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Abstract— This paper presents a model and analysis of a synchronous
tandem flow line that produces two different part types on unreliable
machines. The machines operate according to a static priority rule,
operating on the highest priority part whenever possible, and operating
on lower priority parts only when unable to produce those with higher
priorities. We develop a newdecomposition methodto analyze the behav-
ior of the manufacturing system by decomposing the long production line
into small analytically tractable components. As a first step in modeling a
production line with more than one part type, we restrict ourselves to the
case where there are two part types. Detailed modeling and derivations
are presented with a small two-part type production line that consists
of two processing machines and two demand machines. Estimates for
performance measures, such as average buffer levels and production
rates, are presented and compared to extensive discrete event simulation.

Index Terms— manufacturing system, flexible, flow line, finite buffers,
unreliable machines, markov chain model, decomposition.

I. I NTRODUCTION

This paper presents a model and analysis of a synchronous tandem
production line that produces two different part types on unreliable
machines. Inventory is stored between machines in finite buffers.
We assume that machines in the processing line are flexible in that
they can operate on different part types, and there are no set-up
penalties incurred when machines switch production from one part
type to another. The machines operate according to a static priority
rule, operating on the highest priority part whenever possible, and
operate on lower priority parts only when unable to produce those
with higher priorities due to either blockage or starvation.

Gershwin [1] introduced a decomposition method that analyzes
the behavior of the manufacturing system with a stochastic queuing
model. This method models a manufacturing system as a flow line
with unreliable machines and finite buffers. This decomposition
method was limited to a single part type case. Nemec [2] formulated
a deterministic single failure multi-part type transfer line. However,
this formulation worked only for small two-part type lines, and
there is no clear way of generalizing his equations for longer lines.
Syrowicz [3] proposed a way of analyzing two-part type line with
multiple-failure modes. This approach made the decomposition of
the multi-part type line easier than the decomposition introduced by
Nemec [2]. However, the Markov model of the two-machine line,
the basic building block of the decomposition, for this model was
complex. Moreover, there were too many variables and equations to
solve with this.

As a first step in modeling a transfer line with more than one
part type, we restrict ourselves to the case where there are two part
types. We verify our results by comparing them with simulation.
The qualitative behavior of the multiple-part-type processing line
under different supply and demand scenarios is also investigated.

This paper is organized as follows. Section II introduces a Markov
model of a processing line with two different part types. The
decomposition of the long line into smaller, tractable two-machine

lines is also discussed. Section III presents the analysis of the Markov
chain for the two-machine lines. Compared to the single-part-type
line, the two-part-type line behavior is very complicated. However,
all of the fundamental concepts of the decomposition of a two-part-
type production line can be described in terms of the small production
line system, composed of two processing machines and two demand
machines, without becoming burdened with the algebraic difficulties
of the longer production line system. Section IV introduces the
modeling process of the small multiple-stage production line. Then
Type 1 and Type 2 part decomposition methods are introduced
for the small production line in Section V and in Section VI.An
algorithm to solve the decomposition is presented in Section VII, as
are numerical results concerning the accuracy of the decomposition,
and the qualitative behavior of the system.

II. T WO-PART-TYPE PROCESSINGL INE

A. Notation

Figure 1 represents a production line processing two different
part types. The line consists of two kinds of components: processing
machinesMi, denoted by the squares and finite-capacity storage
buffers Bi,j for work in process inventory, denoted by the circles.
Let us defineK to be the number of machines that are processing
two different part types in the line, not including the supply and
demand machines. At the beginning and end of the line, there are
supply machinesM0,1, andM0,2, and demand machines:MK+1,1,
andMK+1,2.

MachinesM0,1 and MK+1,1 process only Type 1 parts, while
machinesM0,2 and MK+1,2 process only Type 2 parts. Each
machine, other than the supply and demand machines, process both
part types. We assume that there is no set-up time incurred when
the machines switch production from one part type to another.
When Mi completes work on a part, it sends the part to a buffer
downstream of the machine. Each part type has a distinct buffer
after each machine. Therefore, a Type 1 part processed atMi would
be sent toBi,1. A Type 2 part processed at the same machine would
be sent toBi,2.

We assume that all the machines in the line, including supply
and demand machines, are unreliable. Letα denote the state of a
machine. If α = 1, the machine is said to beup or working. If
α = 0, the machine is said to bedown or failed. We let α0,1(t)
denote the state of supply machineM0,1 at the end of timet.
We defineα0,2(t) similarly for M0,2. For the demand machine,
MK+1,1 and MK+1,2, we let the corresponding state variables be
αK+1,1(t) and αK+1,2(t). For processing machineMi, the state
variable representing the state of the machine at the end of timet is
written αi(t). We make the assumption that all the machines in the
line, including the supply and demand machines, havehomogeneous
processing times. That is, the lengths of time that parts spend in
machines are fixed, known in advance, and the same for all the
machines. For convenience, the processing times are assumed to
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Fig. 1. A two-part type production line

be scaled to unity. Furthermore, we assume that the yield of all
machines is 100%. That is, we do not allow the scrapping or rework
of parts.

We assume that all buffers, including the supply and demand
buffers, have finite size. The size of bufferBi,j is denotedNi,j ,
where i indicates the production stage, andj = 1 or 2, represents
the part type. We let buffersB0,1 andB0,2 denote the supply buffers
for Type 1 and Type 2, respectively. Likewise, buffersBK,1 and
BK,2 denote the demand buffers for Type 1 and Type 2, respectively.
We denote the current level ofBi,j at the end of timet by ni,j(t).
Therefore,0 ≤ ni,j(t) ≤ Ni,j , for all (i, j), and for all t ≥ 0. A
machine is said to bestarvedfor a given part type if the upstream
buffer corresponding to that part type is empty. It isblockedfor a
given part type if the corresponding downstream buffer is full. We
make the assumptions that the supply machines are never starved and
the demand machines are never blocked.

B. Machine Parameters and Dynamics

As mentioned earlier, all machines in the line are assumed to be
unreliable. We further assume that machines cannot fail if they are
idle. This is calledoperation dependent failures. It means that the
supply machines cannot fail if they are blocked and the demand
machines cannot fail if they are starved. A processing machine
cannot fail if it is either starved or blocked for Type 1 parts, and at
the same time starved or blocked for Type 2 parts.

All machines are assumed to have geometrically distributed up and
down times. We assume that the probability thatMi fails is the same,
regardless of the part type the processing machine is working on. We
let ri represent the probability thatMi is up in timet + 1, given it
was down in timet. Likewise,pi represents the probability thatMi

is down in timet + 1, given it was up and not blocked or starved in
time t. For the supply machines, we letr0,1 and r0,2 represent the
probability thatM0,1 andM0,2 are up in timet+1, given they were
down in time t. Also, p0,1 and p0,2 represent the probability that
M0,1 andM0,2 are down in timet + 1, given they were upand not
blocked in timet. For the demand machinesMK+1,1 andMK+1,2,
the corresponding parameters are writtenrK+1,1, pK+1,1, rK+1,2,
andpK+1,2. For Mi, the machine parameters can be written as:

ri = Pr [αi(t + 1) = 1|αi(t) = 0] (1)

pi = Pr [αi,1(t + 1) = 0|
{αi,1(t) = 1 ∩ ni−1,1(t) > 0 ∩ ni,1(t) < Ni,1} ∪
{αi,1(t) = 1 ∩ (ni−1,1(t) = 0 ∪ ni,1(t) = Ni,1)

∩ni−1,2(t) > 0 ∩ ni,2(t) < Ni,2}]
for i = 1, . . . , K

Likewise, for the supply and demand machines, the machine
parameters are defined as:

r0,i = Pr [α0,i(t + 1) = 1|α0,i(t) = 0]

p0,i = Pr [α0,i(t + 1) = 0|α0,i(t) = 1 ∩ n0,i(t) < Ni]

for i = 1, 2

rK+1,j = Pr [αK+1,j(t + 1) = 1|αK+1,j(t) = 0]

pK+1,j = Pr [αK+1,j(t + 1) = 0|
αK+1,j(t) = 1 ∩ nK,j(t) > 0]

for j = 1, 2

C. Part Type Priority Policy

Since each machine in the production line must choose which part
to work on when it has a choice, we are required to state a policy
by which that choice is made. Our assumption is that each machine
will work on Type 1 parts whenever the machine is up, the upstream
buffer for Type 1 parts is not empty, and the downstream buffer for
Type 1 parts is not full. Each machine will only work on Type 2
parts if it is up, and either blocked or starved for Type 2 parts, and
not starved or blocked for Type 2 parts.

