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Abstract. A lubrication-flow model for a free film in a corner is presented. The
model, written in the hyperbolic coordinate system ξ = x2 − y2, η = 2xy, applies
to films that are thin in the η direction. The lubrication approximation yields two
coupled evolution equations for the film thickness and the velocity field which, to
lowest order, describes plug flow in the hyperbolic coordinates. A free film in a corner
evolving under surface tension and gravity is investigated. The rate of thinning of a
free film is compared to that of a film evolving over a solid substrate. Viscous shear
and normal stresses are both captured in the model and are computed for the entire
flow domain. It is shown that normal stress dominates over shear stress in the far
field, while shear stress dominates close to the corner.
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1. Introduction

Free liquid films are the basic structural element of foams, emulsions
and many colloidal systems [1], with widespread applications in indus-
trial and biological processes. Foams are used in important areas such
as food and chemical industries, fire-fighting and structural material
science [2]. The structure and stability of these systems intrinsically
depends on the dynamics of the liquid films. Investigation of thin films
typically relies on the use of reduced models, such as lubrication theory,
which can be applied when the flow geometry is characterized by two
widely disparate length scales. The full governing equations can then
be reduced to one or two nonlinear evolution equations, which can
be solved numerically or analyzed to predict the formation of singu-
larities leading to rupture [3]. Advantages of these reduced models
over an entirely numerical approach include avoiding the complexity
of the original free-boundary problem, computational savings and a
deeper understanding of the underlying physics. These advantages have
sparked the development of a large literature on lubrication models, as
reviewed by Oron, Davis and Bankoff [4].

c© 2004 Kluwer Academic Publishers. Printed in the Netherlands.

JEM8symm_watermark.tex; 24/08/2004; 8:24; p.1



P
re

p
ri
nt

2 Stocker and Hosoi

A free film is bounded by two liquid-gas interfaces [4]. Because the
symmetric mode (also known as the varicose or ‘squeeze’ mode) is most
unstable [5], a symmetry condition is typically applied at the film’s
centerline [6, 5]. The evolution of a thinning liquid film involves roughly
two stages. When the thickness of the film is relatively large, the dom-
inant forces determining the evolution are surface tension and gravity,
counteracted by viscous dissipation. At this stage, thinning typically
occurs due to the drainage of liquid out of the film. Eventually, the
film thickness diminishes to a scale (10-100 nm, [4]) at which long-range
molecular van der Waals forces and electric double-layer repulsive forces
become important. At this scale, in the absence of double-layer forces,
surface tension yields to van der Waals forces [7], and random surface
corrugations or defects grow causing film rupture [8]. This regime has
been investigated in depth using both linear and nonlinear stability
analyses [7, 6, 9, 10, 5]. Nonlinearities act to accelerate rupture, in
both free films [5], and films on a solid substrate [7].

Previous studies have investigated unidirectional film flow. This
simple unidirectional-flow approximation is often invoked in models
of rupture of the liquid bridge between two gas bubbles in a foam [4].
While foam dynamics are influenced by several complicated factors,
such as evaporation, contamination, and gradients in surface tension,
rupture is observed in the simplest case of a constant surface tension
and van der Waals forces [7, 5]. On the other hand, such a unidirec-
tional model completely neglects the abrupt change in direction the
film undergoes in an actual foam. A somewhat more realistic model
in this respect idealizes the foam as a two-dimensional periodic array
of air bubbles immersed in a liquid matrix, as done by Pozrikidis [11].
Such a foam is sketched in Figure 1a. When the bubbles expand due, for
example, to a drop in ambient pressure, liquid drains into corner-like
regions known as Plateau borders, eventually leading to the break-
up of the thin films separating adjacent bubbles. A close-up of one of
these corner regions is sketched in Figure 1b. While progress has been
made towards understanding the evolution of these two-dimensional
foams numerically using boundary-integral methods [11], no satisfying
description has yet been given of the structure of the thin films separat-
ing the Plateau borders that accurately predicts rupture. In Pozrikidis’
model, for example, the film thickness decreases in time in a power-law
fashion, and rupture occurs only after an infinite time.

In this work, we suggest an alternative formulation to account for
the corner-like geometry, based on the use of hyperbolic coordinates,
which allows substantial analytical progress towards the determination
of the flow in a Plateau border and attached liquid threads. We consider
a region of flow forming an angle of π/2 and delimited on the left and
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bottom by symmetry planes as depicted in Figure 1c . We focus on the
first stage of the development, involving the thinning and drainage of
a free liquid film. While rupture is not addressed in this study, it is
hoped that the present model will ultimately aid in predicting rupture
times as well.

Lubrication theory fundamentally relies on a separation of length
scales, with the film being considerably thinner in one of the coordinate
directions. This amounts to requiring a small slope of the free surface.
The primary obstacle associated with applying lubrication theory to
the flow of a thin film in a corner is that, at least in Cartesian co-
ordinates, the small slope requirement inevitably breaks down as the
film negotiates the corner. In the literature, several methods have been
attempted to bypass this limitation. None of them, however, tackles
the issue directly. One approach argues that the effect of the sharp
corner is small. This approach was taken successfully by Kalliadasis,
Bielarz and Homsy [12] for the coating of microelectronic components,
where the aim is to coat micron-sized trenches under the influence of
surface tension. Kalliadasis and coworkers recognize that their lubri-
cation model is expected to break down in the immediate vicinity of
the sharp steps of the trench. Mazouchi and Homsy [13] investigated
the same configuration assuming a two-dimensional free-surface Stokes
flow (i.e. without assuming a separation of lengthscales) using a bound-
ary integral method, and found good agreement with the lubrication
theory. This indicates that the region around the sharp step where
lubrication breaks down is small, and its effect on the levelling of the
trench subdominant, validating the assumptions of the earlier authors.
On the other hand, it is not clear that this is always the case for sharp
topography, particularly for flows in which the dominant physics and
instabilities occur exclusively in the corner.

A second method of bypassing the inability of existing lubrication
models to describe flow around a sharp corner is to use two sepa-
rate solutions and apply a matching criterion. This mimics the classic
Landau-Levich problem [14] of an infinite plate pulled out from a deep
bath. Landau and Levich derived separate expressions for the thin
film coating the plate and the static meniscus in the deep pool, and
closed the problem by matching the curvature. The same approach
was adopted by Braun, Snow and Naire [15], for a symmetry, instead
of a no-slip, boundary condition across the vertical axis. Braun and
coworkers recognize the limitation of this approach and suggest it would
be desirable to have a solution which ties together the two flow regions.
While their flow configuration differs from ours in that we have two thin
films, instead of a thin film and a deep bath, the issue of avoiding a
matching criterion remains.
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A third approach, developed for flow over topography, involves adopt-
ing a locally orthogonal coordinate system that naturally fits an arbi-
trarily curved substrate, as done by Schwartz and Weidner [16] and
Roy, Roberts and Simpson [17]. The shape of the free surface is then
dictated by the competition between the substrate, which impresses
its shape onto the interface — effectively contributing an additional
capillary pressure — and surface tension, which tends to flatten the free
surface, ironing out short-wavelength irregularities and driving the so-
lution to the stable minimum-energy configuration [12]. The long-term
evolution is determined primarily by the topography of the substrate
[17]. While these methods are very general, they are still unable to
describe sharp features, as the evolution equations contain the gradient
of the curvature of the substrate, which is singular at a sharp corner.
Indeed, no attempt was made in [16] or [17] to model sharp features. In
[18] (hereafter denoted as SH), we consider the evolution of a thin film
bounded by a solid corner and show that, by retaining the full position-
dependent terms that arise in the hyperbolic coordinate system, we
avoid this singularity which allows lubrication theory to be extended
to flow around sharp topography.

