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Abstract—This paper presents a model and analysis of a synchronous lines is also discussed. Section Ill presents the analysis of the Markov
tandem flow line that produces two different part types on unreliable chain for the two-machine lines. Compared to the single-part-type
machines. The machines operate according to a static priority rule, ;o the two-part-type line behavior is very complicated. However,
operating on the highest priority part whenever possible, and operating "
on lower priority parts only when unable to produce those with higher all of the fundamental concepts of the decomposition of a two-part-
priorities. We develop a newdecomposition methotb analyze the behav- type production line can be described in terms of the small production
ior of the manufacturing system by decomposing the long production line  |ine system, composed of two processing machines and two demand

into small analytically tractable components. As a first step in modeling a machines, without becoming burdened with the algebraic difficulties
production line with more than one part type, we restrict ourselves to the

case where there are two part types. Detailed modeling and derivations of the. longer production line system. Section IV introduces the
are presented with a small two-part type production line that consists Modeling process of the small multiple-stage production line. Then
of two processing machines and two demand machines. Estimates for Type 1 and Type 2 part decomposition methods are introduced
performance measures, such as average buffer levels and productionfor the small production line in Section V and in Section VI.An
rates, are presented and compared to extensive discrete event S|mu|at|on.algorithm to solve the decomposition is presented in Section VI, as
are numerical results concerning the accuracy of the decomposition,

Index Terms—manufacturing system, flexible, flow line, finite buffers, and the qualitative behavior of the system

unreliable machines, markov chain model, decomposition.

Il. TwO-PART-TYPE PROCESSINGLINE

This paper presents a model and analysis of a synchronous tandiniNotation
production line that produces two different part types on unreliable Figure 1 represents a production line processing two different
machines. Inventory is stored between machines in finite buffe@art types. The line consists of two kinds of components: processing
We assume that machines in the processing line are flexible in thaachinesM;, denoted by the squares and finite-capacity storage
they can operate on different part types, and there are no sethyffers B; ; for work in process inventory, denoted by the circles.
penalties incurred when machines switch production from one paet us defineK to be the number of machines that are processing
type to another. The machines operate according to a static priotityo different part types in the line, not including the supply and
rule, operating on the highest priority part whenever possible, ad¢mand machines. At the beginning and end of the line, there are
operate on lower priority parts only when unable to produce thosepply machines\/o 1, and My 2, and demand machines/x 41,1,
with higher priorities due to either blockage or starvation. and Mg 41,2

I. INTRODUCTION

Gershwin [1] introduced a decomposition method that analyzesMachinesMy,1 and Mk 1,1 process only Type 1 parts, while
the behavior of the manufacturing system with a stochastic queuingichines My > and Mx,1,2 process only Type 2 parts. Each
model. This method models a manufacturing system as a flow lineachine, other than the supply and demand machines, process both
with unreliable machines and finite buffers. This decompositigmart types. We assume that there is no set-up time incurred when
method was limited to a single part type case. Nemec [2] formulatéfie machines switch production from one part type to another.
a deterministic single failure multi-part type transfer line. HowevelVhen M; completes work on a part, it sends the part to a buffer
this formulation worked only for small two-part type lines, andlownstream of the machine. Each part type has a distinct buffer
there is no clear way of generalizing his equations for longer lineafter each machine. Therefore, a Type 1 part processéd; atould
Syrowicz [3] proposed a way of analyzing two-part type line withbe sent taB; 1. A Type 2 part processed at the same machine would
multiple-failure modes. This approach made the decomposition lo¢ sent toB; ».
the multi-part type line easier than the decomposition introduced by
Nemec [2]. However, the Markov model of the two-machine line, We assume that all the machines in the line, including supply
the basic building block of the decomposition, for this model waand demand machines, are unreliable. betlenote the state of a
complex. Moreover, there were too many variables and equationsntachine. Ifa = 1, the machine is said to bep or working If
solve with this. a = 0, the machine is said to béown or failed. We let ao,1(t)

denote the state of supply machind,,; at the end of timet.

As a first step in modeling a transfer line with more than on®/e define o 2(¢t) similarly for My 2. For the demand machine,
part type, we restrict ourselves to the case where there are two plfit 11 and Mk 12, we let the corresponding state variables be
types. We verify our results by comparing them with simulationxx1,1(t) and ax1,2(t). For processing machind/;, the state
The qualitative behavior of the multiple-part-type processing lineariable representing the state of the machine at the end ofitime
under different supply and demand scenarios is also investigatedwritten «;(t). We make the assumption that all the machines in the

line, including the supply and demand machines, Haw@ogeneous

This paper is organized as follows. Section Il introduces a Markg@rocessing timesThat is, the lengths of time that parts spend in
model of a processing line with two different part types. Thenachines are fixed, known in advance, and the same for all the
decomposition of the long line into smaller, tractable two-machimaachines. For convenience, the processing times are assumed to
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Fig. 1. A two-part type production line
be scaled to unity. Furthermore, we assume that the yield of all
machines is 100%. That is, we do not allow the scrapping or rework
of parts ’ Pping roi = Prlagi(t+1)=1|ao(t) =0
Po,i Pr [Ozo,i(t + 1) = 0|Oéoyi(t) =1N ’no,i(t) < Nz}
We assume that all buffers, including the supply and demand fori=1,2
buffers, have finite size. The size of buffét; ; is denotedN; ;,
where i indicates the production stage, afid= 1 or 2, represents _ _ B N
the part type. We let bufferB; and By denote the supply buffers ' % +1J Prioscir(t+1) = ax,;(t) = 0]
for Type 1 and Type 2, respectively. Likewise, buffelly; and ~ PK+1.j Priak41,;(t+1) =0

Bk 2 denote the demand buffers for Type 1 and Type 2, respectively.
We denote the current level d8; ; at the end of time by n; ;(t).
Therefore,0 < n;;(t) < N, , for all (z,5), and for allt > 0. A
machine is said to bstarvedfor a given part type if the upstream
buffer corresponding to that part type is empty. Itbiockedfor a . )
given part type if the corresponding downstream buffer is full. Wi+ Part Type Priority Policy

make the assumptions that the supply machines are never starved afdnce each machine in the production line must choose which part
the demand machines are never blocked. to work on when it has a choice, we are required to state a policy
by which that choice is made. Our assumption is that each machine
will work on Type 1 parts whenever the machine is up, the upstream
buffer for Type 1 parts is not empty, and the downstream buffer for
As mentioned earlier, all machines in the line are assumed to J‘P)‘?'pe 1 parts is not full. Each machine will only work on Type 2

ynreliab_le._ We further assume that machines cannot fail if they as@rts if it is up, and either blocked or starved for Type 2 parts, and
idle. This is calledoperation dependent failurest means that the not starved or blocked for Type 2 parts.

supply machines cannot fail if they are blocked and the demand
machines cannot fail if they are starved. A processing machiﬁf Production Rate
cannot fail if it is either starved or blocked for Type 1 parts, and at
the same time starved or blocked for Type 2 parts.

akxt1,5(t) = 1Nnk ;(t) > 0]
forj=1,2

B. Machine Parameters and Dynamics

Let us denote the production rate of Type 1 partdatby F; ;.
This is the fraction of time thad/; is working on Type 1 parts. We

All machines are assumed to have geometrically distributed up alﬂaow thatM; will make a Type 1 part ,at the gnd of timet 1 if
down times. We assume that the probability thé4t fails is the same, M; is not starveq for Type 1 parts at tinde M is not blocked for
regardless of the part type the processing machine is working on. W€ 1 parts at time, and A/; is up at the end of time + 1. This
let r; represent the probability that/; is up in timet + 1, given it probability is expressed as follows:
was down in timet. Likewise, p; represents the probability that;
is down in timet + 1, given it was up and not blocked or starved in
time ¢. For the supply machines, we leg ; andrg 2 represent the
probability thatM,,; and My 2 are up in timet + 1, given they were
down in timet. Also, po,1 and po,2 represent the probability that
Mpy,1 and My, are down in timef + 1, given they were u@nd not

