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Abstract
We investigate the dynamics of the capillary thinning and break-up process for low viscosity
elastic fluids such as dilute polymer solutions. Standard measurements of the evolution of the
midpoint diameter of the necking fluid filament are augmented by high speed digital video
images of the break up dynamics. We show that the successful operation of a capillary thinning
device is governed by three important time scales (which characterize the relative importance of
inertial, viscous and elastic processes), and also by two important length scales (which specify
the initial sample size and the total stretch imposed on the sample).  By optimizing the ranges of
these geometric parameters, we are able to measure characteristic time scales for tensile stress
growth as small as 1 millisecond for a number of model dilute and semi-dilute solutions of
polyethylene oxide (PEO) in water and glycerin. If the aspect ratio of the sample is too small, or
the total axial stretch is too great, measurements are limited, respectively, by inertial oscillations
of the liquid bridge or by the development of the well-known beads-on-a-string morphology
which disrupt the formation of a uniform necking filament. By considering the magnitudes of the
natural time scales associated with viscous flow, elastic stress growth and inertial oscillations it
is possible to construct an “operability diagram” characterizing successful operation of a
capillary break-up extensional rheometer. For Newtonian fluids, viscosities greater than
approximately 70 mPa.s are required; however for dilute solutions of high molecular weight
polymer the minimum viscosity is substantially lower due to the additional elastic stresses
arising from molecular extension. For PEO of molecular weight 106 g/mol, it is possible to
measure relaxation times of order 1 ms in dilute polymer solutions of viscosity  2 – 10 mPa.s.
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1. Introduction

Over the past 15 years capillary break-up elongational rheometry has become an important

technique for measuring the transient extensional viscosity of non-Newtonian fluids such as

polymer solutions, gels, food dispersions, paints, inks and other complex fluid formulations. In

this technique, a liquid bridge of the test fluid is formed between two cylindrical test fixtures as

indicated schematically in figure 1(a). An axial step-strain is then applied which results in the

formation of an elongated liquid thread. The profile of the thread subsequently evolves under the

action of capillary pressure (which serves as the effective ‘force transducer’) and the necking of

the liquid filament is resisted by the combined action of viscous and elastic stresses in the thread.

In the analogous step-strain experiment performed in a conventional torsional rheometer,

the fluid response following the imposition of a step shearing strain (of arbitrary magnitude γ 0)

is entirely encoded within a material function referred to as the relaxation modulus G t( , )γ 0 . By

analogy, the response of a complex fluid following an axial step strain is encoded in an apparent

transient elongational viscosity function η εE t( ˙, )  which is a function of the instantaneous strain

rate, ε̇  and the total Hencky strain (ε ε= ′∫ ˙ dt ) accumulated in the material. An important factor

complicating the capillary break-up technique is that the fluid dynamics of the necking process

evolve with time and it is essential to understand this process in order to extract quantitative

values of the true material properties of the test fluid. Although this complicates the analysis and

results in a time-varying extension rate, this also makes the capillary thinning and breakup

technique an important and useful tool for measuring the properties of fluids that are used in

free-surface processes such as spraying, roll-coating or ink-jetting. Well-characterized model

systems (based on aqueous solutions of polyethylene oxide ) have been developed for studying

such processes in the past decade (Dontula et al. 1998; Harrison & Boger, 2000) and we study

the same class of fluids in the present study.

Significant progress in the field of capillary break-up rheometry has been made in recent

years since the pioneering work of Entov and co-workers (Basilevskii et al. 1990; 1997).

Capillary thinning and break-up has been used to measure quantitatively the viscosity of viscous

and elastic fluids (McKinley & Tripathi, 1999; Anna & McKinley, 2001); explore the effects of

salt on the extensional viscosity for important drag-reducing polymers and other ionic aqueous

polymers (Stelter et al; 2000, 2002), monitor the degradation of polymer molecules in

elongational flow (Basilevskii et al. 1997) and the concentration dependence of the relaxation
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time of polymer solutions (Basilevskii et al. 2001).  The effects of heat or mass transfer on the

time-dependent increase of the extensional viscosity resulting from evaporation of a volatile

solvent in a liquid adhesive have also been considered (Tripathi et al. 1999); and more recently

the extensional rheology of numerous inks and paint dispersions have been studied using

capillary thinning rheometry (Willenbacher, 2004). The relative merits of the capillary break-up

elongational rheometry technique (or CABER) and filament stretching elongational rheometry (or

FISER) have been discussed by McKinley (2000) and a detailed review of the dynamics of

capillary thinning of viscoelastic fluids is provided elsewhere (McKinley, 2005).

Measuring the extensional properties of low-viscosity fluids (with zero-shear-rate

viscosities of η0 ≤ 100 mPa.s, say) is a particular challenge.  Fuller and coworkers (1987)

developed the opposed jet rheometer for studying low viscosity non-Newtonian fluids, and this

technique has been used extensively to measure the properties of various aqueous solutions (see

for example Hermansky et al. 1995; Ng et al. 1996). Large deformation rates (typically greater

than 1000s–1) are required to induce significant viscoelastic effects, and at such rates inertial

stresses in the fluid can completely mask the viscoelastic stresses resulting from molecular

deformation and lead to erroneous results (Dontula et al. 1997).  Analysis of jet break-up

(Schümmer & Tebel, 1983; Christanti & Walker, 2001) and drop pinch-off (Amarouchene et al.

