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Effects of Air Pollution Control on Climate

Ronald Prinn∗, John Reilly*, Marcus Sarofim*, Chien Wang* and Benjamin Felzer†

Abstract

Urban air pollution and climate are closely connected due to shared generating processes (e.g., combustion)
for emissions of the driving gases and aerosols. They are also connected because the atmospheric lifecycles
of common air pollutants such as CO, NOx and VOCs, and of the climatically important methane gas (CH4)
and sulfate aerosols, both involve the fast photochemistry of the hydroxyl free radical (OH). Thus policies
designed to address air pollution may impact climate and vice versa. We present calculations using a model
coupling economics, atmospheric chemistry, climate and ecosystems to illustrate some effects of air pollution
policy alone on global warming. We consider caps on emissions of NOx, CO, volatile organic carbon, and
SOx both individually and combined in two ways. These caps can lower ozone causing less warming, lower
sulfate aerosols yielding more warming, lower OH and thus increase CH4 giving more warming, and finally,
allow more carbon uptake by ecosystems leading to less warming. Overall, these effects significantly offset
each other suggesting that air pollution policy has a relatively small net effect on the global mean surface
temperature and sea level rise.However, our study does not account for the effects of air pollution policies on
overall demand for fossil fuels and on the choice of fuels (coal, oil, gas), nor have we considered the effects
of caps on black carbon or organic carbon aerosols on climate. These effects, if included, could lead to more
substantial impacts of capping pollutant emissions on global temperature and sea level than concluded here.
Caps on aerosols in general could also yield impacts on other important aspects of climate beyond those
addressed here, such as the regional patterns of cloudiness and precipitation.
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1. INTRODUCTION

Urban air pollution has a significant impact on the chemistry of the atmosphere and thus

potentially on regional and global climate. Already, air pollution is a major issue in an increasing

number of megacities around the world, and new policies to address urban air pollution are likely

to be enacted in many developing countries irrespective of the participation of these countries in

any explicit future climate policies. The emissions of gases and microscopic particles (aerosols)

that are important in air pollution and climate are often highly correlated due to shared generating

processes. Most important among these processes is combustion of fossil fuels and biomass which
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produces carbon dioxide (CO2), carbon monoxide (CO), nitrogen oxides (NOx), volatile organic

compounds (VOCs), black carbon (BC) aerosols, and sulfur oxides (SOx, comprised of some

sulfate aerosols, but mostly SO2 gas which subsequently forms white sulfate aerosols). In addition,

the atmospheric lifecycles of common air pollutants such as CO, NOx and VOCs, and of the

climatically important methane (CH4) and sulfate aerosols, both involve the fast photochemistry

of the hydroxyl free radical (OH). Hydroxyl radicals are the dominant “cleansing” chemical in the

atmosphere, annually removing about 3.7 gigatons (1 gigaton = 1015 gm) of reactive trace gases

from the atmosphere; this amount is similar to the total mass of carbon removed annually from

the atmosphere by the land and ocean combined (Ehhalt, 1999; Prinn, 2003).

In this paper we report exploratory calculations designed to show some of the major effects of

specific global air pollutant emission caps on climate. In other words, could future air pollution

policies help to mitigate future climate change or exacerbate it? For this purpose, we will need to

consider carefully the connections between the chemistry of the atmosphere and climate. These

connections are complex and their nonlinearity is exemplified by the fact that concentrations of

ozone in urban areas for a given level of VOC emissions tend to increase with increasing NOx

emissions until a critical CO-dependent or VOC-dependent NOx emission level is reached.

Above that critical level, ozone concentrations actually decrease with increasing NOx emissions

emphasizing the need for policies to consider CO, VOC and NOx emission reductions jointly

rather than independently.

In order to interpret the results of our calculations presented later, it is necessary to understand

some of the reasons for the above complexity and nonlinearity in air chemistry. Hence, the next

section provides a review of the key issues, aimed especially at the non-expert. In two sections

following that, we introduce the global model that we use for our calculations and present and

interpret the results. We end with a summary and concluding remarks.

