a rate of 25 frames per second, where each frame is

an interleaved image recorded at twice the frequency. Using these interleaved images

the JET visible imaging system has a time resolution of 20 ms. Both spatial and

intensity calibrations are done using the light from plasma discharges. The spatial

calibration is done by comparing the observed locations of the divertor tile gaps

and the silhouette of the divertor structure on the camera image to the expected

location of these features. The spatial parameters are then solved iteratively for

until the expected and observed features overlap on the camera image. The intensity

calibration is accomplished by using a visible survey spectrometer, that provides line-

of-sight integrated signals through the emission profiles. Using the emission profiles

generated from the visible imaging system, data simulations of the visible survey

spectrometer signals are created and compared to the actual recorded signals of the
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visible survey spectrometer. The comparison between these two signals calibrates the

emission profiles. Figure 2-3 shows a simulated view of the divertor with the video

grid and a cross-section of the divertor structure with the emission grid.

JET scientists solve the matrix equation Ax = b using singular value decomposi-

tion (SVD). Because the resulting emission profile using this technique has negative

values–which are non-physical in this problem–a more reasonable solution is con-

structed by iteratively redistributing the negative values. In this iterative process

only the negative elements of the solution are used to reconstruct a virtual brightness

negative image. This negative brightness image is inverted again using SVD in which

divertor grid elements that originally contained negative elements are constrained to

zero. This new negative solution is added to the original solution and the iteration

process continues until the absolute value of the negative values is less than 20 percent

of the maximum value.

2.2 Review of Reconstruction Techniques

The reconstruction problem of visible imaging can be reduced to solving a linear set

of equations, Ax = b, where A is the relationship between the volumetric emission

cells, x, and the measured brightnesses, b. In all of the previously mentioned systems

the number of viewing chords is significantly larger than the number of emission cells.

Therefore this linear problem is an overdetermined system, and can be solved by a

least-squares method. Of the methods used to solve this problem, the Singular Value

Decomposition (SVD) and the Conjugate-Gradient methods are the most commonly

used. In this section I will discuss the algorithms for these two methods and the

relative benefits and difficulties of using each in visible imaging.

2.2.1 Singular Value Decomposition

We desire x = A−1b, where A is an m × n matrix with m indicating the number

of brightness chords or views and n indicating the number of emission cells. This

problem is solved if A−1 can be found. Singular value decomposition (SVD) is one
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Figure 2-3: (a) A simulated view of the JET divertor with the overlaid video grid.
(b) A cross-section of the JET divertor with the overlaid emission grid and a sample
trajectory of the video pixel mapped to a poloidal plane. [24]
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way to find an estimate of A−1. SVD is based on the mathematical theorem that

states that any m× n matrix A can be reduced into three components such that

A = UΣV T, (2.1)

where U is an m × n matrix consisting of n orthonormalized eigenvectors of the n

largest eigenvalues of AAT, V is the n orthonormalized eigenvectors of ATA, and Σ

is a diagonal matrix consisting of the “singular values” of A, Σ = diag(σ1, · · · , σn).

With this decomposition, an approximation to the inverse of A can be found to be

A−1 = V Σ−1UT, (2.2)

where Σ−1 = diag(1/σ1, · · · , 1/σr, 0, · · · , 0), and r ≤ n and is the cutoff for singular

values. Due to rounding errors in computations, the cutoff value for the singular

values is typically taken to be near the relative accuracy for the computer being used.

Higher values for the cutoff are taken if it is known that the error in the matrix A is

above the rounding error of computer.

The particular algorithm described in this section is based on the algorithm devel-

oped by Golub and Reinsch. [16] There is another popular method for computing the

SVD of a matrix when m � n, which is the typical case in the visible imaging sys-

tems, and is described by Chan[7]. The algorithm is completed in two parts; the first

part creates two sequences of Householder transforms to create a bidiagonal matrix

B:

B = P (n) · · ·P (1)AQ(1) · · ·Q(n) =



x x 0
. . . . . .

0 x x

0 · · ·
...

. . .


. (2.3)

Householder transforms are orthogonal and therefore a singular value decomposition
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applied to B will yield the same singular values as those of A,

B = GΣHT (2.4)

A = PGΣHTQT, (2.5)

where P = P (1) · · ·P (n) and Q = Q(1) · · ·Q(n). Therefore in the final decomposition

of A, U = PG and V = QH.

The second part of the SVD algorithm finds the singular values by diagonalizing

B using the QR method,

GTBH = Σ. (2.6)

Golub[17] discusses the precise methods used in diagonalizing the matrix B, as well

as some of the necessary subtleties. With this final step, all of the components of the

decomposition are known. The inverse can now be found using equation 2.2 and by

choosing the appropriate cutoff value for the inverse singular values.

There are two important advantages to using SVD in tomographic reconstruction.

The first is that because the geometry matrix, A, does not change unless the view

of the camera changes, the inverse need only be computed once and applied to all

measurements obtained with the same camera view. The other advantage is the

amount of information obtained in doing the SVD of the geometry matrix. SVD can

be used to estimate the rank, or degrees of freedom of the system, where the number

of non-zero singular values is the estimate of the rank. Using this estimate of rank,

the effectiveness of the viewing chords can be determined and therefore a system can

be devised to improve the tomographic reconstruction by choosing the most effective

chords.

There are also two main disadvantages of using SVD in tomographic reconstruc-

tions. The first is that SVD is both a computationally intensive and memory inten-

sive process. The number of computations required goes as 2m2n + 4mn2 + 14
3
n3 or

2m2n + 11n3 if using the Golub-Reinsch or Chan SVD algorithms, respectively.[7]

Problems of the size described in this thesis have n ∼ 2000 and m ∼ 4000, creat-

ing computations that take prohibitively long on desktop workstations. The other
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disadvantage is that this method of doing the tomographic reconstruction will cre-

ate negative values for the solution due to errors, an unphysical solution. Therefore

there is a desire to apply a non-negativity constraint on the solution. Most of the

non-negativity algorithms are iterative, and since SVD is computationally intensive

to begin with, coupling it with an iterative process will make it more so.

2.2.2 Conjugate-Gradient

The conjugate-gradient method of solving the least squares problem Ax = b is to

minimize iteratively the function φ(x) = 1
2
xTAx−xTb. The minimum of the function

φ(x) occurs when ∇φ(x) = Ax − b = 0. This is the same as finding the solution to

Ax = b.

The method described here is based on the method published by Hestenes and

Stiefel, [19] and a more detailed discussion can be found in Golub. [17] The following

discussion will assume that A is a symmetric positive-definite array. If A is not

symmetric positive-definite but does have m > n, then this algorithm could be used

to solve the normal equation ATAx = ATb.

The method of steepest descent is the most simple method of minimizing the func-

tion φ(x). In this method one simply steps in the negative direction of the gradient,

−∇φ = b−Axk = rk for the kth step, until the minimum is found. The successive so-

lutions would be found by xk = xk−1 +αkrk−1, where αk = rT
k−1rk−1/r

T
k−1Ark−1. This

method may be prohibitively slow if the solution lies in a region of a relatively flat

part of a steep sided valley. In this case the steepest decent method would traverse

the valley many times before settling on the solution.

An improvement on the steepest decent method would be to choose a direction,

pk, that is not equal to the previous residual, rk−1, but also not normal to it either,

pT
k rk−1 6= 0. Therefore, the successive solutions would be xk = xk−1 + αkpk, where

αk = pT
k rk−1/p

T
k Apk.

One such method of choosing the direction to step is to use directions that are
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A-conjugate with all previous step directions:

pT
k Api = 0 for i = 1, · · · , k − 1. (2.7)

Choosing this property of the step directions requires that the iteration process be

finite, and the solution will be found in at most n iterations. When using A-conjugate

vectors to choose the step directions, several other properties arise between the resid-

uals and the step directions:

1. The residuals are mutually orthogonal and

2. The step direction pk is a linear combination of the previous residual and the

previous step direction, pk = rk−1 + βpk−1.

Using these properties it can be shown that the kth step direction is orthogonal to

the kth residual, pT
k rk = 0. Now using these relations we can determine the values of

αk and βk,

αk =
rT
k−1rk−1

pT
k Apk

, (2.8)

and

βk =
pT

k−1Ark−1

pT
k−1Apk−1

. (2.9)

Therefore, an algorithm to find the minimum of the function φ could be described as
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follows.

x0 = 0

For k = 1, · · · , n

rk−1 = b− Axk−1

if rk−1 = 0

then

Set x = xk−1and quit.

else

If k = 1

then

pk = r0

else

βk = −pT
k−1Ark−1/p

T
k−1Apk−1

pk = rk−1 + βkpk−1

αk = rT
k−1rk−1/p

T
k Apk

xk = xk−1 + αkpk

x = xn.

(2.10)

A problem with this algorithm is that it requires two matrix-vector multiplications per

iteration, Apk and Apk−1. This can be reduced to one matrix-vector multiplication

by using the following relation to calculate recursively the residual,

rk = rk−1 − αkApk, (2.11)

and substituting

rT
k−1rk−1 = −αkr

T
k−1Apk−1, (2.12)

and

rT
k−2rk−2 = αkp

T
k−1Apk−1 (2.13)
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into the formula for βk. This more efficient algorithm can be written as follows,

x0 = 0

r0 = b

For k = 1, · · · , n

if rk−1 = 0

then

Set x = xk−1and quit.

else

βk = rT
k−1rk−1/r

T
k−2rk−2 (β1 ≡ 0)

pk = rk−1 + βkpk−1 (p1 ≡ r0)

αk = rT
k−1rk−1/p

T
k Apk

xk = xk−1 + αkpk

rk = rk−1 − αkApk

x = xn

(2.14)

This final conjugate-gradient algorithm is essentially the algorithm put forth by

Hestenes and Stiefel [19]. Since the original formulation of the conjugate-gradient

method, several improvements have been made in the stability of the algorithm and

required computational time, but all have the above basic algorithm at the core of

the routines.

There are several advantages to using the conjugate-gradient method for tomo-

graphic reconstructions. First, the least squares solution of the linear problem can be

solved much more quickly than SVD. For example, the conjugate-gradient algorithm

created by Paige and Saunders[47] requires only 3m+5n multiplications per iteration,

of which there are at most n iterations. This computation enhancement can be even

greater in sparse matrices by using a multiplication algorithm that does not multiply

the zero valued elements of the matrices. Second, the conjugate-gradient method re-

quires significantly less memory because it does not need to store the decompositions

of the array A; only the vector solution, the residual, the step direction, and the

original array are required in the calculation. Because the solution can be found sig-
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nificantly more quickly than when using SVD, this method is more conducive to being

used in non-negativity algorithms, which are desired for tomographic reconstructions.

The conjugate-gradient method also has some disadvantages, of which two are

listed here. First, for every time slice a least-squares solution must be found. This

may or may not be a significant disadvantage, depending on the level of sparseness

of the matrix A. One could imagine a sparse enough matrix such that the conjugate-

gradient calculation actually requires fewer computations per solution. Next, one

obtains almost no information about the geometry matrix. There is no way to mitigate

this fact; it is a property of the conjugate-gradient method.

The next two chapters will discuss what has been done on the Alcator C-Mod de-

vice. Both methods of reconstruction were investigated, with the conjugate-gradient

method being the preferred choice.
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Chapter 3

Research Question

The research question that this thesis answers is: Can visible imaging spectroscopy be

a valuable qualitative and quantitative diagnostic for magnetically confined plasmas?

To answer this question I will first define what is meant by a “valuable qualitative

and quantitative diagnostic.”

A valuable qualitative diagnostic is one that gives a definitive answer as to whether

or where an event has occurred and its possible cause. Although it gives no firm num-

bers with which to determine what has occurred, an example of the visible imaging

system on Alcator C-Mod as a valuable qualitative diagnostic would be its use in

monitoring the large arcs and impurity injections from RF heating antennas. In this

use the cameras viewed the RF antennas and were left unfiltered to record light in

the entire visible spectrum. The cameras observed injections in the form of “sparks”

emanating from various regions on and around the antennas, such as those shown

in figure 3-1. Because the camera was unfiltered and had no ability to determine

spectral, distribution it was only able to determine the location of the “spark” and

its time of occurrence, not the composition of the injected material. However, the

ability to locate the source of the injection was of significant help in determining the

cause. The value of such observations, when combined with other information about

the antenna behavior, lies in its use in formulating improvements that were made to

design of the antennas and the antenna protection structure. These improvements

substantially reduced, and in some cases eliminated, the “sparks” altogether. Further
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Figure 3-1: Sample camera image showing “sparks” coming from the RF heating
antenna structure.

discussion of this example is given in chapter 4.

A valuable quantitative diagnostic yields quantitative information that otherwise

would not have been available. An example of the visible imaging system on Alcator

C-Mod as a valuable quantitative diagnostic is using it to determine two-dimensional

poloidal cross-sections of plasma recombination in the divertor region. Using the

system, two-dimensional profiles of the plasma recombination were determined for

both attached and detached divertor cases. In both of these cases it was known that

recombinations were occurring in the divertor. What was not known was where these

recombinations were occurring. The two-dimensional profiles were able to determine

quantitatively that in the detached case nearly all of the volumetric recombinations

were occurring on common flux surfaces (magnetic flux surfaces corresponding to

the scrape-off layer). In the attached divertor operation, a significant number of the
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recombinations were occurring in the private flux zone (a region of flux surfaces below

the x-point and between the inner and outer divertor legs). Figure 3-2 shows the two-

dimensional Dγ emission profiles for the attached and detached cases. Dγ emission

can be used to determine recombination rates and is discussed further in chapter 4.

The two-dimensional profiles have since been incorporated into edge- and divertor-

modelling programs and have been yielding modelling results that more closely agree

with the measurements on Alcator C-Mod. Further examples of the visible imaging

system on Alcator C-Mod as a valuable quantitative diagnostic are given in chapter 4.

Although the benefits and difficulties of visible imaging systems on other tokamaks

have been discussed in section 2.1, a comparison of those systems to the system

employed on Alcator C-Mod is discussed here and summarized in table 3.1. A detailed

discussion of the Alcator C-Mod system can be found in chapter 4. There are 8 main

categories where the three visible imaging systems differ: number of pixels recorded,

ratio of the resolution of reconstructions to the minor radius, the frequency at which

fields are recorded, the flexibility of the view, the method of bringing light to the

camera, the spectroscopic filtering system, the recording system, and the method of

tomographic reconstruction.

In terms of the number of pixels, the resolution relative to the minor radius, and

the frequency with which the fields are recorded, the three systems are very similar.

The number of pixels are all near each other with the DIII-D system having fewer

pixels because the CID chip used is a 512× 512 pixel chip instead of a 640× 480 chip

used by Alcator C-Mod and JET. The resolution of the Alcator C-Mod, DIII-D, and

JET systems are 0.5 cm, 2 cm, and 3.3 cm respectively. When the resolutions for the

various systems are taken as a fraction of their respective minor radii, the similarity

in viewing areas can be seen. The difference in terms of frequency of recorded fields

between the systems is due to the electrical systems in the United Kingdom (50 Hz)

and the United States (60 Hz).