2001; Cooper-White et al. 2002) have also been proposed as a means of studying the transient

extensional viscosity of dilute polymer solutions. After the formation of a neck in the jet or in the

thin ligament connecting a falling drop to the nozzle, the dynamics of the local necking processes

in these geometries is very similar to that in a capillary break-up rheometer. However, the

location of the neck or ‘pinch-point’ is spatially-varying and high speed photography or video-

imaging is required for quantitative analysis. One of the major advantages of the CABER

technique is that the minimum radius is constrained by geometry and by the initial step-strain to

be close to the midplane of the fluid thread, unless very large axial strains are employed and

gravitational drainage becomes important (Kolte & Szabo, 1999).

For low viscosity non-Newtonian fluids such as dilute polymer solutions, the filament

thinning process in CABER is also complicated by the effects of fluid inertia which can lead to the

well-known beads-on-a-string morphology (Goldin et al. 1969; Li & Fontelos, 2003). Stelter et

al. (2000) note that such processes prevent the measurement of the extensional viscosity for

some of their lowest viscosity solutions. With the increasingly widespread adoption of the

CABER technique it becomes important to understand what range of working fluids can be
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studied in such instruments.  If the fluid is not sufficiently viscous then the liquid thread

undergoes a rapid capillary break-up process before the plates are completely separated. The

subsequent thinning of the thread can thus not be monitored. The threshold for onset of this

process depends on the elongational viscosity of the test fluid and is frequently described

qualitatively as ‘spinnability’ or ‘stringiness’.  The transient elongational stress growth in the test

fluids depends on the concentration and molecular weight of the polymeric solute as well as the

background viscosity and thermodynamic quality of the solvent. In the present note we

investigate the lower limits of the CABER technique using dilute solutions of polyethylene oxide

(PEO) in water and water-glycerol mixtures. In order to reveal the dynamics of the break-up

process we combine high-speed digital video-imaging with the conventional laser micrometer

measurements of the midpoint radius R tmid ( ) .  We explore the consequences of different

experimental configurations and the roles of solvent viscosity and polymer concentration. The

results can be interpreted in terms of an ‘operability diagram’ based on the viscous and elastic

time scales governing the filament thinning process.

2. Experimental Methods and Dimensionless Parameters

2.1 Fluids

In this study we have focused on aqueous solutions of a single nonionic polymer;

polyethylene oxide (PEO; Aldrich) with molecular weight Mw = ×2 0 106.  g/mol.  Solutions

were prepared by slow roll-mixing in deionized water at concentrations of 0.10 wt%, and 0.30

wt%. In order to explore the effects of the background solvent viscosity, an additional solution

with 0.10 wt% PEO dissolved in a 50/50 water/glycerol water mixture was also prepared.

Additional experiments exploring the role of PEO concentration in the Capillary Break-up

Rheometer have been performed by Neal & Braithwaite (2003).  The results of progressive

dilution of a high molecular weight polystyrene dissolved in oligomeric styrene have also been

investigated recently using capillary break-up rheometry by Clasen et al. (2004). Because the

solvent viscosity of the oligomer is ηs  ≥ 40 Pa.s, these solutions are significantly more viscous

than the aqueous solutions discussed here.

The important physiochemical and rheological properties of the test fluids are

summarized in table 1.  For PEO, the characteristic ratio is C∞ = 4.1 (Brandrup et al. 1997),  the
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repeat unit mass is m0 = 44g/mol and the average bond length is l = 0.147 nm. The mean square

size of an unperturbed Gaussian coil is R C M m lw
2

0
0

23= ( )∞  and we thus obtain

c M N Rw A* /= 



 ≈2

0

3 2   2.53 × 10-3  g/cm3 for this molecular weight.

However, water is known to be a good solvent for PEO, so that the polymer coils are

extended beyond the random coil configuration and the above expression is an over estimate of

the coil overlap concentration. Tirtaatmadja et al. (2004) summarize previous reported values of

the intrinsic viscosity for numerous high molecular weight PEO/water solutions. The

measurements can be well described by the following Mark-Houwink expression

η[ ] = 0 072 0 65. .Mw (1)

with the intrinsic viscosity [η] in units of cm3/g. The solvent quality parameter can be extracted

from the exponent in the Mark-Houwink relationship [ ] ( )η ν= −K Mw
3 1  to yield

3 1 0 65 0 55ν ν− = ⇒ =. . .

 Combining this expression with Graessley’s expression for coil overlap (Graessley, 1980)

we find that for our PEO sample with c* .= [ ]0 77 η  ≈ 8.6 × 10–4 g/cm3 (0.086 wt%). The two

solutions considered here are thus weakly semi-dilute solutions.