Our choice of coordinate system overcomes these problems and pro-
vides a single solution over the whole flow domain, without the need
for matching. The model is based on the idea that the liquid film in
Figure 1c is thin everywhere, if its thickness is measured as the ‘dis-
tance’ from the free surface to the two axes of symmetry. This led us to
adopt a hyperbolic coordinate system, which naturally fits the corner.
We will thus extend the lubrication theory to this flow configuration
using hyperbolic coordinates. In SH, we show — for a no-slip boundary
condition — that in this new coordinate system lubrication theory leads
to a single evolution equation for the film thickness, following the exact
integration of the mass conservation equation. Here we extend this idea
to the case of symmetry boundary conditions, appropriate for the vari-
cose mode of free films. Instead of a single evolution equation, we obtain
two coupled equations for the thickness of the film and its lowest order
velocity field, which describes plug flow in the hyperbolic coordinates.
Two equations are also required for a free film in the unidirectional-
flow case, as pointed out by Erneux and Davis [5], because the leading
order boundary conditions are not sufficient to uniquely prescribe the
velocity profile: both the symmetry condition at the symmetry axis and
the tangential stress condition at the free surface require the transverse
gradient of the velocity profile to vanish, leaving the magnitude of the
plug flow velocity unspecified. The problem is closed by resorting to the
next-order tangential stress boundary condition, which yields a second
evolution equation.
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The applications of the no-slip case and the symmetry case are
rather different, as outlined above, as is the dominant physics. Shear
stress is expected to dominate over normal stress in the no-slip case
(SH) and vice versa for unidirectional free films. In this paper we
compute and compare viscous shear and normal stresses for the entire
flow field of a free film. We can thus show that, as expected, nor-
mal viscous stresses dominate far away from the corner. On the other
hand, close to the corner the sharp change in direction of the film
causes shear stress to be larger than normal stress. This differs from
the unidirectional-flow case treated in most lubrication models with a
symmetry boundary condition (where shear is typically neglected), and
is expected to be important in understanding the rupture of free films
in corner geometries.

After establishing the governing equations in the hyperbolic coordi-
nate system in the next section, lubrication theory is applied in Section
3 to derive the two evolution equations. The numerical scheme used to
solve these equations is described in Section 4. Results are given in
Section 5 and discussed in Section 6.

2. Hyperbolic coordinates

2.1. Governing equations in vector form

We consider free-surface flow in a corner bounded by two symmetry
planes, as sketched in Figure 1c. The governing equations are

∇p
ρ

= ν∇2u − gk̂, ∇ · u = 0, (1)

where u is the velocity field, p the pressure, ν the kinematic viscosity,
ρ the density, g the acceleration of gravity, and k̂ the unit vertical vec-
tor, pointing upwards. Since this work is concerned with low Reynolds
number flow, inertia has been neglected in Equation (1). We consider
two-dimensional systems, assuming no variation in the third direction.
The two stress boundary conditions at the free surface are

n̂ · Π · n̂ = σκ, t̂ · Π · n̂ = 0, (2)

where n̂ and t̂ are the unit outward normal and tangent vectors, re-
spectively, σ is the surface tension, and κ is the curvature of the free
surface. For a Newtonian fluid, the stress tensor is

Π = 2µ
∇u + (∇u)T

2
− pI , (3)
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where µ = ρν is the dynamic viscosity, I the identity matrix, and
T indicates a transpose matrix. We will further impose conservation
of mass and symmetry across the two planes defining the corner (see
Figure 1c).

2.2. Coordinate transformation

The fundamental idea behind our method is to exploit the fact that
the film is thin everywhere when measured from the axes of symmetry.
Cartesian coordinates (x, y) are clearly ill-suited to the lubrication
approximation, as the film is not everywhere thin in one of the two
coordinate directions. On the other hand, if viewed in the hyperbolic
coordinate system,

ξ = x2 − y2, η = 2xy, (4)

as shown in Figure 2, the film can be treated as thin everywhere in the η
direction. Note that the two orthogonal planes defining the corner now
correspond to η = 0, and η increases with x and y in the first quadrant.
The coordinate ξ increases along the corner from large y towards large
x, in the shape of hyperbolas. The change of coordinates (4) is a special
case of the analytical conformal mapping for a corner of angle π/n:

ξ = Re[(x+ iy)n], η = Im[(x+ iy)n], (5)

where Re and Im indicate the real and imaginary part, respectively.
The derivations become cumbersome for arbitrary n. Here, we pursue
the case of a square corner (n = 2).

Since the mapping (Equation 4) is conformal, the (ξ, η) coordinate
system (4) is orthogonal and the scale factors h1 and h2 associated with
the ξ and η directions are equal:

h1 ≡
[

(

∂x

∂ξ

)2

+

(

∂y

∂ξ

)2
]1/2

=
1

2
√
r

=

[

(

∂x

∂η

)2

+

(

∂y

∂η

)2
]1/2

≡ h2,

(6)
and will be denoted by s = h1 = h2. The derivatives of (x, y) with
respect to (ξ, η) are given in the Appendix and r ≡ (ξ2 + η2)1/2 = x2 +
y2. The coordinate transformation (4) is therefore singular at the origin.
However, this does not present a problem since, if we exclude rupturing,
the free surface never passes through the origin. The consequences of
this singularity will be further explored after the evolution equations
have been derived.
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The gradient, divergence, and Laplacian in the hyperbolic coordi-
nates are, respectively (e.g. [19, Chapter 2]):

∇p =
1

s

∂p

∂ξ
ξ̂ +

1

s

∂p

∂η
η̂, (7a)

∇ · u =
1

s2

[

∂(u s)

∂ξ
+
∂(v s)

∂η

]

, (7b)

∇2u = ∇ · ∇u =
1

s2

[

∂

∂ξ

(

s

s

∂u

∂ξ

)

+
∂

∂η

(

∂u

∂η

)]

. (7c)

where ξ̂ and η̂ are the unit vectors in the hyperbolic coordinates (Equa-

tion A6), and u = uξ̂ + vη̂ is the velocity field.