With respect to the flexibility of view, the Alcator C-Mod system has the advan-

tage because it does not rely on mirrors or a fixed viewing location. The view of
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Figure 3-2: Two-dimensional profiles of Dγ emission during (a) attached and (b)
detached divertor operation.
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Area of Comparison Alcator C-Mod DIII-D JET

Number of Pixels 307,200 262,144 307,200
Resolution / 0.025 0.0357 0.0264
Minor Radius
Recorded Field 60 60 50
Frequency (Hz)

Flexibility of View View can be changed Fixed view Fixed View
by changing mount

How visible light is Direct camera view Fiber image guide Endoscope
is brought to camera

Remotely controlled Image split with
Filter system Fixed filter filter wheel three fixed

filter cameras
Recording system Digitized directly Recorded to VHS Digitized directly

to computer tape and then digitized to computer
Tomographic Conjugate-Gradient Conjugate-Gradient SVD with

Reconstruction non-negativity

Table 3.1: Comparison of the visible imaging systems on various tokamaks.

the Alcator C-Mod system can be changed by making simple modifications to the

mount. The same cannot be said of the other imaging systems. In terms of how

the visible light is brought to the cameras, again, Alcator C-Mod has the advantage.

Since the Alcator system uses very small remote head cameras that can be placed

inside a re-entrant tube and can obtain a direct view of the plasma of interest. The

other systems use either a fiber image guide or an endoscope, both of which can have

throughput problems.

In the third category, the spectroscopic filtering system, both the DIII-D and the

JET setups have the advantage. In the Alcator C-Mod system the filter is mounted

directly in front of the camera lens and cannot be changed without removing the

system. The DIII-D system has a remotely controlled filter wheel that allows a change

of filter between shots. The JET system simultaneously records three wavelengths;

though these cannot be changed between shots, the ability to record three wavelengths

is better than being fixed at recording only one.

In final two categories, the three systems are more alike than different. In how

the images are recorded, only DIII-D stands out as being different because the sys-
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tem records first to a VHS tape before being digitized to a computer, while the JET

and Alcator C-Mod systems digitize directly to the computer. Both Alcator C-Mod

and the DIII-D systems use conjugate-gradient system to generate tomographic re-

constructions, while the JET system employs SVD with an iterative non-negativity

routine as described in section 2.1.

Although I have alluded to the fact that the answer to the posed research question

is affirmative, the details of that affirmative answers will be shown in chapter 4.

The evidence for how visible imaging spectroscopy can be a valuable quantitative

diagnostic for magnetically confined plasmas is given by the physics results in sections

4.3.1, 4.3.2, and 4.3.3, and the evidence for how visible imaging spectroscopy can be

a valuable qualitative diagnostic is given in section 4.4.
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Chapter 4

Visible Imaging System of the

Alcator C-Mod Tokamak

4.1 Physical Setup

On Alcator C-Mod there are six CCD cameras used in the analysis of either emis-

sion distribution or impurity injection. Of these six cameras two tangentially view

the divertor region (DIV1, DIV2) and are used to obtain two-dimensional emission

profiles, two view ICRF antennas (DANT, JANT) and are used to determine impu-

rity injection location, and two cameras view have a wide-angle view of the tokamak

(WIDE1,WIDE2). All six of the CCD cameras are off-the-shelf remote-head “pencil”

cameras.[60] The cameras are 7 mm in diameter, 40 mm in length and a 3 or 10 m

cable connects the camera to the electronics controlling its output. The cameras have

an electronic shutter that can be remotely controlled through a serial port connection

to a personal computer to allow exposures between 1/10,000 to 1/60 of a second. The

images recorded by the personal computers have 640× 480 pixels. The output from

the camera control units (CCU’s) is a video signal in NTSC format.[25]

Five of the six cameras are mounted in aluminum holders and affixed to a G-10

platform inside a reentrant tube and behind a shuttered quartz window 10 cm from

the last closed flux surface of the Alcator C-Mod plasma. The sixth camera (WIDE2)

is mounted 180◦ around the tokamak in a reentrant tube viewing the vessel with a
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Figure 4-1: Five of the six CCD cameras used on Alcator C-Mod, their location and
support structure inside the reentrant tube.

similar view as WIDE1 and also ∼ 10 cm from the last closed flux surface. Being

mounted in the reentrant tube places the cameras inside the toroidal field coils and

exposes the cameras to magnetic fields of up to ∼5.4 T. Fig. 4-1 shows the location

of the cameras in the reentrant tube. Fig. 4-2 shows the top view of the tokamak

with the typical view each of the cameras, with the WIDE2 camera having the same

view as is shown in this figure, except displaced toroidally by 180◦. A poloidal

cross-section of the view of each camera is shown in figure 4-3.

The positions and views of the cameras are confirmed by fitting identifiable fea-

tures (e.g., the vertical spacing between divertor tiles) with known positions inside the

machine to their predicted positions in the view, using the image divertor2 IDL[23]

procedure. Due to disruptions and the occasional removal of the cameras for filter
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Figure 4-2: The view of each of the five cameras from figure 4-1, labeled accordingly.
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Figure 4-3: Poloidal cross-section of the area viewed by (a) the divertor cameras, (b)
the camera viewing the D-port antenna, the camera viewing the J-port antenna, and
the wide-angle viewing cameras.

changes the views can move by several degrees during a campaign. Therefore, the

best method for calibrating the camera view is to compare the observed location of

identifiable features during a disruption frame to expected location of those features

and iteratively solving for the parameters that describe the location and view of the

camera. This yields an accuracy of better than 1 millimeter at the tangency point

of the chordal views. There are five independent parameters that describe the loca-

tion of the effective lens and view of each cameras, the camera’s vertical location, Z,

its radial location, R, and the three angles used to describe the yaw, pitch, and roll,

(θ1, θ2, θ3). The toroidal location is not needed since the emission recorded is assumed

to be toroidally symmetric. The vertical position is the distance from the midplane of

the tokamak, and the radial position is the distance from the center of the tokamak.

The angles are all referenced from a horizontal view looking radially inward. Figure 4-

4 graphically shows the five parameters needed to determine the location and view

of the cameras. Since the plasma emission is assumed to be toroidally symmetric the

angular location of the camera around the tokamak is unnecessary. Figure 4-5 shows

an example of a plasma frame with the expected location of tile spacings overlaid.
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Figure 4-4: Graphical representation of five parameters needed to determine the
camera view with respect to the tokamak coordinates.

Figure 4-5: An example of a plasma frame with the location of the tile spacings
overlaid.
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The cameras can be spectrally filtered for emission within a particular wavelength

range. This is done by placing an interference filter or color-glass filter, in the case

of the wide-angle camera, in front of the lens of each camera. The spectral bandpass

of an interference filter is a function of the angle of incidence. The wavelength of the

center of the bandpass, λθ, is

λθ = λo

(
1− n2

2n2
∗

sin2 θ

)
, (4.1)

where θ is the angle of incidence, λo is the center of the bandpass when θ = 0, n

is the index of refraction in the medium surrounding the interference filter, in this

case air, and n∗ is the effective index of refraction in the interference filter, the shape

of the filter function changes negligibly with the incidence angle.[43] Using Eq. (4.1)

interference filters are chosen such that the spectral line of interest is within the

bandpass for all possible viewing angles of the cameras. The viewing angle dependence

on the transmission of a desired wavelength due to the interference filter is taken into

account when the camera is absolutely calibrated.

In the case where the desired measurement is an emission line, two calibrations

are done, 1) to determine the transmission function over the entire field-of-view of the

camera and 2) to determine the absolute sensitivity of each camera chord measured

by each pixel to a given incident energy for a given filter/lens combination. The first

calibration is done by knowing the filter function of an interference filter, angle of

incidence of a viewing chord, and the wavelength of the desired line. Since the shape

of the filter function of the interference filter changes negligibly over the angles of

incidence of interest the transmission for the desired spectral line can be calculated

using the known filter function and equation 4.1. This calculation is then checked

by scanning a lamp of the element of interest (i.e., deuterium for the calibration for

deuterium lines) across the view of the camera and comparing the measured relative

intensities with the expected values. Figure 4-6 shows the transmission of the Dα

spectral line across the CCD chip for one of the divertor viewing cameras.

The absolute calibration is done by mapping the measured pixel value recorded
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Figure 4-6: The transmission of the Dα spectral line across the center of the CCD
chip for one of the divertor viewing cameras.
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by the camera when observing a calibrated continuum source of spatially uniform

brightness [37]. The basic relation between the measured pixel value and the applied

brightness is,

B =
C

ApixelΩ

10ND

tint

P, (4.2)

where B is the brightness incident on a given pixel, C is the Joules/pixel value

constant, Apixel is the area of the pixel, Ω is the solid angle of the pixel view, ND is

the neutral density of the the neutral density filter placed in-front of the camera, tint

is the integration time of the pixel, and P is the pixel value recorded by the personal

computer and has integer values between 0 and 255. We can relate the pixel values

measured when observing the plasma to an absolute brightness value by taking the

ratio of equation 4.2 for the calibrated brightness and the for the plasma brightness

and solving for the plasma brightness yielding,

Bpla =
(

tcal

10NDcal

Bcal

Pcal

)
10NDpla

tpla

Ppla (4.3)

where the subscript “cal” refers to quantities used when recording the images of the

calibrated source and the subscript “pla” refers to the quantities used when observing

the plasma. Since in the calibration the brightness measured is the integrated product

of the filter function and the continuum spectral brightness of the source,

B =
∫

b (λ) T (λ) dλ. (4.4)

In the case of the uniform brightness source this can be approximated as,

Bcal = 〈bcal〉
∫

T (λ) dλ, (4.5)

where 〈bcal〉 is the average spectral brightness of the uniform brightness source in the

filter function with the units of Wm−2ster−1nm−1. In the case of the plasma where a

spectral line is present the brightness can be written as,

Bpla =
∫

[bpla,lineδ(λ− λo) + bpla,cont] T (λ) dλ

52



= bpla,lineT (λo) + bpla,cont

∫
T (λ) dλ, (4.6)

where bpla,line is the brightness of the line of interest at λo, and bpla,cont is the contin-

uum spectral emission from the plasma in units of Wm−2ster−1nm−1. Substituting

equations 4.5 and 4.6 into equation 4.3 and solving for the brightness of the line of

interest yields,

bpla,line =

[(
tcal〈bcal〉

10NDcalPcal

)
10NDpla

tpla

Ppla − bpla,cont

] ∫
T (λ) dλ

T (λo)
. (4.7)

For the case of deuterium line emission in a deuterium plasma, the bpla,cont can be

neglected and the equation that yields the brightness of the desired line from the pixel

value of the camera is

bpla,line ≈
(

tcal〈bcal〉
10NDcalPcal

)
10NDpla

tpla

Ppla

∫
T (λ) dλ

T (λo)
. (4.8)

All “cal” terms, except the pixel value (Pcal), are known for every pixel on the CCD

chip. The pixel value (Pcal) is measured by recording 30 frames viewing the uniform

brightness source and averaging the pixel value over those 30 frames. The filter func-

tion, T (λ), is measured using the filter, a continuum brightness source, and a visible

spectrometer. Figure 4-7 shows the measured filter function for the Dα filter used.

All other terms are measured (Ppla) or chosen (NDpla, tpla) during the experiments.

Figure 4-8 shows the calibration factor ( tcal〈bcal〉
10NDcalPcal

∫
T (λ) dλ

T (λo)
) for the Dα camera. This

means that for Dα brightnesses typical of the divertor, ∼ 104 Wm−2ster−1, an ND fil-

ter of 4 was used, where as for typical main chamber brightnesses, ∼ 100 Wm−2ster−1,

an ND filter of 2 was used.

All six cameras are synchronized and recorded on two personal computers. Each

computer is equipped with a three color frame-grabber that is set-up to record three

cameras simultaneously (instead of three colors). The recorded camera data is then

saved to the hard drive of the local computer in an MDSplus[54] data tree structure

or to the main experiment’s MDSplus data tree structure for easy retrieval from the

Alcator C-Mod data analysis system. The data saved to the local hard drive is then
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Figure 4-7: The measured filter function for the Dα filter used.
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Figure 4-8: The calibration factor for the Dα camera. The variation is in a linear
gray scale and has a minimum value of 0.0161 and a maximum value of 0.0201 W
m−2 ster−1 Pixel Value−1.
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periodically transferred to compact discs for archiving. The output from the CCD

cameras is in NTSC format, which limits the frame rate to 30 per second. In this

format a frame is made of two interlaced fields recorded at twice the frame rate of

the camera. Therefore each recorded frame has two recorded time steps (one in each

field, separated in time by 16.7 ms) and therefore brightness data is obtained at 60

Hz.

4.2 Data Analysis for Divertor Viewing Cameras

The two cameras viewing the divertor are used to obtain two-dimensional emission

profiles of the divertor. As was described in Sec. 4.1, the view of the camera and

therefore the view of the individual pixels are calibrated and known. Because of this

it is possible to model the views of the pixels through a region of the divertor and

obtain two-dimensional profiles of emission. In order to create this model the emis-

sion region must be discretized into finite-sized elements. The size of the emission

elements determines the spatial resolution of the emission profile. The only funda-

mental limit on the size of the emission elements is the spacing of the pixel views

used. Another constraint that can be added to ease calculations is that the emission

elements must be several times larger than the projection of the solid angle of a pixel

view through the emission elements. This constraint allows the use of the thin-chord

approximation, which assumes that each camera pixel view is a line integral through

the emission region of the divertor. Using an 8mm focal length lens for these cameras,

the projections of the camera pixels are less than 0.7 mm wide at any point in the

emission region and the inversion box size or emission element size used is 5 mm wide.

Therefore, the thin-chord approximation is valid.

The emissivity, ε, is derived from the brightness, b, measured by the camera pixels

(using the thin-chord approximation). The brightness is

b =
1

4π

∫
ε(s) ds, (4.9)
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where s is the distance along camera pixel view. To solve for the emission profile,

Eq. (4.9) is discretized into the following form,

bi =
1

4π
εj∆sij, (4.10)

where the index i represents the quantity for the ith camera pixel, and ∆sij is the

chordal length through εj for chord i, and the repeated subscript implies a sum.

Of the possible 307,200 pixels chords only ∼ 4000 are used to obtain the emissivity

profiles of ∼ 2000 grid elements. In these cases less than 200 chords pass through

any given emission grid element. This gives sufficient coverage of each emission grid

element while allowing the matrix ∆sij to be sparse enough that Eq. (4.10) can be

solved, in a least squares sense, using the conjugate-gradient method [47].