Ei,1 = Pr [Oéi(t + 1) =1nN (2)

ni—l,l(t) >0N m,l(t) < Nz‘,l]

Let the quantityF; » denote the production rate of Type 2 parts.

blocked in timet. For the demand machinédx 1,1 and Mg 41,2,
the corresponding parameters are writt@f1,1, px+1,1, TK+1,2,

andpx+1,2. For M;, the machine parameters can be written as:

Prioi(t+1) = 1|a;i(t) = 0] (1)
Prla;i(t+1) =0
{aii(t) =1Nni—11(t) >0Nni (k) < N;qpU
{aii(t) =1N(ni—1,1(t) =0Uni1(¢) = Nij)
Nni—1,2(t) > 0N n;2(t) < Nij2}
fori=1,...,K

T3 =

pi =

This is the fraction of time thad/; is working on Type 1 parts. From
our assumptions, we know that; will make a Type 2 part at time
t+ 1, if M; is either blocked or starved for Type 1 at timieM; is
not starved or blocked for Type 2; and; is up at the end of time
t+ 1. This is:

Ei» =

)

Pr [Cki(t—Fl) = 1ﬂ(ni_1,1(t) = QU (3)
ni1(t) = Nit) Nng—1,2(¢) > 0N nga(t) < Nigl

In steady state, because of conservation of flow, we require that
each machine in the line makes the same number of Type 1 and Type
2 parts. If we denote the throughput for the demand machine for Type

Likewise, for the supply and demand machines, the machirearts byEx 1,5, and the supply machine for Tygeparts byFEy ;,

parameters are defined as:

then we must have



in constructing the two-machine-line. However, in our model, as
discussed earlier, the machines in the two-machine-line are no longer
restricted to failing only if they are not blocked or starved. Since a
machine in the two-machine line can fail while it is idle — starved
or blocked — we call the lingg two-machine line with idleness failure

Eo,j = Elyj = Eg’j =...= Eiyk = EK+1’j, for 71=12

E. Basic Idea of Decomposition

We intend to break down the larger system into analytically 2) Failure Mode ChangeWhen an upstream or downstream ma-
tractable two-machine lines, and capture the local behavior of tkine in the two-machine line for type-one parts is in a remote failure
long line, as seen by an observer in a buffer, by choosing approprigtede, the real machine represented by the upstream or downstream
parameters of the two-machine lines. This decomposition procedtir@chine could work on type-two parts. If this real machine fails
is represented in Figure 2. As discussed earlier, the idea is to fgdrile working on a type-two; the upstream or downstream machine
an observer in a buffer in the long, multi-part type processing linaill realize that the failure mode which it is in has been shifted
into thinking he is in a two-machine line. In the figure, the inflowfrom the remote failure mode, which is an initial failure, to the local
and outflow behavior of material an observer in buffef; could failure mode. We call this shifting mode changefailure mode
see is modeled by the two-machine, one-part lire, 1). change There are two important observations about failure-mode

changes. The first is that a failure mode can only change to a mode

Close observation of the dynamics of the long line, howevegorresponding to a machine which is closer to the observer. The
shows the necessity for a new two-machine line model. The read@ason for this is that the initiating failure corresponds to a real failure
is as follows. Suppose that we take the point of view of an observelr some machines, which has propagated by means of starvation or
in B;,1. We misinform this observer: we lead him to believe that helockage to the observer’s location.
is watching the flow in the only buffer in a two-machine, one-buffer,
one-part type system. Let us assume that the observer sees that
the outflow from his buffer has ceased, but the inflow has Nt 1.0 Machine-Line Notations and Parameters
Eventually, unless the outflow resumes or the inflow cea#ks,
will fill up. According to our scheduling rule}M; will immediately ~ The two-machine lines are illustrated in Figure 2. As is our
begin making Type 2 parts, if it is able to. Suppose it does, and th@dnvention, the machines are denoted by squares, and the buffer
M; fails while making a Type 2 part. Now suppose that while by circles. We denote the upstream machine b§*, and the
is down, the outflow fromB; . begins again. Then the sequencgownstream machine by/¢. We denote the size of the intermediate
of events that the observer will see are that the outflow ceased, Bigfer by N, and the current level of the intermediate buffersyit
buffer filled up, but when the outflow began again, the inflow digjlows that0 < n < N. We define the state of the two-machine line
not. As far as the observer in the buffer is concerned, the machigepe s = (n, a*, a?). a* is A; if M* is down at mode, and T*

upstream of him failed while it was blocked. if M"isup.a®is A?if M?is down at modg, andY? if M is up.

There is a subtlety here that must be paid close attention t0.\51eria| flows into the upstream machine from an infinite supply,
While this apparent idleness failure is behavior that an observer;in processed by the machine, and when processing is complete
a buffer sees, it is important to remember that the real machings, aterial is placed into the buffer until it is processed by
do not fail when they are idle. It only appears to the observer thgt, yownstream machine. Upon finishing being processed by the
the machine has failed during an idle period, because the ObserHS\Fvnstream machine, the part leaves the line. We assume that
believes that he is in a two-machine, one-part type line. Therefofge e is always room for the downstream machine to unload a part
while in our previous r_node_l we assumed that both Fhe real machlr]ta%as just completed processing. We make the assumption that
and the pseudo-machines in the two-machine sub-lines had operafjgte is only one class of parts produced by the line, and that the

dependent failures, we must relax that assumption for the Wgx,q,ction time at each of the machines is identical, and equal to one.
machine sub-lines in the two-part type case. Thus, a new two-machine

line model is in order. We present a discrete-time, discrete-stat

: T ) ®rhe machines are unreliable and can fail in multiple failure modes.
Markov model of precisely such a line in Section III.

We assume that the machines can fail while they are either operating
on a part or idle, but we do not assume that the probabilities of
failure are identical. In particular, we assume that the probability
A. ldleness Failure and Failure-Mode Change that M* fails into modes while it is working on a part, given it

As discussed in the previous section, in order to decompose igenot blocked, isp;’, and the probability that it fails into modg
Markov chain model of the two-part-type processing line, we neawhile it is blocked isq}’. Note that we daot assume that there is a
a new two-machine line. The two-machine line presented herernew failure mode, but only that there is a new way of reaching the

similar to the deterministic processing time with multi-failure-modégilure mode. We define the quantitipé and ¢ for M similarly.
model described by Tolio [4]. Finally, we denote the probabilities thar® and M* are repaired

while they are down at failure modgby ;' and r?, respectively.
1) Idleness Failure:As in the Tolio decomposition, the upstream

machine or downstream machine in the two-machine-line can failA probability expressed as;’;, represents the probability of the
into local failure modesand remote failure modesThe local failure upstream machine having a change from down micedown mode
mode is the failure of the real machine as represented by tHeThe expressiorajyj, represents the probability that the downstream
upstream machines or downstream machines in the two-machinachine has a change from down mgd® down modej’. Defining
line. The remote failure mode is the failure introduced to accounf (¢) as the state (up state or down state) of a machiaetimet
for the effect of a local failure caused by a machine outside @ivheret is eitheru or d for upstream or downstream), then we can
the two-machine-line. We follow the concept of multi-failure modelefiner, p, ¢, andz as