The longest relaxation time of a monodisperse homopolymer in dilute solution is

described by the Rouse-Zimm theory (Doi & Edwards, 1986) and scales with the following

parameters:

λ η η η ν
~

[ ] s w s wM
RT

K M
RT

=
3

(2)

where the Mark-Houwink relationship has been used in the second equality.  The precise

prefactor in the Rouse-Zimm theory depends on the solvent quality and the hydrodynamic

interaction between different sections of the chain; however it can be approximately evaluated by

the following expression (Tirtaatmadja et al. 2004):

λ ζ ν
η η

=
1
( )

[ ] s wM
RT

, (3)

where ζ ν ν( )3 1 3
1

= =
∞∑ i
i

 represents the summation of the individual modal contributions to the

relaxation time. For ν = 0.55 the prefactor is 1 / ( )ζ ν  = 0.463. The longest relaxation time for the

PEO solutions utilized in the present study is thus λ = 0.34 ms.  Christanti & Walker (2002) use
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a different prefactor in eq.(3) but report very similar values of the Zimm time constant for PEO

solutions of the same molecular weight (but in a more viscous solvent).

This value of the relaxation time represents the value obtained under dilute solution

conditions and characteristic of small amplitude deformations so that the individual chains do not

interact with each other. However the solutions studied in the present experiment are in fact

weakly semidilute solutions and the extensional flow in the neck results in large molecular

deformations. Numerous recent studies with dilute solutions of high molecular polymers

(Bazilevskii et al. (2001); Stelter et al. (2002), Christanti & Walker (2001); Tirtaatmadja et al.

(2004)) have shown that the characteristic viscoelastic time scale measured in filament thinning

or drop break-up experiments is typically larger than the Zimm estimate and is concentration-

dependent for concentration values substantially below c*. The Zimm time-constant should thus

be considered as a lower bound on the polymer time scale that is measured during a capillary-

thinning and break-up experiment.

Fluid c/c* σ [mN/m] η0  [Pa.s] tRayleigh [ms] tvisc [ms] Oh λ [ms]

0.10wt% PEO 1.33 61.0±0.1 2.3±0.2 20.9 1.61 0.077 1.5

0.30wt% PEO 4.00 60.8±0.2 8.3±1.0 20.8 5.78 0.27 4.4

0.10wt% PEO

in Gly/Water

1.33 58.0±0.1 18.2±0.5 23.0 13.3 0.58 23.1

Table 1: The physico-chemical and rheological properties of the aqueous polyethylene oxide

(PEO) solutions utilized in the present study. The molecular weight of the solute is

Mw  = 2.0 × 106 g/mol.

2.2 Instrumentation

In the present experiments we have used a Capillary Break-up Extensional Rheometer

designed and constructed by Cambridge Polymer Group (www.campoly.com). The diameter of

the end plates is D0 = 6mm and the final axial separation of the plates can be adjusted from 8 mm

to 15 mm. The midpoint diameter is measured using a near infra-red laser diode assembly

(Omron ZLA-4) with a beam thickness of 1mm at best focus and a line resolution of

approximately 20 µm. High resolution digital video is recorded using a Phantom V5.0 high
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speed camera (at 1000 or 2000 frames/second) with a Nikon 28-70 mm f/2.8 lens. Exposure

times are 214 µs per frame. The video is stored digitally using an IEEE1394 firewire link and

individual frames are cropped to a size of 512 × 216 pixels. The resulting image resolution is

26.8 µm/pixel and the overall image magnification is 1.7X.

2.3 Length-Scales, Time-Scales and Dimensionless Parameters

The operation of a capillary-thinning rheometer is governed by a number of intrinsic or

naturally-occurring length and time scales. It is essential to understand the role of these

lengthscales and timescales in controlling the dynamics of the thinning and break-up process. We

discuss each of these scales individually below:

The Sample Aspect Ratio; Λ( ) ( )t h t R= 2 0

As indicated in Figure 1, the initial sample is a cylinder with aspect ratio Λ0 0 02= h R .

Exploratory numerical simulations for filament stretching rheometry (Harlen, 1996; Yao &

McKinley, 1998) show that optimal aspect ratios are typically in the range 0.5 ≤ Λ0 ≤ 1 in order

to minimize the effects of either an initial ‘reverse squeeze flow’ when the plates are first

separated (at low aspect ratios Λ(t) << 1) or sagging and bulging of the cylindrical sample (at

high aspect ratios).  The final aspect ratio Λ f fh R= 2 0  attained when the plates are separated

controls the  total Hencky strain that is applied and is discussed further below.

The Capillary Length; l cap g= σ ρ
Surface tension is employed in order to hold the initial fluid sample between the two endplates. It

is thus essential that the initial plate separation (h0) is small enough to support a static liquid

bridge. Although the classical Plateau-Rayleigh stability criterion h R0 02≤ π  is well-known

(Plateau 1873; Rayleigh 1879), this result only applies in the absence of buoyancy forces. For the

case of axial gravity, the situation is more complex and the maximum stable sample size depends

on both the fluid volume and the Bond number Bo gR= ρ σ0
2  (Slobozhanin et al. 1993). In order

to keep the initial configuration close to cylindrical (with little axial ‘sagging’) capillary break-

up tests typically employ axial separations h cap0 ≤ l  or equivalently h R Bo0 0 1≤ . For water

(ρ = 1000 kg/m3; σ = 0.072 N/m), the capillary length is l cap = 2.7mm.
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The Viscous Break-up Timescale (tv)

For a viscous Newtonian fluid, a simple force balance shows that the break-up process proceeds

linearly with time (Entov & Hinch, 1997); and close to break-up the filament profile is found to

be self-similar (Papageorgiou, 1995; Eggers, 1997; Chen et al. 2002).  These observations can be

combined to provide a means of extracting quantitative values for the capillary velocity

vcap = σ µ , or correspondingly the fluid viscosity (if the surface tension is determined

independently). Provided gravitational effects are not important (so that Rmid cap< l ), the

midpoint radius is given by (McKinley & Tripathi, 2000):

R t R tmid ( )
.