2. A CHEMISTRY PRIMER

The ability of the lower atmosphere (troposphere) to remove most air pollutants depends on

complex chemistry driven by the relatively small amount of the sun’s ultraviolet light that

penetrates through the upper atmospheric (stratospheric) ozone layer (see: Ehhalt, 1999; Prinn,

2003). This chemistry is also driven by emissions of NOx, CO, CH4 and VOCs and leads to the

production of O3 and OH. Figure 1 reviews, with much simplification, the chemical reactions

involved (Prinn, 1994). The importance of this chemistry to climate change occurs because it

involves both climate-forcing greenhouse gases (H2O, CH4, O3) and air pollutants (CO, NO,

NO2). It also involves aerosols (H2SO4, HNO3, BC) that influence climate (through reflecting or

absorbing sunlight), productivity of ecosystems (through their exposure to O3, and to H2SO4 and

HNO3 in acid rain), and human health (through inhalation). Also important are free radicals and

atoms in two forms: very reactive species like O(1D) and OH, and less reactive ones like HO2,

O(3P), NO and NO2.
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Figure 1. Summary of the chemistry in the troposphere important in the linkage between urban air
pollution and climate (after Prinn, 1994, 2003). VOCs (not shown) are similar to CH4 in their
reactions with OH, but they form acids, aldehydes and ketones in addition to CO.

Referring to Figure 1, when OH reacts with CH4 the CH4 is converted mostly to CO in steps

that consume OH and also produce HO2. The OH in turn converts CO to CO2, NO2 to HNO3, and

SO2 to H2SO4. The primary OH production pathway occurs when H2O reacts with the O(1D)

atoms that come from dissociation of O3 by ultraviolet (UV) light. Within about a second of its

formation, on average, OH reacts with other gases, either by donating its O atom (e.g., to CO to

form CO2 and H) or by removing H (e.g., from CH4 to form CH3 and H2O). The H and CH3

formed in these ways attach rapidly to O2 to form hydroperoxy (HO2) or methylperoxy (CH3O2)

free radicals which are relatively unreactive. If there is no way to rapidly recycle HO2 back to

OH, then levels of OH are kept relatively low. The addition of NOx emissions into the mix

significantly changes the chemistry. Specifically, a second pathway is created in which NO

reacts with HO2 to form NO2 and to reform OH. Ultraviolet light then decomposes NO2 to

produce O atoms (which attach to O2 to form O3) and reform NO. Hence NOx (the sum of NO

and NO2) is a catalyst which is not consumed in these reactions. The production rate of OH by

this secondary path in polluted air is about five times faster than the above primary pathway

involving O(1D) and H2O (Ehhalt, 1999). The reaction of NO with HO2 does not act as a sink for

HOx (the sum of OH and HO2) but instead determines the ratio of OH to HO2. Calculations for
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polluted air suggest that HO2 concentrations are about 40 times greater than OH (Ehhalt, 1999).

This is due mainly to the much greater reactivity of OH compared to HO2.

If emissions of air pollutants that react with OH, such as CO, VOCs, CH4, and SO2, are

increasing, then keeping all else constant, OH levels should decrease. This would increase the

lifetime and hence concentrations of CH4. However, increasing NOx emissions should increase

tropospheric O3 (and hence the primary source of OH), as well as increase the recycling rate of

HO2 to OH (the second source of OH). This OH increase should lower CH4 concentrations. Thus

changing the level of OH causes greenhouse gas, and thus climate, changes. Climate change will

also influence OH. Higher ocean temperatures should increase H2O in the lower troposphere and

thus increase OH production through its primary pathway. Higher atmospheric temperatures also

increase the rate of reaction of OH with CH4, decreasing the concentrations of both. Greater

cloud cover will reflect more solar ultraviolet light, thus decreasing OH, and vice versa.

Added to these interactions involving gases, are those involving aerosols. For example,

increasing SO2 emissions and/or OH concentrations should lead to greater concentrations of

sulfate aerosols which are a cooling influence. Accounting for all of these interactions, and other

related ones (see e.g., Prinn, 2003), requires that a detailed interactive atmospheric chemistry and

climate model be used to assess the effects of air pollution reductions on climate.