Using this model and conjugate-gradient method for solving the problem, the

emissivities are readily generated. The conjugate-gradient method used in solving

the linear equations is similar to that described in Sec. 2.2 with the exception that

the procedure used solves a “damped least-squares” problem [47]. A “damped least-

squares” problem actually minimizes

∥∥∥∥∥∥∥
 A

λI

x−

 b

0


∥∥∥∥∥∥∥
2

, (4.11)

where A is the geometry matrix in meters, b is the vector of the brightness measure-

ments in arbitrary brightness units (BU), x is the emission profile values in BU/m,

I is the identity matrix, and λ is a real scalar that represents the damping term also

in meters. This regularizes ill-conditioned problems, and has a similar effect to trun-

cating the singular values when generating an inverted matrix from singular value

decomposition. The benefits of the conjugate-gradient method over other methods

for solving the linear equation has been discussed in Sec. 2.2.

In an effort to test the reconstruction algorithm and determine the error in the re-

constructed profiles, test emission patterns were used to generate brightness profiles,

using the geometry matrix. These brightness profiles were then used by the recon-
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struction algorithm and the resulting emission profile was compared to the original

test emission pattern. Several of these tests were done,

1. “checkerboard” test emission pattern and no noise on the generated brightness

profile,

2. “checkerboard” test emission pattern and a noise level typical of the imaging

cameras on the generated brightness profile, and

3. a mock-up of a typical divertor emission profile and the noise level typical of

the imaging cameras on the generated brightness profile.

The most difficult emission pattern to reconstruct is a “checkerboard” emission

pattern. In this pattern emission grid elements alternate between a finite value of

emissivity and zero emissivity. Figure 4-9 shows the “checkerboard” emission test

pattern used to estimate the error generated by the reconstruction algorithm. This

emission pattern is difficult because it represents a emission field with the finest scale

structure the algorithm could possibly reconstruct. Therefore, if the algorithm can

reconstruct the “checkerboard” emission pattern, one can be confident that it can

reconstruct most emission patterns.

For test # 1 the “checkerboard” emission pattern is used to generate a brightness

profile by matrix multiplying it with the geometry matrix (the same geometry matrix

that the reconstruction algorithm uses). In the absence of any noise added to the

generated brightness profile, one would expect that the reconstruction algorithm will

reproduce the original emission pattern to within the computer machine accuracy

(ε = 10−6). Figure 4-10 shows a plot of the absolute value of the difference between

the initial specified emission and the reconstructed emission. As can be seen in this

figure the reconstruction algorithm did not perform in this way. There are two regions

where the reconstruction algorithm failed, deep in the divertor slot and along the top

of the reconstruction region. The failure in the divertor slot can be explained by the

lack of adequate unique views in this region. Most of the viewing chords that record

information from this region are parallel and can not distinguish the fine structure of
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Figure 4-9: The “checkerboard” emission test pattern used to estimate the error
generated by the reconstruction algorithm.
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emission from this area. The region along the top of the reconstruction area is also

poorly covered by different viewing chords. This region is viewed mostly by chords

from the edge of the camera view and therefore only a few chords pass through this

region, limiting the ability of the reconstruction algorithm to properly recreate the

emission along this area. This result represents the best the reconstruction algorithm

can do. Therefore, when noise is added to the brightness data there is no expectation

that the reconstruction algorithm can accurately reproduce the emission profile from

these areas.

The next test was to add noise to the brightness data. To simulate accurately the

data from the camera, the camera’s inherent noise level was measured. This was done

by averaging the value of each pixel over 150 frames and subtracting this average from

each pixel in all of the frames. This removes the pixel to pixel variation in the CCD

chip. A histogram of this difference over the entire CCD chip is then plotted. This

histogram, see figure 4-11, was then fit to a Gaussian distribution and its FWHM is

a measure of the noise on the brightness measurement. The FWHM for the camera

system used was found to be 15.3 in pixel value (which is an integer from 0 to 255)

and was found not to vary as a function of the brightness of the incident light. This

constant noise level is attributed to the electrical noise inherent in the system.

With the noise from the camera known, the test of the reconstruction of the

“checkerboard” emission pattern with noise on the brightness signal was done. This

test used the same geometry matrix and the initial calculation of the brightness as

in test # 1. The noise was added by using a normal distribution random number

generator with a width in the distribution of 6% (≈ 15.3/255) of the maximum

value of the initial brightness calculations. When there is an error on the brightness

measurement, the reconstruction routine requires the use of the damping parameter

to obtain realistic solutions. A scan was done to obtain the damping parameter that

yielded a solution closest to the “checkerboard” emission profile. It was determined

that a damping parameter of 0.01 m was an adequate value, although a 50% variation

(0.005-0.015 m) provided results that were not significantly different from the 0.01

m case. Figure 4-12 shows a plot of the absolute value of the difference between the
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Figure 4-10: Plot of the absolute value of the difference between the initial specified
emission and the reconstructed emission profile. The scale is a linear gray scale
with white elements representing a difference between the original emission and the
reconstructed emission of 0.9 BU/m and black representing a difference of 0.0 BU/m.
The maximum value of the initial emission profile was 1 BU/m.
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Figure 4-11: A plot of the histogram of the difference between the measured pixel
value and the average pixel value for each pixel from the entire CCD chip over 150
frames, when viewing a constant brightness source.
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initial specified emission and the reconstructed emission. In this plot the scale is linear

with white representing a difference of 1 BU/m or more (up to 10 BU/m) and black

representing no difference. The maximum value of the initial emission is 1.0 BU/m

and the average absolute difference between the two emission profiles was 110% the

maximum original value. Therefore, with the measured inherent statistical error on

the brightness measurements, the reconstruction algorithm cannot adequately resolve

the “checkerboard” emission profile.

In the previous tests the test emission profile used was the most difficult for the

reconstruction algorithm to solve for. Therefore, in the final test a more typical (but

still artificial) emission profile was used as the test emission. Figure 4-13 shows the

test emission used in this test. Using this emission profile to generate the bright-

ness measurements, and keeping the noise on those brightness measurements and the

damping parameter the same, yields an average difference between the test emission

pattern and the reconstructed emission pattern of 0.1 BU/m, where the peak of the

emission has a value of 1 BU/m. Figure 4-14 shows the reconstruction of the “typi-

cal” emission using the same noise level and damping parameter as that used in the

“checkerboard” tests. Although the average error found in this test is significantly

better than that for “checkerboard” case with noise added, the error was substan-

tially improved by choosing a different damping parameter. The solution with the

lowest average error (0.02 BU/m) occurred when the damping parameter was set to

0.15 m. Figure 4-15 shows the reconstruction of the “typical” emission profile using a

damping parameter value of 0.15 m. Since increasing the damping term has a similar

effect on the reconstruction that truncating the singular values in SVD does, i.e.,

smoothing the reconstruction, the best value for the damping parameter depends on

the size of the emission features. This implies that small scale features of the emission

profiles from the divertor are not accurately reconstructed, but the larger features are

reconstructed accurately.

The optimized reconstruction technique described above generates two-dimensional

profiles consistent with the visible spectrometer viewing the divertor. The reconstruc-

tion method was applied to a calibrated image of Dγ brightness recorded by one of
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Figure 4-12: Plot of the absolute value of the difference between the initial specified
emission and the reconstructed emission, when the brightness has a normal distributed
noise with a FWHM of 6% of the maximum brightness and a damping parameter of
0.01 m. In this plot the scale is linear with white representing a difference of 1 BU/m
or more and black representing no difference.
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Figure 4-13: Plot of the emission profile used in the third test of the reconstruction
algorithm. This profile is more typical of those seen in the divertor of Alcator C-
Mod. This plot uses a linear gray scale with the maximum value being 1 BU/m and
minimum being 0 BU/m.
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Figure 4-14: Plot of the absolute value of the difference between the initial specified
emission used in the third test of the reconstruction algorithm and the reconstructed
emission, when the brightness has a normal distributed noise with a width of 6% of
the maximum brightness and a damping parameter from the “checkerboard” tests.
This plot uses a linear gray scale with the white cells representing a difference of 1
BU/m and above and the black cells representing a difference of 0 BU/m.
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Figure 4-15: Plot of the absolute value of the difference between the initial specified
emission used in the third test of the reconstruction algorithm and the reconstructed
emission, when the brightness has a normal distributed noise with a width of 6% of
the maximum brightness and a damping parameter of 0.15 m. This plot uses a linear
gray scale with the white cells representing a difference of 1 BU/m and above and
the black cells representing a difference of 0 BU/m.
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the divertor viewing cameras. In this and all emission reconstructions following the

damping parameter value was 0.15 m. Figure 4-16 shows the raw brightness image

and reconstructed emission profile for a moderate density (n̄e = 1.5 × 1020 m−3),

Ohmic L-mode discharge. To validate the reconstructed emission, Dγ measurements

from a visible spectrometer viewing the the divertor region were compared to the

value predicted by the reconstructed emission. Figure 4-17 shows the views of the

divertor from visible spectrometer. Figure 4-18 shows the comparison between the

measured values obtained from the visible spectrometer and the predicted values from

the reconstructed emission. As figure 4-18 shows the measurements and the predicted

values agree to within the experimental error of both diagnostics.

4.3 Physics Problems Addressed

4.3.1 Divertor Recombination Profiles

One method of controlling the interaction of the hot core region of the tokamak

plasma with the vacuum vessel is by placing a physical limiter into the plasma some

distance away from the vacuum vessel wall. This is an effective method of controlling

the interactions, but it does have its drawbacks. The main problem with using a

limiter to define the core plasma is the close proximity of material surfaces to the hot

plasma core. When the hot plasma ions strikes the plasma-facing-components (PFC)

of the limiter, material will be sputtered and quickly arrive in the core plasma, both

diluting the main species and increasing the radiation from this region. A solution

to the problems that the limiter generates is the use of a separatrix and divertor. A

separatrix magnetically defines the hot core plasma, and directs plasma that comes

from the core to a material surface (the divertor plates) away from the core. Any

impurities sputtered have to travel through the plasma outside the separatrix to reach

the core where they can be ionized and flow back to the divertor plates.

Future tokamak designs rely on the use of a divertor to control impurity produc-

tion and contamination, enhance particle pumping, and control power deposition on
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Figure 4-16: (a) The raw brightness image of Dγ emission and (b) the reconstructed
emission profile for a moderate density (n̄e = 1.5 × 1020 m−3), Ohmic L-mode dis-
charge.
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Figure 4-17: The views from the visible spectrometer. The red chord is the chord
used in figure 4-18.
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Figure 4-18: Comparison between the measured values obtained from the visible
spectrometer (�) and the predicted values from the reconstructed emission (-). (a)
shows the comparison between the measured and predicted values for all chords shown
in figure 4-17 at one time and (b) shows the comparison for the chord in red from
figure 4-17 as a function of time.
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the plasma-facing-components. Two major tokamak designs (ITER-FEAT [2] and

FIRE [6]) for the “next step” burning plasma experiments have divertors as a main

component in the design. In these cases the peak heat flux is expected to be ≤ 10

MW m−2 for the ITER-FEAT [29] case and ∼ 25 MW m−2 for the FIRE [6] case.

The particle pumping required for these designs is 1023 particles/sec and 1021 parti-

cles/sec respectively. This is a higher heat flux than most materials can handle in a

passively cooled steady-state situation. The pumping rate is also high enough that,

for the pumping rate to be achieved feasibly, a compression of the neutral gas in the

chamber near the pumping system must be accomplished.

A solution to both the problems of power deposition and particle control is a dis-

sipative divertor, of which there are two types — a radiative divertor and a detached

divertor. In a radiative divertor a significant portion of the power is radiated away

before the plasma particles strike the divertor plates. By radiating the power, the

power deposition is distributed over the entire divertor region therefore reducing the

peak heat flux on the material surfaces. The other solution, a detached divertor,

reduces both the power and the particle fluxes on the divertor plates. The power is

primarily dissipated by radiation until plasma-neutral friction forces and/or plasma

volumetric recombination reduce the local particle flux.

Volumetric recombination is an important element in solving the divertor problem

by reducing the plasma particle flux to the divertor plates. Volumetric recombination

is a signature of the so-called deeply detached divertor and can be a major contrib-

utor to the reduction of particle flux (up to half of the entire plasma particle flux

to the divertor region). The two-dimensional evolution and spatial distribution of

the volumetric recombination regions yield insights into the mechanism of divertor

detachment and the flows of plasma in the divertor.

Experimental Technique

Two-dimensional emission profiles of Dγ in the divertor are generated using the same

technique as described in Sec. 4.2. The reconstructions use a thin-chord approxima-

tion and assume toroidal symmetry. They are also absolutely calibrated and checked
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using the chordal Dγ measurements from the visible spectrometer.

Electron temperature and density measurements in the divertor region are ob-

tained by analysis of data taken by flush-mounted Langmuir probes and a visible

spectrometer. The flush-mounted Langmuir probes are mounted on the outer and

inner divertor plates [34] having the locations shown in Fig. 4-19 by green trian-

gles. The visible spectrometer has multiple views of the divertor shown in Fig. 4-19.

The visible spectrometer may be used to determine the electron temperature and

density of the plasma in the region of maximum deuterium emission along each line-

of-sight. The electron density is determined by measuring the Stark broadening of the

p = 6, 7, 8 → 2 deuterium lines where p is the principal quantum. [18] The electron

temperature is determined by using the knowledge that the population densities of

deuterium atoms with energy levels greater than p = 5 are in Saha equilibrium and

therefore have the temperature dependent distribution of

np ∝
p2

T
3/2
e

exp

(
13.6

Tep2

)
, (4.12)

where np is the population density of electrons in level p and Te is the electron

temperature in eV.[39]

While the Langmuir probes provide a local electron temperature and density mea-

surements, the visible spectrometer’s data is line integrated and is localized by using

the 2D Dγ divertor emission profiles. As long as the electron temperature in the

line-of-sight is above ∼0.33 eV the emission from the p = 6, 7, 8 → 2 deuterium lines

will be approximately proportional to the Dγ emission. Therefore, by determining

the distribution of the Dγ emission along a visible spectrometer chordal view the

temperature and density measurements can be localized to the peak of the emis-

sion. This implies that there is one temperature and density measurement per visible

spectrometer viewing chord.

Using the 13 (one per spectrometer line-of-sight) localized electron temperature

and density measurements, and the Dγ emission profiles volumetric recombination

profiles can be estimated for the divertor. Beginning with the Dγ emission profiles,
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Figure 4-19: The triangles are the locations of the flush-mounted probes and the
straight lines are the chordal views of the visible spectrometer.
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electron density and temperature values can be assigned to each Dγ emission element

based on the nearest localized temperature and density measurement. Since there is

a Dγ emissivity, electron density, and electron temperature measurement associated

with each emission element, and since this is a strongly recombining plasma, the Dγ

photon per recombination curves [42] can be applied directly, yielding the recombi-

nation profiles in the divertor. In a strongly recombining plasma, such as the type

studied here, the amount of Dγ photons caused by excitation, and therefore related

to the ionization rate, is less than 1 percent.