2.3. Governing equations in hyperbolic coordinates

The governing equations (1) in the coordinate system (ξ, η) read

∂u

∂ξ
+
∂v

∂η
+ f1u+ f2v = 0, (8a)

1

ρ

∂p

∂ξ
=
ν

s

[

∂2u

∂ξ2
+
∂2u

∂η2
− 1

r2

(

η
∂v

∂ξ
− ξ

∂v

∂η
+
u

4

)]

− g
∂y

∂ξ
, (8b)

1

ρ

∂p

∂η
=
ν

s

[

∂2v

∂ξ2
+
∂2v

∂η2
− 1

r2

(

−η∂u
∂ξ

+ ξ
∂u

∂η
+
v

4

)]

− g
∂y

∂η
. (8c)

The first two terms in the square brackets are the Laplacian of the
scalar quantities u and v, while the remaining terms arise because the
unit vectors ξ̂ and η̂ are position-dependent (see SH). The functions f1,
f2, ∂y/∂ξ and ∂y/∂η depend only on the position (ξ, η), as defined in
the Appendix. The consequences of this explicit position-dependence
of the governing equations on the development of a lubrication theory
will be discussed later in Section 6.

It is worth noting that an exact solution for viscous stagnation-point
flow is given by Moffatt [20], who describes the flow field near sharp
corners of any angle with various boundary conditions using the stream-
function ψ in polar coordinates (r̂, θ). For a free fluid in a square corner,
Moffatt’s (antisymmetric) streamfunction is ψ = r̂2 cos(2θ) = x2−y2 =
ξ, indicating that hyperbolic coordinates are indeed the natural choice
to describe these flows. The symmetric solution is ψ = η. As expected,
both the symmetric and antisymmetric solutions satisfy Equation 8.
What distinguishes our solution from Moffatt’s is the presence of a free
surface.
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Using the expression for a Newtonian stress tensor given in Equation
(A5) together with (A4), we write the stress boundary condition (2) as

− p+
2µ

s(1 + h′2)

[

∂v

∂η
− ξu

2r2
+ h′2

(

∂u

∂ξ
− ηv

2r2

)

−h′
(

∂v

∂ξ
+
∂u

∂η
+
ηu+ ξv

2r2

)]

= σκ, (9a)

2h′
(

∂v

∂η
− ∂u

∂ξ
+
ηv − ξu

2r2

)

+ (1 − h′2)

(

∂v

∂ξ
+
∂u

∂η
+
ηu+ ξv

2r2

)

= 0,

(9b)
evaluated at the free surface η = h. A prime denotes differentiation
with respect to ξ. The curvature, κ, is given by

κ = −∇ · n̂ =
h′′

s (1 + h′2)3/2
+

h′f1 − f2

s (1 + h′2)1/2
. (10)

The symmetry boundary condition requires

∂u

∂η
= v = 0 (η = 0). (11)

The last condition imposed is conservation of mass (or, equivalently,
volume, since we assume a constant density)

∂A

∂t
+
∂Q

∂ξ
= 0, (12)

where

A =

∫ h(ξ)

0
s2dη, Q =

∫ h(ξ)

0
u(ξ, η)sdη. (13)

We will show that Equation (13) can be integrated analytically for a
free film, allowing mass conservation to be satisfied exactly. In the next
section, lubrication theory is applied to the full governing equations
(8), (9) and (12) to obtain two coupled evolution equations for the film
thickness and the lowest order velocity field.

3. Lubrication theory

3.1. The reduced equations

In this section, we derive the evolution equations for a thin layer of
liquid evolving under surface tension and gravity in a corner region
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delimited by two axes of symmetry. We first rescale the governing
equations (8), (9) and (12) by writing

ξ = Lξ̃, u = U ũ, t = T t̃ =
√
Lt̃/U , (14a)

η = Hη̃, v = V ṽ, p = P p̃, (14b)

where a tilde denotes dimensionless variables. Since ξ and η are quadratic
in the original coordinates (x, y), L and H have dimensions of length
squared, and represent the characteristic ‘length’ and ‘thickness’ of the
film in the hyperbolic coordinate system. U and V are characteristic
velocities along and across the layer, respectively, and P is the pres-
sure scale. In order to include the case of zero gravity, a characteristic
velocity along ξ is defined in terms of viscosity and surface tension,
as U = σ̃/µ, where σ̃ = ε σ. The latter rescaling of surface tension
ensures that capillary forces are retained in the equations to leading
order. Thus, the characteristic time T =

√
L/U required for a fluid

parcel with velocity U to travel the physical length
√
L of the layer, is

T = µ
√
L/σ̃. Since only dimensionless variables will be used from now

on, unless otherwise stated, the tildes are dropped.
In the lubrication limit, we assume that the parameter ε = H/L is

small, and expand the dependent variables u, v and p in powers of ε,
as

u = u0 + ε2u2 +O(ε4), (15a)

v = v0 + ε2v2 +O(ε4), (15b)

p = p0 + ε2p2 +O(ε4). (15c)

Note that this is equivalent to expanding in powers of Ca1/3 � 1
where Ca = µU/σ is the Capillary number. Quantities dependent on
the position (ξ, η) are also made dimensionless (f1 scales like L, f2 like
ε/L, and s like 1/

√
L). The position-dependent terms f1, f2, and s

could also in principle be expanded in powers of ε. However, this leads
to a singularity at ξ = 0. We therefore choose to retain in full all terms
that depend on position alone. We will later discuss the rationale and
consequences of this approach.

The continuity equation (8a) yields a relation between the two ve-
locity scales, V = εU . The momentum equation (8b) along ξ suggests
a pressure scale P = σ̃/

√
L. The Bond number Bo = ρgL/σ̃ expresses

the relative importance of gravity and surface tension. Equating terms
of like order in ε, we obtain the following system at O(1):

∂u0

∂ξ
+
∂v0
∂η

− ξ

2r2
u0 = 0, (16a)

∂2u0

∂η2
= 0, (16b)
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∂p0

∂η
= 2

√
r
∂2v0
∂η2

− 2ξ

r3/2

∂u0

∂η
−Bo

∂y

∂η
, (16c)

−p0 + 4
√
r

(

∂v0
∂η

− ξu0

2r2
− h′

∂u0

∂η

)

= κ (η = h), (16d)

∂u0

∂η
= 0 (η = h), (16e)

∂u0

∂η
= v0 = 0 (η = 0), (16f)

representing continuity, conservation of momentum along ξ and η, nor-
mal and tangential stress conditions, and the symmetry boundary con-
dition, respectively. Here, we have used the rescaled expression for
r:

r =
(

ξ2 + ε2η2
)1/2

(17)

At O(ε2), we obtain

∂p0

∂ξ
= 2

√
r

[

∂2u0

∂ξ2
+
∂2u2

∂η2
+

1

r2

(

ξ
∂v0
∂η

− u0

4

)]

−Bo
∂y

∂ξ
, (18a)

2h′
(

∂v0
∂η

− ξu0

2r2
− ∂u0

∂ξ

)

+
∂v0
∂ξ

+
ηu0 + ξv0

2r2
+
∂u2

∂η
−h′2∂u0

∂η
= 0 (η = h),

(18b)
∂u2

∂η
= v2 = 0 (η = 0), (18c)

representing conservation of momentum along ξ, the tangential stress
condition and the symmetry boundary condition, respectively.