I1l. TwO-MACHINE LINE WITH IDLENESSFAILURE
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L(0,1)
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Fig. 2. The decomposition of a line into two-machine lines
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Fig. 3. Example of Markov states dff? with three failure modes

where J and L are the numbers of failure modes for the upstream
machine and downstream machine respectively. The set of parameters

T _ T — T N

T Pria’(t+1) =1, |a'(t) = 4;] p} andpj’ must be such thaP* < 1 and P* < 1. We define

P, Priaf(t+1) = Al | af(t) = ] andn(t) < N]

g, = Prla’(t+1)=Al]a'(t) =] andn(t) = N] E 3

sy = Prialt+1) =4} |al(t) = A] Q"=>a  and Q=)

for f = u andd j=1 1=1
We also defineP* and P4 such that
J L and again, the set of parametq;Sandqld must be such thap" < 1
PY = Zp;‘ and pe = pfl andQ?¢ < 1.

j=1 =1



C. Efficiency with Idleness Failure E" is therefore,
For every machine failure, there is also a repair. That is, for

both the up- and down-stream machines in the two-machine line, N-1 N-1 L
the conditional probability that a machine is repaired, given it isE* = Z Pr(n,T% 1% + Z ZPT (n, T*,A%) (7
down, times the probability that it is down is equal to the conditional n=0 n=0 I=1
probability that the machine fails times the probability that the
machine is up. For the upstream machines, that is expressed as + Q" ZP”" (N, T, A}) Z ZPT (N, A}, A}
=1
ri (Prla” = A} Nn < N]+ Prla" = A} Nn = NJ) (4)

Similarly, for the downstream machine:
=pj Prja” =T; Nn < N]+ ¢ Prja” =T} Nn=N]

Likewise, for the downstream machine, N Ny 7
B¢ = Z Pr(n, T*,T%) + Z Z Pr(n, AY, 1% (8)
i (Prla® = Al nn > 0] + Prla® = Al nn =0]) (5) ! 7 o J '
=piPrla® =Y Nn> 0]+ ¢ Prla® =T Nn =0 + QdZPr(O,A}‘, Zrl Zpr (0,A%, A
We can use (4) and (5) to derive expressions for efficiencies for J=1 =t j=i
upstream and downstream machines. The upstream machine produces
a partin time steg + 1 if it is up at the end of time step—'s— 1, and IV. SMALL TWO-PART-TYPE PRODUCTION LINE
was not blocked at the end of time stepMe can then writeE™ as . . . .
follows: In this section, we introduce the concepts of the decomposition
' equations of a two-part-type long production line using a small
E" = Prla®(t + 1) = T" N n(t) < N ©6) production system. All of the fundamental concepts of the

decomposition of the two-part-type production line can be described
Observe that this expression has both time steg and time step in terms of the small production line shown in Figure 4 without
t in it. We proceed by conditioning on events occurring time stefae algebraic difficulties of a longer production line. The small
t to write (6) in terms of events occurring entirely in time step production line consists of two processing machines, two demand
By doing so, we will be able to express the production rate of th@achines and four homogeneous buffers.
upstream machine entirely in terms of the state probabilities, which
are defined only on one time step. In Figure 4, M, and M, are processing machines — capable of
processing two different part types with the priority rule described in
Section Il, while M5 ; and M3 » are demand machines processing
only Type 1 and Type 2 parts, respectively. Again, the buffers are
homogeneous.

EY = Pria"“(t+1)="T"Nnt) < N|
= Prla"(t+1)="T"a"({t) =T"Nn(t) < N]
xPrla®(t) = T" Nn(t) < N|

+) (Prlat(t+1) = T"a"(t) = A} Nn(t) < N]

xPrla(t) = A} Nn(t) < NJ)

A. Model Assumptions and Notation for Two-Machine Lines

The decomposition of the system is also shown in Figure 4. There
are four two-machine lines. Each line is denoted b, j). The

= (1= Pu)Pr[au( ) =T_"Nn(t) <NJ line indicesi and j indicate theith two-machine line imitating the
N flow behavior of thejth part type inB; ;. For example,L(1,2)
+Z7“] Prla =AjNn(t) < N] represents the first two-machine-line imitating the behavior of the

second part type. The upstream and downstream machingg,,in)
are denoted by * (7, j) and M (3, 5).
If we apply the fact that the repair frequency equals failure

frequency expressed in (4), theit' is Although the actual system processes two different part types,
the decomposed two-machine lines behave as though they are only
E* = Pri{a®(t) =T"}n{n(t) < N} processing a single part type. That is, lingé$1,1) and L(2,1)

w - _ imitate the flow behavior of only Type 1 parts, whilg(1,2), and
+ QJ Pri{a®(t) =17} 0 {n(t) = N}] L(2,2) imitate those of only Type 2 parts.
B ZTJ' Pri{a”(t) = A7} 0 {n(t) = N} The machines are unreliable and they may have more than one

=t failure mode. We assume that the machines can fail while they are
either operating on a part or while they are idle, but we do not assume
that the probabilities of failure are identical. In particular, we assume
that the probability thal/“ (i, j) goes down in failure mode: while
w Ad it is working on a part, given it is not blocked, is;, (¢, 7), and the
Y PrNY AN obability that it fails into failure moden while it is blocked is
=1 gm (%, 7). Note that we daotassume that there is a new failure mode,

“ but only that there is a new way of reaching failure modes. We define

ZPT N, Af, Af) the quantitiesp?, (i, 5) and ¢% (i, 4) for M<(i,5) similarly. Finally,
we denote the probabilities that“ (¢, 7) and M4(i, j) are repaired

since

L

Pri{a(t) = 1"} n{n(t) = N}]

Pri{a”(®) = Aj}n{n(t) = N}]
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Fig. 4. Decomposition of the small production line processing two different part types
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Fig. 5. Multiple failure modes and transition parameterd.¢t, 1)




while they are down in mods: by %, andrZ,, respectively. We call of the single-part-type line decomposition.
a failure that takes place while the machine is operating on a part
anoperational failure and a failure that occurs when the machine is However, the last down state can happen when machines are

idle anidleness failure processing multiple part types. This down state is a mixture of local
and remote failures. This can occur when the following sequence of
B. Approximation failures occurs: suppos#/s; is down. If the failure persists long

In order to derive the decomposition, we need to make a cruc@oggh’ it will makeBs 1 full, causing the blockage ab/2. Now,

i : .
approximation. We will assume that the probability that a machine 2 'Sdblnged ftort T;(/jpe 1_t[))a(;ts,banM \S\}t;lrlf) \.N'l:olbe kd(zjwfn |nTthe
M- is simultaneously starved and blocked for a given part pecond down state described above. g 1S blocked for Type