= −0 14 1
σ

µ  . (4)

The characteristic viscous time scale for the break-up process is thus t Rv = 14 1 0. µ σ .

The Rayleigh Time-scale (tR)

For a “low viscosity fluid” (to be defined more precisely below), the analysis of Rayleigh for

break-up of an inviscid fluid jet is appropriate. The analysis shows that the characteristic time

scale for break-up is t RR = 3ρ σ0 . For a filament or jet of water with radius 3mm, the Rayleigh

time scale is extremely short tR = 0.020 s (20 ms). This time scale plays a key role in controlling

the operability of filament thinning devices as we show below in the discussion (§4).

The question that naturally arises in a capillary-thinning test is what constitutes a “low-

viscosity” or, conversely, a high viscosity fluid? This can be answered by comparing the viscous

time scale to the Rayleigh time scale. The resultant quantity is a dimensionless number known as

the Ohnesorge number

t
t

Oh
R

v

R
≡ =

14 1

0

. µ
ρσ

(5)

Note that here we have retained the numerical factor of 14.1 (obtained from the Papagergiou

similarity solution for visco-capillary breakup) in the definition because it is not an O(1)

constant. Neglecting this factor leads to quantitative errors in the viscosity obtained from

observations of filament thinning (Liang & Mackley, 1994; Stelter et al. 2000) and an inaccurate

estimate for the relative balances of terms controlling with capillary break-up devices.  A “low-

viscosity fluid” in capillary break-up elongational rheometry thus implies t tv R<  (i.e. Oh < 1); for

aqueous solutions (with σ ≈ 0.07 N/m; R0 ≈ 3mm) this corresponds to µ  < 0.033 Pa.s.
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The Opening Time (δt0 ) and the Imposed Axial Strain (ε f )

In a torsional step strain experiment, the shear strain is considered theoretically to be

applied instantaneously. In reality, the step response of a conventional torsional rheometer is on

the order of 25 – 50 ms and the torsional displacement is approximately linear with time. By

analogy, the axial step strain imposed during a capillary break-up test is typically considered in a

theoretical analysis to be imposed instantaneously. In experiments, however the plate separation

occurs in a finite time, denoted δt0 . If a servo-system is used to stretch the liquid filament, then

this time can be varied and the displacement profile may be linearly or exponentially increasing

with time. However, as a result of inertia in the plate & drive subsystem it typically is

constrained to be δt0  ≥ 0.050 s.  Because the filament must not break during the opening process

we must require t tv ≥ δ 0 . This criterion sets a stringent lower bound on the Newtonian viscosity

that can be tested in a CABER device as we show below.

The initial rapid separation of the endplates also results in the imposition of an initial

Hencky strain (a ‘pre-strain’) of magnitude ε f f fh h= =ln( ) ln( )0 0Λ Λ . As a consequence of

the no-slip boundary conditions, the deformation of the fluid column is not homogeneous (i.e.

the sample does not remain cylindrical); this axial measure of the strain is thus not an accurate

measure of the actual Hencky strain experienced by fluid elements near the midplane of the

sample. If the initial radius of the sample at time t0 is R0  and the midpoint radius of the filament

at time t t t1 0 0= + δ  is denoted R1, then the true Hencky pre-strain imposed during the stretching

process is ε1 0 12= ln( )R R . It is not possible to predict this final radius R1 without choosing a

constitutive model for the fluid; however, for many test samples (with t tv >> δ 0), the midpoint

radius of the sample at the cessation of the stretching is given by the lubrication solution for a

viscous Newtonian fluid (Spiegelberg et al. 1996):

R R L Lf1 0 0

3 4
≈ ( )− /

, (6)

The Polymer Relaxation Time (λ)
If the test fluid in a capillary thinning test is a polymer solution, then non-Newtonian

elastic stresses grow during the transient elongational stretching process. Ultimately these

extensional stresses grow large enough to overwhelm the viscous stress in the neck. An

elastocapillary force balance then predicts that the filament radius decays exponentially in time

R t
R

GR
tmid ( )

exp
/

0

0
1 3

2
3=







−[ ]σ λ  . (7)
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The additional factor of 2 1 3− /  in the prefactor of eq. (7) is missing in the original theory

(Entov & Hinch, 1997) due to a simplifying approximation made in deriving the governing

equation (Clasen et al. 2004). This simplification however does not change the exponential factor

that is used to measure the characteristic time constant of the polymeric liquid. This relationship

has been utilized to determine the relaxation time for many different polymeric solutions over a

range of concentrations and molecular weights (Basilevskii et al. (1990); Liang & Mackley

(1994); Basilevskii et al. (1997); Anna & McKinley (2000); Stelter et al. (2000)).

 Note that although this time constant is referred to as a ‘relaxation time’ – because it is

the same time constant that is associated with stress relaxation following cessation of steady

shear – in a capillary-thinning experiment, the stress is not relaxing per se. In fact the tensile

stress diverges as the radius decays to zero. The time constant obtained from a CABER test is thus

more correctly referred to as the ‘characteristic time scale for viscoelastic stress growth in a

uniaxial elongational flow’. This is, of course, precisely the time constant of interest in

commercial operations concerned with drop break-up, spraying, mold-filling, etc.