We chose to retain the full expression for curvature (Equation 10),
as Eggers and Dupont [21] showed that this ensures that the potential
energy associated with the lubrication solution is the same as that of
the full equations, so that the static equilibrium solutions of the model
are in fact exact. While this is often customary procedure, it is not a
strictly necessary one in this case, as the film profile computed using
the approximated curvature converges to that obtained with the full
curvature.

3.2. Evolution equations

The reduced momentum equation (16b) along ξ, together with the
boundary conditions (16e,f ), yields u0 = U(ξ). Thus, the leading order
velocity field is one of plug flow in the hyperbolic coordinates. We now

JEM8symm_watermark.tex; 24/08/2004; 8:24; p.10
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substitute u0 = U(ξ) into the mass conservation equation (12), using
the integrals

∂

∂t

∫ h

0
s2dη =

∂

∂t

∫ h

0

dη

4 (ξ2 + ε2η2)1/2
=

1

4(ξ2 + ε2h2)1/2

∂h

∂t
,(19a)

∫ h

0
u0sdη =

Uh

2|ξ|1/2 2F1

(

1

2
,
1

4
;
3

2
;−ε

2h2

ξ2

)

, (19b)

and 2F1 is a hypergeometric function [22, Chapter 15]. This yields the
first evolution equation

1

4(ξ2 + ε2h2)1/2

∂h

∂t
+

∂

∂ξ

[

Uh

2|ξ|1/2 2F1

(

1

2
,
1

4
;
3

2
;−ε

2h2

ξ2

)]

= 0, (20)

linking the film thickness h(ξ, t) to the lowest order velocity field U(ξ, t).
To solve for h and U a second equation is required. Before solving the
O(ε2) system, we compute v0 and p0. We find v0 from the continuity
equation (16a):

v0 = −U ′η +
U

2ε
arctan

(

εη

ξ

)

. (21)

The pressure p0 is obtained by integrating Equation (16c) from η to h
and making use of (16d), resulting in

p0 = g1 +
4Uξ

3r3/2
− κ+Bo

[

y
∣

∣

∣

h
− y

∣

∣

∣

η

]

, (22)

where y is given in terms of ξ and η in the Appendix, the vertical bar
indicates the value of η where a quantity is evaluated, and

g1(ξ) = −4U ′
(

ξ2 + ε2h2
)1/4 − 4Uξ

3 (ξ2 + ε2h2)3/4
(23)

is independent of η.
At O(ε2), we substitute Equations (21) and (22) into (18a) and

rearrange, to obtain

∂2u2

∂η2
=
g2(ξ) + g′1(ξ)

2
√
r

− U ′′ +
11U + 20ξU ′

12r2
− 3Uξ2

2r4
, (24)

where

g2(ξ) = −κ′ + Bo
∂y

∂ξ

∣

∣

∣

h
. (25)

The curvature gradient κ′ is

κ′ =
2α

β3
h′′′ − 6ε2α

β5
h′

(

h′′
)2 − 3(h− ξh′)(ξ + ε2hh′)

2α7β
, (26)
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where α = (ξ2 + ε2h2)1/4, β = (1 + ε2h′2)1/2, and

∂y

∂ξ

∣

∣

∣

h
=

1

2
√

2
(

√

ξ2 + ε2h2 − ξ
)1/2

[

ξ + ε2hh′
√

ξ2 + ε2h2
− 1

]

. (27)

Equation (24) is integrated once making use of the boundary condition
(18c) and of the indefinite integrals

∫

1

(ξ2 + ε2η2)1/4
dη =

η

|ξ|1/2 2F1

(

1

4
,
1

2
;
3

2
;−ε

2η2

ξ2

)

, (28a)

∫

1

ξ2 + ε2η2
dη =

1

εξ
arctan

(

εη

ξ

)

, (28b)

∫

1

(ξ2 + ε2η2)2
dη =

η

2ξ2r2
+

1

2εξ3
arctan

(

εη

ξ

)

. (28c)

This yields an expression for ∂u2/∂η. The latter is evaluated at η =
h and substituted into Equation (18b), yielding the second evolution
equation

−2U ′′h−4U ′h′− 3hU

4 (ξ2 + ε2h2)
+
h (g2 + g′1)

2|ξ|1/2 2F1

(

1

4
,
1

2
;
3

2
;−ε

2h2

ξ2

)

+

+
1

6ε

[

U

ξ
+ 13U ′ +

3Uξ

2 (ξ2 + ε2h2)

]

arctan

(

εh

ξ

)

− U ′ξh

2 (ξ2 + ε2h2)
= 0.

(29)

We have thus obtained two coupled nonlinear partial differential equa-
tions — (20) and (29) — that describe the evolution of h(ξ, t) and
U(ξ, t). Contrary to the no-slip case (SH), all integrals can be evaluated
analytically in deriving the two evolution equations, simplifying the
numerical integration. The expansion parameter ε can be related to
the filling fraction FR — representing the liquid fraction of the unit
Cartesian box — both being a measure of the film thickness. There-
fore, the dependence of the evolution equations on ε amounts to a
dependence on the filling fraction FR. Note that we could introduce
a rescaled thickness h̃ = εh to confine the ε-dependence to the initial
condition.

4. Numerical solution of the evolution equations

The numerical method used to integrate the evolution equations closely
follows the one applied in the no-slip case (SH). Here, we briefly summa-
rize the main points, and outline some differences. To avoid computing
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higher-order finite differences, we define an auxiliary variable f = h′′.
Denoting the flux (the term in square brackets in Equation (20)) as q,
the numerical scheme becomes

F n+1
i =

1

4[ξ2
i + ε2(hn+1

i )2]1/2

hn+1
i − hn

i

∆t
+
qn+1
i+1/2 − qn+1

i−1/2
(

∆+
i − ∆−

i

)

/2
= 0, (30a)

Gn+1
i = fn+1

i −m+
i h

n+1
i+1 −mih

n+1
i −m−

i h
n+1
i−1 = 0, (30b)

and similarly for Hn+1
i , whose numerical expression is omitted for

brevity. The subscript i denotes the i-th grid point of the non-uniform
grid. The free surface is located at (ξi,h

n+1
i ) at time step n + 1. Note

that, due to the U/ξ singularity in Equation (29), as discussed in the
following section, one must avoid choosing ξ = 0 as a grid point. The
distance between grid point i and its two neighbors i±1 is ∆±

i = |ξi±1−
ξi|. First derivatives were approximated by centered differences, except
at the boundaries, where a forward or backward difference was used.
Second derivatives were computed on a three point stencil as a weighted
average of the first forward and backward derivatives, as in Equation
(30b), with m+

i = 2/[∆i+1(∆i+1 + ∆i−1)], mi = −2/(∆i+1∆i−1) and
m−

i = 2/[∆i−1(∆i+1 + ∆i−1)]. Equation (30a) was discretized in flux-
conservative form in order to ensure numerical mass conservation. At
each grid point only the outward flux qi+1/2 was computed, while for
the inward flux qi−1/2, the outward flux of its left neighbor (i− 1) was
reused.