L . , it may work on a Type 2 part. Let us consider a situation in which
negligible. That is, we assume that M fails while it is working on a Type 2 part. At this momenmit/s 1
is down andB.,; is full and A is also down. The observer iB:;
Prini1(t) =0Nng,1(t) = Naj] =~ 0 (9) sees that its downstream machine is not only down but also blocked
Prini2(t) =0Nng2(t) = Nap2l ~ 0 for a Type 1 part. Again, this down state is the combination of the
local and remote failure.
In order to get into this down state, the remote failure must occur
We justify this approximation with the following argument. Infirst before the local failure takes place. This is because the blockage
order for the machine to be both starved and blocked for a pa@nnot occur when the machine is down already. Therefore, from
simultaneously, it is necessary that at some point, the machine hiad observer’s view point, the third down state can be reached only
exactly one part in the upstream buffer, and exactly one space in th@m the second down state.
downstream buffer. At the same time, the upstream machine must
be unable to process parts to place in its downstream buffer, andrhe state definitions fonZ,(1,1) are:
the downstream machine must be unable to process parts, depleting
the stores of its upstream buffer. Since the probability of a machine

failing is assumed to be small — on the order of one percent — T1,1) = f{as=1Nnsy1 < Nas}

the probability that all three of these occurrences happen at the same d ' '

time is likely to be quite low. In fact, testing this hypothesis using AL(L1) = {az=0Nn21 < Naa} (10)
discrete event simulation has shown that the approximation holds in Ag(l» 1) = {a2=1Nn21=Naa}

many systems with moderate sized buffers. A3(1,1) = {az=0Nn21= N1}

V. DECOMPOSITIONANALYSIS FORTYPE 1

We construct equations for Type 1 parts of the production line Similarly, the state definitions fok/“(2,1) are
shown in Figure 4. As mentioned in Section Il, the concept of
the decomposition is to relate states of the real line with states in

the corresponding two-machine lines of the decomposition. The T(2,1) = {az=1Nng1 >0}
tv_vo-part-type I|ne_flow beh_awor is much more c.ompllcated th(_en the A¥2,1) = {as=0Mnss >0} (11)
single part-type line. To simplify the presentation, we explain the N
decomposition equations for the two-machine-line in detail. A3(2,1) = {a2=1Nng;1 =0}
A};‘(Z, 1) = {042 =0Nng1 = 0}

Throughout the rest of the section, we focus Bfi’(1,1) in
L(1,1). This downstream machine in the first two-machine line
experiences all the critical flow behavior of Type 1 parts. Therefore
the decomposition equations relatedits (1, 1) cover all the crucial
concepts of the two-part-type behavior presented in this paper.

'Note that the second and the third state definitions implicitly
express that they are not starved for a Type 1 part because of our
approximation (9).

1) State and Parameter DefinitionsThe downstream machine As we explained in the earlier section, there are transition proba-

M¢(1, 1) represents all the downstream Type 1 flow behavior fror&lltles between these states. TransitionsMiif (1,1) are denoted as
Bi.1. TheM“(1,1) up state occurs wheh/, is up and is not blocked follows: ’

for a Type 1 part.
Td(l, 1)={az=1Nn21 < N1}

d d d

That is, the observer if3;,; will see a part moving out of the buffer, r (L) Pr[Td(l’ Datt+114;5(1,1) att ]
when M5 is up is not blocked for Type 1. There are several states in pi(L,1) = Pr[Aj(1,1) att+1 | (12)
which the observer does not see a part moving out of the buffer and T41,1) Nnga(t) < Nay att ]
therefore believes thav/¢(1, 1) is down. These states are: q?l(l, 1) = PT[A?(L att+1|

o M !S down, or . Yd(l,l)ﬂng 1( N21 att}

o Ms> is up but blocked due to the failure @f/s ;, or d

o M- is down and also blocked due to the failure /o “ A(L,1) = PriA; (1) att+1 4;(1,1) att ]

When the system is not in one of the these states, the observer
believes M?(1,1) is working. The first down state represents the for j = {1,2,3} j' = {1,2,3}, andj # ;'

local failure, while the second indicates a remote failure. These
down states are typical and they can be seen in two-machine linesikewise, for M“(2,1),



implies that

(2, = Pr{T%(2,1) att+1 |A¥(2,1) att] X$(1,1) = Prlas=1Nn11>0Nns; = Nojl
pi(2,1) = PrlA¥2,1)att+1| (13) = Pr(Y%2,1)Nng1 = Naj
T*(2,1) Nn2i(t) > 0 att | = P(2,1)
6/(21) = Priaj(2,1)att+1| A similar equality can be derived fak3'(2,1). Therefore,
YT(2,1) Nnaq(t) =0 att ]
24(2,1) = PrlA%(2,1) att+1|A%2 1) att ] X3(1,1) = P(21) (16)
for j = {1,2,3} j = {1,2,3}, andj # j' X2(2,1) = P(1,1) a7

2) Equalities: For convenience, we define the following two- Last,
machine-line probabilities:

ch,l(l,l) = PT[CYQ =0Nni,1 >0Nng1 :Ngﬁl]

o o = P’I“[A?(Q7 1) Nna1 = N271]
W9 (@i,5) = Pr(X"(,7) Nni; < Nijl = Dy(2,1)
Wi, ) = Pr[Y(i,j)Nni; > 0] _ o .
X%(0,4) = PriA%(3, )] (14) Again, X3 (2,1) can be derived in the similar way. Therefore,
Xn(i,5) = PrlALG, )] X411 = Dy(21) (18)
Pb(i,j) = Pr[Y%(i,j) Nni; = Ni;] X3(2,1) = Ds(1,1) (19)
Ps(i,j) = Pr[Y%,j)Nni; = , , . »

S(Z"]') rl (Z"]') Mg ] 3) Resumption of FlowThe resumption of flow is the transition
Do(i,j) = PrlA:(i,j) Nnij = Nijl probability from a down state to the up state. Since there are three
Ds(i,5) = Pr[Ai(i,5) Nngy; =0] down states forM?(1,1), three transitions exist. Firstf(1,1) the

transition from the first down state to the up state and

Observe that all the events in the above expressions are evaluated
at the same time step. These quantities have the followim§(1,1) = Pr[Y%(1,1) att+1|Af(1,1) at¢] (20)
interpretations. I;V“(z’,j) and W%@i,5) are probabilities that = Prlaz(t+1)=1nN
M*“(i,7) and M“(4, j) are up, and not blocked and are not starved _
resp(ecti)vely. The(qu;ntitiez'ﬁ,(i,j) and XZ(i,7) are probabilities nza(t+1) < Naalas(t) = 0N nza(t) < Noa]
of upstream and downstream evett, (i, 7) and A% (i, §). Ps(i, §) = T2
and P,(i¢,5) are probabilities that upstream and downstream Since A¢
machines are up, but idle because of blockage or starvation. On g‘%qual to
other hand,Ds (i, j) and Ds (i, j) are probabilities that machines are,
down and also starved or blocked.

(1,1) represents the local failure, its repair probability
the repair probability of the real machihg. Next, the
epair probability of the remote down state is

W(1,1) indicates thatV, is up and neither starved nor blocked r3(1,1) = Pr[T%1,1) att 4+ 1 |A%(1,1) att] (21)
for Type 2, because of the definition & in (10). If we related this = Prlag(t+1)=1Nnai(t+1) < Naj
two-machine line probability with the real line then ' '
as(t) =1Nn21(t) = Noj
= (1-g(2,1
wi(1,1) = PriY(L1) Nne; > 0] ( @ (2 ))TS
= Prlea=1Nn11>0Nn21 < Nz This is because remote failure occurred due to the blockage of

Bs,1 which was caused by the failure @ffs. Therefore,Ms must

be repaired in order to resume the flow #7%(1,1). There is
Notice that that quantity is also equivalent to also one more condition required for the resumption of the flow.
Notice that at timet, M, is blocked and therefore, it could work
on a Type 2 part. The resumption of the flow happens at the next
j time step when it does not go down while it is working on Type
= Pr(Y%(2,1) Nn2;1 < N2i] 2. The probability thatM, goes down while it is blocked and
=W"(2,1) processing a Type 1 part ig'(1, 1) by the definition. Therefore, the

transition probability fromAg(1, 1) to Y(1,1) is (1—q71‘(2, 1))r3.