D. Production Rate

Let us denote the production rate of Type 1 parts atMi by Ei,1.
This is the fraction of time thatMi is working on Type 1 parts. We
know thatMi will make a Type 1 part at the end of timet + 1 if
Mi is not starved for Type 1 parts at timet, Mi is not blocked for
Type 1 parts at timet, andMi is up at the end of timet + 1. This
probability is expressed as follows:

Ei,1 = Pr [αi(t + 1) = 1 ∩ (2)

ni−1,1(t) > 0 ∩ ni,1(t) < Ni,1]

Let the quantityEi,2 denote the production rate of Type 2 parts.
This is the fraction of time thatMi is working on Type 1 parts. From
our assumptions, we know thatMi will make a Type 2 part at time
t + 1, if Mi is either blocked or starved for Type 1 at timet; Mi is
not starved or blocked for Type 2; andMi is up at the end of time
t + 1. This is:

Ei,2 = Pr [αi(t + 1) = 1 ∩ (ni−1,1(t) = 0∪ (3)

ni,1(t) = Ni,1) ∩ ni−1,2(t) > 0 ∩ ni,2(t) < Ni,2]

In steady state, because of conservation of flow, we require that
each machine in the line makes the same number of Type 1 and Type
2 parts. If we denote the throughput for the demand machine for Type
j parts byEK+1,j , and the supply machine for Typej parts byE0,j ,
then we must have



E0,j = E1,j = E2,j = . . . = Ei,k = EK+1,j , for j = 1, 2

E. Basic Idea of Decomposition

We intend to break down the larger system into analytically
tractable two-machine lines, and capture the local behavior of the
long line, as seen by an observer in a buffer, by choosing appropriate
parameters of the two-machine lines. This decomposition procedure
is represented in Figure 2. As discussed earlier, the idea is to fool
an observer in a buffer in the long, multi-part type processing line
into thinking he is in a two-machine line. In the figure, the inflow
and outflow behavior of material an observer in bufferBi,1 could
see is modeled by the two-machine, one-part lineL(i, 1).

Close observation of the dynamics of the long line, however,
shows the necessity for a new two-machine line model. The reason
is as follows. Suppose that we take the point of view of an observer
in Bi,1. We misinform this observer: we lead him to believe that he
is watching the flow in the only buffer in a two-machine, one-buffer,
one-part type system. Let us assume that the observer sees that
the outflow from his buffer has ceased, but the inflow has not.
Eventually, unless the outflow resumes or the inflow ceases,Bi,1

will fill up. According to our scheduling rule,Mi will immediately
begin making Type 2 parts, if it is able to. Suppose it does, and that
Mi fails while making a Type 2 part. Now suppose that whileMi

is down, the outflow fromBi,1 begins again. Then the sequence
of events that the observer will see are that the outflow ceased, the
buffer filled up, but when the outflow began again, the inflow did
not. As far as the observer in the buffer is concerned, the machine
upstream of him failed while it was blocked.

There is a subtlety here that must be paid close attention to.
While this apparent idleness failure is behavior that an observer in
a buffer sees, it is important to remember that the real machines
do not fail when they are idle. It only appears to the observer that
the machine has failed during an idle period, because the observer
believes that he is in a two-machine, one-part type line. Therefore,
while in our previous model we assumed that both the real machines
and the pseudo-machines in the two-machine sub-lines had operation
dependent failures, we must relax that assumption for the two-
machine sub-lines in the two-part type case. Thus, a new two-machine
line model is in order. We present a discrete-time, discrete-state
Markov model of precisely such a line in Section III.

III. T WO-MACHINE L INE WITH IDLENESSFAILURE

A. Idleness Failure and Failure-Mode Change

As discussed in the previous section, in order to decompose the
Markov chain model of the two-part-type processing line, we need
a new two-machine line. The two-machine line presented here is
similar to the deterministic processing time with multi-failure-mode
model described by Tolio [4].

1) Idleness Failure:As in the Tolio decomposition, the upstream
machine or downstream machine in the two-machine-line can fail
into local failure modesand remote failure modes. The local failure
mode is the failure of the real machine as represented by the
upstream machines or downstream machines in the two-machine
line. The remote failure mode is the failure introduced to account
for the effect of a local failure caused by a machine outside of
the two-machine-line. We follow the concept of multi-failure mode

in constructing the two-machine-line. However, in our model, as
discussed earlier, the machines in the two-machine-line are no longer
restricted to failing only if they are not blocked or starved. Since a
machine in the two-machine line can fail while it is idle – starved
or blocked – we call the line,a two-machine line with idleness failure.

2) Failure Mode Change:When an upstream or downstream ma-
chine in the two-machine line for type-one parts is in a remote failure
mode, the real machine represented by the upstream or downstream
machine could work on type-two parts. If this real machine fails
while working on a type-two; the upstream or downstream machine
will realize that the failure mode which it is in has been shifted
from the remote failure mode, which is an initial failure, to the local
failure mode. We call this shifting mode changea failure mode
change. There are two important observations about failure-mode
changes. The first is that a failure mode can only change to a mode
corresponding to a machine which is closer to the observer. The
reason for this is that the initiating failure corresponds to a real failure
of some machines, which has propagated by means of starvation or
blockage to the observer’s location.

B. Two-Machine-Line Notations and Parameters

The two-machine lines are illustrated in Figure 2. As is our
convention, the machines are denoted by squares, and the buffer
by circles. We denote the upstream machine byMu, and the
downstream machine byMd. We denote the size of the intermediate
buffer byN , and the current level of the intermediate buffer byn. It
follows that0 ≤ n ≤ N . We define the state of the two-machine line
to bes = (n, αu, αd). αu is ∆i if Mu is down at modei, andΥu

if Mu is up.αd is ∆d
j if Md is down at modej, andΥd if Md is up.

Material flows into the upstream machine from an infinite supply,
is processed by the machine, and when processing is complete,
the material is placed into the buffer until it is processed by
the downstream machine. Upon finishing being processed by the
downstream machine, the part leaves the line. We assume that
there is always room for the downstream machine to unload a part
it has just completed processing. We make the assumption that
there is only one class of parts produced by the line, and that the
production time at each of the machines is identical, and equal to one.

The machines are unreliable and can fail in multiple failure modes.
We assume that the machines can fail while they are either operating
on a part or idle, but we do not assume that the probabilities of
failure are identical. In particular, we assume that the probability
that Mu fails into modei while it is working on a part, given it
is not blocked, ispu

i , and the probability that it fails into modej
while it is blocked isqu

j . Note that we donot assume that there is a
new failure mode, but only that there is a new way of reaching the
failure mode. We define the quantitiespd

i and qd
j for Md similarly.

Finally, we denote the probabilities thatMu and Md are repaired
while they are down at failure modej by ru

j andrd
j , respectively.

A probability expressed aszu
i,i′ represents the probability of the

upstream machine having a change from down modei to down mode
i′. The expressionzd

j,j′ represents the probability that the downstream
machine has a change from down modej to down modej′. Defining
α†(t) as the state (up state or down state) of a machine† at time t
(where† is eitheru or d for upstream or downstream), then we can
definer, p, q, andz as
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r†j,i = Pr[α†(t + 1) = Υ†i | α†(t) = ∆†
j ]

p†i,j = Pr[α†(t + 1) = ∆†
j | α†(t) = Υ†i andn(t) < N ]

q†i,j = Pr[α†(t + 1) = ∆†
j | α†(t) = Υ†i andn(t) = N ]

z†j,j′ = Pr[α†(t + 1) = ∆†
j′ | α†(t) = ∆†

j ]

for † = u andd

We also defineP u andP d such that

P u =

J∑
j=1

pu
j and P d =

L∑
l=1

pd
l

whereJ and L are the numbers of failure modes for the upstream
machine and downstream machine respectively. The set of parameters
pu

j andpd
l must be such thatP u < 1 andP d < 1. We define

Qu =

J∑
j=1

qu
j and Qd =

L∑
l=1

qd
l

and again, the set of parametersqu
j andqd

l must be such thatQu < 1
andQd < 1.