3. INTEGRATED GLOBAL SYSTEM MODEL

For our calculations, we utilize the MIT Integrated Global System Model (IGSM). The IGSM

consists of a set of coupled submodels of economic development and its associated emissions,

natural biogeochemical cycles, climate, air pollution, and natural ecosystems (Prinn et al., 1999;

Reilly et al., 1999; Webster et al., 2002, 2003). It is specifically designed to address key

questions in the natural and social sciences that are amenable to quantitative analysis and are

relevant to environmental policy. The current structure of the IGSM is shown in Figure 2.

Chemically and radiatively important trace gases and aerosols are emitted as a result of

human activity. The Emissions Prediction and Policy Analysis (EPPA) submodel incorporates

the major relevant demographic, economic, trade, and technical issues involved in these

emissions at the national and global levels. Natural emissions of these gases are also important

and are computed in the Natural Emissions Model (NEM) which is driven by IGSM predictions

of climate and ecosystem states around the world.

The coupled atmospheric chemistry and climate submodel is in turn driven by the

combination of these anthropogenic and natural emissions. This submodel includes atmospheric

and oceanic chemistry and circulation, and land hydrological processes. The atmospheric

chemistry component has sufficient detail to include its sensitivity to climate and different mixes

of emissions, and to address the effects on climate of policies proposed for control of air

pollution and vice versa (Wang et al., 1998; Mayer et al., 2000). Of particular importance to the

calculations presented here, the urban air pollution (UAP) submodel is based upon, and designed
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Figure 2. Schematic illustrating the framework, submodels, and processes in the MIT Integrated
Global System Model (IGSM). Feedbacks between the component models that are currently
included, or proposed for inclusion in later versions, are shown as solid or dashed lines
respectively (adapted from Prinn et al., 1999).

to simulate, the detailed chemical and dynamical processes in current 3D urban air chemistry

models (Mayer et al., 2000). For this purpose, the emissions calculated in the EPPA submodel

are divided into two parts: urban emissions which are processed by the UAP submodel before

entering the global chemistry/climate submodel, and non-urban emissions which are input

directly into the large-scale model. The UAP enables simultaneous consideration of control

policies applied to local air pollution and global climate. It also provides the capability to assess

the effects of air pollution on ecosystems, and to predict levels of irritants important to human

health in the growing number of megacities around the world. The atmospheric and oceanic

circulation components in the IGSM are simplified compared to the most complex models

available, but they capture the major processes and, with appropriate parameter choices, can

mimic quite well the zonal-average behavior of the complex models (Sokolov and Stone, 1998;

Sokolov et al., 2003). We use the version of the IGSM with 2D atmospheric and 2D oceanic
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submodels here, although the latest version has a 3D ocean to capture better the deep ocean

circulations that serve as heat and CO2 sinks (Kamenkovich et al., 2002, 2003). The 2D/2D

version we use here resolves separately the land and ocean (LO) processes at each latitude and so

is referred to as the 2D-LO-2D version.

The outputs from the coupled atmospheric chemistry and climate model then drive a

Terrestrial Ecosystems Model (TEM; Xiao et al., 1998) which calculates key vegetation

properties including production of vegetation mass, land-atmosphere CO2 exchanges, and soil

nutrient contents in 18 globally distributed ecosystems. TEM then feeds back its computed CO2

fluxes to the climate/atmospheric chemistry submodel, and its soil nutrient contents to NEM, to

complete the IGSM interactions. The current IGSM does not include treatment of black carbon

(BC) aerosols (see Figure 1). Detailed studies with a global 3D chemistry and climate model

indicate multiple, regionally variable and partially-offsetting, effects of BC on absorption and

reflection of sunlight, reflectivity of clouds, and the strength of lower tropospheric convection

(Wang, 2004). These detailed studies also suggest important BC-induced changes in the

geographic pattern of precipitation, not surprisingly since aerosols have important and complex

effects on cloud formation, and on whether clouds will even produce precipitation. Methods to

capture these effects in the IGSM are currently being explored. In light of the difficulty in

simulating these and other regional effects, the numerical results presented here are limited to

temperature and sea level effects, primarily at the global and hemispheric level.