For low viscosity systems, however, this exponential decay becomes increasingly

difficult to observe due to the formation of well-known beads-on-a-string morphology (Goldin et

al. 1969; Li & Fontelos, 2003). The elastic stresses in the necking filament grow on the

characteristic scale λ and must grow sufficiently large to resist the growth of free-surface

perturbations, which evolve on the Rayleigh time scale, tR.  In the same manner that comparison

of the viscous and Rayleigh time-scales resulted in a dimensionless group (the Ohnesorge

number) so too does comparison of the polymer time-scale and the Rayleigh time scale. This

dimensionless ratio may truly be thought of as a Deborah number (Bird et al. 1987) because it

compares the magnitude of the polymeric time scale with the flow time scale for the necking

process in a low viscosity fluid:

De
t RR

≡ =
λ λ

ρ σ0
3

. (8)

Note however that because the necking filament is not forced by an external deformation, it self-

selects the characteristic time scale for the necking process. This Deborah number is thus an

‘intrinsic quantity’ that cannot be affected by the rheologist; except in so far as changes in the

concentration and molecular weight of the test fluid change the characteristic time constant of the

fluid.
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As we have shown above the Rayleigh timescale is short and thus results in rapid

stretching in the fluid filament with strain rates ˙ ~ε t sR
− −≥1 150 . It should thus be possible to test

low viscosity fluids with small relaxation time constants. The question is how small? In the

experiments described below, we seek to find for what range of Deborah numbers it is possible

to use Capillary Break-up Extensional rheometry to determine the relaxation time of low

viscosity fluids.

3 Results

3.1 Beads on a String and Inertio-Capillary Oscillations

In figure 2 we present a sequence of digital video images that demonstrate the time

evolution in the filament profile for the 0.10 wt% PEO solution; corresponding to a very low

Deborah number, De = 0.074. In all of the experiments presented in this paper we define the time

origin to be the instant at which axial stretching ceases, so that t t tlab= − δ 0 .The first image at

time t = –0.05 s thus corresponds to the initial configuration of the liquid bridge with

Λ0  = 3mm/6mm = 0.5.   We also report the total time for the break-up event to occur as

determined from analysis of the digital video sequence; with the present optical and lighting

configuration the uncertainty in determining the break-up time is approximately ±0.005 s.  For

consistency we then show a sequence of five images that are evenly spaced throughout the

break-up process. The horizontal broken lines indicate the approximate width of the laser light

sheet that is projected by the laser micrometer.

From Figure 2, it is clear that initially, during the first 25 ms of the axial stretching phase,

the filament profile remains axially symmetric and a neck forms near the midplane as expected.

However, this axial symmetry is not maintained at the end of the stretching sequence and a local

defect or ‘ligament’ forms near the lower plate. Following the cessation of stretching, the

filament rapidly evolves into a characteristic beads-on-a-string structure with a primary droplet

and several smaller ‘satellite droplets’. The hemispherical blobs attached to each end plate

oscillate with a characteristic time scale that is proportional to the Rayleigh time constant, tR = 22

ms.

The strong asymmetry in the axial curvature that can be observed in the thin ligament

which develops at t = 0 is a hallmark of an inertially-dominated break-up process (Eggers, 1997);
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the viscous time-scale is only tv = 1.6 ms for this low viscosity fluid, hence we find Oh << 1 and

the absence of an axially-uniform filament near the midplane suggests additionally that  De << 1.

It is thus not easy to use such experiments to extract the viscoelastic time constant of the fluid.

Elastic stresses only become important on very small length scales and very short time scales

when the stretching rate associated with Rayleigh break-up becomes sufficiently large. From eq.

(8) we may estimate this length scale by equating the polymeric and inertial (Rayleigh) time

scales (i.e. by setting De ~ 1) to find Rligament ~
/

λ σ ρ2 1 3( ) . Conversely, the effective relaxation

time may be estimated from observing the size of the viscoelastic ligament that initially forms

when elastic effects first become important. From Figure 2(c) we estimate Rligament ≈ 0.3mm, thus

indicating that λ ρ σ= ( )Rligament
3 1 2/

 ≈ 1 ms.  Such a measurement is clearly imprecise; but

serves to provide an a priori estimate that can be used to compare with better measurements we

make below.

A second example of difficulties that can be encountered with CABER measurements is

shown in Figure 3 for the 0.1 wt% PEO solution in water/glycerol. The increased viscosity of the

fluid delays the break-up event substantially and the increased relaxation time of the polymer

leads to the formation of an axially uniform fluid ligament as desired. However, inertial

oscillations of the hemispherical droplets attached to each endplate still occur. The low aspect

ratio of the selected test configuration (hf = 8.46 mm; Λ f = 1.41) results in these oscillations

intruding into the observation plane of the laser micrometer. The period of these fluctuations

may be estimated from the theory for oscillations of an inviscid liquid drop (Chandrasekhar,

1962). The fundamental mode has a period t tosc osc R≡ =2 2π ω π( ) . For the 0.1 wt% PEO

solution this gives tosc ≈ 46 ms in good agreement with the experimental observations.