We use an adaptive time step based on a step-doubling algorithm
[23, Section 16.2] to minimize the computational time. At each step, two
solutions are computed, the first (SB) by using the full time step ∆t, the
second (SS) by taking two steps of length ∆t/2. If the error |SB −SS |,
averaged over all grid points, is larger than a specified tolerance (typi-
cally 10−4), the step is rejected and repeated after halving the time step.
Otherwise, the step is accepted and an extrapolated value S = 2SB−SS

of the solution is computed which achieves O(∆t2) accuracy. The next
time step is then increased by a factor that is inversely proportional
to the error. The solution at any step was found by solving Equations
(30) implicitly with a Newton iteration procedure. The Jacobian of
the functions F , G and H was computed analytically, resulting in an
11-diagonal matrix (five non-zero diagonals on each side of the main
diagonal) that was inverted using the standard Gaussian elimination
method for banded matrices [23, Section 2.4].

Four boundary conditions are required for the fourth order system
of differential equations consisting of Equations (20) and (29). Zero-
flux and zero-slope conditions – amounting to a symmetry boundary
condition in ξ – were imposed at both ends (ξ = ±1). These conditions
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must be expressed in the hyperbolic system. The boundary condition
on the velocity U is derived from the definition of the flux, such that

Un+1
i = qn+1

i

{

hn+1
i

2|ξi|1/2 2F1

[

1

2
,
1

4
;
3

2
;−

(

εhn+1
i

ξi

)2
]}−1

, (31)

to be applied at the first (i = 1) and last (i = N) grid points. The
numerical scheme was implemented in Fortran, but the hypergeometric
functions were more accurately evaluated using Matlab. More details
on this aspect, as well as the grid and convergence tests, are given in
SH.

5. Results

Before presenting numerical results, we discuss the singularity U/ξ in
Equation (29). At O(ε2), U/ξ represents a true physical singularity,
which follows from the imposed symmetry condition and the plug flow
velocity field, as sketched in Figure 3. Unless U(ξ = 0) = 0, a velocity
discontinuity exists at the origin. To eliminate this singularity in the
velocity derivative, one could extend the analysis to higher order. In-
stead, we proceed with the numerical integration (by simply ensuring
that ξ = 0 is not a grid point), assuming that the integral contribu-
tion of the point-wise singularity to the overall evolution of the film
is subdominant (mathematically, a portion of the integrand diverges,
but its contribution to the integral is nevertheless small). U/ξ is the
only singularity in the evolution equations, as the term 2F1/|ξ|1/2 (in
Equations (20) and (29)), plotted in Figure 4a, has a finite limit as
|ξ| → 0. In traditional lubrication models written in the reference frame
of the substrate [16, 17], a second singularity arises as the gradient of
the substrate curvature enters the evolution equations. On the other
hand, in our method only the gradient of the interface curvature (which
is not singular) enters the equations, due to the particular choice of
coordinates.

For all simulations we choose the initial condition h(ξ) = 1 + ξ2

in the (ξ, η) plane. The relation between the filling fraction FR and ε
(Figure 4b) is obtained by integrating the initial condition. There is
a critical value of the filling fraction FR,cr = 1 − π/4 ≈ 0.215 (εcr ≈
0.094), corresponding to the amount of liquid exactly fitting the unit
square as a quarter of a circle.

Figure 5 shows the evolution of a free film under surface tension in
a corner in both the (ξ, η) and the (x, y) planes. Both planes clearly
illustrate the thinning of the threads as fluid is drawn towards the
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Corner flow in free liquid films 15

corner by surface tension. The steady state is a quarter of a circle
adjacent to the corner, corresponding to the minimum potential energy
configuration (i.e. g2 =constant, see Equation (25)). The steady state
is independent of the boundary condition at η = 0 and is therefore
identical to the one verified experimentally in SH for a no-slip boundary
condition. The rate of thinning, on the other hand, depends on the
boundary condition at η = 0. In Figure 6, we present the time evolution
of the film thickness at ξ = −1 (d1), normalized by its initial value, for
different values of ε. When ε > εcr ≈ 0.094, the film evolves towards
a quarter-of-a-circle steady state and d1 approaches a finite value. For
ε < εcr the film thins at ξ = −1 until it reaches a scale at which new
physics (e.g. van der Waals forces) must be included to continue the
evolution.

It is interesting to compare the rate of thinning for a symmetry and
a no-slip boundary condition. The two cases are compared in Figure 7.
Figure 7a shows the evolution of the film thickness at ξ = 0 (d0) for
ε = 0.05. As expected, the evolution in the no-slip case is slower due
to the drag exerted by the solid walls. The full circles in Figure 7a
represent the time taken by each film to reach 95% of its steady-state
thickness at ξ = 0. The ratio of these times, tnoslip/tsymm, is plotted
in Figure 7b for several values of ε. The thinner the film, the more
pronounced the delay induced by the no-slip condition. The no-slip
evolution is more than 100 times slower than the symmetry evolution
for films thinner than ε ≈ 0.07. For thicker films, the effect of a solid
boundary is relatively less important.

When Bo 6= 0, the evolution is governed by a competition between
surface tension and gravity. In SH, the effect of gravity was investigated
both theoretically and experimentally for a no-slip condition, showing
that, as the Bond number increases, more fluid drains down the vertical
axis, forming a pool along the bottom. For both a free film and a film in
a solid corner, the steady state corresponds to the solution of the Young-
Laplace equation for a static meniscus [24, Paragraph 60]. The latter
coincides with our evolution equations in the limit U = ∂h/∂t = 0.
On the other hand, the rate of thinning depends on the boundary
condition at η = 0, as already shown in Figure 7. For a free film,
Figure 8 shows the time, t0.05, for the thickness at ξ = −1 (d1) to
reach 5% of its initial value for several Bond numbers. As the Bond
number increases, the rate of thinning along the vertical axis increases,
with a ten-fold decrease in t0.05 for Bo = 10 over the case Bo = 0.
It is important to note that, in the current configuration, ‘gravity’
should be interpreted as a generalized body force that satisfies all of the
symmetry conditions. While the vertical axis presents no complications,
the symmetry condition across the horizontal axis implies that this
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body force acts ‘downward’ for y > 0 and ‘upward’ for y < 0. This issue
vanishes for physical scenarios involving mixed boundary conditions
such as the vertical stretching of a viscoelastic fluid (as illustrated in
figure 1d, to be discussed in section 6). In this stretching geometry,
a symmetry condition is required for ξ < 0 (y > x) and a no-slip
condition is required for ξ > 0 (x > y). Thus there is no contradiction
between the symmetry condition across the y-axis and the effects of
gravity as the two are aligned.