C. Efficiency with Idleness Failure

For every machine failure, there is also a repair. That is, for
both the up- and down-stream machines in the two-machine line,
the conditional probability that a machine is repaired, given it is
down, times the probability that it is down is equal to the conditional
probability that the machine fails times the probability that the
machine is up. For the upstream machines, that is expressed as

ru
j (Pr[αu = ∆u

j ∩ n < N ] + Pr[αu = ∆u
j ∩ n = N ]) (4)

= pu
j Pr[αu = Υu

j ∩ n < N ] + qu
j Pr[αu = Υu

j ∩ n = N ]

Likewise, for the downstream machine,

rd
l (Pr[αd = ∆d

l ∩ n > 0] + Pr[αd = ∆d
l ∩ n = 0]) (5)

= pd
l Pr[αd = Υd

l ∩ n > 0] + qd
l Pr[αd = Υd

l ∩ n = 0]

We can use (4) and (5) to derive expressions for efficiencies for
upstream and downstream machines. The upstream machine produces
a part in time stept + 1 if it is up at the end of time stept + 1, and
was not blocked at the end of time stept. We can then writeEu as
follows:

Eu = Pr[αu(t + 1) = Υu ∩ n(t) < N ] (6)

Observe that this expression has both time stept+1 and time step
t in it. We proceed by conditioning on events occurring time step
t to write (6) in terms of events occurring entirely in time stept.
By doing so, we will be able to express the production rate of the
upstream machine entirely in terms of the state probabilities, which
are defined only on one time step.

Eu = Pr[αu(t + 1) = Υu ∩ n(t) < N ]

= Pr[αu(t + 1) = Υu|αu(t) = Υu ∩ n(t) < N ]

×Pr[αu(t) = Υu ∩ n(t) < N ]

+

J∑
j=1

(Pr[αu(t + 1) = Υu|αu(t) = ∆u
j ∩ n(t) < N ]

×Pr[αu(t) = ∆u
j ∩ n(t) < N ])

= (1− P u)Pr[αu(t) = Υu ∩ n(t) < N ]

+

J∑
j=1

ru
j Pr[αu(t) = ∆u

j ∩ n(t) < N ]

If we apply the fact that the repair frequency equals failure
frequency expressed in (4), thenEu is

Eu = Pr[{αu(t) = Υu} ∩ {n(t) < N}]
+ QuPr[{αu(t) = Υu} ∩ {n(t) = N}]

−
J∑

j=1

ru
j Pr[{αu(t) = ∆u

j } ∩ {n(t) = N}]

since

Pr[{αu(t) = Υu} ∩ {n(t) = N}] =

L∑
l=1

Pr(N, Υu, ∆d
l )

Pr[{αu(t) = ∆u
j } ∩ {n(t) = N}] =

L∑
l=1

Pr(N, ∆u
j , ∆d

l )

Eu is therefore,

Eu =

N−1∑
n=0

Pr(n, Υu, Υd) +

N−1∑
n=0

L∑
l=1

Pr(n, Υu, ∆d
j ) (7)

+ Qu

L∑
l=1

Pr(N, Υu, ∆d
l )−

J∑
j=1

ru
j

L∑
l=1

Pr(N, ∆u
j , ∆d

l )

Similarly, for the downstream machine:

Ed =

N∑
n=1

Pr(n, Υu, Υd) +

N∑
n=1

J∑
j=1

Pr(n, ∆u
j , Υd) (8)

+ Qd

J∑
j=1

Pr(0, ∆u
j , Υd)−

L∑
l=1

rd
l

J∑
j=1

Pr(0, ∆u
j , ∆d

l )

IV. SMALL TWO-PART-TYPE PRODUCTION L INE

In this section, we introduce the concepts of the decomposition
equations of a two-part-type long production line using a small
production system. All of the fundamental concepts of the
decomposition of the two-part-type production line can be described
in terms of the small production line shown in Figure 4 without
the algebraic difficulties of a longer production line. The small
production line consists of two processing machines, two demand
machines and four homogeneous buffers.

In Figure 4,M1 and M2 are processing machines — capable of
processing two different part types with the priority rule described in
Section II, whileM3,1 and M3,2 are demand machines processing
only Type 1 and Type 2 parts, respectively. Again, the buffers are
homogeneous.

A. Model Assumptions and Notation for Two-Machine Lines

The decomposition of the system is also shown in Figure 4. There
are four two-machine lines. Each line is denoted byL(i, j). The
line indicesi and j indicate theith two-machine line imitating the
flow behavior of thejth part type inBi,j . For example,L(1, 2)
represents the first two-machine-line imitating the behavior of the
second part type. The upstream and downstream machines inL(i, j)
are denoted byMu(i, j) andMd(i, j).

Although the actual system processes two different part types,
the decomposed two-machine lines behave as though they are only
processing a single part type. That is, linesL(1, 1) and L(2, 1)
imitate the flow behavior of only Type 1 parts, whileL(1, 2), and
L(2, 2) imitate those of only Type 2 parts.

The machines are unreliable and they may have more than one
failure mode. We assume that the machines can fail while they are
either operating on a part or while they are idle, but we do not assume
that the probabilities of failure are identical. In particular, we assume
that the probability thatMu(i, j) goes down in failure modem while
it is working on a part, given it is not blocked, ispu

m(i, j), and the
probability that it fails into failure modem while it is blocked is
qu

m(i, j). Note that we donot assume that there is a new failure mode,
but only that there is a new way of reaching failure modes. We define
the quantitiespd

m(i, j) and qd
m(i, j) for Md(i, j) similarly. Finally,

we denote the probabilities thatMu(i, j) andMd(i, j) are repaired
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while they are down in modem by ru
m andrd

m, respectively. We call
a failure that takes place while the machine is operating on a part
an operational failure, and a failure that occurs when the machine is
idle an idleness failure.

B. Approximation

In order to derive the decomposition, we need to make a crucial
approximation. We will assume that the probability that a machine
M2 is simultaneously starved and blocked for a given part is
negligible. That is, we assume that

Pr[n1,1(t) = 0 ∩ n2,1(t) = N2,1] ≈ 0 (9)

Pr[n1,2(t) = 0 ∩ n2,2(t) = N2,2] ≈ 0

We justify this approximation with the following argument. In
order for the machine to be both starved and blocked for a part
simultaneously, it is necessary that at some point, the machine had
exactly one part in the upstream buffer, and exactly one space in the
downstream buffer. At the same time, the upstream machine must
be unable to process parts to place in its downstream buffer, and
the downstream machine must be unable to process parts, depleting
the stores of its upstream buffer. Since the probability of a machine
failing is assumed to be small — on the order of one percent —
the probability that all three of these occurrences happen at the same
time is likely to be quite low. In fact, testing this hypothesis using
discrete event simulation has shown that the approximation holds in
many systems with moderate sized buffers.

V. DECOMPOSITIONANALYSIS FOR TYPE 1

We construct equations for Type 1 parts of the production line
shown in Figure 4. As mentioned in Section II, the concept of
the decomposition is to relate states of the real line with states in
the corresponding two-machine lines of the decomposition. The
two-part-type line flow behavior is much more complicated then the
single part-type line. To simplify the presentation, we explain the
decomposition equations for the two-machine-line in detail.

Throughout the rest of the section, we focus onMd(1, 1) in
L(1, 1). This downstream machine in the first two-machine line
experiences all the critical flow behavior of Type 1 parts. Therefore,
the decomposition equations related toMd(1, 1) cover all the crucial
concepts of the two-part-type behavior presented in this paper.

1) State and Parameter Definitions:The downstream machine
Md(1, 1) represents all the downstream Type 1 flow behavior from
B1,1. TheMd(1, 1) up state occurs whenM2 is up and is not blocked
for a Type 1 part.

Υd(1, 1) = {α2 = 1 ∩ n2,1 < N2,1}
That is, the observer inB1,1 will see a part moving out of the buffer,
whenM2 is up is not blocked for Type 1. There are several states in
which the observer does not see a part moving out of the buffer and
therefore believes thatMd(1, 1) is down. These states are:

• M2 is down, or
• M2 is up but blocked due to the failure ofM3,1, or
• M2 is down and also blocked due to the failure ofM3,1

When the system is not in one of the these states, the observer
believesMd(1, 1) is working. The first down state represents the
local failure, while the second indicates a remote failure. These
down states are typical and they can be seen in two-machine lines

of the single-part-type line decomposition.

However, the last down state can happen when machines are
processing multiple part types. This down state is a mixture of local
and remote failures. This can occur when the following sequence of
failures occurs: supposeM3,1 is down. If the failure persists long
enough, it will makeB2,1 full, causing the blockage ofM2. Now,
M2 is blocked for Type 1 parts, andMd(1, 1) will be down in the
second down state described above. WhileM2 is blocked for Type
1, it may work on a Type 2 part. Let us consider a situation in which
M2 fails while it is working on a Type 2 part. At this moment,M3,1

is down andB2,1 is full andM2 is also down. The observer inB1,1

sees that its downstream machine is not only down but also blocked
for a Type 1 part. Again, this down state is the combination of the
local and remote failure.