PT[QQ =1Nni,1 >0Nn21 < Ng’l]

Therefore,

For the third repair probability;§(1, 1) is the transition probability
from AZ(1,1) to T¢(1,1). We argue that this is

Next, X4(1, 1) is the probability that downstream machine is down
at mode 2 inL(1, 1). From the definition (10), it is

wh1,1) = W*(2,1) (15)

ri(1,1) = Pr[T%1,1) att+1 |A%(1,1) at] (22)
X35(1,1) = Prlaz = 1 Nnz,1 = N = Prlaa(t+1)=1Nn21(t+1) < Nai|
Since we approximate that the probability of a machine being az(t) = 0N n21(t) = Na]

blocked and starved at the same time step is zero, this equation = rors



As shown in the equation}/s is down att, causingB2,; to be
full, and alsoMs; is down at timet. Therefore, the both machines

_ d d
must be repaired for the flow of a Type 1 part to resume. z32(L,1) = Pr{Az(1,1) att +1|A3(1,1) att ] (30)
Similarly, the resumption of flow equations far*“(2, 1) are: = Prlog(t+1) =10n2.(t+1) = N2a
Nas(t+1) = 0|
Ozz(t) =0N n271(t) = N2,1 n ag(t) = O}
e = (23)  n(i-n)
ey = (1-d'wn)n 24) _ N .
u On the other hand, iM5 gets fixed, whileM> remains down when
r3(2,1) = rire (25 Mm4(1,1) is in A%(1,1), M, will be no longer gets blocked for a

Type 1 part, but will be in a local failure mode. Therefore,
4) Failure Mode Change:Failure mode changes are transitions
taking place between down states. First, we consider transitions from

d d
A%(1,1) to other down states. This down state is the failure\ff. Za1(L1) = PriAY(1,1) att +1|A5(1,1) att ] (31)
Since the local machine is down and is not blocked, any state change = Prioe(t+1)=0Nn21(t+1) < N2
further downstream of this local machine will not change the state Nas(t+1) = 1]

of M?(1,1). The only event that will change the state Af is the
resumption of flow. Therefore, there is no transition fraxg(1,1)
to the rest of the down states. That is, = (1 - 7"2)1“3

az(t) = 0Nn2,1(t) = N2y Nas(t) = 0]

With similar approaches, we also can derive the failure mode
change quantities foh/* (2, 1):

212(1,1) =0 (26)
2{5(1,1) =0 (27)
z12(2,1) = 0 (32
Next, considerAd(1,1), the down state caused by the failure of 213(2,1) = 0 (33)
Ms3. In this down state)M- is up but is blocked for a Type 1 part. We 12,1 = ¢f(1,1)m (34)
can think of two possible other down states that can be reached from w d
this one. First, consider the case in whitfy goes down, whilel/; 23(21) = (1 - 7"1)%(1’ 1) (35)
is still down. In this case)> will be down and blocked at the same 202,10 = ¢i1,1)n (36)
time. Therefored/?(1,1) will move A$(1,1). Since M- goes down )
while it is blocked andMs is not repaired, the transition probability z31(2,1) = mn (1 - 7“2) (37
d d H u _ H
fr(?m A5(1,1) to A3(1,1) is ¢t (2, 1)(1 7“3). If we express this 2a21) = (1 _ rl)rz (38)
failure mode change, then

5) Interruption of Flow: The interruption of flows are failures of
M%(1,1). The probabilityp$(1,1) is the transition fromY(1,1)

255(1,1) = Pr[Aj(1,1) att+1|A3(1,1) att] (28) to A{(1,1), which represents the failure df/; when By ; is not
= Prloas(t+1)=0Nnaa(t+1) = Nax N empty. This transition probability is
az(t+1)=0| . .
az(t) = 1Nnoa(t) = Nay Nas(t) = 0] pi(1,1) = Pr[A7(1,1)att+1 | (39)
= qten(1-n) T DA > 0atd
= Prlioo(t+1)=0Nn21(t+1) < Na|
az(t) =1Nn1,1(t) > 0Nn2,1(t) < Naj

The second failure mode change frakj(1, 1) is the case that/,
gets down while it is blocked, but/s gets repaired. In this casé/, = P2

will be no longer blocked, but will move to the local failure mode. Next, we derive the interruption of flow equation fpi(l 1), the
Therefore, with the transition probability gf (2, 1)rs M*(1,1) will  ransition probability from the up state to the state in whith is

move fromA3(1,1) to A{(1,1). That is, down andB. ; is full. This transition probability is,
d d d
212171(171) _ PT[A?(I,I) att+1 |A§(171) att] (29) pa(1,1) = Pr{As(1,1) att+1 |T%1,1) Nni,1 > 0 ati]
= Prla2(t+1)=0Nnz1(t+1) < Na1N We first start with the derivation of this equation by applying
as(t+1) = 1| the fact that the probability of going out of a state is equal to the

as(t) = 1 N g (£) = Nax N as(t) = 0] probability of going into that state.

qqf(2a 1)7"3

B aD( (1-a" @)+ " @ Vet " @21 (1 1)
The last down state to be considered\§. In this state M ¢(1,1)

is down because of the local failure 87, and the blockage caused d d d

=W"(1,1 1,1 X3(1,1 1-—-
by the failure ofM3. The failure mode change th%(1,1) happens (1, Dpa(1, 1) + X5 (1, Dra(1 = 75)
when M is up, butMs remains down. That is, If we simplify this equation, then



4 o o ¢3(1,1) = Prlaz(t+1)=0Nni 1(t+1)=0n  (44)
X5(1,1) <m+q (2, 1)(1 7‘3)) moa(t 4 1) = Noa|

= WAL DR 1) + X5 (1 s (1= 1) a(t) = 1Nmat) =00 na < No
- 0

That is, L . L o
This is because in our assumption in (9) states that the probability
1 that a machine is starved and blocked at the same time step is zero.
d
pa(1,1) = m X (40) For the same reason,
d
1,1) = 4
lxg(l, 1) (1"3 +¢"(2,1) (1 — m)) — X431, 1)ra(1 — m)] as(1,1) =0 (45)
Similarly,
Next, the interruption of flow in which equation for the third down
state, A%(1,1). This is the transition that goes to the stdt& is “ _ “ Py(2,1)
down and blocked for a Type 1 part. Note that wheh is up and w21 = W22 Py(2,1) + Ps(1,1) (46)
not blocked for a Type 1 part, it is impossible féf, to be down ¢(2,1) = 0 47)
and blocked at the next time step because once the machine is down, @21 = 0 (48)

it will not move a part into the downstream buffer. Therefore,
Note that sinceW™(2,1) = W%(1,1), if we add¢}(2,1) and

4(1,1) then we will have
pi(1,1) = PrlAi(1,1) att+1 | (41) ai(1,1)
TU(1,1) Nnia >0 at] =0 ¢“(2,1) + ¢ (1,1) = paW"(2,2) (49)

This equality makes sense because by the definition, the idleness
Similarly, the interruption of flow equations fav/*(2,1) are failure is the probability that a machine gets failed when a machine
is working a Type 2 part.
pi(2,1) =p2 (42)
w 1
p2(2,1) = W 1) < VI. TYPE 2 DECOMPOSITIONANALYSIS
7 The existence of Type 2 parts is made apparent to Type 1 parts
Xéi(2, D+ (1 _ T1)qd(1, 1) ] - X2d(2, 1)<1 _ rl)rz only through the existence of idleness failures — which requires
only a minor modification to the decomposition equations. However,
p5(2,1) =0 the existence of Type 1 parts has a major influence on the production
) N of Type 2 parts, and therefore the derivation for the Type 2 part
As a summary, Figure 6 shows all the transitions\6f(1,1) and  gecomposition is much more complicated. In particular, we now
M*(2,1). _ ) have to account for the possibility that an observer in a Type 2 buffer
6) Idleness Failure of Type Ondlow we need to derive expres-yjj| see flow into his buffer cease because the upstream machine
sions for the idleness failure of the two-machine lines. The idlenesgitched from making Type 2 to Type 1 parts. Furthermore, we
failure is the transition from an up state to a down state in pseud@|| have to account for idleness failures which can occur if, for

machine while it is idle. The probability{'(1,1) represents the example, a Type 2 buffer fills up and the machine begins to produce
probability that pseudo-maching/¢(1,1) is down att + 1 given Type 1 parts while the buffer is still full.