We can use the numerical solution U(ξ, t) to quantify the relative
importance of shear and normal stresses. Traditional lubrication models
for free films [21] are based on the assumption that normal stress dom-
inates over shear stress. The resulting plug flow velocity field clearly
has no shear. The opposite is true for films over solid substrates, where
shear is introduced by the solid boundary. These assumptions are in
general correct for unidirectional films. In a corner region, the balance
between shear and normal stresses is set by the competition between the
boundary condition — symmetry or no-slip — and the geometry of the
flow. The latter inevitably introduces some shear by forcing the film to
undertake a sharp change in direction. If the corner walls are physical
boundaries (no-slip case), these two effects reinforce each other, and
shear stress is expected to dominate over normal stress everywhere.
For a free film, on the other hand, the shear stress due to the geometry
could potentially be comparable to the normal stress favoured by the
symmetry boundary condition. In particular, we expect shear stress
to be important close to the corner. While the lowest order velocity
is one of plug flow, it should be noted that this is plug flow in the
hyperbolic coordinates, which does not by itself imply that the flow is
predominantly extensional.

To investigate this issue, we compute the viscous normal stress E
and the viscous shear stress S (for unit viscosity). Using Cartesian
velocities (ux and uy), E (S) is defined as half the sum of the ab-
solute values of the diagonal (off-diagonal) elements of the rate of
strain tensor

(

∇u + (∇u)T
)

/2. Thus, S = |∂ux/∂y + ∂uy/∂x|/2 and
E = (|∂ux/∂x| + |∂uy/∂y|) /2 = |∂ux/∂x|, where we have used the
continuity equation, ∂uy/∂y = −∂ux/∂x, in calculating E. Absolute
values are considered since we are interested in the magnitude of the
stress. S and E can be computed from the stress tensor Π in hyperbolic
coordinates (Equation (A5)) as

S = |ĵ · Π · k̂|, E = |ĵ · Π · ĵ|, (32)

where the unit Cartesian vectors ĵ and k̂ are given in Equation (A7).
Using the lowest order velocity field u = u0 = U(ξ) and v = v0 from
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Equation (21), we find

S(ξ, η) =
2

r1/2

∣

∣

∣

∣

−U ′′ξεη − U ′

(

2εη − ξ

2
arctan

εη

ξ
+
ξ2εη

2r2

)

+

ξ2U

4εr2
arctan

εη

ξ

∣

∣

∣

∣

, (33a)

E(ξ, η) =
2

r1/2

∣

∣

∣

∣

−U ′′ε2η2 + U ′

(

2ξ +
εη

2
arctan

εη

ξ
− ξε2η2

2r2

)

+

ξηεU

4r2
arctan

εη

ξ

∣

∣

∣

∣

. (33b)

Figure 9 shows contours of S, E and S/E at two instants for ε =
0.15. As both S and E are proportional to the plug flow velocity U
(shown in the inset of Figure 9c,f), they were normalized by the in-
stantaneous maximum velocity, Umax, to facilitate comparison among
different times. The insets in Figure 9b,e provide a measure of how
far the film has evolved towards steady state. Figure 9a confirms our
hypothesis that shear is important near the corner. A lobe of high
shear stress centered around (ξ = 0, η = h) demonstrates that, despite
the symmetry boundary condition favouring normal stress, shear is
introduced by the geometry in the region where the film experiences the
largest change in direction. This effect is not captured by unidirectional-
flow models, where the only source of shear is a solid boundary. The
viscous normal stresses, arising as the fluid is pulled towards the corner,
are small near ξ = 0 (Figure 9b,e), making shear stress dominant
as the fluid negotiates the corner. The region of the film dominated
by shear is clearly visible in the contours of S/E (Figure 9c,f). Two
smaller lobes of high shear are visible near the boundaries ξ = ±1,
while the regions furthest from the corner are extensionally dominated
(Figure 9b,e). While the details depend on the initial condition, it is
clear from Figure 9a,d that, as the film evolves, the region of high
shear near the corner broadens and the maximum shear relaxes. In this
process, the remaining two lobes of high shear get squeezed further
towards the boundaries.

Figure 10 presents the time evolution of shear stress, normal stress
and their ratio for ε = 0.15 at three points in the flow field. The three
points correspond to the free surface η = h at ξ = 0.1, 0.65 and 0.95.
Also plotted is the evolution of the maximum instantaneous velocity
Umax. This was used to normalize S and E at each time, thus removing
the overall decay associated with the decrease in magnitude of the
velocity field as the film approaches steady state. Figure 10c shows
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that the shear stress is larger than the normal stress close to the corner
(ξ = 0.1). Shear stress at the corner relaxes over time (Figure 10a),
but normal stress relaxes faster (Figure 10b). Therefore, the relative
importance of shear increases as the film evolves, reaching S/E ≈ 7 at
t = 12 (Figure 10c). This demonstrates that — despite the absence of
a solid wall — the sudden change in direction is sufficient to make the
flow shear-dominated near the corner. Far from the corner (ξ = 0.95),
normal stress prevails over shear stress. This region loosely corresponds
to the extensional regime in the droplet pinch-off model by Eggers and
Dupont [21], where E � S. It is enlightening to briefly compare the
Eggers-Dupont approach with ours. Instead of rescaling the equations
and expanding the dependent variables in powers of ε as we have done
in the present study, Eggers and Dupont expand in even powers (due
to symmetry) of the ‘thin’ coordinate, η in our case. Thus, for example,
u = A0+A2η

2+A4η
4+..., where the Ai’s are functions only of the ‘long’

coordinate, ξ. This simplifies the algebra and can be implemented in
Cartesian coordinates (or in the r−z planes in cylindrical coordinates),
where there are no position-dependent terms in the equations of motion.
However, in hyperbolic coordinates, if the position-dependent terms
are retained in full as in the present study, the equations of motion
cannot be integrated using this method. On the other hand, the current
approach can be mapped onto a Taylor expansion in even powers of η
by expanding the position-dependent terms as well as the derivatives in
powers of ε. In this latter case, we find that the governing equations are
in agreement with those obtained via Eggers and Dupont’s expansion.
Unfortunately, though this simplifies the equations, it again introduces
a coordinate singularity in the corner.

Figure 10c summarizes the balance of shear and normal stress. In
the intermediate region (e.g. ξ = 0.65), shear and normal stresses are
both important, their detailed distribution depending on the evolution
of the three lobes of high shear observed in Figure 9a,d.

6. Discussion

We have investigated two configurations in which viscosity counteracts
gravity and surface tension in governing the evolution of a thin film of
liquid in a corner-region. In SH, we saw that when a no-slip boundary
condition is imposed, as is typical for flow over topography, a single
evolution equation is sufficient to solve the problem to lowest order.
Both the geometry and the boundary condition then favor shear over
normal stresses, as expected also for a unidirectional film over a solid
substrate. On the other hand, when the two sides of the corner are
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axes of symmetry instead of rigid walls, two evolution equations are
required to leading order and the velocity field is plug flow in the
hyperbolic coordinates. In this case, shear and normal stresses are both
important in some part of the flow domain, with shear prevailing near
the corner. This balance is a result of the flow geometry and is therefore
not captured by unidirectional-flow models.