In order to get into this down state, the remote failure must occur
first before the local failure takes place. This is because the blockage
cannot occur when the machine is down already. Therefore, from
the observer’s view point, the third down state can be reached only
from the second down state.

The state definitions forMd(1, 1) are:

Υd(1, 1) = {α2 = 1 ∩ n2,1 < N2,1}
∆d

1(1, 1) = {α2 = 0 ∩ n2,1 < N2,1} (10)

∆d
2(1, 1) = {α2 = 1 ∩ n2,1 = N2,1}

∆d
3(1, 1) = {α2 = 0 ∩ n2,1 = N2,1}

Similarly, the state definitions forMu(2, 1) are

Υu(2, 1) = {α2 = 1 ∩ n2,1 > 0}
∆u

1 (2, 1) = {α2 = 0 ∩ n2,1 > 0} (11)

∆u
2 (2, 1) = {α2 = 1 ∩ n2,1 = 0}

∆u
3 (2, 1) = {α2 = 0 ∩ n2,1 = 0}

Note that the second and the third state definitions implicitly
express that they are not starved for a Type 1 part because of our
approximation (9).

As we explained in the earlier section, there are transition proba-
bilities between these states. Transitions inMd(1, 1) are denoted as
follows:

rd
j (1, 1) = Pr[Υd(1, 1) at t + 1 |∆d

j (1, 1) at t ]

pd
j (1, 1) = Pr[∆d

j (1, 1) at t + 1 | (12)

Υd(1, 1) ∩ n2,1(t) < N2,1 at t ]

qd
j (1, 1) = Pr[∆d

j (1, 1) at t + 1 |
Υd(1, 1) ∩ n2,1(t) = N2,1 at t ]

zd
j,j′(1, 1) = Pr[∆d

j′(1, 1) at t + 1 |∆d
j (1, 1) at t ]

for j = {1, 2, 3} j′ = {1, 2, 3}, andj 6= j′

Likewise, for Mu(2, 1),



ru
j (2, 1) = Pr[Υu(2, 1) at t + 1 |∆u

j (2, 1) at t ]

pu
j (2, 1) = Pr[∆u

j (2, 1) at t + 1 | (13)

Υu(2, 1) ∩ n2,1(t) > 0 at t ]

qu
j (2, 1) = Pr[∆u

j (2, 1) at t + 1 |
Υu(2, 1) ∩ n2,1(t) = 0 at t ]

zu
j,j′(2, 1) = Pr[∆u

j′(2, 1) at t + 1 |∆d
j (2, 1) at t ]

for j = {1, 2, 3} j′ = {1, 2, 3}, andj 6= j′

2) Equalities: For convenience, we define the following two-
machine-line probabilities:

W u(i, j) = Pr[Υu(i, j) ∩ ni,j < Ni,j ]

W d(i, j) = Pr[Υd(i, j) ∩ ni,j > 0]

Xu
m(i, j) = Pr[∆u

m(i, j)] (14)

Xd
n(i, j) = Pr[∆d

n(i, j)]

Pb(i, j) = Pr[Υu(i, j) ∩ ni,j = Ni,j ]

Ps(i, j) = Pr[Υd(i, j) ∩ ni,j = 0]

Db(i, j) = Pr[∆1(i, j) ∩ ni,j = Ni,j ]

Ds(i, j) = Pr[∆1(i, j) ∩ ni,j = 0]

Observe that all the events in the above expressions are evaluated
at the same time step. These quantities have the following
interpretations. W u(i, j) and W d(i, j) are probabilities that
Mu(i, j) andMd(i, j) are up, and not blocked and are not starved
respectively. The quantitiesXu

m(i, j) and Xd
n(i, j) are probabilities

of upstream and downstream events∆u
m(i, j) and∆d

n(i, j). Ps(i, j)
and Pb(i, j) are probabilities that upstream and downstream
machines are up, but idle because of blockage or starvation. On the
other hand,Db(i, j) andDs(i, j) are probabilities that machines are
down and also starved or blocked.

W d(1, 1) indicates thatM2 is up and neither starved nor blocked
for Type 2, because of the definition ofΥd in (10). If we related this
two-machine line probability with the real line then

W d(1, 1) = Pr[Υd(1, 1) ∩ ni,j > 0]

= Pr[α2 = 1 ∩ n1,1 > 0 ∩ n2,1 < N2,1]

Notice that that quantity is also equivalent to

Pr[α2 = 1 ∩ n1,1 > 0 ∩ n2,1 < N2,1]

= Pr[Υu(2, 1) ∩ n2,1 < N2,1]

= W u(2, 1)

Therefore,

W d(1, 1) = W u(2, 1) (15)

Next,Xd
2 (1, 1) is the probability that downstream machine is down

at mode 2 inL(1, 1). From the definition (10), it is

Xd
2 (1, 1) = Pr[α2 = 1 ∩ n2,1 = N2,1]

Since we approximate that the probability of a machine being
blocked and starved at the same time step is zero, this equation

implies that

Xd
2 (1, 1) = Pr[α2 = 1 ∩ n1,1 > 0 ∩ n2,1 = N2,1]

= Pr[Υu(2, 1) ∩ n2,1 = N2,1]

= Pb(2, 1)

A similar equality can be derived forXu
2 (2, 1). Therefore,

Xd
2 (1, 1) = Pb(2, 1) (16)

Xu
2 (2, 1) = Ps(1, 1) (17)

Last,

Xd
3 (1, 1) = Pr[α2 = 0 ∩ n1,1 > 0 ∩ n2,1 = N2,1]

= Pr[∆u
1 (2, 1) ∩ n2,1 = N2,1]

= Db(2, 1)

Again, Xu
3 (2, 1) can be derived in the similar way. Therefore,

Xd
3 (1, 1) = Db(2, 1) (18)

Xu
3 (2, 1) = Ds(1, 1) (19)

3) Resumption of Flow:The resumption of flow is the transition
probability from a down state to the up state. Since there are three
down states forMd(1, 1), three transitions exist. First,rd

1(1, 1) the
transition from the first down state to the up state and

rd
1(1, 1) = Pr[Υd(1, 1) at t + 1 |∆d

1(1, 1) at t] (20)

= Pr[α2(t + 1) = 1 ∩
n2,1(t + 1) < N2,1|α2(t) = 0 ∩ n2,1(t) < N2,1]

= r2

Since∆d
1(1, 1) represents the local failure, its repair probability

is equal to the repair probability of the real machineM2. Next, the
repair probability of the remote down state is

rd
2(1, 1) = Pr[Υd(1, 1) at t + 1 |∆d

2(1, 1) at t] (21)

= Pr[α2(t + 1) = 1 ∩ n2,1(t + 1) < N2,1|
α2(t) = 1 ∩ n2,1(t) = N2,1]

=
(
1− qu

1 (2, 1)
)
r3

This is because remote failure occurred due to the blockage of
B2,1 which was caused by the failure ofM3. Therefore,M3 must
be repaired in order to resume the flow ofMd(1, 1). There is
also one more condition required for the resumption of the flow.
Notice that at timet, M2 is blocked and therefore, it could work
on a Type 2 part. The resumption of the flow happens at the next
time step when it does not go down while it is working on Type
2. The probability thatM2 goes down while it is blocked and
processing a Type 1 part isqu

1 (1, 1) by the definition. Therefore, the

transition probability from∆d
2(1, 1) to Υd(1, 1) is

(
1−qu

1 (2, 1)
)
r3.

For the third repair probability,rd
3(1, 1) is the transition probability

from ∆d
3(1, 1) to Υd(1, 1). We argue that this is

rd
3(1, 1) = Pr[Υd(1, 1) at t + 1 |∆d

3(1, 1) at t] (22)

= Pr[α2(t + 1) = 1 ∩ n2,1(t + 1) < N2,1|
α2(t) = 0 ∩ n2,1(t) = N2,1]

= r2r3



As shown in the equation,M3 is down att, causingB2,1 to be
full, and alsoM2 is down at timet. Therefore, the both machines
must be repaired for the flow of a Type 1 part to resume.