that it was up and starved at That is,

In analyzing the decomposition equations for Type 2, we also

Pr[Aflz(L Datt+1 |Td(17 1) Nnis =0 ati] use the same ap_proach we mat_:le for th(_a_Type 1 pgrt: defining st_ates
of two-machine lines, constructing transition equations and relating

= Prie(t+1) =0 two-machine line parameters to those of the real line and other
a(t) =1Nn11(t) =0Nn21 < Nz two-machine lines. When we construct decomposition equations for

Type 2 parts, we not only have to consider blockages and starvations
of the Type 2 flow, but also have to consider the interruption and

resumption of the flow due to the Type 1 flow.

i (1,1)

The only way that this is possible is if the processing machifie
failed while making a Type 2 part in time stepTherefore,

¢i(1,1) = paPrlas(t)=1Nn11(t) =0 (43) In order to reduce the complexity, we separate our analysis into
Mn12(t) > 0 Nnga(t) < Nas two parts. The first analysis is of the impact of Type 1 flow on

4 P.(1,1) Type 2. The second analysis is of the interruption and resumption
= W (1,2)5 1)+ P of flow within Type 2 flow. The first analysis focuses on how the
ne I flow of Type 1 parts affect the flow of Type 2 parts regardless of

According to the definitiongs (1, 1) is the buffer state for Type 2. The second analysis concentrates on the

buffer situations for Type 2 parts that affect the flow of Type 2. We
call the first analysi§ype 2 availability analysisThen we construct
the decomposition equations for Type 2, by combining the analysis
If we expand this equation using (10),then of the buffer situations and the availability analysis.

¢3(1,1) = Pr[A(1,1) att + 1 [T4(1,1) Nny,1 = 0 at ]



M9(1,1)

Fig. 6. Markov Chain ofM*(2,1) and M%(1,1)

7) Availability of Type 2:We begin our analysis by defining asimultaneously blocked and starved for either part type, these events
new machine state variable for Type 2 parts. We say a machineai® represented as follows:
available for Type 2when it is up, and is either starved or blocked
for a Type 1 part. This availability for Type 2 of machind; is
denoted bys;. That is, if 3; = 1, real machineM; is up and it Ds = {a2t) =0Nnq,1(¢t) =0} (52)
is starved or blocked for Type 1 parts. # = 0, M; is down, or Dy, = {a2(t)=0Nn2:1(t) =N}
processing Type 1 parts. This can be expressed as follows:

L i o — 1Y A me 1 — 0Un, _N With these events defined, we are now ready to begin our analysis
B = { 0 !f {O"_ B 0} {m.,l_—l 7-““’10_ "“*1} N of 5. We begin by observing that the three events defined above are
if {ai =0} U{ai =1N 701 >0Nni410 < Nivra} disjoint. Define the event, callell, that M- is available to process

(50)
Recall that there are two conditions under which a machine chpe 2 att+ 1. Then

produce Type 2 parts: first, the machine is blocked or starved for

Type 1 parts, and second, the machine is neither blocked nor starved U = {Ozz(t +1)=1n (nl W(t4+1)=0
for Type 2 parts. Therefores; is the indicator of the first condition
that must hold in order to produce Type 2 parts. Ungai(t+1) = N2,1>}

8) Type 2 Availability Probability:Now, we introduce new param- That is,U is the event thafi/; is up, and is blocked or starved for
eters for the Type 2 decompositior; andps. The parameter; is  Type 1 att + 1. Under these conditionsy/, is available for Type 2.
the transition probability thafl/> is available to process Type 2 atThen, since the three conditioning events are disjoint, we can write
time ¢ + 1, given that it was not available for Type 2 at timeWe the following:
call this quantityType 2 availability transition probability

s Pr{U|V U Ds U Dy] (53)
rs = Prifa=1nN _ Pr[U|V]Pr[V]+ Pr{U|D;s|Pr[D,] + Pr[U|Dy)Pr[D)
n172>0ﬁn272<N272 att—s—l\ﬂi:Oatt] PT[VUD3UD1)]

There are several states in whidlf, is not available for Type 2

at time . These states fall into the following three categories: It remains for us to calculate the individual probabilities. We first

} ) ) calculate the probability of evert, D,, and D,. First, V is the

(a) M is up, and producing a Type 1 part at time _ event thatM> is working on a Type 1 part. The probability &f is

(b) M is (_Jlown and starved for a Type 1 part at timeand will Wi(1,1) or W*(2, 1) because of the equality we stated in (15).
be available for Type 2 when it comes up.

(c) M, is down and blocked for a Type 1 part at timeand will
be available for Type 2 when it comes up.

Category (a) is the set of states in whidl, is processing Type  Next, the eventd, and D, are expressed with the definitions we
1, and therefore it is not available for a Type 2 part. This state is made in (10) and (14),

PrV]=W%1,1) = W*(2,1) (54)

V= {Oég(t) =1N n1,1(t) >0N nz,l(t) < N} (51)

PrD,] = X3(2,1) (55)
Next, we consider the two sets of states that represénteing PriDy] = X§(1,1)

down in stept and available for a Type 2 part &t 1, as described in
categories (b) and (c). This happens if the machine is either blocked
or stared for Type 1. Since we assume that the machine cannoSince eventd’, D;, and D, are disjoint,



9) Type 2 Unavailability Probability: The quantity p5 is the
d w 4 conditional probability that)/, is not available for Type 2 at time
PrlVUDs U D] =W(1,1) + X5(2,1) + X5(1, 1) (56) t + 1, but it was available and was not blocked and not starved

Now we calculate each conditional probability in (53). We begifit time . We call this quantitythe Type 2 unavailability transition

with the conditional probability,P[U/|V]. This is the conditional Probability. We can write this as

probability that M, is available for a Type 2 part at time+ 1

due to the starvation or blockage of a Type 1 part, given that it py = Pr[Ba(t+1)=0|32(t) =1Nni2(t) >0

was processing Type 1. Since we approximated in Section(ll) the Ana.2(t) < Nao]

probability that a machine is blocked and starved at the same time ’ ’

step as zero, we can state that, approximately, There are two possible cases that prevelts from processing
Type 2 parts. The first case is thiaf; is down while it is processing
Type 2 parts. The second case is tiddt is no longer blocked or

PriU|V] = (57)  starved for Type 1 parts and therefore processing Type 1 parts. Then
Priaz(t+1)=1Nni1(t+ 1) = 0]V] [
+PT[O¢2(7§ =+ 1) =1N ng’l(t + 1) = N2,1|V}
p; = Pr {Oéz = 1ﬂn171 >Oﬁn2,1 < Nzyl}U (61)
The first term on the right hand side of (57) is the conditional

probability thatM- is starved for a Type 1 part at+ 1, given that
it was processing a Type 1 partztThis is equivalent to saying that {a2=0Nn1,1 =0}U{a2 =0Nn21 = Na1} at t+1
M™(2,1) goes to down mode\5(2,1) at¢ + 1, given that it was
up att. Similarly, the second term on the righthand side of (57) is {{a2 =1Nn11 =0 U{as =1Nns1 = N» 1}}
equal to the probability that/%(1,1) goes down to the down mode ' ' '