The consequences can be seen in Figure 4(a) which shows the evolution in the midpoint

diameter D t R tmid mid( ) ( )= 2 . The oscillations can be clearly seen in the data for the 0.10 wt%

glycerin/water solution; however the exponential decay in the radius at long times can still be

clearly discerned; and the data can be fitted to a decaying exponential of the form given by

equation (7). The value of the characteristic time constant for each measurement is shown on the

figure. The lower viscosity 0.10 wt% and 0.30 wt% solutions break very rapidly; typically within

the period of a single oscillation.
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The effects of varying the imposed stretch, i.e. the final aspect ratio Λ f fh R= 2 0 , on the

evolution of the midplane diameter is shown in Figure 4(b). At the highest aspect ratio (Λf = 2),

corresponding to the high-speed digital images shown in Figure 2, the measurements do not

show exponential thinning behavior as a consequence of the large liquid droplet passing through

the measuring plane. As the aspect ratio is decreased, the data begins to approximate exponential

behavior and regression of eq. (7) to the data results in reasonable estimates of the relaxation

time.

3.2 Sample Size and Volume

As we noted above in §II the initial sample configuration can play an important role in

ensuring that capillary break-up rheometry yields reliable and successful results. By analogy, in

conventional torsional rheometry it is key to ensure that the cone angle of the fixture is

sufficiently small or that the gap separation for a parallel plate fixture is in a specified range. In

Figures 5 – 7 we show the consequences of varying the initial sample gap height, as compared to

the capillary length l cap g= σ ρ .  In each test we use the 0.30 wt% PEO solution and a fixed

final aspect ratio of Λ = 1 6. ; corresponding to a final stretching length h Rf = 1 61 2 0. ( ) = 9.7 mm.

If h cap0 l < 1 then the interfacial force arising from surface tension is capable of

supporting the liquid bridge against the sagging induced by the gravitational body force;

consequently the initial sample is approximately cylindrical and the initial deformation results in

a top-bottom symmetric deformation and the formation of an axially-uniform ligament at t = 0

when deformation ceases. However, if the initial gap is larger, as shown in Figure 6

(corresponding here to h0 = 3mm) and exceeds the capillary length scale ( h cap0 1 19l = . ), then

asymmetric effects arising from gravitational drainage become increasingly important.  Even

under rest conditions (as shown by the first image in Figure 6), gravitational effects result in a

detectable bulging in the lower half of the liquid bridge; as predicted numerically (Slobozhanin

et al. 1992). This asymmetry is amplified during the ‘strike’ or gap-opening process as indicated

in the 2nd and 3rd frames. However as viscoelastic stresses in the neck region grow and a thin

elastic thread develops, the process stabilizes and exponential filament thinning occurs once

again.  In Figure 7 we show an even more pronounced effect when the initial gap is 4mm

(corresponding to h cap0 l  = 1.58). The asymmetry of the initial condition and the extra fluid

volume (corresponding to a volume of V R h≈ π 0
2

0  = 113µl; i.e. twice the fluid volume in Figure
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5) is sufficient to initialize the formation of a ‘bead’ or droplet near the middle of the filament at

t = 25 ms, which subsequently drains into the lower reservoir. A distinct uniform axial thread

only develops for times greater than t tevent≥ ≈0 3 0 04. . s. This severely limits the useful range of

measurements.

The measured midpoint diameters for the conditions in Figures 5 – 7 are shown in Figure

8. The progressive drainage of the primary droplet through the measuring plane of the laser

micrometer can be clearly seen in the data for h0 = 4mm. Although an exponential regime

(corresponding to elasto-capillary thinning with approximately constant slope of the form given

by eq. (7)) can be seen for the intermediate separation (h0 = 3mm), the perturbing effects of axial

drainage result in fluctuations in the diameter profile and an under-prediction in the longest

relaxation time. The smallest initial gap setting (h0 = 2 mm), however, results in steady

exponential decay over a time period of approximately ∆t = 40 ms; corresponding to ∆t 3λ  ≈ 1.8

and, consequently from eq.(7) a diameter decrease of more than a factor of 6. This is of a

sufficiently wide range to satisfactorily regress to the  equation.

 One important feature to note from a careful comparison of Figures 7 and 8 is the

difference in spatial resolution offered by the digital imaging system; the laser micrometer has a

calibrated spatial resolution of ca. 20 µm (Anna & McKinley, 2001) which is reached after a

time interval of approximately ∆t ≈ 50 ms; hence ∆t tevent ≈ 50 125 = 0.4. By contrast, a thin

elastic ligament can still be visually discerned for another 50 ms. The performance of future

Capillary Break-up Extensional Rheometers may thus be enhanced by employing laser

micrometers with higher spatial resolution or using analog/digital converters with 16bit or 20bit

resolution. Such devices however typically become increasingly bulky and expensive.