Similarly, the resumption of flow equations forMu(2, 1) are:

ru
1 (2, 1) = r2 (23)

ru
2 (2, 1) =

(
1− qd(1, 1)

)
r1 (24)

ru
3 (2, 1) = r1r2 (25)

4) Failure Mode Change:Failure mode changes are transitions
taking place between down states. First, we consider transitions from
∆d

1(1, 1) to other down states. This down state is the failure ofM2.
Since the local machine is down and is not blocked, any state change
further downstream of this local machine will not change the state
of Md(1, 1). The only event that will change the state of∆d

1 is the
resumption of flow. Therefore, there is no transition from∆d

1(1, 1)
to the rest of the down states. That is,

zd
1,2(1, 1) = 0 (26)

zd
1,3(1, 1) = 0 (27)

Next, consider∆d
2(1, 1), the down state caused by the failure of

M3. In this down state,M2 is up but is blocked for a Type 1 part. We
can think of two possible other down states that can be reached from
this one. First, consider the case in whichM2 goes down, whileM3

is still down. In this case,M2 will be down and blocked at the same
time. ThereforeMd(1, 1) will move ∆d

3(1, 1). SinceM2 goes down
while it is blocked andM3 is not repaired, the transition probability

from ∆d
2(1, 1) to ∆d

3(1, 1) is qu
1 (2, 1)

(
1 − r3

)
. If we express this

failure mode change, then

zd
2,3(1, 1) = Pr[∆d

3(1, 1) at t + 1 |∆d
2(1, 1) at t ] (28)

= Pr[α2(t + 1) = 0 ∩ n2,1(t + 1) = N2,1 ∩
α3(t + 1) = 0|
α2(t) = 1 ∩ n2,1(t) = N2,1 ∩ α3(t) = 0]

= qu
1 (2, 1)

(
1− r3

)

The second failure mode change from∆d
2(1, 1) is the case thatM2

gets down while it is blocked, butM3 gets repaired. In this case,M2

will be no longer blocked, but will move to the local failure mode.
Therefore, with the transition probability ofqu(2, 1)r3 Md(1, 1) will
move from∆d

2(1, 1) to ∆d
1(1, 1). That is,

zd
2,1(1, 1) = Pr[∆d

1(1, 1) at t + 1 |∆d
2(1, 1) at t ] (29)

= Pr[α2(t + 1) = 0 ∩ n2,1(t + 1) < N2,1 ∩
α3(t + 1) = 1|
α2(t) = 1 ∩ n2,1(t) = N2,1 ∩ α3(t) = 0]

= qu
1 (2, 1)r3

The last down state to be considered is∆d
3. In this state,Md(1, 1)

is down because of the local failure ofM2 and the blockage caused
by the failure ofM3. The failure mode change to∆d

2(1, 1) happens
whenM2 is up, butM3 remains down. That is,

zd
3,2(1, 1) = Pr[∆d

2(1, 1) at t + 1 |∆d
3(1, 1) at t ] (30)

= Pr[α2(t + 1) = 1 ∩ n2,1(t + 1) = N2,1

∩α3(t + 1) = 0|
α2(t) = 0 ∩ n2,1(t) = N2,1 ∩ α3(t) = 0]

= r2

(
1− r3

)

On the other hand, ifM3 gets fixed, whileM2 remains down when
Md(1, 1) is in ∆d

3(1, 1), M2 will be no longer gets blocked for a
Type 1 part, but will be in a local failure mode. Therefore,

zd
3,1(1, 1) = Pr[∆d

1(1, 1) at t + 1 |∆d
3(1, 1) at t ] (31)

= Pr[α2(t + 1) = 0 ∩ n2,1(t + 1) < N2,1

∩α3(t + 1) = 1|
α2(t) = 0 ∩ n2,1(t) = N2,1 ∩ α3(t) = 0]

=
(
1− r2

)
r3

With similar approaches, we also can derive the failure mode
change quantities forMu(2, 1):

zu
1,2(2, 1) = 0 (32)

zu
1,3(2, 1) = 0 (33)

zu
2,1(2, 1) = qd

1(1, 1)r1 (34)

zu
2,3(2, 1) =

(
1− r1

)
qd
1(1, 1) (35)

zu
2,1(2, 1) = qd

1(1, 1)r1 (36)

zu
3,1(2, 1) = r1

(
1− r2

)
(37)

zu
3,2(2, 1) =

(
1− r1

)
r2 (38)

5) Interruption of Flow: The interruption of flows are failures of
Md(1, 1). The probabilitypd

1(1, 1) is the transition fromΥd(1, 1)
to ∆d

1(1, 1), which represents the failure ofM2 when B1,1 is not
empty. This transition probability is

pd
1(1, 1) = Pr[∆d

1(1, 1) at t + 1 | (39)

Υd(1, 1) ∩ n1,1 > 0 at t]

= Pr[α2(t + 1) = 0 ∩ n2,1(t + 1) < N2,1|
α2(t) = 1 ∩ n1,1(t) > 0 ∩ n2,1(t) < N2,1]

= p2

Next, we derive the interruption of flow equation forpd
2(1, 1), the

transition probability from the up state to the state in whichM3 is
down andB2,1 is full. This transition probability is,

pd
2(1, 1) = Pr[∆d

2(1, 1) at t + 1 |Υd(1, 1) ∩ n1,1 > 0 at t]

We first start with the derivation of this equation by applying
the fact that the probability of going out of a state is equal to the
probability of going into that state.

Xd
2 (1, 1)

((
1− qu(2, 1)

)
r3 + qu(2, 1)r3 + qu(2, 1)

(
1− r3

))

= W d(1, 1)pd
2(1, 1) + Xd

3 (1, 1)r2(1− r3)

If we simplify this equation, then



Xd
2 (1, 1)

(
r3 + qu(2, 1)

(
1− r3

))

= W d(1, 1)pd
2(1, 1) + Xd

3 (1, 1)r2

(
1− r3

)

That is,

pd
2(1, 1) =

1

W d(1, 1)
× (40)

[
Xd

2 (1, 1)

(
r3 + qu(2, 1)

(
1− r3

))
−Xd

3 (1, 1)r2(1− r3)

]

Next, the interruption of flow in which equation for the third down
state,∆d

3(1, 1). This is the transition that goes to the stateM2 is
down and blocked for a Type 1 part. Note that whenM2 is up and
not blocked for a Type 1 part, it is impossible forM2 to be down
and blocked at the next time step because once the machine is down,
it will not move a part into the downstream buffer. Therefore,

pd
3(1, 1) = Pr[∆d

3(1, 1) at t + 1 | (41)

Υd(1, 1) ∩ n1,1 > 0 at t] = 0

Similarly, the interruption of flow equations forMu(2, 1) are

pu
1 (2, 1) = p2 (42)

pu
2 (2, 1) =

1

W u(2, 1)
×

[
Xd

2 (2, 1)

(
r1 +

(
1− r1

)
qd(1, 1)

)
−Xd

2 (2, 1)
(
1− r1

)
r2

]

pu
3 (2, 1) = 0

As a summary, Figure 6 shows all the transitions ofMd(1, 1) and
Mu(2, 1).

6) Idleness Failure of Type One:Now we need to derive expres-
sions for the idleness failure of the two-machine lines. The idleness
failure is the transition from an up state to a down state in pseudo-
machine while it is idle. The probabilityqd

1(1, 1) represents the
probability that pseudo-machineMd(1,1) is down att + 1 given
that it was up and starved att. That is,

qd
1(1, 1) = Pr[∆d

1(1, 1) at t + 1 |Υd(1, 1) ∩ n1,1 = 0 at t]

= Pr[α2(t + 1) = 0|
α(t) = 1 ∩ n1,1(t) = 0 ∩ n2,1 < N2,1]

The only way that this is possible is if the processing machineM1

failed while making a Type 2 part in time stept. Therefore,

qd
1(1, 1) = p2Pr[α2(t) = 1 ∩ n1,1(t) = 0 (43)

∩n1,2(t) > 0 ∩ n2,2(t) < N2,2]

= p2W
d(1, 2)

Ps(1, 1)

Pb(2, 1) + Ps(1, 1)

According to the definition,qd
2(1, 1) is

qd
2(1, 1) = Pr[∆d

2(1, 1) at t + 1 |Υd(1, 1) ∩ n1,1 = 0 at t]

If we expand this equation using (10),then

qd
2(1, 1) = Pr[α2(t + 1) = 0 ∩ n1,1(t + 1) = 0 ∩ (44)

n2,1(t + 1) = N2,1|
α(t) = 1 ∩ n1,1(t) = 0 ∩ n2,1 < N2,1]

= 0

This is because in our assumption in (9) states that the probability
that a machine is starved and blocked at the same time step is zero.
For the same reason,

qd
3(1, 1) = 0 (45)

Similarly,

qu
1 (2, 1) = p2W

u(2, 2)
Pb(2, 1)

Pb(2, 1) + Ps(1, 1)
(46)

qu
2 (2, 1) = 0 (47)

qu
3 (2, 1) = 0 (48)

Note that sinceW u(2, 1) = W d(1, 1), if we add qu
1 (2, 1) and

qd
1(1, 1) then we will have

qu(2, 1) + qd(1, 1) = p2W
u(2, 2) (49)

This equality makes sense because by the definition, the idleness
failure is the probability that a machine gets failed when a machine
is working a Type 2 part.