With respect to more general lubrication approaches developed for
thin films over topography [16, 17], ours has the advantage of being
conceptually simpler and easier to implement. More important, our
method is specifically tailored to a sharp corner. These advantages
come at a price – namely flexibility, as our calculations are limited
to the case of a square corner (but could be generalized to a corner of
any angle with some patience). In previous studies, this configuration
leads to a singularity in the substrate curvature and hence a singularity
in the evolution equations. While this singularity could in principle
be subdominant, thereby only minimally affecting the results, working
in hyperbolic coordinates avoids the issue altogether. One could argue
that, instead of this singularity, we have introduced another, associated
with the U/ξ term in Equation (29). However, this is a completely
separate issue, as this second singularity arises from the symmetry
condition, not from the coordinate system, and would be present in
any plug flow approximation. Indeed, no such singularity exists in the
no-slip case (SH). Our approach could, in principle, be generalized to
encompass a more general and flexible coordinate system, however the
equations of motion become algebraically very complicated for symme-
try boundary conditions, in which the gradient of the velocity appears
in the boundary condition, rather than velocity itself. The simplicity
of our formulation relies partly on the fact that the symmetry axes
are coordinate lines, ensuring a simple formulation of the boundary
condition.

The price to pay for avoiding coordinate-induced singularities due
to the sharp change in direction associated with a corner-region, is that
we must retain ε in the final evolution equations (or, alternatively, in
the initial condition). In most formulations, albeit not all [25], this does
not occur. The reason for retaining ε in the position-dependent terms is
that lubrication theory is based on the relative magnitude of variations
in the dependent variables, that is derivatives. No assumptions are
made about quantities that depend on position alone. Note that this
is a non-issue in Cartesian coordinates, as purely position-dependent
terms never arise. Take, for example, (ξ2 + ε2h2)−1/2 in Equation (20).
Whenever |ξ| � εh, it is clearly allowed to approximate this expression
by |ξ|−1. However, this approximation is not valid at ξ = 0 and, even
worse, introduces a singularity at the origin. The latter singularity
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reflects the singularity arising in the formulations mentioned above due
to the gradient of the curvature of the substrate. These formulations
are recovered if ε is set exactly to zero in our equations. While one may
not call our approach ‘standard lubrication theory’ due to this perhaps
spurious retention of the expansion parameter ε, it is nevertheless clear
that our formulation provides a straightforward way of dealing with a
geometry that is taboo for most other methods, without resorting to
the full Stokes equations. For this reason, the filling fraction remains
as a parameter, through ε.

In particular, we have not expanded the scale factors in the mass con-
servation equation (12) in powers of ε. Since we were lucky enough to be
able to evaluate all integrals analytically, expansion in ε was not neces-
sary and the resulting full equations ensure exact mass conservation. In
SH, we took a different approach and expanded the position-dependent
terms as well, except for those arising in the mass conservation equa-
tion. We showed that the ‘full’ equations converge to this approximation
as ε → 0. This appears to indicate that, for arbitrarily small filling
fraction, the integral contribution to the film evolution of the point-wise
singularity due to the coordinate system is subdominant.

We also note that, in contrast to the no-slip boundary condition
case, Moffatt eddies [20] can never form in the present configuration,
as neither of the two axes is a solid wall. Thus, the lubrication approx-
imation is likely to be close to the true physical solution as we need
not include higher order terms to account for a change in direction in
the flow. We are also safe from Moffatt eddies in future applications
to filament stretching, where one of the two walls is solid; in this case,
for Newtonian flows, eddies can form only for corners of angle smaller
than 78◦.

As mentioned in the introduction, a promising application of these
corner flows is the expansion of a two-dimensional foam (Figure 1a),
where the Plateau borders separating air bubbles can be conveniently
modelled as a thin liquid film symmetric in both Cartesian directions.
In this case, the fact that the domain stretches in time [11] must be
taken into account by rescaling the equations with the instantaneous
length of the side of a foam cell and imposing an integral constraint on
the volume of liquid. Due to its inherent simplicity, our method would
allow solutions for the shape of the interface at very long times. After
the film has thinned considerably, down to a few tens of nanometers, an
extra body force associated with the van der Waals forces must be in-
cluded in the model to investigate rupture. These long-range molecular
forces act to destabilize the film and are often modelled by a potential
that depends on the negative third power of the film thickness [7, 5]
(although several alternative formulations are in use, as summarized by
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Oron and coworkers [4]). On the other hand, electric double-layer forces
can retard rupture, leading to black films [5]. Rupture is expected to
depend on the size of the system, which sets a limit on the most unstable
wavelength [26, 4]. One could incorporate these effects into our model,
and thus investigate rupture of liquid filaments between two bubbles.
Such studies, despite the fact that they are strictly valid only for very
idealized models of foam, would be of particular interest as to date
numerical schemes cannot accurately resolve the liquid filaments for
long times. This constitutes an important open question, regarding the
material properties of foam.

An application that is further afield, but which originally moti-
vated the present work is the ‘fishbone’ instability observed in filament
stretching experiments performed on polystyrene–based Boger fluids
by Spiegelberg and McKinley [27]. Instabilities of non-Newtonian fluids
are important in the dynamics of paints, glues, lubricants and biological
liquids. The base state is sketched in Figure 1d, while pictures of the
instability can be found in [27]. This instability occurs at the corner
between two orthogonally intersecting thin films, and is believed to
arise from the competition of elastic and viscous stresses. A satisfying
mechanistic explanation of the instability is yet to be determined. A
complete investigation of this phenomena would require three major
modifications. First, the asymmetric stretching of the domain must
be taken into account (e.g. only along y, not along x). Second, the
non-Newtonian stress tensor could potentially make the analytical in-
tegration of mass conservation more difficult. Lubrication theory with
non-Newtonian fluids has been developed for fiber-drawing using a
viscoelastic fluid [28], for one-dimensional filaments using an Oldroyd-
B constitutive model [29], and for a planar, unidirectional film using
a power-law liquid [30]. In general, we expect one or more additional
evolution equations associated with the constitutive equation of the
fluid. Third, ‘mixed’ boundary conditions must be used — i.e., no slip
along the bottom and symmetry across the vertical axis. Thus, the
evolution equations derived in this paper would be applied for ξ < 0,
while the formulation from SH for the no-slip case would be applied for
ξ > 0. Note that this is not the same as matching two solutions, since
we simply use one or the other formulation in the numerical scheme,
depending on the sign of ξ. A linear stability analysis would then have to
be performed numerically to capture the ‘fishbone’ instability observed
by Spiegelberg and McKinley [27]. We did not perform a stability anal-
ysis on our current Newtonian solution as the experiments exhibit no
instability when Newtonian fluids are used [27]. With these modifica-
tions, our model could describe the stretching of a thin non-Newtonian
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film in a corner and potentially provide a mechanistic explanation of
Spiegelberg and McKinley’s fishbone instability.