3.3 The Role of Fluid Viscosity and Aspect Ratio

As we noted in §2.1, the longest relaxation time and also the zero-shear rate viscosity of a

dilute polymer solution both vary with the viscosity of the background Newtonian solvent and

also with the concentration of the polymer in solution. The characteristic viscous and elastic time

scales associated with the break-up process also increase and so do the dimensionless parameters

Oh and De.  Inertial effects thus become progressively less important and capillary break-up

experiments become concomitantly easier. An example is shown in Figure 9 for the 0.1 wt%

PEO solution in glycerol/water at a high aspect ratio (Λf = 2.0).  The equivalent process in a
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purely aqueous solvent has already been shown in Figure 2 and resulted in a beads-on-string

structure that corrupted CABER experiments.  However, by increasing the background solvent

viscosity this break-up process is substantially retarded (the total time for break-up increases

from 50 ms to over 400 ms) and a uniform fluid filament is formed between the upper and lower

plates. The corresponding midpoint diameter measurements for each of the test fluids (in this

case with a reduced aspect ratio  of Λf = 1.6 and an initial gap of h0 =  3mm) are shown in Figure

10(a). For the 0.10 wt% PEO solution in Glycerin/Water a statistically significant deviation from

a pure exponential decay can be observed for t ≥ 0.18s. This corresponds to the onset of finite

extensibility effects associated with the PEO molecules in the stretched elastic ligament attaining

full extension (Entov & Hinch, 1997).  In this final stage of break-up, numerical simulations with

both the FENE-P and Giesekus models show that the filament radius decreases linearly with time

(Fontelos & Li, 2004).

Finally, our results for the measured relaxation times of the three test fluids are

summarized in Figure 10(b). Each point represents the average of at least three tests under the

specified experimental conditions. No data could be obtained with the 0.1 wt% PEO/water

solution at aspect ratios Λ ≥ 1.8 due to the inertio-capillary break-up and beads-on-a-string

morphology shown in Figure 2. It can be noted that the measured relaxation times vary with

aspect ratio very weakly . This is reassuring for a rheometric device and indicates that relaxation

times as small as 1 ms can successfully be measured using capillary thinning and break-up

experiments. Average values of the measured relaxation times are tabulated in the final column

of Table 1.

4. Conclusions

In this paper we have performed capillary break-up extensional rheometry (CABER)

experiments on a number of semi-dilute polymer solutions of varying viscosities using

cylindrical samples of varying initial size and imposed stretches of different axial extent leading

to various imposed axial strains. High speed digital imaging shows that changes in these

parameters may change the dynamics of the filament thinning and break-up process for each

fluid substantially.

By considering the natural length scales and time scales that govern these dynamics, we

have been able to develop a number of dimensionless parameters that control the successful
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operability of such devices as extensional rheometers; the most important being the Ohnesorge

number, a natural or ‘intrinsic’ Deborah number and the Bond number.  These constraints can

perhaps be most naturally represented in the form of an ‘operability diagram’ such as the one

sketched in Figure 11; in which we select the dimensional parameters corresponding to the zero-

shear-rate viscosity (η0) of the solution and the characteristic relaxation time (λ) as the abscissa

and ordinate axes respectively.  A more general version of the same diagram could be shown in

terms of the Ohnesorge and Deborah numbers.

For Newtonian fluids (corresponding to λ = 0) we require, at a minimum, that t tv R≥  (or

Oh ≥ 1) in order to observe the effects of fluid viscosity on the local necking and break-up. As

we discussed in §2.3 for the present configuration this gives a lower bound on the measurable

viscosity of 33 mPa.s.  However, the device also takes a finite time (which we denote δt0 ) to

impart the initial axial deformation to the sample. An additional constraint is thus t tv ≥ δ 0  or

µ σ δ≥
14 1 0

0. R
t

For a prototypical Newtonian fluid with σ ≈ 0.060 N/m, a plate size of R0 = 3mm and an opening

time of δt0  = 50ms we find µ  ≥ 0.071 Pa.s. This defines the intersection of the operability

boundary with the abscissa. Increasing the displacement rate of the linear motor in order to

reduce the opening time would enable somewhat lower viscosity fluids to be tested; however the

natural Rayleigh time scale for break-up of a Newtonian fluid thread will ultimately limit the

range of viscosities that can be successfully tested.

The dilute polymer solutions tested in the present study obviously have viscosities

significantly less than this value, and viscoelasticity further stabilizes the filament against

breakup. The simplest estimate for the range of relaxation times that can be measured is to

require De ≥ 1 or equivalently λ ρ σ≥ = ≈t RR 0
3 20ms. However this estimate is based on an

elastocapillary balance in a thread of radius R0. In reality we are able to resolve thinning threads

of substantially smaller spatial scale. Closer analysis of the digital video from which the images

in Figure 2 are taken (between times t = –25ms and 0 ms) shows that a neck first forms at t =

–5ms when the thread diameter at the neck is approximately 200µm; the minimum resolvable

viscoelastic relaxation time should thus be λ > × ≈−( )( ) ( . )10 2 10 0 063 4 3  0.4 ms.

However, just as in the above arguments regarding the minimum measurable Newtonian

viscosity, the capabilities of the instrumentation also play a role and may serve to further

constrain the measurable range of material parameters. More specifically, the minimum



17

measurable radius, the imposed stretch and sampling rate will all impact the extent to which a

smoothly decaying exponential of the form required by eq. (7) can be resolved. In the present

experiments we have sampled the analog diameter signal from the laser micrometer at a rate of

1000 Hz (δts = 0.001s), and the minimum radius that can be reliably detected by the laser

micrometer is Rmin ≈ 20µm.  If we require that, as an absolute minimum, we monitor the

elastocapillary thinning process long enough to obtain 5 points that can be fitted to an

exponential curve, then the measured radius data must span the range

R R t R emid
ts

min min( )≤ ≤ +5δ λ . However the radius of the neck at the cessation of the imposed

stretching (t = 0) is given (at least approximately) by eq. (6). Combining these expressions we

thus require that

R e R Rt
f

s
min

/5
1 0

3 4δ λ ≤ = ( )−
Λ .