Results

Using the two-dimensional profiles of recombination rate in the divertor, a comparison

can be done of the total recombination rates of the inner divertor, outer divertor and

private flux regions. The inner (outer) divertor region in this case is defined as the

scrape-off layer region bounded by the inner (outer) leg and extends in the direction

of decreasing (increasing) major radius. The private flux region is the area below

the x-point and bounded by the inner and outer legs. Figures 4-20, 4-21, and 4-22

show the total recombination rates for these regions as a function of the line-averaged

density of the plasma. All other parameters were kept constant in this Ohmic, L-

mode discharge, i.e., plasma current (Ip = 800kA), toroidal magnetic field (BT = 5.4

T), and magnetic configuration.

When comparing the recombination rates of the three regions two regimes can

be identified, one where the outer divertor region is attached and one where outer

divertor region is detached. This is most easily delineated in figure 4-22 where the

peak of the private flux region’s recombination rate is used as a boundary between

these regions.

The three regions have clear and different behavior in the two regimes. In the

attached regime the inner divertor’s recombination rate actually shows little if any

trend when the line-averaged density is increased. The outer divertor region also

shows a slow increase with density while in the attached regime. The private flux

region, on the other hand, shows a substantial increase in its recombination rate as the
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Attached

Detached

Figure 4-20: Total volumetric recombinations in the inner divertor region as a function
of line-averaged density
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Attached Detached

Figure 4-21: Total volumetric recombinations in the outer divertor region as a function
of line-averaged density
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Attached Detached

Figure 4-22: Total volumetric recombinations in the private flux region as a function
of line-averaged density
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line-averaged density is increased in the attached regime. In the detached regime the

recombination rate in the inner divertor region still shows little variation although

it is generally lower in magnitude. The recombination rate in the outer divertor

region in the detached regime increases significantly as the line averaged density is

increased. Finally, in the private flux region the recombination rate decreases as the

line averaged density increases. The recombination rate measurements in the private

flux region for the highest values of the line averaged density are due entirely to the

recombinations along the outer leg, but still in the PFZ.

Figures 4-20, 4-21, and 4-22 show the general trend of recombinations in the differ-

ent divertor regions, but since we have the two-dimensional data a closer inspection of

the recombination distribution in the two regimes was also undertaken. Figures 4-23,

4-24, and 4-25 show the Dγ profiles (which, in these cases, have similar distribu-

tions to the recombination rates) for the attached regime (n̄e = 1.2 × 1020 m−3), at

the boundary between the two regimes(n̄e = 1.5 × 1020 m−3), and detached regime

(n̄e = 1.9 × 1020 m−3). Figure 4-23 clearly shows that nearly all of the recombina-

tions in the divertor are occurring in the inner divertor region in the attached regime.

Figure 4-24 shows the typical distribution at the boundary between attached and de-

tached regimes, and it is at this boundary that the largest amount of recombinations

is seen in the PFZ. At the boundary of the the two regimes the inner divertor region

and the outer divertor region look very similar to the attached divertor regime with

the main difference being the private flux region. In the third and detached case,

figure 4-25, the recombinations are dominantly occurring in the outer divertor region.

In this case, the distribution within the inner divertor region appears similar to the

previous cases, while the magnitude has decreased. It should also be noted that the

emission in the private flux region near the outer leg is included in the calculation of

the total private flux region recombination rate, and leads to the observed increase

in the private flux region recombination rate at higher values of line-averaged den-

sity, although this should more properly be attributed to the outer divertor region,

since the reason for its existence is more properly described by the conditions of the

detached outer divertor.
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Figure 4-23: The Dγ emission profile in the attached regime with a n̄e = 1.2 × 1020

m−3.
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Figure 4-24: The Dγ emission profile on the boundary of the attached and detached
regime with a n̄e = 1.5× 1020 m−3.
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Figure 4-25: The Dγ emission profile in the detached regime with a n̄e = 1.9 × 1020

m−3.
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Discussion

By the visible spectrometer measurements (ne ≈ 1021 m−3, Te ≤ 1 eV) there is a

significant amount of plasma in the private flux region of the divertor. Therefore the

question is how did this plasma get into the private flux region, which can only be

accessed by perpendicular diffusion and be driven flows.

There has been only one previously published observation of deuterium emission in

the private flux region. [14] The author offered an explanation stating that neutrals

enter the private flux region from the inner divertor region and as the discharge

progresses to higher density (closer to detachment) the emission from the neutrals

fills the private flux region. Then the outer divertor region detaches when the neutral

emission from the private flux region begins to enter the outer divertor region. There

is one complication to this analysis, all of the observations were taken during an

ELMing plasma discharge. In an ELMing discharge it is unknown what the effects of

the rapid bursts of power and particles are on the divertor region plasma. Although

the observations are similar the plasma discharges studied in this dissertation are all

L-mode and therefore have no ELMs to cause the flow into the PFZ.

There have also been other discussions of plasma flows in the scrape-off layer

(SOL) and divertor [52, 20, 51] involving a radial E × B drift due to an electron

temperature gradient. The discussions of the radial drift were mainly focused on the

cause of the in/out asymmetry of the inner and outer divertor electron temperature

and density and not the source of the private flux region plasma. Reference [22]

specifically discusses the in/out asymmetry on Alcator C-Mod in terms of E × B

drifts. The arguments for a radial E×B drift due to a poloidal temperature gradient

are the same in this case as in the previously mentioned discussions cited above,

and therefore will not be repeated. A brief derivation of the drift from Braginskii’s

Equations [5] follows.

From the momentum conservation equation

mene
d~ve

dt
= −∇Pe − ene

(
~E + ~ve × ~B

)
+ ~R. (4.13)
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By neglecting the electron inertia term (me → 0) and assuming a scalar pressure,

Eq. (4.13) is reduced to

0 = −∇pe − ene

(
~E + ~ve × ~B

)
+ ~R, (4.14)

where

~R = −mene

τe

(
0.51u||~̂b + ~u⊥

)
− 0.71ne

~̂b · ∇Te −
3

2

ne

ωeτe

~̂b×∇Te (4.15)

is the momentum exchange term due to friction between the two species for a hydro-

genic plasma, ~̂b is the unit vector parallel to the magnetic field, ~u = ~ve − ~vi, ωe is

the electron cyclotron frequency, and τe is the inverse electron-ion collision frequency.

Figure (4-26) shows the coordinate system used for this analysis. The s-direction

is parallel to the magnetic field, w-direction is perpendicular to the magnetic field

but on the flux surface, and the r-direction is normal to the magnetic flux surface.

The toroidal component of Eqs. (4.14) and (4.15) with the assumption of toroidal

symmetry (∂/∂φ = 0) is

0 = −eneEφ + eneverBθ −
mene

τe

uφ + 0.49
mene

τe

Bφ

B
us

−0.71ne
Bφ

B

∂Te

∂s
− 3

2

Bθ

B

ne

ωeτe

∂Te

∂r
, (4.16)

where φ represents the toroidal direction and θ represents the poloidal direction.

Solving Eq. (4.16) for ver, the bulk electron (and ion) flow in the r direction, yields

ver =
Eφ

Bθ

− me

e2ne

1

τeBθ

Jφ − 0.49
me

eτeBθ

Bφ

B
us + 0.71

Bφ

B

1

eBθ

∂Te

∂s

+
3

2

1

eB

1

ωeτe

∂Te

∂r
, (4.17)

where Jφ = −eneuφ. us and the temperature gradient can be reduced to toroidal

and poloidal projections using toroidal symmetry and the assumption that there is

84



Bθ Bφ
B

r

s w

I,Bφ

Figure 4-26: Coordinate system used in the derivation of the thermoelectric radial
drift.

no poloidal current in this region (uθ = 0). Therefore Eq. (4.17) can be written as,

ver =
Eφ

Bθ

+
me

e2ne

1

τeBθ

[
1− 0.49α−1

]
Jφ + 0.71α−1 1

eBφ

∂Te

∂lθ

+
3

2

1

eBφ

α− 1
2

1

ωeτe

∂Te

∂r
, (4.18)

where α =
(
1 + B2

θ/B
2
φ

)
and lθ is distance on a flux surface in the poloidal direction.

Since, α ≈ 1,

ver ≈
Eφ

Bθ

+ 0.51
me

e2ne

1

τeBθ

Jφ + 0.71
1

eBφ

∂Te

∂lθ
+

3

2

1

eBφ

1

ωeτe

∂Te

∂r
. (4.19)

A similar derivation can be done for the ions and yields the same result.

The first term of equation 4.19 can be estimated to be ∼ 0.25 m/s with Eφ ≈ 0.25

V/m and Bθ ≈ 1 Tesla. The third term can be estimated to be ∼ 60 m/s with

∂Te

∂`θ
≈ 500 eV/m and Bφ ≈ 6 Tesla. For the second term to on the same order as the

third term it must have current densities of greater than 25 MA/m2 (assuming ne =

5× 1019 m−3 and Te = 30 eV), which is larger than the current densities in the core.

For the fourth term to be on the order of the third the radial temperature gradient
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must be ≈ 105 times steeper than the poloidal temperature gradient (typically only

ten times steeper). Therefore, of the four terms in equation 4.19 the third term is

dominant and will be dealt with exclusively,

ver ≈ 0.71
1

eBφ

∂Te

∂lθ
. (4.20)

This means that the existence of a poloidal temperature gradient on the outer leg

from the X-point to the strikepoint leads to a radially inward drift of plasma into the

PFZ which then recombines, this recombination is observed by the cameras through

the Dγ emission.

The hypothesis that the dominant source of plasma into the private flux region of

the divertor is due to the temperature-gradient-driven E×B drift is also consistent

with volumetric recombinations versus line-averaged density for the three divertor

regions in figures 4-20, 4-21, and 4-22. Figure 4-22 shows a peak in the volumetric

recombinations in the private flux region at n̄e ≈ 1.5× 1020 m−3. The lower density

increase in volumetric recombinations can be explained by the fact that the outer

divertor in these plasmas is in a high-recycling regime and therefore the tempera-

ture gradient along the outer leg is increasing as the density is increasing. As the

temperature gradient increases the flux into the divertor increases and the number of

volumetric recombinations increases. At n̄e ≈ 1.5×1020 m−3 the outer divertor begins

to detach and the region of shallow temperature gradient behind the detachment front

begins to expand up the outer leg until it reaches the x-point at the highest densities.

Therefore the region of steep temperature gradient decreases in length along the outer

leg and corresponds to a decrease in the amount of volumetric recombinations in the

private flux region. This also explains why the region below n̄e ≈ 1.5 × 1020 m−3 is

referred to as the attached region and the region above this density referred to as the

detached region. The outer divertor region, in figure 4-21, shows no change in the

amount of volumetric recombination until it detaches and then there is a significant

increase in the volumetric recombination rate. This is also as expected. The inner

divertor region recombination rates, in figure 4-20, show no measurable change until
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the outer divertor detaches and then the volumetric recombination rate decreases.

This decrease could be due to an added poloidal flow towards the outer divertor due

to the increase in recombinations in the outer divertor region.

The qualitative agreement between the hypothesis that the drift is due to poloidal

temperature gradient (equation 4.20) and the observations can be seen beginning

with the first case, Fig. (4-23), where the inner nose is detached and the outer nose

is attached. The poloidal temperature gradient is shallow (50 → 25 eV) and the

density is low enough along the outer leg that only a weak flux of particles (ΓA ∼ 1020

particles s−1) enter the PFZ through the outer leg. With this weak flux of particles,

the density, volumetric recombination, and the subsequent Dγ emission is small, and

in fact very little Dγ emission is seen. In the second case, Fig. (4-24) can be described

as a high-recycling case, where pressure is constant on a flux surface, but not poloidal

density and temperature. Therefore there should be more plasma and recombination

in the PFZ, since the poloidal Te gradient is larger, and in fact more recombination is

observed. In the last case, Fig. (4-25), the region of sharp temperature gradient has

moved all the way to the x-point. There is only a shallow gradient along the outer

leg. [64] This yields no flow from the outer leg into the PFZ. Instead, in this case the

large poloidal gradient will drive a flow into the closed-field line region directly above

the x-point. As the density increases, the flux into the main plasma above the x-point

increases, and a cold, dense MARFE [38] forms above the x-point eventually leading

to a disruption. This is seen on Alcator C-Mod.[41, 40] Through all of these cases

the parallel transport in the PFZ behaves as would be expected, the plasma travels

along the magnetic field lines to the divertor plates with recombinations occurring

simultaneously.

The distribution of the Dγ emission does not agree with the hypothesis that per-

pendicular diffusion is the dominant mechanism fueling the PFZ. If diffusion were

the main cause of particle flux into the PFZ, one would expect the particle flux to

increase when the divertor detachment is extended to the x-point due to the large

perpendicular density gradient formed on the outer leg. This is not observed and

therefore cross-field diffusion is not considered to be the dominant mechanism.
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Although the temperature gradient driven E × B can qualitatively explain the

divertor recombination profiles, the next question must be does it quantitatively ex-

plain the recombination measurements? Below is a quantitative analysis of a single

high-recycling outer divertor discharge.

The total number of particles per second that drift into the private flux region is

Ie =
∫

never dA, (4.21)

where
∫

. . . dA is the integral over the total area of the outer leg. By substituting

Eq. (4.20) into Eq. (4.21) and recognizing that in a tokamak Bφ = BoRo/R, where Bo

and Ro are the magnetic field and radial position of the center of the main plasma,

the particle current into the PFZ can be written as

Ie ≈
1.42π

eBoRo

∫ x

sp
neR

2∂Te

∂lθ
dlθ, (4.22)

where sp is the strikepoint, x is the x-point. In the attached case (∂pe/∂s = 0) this

integral can be approximated as,

Ie ≈
1.42πR2pe

eBoRo

ln

(
Tx
Tsp

)
(4.23)

assuming the variation in R2 is small enough to remove it from inside the integral.

Using the assumption that all plasma particles that enter the PFZ volumetrically

recombine in the PFZ and using the approximations that yielded Eq. (4.23), the

relation between the PFZ recombination rate and the particle current into the PFZ

is (
∂Ne

∂t

)
recomb

≈ βpe, (4.24)

where

β =
1.42πR2

eBoRo

ln

(
Tx
Tsp

)
. (4.25)

Figure (4-27) shows the comparison of the PFZ recombination rate as a function

of peak plasma pressure on the outer leg for a shot where the line-averaged density
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Figure 4-27: A plot of the PFZ recombination rate as a function of the peak electron
pressure on the outer leg when the outer leg was attached. The line shown in is a
linear regression fit of the data.

ranged from 1.0×1020 m−3 to 1.3×1020 m−3, and was entirely in the attached divertor

regime. The linear dependence is what is expected from Eq. (4.24).

The line shown in Fig. (4-27) is a linear regression fit of the data. This yields a

slope of 6.3 × 1018 recombinations s−1 Pa−1 with an R2 value of 0.826. Given that

R ≈ 0.6m, Bo = 5.4T, and Ro = 0.67m and if ln
(
Tx/Tsp

)
≈ 2.25 then, the slope is

the same as predicted from Eq. (4.25).