AP(1,1) att + 1, given that it was up at. We can then write
ﬂ{az =1Nni2>0Unz2 < NQ,Q} att

PriU|V] = (58)  Let us define the following events:
PriM*(2,1) = A5(2,1) att + 1|M"“(2,1) = T“(2,1) at ]
+Pr[M%(1,1) = AP (1,1) att + 1|{M%(1,1) = T%(1,1) at¢] B = {o2=1Nn21=Na1} (62)
:pz(2’1)+p1?(1’1) S = {Otz =1Nni1 :0}

Wo {az=1Nn12 >0Nnz2 < Napo}

Next, we need to derive an expressiér[U|D,]. In this case,  The eventB is the set of states in which/; is blocked for a Type
M is down and starved for a Type 1 part at timeand is up but it 1 part, whileS is the set of states in which/; is starved for a Type 1
remains starved at the next time step. Note that this transition is th&rt. These two sets are disjoint events because of the approximation
same as the transition in whid“ (2, 1) is down at modeA3(2,1)  that probability of a machine being blocked and starved is zero as
att+ 1, given that it was down at modag (2, 1) at¢. Therefore, we stated in (9). If we apply definitions in (51) and (52), then

p%zPr{VUDSUDb

(SNW2}U{BN Wg}} (63)

PrlU|Ds] =
Pr[M"(2,1) = Ay (2,1) att + 1] By expanding this, we have
M“(2,1) = A5(2,1) att] = (1 — r1)re
imi i i . P2= (64)
Similarly, Pr[U|D;] is equal to the probability thadZ?(1,1) is 2 Pr[S N W]

down at modeA{ (1,1) att + 1, given that it was down at mode X
A%(1,1) att. Therefore, PriB W]+ PrisnWs]

(PT[V|S A Wa] + Pr(Ds|S N Wa] + Pr(Ds|S N Wz])

PrlU|Dy] = Pr(B N W] o
PriM(1,1) = AP(1,1) att + 1| (59) Pr(B W] + Pr(SnWe]
MA(1,1) = AL, 1) atd] = ra(1 — rs) (PrivIB O Wa)+ PrD.BOWa] + PriDy|B AW )

Putting everything together, we have
The fractions in the equations can be approximated as follows

. 1
T WAL D F X2 1) + XL ) (60) Pr(SnWa] ~ Pr(S] (65)
Pr(BNWa] + Pr[S N W] Pr[B] + Pr[S]
(W%L (e +pa) + PriB 0 W) N L
Pr[BNWa| + Pr[S N Ws] Pr[B] + Pr[S]

X§(271)(1 —T1)T2+X§i(171)7“2 (1 —T3>> It remains for us to calculate the individual probabilities. We
already have defined in (16) thd? being up and starved is the



same event ad/“(2, 1) being down at mode\y. Also it is stated
that M being up and blocked is equivalent 3d%(2, 1) being down

at modeA>. Therefore, Pr(Dy|BNW2] = (71)

PriM*(1,1) = AfNniy >0 att + 1
M%(1,1) = AY att]

PriS] = X3 (2,1) (66) )
PrlB] = XP(1,1) =d@n(i-n)
Putting everything together, we have
Now, we need to calculate conditional probabilities in (64). First,* 1
note that the following conditional probabilities are zero: p2 = Ps(1,1) + Pb(2, 1) X (72)
PriDJBAW2 = 0 (67) lps(l’l)((l -’ +n 1 _qd(l’l))>
PriDy|SNWy] = 0

+Pb(2,1) (qu(Q, 1) (1 — 1"3) + (1 —q"(2, 1)) 7’3>‘|

10) Decomposition of Type 2We have so far discussed the
Next, Pr(V[S N W2] is the probability thatV/> is working on @ machine availability for Type 2. However, in order to process a
Type 1 part at time + 1, given that it was up and starved for TypeType 2 part, a part and a space also have to be in the upstream and
1, but not starved nor blocked for Type 2 at tieThis probability downstream buffers. The decomposition equations presented here

is the same as the probability thaf* (2, 1) is up and not blocked jntegrate the availability analysis and the buffer state analysis.
in time ¢ 4+ 1 give that it was down at mod@y. Therefore, this

This is due to our approximation in (9).

conditional probability is the transition probability from;” to T, We introduce up and down states for Type 2 two-machine-line. As
which is given by. we do for the Type 1 case, we also explain all the states and transitions
of the Type 2 two-machine-line with the example df%(1,2) in
detail.
PrV|S A Wa) = (68)

All the states forM?(1,2) are
PriM*(2,1) =T"Nna1 < Najy att+ 1]

M“(2,1) = A} ati]

4 Td(laz) = {B2=1Nmn22 < N22}
-n (1 —a (1’1)) Atli(laQ) = {B2=0Nnz22 < Napo} (73)
Al(1,2) = =1 = N.
In a similar mannerP[V|BN W], the conditional probability that Z( 2) 2 Mnz2 2.2}
M is working on Type 1 part at+ 1, given thatM, was blocked, A3(1,2) = {B2=0Nn22= N2z}

but was not blocked nor starved for Type 2tatan be written with
two-machine-line parameters such that

PrVIBN W] = (69) T%(2,2) = {B2=1Nmnas >0}
PriM%(1,1) =Y Nniy > 0att + 1| AY2,2) = {f2=0Nnss> 0} (74)

M%(1,1) = AF att] AY(2,2) = {B>=1Nnas=0}

- (1 — e, 1))r3 A¥(2,2) = {B2=0Nnss=0}

This is because wheh/s is repaired and\//, does not go into the
idleness failure — fail while it is blocked — at the end of time step The stateT?(1,1) is the in whichM; is up and is either blocked
t, M will be no longer blocked and process a Type 1 part at tim@s starved for Type 1. It is also not blocked for Type 2. Therefore,
t+1. if M?(1,2) is in this stateM> works on Type 2.
Next P[D,|S N Ws] is the probability thatM> goes down while
it is working on Type 2. This is equivalent thaf“ (2, 1) is initially The statd\{(1,2) is the state in which)M> is either down, or
at the down mode\y andna 1 < N» 1, but the down mode change Up and not blocked and starved for Type 1. The second down
takes place fromA¥ to AY at the end of time step. Therefore, state, A§(1,2), represents the case in whici2 is available for
processing Type 2, however it is blocked for Type 2. Therefdre,
is either blocked or starved for Type 1 and at the same time it is
Pr(Ds|SNW,] = (70)  blocked for Type 2 —Ms- is therefore idle for both part types. The
Pr[M"(2,1) = Ay Nngy < Noj att+1] last down state_Ag(l,Z), is the state in whichl\/;, is not available
MU(2,1) = AY at{] for Type 2 and it also blocked for Type 2 parts.