4. NUMERICAL EXPERIMENTS

To investigate, at least qualitatively, some of the important potential impacts of controls of air

pollutants on temperature, we have carried out runs of the IGSM in which individual pollutant

emissions, or combinations of these emissions, are held constant from 2005 to 2100. These are

compared to a reference run (denoted “ref”) in which there is no explicit policy to reduce

greenhouse gas emissions (see Reilly et al., 1999; Webster et al., 2002).

Specifically, in five runs of the IGSM, we consider caps at 2005 levels of emissions of the

following air pollutants:

(1) NOx only (denoted “NOx cap”),
(2) CO plus VOCs only (denoted “CO/VOC cap”),
(3) SOx only (denoted “SOx cap”),
(4) Cases (1) and (2) combined (denoted “3 cap”),
(5) Cases (1), (2) and (3) combined (denoted “all cap”).

Cases (1) and (2) are designed to show the individual effects of controls on NOx and reactive

carbon gases (CO, VOC), although such individual actions are very unlikely. Case (3) addresses

further controls on emissions of sulfur oxides from combustion of fossil fuels and biomass, and

from industrial processes. Cases (4) and (5) address combinations more likely to be

representative of a real comprehensive air pollution control approach.
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One important caveat in interpreting our results is that we are neglecting the effects of air

pollutant controls on: (a) the overall demand for fossil fuels (e.g., leading to greater efficiencies

in energy usage and/or greater demand for non-fossil energy sources), and (b), the relative mix of

fossil fuels used in the energy sector (i.e. coal versus oil versus gas). Consideration of these

effects, which may be very important, will require calculation in the EPPA model of the impacts

of NOx, CO, VOC and SOx emission reductions on the cost of using coal, oil, and gas. Such

calculations have not yet been included in the current global economic models (including EPPA)

used to address the climate issue. Such inclusion requires relating results from existing very

detailed studies of costs of meeting near-term air pollution control to the more aggregated

structure, and longer time horizon, of models used to examine climate policy.

In Figure 3 we show the ratios of the emissions of NOx, CO/VOC, and SOx in the year 2100

to the reference case in 2100 when their emissions are capped at 2005 levels. Because these

chemicals are short-lived (hours to several days for NOx, VOCs, and SOx, few months for CO),

the effects of their emissions are largely restricted to the hemispheres in which they are emitted

(and for the shortest-lived pollutants restricted to their source regions). Figure 3 therefore shows

hemispheric as well as global emission ratios. For calibration, the reference global emissions of

NOx, CO/VOC, and SOx in 2100 are about 5, 2.5, and 1.5 times their 2000 levels.

0

0.2

0.4

0.6

0.8

1.0

1.2

CO NOx SO2

Global-Ref

NH-Ref

SH-Ref

Global-Cap

NH-Cap

SH-Cap

REF

CAP

REF

CAP

REF

CAP

R
a
ti

o
 o

f 
E

m
is

s
io

n
s
 t

o
 G

lo
b

a
l

 R
e
fe

re
n

c
e
 i
n

 2
1
0
0

Figure 3. Global, northern hemispheric (NH) and southern hemispheric (SH) emissions in the year
2100 of CO/VOC, NOx and SOx, when they are capped at 2005 levels (CAP), are shown as ratios to
emissions in the reference (REF) case (no caps).
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4.1 Effects on concentrations

In Figure 4, the global and hemispheric average lower tropospheric concentrations of CH4,

O3, sulfate aerosols, and OH in each of the above five capping cases are shown as percentage

changes from the relevant global or hemispheric reference. From Figure 4a, the major global

effects of capping SOx are to decrease sulfate aerosols and slightly increase OH (due to lower

SO2 which is an OH sink). Capping of NOx leads to decreases in O3 and OH and an increase in

CH4 (caused by the lower OH which is a CH4 sink). The CO and VOC cap increases OH and

thus increases sulfate (formed by OH and SO2) and decreases CH4. Note that CO and VOC

changes have opposing effects on O3 so the net changes when they are capped together are small.