Conclusions

Dγ emission shows the existence of plasma in the private flux zone of the Alcator C-

Mod tokamak. It is generated by the volumetric recombination of a cold, high density

plasma. Using spectroscopic measurements we observe that there is a significant

recombination rate in this region, which is most likely fed by cross-field transport

from across the separatrix. From the parallel fluid equations, which on Alcator C-

Mod is believed to be described classically, a radial drift is derived to explain the

behavior of the PFZ plasma. The dominant drift is due to a poloidal temperature

gradient. This mechanism for the flux into the PFZ is consistent with the observed
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behavior of the plasma.

In the attached case the flux into the PFZ is linear with the plasma pressure and

logarithmic with respect to the ratio of x-point temperature to temperature at the

divertor plate. This linear behavior is consistent with Alcator C-Mod observations

based on the recombination rate determinations.

As the line averaged density is increased, the outer divertor leg becomes detached

and a sharp poloidal temperature gradient is located at or slightly above the x-point,

thus reducing the flow into the private flux region. As the density is increased further,

plasma flows into the x-point from the outer divertor region due to the large local

temperature gradient. This cools the plasma on the closed flux surfaces enough to

generate an x-point MARFE, which subsequently leads to disruption. This also has

been observed on Alcator C-Mod.[41, 40]

4.3.2 Inner Wall Dα Emission on Alcator C-Mod

Little work has been published on measuring or characterizing the scrape-off layer

(SOL) near the inner wall of a tokamak. What work that has been done noted signifi-

cant differences between the inner SOL (high-field-side) and the outer (low-field-side)

SOL. On Alcator C [35] (a limited tokamak) it was noted that there was a poloidal

variation of density in the shadow of the limiter with the minimum occurring on the

high-field-side. Another result was that the radial density e-folding length also had a

minimum value on the high-field-side SOL, with the maximum occurring on the low-

field-side SOL. Another interesting result from the ASDEX tokamak [12] (a diverted

tokamak) is that fluctuations typical of the low-field-side SOL would be observed

on the high-field-side SOL when in a single null discharge, but when in a balanced

double null discharge the fluctuations were absent from the high-field-side SOL. More

recently, it has been observed on Alcator C-Mod that the Dα emission at the inner

SOL peaks not on the primary separatrix but on the secondary separatrix (defined

precisely below and in Fig 4-28). The previous, but not fully understood, observations

along with the more recent observations from Alcator C-Mod have prompted a more

thorough investigation into the inner SOL.
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The following sections will describe the experimental technique used to investi-

gate the inner SOL, present the experimental results, compare these results with

a simple one-dimensional kinetic neutral model, and interpret the results from the

measurements and the model.

Experimental Setup and Analysis

To observe the Dα emission from the inner wall region, the visible imaging CCD

camera (DANT), described in Sec. 4.1, was used. This camera views the inner wall

tangentially. A poloidal cross-section of the view is shown in Fig. 4-28. The camera

is filtered for Dα using an interference filter located directly in front of the lens and

is absolutely calibrated, as described in Sec. 4.1. The camera is located ∼19.5 cm

below the midplane of the tokamak and has a slight upward tilt of ∼5 degrees. This

view was calibrated by fitting the observed spacings between the tiles on the inner

column to the expected location of the spacings on the image plane, similar to the

calibration of the view for the divertor viewing cameras, see Section 4.1.

Although in principle an Abel inversion can be performed using the array of pixels

whose view lies in the horizontal plane, the pixel to pixel noise renders this approach

impractical. To obtain emission profiles from this region, the brightness profile was

fitted to a line-integrated brightness profile based on an assumed emission profile

shape. The emission profile was assumed to have the form,

ε(r) =


c0 exp

[
r−r0

λ−

]
if r ≤ r−

ε0 + c1 (r − r0)
2 if r− ≤ r ≤ r+

c2 exp
[
−r+r0

λ+

]
if r+ ≤ r

. (4.26)

Figure 4-29 shows a sample emission based on equation 4.26. The variables r0, r−,

and r+ are the locations of the peak emission, the high-field-side boundary between

the parabolic and exponential sections of the emission and the low-field-side boundary

between the parabolic and exponential sections, respectively. The total number of

free parameters can be reduced to 5 (i.e., ε0, r0, λ−, λ+, and c2) by requiring that

the function be differentiable at r− and r+. This constraint and the constraints
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Figure 4-28: The inner, outer and common scrape-off layer in a typical lower single
null discharge, along with the poloidal projection of the camera view.
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r− < r0 < r+ and c1 < 0 yield the following relations that allow the reduction of free

parameters:

c0 exp

[
r− − r0

λ−

]
= ε0 + c1 (r− − r0)

2 (4.27)

c2 exp

[
−r+ + r0

λ+

]
= ε0 + c1 (r+ − r0)

2 (4.28)

c0

λ−
exp

[
r− − r0

λ−

]
= 2c1 (r− − r0) (4.29)

− c2

λ+

exp

[
−r+ + r0

λ+

]
= 2c1 (r+ − r0) (4.30)

(4.31)

The solution to these equations in terms of the five parameters ε0, r0, λ−, λ+, and c2

is

r− = r0 + λ−

1− (1− ε0

λ2
−c1

)1/2
 (4.32)

r+ = r0 − λ+

1− (1− ε0

λ2
+c1

)1/2
 (4.33)

c0 =
[
ε0 + c1 (r− − r0)

2
]
exp

(
r0 − r−

λ−

)
(4.34)

c2 =
[
ε0 + c1 (r+ − r0)

2
]
exp

(
−r0 + r+

λ−

)
(4.35)

The measured brightness profiles were fitted to the brightness profile of the as-

sumed emission profiles including a constant brightness offset (presumably coming

from the outer parts of the plasma through which the camera must view),

b(y) = 2
∫ a

y
ε(r)

r dr

(r2 − y2)1/2
+ b0. (4.36)

Expanding Eq. 4.36 yields

b(y) = 2c2

(
a2 − y2

)1/2
exp

(
−a + r0

λ+

)
+
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Figure 4-29: A sample of the emission profile assumed in the analysis of the Dα

emission near the innerwall.
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+
2c2

λ+

∫ a

y

(
r2 − y2

)1/2
exp

(
−r + r0

λ+

)
dr + b0, (4.37)

for r+ ≤ y,

b(y) = 2
(
ε0 + c1r

2
0

) (
r2
+ − y2

)1/2
−

−4c1r0

r+

2

(
r2
+ − y2

)
+

y2

2
ln

r+ +
(
r2
+ − y2

)1/2

y


+

+2c1

[
1

3

(
r2
+ − y2

)3/2
+ y2

(
r2
+ − y2

)1/2
]

+

+2c2

(
a2 − y2

)1/2
exp

(
−a + r0

λ+

)
−

−2c2

(
r2
+ − y2

)1/2
exp

(
−r+ + r0

λ+

)
+

+
2c2

λ+

∫ a

r+

(
r2 − y2

)1/2
exp

(
−r + r0

λ+

)
dr + b0, (4.38)

for r− ≤ y ≤ r+, and

b(y) = 2c0

(
r2
− − y2

)1/2
exp

(
r− − r0

λ−

)
−

−2c0

λ−

∫ r−

y

(
r2 − y2

)1/2
exp

(
r − r0

λ−

)
dr +

+2
(
ε0 + c1r

2
0

) [(
r2
+ − y2

)1/2
−
(
r2
− − y2

)1/2
]
−

−4c1r0

r+

2

(
r2
+ − y2

)1/2
− r−

2

(
r2
− − y2

)1/2
+

y2

2
ln

r+ +
(
r2
+ − y2

)1/2

r− + (r2
− − y2)

1/2


+

+
2c1

3

[(
r2
+ − y2

)3/2
−
(
r2
− − y2

)3/2
]

+

+2c1y
2
[(

r2
+ − y2

)1/2
−
(
r2
− − y2

)1/2
]

+

+2c2

(
a2 − y2

)1/2
exp

(
−a + r0

λ+

)
− 2c2

(
r2
+ − y2

)1/2
exp

(
−r+ + r0

λ+

)
+

+
2c2

λ+

∫ a

r+

(
r2 − y2

)1/2
exp

(
−r + r0

λ+

)
dr + b0, (4.39)

for y ≤ r−. Equations (4.37 - 4.39) when used with equations (4.33 - 4.35) have six

free parameters, ε0, the peak emission value, r0, the location in radius of the emission
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Figure 4-30: A typical brightness profile with the fitted function overplotted. The
abscissa is the major radius of the viewing chord’s impact parameter.

peak, λ−, the scale length of the emission towards the radial axis, λ+, the scale length

of the emission away from the radial axis, c1, the “peakedness” of the emission, and

b0 the brightness offset. The constant brightness offset can be attributed to the twice

brightness from the low-field side of the plasma. Equations (4.37 -4.39) also have

terms that are left in integral form. These integrals can be numerically integrated

since the infinity originally present in Eq. 4.36 has be eliminated. Figure 4-30 shows

a typical brightness profile with the fitted function overplotted. This fit can be done

for all recorded frames.

Magnetic Geometry

In a balanced double null discharge there exist two distinct regions of the scrape-off

layer, a high-field side scrape-off layer (inner scrape-off layer) and a low-field side

scrape-off layer (outer scrape-off layer). In an unbalanced double null configuration
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(see figure 4-28) these two regions still exist outside the secondary separatrix. Between

the primary and secondary separatrix there exists a region of the scrape-off layer in

which the low- and high-field sides are magnetically connected (common scrape-off

layer). Figure 4-28 shows the three regions (inner, outer, and commons scrape-off

layer) in a typical lower single null discharge.

To investigate the influence the magnetic geometry has on the Dα emission near the

inner wall, the magnetic configuration was scanned dynamically from a lower single

null (LSN) to a double null (DN) through to an upper single null (USN). Figure 4-

31 shows the three configurations that the magnetic geometry was scanned through.

The global parameters for this experiment were typical of an L-mode discharge on

Alcator C-Mod and kept nearly constant: BT = 5.4 T, Ip = 0.8 MA, n̄e ≈ 1020 m−3.

The main magnetic effect of this scan is the location of the secondary separatrix

with respect to the primary separatrix, from ∼ 1 cm from the primary separatrix at

the outboard midplane to having no secondary separatrix during double null back to

being ∼ 1 cm from the primary separatrix with a change in the null with which the

secondary separatrix is associated.

Observations

By fitting the brightness profiles as described in section 4.3.2, the variation of the

location of the emissivity peak (r0), the HFS emission scale length (λ−), and the

LFS emission scale length (λ+) were determined. The location of the emissivity peak

during the configuration sweep described above is summarized in figure 4-32, and can

clearly be seen to follow the secondary separatrix regardless of the null with which the

secondary separatrix is associated. The HFS emission scale length, shown in figure 4-

33, is relatively constant within the error of this measurement. The LFS emission

scale length has a smaller error associated with its measurement and is systematically

smaller when the discharge is near double null configuration. The LFS emission scale

length measurements are summarized in figure 4-34.

All three of these observations can be explained by a steep plasma density decay

beginning at the secondary separatrix and decaying towards the inner wall and a
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Figure 4-31: The three magnetic geometries that the plasma was scanned through to
investigate the influence of the magnetic geometry on the Dα emission near the inner
wall. Here (a) is a lower single null configuration, (b) is the double null configuration
and (c) is the upper single null configuration.
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Figure 4-32: Plot showing the location of the peak in the emission from the observa-
tions (�) and the location of the peak in the emission from the kinetic neutral code
KN1D (+) with respect to the location of the flux surface associated with the lower
(–) and upper (- -) null.
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Figure 4-33: Plot showing the high-field-side emission scale length measured from
the observations (�) and the high-field-side emission scale length calculated from the
kinetic neutral code KN1D (–).
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Figure 4-34: Plot showing the low-field-side emission scale length measured from
the observations (�) and the low-field-side emission scale length calculated from the
kinetic neutral code KN1D (–).
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relatively flat plasma density profile in the common SOL. In this case the neutral

atoms would travel freely until they came near the secondary separatrix where they

would begin to ionize. In the common SOL the neutrals would have a nearly con-

stant ionization rate and their density would decay exponentially with a 1/e length

approximately equal to the the ionization mean-free-path. Since the Dα emissivity in

the temperature range expected (Te ≥ 5 eV) has a weak dependence on temperature

and a linear dependence on both the electron and neutral density,

εDα ∝ neno, (4.40)

the emissivity will depend on the plasma and neutral profiles. On the HFS of the

emission peak the neutrals have a nearly flat density profile and therefore the HFS

emission scale length is indicative of the electron density scale length. On the LFS

of the emission peak the electron density varies more slowly and LFS emission scale

length is governed by the neutral density. The profile of the neutral density in this

region has an exponential decay determined by the ionization mean-free-path and

therefore the LFS emission scale length is indicative of this ionization mean-free-

path. The peak in the emissivity occurs where the product of the electron and neutral

densities are a maximum which occurs on the secondary separatrix.

Modeling

A one dimensional space, two dimensional velocity, kinetic neutral code (KN1D) [32]

was used to simulate the plasma-neutral interactions near the inner wall of the toka-

mak. This code requires as inputs the plasma profiles (temperature, density, and

velocity) and the neutral pressure at the inner wall. KN1D uses many molecular

and atomic processes to determine the distribution functions of both the atomic and

molecular neutrals. The processes included are (1) charge exchange collisions, (2)

electron-impact ionization and dissociations, (3) elastic self-collisions (atomic and

molecular), and (4) a variety of elastic cross-collisions (atom-ion, atom-molecule,

molecule-ion).
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The inputs used in simulating the inner wall SOL region included using typical

plasma profiles in the common SOL, as measured on the LFS midplane by a scanning

Langmuir probe, but with a sharp decay of the plasma density in the inner SOL

(λn = 3 mm) beginning at the at the secondary separatrix. Using the LFS common

SOL values for the plasma profile in the HFS common SOL is adequate since the

LFS emission scale length in the KN1D output only changed by a few percent when

the common SOL density profiles was varied from a flat density to a flat temperature

profile while keeping pressure constant on a flux surface. The input value of the

neutral molecular pressure at the inner wall is unimportant since the absolute scale

of the KN1D output Dα emissivity is a linear function of this neutral pressure. When

the neutral pressure at the inner wall was chosen to agree with the measured emissivity

profile the pressures required were in the range of 0.6 to 3 mTorr.