VI. T YPE 2 DECOMPOSITIONANALYSIS

The existence of Type 2 parts is made apparent to Type 1 parts
only through the existence of idleness failures — which requires
only a minor modification to the decomposition equations. However,
the existence of Type 1 parts has a major influence on the production
of Type 2 parts, and therefore the derivation for the Type 2 part
decomposition is much more complicated. In particular, we now
have to account for the possibility that an observer in a Type 2 buffer
will see flow into his buffer cease because the upstream machine
switched from making Type 2 to Type 1 parts. Furthermore, we
still have to account for idleness failures which can occur if, for
example, a Type 2 buffer fills up and the machine begins to produce
Type 1 parts while the buffer is still full.

In analyzing the decomposition equations for Type 2, we also
use the same approach we made for the Type 1 part: defining states
of two-machine lines, constructing transition equations and relating
two-machine line parameters to those of the real line and other
two-machine lines. When we construct decomposition equations for
Type 2 parts, we not only have to consider blockages and starvations
of the Type 2 flow, but also have to consider the interruption and
resumption of the flow due to the Type 1 flow.

In order to reduce the complexity, we separate our analysis into
two parts. The first analysis is of the impact of Type 1 flow on
Type 2. The second analysis is of the interruption and resumption
of flow within Type 2 flow. The first analysis focuses on how the
flow of Type 1 parts affect the flow of Type 2 parts regardless of
the buffer state for Type 2. The second analysis concentrates on the
buffer situations for Type 2 parts that affect the flow of Type 2. We
call the first analysisType 2 availability analysis. Then we construct
the decomposition equations for Type 2, by combining the analysis
of the buffer situations and the availability analysis.
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Fig. 6. Markov Chain ofMu(2, 1) andMd(1, 1)

7) Availability of Type 2: We begin our analysis by defining a
new machine state variable for Type 2 parts. We say a machine is
available for Type 2, when it is up, and is either starved or blocked
for a Type 1 part. This availability for Type 2 of machineMi is
denoted byβi. That is, if βi = 1, real machineMi is up and it
is starved or blocked for Type 1 parts. Ifβi = 0, Mi is down, or
processing Type 1 parts. This can be expressed as follows:

βi =

{
1 if {αi = 1} ∩ {ni,1 = 0 ∪ ni+1,1 = Ni+1,1}
0 if {αi = 0} ∪ {αi = 1 ∩ ni,1 > 0 ∩ ni+1,1 < Ni+1,1}

(50)
Recall that there are two conditions under which a machine can

produce Type 2 parts: first, the machine is blocked or starved for
Type 1 parts, and second, the machine is neither blocked nor starved
for Type 2 parts. Therefore,βi is the indicator of the first condition
that must hold in order to produce Type 2 parts.

8) Type 2 Availability Probability:Now, we introduce new param-
eters for the Type 2 decomposition:r∗2 andp∗2. The parameterr∗2 is
the transition probability thatM2 is available to process Type 2 at
time t + 1, given that it was not available for Type 2 at timet. We
call this quantityType 2 availability transition probability.

r∗2 = Pr[β2 = 1 ∩
n1,2 > 0 ∩ n2,2 < N2,2 at t + 1|βi = 0 at t]

There are several states in whichM2 is not available for Type 2
at time t. These states fall into the following three categories:

(a) M2 is up, and producing a Type 1 part at timet.
(b) M2 is down and starved for a Type 1 part at timet, and will

be available for Type 2 when it comes up.
(c) M2 is down and blocked for a Type 1 part at timet, and will

be available for Type 2 when it comes up.

Category (a) is the set of states in whichM2 is processing Type
1, and therefore it is not available for a Type 2 part. This state is

V = {α2(t) = 1 ∩ n1,1(t) > 0 ∩ n2,1(t) < N} (51)

Next, we consider the two sets of states that representM2 being
down in stept and available for a Type 2 part att+1, as described in
categories (b) and (c). This happens if the machine is either blocked
or stared for Type 1. Since we assume that the machine cannot

simultaneously blocked and starved for either part type, these events
are represented as follows:

Ds = {α2(t) = 0 ∩ n1,1(t) = 0} (52)

Db = {α2(t) = 0 ∩ n2,1(t) = N}

With these events defined, we are now ready to begin our analysis
of r∗2 . We begin by observing that the three events defined above are
disjoint. Define the event, calledU , that M2 is available to process
Type 2 att + 1. Then

U =
{

α2(t + 1) = 1 ∩
(
n1,1(t + 1) = 0

∪n2,1(t + 1) = N2,1

)}

That is,U is the event thatM2 is up, and is blocked or starved for
Type 1 att + 1. Under these conditions,M2 is available for Type 2.
Then, since the three conditioning events are disjoint, we can write
the following:

r∗2 = Pr[U |V ∪Ds ∪Db] (53)

=
Pr[U |V ]Pr[V ] + Pr[U |Ds]Pr[Ds] + Pr[U |Db]Pr[Db]

Pr[V ∪Ds ∪Db]

It remains for us to calculate the individual probabilities. We first
calculate the probability of eventV , Ds, and Db. First, V is the
event thatM2 is working on a Type 1 part. The probability ofV is
W d(1, 1) or W u(2, 1) because of the equality we stated in (15).

Pr[V ] = W d(1, 1) = W u(2, 1) (54)

Next, the eventsDs andDb are expressed with the definitions we
made in (10) and (14),

Pr[Ds] = Xu
3 (2, 1) (55)

Pr[Db] = Xd
3 (1, 1)

Since eventsV , Ds, andDb are disjoint,



Pr[V ∪Ds ∪Db] = W d(1, 1) + Xu
3 (2, 1) + Xd

3 (1, 1) (56)

Now we calculate each conditional probability in (53). We begin
with the conditional probability,Pr[U |V ]. This is the conditional
probability that M2 is available for a Type 2 part at timet + 1
due to the starvation or blockage of a Type 1 part, given that it
was processing Type 1. Since we approximated in Section(II) the
probability that a machine is blocked and starved at the same time
step as zero, we can state that, approximately,

Pr[U |V ] = (57)

Pr[α2(t + 1) = 1 ∩ n1,1(t + 1) = 0|V ]

+Pr[α2(t + 1) = 1 ∩ n2,1(t + 1) = N2,1|V ]

The first term on the right hand side of (57) is the conditional
probability thatM2 is starved for a Type 1 part att + 1, given that
it was processing a Type 1 part att. This is equivalent to saying that
Mu(2, 1) goes to down mode∆u

2 (2, 1) at t + 1, given that it was
up at t. Similarly, the second term on the righthand side of (57) is
equal to the probability thatMd(1, 1) goes down to the down mode
∆D

b (1, 1) at t + 1, given that it was up att. We can then write

Pr[U |V ] = (58)

Pr[Mu(2, 1) = ∆u
2 (2, 1) at t + 1|Mu(2, 1) = Υu(2, 1) at t]

+Pr[Md(1, 1) = ∆D
b (1, 1) at t + 1|Md(1, 1) = Υd(1, 1) at t]

= pu
s (2, 1) + pD

b (1, 1)

Next, we need to derive an expressionPr[U |Ds]. In this case,
M2 is down and starved for a Type 1 part at timet, and is up but it
remains starved at the next time step. Note that this transition is the
same as the transition in whichMu(2, 1) is down at mode∆u

2 (2, 1)
at t + 1, given that it was down at mode∆u

3 (2, 1) at t. Therefore,

Pr[U |Ds] =

Pr[Mu(2, 1) = ∆u
2 (2, 1) at t + 1|

Mu(2, 1) = ∆u
3 (2, 1) at t] = (1− r1)r2

Similarly, Pr[U |Db] is equal to the probability thatMd(1, 1) is
down at mode∆D

b (1, 1) at t + 1, given that it was down at mode
∆d

3(1, 1) at t. Therefore,

Pr[U |Db] =

Pr[Md(1, 1) = ∆D
b (1, 1) at t + 1| (59)

Md(1, 1) = ∆d
3(1, 1) at t] = r2(1− r3)

Putting everything together, we have

r∗2 =
1

W d(1, 1) + Xu
3 (2, 1) + Xd

3 (1, 1)
× (60)

(
W d(1, 1)

(
pu(2, 1) + pd(1, 1)

)
+

Xu
3 (2, 1)

(
1− r1

)
r2 + Xd

3 (1, 1)r2

(
1− r3

))