Combining NOx, CO and VOC caps leads to an O3 decrease (driven largely by the NOx decrease)

and a slight increase in CH4 (the enhancement due to the NOx caps being partially offset by the

opposing CO/VOC caps). Finally, capping all emissions causes substantial lowering of sulfate

aerosols and O3 and a small increase in CH4.

The two hemispheres generally respond somewhat differently to these caps due to the short

air pollutant lifetimes and dominance of northern over southern hemispheric emissions (Figs. 4b

and 4c). The northern hemisphere contributes the most to the global averages and therefore

responds similarly (compare Figs. 4a and 4c). The southern hemisphere shows very similar

decreases in sulfate aerosol from its reference when compared to the northern hemisphere when

either SOx or all emissions are capped (compare Figs. 4b and 4c).

When compared to the southern hemisphere, the northern hemispheric ozone levels decrease

by much larger percentages below their northern hemisphere reference when either NOx,

NOx/CO/VOC, or all emissions are capped. Capping NOx emissions leads to significant

decreases in OH and thus increases in methane in both hemispheres (Figs. 4b and 4c). Because

methane has a long lifetime (about 9 years, Prinn et al., 2001) relative to the interhemispheric
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Figure 4. Concentrations of climatically and chemically important species (CH4, O3, aerosols, OH) in
the five cases with capped emissions are shown as percent changes from their relevant global
or hemispheric average values in the reference case for the year 2100: (a) global-average;
(b) southern hemispheric; and (c) northern hemispheric concentrations.
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mixing time (about 1 to 2 years), its global concentrations are influenced by OH changes in

either hemisphere alone, or in both. Hence CH4 also increases in both hemispheres when

NOx/CO/VOC or all emissions are capped even though the OH decreases only occur in the

northern hemisphere in these two cases (see Figs. 4b and 4c).

4.2 Effects on ecosystems

Effects of air pollution on the land ecosystem sink for carbon can be significant due to

reductions in ozone-induced plant damage (Figure 5, see also Felzer et al., 2004). Net primary

production (NPP, the difference between plant photosynthesis and plant respiration), as well as

net ecosystem production (NEP, which is the difference between NPP and soil respiration plus

decay, and represents the net land sink), both increase when ozone decreases. This is evident in

the case illustrated in Figure 5 where all pollutants are capped and ozone decreased by about

13% globally (Figure 4a). The effect is even greater when we assume that cropland and managed

forests receive optimal levels of nitrogen fertilizer (“with Fertilizer” case; Felzer et al., 2004a,b).

The land sink (NEP) is increased by 30 to 49% or 0.6 to 0.9 gigatons of carbon (in CO2) in 2100

through the illustrated pollution caps (Figure 5, 1 gigaton=1015 gm).

These ecosystem calculations do not include the additional positive effects on NPP and NEP

of decreased acid deposition and decreased exposure to SO2 and NO2 gas, that would result from

the pollution caps considered. They also do not include the negative effects on NPP and NEP of

decreasing nutrient nitrate and possibly sulfate deposition that also arise from these caps.
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Figure 5. Net annual uptake of carbon by vegetation alone (net primary production) and vegetation
plus soils (net ecosystem production, the land carbon sink) for the NOx/SOx/CO plus VOC capped
(allcap) case is shown for the year 2100 as a percentage change from the reference case. The
results show the effects with optimal nitrogen use through fertilization on cropland (with
Fertilizer) or with levels of nitrogen in croplands assumed to be the same as those in equivalent
natural ecosystems (without Fertilizer).
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4.3 Economic effects

If we could confidently value damages associated with climate change, we could estimate the

avoided damages in dollar terms resulting from reductions in temperature due to the lowered

level of atmospheric CO2 caused by the above increases in the land carbon sink achieved with

the ozone caps. We could similarly value the temperature changes due to caps in other pollutants

besides ozone. However monetary damage estimates suffer from numerous shortcomings (e.g.,

Jacoby, 2004). Felzer et al. (2004a,b) valued increases in carbon storage in ecosystems due to

decreased ozone exposure in terms of the avoided costs of fossil fuel CO2 reductions needed to

achieve an atmospheric stabilization target. The particular target they examined was 550 ppm

CO2. The above extra annual carbon uptake (due to avoided ozone damage) of 0.6 to 0.9 gigatons

of carbon is only 2 to 4% of year 2100 reference projections of anthropogenic fossil CO2

emissions (which reach nearly 25 gigatonsC/year in 2100 according to Felzer et al. (2004b)).