The results of the simulations show an excellent agreement with the location of

the emission peak (figure 4-32) and the LFS emission scale length (figure 4-34) and

only a moderate agreement with the HFS emission scale length (figure 4-33). Since

the location of the emission peak is typically where the electron density begins its

steep decent towards the inner wall and the KN1D location of the emission peak is

consistently below the emission peak location obtained from the camera data, this

suggests that the plasma profiles used as input to KN1D should begin the sharp decay

in plasma density slightly to the high field side of the secondary separatrix. The LFS

emission scale length has a decrease in the value as the magnetic configuration nears

double null (at 0.8 s). This decrease in scale length is due to the secondary separatrix

approaching regions of higher density. The higher density yields a shorter ioniza-

tion mean-free-path for the neutrals and as described earlier a shorter emission scale

length. The constancy of the HFS emission scale length is because the Dα emission

profile on the HFS of the peak is dominated by the plasma density profile, which is

given as an input to the code. Therefore the LFS emission scale length result from the

model could be made to match the measured result more closely. Since the constant

value result is within the error bars for the measurement and little more information

could be obtained by forcing the two results to match the constant value was seen
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Figure 4-35: Plot of the Dα emission output from KN1D where the plasma density
scale length is varied from 33.8 mm (the value if no change was made when compared
to the outer SOL) to 3.5 mm (the best fit to the measured data).

as adequate. Figure 4-35 shows the Dαemission profile for one modelled time slice

varying the density scale length in the region between the secondary separatrix and

the inner wall, showing that the strong density gradient beginning at the secondary

separatrix is necessary to replicate the experimental observations. The three plasma

density scale lengths used are (1) keeping the same plasma profile near the inner wall

as is measured on the outboard side (λ− = 33.8mm), (2) using a scale length that

best matched the observed measurement (λ− = 3.5mm), and (3) an intermediate

value (λ− = 18.7mm) to show the dependence of the solution on this scale length.

Other Supporting Data

Subsequent measurements on Alcator C-Mod have supported the results presented

above. These measurements were obtained by Brian LaBombard using a scanning
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Langmuir probe recently installed on the inner wall.

The scanning Langmuir probe is a single tungsten wire in a carbon fiber body

mounted at the midplane on the inner wall. The probe is mounted such that the wire

is horizonal and has an axis in the vertical direction about which it rotations. The

scanning motion is obtained by a solenoid whose placement and applied magnetic

field, in conjunction with the toroidal magnetic field, applies a torque to the scanning

probe allowing it to swing in the plasma by up to 1.5 cm. This probe is then used to

obtain plasma temperature, density, and potential profiles of the inner wall region.

Figure 4-36 show a series of density profiles obtained by the inner wall scanning

probe (ISP) compared to an outboard scanning probe (ASP) for different distances

between the primary and secondary separatrices. In all cases the electron density does

have a stronger decay in the region between the secondary separatrix and the inner

wall. The density does begin its steepening on the LFS of the secondary separatrix

as was suggested by the modeling results. These measurements validate the profiles

used in the KN1D model.

Conclusions

Summarizing the observed and simulated results, I note (1) the Dα emissivity peaks

on the secondary separatrix, (2) the HFS emission scale length has no systematic

dependence on the magnetic geometry, and (3) the LFS emission scale length de-

creases as the discharge approaches a double null configuration. The location of the

emission and the independence of the HFS emission scale length can be explained by

postulating a sharp plasma density decay beginning at the secondary separatrix and

decreasing toward the inner wall. The HFS emission scale length is a measure of that

plasma density decay length. The LFS emission scale length can be explained by the

ionization mean-free-path of the neutrals into the common SOL, and therefore is a

measure of the effective ionization mean-free-path for the thermal neutrals moving

toward the plasma from the secondary separatrix.

The existence of a sharp decay of the plasma density beginning at the secondary

separatrix can explained by considering the typical SOL paradigm. In the SOL
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Figure 4-36: A series of density profiles obtained by the inner wall scanning probe
(ISP) compared to an outboard scanning probe (ASP) for different distances between
the primary and secondary separatrices. (B. LaBombard)
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paradigm all plasma in the SOL flows along field lines to the divertor plate or limiter

and the radial SOL plasma profiles are determined by this parallel transport. On the

LFS of the common SOL and in the outboard SOL there is clear evidence that in

some cases the perpendicular (radial) particle transport competes with or is larger

than the parallel transport. This flattens the plasma profiles and is contrary to the

typical SOL paradigm. [36, 33] In the HFS SOL I believe the profiles in the common

SOL are set by the LFS dynamics, and that in the inner SOL the profiles are more

in line with the SOL paradigm. This explanation is consistent with the previous

observations mentioned in the beginning of this section. The density decay length

was shorter at the HFS of Alcator C because it was not connected to the LFS. The

fluctuations measured at the inner wall on ASDEX during single-null discharges were

the effect of the LFS dynamics on the HFS common SOL, while the lack of measured

fluctuations during double-null discharges occurred because the inner SOL was not

connected to the LFS and therefore was not influenced by the transport there.

4.3.3 Divertor Continuum Emission

The electron temperature of an isothermal deuterium plasma can be calculated by

taking the ratio of the emission of a deuterium line in local thermal equilibrium

(LTE) and the emission of continuum assuming the continuum is entirely due to

ion-electron bremsstrahlung and radiative recombination [18]. (This is the so-called

“line-to-continuum ratio” method for determining Te) In this case the ratio is strictly a

function of electron temperature and all one has to do is measure these two quantities

and a value for the electron temperature can be obtained. This was attempted on

Alcator C-Mod using the deuterium n = 5 → 2 transition (Dγ) and the continuum

level between 420 and 430 nm. The measurements yielded temperatures consistently

higher than the temperatures measured by fitting the high-n deuterium Balmer lines

to a Saha distribution (as described in Sec. 4.3.1) and by measuring the slope of

the free-bound continuum between ∼ 85 and 91 nm. [58]. Figure 4-37 shows the

theoretical ratio of the Dγ emission to continuum emission (420-430nm) as a function

of temperature.
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Figure 4-37: Plot of the ratio of the Dγ emission to continuum emission (420-430 nm)
as a function of electron temperature.
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The failure of the line-to-continuum ratio method to produce electron tempera-

ture measurements consistent with the other methods discussed can be attributed

to additional continuum being generated in the divertor other than bremsstrahlung

or radiative recombination. The failure of the method is not due to the Dγ line not

being in LTE because 1) this assumption is also used when calculating the temper-

ature using the high-n Balmer series, and 2) the relative intensity agrees well with

the expected fit of the intensities of the other lines. The unaccounted-for continuum

emission is approximately an order of magnitude too high when compared to the

temperatures measured by the VUV and the visible spectrometers. Other atomic

sources of continuum emission have been calculated (H−, atom-ion bremsstrahlung,

etc.) and none have been able to account for the extra continuum emission.

It is shown that the emission profile of the continuum is peaked in the same region

as the recombining plasma described in Sec. 4.3.1. The most probable source of this

continuum is due to molecular effects. It is most probable only because the other

atomic and plasma sources that have been considered have been eliminated as the

cause. The qualitative analysis of these other sources are discussed. The hypothesis

that the continuum is due to radiative dissociation of the deuterium molecule is

presented. This emission occurs when a deuterium molecule is in an excited electronic

state (i.e., a3Σ+
g ) that decays into a repulsive electron state with no bound energy

levels (b3Σ+
g ) emitting a continuous spectrum of photons. [62, 26, 8, 11] Unfortunately,

it is concluded that there is probably not enough D2 or D+
2 present in the detached

plasma to account for the magnitude of the emission. Thus the continuum emission

remains unexplained.

Experimental Technique

Both the Dγ and the continuum emission profiles are generated using the same tech-

nique as described in sections 4.2 and 4.1. The camera used to obtain Dγ profiles

is set up exactly as described in in section 4.1, with the exception being that it is

filtered about 434 nm instead of 656 nm. The camera used to obtain the continuum

emission profiles is set up the same as described in section 4.1 with the exception that
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Figure 4-38: Plot of an experimental recombination spectrum with the continuum
filter function overplotted. (Note the vertical scale is logarithmic)

the calibration is not for a single spectral line but for continuum emission passed by

the filter. The filter for the continuum emission camera is a bandpass filter centered

at 425 nm with a bandpass of 10 nm. There are no significant lines between 420 nm

and 430 nm making it adequate for a measure of the continuum level. Since the filter

is not a square function there is some Dγ emission that is not entirely filtered out and

can contribute up to 25% of the recorded signal. Figure 4-38 shows the continuum

filter with a typical experimental recombination spectrum.

Results

Using the technique mentioned above, the Dγ and continuum emissivity profiles were

reconstructed for several plasma discharges where the inner and outer divertor regions

were detached. Figure 4-39 and figure 4-40 show the Dγ and continuum emissivity

profiles from a typical detached discharge. It should be noted that the two profiles
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Figure 4-39: 2-D profile of the Dγ emissivity during detached divertor operation.

are of the same order in emissivity. Using the curve in figure 4-37, when the Dγ

and continuum emissivities are of the same order the temperature is at least ∼ 2

eV, which is more than double the temperature measured using the high-n Saha

distribution technique. Also using the curve in figure 4-37 a temperature profile can be

determined. Figure 4-41 shows the temperature profile using the ratio of figures 4-39

and 4-40 and the curve from figure 4-37. As is seen from figure 4-41 the temperatures

all range between 4 and 40 eV. Although the distribution of the temperatures is what

is expected (i.e., hotter towards the main plasma), the absolute values are well above

those measured by any other method and well above the temperatures for which there

would be a significant amount of atomic deuterium emitting Dγ radiation.
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Figure 4-40: 2-D profile of the continuum (420→430 nm) emissivity during detached
divertor operation.
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Figure 4-41: 2-D temperature profile of the divertor using the ratio of the Dγ to
continuum (420→430 nm) emissivities, assuming electron-ion bremsstrahlung and
radiative recombination as the sole source of continuum.

113



Discussion

Since the temperature measurements are in disagreement with several other methods

for measuring the electron temperature, the assumption that the continuum source is

due to electron-ion bremsstrahlung and radiative recombination must be invalid. Sev-

eral plasma and atomic sources of continuum, beyond the electron-ion bremsstrahlung

and radiative recombination, have been considered:

1. electron - electron bremsstrahlung,

2. electron - atom bremsstrahlung,

3. H− attachment,

e− + H → H− + hν, (4.41)

and

4. two ion - atom reactions.

H+ + H → H+ + H + hν (4.42)

H+ + H → H+
2 + hν (4.43)

The electron - electron bremsstrahlung can be immediately dismissed as contributing

significantly to the continuum level, because in the non-relativistic case the electron -

electron bremsstrahlung is a factor of 2
5

Te

mec2
below the electron - ion bremsstrahlung

continuum level.[4] The electron - atom bremsstrahlung can be calculated from Kirch-

hoff’s Law using the inverse electron - atom bremsstrahlung absorption coefficients

obtained from Table 1 in reference [55],

jaeb (no, ne, Te, λ) =
2πhc2

λ5

1

e
hc

λTe − 1

κo

noneTe

, (4.44)

where j is in units of power per volume per wavelength, κo is the tabulated value from

Table 1 of reference [4], and all other parameters have their usual definitions. The
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continuum due to H− attachment can be calculated by using the tabulated bound-free

cross sections from reference [10] and the Milne relation, [50]

σbf

σfb

=
m2c2v2

ν2h2

geg+

2gn

, (4.45)

where σbf and σfb are the bound-free and free-bound cross-sections, m is the mass of

the electron, v is the velocity of the electron, and ge, g+, and gn are the statistical

weight factors for the electron, the most positively charged state and the next charged

state respectively,

jH− (no, ne, Te, λ) =
(hc)4 c2

(mec2)2

gH−

gegH
neno

σbff (v)

λ5
(

hc
λ
− χH−

) , (4.46)

where g is the statistical weight factors for the electron, hydrogen atom and negative

hydrogen ion, χH− is the ionization potential of the negative hydrogen ion (0.75 eV),

f (v) is a Maxwellian distribution of the electrons with temperature Te,

f (v) =
4π

c

(
mec

2

2πTe

)3/2
v2

c2
exp

[
−mec

2

2Te

v2

c2

]
, (4.47)

where the relation between electron velocity and wavelength is given by

hc

λ
=

1

2
mev

2 + χH− , (4.48)

and σbf is the cross section tabulated in reference [10]. The last atomic contin-

uum sources considered are the ion-atom interactions given by Eqns. 4.42 and 4.43.

Reference [46] discusses the general derivation of the emission due to the ion - atom

collisions and equation 3a in reference [45] gives the explicit function for this emission,

jiac =
8π3

3

a3
o

h (hc)2 mec2
nHni

(
hc

λ

)5

R4
ω exp

[
−Uu (Rω)

Ti

]
, (4.49)
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where Rω is the internuclear distance given by

hc

λ
= Uu (Rω)− Ug (Rω) , (4.50)

Uu is the upper state energy, Ug is the lower state energy, and all other terms have their

usual meaning. In equations 4.49 and 4.50 the potentials were given by the tabulated

values in reference [3]. Figure 4-42 shows the potentials used in the calculation of the

ion - atom continuum. The continuum contributions (2-4) as well as the electron -

ion bremsstrahlung and the radiative recombination contribution have been calculated

using the numerical code CRAMD (Collisional Radiative Atomic Molecular Data).[49,

48] CRAMD is a quasi-stationary, quasi-homogeneous collisional-radiative model of

the atomic and molecular interactions with the background plasma. This treatment

is more complete than simply using equations 4.44, 4.46, and 4.49 directly, because

it includes interactions between the various species. Therefore, the continuum levels

used in the following discussion are obtained from the CRAMD code.

Figure 4-43 shows the estimated contribution to the continuum due to the different

plasma and atomic continuum sources. The spectrum is from a visible spectrometer

viewing the divertor during discharge when the outer divertor region is deeply de-

tached (see figure 4-40). The electron temperature and density measurements, using

the ratio of the intensity of the high-n Balmer lines and the Stark broadening of

the same lines, yields Te = 1.3 eV and ne = 1.26 × 1021 m−3. Using this electron

temperature and density, setting the atomic density equal to the electron density (if

anything an overestimate of the atomic density [56]), and assuming the length of the

viewing chord through the emission is 5 cm (estimated from figure 4-40) the contri-

butions from all the above processes were calculated and summarized in figure 4-43.

This clearly shows that the atomic density, which is the only free parameter, must

be two orders of magnitude above the electron density in order for the atomic con-

tributions to the continuum make up the difference between the calculated plasma

contributions and the measured continuum. An atomic density that is a factor of

100 above the electron density is a high value when compared to recent neutral and
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Figure 4-42: Plot of the potentials of the 1sσg state (lower curve) and the 2sσg state
(upper curve) of the hydrogen molecular ion as a function of internuclear distance
obtained from tabulated values in reference [3].
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Figure 4-43: Plot of a sample measured recombination spectrum compared to ex-
pected plasma and atomic continuum. The electron temperature and density are
calculated from the spectrum to be 1.3 eV and 1.26 × 1021 m−3. Overplotted is the
electron-ion bremsstrahlung (- -), the radiative recombination (· · ·), and the total
plasma contribution (–) to the continuum. Also plotted is the contribution due to
H− attachment (- -), electron-atom bremsstrahlung (· · ·), ion-atom interactions (· -),
and the total atomic continuum contribution (–) assuming equal electron and atom
densities. Finally, the sum of the plasma and atomic continuum brightnesses are also
overplotted (–).

plasma modelling results [56] and therefore it is expected that atomic contributions

to the continuum level cannot explain the measured continuum.