9) Type 2 Unavailability Probability: The quantity p∗2 is the
conditional probability thatM2 is not available for Type 2 at time
t + 1, but it was available and was not blocked and not starved
at time t. We call this quantitythe Type 2 unavailability transition
probability. We can write this as

p∗2 = Pr[β2(t + 1) = 0|β2(t) = 1 ∩ n1,2(t) > 0

∩n2,2(t) < N2,2]

There are two possible cases that preventsM2 from processing
Type 2 parts. The first case is thatM2 is down while it is processing
Type 2 parts. The second case is thatM2 is no longer blocked or
starved for Type 1 parts and therefore processing Type 1 parts. Then
p∗2 is

p∗2 = Pr

[
{α2 = 1 ∩ n1,1 > 0 ∩ n2,1 < N2,1} ∪ (61)

{α2 = 0 ∩ n1,1 = 0} ∪ {α2 = 0 ∩ n2,1 = N2,1} at t+1

∣∣∣∣∣
{
{α2 = 1 ∩ n1,1 = 0} ∪ {α2 = 1 ∩ n2,1 = N2,1}

}

∩
{

α2 = 1 ∩ n1,2 > 0 ∪ n2,2 < N2,2

}
at t

]

Let us define the following events:

B = {α2 = 1 ∩ n2,1 = N2,1} (62)

S = {α2 = 1 ∩ n1,1 = 0}
W2 = {α2 = 1 ∩ n1,2 > 0 ∩ n2,2 < N2,2}

The eventB is the set of states in whichM2 is blocked for a Type
1 part, whileS is the set of states in whichM2 is starved for a Type 1
part. These two sets are disjoint events because of the approximation
that probability of a machine being blocked and starved is zero as
we stated in (9). If we apply definitions in (51) and (52), then

p∗2 = Pr
[
V ∪Ds ∪Db

∣∣∣{S ∩W2} ∪ {B ∩W2}
]

(63)

By expanding this, we have

p∗2 = (64)
Pr[S ∩W2]

Pr[B ∩W2] + Pr[S ∩W2]
×

(
Pr[V |S ∩W2] + Pr[Ds|S ∩W2] + Pr[Db|S ∩W2]

)

+
Pr[B ∩W2]

Pr[B ∩W2] + Pr[S ∩W2]
×

(
Pr[V |B ∩W2] + Pr[Ds|B ∩W2] + Pr[Db|B ∩W2]

)

The fractions in the equations can be approximated as follows

Pr[S ∩W2]

Pr[B ∩W2] + Pr[S ∩W2]
≈ Pr[S]

Pr[B] + Pr[S]
(65)

Pr[B ∩W2]

Pr[B ∩W2] + Pr[S ∩W2]
≈ Pr[B]

Pr[B] + Pr[S]

It remains for us to calculate the individual probabilities. We
already have defined in (16) thatM being up and starved is the



same event asMu(2, 1) being down at mode∆u
2 . Also it is stated

that M being up and blocked is equivalent toMd(2, 1) being down
at mode∆D

s . Therefore,

Pr[S] = Xu
2 (2, 1) (66)

Pr[B] = XD
b (1, 1)

Now, we need to calculate conditional probabilities in (64). First,
note that the following conditional probabilities are zero:

Pr[Ds|B ∩W2] = 0 (67)

Pr[Db|S ∩W2] = 0

This is due to our approximation in (9).

Next, Pr[V |S ∩W2] is the probability thatM2 is working on a
Type 1 part at timet + 1, given that it was up and starved for Type
1, but not starved nor blocked for Type 2 at timet. This probability
is the same as the probability thatMu(2, 1) is up and not blocked
in time t + 1 give that it was down at mode∆u

2 . Therefore, this
conditional probability is the transition probability from∆D

b to Υd,
which is given by.

Pr[V |S ∩W2] = (68)

Pr[Mu(2, 1) = Υu ∩ n2,1 < N2,1 at t + 1|
Mu(2, 1) = ∆u

2 at t]

= r1

(
1− qd(1, 1)

)

In a similar manner,P [V |B∩W2], the conditional probability that
M2 is working on Type 1 part att + 1, given thatM2 was blocked,
but was not blocked nor starved for Type 2 att, can be written with
two-machine-line parameters such that

Pr[V |B ∩W2] = (69)

Pr[Md(1, 1) = Υd ∩ n1,1 > 0 at t + 1|
Md(1, 1) = ∆d

2 at t]

=
(
1− qu(2, 1)

)
r3

This is because whenM3 is repaired andM2 does not go into the
idleness failure — fail while it is blocked — at the end of time step
t, M2 will be no longer blocked and process a Type 1 part at time
t + 1.

Next P [Ds|S ∩W2] is the probability thatM2 goes down while
it is working on Type 2. This is equivalent thatMu(2, 1) is initially
at the down mode∆u

2 andn2,1 < N2,1, but the down mode change
takes place from∆u

2 to ∆u
3 at the end of time step. Therefore,

Pr[Ds|S ∩W2] = (70)

Pr[Mu(2, 1) = ∆u
3 ∩ n2,1 < N2,1 at t + 1|

Mu(2, 1) = ∆u
2 at t]

=
(
1− r1

)
qd(1, 1)

For the similar reason,P [Db|B ∩W2] is

Pr[Db|B ∩W2] = (71)

Pr[Md(1, 1) = ∆d
3 ∩ n1,1 > 0 at t + 1|

Md(1, 1) = ∆d
2 at t]

= qu(2, 1)
(
1− r3

)

Putting everything together, we have

p∗2 =
1

Ps(1, 1) + Pb(2, 1)
× (72)

[
Ps(1, 1)

(
(1− r1)q

d(1, 1) + r1

(
1− qd(1, 1)

))

+Pb(2, 1)

(
qu(2, 1)

(
1− r3

)
+

(
1− qu(2, 1)

)
r3

)]

10) Decomposition of Type 2:We have so far discussed the
machine availability for Type 2. However, in order to process a
Type 2 part, a part and a space also have to be in the upstream and
downstream buffers. The decomposition equations presented here
integrate the availability analysis and the buffer state analysis.

We introduce up and down states for Type 2 two-machine-line. As
we do for the Type 1 case, we also explain all the states and transitions
of the Type 2 two-machine-line with the example ofMd(1, 2) in
detail.

All the states forMd(1, 2) are

Υd(1, 2) = {β2 = 1 ∩ n2,2 < N2,2}
∆d

1(1, 2) = {β2 = 0 ∩ n2,2 < N2,2} (73)

∆d
2(1, 2) = {β2 = 1 ∩ n2,2 = N2,2}

∆d
3(1, 2) = {β2 = 0 ∩ n2,2 = N2,2}

Likewise, the states forMu(2, 2) are

Υu(2, 2) = {β2 = 1 ∩ n2,2 > 0}
∆u

1 (2, 2) = {β2 = 0 ∩ n2,2 > 0} (74)

∆u
2 (2, 2) = {β2 = 1 ∩ n2,2 = 0}

∆u
3 (2, 2) = {β2 = 0 ∩ n2,2 = 0}

The stateΥd(1, 1) is the in whichM2 is up and is either blocked
or starved for Type 1. It is also not blocked for Type 2. Therefore,
if Md(1, 2) is in this stateM2 works on Type 2.

The state∆d
1(1, 2) is the state in whichM2 is either down, or

up and not blocked and starved for Type 1. The second down
state,∆d

2(1, 2), represents the case in whichM2 is available for
processing Type 2, however it is blocked for Type 2. Therefore,M2

is either blocked or starved for Type 1 and at the same time it is
blocked for Type 2 —M2 is therefore idle for both part types. The
last down state,∆d

3(1, 2), is the state in whichM2 is not available
for Type 2 and it also blocked for Type 2 parts.