= <1 — r1)qd(1, 1) Now, we need to derive the interruption of flow, resumption of
flow, and failure mode change equations for Type 2 parts. Before we
For the similar reasonP[Dy|B N Wa] is construct equations as we have done for the Type 1 case, notice that



the Type 2 availability,3, seen by a Type 2 observer, gives us the
identical behavior withv in Type 1 two-machine-line. For instance,
an observer im; 1, who believes that she is in a two-machine-line,
processing a single part type, will see a Type 2 part moving out of
the buffer when there is a part that is, ; > 0 and at the same time,

B2 = 1. If 32 goes from1 to 0 when there is no part at; ; will
believe that there is an idleness failure occurred. Since she believes
that the machines are processing only one part type, the paratheter
gives the exactly same meaning to the observer in a Type 2 flow as
« does to its Type 1 observer. Therefore, for the Type 2 observer's
point of view, the parameters” and r* are seen the same way as

p andr seen by a Type 1 observer. For this reason, if we apply the
same logic in constructing decomposition equations we have done
for a Type 1 part, we can derive all the decomposition equations for
a Type 2 part. The resulting decomposition equationsaest(1, 1)
andM*“(2,1) are

pi(1,2) = p (75)
4 1 Fig. 7. Markov Chain ofd/4(1,2)
p2(1,2) = mx (76)
[X;i(l, %) <T3,2 Fk2,2) (1 B r372>> tsr:arved for a Type 2 part. That ng is .beg'in_idl'e att. Remember
at the real machine cannot fail while it is idle. Therefore, the

idleness failure probability is
—X5(1,2)ra(1 — 73,2)
¢1(1,2) = Prlas(t+1)=1n (88)
nl,l(t + 1) >0N nz,l(t + 1) < N2,1|

d —
ps(1,3) =0 (77 () = 10 (ne1(t) = 0Unsr (t) = Niy)]
r(1,2) = 7} (78)

4 u This expression is the probability thdtls resumes processing a
r2(1,2) = (1 —q (272))”),2 (79) Type 1 part at + 1, after having been idle for the both part types.
rf(1,2) = 0 (80) Then.

4a(1,2) = 0 R P2, 1) (1= 20 )ra + (1,0 (1 - (1))
s(1,2) = 0 82 07T Py(2,1) + (1,1

251(1,2) = ¢(2,2)r} (83) (89)
2,145 = @52 Since we approximate the probability that a machine gets blocked
255(1,2) = ¢'(2,2) (1 — 7«3,2) (84) and starved at the same time is zero, we can state that,

4a(1,2) = (1 - ’";)””2 (63) @1,2) = o (90)
#2(12) = r3(1-ran) (86) ¢8(12) = 0 (91)

11) Idleness Failure of Type TwdEhe idleness failure probability !N @ similar manner, we can derive

for Type 2 is Py(2,1) (1 —q“(2, 1))?"3 + Po(1,1)r (1 -q'(1, 1))
a'(2,2) =
H2) = PrAY(L2) att s 1 L2 e =0 atd Py(2,1) + Ps(1,1) ©92)
= Pr{B(t+1)=0Nn22(t+1) < Napgf 2(2,2) = 0 (93)
B2(t) = 1Nn12(t) = 0] (2,2 = 0 (94)

This equation is expressed based on the definitioa$fl, 2) and The equations forg(1,2) and g(2,2) are identical. This is

T%(1,2). In the equatiom »(t) = 0 implies thatny » < Na due to d . " .
approximation (9). Therefore, at the next time step, when the machltr)l%Cause wheneve¥/“(1,2) is starved orM™ (2,2) is blocked, M,

does not process a Type 2 paBs must remainna.s < Na . If goes back processing a Type 1 part, they goes to the idleness failure.

we rewrite this, then
VIlI. ALGORITHM AND RESULTS

4 A. Algorithm
a1(1,2) = Prifa(t+1) = 015:(8) = 1nma(t) =01 @7) o present an algorithm for solving the decomposition equations
In this equation,5 = 1 meansM, has been either blocked orderived in Section V and Section VI. The basic idea of the algorithm
starved for a Type 1 part. Alsa,; » = 0 indicates that\/> has been is a generalization of the DDX algorithm for the single-part case



described in [5]. In this case, we first sweep down the line calculating *
the upstream two-machine parameters for Type 1 using the parameters
of the previous two-machine line. Then we sweep up the line to
calculate the downstream two-machine line parameters for Type 1.
We then repeat the process for Type 2. The termination conditions
for the algorithm are such that

£, 5) — E(0, )l

fori = 1,...,k, is less than some specifiedfor each Typej
part. This method exploits the recursive nature of the interruptio
and resumption of flow equations.
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B. Randomly Generated Cases
2l i

Since we have not proved the convergence of the algorithm
analytically, we follow the procedure described in [2] and test
the algorithm on multiple randomly generated cases where the-s; P T o o~ = 0
parameters of the random systems are within certain tolerances. The Case Number
random cases we generated have machines that have similar thoMah8
not identical characteristics. We allow for the machines to hayg
different isolated efficiency rates, but we do not generate lines with

an extreme bottleneck machine.

. The errors in the decomposition approximation for Type 1 production
es

10 .

The isolated production rates of the processing machines vary
from 0.85 to 0.95. For the demand machines we typically generate s 1
repair probabilities that are of the same order of magnitude as
those generated for the processing machines. However, the failures
probabilities of the demand machines are higher; rather than beitlg
an order of magnitude smaller than the repair probability, they arg ,|
of the same order of magnitude. This ensures that the demand rates
for both part types are individually below the capacity of the Iine% )
This is because a system in which the Type 1 demand machine has
an isolated efficiency similar to that of the other machines in the line
tends to be uninteresting as the line spends all of its time producing’
Type 1 parts. We also ensure that the demand rate for Type 1 and
Type 2 are such that, combined, the processing line would not have?
the capacity to meet demand for both Type 1 and Type 2 parts. This
is because if the line has the capacity to meet demand for both parts ; : : : :

. X X . X 0 50 100 150 200 250 300
types then the estimation process is trivial; production rate would be Case Number

equal to dema:nd rates and all intermediate buffers will be nearly fUlLlfg. 9. The errors in the decomposition approximation for Type 2 production
These restriction on demand rates are expressed such that:

rates

eq1 < € < eq1+eq (95)

eqge < e; < eq1+egs

C. Numerical Results

The percent errors calculated for all 300 cases are shown in Figure
Wwherei =1,...,k 8 and 9. The average absolute errors for Type 1 is 0.21% while Type
2 is 1.8%. The average error for buffer levels is 6.2%. As shown in
;}ﬁé figures, the algorithm tends to slightly underestimate the Type 1
roduction rate, while overestimating for Type 2 parts. The behavior

We generate 300 random lines. The first 100 random lines are li
where demand for part Type 1 and Type 2 are roughly the same.
second 100 cases are of the line where the demand for part Typg

exceeds that of part Type 2 by up to 30%. The remaining 100 casoécs he algorithm varies depending on the demand rates fqr Type 1
. and Type 2. In the case where the demand rates for Type 1 is low and
are of the line where the demand for part Type 2 exceeds that of p?rt

Type 1 by up to 30%. Buffers size vary from 5 to 20. For production’ ™ 2 is high — line 201 - 300 — the algorithm tends to give the

. most accurate results. We attribute this to the increase of randomness
rates, we calculate the percent error of the approximated productg)

rate from the simulated production rate in the following manner. éha_mor for Type 2 pgrts. Since the demand rate for Type 1 par_ts IS
relatively low, there will be more blockage of Type 1 parts, leading

Egecomp — Fsim (96) to a longer period in which Type 2 can be processed. This will make
Eeim the up and down time of pseudo machines in two-machine lines for
For average buffer levels, we calculate the percent error of tfj¥P€ 2 be distributed more nearly geometrically.
approximated average buffer level as follows:

%Error = 100 x

VIIl. CONCLUSION AND FUTURE RESEARCH

Naecomp — Nsim (97 We have found that the algorithm seems to converge most reliably,
N even when the mean time to failure and mean time to repair of all
These measurements are standard in the literature cited. the machines in the line are of radically different order of magnitude.

%Error = 100 x



Also the accuracy of the algorithm with respect to the simulation
results for production rate and average buffer levels was satisfiable.
We noted that the algorithm tended to overestimate the production
rates for Type 2 parts. This suggested that improvements can be made
to the decomposition to increase the accuracy. For our future research,
we will model for a longer line with more part types. Also the idea of
decomposition will be modified to analyze a system with re-entrance
flow.
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