7. Conclusions

We have shown that lubrication theory can be used to describe the
evolution of a free film in a corner by adopting hyperbolic coordinates.
The liquid film is then everywhere thin in the coordinate direction that
points away from the axes of symmetry. The lubrication approximation
gives two coupled nonlinear evolution equations for the film thickness
and its velocity profile, plug flow, to leading order. While additional
physico-chemical effects such as Van der Waals forces may be imple-
mented, we restricted the model to free films evolving under viscosity,
surface tension and gravity. In particular, we were able to compute
shear and normal stresses. Far from the corner normal stress dominates,
as expected. On the other hand, near the corner shear stresses prevail,
due to the sharp change of direction the film is forced to undertake.
We hope that this model will be useful as a starting point to further
investigate the flow of free films in corner regions, in particular the
rupture of liquid threads in foams and the instabilities of viscoelastic
fluids in stretching geometries.
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A. Appendix: Details of the hyperbolic coordinate system

The following (dimensional) expressions were used to derive the gov-
erning equations in the hyperbolic coordinate system ξ = x2 − y2,
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η = 2xy:

y =

(

r − ξ

2

)1/2

, x =

(

r + ξ

2

)1/2

, (A1)

∂x

∂η
= −∂y

∂ξ
=

y

2r
,

∂x

∂ξ
=
∂y

∂η
=

x

2r
, (A2)

f1 =
1

s

∂s

∂ξ
= − ξ

2r2
, f2 =

1

s

∂s

∂η
= − η

2r2
. (A3)

The unit outward normal and tangent vectors are, respectively,

n̂ =
−h′ξ̂ + η̂

(1 + h′2)1/2
, t̂ =

ξ̂ + h′η̂

(1 + h′2)1/2
. (A4)

Using Equation (7a) to compute the gradient of the velocity field, the
Newtonian stress tensor Π in Equation (3) becomes

Π =





−p+ 2µ
s

(

∂u
∂ξ − ηv

2r2

)

µ
s

(

∂v
∂ξ + ∂u

∂η + ηu+ξv
2r2

)

µ
s

(

∂v
∂ξ + ∂u

∂η + ηu+ξv
2r2

)

−p+ 2µ
s

(

∂v
∂η − ξu

2r2

)



 . (A5)

The unit vectors in hyperbolic coordinates along ξ and η are

ξ̂ =

(

x√
r
,− y√

r

)

, η̂ =

(

y√
r
,
x√
r

)

. (A6)

The unit vectors in Cartesian coordinates along x and y are

ĵ =
1

s

∂x

∂ξ
ξ̂ +

1

s

∂x

∂η
η̂, k̂ =

1

s

∂y

∂ξ
ξ̂ +

1

s

∂y

∂η
η̂. (A7)
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(a)

(d)

(b)

(c)

Figure 1. (a) An idealized model of a coarsening foam as a periodic array of bubbles
(e.g. [11]). The solid lines represent the boundaries between the air bubbles and the
liquid phase. (b) A close-up of the corner region formed by two intersecting liquid
filaments. (c) The flow geometry under investigation. (d) Stretching of liquid threads.
This application arises in rheological experiments, when a liquid thread is pulled in
the direction of the vertical arrow. The arrow near the corner indicates the region
where ‘fishbone’ instabilities are observed experimentally for viscoelastic fluids [27].
Dashed lines represent axes of symmetry in all panels.
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Figure 2. The coordinate system ξ = x2 − y2, η = 2xy. Also shown is a sketch of
the free surface η = h(ξ) of a thin film (dashed line). The thickness of the film at
ξ = −1 and ξ = 0 is denoted as d1 and d0, respectively.
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Figure 3. Sketch of the singularity in the lowest order velocity field (plug flow) of
a free film in a corner. The dashed lines indicate axes of symmetry. The velocity
field at ξ = 0 (i.e. x = y) has a discontinuity at the origin unless U(ξ = 0) = 0. As
the successful integration of the film profile shows, this singularity is subdominant
in the evolution of the film. The velocity profile is shown for only two of the four
quadrants for the sake of clarity.
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Figure 4. (a) The term containing the hypergeometric function appearing in both
evolution equations, (20) and (29), with z = |ξ|/(εh). Its limit for z → 0 is finite,
proving that this term does not represent a singularity. (b) The filling fraction FR as
a function of the expansion parameter ε for the initial condition h(ξ) = 1 + ξ2 used
throughout this paper. The critical filling fraction and the corresponding critical
value of ε are marked by the dashed lines.
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Figure 5. Evolution of a free film in the (ξ, η) plane (a) and in the (x, y) plane (b).
The initial condition is h = 1+ξ2 and ε = 0.05. The dashed line represents the initial
condition (t = 0), the thick solid line the steady state (t = 100). The intermediate
profiles are at t = 1.24, 4.75 and 11.33.
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Figure 6. The film thickness d1 at ξ = −1 (see Figure 2) as a function of time,
normalized by its value at t = 0, for four values of ε. The initial condition is
h = 1 + ξ2. For ε < εcr ≈ 0.094 a thinner film evolves comparatively slower. For
ε > εcr the film thickness does not tend to zero, as the filling fraction is larger than
the critical value (see Figure 4b).
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Figure 7. (a) The film thickness d0 at ξ = 0 (see Figure 2) with ε = 0.05 as a
function of time for a symmetry (dashed line) and a no-slip (solid line) boundary
condition. The solution for the no-slip case is given in SH. The evolution is slower for
a no-slip boundary condition. The circles mark the time at which the interface has
travelled 95% of the distance to steady state. The ratio of this time for the no-slip
and the symmetry boundary conditions is shown in panel (b) for several values of
ε. As the film becomes thicker, the no-slip case becomes comparatively faster, since
the retarding influence of the viscous drag exerted by the solid boundary diminishes.
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Figure 8. The influence of gravity on the evolution of a free film in a corner for
ε = 0.01. t0.05 represents the time taken by the thickness of the film d1 at ξ = −1
(see Figure 2) to reach 5% of its initial value. For Bo = 0, t0.05 = 56.3. As Bo is
increased, the film thins faster and forms a larger horizontal pool at the bottom (see
also SH).
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Figure 9. Figure 9, previous page: Contours of the shear stress S (a and d), the
normal stress E (b and e), and their ratio S/E (c and f) for a free film in a corner
with ε = 0.15. An early (t = 0.1: a,b,c) and a late stage (t = 4.3: d,e,f) of the
evolution are shown. The instantaneous velocity profile U(ξ) is shown in the insets
of (c) and (f). S and E have been normalized by the instantaneous maximum velocity
Umax. The thickness of the film d1 at ξ = −1 (see Figure 2) is shown in the insets of
(b) and (e). Its instantaneous value, represented by the full circles, is an indicator
of how far the film has evolved towards steady state.
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Figure 10. Evolution of (a) the shear stress S, (b) the extensional stress E, and (c)
their ratio S/E for a free film in a corner with ε = 0.15. The stresses are shown for
three points (ξ = 0.1, 0.65 and 0.95) at the free surface (η = h). Also shown (d) is
the maximum velocity Umax as a function of time, which was used to normalize S
and E. Note from (c) that normal stress dominates over shear stress away from the
corner (ξ = 0.95), while the opposite is true close to the corner (ξ = 0.1).
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