Since the plasma and atomic continuum sources cannot account for the observed

continuum, yet another mechanism has been investigated. A possible source of contin-

uum could be due to radiative detachment of the D2 molecule. When the D2 molecule

is in the a3Σ+
g electronic state it will decay to the b3Σ+

u , which is an unbound state.

This decay into the unbound state yields a continuum spectrum. Figure 4-44 shows

the lowest singlet bound molecular state (X1Σ+
g ), the lowest triplet bound molecular

state (a3Σ+
g ), and the lowest triplet unbound molecular state potential energies. The

investigation into the continuum caused by the radiative detachment was originally

published by Winans and Stueckelberg[63] and then investigated further by James

and Coolidge[26, 9, 8] and more recently by Doyle[11] with calculations carried out
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Figure 4-44: Plot of the potential energy of the X1Σ+
g , a3Σ+

g , and b3Σ+
u H2 molecular

states.

to a high number of vibrational levels and accuracy by Fantz[13]. Using the tables

published in reference [13] the continuum from the D2 molecule can be calculated as a

function of the number density of D2 molecules in the a3Σ+
g state and the vibrational

temperature of those D2 molecules. Since the vibrational temperature of the molecules

is unknown in the following analysis it is assumed that the vibrational temperature

is equal to the electron temperature. It is expected that this vibrational temperature

is too high, but by using this temperature, the estimates yield a minimum density

required to for the molecules to account for the continuum level measured.

With an assumption of nH2(a
3Σ+

g ) = 2×10−5 ne, nearly all of the continuum can be

accounted for. Figure 4-45 shows the amount of continuum expected if nH2(a
3Σ+

g ) =

2× 10−5 ne for the same case as figure 4-43.

A density of H2 in the a3Σ+
g state that is 4 to 5 orders of magnitude below the

electron density is required to explain the observed continuum. Therefore, the next
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Figure 4-45: Plot of the recombining plasma from figure 4-43 with the plasma (-·-),
atomic (-· · ·-), molecular (- -), and total (–) continuum levels assuming ne = no =
50000nH2(a

3Σ+
g ) = 1.26× 1021m−3 and Te = Tvib = 1.3 eV.

step is to determine the population mechanism for this state and determine whether

the required molecular densities are reasonable. There are two main methods of

populating the a3Σ+
g state, either through excitation from the H2 ground state (X1Σ+

g )

or through recombination into the a3Σ+
g or higher states with a cascade down through

the a3Σ+
g state. The first method to be considered is the excitation method. This is

the easiest to consider since there is a published [28] reaction rate for the following

reaction,

e− + H2

(
X1Σ+

g

)
→ e− + H2


b3Σ+

u

a3Σ+
g

c3Πu

→ e− + H(1s) + H(1s), (4.51)

shown in figure 4-46. By assuming the reaction rate for equation 4.51 is all for

population of the a3Σ+
g state, it is possible to calculate a lower bound of the H2

density. Equating the excitation rate with the radiative dissociation rate and solving
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for the H2 density yields

nH2 =
nH2(a3Σ+

g )

ne

AH2(a3Σ+
g )

〈σv〉
. (4.52)

Since nH2(a3Σ+
g )/ne ≈ 2 × 10−5, from reference [13] AH2(a3Σ+

g ) ≈ 108 s−1, and from

reference [28] 〈σv〉 ≈ 3.25 × 10−18 m3 s−1 at Te = 1.3 eV, the lower bound of the

molecular deuterium density is approximately 6.2 × 1020 m−3. This density is over

60% of the electron density, which is much higher than expected from modelling [56].

The other population method to be considered is by recombinations into the a3Σ+
g

and higher states. This is analogous to the atomic system where the deuteron will

recombine with electrons into the various energy levels and then radiatively cascade

down to ground state. In the molecular case the H+
2 molecule recombines with an

electron which eventually decays into either the ground state (X1Σ+
g or the b3Σ+

u

repulsive state. Reaction rates on the total recombination process for the molecular

hydrogen ion are not known. I have chosen therefore to use the atomic reaction rates

to estimate the total recombination rate. The recombination rates used are obtained

from the code “collrad” which is based on the code described by Weisheit[61] us-

ing the cross section data from the Janev-Smith database[27]. These are the same

rates used in the DEGAS2 monte carlo neutral modelling code[57], and include both

the radiative recombination and the three-body recombination channels. Figure 4-47

shows the total recombination rate at three different electron densities as a function

of electron temperature. The three-body recombination channel is dominant in the

high density, low temperature plasmas discussed in this section. Therefore by as-

suming that ∼60% of the recombinations populate the a3Σ+
g (which then radiatively

dissociates via continuum emission to the b3Σ+
u state), the nH+

2
density required for

a given a3Σ+
g population density can be estimated, since

0.6nH+
2
neRR = nH2(a3Σ+

g )AH2(a3Σ+
g ) (4.53)
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Figure 4-46: Plot of the reaction rate of equation 4.51 as a function of electron
temperature.

where RR is the total atomic specific recombination rate for a given electron den-

sity and temperature. Using the previously mentioned values for nH2(a3Σ+
g )/ne, and

AH2(a3Σ+
g ), and the value of RR at ne = 1021 m−3 and Te = 1.3 eV (2.3 × 10−18 m3

s−1) yields a density of H+
2 of 1.4 × 1021 m−3. This density is also well above the

expected values from recent modelling results [56]. These modelling result give max-

imum values for the H2 density of ∼ 1019 m−3 and H+
2 densities of ∼ 1017 m−3, which

are several orders of magnitude below densities required by this analysis. Therefore,

although the molecular continuum could explain the level of continuum seen in the

divertor during detached divertor operation an adequate mechanism has not yet been

found to explain the population density of molecules in the a3Σ+
g state consistent with

recent modelling efforts. This analysis requires nH2 = 3×1020 m−3and/or nH+
2

= 1021

m−3 to explain the observation.
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Figure 4-47: Plot of the total atomic recombination rate as a function electron tem-
perature at three densities, 1019 m−3 (–), 1020 m−3 (- -), 1021 m−3 (-·-).

123



Model Presented Analysis

n0/ne 10−1 102

nH2/ne 10−2 0.5
nH+

2
/ne 10−4 1

Table 4.1: Comparison of density ratios from plasma and neutral modelling code
(DEGAS) and the required density ratios from the analysis presented. The DEGAS
ratios are from the detached inner divertor region.

Conclusions

In an attempt to generate two-dimensional electron temperature profiles in the di-

vertor of Alcator C-Mod, two CCD cameras filtered to view different regions of the

visible spectrum were recorded. Using interference filters, one of the cameras was

filtered for the n = 5 → 2 deuterium transition (Dγ), and the other camera was

filtered to view the spectral range from 420 to 430 nm. Two dimensional profiles of

the emissivity were generated using the technique described in sections 4.2 and 4.1.

Using the ratio of these emissivity profiles it should be possible to obtain electron

temperature profiles using the line-to-continuum-ratio technique described in refer-

ence [18]. The temperatures obtained with this technique were consistently too high

when compared to other temperature measurements in the divertor region. The fail-

ure of this technique can be attributed to “excess” continuum emission above that

expected from electron-ion bremsstrahlung and radiative recombination alone.

In an attempt to explain the “excess” continuum various plasma, atomic, and

molecular processes were considered. The atomic processes were found to account for

the total continuum only if the atomic deuterium density was two orders of magnitude

larger than the electron density in the region of emission. Molecular processes could

also account for the continuum level observed, but only if the either the neutral

deuterium molecule or the ionized deuterium molecule had a density on the same

order as the electron density. All of the densities required to explain the continuum

are larger than the densities of the respective species expected by plasma and neutral

transport modeling (see table 4.1).
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Figure 4-48: Labelled image from the “A-port” wide angle camera showing the central
column, the “D-port” RF antenna structure, “J-port” RF antenna structure, the
divertor structure, and a mirror in the camera’s field of view.

4.4 Qualitative Examples

The following section presents examples of recorded images from the visible imaging

system. To assist the reader as to the orientation of the images, Figure 4-48 shows an

image from the “A-port” wide angle camera and figure 4-49 shows an image from the

“F-port” wide angle camera (180◦ from “A-port”) when the vessel is illuminated by

a region of intense visible light from the plasma in the upper divertor of the tokamak.

Important features for in the view are labelled in these figures.

Besides its usefulness in the understanding of various physical phenomena, the

visible imaging system of Alcator C-Mod has significant operational benefits. The

visible imaging system has been used in identifying the causes of impurity injections

during the discharges, in identifying failures of invessel components, and as a general
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Figure 4-49: Labelled image from the “F-port” wide angle camera showing the central
column, the “D-port” RF antenna structure, “J-port” RF antenna structure, and the
divertor structure.
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monitor of vessel and plasma conditions. In all cases mentioned above the visible

imaging system was left unfiltered, recording the entire visible spectrum. The follow-

ing sections give more details about the operational uses of the system.

4.4.1 Identifying Causes of Impurity Injection

There are three main causes of impurity injection in Alcator C-Mod. Injections have

originated from either the RF antenna structure, from the Langmuir scanning probes

or from the molybdenum protection tiles that line the inside of the vacuum vessel.

The impurity injections from the RF antenna structures have typically originated

from either the protection tiles that border the antennas or from the Faraday screens

directly in-front of the antennas straps. Figure 4-50 shows an injection from the

protection tiles around the 4 strap (“J-port”) antenna structure and figure 4-51 shows

an injection from the “J-port” Faraday screen. The content of the injections was

determined by viewing the visible spectrum with a spectrometer using viewing fibers

colinear to the CCD camera views. In the case of the impurities from the protection

tiles it was determined that the injections were molybdenum when molybdenum tiles

where installed and boron-nitride when boron-nitride tiles were installed. In the case

of the Faraday screen a significant increase in the titanium emission was measured.

Thus, in combination with the TV images, it was determined that the flakes of TiC

coating from the Faraday screen were being injected.

The Langmuir scanning probes can be another significant source of impurity in-

jections. There are three Langmuir scanning probes, one scanning horizontally above

the midplane on outside edge, another scanning vertically from an outside divertor

plate, and a third mounted to the inner wall at the midplane scanning horizontally.

Two of the scanning Langmuir probes are directly in the view of the CCD cameras

while the third one (outer midplane probe) is mounted directly above the viewing

cameras and therefore its injections are only observed when they are bright enough

to be seen in reflection off of the inner wall. The Langmuir scanning probes rarely

scan into the plasma far enough to cause significant impurity injections, but when

they do their injections are sometimes seen by the visible imaging system. Figures 4-

127



Figure 4-50: Recorded image from the visible imaging system showing an impurity
injection from the RF antenna protection tiles. The central column can be seen on
the left side of the view and the bars of the Faraday screen in-front of the RF antenna
straps.
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Figure 4-51: Recorded image from the visible imaging system showing an impurity
injection from the RF antenna Faraday screen. The image of the RF antenna is
obtained by the use of a mirror located in the center of the view.

129



Figure 4-52: Recorded image from the visible imaging system (“A-port” wide angle)
showing an impurity injection from the outer Langmuir scanning probe. Although
the probe itself cannot be seen in this image, the reflection of the localized injection
emission can be seen on the inner wall.

52, 4-53 and 4-54 show the outer (in reflection), divertor and inner scanning Langmuir

probes injecting impurities into the plasma discharge.

The third class of injection observed by the visible imaging system are injections

originating from the molybdenum protection tiles that line the inside of Alcator C-

Mod. These injections often look like sparks originating from between two tiles and

extending into the plasma. These injections are almost always composed of molyb-

denum as evidenced by the significant increase of molybdenum radiation observed by

visible, VUV, and X-ray spectrometers. Figure 4-55 shows a typical injection from

the molybdenum tiles.
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Figure 4-53: Recorded image from the visible imaging system (“F-port” wide angle)
showing recycling from the divertor Langmuir scanning probe.
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Figure 4-54: Recorded image from the visible imaging system (“A-port” wide angle)
showing an impurity injection from the inner Langmuir scanning probe.
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Figure 4-55: Recorded image from the visible imaging system (“F-port” wide angle)
showing an impurity injection from the molybdenum tiles.
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4.4.2 Identifying Failure of Invessel Components

The visible imaging system has been useful in identifying when certain invessel com-

ponents fail. Three specific incidents are noted, the bending of a viewing dump, the

complete dislocation of a viewing dump, and the breaking and falling of boron nitride

protection tiles from an RF antenna structure.

The bent viewing dump can be seen in the comparison of figure 4-56, which is an

image taken before the viewing dump is bent, to figure 4-57, taken after the viewing

dump has bent. This viewing dump is used to reduce the reflections to fibers with a

vertically downward view. The bent viewing dump would not have been noticed on

the data, but would have caused erroneous interpretation of some of the line spectra

obtained from this view, since the spectral line shapes would not be indicative of the

view, but from the source of the reflected light.

Another invessel component failure involved a viewing dump that was attached

to the outboard side of the vacuum vessel. This viewing dump was used with the

visible bremsstrahlung system [44] installed on Alcator C-Mod. The viewing dump

was spot welded to the inside of the stainless steel vacuum vessel. During the course

of a campaign the viewing dump was dislodged from the side of the vacuum vessel

and fell into the divertor. This was a serious problem since good discharges could

not be achieved. The initial evidence that something was wrong was difficulty in

producing non-disrupting plasmas. The imaging system identified the cause of the

problems. The dislodged viewing dump was found in the images of both the divertor

viewing cameras. A vacuum break was required to retrieve the broken dump. Figure

4-58 shows the final location of the viewing dump.

The final example of an invessel component failure identified by the visible imaging

system is the breaking of boron nitride protection tiles from the “J-port” RF antenna

structure. These tiles encircle the Faraday screen which covers the RF antenna straps

and are used as an electrically insulating protective structure for the antenna. During

the 2002 run campaign these tiles experienced unexpected forces from disruptions.

These forces caused the tiles to break at the location where they were fastened to the
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Figure 4-56: “F-port” Wide-angle view image taken before the viewing dump (in the
near field) is bent. In this image the cabling on the left side of the view is clearly
visible.
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Figure 4-57: “F-port” Wide-angle view image taken after the viewing dump (in the
near field) is bent.

136



Figure 4-58: An image from the divertor viewing camera showing the final resting
place of the visible bremsstrahlung viewing dump.
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Figure 4-59: “A-port” Wide-angle view of the vacuum vessel before the boron nitride
protection tiles fell into the divertor.

rest of the support structure. Once the tiles broke they fell into the divertor region

and were seen by the visible imaging system. By comparing figure 4-59, before the

tiles have fallen into the divertor, to figure 4-60, after the tiles have fallen into the

divertor, one can see where the tiles came to rest. This failure also caused severe

enough problems with the operation of the plasma discharges that a vacuum break

was required to retrieve the broken tiles.