Rearranging this expression gives:

λ δ
≥ [ ]−

5

0
3 4

t

R R

s

fln /
minΛ

(9)

For an axial stretch of Λf = 1.6, a sampling time of 1 ms, and a minimum radius of 20 µm we

obtain a revised estimate of the minimum measurable relaxation time λ ≥ 1.1 ms, which supports

our present observations.

This estimate of the minimum viscoelastic time scale denotes the limiting bound of

successful operation for a very low viscosity (i.e. almost inviscid) elastic fluid; corresponding to

the ordinate axis ( Oh → 0) of Figure 11. The shape and precise locus of the operability

boundary within the two-dimensional interior of this parameter space will depend on all three

time scales (viscous, elastic and inertial) and also on the initial sample size ( h cap0 l ) and the

total axial stretch (Λ f) imposed. It thus needs to be studied in detail through numerical

simulations. However, our experiments indicate that through careful selection of both the initial

gap (h0) and the final strike distance (hf) it is possible to successfully measure relaxation times as

small as 1 ms for low viscosity elastic fluids with zero-shear rate viscosities as small as 3 mPa.s.

A final practical use of an operability diagram such as the one sketched in Figure 10 is

that it enables the formulation chemist and rheologist to understand the consequences of changes

in the formulation of a given polymeric fluid. The changes in the zero-shear-rate viscosity and

longest relaxation time that are expected from dilute solution theory and formulae such as eq. (3)

are indicated by the arrows.  Increases in the solvent quality and molecular weight of the solute
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lead to large changes in the relaxation time, but small changes in the overall solution viscosity (at

least under dilute solution conditions). By contrast, increasing the concentration of dissolved

polymer into the semi-dilute and concentrated regimes leads to large increases in both the zero-

shear-rate viscosity and the longest relaxation time. It should be noted that the dynamics of the

break-up process can change again at very high concentrations or molecular weights when the

solutions enter the entangled regime (corresponding to cM Mw e≥ ρ , where Me is the

entanglement molecular weight of the melt). Although capillary thinning and break-up

experiments can still be successfully performed, the dimensionless filament lifetime tevent λ  (as

expressed in multiples of the characteristic relaxation time) may actually decrease from the

values observed in the present experiments due to chain disentanglement effects (Bhattacharjee

et al. 2003); i.e. a concentrated polymer solution may actually be less extensible than the

corresponding dilute solution. Capillary thinning and break-up experiments of the type described

in this article enable such effects to be systematically probed.
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Figure 1.  Schematic of the Capillary Breakup Extensional Rheometer (CaBER) geometry containing a 
fluid sample (a) at rest and (b) undergoing filament thinning for t > 0 
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Figure 2.  Formation of a beads-on-string and droplet in the 0.1% PEO fluid filament for Λ=2.0 and 
ho = 3mm, in which tevent = 50 ms 
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Figure 3.  Periodic growth and thinning of the filament diameter due to the inertial oscillation of the 
fluid end-drops seen in the 0.1% PEO/glycerol solution at early times, for Λ = 1.41 and h0 = 3 mm. 
 
 
 
 
 

 
Figure 4.  Exponential decay of fluid filament diameter for (a) 0.1% PEO, 0.3% PEO and 0.1% 
PEO/glycerol solutions at an aspect ratio of 1.41, and (b) 0.1% PEO solution for h0 = 3mm and 
Λ = 1.41, 1.61, 1.79 and 2.0. 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
Figure 5.  Filament thinning of the 0.3% PEO solution for an initial gap height of ho = 2 mm and 
Λ = 1.61, in which the total time of the event, tevent = 100 ms 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.  Filament thinning of the 0.3% PEO solution for an initial gap height of ho = 3 mm and 
Λ = 1.61, in which the total time of the event, tevent = 110 ms. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.  Filament thinning of the 0.3% PEO solution for an initial gap height of ho = 4 mm and 
Λ = 1.61, in which the total time of the event, tevent 125 ms. 
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Figure 8.  Exponential decay of the fluid filament diameter for the 0.3% PEO solution for Λ = 1.6 and 
initial sample heights of h0 = 2, 3 and 4 mm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9.  Thinning of fluid filament for the 0.1% PEO/glycerol solution for Λ = 2.0 and h0 = 3 mm, in 
which the total event time, tevent = 420 ms. 
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Figure 10.  (a) Exponential decay of the fluid filament diameter for Λ=1.61 and h0 = 3mm and (b) 
relaxation time as a function of aspect ratio, for the 0.1% PEO, 0.3% PEO and 0.1% PEO/glycerol 
solutions in which h0 = 3mm. 
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Figure 11.  An operability diagram for capillary break-up elongational rheometry showing the 
minimum values of viscosity (µ) and relaxation time (λ) required for successful measurement of the 
capillary thinning process. 
 
 