However, as these authors point out, this small level of additional uptake can have a surprisingly

large effect on the cost of achieving a climate policy goal. Here we conduct a similar analysis

using a 5% discount rate, and adopting the policy costs associated with 550 ppm CO2

stabilization, to estimate the policy cost savings that would result from the increased carbon

uptake through 2100 in the “allcap” compared to the “ref” scenarios shown in Figure 5. The

savings are $2.5 (“without Fertilizer”) to $4.7 (“with Fertilizer”) trillion (1997 dollars). These

implied savings are 12 to 22% of the total cost of a 550ppm stabilization policy.

The disproportionately large economic value of the additional carbon uptake has two reasons.

One reason is that the fossil carbon reduction savings are cumulative; the total reference 2000-

2100 carbon uptake is 36 (without Fertilizer) and 75 (with Fertilizer) gigatons, or about 6 to 13

years of fossil carbon emissions at current annual rates. A second reason is that the additional

uptake avoids the highest marginal cost options. This assumes that the implemented policies

would be cost effective in the sense that the least costly carbon reduction options would be used

first, and more costly options would only be used later if needed. An important caveat here is

that, as shown in Felzer et al. (2004a,b), a carbon emissions reduction policy also reduces ozone

precursors so that an additional cap on these precursors associated with air pollution policy

results in a smaller additional reduction, and less avoided ecosystem damage. A pollution cap as

examined here, assuming there was also a 550ppm carbon policy in place, leads to only a 0.1 to

0.8 gigaton increase in the land sink in 2100 (compare 0.6 to 0.9 gigatons in Figure 5) and a

cumulative 2000-2100 increase of carbon uptake of 13 to 40 gigatons of carbon, which is about

one-half of the above increased cumulative uptake when the pollution cap occurs assuming there

is no climate policy.
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4.4 Effects on temperature and sea level

The impact of these various pollutant caps on global and hemispheric mean surface

temperature and sea level changes from 2000 to 2100 are shown in Figure 6 as percentages

relative to the global-average reference case changes of 2.7°C and 0.4 meters respectively.

The largest increases in temperature and sea level occur when SOx alone is capped due to the

removal of reflecting (cooling) sulfate aerosols. Because most SOx emissions are in the northern

hemisphere, the temperature increases are greatest there. For the NOx caps, temperature increases

in the southern hemisphere (driven by the CH4 increases), but decreases in the northern

hemisphere (due to the cooling effects of the O3 decreases exceeding the warming driven by the

CH4 increases). For CO and VOC reductions, there are small decreases in temperature driven by

the accompanying aerosol increases and CH4 reductions, with the greatest effects being in the

northern hemisphere where most of the CO and VOC emissions (and aerosol production) occur.

When NOx, CO, and VOCs are all capped, the nonlinearity in the system is evidenced by the

fact that the combined effects are not simple sums of the effects from the individual caps. Ozone
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Figure 6. Effects of air pollution caps in the five capping cases on the global, northern hemispheric
and southern hemispheric average temperature increases, and the global sea level rise,
between 2000 and 2100 are shown as percent changes from their average values (global or
hemispheric) in the reference case. Also shown are the equivalent results for the case where the
enhanced sink due to the ozone cap is included along with the caps on all pollutants. For this
case, we assume the average of the fertilized and non-fertilized sink enhancements from
Figure 5.
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decreases and aerosol increases (offset only slightly by CH4 increases) lead to even less warming

and sea level rise than obtained by adding the CO/VOC and NOx capping cases. Finally the

capping of all emissions yields temperature and sea level rises that are smaller but qualitatively

similar to the case where only SOx is capped, but the rises are greater than expected from simple

addition of the SOx-capped and CO/VOC/NOx-capped cases. Nevertheless, the capping of CO,

VOC and NOx serves to reduce the warming induced by the capping of SOx.