Now, we need to derive the interruption of flow, resumption of
flow, and failure mode change equations for Type 2 parts. Before we
construct equations as we have done for the Type 1 case, notice that



the Type 2 availability,β, seen by a Type 2 observer, gives us the
identical behavior withα in Type 1 two-machine-line. For instance,
an observer inn1,1, who believes that she is in a two-machine-line,
processing a single part type, will see a Type 2 part moving out of
the buffer when there is a part that is,n1,1 > 0 and at the same time,
β2 = 1. If β2 goes from1 to 0 when there is no part atn1,1 will
believe that there is an idleness failure occurred. Since she believes
that the machines are processing only one part type, the parameterβ
gives the exactly same meaning to the observer in a Type 2 flow as
α does to its Type 1 observer. Therefore, for the Type 2 observer’s
point of view, the parametersp∗ and r∗ are seen the same way as
p andr seen by a Type 1 observer. For this reason, if we apply the
same logic in constructing decomposition equations we have done
for a Type 1 part, we can derive all the decomposition equations for
a Type 2 part. The resulting decomposition equations forMd(1, 1)
andMu(2, 1) are

pd
1(1, 2) = p∗2 (75)

pd
2(1, 2) =

1

W d(1, 2)
× (76)

[
Xd

2 (1, 2)

(
r3,2 + qu

1 (2, 2)
(
1− r3,2

))

−Xd
3 (1, 2)r2(1− r3,2)

]

pd
3(1, 3) = 0 (77)

rd
1(1, 2) = r∗2 (78)

rd
2(1, 2) =

(
1− qu

1 (2, 2)
)
r3,2 (79)

rd
3(1, 2) = 0 (80)

zd
1,2(1, 2) = 0 (81)

zd
1,3(1, 2) = 0 (82)

zd
2,1(1, 2) = qu

1 (2, 2)r∗3 (83)

zd
2,3(1, 2) = qu

1 (2, 2)
(
1− r3,2

)
(84)

zd
3,1(1, 2) =

(
1− r∗2

)
r3,2 (85)

zd
3,2(1, 2) = r∗2

(
1− r3,2

)
(86)

11) Idleness Failure of Type Two:The idleness failure probability
for Type 2 is

qd
1(1, 2) = Pr[∆d

1(1, 2) at t + 1 |Υd(1, 2) ∩ n1,2 = 0 at t]

= Pr[β2(t + 1) = 0 ∩ n2,2(t + 1) < N2,2|
β2(t) = 1 ∩ n1,2(t) = 0]

This equation is expressed based on the definition of∆d
1(1, 2) and

Υd(1, 2). In the equationn1,2(t) = 0 implies thatn2,2 < N2,2 due to
approximation (9). Therefore, at the next time step, when the machine
does not process a Type 2 part,B2,2 must remainn2,2 < N2,2. If
we rewrite this, then

qd
1(1, 2) = Pr[β2(t + 1) = 0|β2(t) = 1 ∩ n1,2(t) = 0] (87)

In this equation,β2 = 1 meansM2 has been either blocked or
starved for a Type 1 part. Also,n1,2 = 0 indicates thatM2 has been

qu(2,2) (1-r3,2)

(1-r*2) r3,2

r*2(1-r3)

qu(2,2) r*3

r*2

p*2

pu(1)

(1- qu(2,2)) r3,2

r*2 r3,2
Md(1,2)

3
d(1,2)

2
d(1,2)

1
d(1,2)

d(1,2)

Fig. 7. Markov Chain ofMd(1, 2)

starved for a Type 2 part. That is,M2 is begin idle att. Remember
that the real machine cannot fail while it is idle. Therefore, the
idleness failure probability is

qd
1(1, 2) = Pr[α2(t + 1) = 1 ∩ (88)

n1,1(t + 1) > 0 ∩ n2,1(t + 1) < N2,1|
α2(t) = 1 ∩ (n1,1(t) = 0 ∪ n2,1(t) = Ni,1)]

This expression is the probability thatM2 resumes processing a
Type 1 part att + 1, after having been idle for the both part types.
Then,

qd
1(1, 2) =

Pb(2, 1)
(
1− qu(2, 1)

)
r3 + Ps(1, 1)r1

(
1− qd(1, 1)

)

Pb(2, 1) + Ps(1, 1)
(89)

Since we approximate the probability that a machine gets blocked
and starved at the same time is zero, we can state that,

qd
2(1, 2) = 0 (90)

qd
3(1, 2) = 0 (91)

In a similar manner, we can derive

qu
1 (2, 2) =

Pb(2, 1)
(
1− qu(2, 1)

)
r3 + Ps(1, 1)r1

(
1− qd(1, 1)

)

Pb(2, 1) + Ps(1, 1)
(92)

qu
2 (2, 2) = 0 (93)

qu
3 (2, 2) = 0 (94)

The equations forqd
1(1, 2) and qu

1 (2, 2) are identical. This is
because wheneverMd(1, 2) is starved orMu(2, 2) is blocked,M2

goes back processing a Type 1 part, they goes to the idleness failure.

VII. A LGORITHM AND RESULTS

A. Algorithm

We present an algorithm for solving the decomposition equations
derived in Section V and Section VI. The basic idea of the algorithm
is a generalization of the DDX algorithm for the single-part case



described in [5]. In this case, we first sweep down the line calculating
the upstream two-machine parameters for Type 1 using the parameters
of the previous two-machine line. Then we sweep up the line to
calculate the downstream two-machine line parameters for Type 1.
We then repeat the process for Type 2. The termination conditions
for the algorithm are such that

‖E(i, j)− E(0, j)‖
for i = 1, . . . , k, is less than some specifiedε for each Typej
part. This method exploits the recursive nature of the interruption
and resumption of flow equations.

B. Randomly Generated Cases

Since we have not proved the convergence of the algorithm
analytically, we follow the procedure described in [2] and test
the algorithm on multiple randomly generated cases where the
parameters of the random systems are within certain tolerances. The
random cases we generated have machines that have similar though
not identical characteristics. We allow for the machines to have
different isolated efficiency rates, but we do not generate lines with
an extreme bottleneck machine.

The isolated production rates of the processing machines vary
from 0.85 to 0.95. For the demand machines we typically generate
repair probabilities that are of the same order of magnitude as
those generated for the processing machines. However, the failure
probabilities of the demand machines are higher; rather than being
an order of magnitude smaller than the repair probability, they are
of the same order of magnitude. This ensures that the demand rates
for both part types are individually below the capacity of the line.
This is because a system in which the Type 1 demand machine has
an isolated efficiency similar to that of the other machines in the line
tends to be uninteresting as the line spends all of its time producing
Type 1 parts. We also ensure that the demand rate for Type 1 and
Type 2 are such that, combined, the processing line would not have
the capacity to meet demand for both Type 1 and Type 2 parts. This
is because if the line has the capacity to meet demand for both part
types then the estimation process is trivial; production rate would be
equal to demand rates and all intermediate buffers will be nearly full.
These restriction on demand rates are expressed such that:

ed1 < ei < ed1 + ed2 (95)

ed2 < ei < ed1 + ed2

,wherei = 1, . . . , k

We generate 300 random lines. The first 100 random lines are lines
where demand for part Type 1 and Type 2 are roughly the same. The
second 100 cases are of the line where the demand for part Type 1
exceeds that of part Type 2 by up to 30%. The remaining 100 cases
are of the line where the demand for part Type 2 exceeds that of part
Type 1 by up to 30%. Buffers size vary from 5 to 20. For production
rates, we calculate the percent error of the approximated production
rate from the simulated production rate in the following manner.

%Error = 100× Edecomp − Esim

Esim
(96)

For average buffer levels, we calculate the percent error of the
approximated average buffer level as follows:

%Error = 100× N̄decomp − N̄sim

N
(97)

These measurements are standard in the literature cited.
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Fig. 8. The errors in the decomposition approximation for Type 1 production
rates
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Fig. 9. The errors in the decomposition approximation for Type 2 production
rates

C. Numerical Results

The percent errors calculated for all 300 cases are shown in Figure
8 and 9. The average absolute errors for Type 1 is 0.21% while Type
2 is 1.8%. The average error for buffer levels is 6.2%. As shown in
the figures, the algorithm tends to slightly underestimate the Type 1
production rate, while overestimating for Type 2 parts. The behavior
of the algorithm varies depending on the demand rates for Type 1
and Type 2. In the case where the demand rates for Type 1 is low and
Type 2 is high — line 201 - 300 — the algorithm tends to give the
most accurate results. We attribute this to the increase of randomness
behavior for Type 2 parts. Since the demand rate for Type 1 parts is
relatively low, there will be more blockage of Type 1 parts, leading
to a longer period in which Type 2 can be processed. This will make
the up and down time of pseudo machines in two-machine lines for
Type 2 be distributed more nearly geometrically.

VIII. C ONCLUSION AND FUTURE RESEARCH

We have found that the algorithm seems to converge most reliably,
even when the mean time to failure and mean time to repair of all
the machines in the line are of radically different order of magnitude.



Also the accuracy of the algorithm with respect to the simulation
results for production rate and average buffer levels was satisfiable.
We noted that the algorithm tended to overestimate the production
rates for Type 2 parts. This suggested that improvements can be made
to the decomposition to increase the accuracy. For our future research,
we will model for a longer line with more part types. Also the idea of
decomposition will be modified to analyze a system with re-entrance
flow.
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