
 
 

  
Abstract—In this paper, a new methodology for predicting 

fluid free surface shape using Model Order Reduction (MOR) 
is presented. Proper Orthogonal Decomposition (POD) 
combined with a linear interpolation procedure for its 
coefficient is applied to a problem involving bubble dynamics 
near to a free surface. A model is developed to accurately and 
efficiently capture the variation of the free surface shape with 
different bubble parameters. In addition, a systematic 
approach is developed within the MOR framework to find the 
best initial locations and pressures for a set of bubbles 
beneath the quiescent free surface such that the resultant free 
surface attained is close to a desired shape. Predictions of the 
free surface in two-dimensions and three-dimensions are 
presented. 
 

Index Terms— Bubble Dynamics, Model Order  Reduction, 
Proper Orthogonal Decomposition 
 

I. INTRODUCTION 
set of underwater gas bubbles created by explosions 
can lead to the formation of a water plume in the sea 

surface. It is often desired that the water plume attain a 
particular shape to serve certain functionality, such as 
obstructing objects skimming above the water surface. This 
shape can be achieved by solving an optimization problem 
which minimizes the deviation of the simulated free 
surface from the desired shape with the decision variable 
set being the bubble parameters such as lateral positions, 
depths and strengths. Since it is not efficient and cost 
effective to couple a full model of bubble and free surface 
in an optimization problem, the Proper Orthogonal 
Decomposition (POD) is used to build a low-cost, low-
order approximation model for the current problem. A 
series of linear POD basis functions are obtained from a set 
of solution snapshots of the bubble and free surface 
interaction problem. These basis functions and their POD 
coefficients are then used to simplify the optimization of 
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bubble parameters to attain the desired water plume.  
 

II. PROPER ORTHOGONAL DECOMPOSITION 

Given a set of snapshots ( ){ }xu  which are solutions of 
the system collected at different instants in time, the 
optimal POD basis functions ( ){ }∞

=1jj xφ  are chosen to 

minimize the truncation error due to the construction of the 
snapshots ( )xu  using M  basis functions 
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 The POD basis functions ( ){ }∞

=1jj xφ  satisfy  

( ) ( ) ( )xxdxxxK λφφ =′′′∫Ω
,  (2) 

where the kernel ( )xxK ′,  is the autocorrelation function 
with the dimension of NN ×  ( N  is dimension of u , 
usually in order of 410 ), (Newman, 1996). 

In the Method of Snapshots (Sirovich, 1987), the POD 
basis vectors are calculated as the linear combination of the 
snapshots 
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where jb  satisfies  
bRb λ=  (4) 

Here R  is the modified correlation matrix, 
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The approximation is given by the linear combination of 
the basis functions 

( ) ( )∑
=

≈
q

j
jj xaxu

1

φ  (6) 

where q is chosen to satisfy a desired level of accuracy 
( Mq ≤  and Nq << ); the POD coefficient ja  is 
determined as a function of time. 

The POD procedure can also be applied to parameter-
dependent problems whose snapshots are collected at a 
series of varying parameters (Bui-Thanh et al., 2003). The 
coefficient ja  is then a function of these varied 
parameters. 

Let { }iuδ  be the snapshot taken corresponding to the 
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parameter value Mii ,...,1, =η . Basic POD is applied on 

the set of snapshots { }M

i
iu 1=

δ  to obtain the orthonormal basis 

{ }M

jj 1=
φ . The coefficient i

jaδ  is given by the projection  

( )ii ua jj
δδ φ ,=  (7) 

The POD coefficients δ
ja  for intermediate values of η  

which is in the range of interest but not included in the 
ensemble can be found by interpolation among the i

jaδ . 

The prediction of δu  is given by 

∑
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In the next section, POD in parametric space coupled 
with bubble dynamics will be used in an optimization 
context in the problem of water barrier construction. 

 

III. WATER BARRIER SIMULATION 
The free surface formed by 0N  number of bubbles can 

be approximated by the linear superposition of the 
individual free surfaces, Our objective is to minimize the 

difference between the constructed surface ∑
=

=
oN

k

kSS
1

 and 

the desired surface 0S . 
It is difficult to obtain directly the bubble parameters 

that give the desired shape, so we divided the problem into 
two stages. 