Note that these climate calculations in Figure 6 omit the cooling effects of the CO2 reductions

caused by the lessening of the inhibition of the land sink by ozone (Figure 5). This omission is

valid if we presume that anthropogenic CO2 emissions, otherwise restricted by a climate policy,

are allowed to increase to compensate for these reductions. This was the basis for our economic

analysis in the previous section. To illustrate the lowering of climate impacts if we allowed the

sink-related CO2 reductions to occur, we show a sixth case in Figure 6 (“allcap+sink”) which

combines the capping of all air pollutant emissions with the enhanced carbon sink from Figure 5.

Now we see that the sign of the warming and sea level rise seen in the “allcap” case is reversed

in the “allcap+sink” case. If we could value this lowering of climate impacts, it would provide an

alternative to the economic analysis in section 4.3.

5. SUMMARY AND CONCLUSIONS

To illustrate some of the impacts of air pollution policy on climate change, we examined five

highly idealized but informative scenarios for placing caps on emissions of SOx, NOx, CO plus

VOCs, NOx plus CO plus VOCs, and all of these pollutants combined. These caps kept global

emissions at 2005 levels through 2100 and their effects on climate were compared to a reference

run with no caps applied. Our purpose was not to claim that these scenarios are in any way

realistic or likely, but rather that they served to illustrate quite well the complex interactions

between air pollutant emissions and changes in temperature and sea level.

In general, placing caps on NOx alone, or NOx, CO and VOCs together, leads to lower ozone

levels, and thus less radiative forcing of climate change by this gas, and to less inhibition by ozone

of carbon uptake by ecosystems which also leads to less radiative forcing (this time by CO2). Less

radiative forcing by these combined effects means less warming and less sea level rise.

Placing caps on NOx alone also leads to decreases in OH and thus increases in CH4. These OH

decreases and CH4 increases are lessened (but not reversed) when there are simultaneous NOx,

CO and VOC caps. Increases in CH4 lead to greater radiative forcing. Placing caps on SOx leads

to lower sulfate aerosols, less reflection of sunlight back to space by these aerosols (direct effect)

and by clouds seeded with these aerosols (indirect effect), and thus to greater radiative forcing of

climate change due to solar radiation. Enhanced radiative forcing by these aerosol and CH4

changes combined leads to more warming and sea level rise. Hence these impacts on climate of

the pollutant caps partially cancel each other. Specifically, depending on the capping case, the

2000-2100 reference global average climate changes are altered only by +4.8 to –2.6%
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(temperature) and +2.2 to –2.2 % (sea level). Except for the NOx alone case, the alterations of

temperature are of the same sign but significantly greater in the northern hemisphere (where

most of the emissions and emission reductions occur) than in the southern hemisphere. Note that

for the NOx alone caps, the temperature decrease caused by ozone reductions is greater than the

temperature increase driven by methane increases in the northern hemisphere while the opposite

is true in the southern hemisphere (Figure 6).

It is well established that urban air pollution control policies are beneficial for human health

and downwind ecosystems. As far as ancillary benefits are concerned, our calculations suggest

that air pollution policies may have only a small influence, either positive or negative, on

mitigation of global-scale climate change. However, even small contributions to climate change

mitigation can be disproportionately important in economic terms. This occurs because, as we

show in the case of increased carbon uptake, these effects mean that the highest cost climate

change mitigation measures, those occurring at the margin, can be avoided. To further check on

the validity of our conclusions, future work should include:

(1) the effects of air pollution policy on overall demand for fossil fuels and individual
demands for coal, oil and gas;

(2) the effects of caps on black carbon (as a regulated air pollutant) on climate;

(3) the effects on ecosystems of changes in deposition rates of acids, nitrates, and sulfates
and levels of exposure to SO2 and NO2 resulting from air pollution reductions.
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