4.4.3 Monitor of Vacuum Vessel and Plasma Behavior

The visible imaging system is also used to monitor the vacuum vessel and plasma be-

havior before, during, and after the plasma discharge. Three examples of monitoring

are discussed in this section:

1. during electron cyclotron discharge cleaning (ECDC),
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Figure 4-60: “A-port” Wide-angle view of the vacuum vessel after the boron nitride
protection tiles fell in to the divertor. The outline of the boron nitride tiles can seen
in the lower right of the divertor structure.
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2. during a plasma discharge, and

3. after a disruption

In an effort to rid the vacuum vessel surfaces of D2O, O2, etc., prior to the running

of research plasma discharges, ECDC is conducted each day before the discharge

plasmas begin. In ECDC a low density plasma is created by launching into the vacuum

vessel microwaves with a frequency at the cyclotron frequency for electrons with a

low value of the toroidal magnetic field (0.08 T). The toroidal magnetic field is then

scanned in magnitude moving the cyclotron resonance layer across the entire vacuum

vessel. This allows the plasma to impact all the material surfaces in the vacuum

vessel. This scanning of the plasma is monitored by the visible imaging system to

check the extent and rate of the sweeping of the electron cyclotron resonance layer.

The plasma and vacuum vessel are also monitored during plasma discharges. The

images recorded during plasma discharges give an immediate feedback to the oper-

ations staff as to how well the plasma behaved. This survey view is also able to

indicate whether there has been a transition to high confinement mode (H-mode) or

an internal transport barrier (ITB). By comparing figure 4-61, which is a standard

L-mode discharge, to figure 4-62, which is an H-mode discharge, one can determine

visually that an H-mode was achieved. The increased brightness in figure 4-62 is

due to an increase in bremsstrahlung emission from the core region of the plasma

due to an increase in plasma density during H-mode operation. By comparing figure

4-61 to figure 4-63, which is a discharge with an internal transport barrier, one can

determine visually that a particle internal transport barrier has been achieved. The

internal transport barrier is visually identifiable by a small torus of enhanced emis-

sion over the standard L-mode emission pattern. This enhanced emission is due to

the increase in bremsstrahlung emission because of the increase in density inside the

internal transport barrier.

The visible imaging system continues to record after the discharge has ended, and

therefore has been able to record “sparks” generated by the disruption of a plasma

discharge. These “sparks” are similar to those seen during a discharge except that
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Figure 4-61: Sample image of a standard L-mode discharge as viewed from the “F-
port” wide-angle viewing camera.
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Figure 4-62: Sample image of a standard H-mode discharge as viewed from the “F-
port” wide-angle viewing camera.
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Figure 4-63: Sample image of an internal transport barrier discharge as viewed from
the “F-port” wide-angle viewing camera.
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Figure 4-64: Typical image of “sparks” occurring after a discharge plasma disruption
as viewed from a wide-angle viewing camera.

they occur after the plasma has been extinguished. The only way to locate where

the post-discharge “sparks” originating from is by following the trail of the debris

backwards in time and comparing where trail originates from to a pre-disruption

image. Figure 4-64 shows the typical image of “sparks” that occur after a discharge

plasma disruption.
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Chapter 5

Summary

This dissertation has focussed on the development of and results from a visible imag-

ing system on the Alcator C-Mod tokamak for the purpose of addressing the value

of this system as both a qualitative and quantitative diagnostic of magnetically con-

fined plasmas. The development of the visible imaging system has been addressed

in sections 4.1 and 4.2, which include the discussions of the physical setup and data

analysis techniques. A number of results obtained by using this system, as well as a

discussion of the operational benefits, are described in detail in sections 4.3 and 4.4.

The visible imaging system on Alcator C-Mod consists of six CCD cameras. The

entire visible imaging system is on the air side of the vacuum vessel allowing for

changes and maintenance to be done without requiring a vacuum break. The cameras

are recorded at 60 images per second with an exposure time that can be varied from 0.1

to 16.7 ms. Two of these cameras view the divertor region tangentially, two view RF

antenna structures and two are used as a wide-angle survey of the vacuum vessel. All

of these cameras can be filtered for a specific spectral region and calibrated to generate

absolute brightness profiles from recorded images. The calibrated images from the

divertor viewing cameras are then used to generate two dimensional emissivity profiles

of the spectral region for which they are filtered.

The calibrated images recorded by the divertor viewing cameras are used to gen-

erate emissivity profiles by mapping the individual pixels’ views through the divertor

region and numerically solving the set of overdetermined linear equations. The pixels’
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views are mapped to an emissivity grid defined on a poloidal plane. This mapping

is done by assuming that the emission is toroidally symmetric and by using the thin

chord approximation. The relation between the brightness measurement and the

emission in each grid element is an overdetermined linear set of equations that are

solved, in a least squares sense, using the conjugate-gradient method. This process

has been optimized for the physical system used on Alcator C-Mod.

A number of phenomena were investigated using the quantitative information

provided by the camera images. Three are described in detail.

Using the technique and physical setup described in sections 4.1 and 4.2 the volu-

metric recombination rate profiles have been measured and found to have a structure

that depends on a poloidal temperature gradient in the outer scrape-off layer. The

two dimensional volumetric recombination rate profiles where obtained using Dγ emis-

sivity profiles from the visible imaging system and electron density and temperature

measurements from Langmuir probes and visible spectroscopy. Significant recombi-

nation was observed in the private flux region of the divertor during moderate density

discharges (n̄e ∼ 0.8−1.9×1020 m−3). This meant that there was a significant density

of plasma inside the PFZ, an unexpected observation. Using Braginskii’s equations

and deriving a radial drift, it was determined that the temperature gradient along the

outer divertor leg could generate the flux of plasma consistent with the recombination

rate observed in the private flux region.

A sharp break in the slope of the radial density profile was found at the location

of the secondary separatrix near the inner wall of Alcator C-Mod using Dα emissivity

profiles from the visible imaging system and a kinetic neutral code (KN1D [32]). The

Dα emission was found to peak on the secondary separatrix. The decay lengths of

the Dα emission was found to depend on either the neutral mean-free-path (emission

decay length towards the plasma core) or as the electron density (emission decay

length towards the inner wall). This decay length towards the inner wall begins at

the secondary separatrix and is found to be shorter then the decay length on the

same flux surfaces on the low-field-side of the plasma core. Recent Langmuir probe

measurements from the inner wall region have confirmed the result found here.
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Two dimensional emissivity profiles of the visible continuum (420-430 nm) have

been measured and found to be an order of magnitude too large when compared to ex-

pected levels from electron-ion bremsstrahlung and radiative recombination based on

measured values of electron densities and temperatures. Various atomic and molec-

ular processes were considered as processes that might account for the enhanced

continuum levels. The atomic processes included: electron-atom bremsstrahlung, H−

attachment, ion-atom bremsstrahlung, and H+
2 attachment. For these processes to

generate the level of continuum observed, the atomic density would have to be two

orders of magnitude larger than the electron density. The molecular process con-

sidered is a radiative dissociation of the deuterium molecule (a3Σ+
g →b3Σ+

u ). The

deuterium molecule can decay radiatively from an excited electronic state into an

unbound electronic state, thus dissociating the molecule and generating continuum

emission. Two mechanisms for populating the excited state were considered, excita-

tion from ground and cascading decays from H+
2 volume recombination. With both of

these mechanisms it was estimated that the H2 and the H+
2 densities would need to be

on the same order of the electron density, if the molecular process is the cause of the

enhanced continuum. All the above mentioned processes require densities (molecular,

atomic, and molecular ion) that are too high when compared to those predicted by

divertor plasma modelling, therefore it is not likely that any of these processes are

the cause of the observed continuum emission in the divertor and the cause remains

unknown.

In addition to these scientific results the visible imaging system has significant

operational benefits. The system has been used in identifying the causes of impurity

injections during discharges, in identifying the failure of invessel components, and as

a general monitor of vessel and plasma behavior. There are three main causes of im-

purity injection in Alcator C-Mod. The injections typically either originate from the

RF antenna structure, the Langmuir scanning probes or from the molybdenum pro-

tection tiles that line the inside of the vacuum vessel. All of these types of injections

have been observed and are monitored by the visible imaging system. This system

has been useful in identifying when certain invessel components fail. Three specific
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incidents were noted, the bending of a viewing dump, the complete dislocation of

a viewing dump, and the breaking and falling of boron nitride protection tiles from

an RF antenna structure. In its capacity as a vacuum vessel and plasma behavior

monitor, the system is used to observe during electron cyclotron discharge cleaning,

during, and after the discharge, and sometimes recording the flight of debris around

the vacuum vessel after a disruption.

5.1 Conclusions

The research question of chapter 3 – Can visible imaging spectroscopy be a valuable

qualitative and quantitative diagnostic for magnetically confined plasmas? – has been

answered in the affirmative in chapter 4 by the following new results:

The measurement of significant plasma recombination in the private

flux region of the Alcator C-Mod divertor is explained by a radial flux of

plasma generated by a poloidal temperature gradient. Using spectroscopic

measurements we observe that there is a significant recombination rate in the private

flux zone. This requires significant plasma flux to this region. From Braginskii’s

equations a cross-field radial drift is derived to explain the existence and behavior

of the private flux region plasma. The dominant drift is interpreted as due to a

poloidal temperature gradient. The flux from this drift is consistent with attached

case of the outer divertor where the recombination rate in the private flux region is

found to be approximately linear with the strike point pressure. This plasma flux is

also consistent with the observed behavior of the volumetric recombination rate in

the various regions of the divertor (inner divertor, outer divertor, and private flux

region).

The measurement of location and shape of the Dα emission near the

inner wall is explained by a sharp break in slope of the radial density profile

at the secondary separatrix. The location of the emission and the independence of

the emission scale length on the high-field side of the secondary separatrix is explained

by a sharp decay of the plasma density beginning at the secondary separatrix and
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decreasing toward the inner wall. This agrees with the generally-accepted scrape-off

layer paradigm, in which all the plasma flows along magnetic field lines to the divertor

plate and the radial plasma profiles are determined by this parallel transport. The

difference between the SOL paradigm and the observation is that the SOL paradigm is

expected to begin at the primary, not the secondary separatrix. Also, this effect is only

seen on the high-field side of the plasma and not the low-field side. This sharp decay

in the region between the secondary separatrix and the inner wall implies that during

double null discharges the neutrals from the inner wall region can enter the closed

flux surfaces more readily due to reduced screening by the plasma. This also implies

that during double null discharges impurities from the inner wall region can enter the

plasma more easily, contaminating the core plasma. The emission scale length on the

low-field side of the secondary separatrix is explained by the ionization mean-free-

path of the neutrals into the common scrape-off layer. This scale length is therefore a

measure of the effective ionization mean-free-path for the neutrals originating at the

secondary separatrix.

The continuum emission in the divertor of Alcator C-Mod cannot be

explained by any atomic or molecular process considered in this disserta-

tion, unless the density of the atomic deuterium, molecular deuterium, or

the ionized molecular deuterium is significantly above values predicted

by divertor plasma models. The visible continuum emission in the divertor

of Alcator C-Mod is an order of magnitude above that expected from electron-ion

bremsstrahlung and radiative recombination, using measured values of electron tem-

perature and density. The atomic processes considered to explain this discrepancy

include electron-atom bremsstrahlung, D− attachment, ion-atom bremsstrahlung, and

D+
2 attachment. For the atomic process to account for the continuum measured the

atomic density must be two orders of magnitude above the electron density. The

molecular process considered is the radiative dissociation process of the a3Σ+
g state

decaying into the repulsive state b3Σ+
u . Two population mechanisms, excitation from

ground state and recombination of D+
2 , were considered to populate the a3Σ+

g state.

For either population mechanism to yield the observed continuum the densities re-

149



quired were on the order of the electron density (1021 m−3). All of these densities

are over two orders of magnitude above the densities predicted by divertor plasma

models. Thus the enhanced continuum remains unexplained.

The visible imaging system has significant benefits on the operation

of the Alcator C-Mod tokamak. The visible imaging system has been used in

identifying the causes of impurity injections during plasma discharges, in identifying

the failure of invessel components, and as a general monitor of the vessel and plasma

behavior. The examples of observed impurity sources include the RF antenna, the

scanning Langmuir probes and the molybdenum protection tiles. Some failed inves-

sel components have been observed and include viewing dumps and boron nitride

protection tiles from the RF antenna structure. The cameras have also been useful

in observing the behavior of the plasma by providing a visual identification of the

L-Mode, H-Mode and ITB plasma operation.

5.2 Future Work

In the course of developing and operating the visible imaging system on Alcator C-

Mod several questions have arisen that this system can address in a substantial way:

What is the cause of the strong plasma flow towards inner wall MARFE’s?

A MARFE or Multifacited Axisymetric Radiation From the Edge [38, 53, 21] is a re-

gion of cold dense plasma typically located in a toroidal band about the inner column

of a tokamak. Alcator C-Mod has a gas capillary located on the midplane of the

inner column. Experiments have been conducted where a MARFE forms near the

inner column and the capillary is puffing deuterium. The observation, during these

discharges, is that when this gas from the capillary interacts with the plasma and

the gas emits deuterium line radiation having a comet-like structure where the “tail”

always points along a magnetic field line towards the MARFE. Figures 5-1 and 5-2

show the MARFE and the plume generated when the MARFE is located above and

below the capillary. It is assumed that the comet-like structure is caused by plasma

flows dragging the neutral gas along with it, leading to the question: what is the
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Figure 5-1: Recorded image of the inner wall showing the plume from a gas puff with
the MARFE above the gas puff and the plume tail pointing towards the MARFE.

cause of the strong plasma flow towards the MARFE’s?

Why is there a region of strong Dγ emission in closed flux surfaces

during high density discharges? In recent density disruption experiments the

formation of a region with significant Dγ emission was formed inside the closed flux

region. These experiments were nearly double null, but still having a lower single

null. This region formed shortly after the inner wall gas puff began and remained

for the remainder of the discharge. Figure 5-3 shows the emissivity profile of the Dγ

emission at a time shortly after this region was formed.

What is the difference in performance between the old (pre-2002) di-

vertor structure and the new (post-2002) divertor structure? Between the

campaign of 2001 and 2002 on Alcator C-Mod a new inner divertor structure was

installed. This new structure creates a more open divertor. The performance differ-

151



Figure 5-2: Recorded image of the inner wall showing the plume from a gas puff with
the MARFE below the gas puff and the plume tail pointing towards the MARFE.
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Figure 5-3: Two dimensional profile of Dγ emission shortly after the the emission in
the closed flux surfaces is formed.
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Figure 5-4: The divertor structure (a) before the 2002 campaign and beginning with
the 2002 campaign.

ences have not been studied in detail. The visible imaging system can be a significant

diagnostic in determining differences by comparing the emission profiles of two similar

discharges with different divertor structures. Figure 5-4 and shows the old and new

divertor structures.

What is the cause of the visible continuum observed in the divertor of

Alcator C-Mod? This dissertation shows that the continuum is not due to any

atomic continuum generating processes and is probably not due to the molecular pro-

cesses considered. It is therefore likely that it is due to a process, probably involving

molecules, that has not been considered. The visible imaging system could be used

to help determine the cause of the continuum, by being filtered for different spectral

regions and by observing the continuum levels in a helium plasma.
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