In the first stage, the lateral position { } oN

k
kr 10 =  and the POD 

coefficient { }
qjNk

k
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,..,1;,..1 0 ==
for the bubbles are solved: 
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Here, kφ and k

jφ  are the snapshot mean and the thj  

POD mode, respectively, for the thk  bubble. The minimum 
lateral distance between centers of two arbitrary bubbles is 

0.2=dr  to ensure the validity of the superposition. The 
range ja  is determined by the range of interest of the 

bubble strength and depth, [ ]maxmin ,εε  and [ ]maxmin ,γγ . 
The first-stage problem can be solve approximately 

using the Approximation Function (AF) algorithm which 

uses exponential functions to approximate the first POD 
mode, k

1φ , and the mean, kφ . The functions have the form 
of and  
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The coefficients 1C  and 2C  are specified by solving the 
optimization problem  

AF:  
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where 0f  is the mean or the first POD mode. Using 

these functions, the free surface corresponding to the thk  
bubble can be represented by  
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The lateral positions of the bubbles, { } oN

k
kr 10 = , are obtained 

by solving this problem. Then, we substitute these lateral 
positions back to the BPS1 to obtain the complete set of 
POD coefficients 

 ( ){ }qjNka o

k
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In the second-stage, the strength ε  and depth γ  of each 

bubble are obtained from the POD coefficients by 
interpolation of a piecewise linear function 
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The second-stage is written as 
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The problem BPS2 involves minimizing of a piecewise 
function and this is given by the global minimum of the 
solutions of its piecewise function elements. The bubble 
problem is fully solved when the lateral position, the depth 
and the strength of the bubbles are determined. 

 

IV. RESULTS 
The parametric POD is applied to the ensemble that 

contains 312 snapshots corresponding to 39 values of 



 
 

initial depth in the range [-1.25, -5.05] with interval step of 
0.1, and 8 values of strength in the range [100, 800] with 
interval step of 100. The following figures and tables show 
the results for the water barrier problems using the AF 
algorithm implemented in LOQO. We can see that the AF 
algorithm is very efficient for solving 2D and reasonable-
size 3D problems. 

 

 
 

 
 

 

 

 

TABLE I 
COMPUTATION TIME FOR 2D PROBLEMS 

NO. OF BUBBLES COMPUTATION TIME 

5 bubbles 16.0s 
6 bubbles 19.7s 

7 bubbles 23.2s 
8 bubbles 28.6s 

Full simulation of 1 bubble 45.0s 
 
Computation time for solving two-dimensional optimization 

problem in the domain of [0,14], 141 grid points (grid size 0.1) using 
AF algorithm. Solution is obtained by running a LOQO program on 
a Pentium 4 1.6MHz processor, RAM 256Mb 
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Fig. 5.  Optimal parameter values of the bubbles (depth, strength, 
and inception time). 
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Fig. 4.  Constructed surface using 10 bubbles. 
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Fig. 3.  Desired surface shape for 3D problem. 
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Fig. 2.  Optimal parameter values of the bubbles (depth, 
strength, and inception time and position). 
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Fig. 1.  Solution to 2D convex sine-shape surface using 8 

bubbles (dash line is desired surface, solid line is predicted surface) 
 



 
 

 
 

 

V. CONCLUSION 

We presented an efficient method to determine the 
bubble parameters that will give a desired fluid surface 
shape for both 2D and 3D problems. The POD method 
using linear interpolation in parametric space, together 
with the AF algorithm, provides a good approximate 
solution to this optimization problem 
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TABLE II 
COMPUTATION TIME FOR 3D PROBLEMS 

NO.  
BUBBLES 8x8 grid 15x15 grid 29x29 grid 

6 bubbles 19.9s 24.7s 44.2s 
8 bubbles 27.7s 39.3s 84.7s 

10 bubbles 43.7s 63.0s 136.0s 
12 bubbles 64.2s 255.0s 598.0s 
16 bubbles 340.1s 1310.6s 2216.6s 
Full simulation of 1 bubble (1717 nodes)    542.0s 

 
Computation time for solving three-dimensional optimization 

problems  with different numbers of bubbles and grid sizes using AF 
algorithm. Solution is obtained by running a LOQO program on a 
Pentium 4 1.6MHz processor, RAM 256Mb 
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Fig. 6. Lateral positions of the bubbles 


